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Abstract
In this work, we numerically study the elastic contact between isotropic and anisotropic, rigid, randomly rough surfaces and 
linearly elastic counterfaces as well as the subsequent Reynolds flow through the gap between the two contacting solids. We 
find the percolation threshold to depend on the fluid flow direction when the Peklenik number indicates anisotropy unless 
the system size clearly exceeds the roll-off wave length parallel to the easy flow direction. A critical contact area near 0.415 
is confirmed. Heuristically corrected effective-medium treatments satisfactorily provide Reynolds fluid flow conductances, 
e.g., for isotropic roughness, we identify accurate closed-form expressions, which only depend on the mean gap and the 
relative contact area.

Graphical Abstract
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1 Introduction

Predicting the leakage rate of seals requires the distribu-
tion of the interfacial separation between a surface and the 
seal to be known. This distribution function can only be 
obtained reliably with accurate contact mechanics models 
for the surface-seal system accounting for the microscopic 
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roughness of solids. The quantitative description of such 
contacts can be said to have had three births. Greenwood 
and Williamson (GW) [1] formulated the problem in 1966 
and suggested a solution to it in terms of non-interacting 
single-asperity contacts. Persson [2] redefined the problem 
in 2001 by shifting the description and the solution of the 
contact problem from the real space to Fourier space, which 
ultimately lead to quite different results than those obtained 
by GW. Meanwhile, Robbins, who is honored in this issue of 
Tribology Letters, lead the first efforts to rigorously model 
numerically the multi-scale nature of roughness [3, 4] and 
kept spearheading contact mechanics simulations. This gives 
us the chance to quickly sketch some of Mark’s pioneering 
contributions to contact mechanics.

Mark understood much better than most of us that mod-
eling is a two-step process: “Reality” is first mapped onto 
mathematical equations, which then need to be solved, typi-
cally by invoking additional approximations to those while 
formulating the model. He was one of the few who was strong 
in both steps and who recognized that scrutinizing the validity 
of the respective approximations is best made separately. For 
example, in his second work in the field of contact mechanics 
[4] he analyzed (i) to what extent plastic deformation mat-
ters under what circumstances. He identified rules for (ii) 
the range of validity of continuum theories for small-scale 
contacts [5] and worked out (iii) criteria for when randomly 
rough surfaces are (locally) sticky [6]. In other work [7], he 
found that (iv) stress and contact auto-correlation functions 
decay proportionally to Δr−(1+H) , as predicted by Persson [8], 
and not with Δr−2 (1+H) , as in bearing-area models like GW. 
Mark also (v) corroborated that Persson theory finds the cor-
rect load–displacement relation for randomly rough surfaces 
[9]. While it had already been established for moderate load 

when true contact is spread across the interface [10, 11], Mark 
contributed to noticing that it also applies—after some refine-
ments—when contact is localized near a single asperity [12]. 
The just-summarized insights that Mark contributed to the 
contact mechanics of nominally flat surfaces is but a small 
fraction of his overall contribution to tribology.

The type of simulations that Mark conducted in his pio-
neering papers on nominally flat contacts has seen various 
subsequent works picking up the crumbs that he left over, 
such as the subject of this study: contact area percolation 
[13, 14] in randomly rough, mechanical interfaces and the 
subsequent Reynolds flow through it [11, 15–19].

The description of Reynolds flow in contacts between 
elastic, isotropic, randomly rough surfaces appears to be well 
established, at least as long as the surface topographies obey 
the random-phase approximation [11, 20–23] but also for plas-
tically deformed surfaces violating it [19, 24]. At small pres-
sures, the fluid conductance disappears extremely quickly with 
decreasing pressure until the dependence becomes roughly 
exponential at moderate loads—as has been known experi-
mentally for a long time [25]—before it disappears quickly 
on approach to the percolation threshold [15, 19]. The expo-
nential regime occurs for relative contact areas ac between 
a few percent up to close to the relative contact area at the 
percolation threshold, a∗

c
 , which is believed to be 0.42 ± 0.02 

[11, 15, 19]. While other values have also been proposed for 
a∗
c
 , it seems as if the estimate a∗

c
≈ 0.4 gets approached more 

closely as more care is taken to simulate meaningful system 
sizes [14]. Just below a∗

