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Abstract
We study glued tensor and free products of compact matrix quantum groups with cyclic
groups – so-called tensor and free complexifications. We characterize them by studying their
representation categories and algebraic relations. In addition, we generalize the concepts
of global colourization and alternating colourings from easy quantum groups to arbitrary
compact matrix quantum groups. Those concepts are closely related to tensor and free com-
plexification procedures. Finally, we also study a more general procedure of gluing and
ungluing.
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1 Introduction

The subject of this article are compact matrix quantum groups as defined by Woronowicz
in [28]. A lot of attention has recently been devoted to quantum groups possessing a combi-
natorial description by categories of partitions. Those were originally defined in [7]. Since
then, their full classification was obtained [20] and many generalizations were introduced
[4, 10, 11, 15, 22].

Studying and classifying categories of partitions or generalizations thereof is useful for
the theory of compact quantum groups for several reasons. The primary motivation is find-
ing new examples of quantum groups since every category of partitions induces a compact
matrix quantum group. Those are then called easy quantum groups. In addition, since the
categories of partitions are supposed to model the representation categories of quantum
groups, we immediately have a lot of information about the representation theory of such
quantum groups (see also [12]).
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Categories of partitions provide a particularly nice way to describe the representation cat-
egories of quantum groups. Understanding the structure of partition categories and obtaining
some classification results, we may obtain analogous statements also for the associated
quantum groups. Such results can then be generalized and go beyond categories of partitions
and easy quantum groups. Let us illustrate this on a few examples.

The classification of ordinary non-coloured categories of partitions involves a special
class of so-called group-theoretical categories. Those induce group-theoretical quantum
groups described by some normal subgroups A � Z

N
2 . However, the latter definition turns

out to be more general – not every group-theoretical quantum group can be described by
a category of partitions [19]. Another example are glued products, which were defined
in [22] in order to interpret some classification result on two-coloured categories of parti-
tions. The definition of glued products was inspired by partitions, but it is independent of
the partition description. Last example comes from [15], where a certain classification result
for so-called categories of partitions with extra singletons was obtained. Some of the new
categories were interpreted by some new Z2-extensions of quantum groups. In addition, this
extension procedure was generalized to a new product construction interpolating the free
and the tensor product of quantum groups.

The goal of the current paper is to study some additional results obtained in previous
works on coloured partition categories [13, 15, 22, 23]. We reformulate those results purely
in terms of quantum groups and their representation categories without referring to parti-
tions. Below, we give a detailed overview of the results of this paper. Let us start by recalling
the above mentioned glued product construction.

Consider a compact matrix quantum group G = (C(G), v) and a cyclic group dual
Ẑk = (z, C∗(Zk)) (for k = 0, we take Ẑk := Ẑ = T). We can construct the tensor product
or the free product as

G × Ẑk = (v ⊕ z, C(G) ⊗max C∗(Zk)), G ∗ Ẑk = (v ⊕ z, C(G) ∗C C∗(Zk)).

For both quantum groups, we can consider the representation vz = v⊗z. This representation
may not be faithful, so it defines a quotient quantum group called the glued product

G ×̃ Ẑk = (vz, C(G ×̃ Ẑk)), G ∗̃ Ẑk = (vz, C(G ∗̃ Ẑk)).

The glued tensor product with Ẑk is also called the tensor k-complexification. Likewise
the glued free product is called the free k-complexifiation. As we already mentioned, this
definition comes from [22].

Another important concept appearing throughout the whole article is the degree of reflec-
tion – defined in [22] for categories of partitions, generalized in [15] for arbitrary quantum
groups, and further characterized in Section 4.3 of this article.

The main topic of this article is the characterization of the tensor and free complexifi-
cations. Let us start with the tensor case. The following theorem characterizes the tensor
complexification in terms of algebraic relations, the associated representation category, and
topological generation.

Theorem A (Theorem 4.17) Consider a compact matrix quantum group G = (C(G), v),
k ∈ N0. Denote by z the generator ofC∗(Zk) and by u := vz the fundamental representation
of G ×̃ Ẑk . We have the following characterizations of G ×̃ Ẑk .

(1) The ideal I
G×̃Ẑk

of algebraic relations in C(G ×̃ Ẑk) is the Zk-homogeneous part of
the ideal IG corresponding to G.
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(2) The representation category of G ×̃ Ẑk looks as follows

Mor(u⊗w1 , u⊗w2) =
{
Mor(v⊗w1 , v⊗w2) if c(w2) − c(w1) is a multiple of k,

{0} otherwise.

(3) The quantum group G ×̃ Ẑk is topologically generated by G and Ẑk .

We also generalize the concept of global colourization introduced in [23] for categories
of partitions. It turns out that this concept characterizes the tensor k-complexification of
orthogonal quantum groups for k = 0. The case k ∈ N remains open.

Theorem B (Theorem 4.15) Consider G ⊂ U+(F ) with FF̄ = cI , c ∈ R. Then G

is globally colourized with zero degree of reflection if and only if G = H ×̃ Ẑ, where
H = G ∩ O+(F ).

The above two theorems can be understood as a generalization of the work [13] on
globally-colourized categories of partitions to arbitrary quantum groups. In addition, we
provide the irreducible representations of tensor complexifications in Proposition 4.23.

We continue by studying the free complexification. In this case, we do not have many
results even for easy quantum groups. In the recent work [15, Section 4.3], partitions with
alternating colouring were introduced and linked to free k-complexifications for k = 2. In
this article, we show that the free k-complexification actually often do not depend on the
number k. The following two results form an analogy to Theorems A and B.

Theorem C (Theorem 4.28) Let H be a compact matrix quantum group with degree of
reflection k �= 1. Then all H ∗̃ Ẑl coincide for all l ∈ N0 \ {1}.
(1) The ideal I

H ∗̃Ẑl
of algebraic relations in H ∗̃ Ẑl is generated by the alternating

polynomials in IH .
(2) The representation category C

H ∗̃Ẑl
corresponding to H ∗̃ Ẑl is a (wide) subcategory of

the representation category CH generated by the sets C(∅, (◦•)j ) := CH (∅, (◦•)j ),
j ∈ Z.

The above characterization holds also for k = 1 and l = 0.

Theorem D (Theorem 4.33) Consider G ⊂ U+(F ) with FF̄ = c 1N . Then G is alter-
nating and invariant with respect to the colour inversion if and only if it is of the form
G = H ∗̃ Ẑ, where H = G ∩ O+(F ).

Finally, the glued tensor product and the glued free product, which are used to define the
quantum group complexifications, can be also understood as a special case of some gluing
procedure. In Section 5, we ask whether we can perform this procedure in the converse
direction and unglue some cyclic group Ẑk from a unitary quantum group. A particularly
nice result can be obtained if we are ungluing Ẑ2. It is a generalization of [15, Theorem
4.10].

Theorem E (Theorem 5.13) There is a one-to-one correspondence between

(1) quantum groups G ⊂ O+(F ) ∗ Ẑ2 with degree of reflection two and
(2) quantum groups G̃ ⊂ U+(F ) that are invariant with respect to the colour inversion.
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This correspondence is provided by gluing and canonical Z2-ungluing.

In addition, we characterize coamenability and provide irreducible representations of
the canonical Z2-ungluings. These results are applied to the new Z2-extensions introduced
recently in [15] as those are special examples of canonical Z2-ungluings.

2 Preliminaries

2.1 Graded Algebras

Through the whole by Zk the cyclic group of order k ∈ N0 putting Zk := Z for k = 0.
A Zk-grading of a ∗-algebra A is a decomposition of the algebra into a vector space

direct sum
A =

⊕
i∈Zk

Ai

such that the multiplication and involution of the algebra respect the operation on Zk , that is,

AiAj ⊂ Aij , A∗
i ⊂ A−i .

The elements of the i-th part a ∈ Ai are called Zk-homogeneous of degree i.
By definition, every element f ∈ A uniquely decomposes as f = ∑

i∈Zk
fi with fi ∈

Ai . We call the elements fi the homogeneous components of f .
An ideal I ⊂ A is called Zk-homogeneous if it contains with every element f all its

homogeneous components fi . A quotient of the algebra with respect to a homogeneous
ideal inherits the grading.

The definition of a Zk-grading for C*-algebras is quite simple for k ∈ N. In the case of
the group Z or other groups, it gets a bit complicated and we will not mention it here. Let
A be a C*-algebra. A Zk-grading on A is defined by a grading automorphism, that is, an
automorphism α : A → A satisfying αk . Its spectrum consists of k-th roots of unity and the
corresponding eigenspaces can be identified with the homogeneous parts of A satisfying the
properties of the algebraic definition above.

If A is a Zk-graded ∗-algebra by the algebraic definition, we can define the grading
automorphism by setting α(x) = e2π ij/kx for x ∈ Ak . The grading automorphism can be
then extended to the C*-envelope C∗(A) by the universal property.

2.2 Compact Matrix QuantumGroups

We provide here only a brief overview of the notions concerning compact matrix quantum
groups. For more information, see for example [18, 21].

Let A be a C*-algebra, u ∈ MN(A), N ∈ N. The pair (A, u) is called a compact matrix
quantum group if

(1) the elements uij i, j = 1, . . . , N generate A,
(2) the matrices u and ut = (uji) are invertible,
(3) the map � : A → A ⊗min A defined as �(uij ) := ∑N

k=1 uik ⊗ ukj extends to a
∗-homomorphism.

The ∗-subalgebra O(G) generated by the elements uij is dense in A and generalizes
the coordinate ring of G. It is actually a Hopf ∗-algebra, that is, it is closed under the
above defined comultiplication �, it is further equipped with a counit (a ∗-homomorphism
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ε : O(G) → C mapping uij �→ δij ), and an antipode (an antihomomorphism mapping
uij �→ [u−1]ij ).

Two compact matrix quantum groups G = (A, u) and G′ = (A′, u′) are considered
to be identical if there is a ∗-isomorphism O(G) → O(G′) mapping uij → u′

ij . Note
that the C*-algebras A and A′ might not be isomorphic – those might be two different
completions of O(G). To overcome this ambiguity, we work with the universal C*-algebra
Cu(G) := C∗(O(G)). Given a compact matrix quantum group G = (A, u), its maximal
version G = (Cu(G), u) is again a compact matrix quantum group. From now on, we
will assume that every quantum group appearing in the paper is in its maximal version and
denote C(G) := Cu(G).

The above notion of identical compact matrix quantum groups indeed generalizes the
notion of matrix groups being the same (i.e. not only isomorphic, but also represented by
the same matrices). Similarly, we can define H = (C(H), v) to be a quantum subgroup
of G = (C(G), u) if there is surjective ∗-homomorphism O(G) → O(H) (or C(G) →
C(H)) mapping uij �→ vij assuming both matrices u and v have the same size.

On the other hand, two compact (matrix) quantum groups G and H are said to be iso-
morphic, denoted G � H , if there exists any ∗-isomorphism φ : C(G) → C(H) such that
�H ◦ φ = (φ ⊗ φ) ◦ �G.

An important question is also how to construct quantum subgroups. A set I ⊂ O(G) is
called a coideal if

�(I) ⊂ I ⊗ O(G) + O(G) ⊗ I and ε(I ) = 0.

A coideal that is also a ∗-ideal is called a ∗-biideal. A Hopf ∗-ideal is a ∗-biideal that is
invariant under the antipode, that is, S(I) ⊂ I . Hopf ∗-ideals are in a one-to-one corre-
spondence with quantum subgroups. That is, given H ⊂ G, the kernel of the surjective
∗-homomorphism O(G) → O(H) is a Hopf ∗-ideal. Conversely, given any Hopf ∗-ideal
I ⊂ O(G), then the quotient O(H) := O(G)/I is a Hopf algebra that defines a quantum
subgroup H ⊂ G.

2.3 Representations of CMQGs

For a compact matrix quantum group G = (C(G), u), we say that v ∈ Mn(C(G)) is a
representation ofG if�(vij ) = ∑

k vik⊗vkj , where� is the comultiplication defined in the
previous subsection. In particular, the matrix u is a representation called the fundamental
representation.

A representation v is called non-degenerate if it is invertible as a matrix, it is called
unitary if it is unitary as a matrix, i.e.

∑
k vikv

∗
jk = ∑

k v∗
kivkj = δij . Two representations v

and w are called equivalent if there is an invertible matrix T such that vT = T w.
For every compact quantum group it holds that every non-degenerate representation is

equivalent to a unitary one. Hence, given a compact matrix quantum group G = (C(G), u),
we may assume that u is unitary. At the same time ū = (u∗

ij ) is a non-degenerate represen-

tation, so there exists an invertible matrix F such that F ūF−1 is unitary. Consequently, any
compact matrix quantum group G is, up to similarity, a quantum subgroup of the universal
unitary quantum group U+(F ) [24] for some F ∈ MN(C), N ∈ N, whose C*-algebra is
defined by

C(U+(F )) = C∗(uij ; i, j = 1, . . . , N | u and F ūF−1 are unitary).
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Assuming FF̄ = c 1N for some c ∈ R, we also define the universal orthogonal quantum
group O+(F ) [1] by

C(O+(F )) = C∗(uij ; i, j = 1, . . . , N | u = F ūF−1 is unitary).

For a pair of representations u ∈ Mn(C(G)), v ∈ Mm(C(G)), we denote by

Mor(u, v) := {T : Cn → C
m | T u = vT }

the space of intertwiners between u and v. A representation u is called irreducible if
Mor(u, u) = C · 1. It holds that any representation is a direct sum of irreducible ones.

For a given quantum group G, we denote by IrrG the set of equivalence classes of G.
For α ∈ IrrG, we denote by uα some unitary representative of the class α. It holds that the
matrix elements of all the uα , α ∈ IrrG form a linear basis of O(G).

Remark 2.1 Let G and H be compact (matrix) quantum groups such that C(H) ⊂ C(G)

and �H = �G|C(H). We may say that H is a quotient of G. Then

IrrH = {α ∈ IrrG | [uα]ij ∈ C(H) ∀i, j} ⊂ IrrG.

