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ABSTRACT 

During fertilization, the spermatozoon task is not limited to just deliver the male genome to 

the oocyte, it is beyond that. During the last stages of spermatogenesis, the spermatozoa 

develop to have a highly organized genome. The sperm DNA is compacted by nearly 85% 

of protamines and 15 % of histones carrying epigenetic signals, together with different kind 

of RNA molecules and proteins participate in post-fertilization events and mainly in 

embryo development.  

About 50% of infertility cases are referred to as idiopathic infertility, around 15% of it is 

due to genetic factors and 35% due to environmental factors. Tobacco smoke is one of the 

lifestyle factors that present a big threat for human health and it is believed to have an 

influence on male fertility and sperm quality by inducing epigenetic and/or genetic 

modulations on sperm genome. Thus, this study comes to fulfil a part in the remained gap 

in the comprehensive understanding of the expression and regulation of the genes in the 

human spermatozoa. 

The purposes of this study were first, to find out the effect of Tobacco smoke on sperm 

quality determined by standard parameters (WHO, 2010), sperm DNA maturity tested by 

Chromomycin A3 (CMA3) staining, sperm DNA fragmentation tested by TUNEL assay, 

and clinic outcomes after ICSI therapy. Second, to quantify the transcript levels of five 

nuclear proteins genes: H2BFWT, TNP1, TNP2, PRM1, and PRM2 by RT-PCR, correlate 

them with the previous parameters and determine the smoking effect on this gene 

expression and regulation. Finally, to determine the single nucleotides polymorphisms in 

three genes: H2BFWT, PRM1, and PRM2 by Sanger sequencing and their association to 

smoking and previous parameters. 

The study population (n=167) were male partners, randomly collected, of couples 

undergoing intracytoplasmic sperm injection (ICSI) therapy, in reproductive age (25-49 

years). The patients were divided into two groups: heavy-smokers group and non-smokers 

group. 

In heavy-smokers group a significant decrease (p<0.01) in standard semen parameters in 

comparison to non-smokers has been shown: sperm concentration (62.17 ± 51.68 mill/ml 
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vs. 88.09 ± 63.42 mill/ml), progressive motility (PR) (14.86 ± 10.95% vs. 27.31 ± 21.78%), 

and sperm normal morphology (4.01 ± 2.88% vs. 10.87 ± 12.11%).  

Besides, the mean percentage of protamine deficiency (CMA3 positivity) and sperm DNA 

fragmentation (sDF) were significantly higher (p<0.01) in heavy-smokers than in non-

smokers (33.30 ± 23.33% vs. 20.35 ± 13.43% and 26.86 ± 19.77% vs.14.23 ± 13.07% 

respectively). A significant positive correlation has been found between CMA3 positivity 

and sDF (r=0.484, p=0.0001) in the group of heavy-smokers, and no correlation (r=0.256, 

p=0.098) between these two parameters in the non-smokers group.  

In the present study, by comparing the ICSI results between the heavy-smokers and non-

smokers, the pregnancy rate was significantly higher in the group of non-smokers than the 

heavy-smokers group (0.60 ± 0.49% vs. 0.38 ± 0.48%, p=0.013), other parameters showed 

no significant differences. 

Furthermore, the transcript level of each studied gene mRNA (mean delta Ct) was 

differentially expressed between the heavy-smokers and non-smokers groups and this 

difference was highly significant (p<0.01). H2BFWT, TNP1, TNP2, PRM1 and PRM2 

genes were down-regulated in spermatozoa of heavy-smoker compared to non-smoker 

(Fold change<0.5) and were significantly correlated between each other (p<0.01). 

Moreover, the protamine mRNA ratio, in the current study, was significantly higher in the 

heavy-smokers group in comparison to the non-smokers group (0.60 ± 1.08 vs. 0.11 ± 0.84, 

p=0.001). 

In the non-smokers group, protamine ratio correlated positively with the expression levels 

of TNP2 (r=0.349, p=0.032) and PRM2 (r=0.488, p=0.001). However, in the heavy-

smokers group, it correlated positively to TNP2 transcript (r=0.307, p=0.004), PRM2 

transcript (r=0.445, p=0.0001), and H2BFWT transcript (r=0.342, p=0.001). Only in the 

group of heavy-smokers, the protamine ratio significantly correlates with CMA3 positivity 

(r=0.413, p=0.0001) and sDF (r=0.302, p=0.003). 

Moreover, the present study demonstrated the absence of a connection between genetic 

variations founded in H2BFWT gene (rs7885967, rs553509 and rs578953), protamines 

genes PRM1 (rs737008) and PRM2 (rs2070923 and rs1646022) and fertility alteration in 

heavy-smoker and non-smoker males. 
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In conclusion, the results of this study demonstrated that smoking has inverse effects on 

sperm quality, sperm DNA integrity, mRNA expression levels of H2BFWT, TNP1, TNP2, 

PRM1and PRM2 genes and protamine mRNA ratio, but has no effect on the nucleotides 

sequences of these genes. This suggests that the RNA of the studied genes and protamine 

mRNA ratio in the sperm of male partners of ICSI patients are good predictive factors to 

evaluate the sperm quality and its fertilizing capacity. 
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ZUSAMMENFASSUNG 

Das Spermium hat während der Befruchtung mehrere Aufgaben. Zum einen muss das 

männliche Genom zur Eizelle. Des Weiteren entwickeln sich die Spermien in den letzten 

Stadien der Spermatogenese zu einem hoch organisierten Genom. Die Spermien-DNA wird 

aus Protaminen (ca. 85%) und Histonen (ca. 15%) gebildet, zusammen mit verschiedenen 

Arten von RNA-Molekülen und Proteinen. Diese sind vor allem an Prozessen nach der 

Fertilisation beteiligt und nehmen eine wichtige Rolle in der Embryonalentwicklung ein. 

Etwa 50% der Fälle von Unfruchtbarkeit werden als idiopathische Unfruchtbarkeit 

bezeichnet, davon sind 15% auf genetische Faktoren und 35% auf Umweltfaktoren 

zurückzuführen. Tabakrauch ist einer der Lebensstilfaktoren, die eine große Bedrohung für 

die menschliche Gesundheit darstellen. Es wird angenommen, dass Rauchen Einfluss auf 

die männliche Fruchtbarkeit und Spermienqualität hat, indem es epigenetische und/oder 

genetische Modulationen auf das Spermiengenom induziert.  

Ziel dieser Studie war es, zunächst die Wirkung von Tabakrauch auf die Spermienqualität 

zu ermitteln.Die Spermienqualität wurde bestimmt durch Standardparameter (WHO, 2010), 

die DNA-Integrität (gemessen mit Chromomycin A3 Färbung, CMA3) und die DNA-

Fragmentierung (gemessen durch den TUNEL-Test). Des Weiteren wurde das klinische 

Outcome nach ICSI Therapie dokumentiert. Transkriptionswerte von fünf atomaren 

Proteingenen wurden ebenfalls quantifiziert: H2BFWT, TNP1, TNP2, PRM1 und PRM2 

von RT-PCR.Es wurde untersucht, ob die Gene mit den bisherigen Parametern korrelieren 

und ob es einen Effekt des Rauchens auf die Genexpression, bzw. Genregulation gibt. Um 

die einzelne Nukleotid-Polymorphismen zu bestimmen, wurden 3 Gene (H2BFWT, PRM1 

und PRM2) durch Sanger-Sequenzierung untersucht.Ihre Assoziation mit dem Rauchen, 

sowie mit den anderen Spermienparametern wurde ebenfalls gemessen. 

Die Studienpopulation (n=167) waren männliche Probanden, die sich einer 

intrazytoplasmatischen Spermieninjektion (ICSI) unterzogen hatten. Das Alter betrug 25-49 

Jahre. Die Patienten wurden in zwei Gruppen eingeteilt: Die Gruppe der schweren Raucher 

und die Nichtraucher-Gruppe. 
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Bei der Gruppe der Raucher wurde eine signifikante Abnahme (p<0,01) bei den 

Standardparametern im Vergleich zu Nichtrauchern gezeigt: Spermienkonzentration (62,17 

± 51,68 mill/ml vs. 88,09 ± 63,42 mill/ml), progressive Beweglichkeit (PR) (14,86 ± 

10,95% vs. 27,31 ± 21,78%) und Spermienmit normaler Morphologie (4,01 ± 2,88% vs. 

10,87 ± 12,11%) waren bei Rauchern im Vergleich zu den Nichtrauchern reduziert. 

Außerdem war der Mittelanteil von Protamin-Mangel (CMA3-Positivität) und der DNA-

Fragmentierung von Spermien (sDF)  bei Rauchern signifikant höher (p<0,01) als bei 

Nichtrauchern (33,30 ± 23,33% vs. 20,35 ± 13,43% und 26,86 ± 19,77% vs. 14,23 ± 

13,07%). Es wurde eine signifikante, positive Korrelation zwischen die CMA3-Positivität 

und sDF (r=0,484; p=0,0001) in der Gruppe der Raucher festgestellt. Dagegen gab es keine 

Korrelation (r=0,256; p=0,098) zwischen diesen beiden Parametern in der Nichtraucher-

Gruppe. 

In der vorliegenden Studie war die Schwangerschaftsrate nach ICSI in der Gruppe der 

Nichtraucher deutlich höher als die der Raucher-Gruppe (0,60 ± 0,49% vs 0,38 ± 0,48%; 

p=0,013).  

Darüber hinaus wurde die Transkriptionsstufe jedes untersuchten Gens mRNA (mean delta 

ct) zwischen den Rauchern und Nichtrauchern differenziert ausgedrückt.Dieser Unterschied 

war signifikant (p<0,01). Die Gene H2BFWT, TNP1, TNP2, PRM1 und PRM2 wurden in 

Spermien der Raucher im Vergleich zum Nichtraucher (Foldchange<0,5) herunterreguliert 

und signifikant miteinander korreliert (p<0,01). Zudem lag das Protamin-MRNA-

Verhältnis in der Raucher-Gruppe deutlich höher (0,11 ± 0,84 vs. 0,60 ± 1,08, p=0,001). 

In der Gruppe der Nichtraucher korrelierte das Protaminsverhältnis positiv mit den 

Ausdruckstufen TNP2 (r=0,349; p=0,032) und PRM2 (r=0,488; p=0,001). In der Gruppe 

der Raucher korrelierte es jedoch positiv mit TNP2-Transkript (r=0,307; p=0,004), PRM2-

Transkript (r=0,445; p=0,0001) und H2BFWT-Transkript (r=0,342; p=0,001). Nur in der 

Gruppe der Raucher korreliert das Protaminsverhältnis signifikant mit CMA3-Positivität 

(r=0,413; p=0,0001) und sDF (r=0,302; p=0,003). 

Darüber hinaus hat die vorliegende Studie gezeigt, dass es keinen Zusammenhang zwischen 

genetischen Variationen gibt, die im H2BFWT-Gen (rs7885967, rs553509 und rs578953), 

Protaminen-Gen PRM1 (rs737008) und PRM2 (rs2070923 und rs1646022) vorkommen. 
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Zusammenfassend haben die Ergebnisse dieser Studie gezeigt, dass Rauchen einen 

negativen Einfluss auf die Spermienqualität hat.Die Spermienqualität, die mRNA-

Expressionsstufen der H2BFWT, TNP1, TNP2, PRM1-und PRM2-Gene und das Protamin- 

mRNA-Verhältnis waren bei Nichtrauchern reduziert, hatten aber keine Auswirkungen auf 

die Nukleotid-Sequenzen dieser Gene. Dies deutet darauf hin, dass die RNA der 

untersuchten Gene, sowie das Protamin-mRNA-Verhältnis in den Spermien männlicher 

Partner von ICSI-Patienten gute Vorhersage-Faktoren sind, um die Spermienqualität und 

ihre Fertilität zu bewerten. 
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1. INTRODUCTION 

Infertility is a big problem that many couples worldwide have to face. In fact, it is affecting 

nearly 15% of the couples who, according to the World Health Organization (WHO, 2010), 

fail to geta clinical pregnancy after 12 months or more of regular unprotected sexual 

intercourse (WHO, 2010). 

A population based-study carried out by Agarwal et al. (2015) to estimate male infertility 

distribution around the world, has shown that the male factor distribution in the infertility 

was between 20% and 70% and the proportion of infertile men was on the 2.5% - 12% 

range.  

Infertility or subfertility is related to health problems that can be the consequence of many 

factors. 50% of cases are referred to as idiopathic infertility and around 15% of these cases 

are due to genetic factors that include chromosomal aneuploidy, chromosome 

microdeletions, structural and numerical Karyotype anomalies (Harton & Tempest, 2012), 

chromosome-linked copy number variations (CNVs), variable number tandem repeats 

(VNTRs) and single nucleotide polymorphisms (SNPs) associated with  genes with an 

endocrine function (ESR1, ESR2, AR, etc.), specific function in spermatogenesis (PRM1, 

PRM2, H2BFWT, etc.) or ordinary cell function (CYP1A1, MTHFR, NOS3, etc.) (Krausz 

et al., 2015). 

In other idiopathic male infertility cases, environmental and lifestyle factors, such as 

nutrition, drinking alcohol, physical activity and tobacco smoke, play an important role in 

the aggravation of infertility problems. 

In fact, external exposure to toxicants leads to different alterations during the various 

phases of spermatogenesis (mitotic, meiotic and post-meiotic) (Beal et al., 2017). As a 

matter of fact, it has been confirmed that male fertility impairment is growing and that this 

might be associated with environmental factors and lifestyles. In this study, we have 

focused on tobacco smoke and its effect on the spermatozoa structure, the function nuclear 

protein gene polymorphism and the sperm potential to fertilize the oocyte by analysing 

semen samples of heavy-smoker and non-smoker patients undergoing intracytoplasmic 

sperm injection (ICSI) therapy.  
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1.1. Sperm chromatin organization 

It took 50 years to discover the two major components of the sperm chromatin: DNA and 

protamine. The beginning of this research was in 1865 when Gregor Mendel established the 

laws of heredity (Mendel, 1865). 

Four years later, Friedrich Miescher began his research about the cells and their chemical 

composition by isolating the proteins and discovered an acid-insoluble structure that he 

called the Nuclei (Miescher, 1869). Later on, the nucleus accumulated from the human cells 

was not enough for his study, so he decided to use salmon sperm cells instead. At this time, 

he isolated a highly basic protein, which he called protamine. Then, he reported that the 

major structure of the spermatozoa head was DNA and protamine and that they were 

attached in a salt-like state (Miescher, 1874).The most research on the protamine molecule 

was carried out by Kossel and his team for almost 3 decades (Kossel, 1898; Kossel & 

Dakin, 1904; Kossel & Dakin, 1905; Kossel & Edlbacher, 1913). 

1.2. The spermatogenesis 

Sexual reproduction is a type of reproduction where two haploid cells called spermatozoon 

and oocyte fuse together. These cells are obtained through a series of cell phases and 

divisions including nuclei and chromatin packaging and function changes in a 

differentiation process called spermatogenesis starting from diploid somatic cells called 

spermatogonium. This process is the main key to have successful fertilization. It includes 

several series of cellular, chromatin structural and functional modifications (Figure 1).  

Spermatogenesis begins with differentiation via the mitosis of spermatogonial cells into 

primary spermatocytes. Then, the diploid spermatocytes (44 chromosomes, XX or XY) 

undergo a meiotic phase (meiosis I and meiosis II) to produce haploid spermatids 

containing only one copy of each chromosome (22, X or Y). Later, the spermatid undergoes 

a series of morphological changes (Head, midpiece and tail) and their chromatin structure 

and function change (Balhorn, 2018).  

In fact, there are imprinted genes in the male genome, epigenetic changes in the DNA and 

nucleoproteins that edit the chromatin to make it ready to control the embryonic growth and 
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development (Canovas & Ross, 2016) and step-by-step the chromatin will be genetically 

silenced in the spermatozoa (Ren et al., 2017). 

 

Figure 1: Themajor events in the life of sperm during spermatogenesis and fertilization; Cellular 
changes (left) and chromatin changes (right). [Adapted from Barrachina et al., 2018] 

 
Spermatogenesis is controlled through several hormones. The first control is through a 

neurological pathway; the gonadotrophin-releasing hormone (GnRH) secreted by the 

hypothalamus provokes the adenohypophysis to excrete the follicle-stimulating hormone 
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(FSH) and luteinizing hormone (LH). The LH provokes the Leydig cells to produce the 

Testosterone, and the FSH assists the Sertoli cells to support the spermatozoa during the 

different phases of spermatogenesis. Beside FSH and LH there are other hormones, such as 

prolactin and the growth hormone, which play crucial roles during spermatogenesis 

(Sharma & Agarwal, 2011). 

 

 
Figure 2: Gonadotropin and steroid hormone control of spermatogenesis. [Adapted from Mitchell et al., 

2017] 
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1.3. The chromatin remodelling during spermiogenesis 

In order to obtain a hydrodynamic sperm head and to protect the paternal genome from any 

modifications in the male orfemale reproductive tracts, the human sperm DNA, in early 

spermiogenic phases, undergoes major cellular and nuclear changes (Ward & Coffey, 

1991).  

First, the spermatid undergoes the Golgi phase, which is marked by the formation of 

polarity. The Golgi apparatus, which evolves later on the acrosome and synthesized 

proteolytic enzyme, appears in the head. Mitochondria accumulate in the midpiece and the 

axoneme starts to form the distal centriole. Next, one of the centriole pair elongates to form 

the tail or flagellum (Russell et al., 1993).   

Besides, the chromatin in the elongated nucleus becomes ten times more compact than the 

chromatin in the nucleus of a somatic cell through progressive modifications (Braun, 2001) 

(Figure 3). 

So, in early spermiogenic phases, major chromatin packaging takes place. The nucleosome-

bound DNA configuration will first be destabilized by hyperacetylation of the canonical 

histones, which will neutralize the positive charge of lysine,  reducing their affinity for 

DNA and by the DNA topoisomerase II (topo II), which will cause double and single DNA 

strand breaks to reduce the tension of the DNA (McPherson & Longo, 1993; Laberge & 

Boissonneault, 2005). 
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Figure 3: A representation of the difference in the chromatin packaging between a somatic cell (left) 
and a sperm (right). The chromatin is converted from a nucleo-histone structure (solenoid loop) into a 
nucleo-protamine structure (Toroid: doughnut loop). Post-translational modifications of the proteins 

facilitated the transition histone-protamine: acetylation, ubiquitination and phosphorylation of histone 
H4, phosphorylation and dephosphorylation of the transition proteins. [Adapted from Braun, 2001]. 

 

The "canonical histones" are composed of the core histones (H2B, H2A, H3, and H4) and 

the linker histone (H1), will be replaced by their testis-specific histone counterparts. These 

histones are called "histones variants" and start to appear during different stages of 

spermatozoon formation and they are found in lower quantities during the cell cycle 

(Cheema & Ausió, 2015) (Figure 4). Among these histones, there are H2A variants which 

are major players like H2A.Bbd (González-Romero et al., 2008), H2B variants like 

H2BFWT (Churikov et al., 2004a), H3 variants like H3.T (Witt et al., 1996), and H1 

variants like H1.T and H1.T2 (Tanaka et al., 2005). Some of these histone variants are 

present only in masculine germ cells (Talbert & Hanikoff, 2010).  

Churikov et al. (2004b) demonstrated that the TH3 histone variant is shown in 

spermatogonia, TH2A and TH2B, prior to meiosis, combined with the chromatin of 

spermatocytes. However, TH1 or H1.t is found at the end of the meiotic prophase. 
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Moreover, there are posttranslational modifications (PTM) of histones that are also 

important for the good progress of the spermiogenesis (Carrell, 2012; Godmann et al., 

2007). During the elongated spermatids phase, the H3 and H4 are acetylated and 

consequently, the interactions between these histones and the sperm DNA are relaxed, 

especially in the regulatory regions of genes which contribute to embryonic development 

(Nair et al., 2008; Sonnack et al., 2002). The H4 methylation increases during the 

differentiation of the spermatogonia to spermatid (Luense et al., 2016), but decreases in the 

elongated spermatids (Sonnack et al., 2002). H3 histone is methylated in the round 

spermatids and this methylation has been demonstrated to mark the regulatory sites on 

evolutionary repressed genes, which are important for both gamete differentiation and 

embryo development (Godmann et al., 2007; Hammoud et al., 2009; Khalil et al., 2004). 

It has been demonstrated that 10-15% of canonical histones and their variants remains 

bound to DNA in the mature human spermatozoa (Bench et al., 1996; Gatewood et al., 

1990; Wykes & Krawetz, 2004). It concerns mainly the transcription sites of genes in 

sperms that are important for the preservation of the paternal genome epigenetics for their 

later expression during early embryonic development (Carrell & Hammoud, 2009; Ihara et 

al., 2014). The regulatory sequences (Brykczynska et al., 2010; Castillo et al., 2014), 

microRNA clusters, transcription factors, paternally imprinted genes (Hammoud et al., 

2009), the centromeric and telomeric DNA (Zalenskaya & Zalensky, 2004), retroposons 

(Pittoggi et al., 1999), matrix associated regions (Ward, 2009), and genes that produce 

rRNA are transcribed at the final stages of spermatogenesis (Sillaste et al., 2017). 

After spermatocytogenesis, the chromatin structural changes will be more obvious when 

two smaller more basic proteins (10-20% lysine and arginine) named "Transition proteins" 

TP1 and TP2 are synthesized and deposed at the mid-stage of spermatid formation (Figure 

4). 

TP2 (13kDa) appears in step 1 and TP1 (6.2kDa) appears in step3 (Steger et al., 1998). At 

this time the majority of the core histones are eliminated and the chromatin structure 

becomes more condensed. 

Pradeepa & Rao (2007) have reported that TP1 plays the main role in the destabilization of 

the nucleosome structure and the initiation of gene transcription termination when TP2 is 



8  

 

attached to CG rich sequence by zinc fingers. Also, it is important for the chromatin 

condensation progress (Zhao et al., 2001). It has also been shown that TP1 facilitates the 

repair mechanism of the DNA strand alterations (Caron et al., 2001).   

