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ABSTRACT 

 

INTRODUCTION: Movement screening is widely used within football to quantify players’ 

movement quality. An established definition of movement quality does not exist; however, it 

encompasses aspects typically associated with safe exercise technique such as maintenance of 

neutral posture, balance and coordination. The underlying theory behind movement screening 

is that ‘poor’ movement quality increases the risk of injury whereas ‘good’ movement quality 

reduces the risk. Indeed, current convention advocates for the risk stratification of individuals 

based on movement screening scores with intervention targeted only to the high-risk group. 

The appeal of such practice is clear: potentially more efficient allocation of resources. 

However, very little evidence to support this approach exists within football. Consequently, 

the aims of this thesis were as follows: i) to determine what movement screens currently exist 

within the scientific literature, how reliable they are and their potential association with 

injury, ii) investigate the predictive ability of the most widely used and researched movement 

screen within a football population, iii) develop a new football-specific movement screen and 

test its reliability, and iv) establish the association with injury of the newly created football-

specific movement screen. 

 

METHODS: i) A structured literature review was conducted to identify the movement 

screens with supporting evidence regarding their reliability and association with injury. ii) 

The Functional Movement Screen (FMS™) was identified as the most widely used and 

researched movement screen; however, a paucity of research involving football players was 

observed. In order to investigate the predictive ability of the FMS™ within football 84 elite 

youth players from a professional club academy performed the screen during the pre-season 

period and were subsequently observed during the in-season period and injury incidence 

recorded. iii) The Soccer Injury Movement Screen (SIMS) was developed as a football-

specific movement screen. The constituent movements making up the SIMS were selected 

based on the most common injury locations (lower-body) and types (muscle strains and 

ligament sprains). To assess the intra- and inter-rater reliability of the SIMS, 25 recreational 

athletes performed the assessment and were scored by three raters on three separate 

occasions. iv) The final investigation established the association with injury of the SIMS 

within a football population. Utilising a prospective cohort study design, 306 semi-

professional football players performed the SIMS during the pre-season period and were 



	 xii	

subsequently observed during the in-season period with injury incidence and exposure time 

recorded. 

 

RESULTS: i) A total of 10 movement screens were identified by the structured literature 

search. The majority of the identified screens demonstrated acceptable reliability for use in 

applied practice and future research. However, only two of the 10 identified screens had any 

supporting evidence regarding their association with injury. Furthermore, the limited 

available evidence related to association with injury was equivocal and not sufficient to 

justify any movement screen as ‘predictive’. ii) No association with injury was observed for 

the FMS™ within a cohort of elite youth football players. iii) The SIMS demonstrated good 

to excellent intra- and inter-rater reliability. iv) However, no association with injury was 

observed for the SIMS composite score in relation to any of the categories investigated. 

 

DISCUSSION: While many reliable movement screens exist none have compelling evidence 

supporting a strong association with injury. Despite its widespread use within football the 

FMS™ was not associated with injury among a cohort of elite youth players questioning its 

value in terms of injury prediction. The SIMS demonstrated good to excellent reliability 

indicating its suitability for use in applied practice and future research; however, no 

association with injury was observed for the composite score. The present results challenge 

current convention that advocates risk stratification and targeted intervention based on 

screening score. Implementing universal injury prevention programmes albeit with content 

informed by prospective studies such as the ones conducted within this body of work are 

recommended ahead of attempting to identify specific ‘at-risk’ individuals. 
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1. INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Why is injury an important issue in football? 

 

Scientific research related to injury within football is very prevalent. Much epidemiological 

research has been conducted at the professional level of the game revealing the lower 

extremities as the most common site of injury with muscle strains and ligament sprains the 

most prominent types.13, 14, 31 Injury incidences reported within the scientific literature vary 

depending on the level of play and population investigated; however, a professional team of 

25 players can realistically expect about 50 injuries each season.14 Equally, it is 

commonplace to see mainstream media outlets, including national newspapers and television 

broadcasters, report on injuries suffered by high-profile players. Indeed, scientific studies 

have even used data collated by the mainstream media to establish injury incidence in 

professional leagues, alluding to the extensive coverage of, and public interest in, the topic.21 

However, an important question is: why is injury such an important issue? 

 

There are numerous arguments as to why injury within football is worthy of consideration by 

the scientific community. Not least, there is an obvious legal and moral obligation on 

governing bodies, national football associations, professional clubs and the staff they employ 

to protect the welfare of players. As in any professional occupation, football included, health 

and safety law applies.33 In order to appropriately address the risk of injury associated with 

playing football it is first necessary to establish the extent of the problem: injury incidence.30 

Secondly, the aetiology of injury needs established: mechanism and risk factor 

identification.30 Thirdly, interventions designed to reduce the established risks need applied 

and finally, evaluation of their effectiveness.30 Sports injury research has and continues to 

allow these steps to be applied. This on going cycle of research ultimately allows applied 

practitioners to be evidence-based in their efforts to reduce injury incidence. 

 

1.1.1 Player health 

 

Suffering a football related injury has an obvious acute impact on players’ health; however, 

such circumstances may also result in long-term sequelae such as osteoarthritis.25 In addition, 

once a player has suffered an injury their risk of sustaining it again in the future (re-injury) is 

increased.1, 13 Indeed, the increased risk related to previous injury is not limited to a 
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recurrence of the index injury but a range of subsequent injury types and locations.15, 27 

Furthermore, the effects of sports injury are not limited to physical implications. Sports injury 

can also elicit symptoms related to depression and anxiety.23 Protecting players’ immediate 

and long-term physical and mental health should be a priority for applied practitioners 

working within football, as both the Union of European Football Associations (UEFA) and 

Fédération Internationale de Football Association (FIFA) advocate.9  

 

1.1.2 Competitive advantage 

 

A competitive incentive also exists for reducing injury incidence. Hägglund et al.17 

demonstrated that lower injury burden and higher player availability were associated with an 

increase in UEFA season club coefficient: an indicator of success in the Champions League 

or Europa League. Injury incidence was also negatively correlated with team ranking, 

number of games won, number of goals scored and total points within Qatari first division 

clubs.10 Similarly, Carling et al.6 reported the lowest squad utilization and lower injury 

occurrence in a championship-winning season compared to less successful preceding and 

subsequent seasons in a professional team. Intuitively, maximizing the number of games a 

club can field its strongest team seems likely to improve its chances of success. 

 

1.1.3 Financial incentive 

 

The financial incentive related to reducing injury incidence is substantial. The financial cost 

associated with player unavailability includes not only the salary of the individual but also 

potential medical treatments. While the specific monetary value will vary depending on 

player wages and the medical treatment sought it has been estimated that the average cost of 

a player being absent for a month due to injury equates to €500,000 within a top-level 

European club.11 Even at the non-professional level, football related injury may have wider 

financial implications to society through lost work days and additional burden to public 

healthcare systems. 

 

1.2 Movement screening within football 

 

Periodic health examinations are widespread throughout sport, including football.2, 22 These 

regular medical assessments often include a form of movement screening. Movement 
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screening is widely used within professional football.24 It involves the assessment of 

movement quality and seeks to quantify how well an individual moves. An established 

definition of movement quality does not exist; however, it encompasses aspects typically 

associated with safe exercise technique such as maintenance of neutral posture, balance and 

coordination. As such, it differs from most fitness tests that are generally quantitative in 

nature and measure performance in units such as centimeters, seconds and kilograms. The 

judgment of ‘quality’ inherently introduces an element of subjectivity since the score 

ultimately relies on the opinion of the test rater. The underlying theory behind movement 

screening is that ‘poor’ movement quality increases the risk of injury whereas ‘good’ 

movement quality reduces the risk. However, it should be noted that very little evidence to 

support this assertion exists within football. Despite this lack of evidence, a survey of 44 top-

division professional football clubs revealed that 82% of them used movement screening as a 

tool to identify injury risk. 

 

Considering the numerous compelling reasons as to why reducing injury incidence within 

football is a worthwhile endeavor, the appeal of predictive tools that can alert practitioners to 

players who may be ‘high-risk’ is obvious. In theory, using the results of movement 

screening to create high- and low-risk (of injury) player groups allows applied practitioners to 

focus their attention and resources on the individuals they can help the most. The logic 

behind this approach is related to optimising efficiency, of both time and material resources. 

However, an evidence base supporting the efficacy of such practice – risk stratification 

leading to individualized programming – in terms of effectively reducing injury incidence as 

opposed to implementing universal injury prevention interventions is lacking, especially 

within the sport of football.2, 29 

 

1.3 Thesis structure and research aims 

 

The following thesis comprises several chapters, each addressing a specific research question 

or contemporary issue related to movement screening, its association with injury within 

football or injury data collection procedures within non-professional environments. Each of 

these topics were explored with the intention of addressing the overall research aims. Given 

the prevalence of movement screening within football and the lack of evidence supporting its 

usefulness as an injury prediction tool the following research aims were established: 
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1) Determine what movement screens currently exist within the scientific literature, how 

reliable they are and their potential association with injury. 

 

2) Investigate the injury predictive ability of the most widely used and researched 

movement screen within a football population. 

 

3) Develop a new football-specific movement screen and test its reliability. 

 

4) Using a prospective cohort study design, establish the association with injury of the 

newly created football-specific movement screen. 

 

5) Discuss the methodological challenges related to collecting injury data in non-

professional football populations. 

 

6) Discuss how movement screening may be useful to applied practitioners outwith the 

context of injury prediction. 

 

Each chapter of this thesis represents these research aims, in sequential order. 

 

1.4 Literature review 

 

The following section contains the submitted manuscript pertaining to the following 

publication: 

 

McCunn R, aus der Fünten K, Fullagar HHK, McKeown I, Meyer T. Reliability and 

association with injury of movement screens: A critical review. Sports Med. 2016;46(6):763-

781. 

 

The citations and references contained herein apply to this manuscript only and are formatted 

to the requirements of Sports Medicine. The numerical citations relate to the reference list 

within this section only and not to the reference list included at the end of this thesis. 
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Abstract 

 

Subjective assessment of athletes’ movement quality is widely used by physiotherapists and 

other applied practitioners within many sports. One of the beliefs driving this practice is that 

individuals who display ‘poor’ movement patterns are more likely to suffer an injury than 

those who do not. The aim of this review was to summarize the reliability of the movement 

screens currently documented within the scientific literature and explore the evidence 

surrounding their association with injury risk. Ten assessments with accompanying reliability 

data were identified through the literature search. Only two of these 10 had any evidence 

directly related to injury risk. A number of methodological issues were present throughout 

the identified studies including: small sample sizes, lack of descriptive rater or participant 

information, ambiguous injury definitions, lack of exposure time reporting and risk of bias. 

These factors combined with the paucity of research on this topic make drawing conclusions 

as to the reliability and predictive ability of movement screens difficult. None of the 
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movement screens that appear within the scientific literature currently have enough evidence 

to justify the tag of ‘injury prediction tool’. 

 

Key Points 

 

• Subjective assessment of athletes’ movement quality is commonplace within 

professional sport, often in an attempt to predict injury risk. 

• Of the 10 movement screens identified within the scientific literature only two have 

had their injury predictive ability investigated via prospective cohort studies. 

• None of the movement screens present within the scientific literature currently have 

enough supporting evidence to justify being heralded as ‘injury prediction tools’, 

however, they may well provide practitioners with greater holistic understanding of 

their athletes’ physical capabilities. 

  

1 Introduction 

 

The use of fitness assessments to profile and categorize athletes’ physical capabilities is 

commonplace and is a central aspect of many applied practitioners’ jobs [1]. The data 

collected from traditional fitness tests are typically objective in nature i.e. can be measured in 

units such as seconds, centimeters or grams. Movement screening is a type of assessment 

frequently used within professional soccer as well as other sports and is predominantly a 

subjective process that aims to measure the ‘quality’ of a movement pattern [2]. However, for 

various reasons including the subjective nature of such assessments and its relatively recent 

adoption by practitioners this practice has received limited attention within the scientific 

literature. A consensus on what defines movement quality is not available; however, the 

concept encapsulates the maintenance of correct posture and joint alignment in addition to 

balance while performing the selected movements. While some sporting institutions measure 

intuitively related parameters such as strength and joint range of motion, movement quality 

has been identified as an independent attribute [3, 4]. Therefore, a fitness testing battery that 

seeks to build a comprehensive profile of an athlete should incorporate an assessment of 

movement quality. This highlights the need for reliable and valid movement screening tools. 

 



	 7	

The foundation of a comprehensive injury prevention program is identifying individuals with 

a high risk of injury [5] and this is one of the key concepts underpinning the practice of 

movement screening. If athletes who display ‘poor’ movement patterns have a greater risk of 

injury than those who display ‘good’ movement patterns then screening protocols may be an 

important component of injury prevention strategies.  However, the purpose of movement 

screens is not to diagnose why a poor movement pattern exists but simply to highlight it [6]. 

It is up to the judgment of the practitioner as to what course of action, if any, is taken in 

response to the outcome. Furthermore, elite sport is not the only environment where 

movement ability is important. Giblin et al. [7] stated that fundamental movement ability 

(core stability, balance, coordination) is related to perceived competence and confidence 

associated with physical activity. As such, movement quality is linked to general health as 

well as sports performance.  

 

Despite movement quality being an important skill for the general population, in addition to 

athletes, measuring it is problematic due to its subjective nature. A variety of movement 

screens exist, the most well known being the functional movement screen (FMS) [6, 8]. The 

FMS has received attention from researchers and different aspects of this protocol such as its 

reliability and association with injury have been investigated. However, other screens do 

exist with some but not all appearing within the scientific literature. A collective critique of 

the movement screens detailed in the scientific literature does not currently exist and this is 

necessary to raise awareness of the available options. This will allow practitioners to make 

informed decisions about which, if any, movement screen is most appropriate for them. 

Accordingly, the aim of the present review was to summarize the intra- and inter-rater 

reliability of the available movement screens and discuss the evidence surrounding their 

ability to determine injury risk.  

 

2 Literature search 

 

In order to accomplish this critical review, a computerized literature search (figure 1) was 

performed with PubMed, Web of Science and ScienceDirect for articles published up until 1st 

July 2015 using the search terms “movement”, “screen”, “screening”, “reliability”, “injury”, 

“prediction”, “predicts”, “landing error scoring system”, “tuck jump assessment”, “functional 

movement screen”, “functional movement screening”, “single leg squat test”, “squat”, “test”, 

“drop jump”, “drop vertical jump” and “movement quality” in various combinations. In 
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addition, articles were identified manually from the reference lists of original manuscripts. A 

total of 51 relevant articles were identified. For the purpose of this review a movement screen 

was defined as a protocol designed for use with apparently healthy, uninjured individuals to 

primarily assess the ‘quality’ of a movement(s) rather than objective outcomes such as 

number of repetitions, distance or time achieved. The movement(s) included should rely on 

multiple physical qualities to execute correctly e.g. strength, balance and flexibility. It is not 

used to identify specific clinical conditions and does not require interpretation by a medical 

professional.  
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Figure 1. Flow diagram showing the movement screens present within the scientific 
literature. 
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3 Reliability of identified screens 

 

A total of 10 movement screens that met the definition outlined above and with 

accompanying reliability data were identified through the literature search (figure 2). These 

screens consisted of the: FMS, landing error scoring system (LESS), single-leg squat screen 

variations, drop vertical jump screen variations, tuck jump assessment, athletic ability 

assessment (AAA), conditioning specific movement tasks (CSMT), the netball movement 

screening tool (NMST), the physical performance measures screen (16-PPM) and the star 

excursion balance test (SEBT) movement quality screen. A description of the exercises 

involved in each screen is provided in table 1.  

 

The reliability of an assessment tool is paramount since it is a pre-requisite for test validity 

[9]. As such, before any given movement screen can be investigated with respect to injury 

prediction it must first be demonstrated that the test is reliable. Throughout the 51 articles 

identified by the literature search intra class correlation coefficients (ICC) were commonly 

reported. Atkinson and Nevill [10] stated that various qualitative interpretations of ICC 

values exist yet none were related to “analytical goals for research” and so it is difficult to say 

exactly what value constitutes ‘good’ or ‘excellent’ reliability. Some of the identified studies 

classified an ICC value of ≥0.75 as good [11] whereas others [12, 13] classified scores of 

≥0.80 and ≥0.90 as good and excellent respectively. Shultz et al. [14] reported ICC values of 

0.40-0.75 as fair to good and >0.75 as excellent. A reasonable consensus as to what can be 

considered good reliability appears to be an ICC ≥0.75 and thus this classification will be 

used throughout this review. In addition to ICCs, kappa values were also often reported and 

guidelines presented by Landis & Koch [15] will be used to classify these scores. 

Accordingly, the strength of agreement was considered poor, slight, fair, moderate, 

substantial or almost perfect for kappa scores of <0.00, 0.00-0.20, 0.21-0.40, 0.41-0.60, 0.61-

0.80 and 0.81-1.00 respectively. 
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Figure 2. Schematic showing the breakdown of the individual movement screens identified from the literature search and how many of the articles 
investigated their reliability or association to injury. 
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Table 1. Content of the identified movement screens 

Screen name Number of exercises Name of exercises Protocol description 
Functional movement screen 7 Deep squat 

Hurdle step 
In-line lunge 
Shoulder mobility 
Active straight-leg raise 
Trunk stability push up 
Rotary stability 

Cook et al. (2014) [8] 
Cook et al. (2014) [6] 

    
Landing error scoring system 1 Drop jump Padua et al. (2009) [34] 
    
Single-leg squat screens 

Single-leg squat task 
 

Single-leg mini squat 
 

Unilateral lower extremity functional tasks 
 

 
1 
 
1 
 
2 

 
Single-leg half squat 
 
Single-leg half squat 
 
Single-leg half squat 
Lateral step down 

 
Crossley et al. (2011) [36] 
 
Ageberg et al. (2010) [38] 
 
Chmielewski et al. (2007) [39] 

    
Drop vertical jump screens 1 Drop vertical jump Nilstad et al. (2014) [44] 

Whatman et al. (2013) [45] 
Ekegren et al. (2009) [46] 

    
Tuck jump assessment 1 Tuck jump Myer et al. (2008) [48] 
    
Athletic ability assessment 9 Prone hold on hands 

Lateral hold on hands 
Overhead squat 
Single-leg squat off box 
Walking lunge 
Single-leg forward hop 
Lateral bound 
Push ups 
Chin ups 

McKeown et al. (2014) [53] 

    



	

13	

Table 1. Continued 

Screen name Number of exercises Name of exercises Protocol description 
Conditioning specific movement tasks 6 Overhead squat 

Romanian deadlift 
Single-leg squat 
Double-leg to single-leg landing 
Sprint (40m) 
Countermovement jump 

Parsonage et al. (2014) [54] 

    
Netball movement screening tool 10 Squat 

Lunge & twist 
Bend & pull 
Push up 
Single-leg squat 
Vertical jump (land on both legs) 
Vertical jump (land on one leg) 
Broad jump 
Star excursion balance test 
Active straight leg raise 

Reid et al. (2014) [55] 

    
Physical performance measures 16 Broad jump 

Closed kinetic chain upper extremity stability test  
Y-balance test 
In-line lunge for distance 
Lateral lunge for distance 
Lumbar endurance 
Side plank hip abduction 
Side plank hip adduction 
Triple hop for distance 
Nordic hamstring 
Full squat 
Downward dog 
Single-leg squat 
Shoulder mobility test 
Active straight leg raise 
Beighton hypermobility 

Tarara et al. (2014) [56] 

    
Star excursion balance test movement quality screen 1 Anterior reach Ness et al. (2015) [58] 
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3.1 Methodological quality assessment for reliability studies 

 

The methodological quality of each paper that reported the reliability of a movement screen 

was assessed using the Consensus-based Standards for the selection of health Measurement 

Instruments (COSMIN) checklist [16]. This checklist utilizes a four-point scoring system 

(poor, fair, good, excellent) and contains sub-sections relating to numerous aspects of study 

design. For the purposes of this critique only the reliability section (box B), containing 14 

questions, was addressed. As per the checklist instructions, if the answer to any of the 14 

questions was ‘poor’ then, based on the ‘worst score counts’ principle, the study was 

classified as such. The outcomes of this methodological quality assessment are presented in 

table 2 (see Electronic Supplementary Material Appendix S1 for raw data). 
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Table 2. Methodological quality (according to COSMIN checklist) of reliability studies 

Movement 
screen 

Methodological quality rating 

Poor Fair 
 Good Excellent 

FMS Teyhen et al. (2012) intra-rater [24] 
Hotta et al. (2015) [17] 
Gulgin & Hoogenboom (2014) [18] 
Letafatkar et al. (2014) [19] 
Parenteau-G et al. (2014) [12] 
Elias (2013) [20] 
Gribble et al. (2013) [21] 
Smith et al. (2013) [11] 
Frohm et al. (2012) [22] 
Klusemann et al. (2012) [23] 
Onate et al. (2012) [13] 
Schneiders et al. (2011) [26] 
Chorba et al. (2010) [27] 

Shultz et al. (2013) [14] 
Butler et al. (2012) [25] 
Minick et al. (2010) [28] 
 
 
 
 
 
 
 
 
 

Teyhen et al. (2012) inter-rater [24] 
 
 
 
 
 
 
 
 
 
 
 

 

     
LESS Smith et al. (2012) [31] 

Onate et al. (2010) [33] 
Padua et al. (2011) [32] Padua et al. (2009) [34]  

     
Single-leg 
squat screens 

Örtqvist et al. (2011) inter-rater [37] 
Crossley et al. (2011) [36] 
Ageberg et al. (2010) [38] 
Chmielewski et al. (2007) [39] 

Örtqvist et al. (2011) intra-rater [37] Junge et al. (2012) [35] 
 
 

 

     
DVJ screens Whatman et al. (2013) [45] 

Ekegren et al. (2009) [46] 
Nilstad et al. (2014) [44]   

     
Tuck jump 
assessment 

Herrington et al. (2013) [51] Dudley et al. (2013) [52]   

     
AAA McKeown et al. (2014) [53]    
     
CSMT  Parsonage et al. (2014) [54]   
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Table 2. Continued 
 

 
AAA Athletic ability assessment, COSMIN Consensus-based standards for the selection of health measurement instruments, CSMT Conditioning 
specific movement tasks, DVJ Drop vertical jump, FMS Functional movement screen, LESS Landing error scoring system, NMST Netball 
movement screening tool, PPM Physical performance measures, SEBT Star excursion balance test 
 
 
 
 
 
 
 
 
 
 
 

Movement 
screen 

Methodological quality rating 

Poor Fair 
 Good Excellent 

NMST Reid et al. (2014) [55]    
     
16-PPM Tarara et al. (2014) [56]    
     
SEBT 
movement 
quality screen 

 Ness et al. (2015) [58]   
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3.2 Functional movement screen 

 

The FMS comprises seven subtests including an overhead squat, hurdle step, in-line lunge, 

shoulder mobility assessment, active straight-leg raise, trunk stability push-up and a prone 

two-point rotary stability movement all performed without external load [6, 8]. As can be 

seen from table 3, 16 studies were identified that reported either the intra- or inter-rater 

reliability of the FMS or related variations [11-14, 17-28]. Seven of the eight studies that 

investigated the intra-rater reliability reported ICC values ≥0.75. In addition, Teyhen et al. 

[24] reported an ICC of 0.74 (95% CI: 0.60-0.83). As such, it would appear that the FMS has 

consistently demonstrated good intra-rater reliability. Of the 16 identified studies, 14 reported 

inter-rater reliability either in the form of ICC, weighted kappa or Krippendorf α. Twelve of 

these observed an ICC ≥0.75 – representing good inter-rater reliability. In addition, Minick et 

al. [28] used the weighted kappa statistic to measure inter-rater reliability, however, rather 

than use the FMS composite score they compared raters using the individual subtests. The 

weighted kappa values ranged from 0.79-1.0 with the authors stating that this represented 

substantial to excellent agreement. In contrast, Shultz et al. [14] used the Krippendorf α 

statistic to quantify reliability and classified a value ≥0.80 as acceptable; however, they 

reported a score of 0.38 (95% CI: 0.35-0.41). These authors concluded that the FMS 

demonstrated poor inter-rater reliability and suggested that improved rater training may have 

resulted in an improved reliability score. The authors also highlighted the difference between 

years of experience and the number of tests a rater has administered stating that the latter is 

likely of greater relevance to improving reliability. 

 

Five studies [11, 18, 20, 21, 29] included information as to the raters’ experience (years of 

clinical practice, number of FMS tests performed or level of certification) and this allowed 

comparison of test reliability based on these variables. Four studies [11, 18, 20, 29] suggested 

that the experience of the rater did not influence the inter-rater reliability. Additionally, Smith 

et al. [11] observed good intra-rater reliability (ICCs >0.80) for all raters regardless of 

experience. In contrast, Gribble et al. [21] showed that intra-rater reliability did vary 

depending on the experience of raters. The raters were divided into three groups: athletic 

training students, athletic trainers who had not previously used the FMS and athletic trainers 

who had at least one year of experience administering FMS tests. The greater number of 

raters included in the study by Gribble et al. [21] suggests a stronger experimental foundation 

and this may have contributed to their contrasting findings. A clear trend, highlighting the 
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importance of rater experience, was apparent with the students, athletic trainers, and 

experienced athletic trainers displaying ICC values of 0.37 (95% CI: -0.79-0.78), 0.76 (95% 

CI: 0.32-0.92) and 0.95 (95% CI: 0.68-0.99) respectively. However, while Gribble et al. [21] 

employed a greater number of raters than the other four studies the ICC values reported were 

based on the ratings of only three participants. Therefore, the weight of the currently 

available evidence suggests that the experience of the rater is not a significant factor 

influencing scoring.  

 

Another aspect of movement screening that is pertinent to the reliability of such assessments 

is whether the rater scores participants in real-time or after the test via video recording. One 

study sought to address this issue [14] and found that the intra-rater reliability was superior 

when using recorded footage to score participants. One rater assessed individuals live while 

they were being filmed and retrospectively assessed the footage. They also assessed the 

participants again one week later and scored the tests in real-time. The ICCs for the live-live 

re-test and live-recorded re-test were 0.60 (95% CI: 0.35-0.77) and 0.92 (95% CI: 0.85-0.96) 

respectively. However, only one rater’s scoring was investigated in this manner hence it is 

difficult to draw firm conclusions on the respective merits of live and recorded FMS scoring. 

Nonetheless, the outcome of this study suggests that using recorded footage to assess 

participants may elicit greater intra- and inter-rater reliability than doing so in real-time. 

 

Recently, it has been shown that participant knowledge of the scoring criteria can influence 

FMS total score [29]. Participants were assessed prior to and after having the criteria for a 

perfect score explained to them. Significant improvements in scores were observed simply by 

providing this information. This finding demonstrates that test reliability may be affected by 

how the test is delivered by the assessor. If the extent of task instruction and explanation 

differs between assessors or test occasions it is likely that intra- and inter-rater reliability will 

be impacted. To ensure that any changes in score are not simply due to familiarisation it is 

recommended that participants have the scoring criteria clearly explained to them and are 

allowed practice attempts before being scored. This is not to say that individuals should be 

coached through the movements, rather, it is imperative they know what is being asked of 

them without being told how to do it. 

 

Overall, the majority of the identified studies reveal the FMS possesses good intra- and inter-

rater reliability; although it should be noted that this conclusion is not unanimous throughout 
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the literature. It should also be noted that the majority of the identified studies were classified 

as demonstrating poor methodological quality (table 2). The influence of rater experience on 

reliability appears negligible. Furthermore, the practice of scoring tests via video footage may 

aid reliability yet there is limited evidence on this issue so only tentative conclusions can be 

drawn. Test reliability is likely influenced by the performer’s knowledge of the scoring 

criteria; as such it is advisable to provide clear instructions to participants and allow practice 

attempts to reduce the influence of any learning effect. The depth of research investigating 

the FMS is much greater than for any other movement screen yet despite this some 

organizations choose to use alternative tools [2, 30]. While the specific reasons are not clear, 

many professional football clubs seemingly do not feel the FMS meets their screening needs. 

However, a number of other screens appear within the scientific literature albeit with much 

less supporting evidence. 
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Table 3. Studies that reported the intra- and/or inter-rater reliability of the FMS 

References 
Participant information 

Rater information 
Intra-rater reliability Inter-rater reliability 

Sample size Occupation/sport # of 
raters Score # of 

raters Score 

Hotta et al. 
(2015) [17] 

10 male Middle and long 
distance runners 
(collegiate) 

2 physical therapists n/a n/a 2 ICC=0.98  
[95% CI: 0.93-1.00] 

        
Gulgin & 
Hoogenboom 
(2014) [18] 

10 male, 
10 female 

University students 1 expert rater, 3 
physical therapy 
students 

n/a n/a 4 ICC=0.88 
[95% CI: 0.77-0.95] 

        
Letafatkar  
et al. (2014) [19] 

20  Unknown 2 physical therapists n/a n/a 2 ICC=0.92 

        
Parenteau-G et al. 
(2014) [12] 

28 male Ice-hockey players 
(elite youth) 

1 physiotherapist, 3 
physiotherapy 
students 

2 Rater 1 ICC=0.96 
[95% CI: 0.92-0.98] 
Rater 2 ICC=0.96 
[95% CI: 0.92-0.98] 

2 ICC=0.96 
[95% CI: 0.92-0.98] 

        
Elias (2013) [20] 3 male, 

2 female 
Squash players (elite) 20 physiotherapists n/a n/a 20 ICC=0.91 

        
Gribble et al. 
(2013) [21] 

2 male, 
1 female 

University students 16 students, 15 
athletic trainers, 7 
experienced athletic 
trainers 

38 All raters ICC=0.75 
[95% CI: 0.53-0.87] 
ExpATs ICC=0.95 
[95% CI: 0.68-0.99] 
ATs ICC=0.76 
[95% CI: 0.32-0.92] 
Student ICC=0.37 
[95% CI: -0.79-0.78] 

n/a n/a 

        
Shultz et al. 
(2013) [14] 

18 male, 
21 female 

NCAA Division 1 
varsity athletes 

1 student, 1 physical 
therapist, 2 athletic 
trainers, 2 S&C 
coaches 

1 Live test-retest ICC=0.60 
[95% CI: 0.35-0.77] 
Live-recorded test-retest 
ICC=0.92 
[95% CI: 0.85-0.96] 

6 Krippendorf α=0.38 
[95% CI: 0.35-0.41] 
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Table 3. Continued 
        

References 
Participant information 

Rater information 
Intra-rater reliability Inter-rater reliability 

Sample size Occupation/sport # of raters Score # of 
raters Score 

Smith et al. 
(2013) [11] 

10 male, 
10 female 

University students 2 students, 1 faculty 
member, 1 FMS 
certified instructor 

4 Rater 1 ICC=0.90 
[95% CI: 0.76-0.96] 
Rater 2 ICC=0.81 
[95% CI: 0.57-0.92] 
Rater 3 ICC=0.91 
[95% CI: 0.78-0.96] 
Rater 4 ICC=0.88 
[95% CI: 0.72-0.95] 

4 Occasion 1 ICC=0.89 
[95% CI: 0.80-0.95] 
Occasion 2 ICC=0.87 
[95% CI: 0.76-0.94] 

        
Frohm et al. 
(2012) [22] 

26 male Soccer players (elite) 8 physiotherapists 8 Rater 1 ICC=0.87 
Rater 2 ICC=0.77 
Rater 3 ICC=0.83 
Rater 4 ICC=0.77 
Rater 5 ICC=0.79 
Rater 6 ICC=0.45 
Rater 7 ICC=0.79 
Rater 8 ICC=0.75 

8 Occasion 1 ICC=0.80 
Occasion 2 ICC=0.81 

        
Klusemann et al. 
(2012) [23] 

10 Basketball players 
(elite youth) 

8 (unspecified 
combination of S&C 
coaches / 
physiotherapists) 

8 ICC=0.82 n/a n/a 

        
        
Onate et al. 
(2012) [13] 

12 male, 
7 female 

University students 1 athletic trainer, 1 
S&C coach 

1 ICC=0.92 2 ICC=0.98 

        
Teyhen et al. 
(2012) [24] 

53 male, 
11 female 

Military personnel 8 physical therapy 
students 

4 ICC=0.74 
[95% CI: 0.60-0.83] 

8 ICC=0.76 
[95% CI: 0.63-0.85] 

        
Butler et al. 
(2012) [25] 

30 Middle school 
students 

1 FMS creator, 1 
FMS certified 
instructor 

n/a n/a 2 ICC=0.99 
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Table 3. Continued 
 

 
N.B. all values refer to the FMS composite score unless otherwise stated AT Athletic trainer, ExpAT Experienced athletic trainer, CI Confidence 
interval, FMS Functional movement screen, ICC Intraclass correlation coefficient, κ kappa, n/a Not applicable, NCAA National Collegiate 
Athletic Association, S&C Strength and conditioning 
 
 
 
 
 
 
 
 

        

References 
Participant information 

Rater information 
Intra-rater reliability Inter-rater reliability 

Sample size Occupation/sport # of 
raters Score # of 

raters Score 

Schneiders et al. 
(2011) [26] 

10 Recreationally active 
individuals 

2 academic 
researchers 

n/a n/a 2 ICC=0.97 

        
Chorba et al. 
(2010) [27] 

3 male, 
5 female 

University students 2 physical therapists n/a n/a 2 ICC=0.98 

        
Minick et al. 
(2010) [28] 

17 male, 
23 female 

University students 2 FMS creators, 2 
FMS certified 
instructors 

n/a n/a 4 Weighted κ values for each 
test ranged from 0.79-1.0 when 
comparing novice and 
experienced raters 
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3.3 Landing error scoring system 

 

The LESS comprises one movement; drop vertical jumps. The accompanying scoring criteria 

relate to observed errors in technique and result in a potential minimum and maximum score 

of zero to 19 respectively with a higher score indicating poorer performance. The four studies 

reporting either the intra- or inter-rater reliability of the LESS are presented in table 4 [31-

34]. Both Smith et al. [31] and Padua et al. [34] reported excellent intra-rater reliability (ICCs 

>0.90). When interpreting these findings it should be noted that, in total, only three raters’ 

data was used to calculate these ICC values. Further research is needed to establish the 

robustness of such findings. All four of the identified studies measured the inter-rater 

reliability of the LESS with the ICC values ranging from 0.72 to 0.92 indicating good 

repeatability. Again, caution should be employed when analyzing these results since this 

conclusion is based on the data from only nine raters. One study investigated the influence of 

rater experience on LESS scoring and found that novice (less than one year experience as a 

certified athletic trainer) and expert (15 years experience as a certified athletic trainer) raters 

displayed moderate to perfect agreement on all items [33]. The detailed scoring criteria 

employed by the LESS likely explain this high level of agreement between raters. The 

drawback to such a thorough scoring system is inevitably the time it takes to score each 

participant. The original LESS protocol requires video recording of tests with subsequent 

scoring by assessors from the footage and this methodology has associated costs, both from a 

financial and time perspective. A real-time scoring system to overcome these restrictive 

issues was developed by Padua et al. [32]. Three raters’ real-time scoring of 43 participants 

was compared and the resulting ICC values ranged from 0.72 (95% CI: 0.42-0.88) to 0.81 

(95% CI: 0.56-0.92) suggesting moderate to good inter-rater reliability for the real-time 

version. Taken collectively, the initial evidence is promising with regard to the reliability of 

the test. 
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Table 4. Studies that reported the intra- and/or inter-rater reliability of the LESS 

 
N.B. all values refer to the LESS composite score CI Confidence interval, ICC Intraclass correlation coefficient, LESS Landing error scoring 
system, n/a Not applicable, NCAA National Collegiate Athletic Association 
 

References 
Participant information 

Rater information 
Intra-rater reliability Inter-rater reliability 

Sample size Occupation/sport # of 
raters Score # of 

raters Score 

Smith et al. 
(2012) [31] 

10 High 
school/collegiate 
athletes 

2 raters (occupation 
unspecified) 

2 ICC=0.97 2 ICC=0.92 

        
Padua et al. 
(2011) [32] 

19 male, 
24 female 

Military personnel 3 athletic trainers n/a n/a 3 Rater 1 vs rater 2 ICC=0.81 
[95% CI: 0.56-0.92] 
Rater 1 vs rater 3 ICC=0.72 
[95% CI: 0.42-0.88] 
Rater 1 vs combined rater 2 & 3 
ICC=0.79 [95% CI: 0.64-0.88] 

        
Onate et al. 
(2010) [33] 

19 female NCAA Division 1 
soccer players 

2 athletic trainers n/a n/a 2 ICC=0.84 

        
Padua et al. 
(2009) [34] 

25 male, 
25 female 

Military personnel 2 raters (occupation 
unspecified) 

1 ICC=0.91 2 ICC=0.84 
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3.4 Single-leg squat screens 

 

Five studies were identified that explored either the intra- or inter-rater reliability of 

movement screens containing various single-leg squat tests (table 5) [35-39]. The single-leg 

squat task [36], the single-leg mini squat [35, 37, 38] and another assessment comprising two 

“functional tasks” – the single-leg squat and lateral step-down – were investigated [39]. 

While these three screens differ slightly in their protocols the scoring criteria are very similar. 