Indeed, any representation of H is by definition a representation of G. The notion of
irreducibility does not change if we enlarge the algebra.

2.4 Grading on QuantumGroup Function Spaces

Given a compact matrix quantum group G = (C(G), u), we denote by

IG := {f ∈ C〈xij , x
∗
ij 〉 | f (uij , u

∗
ij ) = 0}

the ideal determining the algebras O(G) = C〈xij , x
∗
ij 〉/IG and C(G) = C∗(O(G)).

There is a natural structure of a Zk-grading on the algebra C〈xij , x
∗
ij 〉 given by associat-

ing degree one to the variables xij , and associating degree minus one to the variables x∗
ij . In

this article, by a Zk-grading we will always mean this particular grading.
If the ideal IG is homogeneous, then the ∗-algebra O(G) inherits this grading. Moreover,

this grading passes also to the fusion semiring of irreducible representations in the following
sense. For any α ∈ IrrG, there is dα ∈ Zk such that all the matrix entries of uα are Zk

homogeneous of degree dα . We will call dα the degree of the irreducible uα .

3 Representation Categories

The main point of this section is to formulate the Tannaka–Krein duality for unitary com-
pact matrix quantum groups. The Tannaka–Krein duality for quantum groups was first
formulated by Woronowicz [29]. Essentially it says that any compact quantum group can be
recovered from its representation category. Since then, many formulations of this statement
appeared – from very categorical ones such as in [18] to very concrete ones such as [17].
We will stick here to the latter approach reformulating it a bit in the spirit of [11] to fit into
our setting.

All the concepts presented in this section are well known to the experts. Therefore, we
try to keep the section very brief. On the other hand, since the topic is quite new and rapidly
developing, it is hard to give some general reference here. Some of the concrete notation
and formulations of definitions and propositions are actually author’s original. We refer to
the author’s PhD thesis [14] for a more detailed discussion of the concepts. See also [5].
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3.1 Two-coloured Categories

Consider a compact matrix quantum group G = (C(G), u) ⊂ U+(F ), F ∈ GL(N,C).
Denote u◦ := u, u• := F ūF−1. Denote by W the free monoid over the alphabet {◦•}. For
any word w ∈ W , we denote u⊗w the corresponding tensor product of the representations
u◦ and u•.

For a pair of words w1, w2 ∈ W , denote

CG(w1, w2) : = Mor(u⊗w1 , u⊗w2)

= {T : (CN)⊗|w1| → (CN)⊗|w2| | T u⊗w1 = u⊗w2T }.
Such a collection of vector spaces forms a rigid monoidal ∗-category in the following sense
(1) For T ∈ CG(w1, w2), T ′ ∈ CG(w′

1, w
′
2), we have T ⊗ T ′ ∈ CG(w1w

′
1, w2w

′
2).

(2) For T ∈ CG(w1, w2), S ∈ CG(w2, w3), we have ST ∈ CG(w1, w3).
(3) For T ∈ CG(w1, w2), we have T ∗ ∈ CG(w2, w1)

(4) For every word w ∈ W , we have 1⊗|w|
N ∈ CG(w,w).

(5) There exist vectors ξ ∈ CG(∅, ◦•) and ξ ∈ CG(∅, •◦) called the duality
morphisms such that

(ξ∗ ⊗ 1CN )(1CN ⊗ ξ ) = 1CN , (ξ∗ ⊗ 1CN )(1CN ⊗ ξ ) = 1CN . (3.1)

For the last point, we can write explicit formulae

[ξ ]ij = Fji, [ξ ]ij = [F̄−1]ji . (3.2)

Definition 3.1 Consider a natural number N ∈ N. Let C (w1, w2) be a collection of
vector spaces of linear maps (CN)⊗|w1| → (CN)⊗|w2| satisfying the conditions (1)–(5)
above. Then we call C a two-coloured representation category. For any collection of sets
C(w1, w2) of linear maps (CN)⊗|w1| → (CN)⊗|w2| satisfying (5), we denote by 〈C〉 the
smallest category containing C. We say that C generates this category.

The justification for this name is given by the following formulation of the Tannaka–
Krein duality, which comes from [11].

Theorem 3.2 (Woronowicz–Tannaka–Krein duality for CMQG) Let C be a two-coloured
representation category. Then there exists a unique compact matrix quantum group G such
that C = CG. This quantum group is determined by the ideal

IG = span{[T u⊗w1 − u⊗w2T ]ji | T ∈ C (w1, w2)}.

We give only a sketch of proof here. For a detailed explanation, see [13, Theorem 3.4.6].
The proof closely follows the proof formulated for orthogonal quantum groups in [17].

Sketch of proof In order to give a sense to the formula for IG, we need to specify the matrix
F , so that the matrix u• is well defined. We fix the duality morphisms satisfying (3.3) and
define F according to Eq. 3.2. Note that the duality morphisms are not defined uniquely
by Eq. 3.3. Part of the “uniqueness” statement is that the resulting quantum group does not
depend on the particular choice of F .

It is straightforward to check that IG is a biideal. We obviously have IG ⊃ IU+(F ). Then
we can check that IG/IU+(F ) ⊂ O(U+(F )) is a Hopf ∗-ideal. Hence IG defines a compact
quantum group. (See [14, 17] for details.)
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Now, let ξ̃ , ξ̃ be alternative solutions of Eq. 3.3 and let F̃ be the alternative matrix

and G̃ the alternative resulting quantum group. Then we have

(ξ̃∗ ⊗ 1CN )(1CN ⊗ ξ ) = FF̃−1 ∈ CG(•, •) = Mor(u•, u•).

This means that u• = F̃F−1u•FF̃−1 = F̃ ūF̃−1 and hence G ⊂ G̃. From symmetry, we
have G = G̃.

It remains to prove that we indeed have CG = C (from construction, we can actually
easily see that CG ⊃ C ) and that G is a unique quantum group with this property, that
is, if C

G̃
= C for some quantum group G̃ ⊂ U+(F ), then surely G = G̃ (again, from

construction, we obviously have G ⊃ G̃). This can be proven using the double commutant
theorem, see [14, 17].

Proposition 3.3 Let G ⊂ U+(F ) be a compact matrix quantum group. Suppose that the
associated category CG is generated by some collection C(w1, w2). Then IG ⊂ C〈xij , x

∗
ij 〉

as an ideal is generated by

{[T x⊗w1 − x⊗w2T ]ji | T ∈ C(w1, w2)}.

Proof Denote by I the ideal generated by C as formulated above. Obviously, we have I ⊂
IG. To prove the opposite inclusion, it is enough to prove that

C (w1, w2) := {T : (CN)⊗|w1| → (CN)⊗|w2| | T x⊗w1 − x⊗w2T ∈ I }
form a category. Then, since obviously C ⊂ C and hence CG ⊂ C , we must have IG ⊂ I .

So, denote A := C〈xij , x
∗
ij 〉/I and by vij denote the images of xij by the natural

homomorphism. Taking T1 ∈ C (w1, w2), T2 ∈ C (w2, w3). Then

T2T1v
⊗w1 = T2v

⊗w2T1 = v⊗w3T2T1,

so T2T1 ∈ C (w1, w3). For tensor product and involution, the proof is similar.

Remark 3.4 Recall the universal orthogonal quantum group O+(F ) ⊂ U+(F ), which is
defined by the relation u = F ūF−1. The relation can also be written as u◦ = u•. Conse-
quently, we have u⊗w = u⊗|w| for any w ∈ W , so only the length of the word w matters.
For any G ⊂ O+(F ), we define

CG(k, l) := Mor(u⊗k, u⊗l ) = CG(w1, w2),

where w1, w2 are any words with |w1| = k and |w2| = l.

3.2 Representation Categories of Quantum Subgroups, Intersections,
and Topological Generation

In this section, we would like to briefly explain the concepts of the quantum group intersec-
tion and topological generation. Together with quantum subgroups, we relate those notions
with the associated ideals of algebraic relations IG and the representation categories CG.
See also [14, Sections. 2.3.4, 2.5.4, 2.5.5, 3.4.5] for more detailed discussion.

Proposition 3.5 Consider G,H ⊂ U+(F ). Then the following are equivalent.

(1) H ⊂ G,
(2) IH ⊃ IG,
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(3) CH (w1, w2) ⊃ CG(w1, w2) for all w1, w2 ∈ W .

Proof The equivalence (1) ⇔ (2) follows directly from the definition of quantum sub-
group. The equivalence (2) ⇔ (3) follows from Tannaka–Krein duality (Theorem. 3.2).

Consider H1, H2 ⊂ U+(F ). Their intersection H1 ∩ H2 is the largest compact matrix
quantum group contained in both H1 and H2. This notion was recently heavily used
especially in the work of Teodor Banica. See [5].

Proposition 3.6 Consider G,H1, H2 ⊂ U+(F ). Then the following are equivalent.

(1) G = H1 ∩ H2,
(2) IG = IH1 + IH2 ,
(3) CG = 〈CH1 ,CH2〉.

Proof The equivalence follows from Proposition 3.5. G being the largest quantum group
contained in H1 and H2 is equivalent to IG being the smallest ideal containing IH1 and IH2 ,
which is equivalent to CG being the smallest category containing CH1 and CH2 .

Consider H1, H2 ⊂ U+(F ). The smallest quantum group G containing both H1 and H2
is said to be topologically generated by H1 and H2. We denote it by G = 〈H1, H2〉. This
notion goes back to [6, 9].

Proposition 3.7 Consider G,H1, H2 ⊂ U+(F ). Then the following are equivalent.

(1) G = 〈H1, H2〉,
(2) IG is the largest Hopf ∗-ideal in IH1 ∩ IH2 ,
(3) CG(w1, w2) = CH1(w1, w2) ∩ CH2(w1, w2) for all w1, w2 ∈ W .

Proof Again, the equivalence follows from Proposition 3.5. G being the smallest quantum
group containing H1 and H2 is equivalent to IG being the largest ideal contained in IH1 and
IH2 , which is equivalent to CG being the largest category contained in CH1 and CH2 .

3.3 Frobenius Reciprocity

We define an involution on the set of two colours {◦•} mapping ◦ �→ •, • �→ ◦. We extend
this operation as a homomorphism on the monoid W , denote it by bar w �→ w̄, and call it
the colour inversion. We denote by w∗ the colour inversion composed with reflection on w

(that is, reading the word backwards).
Consider a two-coloured representation category C and fix the duality morphisms ξ ,

ξ . We define a map Rrot : C (w1, w2a) → C (w1ā, w2) for a ∈ {◦•} by T �→ (1(CN )|w2 | ⊗
ξ∗)(T ⊗ 1CN ) with ξ = ξ if a = ◦ and ξ = ξ if a = •. We call this map the right
rotation.

This map has an inverse Rrot−1 : C (w1a,w2) → C (w1, w2ā) given by T �→ (T ⊗
1CN )(1(CN )⊗|w1 | ⊗ ξ). Similarly, we can define the left rotation Lrot : C (aw1, w2) →
C (w1, āw2). As a consequence, we have the following.

Proposition 3.8 Let C be a two-coloured representation category. Then C is generated by
the collection C (∅, w) with w running through W .
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Proof We have C (w1, w2) = Rrot|w1| C (∅, w1w
∗
2).

Corollary 3.9 Let G be a compact quantum group. Then the ideal IG is generated by
relations of the form u⊗wξ = ξ .

Some authors denote Fix(u⊗w) := Mor(1, u⊗w) = CG(∅, w). Such particular intertwin-
ers ξ ∈ Mor(1, u⊗w) satisfying u⊗wξ = ξ are called the fixed points of u⊗w .

Not only that the collection C (∅, w) already determines the whole category C . We can
even characterize representation categories in terms of those fixed point spaces by intro-
ducing some alternative operations. The following essentially reformulates the operations
defined in [13].

Definition 3.10 Consider a two-coloured representation category C . Denote for simplicity
ξ◦ := ξ and ξ• := ξ . We define the following operations on the sets C (∅, w).

• If ai and ai+1 have opposite colours, we define the contraction:

	i : C (∅, a1 · · · ak) → C (∅, a1 · · · ai−1ai+2 · · · ak),

	iη := (1N ⊗ · · · ⊗ 1N ⊗ ξ∗
ai

⊗ 1N ⊗ · · · ⊗ 1N)η.

Pictorially,

	iη = η

· · ·
ξ∗
ai

· · · .

On elementary tensors, it acts as

	i(η1 ⊗ · · · ⊗ ηk) = (ηt
i+1Fηi) η1 ⊗ · · · ⊗ ηi−1 ⊗ ηi+2 ⊗ · · · ⊗ ηk .

• We define the rotation:

R : C (∅, a1 · · · ak) → C (∅, aka1 · · · ak−1), R := Lrot ◦Rrot, so

Rη = (1N ⊗ · · · ⊗ 1N ⊗ ξ∗
ak

)(1N ⊗ η ⊗ 1N)ξak
.

Pictorially,

Rη = η

· · · ξ∗
ak

ξak

.

On elementary tensors, it acts as

R(η1 ⊗ · · · ⊗ ηk) = (F F̄ηk) ⊗ η1 ⊗ · · · ⊗ ηk−1.

Note that the rotation is obviously invertible with R−1 = Rrot−1 ◦Lrot−1 :
C (∅, a1 · · · ak) → C (∅, a2 · · · aka1).

• We define the reflection:

� : C (∅, a1 · · · ak) → C (∅, ak · · · a1)
η� := Rrot−k η∗ = (η∗ ⊗ 1Nak

⊗ · · · ⊗ 1Na1
)ξa1···ak

,

where ξa1···ak
is the duality morphism associated to the object a1 · · · ak . Pictorially,

Rη =
η∗· · · · · · .