As their name indicates, these proteins stay only for a short period of time attached to the 

DNA. Therefore, they are modified in arginine and lysine residues by methylation, 

acetylation, and phosphorylation to lose their ability of attachment to the sperm DNA 

(Nikhil et al., 2015).  Moreover, the transition proteins have been shown to be important 

not only for the chromatin condensation procedure but also for the DNA damage repair 

caused during the histones replacement (Boissonneault, 2002). The TPs are then replaced 

by a set of small (5-8 kDa) highly basic proteins called "protamines" in the late spermatid 

stage (Figure 4). The sperm protamines 1 and 2 are encoded each by a single gene (PRM1 

for P1 and PRM2 for P2) located in a cluster of genes beside the TNP2 gene.  

They are located on chromosome 16 (16p13.13) (Oliva, 2006; Martins & Krawetz, 2007). 

The mRNA of these proteins is silenced and translated after gradual modulation of sperm 

nuclear proteins, histones to transition proteins. This step is important to ensure a good 

process of chromatin repackaging (Chromatin decondensation) after the intrusion or 

injection of a spermatozoon into the cytoplasm of the oocyte (Hecht, 1989; Kleene & 

Flynn, 1987; Lee et al., 1995). 

The sperm protamine 1 (P1) (51 AA) is the first to be synthesized as a mature protein 

(Green et al., 1994; Queralt et al., 1995). The protamine 2  is created as a precursor which 

is twice the size of P1 (101 residues) and undergoes cleavage by proteolysis after its 

deposition onto sperm DNA in order to eliminate short fragments of the peptide (Martinage 

et al., 1990; Green et al., 1994). These proteins are reported to be expressed in equal 

quantities (P1/P2 ratio ≈ 1) (Corzett et al., 2002; Aoki et al., 2005). Nanassy et al. (2011) 

suggested a clinical value of the protamine ratio of between 0.54 and 1.43 for a fertile, 

normozoospermic man.  
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Figure 4: Major chromatin structure remodelling events during spermiogenesis. [Adapted from 
Teperek & Miyamoto, 2013] 

These proteins have a characteristic constitution, mainly composed of arginine (48%) and 

cysteine residues (Figure 5) (Balhorn, 1989; Balhorn, 2007; Oliva & Castillo, 2011). The 

arginines are highly positive charged residues which form a highly ordered nucleo-

protamine complex (Toroid) with the negatively charged sperm DNA (Figure 6) (Ward, 

2009; Oliva & Castillo, 2011).  

The cysteine residues are responsible for the formation of inter- and intra-protamine 

disulfide bridges (S-S), which stabilizes the nucleo-protamine complex (Lewis et al., 2003; 

Vilfan et al., 2004; Balhorn, 2018). It is known that zinc is abundant in human sperm nuclei 

(Morisawa & Mohri, 1972) and that it is likely to get trapped by the S-S (Bedford et al., 

1973). The Cys2/His2 motif of P2 is a zinc finger domain, which leads to the appearance of 

zinc bridges responsible for the high stabilization of the chromatin in the mature 
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spermatozoa and in the cessation of transcription until the fertilization (Bianchi et al., 1992; 

Björndahl & Kvist, 2009). 

 

Figure 5: The human sperm protamine sequences. The arginine residues are distributed in clusters 
(red). The cysteine residues (asterisk) are responsible for the formation of the disulfide bonds (inter-or 
intramolecular) with molecules that are adjacent to protamine. [Adapted from Oliva & Castillo, 2011] 

 

Figure 6:The sperm chromatin remodelling during spermiogenesis: from a histone solenoid structure to 
a protamine toroid structure. [Adapted from Ward, 2009] 
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1.4. Sperm DNA alterations and their consequences on male fertility and ART 

outcomes 

Any defect occurring in one of the chromatin remodelling steps may lead to damage of the 

DNA integrity and may influence the sperm motility and morphology resulting in 

asthenozoospermia, teratozoospermia and male infertility.  

As a result, the sperm will be incapable of penetrating the oocyte and in cases where the 

sperm is intruded or injected into the oocyte, the fertilization process will fail (Spano et al., 

2005). Recently, as shown in a large number of cases, such failure can be overcome 

through different technologies like intrauterine insemination (IUI), in vitro fertilization 

(IVF), and intracytoplasmic sperm injection (ICSI) known as assisted reproductive 

technologies (ARTs), but the probability of implantation failure and problems during the 

embryonic development could still be high (Bungum & Oleszczuk, 2018). 

The traditional way of diagnosing male infertility is by determining the classical semen 

parameters, as described in the World Health Organization laboratory (WHO, 2010). 

It is obvious that these parameters were not good prognostic factors of a man’s fertility and 

of ART success. This has led to more focus on the genomic side of the sperm. In fact, many 

studies have revealed that the DNA injuries in sperm may affect the pregnancy results in 

IUI (Muriel et al., 2006; Bungum et al., 2007; Bungum & Oleszczuk, 2018). In the last 

decade, it has also been shown that DNA impairment can affect the fertilization rate, pre-

embryo development and thus the pregnancy or miscarriage (Hammadeh et al., 2006; 

Bakos et al., 2008; Frydman et al., 2008; Tarozzi et al., 2009). Moreover, others have 

demonstrated that no significant correlation was observed between the sperm chromatin 

impairments, the fertilization rate (Henkel et al., 2003), the embryo quality (Benchaib et 

al., 2003) and the   IVF/ICSI outcomes (Chohan et al., 2004). Despite that, many studies 

used different techniques for sperm DNA structure or DNA fragmentation index (DFI) 

measurement; it is still not used as a standard parameter to test male infertility or as a 

predictor of ART success. 
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1.5. Sperm chromatin maturity assessment (Tests) 

Several function tests have been proposed to explore sperm fertilizing ability and to predict 

the rate of ART outcome. However, in the literature there is still controversy about the 

benefits of using these tests. After semen analysis, normal semen parameters provide no 

firm conclusion to the clinicians either about the fertility status of the patient or the 

outcomes of infertility treatment. Various studies demonstrated that abnormalities during 

the sperm chromatin organization may lead to male infertility (Sakkas & Tomlinson, 2000; 

Spanò et al., 2000; Saleh et al., 2002) and may subsequently influence the fertilization and 

the embryo quality and development (Gannon et al., 2014; Simon et al., 2014). This means 

that sperm DNA analysis with the standard semen analysis may help to reveal hidden sperm 

DNA abnormality in men with idiopathic infertility. Because of the increasing evidence for 

DNA integrity and its importance for the ART outcome, many methods have been 

developed in the last decade to reveal any changes in the sperm chromatin status and 

maturities, such as fragmentation and protamination. But the use of these techniques as 

complementary biomarkers besides semen analysis is still controversial. 

Many assays are used to evaluate the sperm chromatin status, each one concentrating on a 

specific point on the sperm DNA (Table 1). 
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Table 1: Sperm chromatin abnormalities assessment assays (according to Agarwal et al., 
2017) 

Assessment Test Variable Method 

Acidic aniline blue (Hammadeh 
et al., 1996) 

Nuclear maturity  Optical microscopy 

Toluidine blue stain (Erenpreisa 
et al., 2003) 

DNA fragmentation Optical microscopy 

Chromomycin A3  

(Manicardi et al., 1995) 

Nuclear maturity (DNA protein 
composition) 

Fluorescent microscopy 

Sperm chromatin dispersion 
(Fernandez et al., 2003) 

DNA fragmentation Fluorescent microscopy 

DNA breaking detection-
fluorescent 

in situ hybridization (Fernandez 
et al., 2000) 

In situ nick translation 
(Gorczyza et al., 1993) 

DNA fragmentation (ssDNA)  

 

Fluorescent microscopy 

Fluorescent microscopy 

Flow cytometry 

Acridine orange (Hammadeh et 
al., 2001) 

DNA denaturation (acid) Fluorescent microscopy 

Flow cytometry 

TUNEL (Barroso et al., 2000)  DNA fragmentation Optical microscopy 

Fluorescent microscopy 

Flow cytometry 

Comet (neutral) (Singh et al., 
1988) 

(alkaline) (Singh et al., 1989) 

DNA fragmentation (dsDNA) 

DNA fragmentation 
(ssDNA/dsDNA) 

Fluorescent microscopy 

Sperm chromatin structure 
(Evenson et al., 1991) 

DNA denaturation (acid/heat) Flow cytometry 

8-OHdG measurement 

(Shen & Ong, 2000) 

8-OHdG High-performance liquid 

chromatography 

 

8-OHdG, 8-hydroxy-2-deoxyguanosine; dsDNA, double-stranded DNA; ssDNA, single-stranded DNA 
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1.6. Gene expression in human spermatozoa 

The spermatozoon is a unique differentiated cell that resulted from extremely ordered 

processes.  Transcription is a remarkable process preserved during the first steps of 

spermiogenesis until the evolution of the round spermatids. At this step, the mRNAs are 

synthesized intensively under the control of a set of specific transcription factors (Grégoire 

& Boissonneault, 2011).  

Then, the transcripts which are needed to complete in the assistance of the mature 

spermatozoa evolution are kept as ribonucleoproteins (RNPs). At the same time, the 

majority of cytoplasm with its constituents, including RNA, will be eliminated (Cooper, 

2005), and the histones are replaced by protamines, as previously described, which leads to 

a highly compacted DNA. This event leaves the sperm cell transcriptionally inert and 

lacking a translation process due to ribosomal RNA (rRNA) cleavage (Johnson et al., 

2011). 

The remaining transcripts, shown by RNA sequencing (RNA-Seq), are coding and non-

coding RNAs which contain both fragmented and submissively non-degenerated mRNAs, 

mi (micro), si (small interfering), lnc (long non-coding), and pi (Piwi-interacting)-RNAs 

(Figure 7) (Jodar et al., 2013; Sendler et al., 2013). 

 

Figure 7: Spermatozoal RNAs population in normal sperm samples. The rRNA class was the most 
abundant followed by the mitochondrial RNA (mitoRNA), small non-coding RNAs (snc-RNAs) and 
others. [Adapted from Jodaret al., 2013] 
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The composition of a mammal’s spermatozoal RNA, like in humans, is the most 

distinguishable structure. The majority of germ cell transcriptome studies that provided a 

general view of the spermatozoal RNA population were performed on the microarray 

(cDNA/ Oligonucleotide). Ostermeier et al. (2002) found that almost 3000-7000 different 

coding RNAs existed in human mature spermatozoa. In another study, they demonstrated 

that sperm transcripts originating from the earlier phases of spermatogenesis reflect 

testicular events that had happened previously (Ostermeier et al., 2005).  

Recently, as a result of various studies on the RNA content in mature sperm, an alternative 

way has evolved of diagnosing male fertility problems. A number of infertility phenotypes 

have been associated with altered transcripts; Oligozoospermia (Ferlin et al., 2010; 

Montjean et al., 2012), Asthenozoospermia (Jedrzejczak et al., 2007; Kempisty et al., 2007; 

Chen et al., 2012; Jodar et al., 2012; Abu-Halima et al., 2013; Yatsenko et al., 2013; 

Bansal et al., 2015), oligoasthenozoospermia (Li et al., 2011; Zheng et al., 2011; Abu-

Halima et al., 2013; Shen et al., 2015).  

Thus, it is obvious that sperm RNA profile depends on the testicular microenvironment and 

consequently provides an idea of how environmental and pathological agents can affect this 

microenvironment.  

Others have tried to find a correlation between the presence of the remaining RNA in 

spermatozoa with regulative functions and fertilization, early embryo development (Jodar 

et al., 2013; Sendler et al., 2013), and progeny phenotype (Ostermeier et al., 2004, Jodar et 

al., 2013).  

Furthermore, Garrido et al. (2009) and García-Herrero et al. (2011) pointed out the 

possibility of using a group of molecular biomarkers from the spermatozoal RNA profile as 

a predictor of ART’s outcomes. 

Jodar et al. (2015) identified 648 Sperm RNA elements (SREs), derived from 285 genes, 

that can be used to make a prediction about the fertility treatment for idiopathic sub-fertile 

couples and its success rate, as demonstrated, for example, in the live birth rate.  

A similar study conducted by Burl et al. (2018) on the same SREs concluded that RNAs 

predict not only live birth success but also could even indicate the human health situation. 
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1.7. Tobacco smoke as a lifestyle factor influence on male infer tility 

Tobacco consumption represents one of the biggest worldwide threats to human health. 

Despite efforts worldwide to make people aware of its consequences on health, there are 

still 1.1 billion smokers worldwide (WHO, 2018).  

Because of its deadly toxic chemical combinations of at least 7000 chemicals, tobacco 

smoke causes the deaths of over 6 million people per year (Drope et al., 2018). More than 

70 of these chemicals are carcinogens, 40 are malignant and more than 400 chemicals, such 

as cadmium, nicotine, cotinine, lead, and carbon monoxide, are toxic (Kumar et al., 2011; 

Drope et al., 2018). 

This could cause damage in almost all the human organs, for example, in the lungs, heart, 

circulatory system, immune system, and male and female reproductive systems (Drope et 

al., 2018). 

1.7.1. The relationship between tobacco smoke and male fertility alterations 

Various studies have been conducted to evaluate the effects of tobacco smoke on human 

sperm parameters: approximately 113 studies on sperm count and concentration, 94 studies 

on sperm morphology and 25 studies on sperm vitality (Beal et al., 2017). But none of them 

have definitely confirmed the influence of smoking on male fertility.  

Contradictory findings have in fact been reported concerning the influence of tobacco 

smoke on standard semen parameters. Some studies have found that smoking is correlated 

with a decline in semen volume, count, motility and morphology (Hammadeh et al., 2010; 

Zhang et al., 2013; Hamad et al., 2014; Al-Turki, 2015) but others have not found this 

association (Davar et al., 2012; Kumar et al., 2014; Moretti et al., 2014).  

In addition, it has been reported a dose-response relationship between cigarette smoking 

and the quantity and morphology of spermatozoa (Zhanget al., 2013), and semen volume 

(Anifandiset al., 2014). 

Other researchers compared the hormone levels between smokers and non-smokers and 

found that smokers have a higher concentration of FSH and LH and a nadirlevel of 

testosterone, compared to non-smokers (Mitra et al., 2012; Jeng et al., 2014).  
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Al-Matubsi et al. (2011) demonstrated that the concentrations of testosterone and LH were 

higher in smokers but the FSH level was not different between non-smokers and smokers. 

These studies showed that tobacco could affect both the Leydig and Sertoli cells, which 

influence the spermatogenesis process.  

Moreover, smoking can also cause hypoxia (lack of oxygen) (Jensen et al., 1991), which 

affects the important metabolic pathways and consequently the different stages of 

spermatogenesis, causing impairments in testis function (Harlev et al., 2015). 

1.7.2. The relationship between tobacco smoke and damage to the DNA of sperm 

Temporary sperm DNA single-strand breaks (SSBs) and double-strand breaks (DSBs) are 

genetically programmed and are needed to facilitate both the initiation of the chromosomal 

recombination (crossing-over) throughout the meiotic prophase I (Bannister &Schimenti, 

2004) and the sperm chromatin repackaging. These breaks are observed in the round and 

elongating spermatids and are important for the alleviation of torsion stress in the DNA 

strand, which will facilitate the histone-protamine transition (Bench et al., 1998; Carrell & 

Liu, 2001).  

These breaks are created and ligated by an enzyme, named type II DNA topoisomerase 

(Topo II) (De Yebra et al., 1993; Kierszenbaum, 2001). Bakshi et al. (2001) have studied 

the hormonal regulation of Topo II and have concluded that its activity is androgen-

dependent. 

Moreover, Tweed et al. (2012) demonstrated that nicotine is an endocrine disruptor because 

it affects the hypothalamic-pituitary-end organ axes. These endocrine disruptors may alter 

the activity of Topo II, which may have a consequence on DNA integrity. 

A second process leading to sperm DNA damage is the formation of the DNA adduct that 

are constituted after the DNA has bound to a chemical, such as acetaldehyde and 

benzo[a]pyrene in cigarette smoke, that causes cancer (Zenzes et al., 1999 (a & b); 

Bengum, 2012; Phillips & Venitt, 2012). A number of studies have shown that there is a 

correlation between altered sperm hormones and high DNA adduct levels (Horak et al., 

2003; Gaspari et al., 2003). 
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It has also been demonstrated that this adduct might not be repaired by the oocyte and may 

be transferred to the zygote (Perrin et al., 2011).  

Another reason for sperm DNA damage is oxidative stress (Figure 8). The cigarette smoke 

contains an elevated number of reactive oxygen species (ROS), such as free radicals, 

hydroxyl (OH), superoxide (O2-), and hydroperoxyl (HO2) radicals, and non-radical 

species, such as hydrogen peroxide (H2O2) (Thomas et al., 2008). On the other hand, 

spermatozoa are vulnerable and can be damaged because of their plasma membrane being 

rich in polyunsaturated fatty acid that constitutes a substrate for ROS production and 

reduces the amount of scavengers in the cytoplasm, such as the ROS-metabolizing 

enzymes, ascorbate and uric acid (Alvarez & Storey, 1995; De Lamirande & Gagnon, 

1995).  

Moreover, the exchange between histone-protamine during spermiogenesis is also 

important because an incomplete protamination will expose the sperm DNA to an elevated 

risk of oxidative attack, which will damage it (Giwercman & Spanó, 2018). A correlation 

has been shown between tobacco smoke, altered spermatogenesis and variations in protein 

levels, such as protamine (protamine ratio) (Hammadeh et al., 2010; Hamad et al., 2017) 

and the protamine-to-histone ratio (Hamad et al., 2014; Yu et al., 2014). 
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Figure 8: Diagram presenting the main causes of oxidative stress. (G6PD: glucose-6-phosphate 
dehydrogenase; NADPH: nicotinamide adenine dinucleotide phosphate). [Adapted from Pereire et al., 

2017] 

1.7.3.The relationship between tobacco smoke and molecular alterations (aneuploidy, 

genetic and epigenetic) in correlation to male infertility 

The Sertoli cell barrier (SCB) known as the blood-testis is thought to be a protective barrier 

for the germ cells from the majority of toxicants (Smith & Braun, 2012). However, a 

contradictory finding has been reported (Yauk et al., 2015). The genotoxic agents included 

in cigarette smoke pass through the testis-barrier (Pacifici et al., 1993; Vine et al., 1993; 

Pacifici et al., 1995; Zenzes et al., 1999 (a)) and reach the spermatozoa genome in different 

stages of spermatogenesis (Figure 9). 
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Figure 9: Divergent mutations that can occur during spermatogenesis after exposure to an external 
disturbance. [Adapted from Beal et al., 2017].(A) because of her position (open side of the blood-testis 
Barrier), the spermatogonia are more vulnerable to external exposure like toxicant which is leading to 
an increase in the insertions/deletions (indels) and single nucleotides polymorphisms (SNPs).(B) When 
she passes the testis barrier, the spermatogonia divide into two spermatocytes type I (spcI) which go 
throughout two meiotic divisions. At this stage, chromosomal recombination may lead to chromosomal 
perturbations and aneuploidies. (C) During his differentiation of formed spermatids to spermatozoon, 
the sperm DNA became more compacted which lead to a deficiency in DNA may repair which leads to 
DNA strand breaks and chromosomal rearrangement (post-fertilization). 

Furthermore, many designed studies have examined the association between tobacco smoke 

and the frequency of the mutations in spermatogonia. Most of the studies were carried out 

on rodents and showed that both mainstream and sidestream cigarette smoke increased the 

mutation frequency in the spermatogonial stem cell (Stoichev et al., 1993; Yauk et al., 

2007; Marchetti et al., 2011).  

In a human study, Linschooten and his colleagues demonstrated that the risk of the 

transmission of mutations, type tandem repeat minisatellite, to offspring are four-times 

higher in smokers than in non-smokers (Linschooten et al., 2013). 

Furthermore, the meiosis process during spermatogenesis is important and any alteration 

could lead to numerical and/or structural chromosomal changes. It has been reported that 

growing amniocytes in media containing nicotine led to abnormalities in the structure and 

(C) 

(B) 

(A) 

Lumen 
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number of chromosomes 22, 21, 20, 15, and 8 (Demirhan et al., 2011). Another study 

showed that the spermatozoa of male smokers contain a high frequency of disomy in 

chromosomes 3 and XY (Pereira et al., 2014). 

Chromatin remodelling during spermiogenesis is also an epigenetic mechanism, 

characteristic of spermatozoa. Male smoking has been associated with histone-to-protamine 

transition deficiency in sperm, alteration in protamine (P1 to P2) ratio (Hammadeh et al., 

2010; Yu et al., 2014; Hamad et al., 2017), and alterations in the histone (H2B)-to-

protamine ratio (Hamad et al., 2014).  

A correlation was demonstrated between the variations in the xenobiotic metabolism genes, 

such as glutathione S-transferases (GSTs), N-acetyltransferase (NAT2) (Yarosh et al., 

2015), the enzyme Cytochrome P450 (CYP1A1) (Yarosh et al., 2013) and idiopathic 

infertility in smokers.  

What is more, tobacco smoke is one of the main environmental factors that modify DNA 

methylation (Joubert et al., 2012; Philibert et al., 2012; Shenker et al., 2013). In our own 

laboratory in fact, a correlation between methylation and infertility in male smokers has 

been demonstrated (Laqqan et al., 2017; Alkhaled et al., 2018). 
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1.8. The purpose of the study 

The histone-protamine transition in sperm chromatin is very important for sperm maturity. 

Thus, in this particular study, we had the following aims: 

1. to investigate the effects of tobacco smoke on standard sperm parameters, sperm 

maturity and sperm DNA integrity; 

2. to determine the gene expression of some primordial nucleoproteins in sperm 

chromatin condensation: H2B histone family, H2BFWT testis-specific encoded by 

H2BFWT gene, spermatid nuclear transition protein 1 encoded by TNP1 gene, 

spermatid nuclear transition protein 2 encoded by TNP2 gene, protamine 1 encoded 

by PRM1, protamine 2 encoded by PRM2, in semen samples of  heavy-smoker and 

non-smoker patients undergoing intracytoplasmic sperm injection (ICSI) therapy; 

3. to find out the influence of tobacco smoke on the paternal genome by studying the 

variation in the DNA sequence of three of these investigated protein genes, namely, 

H2BFWT, PRM1 and PRM2. 
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2. MATERIALS AND METHODS 

2.1. Materials 

2.1.1. Study population 

Semen samples (n= 167) were collected randomly from male partners of couples 

undergoing ICSI treatment. Each patient had a physical examination and was interviewed 

following an organized questionnaire (Medical history, Job, Lifestyle and tobacco smoke). 