c
 , the conductance disappears with a 

power law in ac − a∗
c
 [15, 19], thereby reflecting the way how 

individual critical constriction close [19, 21, 26].
In contrast to many other percolation problems [27], in 

which a bond is either on or off, prefactors to leakage rates 

Fig. 1  a Height profiles of an isotropic ( � = 1 , Lx = 0.5 , Ly = 2 ) and 
an anisotropic ( � = 4 , Lx = Ly = 1 ) unit area surface, which is peri-
odically repeated in the y-direction. Fluid channels (blue) and contact 
areas (orange) of the shown b isotropic and c anisotropic surface at 
a
c
≈ 0.4 . Fluid channels percolating from left to right are represented 

in dark blue, other non-contact in light blue. Note that the x and 
y-direction are not to scale for the isotropic surface, which makes it 
appear anisotropic to the eye. The height in panel (a) is stated in units 
of the maximum height (color figure online)
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near a∗
c
 are very sensitive to the detailed geometry of a few 

last critical constrictions impeding the fluid flow resistance 
in a continuous fashion [15, 21, 28]. Results obtained experi-
mentally or in large-scale simulations are reproduced quite 
accurately in terms of effective-medium approaches [11, 23, 
29] going back to Bruggeman [30]. Good-quality predictions 
can also be made with the concept of critical constrictions 
[21, 28], unless relative contact areas are very small.

In recent works, Persson extended his contact mechanics 
theory as well as his subsequent Bruggeman and critical 
constriction approaches to anisotropic roughness [28, 29]. 
He pursues various approximations to calculate the conduct-
ance tensor for anisotropic media, in particular he assumes 
that (a) the percolation threshold does not depend on the 
direction in anisotropic surfaces and (b) quantitative meas-
ures for the height anisotropy and the conductance anisot-
ropy are similar.

The assumption of an isotropic percolation threshold 
could be seen as potentially problematic for the following 
reason: the height profile for a Peklenik number 𝛾 > 1 results 
from assuming isotropic random roughness on a rectangular 
L∕

√
� ×

√
� L domain, which is stretched by a factor of 

√
�  

parallel to the x-axis and compressed by the same factor 
parallel to the y-axis. In the original domain, both contact 
patches and fluid channels percolate more easily parallel 
to the shorter edge of the rectangle than to the longer one. 
After the stretching/compressing transformation, contact 
patches and fluid channels tend to be stripes for anisotropic 
domains and percolation should be eased in the direction of 
stripes. Thus, even if the flow channel topography could be 
obtained by the same stretching/compression operation that 
can be used to generate an anisotropic height profile, prob-
abilities to have open or closed channels right at the percola-
tion threshold would be directionally dependent. Superficial 
contemplation of flow channel geometries in small systems 
easily reinforces the impression that the critical contact area 
must be greater in the easy direction than in the compressed 
direction, see, e.g., Fig. 1. However, the two-dimensional 
anisotropic bond percolation model [31, 32] exhibits a cross-
over between one and two-dimensional critical behavior at 
large system sizes, which should also occur in our systems, 
even if this remains to be seen. Complications can also arise 
due to the possibility that the anisotropy of the contact area 
and thus of the gaps could be larger than that of the original 
heights, as is the case for elliptical Hertzian indenters [33]. 
Quantifying the just-described effects does not appear to be 
a trivial task, which is why we resort to large-scale simula-
tions in this work.

The remainder of this paper is organized as follows: 
Sect. 2 presents the pursued models, methods, and some the-
oretical concepts including some addenda to the Bruggeman 
treatment for isotropic and anisotropic leakage. Section 3 

contains the results and their discussion, while final conclu-
sions are drawn in Sect. 4.

2  Model, Methods, Theory

Model, methods, and theory are mostly similar to those used 
in Refs. [11, 15, 26]. The main difference in the model is that 
we now also consider anisotropic surfaces and that the used 
contact mechanics code was optimized in the meantime. In 
this section, we focus on these up-dates as well as on aspects 
that might have remained unclear in previous works along 
with some additions or corrections to existing Bruggeman 
approaches to leakage.