On elementary tensors, it acts as

(η1 ⊗ · · · ⊗ ηk)
� = (F ak η̄k) ⊗ · · · ⊗ (F a1 η̄1).
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Proposition 3.11 For any two-coloured representation category C , the collection of sets
C (∅, w), w ∈ W is closed under tensor products, contractions, rotations, inverse rotations,
and reflections. Conversely, for any collection of vector spaces C (w) ⊂ (CN)⊗|w| that is
closed under tensor products, contractions, rotations, inverse rotations, and reflections and
satisfies axiom (5) of two-coloured representation categories, the sets

C (w1, w2) := {Rrot|w1| ξ | ξ ∈ C (w2w
∗
1)} = {Lrot−|w1| p | p ∈ C (w∗

1w2)}
form a two-coloured representation category.

Proof The first part of the proposition follows from the fact that all the new operations are
defined using the category operations of tensor product, composition, and involution.

The converse statement is proved by expressing the category operations in terms of the
new operations:

Lrot−k ξ ⊗ Rrotk
′
η = Lrot−k Rrotk

′
(ξ ⊗ η),

(Rrotk ξ)∗ = Rrotl ξ �,

(Rrotl η)(Rrotk ξ) = Rrotk 	m+1	m+2 · · ·	m+l (η ⊗ ξ),

where we assume that ξ ∈ C (w1w2) and η ∈ C (w′
1w

′
2) (for the first row), resp. η ∈

C (w2w3) (for the last row).

3.4 Free and Tensor Product

The following two constructions were defined by Wang.

Proposition 3.12 ([25]) Let H1 = (C(H1), v1) and H2 = (C(H2), v2) be compact matrix
quantum groups. Then H1 ∗ H2 := (C(H1) ∗Ç (H2), v1 ⊕ v2) is a compact matrix quantum
group. For the co-multiplication we have that

�∗([v1]ij ) = �H1([v1]ij ), �∗([v2]kl) = �H2([v2]kl).

Proposition 3.13 ([26]) Let H1 = (C(H1), v1) and H2 = (C(H2), v2) be compact matrix
quantum groups. Then H1 × H2 := (C(H1) ⊗max C(H2), v1 ⊕ v2) is a compact matrix
quantum group. For the co-multiplication we have that

�×([v1]ij ⊗ 1) = �H1([v1]ij ), �×(1 ⊗ [v2]kl) = �H2([v2]kl).

The tensor product of quantum groups is a generalization of the group direct product.
The free product should also be seen as some free version of the direct product. Note in
particular that the free product of compact quantum groups does not generalize the group
free product since the freeness occurs in the C*-algebra multiplication not in the quantum
group comultiplication. For this reasons, some authors call it rather dual free product.

We will focus here mainly on products of quantum groups H = (C(H), v) with cyclic
group duals Ẑk . Denote by z the generator of the C*-algebra C∗(Zk), so the fundamental
representation of H ∗ Ẑk or H × Ẑk is of the form u := v ⊕ z. Now, we would like to
describe the corresponding representation category. For our purposes, it will be convenient
not to restrict only to the intertwiner spaces between tensor products of u◦ and u•, but to
keep track of the blocks v and z.

Consider G ⊂ U+(F )∗Zk for some k ∈ N0 with fundamental representation of the form
u = v ⊕ z, where z is one-dimensional. Denote by N the size of v. We define a monoid
Wk with generators , , , and relations = = ∅, k = ∅, where ∅ is the monoid
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identity. We denote u := v◦, u := v•, u := z, u = z∗, so u⊗w is the tensor product of
the corresponding representations. We denote by [w] the number of white and black squares
in a given word w (which is well defined in contrast with the overall length of w).

Then we can associate to G the following category

CG(w1, w2) : = Mor(u⊗w1 , u⊗w2)

= {T : (CN)⊗[w1] → (CN)⊗[w2] | T u⊗w1 = u⊗w2T },
where w1, w2 ∈ Wk .

The axiomatization of a two-coloured representation category extends to this case as
follows.

Definition 3.14 Consider a natural number N ∈ N and k ∈ N0. A collection C (w1, w2),
w1, w2 ∈ Wk of vector spaces of linear maps (CN)⊗[w1] → (CN)⊗[w2] is called a Zk-
extended representation category if it satisfies the following

(1) For T ∈ CG(w1, w2), T ′ ∈ CG(w′
1, w

′
2), we have T ⊗ T ′ ∈ CG(w1w

′
1, w2w

′
2).

(2) For T ∈ CG(w1, w2), S ∈ CG(w2, w3), we have ST ∈ CG(w1, w3).
(3) For T ∈ CG(w1, w2), we have T ∗ ∈ CG(w2, w1)

(4) For every word w ∈ Wk , we have 1
⊗[w]
N ∈ CG(w,w).

(5) There exist vectors ξ ∈ CG(∅, ) and ξ ∈ CG(∅, ) called the duality
morphisms such that

(ξ∗ ⊗ 1CN )(1CN ⊗ ξ ) = 1CN , (ξ∗ ⊗ 1CN )(1CN ⊗ ξ ) = 1CN . (3.3)

In other words, Zk-extended categories are rigid monoidal ∗-categories with Wk being
the monoid of objects and morphisms realized by linear maps. Note that it is not necessary
to assume the existence of duality morphisms for the triangles since we automatically
have C (∅, ) = C (∅, ) = C (∅,∅) � 1 being the duality morphism.

We can reformulate many results mentioned above to thisZk-extended case. In particular,
the Tannaka–Krein duality associates a compact matrix quantum group G ⊂ U+(F ) ∗ Ẑk

to any Zk-extended representation category.
Also the Frobenius reciprocity holds for Zk-extended representation categories and the

operations on the fixed point spaces can be defined in a similar way. In particular, the
contraction C (∅, w1 w2) → C (∅, w1w2) or C (∅, w1 w2) → C (∅, w1w2) is defined
the same way as in Section 3.3. On the other hand the contraction C (∅, w1 w2) →
C (∅, w1w2) is simply the identity since already on the level of objects we have w1 w2 =
w1w2. Similarly, the rotation of squares is defined the same way as the rotation of circles in
Section 3.3 and will be denoted by R. The rotation of triangles is then simply the identity.
Consequently, we have R[w2] : C (∅, w1w2) → C (∅, w2w1).

A way how to model Z2-extended representation categories using partitions is described
in [15]. Many new examples of quantum groups were obtained using this approach. In
particular, several new product constructions interpolating the free and tensor product.

4 Glued Products

In [13, 15, 22], the representation categories of glued products of orthogonal easy quantum
groups with cyclic groups were studied. Here, we revisit the theory dropping the easiness
assumption.
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4.1 Gluing Procedure

Definition 4.1 Let G be a compact matrix quantum group with fundamental representation
of the form u = v1 ⊕ v2. Denote by Ã the C*-subalgebra of C(G) generated by elements
of the form [v1]ij [v2]kl . Then G̃ := (Ã, v1 ⊗ v2) is a compact matrix quantum group called
the glued version of G.

A particular example of the gluing procedure is the glued free product H1 ∗̃ H2 defined
as the glued version of the free product H1 ∗ H2 and the glued tensor product H1 ×̃ H2
defined as the glued version of the tensor product H1 ×H2. Those two definitions were first
formulated in [22].

Again, we will be interested in particular in the case when u = v ⊕ z, where z is one-
dimensional. The glued free product H ∗̃ Ẑk is also called the free k-complexification of
H and the glued tensor product H ×̃ Ẑk is called the tensor k-complexification. The free
complexification was studied already by Banica in [2, 3].

Remark 4.2 The glued version G̃ of a quantum group G is by definition a quotient of G. It
may happen that the elements [v1]ij [v2]kl already generate the whole C*-algebra C(G), so
C(G̃) = C(G). In this case, we have that G̃ is isomorphic to G. However, the G̃ and G are
still distinct as compact matrix quantum groups since their fundamental representations are
different.

The same holds in particular for the glued products and for the complexifications. Con-
sidering G = (C(G), v) and Ẑk = (z, C∗(Zk)), we have that G ×̃ Ẑk � G × Ẑk or
G∗̃Ẑk � G∗Ẑk if the elements vij z actually generate the whole algebraC(G)⊗maxC

∗(Zk),
resp. C(G) ∗C C∗(Zk).

Now, we are going to characterize the representation categories of the glued versions.

Definition 4.3 Let us fix k ∈ N0. Then for any word w ∈ W we associate its glued version
w̃ ∈ Wk mapping ◦ �→ , • �→ .

Proposition 4.4 Consider G ⊂ U+(F ) ∗ Ẑk with fundamental representation u = v ⊕ z.
Let CG be the associated Zk-extended representation category. Let G̃ be the glued version
of G. Then

C
G̃

(w1, w2) = CG(w̃1, w̃2)

for every w1, w2 ∈ W . That is C
G̃
is a full subcategory of CG given by considering the

glued words only. The ideal associated to G̃ can be described as

I
G̃

= {f ∈ C〈x̃ij , x̃
∗
ij 〉 | f (xij z, z

∗x∗
ij ) ∈ IG} � IG ∩ C〈xij z, z

∗x∗
ij 〉.

Proof Denote by ṽ = vz the fundamental representation of G̃. Consider a word w and its
glued version w̃. Directly from the definitions of ṽ and w̃, we have ṽ⊗w = u⊗w̃. So,

C
G̃
(w1, w2) = Mor(ṽ⊗w1 , ṽ⊗w2) = Mor(u⊗w̃1 , u⊗w̃2) = CG(w̃1, w̃2).

For the ideal, we have

I
G̃

= {f ∈ C〈x̃ij , x̃
∗
ij 〉 | 0 = f (ṽij , ṽ

∗
ij ) = f (vij z, z

∗v∗
ij ) in C(G̃) ⊂ C(G)}

= {f ∈ C〈x̃ij , x̃
∗
ij 〉 | f (xij z, z

∗x∗
ij ) ∈ IG}.
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4.2 Glued Version and Projective Version

As a side remark, let us relate the new notion of glued version with already existing notion
of projective version.

Definition 4.5 ([8]) Let G ⊂ U+(F ) be a compact matrix quantum group. We define its
projective version as PG := (C(PG), u◦ ⊗ u•), where C(PG) is the C*-subalgebra of
C(G) generated by the elements u◦

ij u
•
kl .

Proposition 4.6 Consider a compact matrix quantum group G with fundamental represen-
tation of the form v1 ⊕ v2. Denote by G′ := (C(G), v◦

1 ⊕ v•
2) � G. Let G̃ be the glued

version of G. Then G̃ � PG′.

Proof By definition, we have that PG′ is determined by a C*-subalgebra C(PG′) ⊂ C(G)

generated by matrix elements of the fundamental representation of PG′, which is of the
form (v◦

1 ⊗v•
1)⊕ (v◦

1 ⊗v◦
2)⊕ (v•

2 ⊗v•
1)⊕ (v•

2 ⊗v◦
2). In contrast, C(G̃) ⊂ C(G) is generated

only by v◦
1 ⊗v◦

2. We need to show that C(G̃) and C(PG′) coincide as subalgebras of C(G).
We can express

v•
2 ⊗ v•

1 = (v1 ⊗ v2)
•,

v◦
1 ⊗ v•

1 = (id⊗ξ (2)∗ ⊗ id)(v◦
1 ⊗ v◦

2 ⊗ v•
2 ⊗ v•

1)(id⊗ξ (2) ⊗ id)/‖ξ (2)‖2,
v•
2 ⊗ v◦

2 = (id⊗ξ (1)∗ ⊗ id)(v•
2 ⊗ v•

1 ⊗ v◦
1 ⊗ v◦

2)(id⊗ξ (1) ⊗ id)/‖ξ (1)‖2,
where ξ = ξ (1) ⊕ ξ (2) and ξ = ξ (1) ⊕ ξ (2) are the duality morphisms corresponding to
v1 ⊕ v2.

Remark 4.7 Often it happens that G and G′ are identical as compact matrix quantum
groups. For instance, in the case of tensor product or free product with Ẑk . So, we can write

H ×̃ Ẑk � P(H × Ẑk), H ∗̃ Ẑk � P(H ∗ Ẑk).

4.3 Degree of Reflection

We characterize the notion of the degree of reflection, which was introduced in [23] in the
categorical language and in [15] for general compact matrix quantum groups.

Definition 4.8 ([23]) For a word w ∈ W , we define c(w) to be the number of white circles
◦ in w minus the number of black circles • in w.

Recall that given a quantum groupG = (C(G), u), we can construct a quantum subgroup
of G – so called diagonal subgroup – imposing the relation uij = 0 for all i �= j . If
we, in addition, impose the relation uii = ujj for all i and j , we get a quantum group
corresponding to a C*-algebra generated by a single unitary. Therefore, it must be a dual of
some cyclic group.

Definition 4.9 ([15]) Let G be a quantum group and denote by �̂ the quantum subgroup of
G given by uij = 0, uii = ujj for all i �= j . The order of the cyclic group � is called the
degree of reflection of G. If the order is infinite, we set the degree of reflection to zero.
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Lemma 4.10 Let G = (C(G), u) be a compact matrix quantum group, k ∈ N0. The
following are equivalent.

(0) The number k divides the degree of reflection of G.
(1) The mapping uij �→ δij z extends to a ∗-homomorphism φ : C(G) → C∗(Ẑk).
(2) For any w ∈ W , Mor(1, u⊗w) �= {0} only if c(w) is a multiple of k.
(3) The ideal IG is Zk-homogeneous.
(4) We have G = G ×̃ Ẑk .

Proof (0) ⇔ (1): If k0 is the degree of reflection of G, then directly by the definition there
is a ∗-homomorphism φ : C(G) → C∗(Ẑk0). Such an homomorphism obviously exists also
if k is a divisor of k0. By definition, Ẑk0 is the largest group with this property, so k must be
a divisor of k0.

(1) ⇒ (2): Take any ξ ∈ Mor(1, u⊗w), so u⊗wξ = ξ . Applying the homomorphism φ,
we get zc(w)ξ = ξ . If ξ �= 0, we must have zc(w) = 1, so c(w) is a multiple of k.

(2) ⇒ (3): By Corollary 3.9, IG is generated by the relations u⊗wξ = ξ , ξ ∈
Mor(1, u⊗w). Since the entries of u⊗w are monomials of degree c(w), the relations u⊗wξ =
ξ are Zc(w)-homogeneous (of degree zero). Consequently, they are also Zk-homogeneous
and hence generate a Zk-homogeneous ideal.