The participant who smokes more than one pack/day for 10 years or 2 pack/ day for 5 years 

was considered as heavy-smoker, and the participant who did not smoke was considered as 

a non-smoker. The individuals were in reproductive age (25-49 years). 

The inclusion criteria of patients were males who did not have cryptorchidism, present or 

past cancer treatment, genetic abnormalities (Klinefelter's syndrome or Y-chromosome 

microdeletion), hypogonadotropic hypogonadism (hormonal disorder), drug abuse, 

varicocele,   and/or recent fever episode, and female partners without any history of female-

related cause of subfertility (endometriosis, tubal occlusion, or ovulatory disturbance) and 

no surgical or medical infertility treatment in the last three months before undergoing ICSI. 

2.1.2. Reproduction and Andrology laboratory materials 

Reagent or chemical Company 

Combur 2 Test LN Roche, Switzerland 

Embryogen (Medium for Embryo) Origio, Denmark 

Eosin G (Sperm staining) Merck, Germany 

G-1 Plus (Culture medium) Vitrolife, Sweden 

G-2 Plus (Culture medium) Vitrolife, Sweden 

G-IVF Plus (Culture medium) Vitrolife, Sweden 

G-MOPS (Culture medium) Vitrolife, Sweden 

G-TL Plus (Long term culture medium) Vitrolife, Sweden 

SynVitro Hyadase (Denudation) Origio, Denmark 
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Immersion Oil Merck, Germany 

Liquid paraffin Origio, Denmark 

PureSperm 100 (Sperm preperation) Nidacon international AB, Sweden 

PVP clinical grade (Sperm immobilization) Origio, Denmark 

Sodium chloride (NaCl) 0,9% B.Braun, Germany 

Disposables  

1 ml insulin Syringe sterile U-40 BD Medical, USA 

5 ml Syringe sterile B.Braun, Germany 

5 Well culture Dish Vitrolife, Sweden 

Accu-jet pro pipette controller BrandTech Scientific, USA 

Biosphere Filter tips (10-20-200-100 ml) Sarstedt, Germany 

Centre Well Dish Vitrolife, Sweden 

Centrifuge tube (15 ml) Vitrolife, Sweden 

Centrifuge tube (50 ml) Vitrolife, Sweden 

Collection Dish 90mm Vitrolife, Sweden 

Coverslips R. Langenbrinck, Germany 

Culture Dish 40mm Vitrolife, Sweden 

Culture Dish 60mm Vitrolife, Sweden 

Embryo Transfer Catheter Set Cook Medical, USA 

EmbryoSlide culture dish Vitrolife, Sweden 

Flexipet denuding pipette (140 µm, 170 µm, 
300 µm) 

Cook Medical, USA 

Handling micropipettes Origio, Denmark 

Handling pipette for assisted reproduction MTG Medical, Germany 

ICSI micropipettes Origio, Denmark 

IVF ICSI Dish Thermo Scientific Nunc, Denmark 

Microscope Slides R. Langenbrinck, Germany 
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Oocyte collection tube (14 ml) Vitrolife, Sweden 

OOsafe sperm collection cup (80ml) SparMed, Denmark 

Pipettes Eppendorf, Germany 

Serological Pipette (2 ml) Vitrolife, Sweden 

Serological Pipette (5 ml) Sarstedt, Germany 

Spinal needle BD Medical, USA 

Steripette (60 mm) Minitüb, Germany 

Instruments  

Bench-top centrifuge Sigma-Aldrich, Germany 

Binocular light microscope Olympus, Japan 

Blockthermostat Labotect, Germany 

CO2 incubator (C200) Labotect, Germany 

EmbryoScope time-lapse incubator Vitrolife, Sweden 

Heating systems for microscopes Minitüb, Germany 

Heraeus horizontal laminar flow cabinet Heraeus, Germany 

Hot Plate 062 Labotect, Germany 

Incubator C16 Labotect, Germany 

 Inverted microscope: ZEISS Axio Observer ZEISS, Germany 

Makler Counting Chamber Origio, Germany 

Micromanipulation system Narishige, Japan 

Microscope SMZ18 Normal Nikon, Japan 

Vortex-Genie 2 Scientific industries, USA 
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2.1.3. Reagents, chemicals, kits and equipment in the experimental part 

Reagent or chemical Company 

Absolute Ethanol Merck, Germany 

Agarose tablets (DNase/RNase free) Bioline, UK 

Chromomycin A3 (CMA3) Merck, Germany 

DAPI ( 4′,6-Diamidine-2′-phenylindole 
dihydrochloride) Merck, Germany 

DNA Ladder (10 kb) New England BioLabs, USA 

Ethidium Bromide New England BioLabs, USA 

Glacial acetic acid Fluka, Germany 

Glycerol Merck, Germany 

Methanol Merck, Germany 

Nuclease-free water Qiagen, Germany 

Paraformaldehyde (PFA) 4% in PBS Morphisto, Germany 

Phosphate buffer saline (PBS) Sigma-Aldrich, Germany 

Sodium citrate Merck, Germany 

Tris-Acetate-EDTA buffer (TAE) Sigma-Aldrich, Germany 

Tris-EDTA (TE) Sigma-Aldrich, Germany 

Triton X-100 Sigma-Aldrich, Germany 

β-Mercaptoethanol Merck, Germany 

Kits  

In Situ cell death detection kit, Fluorescein 
(TUNEL) Roche Diagnostics, Germany 

Isolate II RNA/DNA/Protein Kit (Phenol free) Bioline, UK 

miScript II RT kit (Hiflex Buffer) Qiagen, Germany 

MyTaqTMHS RedMix Kit Bioline, UK 

PCR primers (H2BFWT, PRM1, PRM2) MicrosynthSeqLab, Germany 

QuantiTect primer assay (200), GAPDH Qiagen, Germany 
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QuantiTect primer assay (200), H2BFWT Qiagen, Germany 

QuantiTect primer assay (200), PRM1 Qiagen, Germany 

QuantiTect primer assay (200), PRM2 Qiagen, Germany 

QuantiTect primer assay (200), TNP1 Qiagen, Germany 

QuantiTect primer assay (200), TNP2 Qiagen, Germany 

QuantiTect SYBR Green PCR kit Qiagen, Germany 

Instruments  

7500 Fast Real-Time PCR system Applied Biosystems, USA 

Balance Mettler PM200 Mettler Toledo, USA 

Centrifuge CM-6MT ELMI, Latvia 

Consort EV 243 Electrophoresis power supply Sigma-Aldrich, Germany 

EasyCast B2 Mini Gel Electrophoresis System Thermo Scientific, USA 

Eppendorf Bench-top centrifuge Eppendorf, Germany 

Fluorescence Microscope Olympus, Japan 

Freezer, -20°C Liebherr, Germany 

Freezer, -80°C Thermo Scientific, USA 

Freezer, 8°C Liebherr, Germany 

Laboratory timer  Qiagen, Germany 

Light Microscope Carl Zeiss Microscopy, Germany 

Manual counter Karl Hecht "Assistent", Germany 

Microcentrifuge VWR international, USA 

Miniprep PCR-purification HT Qiagen, Germany 

MolecularImager Gel Doc XR & System with 
Image Lab Software Bio-Rad, Germany 

Nanodrop spectrophotometer ND-2000c Thermo Scientific, USA 
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PCR workstation pro (peqlab) VWR international, USA 

Single Read HT Qiagen, Germany 

Thermal Cycler C100 Bio-Rad, Germany 

Thermomixer comfort Eppendorf, Germany 

Vortex-Genie 2 Scientific industries, USA 

Disposables  

96-well PCR Plate 0.2 ml, non-skirted Nippon Genetics Europe, Germany 

Biosphere Filter tips (10-20-200-100 ml) Sarstedt, Germany 

Biosphere plus SafeSeal Micro Tubes (1,5 mL/ 2 
ml) 

Sarstedt, Germany 

Eppendorf Conical Tubes, 15 mL  Eppendorf, Germany 

Flat Cap Strips Nippon Genetics Europe, Germany 

MicroAmp Fast Optical 96-Well Reaction Plate 
with Barcode (0.1ml) 

Applied Biosystems, USA 

Multiply-Pro cup 0.2ml, PP Sarstedt, Germany 

Optical Adhesive Covers (DNA/RNase/Inhibitors 
Free) 

Applied Biosystems, USA 

Parafilm American National Can, USA 

PCR Soft tubes, 0.2 ml (DNA, DNase, RNase free) Biozym, Germany 

Pipettes Eppendorf, Germany 

Racks Sarstedt, Germany 

Single Scale Graduated Cylinders VWR international, USA 

Storage boxes Sarstedt, Germany 
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2.2. Methods 

2.2.1. Sperm collection and handling 

The samples were analysed in the IVF laboratory at the department of Obstetrics and 

Gynecology in the Saarland University clinic. 

All samples were collected, by masturbation, after a period of sexual abstinence betwen 

two to five days.  

The specimen container was kept on the heating stage or incubator (37°C) for 30-60 

minutes for liquefaction. Then, macroscopic (ejaculate appearance, viscosity, pH, and 

volume) and microscopic (The spermatozoa concentration, motility, vitality, aggregation, 

and morphology in semen) evaluations were done according to the WHO laboratory manual 

(WHO, 2010) and table 2 illustrated the lower reference limits. 

Table 2: Semen characteristics according to the WHO (2010) 

Parameters (Unit) Reference value 

Semen volume (ml) 1.5 

Total sperm number (106per ejaculate) 39 

Sperm concentration (106 per ml) 15 

Total motility (PR + NP, %) 40 

Progressive motility (PR, %) 32 

Vitality (live spermatozoa, %) 58 

Sperm morphology (normal forms, %) 4 

*PR: progressive motility; NP: non-progressive motility.  

For CMA3 and TUNEL staining, additional semen smears were prepared. 

Before DNA and RNA isolation, the total of semen samples was treated (purification step) 

to remove the cells other than spermatozoa by loading each sample onto 40%–80% 

discontinuous Puresperm gradients (Nidacon International, Sweden) and then centrifuged at 

(500 x g/20 min) at room temperature. 
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2.2.2. Sperm Chromatin condensation assay (Chromomycin A3 assay) 

For the sperm DNA condensation assessment, the Chromomycin A3 (CMA3) assay as 

described previously by Manicardi et al, (1995) was used. CMA3 is aguanine–cytosine-

specific fluorochrome which unveils unwell packaged chromatin in human spermatozoa by 

competing with the protamines for the sameDNA binding sites. 

The first step was the fixation by putting the slides1 hour in glacial acetic acid-methanol 

(1:3) for and then left them to air dry. To each slide, 25µl of CMA3 stain solution was 

added and incubated in the dark for 30 minutes at room temperature (RT). After Wash with 

Phosphate buffer saline (PBS), slides were mounted then kept overnight at 4°C in the dark. 

On each slide, 200 spermatozoa were evaluated using fluorescence Microscope (Olympus, 

Japan): a bright green spermatozoon presents a low protamination state (CMA3 positive) 

and dull green spermatozoa (CMA3 negative) (Figure 10).  

 

Figure 10:  Identification of the sperm chromatin condensation by the chromomycin A3 (CMA3): (1) 
Spermatozoa with condensed chromatin (CMA3 negative) and (2) Spermatozoa with non-condensed 
chromatin (CMA3 positive); (A) Example of non-smoker semen sample and (B) Example of the heavy-
smoker semen sample. 
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2.2.3. Sperm DNA fragmentation (Terminal deoxyribonucleotidyl transferase-

mediated dUTP nick-end labelling (TUNEL)) 

To assess the fragmentation in the sperm DNA, TUNEL test was used as previously 

described by Borini et al. (2006). The test is based on the quantification of the integrationof 

dUTP at single- and double-strand DNA breaks. This reaction is catalyzed by an enzyme 

terminal deoxynucleotidyl transferase (TdT) provided in the kit of in situ cell death 

detection kit fluorescein (Roche Diagnostics GmbH, Germany). 

The first step is the fixation of smears in slides with 4% paraformaldehyde (Sigma-Aldrich, 

Germany) for two hours at room temperature. Then in the permeabilisation step, the smears 

were incubated for 15 min with 0.1% Triton at RT. To each slide, 25μl of the TdT-labelled 

nucleotide mixture was added then incubated overnight at 37°C in a humidified chamber. 

Then the slides were washed with PBS. After that, 25μl of DAPI (Sigma-Aldrich, 

Germany) was added to each slide as a counterstain. On each slide, 200 spermatozoa were 

evaluated using a fluorescence Microscope (Olympus, Japan). A mixture of exciter 

dichromic barrier filter of BP 436/10: FT 580: LP 470 was used: Green stained 

spermatozoa are TUNEL-positive and blue stained spermatozoa are TUNEL-negative 

(Figure 11). 

 

 



32  

 

 

Figure 11: Identification of the sperm DNA fragmentation by the TUNEL assay: (1) spermatozoa 
without fragmented DNA (TUNEL-negative) and (2) spermatozoa with fragmented DNA (TUNEL-
positive); (A) example of non-smoker semen sample and (B) Example ofthe heavy-smoker semen 
sample. 

2.2.4. Genomic DNA and total RNA purification from semen samples 

Genomic DNA and total RNA were isolated from the purified semen samples according to 

a modified protocol of the Isolate II RNA/DNA/Protein Kit (Phenol-free) (Bioline, UK). 

First, the washing buffers (W1 and W2), Lysis buffer TX and DNase I were prepared as 

follow: 

Wash buffer (W1) Wash buffer W1 concentrate diluted in 90ml 

ethanol (100%) and stored at 25°C 

Wash buffer (W2) Wash buffer W2 concentrate diluted in 15ml 

ethanol (100%) and stored at 25°C 

Lysis buffer TX 10µl β-mercaptoethanol in 1ml buffer TX, stored 

at 25°C 

DNase I (RNase free) 15µl DNase I in 100µl DNase reaction buffer 

(DRB), stored at -20°C 

Then, the lysate was prepared for each sample by adding to each 100µl of the semen 

sample, 300µl of lysis buffer TX followed by vortexing (15s) until the mixture turned to be 

transparent.  
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2.2.4.1. Purification of genomic DNA 

The next steps summarized the protocol for DNA isolation from the semen sample:  

1. The providedDNA column was assembled with thecollection tube 

2. 600µl of the prepared lysate was applied onto the column, thencentrifuged (14,000 x g/ 1 

min) until the total volume passed through. 

3. The flow-through in the collection tube was retained and stored on ice for later total 

RNA isolation. 

4. The column was reassembled with another collection tube. 

5. Genomic DNA in the column was washed two times by applying 500µl of wash buffer 

W1 then 500µl of wash buffer W2 and each time the column was centrifuged (14,000 x g/ 1 

min) and the flow through was discarded. 

6. The column was dried by spin for 2 min at 14,000 x g. 

7. 50µl of DNA elution buffer was applied to the column placed into a fresh elution tube 

and centrifuged first 2 min at 300 x g, then 1 min at 14,000 x g.  

8. The extracted DNA was stored at -80°C for later use. 

2.2.4.2. Purification of total RNA 

The flow-through stored earlier for total RNA purification was processed as follows: 

1. 60µl of 100% ethanol was added to each 100µl of flow-through and mixed by vortex. 

2. The provided RNA column was assembled with thecollection tube and 600µl of lysate 

was applied onto it and centrifuged (3,500 x g/ 1 min). 

3.  Total RNA in the column was washed three times by applying 400µl of wash buffer W1 

and each time the column was centrifuged (14,000 x g/ 1 min) and the flow through was 

discarded. 

4. The column was dried by spin (14,000 x g/ 2 min). 

5. 50µl of RNA elution buffer was applied to the column placed into a fresh elution tube 

and centrifuged first 2 min at 300 x g, then 1 min at 14,000 x g.  

6. The extracted RNA was stored at -80°C for later use. 
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2.2.4.3. Analysis of RNA and DNA concentrations and purity  

The purity and the quantity of the isolated DNA and RNA were checked with the Nanodrop 

spectrophotometer ND-2000c (Thermo Scientific, USA) and they were later held at -80°C 

for later use. The purity of DNA and RNA was assessed by the 260/280 ratio. For pure 

DNA, a ratio equal to 1.8 was accepted and for pure RNA, a ratio equal to 2.0 was 

accepted. The elution buffer was used for the blank measurement.  

2.2.5. Identification of SNPs in the H2BFWT, PRM1 and PRM2 

A standard polymerase chain reaction (PCR) technique was used to amplify the Human 

H2BFWT, PRM1 and PRM2 genes. The primers were designed based on the reference 

sequence for the three candidate genes downloaded from GenBank using Primer3 

(Untergasser et al., 2012) (Table 3). 

Table 3: Primer pairs used for the amplification of H2BFWT, PRM1 and PRM2 gene 

Gene Primer Name Sequence 5'-3' 
Amplicon 

Length 

H2BFWT 
H2BFWT_F01 tggcatggatcagctgagaa 

1462 
H2BFWT_R01 ggacactccctaagcctact 

PRM1 
PRM1_F01 cctttgccctcacaatgacc 

710 
PRM1_R01 aacaaaacccagcgtgacaa 

PRM2 
PRM2_F01 ccaacagtaacaccaagggc 

883 
PRM2_R01 gccaggtttgtgtgattcgt 

 

A 30 µl PCR reaction mixture was prepared using MyTaqTMHS Red Mix Kit (Bioline, UK) 

according to the manufacturer’s instructions:  

DNA template  (20 ng/µl) 

Primers (20µM each) 0.6µl 

MyTaqHS Red Mix, 2x 15µl 

Nuclease-free water Up to 30µl 
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The Thermocycler (C1000TM Thermal cycler, Bio-Rad, United States) program was set as 

follow: 95°C for 3 min, after that40 cycles of 95°C for 20s; annealing temperature for 20s 

(H2BFWT: 64°C ; PRM1 and PRM2: 66°C), extension of 72°C for 1:40 min, thena final 

hold for 1 min at 72°C. To check the amplification, 5 µl of each PCR product for each gene 

was run in a 2% agarose gel mixed with Ethidium Bromide (Biolabs, United States) for 

visualization (EasyCast B2 Mini Gel Electrophoresis System, Thermo Scientific, United 

States) (Figures 12, 13 and 14). 

The rest of the PCR products were purified with Miniprep PCR-purification HT (Qiagen, 

Germany) and sequenced using the Sanger sequencing technique and 2 single Read HT 

(Qiagen, Germany) were made for each gene. 

 

Figure 12: Representative gel electrophoresis on agarose gel (2%) of PCR products for the 
amplification of the H2BFWT gene (1.46 Kb). Lane M: DNA Ladder (0.1-10.0 kb) (NE Biolabs, USA), 

Lane 1-8: PCR samples products. The Fragments of DNA were separated onan electric field of 70 V/ 90 
min. For the visualization of the gel after DNA migration, the Molecular Imager® Gel Doc™ XR& 

System with Image Lab™ Software (BIO-RAD, USA) were used.  
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Figure 13: Representative gel electrophoresis on agarose gel (2%) of PCR products for the 
amplification of the PRM1 gene (0.71 Kb). Lane M: DNA Ladder (0.1-10.0 kb) (NE Biolabs, USA), 

Lane 1-8: PCR samples products. The Fragments of DNA were separated on an electric field of 70 V/ 
90 min. For the visualization of the gel after DNA migration, the Molecular Imager® Gel Doc™ XR& 

System with Image Lab™ Software (BIO-RAD, USA) were used.  
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Figure 14: Representative gel electrophoresis on agarose gel (2%) of PCR products for the 
amplification of the PRM2 gene (0.88 Kb). Lane M: DNA Ladder (0.1-10.0 kb) (NE Biolabs, USA), 

Lane 1-8: PCR samples products. The Fragments of DNA were separated on an electric field of 70 V/ 
90 min. For the visualization of the gel after DNA migration, the Molecular Imager® Gel Doc™ XR& 

System with Image Lab™ Software (BIO-RAD, USA) were used.  

2.2.6. Reverse transcription and quantitative PCR (RT-qPCR) 

RT-qPCR technique was used for the quantification of the expression level of the five 

studied genes:H2B histone family member W, testis-specific (H2BFWT), transition protein 

1 (TNP1), transition protein 2 (TNP2), protamine 1 (PRM1), protamine 2 (PRM2), and the 

reference gene Glyceraldehyde 3-phosphate dehydrogenase (GAPDH). 

The extracted sperm RNA was converted into cDNA in a 20µl reaction volume via 

miScript reverse transcription kit (Qiagen, Germany), following the kit recommendations: 

1. The isolated RNA (250-300 ng) was mixed with 4µl of miScript HiFlex Buffer (5x), 2µl 

of miScript Reverse transcriptase mix, 2µl of miScript nucleic mix and RNase free water 

until 20µl. 

2. The mix was incubated in a thermocycler for 60 min at 37° C, then 5 min at 95°C to 

inactivate the transcriptase mix.  
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3. The purity and quantity of cDNA was determined with Nanodrop spectrophotometer 

ND-2000c (Thermo Scientific, USA)  

4. The cDNA was held at -20°C for later use. 

QuantiTect SYBR Green PCR Kit (Qiagen, Germany) was usedfor real-time quantitative 

PCR 

A 96 well block real-time cycler (7500 Fast Applied Biosystems, United States) was used 

to measure the emitted fluorescence during the binding of the SYBR Green to double-

stranded DNA molecules.  

