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Abstract: (1) Background: It is known that sickle cells contain a higher amount of Ca2+ compared to
healthy red blood cells (RBCs). The increased Ca2+ is associated with the most severe symptom of
sickle cell disease (SCD), the vaso-occlusive crisis (VOC). The Ca2+ entry pathway received the name
of Psickle but its molecular identity remains only partly resolved. We aimed to map the involved Ca2+

signaling to provide putative pharmacological targets for treatment. (2) Methods: The main technique
applied was Ca2+ imaging of RBCs from healthy donors, SCD patients and a number of transgenic
mouse models in comparison to wild-type mice. Life-cell Ca2+ imaging was applied to monitor
responses to pharmacological targeting of the elements of signaling cascades. Infection as a trigger of
VOC was imitated by stimulation of RBCs with lysophosphatidic acid (LPA). These measurements
were complemented with biochemical assays. (3) Results: Ca2+ entry into SCD RBCs in response
to LPA stimulation exceeded that of healthy donors. LPA receptor 4 levels were increased in SCD
RBCs. Their activation was followed by the activation of Gi protein, which in turn triggered opening
of TRPC6 and CaV2.1 channels via a protein kinase Cα and a MAP kinase pathway, respectively. (4)
Conclusions: We found a new Ca2+ signaling cascade that is increased in SCD patients and identified
new pharmacological targets that might be promising in addressing the most severe symptom of
SCD, the VOC.

Keywords: erythrocytes; sickle cell disease; LPA receptor; G protein signaling; transgenic mice;
protein kinase Cα; MAP kinase; TRPC6; CaV2.1; Gárdos channel

1. Introduction

In sickle cell disease (SCD) patients’ red blood cells (RBCs), the Ca2+ uptake is in-
creased to approximately 300 µmol/(lcellsh) during vaso-occlusive crisis (VOC), which is
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approximately 6-fold higher than in healthy RBCs [1,2]. This Ca2+ overload is likely to be
mechanistically involved in the generation of the VOC, e.g., favoring RBC dehydration
that promotes crystallization of deoxyHbS. However, the deoxygenation of HbS alone is
insufficient to explain the erratic nature of the crises [3]. Dehydration occurs due to Gárdos
channel (Ca2+-activated K+ channel, KCNN4, KCa3.1, hSK4) activation and the following
K+ loss increases the mean cellular hemoglobin concentration (MCHC) and promotes HbS
aggregate formation. Furthermore, Ca2+ overload promotes phosphatidylserine external-
ization already in healthy RBCs [4] but in particular in RBCs of SCD patients [5], and as
such increases the aggregability of RBCs [6] and their intercellular adherence [7]. Thus,
the increased Ca2+ may promote the perturbation of microcirculation with participation
of even non-deoxygenated cells, independent of dehydration. This would increase RBC
transit time in poorly oxygenated vascular areas and further increase the risks for VOC.

The Ca2+ increase was named Psickle due to its conductive nature but without any
knowledge about its molecular identity [8,9]. However, in recent years, it became obvious
that more than one ion channel is involved in Psickle [10,11]. One direct Ca2+ entry pathway,
which is elevated in SCD RBCs, was shown to be the NMDA receptor [12,13]. A recent
clinical trial with memantine, an antagonist of the NMDA receptor, showed promising
results [14,15]. Here we provide evidence for a further player, lysophosphatidic acid (LPA),
that activates a signaling cascade, leading to increased intracellular Ca2+ and this Ca2+

entry pathway is upregulated in RBCs of SCD patients. LPA-induced Ca2+ entry into RBCs
was previously shown and believed to be channel mediated [16,17].

Whereas pharmacological studies pointed to the CaV2.1 channel [17,18], patch-clamp
measurements of channel activity gave rise to an alternative hypothesis that, instead, a
non-selective cation channel might cause the Ca2+ influx [19,20]. Although LPA-induced
Ca2+ influx was phenomenologically characterized [21–23], very little is known about
the signaling pathways resulting in LPA-dependent ion channel activation. It is known
that LPA activates protein kinase Cα (PKCα) [18,21,24], which is among the conventional
and novel PKC isoforms and, according to current knowledge, the only abundant variant
occurring in RBCs [25]. However, a putative interaction between PKC and the CaV2.1
channel is rather controversial [18,24,26]. Therefore, we aimed to further elucidate the
signaling pathway from LPA stimulation of RBCs to the Ca2+ entry mechanisms in healthy
and SCD RBCs.

2. Materials and Methods
2.1. Preparation of Human and Mouse Blood Samples

Experiments with human RBCs were authorized by the ‘Ärztekammer des Saarlandes’
under registration number 132/08 for healthy donors and by the Canton Zürich ethics
committee under registration number KEK ZH NR 2010-0237 as well as by the regional
ethics committee CPP Sud/Ouest Outre Mer III, Bordeaux under registration number
2010-A00244-35 for SCD patients. In all cases, blood donors provided their written in-
formed consent to participate in this study. This consent procedure was approved by the
respective ethics committees under the above-mentioned study registration numbers. For
the experiments, we used RBCs from healthy adult donors and non-transfused HbSS SCD
patients. Blood was drawn from a vein into heparinized containers and used within 30 h of
the withdrawal.

Experiments with mouse blood were carried out in strict accordance with the rec-
ommendations in the Guide for the Care and Use of Laboratory Animals of the National
Institutes of Health. The protocol was approved by the State Office for Health and Con-
sumer Protection (Permit Number: C1-2.4.3.4). All efforts were made to minimize suffering.
Blood samples were collected from the cheeks of the mice by lancet puncture and were
collected into heparinized Eppendorf tubes.