2.1  Model

We consider an originally flat, linearly elastic body with 
contact modulus E∗ in contact with a rigid randomly rough 
indenter on a periodically repeated domain. The height spec-
trum of the latter obeys the random-phase approximation, 
i.e., h̃(�) =

√
C(qP) exp(i 2𝜋 u�) , where h̃(�) is the Fourier 

transform of the height profile, u� a linear independent ran-
dom number drawn on (0, 1), � a wave vector and qP its 
effective magnitude

Here, � denotes the so-called Peklenik number [34, 35], 
whose squared logarithm is a measure for anisotropy. If 
𝛾 > 1 , “stretching” occurs parallel to the x-axis, while it is 
parallel to the y-axis if 𝛾 < 1 . Grooves show up parallel to 
the stretching direction remotely similar to a situation in 
which a surface was polished or scratched in that direction.

As default for the height spectrum, a continuous tran-
sition between the so-called roll-off regime at small wave 
vectors and the self-affine scaling at large wave vectors is 
used [36–39], specifically

where H is called the Hurst exponent, while �(...) is the 
Heaviside step function, which is unity for positive argu-
ments and zero else. qs and qr are 2� over short wavelength 
cutoff and roll-off wavelength, which are denoted by �s 
and �r , respectively. As default for the height spectrum, 
�t ≡ �r∕L = 1∕{4max(

√
� , 1∕

√
�)} and �f ≡ �s∕�r = 1∕16 

are used. The discretization is always made small enough 
to ensure the continuum limit to be closely approached. We 
chose such relatively small system sizes, as large anisotropy 
place large demands on the computational resources. More 

(1)qP =
√

� q2
x
+ q2

y
∕� .

(2)C(q) ∝
�(qs − q)

√
1 + (q∕qr)

2
1+H

,



 Tribology Letters (2021) 69:1

1 3

1 Page 4 of 11

importantly, we ensured that conclusions do not change 
when the dimensionless numbers �t,s are decreased.

The linearly elastic body and the rigid substrate inter-
act through a non-overlap constraint. They are squeezed 
against each other with a constant pressure p. Once the 
contact is formed, the interfacial separation is stored and 
used for further analysis of the Reynolds flow, i.e., we 
neglect the mechanical pressure exerted by the fluid flow 
on the contact mechanics. This is certainly a reasonable 
approximation for leakage problems, all the more the 
neglected coupling provides only a minor perturbation to 
the flow factor associated with an individual constriction, 
while leaving exponents unchanged that define the power 
laws with which flow approaches zero with increasing load 
[26].

The gap topography described by the field u(�) defines 
the local fluid conductivity through the equation

where � denotes the viscosity of the fluid and ug(�) is the 
local interfacial separation, or brief, gap. The such obtained 
conductivity is then used in Reynolds thin-film equation

�(�) being the areal current density and ∇pf (�) the in-plane 
fluid pressure gradient. Conductances are evaluated paral-
lel to the two principal axes of the simulation cell. Periodic 
boundary conditions are assumed in the direction normal to 
the fluid pressure gradient to reduce finite size effects.

Please note that the term roll-off wavelength and the 
value of �r both refer by default to that of the original, iso-
tropic surface. When adding the clause in the easy direc-
tion, we mean �r times max(

√
� , 1∕

√
�) . In addition, the 

stand-alone term pressure refers to the mechanical pres-
sure squeezing the elastomer against the rigid substrate. 
The fluid pressure has the added clause fluid.

2.2  Methods

The elastic contact problem is solved with Green’s func-
tion molecular dynamics (GFMD) [40, 41], which is used 
in combination with the fast-inertial relaxation algorithm 
(FIRE) [42] as described elsewhere [43].

The cluster analysis is based on the Hoshen–Kopelman 
(HK) algorithm [44], which identifies connected contact or 
non-contact (fluid) clusters. If two nearest neighbors are 
either both contact or both non-contact they belong to the 
same cluster. A cluster is called percolating when it extends 
from one side of the domain to the other. Finally, the Reyn-
olds equations is solved as described in Ref. [26] using the 

(3)�(�) =
u3
g
(�)

12�
,

(4)�(�) = �(�)∇pf (�),

hypre package [45] and the conjugate-gradient minimizer 
supplied with it.

All simulations and analysis were conducted with house-
written codes.

2.3  Theory

Different aspects of the contact mechanics theory by Persson 
relevant to this study have been described numerous times. 
Particularly relevant to this study are those works describing 
how to use the Bruggeman effective-medium approximation 
[11, 23, 29, 30] using the gap distribution function Pr(ug).

