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A B S T R A C T

Machine learning models are being increasingly adopted in a variety of real-world
scenarios. However, the privacy and confidentiality implications introduced in these
scenarios are not well understood. Towards better understanding such implications,
we focus on scenarios involving interactions between numerous parties prior to,
during, and after training relevant models. Central to these interactions is sharing
information for a purpose e.g., contributing data samples towards a dataset, returning
predictions via an API. This thesis takes a step toward understanding and controlling
leakage of private information during such interactions.

In the first part of the thesis we investigate leakage of private information in visual
data and specifically, photos representative of content shared on social networks.
There is a long line of work to tackle leakage of personally identifiable information
in social photos, especially using face- and body-level visual cues. However, we
argue this presents only a narrow perspective as images reveal a wide spectrum
of multimodal private information (e.g., disabilities, name-tags). Consequently, we
work towards a Visual Privacy Advisor that aims to holistically identify and mitigate
private risks when sharing social photos.

In the second part, we address leakage during training of ML models. We observe
learning algorithms are being increasingly used to train models on rich decentralized
datasets e.g., personal data on numerous mobile devices. In such cases, information
in the form of high-dimensional model parameter updates are anonymously aggre-
gated from participating individuals. However, we find that the updates encode
sufficient identifiable information and allows them to be linked back to participat-
ing individuals. We additionally propose methods to mitigate this leakage while
maintaining high utility of the updates.

In the third part, we discuss leakage of confidential information during inference
time of black-box models. In particular, we find models lend themselves to model
functionality stealing attacks: an adversary can interact with the black-box model
towards creating a replica ‘knock-off’ model that exhibits similar test-set perfor-
mances. As such attacks pose a severe threat to the intellectual property of the model
owner, we also work towards effective defenses. Our defense strategy by introducing
bounded and controlled perturbations to predictions can significantly amplify model
stealing attackers’ error rates.

In summary, this thesis advances understanding of privacy leakage when informa-
tion is shared in raw visual forms, during training of models, and at inference time
when deployed as black-boxes. In each of the cases, we further propose techniques
to mitigate leakage of information to enable wide-spread adoption of techniques in
real-world scenarios.
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Z U S A M M E N FA S S U N G

Modelle für maschinelles Lernen werden zunehmend in einer Vielzahl realer Szenari-
en eingesetzt. Die in diesen Szenarien vorgestellten Auswirkungen auf Datenschutz
und Vertraulichkeit wurden jedoch nicht vollständig untersucht. Um solche Implika-
tionen besser zu verstehen, konzentrieren wir uns auf Szenarien, die Interaktionen
zwischen mehreren Parteien vor, während und nach dem Training relevanter Model-
le beinhalten. Das Teilen von Informationen für einen Zweck, z. B. das Einbringen
von Datenproben in einen Datensatz oder die Rückgabe von Vorhersagen über eine
API, ist zentral für diese Interaktionen. Diese Arbeit verhilft zu einem besseren
Verständnis und zur Kontrolle des Verlusts privater Informationen während solcher
Interaktionen.

Im ersten Teil dieser Arbeit untersuchen wir den Verlust privater Informationen bei
visuellen Daten und insbesondere bei Fotos, die für Inhalte repräsentativ sind, die in
sozialen Netzwerken geteilt werden. Es gibt eine lange Reihe von Arbeiten, die das
Problem des Verlustes persönlich identifizierbarer Informationen in sozialen Fotos
angehen, insbesondere mithilfe visueller Hinweise auf Gesichts- und Körperebene.
Wir argumentieren jedoch, dass dies nur eine enge Perspektive darstellt, da Bilder
ein breites Spektrum multimodaler privater Informationen (z. B. Behinderungen,
Namensschilder) offenbaren. Aus diesem Grund arbeiten wir auf einen Visual
Privacy Advisor hin, der darauf abzielt, private Risiken beim Teilen sozialer Fotos
ganzheitlich zu identifizieren und zu minimieren.

Im zweiten Teil befassen wir uns mit Datenverlusten während des Trainings
von ML-Modellen. Wir beobachten, dass zunehmend Lernalgorithmen verwendet
werden, um Modelle auf umfangreichen dezentralen Datensätzen zu trainieren,
z. B. persönlichen Daten auf zahlreichen Mobilgeräten. In solchen Fällen werden
Informationen von teilnehmenden Personen in Form von hochdimensionalen Mo-
dellparameteraktualisierungen anonym verbunden. Wir stellen jedoch fest, dass
die Aktualisierungen ausreichend identifizierbare Informationen codieren und es
ermöglichen, sie mit teilnehmenden Personen zu verknüpfen. Wir schlagen zudem
Methoden vor, um diesen Datenverlust zu verringern und gleichzeitig die hohe
Nützlichkeit der Aktualisierungen zu erhalten.

Im dritten Teil diskutieren wir den Verlust vertraulicher Informationen während
der Inferenzzeit von Black-Box-Modellen. Insbesondere finden wir, dass sich Modelle
für die Entwicklung von Angriffen, die auf Funktionalitätsdiebstahl abzielen, eignen:
Ein Gegner kann mit dem Black-Box-Modell interagieren, um ein Replikat-Knock-Off-
Modell zu erstellen, das ähnliche Test-Set-Leistungen aufweist. Da solche Angriffe
eine ernsthafte Bedrohung für das geistige Eigentum des Modellbesitzers darstellen,
arbeiten wir auch an einer wirksamen Verteidigung. Unsere Verteidigungsstrategie
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durch die Einführung begrenzter und kontrollierter Störungen in Vorhersagen kann
die Fehlerraten von Modelldiebstahlangriffen erheblich verbessern.

Zusammenfassend lässt sich sagen, dass diese Arbeit das Verständnis von Daten-
schutzverlusten beim Informationsaustausch verbessert, sei es bei rohen visuellen
Formen, während des Trainings von Modellen oder während der Inferenzzeit von
Black-Box-Modellen. In jedem Fall schlagen wir ferner Techniken zur Verringerung
des Informationsverlusts vor, um eine weit verbreitete Anwendung von Techniken
in realen Szenarien zu ermöglichen.
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1
I N T R O D U C T I O N

There is an increasing push towards adopting machine learning systems to
perform a range of real-world tasks e.g., agents capable of sensing, under-
standing, and interacting with the world. A standard notion to determine

whether an ML system is capable of performing these tasks is by evaluating its
generalization error i.e., how accurate the model is on previously unseen test data.
Can a system be confidently deployed into the real-world based solely on low gener-
alization error? We argue that in spite of low error, many open questions remain that
hinders widespread adoption of ML systems: What is the predictive behaviour of the
model on out-of-distribution examples? What is the rationale that led to a particular
prediction? Can a malicious agent infer sensitive information by interacting with the
system? It is crucial to work towards recognizing such challenges not captured by
generalization errors, so as to enable trustworthy deployment of machine learning
approaches in the real-world.

The thesis aims to improve understanding of trustworthiness of machine learning
systems and in particular, their security, privacy, and confidentiality implications.
These implications naturally arise since systems are rarely siloed, but rather involve
complex interactions between various parties, from initial stages of gathering data to
eventually deploying the model for making predictions. To motivate the interplay
between parties, consider an internet service that uses machine learning techniques
to manage (e.g., image search, face tagging) private photo collections of its users.
Here, the interactions take the form of raw data (when users share tagged photos to
the service) and predictions (when the service accurately suggests face tags). The
primary focus of the thesis is scrutinizing the information exchange that occurs
during such interactions at various stages of an ML system.

It is crucial to understand privacy and security implications surrounding machine
learning techniques. Considering the example of the ML-based photo management
service from before, a default assumption is a bi-directional trust between the service
and its users. From the service’s side, that they do not misuse the user data beyond
what is required to provide meaningful predictions. In parallel, from the users’ side,
that they do not share malicious or tampered data to negatively influence the training
of the model. Given the severely negative consequences (e.g., privacy violations) that
entail when parties work outside the trust assumption, it is critical to preemptively
identify risks and develop techniques to mitigate such risks.

In the specific case of information sharing, it is crucial that the information shared
fulfills a particular objective (e.g., only making predictions) and does not leak any
unnecessary private nor confidential information. This thesis takes a closer look and
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Data Train model Inference

Data/model
owner Accessible by owner

Accessible by benign
and malicious parties

Personal photos Training artifacts Black-box predictionsOwner shares:

This thesis:
 Analyze leakage of private and confidential information in shared data

Part I Part II Part III

Figure 1.1: Overview of the three research directions investigated in this thesis.

finds that this is not entirely true. As a result, the goal of the thesis is to identify and
prevent sources of leakage. To highlight this, the thesis investigates various parts of
the pipeline. In Part I, we identify that raw visual data – most notably visual scenes
resembling photos shared on social networks – reveals a wide spectrum of private
information. Towards the goal of controlling this information we propose methods
to identify and further obfuscate the corresponding pixels. In Part II, we focus on
the training – for instance federated learning – where parameter updates are shared
by participating individuals. We find that the updates reveal identity information
and further propose methods to control this information. In Part III, our focus is the
owner returning inference-time predictions, such as via black-box image prediction
API. We observe that an API can be exploited to imitate the functionality and further
propose ways to control it.

1.1 analyzing information leakage in machine learning

To provided a common basis for the research directions in the thesis, we consider a
framework as shown in Figure 1.1. In this framework, we first consider an agent –
the ‘owner’ – in possession of private and confidential data D. The owner employs
a typical machine learning pipeline: using data D, a model fw is trained and later
used to return predictions at inference time.

Within this framework, we investigate the double-edged sword of sharing infor-
mation relating to the data D or the model fw. On the one hand, sharing certain
pieces of information provides rewards. For instance, social (when sharing personal
photos) or financial (when monetizing predictions) rewards. On the other hand, the
shared information can also be exploited by malicious parties to achieve malicious
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objectives such as recovering owner’s personal details or confidential aspects of the
owner’s model.

In the following sections, we discuss the three research directions explored in the
thesis. Each direction investigates on a specific source of leakage: personal photos
(Part I), training artifacts (Part II), and predictions (Part III). We further highlight
challenges when addressing the leakages and additionally place our contributions in
the context of related literature.

1.1.1 Analyzing Leakage in Visual Data

One particular source that potentially leaks sensitive information is the raw data.
Our primary focus is raw data comprising of visual scenes – representative of photos
shared on social media – which captures complex relations between individuals,
objects, and backgrounds from many viewpoints. Such scenes contrast other forms of
visual data used in a privacy-context, such as frontal face images (single subject, good
lighting) and surveillance footage (fixed viewpoint, low resolution). Understanding
and controlling leakage of private information in visual data is particularly crucial
in light of the massive amount of photos captured and disseminated on the internet
everyday.

There is a long line of work that addresses privacy leaks in images. In the computer
vision community, the notion of privacy in images is highly intertwined with identi-
fiability of individuals. Studies indicate a variety of cues can be used to re-identify
individuals such as facial features (Turk and Pentland, 1991; Parkhi et al., 2015),
body parts (Bourdev and Malik, 2009; Oh et al., 2017), and clothing (Gallagher and
Chen, 2008). However, apart from person identification cues, investigating comple-
mentary pieces of private information in images is limited. Some works have taken
a promising first step by identifying that social relationships (Sun et al., 2017b), age
(Liu et al., 2015), and gender (Wang et al., 2019) can also be inferred from images.
However, there is scant research on identifying and controlling a wide spectrum of
private information revealed in visual scenes (e.g., political opinions, occupation).

In parallel to studies that highlight privacy-sensitive information can be inferred
in challenging scenarios, there is a good amount of literature dedicated to preventing
such inferences. The primary focus of literature is manipulating images to prevent
automatic person recognition. Recent works explore reducing effectiveness of recog-
nition techniques using perceptible (Wilber et al., 2016) and imperceptible (Szegedy
et al., 2013; Oh et al., 2017) image manipulations. Specific to manipulating images
to prevent automatic person recognition, Wilber et al. (2016) explore effectiveness
of various image manipulation strategies (e.g., adding noise, swirling). However,
naturalness of images (the ‘utility’) is an important factor for sharing (obfuscated)
images on social media. To obfuscate the image without significantly degrading its
naturalness, recent works have explored leveraging adversarial perturbations (Oh
et al., 2017) and advances in generative modelling (Sun et al., 2018a) to in-paint
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(a) Some examples of personal photos shared on the internet (on Flickr in this case). Such photos
often contain a broad range of information; shown here using the privacy attribute taxonomy
defined in Chapter 3. We additionally propose an approach to identify such attributes and
evaluate privacy risks in visual content.
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(b) In Chapter 4, we propose to further identify and redact privacy-sensitive regions in images,
while preserving the utility of the image.

Figure 1.2: Analyzing leakage in visual data.

heads. While these approaches are promising, it is unclear whether they protect
privacy against stronger adversaries (e.g., humans) and beyond facially-identifiable
features (e.g., fingerprints).

Although literature to identify and control leakage of person-recognition features
(especially faces) in visual scenes is abundant, we argue that the problem requires
a broader perspective. Consider examples of publicly-available images as shown
in Figure 1.2a. We enumerate some challenges in estimating privacy leakage in
these examples: (i) Personally Identifiable Information (PII) in visual content: While
notions of PII is well-established for explicit data (e.g., social user profile, health
records), it is unclear what makes for image-specific PII, which we refer to as
visual privacy attributes. Furthermore, only a narrow notion of privacy attributes
has received attention in prior work e.g., facial identification features; (ii) Visual
Privacy Datasets: Moreover, while datasets are abundant to enable recognition of
specific privacy attributes (e.g., person identity, license plates), none capture all
of them simultaneously; (iii) Multimodality of Information: Furthermore, identifying
many attributes (e.g., student IDs) in images additionally requires reasoning over
multi-modal content; (iv) Utility: Controlling privacy leakage in images, such as by
obfuscation of selected content, comes at the price of impacting reducing the original
utility. As a result, finding an optimal trade-off between privacy and utility is crucial
to enable privacy-preserving photo sharing.
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...? ? ? ? ? ?

Server

Anonymous clients with private data

Figure 1.3: Analyzing leakage in learning algorithms. Some learning algorithms, such as
Federated Averaging (McMahan et al., 2017), require anonymous clients (e.g.,
mobile devices) to intermittently share model updates wt

i computed locally on
private data. In Chapter 5, we investigate extent to which the updates leak
user-identifiable information.

Contributions of the thesis. In Part I of the thesis we attempt to take a holistic
view towards understanding and controlling privacy leakage in visual data by ad-
dressing the above challenges. We propose the first taxonomy of private attributes
specific to visual content. Using these attributes, we build reasonably-sized image
datasets of publicly-shared images annotated with image-level and pixel-level an-
notations. We leverage our datasets to work towards a ‘Visual Privacy Advisor’
(Chapter 3), which given an image, estimates the privacy risk in images taking
into account the users’ privacy preferences. In our follow-up work (Chapter 4), we
extend our approach to additionally identify privacy-sensitive regions in images for
obfuscation in a utility-constrained setting. Our work on Visual Privacy presents
the first framework towards identifying and controlling leakage from a broad range
sources in visual content.

1.1.2 Analyzing Leakage during Learning

Machine learning systems involve ingesting (potentially sensitive) raw training data
and in many scenarios, also exposing certain artifacts when training the model.
Identifying leakage from such artifacts (referred to as the ‘attack surface’) is crucial
as it demonstrates vulnerabilities of ML systems from a privacy perspective. Studies
indicate information related to training data can be recovered from artifacts such as
activations (Yonetani et al., 2017), backpropagated gradients (Milli et al., 2018), and
parameters (Nasr et al., 2019; Melis et al., 2019; Zhang et al., 2020). We specifically
focus on information in the parameter space shared by the owner.

Federated Learning (McMahan et al., 2017) is a prototypical case where training
artifacts are revealed during the training process. The main idea behind FL is to
provide a framework to enable multiple data owners (e.g., hospitals) to collectively
train a model using their private data (e.g., patient data) in a privacy-preserving
manner. FL works on the principles of data minimization. Instead of the raw private
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data, the owners contribute only the essence of the data relevant for training the
model – the model parameter updates – as shown in Figure 1.3. Over multiple
rounds, the server aggregates the parameter updates from a random anonymized
subset of owners to improve a global model. The global model which is effectively
learnt from the union of owners’ private datasets is subsequently shared back to the
owners. Consequently, as only the model parameter updates (the training artifact)
are shared to untrusted parties, FL helps ensure confidentiality of the raw private
data.

As model parameter updates in the presence of an untrusted server forms the
primary channel of information sharing between data owners, it has received signifi-
cant attention recently. In the specific case of modeling adversaries with access to the
parameter updates, literature has explored adversarial objectives to maliciously ma-
nipulate the update, or alternatively infer private attributes. Manipulation objectives
model clients as adversarial parties who wish to degrade the overall performance of
the model (Bhagoji et al., 2019) or planting backdoors (Bagdasaryan et al., 2020; Xie
et al., 2019). In contrast, extraction objectives involve an honest-but-curious server as
the adversarial party who wishes to recover sensitive information from the model
updates. Towards extraction goals, literature has investigated inferring membership
of certain examples (Nasr et al., 2019), orthogonal sensitive attributes (Melis et al.,
2019), and reconstructions under certain assumptions (Hitaj et al., 2017; Zhu et al.,
2019). While there is some progress in understanding information leakage from
model updates in FL scenarios, the full extent of leakage is still unclear.

Contributions of the thesis. Our work (Orekondy et al., 2020a) presented in Chap-
ter 5 contributes to better understanding leakage in FL scenarios by investigating
complementary extraction objectives. Specifically, we study deanonymization attacks,
where a malicious server attempts to infer the identity from a model parameter up-
date. Leakage of identities is problematic as it undermines existing de-identification
mechanisms (McMahan et al., 2017; Hard et al., 2018). Such mechanisms help ensure
a model parameter update is stripped of identifiable metadata before being made
accessible to untrusted parties. Furthermore, this form of leakage adds to the risk of
associating identities with other sensitive inferences (Melis et al., 2019) (e.g., gender).
As we observe deanonymization risks is an artifact of inherent biases of individuals
when generating data, we also study methods to mitigate these risks by adding
adversarial biases to data.