Then, according to the manufacturer's recommendations, the cDNA was used as a template 

to prepare along with QuantiTect primer assay (Qiagen, Germany) a PCR reaction plate 

mix as follow: 

1. For each sample, a reaction mixes of 10µl SYBR Green, 2 µl of QuantiTect primer assay 

(for each studied gene) and 6µl of RNase free water were prepared and added into a well of 

MicroAmp Fast Optical 96-Well Reaction Plate with Barcode (Applied Biosystems, United 

States) 

2. A 2µl of undiluted cDNA was added to this mix in the well. 

3. Each sample was run in triplicate and no template control and no reverse transcriptase 

control were included in each run.  

4. With an optical adhesive cover (Applied Biosystems, United States), the plate was closed 

and put in a centrifuge (1500 rpm/ 1 minute) to spin the mix down and eliminate air 

bubbles. 

5. The plate was placed in the Applied Biosystems 7500 and the cycling program was: 

Initial activation (95°C for 15 min), after that3 step cycling (Denaturation (94°C for 15 s), 

annealing (55°C for 30 s) and extension (72°C for 15 s) for 40 cycles. 

6.  Data from real-time PCR are Ct or threshold cycles which refer to the cycle number at 

which detectable signal is achieved.  
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2.2.7. Protocol of embryo culture and Time-Lapse Imaging 

After 3-4 hours of oocytes retrieval, a decoronation of the cumulus-corona oocyte cell 

complex was performed using hyaluronidase (SynVitro Hyadase, Origio, Denmark) and the 

intracytoplasmic sperm injection (ICSI) is effectuated onoocytes in metaphase II stage 

using a micromanipulation system (Narishige, Japan) and an inverted microscope (Zeiss, 

Germany) (Figure 15). 

 

Figure 15: Intracytoplasmic sperm injection (ICSI) Day; (a) A cumulus-corona oocyte cell complex, (b) 
Denuded Metaphase II (MII) Oocyte. 

For embryo culture and assessment, the microdrop culture system and the Embryo Scope 

time-lapse incubator (Vitrolife, Sweden) were used. After injection, the oocytes were 

distributed in an Embryo Slide culture dish (Vitrolife, Sweden) that can hold 12 embryos. 

In each well of the dish, 25 µl of global total culture medium (Life Global, Canada) was 

added. The incubation conditions were: Temperature = 37°C, 5.5% Oxygen (O2) and 5.5% 

carbon dioxide (CO2). 

The embryo quality grade was assessed on day 3 after injection (Cleavage stage) according 

to the division symmetry, cytoplasmic fragmentation proportion (Grade 1: 0-10% of 

cytoplasm fragmented, Grade 2: 11-20% of cytoplasm fragmented, grade 3: >20 of 

cytoplasm fragmented) (Depa-Martynow et al., 2012) using the EmbryoViewer Software 

(Vitrolife, Sweden) (Figure16). 

(a) (b) 
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Figure 16: Embryo cleavage stages after ICSI; (a) Fertilized oocyte (Zygote) with two polar bodies and 
two central equal pronuclei (PNs) (18h post-ICSI), (b): A 2-blastomeres human embryo (Day 1 post-
ICSI), (c): A 4-blastomeres human embryo (Day 2 post-ICSI), (d): A 8-blastomeres human embryo 

(Day 3 post-ICSI). 

Also, the embryo quality is assessed on day 4 (Morula stage) (Figure17) and day 5 

(Blastocyst stage) using Gardner’s blastocyst grading scaleincluding expansion, inner cell 

mass (ICM) and Trophectoderm Epithelium (TE) (Gardner et al., 2007) (Figure 18). 

 

Figure 17: Progressive compaction of the human embryo on day 4 post-ICSI leading to the formation of 
morula. 

(a) (b) (c) 
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Figure 18: Blastocyst formation (Day 4-5 post-ICSI); (a) Human embryo with early cavitation, (b) 
Early blastocyst, (c) Expanded blastocyst. 

In 30% of cases, the embryo is transferred in the cleavage stage and in 70% in the 

blastocyst stage. The average of embryo transfer is 2 embryos/ patient. 

2.2.8. Statistical Analysis 

IBM SPSS for Windows software package version 24.0 (SPSS Inc., USA) was used to 

analyse the data obtained in the current study. After application of the skewness test, 

Kurtosis test, Z-value and Shapiro test, it has been demonstrated that the samples were 

notnormally distributed. Thus, for the comparison of the quantitative variables between the 

heavy-smokers and non-smokers groups, the Mann- Whitney U-test was used and the 

Spearman correlation test was applied to determine the correlation between the different 

studied parameters. The p-value≤0.05 was interpreted as statistically significant and p<0.01 

was interpreted as statistically highly significant.  

For the analysis of the real-time qPCR data, the relative quantification, based on the use of 

a reference gene, was used. The relative amount of each gene mRNA to the GAPDH gene 

was determined by the Livak or ∆∆Ct method (Livak & Schmittgen, 2001). The protamine 

PRM1: PRM2 mRNA ratio was calculated as described previously by Steger et al., 2003.  

The tool Tracy (https://github.com/gear-genomics/tracy) was used to obtain the allelic 

sequences for each gene. The aligner bwa (Li & Durbin, 2009), the samtools mpileup (Li et 

al., 2009) and WhatsHap (Ebler et al., 2018, Patterson et al., 2015) were used for the 

variant calling. From the set of all SNPs resulting from the previous steps, all positions with 

an allele frequency above 5 % across all studied individuals were selected and tested for 

Hardy-Weinberg Equilibrium using Fisher's Exact Test. To test the association between 
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SNP alleles and each of the studied groups of heavy smokers and non-smokers, Fisher's 

Exact Test was performed to find significant differences in allele distributions among the 

two groups (Heavy-smokers and non-smokers) and corrected for multiple testing by 

performing a Benjamini Hochberg correction (alpha=0.05). 
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3. RESULTS 

3.1. Investigated parameters for all study patients 

Table 4: Descriptive statistic of studied parameters for all the population undergoing ICSI 

therapy (N=167) 

Parameters M ± SD Median  Mini-Max 

Semen volume (ml) 3.26 ± 1.54 3.00   0.7 - 9.0 

Sperm concentration (106x1 
ml) 70.56 ± 56.87 56.00  1.0 - 286.0 

Total motility  

(PR + NP. %) 
42.26 ± 20.46 44.00  2 - 91 

Progressive motility  

(PR. %) 
18.89 ± 16.32 16.00  0 - 80 

Morphologically normal 
spermatozoa (%) 6.23 ± 7.93 4.00   0 - 53 

Protamine deficiency 

(CMA3 positivity) (%) 
30.30 ± 19.96 25.50   0 - 98 

Sperm DNA fragmentation 
(sDF)(%) 24.25 ± 18.99 20.00   0 - 97 

Number of collected oocytes 11.72 ± 6.82 12.00   1 - 37 

Number of injected oocytes 8.81 ± 5.42 8.00  1- 24 

Number of fertilized oocytes 6.91 ± 4.62 6.00   0 - 22 

Fertilization rate (%) 77.75 ± 20.46 83.17   0 - 100 

Number of cleaved embryos 6.60 ± 4.47 5.00   0 - 20 

Number of grade 1 embryos 
(G1)  2.23 ± 2.53 2.00  0 - 13 

Number of grade 2embryos 
(G2)   2.79 ± 2.36 2.00  0 - 14 

Embryos grade score 1.88 ± 0.56 2.00  0 - 4 

M: mean; Mini: minimum; Max: maximum; SD: standard deviation 
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Table 4 illustrates the descriptive statistics: mean ± standard deviation, median, and 

minimum-maximum of the different studied parameters. The mean of the sperm 

parameters: semen volume (ml), sperm concentration (106 per ml), total motility (PR + NP. 

%), progressive motility (PR. %), and morphologically normal spermatozoa (%) were (3.26 

± 1.54; 70.56 ± 56.87; 42.26 ± 20.46; 18.89 ± 16.32; 6.23 ± 7.93 respectively). 

For those patients where the protamine deficiency (CMA3 positivity) was determined by 

CMA3 staining it ranged between 0 and 98% with a mean of 30.30 ± 19.96%, and the 

sperm DNA fragmentation (sDF), determined by a TUNEL assay, it was in the range (0-97) 

with a mean of 24.25 ± 18.99%.  

Concerning the clinical parameters after ICSI, the mean number of collected oocytes was 

11.72 ± 6.82, injected oocytes was 8.81 ± 5.42, and fertilized oocytes was 6.91 ± 4.62. The 

fertilization rate has a mean of 77.75 ± 20.46%. 

The mean number of grade 1 (G1) and 2 (G2) embryos ranged between 0 and 14 and their 

mean percentage together (G1+G2) was 77.54 ± 27.57%. The mean of the embryos grade 

score mean was 1.88 ± 0.56. 
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Table 5: Comparison of the semen analysis parameters between control group (non-

smokers) and case groups (heavy-smokers) 

Parameter 
(Unit) 

Non-smoker (n=54) 

M± SD 

Heavy-smoker (n=113) 

M± SD 
P-value 

Semen volume 
(ml) 

3.56 ± 1.76 3.12 ± 1.40 0.325 

Sperm 
concentration 

(106 x1 ml) 

 

88.09 ± 63.42 

 

 

62.17 ± 51.68 

 

0.009** 

Total motility 
(PR + NP. %) 

46.20 ± 21.92 40.38 ± 19.54 0.070 

Progressive 
motility  

(PR. %) 

27.31 ± 21.78 14.86 ± 10.95 0.001** 

Morphologically 
normal 

spermatozoa 
(%) 

10.87 ± 12.11 4.01 ± 2.88 0.002** 

M: mean; n: Number; SD: standard deviation 

The ICSI patients were divided into the following two groups: a control group (non-

smokers, n=54) and a case group (heavy-smokers, n= 113). 

By comparing the classical semen parameters between these two investigated groups, the 

mean percentage of sperm concentration, progressive motility (PR), and morphologically 

normal spermatozoa were significantly elevatedin the non-smokers group (p= 0.009, 

p=0.001, and p=0.002 respectively) (Table 5). 
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Table 6: Comparison of the grade of protamine deficiency in sperm DNA (CMA3 

positivity) and sperm DNA fragmentation (sDF) between the control group (non-smokers) 

and the case group (heavy-smokers) 

Parameter 
(Unit) 

Non-smokers (n=54) 

M± SD 

Heavy-smokers (n=113) 

M± SD 
P-value 

CMA3 positivity 
(%) 

23.50 ± 14.70 33.58 ± 21.34 0.003** 

Sperm DNA 
fragmentation 

(sDF) (%) 
17.41 ± 14.59 27.55 ± 20.01 0.0001** 

M: mean; n: Number; SD: standard deviation 

Protamine deficiency (CMA3 positivity) and sperm DNA fragmentation (sDF) were 

significantly higher in the heavy-smokersgroup in comparison to the non-smokersgroup 

(33.58 ± 21.34% vs.23.50 ± 14.70%, p=0.003 and 27.55 ± 20.01% vs. 17.41 ± 14.59%, p= 

0.0001 respectively) (Table 6). 
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Table 7: Comparison of the ICSI-outcomes between the control group (non-smokers) and 

case groups (heavy-smokers) 

Parameter 
(Unit) 

Non-smoker (n=54) 

M± SD 

Heavy-smoker (n=113) 

M± SD 
P-value 

Number of 
collected 
oocytes 

11.11 ± 7.44 11.99 ± 6.54 0.357 

Number of 
injected 
oocytes 

 

9.00 ± 5.86 

 

 

8.72 ± 5.24 

 

0.931 

Number of 
fertilized 
oocytes 

6.95 ± 5.09 6.89 ± 4.41 0.791 

Number of 
cleaved 
embryos 

6.64 ± 4.71 6.58 ± 4.37 0.908 

Fertilization 
rate (%) 

77.96 ± 19.30 
 

77.65 ± 21.35 
0.943 

Number of 
grade 1 

embryos (G1) 
2.68 ± 2.89 2.03 ± 2.33 0.265 

Number of 
grade 2 

embryos (G2) 
2.45 ± 2.29 2.94 ± 2.38 0.140 

Embryos 
grade score 

1.98 ± 0.60 1.84 ± 0.53 0.450 

M: mean; n: Number; SD: standard deviation 
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The clinical data of patients who had had ICSI therapy and whose husbands were heavy-

smokers (n=113) and non-smokers (n= 54) showed no significant difference. The mean 

number of collected, injected, fertilized oocytes and the fertilization rate were similar in 

both investigated groups. In addition, the mean of the grade 1 embryos, the grade 2 

embryos and the embryos grad score did not differ significantly from each other (Table 7). 

3.2. The study of the gene expression level of H2BFWT, PRM1, PRM2, TNP1 

and TNP2 

3.2.1. The characteristic of the study population 

141 samples out of 167were used for the evaluation of the gene expression levels of some 

of the key nuclear proteins in the sperm chromatin remodelling: H2BFWT, TNP1, TNP2, 

PRM1, and PRM2 in order to identify their correlation to the classical sperm parameters 

and ICSI outcomes using two of the common tests of the sperm’s chromatin integrity, 

namely, CMA3 and a stability TUNEL Assay. 
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Table 8: Descriptive statistics of studied parameters for the gene expression study patients 

(n=141) 

Parameters M± SD Median  Mini-Maxi 

Semen volume (ml) 3.33 ± 1.57 3.00  0.70 - 9.00 

Sperm concentration (106 
per ml) 

79.03 ± 59.68 63.00  2.00 - 286.00 

Total motility (PR + NP 
%) 

42.80 ± 20.999 44.00  2.00 - 91.00 

Progressive motility (PR 
%) 

20.55 ± 17.17 17.00  0 - 80.00 

Morphologically normal 
spermatozoa (%) 

6.94 ± 8.40 4.00  0 - 53.00 

Protamine deficiency 
(CMA3 positivity) (%) 

29.35 ± 20.86 24.00  0 - 98 

Sperm DNA 
fragmentation (sDF)(%) 

22.89 ± 18.85 15.00 0 - 97 

Fertilization rate (%) 79.04 ± 19.85 83.00  0 - 100 

Number of cleaved 
embryo 

6.65 ±  4.74 5.00  0 - 24.00 

Number of grade 
1embryos (G1) 

2.34± 2.56 2.00  0 - 13.00 

Number of grade 
2embryos (G2) 

2.83±2.48 2.00  0 - 14.00 

Embryos grade score 1.87±0.56 1.94  0 - 4.00 

Pregnancy rate (%) 0.45 ± 0.5 - - 

M: mean;Mini: minimum; Max: maximum; SD: standard deviation 

Table 8 provides a summary of the statistical analysis of the sperm parameters, protamine 

deficiency, sperm DNA fragmentation, and ICSI outcomes. The means ± SD of the sperm 

volume was 3.33 ± 1.57 (ml), sperm concentration was 79.03 ± 59.68 (106/ml), total 

motility was 42.80 ± 20.99%, progressive motility was 20.55 ± 17.17%, and 

morphologically normal spermatozoa was 6.94 ± 8.40%.  
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The CMA3 positivity ranged between 0 and 98% and had a mean value of 29.35 ± 

20.86%.The sDF ranged between 0 and 97% and had a mean of 22.89±18.85%. 

The fertilization rate was 79.04 ± 19.85%. The number of cleaved embryos ranged between 

(0-24), grade 1 embryos (G1) ranged between (0-13), and grade 2 embryos (G2) ranged 

between (0-14). The mean embryos grade score was 1.87 ± 0.56 and the mean percentage 

of pregnancy rate was 0.45 ± 0.5%. 

Table 9: Descriptive statistic of the expression level (Delta Ct (∆Ct)) of the studied genes 

for all the investigated patients (n=141) in the gene expression study 

Parameters M± SD Median Mini-Max 

 ∆Ct H2BFWT 12.51±4.75 12.43  1.55 - 23.52 

 ∆Ct TNP1 0.80±2.04 1.48  -4.87 - 4.35 

∆Ct TNP2 8.33±5.56 8.20  -32.09 - 20.00 

∆Ct PRM1 0.26±2.42 0.55  -6.38 - 7.39 

∆Ct PRM2 0.71±2.86 1.00  -5.58 - 9.85 

Protamine (P1-P2) 
mRNA ratio   

0.45±1.04 0.54 -2.88 - 4.78 

M: mean; Mini: minimum; Max: maximum; SD: standard deviation  

The relative quantification of each gene of interest expression (H2BFWT, TNP1, TNP2, 

PRM1 and PRM2) was done by performing the normalized expression analysis method and 

indicated by delta Ct value (∆Ct). The reference gene was the GAPDH and the non-

smokers group was the control group. 

Table 9 represents the mean ± standard deviation, the median, minimum and maximum of 

the relative mRNA amount of the 5 studied genes. For the H2BFWT gene, the mean ± SD 

was 12.51 ± 4.75. For TNP1 and TNP2, the expression level means were 0.80 ± 2.04 and 

8.33 ± 5.56 respectively. Besides, the delta Ct mean value ± SD for protamin1 gene was 

0.26 ± 2.42 and for protamine 2 was 0.71 ± 2.86. The Protamine mRNA ratio (P1-P2) has a 

mean value of 0.45 ± 1.04. 
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3.2.2. Non-smokers versus heavy-smokers 

The patients were later divided according to smoking status into two groups: A group of 

non-smokers (n=43) and a group of heavy-smokers (n=98). 

Table 10: Comparison of the semen analysis parameters between the control group (non-

smokers) and case group (heavy-smokers) in the gene expression study 

Parameter 
(Unit) 

Non-smokers (n=43) 

M ± SD 

Heavy-smokers (n=98) 

M ± SD 
P-value 

Semen volume 
(ml) 

3.71 ± 1.76 3.17 ± 1.46 0.181 

Sperm 
concentration 
(106 per ml) 

 

98.56 ± 64.63 

 

 

70.46 ± 55.59 

 

0.014* 

Total motility 
(PR + NP. %) 

48.42 ± 21.83 40.34 ± 20.25 0.026* 

Progressive 
motility 

(PR. %) 

31.42 ± 22.24 15.78 ± 11.66 0.0001** 

Morphologically 
normal 

spermatozoa 

( %) 

12.91 ± 12.76 4.32 ± 2.93 0.0001** 

M: mean; n: Number; SD: standard deviation 

By comparing the semen parameters between the two groups (Table 10), we found that the 

mean concentration and the total motility were significantly elevatedin the group of non-
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smokers (p=0.014, and p= 0.026 respectively) and similarly noticed for the mean percent of 

the progressive motility and normal morphology (p= 0.0001).  

Table 11: Comparison of the grade of protamine deficiency (CMA3 positivity) in sperm 

DNA and sperm DNA fragmentation (sDF) between the control group (non-smokers) and 

the case group (heavy-smokers) in the gene expression study 

Parameter (Unit) 
Non-smokers (n=43) 

M±SD 

Heavy-smokers (n=98) 

M± SD 
P-value 

CMA3 positivity (%) 20.35 ± 13.43 33.30 ± 22.33 0.001** 

Sperm DNA 
fragmentation (sDF)(%) 

14.23 ± 13.07 26.68 ± 19.77 0.0001** 

M: mean; n: Number; SD: standard deviation 

Furthermore, the mean percentage of CMA3 positivity in the group of non-smokers was 

significantly lower in comparison to heavy-smokers (20.35 ± 13.34 vs. 33.30 ± 22.33, 

p=0.001). The mean percentage of sDF revealeda marked difference between the non-

smoker and heavy-smoker groups (14.23 ± 13.07 vs. 26.68 ± 19.77, p= 0.0001) (Table 11). 
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Table 12: Comparison of the ICSI-outcomes between the control group (non-smokers) and 

the case group (heavy-smokers) in the gene expression study 

Parameter 
(Unit) 

Non-smokers (n=43) 

M± SD 

Heavy-smokers (n=98) 

M± SD 
P-value 

Fertilization 
rate (%) 

78.23 ± 19.48 79.40 ± 20.10 0.691 

Number of 
the cleaved 

embryo 
6.70 ± 4.75 6.63 ± 4.76 0.923 

Number of 
grade 1 

embryos (G1)  
2.67 ± 2.93 2.19 ± 2.39 0.567 

Number of 
grade 2 

embryos (G2)   
2.49 ± 2.31 2.98 ± 2.55 0.195 

Embryos 
grade score 

1.99 ± 0.61 1.82 ± 0.54 0.229 

Pregnancy 
rate (%) 

0.60 ± 0.49 0.38 ± 0.48 0.013** 

M: mean; n: Number; SD: standard deviation 

Moreover, except for the pregnancy rate, which was significantly elevatedin the group of 

non-smokers than in the heavy-smokers group (p=0.013), there were no significant 

dissimilarities in the other investigated parameters, namely, fertilization rate, number of 
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cleaved embryos, number of grade 1 (G1), grade 2 (G2) embryos and the embryo grade 

score, between the two groups (Table 12). 

Table 13: Comparison of the mRNA relative amount of the studied genes between the 

control group (non-smokers) and the case group (heavy-smokers) in the gene expression 

study 

Gene 

expression 

level (∆Ct) 

Non-smoker (n=43) 

M ± SD 

Heavy-smoker (n=98) 

M ± SD 
P-value 

H2BFWT 10.75 ± 4.90 13.35 ± 4.45 0.001** 

TNP1 -0.04 ± 1.954  
1.17 ± 1.98 0.001** 

TNP2 5.61 ± 7.54  
9.52 ± 3.92 0.0001** 

PRM1 -0.64 ± 2.248  
0.66 ± 2.41 0.002** 

PRM2 -0.53 ± 2.61  
1.25 ± 2.82 0.001** 

Protamine 
(P1–P2) 

mRNA ratio   
0.11 ± 0.84  0.60 ± 1.08 0.001** 

M: mean; n: Number; SD: standard deviation 

The relative amounts of the investigated genes mRNA (mean delta ct) (H2BFWT, TNP1, 

TNP2, PRM1, and PRM2) were differentially expressed between the compared groups. 

This difference between the group of heavy smokers and the group of non-smokers was 

highly significant (p<0.01) (Table 13). Furthermore, the protamine mRNA ratio was also 

significantly elevatedin the case group in comparison to the control group (0.60 ± 1.08 vs. 