(3) ⇒ (4): We need to show that uij �→ uij z extends to a ∗-isomorphism C(G) →
C(G×̃Ẑk). To prove that it extends to a homomorphism, take any f ∈ IG. Suppose f is Zk-
homogeneous of degree l. Then, since uij and z commute, we have f (uij z) = f (uij )z

l = 0.
It is surjective directly from definition. For injectivity, note that the projection to the first
tensor component C(G) ⊗max C∗(Zk) → C(G) restricts to the inverse of α.

(4) ⇒ (1): We define φ := (ε ⊗ id)α, where ε is the counit of G and α is the
∗-homomorphism C(G) → C(G) ⊗ C∗(Ẑk). Then indeed φ(uij ) = ε(uij )z = δij z.

As a consequence, we have the following four equivalent characterizations of the degree
of reflection.

Proposition 4.11 Let G be a compact matrix quantum group, k ∈ N0. The following are
equivalent.

(1) The number k is the degree of reflection of G.
(2) We have {c(w2) − c(w1) | CG(w1, w2) �= {0}} = kZ.
(3) The number k is the largest such that IG is Zk-homogeneous.
(4) The number k is the largest such that G = G ×̃ Ẑk .

In items (3) and (4), we consider zero to be larger than every natural number (equivalently,
consider the order defined by “is a multiple of”).

Proof We just take the maximal k (in the above mentioned sense) satisfying the equivalent
conditions in Lemma 4.10. For (2) note that the set {c(w2) − c(w1) | CG(w1, w2) �= {0}}
is indeed a subgroup of Z. The fact that {c(w2) − c(w1)} is closed under addition follows
from CG being closed under the tensor product. The fact that {c(w2) − c(w1)} is closed
under subtraction follows from CG being closed under the involution. The statement (2) in
Lemma 4.10 can be formulated as {c(w2) − c(w1) | CG(w1, w2) �= {0}} ⊂ kZ. Taking the
maximal k, we gain the equality.
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Proposition 4.12 Consider G ⊂ O+(F ). Then one of the following is true.

(1) The degree of reflection of G is one and CG(0, k) �= {0} for some odd k ∈ N0.
(2) The degree of reflection of G is two and CG(k, l) = {0} for every k + l odd.

Proof Recall from Remark 3.4 that the intertwiner spaces CG(w1, w2) depend only on the
length of the words w1 and w2 for G ⊂ O+(F ). This allowed us to introduce the notation
CG(k, l). Now the proposition follows from Proposition 4.11. First of all, the degree of
reflection must be a divisor of two (that is, either one or two) since we have CG(∅, ◦◦) =
CG(∅, ◦•) � ξ �= 0. Then G has degree of reflection one if and only if CG(∅, w) =
CG(0, |w|) �= {0} for some word w with c(w) = 1. Such a word with c(w) = 1 must be of
odd length.

4.4 Global Colourization

The notion of globally-colourized categories was introduced in [23] and studied in more
detail in [13]. Here, we reformulate the results in the non-easy case.

Definition 4.13 A compact matrix quantum group G = (C(G), u) is called globally
colourized if the following holds in C(G)

uij u
∗
kl = u∗

kluij . (4.1)

for all possible indices i, j, k, l.

Assuming G ⊂ U+(F ), this can be equivalently expressed using the entries of the
unitary representations u◦ = u and u• = F ūF−1 as

u◦
ij u

•
kl = u•

ij u
◦
kl . (4.2)

Proposition 4.14 A compact matrix quantum group G = (C(G), u) is globally colourized
if and only if for every w1, w2, w

′
1, w

′
2 ∈ W satisfying |w′

1| = |w1|, |w′
2| = |w2|, c(w′

2) −
c(w′

1) = c(w2) − c(w1) we have

Mor(u⊗w′
1 , u⊗w′

2) = Mor(u⊗w1 , u⊗w2).

Proof The equality (4.2) can be also expressed as u◦ ⊗ u• = u• ⊗ u◦, so it is equivalent
to saying that the identity is an intertwiner between u◦ ⊗ u• and u• ⊗ u◦. From this, the
right-left implication follows directly.

For the left-right implication, from Frobenius reciprocity, it is enough to show the equal-
ity for w1 = w′

1 = ∅. It is easy to infer that if the identity is in Mor(u◦ ⊗ u•, u• ⊗ u◦), we
must also have the identity in Mor(u• ⊗ u◦, u◦ ⊗ u•) and hence also in Mor(u⊗w2 , u⊗w′

2),
and Mor(u⊗w′

2 , u⊗w2), which implies the desired equality.

Consider H ⊂ O+
N (F ). It is easy to check that the tensor complexification H ×̃ Ẑk is

a globally colourized quantum group with degree of reflection k for every k ∈ N0. In the
following theorem, we prove the converse for k = 0.

Theorem 4.15 Consider G ⊂ U+(F ) with FF̄ = c 1N , c ∈ R. Then G is globally
colourized with zero degree of reflection if and only if G = H ×̃ Ẑ, where H = G∩O+(F ).
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Proof We denote by u, v, z the fundamental representations of G, H , and Ẑk , respectively.
The quantum group H is the quantum subgroup of G defined by the relation v◦ = v•. As
mentioned above, the right-left implication is clear since vij commute with z, so

u◦
ij u

•
kl = vij zz

∗vkl = z∗vij vklz = u•
ij u

◦
kl .

Now, let us prove the left-right implication. First, we show that there is a surjective
∗-homomorphism

α : C(G) → C(H ×̃ Ẑ) ⊂ C(H) ⊗max C∗(Z)

mapping uij �→ u′
ij := vij z. To show this, take any element f ∈ IG. Since IG is

Z-homogeneous, we can assume that f is also Z-homogeneous of some degree l. Then
f (u′

ij ) = f (vij z) = f (vij )z
l = 0. This proves the existence of such a homomorphism. Its

surjectivity is obvious.
Now it remains to prove that α is injective and hence is a ∗-isomorphism. Denote by

ξ ∈ Mor(1, u◦ ⊗ u•) ⊂ C
N ⊗ C

N the tensor with entries ξij = 1√
Tr(F ∗F)

Fji , which is

normalized so that ξ∗ξ = 1. We construct a ∗-homomorphism

β : C(H) ⊗max C∗(Z) → M2(C(G))

mapping

z �→ z′ :=
(
0 y

1 0

)
, vij �→ v′

ij :=
(

0 u◦
ij

u•
ij 0

)
, y := ξ∗(u ⊗ u)ξ .

To prove the existence of such a homomorphism, we need the following.
Using the fact that ξξ∗ ∈ Mor(u◦ ⊗ u•, u◦ ⊗ u•) = Mor(u ⊗ u, u ⊗ u) (the equality

follows from global colourization thanks to Proposition 4.14), we derive

yy∗ = ξ∗(u ⊗ u)ξξ∗(u∗ ⊗ u∗)ξ = ξ∗ξξ∗(uu∗ ⊗ uu∗)ξ = 1

and similarly y∗y = 1. From this, we can also deduce z′z′∗ = z′∗z′ = 1.
Using the fact that 1N ⊗ξ∗ ∈ Mor(u◦⊗u◦⊗u•, u◦) = Mor(u•⊗u◦⊗u◦, u◦), we derive

u•y = (1N ⊗ ξ∗)(u• ⊗ u◦ ⊗ u◦)(1N ⊗ ξ) = u◦

and similarly yu• = u◦. This allows us to see that v′
ij z

′ = z′v′
ij = uij 12.

Now, it only remains to show that all relations of the generators vij are satisfied by v′
ij .

For this, note that IH is generated by the relations v◦ = v• and the ideal IG. For the first
part, we use the assumption FF̄ = c 1N to derive

v′• := (12 ⊗ F)

(
0 ū•
ū◦ 0

)
(12 ⊗ F−1) =

(
0 FF̄uF̄−1F−1

F ūF−1 0

)
=

(
0 u◦
u• 0

)
= v′.

For the second part, take any f ∈ IG. Assume it is Z-homogeneous of degree i. Then we
have

f (v′
ij ) = f (uij z

′∗) = f (uij )z
′−i = 0.

This concludes the proof of existence of β. Now, noticing that β ◦ α is the embedding
of C(G) into diagonal matrices over C(G), we see that α must be injective.

Remark 4.16 We leave the situation for general degree of reflection k ∈ N open. Modifying
the proof, it is actually easy to show that, for any globally colourized G with degree of
reflection k, we have

H ×̃ Ẑk ⊂ G ⊂ H ×̃ Ẑ.
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However, we were unable to prove the inclusion G ⊂ H ×̃ Ẑk . This problem is actually
equivalent to proving a stronger version of Proposition 4.14: Consider G globally colour-
ized with degree of reflection k. Taking w1, w2 ∈ W with |w1| = |w2|, does it hold that
Mor(1, u⊗w1) = Mor(1, u⊗w2) whenever c(w1) ≡ c(w2) modulo k?

4.5 Tensor Complexification

In this section, we study the tensor complexification with respect to representation cate-
gories and algebraic relations.

Theorem 4.17 Consider a compact matrix quantum groupG = (C(G), v), k ∈ N0. Denote
by z the generator of C∗(Zk) and by u := vz the fundamental representation of G ×̃ Ẑk . We
have the following characterizations of G ×̃ Ẑk .

(1) The ideal I
G×̃Ẑk

is the Zk-homogeneous part of IG. That is,

I
G×̃Ẑk

= {f ∈ IG | fi ∈ IG for every i ∈ Zk}.
(2) The representation category of G ×̃ Ẑk looks as follows

Mor(u⊗w1 , u⊗w2) =
{
Mor(v⊗w1 , v⊗w2) if c(w2) − c(w1) is a multiple of k,

{0} otherwise.

(3) G×̃Ẑk is topologically generated byG and Ẑk . More precisely,G×̃Ẑk = 〈G,E×̃Ẑk〉,
where E denotes the trivial group of the appropriate size, so E ×̃ Ẑk is the quantum
group Ẑk with the representation z ⊕ · · · ⊕ z = z 1N .

Proof For (1), we can express

f (uij , u
∗
ij ) = f (vij z, z

∗v∗
ij ) =

∑
l∈Zk

fl(vij z, z
∗v∗

ij ) =
∑
l∈Zk

fl(vij , v
∗
ij )z

l,

where f = ∑
l fl is the decomposition of into the homogeneous components fl of degree

l. If all fl ∈ IG, so fl(vij , v
∗
ij ) = 0, we have f (vij z, z

∗v∗
ij ) = 0, so f ∈ I

G×̃Ẑk
. Conversely,

if there is some l ∈ Zk such that fl �∈ IG, then f (vij z, z
∗v∗

ij ) �= 0 and hence f �∈ I
G×̃Ẑk

.

For (2), first we prove that Mor(1, u⊗w) = Mor(1, v⊗w) if c(w) ∈ kZ. Indeed, we
have u⊗w = (vz)⊗w = zc(w)v⊗w = v⊗w . Secondly, the fact that Mor(1, u⊗w) = {0} if
c(w) �∈ kZ follows from Lemma 4.10.

To prove (3), note that the category corresponding to G ×̃ Ẑk (given by (2)) is indeed the
intersection of the category CG and the category C

E×̃Ẑk
, whose morphism spaces are given

by

Mor((z 1N)⊗w1 , (z 1N)⊗w2) =
{
C

N if c(w2) − c(w1) is a multiple of k,

{0} otherwise.

Remark 4.18 An alternative proof of the proposition above could go as follows. One can
easily see that the Zk-extended category associated to G × Ẑk looks as follows

C
G×Ẑk

(w1, w2) =
{
CG(w′

1, w
′
2) if t (w2) − t (w1) is a multiple of k,

{0} otherwise,
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where w′
1, w

′
2 ∈ W are created from w1, w2 ∈ Wk mapping �→ ◦, �→ •, �→ ∅, �→ ∅

and by t (w) we mean the number of white triangles minus the number of black triangles
in w (which is a well-defined element of Zk). The item (2) of the proposition then follows
from Proposition 4.4.

Remark 4.19 As a consequence of Theorem 4.17, we have that

(G ×̃ Ẑk) ×̃ Ẑl = G ×̃ Ẑlcm(k,l)

A direct proof of this statement was formulated already in [22, Proposition 8.2].

Lemma 4.20 Let G ⊂ U+(F ) be a quantum group with degree of reflection k. Denote by
v its fundamental representation. Consider l ∈ N0 and denote by z the generator of C∗(Zl ).
Then zk ∈ C(G ×̃ Ẑl ) for every l. Consequently, znk0 ∈ C(G ×̃ Ẑl ) for every n ∈ N0, where
k0 := gcd(k, l).

Proof From Proposition 4.11, we can find a vector ξ ∈ Mor(1, v⊗w) with c(w) = k and
‖ξ‖ = 1. Recall that C(G ×̃ Ẑl ) is generated by the elements vij z and that vij commute
with z, so

C(G ×̃ Ẑl ) � ξ∗(vz)⊗wξ = ξ∗v⊗wξ zc(w) = zk .

Consequently, znk ∈ C(G ×̃ Ẑk) for every n and obviously {znk}n∈N0 = {znk0}n∈N0 .

Proposition 4.21 Let G ⊂ U+(F ) be a quantum group with degree of reflection k.
Consider a number l ∈ N0. Then G ×̃ Zl � G × Zl if and only if k is coprime with l.

Proof Assume we have G ×̃ Ẑl � G × Ẑl . Suppose d is a divisor of both k and l. Then
we must have also G ×̃ Ẑd � G × Ẑd . But from Lemma 4.10, we have that G ×̃ Ẑd = G,
which is a contradiction unless d = 1.

For the converse, denote by v the fundamental representation of G and by z the generator
of C∗(Zl ). It is enough to show that we have z ∈ C(G×̃Ẑl ) ⊂ C(G)⊗maxC∗(Zl ) since this
already implies the equality of the C*-algebras. This follows directly from Lemma 4.20.