1.1.3 Analyzing Leakage in Black-box Models

In the previous sections, we discussed information leakage prior to training a model
(i.e., on raw data) and during the training (i.e., via intermediate parameters). Now
we analyze information in a scenario after a model is trained i.e., at inference
time. This scenario is becoming increasingly common as ML techniques are being
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Figure 1.4: Analyzing leakage in black-box models. In Part III, we investigate leakage via
black-box (left side of image) predictions. Specifically, we study how an adversary
(right side of image) can potentially reverse-engineer certain confidential aspects
of the model, such as its functionality.

deployed in the real-world such as on the internet (via prediction APIs), consumer
electronics (e.g., smartphones), and healthcare products. Common to these scenarios
is the owner obtaining a model by investing a large amount of effort, ranging from
collecting and annotating a dataset to engineering a model’s network architecture.
The deployed model is typically accessed as a black-box to protect the intellectual
property of these efforts. Given an input, the black-box interface to an ML model
solely reveals the corresponding predictions while concealing all other information of
the model (i.e., hyperparameters, training data). Concealing information outside of
required predictions is crucial for the model owner to protect privacy of participating
individuals in the training dataset and confidentiality of the intellectual property of
the trained model.

However, recent studies indicate information about the training data, gradients, or
model can be reverse-engineered solely using a black-box interface to trained models.
Recovering each of these pieces of information often serve a different purpose.
Approaches recovering information on the training data expose the privacy leakage
such as by recovering membership of datapoints (Shokri et al., 2017; Salem et al.,
2019) or attribute information (Fredrikson et al., 2015; Song and Shmatikov, 2020).
In parallel, approaches (Chen et al., 2017; Guo et al., 2019) to recover gradients of
predictions with respect to inputs threaten safety of the system, as the gradients are
leveraged to craft adversarial examples. Complementing these are approaches (Lowd
and Meek, 2005a) that extract information about the model internals (e.g., parameters)
that compromise the confidentiality of the system.

For the rest of the section, we focus primarily on threats that exploit leakage of a
confidential model’s internal information by exploiting black-box access. Specifically,
we focus on model stealing (or extraction) attacks (Lowd and Meek, 2005a; Tramèr
et al., 2016), where an adversary exploits the black-box access to create a replica of the
model. When performed sample-efficiently, such attacks raise severe concerns as the
owner’s model can be cloned bypassing the efforts (e.g., collecting and annotating the
dataset). Furthermore, the stolen model using these approaches can also be leveraged
to perform subsequent attacks, such as for crafting adversarial examples (Papernot
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et al., 2017b) against the black-box model. While these approaches show remarkable
performances when stealing simpler models (e.g., shallow MLPs, decision trees)
(Tramèr et al., 2016), it was unclear whether equally effective attacks are possible
on larger models (e.g., ResNet) without making underlying assumptions of the
black-box model.

Contributions of the thesis. In Orekondy et al. (2019b) (Chapter 6), we demon-
strate attacks that are effective in stealing complex neural networks. Unlike much
of prior work, our approach does not require any knowledge of the model (e.g.,
model family) and training dataset (e.g., access to seed samples). Furthermore, we
leverage feedback during stealing within a reinforcement framework to improve
sample efficiency and additionally recover information of the training data.

In spite of recent advances in model stealing strategies since our publication
(Jagielski et al., 2020; Krishna et al., 2020; Carlini et al., 2020), work on defending
such attacks is limited. In Orekondy et al. (2020b) (Chapter 7) we additionally found
existing attacks ineffective in defending against stealing techniques. As a result, we
proposed the first defense that can withstand highly accurate model stealing attacks
for up to tens of thousands of queries and further amplifying the attackers’ error
rates.

1.2 outline

In this section, we outline the content of the thesis.

Chapter 2: Related Work We review literature that sets the foundation for the con-
tributions presented in the thesis. The discussion in this chapter is two-fold.
First, we present a broad overview of advances in machine learning, computer
vision, and certain aspects of trustworthy ML (e.g., safety, privacy) to help
frame the content in the following chapters. Second, we present detailed dis-
cussions on two specific problems in trustworthy ML that is closely related to
the thesis: privacy-preserving techniques and reverse-engineering ML models.

Part I: Leakage in Visual Data

In this part, we address privacy leakage in visual data. Our broad goal in this part is
to work towards a ‘Visual Privacy Advisor’ to identify and control a wide-spectrum
of private information revealed in visual content.

Chapter 3: Understanding and Predicting Privacy Risks in Images In this chapter,
we present our work which takes the first step towards understanding and
controlling privacy risks in visual content. Towards analyzing privacy leakage,
we propose a visual privacy dataset (VISPR), present user studies to understand
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the extent of privacy leakage, and develop approaches to identify privacy risks
in visual content.

The content of this chapter corresponds to the ICCV 2017 publication Towards
a Visual Privacy Advisor: Understanding and Predicting Privacy Risks in Images
(Orekondy et al., 2017). Tribhuvanesh Orekondy was the lead author of this
paper.

Chapter 4: Automatic Redaction of Private Information in Images In this chapter
we extend our formulation in Chapter 3 to detecting privacy risks on a pixel-
level. To enable pixel-level identification of privacy risks, we extend the VISPR
dataset by additionally annotating a subset of the images with pixel- and
instance-level annotations. We present approaches to identify and further
obfuscate a variety of private information stemming from multiple modalities.

The content of this chapter corresponds to the CVPR 2018 (spotlight) pub-
lication Connecting Pixels to Privacy and Utility: Automatic Redaction of Private
Information in Images (Orekondy et al., 2018). Tribhuvanesh Orekondy was the
lead author of this paper.

Part II: Leakage during Training

In this part, we move our focus from information in visual data to artifacts produced
during training an ML model.

Chapter 5: Understanding and Controlling Deanonymization in Federated Learning
In this chapter, we investigate privacy leakage arising from model iterates
shared by individuals in a federated learning (McMahan et al., 2017) setting.
Specifically, we identify that the de-identified model parameter updates inter-
mittently communicated by individuals also encode user-specific identifiable
information. To reduce the leakage, we present utility-preserving approaches
which alters the data-distribution of the user.

The content of this chapter corresponds to the work Gradient-Leaks: Under-
standing and Controlling Deanonymization in Federated Learning (Orekondy et al.,
2020a), which is currently under submission. A short-version of the work was
presented as an oral presentation at the International Workshop on Feder-
ated Learning for User Privacy and Data Confidentiality in conjunction with
NeurIPS 2019 (FL-NeurIPS’19). Tribhuvanesh Orekondy was the lead author of
this paper.

Part III: Leakage during Inference

In this part, we move our focus to leakage of information during black-box inferences
on a trained model. We specifically study leakage of functionality.
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Chapter 6: Stealing Functionality of Black-Box Models In this chapter, we investi-
gate whether the functionality complex CNNs can be ‘knocked-off’ or stolen
by making minimal assumptions. We study sample-efficient strategies to un-
derstand whether such an objective is possible.

The content of this chapter corresponds to the CVPR 2019 publication Knockoff
Nets: Stealing Functionality of Black-Box Models . Tribhuvanesh Orekondy was
the lead author of this paper.

Chapter 7: Towards Defenses Against DNN Model Stealing Attacks In this chap-
ter, we propose an approach to defend against model stealing attacks, such
as the one proposed in Chapter 6. Investigation in such approaches are cru-
cial given the asymmetry of performances between effective recent attacks
and largely ineffective defenses. To tackle the problem by presenting a utility-
constrained approach which introduces the first active defense by introducing
calibrated noise to degrade the attackers’ performance.

The content of this chapter corresponds to the ICLR 2020 publication Prediction
Poisoning: Towards Defenses Against DNN Model Stealing Attacks. Tribhuvanesh
Orekondy was the lead author of this paper.

Chapter 8: Conclusion In this chapter, we summarize the findings of the thesis.
In addition, we discuss future research problems and also present a broader
outlook towards the goal of trustworthy machine learning.



2
R E L AT E D W O R K

In this chapter, we recap literature in the interdisciplinary topic of machine learn-
ing, computer vision, privacy, and security. As recent advances in machine
learning and computer vision underpins all methods proposed in this thesis,

we first begin with a brief review of related approaches in Section 2.1. In Section 2.2,
we discuss trustworthy aspects entailing advances in ML, that enables wide-spread
adoption of such advances into real-world applications. Trustworthy aspects typi-
cally involve societal challenges e.g., explaining decisions to humans, ensuring the
technique is robust to malicious parties. We use Section 2.2 as a foundation for the
following two chapters, which in detail addresses two specific trustworthy aspects:
privacy of data and robustness against adversaries. In Section 2.3, we review privacy-
preserving techniques to minimize leakage of individual-specific private information
before the information is shared. This section helps frame our contributions in Part I
to control leakage of information in personal photos shared on social networks. In
the following Section 2.4, we discuss literature that highlights vulnerabilities of the
ML system by viewing it from an adversarial lens. We discuss recent advances that
exploits leakage to reverse-engineer specific private information of the model and
the owner’s training data. We build on top of these advances in Part II and Part III
and paint a more complete picture on reverse-engineering risks.

2.1 advances in machine learning

We begin the chapter by first discussing recent advances in machine learning tech-
niques, especially when applied to solving challenging problems particularly in
computer vision. Over the next sections in this chapter, we complement the literature
reviewed here with privacy and security aspects.

In Section 2.1.1, we discuss recent advances in deep neural networks to understand
visual scenes, such as associating objects in visual scenes to semantic categories. In
Part I of this thesis, we leverage and extend these methods to detect private content
in images. Alternatively, in Parts II and III, we view the trained models for visual
recognition through an adversarial lens.

Training ML models also present challenges in the form of resource-limitations
(e.g., data, computation, knowledge). In Section 2.1.2, we take a closer look at
literature surrounding learning in such environments. This is particularly relevant
in the thesis as we investigate methods for an adversary, who operates in resource
(and especially knowledge) limited settings.

11
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2.1.1 Object Recognition and Scene Understanding

A fundamental problem in image understanding is image classification: f : x 7→ y,
where x ∈ RC×H×W is an image and y ∈ Y is a semantic category (e.g., object type)
best describing the image. A large body of work exists which models an image clas-
sifier by first obtaining a robust image-level representation φ(x) ∈ RD and classifying
such representations fw(φ(x))). Approaches following this framework (Schneider-
man and Kanade, 1998; Lowe, 1999; Fergus et al., 2003; Dalal and Triggs, 2005) made
considerable preliminary progress towards the goal of image understanding.

A parallel line of work on convolutional neural networks (CNNs), dating back to
Fukushima and Miyake (1982) and LeCun et al. (1998), investigated jointly learning
representation and classification in an end-to-end manner. Instead of extracting a
set of hand-crafted features from images, CNNs instead learn spatially-invariant
features (via parameterized convolution kernels) in a data-driven manner. Initial
approaches which composed a sequence of such convolutions with non-linear acti-
vations demonstrated showed remarkable performances (LeCun et al., 1998). CNN-
based approaches are currently de facto for image classification as they consistently
demonstrate significant improvements (Krizhevsky et al., 2012; Simonyan and Zis-
serman, 2014; Szegedy et al., 2015; He et al., 2016a) over their counterparts. The
empirical gains of CNN-based approaches is accelerated by availability of larger
datasets (Deng et al., 2009; Krasin et al., 2017; Lin et al., 2014), higher compute power,
and an improved understanding on specific components of a CNN e.g., activation
functions (Krizhevsky and Hinton, 2009), initializations (Glorot and Bengio, 2010),
optimizers (Kingma and Ba, 2014) and regularization methods (Srivastava et al., 2014;
Ioffe and Szegedy, 2015).

CNN-based approaches have also proven effective on a variety of tasks closely
related to image classification: localizing objects via bounding box detections (Gir-
shick, 2015; Ren et al., 2015), pixel-level labelling (Long et al., 2015; Ronneberger
et al., 2015; He et al., 2017b). They key idea in these approaches is to use a pretrained
CNN – such as a Resnet (He et al., 2016a) in Mask-RCNN (He et al., 2017b) – as a
backbone in a network trained to predict location-specific information.

Apart from objects, visual scenes are also composed of text sequences and un-
derstanding them forms a crucial part in many applications. For instance, an agent
assisting a visually-impaired person spotting a store of a given name on the street.
Unlike optical character recognition (OCR) methods typically applied to documents,
methods to spot and understand text sequences in visual scenes need to be ro-
bust to unconventional deformations of text and complex backgrounds. Towards
understanding text sequences in visual scenes, recent approaches have explored
detecting texts (He et al., 2017a; Wu and Natarajan, 2017; Neumann and Matas, 2012),
recognizing the character sequence that compromises it (Sutton and McCallum, 2006;
Shi et al., 2016), and to also perform these steps in an end-to-end manner (Wang
et al., 2011; Li et al., 2017a; Luo et al., 2019; Zhan and Lu, 2019).
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The approaches presented in this thesis is underpinned by CNN techniques. We
leverage CNNs to identify private content leaked on an image-level (Chapter 3).
In Chapter 4, we propose an approach based on recent advances in semantic seg-
mentation to localize pixels that reveals private content (such as visual faces and
textual names) with an objective of obfuscating corresponding pixels. In Chapter 6

and Chapter 7, we expose standard CNN models, such as VGG-16 (Simonyan and
Zisserman, 2014) and ResNets (He et al., 2016a), via a black-box interface to study
adversarial attacks.

2.1.2 Learning with Limited Resources

Training machine learning models, and especially deep neural networks, is often
accompanied by challenges in resource-constrained settings such as compute (e.g.,
on lower-power devices) or knowledge limitations (e.g., availability of annotated
data). In this section, we specifically focus on the latter.

Limited labeled data. A popular type of knowledge limitation is in the flavour
of a scarcity of annotated data. In the extreme case to perform image classification,
either none (zero-shot) or a handful (few-shot) of images are available for classes
that will be encountered at test time. Techniques to overcome these challenges
leverage additional knowledge such as domain-specific knowledge (Xian et al., 2016;
Sung et al., 2018) (such as from wikipedia) or transferring knowledge from another
similar task. Common approaches to transfer knowledge involve re-purposing
good initializations from models pre-trained on closely-related annotated datasets
(Yosinski et al., 2014; Donahue et al., 2014), or ‘self-supervised’ tasks (Doersch et al.,
2015; Noroozi and Favaro, 2016) not requiring additional annotation. The latter is
closely related to semi-supervised learning techniques (Chapelle et al., 2006; Zhu
and Goldberg, 2009; Berthelot et al., 2019), for which the underlying scenario is
that in addition to a small set of labeled data, a large pool of unlabeled data is also
available. In such a scenario, one could also leverage advances in active learning
Cohn et al., 1996; Settles and Craven, 2008; Ebert et al., 2012; Beluch et al., 2018 to
find best candidate in the unlabeled pool for annotation. Such scenarios also reoccur
in adversarial machine learning literature, as we will see in Part III of the thesis.
Here, adversaries are typically data-limited and attempt to train models with access
to a small set of labeled data (Papernot et al., 2017b; Juuti et al., 2019), or by selecting
the best candidates from a large unlabeled pool (Chapter 6).

Limited model knowledge. Challenges in knowledge limitation, apart from data,
could also arise from a poor understanding or opaqueness of a complex function
that is being optimized. For instance, consider hyperparameter tuning of learning
algorithms as an optimization problem. Here, the optimization objective is a complex
functional mapping from the hyperparameters (the input) to the validation loss
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(the output), and hence introducing a challenge in computing the exact gradient
information. In the extreme case, the objective function could also be opaque i.e., a
‘black-box’ either due to its complexity (e.g., an operating system) or because it is
simply unknown. The latter, where the objective function is unknown, is a typical
situation in adversarial ML scenarios, as the attacker has limited knowledge on the
target model (the objective function). As computing gradients over the objective
function is often a requirement to perform certain attacks (e.g., introducing targeted
misclassification), recent approaches (Chen et al., 2017; Ilyas et al., 2018) rely on
derivative-free methods (Rios and Sahinidis, 2013) to approximately recover gradients
over the black-box objective. In this thesis, these forms of partial or no knowledge
on the model (the objective function) plays a key role. In Part III, where we study
model stealing as a two-player game, each player only has a black-box view of the
other player’s model.

2.2 trustworthy machine learning

Recent advances in ML models has led to remarkable performances on a variety of
tasks (Krizhevsky et al., 2012; Vaswani et al., 2017) when evaluated on challenging
held-out test sets. However, does this make the models ‘trustworthy’ enough to be
confidently deployed to real-world systems? Answering this question often intersects
with societal aspects: what is the explanation behind a model’s prediction? Does
the model exploit sensitive demographic attributes to make decisions? Could the
model leak sensitive information related to training data during deployment? In this
section, we discuss some topics that attempt to understand these questions.

Interpretability. A common criticism behind deep neural networks is that un-
like humans, the reasoning behind predictions are opaque. This is problematic in
situations where decisions are safety-critical e.g., should a patient be given cancer
treatment? A popular approach to explain decisions, in the specific case of image clas-
sification, is to recover attribution masks (Simonyan et al., 2013; Selvaraju et al., 2017)
for predictions. Alternatively, models can be trained to be interpretable-by-design by
complementing predictions with natural language explanations (Hendricks et al.,
2016). In contrast to explaining decisions, some approaches have also proposed
‘debugging’ pretrained black-box models using influence functions (Koh and Liang,
2017) and sensitivity analysis (Ribeiro et al., 2016).