The following procedure was followed identically for RBCs from human and mouse.
RBCs were isolated via centrifugation at 5000× g for 3 min. The buffy coat and plasma were
discarded, and the remaining RBCs were washed three times with Tyrode solution (Tyrode)
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containing the following components (in mM): 135 NaCl, 5.4 KCl, 10 glucose, 1 MgCl2,
1.8 CaCl2 and 10 HEPES. The pH was adjusted to 7.35 using NaOH. For imaging the cells
were loaded with Fluo-4 AM (Molecular Probes, Eugene, OR, USA) at a concentration of
5 µM for 1 h at 37 ◦C. Then, the cells were washed three times with Tyrode.

2.2. Microscopic Video Imaging to Measure Intracellular Ca2+

Life-cell imaging was performed to monitor intracellular Ca2+ kinetics in individual
cells treated with hormones and pharmaceuticals (see below). Fluo-4-loaded cells were
plated onto coverslips. We waited 15 min for cell sedimentation and dye de-esterification.
Fluorescence was measured on the stage of an inverted microscope (TE2000, Nikon, Tokyo,
Japan) equipped with a 60× Plan Apo 1.4 objective. A video imaging device (TILL Photon-
ics, Munich, Germany) was attached to the microscope and contained a monochromator
(Polychrome IV), a camera (Imago), the imaging control unit and acquisition software
(TILLvision V4.0) for Figures 1, 3, 4, 6 and 8. The system was upgraded to Polychrome
V, a sCMOS camera (Flash4, Hamamatsu Photonics, Hamamamtsu City, Japan) and the
software (LightAcquisition, FEI, Munich, Germany) before the experiments presented in
Figures 5, 7 and 9 were carried out. Fluo-4-loaded cells were excited at 480 nm, and the
resulting fluorescence images (using a 505 nm long pass dichroic mirror and a 535/40 band-
pass filter) were collected every 5 s for 15 min. A gravity-driven local perfusion system
was utilized to quickly exchange solutions in the field of view. All measurements were
performed at room temperature (~22 ◦C). The images were analyzed in ImageJ (Wayne
Rasband, National Institute of Mental Health, Bethesda, MD, USA), and the traces were
further processed by IGORpro software (WaveMetrics, Kake Oswego, OR, USA).

2.3. Stimulating Substances

All activators and inhibitors were of analytical grade and freshly prepared from frozen
stock solution. The stock solution of LPA was 5 mM dissolved in phosphate-buffered
saline (PBS, Sigma-Aldrich, St. Louis, MO, USA). Pertussis toxin (PTX, Sigma-Aldrich) was
dissolved at a concentration of 250 µg/mL in H2O. U0126 as well as Wortmannin (both
Sigma-Aldrich) were dissolved at 10 mM in DMSO (Roth, Karlsruhe, Germany). Gö6976
(Tocris Biosciences, Bristol, UK) was dissolved at 1 mM in DMSO and ω-agatoxin-TK
(Peptanova, Sandhausen, Germany) at 100 µM in H2O. For AlF4

−, 30 µM AlCl3 and 10 mM
NaF were mixed. FK506 (InvivoGen, Toulouse, France) was dissolved at 20 mM in DMSO
and Cyclosporin A (Alfa Aesar, Ward Hill, MA, USA) at 1 mM in ethanol.

2.4. Western Blots

For Western blots, RBCs were filtered to make sure samples were not contaminated by
mononuclear cells [27]. Briefly, 0.36 g of a mixture of equal parts by weight of microcrys-
talline cellulose (cod. S5504, Sigma-Aldrich) and α-cellulose (cod. C8002, Sigma-Aldrich)
were mixed with 10 mL Tyrode to obtain a homogeneous slurry. The barrel of a 5 mL plastic
syringe was used as the filtering device and a septum made of filter paper (Whatman®

No 4, Cod. 1004125, Schleicher & Schuell BioScience, Dassel, Germany) was placed on the
bottom of the syringe barrel. The cellulose slurry was carefully poured inside the syringe
and the cellulose allowed to settle evenly. The excess Tyrode was allowed to flow through,
exposing the surface of the cellulose bed. At this point, 1 mL of blood sample was carefully
layered on top of the cellulose. When all the blood had entered the cellulose bed, Tyrode
was added to the filter, and the fraction of filtered RBCs was collected. The filtered cells
were concentrated by centrifugation and washed two more times with Tyrode. HeLa cells
used as positive controls were handled as previously described [28].

Cells were lysed by EP extraction buffer (100 mM Tris-HCl, 100 mM NaCl, pH 7.5)
supplemented with 0.5% Triton X-100, 20 mM DTT, complete protease inhibitor cocktail and
Phospho Stop (Roche Applied Science, Mannheim, Germany) on ice for 30 min. The whole-
cell lysates were then centrifuged at 5000× g for 10 min. The cell lysate was separated on
12% polyacrylamide gels. The gel electrophoresis was followed by transfer to nitrocellulose
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transfer membranes (Protran, Whatman, Kent, UK). Blots were incubated with rabbit
polyclonal anti-GAPDH (1:15,000), anti-LPAR 1 (1:2000), anti-LPAR 2 (1:1000), anti-LPAR
3 (1:1000, all antibodies LifeSpan BioScience, Seattle, WA, USA), anti-LPAR 4 (1:1000),
anti-LPAR 5 (1:1000, both from Aviva Systems Biology, San Diego, CA, USA).