Remark 4.22 If l is not coprime with k, but l0 := l/ gcd(k, l) is coprime with k, we can use
Remark 4.19, Lemma 4.10, and Proposition 4.21 to obtain

G ×̃ Zl = (G ×̃ Zgcd(k,l)) ×̃ Zl0 = G ×̃ Zl0 � G × Zl0 .

Finally, we are going to characterize irreducible representations of the tensor complex-
ification. Note that the irreducibles of the standard tensor product G × Ẑl (or G × H in
general) was obtained already by Wang in [26].

Proposition 4.23 Let G ⊂ U+(F ) be a quantum group with degree of reflection k. Con-
sider arbitrary l ∈ N0. Then G ×̃ Ẑl has the following complete set of mutually inequivalent
irreducible representations

{uαzki+dα | α ∈ IrrH, i = 0, . . . , l0 − 1}, (4.3)

where l0 = l/ gcd(k, l) and z is the generator of C∗(Zk).
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Proof Since G has degree of reflection k, the ideal IG is Zk-homogeneous by Proposi-
tion 4.11. This means that the algebra O(G) is Zk-graded assigning degree one to vij and
degree minus one to v∗

ij , where v is the fundamental representation of G. Consequently, the
entries of any irreducible representation uα , α ∈ IrrG are Zk-homogeneous of some degree
dα (recall Section 2.4).

By Theorem 4.17, I
G×̃Ẑl

is the Zl-homogeneous part of IG. Consequently, I
G×̃Ẑl

is

Zlcm(k,l)-homogeneous and O(G ×̃ Ẑl ) is Zlcm(k,l)-graded. However, this time the degree is
computed with respect to the variables uij := vij z.

The irreducible representations of the standard tensor product G × Ẑl were described by
Wang in [26]. Namely, those are exactly all uαzn with α ∈ IrrG, n = 0, . . . , l − 1. We
just have to choose those whose matrix entries are elements of C(G ×̃ Ẑl ) ⊂ C(G × Ẑl ).
That is, we need to determine all the pairs (α, n) such that uαzn is a matrix with entries in
C(G ×̃ Ẑl ) ⊂ C(G × Ẑl ).

We first prove that every irreducible of G ×̃ Ẑl is equivalent to one from Eq. 4.3. As we
just mentioned, it must be of the form uαzn for some α, n. Since it is a representation of
G×̃ Ẑl , it must be a subrepresentation of u⊗w = v⊗wzc(w) for some w ∈ W . Consequently,
uα is a subrepresentation of v⊗w , so dα ≡ c(w) modulo k. In addition, we must also have
n ≡ c(w) modulo l. As a consequence, n ≡ dα modulo k0 := gcd(k, l). Thus, we must
have n = k0i + dα for some i ∈ Z. Obviously, {zk0i+dα }i∈Z = {zki+dα }l0i=1.

For the converse inclusion, we need to show that the entries of uαzki+dα are elements
of C(G ×̃ Ẑl ) for every α, i. Since uα is an irreducible representation of G, it must be
a subrepresentation of v⊗w for some w ∈ W . Consequently, uαzc(w) is a subrepresentation
of u⊗w = v⊗wzc(w). Hence, it is a representation of G ×̃ Ẑl . From Lemma 4.20, it follows
that also uαzki+c(w) is a representation of G ×̃ Ẑl . Since dα ≡ c(w) modulo k, this is
equivalent to considering representations uαuki+dα .

4.6 Free Complexification

The goal of this section is to characterize the representation categories of the free complex-
ifications, that is, the quantum groups H ∗̃ Ẑl . For the free complexification, we do not have
many results yet even in the easy case. In [22], the two-coloured categories corresponding
to free complexifications of free orthogonal easy quantum groups are provided. For us, the
motivating result is [15, Proposition 4.21] linking the free complexification by Z2 with the
category AltC generated by alternating coloured partitions. This proposition was proven
with the help of categories of partitions with extra singletons describing the free product
with Z2 and the functor F describing the gluing procedure. Also here, we will make use of
the Zl-extended representation categories describing the free product H ∗ Ẑl and then we
will glue the factors and apply Proposition 4.4 to find the corresponding representation cat-
egory. An interesting result is that the free complexification H ∗̃ Ẑl actually does not depend
on the number l unless the degree of reflection of H equals to one.

Definition 4.24 A monomial of even length of the form xi1j1x
∗
i2j2

xi3j3x
∗
i4j4

· · · ∈
C〈xij , x

∗
ij 〉, where the variables with and without star alternate, is called alternating. A lin-

ear combination of alternating monomials, where either all start with non-star variable or
all start with star variable, is called an alternating polynomial. A quantum group G is called
alternating if IG is generated by alternating polynomials.
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Considering a compact matrix quantum group G ⊂ U+(F ) with unitary fundamental
representation u, recall the notation u◦ := u, u• := F ūF−1. So, the relations of G can be
alternatively expressed by polynomials in variables u◦

ij , u
•
ij instead of uij and u∗

ij . Since the
transformation between those two sets of variables is linear, the definition of an alternating
quantum group can be stated in unchanged form also using the alternative ideal.

Lemma 4.25 Let H be a compact matrix quantum group, k, l ∈ N0 such that gcd(k, l) �= 1
(using the convention gcd(0, k) = k). Then we have

H ∗̃ Ẑ = (H ×̃ Ẑk) ∗̃ Ẑl .

Proof We denote by v, z, r , s the fundamental representations of H , Ẑ, Ẑk , and Ẑl , respec-
tively. We need to find a ∗-isomorphism C(H ∗̃ Ẑ) → C((H ×̃ Ẑk) ∗̃ Ẑl ) mapping
vij z �→ vij sr .

First, we see that there exists a ∗-homomorphism

α : C(H) ∗C C∗(Z) → (C(H) ⊗max C∗(Zk)) ∗C C∗(Zl )

mapping
vij �→ vij , z �→ sr .

since sr is a unitary.
This ∗-homomorphism then restricts to a surjective ∗-homomorphism of the form we are

looking for. It remains to prove that it is injective. To prove this, we construct a ∗-homo-
morphism

β : (C(H) ⊗max C∗(Zk)) ∗C C∗(Zl ) → Md

(
C(H) ∗C C∗(Z)

)
mapping

vij �→
⎛
⎜⎝

vij 0
. . .

0 vij

⎞
⎟⎠ , s �→

⎛
⎜⎜⎜⎝

1
1
. . .

1

⎞
⎟⎟⎟⎠ , r �→

⎛
⎜⎜⎜⎜⎜⎝

z∗
1
. . .

1
z

⎞
⎟⎟⎟⎟⎟⎠ ,

where d �= 1 is some common divisor of k and l.
We can check that the images satisfy all the defining relations between the generators, so

such a homomorphism indeed exists. Now, we can see that β ◦ α is injective, so α must be
injective. Thus, the restriction of α we are interested in is also injective.

Proposition 4.26 Let H be a compact matrix quantum group and l ∈ N. Then the Zl-
extended category C

H∗Ẑl
is generated by the collection C(ι(w1), ι(w2)) := CH (w1, w2),

where ι : W → Wl is the injective homomorphism mapping ◦ �→ , • �→ . Moreover, we
have the following inductive description. If w ∈ Wk contains no triangles, i.e. w = ι(w′)
for some w′ ∈ W , then

C
H∗Ẑl

(∅, w) = CH (∅, w′).
Otherwise,

C
H∗Ẑl

(∅, w) =
⎧⎨
⎩R[w0](ξ1 ⊗ · · · ⊗ ξl)

∣∣∣∣
w = w0 w1 · · · wl

ξi ∈ C
H∗Ẑl

(∅, wi), i = 1, . . . , l − 1
ξl ∈ C

H∗Ẑl
(∅, wlw0)

⎫⎬
⎭ .



D. Gromada

Proof Let C be the Zl-extended category generated by C. Then the associated quantum
group G = (C(G), v ⊕ z) is a quantum subgroup of U+(F ) ∗ Ẑl defined by the relations
of H for v and no relations for z (except for zz∗ = z∗z = 1 = zl). But this is exactly the free
product H ∗ Ẑl . Now, it remains to prove that C is given by the above described recursion.

The inclusion ⊃ follows from the fact that C has to be closed under the category oper-
ations. To check the inclusion ⊂, it is enough to check that the right-hand side defines
a category. That is, we need to check that it is closed under tensor products, contractions,
rotations, inverse rotations, and reflections as defined in Sections 3.3 and 3.4. Checking this
is straightforward using induction. Nevertheless it may become a bit lengthy to check all
the details. We will do it here for the rotation and tensor product.

So, denote the sets given by the inductive description by C̃ . If we take words w without
triangles, that is, w = ι(w′), then the sets C̃ (∅, w) = CH (∅, w′) are closed under all the
operations since CH is a category. To show closedness under rotations in general, we do
an induction on the length of the word w. So, consider an element ξ ∈ C̃ (∅, w) with w =
w0 w1 · · · wl , so it is of the form ξ = R[w0](ξ1 ⊗ · · · ⊗ ξl). First, suppose that wl is not
empty and denote by x its last letter. Then we directly have Rξ = R[w0]+1(ξ1 ⊗ · · · ⊗ ξl) ∈
C̃ (∅, Rw). For the case wl = ∅, the last letter of w is a triangle. So, we need to check that
C̃ (∅, w0 w1 · · · wl−1) � ξ = (R[w0]ξl)⊗ ξ1 ⊗· · ·⊗ ξl−1. This is true thanks to the fact
that R[w0]ξl ∈ C̃ (∅, w0) by induction. For the inverse rotations, the proof goes exactly the
same way.

Now, we can also prove closedness under the tensor product. Take ξ ∈ C̃ (∅, w), η ∈
C̃ (∅, w′). We will do the induction on the length of w. Actually, we can assume that |w| ≥
|w′| since we can swap the factors by rotation: η ⊗ ξ = R[w′](ξ ⊗ R−[w′]η). So, assume
w = w0 w1 · · · wl , so ξ is of the form ξ = R[w0](ξ1⊗· · ·⊗ξl) ∈ C̃ (∅, w0 w1 · · · wl).
Then we have

ξl ∈ C̃ (∅, wlw0) by assumption,

R[w0]ξl ∈ C̃ (∅, w0wl) C̃ closed u. rotations,

R[w0]ξl ⊗ η ∈ C̃ (∅, w0wlw
′) by induction,

ξ̃l = R−[w0](R[w0]ξl ⊗ η) ∈ C̃ (∅, wlw
′w0) C̃ closed u. inv. rot.,

ξ ⊗ η=R[w0](ξ1 ⊗ · · · ⊗ ξl−1 ⊗ ξ̃l ) ∈ C̃ (∅, w0 w1 · · · wlw
′) by definition of C̃ .

Lemma 4.27 We can arrange the recursion of the above proposition in such a way that the
words w1, . . . , wl−1 contain no triangles, so we have

C
H∗Ẑl

(∅, w) =
⎧⎨
⎩R[w0](ξ1 ⊗ · · · ⊗ ξl)

∣∣∣∣
w = w0 w1 · · · wl

ξi ∈ CH (∅, w′
i ), i = 1, . . . , l − 1

ξl ∈ C
H∗Ẑl

(∅, wlw0)

⎫⎬
⎭ .

Proof We prove this by induction. Take an arbitrary word w ∈ Wl and suppose that the
above description works for any shorter word. Now consider an element ξ ∈ C

H∗Ẑl
(∅, w),

so it is of the form ξ = R[w0](ξ1 ⊗ · · · ⊗ ξl) corresponding to the decomposition w =
w0 w1 · · · wl . Suppose now that wi contains some triangles for some i ∈ {1, . . . , l − 1}.
By induction hypothesis, we can write ξi = R[a0](η1 ⊗ · · · ⊗ ηl) corresponding to wi =
a0 a1 · · · al , where a1, . . . , al−1 contain no triangles, so ηi ∈ CH (∅, a′

i ). But this means
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that we can write also

ξ = R[w0···wi−1a0](η1 ⊗ · · · ⊗ ηl−1 ⊗ η̃l),

where

η̃l = R−[a0](R[a0]ηl ⊗ ξi+1 ⊗ · · · ⊗ ξl ⊗ R−[w1]ξ1 ⊗ · · · ⊗ R−[wi−1]ξi−1)

∈ C
H∗Ẑl

(∅, al wi+1 · · · wlw0 w1 · · · wi−1 a0).

In the following theorem, we describe the representation category of the free complex-
ification. In the formulation, we use the following notation. Given an element w ∈ W or
w ∈ Wl , we use negative powers to indicate the colour inversion, that is, w−j = w̄j . For
example, (◦•)−2 = (•◦)2 = •◦•◦.

Theorem 4.28 Let H be a compact matrix quantum group with degree of reflection k �=
1. Then all H ∗̃ Ẑl coincide for all l ∈ N0 \ {1}. The ideal I

H ∗̃Ẑl
is generated by the

alternating polynomials in IH . The representation category C
H ∗̃Ẑl

is a (wide) subcategory

of the representation category CH generated by the sets C(∅, (◦•)j ) := CH (∅, (◦•)j ),
j ∈ Z. This also holds if k = 1 and l = 0.

Proof Let I ⊂ C〈xij , x
∗
ij 〉 be the ideal generated by the alternating polynomials in IH .

Denote by uij = vij z the fundamental representation of H ∗̃ Ẑl . To prove that I ⊂ I
H ∗̃Ẑl

,
take any alternating polynomial f ∈ IH . If all monomials in f start with a non-star variable,
we have f (vij z) = f (vij ) = 0; if all monomials start with a star variable, then f (vij z) =
z∗f (vij )z = 0. In both cases, we have proven that f ∈ I

H ∗̃Ẑl
. The opposite inclusion

I ⊃ I
H ∗̃Ẑl

will follow from the statement about representation categories as all the relations
corresponding to the elements of C are alternating.