Robustness to domain shifts. Design of ML algorithms is largely driven by an iid
assumption: examples encountered at test-time arises from the same distribution as
training. However, in most scenarios, it is extremely challenging to accurately capture
the variations of the true test-distribution. This leads to a covariate (or domain) shift
(Bickel et al., 2009) between the training data distribution and real-world (test)
distribution. This domain shift can arise due to sample bias (Torralba, Efros, et al.,
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2011) or through corruptions (Yin et al., 2019) during sensing. To tackle sample biases,
a long line of work exists to learn domain-invariant models (Saenko et al., 2010;
Tzeng et al., 2017). A special case is when the data is biased towards (or against)
certain demographics learning to unfair decisions (Dwork et al., 2012; Hardt et al.,
2016; Chouldechova, 2017). Domain shifts can also arise out of natural corruptions
(e.g., faulty camera sensor) and perturbations in test data (Yin et al., 2019; Hendrycks
et al., 2019). Corruptions could also be artificially introduced (Szegedy et al., 2013;
Goodfellow et al., 2014a) leading to security concerns; this is discussed in the next
paragraph.

Security. Deploying models in untrusted environments exposes them to be poten-
tially interacted with malicious agents. Work around security and ML investigate
whether such malicious agents can make the system misbehave and function outside
of intended specification. The agent, i.e., the ‘adversary’, can interact with the system,
by providing malicious inputs at inference-time or at training-time. In both cases, the
malicious inputs are provided to make the system behave to achieve the adversary’s
objective (e.g., classifying a spam email as not-spam). At inference-time, a common
goal investigated is to achieve (targeted) misclassification (Biggio et al., 2013; Szegedy
et al., 2013) on an input by introducing imperceptible perturbations to inputs. The
crafted inputs can also be used at training-time by introducing it in to the victim’s
training set so as to poison (Shafahi et al., 2018; Koh and Liang, 2017) the model. To
complement such attacks, many works also focus on how to defend models against
such malicious inputs such as by training robust models (Madry et al., 2018). We
refer the reader to Papernot et al. (2018a) for a more comprehensive overview.

Privacy and confidentiality. In the previous paragraph, we looked at an adversary
interacting with the model to make it misbehave. Now, we consider interacting
with the system to infer or ‘reverse-engineer’ information about the model or its
training data. We study this from two perspectives. First, a ‘privacy-by-design’ view,
where the data/models are sanitized by the owner before it is shared to benign and
malicious parties. Second, an ‘adversarial’ view, modeling an attacker who tries to
infer information after it is shared by the owner. We take an in-depth look into both
these aspects in Sections 2.3 and 2.4.

2.3 privacy-preserving machine learning

Having motivated the challenges to deploy ML systems in real-world environments,
we take a close look at privacy and confidentiality aspects in this and the next section
of the chapter. In this section, we consider the setting that the owner needs to share
data to potentially untrusted parties for legitimate purposes (e.g., social networking,
for collaboratively learning). We discuss techniques that enables such sharing, but
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by minimizing leakage of private information related to himself, or of individuals
corresponding to the data.

Privacy-enhancing techniques. A range of techniques in modern cryptography
exist to enable sharing data from one party to another, such that only these two
parties have access to the content. Techniques in secure multi party communication
(MPC) (Yao, 1986; Goldreich, 2009) extend this idea to when multiple parties (each
with their set of private information) need to compute a function (e.g., mean)
jointly over their inputs without revealing individual inputs (e.g., their salaries).
These ideas have also been extended to perform aggregation operations during
collaborative learning (Bonawitz et al., 2017). An alternative to MPC is studying
fully homomorphic encryption (FHE) techniques, such that common mathematical
operations can be performed on the underlying data, while the data remains in an
encrypted form (Yonetani et al., 2017). Both MPC and FHE enables computing an
aggregate function of a dataset, without revealing the individual datapoints.

Privacy on aggregate statistics. However, what if the aggregated data by itself
reveals private information? Differential Privacy (Dwork, 2006) provides a theoretical
framework to ensure the aggregate data conveys useful population-level statistics,
without revealing anything about individual datapoints (e.g., data of a particular
person). As a motivating example, when training a classifier on patient records, it
is crucial that the classifier is not overly sensitive to presence of a single individual
record (a single training example here). In the specific case of training ML models,
recent works (Abadi et al., 2016b; Papernot et al., 2018b) have explored variants
of SGD to enable training ML models to accompany training with such rigorous
guarantees. In such cases, the parameters of the model can be shared confidently
knowing that the leakage (as per the definition of DP) is bounded. DP techniques can
also be extended to the special case where a version of the sensitive dataset needs to
be sanitized, prior to being publicly shared. This is the problem of privacy-preserving
data publishing, where differentially private SGD can be used to train a generative
model (Harder et al., 2020; Zhang et al., 2018a; Yoon et al., 2019) to serve as a private
surrogate to the original data distribution.

Record-level privacy. DP techniques help ensure privacy of individual records
(e.g., patient records) when publicly-sharing aggregated population-level statistics
(e.g., mortality rates). However, many situations arise when an individual record
itself needs to be released. For instance, when the owner wants to share a tweet, or
a photograph on social media. In such cases, various non-explicit cues can encode
a person’s identifiable information such as clothing in images (Oh et al., 2016),
writing style in sentences (Shetty et al., 2018b), and statistical correlations in movie
preferences (Narayanan and Shmatikov, 2008). In the next section, we continue this
discussion specific to mitigating private information encoded in visual data.
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2.3.1 Visual Privacy

In this section we consider the problem of identifying and controlling private infor-
mation in images. We begin by enumerating some of the challenges to tackle this
problem. First, there is no established notion of what attributes in visual content
encode privacy-related information. For instance, as highlighted in Part I, images can
depict a wide range of private attributes of an individual e.g., political viewpoint,
sexual orientation, relationships. Second, even if these attributes are well-defined,
automatically identifying such attributes is a longstanding open-problem in image
understanding. Third, post-identification of relevant private attributes, it is unclear
how to mitigate leakage of this information which demonstrate local structural corre-
lations, as traditional strategies (e.g., adding random noise) are insufficient to hide
such attributes. Now, we discuss how existing research tackles these challenges.

Privacy goals. Our overarching research goal in Part I is studying techniques to
enable users manage their privacy expectations when sharing personal photos on
social media. We largely view privacy in the contextual integrity (CI) framework by
Nissenbaum (2009). The CI framework considers privacy in terms of the appropriate
information flow between a sender and a recipient within a specific context. A
privacy violation occurs when the information flow between the parties deviates
from the expected norm. Consider an example in our case where we study sharing
personal photos on social networks: Alice (the subject) wishes to share a photograph
of her new car to her friends (the recipients), but the additional visibility of the car’s
registration details in the photograph leaks unintended identifiable information and
thereby deviates from Alice’s privacy expectation. Consequently, our goal in Part I is
to work towards techniques that identifies visual content not adhering to the expected
privacy requirement of the individual. The content we study spans visual cues that
encode identifiable information (e.g., facial features, car registration number) and
additionally cues to manage impression (e.g., political opinions, hobbies) (Goffman
et al., 1978). We refer the reader to Li (2020) for a more comprehensive discussion
on the interplay between behavioral theories of privacy and photo sharing on social
networks.

Visual cues encoding private information. There are a variety of cues in visual
data that encodes personal information of individuals. The predominant cue ad-
dressed in literature is with respect to person’s identifiable information, revealed by
faces (Huang et al., 2007; Parkhi et al., 2015), and body (Gallagher and Chen, 2008;
Oh et al., 2015). Such identifiable cues are sometimes a useful feature, such as for a
person tagging faces to manage personal photo collections (Stone et al., 2008; Zhang
et al., 2015) or to estimate demographics of strangers (Gallagher and Chen, 2009).
However, such cues also raise privacy concerns (Besmer and Richter Lipford, 2010)
when used by certain parties (e.g., law enforcement, advertisers) to investigate a per-
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son’s behaviour. Apart from body-specific identifiable information in images, there
exists scant research in studying other visual cues that depict person’s behavioural
or private information. Some complementary visual cues that has received recent
attention include display screens (Raguram et al., 2011; Xu et al., 2013; Korayem
et al., 2016), relationships (Wang et al., 2010; Sun et al., 2017b), occupation (Shao
et al., 2013), and visited locations (Li et al., 2009). In Part I, we present a significantly
broader range of privacy-sensitive visual cues (which we refer to as the ‘privacy
attributes’) that reveals personal information of an individual. Our proposed pri-
vacy attributes quantify visual privacy leakage using body-specific cues (e.g., facial
features), other identifiable information (e.g., passport details), behaviours (e.g.,
hobbies, political opinion), and other sources of private information (e.g., disabilities)
depicted in images. Some recent works (Li et al., 2018; Li et al., 2020) have also
studied complementary attributes that additionally harm an individuals’ impression
management (e.g., embarrassing shots). Since our work, there is a growing inter-
est (Vishwamitra et al., 2017; Li et al., 2020) towards recognizing privacy leakage
from a broader perspective for images captured using mobile (Gurari et al., 2019),
eye-tracking (Steil et al., 2019), and home assistant (Wu et al., 2018b) devices.

Understanding user privacy requirements. Identifying privacy attributes pro-
vides a reasonable framework to understand what content could be considered
sensitive to an individual. However, translating the presence of such content to
privacy risk depends on the context and the individual. In the case where the con-
text is sharing personal photographs on social networks, recent works (Wisniewski
et al., 2017; Knijnenburg, 2017; Li et al., 2018) (including our own in Chapter 3)
suggest that individuals have diverse privacy requirements over different types of
content appearing in their shared photographs. In particular, Wisniewski et al. (2017)
demonstrate six patterns emerge (e.g., privacy maximizers, selective sharers, privacy
minimalists) among the individuals’ privacy requirements. In Chapter 3, we similarly
find such patterns emerge in our user study conducted over our privacy attributes.
Subsequently, our goal in Part I is to work towards estimating user-tailored privacy
leakages by factoring in diverse privacy requirements.

Estimating privacy risks in images. In parallel to works identifying privacy-
sensitive visual cues from images, works also estimate the privacy risk posed by
an image. Tonge and Caragea (2015) were motivated to detect privacy violation
in images prior to sharing on social media. Their approach classifies whether an
image is public or private based on features extracted from a Convolutional Neural
Network and user-generated tags for the image. However, we show in Chapter 3 that
users have different notions of privacy and hence it cannot be modeled as a binary
classification problem. Xioufis et al. (2016), similar to our work, factor in distinct
user perceptions towards different privacy attributes. Unlike our approach, their
model however requires user-specific image-level annotations to understand privacy
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preferences. In contrast to these works, our work in Chapter 3 first tackles a more
principled problem of predicting the privacy-sensitive elements present in images
and use these in combination with users preferences to estimate privacy risk.

Controlling privacy leakage via obfuscation. After identifying sources of privacy
leakage in visual content, a complementary set of techniques are required to mitigate
the leakage of this information. The predominant mitigation strategy is via obfusca-
tion: the visual input is manipulated such that it reduces an adversary’s effectiveness
in recovering the underlying private attributes (e.g., identity). There are multiple
aspects to obfuscating information in images:

(i) against whom is the information obfuscated? For the case when the adversary
is a deep neural network trained to infer certain attributes (e.g., identity, gen-
der), a recent line of work (Oh et al., 2017; Wu et al., 2018a) proposes to leverage
advances in adversarial learning to reduce attribute classification accuracies
of the neural network. However, as these methods introduce bounded (and
typically imperceptible) perturbations to the inputs, it is unclear whether they
mitigate leakage against a stronger class of adversaries e.g., humans. Con-
sequently, studies have in parallel addressed obfuscating privacy-sensitive
regions such as by redacting (Chapter 4), encrypting (Boult, 2005; Chattopad-
hyay and Boult, 2007) or re-synthesizing localized regions (Sun et al., 2018a;
Ma et al., 2018) in images to mitigate leakage;

(ii) which regions need to be obfuscated? Literature predominantly addresses ob-
fuscating facial features (Bitouk et al., 2008; Wilber et al., 2016; Sun et al., 2018a).
However, as Oh et al. (2016) demonstrate, a variety of other complementary
identifiable cues (e.g., body) can nonetheless lead to leaking privacy of the
obfuscated persons. Consequently, in Chapter 4, we extend obfuscation to
a much broader set of localizable regions (e.g., fingerprints, location names)
appearing in images whose cues from multiple modalities.

(iii) how to obfuscate the target regions? The de facto notion for obfuscation is
destroying information content in the targeted region e.g., by blacking-out,
blurring; see Wilber et al. (2016) and Hasan et al. (2018) for a more comprehen-
sive study. However, these strategies can lead to introducing unnatural artifacts
and reducing the image’s utility, which is an important criteria for individuals
sharing social photos. Consequently, recent studies propose content-preserving
obfuscations such as by cartooning (Hassan et al., 2017) or re-synthesizing (Br-
kic et al., 2017; Sun et al., 2018b) the targeted regions with realistic substitutes
by taking advantage of generative methods.

(iv) what are the privacy implications of imperfect obfuscations? Techniques pro-
posed in literature typically fall short in perfectly identifying and obfuscating
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privacy-sensitive regions due to a number of challenges, such as large varia-
tions of pose and illuminations of targeted content (e.g., faces). How do such
imperfections in identifying and obfuscating content impact privacy? To help
us answer the question, consider an example where a user, prior to sharing a
set of photos, uses an algorithm to obfuscate her face to minimize the number
of photos that reveals her identity. In this case, whether the algorithm is able
to successfully enforce privacy of the user is determined by its effectiveness
(e.g., identity misclassification accuracy rates) and more importantly, if this
effectiveness metric at test-time surpasses the users’ privacy requirements.
Consequently, a major focus in literature (Wilber et al., 2016; Sun et al., 2018b)
is advancing techniques to improve the effectiveness to accommodate strin-
gent privacy requirements. In parallel, literature (Oh et al., 2016; Zhang et al.,
2020) has also investigated techniques that studies a contrasting objective: to
understand adversarial capabilities that degrades the effectiveness, such as by
leveraging prior information to reconstruct obfuscated regions.

Some works (Jana et al., 2013; Templeman et al., 2014; Fernandes et al., 2016)
simultaneously address all the above aspects by developing a system capable of
controlling privacy for a specific domain. In particular, Jana et al. (2013) propose a
privacy-preserving platform-level perceptual library where untrusted applications
access data from visual sensors only via the proposed API; the API returns only the
necessary information to applications by performing privacy-preserving transforms
(e.g., sketching) on the raw visual data.

Privacy, utility, and user behaviors. In addition to methods to automatically iden-
tify and obfuscate content, effectively enforcing privacy constraints also requires a
behavioral understanding of users. This is motivated by a large body of work (Barnes,
2006; Norberg et al., 2007) demonstrating a privacy paradox on social networks:
users’ information dissemination behavior does not reflect their intended privacy re-
quirements. Similar paradoxical findings are also observed (Amon et al., 2020) when
sharing visual data; we discuss similar findings in Chapter 3. By understanding user
behavioral factors, studies present privacy-enhancing mechanisms to better control
intended dissemination such as by designing effective users interfaces (Besmer and
Richter Lipford, 2010), predicting content-specific privacy requirements (Liu et al.,
2011), or by factoring-in personalized privacy requirements (Ahern et al., 2007; Hoyle
et al., 2020). In parallel to studying user attitudes towards privacy, literature also
addresses human perception towards manipulation strategies (e.g., blurring) tradi-
tionally used by image obfuscation techniques. While we briefly study the influence
of redactions mask sizes in Chapter 4, our findings are complemented by many
recent studies (Li et al., 2017d; Hasan et al., 2018; Hasan et al., 2019) that additionally
analyze the influence of many other factors e.g., obfuscation filter strategy, location
of the scene, type of object.



2.4 reverse-engineering machine learning models 21

Automatic privacy advisor. The goal in Part I is to work towards a privacy advisor
that can assist users in enforcing their privacy requirements when sharing data. Our
work in Part I, along with recent works (Tonge and Caragea, 2019; Xioufis et al., 2016;
Vishwamitra et al., 2017; Li et al., 2020), tackles the case where the data corresponds
to personal photographs shared on social networks. More broadly, literature has
proposed automated privacy advisors to assist users in a range of situations outside
of visual privacy such as to auto-configure privacy permissions on mobile apps (Liu
et al., 2016) and IoT devices (Das et al., 2018), predicting sharing policies for text-
content Sinha et al. (2013), and sanitizing hashtags to obfuscate location information
(Zhang et al., 2018b).

Datasets for visual privacy. Datasets to aid recognition of private information
in images has evolved over time. Initial works, e.g., AT&T database (Samaria and
Harter, 1994), Yale face database (Belhumeur et al., 1997), captured front faces of
persons under lab conditions with restricted poses and constant illumination. Follow-
up datasets for identity recognition, e.g., LFW (Huang et al., 2007), CelebA (Liu
et al., 2015), PEViD (Korshunov and Ebrahimi, 2013), present additional recognition
challenges as faces captured display varying poses, illumination, and occlusions.
More recently, there is a push towards studying identity recognition beyond frontal
face images. For instance, the PIPA (Zhang et al., 2015) dataset builds an image
dataset capturing multiple individuals, often in social settings; these images are more
representative of content shared on social networks. However, as we motivated earlier
in the section, person identities capture only a narrow notion of private information
contained in images. In parallel, PicAlert (Zerr et al., 2012) and YourAlert (Xioufis
et al., 2016) contain binary labels of whether images are considered private by
individuals. However, as they lack ground-truth annotations over visual cues that
makes them privacy-sensitive, the reasoning behind privacy annotations is unclear.
Consequently, our datasets proposed in Part I, apart from representing persons
and crowds with large variations in poses and backgrounds, also contains: (a)
images and annotations capturing a significantly broader range of privacy attributes
(e.g., presence of name-tag), annotated at image- and pixel-level; (b) user-studies
to capture privacy preferences over the attributes; (c) non-person centric images
capturing private information (e.g., close-up photograph of an airline boarding pass);
and (d) non-private images (e.g., generic image of a cat).

2.4 reverse-engineering machine learning models

In the previous section, we discussed approaches that provides the owner control
over the data before it is shared to untrusted parties. A concurrent research direction
is to view the shared data by taking the role of a adversary to expose vulnerabilities
in the system. The adversary observes outputs (e.g., posterior predictions, model
parameters) after it is shared by the owner. By observing these outputs, the end-goal
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of the adversary is to reverse-engineer private and confidential information about the
owner’s ML model or its training data.