Blots were washed with phosphate-buffered saline with 0.1% tween-20 (PBS-T) and in-
cubated with the horseradish peroxidase (HRP)-conjugated antibodies (1:5000). Enhanced
chemiluminescence (ECL) was used for signal detection.

2.5. Immunostainings and Confocal Measurements

For LPA receptor immunostainings, RBCs were fixed with 2% PFA plus 0.0075%
glutaraldehyde in Tyrode for 30 min. Then cells were permeabilized with 0.3% Triton X-100
in Tyrode for 10 min, followed by centrifugation at 3700× g for 5 min. After blocking with
5% bovine serum albumin (BSA) in Tyrode for 20 min, cells were incubated with the first
antibody, such as LPAR1-5 (1:50), in blocking buffer (5% BSA in Tyrode) for 4 h at room
temperature while gently shaking. After washing in Tyrode3 times, cells were incubated
with Alexa Fluor 488 goat anti-rabbit IgG (1:400; Molecular Probes, Eugene, OR, USA) in
Tyrode for 2 h. Confocal recordings were performed on a Leica TSC SP5II microscope (Leica,
Mannheim, Germany) using a 63× oil immersion objective with a numerical aperture of
1.4 (HCX PL APO) as described recently [29]. Fluorescence images were acquired in the
laser scanning mode using Leicas hybrid detector (HyD) at an excitation of 488 nm, and the
emission was collected between 491 and 540 nm for the Alexa Fluor secondary antibody.
Bright field images were recorded with a Leica DFC290 camera. The Leica Application
Suite Advanced Fluorescence (LAS AF) was used for image acquisition while ImageJ
(Wayne Rasband, National Institute for Mental Health) was used for image processing,
i.e., z-projection of the confocal slices, adjustment of brightness and contrast as well as
allocation of a green look-up table.

2.6. ELISA Phosphorylation Assay

For the ELISA phosphorylation assay, the RayBio®Phospho-Erk1 (T202/Y204)/Erk2
(T185/Y187) ELISA Kit was used to detect MAPK phosphorylation, following the manu-
facturer’s protocol. In brief, RBCs from healthy donors and SCD patients were treated with
Tyrode (control) or 5 µM LPA for 15 min. After RBC lysis using the cell lysate buffer pro-
vided in the kit, 100 µL sample or positive control (A431S002-1, provided by kit) to Erk1/2
was placed on a coated microplate. The cell lysates were incubated for 2.5 h at room tem-
perature while shaking. After washing the plates 4 times with the wash solution provided
by the kit, they were incubated with 100 µL detection antibody anti Erk1 (T202/Y204)/Erk2
(T185/Y187) for 1 h while shaking. Then 100 µL of prepared 1x HRP-conjugated anti-rabbit
IgG was added to each well and incubated for 1 h at room temperature while shaking.
After washing another 3 times, 100 µL of TMB one-step substrate reagent was added to
each well and incubated for 30 min at room temperature in the dark while shaking. Then
50 µL of stop solution (Item I) was added to each well and read immediately at 450 nm in a
PT-FUJI-SCANNER.

2.7. Data Analysis

Single-cell traces were analyzed as previously described in detail [30]. All data were
tested for Gaussian distribution. If normality was passed, data are presented as the mean
values ± SEM in bar graphs. Otherwise, data are presented in box plots. The number under
each box plot is the cell number. All experiments were performed on at least 3 different
donors/patients or 3 individual mice.

According to the normality test and the grouping conditions for testing significance,
Student’s t-test, a Mann–Whitney test, an ordinary one-way ANOVA or a Kruskal–Wallis
test with Tukey’s or Dunn multiple comparison test was performed. The level of statistical
significance was indicated as p < 0.05 (*), p < 0.01 (**), p < 0.001 (***) and p > 0.05 (ns) for
not significant. All statistical tests were performed in Prism, GraphPad, La Jolla, CA, USA.
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3. Results

3.1. LPA-Induced Increase in Intracellular Ca2+ in RBCs—Comparison of Healthy Donors with
SCD Patients

Based on LPA stimulation of single RBCs and the previously introduced fluorescence
microscopy analysis method [16,30], we compared Ca2+ entry in RBCs of healthy donors
and SCD patients (Figure 1). In Figure 1, we provide representative examples of how the
analysis was performed from imaging all the way to the statistical analysis. Figure 1A
shows representative images and single-cell traces for healthy RBCs; Figure 1B shows
the corresponding data for SCD RBCs. The statistical analysis in Figure 1C depicts a
significantly higher LPA-induced increase in the intracellular Ca2+ in sickle cells compared
to healthy RBCs. Please note that also under control conditions we find a small LPA-
independent Ca2+ entry. Although the topic of this report is LPA-dependent Ca2+ entry, this
rather small (fractual) Ca2+ influx contributes to the entire picture of the Ca2+ signaling (see
Discussion below).

3.2. LPA Receptors in Healthy and SCD RBCs

Since the Ca2+ increase in both healthy and SCD RBCs is caused by the application of
LPA, it was a logical step to look at the abundance of LPA receptors in RBCs. Figure 2A
shows Western blots and their analysis of the LPA receptors 1–5, which reveal the presence
of LPA receptors 1, 2 and 4 in healthy and sickle RBCs, with receptor 4 being significantly
increased in SCD RBCs. The immunocytochemistry data and their statistical analysis in
Figure 2B clearly support the results of the Western blot. The full gel Western blots for all
conditions are provided in Supplemental Figure S1.