Note that it is enough to prove the statement for k �= 1 and l �= 0. Indeed, for k �= 1
and l = 0, we have by Lemma 4.25 that H ∗̃ Ẑ = H ∗̃ Ẑk . For k = 1, l = 0 we use
Lemma 4.25 to express H ∗̃ Ẑ = (H ×̃ Ẑ2) ∗̃ Zl . Since c((◦•)j ) = 0 ∈ 2Z for every j , we
have CH (∅, (◦•)j ) = C

H ×̃Ẑ2
(∅, (◦•)j ).

So, let C be the two-coloured representation category generated by C. We need to
prove that C

H ∗̃Ẑl
(∅, w) = C (∅, w) for every w ∈ W . In order to do that, we will use

Proposition 4.4, whose statement can be, in this case, formulated as

C
H ∗̃Ẑl

(∅, w) = C
H∗Ẑl

(∅, w̃), (4.4)

where w̃ ∈ Wl is the glued version of w ∈ W .
Let us start with the easier inclusion ⊃. Since C

H ∗̃Ẑl
is a category, it is enough to show

that C
H ∗̃Ẑl

(∅, w) ⊃ C(∅, w) for every w = (◦•)j , j ∈ Z. Note that the glued version of w

is in this case w̃ = ( )j = ( )j . Combining Proposition 4.26 and Eq. 4.4, we have

C(∅, (◦•)j ) = CH (∅, (◦•)j ) = C
H∗Ẑk

(∅, ( )j ) = C
H ∗̃Ẑl

(∅, (◦•)j ).

We will prove the opposite inclusion ⊂ by induction on the length of w. Take some

ξ ∈ C
H ∗̃Ẑl

(∅, w) = C
H∗Ẑl

(∅, w̃).

Suppose ξ �= 0. According to Lemma 4.27, we can assume that w̃ = w0 w1 · · · wl ,
where w1, . . . , wl−1 contain no triangles, and then ξ = Rw0(ξ1 ⊗ · · · ⊗ ξl) with ξi ∈
CH (∅, w′

i ) and ξl ∈ C
H∗Ẑl

(∅, wlw0). Since w̃ is the glued version of w, this means that
in all the words w1, . . . , wl−1 the colours alternate (two consecutive white squares would
necessarily have a white triangle between them, two consecutive black squares would have
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= l−1 between them). Moreover, since we assume ξi �= 0, we must have c(w′
i ) ∈ kZ

and, since k �= 1, this means that the wi’s are of even length. So, wi = ( )ji , w′
i = (◦•)ji .

Finally note that if we delete ◦• or •◦ from some word w, its glued version will be
given by deleting resp. . In particular, denote by ŵ the element w after deleting all
the subwords w′

1, . . . , w
′
l−1. Its glued version is then w0

lwl = w0wl . Using the induction
hypothesis, this finishes the proof as we have

ξ = Rw0(ξ1 ⊗ · · · ⊗ ξl)

with

ξi ∈ CH (∅, w′
i ) = CH (∅, (◦•)ji ) = C(∅, (◦•)ji ) for i = 1, . . . , l − 1

Rw0ξl ∈ C
H∗Ẑ2

(∅, w0wl) = C
H ∗̃Ẑ2

(∅, ŵ) = C (∅, ŵ).

We may ask what happens if we iterate those free complexifications. The following
statement was again already formulated in [22]; however, without a proof. (Note that it
generalizes Lemma 4.25 dropping the assumption gcd(k, l) �= 1.)

Proposition 4.29 Let H be a compact matrix quantum group, k, l ∈ N0 \ {1}. Then
(H ×̃ Ẑk) ∗̃ Ẑl = (H ∗̃ Ẑk) ∗̃ Ẑl = H ∗̃ Z.

Proof The second equality follows directly from Theorem 4.28 – we see that iterating the
operation on the categories for the second time cannot change it since CH (∅, (◦•)j ) =
C

H ∗̃Ẑk
(∅, (◦•)j ). For the first equality, we use, in addition, Theorem 4.17. Since

c((◦•)j ) = 0, we have C
H ×̃Ẑk

(∅, (◦•)j ) = CH (∅, (◦•)j ).

Again, we can ask in what situations does it happen that the glued free product H ∗̃ Ẑl

is isomorphic to the standard one. Obviously, the necessary condition is that H has degree
of reflection one since H ∗̃ Ẑl � H ∗ Ẑl implies H ×̃ Ẑl � H × Ẑl and here we can use
Proposition 4.21. We can formulate the converse in the case of globally-colourized quantum
groups H (in particular, if H ⊂ O+(F )).

Proposition 4.30 Let H be a globally colourized compact matrix quantum group with
degree of reflection one. Then H ∗̃ Ẑk � H ∗ Ẑk for every k ∈ N0.

Proof Denote by v the fundamental representation of H and by z the generator of C∗(Zk).
Again, it is enough to show that we have z ∈ C(H ×̃ Ẑk) ⊂ C(H) ⊗max C∗(Zk) since this
already implies the equality of the C*-algebras. From Proposition 4.11, we can find a vector
ξ ∈ Mor(1, v⊗w) with c(w) = 1 and ‖ξ‖ = 1. Since H is globally colourized, we have
Mor(1, v⊗w) = Mor(1, v⊗w̃), where w̃ = ◦ • ◦ • · · · ◦, |w̃| = |w|. For such a word, we
have (vz)⊗w̃ = (v◦z)(z∗v•)(v◦z) · · · (v◦z) = v⊗w̃z, so

ξ∗(vz)⊗w̃ξ = ξ∗(v⊗w̃z)ξ = ξ∗ξ z = z.

4.7 Free Complexification of Orthogonal QuantumGroups

In this section, we will study more in detail the free complexification H ∗ Ẑk with H ⊂
O+(F ). Recall that we define O+(F ) ⊂ U+(F ) only for F satisfying FF̄ = c 1N for
some c ∈ R. We will use this assumption in the whole section.
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Definition 4.31 A quantum group G = (C(G), u) ⊂ U+(F ) with FF̄ = c 1N is called
invariant with respect to the colour inversion if the map uij �→ [F ūF−1]ij extends to
a ∗-isomorphism.

Let us explain a bit this definition. First of all, note that the required ∗-homomorphism
maps

u◦
ij �→ u•

ij , u•
ij �→ u◦

ij .

Indeed, the first assignment is exactly the definition. For the second one, we have

u•
ij = [F ūF−1]ij �→ [FF̄uF̄−1F−1]ij = uij

thanks to the assumption FF̄ = c 1N . In the Kac case F = 1N , the homomorphism maps
uij �→ u∗

ij . But let us stress that for general elements of C(G) the homomorphism does not
coincide with the ∗-operation (simply because the ∗ is not a homomorphism).

Secondly, we have the following alternative formulations.

Proposition 4.32 Consider G = (C(G), u) ⊂ U+(F ) with FF̄ = c 1N . Then the
following are equivalent.

(1) C(G) has an automorphism u◦
ij ↔ u•

ij . That is, G is invariant w.r.t. the colour
inversion.

(2) IG is invariant w.r.t. x◦
ij ↔ x•

ij . More precisely, we mean one of the following
equivalent conditions.

(a) IG is invariant w.r.t. the ∗-homomorphism mapping x◦
ij �→ x•

ij

(b) IG is invariant w.r.t. the homomorphism mapping x◦
ij �→ x•

ij and x•
ij �→ x◦

ij .

(3) CG is invariant w.r.t. ◦ ↔ •. That is, CG(w̄1, w̄2) = CG(w1, w2).

Proof The equivalence (1) ⇔ (2a) follows from the universal property of C(G).
For (1) ⇒ (3), take T ∈ CG(w1, w2), so T u⊗w1 = u⊗w2T . Applying the automorphism,

we get T u⊗w̄1 = u⊗w̄2T , so T ∈ CG(w̄1, w̄2).
For (3) ⇒ (2b), we use the Tannaka–Krein, namely the fact that IG is spanned by

the relations of the form T x⊗w1 = x⊗w2T . Those relations are invariant with respect to
the homomorphism x◦ �→ x•, x• �→ x◦ since this homomorphism maps xw �→ xw̄ .
Consequently, the whole ideal IG must be invariant with respect to this homomorphism.

The implication (2b) ⇒ (1) again follows from the universal property of C(G). We
get that u◦

ij �→ u•
ij , u•

ij �→ u◦
ij extends to a homomorphism C(G) → C(G). Using the

assumption FF̄ = c 1N , we can show this actually must be a ∗-homomorphism.

As an example, note that all the universal unitary quantum groups U+(F ) with FF̄ =
c 1N have this property. In addition, any quantum group G ⊂ O+(F ) has this property.

Theorem 4.33 Consider G ⊂ U+(F ) with FF̄ = c 1N . Then G is alternating and invari-
ant with respect to the colour inversion if and only if it is of the form G = H ∗̃ Ẑ, where
H = G ∩ O+(F ).

Proof The right-left implication follows from Theorem 4.28: The fact that H ∗̃ Ẑ is alter-
nating is precisely the statement of Theorem 4.28. As we mentioned above, H ⊂ O+(F ) is
surely invariant with respect to the colour inversion. According to Proposition 4.32, this is
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equivalent to saying that the associated category CH is invariant with respect to the colour
inversion. In particular, we must have CH (∅, (◦•)j ) = CH (∅, (•◦)j ), which are the gener-
ators of C

H ∗̃Ẑ according to Theorem 4.28. Consequently, also H ∗̃ Ẑ must be invariant with
respect to the colour inversion.

In order to prove the left-right implication, we construct a surjective ∗-homomorphism

α : C(G) → C(H ∗̃ Z)

mapping uij �→ u′
ij := vij z. To prove that such a homomorphism exists, take any alternat-

ing element f ∈ IG. Since H ⊂ G, we have f (vij ) = 0. We need to prove that f (u′
ij ) = 0.

If all terms of f start with a non-star variable, then f (u′
ij ) = f (vij z) = f (vij ) = 0; if all

terms start with a star variable, then f (u′
ij ) = z∗f (vij )z = 0.

It remains to prove that α is injective. To do that, we define a ∗-homomorphism

β : C(H) ∗∗
Ç (Z) → M2(C(G))

mapping

vij �→ v′
ij :=

(
0 u◦

ij

u•
ij 0

)
, z �→ z′ :=

(
0 1
1 0

)
.

We immediately see that indeed z′z′∗ = z′∗z′ = 1. In exactly the same way as in the proof
of Theorem 4.15, we also prove that v′• := (12 ⊗ F)v̄′(12 ⊗ F−1) = v′ =: v′◦. Finally,
take f ∈ IG and, for convenience, use the representation in variables u◦

ij and u•
ij . Suppose

f (x◦
ij , x

•
ij ) is alternating such that all variables start with x◦

ij . We have

f (v′
ij , v

′
ij ) =

(
f (u◦

ij , u
•
ij ) 0

0 f (u•
ij , u

◦
ij )

)
= 0,

where f (u◦
ij , u

•
ij ) = 0 directly by f ∈ IG and f (u•

ij , u
◦
ij ) by invariance under the colour

inversion.
Since obviously β ◦ α is injective, we have proven that α is a ∗-isomorphism.

Considering a quantum group H = (C(H), v) ⊂ O+(F ), we have H ×̃ Ẑk ⊂ H ×̃ Ẑ ⊂
H ∗̃ Ẑ. We express those subgroups in terms of relations in the variables uij = vij z. Of
course, those subgroups are given by the relations vij z = zvij and zk = 1, but those may
not be well-defined in C(H ∗̃ Ẑ) as we may not have z ∈ C(H ∗̃ Ẑ).

Proposition 4.34 Consider H ⊂ O+(F ). Then H ×̃ Ẑ is a quantum subgroup of H ∗̃ Ẑ

given by the relation
u◦

ij u
•
kl = u•

ij u
◦
kl . (4.5)

For k ∈ N, H ×̃ Ẑ2k is a quantum subgroup of H ×̃ Ẑ with respect to the relation

u◦
i1j1

· · · u◦
ikjk

= u•
i1j1

· · · u•
ikjk

. (4.6)

Before proving the statement, note that Relations (4.5) and (4.6) correspond to the two-
coloured partitions ⊗ and ⊗k , respectively. Hence, those are exactly the same relations

that were used to construct the quantum groups H ×̃ Ẑ and H ×̃ Ẑ2k in [13, Theorem 5.1].

Proof Relation (4.5) is the relation of the global colourization (see Definition 4.13) and it
is obviously satisfied in H ×̃ Ẑ. We just need to show that imposing this relation is enough.
By Corollary 3.9 and Theorem 4.17, the ideal I

H ×̃Ẑ
is generated by relations of the form

u⊗wξ = ξ , where ξ ∈ C
H ×̃Ẑ

(∅, w) = CH (∅, 2l), c(w) = 0, l := |w|/2. In H ∗̃ Ẑ, we have
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a relation of the form u⊗(◦•)l ξ = ξ . The former relation can surely be derived from the latter
one and Relation (4.5) since it is obtained just by permuting the white and black circles.

The second statement is proven in a similar way. If we denote uij = vij z, then Rela-
tions (4.6) say vi1j1 · · · vikjk

zk = vi1j1 · · · vikjk
z−k , which is surely satisfied in H ×̃ Ẑ2k .

For the converse, the ideal I
H ×̃Ẑk

is generated by relations of the form u⊗wξ = ξ , where
ξ ∈ C

H ×̃Ẑ
(∅, w) = CH (0, 2l), where c(w) is a multiple of 2k and l := |w|/2. Again,

this relation can be derived from u⊗(◦•)l ξ = ξ using Relations (4.5) to permute colours and
Relations (4.6) to swap colours of k consecutive white points to black or vice versa.

4.8 Free Complexification and Partition Categories

In Sections 4.4 and 4.5, we generalized results that were formulated in the language of
categories of partitions in [13]. In contrast, Sections 4.6 and 4.7 were rather new. Hence, it
is interesting to look on the special case of easy and non-easy categories of partitions.