2.3.1  Bruggeman Effective‑Medium Approach

The self-consistent equation needed to be solved in order to 
estimate the conductance �0 in the Bruggeman formalism 
reads [29]

where � is the conductivity at a given point, Pr(�) is its dis-
tribution function, and D the (effective) spatial dimension. In 
the original treatment, D is taken as the true spatial dimen-
sion, i.e., D = 2 for an interfacial leakage problem.

The conductance approaches zero when the probabil-
ity for zero conductivity exceeds (D − 1)∕D . This result 
inspired Dapp et al. [11] to use heuristically an effective 
spatial dimension

in the Bruggeman effective-medium approach. In a similar 
spirit, Persson generalized Eq. (5) to

with

for anisotropic media characterized by � ≠ 1 . One flaw of 
Eq. (7) is that it predicts different flows in x and y-direction 
when the entire contact is assigned the same microscopic 
conductivity when D ≠ 2 is used, i.e., if Pr(�) = �(� − �0) . 
To fix this, we modified Eq. (7) to

(5)
1

�0
= ∫ d� Pr(�)

D

� + �0 (D − 1)
,

(6)D =
1

1 − a∗
c

(7)
1

𝜎x,y
= ∫ d𝜎 Pr(𝜎)

D − 1 + �̃�±1

𝜎 + 𝜎x,y (D − 1) �̃�±1

(8)�̃� = 𝛾

√
𝜎y∕𝜎x

(9)
1

𝜎x,y
= ∫ d𝜎 Pr(𝜎)

1 + (D − 1) �̃�±1

𝜎 + 𝜎x,y (D − 1) �̃�±1
.
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As another consequence of our correction, the ratio �x∕�y 
now approaches �2 for ac → a∗

c
 as is the case in the aniso-

tropic Bruggeman solution using D = 2 , as well as in the 
critical constriction approach.

2.3.2  Addendum to the Bruggeman Approach on Isotropic 
Media

Persson theory allows the relative contact area and the aver-
age gap ūg to be estimated as a function of pressure [9–11, 
46], even for generalized elastomers such as thin sheets or 
elastomers with gradient elasticity [47] much more easily 
than the gap distribution function. The question arises if 
simple order-of-magnitude estimates for the fluid conduct-
ance can be obtained using only ūg and the relative contact 
area. To achieve that, we rewrite Eq. (5) as

where the characteristic non-contact conductivity �nc is 
defined through

whose calculation necessitates knowledge of �0 . Here, ⟨...⟩nc 
indicates an average over non-contact.

Keeping �nc formally (although it still needs to be deter-
mined later), Eq. (10) can be solved for �0 to yield

which, after insertion into Equation (11), leads to the follow-
ing self-consistent equation for �nc:

with Δã ≡ (a∗
c
− ac)∕(1 − a∗

c
).

Since �nc cannot diverge but only be finite or approach 
zero as a tends to a∗

c
 , �0 is predicted to disappear linearly or 

even faster with decreasing distance from the percolation 
threshold.

The power law, with which � disappears as a∗
r
 is approached, 

depends on the shape of the gap distribution function Pr(u) , 
from which the conductivity distribution function follows via 
Pr(�) = (u2∕4�) Pr(u) . This is best discussed by approximat-
ing the gap distribution function at small u (which is deci-
sive for whether or not the relevant integrals converge) with 
Pr(u) ∝ u� . For 𝜇 > 0 , �nc(a∗c ) is easily shown to remain posi-
tive no matter how closely the lower integration bound �min 
approaches zero, while a positive exponent � leads to an alge-
braic disappearance �nc(a∗c ) in �min for u → 0+ . For � = 0 , the 
disappearance is only logarithmic.