2.4.1 Inferring Training Data Attributes

We being by looking at studies that highlight the adversarial attack techniques to
infer certain properties of the training data. Central to the modeling such attacks is
laying out: (a) the attack surface: what is the information observed by the adversary?;
and (b) the attack objective: what private information of the training dataset does
the attacker wish to recover? In the following paragraphs, we cover certain attack
surfaces and objectives investigated in literature.

Attack surface. Specific to achieving attack objectives by interacting with ML mod-
els, attack surfaces in literature commonly fall in two extreme ends: (i) a ‘white-box’
setting, where the adversary observes the internals (e.g., parameters, hyperparame-
ters) of the owner’s model; and (ii) a ‘black-box’ setting with opaque internals, but
allowing an API access (inputs in, predictions out) to the adversary. Recent studies
have explored complementary attack surfaces such as intermediate features (Song
and Shmatikov, 2020), gradient updates (Melis et al., 2019; Nasr et al., 2019), and
difference in outputs (Salem et al., 2020). In this thesis, to highlight privacy risks, we
use the gradient update information (Part II) and black-box access (Part III) as the
attack surfaces.

Inference objectives. Literature indicates that a variety of private properties re-
lated to the training data can be inferred by interacting an ML model. Such inferences
are especially problematic when the training data is sensitive e.g., health records
of patients in a hospital. A basic privacy violation is inferring membership prop-
erties i.e., to determine whether a certain datapoint is part of the training data via
black-box interactions with the target model. Studies (Shokri et al., 2017; Long et al.,
2017; Salem et al., 2019; Jayaraman and Evans, 2019) demonstrate effectiveness of
membership inferences by leveraging the insight that the target model returns over-
confident predictions when overfit to its training data. Along these lines, attribute
inferences (Ateniese et al., 2015; Fredrikson et al., 2015) additionally demonstrate that
properties of training subsets can also be inferred by exploiting black-boxes. This is
closely related to our work in Chapter 5, wherein an adversary uses gradient update
information as an attack surface to infer the identity of participating individuals.
While these works infer certain discrete properties related to the private training
dataset, there is a recent push towards ‘inverting’ (Fredrikson et al., 2015) the model
i.e., recovering prototypical training examples. Towards the goal of reconstructing
training examples, Zhang et al. (2020) recently proposed to leverage class-specific
loss signals from a target white-box classifier to guide a GAN to synthesize training
inputs.
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Defenses. Being able to infer certain properties of the training dataset by interact-
ing with the model is predominantly an artifact of a generalization gap (Shokri et al.,
2017) or biases in training data (Song and Shmatikov, 2020). Consequently, studies
(Shokri et al., 2017; Salem et al., 2019) indicate employing conventional regularization
techniques takes a step towards mitigating leakage of private properties. An alternate
strategy involves explicitly bounding the influence of training instances e.g., using
Differentially Private training (Abadi et al., 2016b; Papernot et al., 2017a), towards the
learnt parameters. In our work in Chapter 5, instead of lowering the generalization
gap along these lines, we introduce an adversarial bias in the data by adding decoy
training instances to the training set, so as to mislead inferences of private properties.

2.4.2 Recovering Model Information

In this section, we switch focus from attack objectives that extract information of the
training data to that of model internals. The attack surfaces to achieve extraction
objectives are investigated with black-box access to the owner’s ML model i.e.,
inputs in, predictions out. Exposing models via a black-box interface is especially
common among ‘Machine Learning as a service’ (MLaaS) platforms which monetize
prediction APIs to a trained model. Here, the trained model is a result of significant
financial and human effort (e.g., annotating data, engineering hyperparameters).
Consequently, any information of the model (e.g., parameters) reconstructed using
extraction attacks threatens the intellectual property of the model’s owner. The
reconstructed knowledge can be further used to compromise the integrity of the
model e.g., by improving effectiveness of adversarial perturbations (Papernot et al.,
2017b; Oh et al., 2018).

Model extraction: Attack objectives. Literature investigates how black-box mod-
els leak information by studying attack objectives to extract various confidential
aspects of model. One aspect are the hyperparameters (Wang and Gong, 2018), or
specifics of the model architecture (Yan et al., 2018; Oh et al., 2018). In particular,
Oh et al. (2018) show that a meta-classifier can be trained to predict certain model
attributes (e.g., presence of a max-pool layer) from the output posterior probabilities
of a black-box model. A complementary aspect is extracting the fidelity (Jagielski
et al., 2020) of the target black-box model. Here, the attack objective is to obtain an
‘extracted’ model that mimics the prediction of the target model on any input. Tramèr
et al. (2016) successfully demonstrate high-fidelity extraction of linear models, simple
MLPs, and decision trees. In the specific case of linear models, their approach treats
stealing as an equation-solving problem over unknown parameter variables. More
recently, Jagielski et al. (2020) demonstrate successful high-fidelity extraction on
two-layer ReLU-based neural networks. The key insight here is that the network is a
piecewise-linear function and by strategically searching for inputs that cause a ReLU
unit to change signs, one can exactly recover the parameters of the target network.
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While these approaches have shown remarkable success in extracting parameters
and decision boundaries of linear and simple neural-networks, due to their query
complexity, it remains an open question whether complex neural networks can be
exactly extracted. In Part III of the thesis, we argue for approximately extracting the
target model by proposing functionality stealing attacks. Here, the attack objective is
to obtain a ‘knock-off’ model to mimic the target model on test inputs, as opposed
to mimicking all inputs in high-fidelity extraction. We argue that in many settings
(e.g., MLaaS prediction APIs), an attacker achieving high performance on a test
distribution threatens the business model of the owner. To highlight functionality
stealing risks, in Chapter 6 we demonstrate a learning-based strategy where the at-
tacker learns a knock-off (student) model to replicate predictions of a target (teacher)
model. Remarkably, we find the strategy effective in spite of incomplete knowledge
on the training distribution and the specifics of the model internals. In addition,
we demonstrate that model stealing attacks (Lowd and Meek, 2005a; Tramèr et al.,
2016; Correia-Silva et al., 2018) also extend to complex CNN architectures. Recently,
(Krishna et al., 2020; Wallace et al., 2020) show strategies, in the spirit of our work in
Part III, are effective in stealing language models.

Model extraction: Defenses. In light of the above attack studies, it is becoming
increasingly evident that model extraction techniques pose a risk. However, work on
defending against such extraction strategies is minimal. Existing defense strategies
(Tramèr et al., 2016; Orekondy et al., 2019b; Lee et al., 2018) employ an information
truncation approach such as by rounding-off predictions (i.e., the posterior proba-
bilities over k classes) or revealing predictions over top-k classes. In particular, Lee
et al. (2018) introduce ambiguities at the tail-end of the predicted posterior distri-
bution to mitigate attacks. However, as we show in Part III, such defense strategies
take a passive role against the attacker and are largely ineffective. Consequently,
in Chapter 7, we work towards the first effective defense that actively attempts to
attack the attacker. The key idea is introducing utility-constrained perturbations to
predictions with an objective to poison the attacker’s gradient signals when training
the knock-off model. Such a strategy has also shown to be effective when mitigating
attacks on language models (Wallace et al., 2020). Since our work, Kariyappa and
Qureshi (2020) extended the line of defenses by perturbing output predictions in
proportion to distance of the input to the expected test distribution.



Part I

L E A K A G E I N V I S UA L D ATA

The first part of the thesis investigates leakage of private information
in visual data. In particular, personal photos representative of images
disseminated on social media. Given the large amounts of such data that
is disseminated on a daily basis (e.g., via smartphones), it is crucial to
understand and control the extent of private information revealed by
such images.

In Chapter 3, we aim to understand privacy risks at an image-level. To-
wards this goal, we present the first taxonomy of visual privacy attributes
over a broad range of categories. We also perform real-world user stud-
ies to analyze the user perception of privacy risks over the attributes.
Equipped with this information, we propose a ‘Visual Privacy Advisor’
to estimate privacy leakage from images.

In Chapter 4, we extend our previous approach from understanding
risks on an image-level to pixel-level. Specifically, we leverage recent ad-
vances in segmentation-based approaches to obfuscate privacy-sensitive
information while maintaining utility of the image.





3
T O WA R D S A V I S UA L P R I VA C Y A D V I S O R

In this chapter, we take a step towards understanding and controlling private
information disclosed in visual content. This is particularly important as mas-
sive amounts of personal visual data is captured (e.g., on smartphones) and

disseminated on the internet (e.g., via social networks) and thereby raising major
privacy concerns.

There exists a number of solutions to control disclosure of structured explicit content
(e.g., personal details, GPS location). Most notably, devices (e.g., smartphones) and
internet services (e.g., facebook) offer individuals to set privacy settings to control the
disclosure of private information. In this chapter, we envision extending the concept
of privacy settings to image content in the spirit of a Visual Privacy Advisor. Towards
this goal, we first categorize personal information in images into 68 image attributes
and collect a dataset, which allows us to train models that predict such information
directly from images. We use the dataset to run a user study to understand the
privacy preferences of different users w.r.t. the privacy attributes. Finally, we propose
models that predict user specific privacy score from images in order to enforce the
users’ privacy preferences. Our model is trained to predict the user specific privacy
risk and even outperforms the judgment of the users, who often fail to follow their
own privacy preferences on image data.

The content of this chapter is based on Orekondy et al. (2017). As a first author,
Tribhuvanesh Orekondy conducted all the experiments and was the main writer for
the conference paper.

3.1 introduction

As more people obtain access to the internet, a large amount of personal information
becomes accessible to e.g. other users, web service providers and advertisers. To
counter these problems, more and more devices (e.g. mobile phone) and web services
(e.g. facebook) are equipped with mechanisms where the user can specify privacy
settings to comply with his/her personal privacy preference.

While this has proven useful for explicit and textual information, we ask how this
concept can generalize to visual content. While users can be asked (as we also do
in our study) to specify how comfortable they are releasing a certain type of image
content, the actual presence of such content is implicit in the image and not readily
available for a privacy preference enforcing mechanism nor the user. In fact, as our
study shows, people frequently misjudge the privacy relevant information content

27
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credit card,
face, gender,
skin colour, ...

User Judgment

Visual Privacy Advisor

Privacy 
Attributes

Privacy
Preferences

Privacy
Risk

Figure 3.1: Users often fail to enforce their privacy preferences when sharing images online.
We propose a first Visual Privacy Advisor to provide user-specific privacy feedback.

in an image. The misjudgement leads to the failure of enforcing their own privacy
preferences.

Hence, we work towards a Visual Privacy Advisor (Figure 3.1) that helps users
enforce their privacy preferences and prevents leakage of private information. We
approach this complex problem by first making personal information explicit by
categorizing personal information into 68 image attributes. Based on such attribute
predictions and user privacy preferences, we infer a privacy score that can be used
to prevent unintentional sharing of information. Our model is trained to predict the
user specific privacy risk and interestingly, it outperforms human judgment on the
same images.

Our main contributions in this chapter are as follows: (i) To the best of our
knowledge, we are the first to formulate the problem of identifying a diverse set
of personal information in images and personalizing predictions to users based on
their privacy preferences; (ii) We provide a sizable dataset of 22k images annotated
with 68 privacy attributes; (iii) We conduct a user study and analyze the diversity
of users’ privacy preferences as well as the level to which they achieve to follow
their privacy preferences on image data; (iv) We propose the first model for Privacy
Attribute Prediction. We also extend it to directly estimate user-specific privacy risks;
and (v) Finally, we show that our models outperform users in following their own
privacy preferences on images

3.2 the visual privacy (vispr) dataset

Mobile devices and social media platforms provide privacy settings, so that users can
communicate their privacy preferences on the disclosure of different type of textual
information. How does this concept transfer to image data? We need to establish a
similar concept of privacy relevant information types – but now for images. This will
allow us to query users about their privacy preferences on the disclosure of various
information types, as we will do in the next section.
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Figure 3.2: Label distribution in the VISPR dataset. Y-axis indicates the number of images.

Therefore, we propose in this section a categorization of personal information into
68 privacy attributes such as gender, tattoo, email address or fingerprint. We collect a
dataset of 22k images that allows the study of privacy relevant attributes in images
and the training of automatic recognizers.

3.2.1 Privacy Attributes

As motivated before, we need to categorize different types of personal content in
images – akin to the privacy settings deployed in today’s devices and services.
Therefore, we define a list of privacy attributes an image can disclose.

The primary challenge here is the lack of a standard list of privacy attributes.
We thus compile attributes from multiple sources. First, we consolidate relevant
attributes from the guidelines for handling Personally Identifiable Information (McCal-
lister, 2010) provided in the EU Data Protection Directive 95/46/EC (Directive, 1995)
and the US Privacy Act of 1974. Second, we add relevant attributes from the rules
on prohibiting sharing personal information on various social networking websites
(e.g., Twitter, Reddit, Flickr). Finally, we manually examine images that are shared
on these websites and identify additional attributes. As a result, we draft an initial
set of 104 potential privacy attributes. As discussed in the next section, these are
reduced to 68 attributes (see Table 3.1) after pruning.

3.2.2 Annotation Setup

The annotation was set up as a multi-label task to three annotators annotating
independent sets of images. A web-based tool was provided to select multiple options
corresponding to the 104 privacy attributes per image. Additionally, annotators could
mark if they were unsure about their annotation. In case none of the provided privacy
labels applied, they were instructed to label the image as safe, which we use as one
of our privacy attributes. Images were discarded if annotators were unsure, or if
the image contained a copyright watermark, was a historic photograph, contained
primarily non-English text, or was of poor quality.
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3.2.3 Data Collection and Annotation Procedure

In this section, we discuss the steps taken to obtain the final set of 22k images
annotated with 68 privacy attributes.

Seed sample. We first gather 100k random images from the OpenImages dataset
(Krasin et al., 2017), a collection of ∼9 million Flickr images. Using the definition and
examples of the privacy attributes, the annotators annotate 10,000 images randomly
selected from the downloaded images.

Handling imbalance. Based on the label statistics from these 10,000 images, we
add images to balance attributes with fewer than 100 occurrences. These additional
images are added by querying relevant OpenImages labels possibly representative
of insufficient privacy attributes.

Extended search for rare classes. In spite of using the above strategy, 37 attributes
contain under 40 images. We manually add images for these attributes by querying
relevant keywords on Flickr. We do not add multiple images from the same album.
For credit cards, we manually obtain 50 high-quality images from Twitter, which
are the only non-Flickr images in our dataset.

Selected attributes. After annotating the dataset with the initial 104 labels, we
discard 19 labels because either (i) images were difficult to obtain manually (e.g.
iris/retinal scan, insurance details) or (ii) the set of images did not clearly represent
the attribute. We additionally merge groups of attributes which capture similar
concepts (e.g. work and home phone number). In the end, we obtain a dataset of
22,167 images, each annotated with one or more of 68 privacy attributes.

Curation. To reduce labeling mistakes, we organize the dataset into batches of
images with each batch corresponding to a privacy attribute. We curate attribute
batches which either contain fewer than 500 images or are considered sensitive by
users.

Splits. We perform a random 45-20-35 split with 10,000 training, 4,167 validation
and 8,000 test images. The final statistics of our dataset is presented in Table 3.1. The
labels and its distribution in our dataset is shown in Figure 3.2.

3.3 understanding privacy risks

In this section, we explore how users’ personal privacy preferences relate to the
attributes in Section 3.3.1. Furthermore, we study how good users are at enforcing
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Split All Train Val Test

Images 22,167 10,000 4,167 8,000

Labels 115,742 51,799 22,026 41,917

Avg Labels/Image 5.22 5.18 5.29 5.24

Max Images/Label 10,460 4,710 1,969 3,781

Min Images/Label 44 20 7 12

Table 3.1: VISPR dataset statistics

their own privacy preferences on visual data when making judgments based on
image data in Section 3.3.2.

3.3.1 Understanding Users’ Privacy Preferences

In this section, we study the degree to which various users are sensitive to the
privacy attributes discussed in Section 3.2.

User study. We present each user with a series of 72 questions in a randomized
order. Each of these questions corresponds to either exactly one of 67 privacy
attributes (excluding the safe attribute) or a control question. In each question, the
users are asked how much they would find their privacy violated if they accidentally
shared details of a particular attribute publicly online. For instance: “How much
would you find your privacy violated if you accidentally shared details on personal
occasions you have attended (like a birthday party or friend’s wedding).” Responses
for the question are collected on a scale of 1 to 5, where: (1) Privacy is not violated
(2) Privacy is slightly violated (3) Privacy is somewhat violated (4) Privacy is violated
(5) Privacy is extremely violated. We treat these responses as users privacy preference
for this particular privacy attribute.

Participants. We collect responses of 305 unique AMT workers in this survey. Out
of the 305 respondents, 59% were male, 78% were under 40 years of age with 57%
from USA and 38% from India. Additionally, 75% were regular Facebook users, 80%
and 44% reported to be aware of and have used Twitter and Flickr at least once.

Analysis. In order to understand the diversity in users’ privacy preferences, we
first cluster the users based on their preferences into user privacy profiles. We cluster
using K-means and choose K based on silhouette score (Rousseeuw, 1987), which
considers distance between points within the cluster and additionally distance
between points and their neighbouring cluster. We choose K = 30 as this yields the
lowest silhouette score. This enables visualizing the preferences over the attributes,
as seen in Figure 3.3, where each row represents the preferences for one of the 30
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Figure 3.3: Privacy preferences of user profiles for the privacy attributes. Darker colors
represent higher privacy-sensitivity to attributes. Each row corresponds to one of
the 30 profiles and the number in brackets on the Y-axis represents the number of
users mapped to the profile. Rows are ordered based on number of users linked
to the profile.

user profiles (ordered based on number of users associated with the profile). We
observe from this study: (i) Users show a wide variety of preferences. This supports
requiring user-specific privacy risk predictions; (ii) The majority (Profiles 1-4, 7-11,
13-14, 18-20 in Figure 3.3) display a similar order of sensitivity to the attributes; (iii) A
minority (Profiles 21-30) of users are particularly sensitive to some attributes such
as their political view, sexual orientation or religion; and (iv) The uniformly-sensitive
users (Profiles 5, 6, 12, 15, 17) are uniformly sensitive to all attributes even though to
different degrees.