3.3. G Protein Signaling

To further explore the molecular signaling pathway, we followed the hints of the
literature towards the involvement of G proteins [31] by comparing the LPA stimulation
with the broad G protein activation by AlF4

− [32] in human and mouse RBCs (Figure 3A).
Although the magnitudes of the response are slightly different between human and mouse
RBCs, both depict a significant increase in intracellular Ca2+ even exceeding the LPA
stimulation. Following the literature, we probed the LPA stimulation in RBCs of a Gα11
knock-out mouse line [33], revealing no difference to cells of wild-type mice (Figure 3B).
The next candidate of G proteins to probe was the Gαi utilizing the specific inhibitor
PTX [34]. PTX fully inhibits LPA-induced Ca2+ entry in mouse RBCs (Figure 3C), leading
to the conclusion that the LPA mechanism is exclusively operated by Gαi proteins. The
same Gαi-based mechanism seems to be operating in human RBCs (Figure 3D).

3.4. The PKC Branch of the Signaling Pathway of G Protein Signaling

Because Gαi subunits have been associated with the transient receptor potential (TRP)
channels C4 and C5 [35], we investigated RBCs fromTRPC4/5 double knock-out mice [36].
As shown in Figure 4A, there is no significant difference in Ca2+ entry of TRPC4/5−/− RBCs
compared to WT RBCs. Because TRPC6 has been reported to contribute to the increase in
residual Ca2+ influx in RBC [37], we further investigated RBCs of TRPC6−/− mice [36,37].
The stimulation with LPA revealed that Ca2+ entry in TRPC6−/− RBCs is suppressed,
but still significantly increased compared to control conditions (Figure 4A). Due to the
proposed involvement of PKCα in RBCs channel regulation [18,24,38], we inhibited PKCα
with the specific inhibitor Gö6976 [39]. The results are depicted in Figure 4B. In RBCs of
wild-type mice, inhibition of PKCα lead to a decrease in Ca2+ influx, which is still higher
than that under control conditions. For TRPC6−/− mice, Gö6976 had no additional effect
on LPA-induced Ca2+ entry. In human RBCs (both healthy and SCD), the relative amount
of Gö6976-inhibited Ca2+ entry is identical compared to wild-type mouse conditions
(Figure 4C). In addition, we considered the application of TRPC6 inhibitors, in particular
larixyl acetate [40] and SAR7334 [41] at the suggested concentrations. However, as depicted
in Supplemental Figure S2, both inhibitors show non-specific side effects that result rather
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in a Ca2+ increase instead of an inhibition. This is clearly seen when applied to RBCs of
TRPC6−/− mice.Cells 2021, 10, 456 6 of 23 

 

 

 

Figure 1. LPA-induced increase in intracellular Ca2+ in RBCs from healthy donors compared to
HbSS SCD patients. (A) depicts the measurements for healthy control cells, while (B) shows the
same approach for RBCs from SCD patients. (a) shows bright field images and fluorescence images
under unstimulated control conditions. (b) Representative image sections with RBCs marked with
regions of interest (ROI) in different colors. In the traces below the images, the fluorescence intensities
(selfratio F/Fo) of the cells marked (same color codes as the ROI) are plotted. The bars above the traces
indicate the presence/application of the external solution. Numbers at the dashed lines correspond
to the numbers of the images above. (c) gives the collection of all fluorescence intensity traces (similar
as in (b)) but for all cells measured with LPA stimulation. (d) shows the same as in (c) for control
experiments without stimulation. (C) Statistical analysis of the max. value of each trace as outlined
in (b–d). Since cellular values are not Gaussian distributed, statistics show medians and 10–90%
boxes. Numbers below the boxes refer to the number of cells analyzed originating from at least three
different experiments. ns stands for not significant (p > 0.05) and *** for p < 0.001. All measurements
were performed at room temperature.
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Figure 2. LPA receptors (LPAR) in RBCs from healthy donors compared to SCD patients. (Aa) depicts the Western blots of
LPAR 1, 2 and 4 for healthy RBCs (H1–H3) and sickle cells (S1–S3). As a loading control, we used GAPDH. (Ab) shows
the statistical analysis of the Western blots as presented in (Aa). For LPARs 3 and 5, the bands were below the detection
limit. Examples of full gel Western blots for all LPA receptors tested are provided in Supplemental Figure S1. (Ba) shows
confocal z-projections of immunocytochemistry staining for control conditions (only secondary Alexa Flour 488-labeled
antibody) and for the three abundant LPARs in comparison to brightfield images of healthy (left) and SCD (right) RBCs.
Even if the cell number in particular images is rather low, we ensure that they are representative for the cell population.
(Bb) summarizes the statistical analysis of the immunostainings as depicted in (Ba) supporting the Western blot data. ns
stands for not significant (p > 0.05) and *** for p < 0.001.