For example, all three variations include criteria related to assessment of knee alignment 

during single leg squatting. Three of the five identified studies investigated the intra-rater 

reliability with kappa values ranging from 0.13-0.80 representing poor to substantial 

agreement. These results are difficult to interpret since the kappa values within each 

individual study varied so widely. Differences in the populations observed between studies 

may explain some of the variance; however, comprehensive participant information was not 

reported in all instances. Similarly, differences in the precise protocols and scoring criteria 

for each screen variation may have contributed to the inconsistent results. These values were 

derived from the data collected by only seven raters in total and this relatively small evidence 

source likely contributes to the uncertain findings. Similarly, as can be seen from table 5 the 

inter-rater kappa values ranged from 0.00-0.92 making conclusions difficult to draw with 

regard to the reliability of these screening tools. 
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Table 5. Studies that reported the intra- and/or inter-rater reliability of the identified single-leg squat screens 

 
 
CI Confidence interval, κ kappa, n/a Not applicable 
 
 
 
 
 
 
 

References 
Participation information 

Rater information 
Intra-rater reliability Inter-reliability 

Sample size Occupation/sport # of 
raters Score # of 

raters Score 

Junge et al. 
(2012) [35] 

72 Students (children) 2 physiotherapy 
students 

n/a n/a 2 Weighted κ values for each 
scoring category ranged from 
0.54-0.86 

        
Crossley et al. 
(2011) [36] 

15 Unknown (adult) 3 physical therapists, 
1 ‘expert panel’ 

3 Rater 1 κ=0.80 
Rater 2 κ=0.70 
Rater 3 κ=0.60 

4 κ values ranged from 0.60-0.80 

        
Örtqvist et al. 
(2011) [37] 

33 Students (children) 2 physiotherapists 1 κ=0.48 
[95% CI: 0.16-0.79] 

2 κ=0.57 
[95% CI: 0.30-0.85] 

        
Ageberg et al. 
(2010) [38] 

8 male, 
17 female 

Unknown (adult) 2 physical therapists n/a n/a 2 κ=0.92 
[95% CI: 0.75-1.08] 

        
Chmielewski et 
al. (2007) [39] 

7 male, 
18 female 

Unknown (adult) 2 physical therapists, 
1 athletic trainer 

3 Weighted κ values for each test 
and each scoring method ranged 
from 0.13-0.68 

3 Weighted κ values for each test 
and each scoring method ranged 
from 0.00-0.55 
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3.5 Drop vertical jump screens 

 

The drop vertical jump, whereby an individual drops from a raised surface to the floor and 

immediately jumps vertically as high as possible, is a common screening test performed in 

order to identify movement patterns thought to be associated with risk of injury [40-42]. 

However, quantification of performance on such tests is typically achieved via objective 

analysis of joint angles and “separation distance” between the knees and ankles [40-43]. This 

type of assessment was considered separate to the primarily subjective process of movement 

screening discussed in this review. However, three studies were identified through the 

literature search that described the intra- and inter-rater reliability of drop vertical jump 

screen variations that conformed to the definition of a movement screen previously outlined 

here (table 6) [44-46]. Of the three studies, one used the first order agreement coefficient 

(AC1) statistic to analyze reliability [45]. The AC1 values can be interpreted in the same way 

as described above for kappa values [47]. As with the identified single-leg squat screens the 

drop vertical jump screens differ in their protocols; however, the scoring criteria are very 

similar. For example, all three variations include criteria related to assessment of knee 

alignment during landing. Intra-rater reliability ranged from moderate to almost perfect; 

however, much greater variation existed between raters. Across the three studies AC1 and 

kappa values ranged from 0.32 to 0.92 representing fair to almost perfect agreement. The 

poorest intra- and inter-rater reliability was reported by Whatman et al. [45] suggesting that 

perhaps the protocols and scoring criteria adopted by the other two studies are superior [44, 

46]. The results from the identified studies are mixed; therefore, further research utilizing 

consistent test protocols and scoring criteria are required to elucidate the reliability of these 

screening tools. 
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Table 6. Studies that reported the intra- and/or inter-rater reliability of the identified DVJ screens 
 

 
AC1 First order agreement coefficient, CI Confidence interval, CL Confidence limit, DVJ Drop vertical jump, κ kappa, n/a Not applicable  
 
 
 
 
 

References 
Participant information 

Rater information 
Intra-rater reliability Inter-rater reliability 

Sample size Occupation/sport # of 
raters Score # of 

raters Score 

Nilstad et al. 
(2014) [44] 

60 female  Soccer players (elite) 3 physiotherapists n/a n/a 3 κ values ranged from 0.52-0.92 

        
Whatman et al. 
(2013) [45] 

12 male,  
11 female 

Variety of 
undisclosed sports 
(youth) 

66 physiotherapists 26 All raters AC1=0.60  
[range: 0.14-0.92] 
Raters >14 years experience 
AC1=0.65 [range: 0.22-0.91] 
Raters <10 years experience 
AC1=0.56 [range: 0.20-0.83] 
 

66 All raters AC1=0.34  
[95% CI: 0.22-0.47] 
Raters >14 years experience 
AC1=0.36 [95% CI: 0.22-0.50] 
Raters 10-14 years experience 
AC1=0.37 [95% CI: 0.21-0.53] 
Raters 5-9 years experience 
AC1=0.33 [(95% CI: 0.33-0.55] 
Raters <5 years experience 
AC1=0.32 [95% CI: 0.19-0.46] 

        
Ekegren et al. 
(2009) [46] 

40 female Soccer players 
(regional level youth) 

3 physiotherapists 3 Rater 1 κ=0.80 
[95% CI: 0.65-1.00] 
Rater 2 κ=0.85 
[95% CI: 0.72-1.00] 
Rater 3 κ=0.75 
[95% CI: 0.58-1.00] 

3 Time point 1 κ=0.80 
[95% CI: 0.62-0.98] 
Time point 2 κ=0.77 
[95% CI: 0.59-0.95] 
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3.6 Tuck jump assessment 

 

The tuck jump assessment created by Myer et al. [48] was designed to assess the movement 

quality associated with repeated jumping and landing and requires an individual to perform 

repeated tuck jumps for 10 seconds. The plyometric aspect of this exercise task is relevant 

since it has been reported that injury prevention interventions lacking this explosive 

component have demonstrated limited success in reducing knee injury [48-50]. Two studies 

were identified that established the intra- and inter-rater reliability of the tuck jump 

assessment [51, 52]. Herrington et al. [51] revealed good intra-rater reliability for two raters 

with kappa values ranging from 0.81-1.00. Similarly, they reported good inter-rater reliability 

with a kappa value of 0.88. In contrast, Dudley et al. [52] reported poor to moderate intra- 

and inter-rater reliability with ICC values ranging from 0.44-0.72. One possible explanation 

for the discrepancy between these findings – at least with regard to intra-rater reliability – 

may relate to the differences in sample sizes. Dudley et al. [52] viewed videos of 40 

participants whereas Herrington et al. [51] only assessed 10 subjects. This may have resulted 

in recall bias with the raters investigated by Herrington et al. [51] potentially remembering 

the previous scores of the 10 participants when scoring their videos for the second time. 

However, since one of the creators of the tuck jump assessment was a co-author and rater 

within the Herrington et al. [51] article more extensive training and experience could also 

have contributed to the superior reliability values. The tuck jump assessment is unique 

amongst movement screens in that it requires the participants to perform repeated plyometric 

movements with the creators proposing that the increased sport-specificity of the task may 

aid in highlighting injury risk. However, this assessment currently only demonstrates face 

validity and this should be remembered when taking this assertion into consideration. The 

nature of this assessment means that it may be of particular interest to practitioners working 

in jumping and landing sports such as netball and basketball. 

 

3.7 Athletic ability assessment 

 

The recently developed AAA, which consists of nine subtests, is currently used within 

numerous high performance environments (unpublished observation) to assess athletes’ 

movement patterns [53]. The nine subtests include a prone hold, lateral hold, overhead squat 

(with 10kg bar), single-leg squat off a box, walking lunge (with a 20kg bar), single-leg 

forward hop, lateral bound, push-up and chin-up. McKeown et al. [53] reported excellent 
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intra- and inter-rater reliability (ICC values of 0.97 (90% CI: 0.92-0.99) and 0.96 (90% CI: 

0.94-0.98) respectively). These authors also observed a strong correlation (r=0.94) between 

athletes’ overall AAA scores when assessed live and via video recording indicating that 

either method is viable. The AAA maximum score is 117 and a detailed scoring system, that 

stipulates criteria based on body segment, is provided allowing for more precise assessment 

compared to some other movement screens since the continuum of possible scores is large.  

 

3.8 Conditioning specific movement tasks 

 

The CSMT screen was developed to aid in the assessment of young rugby union players’ 

readiness to enter elite academies [54]. The CSMT screen comprises six subtests including an 

overhead squat (with a 20kg bar), Romanian deadlift (with a 20kg bar), single-leg squat, 

double-leg to single-leg landing, a 40 meter sprint and countermovement jump. A four-point 

scoring system, similar to that employed by the FMS, was used to rate the quality of the six 

movements. Intra-rater kappa values ranged from 0.61-1.00 indicating substantial to excellent 

agreement [54]. Similarly, inter-rater kappa values ranged from 0.62-1.00. The reliability 

values are based on the scores given by only two raters and this should be remembered when 

interpreting the findings. Further investigations utilizing adult populations, greater number of 

raters, athletes from different sports and raters of varying experience are required before 

definitive conclusions can be made with regard to the reliability of the CSMT screen.  

 

3.9 Netball movement screening tool 

 

Another sport-specific screen, the NMST, was designed to assess movement quality in 

patterns relevant to the sport of netball. The NMST comprises 10 subtests including a squat, 

lunge with a twist, a bend and pull movement, push-up, single-leg squat, vertical jump 

(landing on both legs), vertical jump (landing on one leg), broad jump, the SEBT and an 

active straight-leg raise. Reid et al. [55] reported intra- and inter-rater ICC values of 0.96 

(95% CI: 0.91-0.98) and 0.84 (95% CI: 0.65-0.93) respectively. These values suggest 

excellent agreement within and between raters; however, the results were based on the scores 

given by only two examiners. The netball players assessed by Reid et al. [55] ranged between 

13-17 years old and so further reliability studies conducted with adult players are needed to 

establish the applicability of the results to this population. 

 



	

	 31	

3.10 Physical performance measures 

 

The 16-PPM is made up of 16 subtests, 10 of which are quantitative in nature e.g. measured 

in distance or number of repetitions completed [56]. While these 10 subtests do not meet the 

aforementioned definition of movement screening exercises, the 16-PPM also includes six 

qualitative subtests that do assess how well an athlete performs the required movement. The 

six qualitatively scored subtests, which are all performed without external load, include an 

overhead squat, downward dog, single-leg squat, shoulder mobility assessment, active 

straight-leg raise and Beighton hypermobility assessment. The following reliability values 

refer only to the six qualitative subtests. Intra-rater reliability, reported as weighted kappa 

values, varied between expert and novice raters according to Tarara et al. [56]. Weighted 

kappa values ranged from 0.32-0.81 for the expert rater representing fair to almost perfect 

agreement. In contrast the two novice raters’ weighted kappa values ranged from -0.09-0.78 

indicating poor to substantial agreement between test occasions. As such, it would appear that 

training is required for raters administering the 16-PPM to ensure consistent scoring. Little 

information was given as to the occupation or level of qualification of the expert rater so it is 

unclear how much training may be required to achieve an acceptable level of consistency. 

Inter-rater reliability varied widely with weighted kappa values ranging between 0.24-0.93 

for individual subtests representing fair to almost perfect agreement. Taking all the 

qualitative subtests into account the 16-PPM appears to be a moderately reliable tool for 

assessing movement competency if administered by expert raters. 

 

3.11 Star excursion balance test movement quality screen 

 

The star excursion balance test (SEBT) involves the objective measurement of unilateral 

reach distance of the lower extremity in various directions [57]. One article was identified 

that applied subjective movement quality criteria to the SEBT [58]. In its original form the 

SEBT does not take into account how somebody achieves their score and reports only the 

objective reach distance in centimeters. Incorporating an assessment of an individual’s 

movement quality during this test may provide additional useful information to practitioners. 

In the identified study, scoring criteria related to knee, pelvis and trunk position were used by 

three physical therapists to score 100 university students [58]. Intra-rater reliability was not 

assessed while inter-rater kappa values ranged from 0.18-0.60 representing slight to moderate 
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agreement. Due to the lack of information related to within-rater variation no judgment can 

currently be made as to the usefulness of the movement quality version of the SEBT. 

 

4 Injury prediction ability of movement screens 

 

Studies that employed a prospective cohort or case-control design and investigated the 

association between outcome score and injury were identified for two movement screens: the 

FMS and LESS. Movement screening is widely used by elite sporting organizations in an 

attempt to detect injury risk [2]. Given this fact, it is important that the efficacy of movement 

screens in achieving this goal is understood. That only two of the 10 identified screens have 

any supporting evidence as to their association with injury risk demonstrates that much work 

is needed to support this practice. 

 

4.1 Methodological quality assessment for injury prediction studies 

 

The methodological quality of each paper that investigated the ability of a movement screen 

to predict injury was assessed using a previously validated checklist for retrospective and 

prospective studies [59]. Specifically, an amended version was used as described by McCall 

et al. [60] since not all of the questions included in the full checklist were relevant for cohort 

studies. The questions excluded were only appropriate for intervention studies. For the 

purposes of this review the questions included were 1, 2, 3, 5, 6, 7, 10, 11, 12, 18, 20, 21, 22, 

25 as previously used [60, 61]. Following the protocol outlined by McCall et al. [60] a 

percentage score was awarded for each article (see Electronic Supplementary Material 

Appendix S2 for raw data). A ‘level of evidence’ was then awarded based on the procedure 

outlined by the Scottish Intercollegiate Guidelines Network (SIGN) [62]. Scientific levels of 

evidence range from one to four according to the type of study. For example, cohort and 

case-control studies are level two. Levels one and two can score an additional mark of ‘++’, 

‘+’ and ‘-‘ dependent on the judged quality and risk of bias. The percentage cut-off scores to 

determine if a paper was either of high quality with very low risk of bias, well conducted 

with low risk of bias or low quality with high risk of bias were ≥75%, 50-74% and <50% 

respectively [60]. A graded recommendation, following the SIGN guidelines was given for 

each of the two movement screens that have had their injury predictive value investigated. 

The assignment of the graded recommendation was based on the levels of evidence of the 

relevant studies and the considered subjective judgment of the present authors. Graded 
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recommendations were considered as A: strong recommendation, B: moderate 

recommendation, C: weak recommendation or D: insufficient evidence to make a specific 

recommendation [60].  

 

4.2 Functional movement screen 

 

Eighteen articles were included that investigated the link between FMS score and injury risk 

(table 7) [17, 19, 27, 63-77]. Ten [19, 27, 64, 70-74, 76, 77] of the 18 studies reported an 

association between the FMS composite score and injury. It should be noted that it appears 

one of these studies reported an incorrect odds ratio (OR) based on the data presented and the 

conclusions should be interpreted with caution [19]. Kiesel et al. [77] were the first to 

investigate the link between FMS score and injury and followed 46 American Football 

players over the course of a pre-season (4.5 months). All players completed the FMS at the 

start of pre-season and any subsequent injuries that met the defined criteria were recorded. 

These authors found that the greatest specificity and sensitivity were obtained when a cut-off 

score of 14 was used. Specificity and sensitivity are measures of the true negative and true 

positive rate respectively [78]. In the case of this study, the specificity value displayed the 

proportion of non-injured athletes with a score greater than 14 while the sensitivity value 

displayed the proportion of injured athletes with a score less than or equal to 14. The closer 

both measures are to a value of one the more robust a tool is as a predictive instrument. An 

OR of 11.67 for those scoring less than or equal to 14 compared to those scoring more than 

14 was reported by Kiesel et al. [77] and this suggests a significant association between FMS 

composite score and injury risk. The specificity and sensitivity values were 0.91 and 0.54 

respectively. This revealed that while the proportion of true negatives to false negatives was 

high the proportion of true positives to false positives was relatively even. Despite a very 

large OR of 11.67, only around half of the subsequent injuries were predicted by an FMS 

score of less than or equal to 14. Interestingly, this seminal article by Kiesel et al. [77] is 

often cited within the scientific literature and explains why a cut-off score of 14 is commonly 

used when researching the link between FMS and injury risk. Seven articles [27, 64, 70, 71, 

73, 74, 76] have since replicated the finding that individuals achieving an FMS composite 

score of less than or equal to 14 have an increased likelihood of suffering an injury; however, 

the degree of the relationship varies between studies. Differences in the number of 

participants, length of follow-up period and sport/occupation of participants may have 

contributed to the inconsistencies in strength of relationship between FMS score and injury 
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likelihood. In contrast, eight of the identified studies found no link between FMS composite 

score and injury risk [17, 63, 65-69, 75]. However, three of these studies [68, 69, 75] utilized 

very small sample sizes and this may explain the lack of association between FMS score and 

injury. There may simply have been too few injuries among the participants during the 

follow-up periods for any association to be observed. As such, the findings of these three 

studies [68, 69, 75] should carry minimal weight when making any judgment about the 

predictive value of the FMS. 

 

Due to the inconsistency in findings the graded recommendation for the FMS is ‘D’. A 

number of factors contribute to the ambiguity of the collective findings. Firstly, the definition 

of injury was not consistent among the identified articles. Indeed, this is a common issue in 

sports medicine at large [79]. Kiesel et al. [77] classified an injury as membership of the 

injured reserve group and a time-loss of three weeks – presumably meaning that only 

relatively serious injuries were recorded. No details of injured reserve membership criteria or 

details of the specific injuries suffered were provided. In contrast, O’Connor et al. [76] 

defined injury as any damage to the body during training that resulted in an individual 

seeking medical care. This broad definition could have encompassed very minor injuries. 

McGill et al. [75] only considered back injuries that resulted in missed game play. Such 

variability in the classification of injuries makes it difficult to compare the results between 

each study. Similarly, the length of the follow-up period varied widely between studies with 

the shortest reported window of observation being six weeks and the longest two years [74, 

75]. In some instances the precise length of the injury-tracking period was not specified [19, 

27, 67, 70]. It has been previously recommended that epidemiological sports injury studies 

should follow participants for at least one year as this allows sufficient time for accumulation 

of exposure and injury events [79, 80]. Unfortunately, most of the identified studies followed 

participants for less than this time period and this should be a consideration for future 

research.  

 

Other relevant considerations that have been ignored by the vast majority of studies are 

accounting for exposure time and training load. These represent very influential confounding 

variables that are essential to drawing meaningful conclusions from future prospective 

studies. Interestingly, a number of populations were investigated by the included studies: 

athletes, military personnel, elite police officers and firefighters. For instance, amongst the 

athlete group, individuals ranged from recreationally active to elite professionals. Due to the 
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range of occupations and performance levels of participants it is perhaps to be expected that 

an inconsistent relationship between FMS score and injury should be observed when all 

studies are viewed collectively. The injury patterns between sports and occupations differ 

[81-83] hence the predictive value of the FMS may not be consistent across all populations. 

The use of the FMS composite score has been questioned since it is not a unitary construct 

and may be a misleading value as a result [84, 85]. Instead, it has been proposed that using 

the individual sub test scores when analyzing FMS performance may be preferable. However, 

as is shown in table 7, of the 18 prospective studies, 10 reported an association between the 

composite score and injury likelihood and so it should not be disregarded entirely.  
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Table 7. Studies that investigated the relationship between movement screen scores and injury 

 

Movement 
screen References 

Participant information 

Association between scores and injury 
Quality 

score 
(%) 

Level of 
evidence Sample 

size Occupation/sport 
Age, y 

[mean ± SD 
or range] 

FMS Bardenett et al. 
(2015) [63] 

77 male, 
90 female 

Cross country, American 
Football, soccer, 
swimming, tennis and 
volleyball athletes (high 
school) 

15.2 No association between composite score and injury 87 2++ 

        
 Garrison et al. 

(2015) [64] 
160 Swimming/diving, rugby 

and soccer athletes 
(NCAA Division I) 

17-22 Score ≤13 = OR of 9.52 
[95% CI: 4.16-21.79] 
 

80 2++ 

        
 Hotta et al. (2015) 

[17] 
84 male Middle and long 

distance runners 
(collegiate) 

20.0 ± 1.1 
 

No association between composite score and injury 
Runners scoring ≤3 on the deep squat and active 
straight leg raise components = OR of 9.7 [95% CI: 
2.1-44.4] 

80 2++ 

        
 McGill et al. 

(2015) [65] 
53 male Elite task force police 

officers 
37.9 ± 5.0 No association between composite score and injury 80 2++ 

        
 Teyhen et al. 

(2015) [66] 
188 male 
 

United States army 
rangers 

23.3 ± 3.7 No association between composite score and injury 73 2+ 

        
 Warren et al. 

(2015) [67] 
89 male, 
78 female 

Basketball, cross 
country, American 
Football, golf, T&F, 
tennis, volleyball, soccer 
and swimming/diving 
athletes (NCAA 
Division I) 

20.6 ± 1.6 
(injured) 
20.0 ± 1.4  
(non-injured) 

No association between composite score and injury 80 2++ 
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Table 7. Continued 

Movement 
screen References 

Participant information 

Association between scores and injury 
Quality 

score 
(%) 

Level of 
evidence Sample 

size Occupation/sport 
Age, y 

[mean ± SD 
or range] 

 Zalai et al. (2015) 
[68] 

20 male Soccer players 
(professional) 

23.0 ± 3.0 No association between composite score and injury 
Players who suffered an ankle injury received a 
lower score for the hurdle step sub-test (p<0.05) 
Players who suffered a knee injury received a lower 
score for the deep squat sub-test (p<0.05) 

73 2+ 

        
 Dossa et al. (2014) 

[69] 
20 male Ice-hockey players (elite 

youth) 
16-20 No association between composite score and injury 80 2++ 

        
 Kiesel et al. (2014) 

[70] 
238 male American Football 

players (professional) 
unknown Injured vs non-injured groups' mean scores 16.9 vs 

17.4 (p<0.05) 
Score ≤14 = RR of 1.87 
[95% CI: 1.20-2.96] 
Players with at least one asymmetry had a RR of 
1.80 [95% CI: 1.11-2.74] 

60 2+ 

        
 Knapik et al. 

(2014) [71] 
770 male, 
275 female 

Coast guard cadets 18.1 ± 0.7 
(male) 
17.9 ± 0.7 
(female) 

Males: score ≤11 = RR of 1.64 
[95% CI: 1.17-2.32] 
Females: score ≤14 = RR of 1.93 
[95% CI: 1.27-2.95] 

73 2+ 

        
 Letafatkar 

et al. (2014) [19] 
50 male, 
50 female 

Soccer, handball and 
basketball players 
(recreational) 

22.6 ± 3.0 Score <17 = OR of 4.7 73 2+ 

        
 Shojaedin et al. 

(2014) [72] 
50 male, 
50 female 

Soccer, handball and 
basketball players 
(recreational) 

22.6 ± 3.0 Score ≤17 = OR of 4.7 53 2+ 

        
 Butler et al. (2013) 

[73] 
108 Firefighters Unknown Score ≤14 = OR of 8.31 

[95% CI: 3.2-21.6] 
60 2+ 

        
 Lisman et al. 

(2013) [74] 
874 male Marine officer 

candidates 
22.4 ± 2.7 Score ≤14 = OR of 2.04 

[95% CI: 1.32-3.15] 
60 2+ 



	

	

38	

 
 
 
Table 7. Continued 
 

 
ACL Anterior cruciate ligament, CI Confidence interval, FMS Functional movement screen, LESS Landing error scoring system, NCAA National 
Collegiate Athletic Association, OR Odds ratio, RR Risk ratio, T&F Track and field, 2+ Well conducted study with low risk of bias, 2++ High 
quality study with very low risk of bias 
 

Movement 
screen References 

Participant information 

Association between scores and injury 
Quality 

score 
(%) 

Level of 
evidence Sample 

size Occupation/sport 
Age, y 

[mean ± SD 
or range] 

 McGill et al. 
(2012) [75] 

14 male Basketball players 
(collegiate) 

20.4 ± 1.6 No association found between composite score and 
injury 

73 2+ 

        
 O’Connor et al. 

(2011) [76] 
874 male Marine officer 

candidates 
18-30 Score ≤14 = RR of 1.5 (p<0.05) 67 2+ 

        
 Chorba et al. 

(2010) [27] 
38 female Soccer, volleyball and 

basketball players 
(NCAA Division II) 

19.2 ± 1.2 Score ≤14 = OR of 3.85 
[95% CI: 0.98-15.13] 

80 2++ 

        
 Kiesel et al. (2007) 

[77] 
46 male American Football 

players (professional) 
Unknown Injured vs non-injured groups' mean scores 14.3 vs 

17.4 (p<0.05) 
Score ≤14 = OR of 11.67 
[95% CI: 2.47-54.52] 

53 2+ 

        
LESS Padua et al. (2015) 

[86] 
348 male, 
481 female 

Soccer players (elite 
youth) 

13.9 ± 1.8 ACL injured vs non-injured groups’ mean scores 
6.2 vs 4.4 (p<0.05) 
Score ≥5 = RR of 10.7 for indirect and non-contact 
ACL injury 

73 2+ 

        
 Smith et al. (2012) 

[31] 
29 male, 
63 female 

Lacrosse, soccer, 
basketball, American 
Football, field hockey, 
gymnastics (high 
school/collegiate) 

18.3 ± 2.0 No association between score and non-contact ACL 
injury 

87 2++ 
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4.3 Landing error scoring system 

 

Two studies investigating the link between LESS score and injury were identified through the 

literature search (table 7) [31, 86]. Both studies prospectively screened participants before 

tracking them over the course of a sporting season. Smith et al. [31] did not report any 

significant relationship between LESS score and subsequent injury whereas Padua et al. [86] 

did. Those ranked by Smith et al. [31] as ‘poor’ (scoring greater than 6) displayed an OR of 

3.62 compared to those ranked as ‘excellent’ (scoring less than or equal to 4) but the 95% 

confidence interval crossed 1 (0.87-15.11) indicating that the groups most likely did not 

differ in their risk of injury. However, Smith et al. [31] only included grade III (complete 

tear) non-contact anterior cruciate ligament (ACL) injuries in their analysis and as such it is 

not clear if LESS score was associated with any other type of injury. The LESS protocol 

involves whole body movement and so the outcome score may potentially display an 

association with other injury types. The apparent lack of connection between the LESS and 

ACL injury reported by Smith et al. [31] is surprising since the screen assesses the degree of 

knee valgus and flexion during landing which are both relevant factors to both patellofemoral 

pain and ACL injury [87]. It was suggested that the narrow range of recorded scores (only 0-

11 out of a possible 19) could have contributed to the lack of association with injury [31]. 

The authors also postulated that the screen may have superior predictive ability with regard to 

injury among less well-trained or less physically mature individuals undergoing rapid 

neuromuscular development. This may be due to differences in proprioceptive awareness and 

strength among these groups compared to more physically mature, well-trained individuals. 

This theory is somewhat supported by the findings of Padua et al. [86] who observed an 

almost 11-fold greater risk of ACL injury among individuals with scores of 5 or greater 

compared to those scoring less than 5. The average age of the participants followed by Padua 

et al. [86] was 14 years compared to 18 years for the cohort observed by Smith et al. [31]. It 

may be that the LESS does have some injury predictive ability but only amongst young 

populations and in certain sports. Further research is required among both younger and older 

populations before any firm conclusions can be made regarding that suggestion. Despite a 

theoretical link between the LESS and lower body injury, especially ACL injury, the 

evidence is currently ambiguous. Due to the fact that only two studies have prospectively 

investigated the ability of the LESS to predict injury and they reported conflicting results the 

graded recommendation for this movement screen is ‘D’. 
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5 Limitations and recommendations for future research 

 

When interpreting the results of the identified articles it is important the reader be cognizant 

of a number of common limitations. The majority of reliability studies were categorized as 

methodologically poor. While the ICC or kappa scores reported often indicated good to 

excellent agreement within and between raters the true value of these findings can be 

questioned due to the aforementioned methodological quality of the studies. In future studies 

investigating the reliability of movement screens rater information such as occupation, years 

of experience and number of tests performed should be included to allow for a more thorough 

interpretation of the results. In addition, larger sample sizes would help improve the 

methodological quality of future reliability studies. Similarly, future studies investigating the 

ability of movement screens to predict injury should clearly define what an ‘injury’ is as well 

as stating the length of the observation period to allow contextual appraisal of the results. In 

some sports like soccer and rugby established guidelines for injury reporting already exist 

[79, 80]. None of the studies investigating the link between movement screening score and 

injury reported or accounted for the exposure time of the participants. This is a crucial point 

that must be considered by future studies since without this information a significant 

confounding variable is being ignored. All else being equal, the less time a player spends 

training and playing then the less opportunity they have to get injured. Readers are not 

currently able to determine from the current research if individuals with supposed poorer 

movement ability are actually at increased risk of injury because of that or simply because 

their exposure time is greater. Another issue to consider is that if the individual responsible 

for recording injuries knows the movement screening scores then an element of bias may 

exist. Ideally, the individual recording the injury occurrence should be blinded to the outcome 

of the movement screen. 

 

6 Conclusion 

 

In conclusion, the majority of movement screens identified through the literature search lack 

a substantial evidence base in relation to both their reliability and ability to predict injury. 

However, due to its extensive research base, the FMS is the only movement screen that has 

consistently demonstrated good intra- and inter-rater reliability. In addition, some studies 

have suggested possible predictive ability with regard to injury risk for the FMS and LESS; 

however, this is not a unanimous finding. Based purely on the reported ICCs and kappa 
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values all identified screens appear to have good reliability with the exception of the various 

single-leg squat screens and the SEBT movement quality screen. Further research is 

warranted to verify the initial reliability values for the identified movement screens since the 

evidence base is still limited and the majority of the identified reliability studies were 

classified as methodologically poor. None of the identified movement screens have enough 

supporting evidence to justify them being heralded as injury prediction tools. Overall, 

movement screening may be useful for practitioners to enhance their holistic knowledge of an 

athlete but it seems the subjectivity of scoring makes it difficult to apply these results to 

injury prediction with any degree of certainty. 
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2. IS THE FUNCTIONAL MOVEMENT SCREEN (FMS™) ASSOCIATED WITH 

FOOTBALL-RELATED INJURY? 

 

2.1 Rationale for the original investigation 

 

The conclusions drawn from the literature review within chapter 1 of this thesis highlighted 

that the FMS™ is the most extensively researched movement screen of those identified. 

Furthermore, McCall et al.24 reported that the majority of top-division professional clubs 

surveyed used the FMS™ in the applied setting. Despite the wealth of research concerning 

the FMS™ and its wide use in applied practice within football, very few studies have 

investigated the association with injury of the FMS™ among high-level, or youth, football 

players. The present study sought to address this issue by prospectively investigating the 

relationship between FMS™ scores and injury among elite youth players from an English 

Premier League club academy. 

 

2.2 FMS™ score does not predict injury in English Premier League youth academy 

football players 

 

The following section contains the submitted manuscript pertaining to the following 

publication: 

 

Newton F, McCall A, Ryan D, Blackburne C, aus der Fünten K, Meyer T, Lewin C, McCunn 

R. Functional Movement Screen (FMS™) score does not predict injury in English Premier 

League youth academy football players. Science and Medicine in Football. 2017;1(2):102-6. 

 

The citations and references contained herein apply to this manuscript only and are formatted 

to the requirements of Science and Medicine in Football. The citations relate to the reference 

list within this section only and not to the reference list included at the end of this thesis. 
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Abstract 

 

Despite being commonly used, the interaction between Functional Movement Screen 

(FMS™) score and injury in any elite football population has not been studied. The aim of 

the present study was to investigate the relationship between FMS™ score and non-contact 

injury among elite youth players from a Premier League football academy. Eighty-four 

players were screened during the pre-season period and non-contact injuries recorded 

prospectively for the entirety of the 2013/14 football season. Logistic regression analysis was 

utilized to explore the relationships between the individual sub-tests of the FMS™ and 

injury. Receiver operating characteristic (ROC) curves were used to assess the predictive 

value of the FMS™ composite score. Logistic regression revealed no relationships between 

score achieved on the individual sub-tests and injury. ROC curves indicated poor predictive 
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ability of the composite score. Players scoring below the identified cut-off values (≤14 or ≤15 

depending on injury type considered) were 0.66 (95%CI: 0.40-1.10), 0.70 (95%CI: 0.32-

1.57) and 1.52 (95%CI: 0.50-4.61) times as likely to suffer ‘any’, ‘overuse’ and ‘severe’ 

injuries respectively than those who scored above the identified cut-off values. There was no 

relationship between FMS™ score and injury. It was unable to predict any non-contact injury 

among English Premier League youth academy players. 

 

Keywords: screening, soccer, risk, adolescent, elite 

 

Introduction 

 

Injuries in male elite youth football players have been shown to range from 2.0 to 19.4 

injuries/1000h of total exposure (9.5 to 48.7 injuries/1000h of match exposure) with strains 

and sprains among the most common injury types mainly occurring in the upper leg, knee 

and ankle (Pfirrmann et al. 2016). Injuries in elite youth players are of particular concern to 

elite youth academy directors as time lost from training and matches has the potential to 

negatively affect the development of technical, tactical, physical and mental qualities of 

players. Indeed, a large-scale epidemiological study of elite male youth French players 

showed that those incurring more severe injuries were less likely to obtain a professional 

contract (Le Gall et al. 2009). As such, strategies aimed at reducing the risk of injury during 

the development period of young elite footballers should be emphasised. 

 

While injury risk is multifactorial and complex (Bittencourt et al. 2016), one injury risk 

screening tool that is commonly used and deemed important by premier league football teams 

is the Functional Movement Screen (FMS™)(McCall et al. 2014). The purpose of this 

screening tool is to assess the movement quality of an individual (Cook at el. 2006a). 

Movement quality is not well defined but one definition put forward is the ability to 

“maintain correct posture and joint alignment in addition to balance while performing 

selected movements” (McCunn et al. 2016). The FMS™ has displayed moderate to good 

intra- and inter-rater reliability (Moran et al. 2016; McCunn et al. 2016). The underlying 

theory behind movement screening is that ‘poor’ movement quality may be a contributing 

factor to non-contact injury. To date, evidence relating to any potential relationship between 

non-contact injury and FMS score is conflicting (McCunn et al. 2016; McCall et al. 2015). 
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Despite its’ widespread use within professional football clubs, only one prospective cohort 

study has investigated the relationship between the FMS™ and injury in top-league football 

players (Zalai et al. 2015). Indeed, none have been conducted with elite youth footballers. A 

recent systematic review that sought to outline the evidence behind the practices and 

perceptions of elite football clubs’ injury prevention strategies concluded that insufficient 

evidence existed to make any recommendations in relation to the FMS™ (McCall et al. 

2015). Therefore the aim of the present study was to determine whether a causative 

relationship existed between FMS™ score and injury among male players from an English 

premier league youth football academy. 

 

Methods 

 

Experimental Design 

 

The present study followed a prospective cohort design. Players meeting the inclusion criteria 

were assessed using the FMS™ during the pre-season period. Injury surveillance was 

performed over the entirety of the subsequent season (2013/14) and all injury events recorded 

in accordance with the recommendations provided by Fuller et al. (2006). 

 

Participants 

 

Eighty-four male players registered with an English Premier League football club youth 

academy agreed to participate in the present study (age 13.0±1.3 years, height 167.0±9.4 cm, 

body mass 55.8±11.4 kg). Inclusion criteria required players to be registered with the club for 

the entirety of the observation season (2013/14), injury free at the initiation of the pre-season 

period (1st June) and eligible for the under-12, -13, -14, -15 or -16 squads. Participant assent 

and written parental consent were obtained prior to all testing procedures. The study was 

approved by the University College London Research Ethics Committee and conformed to 

the Declaration of Helsinki. 

 

Procedures  

 

All FMS™ testing was conducted by United Kingdom Strength and Conditioning 

Association accredited coaches or chartered physiotherapists. All testers had multiple years 
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experience in conducting such assessments and undertook a re-cap of all procedures prior to 

testing each year. Standardised written instructions that followed the original test guidelines 

were provided for all raters and were delivered verbatim when instructing participants (Cook 

et al. 2006a; Cook et al. 2006b). Official FMS™ test kit was used. Each participant 

completed all 7 sub-tests sequentially in the following order: deep squat, hurdle step, in-line 

lunge, shoulder mobility, active straight leg raise, trunk stability push up and rotatory 

stability.  

 

All injuries sustained during matches and training sessions were recorded and monitored by 

club physiotherapists in accordance with the recommendations provided by Fuller et al. 

(2006). Injury was defined as any physical complaint sustained by a player resulting from a 

football match or football training session that resulted in time loss. However, only non-

contact injuries were included for analysis. Non-contact injuries included were also further 

categorised into two additional groups: overuse and severe. An overuse injury was one that 

was characterised by repeated microtrauma without a single, identifiable event while severe 

injuries were those that resulted in a time loss of more than 28 days (Fuller et al. 2006).	
 

Statistical analyses 

 

Data were analysed using SPSS Statistics version 22 (SPSS, Inc., Chicago, Illinois, USA) and 

MedCalc for Windows, version 16.4.3 (MedCalc Software, Ostend, Belgium). FMS™ 

composite scores were compared between injured and uninjured players (using three injury 

definitions: all non-contact, overuse and severe) using Mann-Whitney U tests. In addition, 

Cohen’s d effect sizes (ES) were calculated and interpreted as trivial (0≤ES≤0.2), small 

(0.2<ES≤0.6), moderate (0.6<ES≤1.2), large (1.2<ES≤2.0) and very large (2.0<ES≤4.0) 

(Hopkins 2002; Cohen 1992). It was assumed that training and match exposure time between 

players in injured and non-injured groups was largely similar. Based on historical data from 

the academy in question we estimated that 50% of the players included in the present study 

would suffer a non-contact, football-related injury during the observation period. Given this 

estimation, a statistical power of 0.8 required a total sample size of n = 80 to detect a 

moderate effect (ES=0.65) of FMS™ composite score between injured and uninjured players 

(G*Power Version 3.1, Kiel, Germany). Binomial logistic regression was used to examine 

the relationship between injury and potential risk factors including: FMS™ composite score, 
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each individual sub-test score, number of asymmetries displayed during the test and age 

group. Spearman’s rank correlation coefficient test was used to detect multicollinearity 

between independent variables. If two variables demonstrated a strong correlation (rs>.90) 

then one was selected and the other not included in any further analysis. Each risk factor was 

examined independently via univariable analysis and those with a p value <.10 were 

investigated further in a multivariable model (Engebretsen et al. 2010). Assuming the 

aforementioned estimation of injury incidence, a statistical power of 0.8 required a sample 

size of n = 82 to detect an odds ratio of 2 (per unit increase for each independent variable) 

using logistic regression (G*Power Version 3.1, Kiel, Germany). Receiver operating 

characteristic (ROC) curves were used to assess the predictive value of the FMS™ composite 

score for each injury definition and identify cut-off scores that maximized specificity and 

sensitivity. The identified cut-off scores were used to create 2x2 contingency tables and 

calculate relative risks (RR) with associated confidence intervals (CI). Additionally, positive 

likelihood ratios were calculated to allow contextual appraisal of injury risk after a positive 

test. The limit for the alpha error to be considered significant was set at p<0.05.   