0.11 ± 0.84, p=0.001) (Table 13).  
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Table 14: Mean expression levels (delta Ct) of H2BFWT, TNP1, TNP2, PRM1 and PRM2 

genes from spermatozoa in the case group (heavy-smokers) compared to control group 

(non-smokers) 

Genes 
Mean delta Ct 

Non-smokers 

Mean delta Ct 
Heavy-smokers 

Fold 
change 
(FC) 

 

 

Log2 fold 
change 

Regulation 

H2BFWT 10.75 13.35 0.16 -2.6 Down 

TNP1 -0.04 1.17 0.43 -1.21 Down 

TNP2 5.61 9.52 0.06 -3.91 Down 

PRM1 -0.64 0.66 0.40 -1.3 Down 

PRM2 -0.53 1.25 0.29 -1.78 Down 

 

Since the correlation between delta Ct (∆Ct) and the gene expression level is contradictory, 

the higher delta Ct values indicate that the gene expression is decreased. This was 

demonstrated in table 14 where the H2BFWT, TNP1, TNP2, PRM1 and PRM2 were 

down-regulated (Fold change <0.5). 
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3.2.3. Correlation between the investigated sperm parameters and ICSI outcomes 

Table 15: Correlation between sperm parameters and ICSI outcomes in the heavy-smokers 

group (n=98) 
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Semen volume (ml) 
r -0.012 -0.112 -0.160 -0.031 0.035 
p 0.904 0.271 0.115 0.760 0.735 

Sperm 
concentration 
 (106 per ml) 

r 0.033 -0.075 -0.027 -0.082 -0.018 

p 0.744 0.465 0.790 0.427 0.860 
Total motility  
(PR + NP. %) 

r 0.035 -0.078 -0.138 0.008 -0.121 
p 0.729 0.444 0.175 0.940 0.237 

Progressive 
motility (PR. %) 

r 0.071 -0.002 -0.079 0.114 -0.049 
p 0.489 0.983 0.441 0.268 0.630 

Morphologically 
normal 

spermatozoa (%) 

r 0.174 0.049 -0.103 0.123 0.023 

p 0.087 0.631 0.315 0.231 0.823 

 

In the heavy-smokers group, the ejaculate volume, sperm concentration, motility and 

morphologically normal spermatozoa showed no correlation with the ICSI outcomes 

(fertilization rate, number of cleaved, grade 1 (G1) and, grade 2 (G2) embryos and, the 

embryos grade score) (Table 15). 
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Table 16: Correlation between sperm parameters and ICSI outcomes in the non-smokers 

group (n=43) 
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Semen volume (ml) 
r -0.092 -0.033 0.006 -0.110 0.019 
p 0.556 0.834 0.969 0.482 0.905 

Spermconcentration 
 (106 per ml) 

r -0.083 -0.088 -0.154 0.010 0.166 

p 0.598 0.576 0.324 0.948 0.288 
Total motility  
(PR + NP. %) 

r -0.064 -0.522** -0.391** -0.511** 0.338* 
p 0.685 0.0001 0.009 0.0001 0.027 

Progressive motility 
(PR. %) 

r 0.081 -0.584** -0.425** -0.585** 0.351* 
p 0.605 0.0001 0.004 0.0001 0.021 

Morphologically 
normal 

spermatozoa (%) 
 

r 0.209 -0.535** -0.447** -0.433** 0.368* 

p 0.178 0.0001 0.003 0.004 0.015 

 

On the contrary, for the non-smokers group (Table 16), the mean value of cleaved embryos 

correlated as being negatively significant (p=0.0001) with the mean percentage of sperm 

parameters: total motility (r=-0.522), progressive motility (r=-0.584), and morphologically 

normal spermatozoa) (r=-0.535). Moreover, similar correlations were observed between the 

same parameters (total motility, progressive motility, and morphologically normal 

spermatozoa) and the number of grade 1embryos (r=-0.391, p=0.009; r=-0.425, p=0.004; 

r=-0.447, p=0.003 respectively), the number of grade 2 embryos (r=-0.511, p=0.0001; r=-

0.585, p=0.0001; r=-0.433, p=0.004 respectively). Moreover, the embryos grade score 

correlated positively with the investigated sperm parameters (Total motility progressive 

motility and morphologically normal spermatozoa) (r=0.338, p=0.027; r=0.351, p=0.021; 

r=0.368, p=0.015 respectively) (Table 16). 
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3.2.4. Correlation between the different sperm parameters, protamine deficiency and 

sperm DNA fragmentation 

Table 17: Correlation between the investigated sperm parameters, protamine deficiency 

(CMA3 positivity) and sperm DNA fragmentation (sDF) in the heavy-smokers group 

(n=98) 
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r 1.000 -0.042 0.004 -0.024 0.097 -0.117 -0.029 

p 
 

0.681 0.965 0.812 0.343 0.251 0.776 

Sperm 

concentration 

(106 per ml) 

r -0.042 1.000 0.294** 0.515** 0.531** -0.233* -0.263** 

p 0.681 
 

0.003 0.0001 0.0001 0.021 0.009 

Total motility 

(PR + NP. %) 

r 0.004 0.294** 1.000 0.677** 0.439** 0.133 0.101 

p 0.965 0.003 
 

0.0001 0.0001 0.193 0.321 

Progressive 
motility  

(PR. %) 

r -0.024 0.515** 0.677** 1.000 0.583** -0.097 -0.063 

p 0.812 0.0001 0.0001 
 

0.0001 0.340 0.534 

Morphological
-ly normal 

spermatozoa 
(%) 

r 0.097 0.531** 0.439** 0.583** 1.000 -0.140 -0.177 

p 0.343 0.0001 0.0001 0.0001 
 

0.169 0.081 

CMA3 
positivity  (%) 

r -0.117 -0.233* 0.133 -0.097 -0.140 1.000 0.484** 

p 0.251 0.021 0.193 0.340 0.169 
 

0.0001 

In the heavy-smokers group (Table 17), the mean percentage of the sperm concentration 

correlated positively with the mean percentages of total motility (r= 0.294, p= 0.003), 

progressive motility (r=0.515, p= 0.0001), and morphologically normal spermatozoa 

(r=0.531, p= 0.0001) and correlated negatively with the protamine deficiency (r=-0.233, 

p=0.021) and the sDF (r=-0.263, p=0.009). The total and progressive motility showed a 

high positive correlation with the mean of morphologically normal spermatozoa (r=0.439, 
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r=0.583 respectively; p=0.0001). In addition, a significant correlation (r= 0.484, p=0.0001) 

between CMA3 positivity and sDF was shown (Table 17). 

Table 18: Correlation between the different sperm parameters, protamine deficiency 

(CMA3 positivity) and sperm DNA fragmentation (sDF) (%) in the non-smokers group 

(n=43) 
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sD
F

(%
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Semen 
volume (ml) 

r 1.000 -0.338* 0.184 0.242 0.227 0.147 -0.113 

p 
 

0.027 0.237 0.117 0.142 0.345 0.469 

Sperm 
concentration 

 (106 per ml) 

r -0.338* 1.000 0.159 0.107 0.110 -0.240 -0.297 

p 0.027 
 

0.309 0.494 0.481 0.121 0.053 

Total motility 

(PR + NP. %) 

r 0.184 0.159 1.000 0.874** 0.663** 0.037 -0.304* 

p 0.237 0.309 
 

0.0001 0.0001 0.815 0.048 

Progressive 
motility  

(PR. %) 

r 0.242 0.107 0.874** 1.000 0.830** 0.018 -0.304* 

p 0.117 0.494 0.0001 
 

0.0001 0.907 0.047 

Morphologic-
ally normal 
spermatozoa 

(%) 

r 0.227 0.110 0.663** 0.830** 1.000 -0.146 -0.361* 

p 0.142 0.481 0.0001 0.0001 
 

0.350 0.017 

CMA3 
positivity (%) 

r 0.147 -0.240 0.037 0.018 -0.146 1.000 0.256 

p 0.345 0.121 0.815 0.907 0.350 
 

0.098 

Table 18 illustrates the correlations between the mean percentage of the different sperm 

parameters, the protamine deficiency (CMA3 positivity) and sperm DNA fragmentation 

(sDF) in the non-smokers group. The semen volume correlated negatively with the 

concentration (r=-0.338, p=0.027) and the mean percentage of total motility correlated 

positively with the mean percentage of morphologically normal spermatozoa (r=0.663, 
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p=0.0001) and negatively with the mean percentage of sDF (r=-0.304, p=0.048). In 

addition, the progressive motility correlated positively with morphologically normal 

spermatozoa (r=0.830, p=0.0001) and negatively with the mean percentage of sDF (r=-

0.304, p=0.047). In addition, the mean percentage of morphologically normal spermatozoa 

showed a significant negative correlation with the mean percentage of sDF (r=-0.361, 

p=0.017). 

3.2.5. Correlation between protamine deficiency, sperm DNA fragmentation and ICSI 

results 

Table 19: Correlation between protamine deficiency (CMA3 positivity), sperm DNA 

fragmentation (sDF) and ICSI results in the non-smokers group (n=43) 

  Fertilization 
rate (%) 

Number of 
the cleaved 

embryos 

Number 
of grade 1 
embryos 

Number 
of grade 2 
embryos 

Embryos 
grade 
score 

CMA3 positivity  
(%) 

r 0.039 -0.037 0.186 -0.235 -0.107 

p 0.805 0.813 0.232 0.130 0.496 

sDF (%)  
r 0.077 0.394** 0.341* 0.316* -0.045 

p 0.624 0.009 0.025 0.039 0.773 

 

In the non-smokers group (Table 19), the mean percentage of the sperm DNA 

fragmentation correlated positively with the number of cleaved embryones (r=0.394, 

p=0.009), number of grade 1 (r=0.341, p=0.025), and number of grade 2 embryos (r=0.316, 

p=0.039). The remaining parameters showed no significant difference. 
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Table 20: Correlation between protamine deficiency (CMA3 positivity), sperm DNA 

fragmentation (sDF) and ICSI results in the heavy-smokers group (n=98) 

  Fertilization 
rate (%) 

Number of 
the cleaved 

embryos 

Number 
of grade 1 
embryos 

Number 
of grade 2 
embryos 

Embryos 
grade 
score 

CMA3 positivity 
(%) 

r 0.152 0.082 0.009 0.061 0.145 

p 0.135 0.421 0.929 0.550 0.153 

sDF (%)  
r 0.050 0.117 0.086 -0.007 0.034 

p 0.625 0.252 0.402 0.946 0.736 
 

Table 20 showed that in the heavy-smokers group, neither the mean percent of CMA3 

positivity nor the sDF correlate with the clinical parameters after ICSI 
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3.2.6. Correlation between the expression levels of the different studied genes and 

sperm parameters 

Table 21: Correlation between the mRNA relative amount of the studied genes and sperm 

parameters in the control group (non-smokers, n=43) 

Expression 
level 

 
Semen 
volume 

(ml) 

Sperm 
concentration 
(106 per ml) 

Total 
motility (PR 

+ NP. %) 

Progressive 
motility 
(PR. %) 

Morphologically 
normal 

spermatozoa 
(%) 

∆Ct PRM1 
 

r -0.142 -0.035 -0.062 -0.146 -0.143 

p 0.363 0.821 0.693 0.352 0.362 

∆Ct PRM2 
 

r -0.197 -0.036 -0.072 -0.164 -0.166 

p 0.205 0.817 0.645 0.293 0.288 

∆Ct TNP1 r -0.184 0.079 -0.044 -0.175 -0.241 

p 0.237 0.615 0.778 0.262 0.119 

∆Ct TNP2 r -0.176 0.064 0.013 -0.077 -0.120 

p 0.290 0.704 0.937 0.645 0.473 

∆Ct 
H2BFWT 

r -0.177 -0.075 0.179 0.251 0.150 

p 0.274 0.644 0.270 0.119 0.356 

Protamine 
(P1–P2) 

mRNA ratio  

r -0.463** 0.100 -0.036 -0.108 -0.180 

p 0.002 0.525 0.820 0.489 0.248 

 

Table 21 shows that in the non-smokers group none of the investigated spermatozoa 

parameters (Semen volume, sperm concentration, total motility, progressive motility, and 

morphologically normal spermatozoa) correlates with the relative expression levels (∆Ct) 

of the PRM1, PRM2, TNP1, TNP2 and H2BFWT. However, the protamine mRNA ratio 

had a significant negative correlation with the semen volume (r=-0.463, p=0.002).  
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Table 22: Correlation between the mRNA relative amount of the studied genes and sperm 

parameters in the case group (heavy-smokers, n=98) 

Expression 
level 

 
Semen 
volume 

(ml) 

Spermconcentration 
(106 per ml) 

Total 
motility 

(PR + NP. 
%) 

Progressive 
motility 
(PR. %) 

Morphologically 
normal 

spermatozoa 
(%) 

∆Ct PRM1 
 

r -0.008 0.335** 0.203* 0.337** 0.214* 

p 0.940 0.001 0.045 0.001 0.035 

∆Ct PRM2 
 

r -0.028 0.329** 0.187 0.338** 0.166 

p 0.782 0.001 0.066 0.001 0.103 

∆Ct TNP1 
 

r -0.076 0.391** 0.238* 0.361** 0.294** 

p 0.458 0.0001 0.018 0.0001 0.003 

∆Ct TNP2 
 

r -0.027 0.369** 0.197 0.359** 0.303** 

p 0.805 0.0001 0.067 0.001 0.004 

∆Ct 
H2BFWT 

r -0.135 0.058 0.064 0.230* 0.084 

p 0.199 0.581 0.543 0.027 0.421 

Protamine 
(P1–P2) 
mRNA 

ratio  

r -0.073 0.012 0.228* 0.128 -0.030 

p 0.478 0.910 0.024 0.210 0.771 

 

In the heavy-smokers group (Table 22), the mean of the relative protamine 1 (PRM1)  and 

transition protein 1 (TNP1) level correlated positively with the sperm concentration 

(r=0.335, p= 0.001 ; r=0.391, p= 0.0001 respectively), total motility  (r=0.203, p= 

0.045;r=0.238, p= 0.018 respectively), progressive motility (r=0.337, p=0.001; r=0.361, 

p=0.0001respectively), and morphologically normal spermatozoa (r=0.214, p=0.035; 

r=0.294, p=0.003 respectively), while the expression level of PRM2 showed a significant 

positive correlation with the sperm count (r=0.329, p=0.001) and the progressive motility 

(r=0.338, p=0.001).  
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The mean of the relative expression level of TNP2 showed a high positive correlation with 

the mean of the sperm count, the mean percentage of the progressive motility and the 

morphologically normal sperm form (r=0.369, p=0.001; r=0.359, p=0.001; r=0.303, 

p=0.004 respectively) (Table 22). 

Besides, significant positive correlations between the relative amount of H2BFWT mRNA 

and the mean percent of sperm with progressive motility (r=0.230, p=0.027) and between 

the protamine mRNA ratio and the mean percent of total motility (r=0.228, p=0.024) were 

found (Table 22). 

3.2.7. Correlation between the investigated gene expression levels and clinical 

parameters after ICSI 

Table 23: Correlation between the mRNA relative amount of the studied genes and clinical 

parameters after ICSI in the controlgroup (non-smokers, n=43) 
  

∆Ct 
PRM1 

∆Ct 
PRM2 

∆Ct 
TNP1 

∆Ct 
TNP2 

∆Ct 
H2BFWT 

Protamine  

(P1–P2) 

mRNA 
ratio 

Fertilization rate 
(%) 

r -0.281 -0.258 -0.401** -0.310 0.011 0.002 

p 0.068 0.094 0.008 0.058 0.948 0.988 

Number of 
cleaved embryos 

r 0.070 0.064 0.095 0.005 -0.253 0.046 

p 0.654 0.682 0.543 0.976 0.115 0.771 

Number of grade 
1 embryos (G1) 

r -0.053 -0.045 -0.105 -0.106 -0.168 0.085 

p 0.733 0.776 0.504 0.526 0.301 0.589 

Number of grade 
2 embryos (G2) 

r 0.159 0.158 0.204 0.113 -0.190 0.078 

p 0.310 0.313 0.189 0.499 0.241 0.617 

Embryos grade 
score 

r 0.092 0.068 0.132 0.035 0.170 -0.100 

p 0.556 0.666 0.400 0.836 0.293 0.522 
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In all the investigated parameters there was no significant correlation between the relative 

expression levels of PRM1, PRM2, TNP1, TNP2 and H2BFWT genes and clinical 

parameters after intracytoplasmic sperm injection (ICSI). However, the relative amount of 

the TNP1 mRNA correlated negatively with the fertilization rate (r=0.401, p=0.008) in the 

non-smokers group (Table 23).  

Table 24: Correlation between the mRNA relative amount of the studied genes and ICSI 

outcomes in the casegroup (heavy-smokers, n=98) 

  
∆Ct 

PRM1 
∆Ct 

PRM2 
∆Ct 

TNP1 
∆Ct 

TNP2 
∆Ct 

H2BFWT 
Protamine  

(P1–P2) 

mRNA 
ratio 

Fertilization rate 
(%) 

r 0.043 0.081 -0.014 0.093 0.086 0.195 

p 0.675 0.427 0.894 0.393 0.413 0.055 

Number of 
cleaved embryos 

r -0.043 -0.013 -0.120 -0.021 0.003 -0.016 

p 0.674 0.898 0.240 0.849 0.979 0.878 

Number of grade 
1 embryos (G1) 

r -0.059 -0.083 -0.051 -0.008 0.002 -0.135 

p 0.564 0.416 0.619 0.943 0.987 0.185 

Number of grade 
2 embryos (G2) 

r 0.109 0.105 -0.002 0.085 0.052 -0.048 

p 0.288 0.307 0.985 0.436 0.619 0.641 

Embryos grade 
score 

r 0.110 0.119 -0.003 0.052 -0.119 0.047 

p 0.282 0.244 0.979 0.636 0.256 0.647 

 

Furthermore, no correlations were observed between the clinical parameters after ICSI 

(fertilization rate, number of cleaved embryos, number of grade 1 embryos, number of 

grade 2 embryos, embryos grade score) and the relative expression levels of H2BFWT, 

TNP1, TNP2,PRM1, and PRM2 genes in the heavy-smokers group (Table 24). 
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3.2.8. Correlation between the expression levels of the investigated genes and 

protamine deficiency (CMA3 positivity) and sperm DNA fragmentation (sDF) 

Table 25: Correlation between the mRNA relative amount of the studied genes, protamine 

deficiency (CMA3 positivity) and sperm DNA fragmentation (sDF) in the control group 

(non-smokers, n=43) 
  

CMA3 positivity(%)  sDF (%) 

∆Ct PRM1 r -0.135 0.222 

p 0.387 0.153 

∆Ct PRM2 r -0.134 0.230 

p 0.390 0.138 

∆Ct TNP1 r -0.179 0.133 

p 0.250 0.397 

∆Ct TNP2 r -0.171 0.039 

p 0.305 0.814 

∆Ct H2BFWT r -0.038 -0.023 

p 0.814 0.887 

Protamine  

(P1–P2) mRNA 
ratio 

r -0.091 0.100 

P 0.560 0.524 

 

By examining the correlation between the mRNA  relative amount  of the studied genes 

(TNP1, TNP2, PRM1, PRM2, and H2BFWT), and protamine deficiency (CMA3 positivity) 

as well as sperm DNA fragmentation (sDF), no correlation has been shown either in non-

smokers (Table 25) or in heavy-smokers (Table 26), a correlation could not be found. 
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Table 26: Correlation between the mRNA relative amount of the studied genes, protamine 

deficiency (CMA3 positivity) and sperm DNA fragmentation (sDF) in the case group 

(heavy-smokers, n=98) 

  
CMA3 positivity (%) Sperm DNA 

fragmentation (sDF) 
(%) 

∆Ct PRM1 r 0.036 -0.055 

p 0.722 0.587 

∆Ct PRM2 r 0.165 0.069 

p 0.104 0.499 

∆Ct TNP1 r 0.002 -0.008 

p 0.982 0.935 

∆Ct TNP2 r 0.029 -0.039 

p 0.789 0.721 

∆Ct H2BFWT r 0.076 -0.002 

p 0.469 0.983 

Protamine (P1–P2) 
mRNA ratio 

r 0.413** 0.302** 

p 0.0001 0.003 

 

Nevertheless, in the heavy smokers’ group (Table 26), the protamine mRNA ratio showed 

a high positive correlation with both protamine deficiency (CMA3 positivity) and sperm 

DNA fragmentation (sDF) (r= 0.413, p=0.0001; r=0.302, p=0.003 respectively). 



68  

 

3.2.9. Correlation between the relative expression levels of the studied genes: 

H2BFWT, TNP1, TNP2, PRM1 and PRM2 

Table 27: Correlation between the mRNA relative amount of the studied genes in the 

control group (non-smokers, n=43) 

  
∆Ct 

PRM1 
∆Ct 

PRM2 
∆Ct 

TNP1 
∆Ct 

TNP2 
∆Ct 

H2BFWT 

Protamine  

(P1–P2) 

mRNA 
ratio 

∆Ct PRM1 r 1.000 0.961** 0.920** 0.731** 0.257 0.299 

p 
 

0.0001 0.0001 0.0001 0.110 0.052 

∆Ct PRM2 r 0.961** 1.000 0.887** 0.709** 0.237 0.488** 

p 0.0001 
 

0.0001 0.0001 0.141 0.001 

∆Ct TNP1 r 0.920** 0.887** 1.000 0.737** 0.236 0.294 

p 0.0001 0.0001 
 

0.0001 0.142 0.055 

∆Ct TNP2 r 0.731** 0.709** 0.737** 1.000 0.487** 0.349* 

p 0.0001 0.0001 0.0001 
 

0.003 0.032 

∆Ct 
H2BFWT 

r 0.257 0.237 0.236 0.487** 1.000 0.229 

p 0.110 0.141 0.142 0.003 
 

0.155 

 

In the non-smokers group (Table 27), the relative expression level of the H2BFWT 

correlated positively with the relative amount of TNP2 mRNA (r=0.487, p=0.003).   