As shown in Figure 4, we could link PKCα activity to TRPC6-mediated Ca2+ entry.
We were puzzled by this finding, because phosphorylation of TRPC6 by PKC isoforms
is commonly associated with the inhibition of TRPC6 [42]. However, Kim and Saffen
proposed that the PKC-induced phosphorylation of TRPC6 and its inactivation enable
the binding of the immunophilin FKBP12 to TRPC6, eventually forming a multiprotein
complex with calcineurin and calmodulin [43]. The calcineurin then dephosphorylates
TRPC6 and in turn activates the channel [43]. This interaction scheme is sketched in
Figure 5A. To test whether this mechanism might be responsible for PKCα-induced TRPC6
activity in RBCs, we compared LPA-induced Ca2+ influx of human RBCs under Gö6976
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pretreatment with that of RBCs pretreated with FKBP12 inhibitor FK506 and the calcineurin
inhibitor Cyclosporin A (CsA) (Figure 5B). FK506 suppresses LPA-induced Ca2+ entry to
exactly the same amount as Gö6976 (Figure 5B), supporting the mechanism sketched in
Figure 5A. Inhibition of LPA-induced Ca2+ entry by CsA is slightly more enhanced than
by Gö6976 or FK506 (Figure 5B), supporting the mechanism depicted in Figure 5A further
but indicating a crosstalk of CsA with the PI3 kinase-mediated branch of the signaling
pathway (see below). Additionally, we tested the effect of FK506 in comparison to Gö6976
treatment in mouse RBCs and TRPC6−/− mouse RBCs (Figure 5C). In both cases, there
was no difference between the Gö6976 treatment and that with FK506. Furthermore,
for TRPC6−/− RBCs, Gö6976 and FK506, application lacked a significant difference to
pure stimulation with 5 µM LPA, providing further support for the mechanism presented
in Figure 5A.
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Figure 3. G protein signaling in LPA-induced Ca2+ entry into RBCs. More transparent boxes in the statistics indicate
data that are replotted for comparison. All panels present the statistical evaluation, with the numbers below the boxes
indicating the number of cells measured. (A) The pan-specific G protein activator AlF4

− induces a Ca2+ entry in human and
mouse RBCs exceeding the one of LPA stimulation. (B) LPA-induced Ca2+ entry in RBCs of Gα11 knock-out mice shows
no difference compared to cells of wild-type mice. (C) The Gαi-specific inhibitor PTX is able to fully block LPA-induced
Ca2+ entry in mouse RBCs. (D) LPA stimulation of PTX-pretreated RBCs of healthy donors and sickle cell disease patients.
Numbers below the boxes refer to the number of cells analyzed originating from at least three different experiments. ns
stands for not significant (p > 0.05) and *** for p < 0.001. All measurements were performed at room temperature.
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Figure 4. Gαi protein signaling activates TRPC6. More transparent boxes indicate data that are
replotted for comparison. All panels present the statistical evaluation, with the numbers below the
boxes indicating the number of cells measured. (A) LPA stimulation of RBCs from TRPC4/5−/−

double knock-out and TRPC6−/− mice in comparison to wild-type mice. (B) Gö6976 pretreatment
has no effect on the LPA response of TRPC6−/− RBCs but suppresses Ca2+ entry in RBCs of wild-
type mice. (C) Same experiments as in (B) but with RBCs from healthy humans and sickle cell
disease patients. Numbers below the boxes refer to the number of cells analyzed originating from
at least three different experiments. ns stands for not significant (p > 0.05) and *** for p < 0.001. All
measurements were performed at room temperature.
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Figure 6A depicts the results revealing an increased basal MAPK activity in SCD RBCs. 

Figure 5. Activation mechanism of TRPC6 by PKCα. (A) shows a scheme of the TRPC6 activation mechanism by PKCα.
(B) presents the statistical evaluation of human RBCs pretreated with Gö6976, FK506 or Cyclosporin A (CsA) followed by
LPA stimulation. (C) depicts the statistical evaluation of wild-type mouse RBCs in comparison to RBCs from TRPC6−/−

mice for perfusion with Tyrode (control), 5 µM LPA stimulation and 5 µM LPA stimulation with pretreatment of 1 µM
Gö6976 or 10 µM FK506. The numbers below the boxes indicate the number of cells measured in at least three different
experiments. ns stands for not significant (p > 0.05), ** for p < 0.01 and *** for p < 0.001. All measurements were performed
at room temperature.

3.5. The MAP Kinase Branch of the Signaling Pathway

In search of the cause of the remaining amount of Ca2+ entry, we focused on a MAP
kinase (MAPK) pathway which was reported to be abundant in RBCs [44]. Therefore, we
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probed RBCs from healthy donors and SCD patients for MAPK activity using an ELISA.
Figure 6A depicts the results revealing an increased basal MAPK activity in SCD RBCs.Cells 2021, 10, 456 13 of 23 
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Figure 6. A Gαi protein singling activates MAPK and ω-agatoxin-TK-sensitive Ca2+ entry. (A)
Phosphorylation assay for MAPK activity by ELISA for RBCs from healthy humans and sickle cell
disease patients at rest (Tyrode) and after 15 min of 5 µM LPA stimulation. (B,C) More transparent
boxes in the statistics indicate data that are replotted for comparison. (B,C) present the statistical
evaluation, with the numbers below the boxes indicating the number of cells measured. (B) LPA
stimulation of RBCs from wild-type and TRPC6−/− mice with and withoutω-agatoxin-TK pretreat-
ment was followed by fluorescence read out of the Ca2+ fluorophore Fluo-4. (C) Same experiments
as in (B) but with RBCs from healthy humans and SCD patients. All measurements were performed
at room temperature. ns stands for not significant (p > 0.05), ** for p < 0.01 and *** for p < 0.001. All
measurements were performed at room temperature.
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LPA induces an increase in MAPK activity, which is more pronounced in RBCs from
SCD patients. The Ca2+ channel that is regulated by this signaling pathway is expected to be
ω-agatoxin-TK sensitive [17,24]. Based on the pharmacology and Western blots of the α1A
subunit, this channel was proposed to be CaV2.1 [17,18]. We performed the Ca2+-imaging
assay of LPA stimulation with and without pre-incubation ofω-agatoxin-TK on RBCs of
WT mice and TRPC6−/− mice (Figure 6B). ω-agatoxin-TK partly inhibits LPA-induced
Ca2+ entry in RBCs from WT mice, whereas in RBCs of TRPC6−/− mice,ω-agatoxin-TK
keeps internal Ca2+ levels the same as under control conditions.