3.3.2 Users and Visual Privacy Judgment

In this study, we first ask participants to judge their personal privacy risk based on
images representing an attribute (providing a visual privacy risk score) and after-
wards asking the actual user’s privacy preferences for the same attribute (providing
a desired or explicit privacy risk score). Hence, we study how good users are at
assessing their personal privacy risks based on images.
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User study. In this study, we split the survey into two parts. In the first part, the
users are shown a group of 3-6 images. Given the sensitive nature of attributes, we
cannot obtain or ask users to rate their personal images and hence use images from
the dataset. They are asked how comfortable they are sharing such images publicly,
considering they are the subject in these images. Responses are collected on a scale
of 1 to 5, where: (1) Extremely comfortable (2) Slightly comfortable (3) Somewhat
comfortable (4) Not comfortable (5) Extremely uncomfortable. Each group of images
represents one of the 68 privacy attributes. In most cases, the attributes occur isolated
and are the most prominent visual cue in the image. We refer to these responses as
human visual privacy score. The second part is identical to questions and the setting in
the previous user-study on privacy preferences. Each question is designed to obtain
the privacy preference of the user for each attribute. As before, the user rates on a
scale of 1 (Not Violated) to 5 (Extremely Violated). We refer to these responses as
privacy preference score.

Participants. We split the study into two parts to prevent user fatigue. Each part
contains only half of the attributes. We obtain 50 unique responses for this survey
from AMT. In each of these parts, roughly: 70% of the respondents were under 40

years, 57% were male and 87% were from USA. Additionally, 80% responded that
they use Facebook, 84% Twitter and 46% Flickr.

Analysis. We compute for each attribute average privacy preference score and
human visual scores, and visualized them as a scatter plot in Figure 3.4. From the
results, we observe: (i) The off-diagonal data points show a clear inconsistency in
the users between the required privacy preference and their judgment of privacy
risk in images; (ii) For cases close to the diagonal, like credit cards, passport and
national identification documents, users display consistent behaviour on images and
attributes; (iii) However, when photographs are natural scenes containing people
or vehicles, users underestimate (below diagonal) the privacy score, such as in the
case of family photographs or cars displaying license plate numbers. We speculate
this is indicative of personal photographs commonly shared online; and (iv) They
overestimate (above diagonal) the privacy risk of some photographs showing birth
place or their name. We speculate this is because the photographs are often official
documents, making users more cautious.

3.4 predicting privacy risks

In this section, we make a step towards our overall goal of a Visual Privacy Advisor.
As illustrated in Figure 3.5, we follow a similar paradigm e.g. on social networks
that defines privacy risk based on both the content type and user-specific privacy
settings. In our case, the content type is described by (user-independent) attributes
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Figure 3.4: Users are asked to rate on a scale of 1 (Not violated) to 5 (Extremely violated)
how much an attribute affects their privacy. X-axis denotes their desired privacy
preference and Y-axis denotes their evaluation of risk on images. The red markers
indicate privacy attributes with highly underestimated or overestimated user
ratings

in the previous section. We combine these with the user-specific privacy preferences
to determine if the image contains a privacy violation.

We describe our model for privacy attribute prediction in Section 3.4.1, followed
by our approaches to personalized privacy risk prediction in Section 3.4.2. We
conclude with a comparison of human judgment of privacy risks in images against
the prediction of our proposed models in Section 3.4.3.

3.4.1 Privacy Attribute Prediction

In this section, we define the user-independent task of predicting privacy attributes
from images. Then, we present and evaluate different methods on our new VISPR
dataset.

Task. We propose the task of Privacy Attribute Prediction, which is to predict one
or more of 68 privacy attributes based on an image. This can be seen as a multilabel
classification problem that recognizes different type of personal information visual
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Figure 3.5: We learn an end-to-end model for user-specific privacy risk estimation.
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Figure 3.6: Qualitative Results of our Privacy Attribute Prediction method

data and therefore has the potential to make this information explicit. Figure 3.1
shows multiple examples for this task. The task is challenging due to image diversity,
subtle cues and high level semantics.

Metric. To assess performance of methods for this task, we compute the Average
Precision (AP) per class, which is the area under Precision-Recall curve for the
attribute. Additionally, the overall performance of a method is given by Class-based
Mean Average Precision (C-MAP), the average of the AP score across all 68 attributes.

Methods. We experiment with three types of visual features extracted from CNNs
– CaffeNet (Jia et al., 2014), GoogleNet (Szegedy et al., 2015) and ResNet-50 (He et al.,
2016a). First, we train a linear SVM model using features from the layer preceding
the last fully-connected layer of these CNNs. In a pilot study, we found that the
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Training Features C-MAP

SVM
CaffeNet 37.93

GoogleNet 39.88

Resnet-50 40.50

End-to-End
CaffeNet 42.99

GoogleNet 43.29

Resnet-50 47.45

Table 3.2: Accuracy of our methods given by Class-based Mean Average Precision, evaluated
on test
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Figure 3.7: Average Precision (AP) Scores for the privacy attributes from our method

multilabel SVM with smoothed hinge loss (Lapin et al., 2016) yields better results
than SVM multi-label prediction (Crammer and Singer, 2003) and cross-entropy loss.
Second, we fine-tune the CNNs initialized with pretrained ImageNet models, based
on a multi-label classification loss with sigmoid activations.

Results. Quantitative results of our method are shown in Table 3.2 and qualitative
results in Figure 3.6. We additionally present the Average Precision scores per class
in Figure 3.7. We make the following observations: (i) The CNN performs well in
attributes such as tickets, passports, medical treatment that correlated well with
scenes (e.g. airport, hospital). It also performs well in recognizing attributes which
are human-centric, such as faces, gender and age; (ii) Fine-grained differences cause
confusions such as predicting student IDs for drivers licenses or differentiating
between street and other signboards; (iii) We observe failure modes due to small
details in the image, such as tattoos, marriage rings or a credit card in the hands
of a child; and (iv) A shortcoming of being unable to recognize relationship-based
attributes (e.g., personal or social relationships, vehicle ownership) which requires
reasoning based on interaction of multiple visual cues in an image rather than just
their presence.
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3.4.2 Personalizing Privacy Risk Prediction

In the previous section, we discussed predicting privacy attributes in images, a
task independent of user privacy preferences. In this section, we investigate user-
specific visual privacy feedback. The goal is to compute a privacy risk score per image,
representing the risk of privacy leakage for the particular user.

Task. As illustrated in Figure 3.5, we combine privacy attributes (user independent)
together with the privacy preferences based on these attributes (user specific) to
arrive at the privacy risk score. We consider the privacy risk score of an image x as
maxa yaua, where y ∈ [0, 1]A indicates presence of privacy attributes in the image
and u ∈ [0, 5]A are the user preferences over the attributes. This represents the
user-specific score of the most sensitive attribute, most likely to be present in an
image. As a result, the privacy-risk score is comparable to the preference-score: 1

(Not Sensitive) to 5 (Extremely Sensitive). As illustrated in Figure 3.5, we compute
the ground-truth privacy risk score based on ground-truth attribute annotation for
an image (represented as a k-hot vector y ∈ {0, 1}A) and privacy preferences of
users.

Method: Attribute Prediction-based Privacy Risk (AP-PR). Our first method per-
forms Attributed-Based Privacy Risk (AP-PR) prediction. As illustrated in Figure 3.5,
we combine the privacy attribute prediction and the profile’s privacy preferences
(that we can assume as provided by users at test time) to compute the privacy risk
score as defined above.

Method: Privacy Risk CNN (PR-CNN). We propose a Privacy Risk CNN ( PR-
CNN) that does not directly use the user profile’s privacy preferences – but only
indirectly via the ground-truth. The key observation is that AP-PR scores suffer from
erroneous attribute predictions (see Figure 3.7). Therefore, we extend the the privacy
attribute prediction network by additional fully-connected layers to directly predict
the privacy risk score. A parameter search yielded best results using additional two
fully-connected hidden layers of 128 neurons, each followed by sigmoid activations.
We finetune this network from our Googlenet Privacy Attribute Prediction network
for 30 user profiles described in Section 3.3 and a Euclidean loss.

Evaluation. We use two metrics for evaluation. First, the L1 error averaged over
all images and profiles; it represents the mean absolute difference between the
ratings. Secondly, we calculate the Precision-Recall curves for varying thresholds of
sensitivity which indicates how well our models detect images above a certain true
privacy risk. By calculating the area under the Precision-Recall curves over all user
profiles, we additionally report the Mean Average Precision (MAP).
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L1-Error
MAP

1+ 2+ 3+ 4+

AP-PR 0.656 94.94 94.27 87.97 77.89

PR-CNN 0.637 94.35 93.65 88.14 78.38

Table 3.3: Evaluation of Personalized Privacy Risk
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Figure 3.8: Performance of our approach in predicting Privacy Risks of images. Our approach
performs better on high privacy-risk images.

In our experiments, we use the previously introduced user-profiles instead of
individual users in order to cater to all the diverse privacy preferences equally that
we have seen in the previous section. We assign a privacy risk score of 0.5 for the
safe attribute for all profiles.

The evaluation of our approach on these metrics is presented in Table 3.3. Each
graph in Figure 3.8 represents PR curves over the ground-truth thresholded to obtain
a particular risk interval, such that any score above this threshold is considered
private. This allows us to estimate performance of methods at various levels of
sensitivity. We then obtain the PR-curves for each sensitivity interval by thresholding
scores estimated by AP-PR and PR-CNN.

From these results, we observe: (i) PR-CNN performs better in predicting risk
compared to using the intermediate attributes predictions. Notably, the prediction is
on average less than one step on the scale from 1 to 5 away from the true privacy
risk. (ii) Moreover, it is better at detecting high-risk images, as shown in Figure 3.8.
In particular, we notice better recall for high-risk images.
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Figure 3.9: The Precision-Recall curves of three risk estimations are displayed – users implic-
itly evaluating risk from images and our two methods AP-PR and PR-CNN.

3.4.3 Humans vs. Machine

In Section 3.3, we have shown inconsistency in users’ privacy preferences and their
assessment of privacy risks in images. In this section, we compare our proposed
approach for evaluating privacy risk against human judgments.

In our second user study (Section 3.3.2), for each attribute, users first assessed
their personal privacy risk on images (providing a visual privacy risk score) and
later rated their privacy preference (providing a desired privacy risk score). We have
computed scores with our privacy risk models AP-PR and PR-CNN on those very
same images.

As a result, for each image, we have (a) users’ privacy preference (b) users’
privacy risk judgment from images (c) our AP-PR privacy risk score from images
(d) our PR-CNN privacy risk score from images. All these scores are on a scale of
1 (Not Sensitive) to 5 (Extremely Sensitive). Using the users desired preference as
the ground-truth, we now ask: who is better at reproducing the user’s desired privacy
preference on images? As from the previous section, we use precision-recall and L1-
error as metrics to compare the desired preference score (a) and predicted privacy
risk score for evaluation (b, c, d).

The precision-recall-curves for the three candidates are presented in Figure 3.9.
We observe: (i) AP-PR achieves better precision-recall for the task than PR-CNN and
– remarkably – is even consistently better than the users’ image-based judgment. (ii) On
average, the PR-CNN estimates privacy risks (L1 error = 1.03) slightly better than
the user’s image-based judgment (L1 error = 1.1) and AP-PR (L1 error = 1.27).
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3.5 conclusion

In this chapter, we extended the concept of privacy settings to visual content and
have presented work towards a Visual Privacy Advisor that can provide feedback
to the users based on their privacy preferences. The significance of this research
direction is highlighted by our user study which shows users often fail to enforce
their own privacy preferences when judging image content. Our survey also captures
typical privacy preference profiles that show a surprising level of diversity. Our new
VISPR dataset allowed us to train visual models that recognize privacy attributes,
predict privacy risk scores and detect images that conflict with user’s privacy. In
particular, a final comparison of human vs. machine prediction of privacy risks on
images, shows an improvement by our model over human judgment. This highlights
the feasibility and future opportunities of the overarching goal – a Visual Privacy
Advisor.

In the next chapter, we extend our work to additionally identify privacy risks
in images on a pixel-level. We additionally leverage the localized information to
obfuscate corresponding pixels.



4
AU T O M AT I C R E D A C T I O N S

In the previous chapter, we were motivated to identify and control disclosure of a
wide spectrum of private information in images. Consequently, we proposed a
taxonomy of visual privacy attributes, a novel dataset, and methods to estimate

image-level privacy leakage. In this chapter, we extend this line of work towards
the goal of controlling leakage on a pixel-level by obfuscating relevant regions. By
conducting a user study we find that obfuscating the image regions related to the
private information leads to privacy while retaining utility of the images. Moreover,
by varying the size of the regions different privacy-utility trade-offs can be achieved.
Our findings argue for a “redaction by segmentation” paradigm.

Hence, we propose the first sizable dataset of private images “in the wild” anno-
tated with pixel and instance level labels across a broad range of privacy classes. We
present the first model for automatic redaction of diverse private information. It is ef-
fective at achieving various privacy-utility trade-offs within 83% of the performance
of redactions based on ground-truth annotation.

The content of this chapter is based on Orekondy et al. (2018). As a first author,
Tribhuvanesh Orekondy conducted all the experiments and was the main writer for
the conference paper.

4.1 introduction

More and more visual data is captured and shared on the Internet. Images and video
contain a wide range of private information that may be shared unintentionally
such as e.g. email-address, picture-id or finger-print (see Figure 4.1). Consequently,
there is a growing interest within the computer vision community (Brkic et al., 2017;
Hassan et al., 2017; Oh et al., 2016; Oh et al., 2017; Orekondy et al., 2017; Raval
et al., 2017) to assess the amount of leaked information, understand implications on
privacy and ultimately control and enforce privacy again. Yet, we are missing an
understanding how image content relates to private information and how automated
redaction can be approached.

Therefore, we address two important questions in this context. First, how can pri-
vate information be redacted while maintaining an intelligible image? We investigate
this question in a user study with highly encouraging results: we can redact private
information in images while preserving its utility. Furthermore, varying the amount
of pixels redacted results in different privacy vs. utility trade-offs. We conclude that
redaction by segmentation is a valid approach to perform visual redactions.

41
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Users want to share 
images containing
private information

Proposed privacy
sensitive regions

Automatic Redactions
remove private information

fingerprint, datetime

person, face, lic_plate

fingerprint, datetime

person, face, lic_plate

Figure 4.1: Users often share images containing private information, which poses a privacy
risk. For example, in the top row, user might unintentionally leak their fingerprint.
We present methods to aid users automatically redact such content by proposing
privacy sensitive regions in images.

We ask a second question in this chapter: What kind of privacy-utility trade-offs
can be achieved by automatic redaction schemes? Based on our first finding, we
approach this as a pixel labeling task on multiple privacy classes (which we refer
to as privacy attributes). Segmenting privacy attributes in images presents a new
challenge of reasoning about regions including multiple modalities. For instance, in
Figure 4.1, identifying the name and datetime requires mapping the relevant pixels
to the text domain for understanding, while identifying the student_id requires
reasoning over both visual and text domains. Our automated methods address
these challenges and localize these privacy attributes for redaction via segmentation.
By performing both quantitative and human evaluation, we find these automated
methods to be effective in segmentation as well as privacy-utility metrics.

Our model and evaluation for automatic redaction is facilitated by a new dataset
that extends the Visual Privacy (VISPR) dataset (Section 3.2) to include high-quality
pixel and instance-level annotations. To this end, we propose a dataset containing
8.5k images annotated with 47.6k instances over 24 privacy attributes.
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Figure 4.2: Examples and distribution of privacy attributes in the dataset.

4.2 the visual redactions dataset

In this section we present our pixel-label visual privacy dataset as an extension
to the VISPR dataset (Orekondy et al., 2017). We begin with a discussion on how
images (Section 4.2.1) and attributes (Section 4.2.2) were selected for the task. This is
followed by the annotation procedure (Section 4.2.3) and a brief analysis (Section
4.2.4) of the dataset.

4.2.1 Selecting Images for Pixel-level Annotation

The VISPR dataset contains 22k real-world user-uploaded publicly available Flickr
images which makes this a great starting point for addressing the visual redaction
problem “in the wild”. 10k of these images are annotated as safe. From the remaining
12k images we pixel-annotate the subset of 8,473 images that contain at most 5 people.
The main reason to focus on this subset was to reduce the annotation cost while
maximizing the amount of non-person pixels. We preserve the identical 45-20-35

train-val-test split of these images as in the VISPR dataset.

4.2.2 Shortlisting Privacy Attributes

The 22k images in the multilabel VISPR dataset are annotated using 68 image-
level privacy attributes (∼5.2 attributes per image). These privacy attributes are
compiled from multiple privacy-relevant sources – the US Privacy Act of 1974,
EU Data Protection Directive 95/46/EC and various social network website rules.
Additionally, they cover a diverse range of private information that can be leaked
in images (e.g. face, tattoo, physical disability, personal relationships, passport,
occupation). Therefore, we use these as a starting point for redactions in images.
We select 42 out of 67 privacy attributes (excluding attribute ‘safe’, which indicates
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none of the other 67 attributes are present) for three reasons. First, for 11 attributes
(e.g. religion, occupation, sports) typically the entire image is linked to the attribute
(e.g. scene with church or sport stadium). In such cases, the solution to keeping
the information private is to not share such images (as proposed in Orekondy et al.
(2017)). We instead focus on attributes which can be localized for redaction, such
that the image might still be useful. Second, 8 attributes were extremely tedious
to annotate, because of their strong co-occurrence with crowd-scenes (e.g. political
and general opinion, occupation) or the effort required to outline them (e.g. hair
color). Third, 6 attributes (e.g. place of birth, email content, national id) contained
under 30 examples for training. In spite of filtering such attributes, we still cover
a broad spectrum of information to help de-identify people in images (such as by
obfuscating faces or names). We further merge few groups among these 42 attributes:
(i) when they occur as a complete and partial version (e.g. {complete face, partial face}
merged into face) (ii) when they localize to the same region (e.g. {race, skin color,
gender, relationships} merged into person). As a result, we work with 24 localizable
privacy attributes in our dataset representative of 42 of the original 67 VISPR privacy
attributes (see Figure 4.2 for the complete list).