 

Results 

 

Overall FMS™ scores for injured and uninjured players (using all definitions of injury) are 

presented in Table 1. Spearman’s rank correlation coefficients revealed no multicollinearity 

existed between any independent variables included in the logistic regression analyses. The 

results from the univariable logistic regression analyses are presented in Table 2. None of the 

predictor variables met the inclusion criteria for further investigation in a multivariable model 

for all non-contact and severe injuries. The composite score and shoulder mobility sub-test 

did meet the inclusion criteria for further investigation when overuse injuries were 

considered. However, when included together in a multivariable analysis no statistically 

significant relationships were observed.  ROC curves for all non-contact (area under the 

curve [95%CI]: 0.59 [0.47-0.72], p=0.14), overuse (area under the curve [95%CI]: 0.63 

[0.50-0.77], p=0.06) and severe (area under the curve [95%CI]: 0.52 [0.34-0.70], p=0.84) 

injuries revealed no statistically significant results. A cut-off score of ≤15 for any non-contact 

and severe injuries was identified while a threshold of ≤14 maximized specificity and 

sensitivity when considering overuse events. The positive likelihood ratios and RR values 

using the identified cut-off scores for each injury definition are presented in Table 3.  
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Table 1. Comparison of FMS™ composite scores between injured and uninjured players for 
all injury definitions. Data as mean±SD. 
 
Type of injury Injured Uninjured Effect Size 
All non-contact 15.8±1.8 15.3±2.7 0.22 
 n=38 n=46  
Overuse 16.1±1.8 15.3±1.9 0.43 
 n=24 n=60  
Severe 15.7±1.8 15.5±1.9 0.11 
 n=11 n=73  
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Table 2. Univariable logistic regression analyses for each injury definition. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Type of injury Variable Odds ratio 95%CI p value 
All non-contact FMS™ composite score 1.16 0.92-1.47 0.20 
 Asymmetries (number) 0.90 0.53-1.54 0.70 
 Age group 1.28 0.95-1.73 0.11 
 Deep squat 0.75 0.31-1.82 0.53 
 Hurdle step 0.94 0.43-2.08 0.89 
 In-line lunge 1.58 0.61-4.10 0.35 
 Shoulder mobility 1.68 0.87-3.28 0.13 
 Active straight leg raise 1.41 0.66-3.01 0.38 
 Trunk stability push-up 1.34 0.69-2.61 0.38 
 Rotary stability 1.13 0.32-4.02 0.85 
Overuse FMS™ composite score 1.26 0.97-1.64 0.08 
 Asymmetries (number) 1.04 0.58-1.86 0.90 
 Age group 1.14 0.82-1.58 0.44 
 Deep squat 1.15 0.44-3.00 0.78 
 Hurdle step 1.25 0.52-3.00 0.61 
 In-line lunge 1.43 0.51-3.98 0.49 
 Shoulder mobility 2.10 0.93-4.76 0.08 
 Active straight leg raise 1.77 0.76-4.14 0.19 
 Trunk stability push-up 1.38 0.65-2.92 0.40 
 Rotary stability 0.68 0.16-2.96 0.61 
Severe FMS™ composite score 1.06 0.76-1.48 0.74 
 Asymmetries (number) 1.25 0.60-2.61 0.55 
 Age group 0.94 0.61-1.46 0.79 
 Deep squat 1.20 0.34-4.32 0.78 
 Hurdle step 0.42 0.13-1.40 0.16 
 In-line lunge 0.72 0.16-3.14 0.66 
 Shoulder mobility 1.28 0.48-3.44 0.63 
 Active straight leg raise 0.68 0.22-2.06 0.49 

 Trunk stability push-up 2.04 0.66-6.36 0.22 
 Rotary stability 2.63 0.51-13.67 0.25 
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Table 3.Positive likelihood ratio and relative risk values using the identified FMS™ cut-off score for each injury definition. 
 
 
 
 
 
 
 
 
 
 
 
+ve positive, CI confidence interval, LR likelihood ratio, RR relative risk 
 
 
 
 
 
 
 
  
 
 
 
 

 +ve LR Chance of injury before 
screening (%) 

Chance of injury after +ve 
screening (scoring ≤cut-off) 

(%) 

RR  
(95%CI) 

All non-contact 0.66 45 35 0.66  
(0.40-1.10) 

Overuse 0.71 29 22 0.70  
(0.32-1.57) 

Severe 1.28 13 16 1.52  
(0.50-4.61) 
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Discussion 

 

The main findings of the present study revealed that in elite male youth football players 

competing in an English Premier League Academy: 1) there were no differences in FMS™ 

composite score observed between injured and uninjured groups regardless of the injury 

definition used (p>0.05 and trivial-small effect sizes) (Table 1), 2) no relationships with 

FMS™ score and non-contact, overuse or severe injuries existed hence the FMS™ had poor 

predictive ability.  

 

FMS™ score is not related to injury in youth elite soccer players 

 

No relationship between the FMS™ composite score and injury (all non-contact, overuse and 

severe) was observed. As the FMS composite score is made up from seven individual tests, 

some of which likely have greater relevance to football than others, (e.g. the shoulder 

mobility versus lower limb tests for outfield players) it was decided at the outset that possible 

relationships between injury and individual sub-tests would be investigated also. However, 

despite separating the FMS™ into its individual sub-sets not only were no relationships 

found (for any injury definitions), but no statistically significant relationships were observed 

between injury and any of the independent variables (including age group and FMS™ 

asymmetries). 

 

What about predicting injuries? 

 

Establishing a relationship between an attribute and injury is useful as it highlights a risk 

factor, which may in turn help inform the content of prevention strategies. However, 

predictive ability is even more appealing from a practical perspective (Bahr 2016). The most 

appropriate statistical measures that should be used to determine the predictive ability of a 

test include ROC curve analysis and likelihood ratios (Bahr 2016; Whiteley 2016; Opar et al. 

2015; Pepe et al. 2004). A screening tool with excellent diagnostic accuracy would allow 

confident grouping of ‘at-risk’ players who could subsequently be targeted with specific 

injury prevention interventions. 

 

In the present study ROC curve analysis revealed that the screening tool had poor predictive 

ability for any injury type (whether non-contact, overuse or severe). The area under the curve 
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(AUC) of an ROC curve provides an indication of the predictive ability of a diagnostic tool. 

An AUC=0.5 indicates that a diagnostic tool has no predictive value while an AUC=1 

indicates a perfect test that results in no false positives or negatives (Hajian-Tilaki 2013). The 

ROC curves created in the current study produced AUCs between 0.52-0.63 depending on the 

injury definition used. These values are low and indicate that the FMS™ was likely not any 

better at predicting which players got injured than chance alone i.e. randomly assigning 

players to high/low risk groups. 

 

Further statistical calculations providing insight to the diagnostic accuracy of screening tools 

include specificity and sensitivity in addition to positive and negative predictive values. 

However, while these values are relevant they are not as readily interpretable as a comparison 

of pre- and post-test odds of injury. Another relevant value for assessing the usefulness of a 

diagnostic tool is the positive likelihood ratio, which allows calculation of the post-test odds 

of injury after a positive test (an FMS™ score below the identified cut-off value) (Whiteley 

2016). Likelihood ratios allow the calculation of these odds and offer practitioners clear 

information as to the usefulness of the screening tool in question. In the present study, 

positive likelihood ratios below a value of one indicated a reversal of the expected outcome 

and revealed a seemingly protective effect of scoring below the identified cut-off value (≤14 

or ≤15 depending on injury type considered) on the FMS™ in the context of all non-contact 

and overuse injuries. Similarly, RR values ranged from 0.66 to 0.70 (Table 3) indicating a 

reduced likelihood of suffering any non-contact or overuse injury after scoring below the 

identified cut-off value. However, when considering this seemingly counterintuitive result it 

is important to note that 95%CIs for the RR values crossed one in all instances. What is clear; 

however, is that among the present sample of elite male youth soccer players an FMS™ 

composite score below the identified cut-off values was not associated with increased injury 

risk. 

 

Does this mean we shouldn’t use the FMS? 

 

While the FMS™ may not be useful as a screening tool for highlighting elevated 

susceptibility to injury in elite male youth academy footballers it does not necessarily render 

the screening tool completely useless. Indeed it may provide other useful information. Its 

wide use among the world’s top-league football clubs alludes to its appeal and perceived 

usefulness (McCall et al. 2014). Fuller et al. (2016) reported that young Australian rules 
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football players were 1.5 times more likely to report pain during the FMS™ if they had 

suffered an injury the previous season than if they had not. The authors postulated that the 

FMS™ might be useful for highlighting players who have not fully recovered from previous 

injuries. 

 

The National Strength and Conditioning Association’s recent position statement on long-term 

athlete development highlights the importance of structured youth strength and conditioning 

programmes focusing on aspects such as fundamental movement ability (Lloyd et al. 2016). 

In the context of Premier League youth academies, strength and conditioning practitioners 

and physiotherapists are faced with the challenge of a continual turnover of players each year. 

The FMS™ may offer a quick, logistically viable and systematic method of quantifying 

movement competency and in doing so help determine readiness for introduction to 

formalized resistance training and progressions to more advanced exercise techniques. This 

may be particularly helpful in guiding the physical development plans of newly recruited 

players whom club support staff are not familiar with.  

 

Limitations 

 

While the present study represents a novel addition to the literature regarding injury risk in 

elite male youth footballers, there are some limitations. Firstly, exposure data was not 

available for the participants in the present study. This meant that no additional statistical 

procedures could be used (e.g. survival analysis or Cox proportional hazard modeling) which 

would have provided additional insight into the relationship between FMS™ score and injury 

(Finch & Marshall 2016; Bahr & Holme 2003). Differences in exposure time between injured 

and uninjured groups may have contributed to the findings. While it was assumed that 

exposure time between injured and uninjured groups was largely similar this could not be 

empirically confirmed in the present study. It may be that players who achieved better 

FMS™ scores generally displayed superior overall athleticism and were selected to play 

more frequently. It must be stressed that such a hypothesis is purely speculation; however, it 

is one theory that may help explain the seemingly counter-intuitive results. The greater the 

exposure time the greater the potential for suffering an injury. In addition, players performed 

strength and conditioning sessions throughout the observation season and such intervention 

may have mitigated the potential risk associated with scoring poorly on the FMS™. 

However, since all players were included in this aspect of training the protective effect should 
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have been equally apparent in all individuals regardless of FMS™ score. Another limitation 

of the present study is that multiple injuries to the same player were not taken into account. 

This has been highlighted as an issue that needs to be addressed to advance the value of such 

prospective cohort studies; however, the lack of exposure data once again precluded such 

survival analysis (Finch & Marshall 2016). Finally, these results may only be a reflection of 

the present team and future work using larger samples including multiple teams is necessary. 

 

Conclusion 

 

The present results question the efficacy of the FMS™ for highlighting young male elite 

football players at increased risk of injury. The FMS™ is not recommended for this purpose. 

Readers should be cognizant that this conclusion relates to the FMS™ specifically and does 

not necessarily apply to other movement screening tools. The FMS™ may be too generic a 

test to highlight soccer-specific injury risk in male elite youth players. However, there may 

be other benefits to performing the assessment. For example, the FMS™ may help guide 

applied practitioners in the appropriate prescription of physical development programmes for 

large squads of players they are unfamiliar with. Future research should not only seek to add 

to this initial evidence for elite youth football players but provide further insight through 

incorporation of exposure data and in doing so include multiple injuries to the same player 

within the statistical analysis.  
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3. DEVELOPMENT AND RELIABILITY OF A NEW FOOTBALL-SPECIFIC 

MOVEMENT SCREEN 

 

3.1 Rationale for the original investigation 

 

Given the popularity of movement screening yet the lack of association with injury of the 

FMS™ among footballers (chapter 2), the lack of a movement screen developed specifically 

for football was apparent. The FMS™ was designed as a tool to measure overall movement 

quality among both general and athletic populations; however, without a specific sport in 

mind.7, 8 A screen consisting of movements targeting the most common sites of injury 

observed in football was deemed necessary. This would help determine if the lack of 

association with football injury of the FMS™ was reflective of the relationship between 

movement screening and football injury in general or only that particular assessment. 

However, in order to justify use of the new football-specific movement screen in further 

research or applied practice, the intra- and inter-rater reliability needed to be established. This 

is because test reliability is a prerequisite for test validity.4 In addition, it is important for 

applied practitioners to be aware of what constitutes a true change in test performance. This 

allows meaningful feedback to be provided to the player and coaches after assessment. 

Establishing the reliability properties of a test allow such judgments to be made.32 

 

3.2 The development and reliability of the Soccer Injury Movement Screen (SIMS) 

 

The following section contains the submitted manuscript pertaining to the following 

publication: 

 

McCunn R, aus der Fünten K, Govus A, Julian R, Schimpchen J, Meyer T. The intra- and 

inter-rater reliability of the Soccer Injury Movement Screen (SIMS). Int J Sports Phys Ther. 

2017;12(1):53-66. 

 

The citations and references contained herein apply to this manuscript only and are formatted 

to the requirements of the International Journal of Sports Physical Therapy. The numerical 

citations relate to the reference list within this section only and not to the reference list 

included at the end of this thesis. 
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Abstract 

 

Background/purpose: The growing volume of movement screening research reveals a belief 

among practitioners and researchers alike that movement quality may have an association 

with injury risk. However, existing movement screening tools have not considered the sport-

specific movement and injury patterns relevant to soccer. The present study introduces the 

Soccer Injury Movement Screen (SIMS), which has been designed specifically for use within 

soccer. Furthermore, the aim of the present study was to assess the intra- and inter-rater 

reliability of the SIMS and determine its suitability for use in further research.  

 

Methods: The study comprised a test-retest design. Twenty-five (11 males, 14 females) 

university students (age 25.5±4.0 years, height 171±9 cm, weight 64.7±12.6 kg) agreed to 
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participate. The SIMS contains five sub-tests: the anterior reach, single-leg deadlift, in-line 

lunge, single-leg hop for distance and tuck jump. Three raters conducted the SIMS with each 

participant on three occasions separated by an average of 3.5 days (minimum 1 day, 

maximum 7 days). Rater 1 re-scored the filmed movements for all participants on all 

occasions six months later to establish the ‘pure’ intra-rater (intra-occasion) reliability for 

those movements.  

 

Results: Intraclass correlation coefficient (ICC) values for intra- and inter-rater composite 

score reliability ranged from 0.66-0.72 and 0.79-0.86 respectively. Weighted kappa values 

representing the intra- and inter-rater reliability of the individual sub-tests ranged from 0.35-

0.91 indicating fair to almost perfect agreement.  

 

Conclusions: Establishing the reliability of the SIMS is a prerequisite for further research 

seeking to investigate the relationship between test score and subsequent injury. The present 

results indicate acceptable reliability for this purpose; however, scope exists to improve the 

intra-rater reliability of some of the individual sub-tests further. 

 

Keywords:    Assessment, football, kinematic, screening  

 

Level of evidence:  2b 

 

What is known about the subject: The use of movement screening is widespread within 

soccer and this is usually done in an effort to separate players into high- and low-risk groups 

with regard to injury likelihood. The underlying theory is that players who demonstrate 

‘poor’ movement quality are more likely to suffer an injury than those who display ‘good’ 

movement quality. The most researched and well-known test of this type is the Functional 

Movement Screen™, however, it was not designed with any particular sport in mind and as 

such only incorporates a range of generic movements.  

 

What this study adds to existing knowledge: This study introduces a new movement 

screening tool called the Soccer Injury Movement Screen (SIMS). As the name suggests, this 

test has been designed specifically for use in soccer and incorporates movements targeting 

the most common sites of soccer related injury. The fundamental premise behind the 

development of this new tool is that the SIMS may eventually prove to be more useful than 
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the FMS™ at identifying soccer players with elevated risk of injury. This study establishes 

the intra- and inter-rater reliability of the SIMS. This is vital and reveals that the SIMS is 

suitable for use in future research/applied practice. 

 

Introduction 

 

The proliferation of movement screening research and its widespread use in professional 

soccer reveals a belief among practitioners and researchers alike that movement quality may 

have an association with injury risk.1, 2 Movement quality is ill defined but relates to the 

ability of an individual to perform a given movement in a controlled manner while 

demonstrating good or acceptable technique. Exactly what constitutes good technique is a 

topic of debate. While it is arguable that no ‘correct’ movement pattern exists for any given 

exercise there are certain characteristics that may be undesirable, such as restricted range of 

motion and an inability to control coordinated movements. The rationale behind movement 

screening is that such limitations may result in acute injuries or contribute to insidious 

overuse complaints.3-5 

 

Numerous screens exist; however, the supporting evidence with regard to both their 

reliability and association with injury varies widely in both volume and methodological 

quality.1 The majority of such research has focused on the Functional Movement Screen 

(FMS™), which has demonstrated good reliability but conflicting relationships with injury 

likelihood.1, 6 The FMS™ was designed as a ‘general’ movement assessment tool and has 

been used within a wide range of sports and professional domains including the military and 

emergency services.7-9 In contrast, some screens such as the Landing Error Scoring System 

(LESS) have been designed with the intention of identifying those at an increased risk of a 

particular type of injury, for example, anterior cruciate ligament rupture.10 In addition, some 

have been designed for use within particular sports, for example, netball and rugby union.3, 11 

Despite movement screening’s popularity within professional soccer no soccer-specific tool 

currently exists.2 The present study introduces the Soccer Injury Movement Screen (SIMS), 

which has been designed specifically for use within soccer. The movements contained within 

the assessment were selected to reflect the most common sites (lower extremities) and types 

(strains and sprains) of soccer-related injury and hence they primarily tax the mobility and 

stability of the ankle, knee and hip joints in addition to the strength and flexibility of the 

surrounding musculature.12 
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The efficacy of screening tests that seek to identify or predict which players will get injured 

has recently been questioned.13 In the context of sports-related injuries the idea that a single 

attribute such as movement quality for example, could be predictive is unlikely.14 As a result, 

the ultimate objective of the SIMS will be to investigate whether a causative relationship 

exists between movement quality and injury. Any potential relationship between movement 

quality and injury is unlikely to be substantial enough to justify the SIMS being considered 

‘predictive’ but it may help inform the content of injury prevention programmes nonetheless 

by highlighting risk factors.15  

 

There is reason to expect such a causative relationship between movement quality and injury 

may exist since some studies have reported poor FMS™ scores preceding subsequent 

injury.8, 16 However, numerous studies utilizing the same movement screening tool have not 

observed any link.17 The SIMS may eventually demonstrate a stronger association to injury 

risk than the FMS™ due to its more explicit scoring criteria (Appendix 2) focusing on 

specific aspects of each movement. Furthermore the FMS™ includes movements targeting 

the upper limbs, which have limited relevance for outfield soccer players whereas the SIMS 

concentrates on the lower limbs only. 

 

Before any prospective cohort studies can be conducted using the SIMS its reliability must 

first be established. The reliability of an assessment tool is of critical importance since it is a 

pre-requisite for test validity.18 Therefore, the aim of the present study was to test the intra- 

and inter-rater reliability of the SIMS and determine its suitability for use in further research.   

 

Methods 

 

Participants 

 

Twenty-five (11 males, 14 females) university students (age 25.5±4.0 years, height 171±9 

cm, weight 64.7±12.6 kg) agreed to participate in the present study. Inclusion criteria 

required participants to be aged between 18-40 years of age, free of injury (any physical 

condition that precluded them from completing the assessment) and recreationally active. 

Information pertaining to the study protocol and requirements were provided for each 

participant before written informed consent was collected. The study was approved by the 
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local ethics committee (ref number: 270/15, Ärztekammer des Saarlandes, Saarbrücken, 

Germany) and conformed to the Declaration of Helsinki. 

 

Raters 

 

Three raters carried out the SIMS in the present study; all possessed postgraduate sport 

science qualifications and had previous professional experience delivering movement 

assessments. In addition, Rater 1 was an accredited strength and conditioning coach with both 

the United Kingdom Strength and Conditioning Association (UKSCA) and the National 

Strength and Conditioning Association (NSCA). Prior to the present study all raters 

conducted pilot testing using the SIMS with 10 participants. The pilot testing incorporated 

two 2-hour sessions where raters reviewed the test instructions (Appendix 1), the scoring 

criteria (Appendix 2) and familiarized themselves with the camera positioning (Figure 1). In 

addition, three more 2-hour sessions were conducted where raters practiced scoring video 

footage and discussed the interpretation of the scoring criteria. In total, rater training 

amounted to ~12 hours (10 classroom-based and two field-based). 

 

Design 

 

The present study comprised a test-retest design. Participants performed the SIMS on three 

occasions separated by an average of 3.5 days (minimum 1 day, maximum 7 days). The 

SIMS contains five sub-tests: the anterior reach (AR), single-leg deadlift (SLDL), in-line 

lunge (ILL), single-leg hop for distance (SLHD) and tuck jump (TJ) (Figure 2). Raters 1 and 

2 scored all participants whereas Rater 3 only scored 15 of the 25 (for reasons unrelated to 

the study). Raters scored two of the five movements (AR and SLHD) included in the SIMS in 

real-time on each occasion. The remaining three movements (SLDL, ILL and TJ) were 

filmed from both the frontal and sagittal planes using iPhone 4S devices (Apple Inc., 

California, USA) and scored retrospectively. These sub-tests were scored from video footage, 

as opposed to in real-time; to allow raters to view the movements in slow motion and 

increase the likelihood of identifying errors. A minimum of one week separated the scoring 

of participants’ filmed movements for occasions one, two and three respectively in an attempt 

to reduce the risk of rater bias (i.e. remembering the previous scores given). Scores for 

occasions one, two and three were compared within each rater to investigate ‘real-world’ 

intra-rater (inter-occasion) reliability. Scores were also compared between raters for each 
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occasion to assess inter-rater reliability. Rater 1 re-scored the filmed movements for all 

participants on all occasions six months later to establish the ‘pure’ intra-rater (intra-

occasion) reliability for those movements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Schematic showing the equipment setup for the SIMS. 

For all movements the participants start at A. Anterior reach: measuring tape is fixed to the 

floor between A and B; Single-leg deadlift: camera at B (portrait) and E (landscape) when 

standing on right leg, camera at B (portrait) and D (landscape) when standing on left leg; In-

line lunge: camera at B (portrait) and E (landscape) when right leg forward, camera at B 

(portrait) and D (landscape) when left leg forward; Single-leg hop for distance: measuring 

tape is fixed to the floor between A and C; Tuck jump: taped cross on floor at A (60x60cm), 

camera at B (portrait) and F (portrait).  
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Figure 2. Demonstration cards that were shown to participants along with verbal instructions 

prior to test execution. 

A: anterior reach; B: single-leg deadlift; C: in-line lunge; D: single-leg hop for distance; E: 

tuck jump. 
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Soccer Injury Movement Screen (SIMS) 

 

Detailed descriptions of each movement contained within the SIMS and associated scoring 

criteria are outlined in Appendices 1 and 2. The ILL is the same in its setup as when 

performed as part of the FMS™ albeit it is scored differently while the tuck jump is 

performed and scored exactly as described by Myer et al.5, 19 A standardized five minute 

warm up was completed before each occasion and included dynamic bodyweight exercises 

(e.g. squats, walking lunges, hamstring walkouts, diagonal hop and holds). The assessments 

were performed outdoors on a hard, rubberized sports court during summertime in dry 

temperate weather conditions. Participants were instructed to wear tight fitting sports clothing 

and the same training shoes on each occasion. The five component movements were 

performed in sequential order starting with the AR followed by the SLDL, ILL, SLHD and 

TJ. Prior to each sub-test participants were read the test instructions (Appendix 1) verbatim 

and shown demonstration cards (Figure 2). Participants were then allowed three practice 

attempts for each sub-test where any obvious miscommunication or misunderstandings 

relating to how to execute the movements were clarified. Time to complete the assessment 

was 10-15 minutes per participant. 

 

Each component movement was scored out of 10 resulting in a theoretical maximum 

composite score of 50. A higher score indicated poorer performance; hence, zero was the 

theoretical ‘best’ score while 50 was the ‘worst’. The AR and SLHD scoring criteria were 

objective in nature and were based on reach and jump distance respectively. In contrast, the 

SLDL, ILL and TJ relied on subjective assessment of movement quality. Raters were allowed 

to watch the clips of the filmed movements, both in real-time speed and slow motion, as 

many times as they deemed necessary to make an accurate judgment when scoring.   

 

Statistical analyses 

 

Descriptive data are presented as means ± standard deviation. Reliability statistics are 

accompanied with 95% confidence intervals (CI). Data were analysed using R statistics 

programme (R Core Development Team 2014) and MedCalc for Windows, version 16.4.3 

(MedCalc Software, Ostend, Belgium). Comparison of composite and individual sub-test 

scores between male and female participants was performed using the Mann-Whitney U 
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statistic. Cohen’s d effect size (ES) was also calculated and interpreted as follows: ≤0.2, 

trivial; 0.21-0.60, small; 0.61-1.2, moderate; 1.21-2.0, large; 2.1-4.0, very large.20, 21  Two 

way mixed model intraclass correlation coefficients (ICC3, 1), weighted kappas (quadratic) 

and minimal detectable change (MDC) were used to determine the intra- and inter-rater 

reliability of the composite score. MDC values were calculated at both a 95% and 80% level 

of confidence in order to provide applied practitioners with the means to identify ‘true’ 

changes in test performance. Typically, MDC values are calculated to reflect a 95% 

confidence interval; however, this results in very conservative estimates of how much a test 

score has to change to be considered real and may be of limited usefulness in the applied 

setting where small improvements/decrements in test performance can be meaningful.22 

MDC values at lower levels of confidence (e.g. 80%) can be calculated and are useful to 

applied practitioners who may be willing to rely on more liberal estimates of test score 

changes. In addition, weighted kappas (quadratic) were used to determine intra- and inter-

rater reliability of each individual subtest. ICC values were interpreted according to the 

following criteria: <0.40, poor; 0.40-0.59, fair; 0.60-0.74, good; ≥0.75, excellent.23 Similarly, 

weighted kappa values were interpreted according to the guidelines outlined by Landis and 

Koch24: <0.00, poor; 0.00-0.20, slight; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80, 

substantial; 0.81-1.00, almost perfect. Alpha was set at p≤0.05. 

 

Results 

 

Composite scores were not significantly different between males (18.3) and females (15.3) 

(Table 1). Only the SLDL scores differed between genders (males=4.3, females=1.8) (Table 

1).  

 

ICC3, 1, weighted kappa and MDC values for intra-rater (inter-occasion) reliability are 

presented in Table 2. Weighted kappa values for the individual subtests ranged from fair to 

substantial (0.35-0.77). With regard to the composite score, weighted kappa values were 

interpreted as substantial (0.63-0.68) while the ICCs were classified as good (0.66-0.72) for 

each rater.  

 

ICC3, 1 and weighted kappa values for inter-rater reliability are presented in Table 3. 

Weighted kappa values for the individual subtests ranged from moderate to almost perfect 

(0.43-0.91). With regard to the composite score weighted kappa values ranged from 
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substantial to almost perfect (0.78-0.81) while the ICCs were classified as excellent (0.79-

0.86) for all three occasions.  

 

Weighted kappa scores for ‘pure’ intra-rater (intra-occasion) reliability are presented in Table 

4. The kappa values were evaluated as almost perfect for the SLDL (0.90) and ILL (0.85) 

while the TJ value was interpreted as substantial (0.73).  
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Table 1. Comparison of test scores between males and females 
 

 Overall (n=25) Males (n=11) Females (n=14) P Male vs female effect size 
(qualitative inference) 

Composite score (mean ± SD) 16.6 ± 4.9 18.3 ± 3.0 15.3 ± 5.8 0.080 0.6 (Small) 
AR (mean ± SD) 1.7 ± 1.8 2.1 ± 2.3 1.4 ± 1.3 0.648 0.4 (Small) 
SLDL (mean ± SD) 2.9 ± 2.1 4.3 ± 2.0 1.8 ± 1.5 <0.01 1.4 (Large) 
ILL (mean ± SD) 2.6 ± 1.5 2.5 ± 1.5 2.6 ± 1.6 0.825 0.1 (Trivial) 
SLHD (mean ± SD) 4.1 ± 2.3 4.2 ± 1.9 4.0 ± 2.7 0.718 0.1 (Trivial) 
TJ (mean ± SD) 5.4 ± 1.3 5.2 ± 1.0 5.5 ± 1.6 0.534 0.2 (Trivial) 
 
Test scores drawn from Rater 1 on the third testing occasion.  AR anterior reach, ILL in-line lunge, SLDL single-leg deadlift, SLHD single-leg 
hop for distance, TJ tuck jump 
 
 
Table 2. Summary of intra-rater (inter-occasion) reliability values 

 
 
AR anterior reach, ICC intra-class correlation coefficient, ILL in-line lunge, MDC minimum detectable change, SLDL single-leg deadlift, SLHD 
single-leg hop for distance, TJ tuck jump 

 Weighted kappa ICC3, 1 MDC @ 95% 
confidence 

MDC @ 80% 
confidence  AR SLDL ILL SLHD TJ Composite 

score 
Composite 

score 

Rater 1 0.47 
(0.17-0.77) 

0.77 
(0.67-0.87) 

0.64 
(0.52-0.77) 

0.44 
(0.26-0.61) 

0.58 
(0.43-0.73) 

0.68 
(0.54-0.81) 

0.71 
(0.52-0.85) 7.0 4.5 

Rater 2 0.46 
(0.22-0.69) 

0.68 
(0.55-0.81) 

0.48 
(0.30-0.66) 

0.35 
(0.15-0.55) 

0.58 
(0.44-0.72) 

0.64 
(0.49-0.80) 

0.72 
(0.54-0.85) 7.5 4.9 

Rater 3 0.39 
(0.02-0.77) 

0.68 
(0.55-0.81) 

0.63 
(0.49-0.77) 

0.36 
(0.11-0.61) 

0.45 
(0.26-0.65) 

0.63 
(0.45-0.80) 

0.66 
(0.38-0.86) 6.7 4.4 
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Table 3. Summary of inter-rater reliability values 
 

 
 
 
 
 
 
 
 
 
 

 
AR anterior reach, ICC intra-class correlation coefficient, ILL in-line lunge, SLDL single-leg deadlift, SLHD single-leg hop for distance, TJ tuck 
jump 
 
 
Table 4. Summary of intra-rater (intra-occasion) reliability values for filmed movements 
 

 Weighted kappa 
 SLDL ILL TJ 

Rater 1 0.90 
(0.86-0.95) 

0.85 
(0.80-0.91) 

0.73 
(0.62-0.83) 

 
ILL in-line lunge, SLDL single-leg deadlift, TJ tuck jump 
 
 
 

 Weighted kappa ICC3, 1 

 AR SLDL ILL SLHD TJ Composite 
score 

Composite 
score 

Occasion 1 0.83 
(0.72-0.95) 

0.51 
(0.35-0.66) 

0.71 
(0.58-0.85) 

0.84 
(0.69-1.00) 

0.60 
(0.40-0.81) 

0.78 
(0.68-0.88) 

0.79 
(0.58-0.92) 

Occasion 2 0.76 
(0.62-0.90) 

0.48 
(0.29-0.66) 

0.70 
(0.56-0.84) 

0.91 
(0.85-0.97) 

0.43 
(0.18-0.68) 

0.81 
(0.71-0.90) 

0.86 
(0.70-0.95) 

Occasion 3 0.59 
(0.33-0.84) 

0.64 
(0.50-0.79) 

0.58 
(0.41-0.75) 

0.91 
(0.86-0.97) 

0.50 
(0.35-0.65) 

0.79 
(0.70-0.87) 

0.79 
(0.58-0.92) 
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Discussion 

 

Overall, the present results indicate sufficient reliability for the SIMS to be considered useful 

for further research and applied practitioners alike. The intra-rater reliability of the SIMS 

composite score was classed as substantial and good for all raters based upon the weighted 

kappa and ICC scores respectively (Table 2). The MDC vales calculated at an 80% level of 

confidence demonstrate that if a one-point increase or decrease in each sub-test were 

observed a ‘real’ change in composite score would have likely occurred. The inter-rater 

reliability was classified as substantial to almost perfect when considering the weighted 

kappa values and excellent according to the ICCs (Table 3). The SLDL sub-test was the only 

movement where a discrepancy in scores between males and females was apparent (Table 1). 

Male participants regularly cited hamstring inflexibility as a limiting factor during this task 

whereas female participants rarely mentioned this. Females generally display superior 

hamstring flexibility as compared to men.25 This difference in hamstring flexibility between 

males and females may potentially explain the gender difference in SLDL score observed in 

the present study.   

 

The AR portion of the Y-balance test has previously been investigated as a risk factor with 

limb asymmetry >4 cm equating to a 2.3 – 2.7 times greater likelihood of non-contact injury 

among basketball and track and field athletes.26, 27 Our scoring criteria (Appendix 2) required 

the rater to assign a score (0 – 10) based on the difference in reach distance between limbs. 

The reason for limiting our scoring range to a maximum of 10 points (a reach asymmetry of 

≥10 cm) was to maintain equal weighting between all five sub-tests (each of which was 

scored out of 10). The scoring criteria were clearly objective for this sub-test and therefore 

did not directly assess movement quality. However, it was decided that the AR warranted 

inclusion in the SIMS regardless of not directly assessing movement quality, due to the 

promising evidence surrounding its relationship to injury.26, 27 The test reflects a number of 

physical qualities including neuromuscular control, strength and ankle stability: all of which 

are likely contributors to movement quality.1, 26, 27 Therefore, while this sub-test did not 

assess movement quality directly the variable that we did measure (difference in reach 

distance) is likely a reasonable surrogate marker. Ankle injuries occur frequently within 

soccer therefore the anterior reach may be a promising tool for highlighting increased risk of 

such events.28 The intra-rater weighted kappa values for the AR ranged from fair to moderate 

(Table 2). In contrast, the inter-rater values ranged from moderate to almost perfect (Table 3). 
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The difference between the intra- and inter-rater weighted kappa values suggests that the 

scoring criteria were clear but that a large proportion of the variation in the test scores 

stemmed from the participants and/or the influence of time between testing occasions. As 

such, additional participant familiarization with the test may help improve the intra-rater 

reliability.   

 

While the SLDL is multifaceted in its demands, eccentric strength and flexibility of the 

hamstrings are clearly primary aspects of the movement due to the flexion of the hip with an 

extended knee on the standing leg. Both eccentric strength and flexibility of the hamstrings 

have been proffered as injury risk factors within soccer players.29, 30 Hence, the ability to 

perform the SLDL with a high degree of movement quality may indicate proficiency in these 

important attributes (hamstring flexibility and eccentric strength). The intra-rater SLDL 

weighted kappa values for each rater represented substantial agreement (Table 2) while the 

inter-rater reliability values ranged from moderate to substantial (Table 3). These findings 

suggest that while raters were very consistent in their scoring of the SLDL within themselves 

there is scope to improve the between-rater agreement. Such a scenario is somewhat 

inevitable when considering subjective scoring criteria; however, more detailed guidelines on 

what constitutes a movement ‘error’ may help improve consensus between raters in the 

future. 

 

The ILL, or split squat, is a widely used exercise within soccer both during warm-up routines 

and resistance training sessions.31, 32 According to Cook et al.34 the ILL focuses on the 

“stresses simulated during rotational, decelerating and lateral type movements”. All of these 

movement patterns are frequently observed during soccer match play.34 The ability to 

perform this exercise correctly is important to ensure players do not use compensatory 

movements that potentially cause or exacerbate acute and overuse injuries. When performing 

the ILL the same test setup was used as with the FMS™; however, our scoring criteria 

(Appendix 2) differed.33 The alternative scoring criteria were employed with the intention of 

explicitly outlining the potential movement flaws and hence enhancing clinical usefulness of 

the results. Both intra- and inter-rater reliability of the ILL ranged from moderate to 

substantial (Tables 2 & 3). The weighted kappa values reported in the present investigation 

are in keeping with those observed in studies of the FMS™ version of the ILL.35-37 The more 

detailed scoring criteria adopted by the SIMS as compared with the FMS™ did not appear to 
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adversely affect the reliability yet will provide practitioners with a clearer indication of where 

any potential movement dysfunction originates from. 

 

It is important for soccer-specific movement assessments to incorporate explosive actions 

such as jumping and landing since they occur frequently during match play and often precede 

serious injury.34, 38 While bilateral, vertical drop jumps have long been used for injury risk 

stratification39, 40 many explosive soccer-specific actions are unilateral in nature and involve 

horizontal as well as vertical displacement (for example: kicking, changing direction and 

landing after a header).34 The scoring criteria for the SLHD were objective and incorporated 

both the jump distance and the between limb difference in jump distance (Appendix 2) with 

each of these aspects weighted equally. The precise distances that characterized the different 

scoring ranges were based on pilot testing conducted with recreationally active university 

students and therefore may not be applicable to professional soccer players. Revised criteria 

may need to be established for higher-level athletes. We opted for objective, as opposed to 

subjective, scoring in this instance due to recent evidence suggesting jump distance as a risk 

factor for non-contact hamstring injury.41 While the intra-rater weighted kappa values ranged 

from fair to moderate the inter-rater values indicated almost perfect agreement between raters 

(Tables 2 & 3). The discrepancy between the intra- and inter-rater weighted kappa values 

suggests that a large proportion of the variation in the test scores stemmed from the 

participants and/or the influence of time between testing occasions rather than the application 

of the scoring criteria per se.  

 

Allowing more jump attempts may increase the likelihood of maximum jump distance being 

reached and a plateau in performance occurring, which may in turn help improve reliability. 

On 32 of the 75 SLHD tests scored by Rater 1, (25 participants on three occasions) 

participants recorded their best jump distance (for that occasion) on their last attempt. 

Similarly, 15 of the 25 participants recorded their best jump distances overall on testing 

occasion 3. In addition, 12 of the 25 participants scored by Rater 1 recorded their best 

between limb difference score on their third testing occasion. This demonstrates that 

incorporating a number of familiarization sessions on multiple days prior to testing may 

improve reliability for the same reasons highlighted previously (plateauing of performance). 

However, it should be remembered that the more attempts allowed and the more 

familiarization sessions performed the less practically feasible the assessment may become. 