In human RBCs, Ca2+ entry upon incubation with ω-agatoxin-TK (Figure 6C) is
qualitatively the same as in wild-type mouse RBCs (Figure 6B). In RBCs of SCD patients,
the Ca2+ response to LPA upon incubation withω-agatoxin-TK is increased compared to
healthy donors (Figure 6C).

The results presented in Figure 6B,C point to an involvement of the CaV2.1 channel
that was shown to be present in RBCs [18]. On first view, it seems odd that a voltage-
gated channel could be activated in non-excitable RBCs. However, we have developed a
concept that is based on the activation of the Gárdos channel (Ca2+-activated K+ channel,
KCNN4, KCa3.1), which leads to RBC hyperpolarization from −10 mV to approximately
−70 mV [45]. We recently provided experimental evidence for this hypothesis [46]. The
main idea is summarized in Figure 7A.
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Figure 7. Activation mechanism of CaV2.1 by the Gárdos channel. (A) shows a scheme of the CaV2.1 activation mecha-
nism involving the Gárdos channel. (B) presents the statistical evaluation of RBCs pretreated with the Gárdos channel
inhibitor Charybdotoxin (ChTX) followed by LPA stimulation, with the numbers below the boxes indicating the number
of cells measured in at least three different experiments. *** stands for p < 0.001. All measurements were performed at
room temperature.

The data presented in Figure 6 indicate that kinase activity favors the channel opening.
It is unclear whether the Gárdos channel or CaV2.1 is phosphorylated. Both channels
contain numerous putative phosphorylation sites. Although we kept both options in the
scheme of Figure 7A, we favor the phosphorylation of the Gárdos channel, which makes
more sense conceptionally and was also reported to occur in neurons [47].

If indeed the Gárdos channel is involved in the activation of CaV2.1, inhibition of
the Gárdos channel should have an impact on LPA-induced Ca2+ entry. The result of this
experiment is depicted in Figure 7B and indeed shows a significantly lower Ca2+ level
when the LPA stimulation is performed in the presence of 500 nM of the Gárdos channel
inhibitor Charybdotoxin (ChTX). To complement the approach presented in Figure 6, we
performed further pharmacological investigations and pre-incubated the RBCs with U0126,
an inhibitor of MEK [48], the upstream activator of MAPK, as well as with Wortmannin
(WTM) a phosphoinositide 3 kinase (PI3 kinase) inhibitor [49]. Both substances showed
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basically the same effect (Figure 8). Figure 8A reveals a suppression of LPA-induced Ca2+

entry by the pharmacological interventions in wild-type RBCs, while in TRPC6−/− RBCs,
Ca2+ entry is completely abolished. In human RBCs, Ca2+ entry upon incubation with
the blocking agents (Figure 8B) is qualitatively the same as in wild-type mouse RBCs
(Figure 8A). In RBCs of SCD patients, the Ca2+ response to LPA upon incubation with
WTM and U0126 is upscaled compared to healthy donors (Figure 8B).

3.6. The Overview of the Signaling Cascade

After identifying the two signaling branches, the remaining question is whether the
two branches completely account for the total LPA-induced Ca2+ entry in RBCs. The
experiments with the TRPC6−/− mouse RBCs in Figures 6B and 8A already point in this
direction. The experiments depicted in Figure 8C provide further evidence that the two
branches of the pathway, the PKCα mediated (blocked by Gö6976) and the PI3 kinase
activated (blocked by WTM), can completely explain LPA-induced Ca2+ entry into RBCs of
healthy humans, sickle cell disease patients and mice.

A schematic overview of the signaling cascade is given in Figure 9A. Here it becomes
evident that both branches of the signaling cascade require Ca2+ to be activated. The PKC
branch needs Ca2+ to activate PKCα [50] and the MAP kinase branch requires Ca2+ to
activate the Gárdos channel [11]. One could argue that both pathways stimulate each other
by positive feedback loops, but also one branch operates if the other one is inhibited, as
shown in Figures 6B and 8.

Both in vivo as well as in our in vitro experiments, RBCs experience a certain shear
stress. In vivo, this is almost obvious and there it results in a measurable Ca2+ increase [51]
most probably mediated by the mechanosensitive channel Piezo1, which is abundant in
RBCs [52–54]. In our in vitro experiments, we used a gravity-driven local perfusion system,
which results in a very moderate shear stress applied to the cells in the field of view in
the microscope, which is much below physiological levels (0.3–10 Pa) in vivo. However,
this flow/shear stress occurs in all experiments also under control conditions, when only
Tyrode is perfused. Having a closer look at these control experiments (Figure 1Ad,C), the
Ca2+ does not remain constant (self-ratio F/Fo of 1) but slightly increases. Therefore, a
small fractional Ca2+ entry by a mechanosensitive channel such as Piezo1 could be the Ca2+

source enabling both branches of the signaling cascade.
To test this hypothesis, we performed experiments on human RBCs, where the 5 µM