4.2.3 Dataset Annotation

In this section, we discuss the annotation procedure.

Annotation tool and instructions. We use VGG Image Annotator tool (Dutta et al.,
2016) for annotation. Five expert annotators draw polygons around instances based
on an instruction manual. A summary of instructions, definitions of attributes and
examples are provided in the supplementary material.

Consensus and agreement measure. Agreement is calculated w.r.t. images anno-
tated by one of the authors. We measure agreement using Mean Intersection Over
Union (mIoU): ∑ tp

tp+ f p+ f n averaged over images.

Consensus experiment and annotating person. We observed 93.8% agreement
in consensus task of annotating instances of person in 272 images. Annotators
separately annotated person in remaining images. We obtain 13,171 person instances
annotated over 5,920 images.

Annotating face. We observed an agreement of 86.2% (lower due to small sizes of
instances) in the consensus task for annotating face in 100 images. Using the 5,920

images of people as a starting point, annotators annotated 8,996 instances of faces in
separate sets of images.
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Annotating remaining attributes. Images for each of the remaining attributes are
annotated successively by at most a single annotator. 8 of the text-based attributes
(e.g. name, phone_no) are annotated using 4-sided polygons or bounding boxes. We
gather annotation of 26,676 instances.

Auxiliary detections. We augment all images in the dataset with text detections ob-
tained using the Google Cloud Vision API to aid localization of text-based attributes.
This is provided as OCR and bounding box annotation in structured hierarchy of text
elements in the order: characters, words, paragraphs, blocks and pages. In addition,
we also gather face and landmark bounding box detections using the same API.
These detections are solely used as auxiliary input to methods discussed in Section
4.4 and not for evaluation.

Summary. With an annotation effort of ∼800 hours concentrated over four months
with five annotators (excluding the authors), we propose the first sizable pixel-labeled
privacy dataset of 8,473 images annotated with ∼47.6k instances using 24 privacy
attributes.

4.2.4 Dataset Analysis and Challenges

We now present a brief analysis of the dataset and the new challenges it presents
for segmentation tasks. Examples of the proposed attributes and their distribution
among the 8k images in the dataset are presented in Figure 4.2.

Popular datasets (Cordts et al., 2016; Everingham et al., 2010a; Lin et al., 2014)
provide pixel-level annotation of various common visual objects. These objects are
common in visual scenes, such as vehicles (car, bicycle), animals (dog, sheep) or
household items (chair, table). Common to all these objects are their distinctive visual
cues. Looking at the examples of attributes in Figure 4.2, one can notice similar
cues among the Visual attributes, but it is not evident in the others. Recognizing
Textual attributes (such as names or phone numbers) in images instead require
detecting and parsing text information and additionally associating it with prior
knowledge. While some of the Multimodal attributes can be associated with visual
cues, often the text content greatly helps disambiguate instances (a card-like object
could be a student_id or driv_lic). We also observe a strong correlation between
modalities and sizes of instances. We find Textual instances to occupy on average
less than 1% of pixels in images, while Multimodal attributes predominantly occur
as close-ups occupying 45% of the image area on average. Consequently, the privacy
attributes pose challenges from multiple modalities and require specialized methods
to individually address them. Moreover, they provide different insights due to the
variance in sizes. Hence, going forward, we treat the modes Textual, Visual and
Multimodal as categories to aid analysis and addressing challenges presented by
them.
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s = 0.25 s = 0.5 s = 1 s = 2 s = 4

Figure 4.3: Dilation/Erosion of attribute fingerprint

Applicability to other problems. We believe the proposed dataset could be ben-
eficial to many other problems apart from visual redactions. In visual privacy, it
complements datasets to perform tasks such as person de-identification (Brkic et al.,
2017; Hassan et al., 2017). Outside of the privacy domain, we also provide a sizable
face segmentation dataset with 9k face instances, compared to 2.9k in Labeled Faces
in the Wild (Kae et al., 2013) and 200 in FASSEG (Khan et al., 2015).

4.3 understanding privacy and utility w.r .t . redacted

pixels

In this section, we study how redacting ground-truth pixels of attributes influences
privacy and utility of the image by conducting a user study on Amazon Mechanical
Turk (AMT). The results from this section motivates our approach in Section 4.4.
We will also use the results from this study as a reference point for evaluating our
proposed automated methods in Section 4.5.2.

4.3.1 Generating Redactions

Given an image Ia containing attribute a, we generate a ground-truth redacted
version of the image Iā by simply blacking-out pixels corresponding to a in the
ground-truth.

Spatially extending a. We now want to redact fewer or more pixels in image
Iā to understand how this influences the image’s privacy and utility. We generate
multiple versions of the ground-truth redacted image {Is

ā : s ∈ S} at different scales of
redaction, such that Ins

ā contains n times as many blacked-out pixels of Is
ā. We achieve

different scales of redactions by dilating/eroding the ground-truth binary mask of
a, as shown in Figure 4.3. We use seven scales S = {0.0, 0.25, 0.5, 1.0, 2.0, 4.0, inf},
where I0

ā is the unredacted image, I1
ā (= Iā) is the GT redacted image and Iinf

ā is a
completely blacked-out image.
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Figure 4.4: Privacy and utility using various scales of ground-truth redaction over (Top row)
modes (Bottom row) sizes

4.3.2 User Study

We create an AMT project of 1,008 tasks (24 attributes × 6 images × 7 scales), each
to be responded by 5 unique workers from a pool of 29 qualified workers. Each task
contains 2 yes/no questions based on an image Is

ā, one each for Privacy and Utility.
We consider privacy and utility w.r.t. (i) two versions of the same image: (Ia, Is

ā), and
(ii) users (AMT workers in our case).

Defining privacy. To understand if attribute a has been successfully redacted in
Is
ā, we pose the privacy question in the form: “Is a visible in the image?”. We also

provide a brief description of the attribute a along with examples. We consider Is
ā to

be private, if a majority of the users respond no.

Defining utility. To understand utility of an image, we pose the question: “Is the
image intelligible, so that it can be shared on social networking websites? i. e.does
this image convey the main content of the original image (i.e., the image without
the black patch)”. As a result, we define the utility of an image independent to its
aesthetic value and instead associate it with the semantic information. We consider
Is
ā to have utility, if a majority of the users respond yes.

Measuring privacy and utility. We label each of the 1,008 images with varying
redacted scales their privacy and utility as discussed above. For any given redaction
scale s, we aggregate privacy/utility scores simply as the percentage of images
considered private/useful. Consequently, an ideal visual redaction has both high
privacy and utility.
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4.3.3 Analysis

We now discuss results based on the privacy-utility scores obtained over modes and
various sizes (i. e.relative size of a in Ia) based on Figure 4.4.

Privacy is a step function. We observe in Figure 4.4 across all plots, that a min-
imum number of pixels of attribute a need to be removed to effectively redact it
from the image. This minimum number corresponds to exactly the ground-truth
redaction (s = 1) – redacting fewer pixels than this makes the image non-private
and redacting more pixels achieves marginal privacy gains. More specifically, we
achieve 94% privacy with ground-truth redactions. The imperfect privacy score is
predominantly (5/9 failure cases) due to turkers overlooking important details in the
question. Apart from this, other cases involve contextual cues revealing the attribute
(e.g. wheelchair shadow) and regions that were not annotated (e.g. outline of a
person at a distance).

Gradual loss in utility. From Figure 4.4 Overall, we find utility to decrease
gradually as the size of redacted region increases. Another interesting observation
is that utility strongly depends on the size of a in the image. In the bottom row of
Figure 4.4, we see that for smaller GT regions (a = 0− 10%), we still obtain high
utility at larger dilations. However, as the area of the GT regions increases beyond
50% of the image, redaction entails blacking-out the majority of the image pixels and
hence zero utility.

Privacy and utility. What can we take away from this while proposing automated
methods to preserve privacy while retaining utility? Due to the correlation between
modes and sizes, we can predict more pixels for smaller attributes with minimal loss
to utility. For instance, for Textual attributes, we can predict 4x as many ground-
truth pixels for redaction. However, for larger ground-truth regions (>50% of image)
both privacy and utility are step functions and hence making redaction a choice
between privacy and utility.

GT segmentations are a good proxy. In general, for images over all attributes and
sizes (Figure 4.4 Overall), we see that we can already achieve high privacy while
retaining considerable utility of the image. Moreover, we obtain near-perfect privacy
with the highest utility in all cases at s = 1, the ground-truth redactions. This justifies
to address privacy attribute redaction as a segmentation task.

4.4 pixel-labeling of private regions

In Section 4.2 we discussed the challenges of attributes occurring across multi-
ple modalities (Textual, Visual, Multimodal). In Section 4.3, we motivated how
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ground-truth segmentations in our dataset make a good proxy for visual redactions.
In this section we propose automated methods to perform pixel-level labeling (se-
mantic segmentation) of privacy attributes in images, with an emphasis on methods
tackling each modality.

We begin with a simple baseline Nearest Neighbor (NN): A 2048-dim feature is
extracted using ResNet-50 for each image. At test time, we predict the segmentation
mask of the closest training image in terms of L2 distance.

4.4.1 Methods for Textual-centric attributes

To facilitate segmenting textual attributes, for each image we first obtain an ordered
sequence of bounding box detections of words and their OCR using the Google
Cloud Vision API (as discussed in Section 4.2.3).

Proxy GT. We represent n words in an image as a sequence [(wi, bi, yi)]
n
i=1, where

wi is the word text, bi is the bounding box and yi is the label. We use 9 labels
(8 Textual attributes + safe). We assign each yi in the sequence the ground-truth
attribute that maximally overlaps with bi, or a safe label in case of zero overlap. At
test-time, we segment pixels in region bi if a non-safe label is predicted for word wi.
For the test set, we refer to predictions from this proxy dataset as PROXY to obtain
an upper-bound for our methods on these text detections.

Rule-based classification (RULES). We use the following rules to label words in
the sequence: (i) name: if it exists in a set of 241k names obtained from the US Census
Bureau website (ii) location, landmark, home_address: if it exists in a set of 2.8M
locations consisting of countries, states, cities and villages from the GeoNames
geographical database (GeoNames Geographical Database) (iii) datetime, phone_no,

birth_dt: if the word contains a digit (iv) emailadd: if the word contains the symbol
@, we predict this word and adjacent words assuming a format �@�.�.

Named entity recognition (NER). We use the popular Stanford NER CRFClassifier
(Finkel et al., 2005) to label each word of the sequence as from a set of recognized
entity classes (e.g. person, organiziation, etc.). We use the model which is trained on
case-invariant text to predict one of seven entity classes.

Sequence labeling (SEQ). We train a sequence labeler similar to (Huang et al.,
2015; Lample et al., 2016; Ma and Hovy, 2016) as shown in Figure 4.5. We preprocess
by replacing all digits with 0s and stem each word to reduce the size of the vocabulary.
We tokenize the words in the training sequences using a vocabulary of size 4,149

(number of words with at least 4 occurrences). We embed the words using 100-d
GloVe embeddings (Pennington et al., 2014). To capture the temporal nature, we use
two-level Bidirectional LSTMs. At each time-step, we obtain a joint embedding by
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Figure 4.5: Architecture to perform sequence labeling

element-wise multiplication of: the text embedding (256-d output of the LSTM) and
the image embedding (2048-d ResNet-50 (He et al., 2016b) feature reduced to 256-d
using an FC layer). We classify this joint embedding into 9 labels using an FC layer
followed by softmax activation.

4.4.2 Methods for Visual-centric attributes

Recent deep-learning segmentation methods have proven to be effective in localizing
objects based on their visual cues. We propose using a state of the art method in
addition to few pretrained methods for Visual attributes.

Pretrained models (PTM). We use pretrained methods to classify three classes
typically encountered in popular visual scene datasets. (i) face: We use bounding
box face detections obtained using the Google Cloud Vision API. (ii) person: We
use the state-of-the-art segmentation method FCIS (Li et al., 2017b) to predict pixels
of COCO class “person” (iii) lic_plate: We use OpenALPR (OpenALPR) to detect
license plates in images.

FCIS. We retrain all layers of the FCIS model (Li et al., 2017b) for our task and
dataset. We train it for 30 epochs with learning rate 0.0005 over trainval examples
and their horizontally mirrored versions. We fine tune it from the model provided
by the authors trained for segmentation on MS-COCO (Lin et al., 2014). We obtained
best results using default hyper-parameters.
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4.4.3 Methods for Multimodal-centric attributes

Recognizing Multimodal attributes (e.g. driv_lic, receipt) require reasoning over
both visual and textual domains. We treat this as a classification problem due to:
(i) limited training examples (∼125 per multimodal attribute) (ii) large region of
these attributes (∼45% image area), which provides only ∼10% utility even after
GT-based redaction (Section 4.3.2).

Weakly supervised labeling (WSL). We propose learning a multilabel classifier
based on visual-only (WSL:I) and visual+text content (WSL:I+T). If the class proba-
bility of an attribute is beyond a certain threshold, we predict all pixels in the image
for the attribute. WSL:I is the same approach used in (Orekondy et al., 2017) – a
multilabel ResNet-50 (He et al., 2016b) classifier. In the case of WSL:I+T, we obtain a
multimodal embedding by concatenating visual and text representations. We obtain
visual representation (identical to WSL:I) with a ResNet-50 architecture. We obtain
text representation by encoding all words in the image. We tried three such variants:
(i) Bag-of-Words (BOW) encoding: Words in the image are represented as a one-hot
vector with vocabulary of size 1,751. (ii) LSTM encoding: Identical to SEQ, we encode
the word sequence using an LSTM with 128-hidden units. We use output from the
last cell as the text representation. (iii) Conv1D encoding: We use 1D convolutions
to encode the word sequence (typically used for sentence classification tasks (Kim,
2014)) followed by max pooling to obtain a fixed-size text representation In all three
cases, we reduce the text-representation to 512-d using an FC+ReLU layer. We report
BOW encoding results for WSL:I+T in the rest of the chapter since this provided the
best results.

Salient object prediction (SAL). Using WSL:I+T as the base classifier, we use the
salient object as an approximation of the attribute’s location. We obtain class-agnostic
saliency obtained using DeepLab-v2 ResNet (Chen et al., 2015; Joon Oh et al., 2017).

Weakly supervised iterative refinement (IR). For document-like objects, the text
regions tend to be densely clustered in images. Hence, after classification using
WSL:I+T, we refine the convex hull of the text regions using DenseCRF (Krähenbühl
and Koltun, 2011) to “spill into” the document region.

4.5 experiments and discussion

In this section, we discuss segmentation performance (Section 4.5.1) and privacy-vs-
utility performance (Section 4.5.2) of our proposed methods.
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4.5.1 Evaluating Segmentation Performance

We now evaluate methods proposed in Section 4.4 in terms of its segmentation
performance using Mean Average Precision, suggested in Pascal VOC (Everingham
et al., 2010a). This is calculated by averaging area under precision-recall curves
over the privacy attributes. We use 50 thresholds uniformly spaced between 0 and
1 to obtain this curve. At each threshold t, we: (i) binarize the prediction score
masks per image by thresholding pixel-level scores at t (ii) aggregate pixel-level TP,
FP, FN counts (normalized by image size) per attribute over all images to obtain
attribute-level precision and recall. We ignore GT masks containing under 252 pixels
during evaluation (<1% GT masks).

Table 4.1 presents the quantitative results of the proposed methods on the test set.
Qualitative results in Figure 4.6 are based on an ENSEMBLE, using predictions of
SEQ for Textual, FCIS for Visual, WCS:I+T for Multimodal attributes. Auxiliary
results and analysis are available in the supplementary material. We generally
observe that NN underperforms simple baselines across all modalities, highlighting
the difficulty and diversity presented by the dataset.

Textual. We observe: (i) Patterns, frequency and context: SEQ achieves the best overall
score, justifying the need for special methods to tackle text attributes. It is reasonably
effective in detecting datetime (timestamps, Fig. 4.6a), email (email addresses) and
phone_no (phone numbers) due to patterns they often display. We additionally find
SEQ detect attributes which often require prior knowledge (e.g. name, location). The
common success modes in such cases are when the words are popular entities (e.g.
“Berlin” in Fig. 4.6a) or have discriminative visual/textual context (e.g. detecting
homeadd in Fig. 4.6b). (ii) Challenges imposed by text detections: PROXY represents an
upper bound to our textual methods. The low scores highlights the difficulty of
text detection and this is especially severe for scene and handwritten text detection,
a frequent case in our dataset (e.g. Fig. 4.6e,f). Moreover, our text detections do
not perfectly overlap with ground-truth annotations. Since text regions are small,
we additionally pay a high performance penalty even for correct detections (e.g.
IoU=0.42 for homeadd (home addresses) in Fig. 4.6b). Moreover, even in the case of
correct text detections, we observe failures in OCR which affects the quality of input
for dependent methods. This can be observed by the under-performance of NER,
which is typically very effective on clean sanitized text.