There may be a trade-off between improved reliability and the feasibility of using the SIMS 
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as a screening tool in the applied environment. A recent systematic review by Hegedus et 

al.42 assessed the methodological quality of studies exploring the reliability and validity of 

commonly used field-expedient screening tests such as the SLHD. They found no studies of 

satisfactory methodological quality reporting the reliability of the SLHD precluding 

comparison of our results to previous findings.  

 

The TJ assessment has been proposed as a field-expedient assessment of lower limb 

neuromuscular control.19 It is unique as an assessment of movement quality since it requires 

the participant to continuously perform plyometric vertical jumps for 10 seconds.19 While it 

is unlikely a player would replicate this precise activity during match-play the taxing nature 

of the test means it is likely to expose potentially injurious lower-limb movement patterns 

(particularly those associated with the onset of fatigue) that other, typically lower intensity 

assessments may not highlight. It has been suggested as a particularly useful tool for 

highlighting knee valgus movement during landing, which has been proposed as a risk factor 

for anterior cruciate ligament (ACL) injury.19, 43 Considering the long-term sequelae 

associated with ACL injury we adjudged the TJ worthy of inclusion in the SIMS.44, 45 Both 

the intra- and inter-rater weighted kappa values represented moderate agreement within and 

between raters (Tables 2 & 3). While this indicates acceptable reliability the weighted kappa 

values calculated are lower than previously reported by Myer et al.19 However, Myer et al.19 

only assessed 10 participants and so raters may have remembered the previous scores given, 

leading to recall bias. In addition, they scored the same video footage twice as opposed to 

scoring participants on two separate occasions. The scoring criteria (Appendix 2) are 

inherently subjective but reliability may be improved by adding some objective guidelines to 

certain scoring items. For example, one of the scoring items asks: “was there a pause between 

jumps”? This could potentially be changed to: “was there a pause, lasting longer than one 

second (or another defined time period), between jumps”? Such amendments may improve 

consistency of scoring within and between raters. However, future research is needed to 

assess the difference in reliability when objective instructions are given compared with when 

they are not. 

 

In an effort to separate some of the sources of variation within the test-retest design, one rater 

scored all the filmed movements (SLDL, ILL and TJ) from each testing occasion twice. This 

removed the influence of variation in test performance stemming from the participants and 

revealed the ‘pure’ intra-rater, or intra-occasion, reliability. The weighted kappa values for 
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the SLDL and ILL represented almost perfect agreement while the score for the TJ indicated 

substantial reliability (Table 4). These higher weighted kappa values (as compared to those 

reported in Table 2) are not surprising since they reflect only the variation in scoring 

associated with the rater. These results suggest that improvements in the ‘real world’ intra-

rater reliability are more likely to arise from aspects related to the participants rather than the 

raters. Bearing this in mind, future strategies aimed at improving the intra-rater reliability of 

the SIMS further may include extended participant familiarization with the test and allowing 

them to read the scoring criteria. Explicitly explaining the scoring criteria for the FMS™ to 

participants elicited improved scores.46 This suggests that ambiguity related to what is being 

asked of participants during movement screening may influence their test execution and 

potentially contribute to variation in performance. 

 

A number of limitations should be considered when interpreting the results of the present 

study. Perhaps most importantly, the pilot testing conducted to establish the scoring ranges 

for the SLHD (Appendix 2) were based on recreationally active university students’ scores. 

As such, it may be necessary to revise this aspect of the scoring criteria in the future if the 

SIMS is used with professional soccer players. Similarly, if the SIMS were to be utilized with 

youth soccer players then amendments to the scoring criteria may be necessary. In addition, 

the results presented here are from only 25 participants, which, is a relatively modest sample 

size for assessing reliability according to Terwee et al.47; however, we included the scores 

from three trials rather than the usual two in an effort to improve the credibility of our 

conclusions. Furthermore, our raters represented a homogenous group. All were PhD students 

with postgraduate degrees in sport science. Further research may be needed to assess the 

reliability of the SIMS when conducted by other groups of raters, for example, undergraduate 

students or sports coaches.    

 

Conclusions  

 

Until now, no movement screen has been developed specifically for use among soccer 

players. The SIMS composite score demonstrated good to excellent intra- and inter-rater 

reliability. However, the intra-rater reliability of the individual sub-tests ranged from fair to 

substantial indicating scope for further improvement. Establishing the reliability of the SIMS 

is a prerequisite for further research seeking to investigate the relationship between test score 
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and subsequent injury. The present results indicate at least acceptable reliability for this 

purpose. 
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4. THE ASSOCIATION WITH INJURY OF THE SOCCER INJURY MOVEMENT 

SCREEN (SIMS) 

 

4.1 Rationale for the original investigation 

 

Having observed acceptable reliability (chapter 3) for use in future research and applied 

practice, an important question remained: is the SIMS associated with football injury? A 

prospective cohort study was designed and conducted to address this question.  

 

4.2 Soccer Injury Movement Screen (SIMS) composite score is not associated with 

injury among semi-professional football players 

 

The following section contains the submitted manuscript pertaining to an original 

investigation conducted as part of this course of study. 

 

The citations and references contained herein apply to this manuscript only and are formatted 

to the requirements of the journal it is currently under peer-review with (as of November 

2017). The numerical citations relate to the reference list within this section only and not to 

the reference list included at the end of this thesis. 
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Soccer Injury Movement Screen (SIMS) composite score is not associated 

with injury among semi-professional soccer players 
 

ABSTRACT 

 

Study Design: Cohort study. 

Background: The association between movement quality and injury is equivocal. No soccer-

specific movement assessment has been prospectively investigated in relation to injury risk. 

Objectives: To investigate the association between a soccer-specific movement quality 

assessment and injury risk among semi-professional soccer players. 

Methods: Semi-professional soccer players (n=306) from 12 clubs completed the Soccer 

Injury Movement Screen (SIMS) during the pre-season period. Individual training/match 

exposure and non-contact time loss injuries were recorded prospectively for the entirety of 

the 2016 season. Relative risks (RR) were calculated, and presented with 90% confidence 

intervals (CI), for the SIMS composite and individual sub-test scores from generalized linear 

models with Poisson distribution offset for exposure.  

Results: When considering non-contact time loss lower extremity injuries (primary level of 

analysis), there was a most likely trivial association with the SIMS composite score. 

Similarly, SIMS composite score demonstrated most likely to likely trivial associations to all 

injury categories included in the secondary level of analysis (non-contact time loss hip/groin, 

thigh, knee and ankle injuries). When considering hamstring strains and ankle sprains 

specifically (tertiary level of analysis) the SIMS composite score, again, demonstrated very 

likely trivial associations. A total of 262 non-contact time loss injuries were recorded. The 

overall (training and match exposure combined) incidence of non-contact time loss injury 

was 12/1000 hours. 

Conclusion: The SIMS composite score demonstrated no association to any of the 

investigated categories of soccer-related injury. The SIMS composite score should not be 

used to group players into ‘high’ or ‘low’ risk groups. 

 

Level of evidence: 3 

 

Key Terms: Association football, predict, epidemiology, screening 
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INTRODUCTION 

 

Reducing sports injury incidence is a worthwhile endeavor for both applied practitioners and 

researchers alike. From a competitive point of view, lower injury burden and greater player 

availability have been linked to superior league ranking in professional soccer in addition to 

reduced financial and psychological costs.11, 15, 25 However, it should be acknowledged that 

the financial costs associated with injury are not limited to professional players; for example, 

healthcare system and broader economic consequences due to missed days work may ensue 

following injury in recreational players. The ‘sequence of prevention’ model proferred by van 

Mechelen et al.38 posits that the first and second steps to reducing injury incidence are 

establishing the extent of the problem (i.e. incidence) and subsequently the etiology of injury 

(i.e. risk factors). 

 

Numerous risk factors have been highlighted in relation to soccer-specific injury including 

(but not limited to): previous injury, age, running load and eccentric knee flexor strength.1, 24, 

35 Movement quality has recently been investigated as a potential injury risk factor within 

soccer; however, evidence is equivocal.4, 31, 33 While firm consensus on what constitutes 

movement quality is lacking; one definition offered, at least in the context of movement 

screening, is that it encapsulates “the maintenance of correct posture and joint alignment in 

addition to balance while performing the selected movements”.28 One of the underlying 

principles behind movement screening as a practice is that poor movement quality increases 

ones likelihood of injury.28 

 

Many movement screens exist; however, the majority have been designed for general athletic 

populations and not soccer players specifically.28 To date, no soccer-specific movement 

screen has been prospectively investigated in relation to injury risk; despite the use of 

movement screens being widespread within professional soccer.27 The Soccer Injury 

Movement Screen (SIMS) is one such sport-specific tool and has been shown to be a reliable 

means to assess movement quality.29 The SIMS comprises five movements; chosen to reflect 

the most common sites (lower extremities) and types (strains and sprains) of soccer-related 

injury. Hence these sub-tests primarily tax the mobility and stability of the hip, knee and 

ankle joints in addition to the strength and flexibility of the surrounding musculature.29  
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Therefore, the aims of the present study were two-fold: 1) to investigate the relationship 

between SIMS composite score and injury risk, and 2) to investigate the relationship between 

the individual sub-tests comprising the SIMS and injury risk.  

 

METHODS 

 

Participants 

 

The University of Wollongong’s Human Research Ethics Committee (ref number: 

HE15/340) approved this prospective cohort study. The study was conducted in accordance 

with the Declaration of Helsinki. In total, 306 male soccer players (mean age, 22 ± 4 years; 

mean height, 179 ± 7 cm; mean body mass, 75 ± 10 kg) from two National Premier Leagues 

New South Wales division 1 (NPL NSW) clubs and 10 Illawarra Premier League (IPL) clubs 

provided written informed consent to participate. If players were under the age of 18 then 

their legal guardian provided written informed consent and the player provided informed 

verbal assent. The NPL NSW represents one of eight regional divisions that collectively 

make up the second tier of the Australian soccer system whereas the IPL represents a smaller 

regional league within the geographical boundary of the NPL NSW constituency. Due to the 

organizational structure of Australian soccer it is unclear exactly where the IPL would rank in 

a comprehensive pyramid structure like those more commonly observed in European soccer. 

Based purely on the number of divisions between the IPL and the NPL NSW 1 league an 

approximate estimation would be that it represents the sixth tier. However, a caveat to 

viewing the structure of soccer from a national perspective within Australia is that the 

popularity and participation within the sport varies widely from state to state. For example, 

the sixth tier within New South Wales may hypothetically represent a higher standard of play 

compared with the second tier in the state of South Australia where soccer is less popular. 

Playing standard aside, all participants were semi-professional, trained two to three times per 

week and each club played at least one competitive game per week. 

 

Procedures 

 

Soccer Injury Movement Screen (SIMS) 
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Each participant completed the SIMS exactly as described by McCunn et al.29 during the 

preseason period (March 2016). The SIMS has previously demonstrated good to excellent 

intra- and inter-rater reliability.29 The SIMS is primarily a movement quality assessment 

comprising five sub-tests: anterior reach (AR), single-leg deadlift (SLDL), in-line lunge 

(ILL), single-leg hop for distance (SLHD) and the tuck jump assessment (TJ). Each sub-test 

is scored out of 10 points resulting in a theoretical maximum composite score of 50 when the 

score from each sub-test is summed. A higher score indicates poorer performance; hence, 

zero is the theoretical ‘best’ score while 50 is the ‘worst’. The AR and SLHD scoring criteria 

are objective in nature and are based on reach and jump distance respectively. Conversely, 

the SLDL, ILL and TJ rely on subjective assessment of movement quality from video 

footage. The lead researcher was present at every testing session and acted as the test rater; 

scoring all video footage. Video footage was recorded using iPad 3 devices (Apple Inc, 

California, USA). The rater possessed undergraduate and postgraduate sport science 

qualifications, was an accredited strength and conditioning coach with both the United 

Kingdom Strength and Conditioning Association (UKSCA) and the National Strength and 

Conditioning Association (NSCA); and had extensive previous experience 

conducting/scoring the SIMS (>100 previous tests). In addition to the lead researcher, 

undergraduate Exercise Science students assisted in the collection of the SIMS test data. All 

student helpers were required to attend two training sessions (4 hours in total), covering how 

to set up the testing equipment and instruct participants correctly (see McCunn et al.29), with 

the lead researcher prior to assisting with any testing. All testing was conducted either in a 

university biomechanics laboratory or at the training ground of the respective club when 

suitable facilities were available. All testing was conducted on hard, non-slip surfaces. 

Height, weight and date of birth were also collected for each participant during testing 

sessions.  

 

Injury Data Collection 

 

Undergraduate Exercise Science students with additional training (Sports Medicine Australia 

Sports Trainer Level 1 award) were recruited to act as injury and exposure data collectors for 

the present study. In Australia, sports trainers are employed by clubs to deliver on-site first 

aid and acute injury management, hence, they are also well placed to record injury data.10 In 

this study, the sports trainers attended every training session and match for the entirety of the 

2016 season for each club. An electronic version of the injury data recording form presented 
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by Fuller et al.14 was used to record all physical complaints (both time loss and non-time 

loss). Completed electronic injury forms were sent to the lead researcher every week for 

review. For each recorded injury a detailed event description was also requested from the 

sports trainer. The descriptions included the circumstances that immediately preceded the 

injury event, weather/pitch conditions, the players’ own explanation of how the injury 

occurred and any other information the sports trainer considered relevant. Each completed 

injury form was blinded by the lead researcher and then reviewed in conjunction with the 

injury description by both a chartered physiotherapist and an orthopedic doctor separately 

and assigned a diagnosis based on the Orchard Sports Injury Classification System version 

10.1.32 If the diagnoses provided by the physiotherapist and the orthopedic doctor differed 

then the lead researcher flagged the injury and all parties reconsidered the case together until 

consensus on the most likely diagnosis was achieved. This method of retrospective injury 

diagnosis has recently been advocated for and also used in previous research.16, 30 Only non-

contact injuries were included within the analyses since contact injuries are dependent on 

interaction with other individuals and were adjudged by the authors not inherently related to 

movement quality. Sports trainers also recorded training and match exposure time (in 

minutes) for each individual participant and included this data in the weekly submission to 

the lead researcher. 

 

Statistical Analysis 

 

All estimations were made using SPSS Statistics version 24 (SPSS, Inc., Chicago, Illinois, 

USA). Data are presented as means ± standard deviations and absolute or relative 

frequencies. The effects of the SIMS composite and individual sub-test scores on injury risk 

were analyzed using a generalized linear model (GLM) with a Poisson distribution, log-linear 

link function and offset for minutes of combined training and match exposure. Relative risks 

(RR) and 90% confidence intervals (90%CI) were calculated to express the effect on injury 

risk per one-point increase in SIMS composite or individual sub-test scores. Several injury 

categories were analyzed using the GLM. These injury categories were incorporated into 

three levels of analyses (primary, secondary and tertiary). The primary level included one 

category: all non-contact time loss lower extremity injuries. The secondary level included 

four separate injury categories: all non-contact time loss hip/groin, thigh, knee and ankle 

injuries, which were selected since they represent the most frequently injured body locations 

within soccer.12 The tertiary level included two categories: all non-contact time loss 
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hamstring muscle strains and ankle sprains, which were selected since these are two very 

commonly investigated specific injury types within soccer.13, 39 In addition, the observed 

frequencies of both these injury types exceeded 20 cases. According to Bahr & Holme3 20—

50 injury cases are required to detect moderate to strong associations between risk factors and 

injury likelihood. Bonferroni correction was applied to the P-values for all secondary and 

tertiary level injury categories to counteract the issue of multiple comparisons. Injury rates 

are reported as the number of injuries per 1000 hours of training, match and combined (both 

training and match) exposure. 

 

Inferences regarding the effects of SIMS composite and individual sub-test scores were 

assessed against a pre-defined smallest worthwhile effect on injury risk, using a spreadsheet 

for deriving a confidence interval and clinical inference from a P-value.18 The smallest 

worthwhile beneficial effect was given by an RR of 0.90 (i.e., a 10% lower injury rate), and 

conversely the smallest worthwhile harmful effect was given as an RR of 1.11 (i.e., an 11% 

higher injury rate) as previously established.19 Effects were classified as clear if the 

percentage likelihood that the true effect was beneficial (i.e., reduced injury risk: RR≤0.90) 

was greater than 25% and the odds ratio between benefit and harm was greater than 66, 

otherwise the effect was deemed unclear. Effects (risk changes) were qualified against pre-

defined probabilistic terms from the following scale: <0.5%, most unlikely; 0.5-5%, very 

unlikely; 5-25%, unlikely; 25-75%, possibly; 75-95%, likely; 95-99.5%, very likely and 

>99.5%, most likely.5 

 

RESULTS 

 

When considering all non-contact time loss lower extremity injuries (primary level of 

analysis), there was a most likely trivial association with the SIMS composite score (Table 1). 

Similarly, SIMS composite score demonstrated most likely to likely trivial associations to all 

injury categories included in the secondary level of analysis (time loss, non-contact hip/groin, 

thigh, knee and ankle injuries)(Table 1). When considering hamstring strains and ankle 

sprains specifically (tertiary level of analysis) the SIMS composite score, again, demonstrated 

very likely trivial associations (Table 1). 

 

The majority of SIMS individual sub-test scores demonstrated trivial to unclear associations 

with hamstring strain and ankle sprain injuries (Table 2). However, a greater (worse) SLHD 



	

	 96	

score possibly increased the risk of suffering an ankle sprain. In contrast, a greater (worse) 

SLDL score possibly decreased the risk of suffering a hamstring strain.   

 

The frequencies and relative distributions of non-contact time loss injuries categorized by 

location and severity are displayed in Table 3. A total of 262 non-contact time loss injuries 

were recorded. The average exposure time experienced during training and match play per 

player was 55±26 and 18±11 hours respectively. The overall (training and match exposure 

combined) incidence of non-contact time loss injury was 12/1000 hours. The incidence of 

non-contact time loss injuries sustained during training and matches was 6/1000 hours and 

28/1000 hours respectively. Injuries originating from trauma versus overuse equated to 48% 

(n=125) and 52% (n=137) respectively.  
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TABLE 1. Association between SIMS composite score and injury risk 

 
* Bonferroni corrected P-value <0.05. CI; confidence interval, n/a; not applicable.	
 
 
 
 
 
 
 
 
 

 Relative 
risk 

Lower 
90%CI 

Upper 
90%CI P-value Bonferroni 

corrected P-value Qualitative inference 

Primary analysis       
Lower extremity injuries (n=244) 0.98 0.96 1.00 0.07 n/a Most likely trivial 

Secondary analysis       
Hip/groin injuries (n=48) 1.01 0.96 1.07 0.76 3.04 Most likely trivial 
Thigh injuries (n=81) 0.95 0.91 0.99 0.03 0.14 Very likely trivial 
Knee injuries (n=41) 0.94 0.89 0.99 0.07 0.26 Likely trivial 
Ankle injuries (n=48) 1.02 0.97 1.07 0.49 1.96 Most likely trivial 

Tertiary analysis       
Hamstring muscle strains (n=64) 0.94 0.90 0.98 0.01 0.02* Very likely trivial 
Ankle sprains (n=41) 1.04 0.99 1.09 0.21 0.42 Very likely trivial 
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TABLE 2. Association between SIMS sub-test scores and hamstring muscle strain/ankle 
sprain injury risk 
 

 
CI; confidence interval	
 
 
 
TABLE 3. Non-contact time loss injury pattern by location and severity of injuries 
 

 Total 1-3 Days 
(minimal) 

4-7 Days 
(mild) 

8-28 Days 
(moderate) 

>28 days 
(severe) 

Injury location      
Head/face 0 0 0 0 0 
Neck/cervical spine 3 (1) 1 0 2 (2) 0 
Shoulder/clavicula 0 0 0 0 0 
Sternum/ribs/upper back 1 0 1 (2) 0 0 
Abdomen 2 0 0 1 (1) 1 (5) 
Low back/sacrum/pelvis 11 (4) 7 (6) 2 (4) 2 (2) 0 
Upper arm 0 0 0 0 0 
Elbow 1 0 0 0 1 (5) 
Forearm 0 0 0 0 0 
Wrist 0 0 0 0 0 
Hand/finger/thumb 0 0 0 0 0 
Hip/groin 48 (18) 21 (19) 11 (22) 15 (18) 1 (5) 
Thigh 81 (31) 30 (27) 12 (25) 32 (39) 7 (33) 
Knee 41 (16) 17 (16) 10 (20) 11 (13) 3 (14) 
Lower leg/Achilles tendon 23 (9) 13 (12) 5 (10) 4 (5) 1 (5) 
Ankle 48 (18) 19 (17) 8 (16) 14 (17) 7 (33) 
Foot/toe 3 (1) 2 (2) 0 1 (1) 0 

Total injuries 262 110 49 82 21 
 
Values within brackets show percentage of total (values below 1% not shown). 
 

 Relative 
risk 

Lower 
90%CI 

Upper 
90%CI P-value Qualitative 

inference 
Hamstring muscle strains (n=64)      

Anterior reach 0.91 0.81 1.02 0.16 Possibly trivial 
Single-leg deadlift 0.90 0.80 1.02 0.15 Possibly ↓ 
In-line lunge 0.93 0.78 1.11 0.49 Possibly trivial 
Single-leg hop for distance 0.96 0.88 1.05 0.43 Likely trivial 
Tuck jump 0.97 0.85 1.11 0.71 Likely trivial 

Ankle sprains (n=41)      
Anterior reach 1.06 0.94 1.20 0.43 Possibly trivial 
Single-leg deadlift 1.10 0.95 1.28 0.29 Possibly trivial 
In-line lunge 0.90 0.73 1.11 0.41 Unclear 
Single-leg hop for distance 1.11 1.00 1.23 0.10 Possibly ↑ 
Tuck jump 0.97 0.83 1.14 0.75 Unclear 
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DISCUSSION 

 

The SIMS composite score was not meaningfully related to any of the injury categories 

investigated (Table 1). Similarly, the individual sub-test scores were not associated with 

injury, with the exceptions of the SLDL and the SLHD in relation to hamstring strains and 

ankle sprains respectively (Table 2). While a greater (worse) SLHD score was possibly 

associated with higher risk of ankle sprain injury it should be noted the observed association 

between SLDL score and hamstring strains was counter-intuitive, with a theoretically better 

score equating to increased risk of injury. 

 

SIMS Composite Score 

 

The present study suggests the SIMS does not display an association (or any predictive 

relationship) with injury risk. When discussing risk factors an important distinction should be 

made between the terms ‘association’ and ‘prediction’.26 Bahr2 demonstrated the difference 

and explained that while an association can exist between risk factors and injury likelihood 

this does not necessarily equate to predictive ability. Outcome statistics related to prediction 

include (although are not limited to) Area Under the Curve (AUC), sensitivity, specificity and 

positive/negative predictive value; however, no clear guidelines exist to determine at what 

point these values distinguish a test as ‘predictive’.26 To date, no injury screening test has 

demonstrated satisfactory predictive ability, yet several have shown an association.2  

 

The association with injury for the SIMS composite score was trivial for all categories 

investigated (Table 1). Despite a Bonferroni corrected P-value of <0.05 being observed with 

regard to hamstring strains the clinical inference was nonetheless trivial, indicating that no 

meaningful relationship existed between the SIMS composite score and injury likelihood.21 

This lack of association is consistent with previous research that has explored the relationship 

between movement quality and injury risk. Krosshaug et al.22 reported that the commonly 

used vertical drop jump test was unable to predict anterior cruciate ligament injury in a large 

cohort of soccer and handball players. Similarly, the Functional Movement Screen (FMS) 

developed by Cook et al.8, 9 is widely used within soccer yet its association with injury in this 

population is limited.4, 27, 31 The potential contributors to sports injury are numerous and 

while intuitively appealing it seems movement quality is not strongly associated with injury 

risk. While movement quality may potentially contribute to injury likelihood in combination 
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with other risk factors, individually it does not appear to be a significant risk factor. The 

etiology of injury are multifactorial and investigating individual risk factors in isolation, 

while scientifically sound, may not adequately address the real-world issues of injury 

prediction and prevention.6, 7 However, the lack of association with injury risk does not 

necessarily render movement screening useless.37 Other benefits of continuing the practice 

include establishing return to play test values, highlighting current musculoskeletal 

conditions and establishing trust/rapport between the practitioner and the athlete.37 

Furthermore, movement screening offers a systematic way for applied practitioners to 

identify fundamental movement patterns relevant to safe strength training and potentially 

performance enhancement. Some evidence suggests that movement quality may be related to 

physical attributes such as sprinting and jumping; ergo, the application of movement 

screening may relate more so to performance enhancement than injury prediction.23, 40  

 

Individual Sub-test Scores 

 

The associations with injury for the individual sub-tests mirrored the results for the composite 

score for the most part, with trivial and unclear relationships observed (Table 2). Two 

exceptions were the SLHD and SLDL when considering ankle sprains and hamstring strains 

respectively. A higher (worse) SLHD was possibly associated with a greater risk of suffering 

an ankle sprain. This potential relationship between the SLHD and ankle sprain risk makes 

intuitive sense since there is moderate evidence linking ankle instability and poor 

performance on this test.17 However, a higher (worse) SLDL score was possibly associated 

with a reduced risk of suffering a hamstring strain. The observed relationship between SLDL 

score and hamstring strain injury is counterintuitive. It is unclear why better performance on 

this test should potentially result in greater risk. Although not quantified directly by the 

SLDL test; flexibility, eccentric strength and neuromuscular control all contribute to 

successful test performance. These attributes are generally believed to contribute to lower 

risk of injury; hence, the observed association is surprising.34-36   

 

Methodological Considerations 

 

A number of limitations should be considered when interpreting the results of the present 

study. Collecting injury data in a non-professional environment is fraught with challenges. 

The injury data collection method may have influenced the observed injury incidence. 
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McCunn et al.30 highlighted various challenges associated with applying the 

recommendations presented in the current consensus statement on soccer injury data 

collection within non-professional soccer.14 Using time loss to define injury severity has 

significant limitations when applied within an environment where players are not required to 

report for training/matches on a daily basis (such as in the present study). Consider the 

following example: a player suffers a suspected hamstring strain during a match (Saturday) 

and is removed from play; however, the next scheduled training session is not until the 

following Wednesday (four days later). Based on the time loss definition of injury, if the 

player returned to training on Wednesday and participated fully, a time loss injury of three 

days should be recorded. However, we cannot be sure whether the player could have 

participated fully if the next scheduled training session had been the day immediately 

following the match (which would have equated to a time loss of zero days). Such scenarios 

could potentially have inflated the number of minimal (one to three days time loss) injuries 

recorded. In addition, the reality of conducting injury research within non-professional soccer 

dictated that access to advanced medical technology was not always possible. As a result, 

when deciding upon the most appropriate injury diagnosis, objective indicators such as X-ray 

and magnetic resonance imaging scans were not always available. In addition, the results of 

the present study are only generalizable to semi-professional male players and further 

research may seek to investigate full professional, female or youth populations. 

 

A number of methodological strengths should also be acknowledged. The number of injuries 

observed in the present study allowed for multiple categories to be investigated while still 

satisfying the suggestion by Bahr & Holme3 that a minimum of 20-50 cases be included for 

meaningful analysis. In addition, the individuals responsible for collecting the injury data and 

determining the diagnoses were blinded to the SIMS score of the participants, reducing the 

likelihood of bias. The statistical approach utilized accounted for multiple injuries to the 

same player and the exposure time of each individual. This is rare within research that has 

investigated the association with injury of other movement screening tests. Furthermore, the 

use of magnitude-based inferences provided an estimation of the strength of relationship 

between SIMS score and injury risk, rather than simply relying on null hypothesis 

significance (P-values) testing.20 
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CONCLUSION 

 

The SIMS composite score was not associated with any of the injury categories investigated. 

Similarly, the individual sub-test scores were not associated with injury, with the exceptions 

of the SLDL and the SLHD in relation to hamstring strains and ankle sprains respectively. It 

should be noted the observed association between SLDL score and hamstring strains was 

counter-intuitive, with a theoretically better score equating to increased risk of injury. 

Therefore, the SIMS should not be used to categorize players as ‘high’ or ‘low’ risk. 

However, the SIMS may be useful in other ways. It may help practitioners identify physical 

qualities – for example, limb asymmetries related to strength and or flexibility – that warrant 

development from a performance enhancement perspective. 

 

FINDINGS: The SIMS composite score was not associated with any of the injury categories 

investigated. Similarly, the individual sub-test scores were not associated with injury, with 

the exceptions of the SLDL and the SLHD in relation to hamstring strains and ankle sprains 

respectively. 

 

IMPLICATIONS: The SIMS should not be used to categorize players as ‘high’ or ‘low’ 

risk. 

 

CAUTION: Using time loss to define injury severity has significant limitations when applied 

within an environment where players are not required to report for training/matches on a 

daily basis (such as in the present study). 
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5. INJURY DATA COLLECTION PROCEDURES WITHIN LOWER LEAGUES 

 

5.1 Rationale for the publication 

 

The large-scale prospective cohort study conducted as part of this research degree (chapter 4) 

presented numerous logistical and methodological challenges. While designing this study a 

significant issue concerning how best to collect the required injury data was encountered. 

With over 300 players from 12 different clubs participating in the study and considering the 

part-time nature of semi-professional football it was impossible for a medical professional to 

see each player every day (or even on a regular basis). However, this is precisely the degree 

of contact required to strictly follow the football injury research consensus guidelines.16 

While the current consensus statement serves full-time professional football well in terms of 

suggested best practice for collecting and recording injuries it does not translate to non-

professional environments in the same way. The numerous challenges along with suggested 

solutions related to injury data collection in non-professional football environments were 

discussed in the following point-counterpoint article. 

 

5.2 Issues related to conducting a prospective cohort study within a semi-professional 

environment 

 

The following section contains the submitted manuscript pertaining to the following 

publication: 

 

McCunn R, Sampson JA, Whalan M, Meyer T. Data collection procedures for football 

injuries in lower leagues: Is there a need for an updated consensus statement? Science and 

Medicine in Football. 2017;1(1):86-88. 

 

The citations and references contained herein apply to this manuscript only and are formatted 

to the requirements of Science and Medicine in Football. The citations relate to the reference 

list within this section only and not to the reference list included at the end of this thesis. 
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Abstract 

 

In 2006 a consensus statement recommending how football injury data should be collected 

and reported was published. These recommendations have provided a useful framework for 

research over the last 10 years. However, many questions related to the underlying 

methodology of studies concerned with injury epidemiology and prevention in football still 

exist. This is particularly true for research conducted in non-professional environments. The 

present point-counterpoint article highlights some of these issues and asks the question: are 

we in need of an updated consensus statement? 
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Football participation carries an inherent risk of injury. Consistent and accurate records of 

injury are imperative for planning, evaluating and delivering injury prevention programs such 

as the FIFA 11+ (van Mechelen, Hlobil & Kemper 1992). In this regard, Fuller et al.’s (2006) 

consensus statement serves research within full-time professional football well by 

streamlining research methods and providing definitions/recommendations for injury data 

collection. Furthermore, Fuller et al.’s (2006) definition of injury (any physical complaint 

sustained as a result of football activities) and the proposed injury incident data recording 

sheets are appropriate for both full- and part-time players. However, problems are 

encountered when applying some of the guidelines to “part-timers”, who cumulatively 

compose the largest playing group (e. g. youth academy, semi-professional and 

recreational/community level players). In our view there are two main issues at the forefront 

of injury research conducted within part-time groups that require clarification; (1) who 

should record the data and (2) how should injury severity be quantified? A number of 

solutions to each question may exist. This point-counterpoint article presents various options 

for discussion in an attempt to ensure future injury research conducted within part-time 

playing groups is of high methodological quality. 

 

Data collection  

 

Collecting accurate and reliable data is essential if one hopes to present valid results that 

allow consistent comparisons across the literature. However, within existing studies of part-

time playing groups there are discrepancies. For example, the data has been collected by a 

variety of individuals including: 1) coaches (Ekstrand & Hilding 1999; Froholdt, Olsen & 

Bahr 2010), 2) parents (Emery, Meeuwisse & Hartmann 2005; Emery & Meeuwisse 2006), 

3) medical staff (aus der Fünten, Faude, Lensch & Meyer 2014; Brito et al. 2012; Silvers et 

al. 2015; Herrero, Salinero & Del Coso 2014) and 4) academic researchers (Hammes, aus der 

Fünten, Bizzini & Meyer 2016; McNoe & Chalmers 2010; Schmikli, de Vries, Inklaar & 

Backx 2011). The varying depth of medical knowledge and skills among these parties may 

consequently lead to inconsistencies in data collection and present difficulties when 

comparing outcomes. For example, all parties would most likely correctly record certain 

types of ‘dramatic’ injuries such as bone breaks; however, discrepancies may arise when 

more ambiguous cases occur e.g. minor muscle strains. Indeed, certain groups may over- or 

under-report the incidence of injuries depending on their relationship with the players and 
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their specific role within the club. For example, players may withhold physical complaints 

from their coach for fear of not being selected to play in matches or student research 

assistants may not be assertive enough when attempting to obtain relevant injury information 

from players they are unfamiliar with. Medical practitioners (e.g. doctors and 

physiotherapists) are undoubtedly the most qualified to diagnose and record injuries. 

However, the majority of part-time teams do not have immediate access to medical 

practitioners. An injury recording method that relies on individuals with this level of 

expertise would therefore, in many cases, make large-scale research projects untenable. 

Alternatively, player self-reporting of exposure time and injury incidence (e. g. via online 

resources) removes the requirement for any third party to record the information. However, 

self-reporting arguably raises questions over compliance and data accuracy. In our view, the 

most accurate data can be collected from a third party present at training and on match days. 

Hence, we suggest each team must appoint a primary data collector who would record basic 

details such as: exposure, injury location, incident description and symptoms. Much of the 

research highlighted above has applied this method; however, we propose that this method 

should be improved by stipulating that the nominated individual must posses a minimum 

standard of medical knowledge and undergo training with respect to injury data collection 

procedures. Such an approach would ensure the recording of detailed injury descriptions, 

facilitating retrospective injury diagnosis by trained medical professionals (Hammes, aus der 

Fünten, Bizzini & Meyer 2016). Allowing non-experts such as parents, coaches and 

university students to contribute in this manner offers a viable strategy to ensure high quality 

data is collected, and for research teams to conduct meaningful large-scale projects. The next 

step in this process would be for the scientific community to agree upon the extent and 

content of the required training. Some variability in the methodology between studies is 

inevitable. Hence, the importance of meticulously describing data collection protocols cannot 

be overstated, since it is vital in allowing readers to judge the quality of the results presented. 

 

Injury quantification 

 

Reporting injury incidence per 1000 hours of exposure as recommended by Fuller et al. 

(2006) seems appropriate for part-time playing groups. However, Fuller et al.’s (2006) 

guidelines for recording injury severity (days lost from full participation in training/match 

play) are problematic in a part-time environment where, in contrast to full-time athletes, 

players are not seen by medical staff on a daily basis. Indeed several days between 
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training/match days may pass when the part-time player is not seen by anyone associated 

with the club and the opportunity to observe a “return to full participation” may only arise 

once or twice per week. One potential method of determining injury severity is via the player 

self-reporting recovery by providing the date they believe they were fit to return to full 

participation. Similarly, players could report perceived injury severity e.g. using a Likert-type 

scale via an online questionnaire to indicate how serious they believe any given case is 

(Clarsen, Rønsen, Myklebust, Flørenes & Bahr 2014). Alternatively, follow up appointments 

with injured players by medical practitioners (either via phone or in-person) on non-

training/playing days could be used. However, each of these options pose compliance and 

logistical implementation issues. We suggest that the definition proposed by Fuller et al. 

(2006) should apply even though adopting such an approach would almost certainly over-

estimate injury severity. The greatest impact of over-estimation would be observed at the less 

serious end of the spectrum. For example, in the event of a player suffering an injury on a 

Saturday match-day, missing their only scheduled training session the following Tuesday and 

returning to play the subsequent Saturday match-day, a six-day lay-off would be recorded. 

However, the player may have been fit to train/play by Wednesday meaning the injury should 

have been classified as a three-day time-loss injury. As such, some ‘minimal’ injuries may be 

erroneously recorded as ‘mild’ (Fuller et al. 2006). However, upholding the current definition 

consistently across the literature would, at least, provide comparable data sets.  

 

Conclusion 

 

In summary, while a number of solutions to the highlighted questions may exist, it is 

important to acknowledge that each is somewhat flawed. Agreement surrounding the 

recommendations for injury data collection procedures among part-time playing groups is 

thus crucial. Such consensus will allow comparisons between studies and ensure that the 

conclusions drawn from future research are meaningful. Any updated consensus statement 

should carefully consider the logistical implications for researchers when making 

recommendations. Herein, the arguments have been presented with a focus on football. 

However, the issues presented apply across sports and as such epidemiologists and applied 

practitioners from different domains would add value to this discussion. 
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6. GENERAL DISCUSSION 

 

6.1 Summary of findings 

 

The work included within the present thesis revealed a number of findings relevant for both 

applied practitioners and academic researchers. Firstly, numerous movement screens were 

identified within the scientific literature and collectively summarized (chapter 1); providing 

applied practitioners with a resource to assist with decision-making related to which, if any, 

screen to use. The reliability of the identified movement screens varied but was acceptable 

for the most part. However, the majority of the identified movement screens had no 

supporting evidence related to their association with injury. Studies that investigated the 

association with injury of the FMS™ and Landing Error Scoring System (LESS) were 

identified; however, the results were equivocal with some studies reporting an association 

and some not. It was concluded that none of the movement screens identified had enough 

supporting evidence to warrant the moniker of “injury prediction tool”. 

 

The literature review conducted as part of chapter 1 revealed that the FMS™ was the most 

heavily researched movement screen of those identified. Despite this canon of research, a 

paucity of studies directly addressed the issue of whether FMS™ scores were associated with 

injury among football players specifically. As a result, the study outlined in chapter 2 sought 

to investigate the association with injury of the FMS™ among high-level youth football 

players. No association with injury was observed. 

 

The SIMS was developed as a football-specific movement screen with the rationale that an 

assessment targeting the most common sites of football-related injury may provide greater 

insight into any potential relationship between movement quality and injury risk among 

footballers. Initially, the intra- and inter-rater reliability of the SIMS was assessed since test 

reliability is a prerequisite for validity.4 The SIMS demonstrated acceptable reliability for use 

in further research and applied practice (chapter 3). 