(10)
1

�0
=

Dar

�0 (D − 1)
+

D (1 − ar)

�nc + �0 (D − 1)
,

(11)
1

�nc + �0 (D − 1)
=

⟨
1

� + �0 (D − 1)
,

⟩

nc

(12)�0 =�nc
(
1 − ac∕a

∗
c

)
,

(13)
1

𝜎nc
= lim

𝜎min→0+ ∫
∞

𝜎min

d𝜎 Pr(𝜎)
1 + Δã

𝜎 + 𝜎ncΔã

In the case of short-range adhesion, adhesive necks form 
with an infinite slope of the gap at the contact line, which 
effectively induces 𝜇 > 0 . A linear dependence between �0 
and Δa� ≡ 1 − ac∕a

∗
c
 follows, as observed in simulations using 

short-range adhesion [15, 26]. A faster than linear power law 
disappearance of �0 in Δa� is predicted for repulsive contacts 
for which 𝜇 < 0 . This is again consistent with previous simu-
lations [15, 26] finding �0 ∝ Δa�

� with � = 69∕20 . Finally 
bearing-area models implicitly assume � = 0 so that logarith-
mic corrections would apply to the �0 ∝ Δa� proportionality. 
Although the critical behavior was not analyzed in detail, this 
is again consistent with the observation that the conductance 
disappears substantially more slowly with increasing contact 
area for overlap models than for true elastic contacts [11].

To account heuristically for any observed �0 ∝ Δa�
� 

dependence, we propose to use

where f (ac) is a correction function, or, depending on con-
text or viewpoint also a “fudge-factor” function, into which 
correct criticality can be encoded by choosing it as

where f0 should be of order unity. A summary of the 
expected conductance reads,

in which the prefactor f0 (and in the case of the bearing 
model an additive constant) was selected such that � assumes 
a value of a ū3

g
∕12 𝜂 at zero contact area, while the finite-

contact area correction factor makes the conductance disap-
pear with the correct power law as a∗

c
 is approach, as deduced 

from the scaling of Pr(ug) in the limit of ug → 0+.

2.3.3  Critical Constriction Approach

The critical constriction approach to the leakage rate of 
seals was introduced in Refs. [20, 21] and extended to ani-
sotropic roughness recently [28]. The theory is based on the 
idea that fluid flow at contact areas close to the percolation 
threshold is impeded by a random distribution of narrow 
constrictions through which the fluid has to be squeezed and 
that the dominant part of the fluid pressure falls off at these 
constrictions. In an interface, the number of such constric-
tions per unit length in x and y-direction scales as Lx∕

√
�  

and 
√
� Ly , respectively. In a percolating channel, fluid flows 

through some narrow constrictions with random directions. 

(14)𝜎nc =
ū3
g

12 𝜂
f (ac),

(15)f (ac) = f0
(
1 − ac∕a

∗
c

)�−1
,

(16)𝜎 ≈
ū3
g

12 𝜂
×

⎧
⎪⎨⎪⎩

Δa�
69∕20

regular contacts

Δa� short-range adhesion
Δa�

1−lnΔa�
bearing-area models,
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Even in the case of anisotropy, the flow in a macroscopically 
large system has to go occasionally through a constriction 
in which the flow direction is perpendicular to the easy flow 
direction.

For � = 1 and Lx = Ly , there are as many critical con-
striction in the x-direction as in the y-direction so that an 
equivalent circuit diagram of the fluid flow consists of a 
single critical constriction. This allows one to focus on just 
a single characteristic constriction and the question how it 
impedes fluid flow as a function of the geometry of this con-
striction. We refer to the original literature [20, 21] for how 
to estimate its geometry theoretically and thus its resistance 
to fluid flow.

3  Results

3.1  Preliminary Considerations

To set the stage for further discussion, flow channels for an 
isotropic but rectangular (0.5 × 2) domain of a unit area are 
compared to those in a square, anisotropic domain, which 
is obtained from the former by scaling the x-direction with √
� = 2 and the y-direction with 1∕

√
�  . This comparison is 

made in Fig. 1, which shows the height profile in panel (a) 
and contrasts the points of finite conductivity at a relative 
contact area of ac = 0.4 for the isotropic and anisotropic sur-
face in panels (b) and (c), respectively. The original, rectan-
gular domain is characterized by H = 0.8 , Lx = 0.5 , Ly = 2 , 
�r = 0.25 , and �s = 0.025 . Both surfaces are at 39.8 ± 0.1 % 
relative contact area.

The expectation that stretching cannot change the perco-
lation threshold, because the flow channel topology remains 
the same before and after the stretching/compression opera-
tion [28] is not fully supported in the simulations. Although 
changes in the height profiles (not shown) are relatively 
minor, the fluid-channel topographies—and even topolo-
gies—shown in panels (b) and (c) of Fig. 1 differ between 
the original and the stretched surfaces. New percolating flow 
channels and percolating contact patches can open up after 
the stretching operation, while others disappear or merge. 
Both flow channels and contact patches of the elastic contact 
are even more stretched than the height profile. A related 
elongation of contact patches also occurs in isolated Hertz-
ian contacts with elliptical indenters [33].