LPA were applied (i) without perfusion (less exact time point of application) and (ii) in the
presence of 2 µM of the mechanosensitive channel inhibitor GsMTx-4 [55]. The results are
presented in Figure 9B and reveal that indeed LPA-induced Ca2+ entry could be prevented
under both additional conditions tested, supporting the hypothesis that a mechanosensitive
channel such as Piezo1 provides fractional Ca2+ entry, enabling the signaling cascades as
outlined in Figure 9A.
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Figure 8. The MAPK-associated pathway. More transparent boxes in the statistics indicate data that
are replotted for comparison. All panels present the statistical evaluation, with the numbers below
the boxes indicating the number of cells measured. (A) LPA stimulation of RBCs from wild-type
and TRPC6−/− mice after pretreatment with Wortmannin or U0126 was followed by fluorescence
read out of the Ca2+ fluorophore Fluo-4. (B) Same experiments as in (A) but with RBCs from healthy
humans and sickle cell disease patients. (C) shows the statistical evaluation of RBCs pretreated with
Gö6976 and Wortmannin followed by LPA stimulation. All measurements were performed at room
temperature. ns stands for not significant (p > 0.05) * for p < 0.05, ** for p < 0.01 and *** for p < 0.001.
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Figure 9. Overview of the Ca2+ signaling cascade. (A) shows a scheme of the hypothesized Ca2+ signaling cascade based on
the indications presented in this paper. It includes the pharmacological tools (inhibitors) used to probe the RBCs (dark red).
The cascade starts with LPA stimulation of LPA receptors as outlined in Figures 1 and 2. G protein signaling was shown
in Figure 3. The involvement of PKCα and TRPC6 in one of the signaling branches was indicated in Figure 4. PKCα is
generally activated through the involvement of phospholipase Cβ (PLCβ), phosphatidylinositol-4,5-bisphosphate (PIP2)
and diacylglycerol (DAG) [56]. The detailed activation of TRPC6 by PKCα (black dotted box) is shown in Figure 5A. The
second signaling branch involving PI3 kinase (PI3K), MEP, MAP kinase (MAPK) and CaV2.1 was explored in Figures 6–8,
whereas the detailed interaction between CaV2.1 and the Gárdos channel (black dashed box) is detailed in Figure 7A.
Indications for a fractual Ca2+ signaling by a mechanosensitive ion channel are provided in (B). Piezo1 as indicated by the
scheme is only an example for a mechanosensitive channel. The plasma membrane Ca2+ pump (PMCA) was not investigated
within this paper but since it is the major transport mechanism of Ca2+ out of the RBC, it was added to complete the overall
picture. (B) presents the statistical evaluation of human RBCs pretreated with the inhibitor of mechanosensitive channels,
GsMTx-4, followed by LPA stimulation, with the numbers below the boxes indicating the number of cells measured in
at least three different experiments. In contrast to all other experiments, for the measurement of the grey bar, no local
perfusion system was used to completely avoid any shear stress to the cells. ns stands for p < 0.05 and *** for p < 0.001. All
measurements were performed at room temperature.
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4. Discussion

When judging the results, we like to point out that RBCs are very special cells and
although much of our current knowledge of membrane transport originates from RBCs
when they have been ‘the’ model cell for membrane transport during the last century [57],
they lack a number of mechanisms. First of all, there is the lack of organelles in mammalian
RBCs, i.e., they do not contain cell internal ion stores, a property which favored them
as model cells. Consequently, well-known processes such as Ca2+-induced Ca2+ release
or store-operated Ca2+ channels do not exist in RBCs. Furthermore, it is worthwhile to
mention that mature mammalian RBCs do not contain translational machinery, i.e., they
have the set of proteins from when the erythroblasts enucleated and the RBCs were released
into the circulation. Depending on the aging process of the particular proteins, young and
old RBCs contain different sets of proteins [58], i.e., receptor, ion channel and kinase content,
just to name a few proteins, vary during the RBC lifetime of in average approximately
115 days in humans [59] and 45 days in mice [60]. Additionally, the number of ion channel
copies is very low in RBCs—for the Gárdos channel, an estimated 1–5 copies per cell in 75%
of the cells [61,62], and Piezo1 and TRPC6 are also within the detection limit [63]. Therefore,
functional measurements, especially when they integrate the signal as in Ca2+-imaging
experiments, are more sensitive than molecular biological approaches.

4.1. Elucidating the Signaling Mechanism of LPA-Induced Ca2+ Entry in RBCs

Our results show that Ca2+ uptake evoked by LPA stimulation and well described
in healthy RBCs [4,6,17,21,30] is markedly increased in SCD (Figure 1). As the molecular
mechanisms of LPA-induced Ca2+ influx are so far unknown, we aimed at elucidating the
various steps in the signaling cascade in healthy RBCs and compared it with pathological
RBCs. By using Western blot and immunocytochemistry, we first probed for LPA receptors
and found that whereas the same isoforms (1,2 and 4) were expressed in both populations,
LPA receptor type 4 was augmented more than 3-fold in SCD RBCs (Figure 2). The increase
in Ca2+ influx in both cell populations was conveyed by two branches of a signaling
pathway starting at an LPA receptor and the further activation of a Gαi protein (Figure 3).
It is worthwhile to mention that full activation of G proteins by AlF4

− exceeds by far
the Gαi activation by LPA receptors (Figure 3A), confirming the abundance of various
G proteins in RBCs [64]. One branch of the signaling pathway regulated the TRPC6
channel through recruitment of PKCα (Figures 4 and 5), whereas the other points to the
opening of the CaV2.1 channel involving PI3, MEK and MAP kinases and the stochastic
activity of the Gárdos channel (Figures 6–8). The suggested signaling is heavily based on
experimental evidence from experiments with knock-out mice (Figures 3–8). Although
this genetic-based approach cannot be directly transferred to human RBCs, a number
of pharmacological studies, which show a high functional homology between mouse
and human RBCs (Figures 3–8), suggest a projection of the signaling cascade (Figure 9A)
to humans.