 

Following on from the reliability study described in chapter 3, a prospective cohort study was 

subsequently designed and conducted to investigate the association with injury of the SIMS 

within a football population. Over 300 semi-professional football players performed the 

SIMS during the pre-season period and injury incidence was recorded during the in-season 
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period. However, no association with injury was observed for the SIMS composite score 

(chapter 4). These findings do not support the creation of high and low risk of injury groups 

based on SIMS score. 

 

Finally, during the design phase of the prospective cohort study described in chapter 4, a 

number of logistical and methodological issues related to injury data collection in a non-

professional environment were encountered. The challenges and potential solutions to 

conducting this type of research are presented and discussed in chapter 5. While the football 

injury research consensus guidelines16 serve professional football well, they do not translate 

to the non-professional environment neatly. Within the professional setting, club medical 

staff can assess players’ injury status on a daily basis. Yet, this is not possible when players 

train and compete on a part-time basis. Alternative solutions to recording and diagnosing 

football related injuries in non-professional environments include the use of non-medically 

trained primary data collectors and retrospective diagnosis via detailed injury event 

descriptions. 

 

In summary, the present findings suggest that movement quality, specifically when assessed 

using the FMS™ and the SIMS, is not associated with injury among football players. 

Furthermore, when conducting injury research within non-professional football 

environments, the use of non-medically trained primary data collectors and retrospective 

diagnosing via detailed injury event descriptions represent viable methodological options. 

 

6.2 If movement screens are not predictive of injury, do they still have value? 

 

The usefulness of screening in general, not just limited to movement screening, has been 

questioned recently.2 The main tenet from the review by Bahr2 was that screening tests used 

within the scope of sports medicine do not demonstrate diagnostic values sufficient to call 

them predictive. However, exactly how good a diagnostic tool needs to be before it can be 

deemed ‘predictive’ remains unclear. In addition, while movement screening does not appear 

to be a useful tool for creating high and low risk of injury groups within football, it may be 

helpful to researchers and applied practitioners in other ways. In response to Bahr’s2 review 

article on the subject of screening and injury risk stratification a correspondence manuscript 

was submitted to the same journal to highlight this point. 
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The usefulness of screening tests to predict injury has recently been questioned.[1, 2] 

However, from our point of view it is important that screening not be completely demonised. 

A screening test may not accurately identify who will get injured (albeit providing a 

likelihood) but this should not result in obsolescence. Usefulness is not solely dependent on 

predictive ability. As Bahr [1] highlights: causative relationships (i.e. injury risk factors) can 

be identified using screening tests e.g. eccentric hamstring weakness.[3] Should we therefore 

completely admonish screening tests because we cannot definitively say that poor eccentric 

hamstring strength will 100% result in a strain injury? Screening puts a number on an 

attribute that allows us to quantify injury risk and in-turn modify the design of injury 

prevention strategies. Clearly the syntax surrounding screening tests needs adapted. Bahr[1] 

is absolutely correct that the practice of applied practitioners using screening results to 

categorise their athletes into intervention and ‘control’ groups is not supported by the 

evidence but let’s not throw the baby out with the bathwater. 
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6.3 How might movement screening still be useful from an injury perspective? 

 

Bittencourt et al.5 challenged the concept of simply identifying risk factors for injury via 

prospective cohort studies, at least in the context of prediction. The aetiology of football-

related injury is multifaceted.1, 3 Furthermore, the interaction between risk factors is not 

linearly cumulative.5 Indeed, different combinations of risk factors and circumstances may 

result in the same risk profile.5 When viewed from this perspective it is easy to appreciate 

how difficult the task of predicting injury truly is. However, reducing the incidence of injury 

within football is not necessarily dependent on the ability to precisely predict who will get 

injured and when. The widely accepted model of sports injury prevention presented by van 

Mechelen et al.30 identifies four key stages: 1) establish the extent of the problem 

(epidemiology), 2) establish aetiology (risk factors and mechanisms), 3) introduce preventive 

measures, and 4) assess their effectiveness. In order to create effective preventive measures 

(as described in stage 3), researchers must identify the risk factors they can realistically 

address and subsequently create interventions that influence them. As a result, while 

prospective cohort studies that seek to identify individual risk factors (for example: chapter 4) 

may not be suitable to address the question of prediction, they can contribute towards injury 

reduction strategies by highlighting attributes that should be incorporated into preventive 

interventions. While the appeal of individually targeted injury reduction interventions is 

clear, current evidence does not support such practice. Rather, universal interventions – 

whose design should be based on available evidence – that apply to all players likely offer the 

optimal approach to reducing injury incidence within football. Indeed, universal interventions 

such as the FIFA 11+ warm-up programme and generic Nordic hamstring curl protocols have 

demonstrated effectiveness in terms of reducing injury incidence.26, 28 

 

6.4 How might movement screening be useful to applied practitioners in other ways? 

 

While not the primary focus of the present research it is important to acknowledge that 

movement screening is potentially useful to applied practitioners in ways unrelated to injury 

reduction. Screening allows the establishment of a baseline value and quantification of a 

player’s movement quality when in a ‘healthy’ state.29 This may be useful when making 

return to play decisions after the rehabilitation from any potential injury. Movement 

screening also offers applied practitioners the opportunity to build rapport with unfamiliar 

players.29 In the context of professional youth academies, strength and conditioning 
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practitioners and physiotherapists are faced with the challenge of a continual turnover of 

players each year. Movement screening may offer a quick, logistically viable and systematic 

method of quantifying movement quality and in doing so help determine readiness for 

introduction to formalized resistance training and progressions to more advanced exercise 

techniques. This may be particularly helpful in guiding the physical development plans of 

newly recruited players whom club support staff are not familiar with.  

 

6.5 General limitations 

 

A number of limitations within the current body of work should be considered when 

interpreting the findings. Firstly, the type of movement screening discussed herein relies on 

predominantly subjective judgment by the test rater. While the scoring guidelines and criteria 

help to guide the rater, ultimately their opinion determines the assigned score. This is a 

notable consideration since it relates to test validity. A relevant question is: do subjectively 

assessed movement screen scores align with scores based on objectively measured movement 

quality criteria, for example: joint angles and alignment quantified using advanced camera 

equipment? However, the accessibility and simplicity of subjectively assessed movement 

screens make them an attractive type of assessment for applied practitioners within football. 

Furthermore, when prospectively investigating potential risk factors for injury it is important 

to consider not only the risk factor in question and injury incidence but also the exposure 

time of each individual. Without incorporating the amount of time players are exposed to 

training and playing into the statistical analysis, a significant contribution to injury risk is 

being omitted. This perhaps represented the greatest limitation of the prospective cohort 

study described in chapter 2. However, this limitation was addressed and overcome in the 

prospective cohort study described in chapter 4. In addition, investigating potential risk 

factors in isolation, as in this body of work, provides limited insight into the multifactorial 

nature of sports injury. It is acknowledged that many factors, both intrinsic and extrinsic, 

contribute to injury risk and understanding the complex interactions between these factors 

would represent an advancement of knowledge. However, the necessary large sample sizes 

and resultant logistical challenges associated with such potential studies make this next leap 

very challenging. Realistically, multi-centre collaboration will be required to conduct studies 

capable of investigating these complex interactions between risk factors and injury.5, 12, 19 
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6.6 Future research directions 

 

Considering the widespread use of movement screening within professional football the 

paucity of related research within this population is perhaps surprising. The present body of 

work encompassed studies conducted with elite youth footballers representing a professional 

club academy and adult semi-professional players; however, scope exists to conduct similar 

investigations with senior professional players. Furthermore, increasing the scoring 

objectivity of movement screens using accessible and affordable filming equipment 

represents an avenue for future research. Of the 10 screens identified within the present 

literature review (chapter 1) only two (FMS™ and LESS) had been prospectively 

investigated in relation to their association with injury. Krosshaug et al.20 subsequently 

reported that the drop vertical jump was a poor predictor of anterior cruciate ligament injury. 

However, the majority of the identified screens have not had their association with injury 

investigated and this offers another potential avenue of research. The interaction and 

combination of potential risk factors in terms of improving injury prediction ability provides 

a complex yet hitherto relatively unexplored topic worthy of future study. Finally, as Bahr2 

has raised previously: conducting randomized controlled trials to investigate the effectiveness 

of screening and targeting intervention programmes versus universal implementation of 

injury prevention strategies represents an important step in clarifying the efficacy of using 

movement screening to risk stratify individuals. 

 

6.7 Practical recommendations and conclusions 

 

The outcomes arising from the present body of work highlight that numerous movement 

screens demonstrating acceptable reliability exist; however, such assessments do not appear 

to be strongly associated with injury. Furthermore, the newly developed SIMS presented 

herein was not associated with injury among a semi-professional cohort of football players. 

The present results challenge current convention that advocates risk stratification and targeted 

intervention based on screening score.18 Rather, prospective cohort studies identifying risk 

factors should be used to inform the content of universal injury prevention programmes that 

are performed by all players. It is important to acknowledge that the lack of association with 

injury for the FMS™ and the SIMS does not preclude their use in the applied field. 

Movement screening may prove useful for applied practitioners in a number of other ways 

including: establishing healthy baseline values useful during potential return to play decision-
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making, building rapport with players, identifying current injuries and informing appropriate 

resistance training programme content. Both applied practitioners and researchers should be 

able to clearly articulate their rationale for using movement screening with football players to 

ensure that all parties involved have appropriate expectations regarding the usefulness of the 

resultant data. Informing players and coaches that movement screening can predict who will 

or will not get injured and targeting preventive interventions only to so-called high-risk 

groups may ultimately harm credibility if and when supposedly low-risk players get injured.  
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8. APPENDICES 

 

8.1 Assessment of methodological quality for reliability studies raw data (chapter 1) 

 

The methodological quality of the identified reliability studies was assessed using the 

COSMIN checklist described by Terwee et al. (2011). Only the reliability section (box B) 

was completed since this was the most relevant aspect. Box B contained 14 questions related 

to study design. According to the checklist scoring system a ‘worst score counts’ approach 

should be taken, meaning that if one of the 14 questions is answered as ‘poor’ the study is 

rated as such. The scoring options range from ‘excellent’ to ‘poor’ on a four-point scale, 

however, not all questions in box B use the entirety of this scale. For example, question one 

can only be answered as either ‘excellent’ or ‘good’ whereas question three can be answered 

as either ‘excellent’, ‘good’, ‘fair’, or ‘poor’. Due to the ‘worst score counts’ approach the 

questions where ‘poor’ was a potential answer (Q3, 4, 5, 7, 8, 9, 10, 11, 12, 13) were 

addressed first for each study (in numerical order) and if any of these questions were scored 

as ‘poor’ then no further questions were answered in accordance with the scoring protocol. 

The first question (in numerical order) recorded as ‘poor’ was noted below. If no questions 

were answered as ‘poor’ then the first question (in numerical order) recorded as ‘fair’ was 

noted below. If no questions were answered as ‘poor’ or ‘fair’ then the first question (in 

numerical order) answered as ‘good’ was noted below. If no questions were answered as 

‘poor’, ‘fair’ or ‘good’ then the first question (in numerical order) to be answered as 

‘excellent’ was noted below. The worst score for each study is documented in this appendix. 

In some cases a very brief explanation may be given for the decision where ambiguity 

existed.  

 

FMS 

Hotta et al. (2015)    Q3 = poor 

Gulgin & Hoogenboom (2014)  Q3 = poor 

Letafatkar et al. (2014)   Q3 = poor 

Parenteau-G et al. (2014)   Q3 = poor 

Elias (2013)     Q3 = poor 

Gribble et al. (2013)    Q3 = poor 

Shultz et al. (2013)    Q3 = fair 

Smith et al. (2013)    Q3 = poor 
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Frohm et al. (2012)    Q3 = poor 

Klusemann et al. (2012)   Q3 = poor 

Onate et al. (2012)    Q3 = poor 

Teyhen et al. (2012)    Intra-rater reliability study Q3 = poor *  

Inter-rater reliability study Q1 = good * 

Butler et al. (2012)    Q3 = fair 

Schneiders et al. (2011)   Q3 = poor 

Chorba et al. (2010)    Q3 = poor 

Minick et al. (2010)    Q3 = fair 

* Intra-rater reliability sample size was small (<30 participants) resulting in ‘poor’ classification. The number of 

participants (64) listed in Table 3 refers to the overall sample size used for the calculation of inter-rater 

reliability. Eighteen participants were selected from the overall pool of 64 and performed the FMS a second 

time to allow calculation of intra-rater reliability. 

 

LESS 

Smith et al. (2012)    Q3 = poor 

Padua et al. (2011)    Q3 = fair 

Onate et al. (2010)    Q3 = poor 

Padua et al. (2009)    Q1 = good* 

* It can be safely assumed that there were no missing items e.g. none of the 50 participants were removed from 

the analysis and each was assigned a score by all raters so all items on the LESS scoring sheet must have been 

addressed. However, this was not explicitly stated so it was decided that question one must be answered as 

‘good’. 

 

Single-leg squat screens 

Junge et al. (2012)    Q1 = good* 

Crossley et al. (2011)    Q3 = poor  

Örtqvist et al. (2011)    Intra-rater reliability study Q3 = fair 

      Inter-rater reliability study Q3 = poor** 

Ageberg et al. (2010)    Q3 = poor 

Chmielewski et al. (2007)   Q3 = poor 

* The number of missing items was partially described e.g. two participants were removed from the sample due 

to pre-existing medical conditions. Of the 72 participants who did take part it can be assumed that no missing 

items (in terms of test scores) existed since all individuals’ scores were included in the statistical analysis, 

however, this was not explicitly stated so it was decided that question one must be answered as ‘good’. 
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** Inter-rater reliability sample size was small (<30 participants) resulting in ‘poor’ classification. The number 

of participants (33) listed in Table 4 refers to the sample size used for the calculation of intra-rater reliability. 
 

DVJ screens 

Nilstad et al. (2014)    Q13 = fair 

Whatman et al. (2013)    Q3 = poor 

Ekegren et al. (2009)    Q9 = poor* 

* The test conditions were not similar for the two intra-reliability conditions. One was performed collectively 

and the other performed in isolation at the raters’ home. Similarly, the raters were allowed to rate the videos at 

home for one of the inter-rater testing sessions meaning that it is unclear whether they all abided by the rating 

guidelines e.g. no pausing of videos. 

 

Tuck jump assessment 

Herrington et al. (2013)   Q3 = poor 

Dudley et al. (2013)    Q3 = fair 

 

AAA 

McKeown et al. (2014)   Q3 = poor 

 

CSMT 

Parsonage et al. (2014)   Q3 = fair 

 

NMST 

Reid et al. (2014)    Q3 = poor 

 

16-PPM 

Tarara et al. (2014)    Q3 = poor 

 

SEBT 

Ness et al. (2015)    Q9 = fair* 

* It is unclear if the test conditions were similar for each rater. It is unclear how strictly the rater guidelines 

were followed e.g. how many times the raters watched the clips, whether or not they paused any clips or where 

the ratings took place.	
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8.2 Assessment of methodological quality for injury studies raw data (chapter 1) 
 

Reference Question number Quality score 
(%) 

Level of 
evidence 1 2 3 5 6 7 10 11 12 18 20 21 22 25 

Bardenett et al. (2015) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 87 2++ 
Garrison et al. (2015) 1 1 1 1 1 1 0 1 1 1 1 1 1 0 80 2++ 
Hotta et al. (2015) 1 1 1 1 1 1 0 1 1 1 1 1 0 1 80 2++ 
McGill et al. (2015) 1 1 0 1 1 1 1 1 1 1 1 1 1 0 80 2++ 
Teyhen et al. (2015) 1 1 1 0 1 1 1 1 1 1 1 1 0 0 73 2+ 
Warren et al. (2015) 1 1 1 1 1 1 1 1 1 1 1 1 0 0 80 2++ 
Zalai et al. (2015) 1 1 1 0 1 1 0 1 1 1 1 1 1 0 73 2+ 
Dossa et al. (2014) 1 1 1 0 1 1 1 1 1 1 1 1 1 0 80 2++ 
Kiesel et al. (2014) 1 1 0 0 1 1 0 1 1 1 1 1 0 0 60 2+ 
Knapik et al. (2014) 1 1 1 1 1 1 0 1 1 1 1 1 0 0 73 2+ 
Letafatkar et al. (2014) 1 1 1 0 1 1 1 1 1 1 1 1 0 0 73 2+ 
Shojaedin et al. (2014) 1 0 1 0 1 0 1 1 1 1 0 1 0 0 53 2+ 
Butler et al. (2013) 1 1 0 0 1 1 0 1 1 1 1 1 0 0 60 2+ 
Lisman et al. (2013) 1 1 0 0 1 1 1 1 1 1 1 0 0 0 60 2+ 
McGill et al. (2012) 1 0 0 1 1 1 1 1 1 1 0 1 1 1 73 2+ 
O’Connor et al. (2011) 1 1 0 0 1 1 0 1 1 1 1 1 1 0 67 2+ 
Chorba et al. (2010) 1 1 1 0 1 1 1 1 1 1 1 1 1 0 80 2++ 
Kiesel et al. (2007) 1 0 0 0 1 1 0 1 1 1 0 1 1 0 53 2+ 
Padua et al. (2015) 1 1 1 1 1 1 0 1 1 1 1 1 0 0 73 2+ 
Smith et al. (2012) 1 1 1 1 1 1 1 1 1 1 1 1 1 0 87 2++ 
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8.3 Description of the Soccer Injury Movement Screen (SIMS) (chapter 3) 
	
	

	
* If available, a slider device (e.g. Y Balance Test Kit™) can be used to perform the anterior reach. 

Movement name Rationale/perceived usefulness Instructions 
Pre-assessment N/A “For each exercise you have three practice attempts and three 

scored attempts on each leg. In the case of the tuck jump you 
have three practice jumps followed by the scored 10 second 
effort.” 

Anterior reach - Provides an indication of ankle mobility (dorsi flexion) 
- Highlights limb asymmetry (ankle mobility and/or leg 
strength) 
- Provides an indication of single-leg control 

“Remove your shoes. Place the big toe of your standing leg so it 
is touching the back of the taped line. Place hands on your hips. 
Reach the toes of the other leg as far along the measuring tape as 
possible – hovering around 5 centimeters off the ground. You 
must keep your standing foot in contact with the floor throughout, 
e.g. you cannot rise up on to your toes. Try to hover at the point 
of maximal reach for a couple of seconds to allow scoring. You 
must return to the start position for the attempt to be counted. 
Likewise, you must maintain balance throughout each attempt for 
the score to be recorded.”*	

Single-leg 
deadlift 

- Provides an indication of ability to simultaneously flex 
and extend at the hip with extended knees while 
maintaining neutral spinal alignment 
- Provides an indication of hamstring flexibility 
- Provides an indication of single-leg control 

“Put your shoes back on. Tuck your t-shirt into your shorts. Stand 
on the middle of the cross, taped on the floor, and cross arms over 
your chest. Imagine a straight line between your head and your 
right heel. Try to hinge at the hip while keeping that line straight 
until parallel to the floor. Try to keep your standing leg (left) 
extended. Return to the start position with both feet touching the 
floor between each repetition.” Switch the words ‘right’ and ‘left’ 
when instructing the participant when testing the other side. 
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** Foot placement is determined by measuring the distance from the floor to the tibial tuberosity (shin length).

Movement name	 Rationale/perceived usefulness	 Instructions	
In-line lunge	 - Provides an indication of ability to simultaneously flex 

and extend at the hip with flexed knees while maintaining 
neutral spinal alignment	

As per instructions from Functional Movement Screen (Cook et 
al. 2006a) (see reference list for full article details). “Place your 
left toes so they are touching the back of the taped line. Place the 
heel of your right foot xx centimeters (as marked by instructor)** 
directly in front of your left foot. Hold the dowel behind your 
back gripping it with your left hand at your neck and your right 
hand at your lower back. Make sure the dowel is touching your 
head, upper back and buttocks. While maintaining an upright 
posture, descend into a lunge touching your left knee to the floor. 
Maintain contact with the dowel at the head, upper back and bum 
throughout. Return to the start position with knees fully extended 
between each repetition.”  Switch the words ‘right’ and ‘left’ 
when instructing the participant when testing the other side.	

Single-leg hop 
for distance	

- Provides an indication of lower-limb unilateral power 
- Highlights limb asymmetry (lower-limb power and/or 
ankle stability and/or lower-limb eccentric strength) 
- Provides an indication of single-leg control	

“Place the toes of the jumping leg so they are touching the back 
of the taped line. Jump as far as you can while still able to stick 
the landing on the same leg and hold your position to allow 
measurement. You must record three successful scored jumps on 
each leg and you will receive as many attempts as necessary to 
achieve this.”	

Tuck jump	 - Allows quick assessment of bilateral knee control 
during plyometric activity 
- Highlights limb asymmetry (lower-limb power and/or 
hip mobility)	

As per instructions from Myer et al. (2008) (see reference list for 
full article details). “Stand on the middle of the cross taped on the 
floor with feet shoulder width apart. Upon signal from the tester, 
perform continuous vertical jumps on the spot for 10 seconds 
making sure to lift your knees towards your chest so that your 
upper thighs are parallel with the floor each time. Try to perform 
as many jumps as possible.”	
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8.4 SIMS scoring criteria (chapter 3) 

 

General rater instructions  

 

Record each participant’s height, weight and tibial tuberosity height (distance from the floor to 

their tibial tuberosity). If a participant cannot physically perform any test due to pain then they 

should be considered injured, this should be reported to the relevant club staff members and the 

test should be postponed. 

 

Scoring guidelines for the anterior reach and single-leg hop for distance (objective assessments) 

 

Anterior reach 

Measure the distance (in centimeters) from the start line to the most distal part of the foot of the 

reaching leg. Round to the nearest centimeter. Three repetitions are performed on each leg and 

reach distance should be recorded for each attempt. The maximum reach distances achieved by 

each leg should be used to calculate the difference between left and right. The maximum 

theoretical score achievable is 10 and this would represent a ‘poor’ score. In contrast, the 

theoretical minimum score is zero and this would represent a ‘good’ score.  

 

Difference in reach distance (cm) between legs Test score 

 

0     0 

1     1 

2     2 

3     3 

4     4 

5     5 

6     6 

7     7 

8     8 

9     9  

≥10     10 
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Single-leg hop for distance 

Measure the distance (in centimeters) from the start line to the heel of the jumping/landing leg. 

Round to the nearest centimeter. Three repetitions are performed on each leg and jump distance 

should be recorded for each attempt. Both jump distance and limb symmetry are taken into 

account when assigning a test score. The maximum jump distance achieved on each leg should 

be used to calculate the score. Combine the scores for jump distance and jump symmetry to 

produce the final score out of 10. 
 

Sum of right and left best jump distances (cm)  Test score 
 

Males:  Females: 

<320  <220      5 

321-340 221-240     4 

341-360 241-260     3 

361-380 261-280     2 

381-400 281-300     1 

>400  >300      0 

 

Difference between best right and left jumps (cm)  Test score 

 

>20        5 

17-20        4 

13-16        3 

9-12        2 

4-8        1 

<4        0 

 

Scoring guidelines for the single-leg deadlift, in-line lunge and tuck jump (subjective 

assessments) 

 

• If an error occurs once and the rater judges it to be egregious then it should be scored as 

an error. 

• If an error (but only to a minor extent) is observed once then it should not be scored. 
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• If the same error (but only to a minor extent) is observed twice then it should be scored 

as an error.  

 

Defining specifically what constitutes “minor extent” or “egregious” is not possible. These 

judgments are left to the discretion of each individual rater. An important consideration is that 

raters are consistent in their judgments within themselves. 

 

Single-leg deadlift 

The score for this test is based on the ‘movement quality’ criteria outlined below. Three 

repetitions are performed on each leg. The maximum theoretical score achievable is 10 and this 

would indicate ‘poor’ movement quality. In contrast, the theoretical minimum score is zero and 

this would indicate ‘good’ movement quality. Both legs are scored and the average of both right 

and left scores is assigned to the individual.  

 

Item # 

1 Is external hip rotation (standing leg) visible?  Yes=1 No=0 
   

2 Does lumbar spine remain neutral?    Yes=0 No=1 

   

3 Does thoracic spine remain neutral?    Yes=0 No=1 

    

4 Does knee of raised leg remain extended throughout? Yes=0 No=1 
 

5 Is upper and lower body movement synchronized?  Yes=0 No=1 
   

6 Is footprint maintained?     Yes=0 No=1 
 

7 Is hip abduction (standing leg) present?   Yes=1 No=0 
 

8 Does the standing leg knee remain extended throughout? Yes=0 No=1 
 

9 Parallel to floor position achieved?  Parallel (90°)=0, 89°-45°=1, <45°=2 

      (all relative to the stance leg hip flexion angle) 

 

In relation to item #9 – the angle being assessed is displayed in the following diagram: 
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In-line lunge 

The score for this test is based on the ‘movement quality’ criteria outlined below. Three 

repetitions are performed on each side. The maximum theoretical score achievable is eight and 

this would indicate ‘poor’ movement quality. In contrast, the theoretical minimum score is zero 

and this would indicate ‘good’ movement quality. Both legs are scored and the average of both 

right and left scores is assigned to the individual. To generate a score out of 10 multiply the 

fractional score out of eight by 10 e.g. if an individual displays four out of eight possible errors 

then the score out of 10 is: (4/8)x10 = 5. The reason for generating a score out of 10 is to 

maintain the same weighting between the five sub-tests. 

 

Item # 

1 Does dowel remain vertical in frontal plane throughout? Yes=0 No=1 
 

2 Does torso rotation (transverse plane) occur?   Yes=1 No=0 
 

3 Does dowel remain vertical in sagittal plane throughout? Yes=0 No=1 

  

4 Does back knee touch the floor?    Yes=0 No=1 

 

5 Does heel of front foot lift off the floor?   Yes=1 No=0 
 

6 Is footprint maintained throughout?    Yes=0 No=1 
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7 Are the three dowel contact points with body maintained? Yes=0 No=1 
 

8 Does knee valgus occur during the movement?  Yes=1 No=0 
   

Tuck jump 

Mark a cross on the floor using tape (two 60cm strips that intersect). The score for this test is 

based on the ‘movement quality’ criteria outlined below. The maximum theoretical score 

achievable is 10 and this would indicate ‘poor’ movement quality. In contrast, the theoretical 

minimum score is zero and this would indicate ‘good’ movement quality. Myer et al. (2008) 

created the tuck jump assessment and any further clarification on scoring procedures can be 

sought from their original article (see reference list for full article details). 

 

Item # 

1 Was there knee valgus at landing?    Yes=1 No=0 

  

2 Do thighs reach parallel (peak of jump)?   Yes=0 No=1 
   

3 Were thighs equal side-to-side (during flight)?  Yes=0 No=1 
 

4 Was foot placement shoulder width apart?   Yes=0 No=1 
  

5 Was foot placement parallel (front to back)?   Yes=0 No=1 
 

6 Was foot contact timing equal?    Yes=0 No=1 
 

7 Was there excessive contact landing noise?   Yes=1 No=0 

 

8 Was there a pause between jumps?    Yes=1 No=0 

 

9 Did technique decline prior to 10 seconds?   Yes=1 No=0 
   

10 Were landings in same footprint (within taped cross)? Yes=0 No=1 
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8.5 Comparison of SIMS scores between injured and non-injured players (chapter 4) 

 
AR, anterior reach; ILL, in-line lunge; SLDL, single-leg deadlift; SLHD, single-leg hop for distance; TJ, tuck jump 
 
	

 Injured player scores Non-injured player scores 
 Composite AR SLDL ILL SLHD TJ Composite AR SLDL ILL SLHD TJ 
Primary analysis             
Lower extremity injuries 
(injured/non-injured n=123/183) 17.0 ± 5.0 2.2 ± 1.9 3.6 ± 1.7 2.5 ± 1.2 4.5 ± 2.4 4.1 ± 1.8 17.9 ± 4.4 2.6 ± 2.2 3.6 ± 1.8 2.7 ± 1.2 4.7 ± 2.4 4.3 ± 1.7 

Secondary analysis             
Hip/groin injuries 
(injured/non-injured n=34/272) 17.2 ± 5.3 2.8 ± 2.5 3.5 ± 1.8 2.5 ± 1.4 4.6 ± 2.5 3.7 ± 1.7 17.6 ± 4.6 2.4 ± 2.0 3.6 ± 1.8 2.6 ± 1.2 4.6 ± 2.4 4.3 ± 1.7 

Thigh injuries 
(injured/non-injured n=55/251) 16.6 ± 4.7 2.2 ± 1.7 3.7 ± 1.7 2.5 ± 1.3 4.3 ± 2.3 3.9 ± 1.8 17.7 ± 4.7 2.5 ± 2.2 3.6 ± 1.8 2.6 ± 1.2 4.7 ± 2.4 4.3 ± 1.7 

Knee injuries 
(injured/non-injured n=29/277) 15.6 ± 5.6 2.1 ± 1.9 2.7 ± 1.7 2.5 ± 1.5 4.2 ± 2.3 4.0 ± 1.7 17.7 ± 4.5 2.5 ± 2.1 3.7 ± 1.7 2.6 ± 1.2 4.7 ± 2.4 4.2 ± 1.7 

Ankle injuries 
(injured/non-injured n=37/269) 18.1 ± 5.5 2.4 ± 1.8 3.9 ± 1.6 2.6 ± 1.1 4.9 ± 2.7 4.3 ± 2.1 17.5 ± 4.6 2.5 ± 2.1 3.6 ± 1.8 2.6 ± 1.2 4.6 ± 2.3 4.2 ± 1.7 

Tertiary analysis             
Hamstring muscle strains 
(injured/non-injured n=41/265) 16.2 ± 5.0 2.0 ± 1.6 3.4 ± 1.6 2.5 ± 1.3 4.4 ± 2.2 3.9 ± 1.7 17.7 ± 4.6 2.5 ± 2.2 3.6 ± 1.8 2.6 ± 1.2 4.6 ± 2.4 4.3 ± 1.7 

Ankle sprains 
(injured/non-injured n=34/272) 18.1 ± 5.4 2.4 ± 1.8 4.0 ± 1.6 2.6 ± 1.1 4.9 ± 2.7 4.3 ± 2.1 17.5 ± 4.6 2.5 ± 2.1 3.6 ± 1.8 2.6 ± 1.2 4.6 ± 2.3 4.2 ± 1.7 
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8.6 Full published texts relevant to this thesis 

 

The following appendices represent the fully published versions of the texts relevant to this 

thesis and are presented in chronological order of publication date. 
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! Springer International Publishing Switzerland 2015

Abstract Subjective assessment of athletes’ movement
quality is widely used by physiotherapists and other

applied practitioners within many sports. One of the beliefs

driving this practice is that individuals who display ‘poor’
movement patterns are more likely to suffer an injury than

those who do not. The aim of this review was to summarize

the reliability of the movement screens currently docu-
mented within the scientific literature and explore the

evidence surrounding their association with injury risk. Ten

assessments with accompanying reliability data were
identified through the literature search. Only two of these

ten had any evidence directly related to injury risk. A

number of methodological issues were present throughout
the identified studies, including small sample sizes, lack of

descriptive rater or participant information, ambiguous

injury definitions, lack of exposure time reporting and risk
of bias. These factors, combined with the paucity of

research on this topic, make drawing conclusions as to the

reliability and predictive ability of movement screens dif-
ficult. None of the movement screens that appear within the

scientific literature currently have enough evidence to
justify the tag of ‘injury prediction tool’.

Key Points

Subjective assessment of athletes’ movement quality

is commonplace within professional sport, often in

an attempt to predict injury risk.

Of the ten movement screens identified within the

scientific literature, only two have had their injury
predictive ability investigated via prospective cohort

studies.

None of the movement screens present within the

scientific literature currently have enough supporting

evidence to justify being heralded as ‘injury
prediction tools’; however, they may well provide

practitioners with greater holistic understanding of

their athletes’ physical capabilities.

1 Introduction

The use of fitness assessments to profile and categorize

athletes’ physical capabilities is commonplace and a
central aspect of many applied practitioners’ jobs [1]. The

data collected from traditional fitness tests are typically

objective in nature, i.e., can be measured in units such as
seconds, centimeters, or grams. Movement screening is a

type of assessment frequently used within professional

soccer as well as other sports and is predominantly a
subjective process that aims to measure the ‘quality’ of a

movement pattern [2]. However, for various reasons,

including the subjective nature of such assessments and
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its relatively recent adoption by practitioners, this practice

has received limited attention within the scientific litera-
ture. A consensus on what defines movement quality is

not available; however, the concept encapsulates the

maintenance of correct posture and joint alignment in
addition to balance while performing the selected move-

ments. While some sporting institutions measure intu-

itively related parameters such as strength and joint range
of motion, movement quality has been identified as an

independent attribute [3, 4]. Therefore, a fitness testing
battery that seeks to build a comprehensive profile of an

athlete should incorporate an assessment of movement

quality. This highlights the need for reliable and valid
movement screening tools.

The foundation of a comprehensive injury prevention

program is identifying individuals with a high risk of
injury [5], and this is one of the key concepts underpin-

ning the practice of movement screening. If athletes who

display ‘poor’ movement patterns have a greater risk of
injury than those who display ‘good’ movement patterns,

then screening protocols may be an important component

of injury prevention strategies. However, the purpose of
movement screens is not to diagnose why a poor move-

ment pattern exists but simply to highlight it [6]. It is up

to the judgment of the practitioner as to the course of
action, if any, taken in response to the outcome. Fur-

thermore, elite sport is not the only environment in which

movement ability is important. Giblin et al. [7] stated that
fundamental movement ability (core stability, balance,

coordination) is related to perceived competence and

confidence associated with physical activity. As such,
movement quality is linked to general health as well as

sports performance.

Despite movement quality being an important skill for
the general population, in addition to athletes, measuring

it is problematic due to its subjective nature. A variety of

movement screens exist, the most well-known being the
functional movement screen (FMS) [6, 8]. The FMS has

received attention from researchers, and different aspects

of this protocol—such as its reliability and association
with injury—have been investigated. However, other

screens do exist, with some—but not all—appearing

within the scientific literature. No collective critique of
the movement screens detailed in the scientific literature,

necessary to raise awareness of the available options,

currently exists. This would allow practitioners to make
informed decisions about which, if any, movement screen

is most appropriate for them. Accordingly, the aim of the

present review was to summarize the intra- and inter-rater
reliability of the available movement screens and discuss

the evidence surrounding their ability to determine injury

risk.

2 Literature Search

We performed a computerized literature search (Fig. 1) in
PubMed, Web of Science, and ScienceDirect for articles

published up until 1 July 2015 using the search terms

‘movement’, ‘screen’, ‘screening’, ‘reliability’, ‘injury’,
‘prediction’, ‘predicts’, ‘landing error scoring system’,

‘tuck jump assessment’, ‘functional movement screen’,

‘functional movement screening’, ‘single leg squat test’,
‘squat’, ‘test’, ‘drop jump’, ‘drop vertical jump’, and

‘movement quality’ in various combinations. In addition,

articles were identified manually from the reference lists of
original manuscripts; a total of 51 relevant articles were

identified. For the purpose of this review, a movement

screen was defined as a protocol designed for use with
apparently healthy, uninjured individuals to primarily

assess the ‘quality’ of a movement(s) rather than objective

outcomes such as number of repetitions, distance, or time
achieved. The movement(s) included should rely on mul-

tiple physical qualities to execute correctly, e.g., strength,

balance, and flexibility. It is not used to identify specific
clinical conditions and does not require interpretation by a

medical professional.

3 Reliability of Identified Screens

Ten movement screens that met the definition outlined

above and with accompanying reliability data were iden-
tified through the literature search (Fig. 2). These screens

consisted of the FMS, the Landing Error Scoring System

(LESS), single-leg squat screen variations, drop vertical
jump screen variations, tuck jump assessment, athletic

ability assessment (AAA), conditioning specific movement

tasks (CSMT), the netball movement screening tool
(NMST), the physical performance measures screen (16-

PPM), and the star excursion balance test (SEBT) move-

ment quality screen. A description of the exercises
involved in each screen is provided in Table 1.

The reliability of an assessment tool is paramount

because it is a pre-requisite for test validity [9]. As such,
before any given movement screen can be investigated

with respect to injury prediction, it must first be demon-

strated that the test is reliable. Throughout the 51 articles
identified by the literature search, intra-class correlation

coefficients (ICC) were commonly reported. Atkinson and

Nevill [10] stated that various qualitative interpretations of
ICC values exist, yet none were related to ‘‘analytical goals

for research’’ and so it is difficult to say exactly what value

constitutes ‘good’ or ‘excellent’ reliability. Some of the
identified studies classified an ICC value of C0.75 as good

[11], whereas others [12, 13] classified scores of C0.80 and
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C0.90 as good and excellent, respectively. Shultz et al. [14]

reported ICC values of 0.40–0.75 as fair to good and[0.75

as excellent. A reasonable consensus as to what can be
considered good reliability appears to be an ICC C0.75;

thus, this classification is used throughout this review. In

addition to ICCs, kappa values were also often reported.
Guidelines presented by Landis and Koch [15] are used to

classify these scores, with kappa score indicating strength

of agreement as follows: poor\0.00, slight 0.00–0.20, fair
0.21–0.40, moderate 0.41–0.60, substantial 0.61–0.80, and

almost perfect 0.81–1.00.