We will not recall the theory of partition categories here. Regarding the original defini-
tion of categories of partitions as defined in [7], we refer to the survey [27]. See also [23] for
the definition of two-coloured categories of partitions and [16] for the definition of linear
categories of partitions. Also see [15] for the definition of the two-coloured category AltC
associated to a given non-coloured category C . Alternatively, everything is summarized in
the thesis [14].

Proposition 4.35 Let K ⊂ PN-lin be a linear category of partitions and denote by H ⊂
O+

N the corresponding quantum group. Then H ∗̃ Ẑ ⊂ U+
N corresponds to the category

AltK . Moreover, the following holds.

(1) If 0 �= p ∈ K (0, l) for some l odd, then H ∗̃ Ẑk corresponds to the category
〈AltK , p̃⊗k〉, where p̃ is the partition p with colour pattern ◦ • ◦ • · · · ◦.

(2) If K (0, l) = {0} for all l odd, then H ∗̃ Ẑk = H ∗̃ Ẑ for all k ∈ N.

Proof The base statement that H ∗̃ Ẑ corresponds to AltK follows directly from Theo-
rem 4.28. By Proposition 4.12, the distinction of the cases correspond to the situation that
either (1) H has degree of reflection one or (2) H has degree of reflection two. So, item (2)
is also contained in Theorem 4.28.

For item (1), denote by w := ◦ • · · · ◦ the word of length l with alternating colours.
Since H has degree of reflection one, we have H ∗̃ Ẑm � H ∗ Ẑm for every m ∈ N0 by
Proposition 4.30. We can actually prove this directly repeating the proof of Proposition 4.30:
Denote by v the fundamental representation of H and by z the fundamental representation
of Ẑm. Then since we have v⊗lξp = ξp, we must have

C(H ×̃ Ẑm) � ξ∗
pu⊗wξp = ξ∗

p(v⊗lz)ξp = z‖ξp‖.

Now, H ∗̃ Ẑk is just a quantum subgroup of H ∗̃ Ẑ with respect to the relation zk = 1. Note
that

u⊗wk

ξ⊗k
p = (v⊗klzk)ξ⊗k

p = ξ⊗k
p zk .

So, the relation zk = 1 can be written as u⊗wk
ξ⊗k
p = ξ⊗k

p , which is exactly the relation
corresponding to p̃.
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Proposition 4.36 Let C ⊂ P be a category of partitions and denote by G ⊂ O+
N the cor-

responding easy quantum group. ThenG∗̃Ẑ is a unitary easy quantum group corresponding
to the category AltC .

(1) If �∈ C , then G ∗̃ Ẑk = G ∗̃ Ẑ for all k ∈ N and it corresponds to the category AltC .
(2) If ∈ C , then G ∗̃ Ẑk corresponds to the category 〈AltC , ⊗k〉.

Proof This is just a reformulation of Proposition 4.35 to the easy case. Note that C contains
some partition of odd length if and only if it contains the singleton .

5 Ungluing

The purpose of this section is to reverse the gluing procedure from Definition 4.1. The moti-
vating result is the one-to-one correspondence formulated in terms of partition categories
in [15, Theorem 4.10]. According to [15, Proposition 4.15], the functor F providing this
correspondence translates to the quantum group language exactly in terms of gluing.

Recall from Definition 4.1 that given a quantum group G ⊂ U+(F ) ∗ Ẑk with fun-
damental representation u = v ⊕ z, we define its glued version to be the quantum
group G̃ ⊂ U+(F ) with fundamental representation ũ := vz and underlying C*-algebra
C(G̃) ⊂ C(G) generated by the elements vij z.

Definition 5.1 Consider G̃ ⊂ U+(F ), k ∈ N0. Then any G ⊂ U+(F ) ∗ Ẑk such that G̃ is
a glued version of G is called a Zk-ungluing of G̃.

In Section 5.1, we are going to study the ungluings in general and show that they always
exist. Unsurprisingly, an ungluing of a quantum group is not defined uniquely. The unglu-
ings introduced in Section 5.1 are universal, but not particularly interesting. In Section 5.2,
we are going to study more interesting ungluings of the form G ⊂ O+(F ) ∗ Ẑ2, which
allow us to generalize the above mentioned one-to-one correspondence. We formulate the
result as Theorem 5.13, which constitutes the main result of this section.

5.1 General Ungluings

Proposition 5.2 There exists a Zk-ungluing for every quantum group G̃ and for every k ∈
N0. Namely, we have the trivial Zk-ungluing G̃ × E, where E ⊂ Ẑk is the trivial group.
Moreover, G̃ × Ẑk is an ungluing of G̃ whenever k divides the degree of reflection of G.

Proof The first statement is obvious as we have G̃ ×̃ E = G̃. The second follows from
Lemma 4.10 as we have G̃ ×̃ Ẑk = G̃.

Let us denote by ι : C〈x̃ij , x̃
∗
ij 〉 → C〈xij , x

∗
ij , z, z

∗〉 the embedding x̃ij �→ xij z. Consider

G̃ ⊂ U+(F ) and G its ungluing. The fact that G̃ is a glued version of G is, accord-
ing to Proposition 4.4, characterized by the equality Ĩ

G̃
:= ι(I

G̃
) = IG ∩ ι(C〈x̃ij , x̃

∗
ij 〉).

Consequently, we have IG ⊃ Ĩ
G̃
for every ungluing G of a quantum group G̃.
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Definition 5.3 Consider G̃ ⊂ U+(F ), k ∈ N0. Let IG ⊂ C〈xij , x
∗
ij , z, z

∗〉 be the ∗-ideal
generated by Ĩ

G̃
. Put C(G) := C∗(C〈xij , x

∗
ij , z, z

∗〉/IG). Then G := (C(G), v ⊕ z) is

called the maximal Zk-ungluing of G̃.

Proposition 5.4 The maximal Zk-ungluing always exists. That is, considering the notation
of Definition 5.3, G is indeed a compact matrix quantum group and G̃ is indeed its glued
version.

Proof First of all, note that Ĩ
G̃

contains the relations vv∗ = v∗v = 1N and v•v•∗ =
v•∗v• = 1N , where v• = F v̄F−1. So, if G is well defined, then we must have G ⊂
U+(F ) ∗ Ẑk .

To prove that G is well defined, we need to check that IG/IU+(F ) is a Hopf ∗-ideal.
Since I

G̃
/IU+(F ) is a Hopf ∗-ideal, we have that Ĩ

G̃
/IU+(F ) is a coideal invariant under the

antipode. Consequently, the ideal generated by Ĩ
G̃
/IU+(F ) must be a Hopf ∗-ideal.

From the construction, it is clear that, if G̃ has some Zk-ungluing, then G must be the
maximal one (since we take the smallest possible ideal IG). But every quantum group has
the trivial ungluing as mentioned in Proposition 5.2.

Remark 5.5 We do not have to know explicitly the whole ideal I
G̃
to compute the maximal

ungluing. Consider G̃ ⊂ U+(F ) and suppose that it is determined by a set of relations R̃.
That is, I

G̃
is generated by the coideal R̃. Then the maximal Zk-ungluing G of G̃ is defined

by the relations R := ι(R̃). That is, taking the generating relations for G̃ and exchanging
ṽij for vij z and ṽ∗

ij for z∗v∗
ij .

Alternatively, we can describe the maximal ungluing by its representation category.
Recall the definition of the gluing homomorphism mapping ◦ �→ , • �→ . Given a
word w ∈ W , the image w̃ under this homomorphism is called the glued version of w by
Definition 4.3. If G is a quantum group and G̃ its glued version, then C

G̃
is a full sub-

category of CG according to Proposition 4.4. The full embedding is given exactly by the
above mentioned gluing homomorphism. Consequently, the maximal ungluing G of some
G̃ should be a quantum group with the minimal representation category containing C

G̃
as

a full subcategory.

Proposition 5.6 Consider G̃ ⊂ U+(F ) and G ⊂ U+(F ) ∗ Ẑk its maximal Zk-ungluing.
Then the Zk-extended representation category CG is generated by the sets C(w̃1, w̃2) =
C

G̃
(w1, w2), where w̃1, w̃2 are glued versions of w1, w2 ∈ W . In addition, if CG is

generated by some C̃0, then C
G̃
is generated by C0(w̃1, w̃2) = C̃0(w1, w2).

Proof By Tannaka–Krein duality, I
G̃
is linearly spanned by relations of the form [T ṽ⊗w1 −

v⊗w2T ]ji. By definition of the maximal ungluing, the ideal IG is generated by elements of
Ĩ
G̃
, which are exactly the relations [T u⊗w̃1 − u⊗w̃2T ]ji corresponding to the set C.
For the second statement, notice that if C̃0 generates C

G̃
, then C0 must generate C. This

follows simply from the fact that gluing of words is a monoid homomorphism (see also
Proposition 4.4). Consequently, by what was already proven, C0 generates CG.

Example 5.7 As an example, consider the quantum group G̃k := O+(F ) ×̃ Ẑ2k , k ∈ N. By
Proposition 4.34, it is the quantum subgroup of O+(F ) ∗̃ Ẑ = U+(F ) with respect to the
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relation
ṽ◦
i1j1

ṽ◦
i2j2

· · · ṽ◦
ikjk

= ṽ•
i1j1

ṽ•
i2j2

· · · ṽ•
ikjk

,

where ṽ denotes the fundamental representation of G̃. We can also take G̃0 := O+(F ) ×̃ Ẑ,
which is a quantum subgroup of U+(F ) given by

ṽ◦
ij ṽ

•
kl = ṽ•

ij ṽ
◦
kl .

Now, take arbitrary l ∈ N0. The maximal Zl-ungluing of G̃k is a quantum group Gk ⊂
U+(F ) ∗ Ẑl with fundamental representation of the form v ⊕ z given by the same relations
if we substitute ṽij by vij z.

v◦
i1j1

zv◦
i2j2

z · · · v◦
ikjk

z = z∗v•
i1j1

z∗v•
i2j2

· · · z∗v•
ikjk

.

The ungluing G0 is defined by the relation

v◦
ij v

•
kl = z∗v•

ij v
◦
klz.

We can also represent the relations diagrammatically. The defining relations of O+(F )×̃Ẑk

and O+(F ) ×̃ Ẑ are ( )⊗k and respectively (see also [13, 22]). To obtain the maximal
ungluing, we can have to put a white triangle after every white circle ◦ and a black triangle
in front of every black circle •. So, the defining relation for Gk corresponds to ( )⊗k ,

for G0, we have .

We can see that the result is quite something different than simply O+(F ) × Ẑ2k as we
may have hoped.

In general, the maximal ungluing never provides any useful decomposition into smaller
pieces since we always have the trivial decomposition inside the maximal one G̃ × E ⊂ G.

5.2 Orthogonal Ungluings

As just mentioned, constructing large unitary ungluings G ⊂ U+(F ) ∗ Ẑk may not be
very useful. In this subsection, we study ungluings that are orthogonal, that is, of the form
G ⊂ O+(F ) ∗ Ẑ2. For the rest of this subsection, we assume FF̄ = c 1N .

For a given quantum group G ⊂ O+(F ) ∗ Ẑ2, we will denote by IG the corresponding
ideal inside A := C〈xij 〉 ∗CZ2 (instead of taking C〈xij , r〉 or C〈xij , x

∗
ij , r, r

∗〉). The gener-
ator of CZ2 will be denoted by r . Note that we have to consider the non-standard involution
x∗
ij = [F−1xF ]ij on A. The algebra A is Z2-graded (assigning all variables xij and r degree

one). We will denote by Ã the even part of A. Then Ãr is the odd part of A.

Lemma 5.8 The mapping xij �→ xij r extends to an injective ∗-homomorphism ιA :
C〈xij , x

∗
ij 〉 → A. Its image ιA(A) equals to Ã – the even part of A.

Proof The existence of the ∗-homomorphism ιA follows from the fact that its domain is
a free algebra. Obviously, for any monomial f ∈ C〈xij , x

∗
ij 〉, the image ιA(f ) has even

degree. It remains to show that, for any monomial of even degree f̃ ∈ Ã, there exists
a unique monomial f ∈ C〈xij , x

∗
ij 〉 such that f̃ = ιA(f ).

This is done easily by induction on the “length” of f̃ measured by the number of
variables xij or x∗

ij (ignoring the r’s). Suppose f̃ is in the reduced form, that is, the vari-

able r does not appear twice consecutively. If f̃ starts with the variable xij , we can write



Gluing Compact Matrix Quantum Groups

f̃ (xij , r) = xij rf̃0(xij , r) for some f0 ∈ Ã, so ι−1
A (f̃ )(xij , x

∗
ij ) = xij ι

−1
A (f̃0)(xij , x

∗
ij ).

If f̃ starts with r followed by xij , so f̃ (xij , r) = rxij f̃0(xij , r) for some f0 ∈ Ã, then
ι−1
A (f̃ )(xij , x

∗
ij ) = x∗

ij ι
−1
A (f̃0)(xij , x

∗
ij ).

Remark 5.9 Ã is the ∗-subalgebra of A generated by the elements xij r . Consequently, for
any G ⊂ O+(F )∗ Ẑ2, we can express the coordinate algebra associated to its glued version
G̃ as

O(G̃) = {f (vij , r) | f ∈ Ã} ⊂ O(G).

In addition, we can rephrase Proposition 4.4 by saying that a quantum group G̃ ⊂ U+(F )

is a glued version of G ⊂ O+(F ) ∗ Ẑ2 if and only if we have Ĩ
G̃

:= ιA(I
G̃
) = IG ∩ Ã.

Recall the definition of quantum groups G̃ ⊂ U+(F ) invariant with respect to the colour
inversion from Definition 4.31.

Proposition 5.10 Consider a compact matrix quantum group G̃ ⊂ U+(F ) with FF̄ =
c 1N invariant with respect to the colour inversion. Let G′ be its maximal Z2-ungluing. Then
G := G′ ∩ (O+(F ) ∗ Ẑ2) is also a Z2-ungluing.

Definition 5.11 The quantum group G from Proposition 5.10 will be called the canonical
Z2-ungluing of G̃.