Visual. We observe: (i) The unreasonable effectiveness of FCIS: We obtain the highest
score in the Visual category using FCIS. We find FCIS to be highly effective localizing
visual objects commonly encountered in other datasets (e.g. person, face). Moreover,
we find it achieves reasonable performance even when there is a lack of training data
e.g. only <60 examples of fprint (fingerprints), phys_disb (physical disability); see
Fig. 4.6d. The common failure modes are difficult examples (e.g. face in Fig. 4.6e)
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Textual

Method mAP location homeaddr name birthdt phoneno landmark datetime email

PROXY 45.0 31.7 37.8 48.7 52.5 52.6 33.6 52.4 50.8

NN 0.9 0.3 1.9 0.4 0.7 0.0 3.1 0.6 0.0

NER 3.0 6.0 1.7 4.4 0.5 0.0 0.5 10.9 0.0

RULES 4.2 3.1 0.5 2.8 0.6 1.4 1.2 6.4 17.5

FCIS 7.2 4.3 0.2 9.8 0.1 2.5 27.6 12.9 0.0

SEQ 26.8 18.4 19.4 19.1 25.1 45.8 13.9 33.4 38.9

Visual

Method mAP face lplate person nudity hwrit phydisb medhist fprint sign

NN 16.6 9.0 16.0 33.6 6.2 37.5 11.4 18.9 16.9 0.1

WSL:I 20.8 5.0 4.3 30.3 16.4 49.9 13.7 37.7 28.8 1.3

PTM 20.0 47.6 44.5 88.3 0.0 0.0 0.0 0.0 0.0 0.0

FCIS 68.3 83.8 77.9 87.0 69.7 80.7 59.0 45.8 68.1 42.6

Multimodal

Method mAP cr_card passport driv_lic stud id mail receipt ticket

NN 24.1 10.5 49.5 19.9 14.5 20.6 17.1 36.7

WSL:I+T 55.6 27.7 68.8 83.3 56.1 41.4 54.2 58.0

SAL 36.2 55.9 37.2 23.8 30.4 8.1 42.5 55.1

IR 53.6 41.7 51.2 67.8 48.1 36.9 57.2 72.5

FCIS 59.2 53.2 76.3 66.5 50.3 33.1 59.4 75.4

Table 4.1: Quantitative results of our methods for segmenting privacy regions. Bold numbers
denote highest and italicized numbers second highest scores in the columns.

and uncommon visual objects e.g. sign (signatures) in Fig. 4.6b. (ii) Comparison with
Baselines: PTM achieves comparable results for person, due to Flickr images used to
train both models. However, it underperforms for face (detections are not precise
enough) and lplate (license plates; poor performance in the wild).

Multimodal. We observe: (i) WSL:I is a good simple baseline: WSL:I achieves reason-
able performance (45.4) for multimodal attributes, compared to other modes (1.5
in text and 20.8 in visual) although the prediction spans the entire image. This is
attributed to large size of Multimodal instances found in images. (ii) Multimodal
reasoning helps: We find WSL:I+T improves performance over WCS:I by 20%, justify-
ing the need for methods to perform multimodal reasoning to detect these attributes.
This is particularly necessary to disambiguate similar looking visual objects (e.g.
card-like objects driv_lic (driver’s license) and stud_id (student identity card), Fig.
4.6b). (iii) Precision-Recall trade-off : We find precision for WSL:I+T for this method
can be improved for some attributes (e.g. cr_card (credit card), ticket) by IR, which
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Figure 4.7: Comparing redactions using predicted and ground-truth segmentations

instead of the entire image, predicts only the smoothened hull of text regions. We
observe FCIS achieve the best overall score due to higher precision.

4.5.2 Privacy vs. Utility Trade-off by Automatic Redaction

In the previous section, we evaluated our approaches w.r.t. segmentation quality.
Now, we ask how effective are redactions based on our proposed methods in terms
of privacy and utility?

To answer this, we once again run the user study in Section 4.3.2 on AMT, but now
by redacting proposed pixels of our automated method over those exact images. To
vary the number of predicted pixels, we vary the threshold to binarize the predicted
score masks over attributes. As a result, we obtain 6-8 redacted versions for each
of the 144 images (24 attributes × 6 images). Each image is labeled by 5 unique
qualified AMT workers.

Results. We obtain privacy-utility scores for each threshold and plot it as a curve in
Figure 4.7. We also plot the scores obtained for different dilations of redacted ground-
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truth annotated region. It should be noted that perfect redactions are unavailable to
us and we use these ground-truth based redactions (or manual redactions) only to
serve as a reference. We evaluate performance by calculating area under the curve
(AUC). We observe: (i) Overall, we find our method obtain a privacy-utility score
of 65% – a relative performance of 83% compared to redactions using ground-truth
annotation from the dataset. (ii) Multimodal attributes present a hard choice
between privacy and utility, as these regions are often large. We find the slightly
lower AUC(gt) to be an artifact of sampling. (iii) Although we obtain a low mAP for
Textual attributes, we observe an 81% privacy-utility score. This occurs as we can
now over-predict regions, exhibiting low precision and high recall w.r.t. segmentation,
but yet retaining high utility due to their small size. Consequently, we can predict
more text pixels “for free”.

Based on these observations, we find the automatic redactions of our models
trained on the proposed dataset show highly promising results – they closely mimic
performance achieved by redacting ground-truth regions across a broad range of
private information.

4.6 conclusion

We proposed a redaction by segmentation approach to aid users selectively sanitize
images of private content. To learn automated approaches for this task, we proposed
the first sizable visual redactions dataset containing images with pixel-level annota-
tions of 24 privacy attributes. By conducting a user study, we showed that redacting
ground-truth regions in this dataset provides near-perfect privacy while preserving
the image’s utility. We then presented automated approaches to segment privacy
attributes in images and observed that we can already reasonably segment these
attributes. By performing a privacy-vs-utility evaluation of our automated approach,
we achieved a highly encouraging 83% performance w.r.t. GT-based redactions.



Part II

L E A K A G E D U R I N G T R A I N I N G

The previous part addressed leakage of information in raw data. Specifi-
cally, techniques to identify and control (e.g., obfuscating) a wide range
of private information in image content prior to sharing on social media.
We now consider the case where the intent of sharing is not social media,
but rather to train an ML model collaboratively with other individuals.
In such a case, the individual can instead intermittently share minimal
information (model parameter updates) during the training process. Con-
sequently, we switch focus from analyzing information leakage in raw
data to analyzing leakage in training artifacts.

In Chapter 5, we study leakage of unintentional information in model pa-
rameter updates communicated during Federated Learning. We find that
the updates encode user-identifiable signals leading to deanonymization
risks. Additionally, the chapter presents techniques to mitigate leakage of
user-identifiable information.





5
U N D E R S TA N D I N G A N D C O N T R O L L I N G D E A N O N Y M I Z AT I O N
I N F E D E R AT E D L E A R N I N G

Until now, we addressed leakage in raw data and specifically, visual content
representative of personal photos. Here, the goal of the user (the data owner)
was to share the raw sensor data (e.g., images captured on smartphones)

on the internet (e.g., social networks). Now, we switch focus to an alternate goal
of sharing data towards training of a ML model. Since a single user’s data might
be insufficient to train a powerful and complex model, we specifically consider
collaboratively trained ML models, where multiple users contribute training data
to an aggregator (or a server). However, as we saw in the previous part, raw data
contains many pieces of orthogonal and private information (e.g., identities, race)
that might be irrelevant for training a general ML model (e.g., car detector).

In such cases, Federated Learning (FL) systems are gaining popularity as a solution
to training Machine Learning (ML) models from large-scale user data collected on
personal devices (e.g., smartphones) without their raw data leaving the device. At
the core of FL is a network of anonymous user devices sharing training information
(model parameter updates) computed locally on personal data. However, the type
and degree to which user-specific information is leaked in the model updates is
poorly understood. In this chapter, we identify model updates encode subtle vari-
ations in which users capture and generate data. The variations provide a strong
statistical signal, allowing an adversary to effectively deanonymize participating
devices using a limited set of auxiliary data. We analyze resulting deanonymization
attacks on diverse tasks on real-world (anonymized) user-generated data across a
range of closed- and open-world scenarios. We study various strategies to mitigate
the risks of deanonymization. As random perturbation methods do not offer con-
vincing operating points, we propose data-augmentation strategies which introduces
adversarial biases in device data and thereby, offer substantial protection against
deanonymization threats with little effect on utility.

The content of this chapter is based on the technical report Orekondy et al.
(2020a), which is currently under review. A short version of the report (Orekondy
et al., 2019a) was presented as an oral presentation at the Workshop on Federated
Learning for Data Privacy and Confidentiality in conjunction with NeurIPS 2019. As
a first author, Tribhuvanesh Orekondy conducted all the experiments and was the
main writer for the paper.
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5.1 introduction

Advances in machine learning (ML) is increasingly fueled by accessibility to data
sources capturing rich representations of the world e.g., 9M photographs (Krasin
et al., 2017), 1.6M tweets (Go et al., 2009), etc. While such large-scale data advances
learning fundamental ML models (e.g., visual object recognition), the representations
also encode a massive amount of unnecessary individual-specific information (e.g.,
person identities) (Orekondy et al., 2017; Gurari et al., 2019). For situations where
the data is decentralized (e.g., user-generated photos on edge devices), Federated
Learning (McMahan et al., 2017) provides a solution based on the principles of data
minimization (House, 2012; European Union, 2016) towards training a ML model.
The core idea is participants distill from raw private data residing on individuals’
device the information necessary to train the model, and intermittently communicate
them to a server. The information communicated by the participants take the form
of model updates computed locally on-device.

To prevent privacy violations, it is crucial that model updates reveals informa-
tion solely necessary for the training task (e.g., visual features to identify cats) and
nothing about the participants (e.g., person identities). To ensure this, federated
learning is combined with additional steps to restrict the amount of data- and
participant-specific information revealed in the process. In the specific case of re-
stricting participant-specific information encoded in model updates, typical steps
include: stripping the data of PII information (Yang et al., 2018), de-identifying the
updates and auxiliary metadata (Yang et al., 2018; Hard et al., 2018; McMahan et al.,
2017), and avoiding authentication via user-identity prior to participation (Bonawitz
et al., 2017). Hence, it is assumed that model updates received by the server contains
minimal non-identifiable information to improve the model.

However, it is in the nature of many real-world federated settings, that the clients
represent diverse users with different interests, preferences and habits. Hence, the
underlying data distributions of the users are not identically distributed and as a
consequence, is characteristic of the users. Therefore, we find that the model up-
dates nonetheless encode individual-specific information and introduce significant
deanonymization risks. Apart from constituting a privacy violation, deanonymiza-
tion in federated learning undermines existing mechanisms to ensure the source of
model updates are masked. Furthermore, deanonymization amplifies effectiveness
of recent inference attacks (e.g., attribute inference (Melis et al., 2019)), as identities
can be tied to sensitive attributes inferred from the participants’ private training
data.

We investigate deanonymization risks and consequences by following the popular
Federated Averaging algorithm (McMahan et al., 2017; Bonawitz et al., 2019), where
participating devices intermittently communicate de-identified model parameter
updates to a server. Here, the high-dimensional updates are a product of multiple
gradient steps on multiple batches of the local device data. We assume honest-but-
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Figure 5.1: Deanonymization in federated learning. In this chapter, we study how subtle
user-biases captured in model parameter updates leads to deanonymization of
their devices.

curious server who intends to deanonymize participating devices (Fig. 5.1c) with
limited access to prior information of users (Fig. 5.1d). Central to our deanonymiza-
tion attack is exploiting subtle, but inherent, individual- specific biases introduced
when participants collect data on personal devices. For instance, Alice capturing more
photos of automobiles on her mobile device compared to Bob, who photographs
food. Our approach learns a suitable representation where the biases (modeled
from limited prior data) can be leveraged to re-identify individuals via their model
updates.

We evaluate deanonymization risks in a federated learning setup when training
complex models (e.g., MobileNet CNNs (Howard et al., 2017)) involving numerous
participants (53-327 users). Furthermore, we use real-world (anonymized) user-
generated datasets (e.g., PIPA, Blog) to closely emulate existing federated learning
applications (McMahan et al., 2017; McMahan et al., 2018). Our evaluation indicates
that participants can be consistently deanonymized across a range of scenarios. For
instance, individuals transmitting model updates for an image classifier (with output
classes e.g., chair, umbrella) on PIPA dataset are re-identified with high accuracy
(19-175× chance-level). Furthermore, we find the attacks surprisingly possible in
spite of a range of data-limited scenarios, such as when the adversary has only a
single prior example of the targeted individual.

Moreover, we propose a novel cross-modal attack which tackles a challenging
scenario when the attacker’s prior information varies in modality from the private
data used during training by the participants. For instance, the attacker leverages text
information, while the participants are training using image data. Our experiments
indicate that in spite of the cross-modal challenge, attacks are quite effective (0.76

AUC).
It is worth noting that our deanonymization attack can also amplify the per-

formance of recent attacks that infer sensitive properties of the training data. For
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example, we show that learning an attack model to jointly perform deanonymization
and attribute inference (Melis et al., 2019) are synergistic, with a consistent improve-
ment of up to 4% accuracy on both tasks. These results are further concerning, as
sensitive attributes can be linked to identities of participants in federated learning.

After demonstrating the the risks of deanonymization in federated learning, we
explore countermeasures to mitigate the threat. We propose augmenting users’ data
distribution with an adversarial bias to decouple users’ subtle variations from their
prior information. As a result, we propose the first mitigation strategy that directly
operates on the user data itself, while maintaining utility of the task. We find our
strategy mitigate attacks with up to 95% effectiveness and incurs only negligible cost
on the underlying task performance. In contrast, we find perturbation- and DP-based
training approaches (e.g., DP-FedAvg (McMahan et al., 2018)) incur large privacy
and utility costs in our setup as they are typically effective only when training with
a massive number of users (in the order of thousands).

5.2 background, notation and terminology

In this section, we provide the preliminaries to Federated Learning, within which
we explore our threat model in the next section. At this point, we remark that
research towards a Federated Learning system encompasses among many other
things, architecture (Bonawitz et al., 2019), optimization techniques (Konečnỳ et al.,
2016a; McMahan et al., 2017), strategies to improve communication (Konečnỳ et al.,
2016b), aggregation (Bonawitz et al., 2017), implementation (Abadi et al., 2016a),
and applications (Chen et al., 2019; Yang et al., 2018; Hard et al., 2018). To keep
the background in this section concise, we present key concepts to understand:
(i) how devices generate model parameter updates using the FederatedAveraging

(McMahan et al., 2018) algorithm; and (ii) how users anonymously communicate the
parameter updates to the server in FL (Bonawitz et al., 2019; Melis et al., 2019; Nasr
et al., 2019).

Notation and learning objective. In supervised learning, the overall objective is
to learn a mapping fw : X → Y of a model f parameterized by w ∈ R. The idea is
to learn the parameters which minimizes the empirical risk represented by a loss
function L on a dataset D = {(xi, yi)}n

i=1:

ŵ = arg min
w

H(w) = arg min
w

1
n ∑

i
L( fw(xi), yi) (5.1)

In FL, data is partitioned across multiple devices k ∈ K: D =
⋃

kDk. Using Hk(w)
to denote the objective solved locally on device k, the objective in Equation 5.1 can
now be re-written as:

ŵ = arg min
w

K

∑
k=1

nk
n

Hk(w) (5.2)



5.2 background, notation and terminology 63

Algorithm 1: FederatedAveraging (McMahan et al., 2017) for training data
on multiple devices

Server’s algorithm:
Input: K devices; T number of rounds; C fraction of devices sampled each

round; B device’s batch size; E number of local epochs
Randomly initialize wt=0

for round t← 1 to T do
M← max(1, C · K)
Kt ← sample M devices from K

for client k ∈ Kt do
∆wt+1

k ← DeviceUpdate(k, wt)
end
wt+1 ← wt + ∑k∈Kt

nk
n ∆wt+1

k
end

DeviceUpdate(k, wt) :

B ← split local data Dprivate
k into batches of size B

w← wt

for local epoch i← 1 to E do
for batch b ∈ B do

w← w− η∇L( fw; b)
end

end
∆w← wt −w
return ∆w

Federated averaging algorithm. Given the data Dk partitioned among devices
k ∈ K, the objective is to learn parameters w of the model fw, in the presence of
a server S. We use the popular FederatedAveraging algorithm (McMahan et al.,
2017; McMahan and Ramage, 2017) (Algorithm 1) proposed specifically to perform
training on non-IID and imbalanced decentralized data; this has also served as the
footing for multiple prior works (Geyer et al., 2017; McMahan et al., 2018; Bonawitz
et al., 2017; Smith et al., 2017). The idea here is that training occurs over multiple
rounds, where in each round t, a fraction of devices k ∈ Kt train models fw using the
local data Dprivate

k and only communicate incremental model update ∆wt
k towards

the server’s global model wt. The server aggregates (such as by averaging) parameter
updates from multiple devices and shares back an updated improved model after
each round. Over multiple rounds of communications, the devices converge to model
parameters wT that has been effectively learnt from all the data D, without their raw
data ever being communicated to the server or another device. It should be noted
that although we consider the simple FederatedAveraging algorithm, we expect
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our results to generalize to a broad class of decentralized algorithms which involve
periodically exchanging model parameter updates.

De-identification in federated learning. A number of precautions are employed
to ensure any identifiable information is stripped away from per-device update
reports (which includes parameter updates ∆wt

k and additional metadata). We first
iterate over de-identification strategies employed on-device. The client is initially
registered into the FL process by being assigned population identifier (Yang et al.,
2018) and thereby bypassing the need to authenticate with a device or user identity
(Bonawitz et al., 2019). When possible, PII information is stripped away from the
training data (Hard et al., 2018) prior to training on-device. After a number of
local training steps, the parameter updates ∆wt

k along with anonymized operational
metrics (Yang et al., 2018) is transmitted by the device. A (trusted) shuffler (Bittau
et al., 2017) can be additionally employed to ensure the transmitted per-device
update reports are further sanitized before reaching the server. The shuffler typically
strips away a range of user-specific metadata (e.g., IP addresses, routing details) and
batches the reports (reordering updates to disassociate timing ordering information).
On the whole, multiple mechanism are in-place to ensure that only the essence of
the update-reports (i.e., the parameter updates ∆wt

k) are received by the server to
aggregate updates. Consequently, for the rest of the chapter, we assume access to
only the parameter updates to perform deanonymization.

5.3 deanonymization attacks in federated learning

In this section, we begin by presenting our threat model to deanonymize devices.
We then discuss an insight to why this threat arises and work towards our attack
models.