3.1 Methodological Quality Assessment
for Reliability Studies

The methodological quality of each paper that reported the

reliability of a movement screen was assessed using the
COSMIN (COnsensus-based Standards for the selection of

health Measurement INstruments) checklist [16]. This

checklist utilizes a four-point scoring system (poor, fair,
good, excellent) and contains sub-sections relating to

numerous aspects of study design. For the purposes of this

critique, only the reliability section (box B), which contains

Potential records identified through PubMed, 
Web of Science and ScienceDirect using search 

terms: “movement”, “screen”, “screening”, 
“reliability”, “injury”, “prediction”, “predicts”, 

“landing error scoring system”, “tuck jump 
assessment”, “functional movement screen”, 
“functional movement screening”, “single leg 
squat test”, “movement quality” “drop vertical 

jump”, “squat” and “test” (n=4,556)

Records after duplicates removed (n=3,674)

Studies involving uninjured individuals that 
investigated the reliability or association with 

injury of a movement screen (n=51)

Additional records identified through other 
sources (n=1)

Records excluded (n=3,623):
Articles that did not investigate the reliability or

association with injury of a movement screen 
with uninjured individuals

Fig. 1 Flow diagram showing the identification and selection of movement screen studies in the scientific literature for the current review
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14 questions, was addressed. As per the checklist instruc-

tions, if the answer to any of the 14 questions was ‘poor’

then, based on the ‘worst score counts’ principle, the study
was classified as such. The outcomes of this methodolog-

ical quality assessment are presented in Table 2 (see the

Electronic Supplementary Material [ESM] Appendix S1
for raw data).

3.2 Functional Movement Screen

The FMS comprises seven subtests, including an overhead

squat, hurdle step, in-line lunge, shoulder mobility assess-
ment, active straight-leg raise, trunk stability push-up, and

a prone two-point rotary stability movement, all performed

without external load [6, 8]. As can be seen from Table 3, a
total of 16 studies were identified that reported either the

intra- or inter-rater reliability of the FMS or related vari-

ations [11–14, 17–28]. Seven of the eight studies that
investigated the intra-rater reliability reported ICC values

C0.75. In addition, Teyhen et al. [24] reported an ICC of
0.74 (95 % confidence interval [CI] 0.60–0.83). As such, it

would appear that the FMS has consistently demonstrated

good intra-rater reliability. Of the 16 identified studies, 14
reported inter-rater reliability either in the form of ICC,

weighted kappa, or Krippendorff’s a. Twelve of these

observed an ICC C0.75, representing good inter-rater
reliability. In addition, Minick et al. [28] used the weighted

kappa statistic to measure inter-rater reliability; however,

rather than use the FMS composite score, they compared
raters using the individual subtests. The weighted kappa

values ranged from 0.79 to 1.0, with the authors stating that

this represented substantial to excellent agreement. In
contrast, Shultz et al. [14] used Krippendorff’s a statistic to

quantify reliability and classified a value C0.80 as

acceptable; however, they reported a score of 0.38 (95 %

CI 0.35–0.41). These authors concluded that the FMS

demonstrated poor inter-rater reliability and suggested that

improved rater training may have resulted in an improved
reliability score. The authors also highlighted the differ-

ence between years of experience and the number of tests a

rater has administered, stating that the latter is likely of
greater relevance to improving reliability.

Five studies [11, 18, 20, 21, 29] included information

as to the raters’ experience (years of clinical practice,
number of FMS tests performed, or level of certification),

which allowed comparison of test reliability based on

these variables. Four studies [11, 18, 20, 29] suggested
the experience of the rater did not influence the inter-rater

reliability. Additionally, Smith et al. [11] observed good

intra-rater reliability (ICCs [0.80) for all raters, regard-
less of experience. In contrast, Gribble et al. [21] showed

that intra-rater reliability did vary depending on the

experience of raters. The raters were divided into three
groups: athletic training students, athletic trainers who

had not previously used the FMS, and athletic trainers
who had at least 1 year of experience administering FMS

tests. The greater number of raters included in the study

by Gribble et al. [21] suggests a stronger experimental
foundation, and this may have contributed to their con-

trasting findings. A clear trend highlighting the impor-

tance of rater experience was apparent, with the following
ICC values: students, 0.37 (95 % CI -0.79 to 0.78),

athletic trainers, 0.76 (95 % CI 0.32–0.92), and experi-

enced athletic trainers, 0.95 (95 % CI 0.68–0.99). How-
ever, while Gribble et al. [21] employed a greater number

of raters than the other four studies, the ICC values

reported were based on the ratings of only three partici-
pants. Therefore, the weight of the currently available

evidence suggests that the experience of the rater is not a

significant factor influencing scoring.

Functional 
movement 

screen 
(FMS)

Landing 
error scoring 

system 
(LESS) 

Tuck jump 
assessment

Single-leg 
squat screens

Athletic 
ability

assessment
(AAA)

Conditioning 
specific 

movement 
tasks 

(CSMT)

Netball 
movement 
screening 

tool (NMST)

Reliability 
(n=13)

Injury risk 
(n=15)

Reliability + 
injury risk 

(n=3)

Reliability 
(n=3)

Injury risk 
(n=1)

Reliability + 
injury risk 

(n=1)

Reliability 
(n=2)

Reliability 
(n=5)

Reliability 
(n=1)

Reliability 
(n=1)

Reliability 
(n=1)

Physical 
performance 

measures 
(16-PPM)

Reliability 
(n=1)

Drop vertical 
jump screens

Star 
excursion 

balance test 
movement 

quality 
screen

Reliability 
(n=3)

Reliability 
(n=1)

Fig. 2 Breakdown of the individual movement screens identified from the literature search and the number of the articles that investigated their
reliability or association with injury
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Table 1 Content of the identified movement screens

Screen name Exercises
(N)

Name of exercises Protocol description

Functional movement screen 7 Deep squat

Hurdle step

In-line lunge

Shoulder mobility

Active straight-leg raise

Trunk stability push up

Rotary stability

Cook et al. [8]

Cook et al. [6]

Landing error scoring system 1 Drop jump Padua et al. [34]

Single-leg squat screens

Single-leg squat task 1 Single-leg half squat Crossley et al. [36]

Single-leg mini squat 1 Single-leg half squat Ageberg et al. [38]

Unilateral lower extremity functional tasks 2 Single-leg half squat

Lateral step down

Chmielewski et al.
[39]

Drop vertical jump screens 1 Drop vertical jump Nilstad et al. [44]

Whatman et al. [45]

Ekegren et al. [46]

Tuck jump assessment 1 Tuck jump Myer et al. [48]

Athletic ability assessment 9 Prone hold on hands

Lateral hold on hands

Overhead squat

Single-leg squat off box

Walking lunge

Single-leg forward hop

Lateral bound

Push ups

Chin ups

McKeown et al. [53]

Conditioning specific movement tasks 6 Overhead squat

Romanian deadlift

Single-leg squat

Double-leg to single-leg landing

Sprint (40 m)

Countermovement jump

Parsonage et al. [54]

Netball movement screening tool 10 Squat

Lunge and twist

Bend and pull

Push up

Single-leg squat

Vertical jump (land on both legs)

Vertical jump (land on one leg)

Broad jump

Star excursion balance test

Active straight leg raise

Reid et al. [55]
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Another aspect of movement screening pertinent to the

reliability of such assessments is whether the rater scores

participants in real time or after the test via video
recording. One study sought to address this issue [14] and

found that the intra-rater reliability was superior when

using recorded footage to score participants. One rater
assessed individuals live while they were being filmed

and retrospectively assessed the footage. They also
assessed the participants again 1 week later and scored

the tests in real time. The ICCs for the live–live re-test

and live–recorded re-test were 0.60 (95 % CI 0.35–0.77)
and 0.92 (95 % CI 0.85–0.96), respectively. However,

only one rater’s scoring was investigated in this manner,

hence it is difficult to draw firm conclusions on the
respective merits of live and recorded FMS scoring.

Nonetheless, the outcome of this study suggests that using

recorded footage to assess participants may elicit greater
intra- and inter-rater reliability than assessing them in real

time.

Recently, it has been shown that participant knowledge
of the scoring criteria can influence FMS total score [29].

Participants were assessed prior to and after having the

criteria for a perfect score explained to them. Significant
improvements in scores were observed simply by providing

this information. This finding demonstrates that test relia-

bility may be affected by how the test is delivered by the
assessor. If the extent of task instruction and explanation

differs between assessors or test occasions it is likely that

intra- and inter-rater reliability will be impacted. To ensure

that any changes in score are not simply due to familiar-

ization, it is recommended that participants have the
scoring criteria clearly explained to them and are allowed

practice attempts before being scored. This is not to say

that individuals should be coached through the movements,
rather, it is imperative they know what is being asked of

them without being told how to do it.
Overall, the majority of the identified studies reveal the

FMS possesses good intra- and inter-rater reliability,

although it should be noted that this conclusion is not
unanimous throughout the literature. It should also be noted

that the majority of the identified studies were classified as

demonstrating poor methodological quality (Table 2). The
influence of rater experience on reliability appears negli-

gible. Furthermore, the practice of scoring tests via video

footage may aid reliability, yet evidence on this issue is
limited, so only tentative conclusions can be drawn. Test

reliability is likely influenced by the performer’s knowl-

edge of the scoring criteria; as such, it is advisable to
provide clear instructions to participants and allow practice

attempts to reduce the influence of any learning effect. The

depth of research investigating the FMS is much greater
than for any other movement screen, yet despite this some

organizations choose to use alternative tools [2, 30]. While

the specific reasons are not clear, many professional foot-
ball clubs seemingly do not feel the FMS meets their

screening needs. However, a number of other screens

Table 1 continued

Screen name Exercises
(N)

Name of exercises Protocol description

Physical performance measures 16 Broad jump

Closed kinetic chain upper extremity stability
test

Y-balance test

In-line lunge for distance

Lateral lunge for distance

Lumbar endurance

Side plank hip abduction

Side plank hip adduction

Triple hop for distance

Nordic hamstring

Full squat

Downward dog

Single-leg squat

Shoulder mobility test

Active straight leg raise

Beighton hypermobility

Tarara et al. [56]

Star excursion balance test movement quality
screen

1 Anterior reach Ness et al. (2015) [58]
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appear within the scientific literature, albeit with much less

supporting evidence.

3.3 Landing Error Scoring System

The LESS comprises one movement: drop vertical jumps.
The accompanying scoring criteria relate to observed errors

in technique and result in a potential minimum and maxi-
mum score of zero or 19, respectively, with a higher score

indicating poorer performance. The four studies reporting

either the intra- or inter-rater reliability of the LESS are
presented in Table 4 [31–34]. Both Smith et al. [31] and

Padua et al. [34] reported excellent intra-rater reliability

(ICCs[0.90). When interpreting these findings, it should
be noted that, in total, data from only three raters were used

to calculate these ICC values. Further research is needed to

establish the robustness of such findings. All four of the

identified studies measured the inter-rater reliability of the
LESS, with the ICC values ranging from 0.72 to 0.92,

indicating good repeatability. Again, caution should be

employed when analyzing these results, since this conclu-
sion is based on the data from only nine raters. One study

investigated the influence of rater experience on LESS
scoring and found that novice (\1 year of experience as a

certified athletic trainer) and expert (15 years’ experience

as a certified athletic trainer) raters displayed moderate to
perfect agreement on all items [33]. The detailed scoring

criteria employed by the LESS likely explain this high

level of agreement between raters. The drawback to such a
thorough scoring system is inevitably the time it takes to

Table 2 Methodological quality (according to COSMIN checklist) of reliability studiesa

Movement screen Methodological quality rating

Poor Fair Good

FMS Teyhen et al. intra-rater [24]

Hotta et al. [17]

Gulgin and Hoogenboom [18]

Letafatkar et al. [19]

Parenteau-G et al. [12]

Elias [20]

Gribble et al. [21]

Smith et al. [11]

Frohm et al. [22]

Klusemann et al. [23]

Onate et al. [13]

Schneiders et al. [26]

Chorba et al. [27]

Shultz et al. [14]

Butler et al. [25]

Minick et al. [28]

Teyhen et al. inter-rater [24]

LESS Smith et al. [31]

Onate et al. [33]

Padua et al. [32] Padua et al. [34]

Single-leg squat screens Örtqvist et al. inter-rater [37]

Crossley et al. [36]

Ageberg et al. [38]

Chmielewski et al. [39]

Örtqvist et al. intra-rater [37] Junge et al. [35]

DVJ screens Whatman et al. [45]

Ekegren et al. [46]

Nilstad et al. [44]

Tuck jump assessment Herrington et al. [51] Dudley et al. [52]

AAA McKeown et al. [53]

CSMT Parsonage et al. [54]

NMST Reid et al. [55]

16-PPM Tarara et al. [56]

SEBT movement quality screen Ness et al. [58]

AAA athletic ability assessment, COSMIN consensus-based standards for the selection of health measurement instruments, CSMT conditioning
specific movement tasks, DVJ drop vertical jump, FMS functional movement screen, LESS Landing Error Scoring System, NMST Netball
Movement Screening Tool, PPM physical performance measures, SEBT Star Excursion Balance Test
a A quality rating of ‘Excellent’ is possible but was not achieved by any of the listed studies
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Table 3 Studies that reported the intra- and/or inter-rater reliability of the functional movement screen

References Participant information Rater information Intra-rater reliability Inter-rater reliability

Sample
size

Occupation/
sport

# of
raters

Score (95 %
CI)

# of
raters

Score (95 % CI)

Hotta et al. [17] 10 M Middle- and
long-distance
runners
(collegiate)

2 Physical therapists NA NA 2 ICC 0.98 (0.93–1.00)

Gulgin and
Hoogenboom
[18]

10 M,
10 F

University
students

1 Expert rater, 3 physical
therapy students

NA NA 4 ICC 0.88 (0.77–0.95)

Letafatkar et al.
[19]

20 Unknown 2 Physical therapists NA NA 2 ICC 0.92

Parenteau-G
et al. [12]

28 M Ice-hockey
players (elite
youth)

1 Physiotherapist, 3
physiotherapy students

2 Rater 1 ICC
0.96
(0.92–0.98)

Rater 2 ICC
0.96
(0.92–0.98)

2 ICC 0.96 (0.92–0.98)

Elias [20] 3 M, 2
F

Squash players
(elite)

20 Physiotherapists NA NA 20 ICC 0.91

Gribble et al.
[21]

2 M, 1
F

University
students

16 Students, 15 ATs, 7
expATs

38 All raters ICC
0.75
(0.53–0.87)

ExpATs ICC
0.95
(0.68–0.99)

ATs ICC 0.76
(0.32–0.92)

Student ICC
0.37 (–0.79
to 0.78)

NA NA

Shultz et al.
[14]

18 M,
21 F

NCAA
Division 1
varsity
athletes

1 Student, 1 physical
therapist, 2 ATs, 2 S&C
coaches

1 Live test–
retest ICC
0.60
(0.35–0.77)

Live-recorded
test–retest
ICC 0.92
(0.85–0.96)

6 Krippendorff’s a = 0.38
(0.35–0.41)

Smith et al. [11] 10 M,
10 F

University
students

2 Students, 1 faculty
member, 1 FMS certified
instructor

4 Rater 1 ICC
0.90
(0.76–0.96)

Rater 2 ICC
0.81
(0.57–0.92)

Rater 3 ICC
0.91
(0.78–0.96)

Rater 4 ICC
0.88
(0.72–0.95)

4 Occasion 1

ICC 0.89 (0.80–0.95)

Occasion 2

ICC 0.87 (0.76–0.94)
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score each participant. The original LESS protocol requires

video recording of tests, with subsequent scoring by

assessors from the footage, and this methodology has
associated costs, from both a financial and a time per-

spective. A real-time scoring system to overcome these

restrictive issues was developed by Padua et al. [32]. Three
raters’ real-time scoring of 43 participants was compared,

and the resulting ICC values ranged from 0.72 (95 % CI
0.42–0.88) to 0.81 (95 % CI 0.56–0.92), suggesting mod-

erate to good inter-rater reliability for the real-time version.

Taken collectively, the initial evidence is promising with
regard to the reliability of the test.

3.4 Single-Leg Squat Screens

Five studies were identified that explored either the intra-

or inter-rater reliability of movement screens containing
various single-leg squat tests (Table 5) [35–39]. The sin-

gle-leg squat task [36], the single-leg mini squat [35, 37,

38], and another assessment comprising two ‘functional
tasks’—the single-leg squat and lateral step-down—have

been investigated [39]. While these three screens differ

slightly in their protocols, the scoring criteria are very
similar. For example, all three variations include criteria

related to assessment of knee alignment during single leg

Table 3 continued

References Participant information Rater information Intra-rater reliability Inter-rater reliability

Sample
size

Occupation/
sport

# of
raters

Score (95 %
CI)

# of
raters

Score (95 % CI)

Frohm et al.
[22]

26 M Soccer players
(elite)

8 Physiotherapists 8 Rater 1 ICC
0.87

Rater 2 ICC
0.77

Rater 3 ICC
0.83

Rater 4 ICC
0.77

Rater 5 ICC
0.79

Rater 6 ICC
0.45

Rater 7 ICC
0.79

Rater 8 ICC
0.75

8 Occasion 1 ICC 0.80

Occasion 2 ICC 0.81

Klusemann
et al. [23]

10 Basketball
players (elite
youth)

8 (unspecified combination
of S&C
coaches/physiotherapists)

8 ICC 0.82 NA NA

Onate et al. [13] 12 M, 7
F

University
students

1 AT, 1 S&C coach 1 ICC 0.92 2 ICC 0.98

Teyhen et al.
[24]

53 M,
11 F

Military
personnel

8 Physical therapy students 4 ICC 0.74
(0.60–0.83)

8 ICC 0.76 (0.63–0.85)

Butler et al.
[25]

30 Middle school
students

1 FMS creator, 1 FMS
certified instructor

NA NA 2 ICC 0.99

Schneiders
et al. [26]

10 Recreationally
active
individuals

2 Academic researchers NA NA 2 ICC 0.97

Chorba et al.
[27]

3 M, 5
F

University
students

2 Physical therapists NA NA 2 ICC 0.98

Minick et al.
[28]

17 M,
23 F

University
students

2 FMS creators, 2 FMS
certified instructors

NA NA 4 Weighted j values for each test
ranged from 0.79 to 1.0 when
comparing novice and
experienced raters

All values refer to the FMS composite score unless otherwise stated

AT athletic trainer, CI confidence interval, ExpAT experienced athletic trainer, F female, FMS functional movement screen, ICC intraclass
correlation coefficient, j kappa, M male, NA not applicable, NCAA National Collegiate Athletic Association, S&C strength and conditioning
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squatting. Three of the five identified studies investigated
the intra-rater reliability, with kappa values ranging from

0.13 to 0.80, representing poor to substantial agreement.

These results are difficult to interpret, since the kappa
values within each individual study varied so widely.

Differences in the populations observed between studies

may explain some of the variance; however, comprehen-
sive participant information was not reported in all

instances. Similarly, differences in the precise protocols

and scoring criteria for each screen variation may have
contributed to the inconsistent results. These values were

derived from the data collected by only seven raters in

total, and this relatively small evidence source likely con-
tributes to the uncertain findings. Similarly, as can be seen

from Table 5, the inter-rater kappa values ranged from 0.00

to 0.92, making conclusions difficult to draw with regard to
the reliability of these screening tools.

3.5 Drop Vertical Jump Screens

The drop vertical jump, whereby an individual drops from

a raised surface to the floor and immediately jumps verti-
cally as high as possible, is a common screening test per-

formed to identify movement patterns thought to be

associated with risk of injury [40–42]. However, quantifi-
cation of performance on such tests is typically achieved

via objective analysis of joint angles and ‘separation dis-

tance’ between the knees and ankles [40–43]. This type of
assessment was considered separate to the primarily sub-

jective process of movement screening discussed in this

review. However, the literature search identified three
studies that described the intra- and inter-rater reliability of

drop vertical jump screen variations that conformed to the
definition of a movement screen previously outlined here

(Table 6) [44–46]. Of the three studies, one used the first-

order agreement coefficient (AC1) statistic to analyze
reliability [45]. The AC1 values can be interpreted in the

same way as described above for kappa values [47]. As

with the identified single-leg squat screens, the drop ver-
tical jump screens differ in their protocols; however, the

scoring criteria are very similar. For example, all three

variations include criteria related to assessment of knee
alignment during landing. Intra-rater reliability ranged

from moderate to almost perfect; however, much greater

variation existed between raters. Across the three studies,
AC1 and kappa values ranged from 0.32 to 0.92, repre-

senting fair to almost perfect agreement. The poorest intra-

and inter-rater reliability was reported by Whatman et al.
[45], suggesting that perhaps the protocols and scoring

criteria adopted by the other two studies are superior [44,

46]. The results from the identified studies are mixed;
therefore, further research utilizing consistent test protocols

and scoring criteria are required to elucidate the reliability

of these screening tools.

3.6 Tuck Jump Assessment

The tuck jump assessment created by Myer et al. [48] was

designed to assess the movement quality associated with

repeated jumping and landing and requires an individual to
perform repeated tuck jumps for 10 s. The plyometric

aspect of this exercise task is relevant, since it has been

reported that injury prevention interventions lacking this
explosive component have demonstrated limited success in

Table 4 Studies that reported the intra- and/or inter-rater reliability of the Landing Error Scoring System

References Participant information Rater information Intra-rater
reliability

Inter-rater reliability

Sample
size

Occupation/sport # of
raters

Score # of
raters

Score (95 % CI)

Smith et al.
[31]

10 High school/collegiate
athletes

2 Raters (occupation
unspecified)

2 ICC
0.97

2 ICC 0.92

Padua et al.
[32]

19 M,
24 F

Military personnel 3 Athletic trainers NA NA 3 Rater 1 vs. 2 ICC 0.81 (0.56–0.92)

Rater 1 vs. 3 ICC 0.72 (0.42–0.88)

Rater 1 vs. combined 2 and 3 ICC
0.79 (0.64–0.88)

Onate et al.
[33]

19 F NCAA Division 1
soccer players

2 Athletic trainers NA NA 2 ICC 0.84

Padua et al.
[34]

25 M,
25 F

Military personnel 2 Raters (occupation
unspecified)

1 ICC
0.91

2 ICC 0.84

All values refer to the LESS composite score

CI confidence interval, F female, ICC intraclass correlation coefficient, LESS Landing Error Scoring System, M male, NA not applicable, NCAA
National Collegiate Athletic Association
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Table 5 Studies that reported the intra- and/or inter-rater reliability of the identified single-leg squat screens

References Participation
information

Rater information Intra-rater reliability Inter-reliability

Sample
size

Occupation/
sport

# of
raters

Score (95 % CI) # of
raters

Score (95 % CI)

Junge et al.
[35]

72 Students
(children)

2 Physiotherapy
students

NA NA 2 Weighted j values for each
scoring category ranged from
0.54 to 0.86

Crossley
et al. [36]

15 Unknown
(adult)

3 Physical
therapists, 1
‘expert panel’

3 Rater 1 j 0.80

Rater 2 j 0.70

Rater 3 j 0.60

4 j values ranged from 0.60 to
0.80

Örtqvist et al.
[37]

33 Students
(children)

2 Physiotherapists 1 J 0.48 (0.16–0.79) 2 j 0.57 (0.30–0.85)

Ageberg et al.
[38]

8 M, 17
F

Unknown
(adult)

2 Physical
therapists

NA NA 2 j 0.92 (0.75–1.08)

Chmielewski
et al. [39]

7 M, 18
F

Unknown
(adult)

2 Physical
therapists, 1
athletic trainer

3 Weighted j values for each
test and each scoring method
ranged from 0.13 to 0.68

3 Weighted j values for each
test and each scoring method
ranged from 0.00 to 0.55

CI confidence interval, F female, j kappa, M male, NA not applicable

Table 6 Studies that reported the intra- and/or inter-rater reliability of the identified drop vertical jump screens

References Participant information Rater information Intra-rater reliability Inter-rater reliability

Sample
size

Occupation/sport # of
raters

Score # of
raters

Score

Nilstad
et al.
[44]

60 F Soccer players
(elite)

3
Physiotherapists

NA NA 3 j values ranged from
0.52–0.92

Whatman
et al.
[45]

12 M,
11 F

Variety of
undisclosed
sports (youth)

66
Physiotherapists

26 All raters AC1 0.60

(range 0.14–0.92)

Raters[14 years’
experience AC1 0.65
(range 0.22–0.91)

Raters\10 years’
experience AC1 0.56
(range 0.20–0.83)

66 All raters AC1 0.34

(95 % CI 0.22–0.47)

Raters[14 years’ experience
AC1 0.36 (95 % CI
0.22–0.50)

Raters 10–14 years’
experience AC1 0.37 (95 %
CI 0.21–0.53)

Raters 5–9 years’ experience
AC1 0.33 (95 % CI
0.33–0.55)

Raters\5 years’ experience
AC1 0.32 (95 % CI
0.19–0.46)

Ekegren
et al.
[46]

40 F Soccer players
(regional level
youth)

3
Physiotherapists

3 Rater 1 j 0.80

(95 % CI 0.65–1.00)

Rater 2 j 0.85

(95 % CI 0.72–1.00)

Rater 3 j 0.75

(95 % CI 0.58–1.00)

3 Time point 1 j 0.80

(95 % CI 0.62–0.98)

Time point 2 j 0.77

(95 % CI 0.59–0.95)

AC1 first-order agreement coefficient, CI confidence interval, F female, j kappa, M male, NA not applicable
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reducing knee injury [48–50]. Two studies were identified

that established the intra- and inter-rater reliability of the
tuck jump assessment [51, 52]. Herrington et al. [51]

revealed good intra-rater reliability for two raters, with

kappa values ranging from 0.81 to 1.00. Similarly, they
reported good inter-rater reliability, with a kappa value of

0.88. In contrast, Dudley et al. [52] reported poor to

moderate intra- and inter-rater reliability, with ICC values
ranging from 0.44 to 0.72. One possible explanation for the

discrepancy between these findings—at least with regard to
intra-rater reliability—may relate to the differences in

sample sizes. Dudley et al. [52] viewed videos of 40 par-

ticipants, whereas Herrington et al. [51] only assessed ten
subjects. This may have resulted in recall bias, with the

raters investigated by Herrington et al. [51] potentially

remembering the previous scores of the ten participants
when scoring their videos for the second time. However,

since one of the creators of the tuck jump assessment was a

co-author and rater within the Herrington et al. [51] article,
more extensive training and experience could also have

contributed to the superior reliability values. The tuck jump

assessment is unique amongst movement screens in that it
requires the participants to perform repeated plyometric

movements, with the creators proposing that the increased

sport-specificity of the task may aid in highlighting injury
risk. However, this assessment currently only demonstrates

face validity and this should be remembered when taking

this assertion into consideration. The nature of this
assessment means that it may be of particular interest to

practitioners working in jumping and landing sports such as

netball and basketball.

3.7 Athletic Ability Assessment

The recently developed AAA, which consists of nine

subtests, is currently used within numerous high-per-

formance environments (unpublished observation) to
assess athletes’ movement patterns [53]. The nine

subtests include a prone hold, lateral hold, overhead

squat (with 10-kg bar), single-leg squat off a box,
walking lunge (with a 20-kg bar), single-leg forward

hop, lateral bound, push-up, and chin-up. McKeown

et al. [53] reported excellent intra- and inter-rater
reliability [ICC values of 0.97 (90 % CI 0.92–0.99) and

0.96 (90 % CI 0.94–0.98), respectively]. These authors

also observed a strong correlation (r = 0.94) between
athletes’ overall AAA scores when assessed live and

via video recording, indicating that either method is

viable. The AAA maximum score is 117, and a detailed
scoring system that stipulates criteria based on body

segment is provided, allowing for more precise

assessment than some other movement screens since
the continuum of possible scores is large.

3.8 Conditioning Specific Movement Tasks

The CSMT screen was developed to aid in the assessment
of young rugby union players’ readiness to enter elite

academies [54]. The CSMT screen comprises six subtests,

including an overhead squat (with a 20-kg bar), Romanian
deadlift (with a 20-kg bar), single-leg squat, double-leg to

single-leg landing, a 40-m sprint, and countermovement

jump. A four-point scoring system, similar to that
employed by the FMS, was used to rate the quality of the

six movements. Intra-rater kappa values ranged from 0.61

to 1.00, indicating substantial to excellent agreement [54].
Similarly, inter-rater kappa values ranged from 0.62 to

1.00. The reliability values are based on the scores given by

only two raters, which should be remembered when inter-
preting the findings. Further investigations utilizing adult

populations, greater number of raters, athletes from dif-

ferent sports, and raters of varying experience are required
before definitive conclusions can be made with regard to

the reliability of the CSMT screen.

3.9 Netball Movement Screening Tool

Another sport-specific screen, the NMST, was designed to
assess movement quality in patterns relevant to the sport of

netball. The NMST comprises ten subtests, including a

squat, lunge with a twist, a bend and pull movement, push-
up, single-leg squat, vertical jump (landing on both legs),

vertical jump (landing on one leg), broad jump, the SEBT,

and an active straight-leg raise. Reid et al. [55] reported
intra- and inter-rater ICC values of 0.96 (95 % CI

0.91–0.98) and 0.84 (95 % CI 0.65–0.93), respectively.

These values suggest excellent agreement within and
between raters; however, the results were based on the

scores given by only two examiners. The age of the netball

players assessed by Reid et al. [55] ranged between 13 and
17 years, so further reliability studies conducted with adult

players are needed to establish the applicability of the

results to this population.

3.10 Physical Performance Measures

The 16-PPM is made up of 16 subtests, ten of which are

quantitative in nature, e.g., measured in distance or number

of repetitions completed [56]. While these ten subtests do
not meet the aforementioned definition of movement

screening exercises, the 16-PPM also includes six qualita-

tive subtests that do assess how well an athlete performs
the required movement. The six qualitatively scored sub-

tests, which are all performed without external load,
include an overhead squat, downward dog, single-leg

squat, shoulder mobility assessment, active straight-leg

raise, and Beighton hypermobility assessment. The

R. McCunn et al.

123



following reliability values refer only to the six qualitative

subtests. Intra-rater reliability, reported as weighted kappa
values, varied between expert and novice raters according

to Tarara et al. [56]. Weighted kappa values ranged from

0.32 to 0.81 for the expert rater, representing fair to almost
perfect agreement. In contrast, the two novice raters’

weighted kappa values ranged from -0.09 to 0.78, indi-

cating poor to substantial agreement between test occa-
sions. As such, it would appear that training is required for

raters administering the 16-PPM to ensure consistent
scoring. Little information was given as to the occupation

or level of qualification of the expert rater, so it is unclear

how much training may be required to achieve an accept-
able level of consistency. Inter-rater reliability varied

widely, with weighted kappa values ranging between 0.24

and 0.93 for individual subtests, representing fair to almost
perfect agreement. Taking all the qualitative subtests into

account, the 16-PPM appears to be a moderately reliable

tool for assessing movement competency if administered
by expert raters.

3.11 Star Excursion Balance Test Movement
Quality Screen

The SEBT involves the objective measurement of unilat-
eral reach distance of the lower extremity in various

directions [57]. One article was identified that applied

subjective movement quality criteria to the SEBT [58]. In
its original form, the SEBT does not take into account how

somebody achieves their score and reports only the

objective reach distance in centimeters. Incorporating an
assessment of an individual’s movement quality during this

test may provide additional useful information to practi-

tioners. In the identified study, scoring criteria related to
knee, pelvis, and trunk position were used by three physical

therapists to score 100 university students [58]. Intra-rater

reliability was not assessed, while inter-rater kappa values
ranged from 0.18 to 0.60, representing slight to moderate

agreement. As information related to within-rater variation

was lacking, no judgment can currently be made as to the
usefulness of the movement quality version of the SEBT.

4 Injury-Prediction Ability of Movement Screens

Studies that employed a prospective cohort or case–control
design and investigated the association between outcome

score and injury were identified for two movement screens:

the FMS and LESS. Movement screening is widely used by
elite sporting organizations in an attempt to detect injury

risk [2]. Given this, it is important that the efficacy of

movement screens in achieving this goal is understood.
That only two of the ten identified screens have any

supporting evidence as to their association with injury risk

demonstrates that much work is needed to support this
practice.

4.1 Methodological Quality Assessment for Injury-
Prediction Studies

The methodological quality of each paper that investigated
the ability of a movement screen to predict injury was

assessed using a previously validated checklist for retro-
spective and prospective studies [59]. Specifically, an

amended version was used as described by McCall et al.

[60], since not all of the questions included in the full
checklist were relevant for cohort studies. The questions

excluded were only appropriate for intervention studies.

For the purposes of this review, the questions included
were 1, 2, 3, 5, 6, 7, 10, 11, 12, 18, 20, 21, 22, and 25 as

previously used [60, 61]. Following the protocol outlined

by McCall et al. [60], a percentage score was awarded for
each article (see ESM Appendix S2 for raw data). A ‘level

of evidence’ was then awarded based on the procedure

outlined by the Scottish Intercollegiate Guidelines Network
(SIGN) [62]. Scientific levels of evidence range from one

to four according to the type of study. For example, cohort

and case–control studies are level two. Levels one and two
can score an additional mark of ‘??’, ‘?’, and ‘-’

dependent on the judged quality and risk of bias. Per-

centage cut-off scores were used to determine if a paper
was either of high quality with very low risk of bias

(C75 %), well conducted with low risk of bias (50–74 %),

or low quality with high risk of bias (\50 %) [60]. A
graded recommendation following the SIGN guidelines

was given for each of the two movement screens that have

had their injury predictive value investigated. The assign-
ment of the graded recommendation was based on the

levels of evidence of the relevant studies and the consid-

ered subjective judgment of the present authors. Graded
recommendations were as follows: A: strong recommen-

dation, B: moderate recommendation, C: weak recom-

mendation, or D: insufficient evidence to make a specific
recommendation [60].

4.2 Functional Movement Screen

A total of 18 articles were included that investigated the

link between FMS score and injury risk (Table 7) [17, 19,
27, 63–77]. Ten [19, 27, 64, 70–74, 76, 77] of the 18

studies reported an association between the FMS composite

score and injury. It should be noted that one of these
studies appears to have reported an incorrect odds ratio

(OR) based on the data presented, and the conclusions

should be interpreted with caution [19]. Kiesel et al. [77]
were the first to investigate the link between FMS score
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and injury; they followed 46 American Football players

over the course of a pre-season (4.5 months). All players
completed the FMS at the start of pre-season, and any

subsequent injuries that met the defined criteria were

recorded. These authors found that the greatest specificity
and sensitivity were obtained when a cut-off score of 14

was used. Specificity and sensitivity are measures of the

true-negative and true-positive rate, respectively [78]. In
the case of this study, the specificity value displayed the

proportion of non-injured athletes with a score[14, while
the sensitivity value displayed the proportion of injured

athletes with a score B14. The closer both measures are to

a value of 1, the more robust the tool as a predictive
instrument. An OR of 11.67 for those scoring B14 com-

pared with those scoring[14 was reported by Kiesel et al.

[77], and this suggests a significant association between
FMS composite score and injury risk. The specificity and

sensitivity values were 0.91 and 0.54, respectively. This

revealed that, while the proportion of true negatives to false
negatives was high, the proportion of true positives to false

positives was relatively even. Despite a very large OR of

11.67, only around half of the subsequent injuries were
predicted by an FMS score of B14. Interestingly, this

seminal article by Kiesel et al. [77] is often cited within the

scientific literature and explains why a cut-off score of 14
is commonly used when researching the link between FMS

and injury risk. Seven articles [27, 64, 70, 71, 73, 74, 76]

have since replicated the finding that individuals achieving
an FMS composite score of B14 have an increased likeli-

hood of experiencing an injury; however, the degree of the

relationship varies between studies. Differences in the
number of participants, length of follow-up period, and

sport/occupation of participants may have contributed to

the inconsistencies in strength of relationship between FMS
score and injury likelihood. In contrast, eight of the iden-

tified studies found no link between FMS composite score

and injury risk [17, 63, 65–69, 75]. However, three of these
studies [68, 69, 75] utilized very small sample sizes and

this may explain the lack of association between FMS

score and injury. There may simply have been too few
injuries among the participants during the follow-up peri-

ods for any association to be observed. As such, the find-

ings of these three studies [68, 69, 75] should carry
minimal weight when making any judgment about the

predictive value of the FMS.

Due to the inconsistency in findings, the graded rec-
ommendation for the FMS is ‘D’. A number of factors

contribute to the ambiguity of the collective findings. First,

the definition of injury was not consistent among the
identified articles. Indeed, this is a common issue in sports

medicine at large [79]. Kiesel et al. [77] classified an injury

as membership of the injured reserve group and a time-loss
of 3 weeks—presumably meaning that only relatively

serious injuries were recorded. No details of injured reserve

membership criteria or details of the specific injuries
experienced were provided. In contrast, O’Connor et al.

[76] defined injury as any damage to the body during

training that resulted in an individual seeking medical care.
This broad definition could have encompassed very minor

injuries. McGill et al. [75] only considered back injuries

that resulted in missed game play. Such variability in the
classification of injuries makes it difficult to compare the

results between each study. Similarly, the length of the
follow-up period varied widely between studies, with the

shortest reported window of observation being 6 weeks and

the longest being 2 years [74, 75]. In some instances, the
precise length of the injury-tracking period was not spec-

ified [19, 27, 67, 70]. It has been previously recommended

that epidemiological sports injury studies should follow
participants for at least 1 year, as this allows sufficient time

for accumulation of exposure and injury events [79, 80].

Unfortunately, most of the identified studies followed
participants for less than this time period, and this should

be a consideration for future research.

Other relevant considerations that have been ignored by
the vast majority of studies are accounting for exposure

time and training load. These represent very influential

confounding variables that are essential to drawing mean-
ingful conclusions from future prospective studies. Inter-

estingly, a number of populations were investigated by the

included studies: athletes, military personnel, elite police
officers, and firefighters. For instance, amongst the athlete

group, individuals ranged from recreationally active to elite

professionals. Given the range of occupations and perfor-
mance levels of participants, it is perhaps to be expected

that an inconsistent relationship between FMS score and

injury should be observed when all studies are viewed
collectively. The injury patterns between sports and occu-

pations differ [81–83], hence the predictive value of the

FMS may not be consistent across all populations. The use
of the FMS composite score has been questioned since it is

not a unitary construct and, as a result, may be a misleading

value [84, 85]. Instead, it has been proposed that using the
individual sub-test scores when analyzing FMS perfor-

mance may be preferable. However, as is shown in

Table 7, of the 18 prospective studies, ten reported an
association between the composite score and injury likeli-

hood, so it should not be disregarded entirely.