Before proving the proposition, recall that IG′ ⊂ C〈xij , x
∗
ij , r, r

∗〉 is defined as

the smallest ideal containing ι(I
G̃
). Consequently, IG = IG′/(x◦ = x•, r2 = 1) is the

smallest ideal of the algebra A = C〈xij , x
∗
ij , r, r

∗〉/(x◦ = x•, r2 = 1) containing Ĩ
G̃

=
ι(I

G̃
)/(x◦ = x•, r2 = 1). In other words, the canonical Z2-ungluing is determined by

relations of the form f (xij r, rxij ) with f ∈ I
G̃

⊂ C〈xij , x
∗
ij 〉.

Proof Adopting the notation introduced above, we need to prove that IG ∩ Ã = Ĩ
G̃
. We

prove that

IG = Ĩ
G̃

+ Ĩ
G̃
r = span{f, f r | f ∈ Ĩ

G̃
}.

Then it will be clear that IG ∩ Ã = (Ĩ
G̃

+ Ĩ
G̃
r) ∩ Ã = Ĩ

G̃
since Ĩ

G̃
⊂ Ã, so Ĩ

G̃
r ∩ Ã = ∅.

To prove the equality, it is enough to show that the right-hand side is an ideal since then
it must be the smallest one containing Ĩ

G̃
, which is exactly IG. So, denote the right-hand

side by I . By Proposition 4.32, G being invariant with respect to the colour inversion means
that IG is invariant with respect to interchanging x◦

ij ↔ x•
ij . Applying ιA, we get that Ĩ

G̃
is

invariant with respect to xij r ↔ rxij , so Ĩ
G̃
is invariant with respect to conjugation by r , that

is, x �→ rxr . We use that to prove that I is an ideal. The subspace I is obviously invariant
under right multiplication by r . For the left multiplication, we can write rx = (rxr)r . For
multiplication by xij , we can write xxij = (xxij r)r and xij x = r((xij r)

•x).

Proposition 5.12 Consider G ⊂ O+(F )∗ Ẑ2 and denote by k its degree of reflection. Then
exactly one of the following situations occurs.

(1) If k = 1, then C(G̃) = C(G) and hence G̃ � G.
(2) If k = 2, then C(G) is Z2-graded and C(G̃) is its even part.
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Proof Since G is orthogonal, its degree of reflection must be either one or two by Propo-
sition 4.12. First, let us assume that k = 1. To show that C(G̃) = C(G), it is enough to
prove that r ∈ C(G̃). The assumption k = 1 means that there is a vector ξ ∈ Mor(1, u⊗k),
‖ξ‖ = 1 for some k odd, so we have ξ∗u⊗kξ = 1 in C(G). Consequently, r = ξ∗u⊗kξr

holds in C(G), and, since it is an even polynomial, it must be an element of C(G̃) (see
Remark 5.9).

If the degree of reflection equals two, then by Proposition 4.11 the Z2-grading of A

passes to O(G) and hence also C(G). As mentioned in Remark 5.9, O(G̃) consists of even
polynomials in the generators vij and r and hence is the even part of O(G).

The following theorem provides a non-easy counterpart of Theorem [15, Theorem 4.10].

Theorem 5.13 There is a one-to-one correspondence between

(1) quantum groups G ⊂ O+(F ) ∗ Ẑ2 with degree of reflection two and
(2) quantum groups G̃ ⊂ U+(F ) that are invariant with respect to the colour inversion.

This correspondence is provided by gluing and canonical Z2-ungluing.

Proof Almost everything follows from Proposition 5.10. The only remaining thing to prove
is that, givenG ⊂ O+(F )∗Ẑ2 and G̃ its glued version, then G̃ is invariant with respect to the
colour inversion andG is its canonical Z2-ungluing. The first assertion follows from the fact
that IG and hence also Ĩ := IG ∩ Ã = Ĩ

G̃
is invariant with respect to conjugation by r . For

the second assertion, we need to prove that IG = Ĩ + Ĩ r (see the proof of Proposition 5.10).
Since G has degree of reflection two, we have that IG is Z2-graded and hence it decomposes
into an even and odd part, which is precisely Ĩ and Ĩ r .

In [15], we introduced the Z2-extensions H ×2k Ẑ2 exactly to be the canonical Z2-
ungluings of H ×̃ Ẑ2k . In the following, we recall the definition of those products and
provide a direct proof for the fact that H ×2k Ẑ2 are canonical Z2-ungluings of H ×̃ Ẑ2k for
arbitrary H ⊂ O+(F ).

Definition 5.14 ([15]) Let G and H be compact matrix quantum groups and denote by
u and v their respective fundamental representations. We define the following quantum
subgroups of G ∗ H . The product G ×× H is defined by taking the quotient of C(G ∗ H) by
the relations

ab∗x = xab∗, a∗bx = xa∗b (5.1)

the product G ×× H is defined by the relations

ax∗y = x∗ya, axy∗ = xy∗a (5.2)

the product G ×0 H by the combination of the both pairs of relations and, finally, given
k ∈ N, the product G ×2k H is defined by the relations

a1x1 · · · akxk = x1a1 · · · xkak, (5.3)

where a, b, a1, . . . , ak ∈ {uij } and x, y, x1, . . . , xk ∈ {vij }. (Equivalently, we can assume
a, b, a1, . . . , ak ∈ span{uij } and x, y, x1, . . . , xk ∈ span{vij }.)

Proposition 5.15 Consider H ⊂ O+(F ) with degree of reflection two, k ∈ N0. Then the
canonical Z2-ungluing of H ×̃ Ẑ2k is H ×2k Ẑ2.
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Proof From Proposition 4.34, we can express H ×̃ Ẑ2k as a quantum subgroup of H ∗̃ Ẑ =
H ∗̃Ẑ2 given by certain relations. Denoting by ṽ the fundamental representation of H ×̃Ẑ2k ,
we just have to “unglue” the relations substituting ṽij by vij r . For H ×̃ Ẑ, we get

vij vkl = rvij vij r,

which is obviously equivalent to vij vklr = rvij vkl – the defining relation for H ×× Ẑ2 =
H ×0 Ẑ2. For H ×̃ Ẑ2k , k > 0, we get

vi1j1zvi2j2z · · · vikjk
z = zvi1j1zvi2j2 · · · zvikjk

,

which is exactly the defining relation for H ×2k Ẑ2.

5.3 Irreducibles and Coamenability for Ungluings andZ2-extensions

In this section, we will study properties of the gluing procedure and canonical Z2-ungluing.
In many cases, we can view the Z2-extensions H ×2k Ẑ2 as a motivating example. It remains
an open question, whether one can generalize the statements for arbitrary products H1 ×2k
H2.

For this section, we will assume that G ⊂ O+
N ∗ Ẑ2 has degree of reflection two.

For quantum groups G and H , the property O(H) ⊂ O(G) can be understood either
as H being a quotient of G or the discrete dual Ĥ being a quantum subgroup of Ĝ. In that
case, we can study the homogeneous space Ĝ/Ĥ by defining

l∞(Ĝ/Ĥ ) := {x ∈ l∞(Ĝ) | x(ab) = x(b) for all a ∈ O(H) and b ∈ O(G)},
where l∞(Ĝ) is the space of all bounded functionals on O(G).

Proposition 5.16 Consider G ⊂ O+
N ∗Z2 with degree of reflection two. Then Ĝ/

ˆ̃
G consists

of two points. More precisely,

l∞(Ĝ/
ˆ̃
G) = {x ∈ l∞(Ĝ) constant on the Z2-homogeneous parts of O(G)} � C

2.

Proof Consider x ∈ l∞(Ĝ). By Proposition 5.12, O(G) is Z2-graded. Putting b := 1 in the
equality x(ab) = x(b), we get that x is constant on the even part. Putting b := r , we get
that x is constant on the odd part.

Recall that a compact quantum group G is called coamenable if the so-called Haar state
is faithful on the universal C*-algebra C(G).

Proposition 5.17 Consider G ⊂ O+
N ∗ Ẑ2 and G̃ ⊂ U+

N its glued version. Then G is
coamenable if and only if G̃ is coamenable.

Proof It is easy to see that the Haar state on G̃ is given just by restriction of the Haar state
h on G. We also have that all positive elements of C(G) are contained in C(G̃). Hence, the
faithfulness of h on C(G) is equivalent to the faithfulness on C(G̃).

Note that it is well known that the coamenability is preserved under tensor product of
quantum groups, but it is not preserved under the (dual) free product. Hence, it is interesting
to ask, whether it is preserved under the new interpolating products from Definition 5.14.

Let us also recall another well known fact that can be seen directly from the definition
of coamenability: Let G be a coamenable compact quantum group. Then every its quotient,
that is, every quantum group H with C(H) ⊂ C(G) is coamenable.



D. Gromada

Proposition 5.18 Consider H ⊂ O+
N , k ∈ N0. Then H ×2k Ẑ2 is co-amenable if and only

if H is co-amenable.

Proof The left-right implication follows from the fact that H is a quotient of H ×2k Ẑ2.
Now, let us prove the right-left implication. If the degree of reflection of H is one, then by
[15, Theorem 5.5], the new product actually coincides with the tensor product H ×2k Ẑ2 =
H × Ẑ2, so it indeed preserves the coamenability.

Now suppose H has degree of reflection two. If H is coamenable, then H × Ẑ2k must be
coamenable. Consequently, its glued version H ×̃ Ẑ2k is coamenable since it is a quotient
quantum group. Finally, H ×2k Ẑ2 is coamenable by Proposition 5.17.

Now, we are going to look on the irreducible representations of the ungluings.

Proposition 5.19 ConsiderG ⊂ O+(F )∗Ẑ2 with degree of reflection two and fundamental
representation v⊕r . Let G̃ ⊂ U+

N be its glued version. Then the irreducibles of G are given by

{uα, uαr | α ∈ Irr G̃}.
Proof First, we prove that all the matrices are indeed representations of G. Surely all uα

are representations. The r is also a representation. Hence uαr = uα ⊗ r must also be
representations.

Secondly, we prove that the representations are mutually inequivalent. The representa-
tions uα are mutually inequivalent by definition. From this, it follows that the representa-
tions uαr are mutually inequivalent. Since G has degree of reflection two, we have that
O(G) is graded with O(G̃) being its even part. So, the entries of uα are even, whereas the
entries of uαr are odd, so they cannot be equivalent.

Finally, we need to prove that those are all the representations. This can be proven using
the fact that entries of irreducible representations form a basis of the polynomial algebra. If
we prove that the entries of the representations span the whole O(G), we are sure that we
have all the irreducibles. This is indeed true:

span{uα
ij , u

α
ij r | α ∈ Irr G̃} = O(G̃) + O(G̃) r = O(G).

Proposition 5.20 Consider H ⊂ O+(F ) with degree of reflection two, k ∈ N0. Then the
complete set of mutually inequivalent irreducible representations of H ×2k Ẑ2 is given by

uα,i,η = uαsirη, α ∈ IrrH, i ∈ {0, . . . , k − 1}, η ∈ {0, 1}, (5.4)

where
s =

∑
l

vilrv
∗
ilr =

∑
k

v∗
kj rvkj r for any i, j = 1, . . . , N . (5.5)

Here v ⊕ r denotes the fundamental representation of H ×2k Ẑ2.

Proof Denote ṽ := vr the fundamental representation of the glued version of H ×2k Ẑ2,
which can be identified with H ×̃ Ẑ2k by Proposition 5.15. Thus, we can also write ṽij =
vij z ∈ C(H ×̃ Ẑ2k) ⊂ C(H × Ẑ2k). We can also express

s =
∑

l

vilrv
∗
ilr = [vrvr∗]ii = [vr(F−1vrF )t ]ii

= [ṽ(F−1ṽF )t ]ii = [v(F−1vF )t z2]ii = [vv∗]iiz2 = z2 (5.6)

and similarly for the second expression in Eq. 5.5. In particular, we have that s = z2 is
a representation of H ×̃ Ẑ2k and hence also of H ×2k Z2.



Gluing Compact Matrix Quantum Groups

According to Proposition 4.23, we know that irreducibles of H ×̃ Ẑ2k are of the form
uα,i := uαz2i+dα , α ∈ IrrH , i = 0, . . . , k −1 and dα ∈ {0, 1} is the degree of α. According
to Proposition 5.19, we have that the set of irreducibles of H ×2k Ẑ2k is uα,irη. Now the
only point is to express these in terms of uα , s, and r .

Suppose first that dα = 0. In this case, the situation is simple since we can use the above
mentioned fact that z2 = s to derive

uα,irη = uαz2i rη = uαsirη.

In the situation dα = 1, we need to prove that uαz = uαr . The left hand side is a represen-
tation ofH ×̃Ẑ2k – the glued version ofH ×Ẑ2k – and the right-hand side is a representation
of the glued version of H ×2k Ẑ2. As we already mentioned, these quantum groups coin-
cide, so the equality makes sense. (Note that it is not possible to show that z = r . Not only
that this is not true, the equality does not even make sense since s and r are not elements of
a common algebra.) Since uαz is a representation of H ×̃ Ẑ2k , we have, in particular, that
the entries of the representation uα

abz are elements of O(H ×̃ Ẑ2k). That is, there are poly-
nomials f α

ab ∈ C〈x◦
ij , x

•
ij 〉 of degree one such that f α

ab(ṽ
◦
ij , ṽ

•
ij ) = f α

ab(vij z, z
∗vij ) = uα

abz.
Since vij commute with z, we can arrange the “◦•-pattern” of the monomials in f α

ab in an
arbitrary way if we keep the property that they have degree one. In particular, we can say
that every monomials of f α

ab have an alternating colour pattern, that is, they are of the form
x◦
i1j1

x•
i2j2

· · · x◦
injn

. Then we can express

uα
abz = f α

ab(vij z, z
∗vij ) = f α

ab(ṽ
◦
ij , ṽ

•
ij ) = f α

ab(vij r, rvij ) = uα
abr .

This is exactly what we wanted to prove. Now we have

uα,irη = uαzzirη = uαrsirη

To obtain the form in the statement, note just that rsr = s∗ = sk−1.
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