A superficial contemplation of just this one random reali-
zation depicted in Fig. 1 can easily convey the impression 
that an elastic contact characterized by the dimensionless 
numbers H = 0.8 , � = 4 , and ac = 0.4 should percolate par-
allel to the stretching direction but not parallel to the orthog-
onal direction, even if the ratio of linear dimension and �r 
were larger than in the just-investigated example. However, 

a numerical analysis and finite size scaling ( �t → 0 ) is 
required to test the validity of this expectation.

3.2  Percolation Threshold

In this section, we investigate how different dimensionless 
numbers characterizing the surface topography affect the 
percolation threshold. Toward this end, ten independent ran-
dom realizations were typically set up to determine the order 
of magnitude of the stochastic error bars. Figure 2a reveals 
that the percolation thresholds a∗

r
 along the two principal 

directions do not depend strongly on the ratio �f ≡ �s∕�r , 
i.e., increasing it by a factor of 4 from 16 to 64 only has a 
relatively minor effect, which is clearly less than the stochas-
tic error bar for � close to unity.

An interesting feature revealed in Fig. 2a is that the dif-
ference between the critical contact areas in the easy and the 
compression direction increases with increasing anisotropy, 

0 0.2 0.4 0.6 0.8 1
γ

0.3

0.4

0.5

a c

16
64

stretching direction

contraction direction

λ
r
 / λ

s
 = 

(a)

*

0 0.2 0.4 0.6 0.8 1
γ

0.3

0.4

0.5

0.6

0.7

a c

stretching direction

contraction direction

bearing-area model(b)

*

Fig. 2  Critical contact areas a∗
c
 in the stretching (blue) and contrac-

tion (red) directions as a function of the Peklenik number � . a Elas-
tic contact with two different ratios of �

f
= �

s
∕�

r
 and b bearing-

area contact with �
f
= 1∕16 . All cases correspond to H = 0.8 and 

L∕�
r
= 4∕

√
�  (color figure online)
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although the system size kept being increased proportionally 
to max(1∕

√
� ,
√
�) . To test if this trend can be explained by 

the observation that the gap does not transform in the same 
self-affine fashion as the height, we also computed a∗

r
 along 

the two principal directions for a bearing model, in which 
stretching and compressing is an affine transformation. In 
bearing-area models, contact is implicitly assumed to occur 
above a given substrate height and non-contact, i.e., open 
fluid flow channels, below it. Fig. 2b reveals that the growth 
of asymmetry of the critical contact areas with increasing 
� is similar for the bearing-area model as in the full elas-
tic calculation. At moderate � , the main difference between 

the two is a shift of a∗
c
(� = 1) ≈ 0.4 in the elastic model to 

a∗
c
(� = 1) = 0.5 in the bearing model.
Although the system size was increased proportionally to 

the square root of the (inverse) Peklenik number for the anal-
ysis presented in Fig. 2, the possibility remains that a further 
increase in system size suppresses the observed anisotropy 
in a∗

c
 . This expectation is confirmed in Fig. 3, which shows 

that a unique percolation threshold of a∗
c
≈ 0.415 ± 0.01 is 

approached for the investigated system with size corrections 
that are close-to-linear power laws in �t.

The size scaling revealed in Fig. 3 is consistent with 
results for regular random bond percolation models. Its cor-
relation length � increases as � ∝ 1∕|ac − a|� and an expo-
nent of � = 4∕3 for an interfacial dimension of D = 2 [48]. 
Thus, channels are expected to percolate along the easy 
direction at a finite size when � ≈

√
� L so that the size-

dependent corrections of the relative contact area, a∗
c
− a∗ 

satisfy

which yields a size correction to a∗
c
 of order L−1∕� . Renor-

malization group theory arguments would then indicate that 
the exponents describing size directions for the easy flow 
direction and the contraction direction must be identical; 
however, the corrections must have opposite signs and may 
differ in magnitude.