Moreover, the relative expression levelof TNP1 showed a highly positive correlation 

(p=0.001) with the expression levels of TNP2, PRM1, and PRM2 (r=0.737, r=0.920, 

r=0.887). 

The TNP2 relative expression level correlated positively (p=0.0001) with the relative 

amount of PRM1 and PRM2 (r=0.731, r=0.709 respectively). 

The correlation between the PRM1 and PRM2 expression levels was a high positive 

significant correlation (r=0.961, p=0.0001). 
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The protamine mRNA ratio correlated positively with the expression levels of TNP2 

(r=0.349, p=0.032) and PRM2 (r=0.488, p=0.001). 

 

Table 28: Correlation between the mRNA relative amount of the studied genes in the case 

group (heavy-smokers, n=98) 

  
∆Ct PRM1 ∆Ct PRM2 ∆Ct 

TNP1 
∆Ct 

TNP2 
∆Ct 

H2BFWT 
Protamine  

(P1–P2) 
mRNA 

ratio 

∆Ct PRM1 r 1.000 0.926** 0.859** 0.903** 0.254* 0.150 

p 
 

0.0001 0.0001 0.0001 0.014 0.139 

∆Ct PRM2 r 0.926** 1.000 0.822** 0.887** 0.398** 0.445** 

p 0.0001 
 

0.0001 0.0001 0.0001 0.0001 

∆Ct TNP1 r 0.859** 0.822** 1.000 0.814** 0.357** 0.186 

p 0.0001 0.0001 
 

0.0001 0.0001 0.066 

∆Ct TNP2 r 0.903** 0.887** 0.814** 1.000 0.354** 0.307** 

p 0.0001 0.0001 0.0001 
 

0.001 0.004 

∆Ct 
H2BFWT 

r 0.254* 0.398** 0.357** 0.354** 1.000 0.342** 

p 0.014 0.0001 0.0001 0.001 
 

0.001 

 

In the heavy-smokers group (Table 28), the H2BFWT expression level showed a 

significant positive correlation with the transition proteins 1 (TNP1) and 2 (TNP2) relative 

expression levels (r=0.357, p= 0.0001; r=0,354, p=0.001 respectively).  

Moreover, a positive correlation with protamines 1 (PRM1) and 2 (PRM2) mRNA relative 

amount was found (r=0.254, p=0.014; r=0.398, p=0.0001 respectively).  

The relative amount of TNP1 gene mRNA demonstrates a highly significant positive 

correlation with the following mRNA relative amounts of TNP2, PRM1 and PRM2 genes 

(r=0.814, r=0.859, r=0.822; p<0.001 respectively).  
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Similarly, the TNP2 gene mRNA relative amount showed a highly positive correlation 

(p=0.0001) to PRM1 and PRM2 expression levels (r=0.903, r=0.887 respectively).  

PRM1 and PRM2 expression levels also correlated as positively significant with each 

other's (r=0.926, p=0.0001).  

In contrast to the group of non-smokers, the protamine mRNA ratio correlated significantly 

positive to TNP2 mRNA relative amount (r=0.307, p=0.004), PRM2 mRNA relative 

amount (r=0.445, p=0.0001), and to H2BFWT mRNA relative amount (r=0.342, p=0.001) 

(Table 28). 

3.3. Investigations of single nucleotide polymorphisms (SNP) and mutations in 

H2BFWT, PRM1, and PRM2 genes 

3.3.1. Variant calling 

For each sample, primary and secondary sequences were extracted from the chromatogram 

(.ab1) files using the tool Tracy (https://github.com/gear-genomics/tracy) to obtain the 

allelic sequences for each gene. The aligner bwa (Li & Durbin, 2009) was used to map the 

resulting FASTA-reads to the hg19 reference genome. Since for each individual forward 

and reverse Sanger reads were provided, a BAM file containing four reads was produced 

for each individual in this way. Next, a set of potential SNP positions was generated. We 

used samtools mpileup (Li et al., 2009) to report all positions in the alignment files where 

at least one read carried an allele different from the reference sequence. All resulting SNP 

candidates were then genotyped in all individuals using WhatsHap (Ebler et al., 2018, 

Patterson et al., 2015). The variant calling process is illustrated in Figure 19 below. 

 

 

 

 

 

 



71  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.2. Quality Control 

From the set of all SNPs resulting from the previous steps, all positions with an allele 

frequency above 5 % across all studied individuals were selected. A set of nine SNP 

positions resulted. Three of them were located on chromosome X. Since all sequenced 

individuals were males, one would expect all of these positions to be genotyped as either 

0/0 or 1/1 since each individual carry only one X chromosome. Indeed, our genotyping 

algorithm genotyped all SNPs located on the X chromosome as 0/0 or 1/1 in all individuals. 

The remaining six SNPs were located on chromosome 16. They were tested for Hardy-

Weinberg Equilibrium using Fisher's Exact Test. Four of these six SNPs showed no 

significant deviation from HWE. We concluded that the two other SNPs, for which the test 

reported a significant deviation from HWE, might not be real variants and excluded them 

from further analysis. Hence, our final set of SNP calls contained 7 SNPs.  

Figure 19: Variant Calling. Allelic sequences were extracted from the chromatogram files and 
aligned to a reference genome. Next, variants were called and genotyped in all samples. 
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Corresponding positions (wrt. to reference sequence hg19) and alleles of these SNPs are 

shown below (Table 29). 

Table 29: Detected SNPs and their allele frequencies 

Genomic Position (hg19) ID 
Reference 

allele 
Alternative 

allele 

Allele 
Frequency 
(across all 
samples) 

Chromosome 16  11374866 rs737008 G T 0.47 

Chromosome 16  11369534 rs424908 G A 0.99 

Chromosome 16  11369855 rs2070923 G T 0.50 

Chromosome 16  11369930 rs1646022 C G 0.30 

Chromosome X   103267865 rs553509 C T 0.72 

Chromosome X   103268241 rs7885967 G A 0.60 

Chromosome X   103268333 rs578953 G A 0.09 
 

Furthermore, we observed that our SNP calls had been reported previously by the 1000 

Genomes project (1000 Genomes Project Consortium, 2012). As an additional quality 

control, we compared the allele frequencies that we obtained for these SNPs to the ones 

reported by 1000 Genomes and observed that they matched very well. The results are 

shown in Figure 2. The blue dots correspond to the allele frequencies that we have observed 

across our samples, and the boxplots show the distribution of allele frequencies for these 

variants that were observed across several populations studied in the 1000 Genomes 

project. 
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3.3.3. Distribution of SNPs in H2BFWT, PRM1 and PRM2 genes among the groups of 

heavy-smokers and non-smokers 

For each group heavy smokers and non-smokers, we computed a contingency table for each 

SNP by counting the number of reference and alternative alleles among the individuals 

belonging to the different groups. The goal was to test the association between SNP alleles 

and each of the classes. We then performed Fisher's Exact Test to find significant 

differences in allele distributions among the two groups and corrected for multiple testing 

by performing a Benjamini Hochberg correction (alpha=0.05). None of the SNPs was 

reported as being significant. All tested SNPs and corresponding allele frequencies are 

shown in Tables 30-32.  

 

 

Figure 20: Comparison to 1000 Genomes allele frequencies. We compared the allele frequencies for our detected 
SNPs (blue) to the ones previously reported by the 1000 Genomes project 

 (1000 Genomes Project Consortium, 2012) for these variants across several populations 
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3.3.3.1. Single nucleotides polymorphisms (SNP) in the H2BFWT gene 

The H2BFWT gene is located in the X chromosomes (q22.2 band). Our patients were male 

so the detected SNPs: rs7885967, rs553509 and rs578953 were homozygous SNPs. The 

same observation as for the previous genes, there were no significant differences in allele 

distribution among the heavy-smokers and non-smokers. SNP rs7885967 is located in the 5 

prime untranslated regions. The variant rs553509 was located in a coding region (Exon 1) 

and it was qualified as a missense mutation that caused an amino acid change of arginine to 

histidine. For those 2 SNPs, the alternative allele frequency was higher than the reference 

allele one (Table 29), so the number of heavy smokers and non-smokers with the 

homozygous minor-type was higher than with major homozygous one (Table 30). The 

opposite was observed for the SNP rs 578953, which is an upstream gene variant. For this 

variant, the reference allele frequency was higher than the alternative allele frequency 

(0.09). So, 8 heavy smokers and 5 non-smokers were minor homozygous (A/A), and 103 

heavy smokers and 27 non-smokers were major homozygous (G/G). 
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Table 30: Recapitulation of results obtained by direct sequencing of PCR products 

including the H2BFWT gene (Genomic and allelic frequencies are denoted) 

SNP Gene 
region 

AA 
change 

ID Heavy-smokers Non-smokers p-value 

Genotype Allele Genotype Allele  

chrX 
g.103268241G>A 
 

5 prime 
UTR 

NA rs7885967 A/A (65) 
0.59 
G/A (0) 
0.0 
G/G (46) 
0.41 

A= 
0.59 
G= 
0.41 

A/A (20) 
0.63 
G/A (0) 
0.0 
G/G (12) 
0.37 

A= 
0.63 
G= 
0.37 

NS 

chrX 
g.103267865C>T 
 
 

Exon 1 R/H 
 
 

 

rs553509 T/T (77) 
0.7 
C/T (0) 
0.0 
C/C (33) 
0.3 

T= 
0.7 
C= 
0.3 
 

T/T (25) 
0.81 
C/T (0) 
0.0 
C/C (6)  
0.19 

T= 
0.81 
C= 
0.19 
 

NS 

chrX 
g.103268333G>A 
 

 

 

upstream NA rs578953 A/A (8) 
0.07 
G/A (0) 
0.0 
G/G 
(103) 
0.93 
 

A= 
0.07 
G= 
0.93 

A/A (5) 
0.16 
G/A (0) 
0.0 
G/G (27) 
0.84 
 

A= 
0.16 
G= 
0.84 

NS 

UTR: untranslatedregion 

NA: not applicable, NS: no significant differentiation was distinguished by comparing the genotype 

and allele frequencies between the heavy-smoker and non-smoker groups. 
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3.3.3.2. Single nucleotides polymorphisms (SNP) in the PRM1 gene 

Table 31: Recapitulation of results obtained by direct sequencing of PCR products 
including thePRM1 gene (Genomic and allelic frequencies are denoted) 

SNP Gene 
region 

AA 
change 

ID Heavy-smokers Non-smokers p-value 

Genotype Allele Genotype Allele 

chr16 
g.11374866G>T 
 

 

Exon 2 None  rs737008 T/T (30) 
0.28 
G/T (46) 
0.43 
G/G (32) 
0.29  

T= 
0.49 
G= 
0.51 

T/T (7) 
0.21 
G/T (11) 
0.33 
G/G (15) 
0.46 

T= 
0.38 
G= 
0.62 
 

NS 

NS: no significant differentiation was distinguished by comparing the genotype and allele frequencies 

between the heavy-smoker and non-smoker groups. 

One SNP has been identified in the PRM1 gene in the study population: rs737008. This 

SNP is a synonym variant that is located in the coding region of PRM1 (Exon 2) at position 

g.11374866G>T. There was no significant dissimilarity in allele distribution betweenthe 

heavy-smokers and non-smokers (Table 31). Thirty-two heavy smokers and fifteen non-

smokers are homozygous major G/G types, 46 heavy-smokers and 11 non-smokers were 

heterozygous (G/T), and 30 heavy smokers and 7 non-smokers were the homozygous minor 

type (T/T) (Table 31). 

3.3.3.3. Single nucleotides polymorphisms (SNP) in the PRM2 gene 

Table 32 shows that 3 SNPs have been found in the PRM2 gene. Two changes were 

detected in the intronic region (rs2070923 and rs1646022) and one was located in the 3 

prime untranslated regions (rs424908). There were no significant differences in allele 

distribution among the heavy-smokers and non-smokers. For the first variant, in the 

intronic region, at position g.11369930 G>C, 15 heavy-smokers and 4 non-smokers were 

minor homozygous (G/G), 38 Heavy smokers and 9 non-smokers were heterozygous (C/G), 

and 58 heavy smokers and 19 non-smokers were major homozygous (C/C). The second 

intronic variant was also distributed in three groups: 31 patients of the heavy-smokers 

group and 12 of non-smokers ones were minor homozygous (T/T), 47 heavy smokers and 

11 non-smokers were heterozygous (G/T), and 33 heavy smokers and 9 non-smokers were 

major homozygous (G/G). The SNP rs424908 was minor homozygous SNPs (A/A) with an 
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allele frequency of 0.99 across all samples (Table 29) and only one patient for each of the 

studied groups was heterozygous (G/A).  

Table 32: Recapitulation of results obtained by direct sequencing of PCR products 

including the PRM2 gene (Genomic and allelic frequencies are denoted) 

UTR: untranslatedregion 

NA: not applicable, NS: no significant differentiation was distinguished by comparing the genotype 

and allele frequencies between the heavy-smoker and non-smoker groups. 

3.3.4. Association between SNPs and standard sperm parameters, protamine 

deficiency (CMA3 positivity), sperm DNA fragmentation, and clinical outcomes after 

ICSI therapy 

In order to investigate the association between SNPs and standard sperm parameters, 

protamine deficiency (CMA3 positivity), and sperm DNA fragmentation (sDF), a Wilcoxon 

rank-sum test was performed for each combination of SNP and phenotype. The goal was to 

find out whether the distribution of phenotype values is the same for individuals with 

different genotypes. 

SNP Gene 
region 

AA 
change 

ID Heavy-smokers Non-smokers p-value 

Genotype Allele Genotype Allele  

chr16 
g.11369930 
C>G 
 
 

Intron  NA rs1646022 G/G (15) 
0.14 
C/G (38) 
0.34 
C/C (58) 
0.52 

G= 
0.31 
C= 
0.69 

G/G (4) 
0.13 
C/G (9) 
0.28 
C/C (19) 
0.59 

G= 
0.27 
C= 
0.73 

NS 

chr16 
g.11369855 
G>T 
 
 

Intron  NA  rs2070923 T/T (31) 
0.28 
G/T (47) 
0.42 
G/G (33) 
0.3 

T= 
0.49 
G= 
0.51 

T/T (12) 
0.38 
G/T (11) 
0.34 
G/G (9) 
0.28 

T= 
0.54 
G= 
0.46 

NS 

chr16 
g.11369534 
G>A 
 

3 prime 
UTR  

NA rs424908 A/A 
(110) 
0.99 
G/A (1) 
0.1 
G/G (0) 
0.0 

A= 
1.0 
G= 
0.0 

A/A (31) 
0.97 
G/A (1) 
0.03 
G/G (0) 
0.0 

A= 
0.98 
G= 
0.02 

NS 
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For each SNP position and each sperm parameter, we first compared the distribution of 

values for individuals with genotype 0/1 and 1/1 to the distribution of values for individuals 

with genotype 0/0. Next, we compared distributions for genotypes 0/0 and 0/1 to the 

distributions for individuals with genotype 1/1. We again corrected for multiple testing by 

applying a Benjamini Hochberg correction (alpha=0.05). None of the SNPs showed a 

significant association with any of the phenotypes and the resulting p-values for each 

parameter are shown in Supplementary Tables 33-43.  
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4.  DISCUSSION 

According to WHO, a significant proportion of the population is affected by infertility and 

subfertility (WHO, 2017). For this reason, more research is needed, especially in 

developing countries, to improve infertility and subfertility diagnosis, regulation and 

therapy. 

Infertility is a complicated condition affected by particular or several physiological and 

physical factors. The highest proportion of human infertility can be correlated with a 

person’s age, lifestyle, environmental factors and physical state (Das et al., 2017). To 

recognize the connection between the reasons for infertility, which are responsible for the 

regulation of the expression of genes involved in fertility, genetic factors, and aberrant 

epigenetic mechanism may lead to an understanding of as yet unidentified reasons for 

reproductive infertility (Bjornsson et al., 2004; Liu & Tollefsbol, 2008; Bunkaret al., 

2016). 

Several lifestyle behaviours, such as nutrition, sport, drinking alcohol and tobacco smoking 

are reported to have an influence on both male and female reproductive health, and, in a 

number of cases, they may have an effect on epigenetic mechanism alterations, which may 

be associated with major common human maladies (Alegría-Torres et al., 2011; Sharma et 

al., 2013). 

Around 46 % of males of reproductive age between 20- and 39-years-old are cigarette 

smokers (Ng et al., 2014). Almost 75% of men that are daily smokers are living in 

countries that have a medium or high human development index (Drope et al., 2018). 

For this reason, we focused, in this current study, on the influence of tobacco smoke on the 

male reproductive function: sperm parameters, sperm DNA quality and integrity and the 

possible genetic and epigenetic alterations by focusing on H2BFWT, TNP1, TNP2, PRM1 

and PRM2 genes. Moreover, we investigated the consequences of this on ICSI outcomes. 

4.1. Smoking and semen parameters 

Burning tobacco is highly dangerous for almost every organ system in the human body. It 

causes the release of more than 7000 toxic chemicals, mutagenic elements, and at least 70 

familiar carcinogens (Dropeet al., 2018). Nicotine is one of these chemicals that makes 



80  

 

someone addicted to tobacco smoke. In male smokers, the serum and seminal levels of 

cotinine and trans-3´-hydroxycotinine (nicotine metabolites) (Zhu et al., 2013), are 

approximately similar, whereas the serum nicotine levels were lower than the seminal 

levels (Pacifi et al., 1993). Pacifi and his colleagues demonstrated the the levels of cotinine 

in seminal plasma had a positive correlation with the sperm motility type progressive (PR) 

but negatively with the total sperm motility (Pacifi et al., 1993). Chen and Kuo (2007) 

demonstrated that cotinine levels in semen had negative effects on sperm count, motility 

and normal morphology. 

Another study showed that cotinine in seminal plasma reduces sperm parameters. It can 

therefore be used as a biomarker for smoking by patients that have fertility problems 

(Hammadeh et al., 2010).  

However, heavy metals, like lead and cadmium, are the crucial compounds in tobacco 

thataffect the sperm parameters. It was reported that blood and seminal cadmium levels 

depend on the number of cigarettes smoked and showed a positive correlation with the 

number of daily smoked cigarettes per year (Oldereid et al., 1994).  Moreovers, in 

abnormal spermatozoa, the cadmium and lead levels in seminal plasma had a negative 

correlation with sperm parameters (concentration, motility and abnormal morphology) 

(Pant et al., 2015). 

In the current study, we found in our heavy-smokers group (n=113) a significant decrease 

(p<0.01) in standard semen parameters, namely, sperm concentration, progressive motility 

(PR), and sperm normal morphology, in comparison to our non-smokers group (62.17 ± 

51.68 mill/ml vs. 88.09 ± 63.42 mill/ml, 14.86 ± 10.95% vs. 27.31 ± 21.78%, and 4.01 ± 

2.88% vs. 10.87 ± 12.11% respectively). However, semen volume and total motility 

(PR+NP) were not significantly reduced in heavy-smokers in comparison to non-smokers 

(Table 5). 

The present results are in accordance with various other studies that reported the toxic 

elements in tobacco smoking to have negative effects on semen quality (El-Melegy & Ali, 

2011; Joo et al., 2012; Anifandis et al., 2014; Hamad et al., 2014). The Practice Committee 

of the American Society for Reproductive Medicine also disclosed in 2012 that the 

relationship between tobacco consumption and reduced sperm parameters is a dose-
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response relationship (Practice Committee of the American Society for Reproductive 

Medicine, 2012). In a meta-analysis, Sharma et al. (2016) concluded that smoking had a 

generally negative influence on standard semen parameters and this was generally more 

obvious in infertile male patients than in the common population because the spermatozoa 

are probably more sensitive to the inhaled toxic chemicals (Sharma et al., 2016). 

Nevertheless, other studies reported that smoking had no meaningful effect on conventional 

sperm parameters (Saleh et al., 2002b; Trummer et al., 2002; Martini et al., 2004; Sepaniak 

et al., 2006). Therefore, further studies at the molecular level are needed to find out how 

tobacco smoking affects sperm function and to shed more light on the clinical condition. 

4.2. Smoking and sperm DNA damage 

Spermatozoa chromatin has a specific composition in comparison to somatic cell chromatin 

and the gradual transition of a histone to a protamine during spermatogenesis is a critical 

process for normal sperm function. In fact, chromatin tight packaging in spermatozoa is 

essential to protect the paternal genome against endogenous and exogenous agents, such as 

genotoxic or mutagenic agents, free radicals and nucleases, and to deliver it safely to the 

oocyte (Rathke et al., 2014). 

Any defect occurring at any of the steps of spermatogenesis and leading to chromatin 

remodelling may cause damage to DNA integrity, which may in turn influence the sperm 

morphology and motility, and consequently lead to male infertility. The sperm will then be 

rendered incapable of intruding into the oocyte or fail to fertilize it (Spano et al., 2005). 

However, it has also been demonstrated that the vitality, motility and morphology of 

spermatozoa with DNA damage can be normal and enable the sperm to fertilize the oocyte 

(Yamauchi et al., 2012). This fertilization depends on both the oocyte quality and the DNA 

damage degree to the spermatozoa (Ménézo et al., 2010). In the event of the oocyte not 

being able to effectively repair sperm DNA damage, the probability of fertilization is low 

or nil and the risk of embryonal abnormality development will be higher (Bungum & 

Oleszczuk, 2018). 

Thus, there are always discussions about the use of the various techniques for measuring 

sperm DNA fragmentation and/or compaction as a supplementary test to predict the results 
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of such assisted reproductive techniques (Bach & Schlegel, 2016; Amiri-Yekta et al., 

2017). 

A number of studies have demonstrated that spermatozoa in the ejaculates of infertile men 

showed more DNA fragmentation (accumulation of several double or single-stranded DNA 

breaks) than was the case in fertile men (Irvine et al., 2000; Lewis et al., 2013). 