4.3 Landing Error Scoring System

Two studies investigating the link between LESS score and
injury were identified through the literature search

(Table 7) [31, 86]. Both studies prospectively screened

participants before tracking them over the course of a
sporting season. Smith et al. [31] did not report any
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Table 7 Studies that investigated the relationship between movement screen scores and injury

Movement
screen and
references

Participant information Association between
scores and injury

Quality
score
(%)

Level of
evidence

Sample
size

Occupation/sport Age,
yearsa

FMS

Bardenett
et al. [63]

77 M,
90 F

Cross country, American Football, soccer,
swimming, tennis and volleyball athletes
(high school)

15.2 No association between composite
score and injury

87 2??

Garrison
et al. [64]

160 Swimming/diving, rugby and soccer athletes
(NCAA Division I)

17–22 Score B13 = OR 9.52 (95% CI:
4.16–21.79)

80 2??

Hotta et al.
[17]

84 M Middle- and long-distance runners
(collegiate)

20.0 ± 1.1 No association between composite
score and injury

Runners scoring B3 on the deep
squat and active straight leg raise
components = OR of 9.7 (95 % CI
2.1–44.4)

80 2??

McGill et al.
[65]

53 M Elite task force police officers 37.9 ± 5.0 No association between composite
score and injury

80 2??

Teyhen
et al. [66]

188 M US army rangers 23.3 ± 3.7 No association between composite
score and injury

73 2?

Warren
et al. [67]

89 M,
78 F

Basketball, cross country, American
Football, golf, T&F, tennis, volleyball,
soccer and swimming/diving athletes
(NCAA Division I)

20.6 ± 1.6
(injured)

20.0 ± 1.4
(non-injured)

No association between composite
score and injury

80 2??

Zalai et al.
[68]

20 M Soccer players (professional) 23.0 ± 3.0 No association between composite
score and injury

Players who suffered an ankle injury
received a lower score for the
hurdle step sub-test (p\ 0.05)

Players who suffered a knee injury
received a lower score for the deep
squat sub-test (p\ 0.05)

73 2?

Dossa et al.
[69]

20 M Ice-hockey players (elite youth) 16–20 No association between composite
score and injury

80 2??

Kiesel et al.
[70]

238 M American Football players (professional) Unknown Injured vs. non-injured groups’ mean
scores 16.9 vs. 17.4 (p\ 0.05)

Score B14 = RR 1.87

(95 % CI 1.20–2.96)

Players with at least one asymmetry
had an RR of 1.80 (95 % CI
1.11–2.74)

60 2?

Knapik et al.
[71]

770 M,
275 F

Coast guard cadets 18.1 ± 0.7 (M)

17.9 ± 0.7 (F)

M: score B11 = RR 1.64 (95 % CI
1.17–2.32)

F: score B14 = RR 1.93 (95 % CI
1.27–2.95)

73 2?

Letafatkar

et al. [19]

50 M,
50 F

Soccer, handball, and basketball players
(recreational)

22.6 ± 3.0 Score\17 = OR 4.7 73 2?

Shojaedin
et al. [72]

50 M,
50 F

Soccer, handball and basketball players
(recreational)

22.6 ± 3.0 Score B17 = OR 4.7 53 2?

Butler et al.
[73]

108 Firefighters Unknown Score B14 = OR 8.31 (95 % CI
3.2–21.6)

60 2?

Lisman
et al. [74]

874 M Marine officer candidates 22.4 ± 2.7 Score B14 = OR 2.04 (95 % CI
1.32–3.15)

60 2?

McGill et al.
[75]

14 M Basketball players (collegiate) 20.4 ± 1.6 No association found between
composite score and injury

73 2?

O’Connor
et al. [76]

874 M Marine officer candidates 18–30 Score B14 = RR 1.5 (p\ 0.05) 67 2?

Chorba et al.
[27]

38 F Soccer, volleyball, and basketball players
(NCAA Division II)

19.2 ± 1.2 Score B14 = OR 3.85 (95 % CI
0.98–15.13)

80 2??
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significant relationship between LESS score and subse-

quent injury, whereas Padua et al. [86] did. Those ranked

by Smith et al. [31] as ‘poor’ (scoring[6) displayed an OR
of 3.62 compared with those ranked as ‘excellent’ (scoring

B4) but the 95 % CI crossed 1 (0.87–15.11), indicating that

the groups most likely did not differ in their risk of injury.
However, Smith et al. [31] only included grade III (com-

plete tear) non-contact anterior cruciate ligament (ACL)
injuries in their analysis and, as such, it is not clear if the

LESS score was associated with any other type of injury.

The LESS protocol involves whole body movement, so the
outcome score may potentially display an association with

other injury types. The apparent lack of connection

between the LESS and ACL injury reported by Smith et al.
[31] is surprising, since the screen assesses the degree of

knee valgus and flexion during landing, which are both

relevant factors to both patellofemoral pain and ACL injury
[87]. It was suggested that the narrow range of recorded

scores (only 0–11 out of a possible 19) could have con-

tributed to the lack of association with injury [31]. The
authors also postulated that the screen may have superior

predictive ability with regard to injury among less well-

trained or less physically mature individuals undergoing
rapid neuromuscular development. This may be due to

differences in proprioceptive awareness and strength

among these groups compared with more physically
mature, well-trained individuals. This theory is somewhat

supported by the findings of Padua et al. [86], who

observed an almost 11-fold greater risk of ACL injury
among individuals with scores of C5 compared with those

scoring\5. The average age of the participants followed

by Padua et al. [86] was 14 years compared with 18 years

for the cohort observed by Smith et al. [31]. It may be that

the LESS does have some injury-predictive ability but only

amongst young populations and in certain sports. Further
research is required among both younger and older popu-

lations before any firm conclusions can be made regarding

that suggestion. Despite a theoretical link between the
LESS and lower body injury, especially ACL injury, the

evidence is currently ambiguous. As only two studies have
prospectively investigated the ability of the LESS to pre-

dict injury and they reported conflicting results, the graded

recommendation for this movement screen is ‘D’.

5 Limitations and Recommendations for Future
Research

When interpreting the results of the identified articles, it is
important the reader be cognizant of a number of common

limitations. The majority of reliability studies were cate-

gorized as methodologically poor. While the ICC or kappa
scores reported often indicated good to excellent agreement

within and between raters, the true value of these findings

can be questioned because of the aforementioned
methodological quality of the studies. In future studies

investigating the reliability of movement screens, rater

information such as occupation, years of experience, and
number of tests performed should be included to allow for

a more thorough interpretation of the results. In addition,

larger sample sizes would help improve the methodological
quality of future reliability studies. Similarly, future studies

investigating the ability of movement screens to predict

injury should clearly define what an ‘injury’ is and state the

Table 7 continued

Movement
screen and
references

Participant information Association between
scores and injury

Quality
score
(%)

Level of
evidence

Sample
size

Occupation/sport Age,
yearsa

Kiesel et al.
[77]

46 M American Football players (professional) Unknown Injured vs. non-injured groups’ mean
scores 14.3 vs. 17.4 (p\ 0.05)

Score B14 = OR 11.67 (95 % CI
2.47–54.52)

53 2?

LESS

Padua et al.
[86]

348 M,
481 F

Soccer players (elite youth) 13.9 ± 1.8 ACL injured vs. non-injured groups’
mean scores 6.2 vs. 4.4 (p\ 0.05)

Score C5 = RR 10.7 for indirect and
non-contact ACL injury

73 2?

Smith et al.
[31]

29 M,
63 F

Lacrosse, soccer, basketball, American
Football, field hockey, gymnastics (high
school/collegiate)

18.3 ± 2.0 No association between score and
non-contact ACL injury

87 2??

ACL anterior cruciate ligament, CI confidence interval, F female, FMS functional movement screen, LESS Landing Error Scoring System, M male, NCAA
National Collegiate Athletic Association, OR odds ratio, RR risk ratio, T&F track and field, 2? well-conducted study with low risk of bias, 2?? high-
quality study with very low risk of bias
a Data are presented as mean ± standard deviation or range
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length of the observation period to allow contextual

appraisal of the results. In some sports, such as soccer and
rugby, established guidelines for injury reporting already

exist [79, 80]. None of the studies investigating the link

between movement screening score and injury reported or
accounted for the exposure time of the participants. This is

a crucial point that must be considered by future studies;

without this information, a significant confounding variable
is being ignored. All else being equal, the less time a player

spends training and playing, then the less opportunity they
have to get injured. Readers are not currently able to

determine from the current research whether individuals

with supposed poorer movement ability are actually at
increased risk of injury because of that or simply because

their exposure time is greater. Another issue to consider is

that if the individual responsible for recording injuries
knows the movement screening scores, then an element of

bias may exist. Ideally, the individual recording the injury

occurrence should be blinded to the outcome of the
movement screen.

6 Conclusion

The majority of movement screens identified through the
literature search lack a substantial evidence base in relation

to both their reliability and their ability to predict injury.

However, due to its extensive research base, the FMS is the
only movement screen that has consistently demonstrated

good intra- and inter-rater reliability. In addition, some

studies have suggested possible predictive ability with
regard to injury risk for the FMS and LESS; however, this

is not a unanimous finding. Based purely on the reported

ICCs and kappa values, all identified screens appear to
have good reliability with the exception of the various

single-leg squat screens and the SEBT movement quality

screen. Further research is warranted to verify the initial
reliability values for the identified movement screens, since

the evidence base is still limited and the majority of the

identified reliability studies were classified as method-
ologically poor. None of the identified movement screens

have enough supporting evidence to justify them being

heralded as injury prediction tools. Overall, movement
screening may be useful for practitioners to enhance their

holistic knowledge of an athlete, but it seems the subjec-

tivity of scoring makes it difficult to apply these results to
injury prediction with any degree of certainty.
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CORRESPONDENCE

Screening for risk factors: if
you liked it then you should
have put a number on it

The usefulness of screening tests to predict
injury has recently been questioned.1 2

However, from our point of view, it is
important that screening not be completely
demonised. A screening test may not accur-
ately identify who will get injured (albeit
providing a likelihood) but this should not
result in obsolescence. Usefulness is not
solely dependent on predictive ability. As
Bahr1 highlights: causative relationships (ie,
injury risk factors) can be identified using
screening tests, for example, eccentric ham-
string weakness.3 Should we therefore com-
pletely abolish screening tests because we
cannot definitively say that poor eccentric

hamstring strength will 100% result in a
strain injury? Screening puts a number on
an attribute, which allows us to quantify
injury risk and, in turn, modify the design
of injury prevention strategies. Clearly, the
syntax surrounding screening tests needs to
be adapted. Bahr1 is absolutely correct that
the practice of applied practitioners using
screening results to categorise their athletes
into intervention and ‘control’ groups is
not supported by the evidence, but let us
not throw the baby out with the bathwater.
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POINT

Data collection procedures for football injuries in lower leagues: Is there a need for
an updated consensus statement?
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ABSTRACT
In 2006 a consensus statement recommending how football injury data should be collected and
reported was published. These recommendations have provided a useful framework for research over
the last 10 years. However, many questions related to the underlying methodology of studies con-
cerned with injury epidemiology and prevention in football still exist. This is particularly true for
research conducted in non-professional environments. The present point-counterpoint article highlights
some of these issues and asks the question: are we in need of an updated consensus statement?

KEYWORDS
Epidemiology; injury; semi-
professional; amateur;
soccer

Football participation carries an inherent risk of injury.
Consistent and accurate records of injury are imperative for
planning, evaluating and delivering injury prevention pro-
grammes such as the FIFA 11+ (van Mechelen et al. 1992). In
this regard, Fuller et al.’s (2006) consensus statement serves
research within full-time professional football well by stream-
lining research methods and providing definitions/recommen-
dations for injury data collection. Furthermore, Fuller et al.’s
(2006) definition of injury (any physical complaint sustained as
a result of football activities) and the proposed injury incident
data recording sheets are appropriate for both full- and part-
time players. However, problems are encountered when
applying some of the guidelines to “part-timers”, who cumu-
latively compose the largest playing group (e.g., youth acad-
emy, semi-professional and recreational/community level
players). In our view, there are two main issues at the forefront
of injury research conducted within part-time groups that
require clarification: (1) who should record the data and (2)
how should injury severity be quantified? A number of solu-
tions to each question may exist. This point-counterpoint
article presents various options for discussion in an attempt
to ensure future injury research conducted within part-time
playing groups is of high methodological quality.

Data collection

Collecting accurate and reliable data is essential if one hopes
to present valid results that allow consistent comparisons
across the literature. However, within existing studies of part-
time playing groups, there are discrepancies. For example, the
data has been collected by various individuals including (1)
coaches (Ekstrand & Hilding 1999; Froholdt et al. 2009), (2)
parents (Emery et al. 2005; Emery & Meeuwisse 2006), (3)

medical staff (Brito et al. 2012; aus der Fünten et al. 2014;
Herrero et al. 2014; Silvers et al. 2015) and (4) academic
researchers (McNoe & Chalmers 2010; Schmikli et al. 2011;
Hammes et al. 2016). The varying depth of medical knowledge
and skills among these parties may consequently lead to
inconsistencies in data collection and present difficulties
when comparing outcomes. For example, all parties would
most likely correctly record certain types of “dramatic” injuries
such as bone breaks; however, discrepancies may arise when
more ambiguous cases occur, e.g., minor muscle strains.
Indeed, certain groups may over-report or under-report the
incidence of injuries depending on their relationship with the
players and their specific role within the club. For example,
players may withhold physical complaints from their coach for
fear of not being selected to play in matches or student
research assistants may not be assertive enough when
attempting to obtain relevant injury information from players
they are unfamiliar with. Medical practitioners (e.g., doctors
and physiotherapists) are undoubtedly the most qualified to
diagnose and record injuries. However, the majority of part-
time teams do not have immediate access to medical practi-
tioners. An injury recording method that relies on individuals
with this level of expertise would therefore, in many cases,
make large-scale research projects untenable. Alternatively,
player self-reporting of exposure time and injury incidence
(e.g., via online resources) removes the requirement for any
third party to record the information. However, self-reporting
arguably raises questions over compliance and data accuracy.
In our view, the most accurate data can be collected from a
third party present at training and on match days. Hence, we
suggest each team must appoint a primary data collector who
would record basic details such as exposure, injury location,
incident description and symptoms. Much of the research
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highlighted earlier has applied this method; however, we
propose that this method should be improved by stipulating
that the nominated individual must posses a minimum stan-
dard of medical knowledge and undergo training with respect
to injury data collection procedures. Such an approach would
ensure the recording of detailed injury descriptions, facilitating
retrospective injury diagnosis by trained medical professionals
(Hammes et al. 2016). Allowing non-experts such as parents,
coaches and university students to contribute in this manner
offers a viable strategy to ensure high-quality data is collected,
and for research teams to conduct meaningful large-scale
projects. The next step in this process would be for the
scientific community to agree upon the extent and content
of the required training. Some variability in the methodology
between studies is inevitable. Hence, the importance of meti-
culously describing data collection protocols cannot be over-
stated, since it is vital in allowing readers to judge the quality
of the results presented.

Injury quantification

Reporting injury incidence per 1000 h of exposure as
recommended by Fuller et al. (2006) seems appropriate for
part-time playing groups. However, Fuller et al.’s (2006)
guidelines for recording injury severity (days lost from full
participation in training/match play) are problematic in a
part-time environment where, in contrast to full-time ath-
letes, players are not seen by medical staff on a daily basis.
Indeed, several days between training/match days may pass
when the part-time player is not seen by anyone associated
with the club and the opportunity to observe a “return to
full participation” may only arise once or twice per week.
One potential method of determining injury severity is via
the player self-reporting recovery by providing the date
they believe they were fit to return to full participation.
Similarly, players could report perceived injury severity,
e.g., using a Likert-type scale via an online questionnaire
to indicate how serious they believe any given case is
(Clarsen et al. 2014). Alternatively, follow-up appointments
with injured players by medical practitioners (either via
phone or in-person) on non-training/playing days could be
used. However, each of these options poses compliance and
logistical implementation issues. We suggest that the defini-
tion proposed by Fuller et al. (2006) should apply even
though adopting such an approach would almost certainly
overestimate injury severity. The greatest impact of over-
estimation would be observed at the less serious end of the
spectrum. For example, in the event of a player suffering an
injury on a Saturday match day, missing their only sched-
uled training session the following Tuesday and returning to
play the subsequent Saturday match day, a six-day lay-off
would be recorded. However, the player may have been fit
to train/play by Wednesday meaning the injury should have
been classified as a three-day time-loss injury. As such,
some “minimal” injuries may be erroneously recorded as
“mild” (Fuller et al. 2006). However, upholding the current
definition consistently across the literature would, at least,
provide comparable data sets.

Conclusion

In summary, while a number of solutions to the highlighted
questions may exist, it is important to acknowledge that each
is somewhat flawed. Agreement surrounding the recommen-
dations for injury data collection procedures among part-time
playing groups is thus crucial. Such consensus will allow com-
parisons between studies and ensure that the conclusions
drawn from future research are meaningful. Any updated
consensus statement should carefully consider the logistical
implications for researchers when making recommendations.
Herein, the arguments have been presented with a focus on
football. However, the issues presented apply across sports
and as such epidemiologists and applied practitioners from
different domains would add value to this discussion.
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Functional Movement Screen (FMS™) score does not predict injury in English
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ABSTRACT
Purpose: despite being commonly used, the interaction between Functional Movement Screen (FMS™)
score and injury in any elite football population has not been studied. The aim of the present study was
to investigate the relationship between FMS™ score and non-contact injury among elite youth players
from a Premier League football academy.
Materials and methods: eighty-four players were screened during the pre-season period and non-
contact injuries recorded prospectively for the entirety of the 2013/14 football season. Logistic regres-
sion analysis was utilized to explore the relationships between the individual sub-tests of the FMS™ and
injury. Receiver operating characteristic (ROC) curves were used to assess the predictive value of the
FMS™ composite score.
Results: logistic regression revealed no relationships between score achieved on the individual sub-
tests and injury. ROC curves indicated poor predictive ability of the composite score. Players scoring
below the identified cut-off values (≤14 or ≤15 depending on injury type considered) were 0.66 (95%CI:
0.40-1.10), 0.70 (95%CI: 0.32-1.57) and 1.52 (95%CI: 0.50-4.61) times as likely to suffer ‘any’, ‘overuse’ and
‘severe’ injuries respectively than those who scored above the identified cut-off values.
Conclusions: there was no relationship between FMS™ score and injury. It was unable to predict any
non-contact injury among English Premier League youth academy players.

Practical implications: The present findings suggest that the FMS™ should not be used for risk
stratification among young elite soccer players since the composite score was unrelated to injury
likelihood. However, the FMS™ may be useful in other ways. For example, it may provide useful
information to applied practitioners when designing strength-training programs for groups of players
they are unfamiliar with, as is often the case at the start of a new season.

ARTICLE HISTORY
Accepted 8 December 2016

KEYWORDS
Screening; soccer; risk;
adolescent; elite

Introduction

Injuries in male elite youth football players have been shown to
range from 2.0 to 19.4 injuries/1000 h of total exposure (9.5–48.7
injuries/1000 h of match exposure) with strains and sprains
among the most common injury types mainly occurring in the
upper leg, knee and ankle (Pfirrmann et al. 2016). Injuries in elite
youth players are of particular concern to elite youth academy
directors as time lost from training andmatches has the potential
to negatively affect the development of technical, tactical, phy-
sical and mental qualities of players. Indeed, a large-scale epide-
miological study of elite male youth French players showed that
those incurring more severe injuries were less likely to obtain a
professional contract (Le Gall et al. 2009). As such, strategies
aimed at reducing the risk of injury during the development
period of young elite footballers should be emphasised.

While injury risk is multifactorial and complex (Bittencourt
et al. 2016), one injury risk screening tool that is commonly
used and deemed important by premier league football teams
is the Functional Movement Screen (FMS™) (McCall et al. 2014).
The purpose of this screening tool is to assess the movement

quality of an individual (Cook et al. 2006a). Movement quality is
not well defined but one definition put forward is the ability to
“maintain correct posture and joint alignment in addition to
balance while performing selected movements” (McCunn et al.
2016). The FMS™ has displayed moderate-to-good intra- and
inter-rater reliability (McCunn et al. 2016; Moran et al. 2016).
The underlying theory behind movement screening is that
“poor” movement quality may be a contributing factor to non-
contact injury. To date, evidence relating to any potential rela-
tionship between non-contact injury and FMS score is conflicting
(McCall et al. 2015; McCunn et al. 2016).

Despite its widespread use within professional football
clubs, only one prospective cohort study has investigated
the relationship between the FMS™ and injury in top-league
football players (Zalai et al. 2015). Indeed, none has been
conducted with elite youth footballers. A recent systematic
review that sought to outline the evidence behind the prac-
tices and perceptions of elite football clubs’ injury prevention
strategies concluded that insufficient evidence existed to
make any recommendation in relation to the FMS™ (McCall
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et al. 2015). Therefore, the aim of the present study was to
determine whether a causative relationship existed between
FMS™ score and injury among male players from an English
Premier League youth football academy.

Methods

Experimental design

The present study followed a prospective cohort design.
Players meeting the inclusion criteria were assessed using
the FMS™ during the preseason period. Injury surveillance
was performed over the entirety of the subsequent season
(2013/14) and all injury events recorded in accordance with
the recommendations provided by Fuller et al. (2006).

Participants

Eighty-four male players registered with an English Premier
League football club youth academy agreed to participate in
the present study (age 13.0 ± 1.3 years, height 167.0 ± 9.4 cm,
body mass 55.8 ± 11.4 kg). Inclusion criteria required players to
be registered with the club for the entirety of the observation
season (2013/14), injury free at the initiation of the preseason
period (1st June) and eligible for the under 12, -13, -14, -15 or
-16 squads. Participant assent and written parental consent
were obtained prior to all testing procedures. The study was
approved by the University College London Research Ethics
Committee and conformed to the Declaration of Helsinki.

Procedures

All FMS™ testing was conducted by United Kingdom Strength and
Conditioning Association-accredited coaches or chartered phy-
siotherapists. All testers had multiple years experience in conduct-
ing such assessments and undertook a recap of all procedures
prior to testing each year. Standardised written instructions that
followed the original test guidelines were provided for all raters
and were delivered verbatim when instructing participants (Cook
et al. 2006a, 2006b). Official FMS™ test kit was used. Each partici-
pant completed all seven subtests sequentially in the following
order: deep squat, hurdle step, in-line lunge, shoulder mobility,
active straight leg raise, trunk stability push up and rotatory
stability.

All injuries sustained during matches and training sessions
were recorded and monitored by club physiotherapists in accor-
dance with the recommendations provided by Fuller et al. (2006).
Injury was defined as any physical complaint sustained by a player
resulting from a football match or football training session that
resulted in time loss. However, only non-contact injuries were
included for analysis. Non-contact injuries included were also
further categorised into two additional groups: overuse and
severe. An overuse injury was one that was characterised by
repeated microtrauma without a single, identifiable event while
severe injuries were those that resulted in a time loss of more than
28 days (Fuller et al. 2006).

Statistical analyses

Data were analysed using SPSS Statistics version 22 (SPSS, Inc.,
Chicago, Illinois, USA) and MedCalc for Windows, version 16.4.3
(MedCalc Software, Ostend, Belgium). FMS™ composite scores
were compared between injured and uninjured players (using
three injury definitions: all non-contact, overuse and severe)
using Mann–Whitney U-tests. In addition, Cohen’s d effect sizes
(ES) were calculated and interpreted as trivial (0 ≤ ES ≤ 0.2),
small (0.2 < ES ≤ 0.6), moderate (0.6 < ES ≤ 1.2), large
(1.2 < ES ≤ 2.0) and very large (2.0 < ES ≤ 4.0) (Cohen 1992;
Hopkins 2002). It was assumed that training and match expo-
sure time between players in injured and non-injured groups
was largely similar. Based on historical data from the academy in
question, we estimated that 50% of the players included in the
present study would suffer a non-contact, football-related injury
during the observation period. Given this estimation, a statistical
power of 0.8 required a total sample size of n = 80 to detect a
moderate effect (ES = 0.65) of FMS™ composite score between
injured and uninjured players (G*Power Version 3.1, Kiel,
Germany). Binomial logistic regression was used to examine
the relationship between injury and potential risk factors includ-
ing FMS™ composite score, each individual subtest score, num-
ber of asymmetries displayed during the test and age group.
Spearman’s rank correlation coefficient test was used to detect
multicollinearity between independent variables. If two variables
demonstrated a strong correlation (rs > .90), then one was
selected and the other not included in any further analysis.
Each risk factor was examined independently via univariable
analysis and those with a P value <.10 were investigated further
in a multivariable model (Engebretsen et al. 2010). Assuming the
aforementioned estimation of injury incidence, a statistical
power of 0.8 required a sample size of n = 82 to detect an
odds ratio of 2 (per unit increase for each independent variable)
using logistic regression (G*Power Version 3.1, Kiel, Germany).
Receiver operating characteristic (ROC) curves were used to
assess the predictive value of the FMS™ composite score for
each injury definition and identify cut-off scores that maximised
specificity and sensitivity. The identified cut-off scores were used
to create 2 × 2 contingency tables and calculate relative risks
(RRs) with associated CI. Additionally, positive likelihood ratios
were calculated to allow contextual appraisal of injury risk after
a positive test. The limit for the alpha error to be considered
significant was set at P < 0.05.

Results

Overall FMS™ scores for injured and uninjured players (using all
definitions of injury) are presented in Table 1. Spearman’s rank

Table 1. Comparison of FMS™ composite scores between injured and uninjured
players for all injury definitions.

Type of injury Injured Uninjured Effect size

All non-contact 15.8 ± 1.8 15.3 ± 2.7 0.22
n = 38 n = 46

Overuse 16.1 ± 1.8 15.3 ± 1.9 0.43
n = 24 n = 60

Severe 15.7 ± 1.8 15.5 ± 1.9 0.11
n = 11 n = 73

Data as mean ± SD.
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correlation coefficients revealed no multicollinearity existed
between any independent variable included in the logistic regres-
sion analyses. The results from the univariable logistic regression
analyses are presented in Table 2. None of the predictor variables
met the inclusion criteria for further investigation in amultivariable
model for all non-contact and severe injuries. The composite score
and shoulder mobility subtest did meet the inclusion criteria for
further investigation when overuse injuries were considered.
However, when included together in a multivariable analysis, no
statistically significant relationships were observed. ROC curves for
all non-contact (area under the curve [AUC] [95%CI]: 0.59 [0.47–
0.72], P = 0.14), overuse (AUC [95%CI]: 0.63 [0.50–0.77], P = 0.06)
and severe (AUC [95%CI]: 0.52 [0.34–0.70], P = 0.84) injuries
revealed no statistically significant results. A cut-off score of ≤15
for any non-contact and severe injuries was identified while a
threshold of ≤14 maximised specificity and sensitivity when con-
sidering overuse events. The positive likelihood ratios and RR
values using the identified cut-off scores for each injury definition
are presented in Table 3.

Discussion

Themain findings of the present study revealed that in elitemale
youth football players competing in an English Premier League
Academy: (1) there were no differences in FMS™ composite score
observed between injured and uninjured groups regardless of
injury definition used (P > 0.05 and trivial-small ESs) (Tables 1 and
2) and (2) no relationships with FMS™ score and non-contact,
overuse or severe injuries existed; hence, the FMS™ had poor
predictive ability.

FMS™ score is not related to injury in youth elite soccer
players

No relationship between the FMS™ composite score and injury
(all non-contact, overuse and severe) was observed. As the FMS
composite score is made up from seven individual tests, some
of which likely have greater relevance to football than others
(e.g. the shoulder mobility vs. lower limb tests for outfield
players), it was decided at the outset that possible relationships
between injury and individual subtests would be investigated
also. However, despite separating the FMS™ into its individual
sub-sets, not only were no relationships found (for any injury
definitions), but no statistically significant relationships were
also observed between injury and any of the independent
variables (including age group and FMS™ asymmetries).

What about predicting injuries?

Establishing a relationship between an attribute and injury is
useful as it highlights a risk factor, which may in turn help
inform the content of prevention strategies. However, predic-
tive ability is even more appealing from a practical perspective
(Bahr 2016). The most appropriate statistical measures that
should be used to determine the predictive ability of a test
include ROC curve analysis and likelihood ratios (Pepe et al.
2004; Opar et al. 2015; Bahr 2016; Whiteley 2016). A screening
tool with excellent diagnostic accuracy would allow confident
grouping of “at-risk” players who could subsequently be tar-
geted with specific injury prevention interventions.

In the present study, ROC curve analysis revealed that the
screening tool had poor predictive ability for any injury type
(whether non-contact, overuse or severe). The AUC of an ROC
curve provides an indication of the predictive ability of a
diagnostic tool. An AUC = 0.5 indicates that a diagnostic tool
has no predictive value while an AUC = 1 indicates a perfect
test that results in no false positives or negatives (Hajian-Tilaki
2013). The ROC curves created in the current study produced
AUCs between 0.52 and 0.63 depending on the injury defini-
tion used. These values are low and indicate that the FMS™
was likely not any better at predicting which players got
injured than chance alone, i.e. randomly assigning players to
high/low risk groups.

Further statistical calculations providing insight to the diag-
nostic accuracy of screening tools include specificity and sen-
sitivity in addition to positive and negative predictive values.
However, while these values are relevant, they are not as
readily interpretable as a comparison of pre- and post-test
odds of injury. Another relevant value for assessing the

Table 2. Univariable logistic regression analyses for each injury definition.

Type of injury Variable Odds ratio 95%CI P value

All non-contact FMS™ composite score 1.16 0.92–1.47 0.20
Asymmetries (number) 0.90 0.53–1.54 0.70
Age group 1.28 0.95–1.73 0.11
Deep squat 0.75 0.31–1.82 0.53
Hurdle step 0.94 0.43–2.08 0.89
In-line lunge 1.58 0.61–4.10 0.35
Shoulder mobility 1.68 0.87–3.28 0.13
Active straight leg raise 1.41 0.66–3.01 0.38
Trunk stability push-up 1.34 0.69–2.61 0.38
Rotary stability 1.13 0.32–4.02 0.85

Overuse FMS™ composite score 1.26 0.97–1.64 0.08
Asymmetries (number) 1.04 0.58–1.86 0.90
Age group 1.14 0.82–1.58 0.44
Deep squat 1.15 0.44–3.00 0.78
Hurdle step 1.25 0.52–3.00 0.61
In-line lunge 1.43 0.51–3.98 0.49
Shoulder mobility 2.10 0.93–4.76 0.08
Active straight leg raise 1.77 0.76–4.14 0.19
Trunk stability push-up 1.38 0.65–2.92 0.40
Rotary stability 0.68 0.16–2.96 0.61

Severe FMS™ composite score 1.06 0.76–1.48 0.74
Asymmetries (number) 1.25 0.60–2.61 0.55
Age group 0.94 0.61–1.46 0.79
Deep squat 1.20 0.34–4.32 0.78
Hurdle step 0.42 0.13–1.40 0.16
In-line lunge 0.72 0.16–3.14 0.66
Shoulder mobility 1.28 0.48–3.44 0.63
Active straight leg raise 0.68 0.22–2.06 0.49
Trunk stability push-up 2.04 0.66–6.36 0.22
Rotary stability 2.63 0.51–13.67 0.25

CI: Confidence interval; FMS: functional movement screen.

Table 3. Positive likelihood ratio and relative risk values using the identified
FMS™ cut-off score for each injury definition.

+ve
LR

Chance of
injury before
screening (%)

Chance of injury after
+ve screening

(scoring ≤cut-off) (%) RR (95%CI)

All non-contact 0.66 45 30 0.66
(0.40–1.10)

Overuse 0.71 29 20 0.70
(0.32–1.57)

Severe 1.28 13 17 1.52
(0.50–4.61)

+ve: Positive; CI: confidence interval; LR: likelihood ratio; RR: relative risk.
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usefulness of a diagnostic tool is the positive likelihood ratio,
which allows calculation of the post-test odds of injury after a
positive test (an FMS™ score below the identified cut-off value)
(Whiteley 2016). Likelihood ratios allow the calculation of
these odds and offer practitioners clear information as to the
usefulness of the screening tool in question. In the present
study, positive likelihood ratios below a value of one indicated
a reversal of the expected outcome and revealed a seemingly
protective effect of scoring below the identified cut-off value
(≤14 or ≤15 depending on injury type considered) on the
FMS™ in the context of all non-contact and overuse injuries.
Similarly, RR values ranged from 0.66 to 0.70 (Table 3) indicat-
ing a reduced likelihood of suffering any non-contact or over-
use injury after scoring below the identified cut-off value.
However, when considering this seemingly counterintuitive
result, it is important to note that 95%CIs for the RR values
crossed one in all instances. What is clear, however, is that
among the present sample of elite male youth soccer players,
an FMS™ composite score below the identified cut-off values
was not associated with increased injury risk.

Does this mean we shouldn’t use the FMS?

While the FMS™ may not be useful as a screening tool for
highlighting elevated susceptibility to injury in elite male
youth academy footballers, it does not necessarily render the
screening tool completely useless. Indeed, it may provide
other useful information. Its wide use among the world’s
top-league football clubs alludes to its appeal and perceived
usefulness (McCall et al. 2014). Fuller et al. (2016) reported that
young Australian rules’ football players were 1.5 times more
likely to report pain during the FMS™ if they had suffered an
injury the previous season than if they had not. The authors
postulated that the FMS™ might be useful for highlighting
players who have not fully recovered from previous injuries.

The National Strength and Conditioning Association’s
recent position statement on long-term athlete development
highlights the importance of structured youth strength and
conditioning programmes focusing on aspects such as funda-
mental movement ability (Lloyd et al. 2016). In the context of
Premier League youth academies, strength and conditioning
practitioners and physiotherapists are faced with the chal-
lenge of a continual turnover of players each year. The FMS™
may offer a quick, logistically viable and systematic method of
quantifying movement competency and in doing so help
determine readiness for introduction to formalised resistance
training and progressions to more advanced exercise techni-
ques. This may be particularly helpful in guiding the physical
development plans of newly recruited players whom club
support staff are not familiar with.

Limitations

While the present study represents a novel addition to the
literature regarding injury risk in elite male youth footballers,
there are some limitations. First, exposure data were not
available for the participants in the present study. This
meant that no additional statistical procedures could be
used (e.g. survival analysis or Cox proportional hazard

modelling) which would have provided additional insight
into the relationship between FMS™ score and injury (Bahr
& Holme 2003; Finch & Marshall 2016). Differences in expo-
sure time between injured and uninjured groups may have
contributed to the findings. While it was assumed that
exposure time between injured and uninjured groups was
largely similar, this could not be empirically confirmed in the
present study. It may be that players who achieved better
FMS™ scores generally displayed superior overall athleticism
and were selected to play more frequently. It must be
stressed that such a hypothesis is purely speculation; how-
ever, it is one theory that may help explain the seemingly
counter-intuitive results. The greater the exposure time, the
greater the potential for suffering an injury. In addition,
players performed strength and conditioning sessions
throughout the observation season and such intervention
may have mitigated the potential risk associated with scor-
ing poorly on the FMS™. However, since all players were
included in this aspect of training, the protective effect
should have been equally apparent in all individuals regard-
less of FMS™ score. Another limitation of the present study
is that multiple injuries to the same player were not taken
into account. This has been highlighted as an issue that
needs to be addressed to advance the value of such pro-
spective cohort studies; however, the lack of exposure data
once again precluded such survival analysis (Finch &
Marshall 2016). Finally, these results may only be a reflection
of the present team and future work using larger samples
including multiple teams is necessary.

Conclusion

The present results question the efficacy of the FMS™ for
highlighting young male elite football players at increased
risk of injury. The FMS™ is not recommended for this purpose.
Readers should be cognizant that this conclusion relates to the
FMS™ specifically and does not necessarily apply to other
movement screening tools. The FMS™ may be too generic, a
test to highlight soccer-specific injury risk in male elite youth
players. However, there may be other benefits to performing
the assessment. For example, the FMS™ may help guide
applied practitioners in the appropriate prescription of physi-
cal development programmes for large squads of players they
are unfamiliar with. Future research should not only seek to
add to this initial evidence for elite youth football players but
also provide further insight through incorporation of exposure
data and in doing so include multiple injuries to the same
player within the statistical analysis.
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ABSTRACT
Background/purpose: The growing volume of movement screening research reveals a belief among practitioners 
and researchers alike that movement quality may have an association with injury risk. However, existing movement 
screening tools have not considered the sport-specific movement and injury patterns relevant to soccer. The present 
study introduces the Soccer Injury Movement Screen (SIMS), which has been designed specifically for use within 
soccer. Furthermore, the purpose of the present study was to assess the intra- and inter-rater reliability of the SIMS 
and determine its suitability for use in further research. 

Methods: The study utilized a test-retest design to discern reliablility. Twenty-five (11 males, 14 females) healthy, 
recreationally active university students (age 25.5±4.0 years, height 171±9 cm, weight 64.7±12.6 kg) agreed to par-
ticipate. The SIMS contains five sub-tests: the anterior reach, single-leg deadlift, in-line lunge, single-leg hop for dis-
tance and tuck jump. Each movement was scored out of 10 points and summed to produce a composite score out of 
50. The anterior reach and single-leg hop for distance were scored in real-time while the remaining tests were filmed 
and scored retrospectively. Three raters conducted the SIMS with each participant on three occasions separated by 
an average of three and a half days (minimum one day, maximum seven days). Rater 1 re-scored the filmed move-
ments for all participants on all occasions six months later to establish the ‘pure’ intra-rater (intra-occasion) reliability 
for those movements. 

Results: Intraclass correlation coefficient (ICC) values for intra- and inter-rater composite score reliability ranged 
from 0.66-0.72 and 0.79-0.86 respectively. Weighted kappa values representing the intra- and inter-rater reliability of 
the individual sub-tests ranged from 0.35-0.91 indicating fair to almost perfect agreement. 

Conclusions: Establishing the reliability of the SIMS is a prerequisite for further research seeking to investigate the 
relationship between test score and subsequent injury. The present results indicate acceptable reliability for this 
purpose; however, room for further development of the intra-rater reliability exists for some of the individual 
sub-tests.