It is currently not clear to us why the exponent � are the 
same or at least close for the considered elastic contact prob-
lem and the regular bond percolation model, as there is no 
reason why percolation in elastic contacts should be in the 
same universality class as random bond percolation. In fact, 
the so-called Fisher exponent for the cluster-size distribution 
differs between them. It turns out � = 187∕92 ≈ 2 for regular 
bond percolation [48] but � ≈ 2 − H∕2 for the contact patch-
size distribution in repulsive, elastic contacts [49] (Fig. 4). 
Finally we note that the way how a∗

c
 depends on � does not 

appear to depend qualitatively on the Hurst exponent. This 
is revealed in Fig. 4. Moreover, estimates for the percola-
tion threshold are identical for H = 0.3 and H = 0.4 within 
stochastic error bars in the limit of isotropy.  

3.3  Reynolds Flow

We start this section with the analysis of the Reynolds flow 
in isotropic contacts. It has already been demonstrated ear-
lier [11, 15] that the Bruggeman effective-medium theory 
allows the “exact” Reynolds fluid conductance to be pre-
dicted quite accurately. In this paper, we test the validity 
of the closed-form analytical expressions proposed for the 
isotropic conductance, which are summarized in Eq. (16). 
In order to automatically yield good statistics, the system 
size was increased from its default size to L∕�r = 16 , while 

(17)
√
�L ∝ ��a∗c − a∗

c
(L)��−� ,
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Fig. 3  Size dependence of a∗
c
 in the stretching (blue) and the 

contraction (red) directions for a system with a Hurst exponent 
H = 0.8 . Circles indicate constant � = 2 and varying L∕�

r
 ratios, 

while triangles assume a fixed ratio L∕�
r
= 32 but varying � . Black 

crosses show data for isotropic surfaces. Lines are fits according to 
a∗
c
(�

c
) − a∗

c
∝ �1∕� with the random bond percolation model exponent 

� = 4∕3 (color figure online)
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and H = 0.8 (open circles) (color figure online)
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the ratio �r∕�s = 16 was kept as before. Figure 5 reveals 
that the analytical approximations to the full Brugge-
man theory are quite reasonable. Relative deviations 
from either the numerically accurate solution of the full 
Reynolds problem or the exact solution generally remain 
around 20% in the shown domains, except for the adhe-
sive case, where the full and the approximate Bruggeman 
approach differed by a factor of two close to the percola-
tion threshold.

A comparison between exact Reynolds and full as well 
as approximate Bruggeman theory for adhesive interfaces 
is shown in Fig. 5b. Strength and range of adhesion were 
chosen such that they lead to a non-negligible enhance-
ment of local contact area, i.e., at zero load we observed 1% 
“spontaneous” relative contact area and to induce a relative 
contact area of 10% (40%) only 1/8 (1/4) of the force was 
required as for its non-adhesive analog. In more detail, the 
local Tabor parameter, as defined in Ref. [50], was set to 
�T = 2 , while the reduced surface energy, using the so-called 
Pastewka–Robbins parameter, see Eq. (16) in Ref. [50], was 
�PR = 0.135 . Thus, no (local) stickiness can be expected 
despite the relatively large contact area enhancement. Also 
the ratio of surface energy � and the elastic energy per unit 
surface needed to bring the two surfaces into the contact, 
vfull
ela

 , was well below unity, namely �∕vfull
ela

= 0.203 further 
supporting the absence of hysteresis. In fact, there is a 
roughly constant, mere 10% adhesion-induced reduction of 
the mean gap as a function of pressure in the studied range 
of forces but no signs of significant hysteresis. Thus, we 
would call the adhesion “intermediate”, i.e., strong enough 
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as well as to the approximations (dashed lines) proposed in Eq. (16) 
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model. In the case of (a), comparison is also made to a full Brugge-
man treatment assuming the critical contact area to be a∗
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while the other lines in a, b are based on a∗
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to substantially increase the relative contact area but not so 
large as to induce a noticeable load–displacement hysteresis.