The main causes of DNA alteration were reported to be the defective repair of double or 

single-stranded DNA breaks caused by topoisomerase II during chromatin remodelling 

(Leduc et al., 2008), abortive apoptosis (Sakkas et al., 2004), aberrant protamination (Aoki 

et al., 2005; Steger et al., 2007; Castillo et al., 2011), abnormal expression of transition 

proteins (Meistrich et al., 2003; Suganuma et al., 2005), interaction between toxic 

chemicals and/or heavy metals with protamines (Quintanilla-Vega et al., 2000), and 

oxidative stress (Aitken et al., 2014). 

In the last decade, more studies were focussed on the mechanisms by means of which 

environmental and lifestyle factors, especially smoking, have an influence on the sperm 

genome and epigenome (Harlev et al., 2015) and have a potential effect on the developing 

embryo (Beal et al., 2017; Donkin & Barrès, 2018). 

Tobacco smoking is in fact associated with high levels of seminal reactive oxygen species 

(ROS) causing oxidative DNA damage (Hammadeh et al., 2010; Kumar et al., 2015; La 

Maestra et al., 2015; Opuwari & Henkel, 2016). It has also been reported that tobacco 

smoke contents are correlated with DNA adduct formation leading to DNA damage (Perrin 

et al., 2011; Phillips & Venitt, 2012). 

The following two techniques were used in the current study to evaluate the sperm DNA 

integrity: terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) for 

sperm DNA fragmentation (sDF) assessment, and chromomycin A3 (CMA3) staining for 

protamine deficiency (CMA3 positivity) assessment. In the heavy-smokers group, the mean 

percentage of sDF and CMA3 positivity were significantly higher than that of the non-

smokers group (26.86 ± 19.77% vs.14.23 ± 13.07%, p = 0.0001; 33.30 ± 23.33% vs. 20.35 

± 13.43%, p = 0.001 respectively) (Table 11).  

These results are in line with a number of studies that used different techniques for the 

determination of sperm DNA fragmentation. Most of the human researches using a TUNEL 
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assay demonstrated that the levels of DNA fragmentation in smokers was higher than in 

non-smokers (Sepaniak et al., 2006; Hammadeh et al., 2010; Aydin et al., 2013). Similar 

results were found in other studies using different techniques to evaluate DNA 

fragmentation (Mitra et al., 2012; El-Melegy & Ali, 2011; Taha et al., 2014; Cui et al., 

2016). Contradictory studies, however, have concluded that smoking and DNA damage had 

no correlation (Bojar et al., 2013; Bounartzi et al., 2016). 

On the other hand, a significant positive correlation has been found between protamine 

deficiency (CMA3 positivity) and sperm DNA fragmentation (sDF) (r=0.484, p=0.0001) in 

the group of heavy-smokers (Table 17), but there was no correlation (r=0.256, p=0.098) 

between these two parameters in the non-smokers group (Table 18). Similar results have 

been demonstrated by other groups who reported that abnormal protamination leads to 

abnormal chromatin condensation and raises the sensitivity of sperm DNA to external stress 

causing an oxidative attack (Hammadeh et al., 2010; Ni et al., 2014; Hammadeh et al., 

2016; Ni et al., 2016).  

In the heavy-smokers group (Table 17), the mean percentage of the sperm concentration 

correlated negatively with the CMA3 positivity (r=-0.233, p=0.021) and the sDF (r=-0.263, 

p=0.009). A similar situation was observed in the non-smokers group (Table 18), the sperm 

DNA fragmentation sDF being correlated negatively with the mean percentage of total 

motility (r=-0.304, p=0.048), the mean of progressive motility (r=-0.304, p=0.047) and the 

mean percentage of morphologically normal spermatozoa (r=-0.361, p=0.017). These 

results support the claim that the DNA damage in sperm influences negatively the sperm 

quality, thereby confirming earlier studies (Arabi, 2004; Tarrozi et al., 2009; Smit et al., 

2010).  

However, a number of studies have not succeeded in demonstrating a relationship between 

traditional seminal parameters and sperm DNA damage (Henkel et al., 2004; Sepaniak et 

al., 2006; Hammadeh et al., 2010). 

Moreover, the use of different techniques to measure alterations in sperm DNA has been a 

controversial issue in the field of assisted reproduction field. Bungum et al. (2006) 

demonstrated that the pregnancy rate after intrauterine insemination (IUI) decreased when 

the DNA fragmentation index (DFI) was higher than 20%. In other studies, it was 

concluded that couples who did not become pregnant after IVF treatment had a DNA 
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fragmentation higher than 25% and their embryo quality correlated negatively with sDF 

(Simon et al., 2011). According to a study conducted by Oleszczuk et al. (2016), DFI 

above 40% is correlated with a danger of early miscarriage.  

In the present study, by comparing the clinical investigated parameters between the heavy-

smokers group and non-smokers group, the pregnancy rate was seen to be significantly 

elevatedin the group of non-smokers in comparison to the heavy-smokers group (0.60 ± 

0.49% vs. 0.38 ± 0.48%; p=0.013) but other parameters showed no significant differences 

(Table 12). This is similar to the results of a study done on couples that had a normal 

conception but the male partner was a smoker; this study demonstrated that smoking has 

negative effects on fecundity and the time-to-pregnancy in a dose-dependent manner 

(Hassan & Killick, 2004). 

Low fecundity in smokers has also been reported to be related to acrosin activity (Mulla et 

al., 1995). The correlation between smoking and the sperm’s ability to fertilize the oocyte 

was also studied by Sofikitis and his colleagues (2000), who demonstrated that smoking 

correlates negatively with the sperm’s potential to fertilize the oocyte (Sofikitis et al., 

2000).  

Furthermore, toxic elements resulting from tobacco combustion have been proved to 

decrease the mitochondrial activity and cause impairment in chromatin organization and, as 

a result, altering the fertilization capability (Calogero et al., 2009; Sharma et al., 2013). 

In the present study, in the heavy-smoker group, the fertilization rate, the number of 

cleaved embryos, the number of grade 1 embryos, the number of grade 2 embryos, and the 

embryos’ grade score had a correlation neither with the mean percent of protamine 

deficiency (CMA3 positivity) nor with sperm DNA fragmentation (sDF) (Table 20).  

These results are in agreement with other studies, which reported no significant correlation 

between the fertilization rate, the quality of the embryo and pregnancy rates after IVF or 

ICSI (Chohan et al., 2004; Hammadeh et al., 2006; Zini et al., 2011; Zhang et al., 2015). 

Henkel and his team (2004) showed that there was no correlation between DNA 

fragmentation (TUNEL assay) and the fertilization rate. Similar results had been found 

earlier by Benchaieb et al. (2003), who found no correlation between DNA fragmentation 
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(TUNEL assay) and embryo quality.  In both groups, however, it was shown that sperm 

DNA damage has an adverse effecton pregnancy, and more recently Amiri-Yekta et al. 

(2017) came to the same conclusion. 

In contrast, in the non-smokers group, the mean percentage of the sperm DNA 

fragmentation (sDF) correlated positively with the number of cleaved embryos (r=0.394, 

p=0.009), the number of grade 1 embryos (r=0.341, p=0.025), and the number of grade 2 

embryos (r=0.316, p=0.039) (Table 19). This coincides with the results from a study 

conducted by Payne and his colleagues in which they demonstrated that the higher the 

sperm DNA fragmentation is, the higher the pregnancies result is (Payne et al., 2005). This 

contradiction can be explained by the fact that, after fertilization, a good quality oocyte is 

capable of repairing the sperm DNA damage (Ménézo et al., 2010) but, if not, this can have 

a negative impact on the embryo development (Giwercman et al., 2010). 

The current study strongly suggests that CMA3 staining and TUNEL measuring the sperm 

DNA alterations (compaction and fragmentation respectively) caused by various factors, 

such as tobacco smoking, may be useful as supplementary test before any ART treatment to 

ensure a good prognosis especially in cases of idiopathic infertility and repetitive 

miscarriage.   

4.3. Tobacco smoking and epigenetic changes in studied genes: H2BFWT, 

TNP1, TNP2, PRM1 and PRM2 

Epigenetic modifications in the sperm epigenome are additional evidence of the possible 

influence of environmental factors on sperm chromatin reorganization. Epigenetics is 

defined as modifications in gene expression originated by processes different from 

modifications in the encoding DNA sequence (Li, 2002). Such modifications may be 

transferred during cell divisions (Boissonnas et al., 2013).  

There is growing evidence that some lifestyle factors, such as nutrition, stress, alcohol 

consumption, and tobacco smoking, induce epigenetic modulation affecting male fertility 

(Alegría-Torres et al., 2011; Sharma et al., 2013). 

Spermatogenesis is an epigenetically elevated controlled process and any interruption at 

any phase might be a reason of male infertility (Das et al., 2017). Progressive 

protamination of the sperm genome during spermiogenesis leads to the elimination of 
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histones carrying epigenetic signals. Thus, protamination plays a part in the epigenetic 

regulation of the spermatozoa and any environmental factor affecting protamination may be 

considered as an epigenetic signal, such as DNA methylation and histone modification, 

influencing the transcription regulation after fertilization (Donkin & Barrès, 2018). 

In addition, human spermatozoa carry a different kind of mRNA molecules (>5000 types) 

containing at least 100 miRNAs (Güneş & Kulaç, 2013; Castillo et al., 2015). Until now, 

the exact function of these mRNA molecules is still not clear because the protein synthesis 

is disabled in spermatozoa (Savadi‐Shiraz et al., 2015). A number of studies have 

demonstrated that the sperm transcript accompanies the paternal genome throughout 

fertilization and consequently affects the early embryo development (Jodar et al., 2013; 

Sendler et al., 2013). 

Testis-specific histones or histone variants, such as H2BFWT, transition proteins TP1 and 

TP2 and protamines P1 and P2 present the main nuclear proteins that have a crucial role in 

the morphology and function of mature spermatozoa. We have, therefore, focused on the 

relative quantification of H2BFWT, TNP1, TNP2, PRM1 and PRM2 gene expression by 

quantifying the mRNA or transcript levels of each gene of interest, in order to determine if 

these transcripts may be used as biomarkers to understand more fully and to evaluate the 

sperm function.  At the same time, we investigated the influence of tobacco smoking on the 

transcript level of each of these investigated nuclear proteins. 

The first step in spermatogenesis takes place in round spermatids and includes the 

substitution of nearly 85% of somatic histones with testis-specific histone variants that are 

themselves supplanted by TP1 and TP2. Secondly, the protamines P1 and P2 take the place 

of the transition proteins in elongating spermatids leading to a highly compacted and 

transcriptionally silent sperm chromatin (Carrell et al., 2007). 

H2BFWT is one of two H2B variants that are present in the male gamete. The only 

information known about H2BFWT is that this histone variant’s main function is the 

facilitation of the transition histone-protamine and the epigenetic control of gene 

transcription and its association with telomeres, which suggests a putative role in early 

chromatin remodelling at fertilization (Churikovet al., 2004a). 

Moreover, the transition nuclear proteins play an important role as intermediaries in 

histone-protamine replacement in sperm chromatin. TNP1 is localized on chromosomes 2, 
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and code for transition protein TP1, which is important in DNA repair mechanisms, the 

reduction of the interaction DNA-nucleosome core (Singh & Rao, 1988), in addition to 

TP2, are all needed for the complete editing of protamine P2 (Meistrich et al., 2003). In 

contrast to TNP1, TNP2 expression has been demonstrated to be different between 

mammals (Steger et al., 1998). TP2 is a DNA-compacting protein necessary to initiate the 

binding of protamine to the DNA (Kundu & Rao, 1996). 

The protamine genes PRM1 and PRM2 are located beside the transition protein 2 gene 

TNP2 on chromosome 16: 16p13.3 forming a multigenic cluster (Oliva, 2006). This cluster 

is bordered by the matrix attachment regions (MARs) containing repetitive alanine 

elements that present sites of methylation. These MARs are important for the appropriate 

regulation of protamine genes expression, independent of the methylation state (Schmid et 

al., 2001). 

Gene silencing is mediated by methylation and its activation is mediated by 

hypomethylation, which permits the binding between the nuclear matrix and chromatin, 

thereby retaining a targeted opening of the chromatin domains known as potentiation 

(Schmid et al., 2001). It has been reported that in late pachytene spermatocytes, the 

protamine cluster is potentiated and then transcribed later in round spermatids (Martins & 

Krawetz, 2007b). PRM1-PRM2-TNP2 gene loci include a TATA-box, which is important 

for the initiation of transcription by facilitating the binding of transcription factors to the 

promoter. The transcription is also regulated by binding between cAMP-response elements 

(CRE) and a number of CRE proteins (Tamai et al., 1997). Finally, the transcriptional 

suppression or activation is directed by binding between the upstream regulatory sequences 

in the promoter region and different trans-regulatory transcription factors (Queralt & Oliva, 

1995). 

Once transcribed, protamine transcripts are saved as ribonucleoproteins (RNPs), which are 

translationally repressed and translated later in elongated spermatids (Oliva et al., 1988). 

4.3.1. The relative expression level of the studied genes 

In the non-smokers group, we found that the relative expression level of the H2BFWT 

correlated positively with the relative amount of TNP2 mRNA (r=0.487, p=0.003). The 
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relative expression level of TNP1 showed a highly positive correlation (p=0.001) with the 

expression levels of TNP2, PRM1, and PRM2 (r=0.737, r=0.920, r=0.887) (Table 27). 

The TNP2 relative expression level correlated positively (p=0.0001) with the relative 

amount of PRM1 and PRM2 (r=0.731, r=0.709 respectively). Furthermore, the PRM1 and 

PRM2 expression levels showed a highly positive significant correlation (r=0.961, 

p=0.0001) (Table 27). 

This was the first study to examine the relative amount of the H2BFWT gene and its 

correlation to the transition proteins and protamines. 

These findings are in agreement with other studies which reported that H2BFWT is 

synthesized in the human testes and combined to sperm nuclei during spermatogenesis 

(Chrikov et al., 2004a; Wu et al., 2015) and associated with chromatin compaction during 

spermiogenesis (Gineitis et al., 2000). The correlation between the H2BFWT and TNP2 

gene expression levels indicate an association between these two proteins and the 

probability that this testis-specific histone may be replaced by TP2 during chromatin 

condensation, but further studies are needed to fully understand this synchronization. 

The correlation between the expression levels of TNP1, TNP2, PRM1 and PRM2 are in 

accordance with the results of other studies indicating that during chromatin remodelling 

the transition proteins TP1 and TP2 are supplanted by the protamines P1 and P2 (Oliva & 

Dixon, 1991; Balhorn, 2007; Rathke et al., 2014; Bao & Bedford., 2016). 

In fact, transition protein and protamine mRNA are similarly expressed in high quantities in 

round spermatids (Oliva, 2006; Balhorn, 2007) and their protein shows a significant 

presence in the nuclei of elongating spermatid (Wu et al., 2000; Meistrich et al., 2003). 

Moreover, a deletion of TNP1 or TNP2 leads to an alteration in PRM2 and consequently a 

defect in chromatin condensation (Yu et al., 200; Zhao et al., 2001). 

The relative proportion of protamine quantities P1 and P2 has been proposed in many 

studies as a biomarker of the maturity and integrity of the sperm chromatin (Oliva, 2006; 

Hammadeh et al., 2010; Amor et al., 2017). 

The protamine mRNA ratio, in the non-smokers group, correlated positively with the 

expression levels of TNP2 (r=0.349, p=0.032) and PRM2 (r=0.488, p=0.001) (Table 27). 

This result is in agreement with other studies, demonstrating that the protamine ratio 
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(P1/P2) deregulation is correlated to P2, more than P1 deregulation (Aoki et al., 2005; 

Hammadeh et al., 2010; Barrachina et al., 2018). 

The correlation between the protamine the mRNA ratio and TNP2 can be clarified by the 

reality that the TNP2 gene and PRM2 gene are simultaneously regulated and expressed 

because they are in the same locus (Schlüter et al., 1992). It is also believed that the PRM2 

gene is a homologue to the TNP2 gene and has similar functions (Kramer et al., 1998). 

By examining the relative amounts of the studied genes mRNA in the heavy-smokers group 

(Table 28), we found that the H2BFWT expression level showed a significant positive 

correlation to the transition proteins 1 (TNP1) and 2 (TNP2) relative expression levels 

(r=0.357, p= 0.0001; r=0,354, p=0.001 respectively) and to protamines 1 (PRM1) and 2 

(PRM2) mRNA relative amount (r=0.254, p=0.014; r=0.398, p=0.0001 respectively).  

The relative amount of TNP1 gene mRNA demonstrated a highly significant positive 

correlation with the following mRNA relative amounts of TNP2, PRM1 and PRM2 genes 

(r=0.814, r=0.859, r=0.822; p<0.001 respectively) (Table 28). 

Similarly, the TNP2 gene mRNA relative amount showed a highly positive correlation to 

PRM1 and PRM2 expression levels (r=0.903, r=0.887 respectively; p=0.0001) and the 

same type of association was observed between the PRM1 and PRM2 expression levels 

(r=0.926, p=0.0001) (Table 28). 

Notwithstanding, the protamine mRNA ratio correlated positively to TNP2 mRNA relative 

amount (r=0.307, p=0.004), PRM2 mRNA relative amount (r=0.445, p=0.0001), and 

H2BFWT mRNA relative amount (r=0.342, p=0.001) (Table 28). 

The relative amounts of each studied gene mRNA (mean delta ct) were differentially 

expressed between the heavy-smokers and non-smokers groups and this difference was 

highly significant (p<0.01) (Table 13).Moreover, H2BFWT, TNP1, TNP2, PRM1 and 

PRM2 genes were down-regulated in the spermatozoa of heavy-smokers compared to that 

of non-smokers (Fold change <0.5) (Table 14).  

Moreover, the protamine mRNA ratio, in the current study, was significantly higher in the 

heavy-smokers group in comparison to the non-smokers group (0.11 ± 0.84 vs. 0.60 ± 1.08, 

p=0.001) (Table 13). Unlike the group of non-smokers (Table 25), in the group of heavy-

smokers, the protamine mRNA ratio significantly correlated with the protamine deficiency 
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(CMA3 positivity) (r=0.413, p=0.0001) and sperm DNA fragmentation (sDF) (r=0.302, 

p=0.003) (Table 26).   

Our results confirm the previous studies in our laboratory carried on by Hammadeh et al. 

(2010), who disclosed that the protamine 2 (P2) was under-expressed in the group of 

smokers in comparison to the non-smokers group and that the protamine ratio (P1/P2) was 

significantly elevated in the smokers’ group. 

Furthermore, they found that the levels of 8-OHdG, ROS, MDA and cotinine correlated 

significantly and were significantly higher in the group of smokers in comparison to the 

non-smokers. Protamine P2 concentration and 8-OHdG correlated negatively and 

protamine ratio (P1/P2) correlated positively with 8-OHdG, confirming the association 

between DNA oxidative damage caused by smoking and protamination abnormalities in 

sperm chromatin (Hammadehet al., 2010). Hamad et al. (2017) demonstrated also that 

smoking has negative effects on protamine PRM1 and that the PRM2 gene expression and 

protamine transcript ratio was also significantly higher in the smoker group (Hamad et al., 

2017).  

Other studies have demonstrated that PRM1 and PRM2 transcripts levels were low in 

asthenozoospermic and oligozoospermic men (Aoki et al., 2006; Kempisty et al., 2007) in 

teratozoospermic men (Savadi-Shiraz et al., 2015) and generally in infertile men (Jodar et 

al., 2013) in comparison to normozoospermic men. Moreover, others are of the opinion that 

the protamine transcript ratio can be adapted to discriminate between fertile and infertile 

men (Depa-Martynow et al., 2012; Rogenhofer et al., 2013) and the ratio (P1/P2) was high 

in patients having fertility problems (Ni et al., 2016) and correlated with high sperm DNA 

fragmentation (Castillo et al., 2011; Simon et al., 2011; Hammadehet al., 2010; Ribas-

Maynou et al., 2015; Amor et al., 2018). 

This study is unique as it is the first, to our knowledge, to investigate the influence of 

smoking on the histone variant H2BFWT and the expression of the transition proteins 

TNP1 and TNP2. A number of studies have examined the correlation between these genes’ 

expression level and male infertility. They have found that TNP1, TNP2, and HILS1 

mRNA levels are lower in the spermatozoa of asthenozoospermic patients compared to 

normozoospermic ones (Jedrzejczak et al., 2007), but another study, by Savadi-Shiraz et al. 
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(2015) found that the TNP2 transcript level is higher in teratozoospermic patients compared 

to normal ones. Moreover, the downregulation of H2BFWT was found to be related to 

altered spermatogenesis (Van Roijen et al., 1998; Churikov et al., 1998). 

Hamad et al. (2014) concluded that male smoking is related to a high histone-(H2B)-to-

protamine ratio, causing an alteration in sperm DNA. Yu et al. (2014) confirmed this 

previous study and added that the histone-protamine transition and the transcription of 

protamine genes can be affected by tobacco smoking. An earlier study reported that TSH2B 

was expressed differently in infertile patients (Van Roijen et al., 1998). De Yebraet al. 

(1993) and Zhang et al. (2006) showed a high ratio of histone levels to total nuclear protein 

in infertile patients.  

Selit et al. (2012) reported that sperm DNA and RNA are negatively affected by smoking. 

Moreover, tobacco smoking is responsible for the down-regulation of mir-469, mir-466, 

mir450-b, mir-421, and mir-34b (Dashwood & Ho, 2007; Izzotti et al., 2011; Wei et al., 

2015). 

Cui and his colleagues (2016) pointed out that the smoking habit is associated with an 

alteration of DNA integrity and inhibits DNA repair. They found that smoking was 

associated with sperm DNA fragmentation and reduced amounts of Check point kinase 1 

(Chk1) transcripts (p<0.05), which are important for the repair of sperm DNA damage. 

Nevertheless, tobacco smoke is generally considered to be one of the stronger 

environmental factors affecting DNA methylation (Lee & Pausova, 2013). It has been 

reported that nicotine adheres to nicotine acetylcholine receptors and raises the intracellular 

calcium, causing the downstream activation of the cAMP response element-binding protein, 

the main transcription factor of a great number of genes, (Shen & Yakel, 2009) including 

the genes investigated in this study (H2BFWT, TNP1, TNP2, PRM1, and PRM2).  