4.2. LPA Signaling in RBCs of Sickle Cell Disease Patients

The cause of the increased Ca2+ response of SCD RBCs presumably is at least partially
the LPA receptor 4, whose abundance compared to healthy cells acts as an amplifying
switch for the entire signaling cascade. We hypothesize that the increased density of
particular receptors might be a general feature of sickle cells. This notion is supported
by the fact that NMDA receptors also show a higher abundance in sickle cells compared
to healthy RBCs [65]. One of the reasons behind this resides in the average age of SCD
RBCs (average lifetime of 10–20 days [66]) compared to healthy RBCs (average lifetime of
approximately 115 days [59]), and since RBCs do not produce new proteins, receptors are
lost over time.

The LPA signaling pathway and the consecutive activation of channels as well as the
discovery of NMDA receptors in RBCs [13] place Ca2+ channels in focus as pharmaceutical
targets for the treatment of one of the most severe symptoms of SCD, i.e., VOC. This holds
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particular true, as Ca2+ has been identified as a trigger for RBC self-aggregation [6,22,67]
and for their adhesion to endothelial cells [68–70].

4.3. Potential for Heterogeneity

Recently, direct channel activation of LPA in RBC was discussed [4,6]. However,
tremendous heterogeneity in the LPA response of the RBCs of each donor [16,17,30] (cp.
also Figure 1Ac,Bc) could not be comprehensively explained by RBC age [30,71]. In light
of the current results revealing a substantial signaling cascade with numerous directly
involved molecular players, this provides a potential chain where each individual link may
cause a modulation of the final Ca2+ signal. This variety of direct players is supplemented
by a presumably varying contribution of indirect modulators, particularly the plasma
membrane Ca2+ ATPase (PMCA) [72], which is activated by 60–100 nM Ca2+ [73] and may
directly pump out the Ca2+ which enters the RBCs, and its activity will depend on the
metabolic status of the RBC, which can vary from cell to cell.

4.4. Novel Molecular Interactions

Although the abundance of Gαi protein is well documented in RBCs [74,75], this
is, to our knowledge, the first report of a Gαi–PKCα interaction in RBCs. However, for
platelets, such a signaling step has been previously reported [76]. Data on the interaction
of PKC and TRPC6 are rather scarce and mostly show suppression of TRPC6 expression
by PKC [77,78], which is irrelevant to the fast changes induced by PKCα in the TRPC6
channel in RBCs, leading to an acute increase in the Ca2+ influx within minutes. Direct
interaction (phosphorylation) of TRPC6 by PKC is still controversial [42,79,80]. However,
relying on single-channel recordings, in coronary artery smooth muscle cells, an inhibition
of TRPC6 by inhibition of PKC was reported [81]—similar to what we found in RBCs.

Activation of a PI3 kinase/MAP kinase pathway by Gαi has already been described
in the context of platelets [82,83]. The pharmacological inhibition of LPA-induced Ca2+

entry in TRPC6−/− RBCs using ω-agatoxin-TK (Figure 6B) provides clear evidence for the
involvement of CaV2.1 in the proposed signaling cascade. Although the modulation of
voltage-activated Ca2+ channels by G protein-induced signaling has been reported [84], the
abundance and operation of voltage-gated channels in non-excitable cells is anything but
established. Even though such discussions were performed in the context of T lymphocytes,
where the expression and function of voltage-gated Ca2+ channels have been shown [85–87],
our interpretation follows the idea of hyperpolarization–depolarization jumps caused by
fluctuations in Gárdos channel activity. This hypothesis was previously published [45],
and recently supported with experimental evidence [46]. In the present paper, we were
able to add experimental evidence: when the K+-conducting Gárdos channel was blocked,
LPA-induced Ca2+ entry was also diminished (Figure 7B)—to a similar extent as observed
with modulation by the CaV2.1 channel inhibitorω-agatoxin-TK (Figure 6C). We have to
admit that this concept only works because (i) the number of Gárdos channels in RBCs is
very low [61,62] and (ii) we face the situation of a submaximal Gárdos channel activation.
As a consequence the probability of the Gárdos channels opening leads to stochastic
opening and closing, which enables membrane potential flickering. Such depolarization–
hyperpolarization cycles are required for the activation of a voltage-gated channel.

5. Conclusions

We found a new Ca2+ signaling cascade that is increased in RBCs of SCD patients in
the first place by an increased occurrence of the LPA receptor 4. However, since Gi protein
signaling triggers an entire signaling cascade, we provide a set of new pharmacological
targets that might be promising in addressing the most severe symptom of SCD, i.e., VOC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2073-440
9/10/2/456/s1, Figure S1: Gel electrophoresis analysis of LPA receptors 1–5 in human red blood
cells (RBCs) of healthy donors and sickle cell disease (SCD) patients; Figure S2: Testing the reported
TRPC6 inhibitors larixyl acetate and SAR7334.
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