While the proposed dependence of conductance on 
mean gap and relative contact area summarized in Eq. 
(16) worked well for all case studies performed for this 
study, it should be clear that estimates can be rough close 
to the percolation threshold. This is because any short- but 
finite-range adhesion crosses over to � ∝ Δa�

69∕20 as the 
true percolation is approached, see also Fig. 5 in Ref. [15]. 
Likewise, if we had used very weak but zero-ranged adhe-
sion, the trend might reverse, i.e., the conductance could 
be proportional to Δa�69∕20 close but not too close to the 
percolation threshold but obey � ∝ Δa� in the immediate 
vicinity of the percolation threshold. Thus, to be on the 
safe side, we recommend doing a full Bruggeman analysis 
(if possible), while its closed-form approximation can only 
provide crude estimates for the conductance if the relative 
importance of adhesion is difficult to ascertain.

The last analysis of this work concerns the fluid con-
ductance for anisotropic surfaces for a system described 
by a Peklenik number of � = 2 . Figure 6 reveals that the 
generalization of the Bruggeman treatment for anisotropic 
elastic contacts conveys correct trends but shows a slightly 
weaker agreement with the full Reynolds calculations than 
for the non-adhesive, isotropic contacts.

A quantitative analysis of the conductances reveals a 
ratio of � ≡ �x∕�y = 8 , which is twice the theoretically 
expected number � = �2 using the height Peklenik num-
ber ( � = 2 ) to quantify the conductance anisotropy. A cer-
tain discrepancy from the theoretical expectation remains 
when using instead the conductance Peklenik number of 
�� ≈ 2.5 , which we deduced from the direction-dependent 
conductivity auto-correlation function (not shown). Thus 
using “true” conductivity Peklenik numbers leads to a pre-
dicted ratio of � ≈ 6.25 , which reduces the error between 

exact Reynolds calculations ( � ≈ 8 ) and effective Brugge-
man ( � = 4 ) theory only by a little more than a factor of 
two.

To investigate the origin of the relatively large discrep-
ancy between the exact Reynolds flow and the effective-
medium results for elastic contacts, we also considered ani-
sotropic bearing contacts, where conductivity and height 
anisotropy are similar by design. The results shown in 
Fig. 7 reveal a similarly close resemblance of the approxi-
mate solutions and the numerically exact results as for iso-
tropic, non-adhesive, elastic contacts. This time, the ratio 
�x∕�y turns out a little less than �2 . However, the deviation 
is within the typical stochastic noise for the used system size.

4  Summary and Conclusions

In this work, we found that the relative contact area at which 
fluid channels no longer percolate across a sufficiently large 
system is a∗

c
= 0.415 ± 0.01 and that this value also holds for 

surfaces with anisotropic random roughness. This confirms 
Persson’s conjecture that elastic anisotropic contacts have a 
percolation threshold, which does not depend on the direc-
tion. However, requirements on what is called “sufficiently 
large” are the more stringent the greater the anisotropy. In 
addition, quantitative measures for anisotropy, such as the 
Peklenik number, turn out larger for the fluid conductivity 
than for the height of the randomly rough indenter, at least 
within linearly elastic contact mechanics. For bearing mod-
els, both yield similar Peklenik numbers.

We also proposed a simplification as well as a minor cor-
rection to the Bruggeman effective-medium theory, which 
had been worked out by Persson for the description of leak-
age in mechanical (elastic) contacts. First, for isotropic con-
tacts, we proposed quite simple, closed-form expressions 
for the fluid flow conductance in isotropic contacts, which 
necessitates only knowledge of the mean gap and the relative 
contact area as well as the type of contact (repulsive versus 
adhesive or in the odd case bearing-area contact) but it does 
not need as input the entire gap distribution function. Sec-
ond, we corrected the way in which an effective dimension 
is used in the Bruggeman approach to anisotropic roughness 
in order to enforce the correct percolation threshold. Both 
addenda to previous treatments were supported to our satis-
faction by full Reynolds simulations.

Finally, Persson’s adaptation of the effective-medium 
theory to describe direction-dependent conductances for 
anisotropic media works very well for bearing-area contacts, 
for which (a) the height- and conductance Peklenik numbers 
are identical and (b) the percolation threshold assumes the 
canonical value of a∗

c
= 1∕2 . However, the generalization 

to anisotropic, elastic contacts is not quite as satisfactory. It 
may well be that the way in which the correct percolation 
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threshold is “enforced” for elastic contacts through the use 
of an effective interfacial dimensions, see Eq. (9), can be fur-
ther improved. Nonetheless, we find the approximate solu-
tion astoundingly good in all cases given the simplicity of 
the effective-medium theory and the numerical complexity 
of a full Reynolds calculation.
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