Satta et al. (2008) reported that nicotine downregulates the expression of a number of DNA 

methyltransferase (DNMT1) and other proteins of mouse neurons.  

In addition, smoking is a major source of ROS, which leads to oxidative stress and the 

cysteine and thiol groups (2SH) of protamine are an easy target for oxidative stress 

constituents. Cotinine, on the other hand, has a negative effect on intra- and intermolecular 



92  

 

disulfide bond formation, leading to less chromatin compaction in sperm and a high 

percentage of DNA fragmentation (Kemp et al., 2008) 

Benzopyrene and vinyl chloride, other components of cigarette smoking, increase the 

linking of DNA adducts, which then participate in improper DNA replication and 

inaccurate protein synthesis (Ménézo et al., 2010).  

Other studies have demonstrated that an aberrant protamine ratio (P1/P2) is correlated to 

male infertility and it is caused by a decrease or an absence of protamine 2 (P2) expressions 

(Aoki et al., 2005, Hammadeh et al., 2010, Hamad et al., 2014; Moghbelinejad et al., 

2015). In the present study, we have found that an aberrant protamine ratio correlated to a 

decrease in protamine 2, transition protein 2 and the testis-specific histone H2BFWT 

(Table 28). However, larger prospective studies are needed to confirm these correlations 

and to clarify the mechanism at the molecular level.  

4.3.2. The relationship between the expression levels of the studied genes, sperm 

parameters, and ICSI results 

In the non-smokers group, the semen parameters showed no correlation with the transcript 

level (∆Ct) of the PRM1, PRM2, TNP1, TNP2 and H2BFWT (Table 21). However, the 

protamine (P1–P2) mRNA ratio correlated significantly negatively with the semen volume 

(r=-0.463, p=0.002) (Table 21). 

In the heavy-smokers group, the relative protamine 1 (PRM1)  and transition protein 1 

(TNP1) level correlated positively with the sperm concentration (r=0.335, r=0.391 

respectively; p<0.01), total motility (r=0.203, r=0.238; p<0.05), progressive motility 

(r=0.337, r=0.361; p<0.01), and morphologically normal spermatozoa (r=0.214, p=0.035; 

r= 0.294, p=0.003 respectively). However, the PRM2 expression level correlated 

positivelywith the sperm concentration (r=0.329, p=0.001) and the progressive motility 

(PR) (r=0.338, p=0.001) (Table 22). 

The relative expression level of TNP2 showed a highly positive correlation with sperm 

count (r=0.369, p=0.001), progressive motility (r=0.359, p=0.001) and the morphologically 

normal spermatozoa (r=0.303, p=0.004) (Table 22). 
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A significant positive correlation was also found between the relative amount of H2BFWT 

mRNA and progressive motility (r=0.230, p=0.027). Furthermore, the protamine mRNA 

ratio correlated positively significant with total motility (r=0.228, p=0.024) (Table 22). 

These findings confirm the fact that the testis-specific histone-like H2BFWT, transition 

proteins, and protamines are essential for chromatin remodelling and compaction during 

spermatid differentiation to spermatozoa, which means that they actively participate in the 

spermatozoa morphology and motility. 

The results of the present study are in accordance with the findingsof other studies that 

demonstrated a significant correlation between altered sperm parameters and abnormal 

protamine ratio (Mengual et al., 2003; Aoki et al., 2006; De Mateo et al., 2009; Simon et 

al., 2014; Hamad et al., 2014).  

Moreover, these results are in agreement with others that found that sperm motility and 

protamine transcript correlated significantly and protamine mRNA ratio correlated 

positively with sperm concentration and motility (Depa-Martynow et al., 2012; Rogenhofer 

et al., 2013).  

On the other hand, the outcomes of the present study are in contradiction to the results of 

Hamad et al. (2017), who found no significant association between protamine mRNA ratio 

and sperm motility and to the findings of others who demonstrated a negative correlation 

between progressive motility and protamine transcript level and a significant negative 

correlation between the protamine mRNA ratio and non-progressive motility (Rogenhoferet 

al., 2017). 

Nevertheless, it has been found that knock-out mice for TNP1 and TNP2 genes had a 

reduction in the following seminal parameters: progressive motility and normal 

morphology (Adham et al. 2001; Shirley et al. 2004; Miyagawa et al., 2005; Savadi-Shiraz 

et al., 2015) and that the TNP2 gene mRNA level and its protein are important for normal 

sperm development (Liu et al., 2013) and the prevention of defects in sperm morphology 

(Tseden et al., 2007). 

Taken together, there were no significant correlations between the gene expression levels 

mRNA and the clinical parameters after intracytoplasmic sperm injection ICSI was 
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observed. However, the relative amount of the TNP1 mRNA correlated negatively with the 

fertilization rate (r=0.401, p=0.008) in the non-smokers group (Table 23).  

It is also noteworthy that, although smoking affects the gene expression of spermatozoa no 

correlations were observed between the clinical parameters after ICSI (the fertilization rate, 

the number of cleaved embryos, the number of grade 1 embryos, the number of grade 2 

embryos, the embryo grade score) and the relative expression levels of H2BFWT, TNP1, 

TNP2, PRM1, and PRM2 genes in the heavy–smokers group (Table 24). 

In both groups too, the protamine mRNA ratio showed no correlation with the clinical 

parameters after ICSI (Tables 23 & 24). 

These results are inconsistent with other studies that did not notice a difference in PRM1 

and PRM2 mRNA levels (Depa-Martynow et al., 2007) and in the TNP2 mRNA level 

(Savadi-Shiraz et al., 2015) between a successful ICSI cycle and a failed one. 

However, contradictory findings have been reported (Aoki et al., 2006; de Mateo et al., 

2009; Simon et al., 2011; Rogenhofer et al., 2013), their data suggesting a correlation 

between an altered protamine (P1/P2) ratio and a lower fertilization rate, a lower embryo 

quality grade score, and a lower pregnancy score.  

Rogenhofer et al. (2017) found that the protamines PRM1 and PRM2 transcript levels and 

the protamine mRNA ratio were notably different between spermatozoa from male partners 

whose women had more than 2 miscarriages and spermatozoa from both subfertile male 

partners of couples undergoing ART treatment (IVF/ICSI) and healthy males. From this 

they concluded that protamines mRNA in human spermatozoa is important for both 

successful fertilization and early embryo development.  

The findings of this present study are in agreement with an earlier study (Shirley et al., 

2004) that found that both the fertilization rate and the embryonic development were 

reduced in TNP1-and TNP2-null mice.  

The current data also strongly suggest that these studied genes are expressed in a well-

organized chronological manner and any alterations from an internal or external factor, 

such as smoking, may alter these mechanisms and thus result in altered spermiogenesis and 

sperm function.  
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4.4. Tobacco smoking and genetic alterations in H2BFWT, PRM1, PRM2 

The genotoxic constituents of tobacco are responsible for some genetic damage to 

spermatozoa, namely, DNA adducts, single- or double-strand breaks, cross-links, 

aneuploidies, and chromosomal aberrations. If not correctly repaired, sperm DNA damage 

can lead to mutations or de novo mutations. It was found also that this mutation can be 

transmitted into the next generation and the types of mutations vary from 

insertions/deletions (indels) and single nucleotide variations (SNVs) to a greatrange of 

structural variation (Beal et al., 2017). 

In fact, nicotine and Benzo[a] pyrene have been demonstrated to cause deleterious sperm 

DNA alterations which can be transmitted to offspring (Holloway et al., 2004; Mohamed et 

al., 2010).  

Besides, recent studies demonstrated an association between genetic variations or 

polymorphisms in xenobiotic metabolism enzyme genes and male infertility in smokers like 

the variation 590G>A of N-acetyltransferase-2 gene (NAT2) (Yarosh et al., 2015), and 

4621le/Val in cytochrome P450, family1, subfamily A polypeptide 1 gene (CYP1A1) 

(Yaroshet al., 2013). 

In this current study, we looked for a possible connection between genetic variations in the 

H2BFWT gene, protamines genes (PRM1 and PRM2) and fertility alteration in heavy-

smoker and non-smoker males. 

For the H2BFWT (Xq22.2) a total of three homozygous single nucleotides polymorphism 

(SNPs): rs7885967, rs553509 and rs578953 were detected. The variant rs7885967 is 

located in the 5 prime untranslated regions. The variant rs553509 is a missense mutation 

(Arg/His) that was located in Exon 1 and rs578953 is an upstream gene variant. On testing 

the association between SNP alleles and each of the heavy-smokers and non-smokers 

groups, none of the SNPs were reported to be significant (Table 30). 

One SNP has been identified in the PRM1 gene: rs737008. This SNP is a synonym variant 

that is located on Exon 2 (Table 31). Moreover, two SNPs were detected in the intronic 

region (rs2070923 and rs1646022) and one was located in the 3 prime untranslated regions 
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(rs424908) for the PRM2 gene (Table 32). Therewere also for these two investigated genes 

no significant differences in allele distribution among the heavy-smokers and non-smokers. 

When the subjects of this study were arranged into patients without and with a variation or 

with nucleotide changes, no influences of the detected SNPs on the standard sperm 

parameters (Tables 33-35), protamine deficiency (Table 36), sperm DNA fragmentation 

(Table 37), and ICSI outcomes (Tables 38-43) were observed. 

However, this is the first study to report two variants rs424902 in PRM2 gene and rs57895 

in H2BFWT in a population of patients undergoing ICSI therapy. The other variants were 

previously reported in a number of studies testing their association with male infertility.  

However contradictory findings have been reported: some groups found an association 

between the two polymorphisms rs7885967 and rs553509 in the H2BFWT gene and male 

infertility (oligozoospermia and non-obstructive azoospermia) in the Korean population 

(Lee et al., 2009), in the Chinese population (Ying et al., 2012), and in the Iranian 

population (Rafatmanesh et al., 2018). In contrast, another study by Zargar et al. (2015) 

found no association. 

For the PRM1 variant rs737008, some studies did not find a correlation to male infertility 

as was the case in our study (Tanaka et al., 2003; Aoki et al., 2006; Ravel et al., 2007; 

Imken et al., 2009; Jodar et al., 2011; Venkatesh et al., 2011) but in a meta-analysis 

conducted on subgroups, they found a significant association between this gene 

polymorphism and male infertility (Jiang et al., 2015). 

Our results and those of others (Tanaka et al., 2003; Aoki et al., 2006; Imken et al., 2009; 

Jodar et al., 2011) demonstrated no association between the two variants rs1646022 and 

rs2070923 in PRM2 gene and infertility. However, in a meta-analysis, the rs1646022 in an 

Asian subgroup has been considered as a risk factor for male infertility (Jiang et al., 2015). 

It can, therefore, be concluded that the absence of an association between SNP alleles and 

each of the classes of heavy-smokers and non-smokers indicates that smoking induces 

epigenetic changes that alter the gene expression but it seems unlikely that it alters the 

nucleotide sequence of the gene. 
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4.5. Conclusion 

The outcomes of the current study demonstrate that tobacco smoking had a generally 

negative influence on standard semen parameters. Smoking was also associated with high 

levels of protamine deficiency, DNA fragmentation and a low pregnancy rate. Protamine 

deficiency leads to abnormal chromatin condensation and raises the sensitivity of sperm 

DNA to external stressors, causing an oxidative attack, leading to DNA damage and 

consequently impairment of the sperm quality. 

Thus, CMA3 staining and TUNEL assay can be used for the evaluation of the negative 

effects of a variant of environmental risk factors, such as smoking, in a situation, for 

example, like idiopathic infertility where the standard measurement of semen parameters is 

not enough to provide a complete diagnostic. 

Furthermore, tobacco smoking affects the expression of the following five genes, 

H2BFWT, TNP1, TNP2, PRM1, and PRM2, as well as the protamine mRNA ratio. 

Transcripts of these genes are therefore good biomarkers in the sperm of ICSI patients to 

evaluate sperm quality and its fertilizing capacity. 

Moreover, no connection was found between the genetic variations found in the H2BFWT 

gene (rs7885967, rs553509 and rs578953), protamine genes PRM1 (rs737008) and PRM2 

(rs2070923 and rs1646022) and fertility alteration in heavy-smoker and non-smoker males.  

In conclusion, the present study has shown that smoking does indeed induce epigenetic 

changes which alter the gene expression but it seems unlikely that it alters the nucleotide 

sequence of the gene itself.  
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6. APPENDICES 

Supplementary Tables for Chapter 3.3.4. Association between SNPs and standard sperm 

parameters, protamine deficiency (CMA3 positivity), sperm DNA fragmentation, and 

clinical outcomes after ICSI therapy) 

Table 33: Association between the Single nucleotides polymorphisms (SNPs) and sperm 

concentration (106 per ml) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.9933746147277847 

rs2070923 {0/0} vs. {0/1. 1/1} 0.9389749144130906 

{0/0. 0/1} vs. {1/1} 0.4162086134220676 

rs1646022 {0/0} vs. {0/1. 1/1} 0.865806699149712 

{0/0. 0/1} vs. {1/1} 0.743865463175486 

rs737008 {0/0} vs. {0/1. 1/1} 0.7470590680767566 

{0/0. 0/1} vs. {1/1} 0.4208094054177579 

rs553509 {0/0} vs. {1/1} 0.013075074553835884 

rs7885967 {0/0} vs. {1/1} 0.0624252968856986 

rs578953 {0/0} vs. {1/1} 0.49508868402949857 

0: reference allele; 1: alternative allele 
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Table 34: Association between the Single nucleotides polymorphisms (SNPs) and 

progressive motility (PR.%) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.2803684675318613 

rs2070923 {0/0} vs. {0/1. 1/1} 0.8732777094259344 

{0/0. 0/1} vs. {1/1} 0.3345142031373297 

rs1646022 {0/0} vs. {0/1. 1/1} 0.3360119664696074 

{0/0. 0/1} vs. {1/1} 0.48973067293663575 

rs737008 {0/0} vs. {0/1. 1/1} 0.8685910748187006 

{0/0. 0/1} vs. {1/1} 0.9982207458581356 

rs553509 {0/0} vs. {1/1} 0.31528758179812033 

rs7885967 {0/0} vs. {1/1} 0.753394761339557 

rs578953 {0/0} vs. {1/1} 0.27954292428841765 

0: reference allele; 1: alternative allele 
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Table 35: Association between the Single nucleotides polymorphisms (SNPs)and 

morphologically normal spermatozoa (%) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.28783437373616927 

rs2070923 {0/0} vs. {0/1. 1/1} 0.5304279142863653 

{0/0. 0/1} vs. {1/1} 0.04737686873584445 

rs1646022 {0/0} vs. {0/1. 1/1} 0.14925943059995164 

{0/0. 0/1} vs. {1/1} 0.6240573525042739 

rs737008 {0/0} vs. {0/1. 1/1} 0.2468074490858797 

{0/0. 0/1} vs. {1/1} 0.16005734623194479 

rs553509 {0/0} vs. {1/1} 0.5169346030783695 

rs7885967 {0/0} vs. {1/1} 0.6269185540134425 

rs578953 {0/0} vs. {1/1} 0.5146999222652533 

0: reference allele; 1: alternative allele 
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Table 36: Association between the Single nucleotides polymorphisms (SNPs) and 

protamine deficiency (CMA3 positivity) (%) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.3755043873403856 

rs2070923 {0/0} vs. {0/1. 1/1} 0.37823394618353245 

{0/0. 0/1} vs. {1/1} 0.621939276796292 

rs1646022 {0/0} vs. {0/1. 1/1} 0.6640026536625103 

{0/0. 0/1} vs. {1/1} 0.10469665725189653 

rs737008 {0/0} vs. {0/1. 1/1} 0.5983378737757894 

{0/0. 0/1} vs. {1/1} 0.17098512863304105 

rs553509 {0/0} vs. {1/1} 0.42983991504241614 

rs7885967 {0/0} vs. {1/1} 0.9174186222372497 

rs578953 {0/0} vs. {1/1} 0.05393230321624033 

0: reference allele; 1: alternative allele 
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Table 37: Association between the Single nucleotides polymorphisms (SNPs) and sperm 

DNA fragmentation (sDF)(%) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.8803792333541915 

rs2070923 {0/0} vs. {0/1. 1/1} 0.744517217394393 

{0/0. 0/1} vs. {1/1} 0.18095775178707674 

rs1646022 {0/0} vs. {0/1. 1/1} 0.07503701808365268 

{0/0. 0/1} vs. {1/1} 0.9080644191000308 

rs737008 {0/0} vs. {0/1. 1/1} 0.34997829639914957 

{0/0. 0/1} vs. {1/1} 0.8785043586856714 

rs553509 {0/0} vs. {1/1} 0.4604095358234265 

rs7885967 {0/0} vs. {1/1} 0.1776852063461899 

rs578953 {0/0} vs. {1/1} 0.6776226698224479 

0: reference allele; 1: alternative allele 
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Table 38: Association between the Single nucleotides polymorphisms (SNPs) and number 

of fertilized oocytes 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.3271506094332418 

rs2070923 {0/0} vs. {0/1. 1/1} 0.2593886335850649 

{0/0. 0/1} vs. {1/1} 0.6550926034477063 

rs1646022 {0/0} vs. {0/1. 1/1} 0.48339423927838554 

{0/0. 0/1} vs. {1/1} 0.03730154990781587 

rs737008 {0/0} vs. {0/1. 1/1} 0.13138212802869292 

{0/0. 0/1} vs. {1/1} 0.7769820145473822 

rs553509 {0/0} vs. {1/1} 0.7863717431014478 

rs7885967 {0/0} vs. {1/1} 0.6409038069961046 

rs578953 {0/0} vs. {1/1} 0.3496003973275277 

0: reference allele; 1: alternative allele 

 

 

 

 

 

 



133  

 

Table 39: Association between the Single nucleotides polymorphisms (SNPs) and number 

of cleaved embryos 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.26706279458557747 

rs2070923 {0/0} vs. {0/1. 1/1} 0.2631388274185684 

{0/0. 0/1} vs. {1/1} 0.49233956686094926 

rs1646022 {0/0} vs. {0/1. 1/1} 0.45379632292278616 

{0/0. 0/1} vs. {1/1} 0.038779287881035324 

rs737008 {0/0} vs. {0/1. 1/1} 0.18149180857202296 

{0/0. 0/1} vs. {1/1} 0.743795165131018 

rs553509 {0/0} vs. {1/1} 0.9173305750089161 

rs7885967 {0/0} vs. {1/1} 0.40467844353878535 

rs578953 {0/0} vs. {1/1} 0.22642945601731423 

0: reference allele; 1: alternative allele 
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Table 40: Association between the single nucleotides polymorphisms (SNPs) and 

fertilization rate (%) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.8103550592026044 

rs2070923 {0/0} vs. {0/1. 1/1} 0.03205097462877848 

{0/0. 0/1} vs. {1/1} 0.23903206039691183 

rs1646022 {0/0} vs. {0/1. 1/1} 0.6151144251975146 

{0/0. 0/1} vs. {1/1} 0.03483077162368566 

rs737008 {0/0} vs. {0/1. 1/1} 0.23470723921223913 

{0/0. 0/1} vs. {1/1} 0.025423491541043317 

rs553509 {0/0} vs. {1/1} 0.014718771454381614 

rs7885967 {0/0} vs. {1/1} 0.04174337049411485 

rs578953 {0/0} vs. {1/1} 0.7763816892409101 

0: reference allele; 1: alternative allele 
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Table 41: Association between the single nucleotides polymorphisms (SNPs) and number 

of grade 1 embryos (G1) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.8103550592026044 

rs2070923 {0/0} vs. {0/1. 1/1} 0.05339003970229222 

{0/0. 0/1} vs. {1/1} 0.48886995903603236 

rs1646022 {0/0} vs. {0/1. 1/1} 0.3085498910762364 

{0/0. 0/1} vs. {1/1} 0.003794939181221096 

rs737008 {0/0} vs. {0/1. 1/1} 0.7507765647101192 

{0/0. 0/1} vs. {1/1} 0.31470590161892176 

rs553509 {0/0} vs. {1/1} 0.9173305750089161 

rs7885967 {0/0} vs. {1/1} 0.3362025017457013 

rs578953 {0/0} vs. {1/1} 0.3496003973275277 

0: reference allele; 1: alternative allele 
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Table 42: Association between the single nucleotides polymorphisms (SNPs) and number 

of grade 2 embryos (G2) 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.7932402626860902 

rs2070923 {0/0} vs. {0/1. 1/1} 0.8143293315952094 

{0/0. 0/1} vs. {1/1} 0.01588018924527925 

rs1646022 {0/0} vs. {0/1. 1/1} 0.9222363838165708 

{0/0. 0/1} vs. {1/1} 0.3019768269072909 

rs737008 {0/0} vs. {0/1. 1/1} 0.012829806626289617 

{0/0. 0/1} vs. {1/1} 0.3962068790552832 

rs553509 {0/0} vs. {1/1} 0.6185276634748336 

rs7885967 {0/0} vs. {1/1} 0.5852618660581088 

rs578953 {0/0} vs. {1/1} 0.8978186803918672 

0: reference allele; 1: alternative allele 
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Table 43: Association between the single nucleotides polymorphisms (SNPs) and embryo 

grade score 

SNPs Test p-value 

rs424908 {0/0} vs. {0/1. 1/1} - 

{0/0. 0/1} vs. {1/1} 0.3134077545844637 

rs2070923 {0/0} vs. {0/1. 1/1} 0.9952562583457744 

{0/0. 0/1} vs. {1/1} 0.27991438124204193 

rs1646022 {0/0} vs. {0/1. 1/1} 0.9610138754251201 

{0/0. 0/1} vs. {1/1} 0.9072766392858082 

rs737008 {0/0} vs. {0/1. 1/1} 0.12465617088794856 

{0/0. 0/1} vs. {1/1} 0.818568695774981 

rs553509 {0/0} vs. {1/1} 0.9953105824678025 

rs7885967 {0/0} vs. {1/1} 0.9110792158872906 

rs578953 {0/0} vs. {1/1} 0.8356635486803874 

0: reference allele; 1: alternative allele 
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