Keywords: Assessment, association football, kinematic, screening 
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INTRODUCTION
The proliferation of movement screening research 
and its widespread use in professional soccer reveals 
a belief among practitioners and researchers alike 
that movement quality may have an association 
with injury risk.1, 2 Movement quality is ill defined 
but relates to the ability of an individual to perform a 
given movement in a controlled manner while dem-
onstrating good or acceptable technique. Exactly 
what constitutes good technique remains a topic of 
debate. While it is arguable that no ‘correct’ move-
ment pattern exists for any given exercise there are 
certain characteristics that may be undesirable, such 
as restricted range of motion and an inability to con-
trol coordinated movements. The rationale behind 
movement screening is that such limitations may 
result in acute injuries or contribute to insidious 
overuse complaints.3-5

Numerous screens exist; however, the supporting 
evidence with regard to both their reliability and 
association with injury varies widely in both vol-
ume and methodological quality.1 The majority of 
such research has focused on the Functional Move-
ment Screen (FMS™), which has demonstrated 
good reliability but conflicting relationships with 
injury likelihood.1, 6 The FMS™ was designed as a 
‘general’ movement assessment tool and has been 
used within a wide range of sports and professional 
domains including the military and emergency 
services.7-9 In contrast, some screens such as the 
Landing Error Scoring System (LESS) have been 
designed with the intention of identifying those at 
an increased risk of a particular type of injury, for 
example, anterior cruciate ligament rupture.10 In 
addition, some have been designed for use within 
particular sports, for example, netball and rugby 
union.3, 11 Despite the popularity of movement 
screening within professional soccer, no soccer-spe-
cific tool currently exists.2 The present study intro-
duces the Soccer Injury Movement Screen (SIMS), 
which has been designed specifically for use with 
soccer athletes. The movements contained within 
the assessment were selected to reflect the most 
common sites (lower extremities) and types (strains 
and sprains) of soccer-related injury and hence they 
primarily tax the mobility and stability of the ankle, 
knee and hip joints in addition to the strength and 

flexibility of the surrounding musculature.12 When 
selecting the individual sub-tests, priority was given 
to movements previously proposed within the scien-
tific literature as potentially associated with injury 
likelihood. 

The efficacy of screening tests that seek to iden-
tify or predict which players will get injured has 
recently been questioned.13 In the context of sports-
related injuries the idea that a single attribute such 
as movement quality for example, could be predic-
tive is unlikely.14 As a result, the ultimate objective 
of the SIMS will be to investigate whether a causative 
relationship exists between movement quality and 
injury. Any potential relationship between move-
ment quality and injury is unlikely to be substantial 
enough to justify the SIMS being considered ‘predic-
tive’ but it may help inform the content of injury 
prevention programs by highlighting risk factors.15 

There is reason to expect that a causative relation-
ship between movement quality and injury may 
exist since some authors have reported poor FMS™ 
scores preceding subsequent injury.8, 16 However, 
numerous studies utilizing the same movement 
screening tool have not observed any link.17 The 
SIMS may eventually demonstrate a stronger asso-
ciation to injury risk than the FMS™ due to its more 
explicit scoring criteria (Appendix 2) focusing on 
specific aspects of each movement. Furthermore, 
the FMS™ includes movements targeting the upper 
limbs, which have limited relevance for soccer play-
ers, whereas the SIMS concentrates on the lower 
limbs only.

Before any prospective cohort studies can be con-
ducted using the SIMS its reliability must first be 
established. The reliability of an assessment tool is 
of critical importance since it is a pre-requisite for 
test validity.18 Therefore, the purpose of the present 
study was to test the intra- and inter-rater reliability 
of the SIMS and determine its suitability for use in 
further research. 

METHODS
Participants
Twenty-five (11 males, 14 females) healthy, recre-
ationally active university students (age 25.5±4.0 
years, height 171±9 cm, weight 64.7±12.6 kg) agreed 
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to participate in the present study. Inclusion criteria 
required participants to be aged between 18-40 years 
of age, free of injury (any physical condition that 
precluded them from completing the assessment) 
and recreationally active. Information pertaining 
to the study protocol and requirements were pro-
vided for each participant before written informed 
consent was collected. The study was approved by 
the local ethics committee (ref number: 270/15, Ärz-
tekammer des Saarlandes, Saarbrücken, Germany) 
and conformed to the Declaration of Helsinki.

Raters
Three raters carried out the SIMS in the present 
study; all possessed postgraduate sport science qual-
ifications and had previous professional experience 
delivering movement assessments. In addition, 
Rater 1 was an accredited strength and conditioning 
coach with both the United Kingdom Strength and 
Conditioning Association (UKSCA) and the National 
Strength and Conditioning Association (NSCA). 
Prior to the present study all raters conducted pilot 
testing using the SIMS with 10 participants. The 
pilot testing incorporated two 2-hour sessions where 

raters reviewed the test instructions (Appendix 1), 
the scoring criteria (Appendix 2) and familiarized 
themselves with the camera positioning (Figure 1). 
In addition, three more two-hour sessions were con-
ducted where raters practiced scoring video footage 
and discussed the interpretation of the scoring cri-
teria. In total, rater training amounted to ~12 hours 
(10 classroom-based and two field-based).

Design
The present study utilized a test-retest design. Par-
ticipants performed the SIMS on three occasions 
separated by an average of 3.5 days (minimum one 
day, maximum seven days). The SIMS contains five 
sub-tests: the anterior reach (AR), single-leg deadlift 
(SLDL), in-line lunge (ILL), single-leg hop for dis-
tance (SLHD) and tuck jump (TJ) (Figure 2). Rat-
ers 1 and 2 scored all participants whereas Rater 3 
only scored 15 of the 25 (for reasons unrelated to the 
study). Raters scored two of the five movements (AR 
and SLHD) included in the SIMS in real-time on each 
occasion. The remaining three movements (SLDL, 
ILL and TJ) were filmed from both the frontal and 
sagittal planes using iPhone 4S devices (Apple Inc., 
California, USA) and scored retrospectively. These 
sub-tests were scored from video footage, as opposed 
to in real-time; to allow raters to view the movements 
in slow motion and increase the likelihood of identi-
fying errors. A minimum of one week separated the 
scoring of participants’ filmed movements for occa-
sions one, two and three respectively in an attempt 
to reduce the risk of rater bias (i.e. remembering 
the previous scores given). Scores for occasions one, 
two and three were compared within each rater to 
investigate ‘real-world’ intra-rater (inter-occasion) 
reliability. Scores were also compared between rat-
ers for each occasion to assess inter-rater reliability. 
Rater 1 re-scored the filmed movements for all par-
ticipants on all occasions six months later to estab-
lish the ‘pure’ intra-rater (intra-occasion) reliability 
for those movements.

Soccer Injury Movement Screen (SIMS)
Detailed descriptions of each movement contained 
within the SIMS and associated scoring criteria are 
outlined in Appendices 1 and 2. The ILL is the same 
in its setup as when performed as part of the FMS™ 
albeit it is scored differently, while the tuck jump is 

Figure 1. Schematic showing the equipment setup for the 
SIMS
For all movements the participants start at A. Anterior reach: measuring 
tape is fi xed to the fl oor between A and B; Single-leg deadlift: camera at 
B (portrait) and E (landscape) when standing on right leg, camera at B 
(portrait) and D (landscape) when standing on left leg; In-line lunge: 
camera at B (portrait) and E (landscape) when right leg forward, camera 
at B (portrait) and D (landscape) when left leg forward; Single-leg hop 
for distance: measuring tape is fi xed to the fl oor between A and C; Tuck 
jump: taped cross on fl oor at A (60x60cm), camera at B (portrait) and F 
(portrait).
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Figure 2. Demonstration cards that were shown to participants along with verbal instructions prior to test execution
A: anterior reach; B: single-leg deadlift; C: in-line lunge; D: single-leg hop for distance; E: tuck jump.
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performed and scored exactly as described by Myer et 
al.5, 19 A standardized five minute warm up was com-
pleted before each occasion and included dynamic 
bodyweight exercises (e.g. squats, walking lunges, 
hamstring walkouts, diagonal hop and holds). The 
assessments were performed outdoors on a hard, 
rubberized sports court during summertime in dry 
temperate weather conditions. Participants were 
instructed to wear tight fitting sports clothing and 
the same training shoes on each occasion. The five 
component movements were performed in sequen-
tial order starting with the AR followed by the SLDL, 
ILL, SLHD and TJ. Prior to each sub-test participants 
were read the test instructions (Appendix 1) verba-
tim and shown demonstration cards (Figure 2). Par-
ticipants were then allowed three practice attempts 
for each sub-test where any obvious miscommunica-
tion or misunderstandings relating to how to execute 
the movements were clarified. Time to complete the 
assessment was 10-15 minutes per participant.

Each component movement was scored out of 10 
points resulting in a theoretical maximum compos-
ite score of 50 when the score from each sub-test 
is summed. A higher score indicated poorer perfor-
mance; hence, zero was the theoretical ‘best’ score 
while 50 was the ‘worst’. The AR and SLHD scoring 
criteria were objective in nature and were based on 
reach and jump distance respectively. In contrast, 
the SLDL, ILL and TJ relied on subjective assess-
ment of movement quality. Raters were allowed to 
watch the clips of the filmed movements, both in 
real-time speed and slow motion, as many times as 
they deemed necessary to make an accurate judg-
ment when scoring. 

Statistical analyses
Descriptive data are presented as means ± standard 
deviation. Reliability statistics are accompanied with 
95% confidence intervals (CI). Data were analysed 
using R statistics program (R Core Development 
Team 2014) and MedCalc for Windows, version 16.4.3 
(MedCalc Software, Ostend, Belgium). Comparison 
of composite and individual sub-test scores between 
male and female participants was performed using 
the Mann-Whitney U statistic. Cohen’s d effect size 
(ES) was also calculated to compare male and female 
participants and was interpreted as follows: ≤0.2, 

trivial; 0.21-0.60, small; 0.61-1.2, moderate; 1.21-2.0, 
large; 2.1-4.0, very large.20, 21 Two way mixed model 
intraclass correlation coefficients (ICC3, 1), weighted 
kappas (quadratic) and minimal detectable change 
(MDC) were used to determine the intra- and inter-
rater reliability of the composite score. MDC val-
ues were calculated at both a 95% and 80% level 
of confidence in order to provide applied practitio-
ners with the means to identify ‘true’ changes in 
test performance. Typically, MDC values are calcu-
lated to reflect a 95% confidence interval; however, 
this results in very conservative estimates of how 
much a test score has to change to be considered 
real and may be of limited usefulness in the applied 
setting where small improvements/decrements in 
test performance can be meaningful.22 MDC values 
at lower levels of confidence (e.g. 80%) can be cal-
culated and are useful to applied practitioners who 
may be willing to rely on more liberal estimates 
of test score changes. In addition, weighted kap-
pas (quadratic) were used to determine intra- and 
inter-rater reliability of each individual subtest. ICC 
values were interpreted according to the following 
criteria: <0.40, poor; 0.40-0.59, fair; 0.60-0.74, good; 
≥0.75, excellent.23 Similarly, weighted kappa values 
were interpreted according to the guidelines out-
lined by Landis and Koch24: <0.00, poor; 0.00-0.20, 
slight; 0.21-0.40, fair; 0.41-0.60, moderate; 0.61-0.80, 
substantial; 0.81-1.00, almost perfect. Alpha was set 
at p≤0.05.

RESULTS
Composite scores were not significantly different 
between males (18.3) and females (15.3) (Table 1). 
Only the SLDL scores differed between genders 
(males=4.3, females=1.8) (Table 1). 

ICC3, 1, weighted kappa and MDC values for intra-
rater (inter-occasion) reliability are presented in 
Table 2. Weighted kappa values for the individual 
subtests ranged from fair to substantial (0.35-0.77). 
With regard to the composite score, weighted kappa 
values were interpreted as substantial (0.63-0.68) 
while the ICCs were classified as good (0.66-0.72) for 
each rater. 

ICC3, 1 and weighted kappa values for inter-rater 
reliability are presented in Table 3. Weighted kappa 
values for the individual subtests ranged from mod-
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erate to almost perfect (0.43-0.91). With regard to the 
composite score weighted kappa values ranged from 
substantial to almost perfect (0.78-0.81) while the 
ICCs were classified as excellent (0.79-0.86) for all 
three occasions. 

Weighted kappa scores for ‘pure’ intra-rater (intra-
occasion) reliability are presented in Table 4. The 
kappa values were evaluated as almost perfect for 
the SLDL (0.90) and ILL (0.85) while the TJ value 
was interpreted as substantial (0.73). 

DISCUSSION
Overall, the present results indicate sufficient reli-
ability for the SIMS to be considered useful for fur-

ther research and applied practitioners alike. The 
intra-rater reliability of the SIMS composite score 
was classed as substantial and good for all raters 
based upon the weighted kappa and ICC scores 
respectively (Table 2). The MDC values calculated 

 Overall (n=25) Males (n=11) Females (n=14) p-
value

Male vs female effect size 
(qualitative inference) 

Composite score (mean ± SD) 16.6 ± 4.9 18.3 ± 3.0 15.3 ± 5.8 0.080 0.6 (Small) 
AR (mean ± SD) 1.7 ± 1.8 2.1 ± 2.3 1.4 ± 1.3 0.648 0.4 (Small) 
SLDL (mean ± SD) 2.9 ± 2.1 4.3 ± 2.0 1.8 ± 1.5 <0.01 1.4 (Large) 
ILL (mean ± SD) 2.6 ± 1.5 2.5 ± 1.5 2.6 ± 1.6 0.825 0.1 (Trivial) 
SLHD (mean ± SD) 4.1 ± 2.3 4.2 ± 1.9 4.0 ± 2.7 0.718 0.1 (Trivial) 
TJ (mean ± SD) 5.4 ± 1.3 5.2 ± 1.0 5.5 ± 1.6 0.534 0.2 (Trivial) 

Test scores drawn from Rater 1 on the third testing occasion.  AR= anterior reach, ILL= in-line lunge, SLDL= single-leg deadlift, SLHD= 
single-leg hop for distance, TJ= tuck jump 

Table 1. Mean values (reported in arbitrary units) and comparison of test scores between males and females.

AR= anterior reach, ICC= intra-class correlation coefficient, ILL= in-line lunge, MDC= minimum detectable change, SLDL= single-leg deadlift, 
SLHD= single-leg hop for distance, TJ= tuck jump 

CCI appak dethgieW 3, 1

 AR SLDL ILL SLHD TJ Composite 
score

Composite 
score

MDC @ 95% 
confidence 

MDC @ 80% 
confidence

Rater 1 0.47
(0.17-0.77) 

0.77
(0.67-0.87) 

0.64 
(0.52-0.77)

0.44 
(0.26-0.61)

0.58
(0.43-0.73) 

0.68
(0.54-0.81) 

0.71
(0.52-0.85) 7.0 4.5 

Rater 2 0.46
(0.22-0.69) 

0.68
(0.55-0.81) 

0.48 
(0.30-0.66)

0.35 
(0.15-0.55)

0.58
(0.44-0.72) 

0.64
(0.49-0.80) 

0.72
(0.54-0.85) 7.5 4.9 

Rater 3 0.39
(0.02-0.77) 

0.68
(0.55-0.81) 

0.63 
(0.49-0.77)

0.36 
(0.11-0.61)

0.45
(0.26-0.65) 

0.63
(0.45-0.80) 

0.66
(0.38-0.86) 6.7 4.4 

Table 2. Summary of intra-rater (inter-occasion) reliability values. Values in brackets represent the 95% 
confi dence intervals.

AR= anterior reach, ICC= intra-class correlation coefficient, ILL= in-line lunge, SLDL= single-leg deadlift,
SLHD= single-leg hop for distance, TJ =tuck jump 

CCIappakdethgieW 3, 1

 AR SLDL ILL SLHD TJ Composite 
score

Composite 
score

Occasion 1 0.83
(0.72-0.95) 

0.51
(0.35-0.66) 

0.71 
(0.58-0.85)

0.84 
(0.69-1.00)

0.60
(0.40-0.81) 

0.78
(0.68-0.88) 

0.79
(0.58-0.92) 

Occasion 2 0.76
(0.62-0.90) 

0.48
(0.29-0.66) 

0.70 
(0.56-0.84)

0.91 
(0.85-0.97)

0.43
(0.18-0.68) 

0.81
(0.71-0.90) 

0.86
(0.70-0.95) 

Occasion 3 0.59
(0.33-0.84) 

0.64
(0.50-0.79) 

0.58 
(0.41-0.75)

0.91 
(0.86-0.97)

0.50
(0.35-0.65) 

0.79
(0.70-0.87) 

0.79
(0.58-0.92) 

Table 3. Summary of inter-rater reliability values (between all three raters). Values in 
brackets represent the 95% confi dence intervals.

 Weighted kappa 
 SLDL ILL TJ 

Rater 1 0.90 
(0.86-0.95)

0.85
(0.80-0.91) 

0.73
(0.62-0.83) 

ILL= in-line lunge, SLDL= single-leg deadlift, TJ= tuck jump 

Table 4. Summary of intra-rater (intra-occasion) 
reliability values for video-taped  movements. Values in 
brackets represent the 95% confi dence intervals.
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at an 80% level of confidence demonstrate that if a 
one-point increase or decrease in each sub-test were 
observed a ‘real’ change in composite score would 
have likely occurred. The inter-rater reliability was 
classified as substantial to almost perfect when con-
sidering the weighted kappa values and excellent 
according to the ICCs (Table 3). The SLDL sub-test 
was the only movement where a discrepancy in 
scores between males and females was apparent 
(Table 1). Male participants regularly cited ham-
string inflexibility as a limiting factor during this 
task whereas female participants rarely mentioned 
this. Females generally display superior hamstring 
flexibility as compared to men.25 This difference in 
hamstring flexibility between males and females 
may potentially explain the gender difference in 
SLDL score observed in the present study. 

The AR portion of the Y-balance test has previously 
been investigated as a risk factor with limb asymme-
try >4 cm equating to a 2.3 – 2.7 times greater like-
lihood of non-contact injury among basketball and 
track and field athletes.26, 27 The scoring criteria used 
in this assessment (Appendix 2) required the rater 
to assign a score (0 – 10) based on the difference in 
reach distance between limbs. The reason for limit-
ing the scoring range to a maximum of 10 points (a 
reach asymmetry of ≥10 cm) was to maintain equal 
weighting between all five sub-tests (each of which 
was scored out of 10). The scoring criteria were 
clearly objective for this sub-test and therefore did 
not directly assess movement quality. However, it 
was decided that the AR warranted inclusion in the 
SIMS regardless of not directly assessing movement 
quality, due to the promising evidence surround-
ing its relationship to injury.26, 27 The test reflects a 
number of physical qualities including neuromuscu-
lar control, strength and ankle stability: all of which 
are likely contributors to movement quality.1, 26, 27 
Therefore, while this sub-test did not assess move-
ment quality directly the variable that was measured 
(difference in reach distance) is likely a reasonable 
surrogate marker. Ankle injuries occur frequently 
within soccer therefore the anterior reach may be 
a promising tool for highlighting increased risk of 
such events.28 The intra-rater weighted kappa val-
ues for the AR ranged from fair to moderate (Table 
2). In contrast, the inter-rater values ranged from 

moderate to almost perfect (Table 3). The difference 
between the intra- and inter-rater weighted kappa 
values suggests that the scoring criteria were clear 
but that a large proportion of the variation in the 
test scores stemmed from the participants and/or 
the influence of time between testing occasions. As 
such, additional participant familiarization with the 
test may help improve the intra-rater reliability. 

While the SLDL is multifaceted in its demands, 
eccentric strength and flexibility of the hamstrings 
are clearly primary aspects of the movement due 
to the flexion of the hip with an extended knee on 
the standing leg. Both eccentric strength and flex-
ibility of the hamstrings have been proffered as 
injury risk factors within soccer players.29, 30 Hence, 
the ability to perform the SLDL with a high degree 
of movement quality may indicate proficiency in 
these important attributes (hamstring flexibility and 
eccentric strength). The intra-rater SLDL weighted 
kappa values for each rater represented substantial 
agreement (Table 2) while the inter-rater reliability 
values ranged from moderate to substantial (Table 
3). These findings suggest that while raters were 
very consistent in their scoring of the SLDL within 
themselves there is opportunity for improvement 
in the between-rater agreement. Such a scenario is 
somewhat inevitable when considering subjective 
scoring criteria; however, more detailed guidelines 
on what constitutes a movement ‘error’ may help 
improve consensus between raters in the future.

The ILL, or split squat, is a widely used exercise within 
soccer both during warm-up routines and resistance 
training sessions.31, 32 According to Cook et al.34 the 
ILL focuses on the “stresses simulated during rota-
tional, decelerating and lateral type movements”. All 
of these movement patterns are frequently observed 
during soccer match play.34 The ability to perform 
this exercise correctly is important to ensure play-
ers do not use compensatory movements that poten-
tially cause or exacerbate acute and overuse injuries. 
When performing the ILL the same test setup was 
used as with the FMS™; however, the scoring cri-
teria utilized in the current research (Appendix 
2) differed.33 The alternative scoring criteria were 
employed with the intention of explicitly outlining 
the potential movement flaws and hence enhanc-
ing clinical usefulness of the results. Both intra- and 
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inter-rater reliability of the ILL ranged from mod-
erate to substantial (Tables 2 & 3). The weighted 
kappa values reported in the present investigation 
are in keeping with those observed in studies of the 
FMS™ version of the ILL.35-37 The more detailed scor-
ing criteria adopted by the SIMS as compared with 
the FMS™ did not appear to adversely affect the reli-
ability yet will provide practitioners with a clearer 
indication of where any potential movement dys-
function originates from.

It is important for soccer-specific movement assess-
ments to incorporate explosive actions such as jump-
ing and landing since they occur frequently during 
match play and often precede serious injury.34, 38 
While bilateral, vertical drop jumps have long been 
used for injury risk stratification39, 40 many explo-
sive soccer-specific actions are unilateral in nature 
and involve horizontal as well as vertical displace-
ment (for example: kicking, changing direction 
and landing after a header).34 The scoring criteria 
for the SLHD were objective and incorporated both 
the jump distance and the between limb difference 
in jump distance (Appendix 2) with each of these 
aspects weighted equally. The precise distances 
that characterized the different scoring ranges were 
based on pilot testing conducted with recreation-
ally active university students and therefore may 
not be applicable to professional or youth soccer 
players. Revised criteria may need to be established 
for higher-level athletes. The authors opted for 
objective, as opposed to subjective, scoring in this 
instance due to recent evidence suggesting jump 
distance as a risk factor for non-contact hamstring 
injury.41 While the intra-rater weighted kappa values 
ranged from fair to moderate the inter-rater values 
indicated almost perfect agreement between raters 
(Tables 2 & 3). The discrepancy between the intra- 
and inter-rater weighted kappa values suggests that 
a large proportion of the variation in the test scores 
stemmed from the participants and/or the influence 
of time between testing occasions rather than the 
application of the scoring criteria per se. 

Allowing more jump attempts may increase the like-
lihood of maximum jump distance being reached 
and a plateau in performance occurring, which 
may in turn help improve reliability. On 32 of the 
75 SLHD tests scored by Rater 1, (25 participants 

on three occasions) participants recorded their 
best jump distance (for that occasion) on their last 
attempt. Similarly, 15 of the 25 participants recorded 
their best jump distances overall on testing occasion 
3. In addition, 12 of the 25 participants scored by 
Rater 1 recorded their best between limb difference 
score on their third testing occasion. This demon-
strates that incorporating a number of familiariza-
tion sessions on multiple days prior to testing may 
improve reliability for the same reasons highlighted 
previously (plateauing of performance). However, 
it should be remembered that the more attempts 
allowed and the more familiarization sessions per-
formed the greater the potential for fatigue to influ-
ence test performance and the less practically 
feasible the assessment may become. There may be 
a trade-off between improved reliability and the fea-
sibility of using the SIMS as a screening tool in the 
applied environment. A recent systematic review by 
Hegedus et al.42 assessed the methodological qual-
ity of studies exploring the reliability and validity 
of commonly used field-expedient screening tests 
such as the SLHD. They found no studies of satisfac-
tory methodological quality reporting the reliability 
of the SLHD precluding comparison of the current 
results to previous findings. 

The TJ assessment has been proposed as a field-
expedient assessment of lower limb neuromuscular 
control.19 It is unique as an assessment of movement 
quality since it requires the participant to continu-
ously perform plyometric vertical jumps for 10 sec-
onds.19 While it is unlikely a player would replicate 
this precise activity during match-play the taxing 
nature of the test means it is likely to expose poten-
tially injurious lower-limb movement patterns (par-
ticularly those associated with the onset of fatigue) 
that other, typically lower intensity assessments 
may not highlight. It has been suggested as a partic-
ularly useful tool for highlighting knee valgus move-
ment during landing, which has been proposed as 
a risk factor for anterior cruciate ligament (ACL) 
injury.19, 43 Considering the long-term sequelae 
associated with ACL injury the authors judged the 
TJ worthy of inclusion in the SIMS.44, 45 Both the 
intra- and inter-rater weighted kappa values repre-
sented moderate agreement within and between 
raters (Tables 2 & 3). While this indicates accept-
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able reliability the weighted kappa values calculated 
are lower than previously reported by Myer et al.19 
However, Myer et al.19 only assessed 10 participants 
and so raters may have remembered the previous 
scores given, leading to recall bias. In addition, they 
scored the same video footage twice as opposed to 
scoring participants on two separate occasions. The 
scoring criteria (Appendix 2) are inherently subjec-
tive but reliability may be improved by adding some 
objective guidelines to certain scoring items. For 
example, one of the scoring items asks: “was there 
a pause between jumps”? This could potentially 
be changed to: “was there a pause, lasting longer 
than one second (or another defined time period), 
between jumps”? Such amendments may improve 
consistency of scoring within and between raters. 
However, future research is needed to assess the dif-
ference in reliability when objective instructions are 
given compared with when they are not.

In an effort to separate some of the sources of varia-
tion within the test-retest design, one rater scored 
all the filmed movements (SLDL, ILL and TJ) from 
each testing occasion twice. This removed the influ-
ence of variation in test performance stemming from 
the participants and revealed the ‘pure’ intra-rater, 
or intra-occasion, reliability. The weighted kappa val-
ues for the SLDL and ILL represented almost perfect 
agreement while the score for the TJ indicated sub-
stantial reliability (Table 4). These higher weighted 
kappa values (as compared to those reported in 
Table 2) are not surprising since they reflect only the 
variation in scoring associated with the rater. These 
results suggest that improvements in the ‘real world’ 
intra-rater reliability are more likely to arise from 
aspects related to the participants rather than the 
raters. Bearing this in mind, future strategies aimed 
at improving the intra-rater reliability of the SIMS 
further may include extended participant familiar-
ization with the test and allowing them to read the 
scoring criteria. Explicitly explaining the scoring cri-
teria for the FMS™ to participants elicited improved 
scores.46 This suggests that ambiguity related to what 
is being asked of participants during movement 
screening may influence their test execution and 
potentially contribute to variation in performance.

A number of limitations should be considered when 
interpreting the results of the present study. Perhaps 

most importantly, the pilot testing conducted to 
establish the scoring ranges for the SLHD (Appendix 
2) were based on recreationally active university stu-
dents’ scores. As such, it may be necessary to revise 
this aspect of the scoring criteria in the future if the 
SIMS is used with professional soccer players. Simi-
larly, if the SIMS were to be utilized with youth soccer 
players then amendments to the scoring criteria may 
be necessary. In addition, the results presented here 
are from only 25 participants, which, is a relatively 
modest sample size for assessing reliability accord-
ing to Terwee et al47; how ever, the scores from three 
trials were included, rather than the usual two in an 
effort to improve the credibility of the conclusions. 
Furthermore, the raters represented a homogenous 
group. All were PhD students with postgraduate 
degrees in sport science. Further research may be 
needed to assess the reliability of the SIMS when 
conducted by other groups of raters, for example, 
undergraduate students or sports coaches. 

CONCLUSIONS 
Until now, no movement screen has been devel-
oped specifically for use among soccer players. The 
SIMS composite score demonstrated good to excel-
lent intra- and inter-rater reliability. However, the 
intra-rater reliability of the individual sub-tests 
ranged from fair to substantial indicating scope for 
further improvement. Establishing the reliability of 
the SIMS is a prerequisite for further research seek-
ing to investigate the relationship between test score 
and subsequent injury. The present results indicate 
at least acceptable reliability for this purpose.
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* If available, a slider device (e.g. Y Balance Test Kit™) can be used to perform the anterior reach. 

snoitcurtsnIssenlufesudeviecrep/elanoitaRemantnemevoM
yesicrexehcaeroF“A/Ntnemssessa-erP ou have three practice attempts and three 

scored attempts on each leg. In the case of the tuck jump you 
have three practice jumps followed by the scored 10 second 
effort.” 

Anterior reach - Provides an indication of ankle mobility (dorsiflexion) 
- Highlights limb asymmetry (ankle mobility and/or leg 
strength) 
- Provides an indication of single-leg control (e.g. motor 
control and balance) 

“Remove your shoes. Place the big toe of your standing leg so it 
is touching the back of the taped line. Place hands on your hips. 
Reach the toes of the other leg as far along the measuring tape as 
possible – hovering around 5 centimeters off the ground. You 
must keep your standing foot in contact with the floor throughout, 
e.g. you cannot rise up on to your toes. Try to hover at the point 
of maximal reach for a couple of seconds to allow scoring. You 
must return to the start position for the attempt to be counted. 
Likewise, you must maintain balance throughout each attempt for 
the score to be recorded.”*

Single-leg 
deadlift 

- Provides an indication of ability to simultaneously flex 
and extend at the hip with extended knees while 
maintaining neutral spinal alignment 
- Provides an indication of hamstring flexibility 
- Provides an indication of single-leg control (e.g. motor 
control and balance) 

“Put your shoes back on. Tuck your t-shirt into your shorts. Stand 
on the middle of the cross, taped on the floor, and cross arms over 
your chest. Imagine a straight line between your head and your 
right heel. Try to hinge at the hip while keeping that line straight 
until parallel to the floor. Try to keep your standing leg (left) 
extended. Return to the start position with both feet touching the 
floor between each repetition.” Switch the words ‘right’ and ‘left’ 
when instructing the participant when testing the other side. 

** Foot placement is determined by measuring the distance from the !loor to the tibial tuberosity (shin length). 

Movement name Rationale/perceived usefulness Instructions
In-line lunge - Provides an indication of ability to simultaneously flex 

and extend at the hip with flexed knees while maintaining 
neutral spinal alignment 
- Provides an indication of lower limb motor control and 
balance 

As per instructions from Functional Movement Screen (Cook et 
al. 2006a) (see reference list for full article details). “Place your 
left toes so they are touching the back of the taped line. Place the 
heel of your right foot xx centimeters (as marked by instructor)** 
directly in front of your left foot. Hold the dowel behind your 
back gripping it with your left hand at your neck and your right 
hand at your lower back. Make sure the dowel is touching your 
head, upper back and buttocks. While maintaining an upright 
posture, descend into a lunge touching your left knee to the floor. 
Maintain contact with the dowel at the head, upper back and bum 
throughout. Return to the start position with knees fully extended 
between each repetition.”  Switch the words ‘right’ and ‘left’ 
when instructing the participant when testing the other side.

Single-leg hop 
for distance

- Provides an indication of lower-limb unilateral power 
- Highlights limb asymmetry (lower-limb power and/or 
ankle stability and/or lower-limb eccentric strength) 
- Provides an indication of single-leg control

“Place the toes of the jumping leg so they are touching the back 
of the taped line. Jump as far as you can while still able to stick 
the landing on the same leg and hold your position to allow 
measurement. You must record three successful scored jumps on 
each leg and you will receive as many attempts as necessary to 
achieve this.”

Tuck jump - Allows quick assessment of bilateral knee control 
during plyometric activity 
- Highlights limb asymmetry (lower-limb power and/or 
hip mobility)

As per instructions from Myer et al. (2008) (see reference list for 
full article details). “Stand on the middle of the cross taped on the 
floor with feet shoulder width apart. Upon signal from the tester, 
perform continuous vertical jumps on the spot for 10 seconds 
making sure to lift your knees towards your chest so that your 
upper thighs are parallel with the floor each time. Try to perform 
as many jumps as possible.”

Appendix 1. Description of the Soccer Injury Movement Screen (SIMS).
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calculate the score. Combine the scores for jump dis-
tance and jump symmetry to produce the final score 
out of 10. The maximum theoretical score achiev-
able is 10 and this would represent a ‘poor’ score. In 
contrast, the theoretical minimum score is zero and 
this would represent a ‘good’ score.

 Sum of right and left best jump  Test score
 distances (cm) 

 Males: Females:
 <320 <220 5
 321-340 221-240 4
 341-360 241-260 3
 361-380 261-280 2
 381-400 281-300 1
 >400 >300 0

Difference between best right and left jumps (cm) 
Test score
 >20  5
 17-20  4
 13-16  3
 9-12  2
 4-8  1
 <4  0

Scoring guidelines for the single-leg deadlift, 
in-line lunge and tuck jump (subjective 
assessments)

•  If an error occurs once and the rater judges it to be 
egregious then it should be scored as an error.

•  If an error (but only to a minor extent) is observed 
once then it should not be scored.

•  If the same error (but only to a minor extent) is 
observed twice then it should be scored as an error. 

Defining specifically what constitutes “minor extent” 
or “egregious” is not possible. These judgments are 
left to the discretion of each individual rater. An 
important consideration is that raters are consistent 
in their judgments within themselves.

Single-leg deadlift
The score for this test is based on the ‘movement 
quality’ criteria outlined below. Three repetitions 
are performed on each leg. The maximum theoreti-
cal score achievable is 10 and t his would indicate 
‘poor’ movement quality. In contrast, the theoreti-

APPENDIX 2. SCORING CRITERIA

General rater instructions 
Record each participant’s height, weight and tibial 
tuberosity height (distance from the floor to their 
tibial tuberosity). If a participant cannot physically 
perform any test due to pain then they should be 
considered injured, this should be reported to the 
relevant club staff members and the test should be 
postponed.

Scoring guidelines for the anterior reach and 
single-leg hop for distance (objective 
assessments)

Anterior reach
Measure the distance (in centimeters) from the start 
line to the most distal part of the foot of the reaching 
leg. Round to the nearest centimeter. Three repeti-
tions are performed on each leg and reach distance 
should be recorded for each attempt. The maximum 
reach distances achieved by each leg should be used 
to calculate the difference between left and right. 
The maximum theoretical score achievable is 10 and 
this would represent a ‘poor’ score. In contrast, the 
theoretical minimum score is zero and this would 
represent a ‘good’ score. 

 Difference in reach distance (cm)  Test score
 between legs 

 0 0
 1 1
 2 2
 3 3
 4 4
 5 5
 6 6
 7 7
 8 8
 9 9 
 ≥10 10

Single-leg hop for distance
Measure the distance (in centimeters) from the start 
line to the heel of the jumping/landing leg. Round 
to the nearest centimeter. Three repetitions are 
performed on each leg and jump distance should 
be recorded for each attempt. Both jump distance 
and limb symmetry are taken into account when 
assigning a test score. The maximum jump distance 
achieved on each leg should be summed and used to 
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Item #
1  Does dowel remain vertical in 

frontal plane throughout? Yes=0 No=1
2  Does torso rotation 

(transverse plane) occur? Yes=1 No=0
3  Does dowel remain vertical in 

sagittal plane throughout? Yes=0 No=1
4 Does back knee touch the floor? Yes=0 No=1
5  Does heel of front foot lift off 

the floor? Yes=1 No=0
6  Is footprint maintained 

throughout? Yes=0 No=1
7 Are the three dowel contact 
 points with body maintained? Yes=0 No=1
8 Does knee valgus occur during 
 the movement? Yes=1 No=0

Tuck jump
Mark a cross on the floor using tape (two 60cm strips 
that intersect). The score for this test is based on 
the ‘movement quality’ criteria outlined below. The 
maximum theoretical score achievable is 10 and this 
would indicate ‘poor’ movement quality. In con-
trast, the theoretical minimum score is zero and this 
would indicate ‘good’ movement quality. Myer et al. 
(2008) created the tuck jump assessment and any 
further clarification on scoring procedures can be 
sought from their original article (see reference list 
for full article details).

Item #
1  Was there knee valgus at 

landing? Yes=1 No=0
2  Do thighs reach parallel 

(peak of jump)? Yes=0 No=1
3  Were thighs equal side-to-side 

(during flight)? Yes=0 No=1
4  Was foot placement shoulder 

width apart? Yes=0 No=1
5  Was foot placement parallel 

(front to back)? Yes=0 No=1
6 Was foot contact timing equal? Yes=0 No=1
7 Was there excessive contact 
 landing noise? Yes=1 No=0
8 Was there a pause between 
 jumps? Yes=1 No=0
9 Did technique decline prior 
 to 10 seconds? Yes=1 No=0
10 Were landings in same 
 footprint (within taped cross)? Yes=0 No=1

cal minimum score is zero and this would indicate 
‘good’ movement quality. Both legs are scored and 
the average of both right and left scores is assigned 
to the individual. 

Item #
1 Is external hip rotation 
 (standing leg) visible? Yes=1 No=0
2 Does lumbar spine remain 
 neutral? Yes=0 No=1
3  Does thoracic spine remain 

neutral? Yes=0 No=1
4  Does knee of raised leg remain 

extended throughout? Yes=0 No=1
5  Is upper and lower body 

movement synchronized? Yes=0 No=1
6 Is footprint maintained? Yes=0 No=1
7  Is hip abduction (standing leg) 

present? Yes=1 No=0
8  Does the standing leg knee 

remain extended throughout? Yes=0 No=1
9  Parallel to floor position achieved? 
  Parallel (90°)=0, 89°-45°=1, <45°=2
  (all relative to the stance leg hip flexion angle)

In relation to item #9 – the angle being assessed is 
displayed in the following diagram:

In-line lunge
The score for this test is based on the ‘movement 
quality’ criteria outlined below. Three repetitions 
are performed on each side. The maximum theoreti-
cal score achievable is eight and this would indicate 
‘poor’ movement quality. In contrast, the theoreti-
cal minimum score is zero and this would indicate 
‘good’ movement quality. Both legs are scored and 
the average of both right and left scores is assigned 
to the individual. To generate a score out of 10 mul-
tiply the fractional score out of eight by 10 e.g. if an 
individual displays four out of eight possible errors 
then the score out of 10 is: (4/8)x10 = 5. The reason 
for generating a score out of 10 is to maintain the 
same weighting between the five sub-tests.



	