5.3.1 Threat Model

To highlight deanonymization risks in Federated Learning (McMahan et al., 2017),
we analyze a scenario with K honest users (K ≥ 2) who collaboratively train an ML
model fw : X → Y over multiple rounds. A server S co-ordinates the training, by
periodically collecting model updates from a random subset of users. The model
update communicated by each user is a result of performing multiple gradient
steps over multiple batches on their local private data (see DeviceUpdate(.) in Algo.
1). Furthermore, the model updates are stripped of identifiable metadata (Hard
et al., 2018; Bonawitz et al., 2017; Yang et al., 2018) (e.g., device identifiers) and
are optionally shuffled (Bittau et al., 2017) to obscure the source of each individual
update. Prior to summarizing information from multiple updates, we assume the
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server observes only the essence of per-user model update (i.e., parameter updates
∆wt

anon) to improve fw.
We investigate deanonymization through the lens of an honest-but-curious server

(the ‘adversary’) during the training process who uses the model update as an attack
surface. The inference-time objective of the adversary is to deanonymize the model
update i.e., re-identify the user u who generated ∆wt

anon. Such a deanonymization
objective undermines sanitization mechanisms which de-identify model updates,
such as decoupling the update from user identity (Bonawitz et al., 2019), stripping
away identifiable metadata (Hard et al., 2018; Yang et al., 2018), and blind-shuffling
mechanisms (Bittau et al., 2017). Furthermore, deanonymization also serves as a
stepping stone for amplifying information recovered from other inference attacks.
For instance, as we show later in §5.5.1.3, deanonymization can be coupled with
attribute inference attacks to improve attack performances and further associate
recovered attributes with identities.

To deanonymize, the adversary leverages limited prior knowledge of users. For-
mally, our threat model performs:

f adv : ∆wt
anon ×Dprior

u → u ?
= anon (5.3)

Here, ∆wt
anon is the deanonymization target, which is a result of an anonymous user

taking multiple gradient steps on her local data Dprivate
anon . The adversary’s auxiliary

knowledge of users is denoted by {Dprior
u : u ∈ U}. We assume Dprior

u represents a
limited set of data generated by user u and is distinct from their private data i.e.,
Dprior ∩Dprivate

u = ∅ ∀u ∈ U. For instance, historical data collected by the service,
or content publicly shared by the users. In Section 5.4.2, we further elaborate on
how we model the adversary’s prior knowledge, as it plays a significant role in
deanonymization attacks.

5.3.2 Selection Bias and Biased Estimators

The core idea of our threat model is to use users’ selection bias as an identification
cue, which we hypothesize (and shortly verify) is consistent among both the users’
prior data (known to adversary) and private device data (unknown to adversary).
This implicit user selection biases arise from behavioral factors (Fadem, 2012; Hernán
et al., 2004; Berk, 1983) that results in subtle variations of how humans capture data.
For instance, Alice’s interest in automobiles might result in more variations of cars
captured in her text/photos, compared to Bob whose interest lies in sports. At this
point, we remark that this results in a non-IID data distribution among data on users
and devices, which is well-known in FL literature (McMahan et al., 2017; Bonawitz
et al., 2019). However, we do identify and exploit the property that although the data
is non-IID among users (large inter-user distances), the data displays lesser variation
within data generated by the same user (small intra-user distances).
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Figure 5.2: Variations in user data. Each point represents distances computed over the image
set of a single user.

To validate the assumption, we now present an experiment to quantify user
variations on two public image datasets (PIPA (Zhang et al., 2015) and OpenImages
(Krasin et al., 2017)). In both cases, we (i) group the images based on the real-world
user who captured them using the corresponding author fields; and (ii) vectorize
images by extracting the 1024-dim avgpool features from MobileNet CNN (Howard
et al., 2017) and L2-normalize them. We obtain statistics for each user by computing
two L2 distances: (a) intra-user distance: median image feature distance between
images within each user; and (b) inter-user distance: median image distance between
user images and a set of random images. We plot these distances per user on a
scatter plot in Figure 5.2, each point indicating a distinct user. If images captured
by the users were unbiased, we would have found their corresponding points at
the intersection of blue dashed lines. However, points predominantly being above
the diagonal indicates that examples within each users’ collection are similar (low
intra-user distances), but are greater (high inter-user distances) when compared to
other user collections. In Section 5.5.2.4, we further analyze how similar user-specific
variations also arise in the parameter delta space.

The resulting non-IID distribution of user data Du among devices leads to each
device fitting a biased estimator during the DeviceUpdate step (Algo. 1) with a bias
error: Bias[wu] = E[wu]−w∗, where the expectation term is over the user’s training
data Du and w∗ is the optimal estimator. We conjecture (validated in §5.5.2.4) that
the bias error signal is consistently encoded in both: (i) the parameter updates
transmitted by user’s device ∆wt

u; and (ii) when estimating on prior data of the
user wprior

u = SGD(Dprior
u ). Hence, we reformulate the threat model (Eq. 5.3) in the

parameter update space:

f adv : ∆wprior
u × ∆wt

anon → u ?
= anon (5.4)

Next, we look at attack models to learn this mapping.
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Figure 5.3: Architectures of attack models. Dotted lines indicate shared layers.

5.3.3 Attacks

In this section, we present attack models to deanonymize users based on their model
updates (Eq. 5.4).

Re-identification attack. In the re-identification scenario, the adversary leverages
prior data to learn before-hand (via attack model f re-id) what updates from targeted
users look like. The adversary then uses the attack model to re-identify users based
on their anonymous update. Formally, the re-identification attack involves training
an attack model f re-id : ∆wprior

u → u to capture user-specific bias signals in the
high-dimensional parameter delta space. At test-time, users are re-identified using
their model updates:

f re-id : ∆wanon → u (5.5)

For the re-identification attack model f re-id, we adopt a Multilayer Perceptron (MLP)
classifier (architecture in Fig. 5.3a) with a single hidden layer of 128 units and ReLU
activation, trained using SGD with learning rate (LR) 0.01, 0.9 momentum and 10−6

LR decay.

Matching attack. Instead of learning an update-to-user mapping, the adversary in
the matching scenario learns a metric space among model updates. Learning a metric
space helps embed model updates close together if they are generated by the same
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user, independent of whether the user is a part of the adversary’s prior knowledge
base. Formally, the adversary’s objective is to predict the match probability of a pair
of distinct parameter updates:

f mat : (∆wi, ∆wj)→ i ?
= j (5.6)

where one or both parameter updates are anonymous. The matching attack is
particular helpful in scenarios where the adversary encounters novel users at test-
time (§5.5.1.2), or extending to cross-modal situations (discussed in next paragraph).
We adopt a Siamese network (Bromley et al., 1994) with metric learning (Weinberger
et al., 2006) to perform the matching attack. A Siamese model is characterized by twin
networks which accepts distinct inputs (∆wi and ∆wj in our case) and is connected by
another network to estimate similarity between the individual embeddings produced
by the twin networks. In addition, the weights of the twin networks are shared to
ensure extremely similar inputs are not mapped to distant embeddings. Our Siamese
network (architecture in Fig. 5.3b) is constructed as : (a) two FC-128 layers with
ReLU activations which individually encodes ∆wi, ∆wj into a 128-dim embedding;
(b) L1 distance layer to represent distance between these embeddings; and (c) FC-1
layer with sigmoid activation to predict the match probability. We minimize the
binary-cross entropy loss and perform optimization using RMSProp with learning
rate 10−3.

Cross-modal matching attack. We extend the matching attack to accommodate
the situation where the modality of attacker’s prior knowledge (e.g., text) differs
from the private data (e.g., visual data) used by the users during training. In such a
scenario, parameter updates can no longer be represented in the same space (as in
Eq. 5.4,5.6). As a result, the cross-modal matching attack performs:

f cm-mat : (∆wanon, φu)→ anon ?
= u (5.7)

where φu ∈ RD denotes an embedding of the user’s prior data Dprior
u . In §5.5.1.1, we

discuss exactly how we obtain such an embedding. The attack model (architecture
in Fig. 5.3c) to estimate the match probability closely resembles the Siamese network
for the matching attack. The only modification is replacing the twin networks with
two different networks (each with a single FC-128 layer) to map the inputs into a
common 128-dim feature space.

5.4 experimental setup : datasets , tasks , and models

In this section, we discuss the experimental setup and datasets (summarized in
Table 5.1) used to train and evaluate the collaboratively learnt ML model in an FL
setup.
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Dataset (D) Task # Users N Input (X ) Output (Y) Model ( fw)

PIPA Multi-label class. 53 33K Image Labels CNN-PIPA-FL

OpenImages Multi-label class. 327 317K Image Labels CNN-OI-FL

Blog Language Modeling 55 454K Text Text NNLM-FL

Yelp Sentiment Analysis 118 85.6K Text Score NNSA-FL

Table 5.1: Datasets D and models fw. List of datasets used along with corresponding statis-
tics, tasks, and models.

......
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Not a bad place but not a great place 
either.  This was probably the only place 
my wife and I had ... - ̣̣̣̤̤

WOW!  Freakin awesome pizza!  My wife 
and I were in The District for a mid-
afternoon walk...not even - ̣̣̣̣̣

If I were on my deathbed, I would request 
to be wheeled over to eat at Bacio 
because it would feel l... - - ̣̤̤̤̤

This place is SO good. I'm so glad I finally 
had the opportunity to give them a try! ... 
- ̣̣̣̣̣

Meh, it was just an okay visit. I think I've 
been a bit spoiled by the other location 
because this... - ̣̣̣̤̤

My goodness?!? How do they stay in 
business?! ... - - ̣̤̤̤̤
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Figure 5.4: Examples of users and corresponding data. OpenImages (top) and Yelp (bottom).
Images here are grouped by the anonymized userid and captured/review date.
Qualitatively, we observe that the difference between users’ data is typically
subtle.

5.4.1 Datasets

We now present the datasets (Table 5.1, examples in Fig. 5.4) used to train and
evaluate the collaboratively trained models fw. We highlight that the datasets used
are well-suited since: (a) they are publicly available; (b) samples are annotated with
non-private labels (e.g., tv, flower); (c) examples are complex and realistic; and (d)
each training example has a notion of “owner” or “user”. Property (d) is particularly
important in FL scenarios, as it allows us to partition and distribute data on devices
based on user identities. Each of the following paragraphs discusses the (i) dataset
D; (ii) corresponding task X → Y ; and (iii) training model fw : X → Y to perform
the task.

(i) PIPA. PIPA (Zhang et al., 2015) is a dataset consisting of ∼37k personal photos
uploaded by actual Flickr users (indicated in the author field in Flickr photo meta-
data). To assure certain minimal amount of per-user data, we only use users with at
least 100 images, resulting in 33K images over 53 users. We obtain labels for each im-
age by running a state-of-the-art object detector (Huang et al., 2017b) that detects 80

COCO (Lin et al., 2014) classes, such as umbrella, backpack, and bicycle. To perform
reasonable training and evaluation of the multilabel classification task, we use 19



70 understanding and controlling deanonymization in federated learning

classes (e.g., chair, cup, tv) that occur in approximately >1% of images with high
precision. We train a multi-label image classifier CNN-PIPA-FL fw : R224×224×3 → R19,
for this dataset in an FL setup. We use the MobileNet (Howard et al., 2017) ar-
chitecture designed specifically to be run on mobile devices, as it is a lightweight
architecture that strikes a good balance between latency, accuracy and size.

(ii) OpenImages. OpenImages (Krasin et al., 2017) is a large-scale public dataset
from Google, consisting of 9M Flickr image URLs and weakly labeled image-level
annotations across 19.8k classes. To make training feasible, we prune out users with
less than 500 images, resulting in 317k images from 327 users annotated with 18

classes (e.g., food, building). Furthermore, images of the same user can cover a
wide time span (typically >5 years). Similar to PIPA, we formulate the training of a
multi-label image classifier CNN-OI-FL based on the MobileNet architecture.

(iii) Blog Authorship. The Blog Authorship Corpus (Schler et al., 2006) contains
∼681K posts collected from 19K bloggers from blogger.com. We work with a subset
of 55 users with at least 1000 corresponding posts. Since these blog posts are lengthy
(13.5 sentences, 209 words per post), we further split each post into corresponding
sentences. As a result, we obtain 454K text sequences over 55 users. We train a
language model (NNLM-FL): P(xt|xt−i, · · · , xt−1; w) i.e., predicting probability distri-
bution of the next word xt in a sequence given contextual information. Language
models trained in an FL architecture are currently deployed to enable smart compose
keyboards (Yang et al., 2018). We train a Neural Network Language Model (Bengio
et al., 2003) using an embedding layer (with E=100 dims), LSTM layer (Hochreiter
and Schmidhuber, 1997) (with L=64 hidden units), and a fully-connected layer (with
vocabulary size V=5000).

(iv) Yelp. The Yelp Dataset (Challenge, 2013) contains ∼6M user-reviews of 188K
businesses. To allow for each user contributing meaningful parameter deltas, we
filter users with at least 500 total reviews. This results in 85K user reviews over
118 users. Each user review contains text (mean length = 180 words) and a 1-5
star rating. We train a sentiment analyzer, modeled as a neural network regressor:
y = fw([x1, x2, · · · ]), where y ∈ [1, 5] is the rating and xi is a representation of i-th
word in the review. We use a standard recurrent neural network architecture with
an embedding size of E=50, L=128 hidden LSTM units, and a vocabulary size of
V=1000.

5.4.2 Data Setup for Adversarial Knowledge

The datasets collected (Table 5.1) contain sets of user-specific data Du = {(xi, yi)}nu
i=1

over users u ∈ U. A limited subset of this data is strategically held-out to model the
adversary’s prior knowledge Dprior

u , and the remaining used as the users’ private

blogger.com
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training data Dprivate
u . We consider multiple prior-data limitation strategies to sys-

tematically study their influence on deanonymization attacks: (i) limiting the subset
of users the adversary has prior knowledge on (§5.4.2.1); and (ii) limiting the amount
and quality of prior knowledge (§5.4.2.2).

5.4.2.1 User Scenarios

To tackle the case where a subset of participating users in FL may or may not be a
part of adversary’s prior knowledge database, we set-up two scenarios:

Closed-world. The adversary has some prior information on all users participating
anonymously in FL. Consequently, deanonymization of a particular device always
maps to a closed-set of ‘seen’ users. This scenario captures instances of silo-based
federated learning scenarios, which typically involve a small number of organizations
(the users).

Open-world. We extend the above world to additionally include ‘unseen’ users
during FL, for which the adversary does not have prior information. Hence, a
parameter delta ∆wanon could map either to a seen or an unseen user. This presents
a challenging scenario, as it leads to ‘finding a needle in a haystack’ i.e, the adversary
wants to re-identify a particular target user in spite of background noise generated
by many unseen users.

5.4.2.2 Type of Prior Knowledge

To understand the role of prior information in a systematic manner, we consider
both the amount and distribution of adversary’s prior information w.r.t private data
on the FL device. Specifically for the distribution, we model both Dprior

u and Dprivate
u

to be sampled (without replacement) from user u’s universal data distribution Du in
one of the four following manners.

(i) random prior. Both the prior and private data are IID samples from Du i.e.,

Dprior
u ,Dprivate

u
iid∼ Du This scenario captures the adversary scraping information on

target user u randomly from various social media sources.

(ii) chrono prior. We also consider both prior and private data to be sampled non-
IID from Du by factoring in timestamps of data (e.g., from image EXIF metadata).
Here, data in Dprior

u chronologically precedes data in Dprivate
u For instance, this could

occur when an adversary has historical data on the targeted user, such as from a
previously de-identified account. In the specific case of the PIPA dataset, where
the exact timestamp per example is unavailable, we sample prior and private data
non-IID using album information (photoset field).
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PIPA

split random chrono

CNN-PIPA-FL 45.1 37.7

CNN-PIPA-SGD 49.7 40.7

K-NN 14.9 15.8

Chance 9.5 9.7

OpenImages

split random chrono

CNN-OI-FL 62.9 62.2

CNN-OI-SGD 68.0 67.8

K-NN 9.7 13.6

Chance 6.3 6.3

Blog

split random chrono

NNLM-FL 28.02 27.83

NNLM-SGD 28.62 28.22

Chance 0.09 0.09

Yelp

split random chrono

NNSA-FL 0.716 0.708

NNSA-SGD 0.576 0.602

Chance 1.472 1.514

Table 5.2: Evaluation of fw. Datasets from Table 5.1. Metrics used are: (a) PIPA: Average
Precision (AP) (b) OpenImages: Average Precision (AP) (c) Blog: Top5 accuracy (d)
Yelp: Mean Absolute Error (MAE). For (a-c), higher is better and for (d), lower is
better.

(iii) profile prior. We briefly address a scenario where the adversary uses a set
of curated ‘profile’ data as a proxy to users’ data. For instance, by curating targeted
prior data Dprior

u to specifically contain weapons to identify participating users who
fit that profile.

(iv) cross-model prior. We consider the case where adversary’s prior data of the
user Dprior

u is gathered from a different modality compared to the private data. For
instance, where the prior data is text-based, but the users train on visual data.

5.4.3 Collaborative Models: Training and Performance

In Section 5.4.1, we discussed details on the datasets and corresponding model
architectures fw. Section 5.4.2 presented how we strategically hold-out a subset
of the data to serve as adversary’s prior knowledge. Now we discuss setup and
performances of collaborative models in our FL setting.

Training models fw. For each dataset, we train models fw using FederatedAveraging

(Algorithm 1) (McMahan et al., 2017). For all models, crucial hyper-parameters (e.g.,
size of vocabulary or embedding) were selected carefully after rigorous evaluation
over a set of standard choices. In FederatedAveraging algorithm, we use C=0.1 and
E=1, which we empirically find results in a good trade-off between convergence and
communications required. We train the models for 200 epochs with learning rate
η=0.01, resulting in 1-4 GPU days to train a single model for a particular architecture,
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dataset and scenario. All models are written in Python using the Keras (Chollet et al.,
2015) library with a TensorFlow (Abadi et al., 2016a) back-end.

Each user u in our datasets is associated with a variable number of examples
Du sampled according to some distribution (e.g., chrono; see §5.4.2.1). By default,
we place half of the users’ data Du on their anonymous device and reserve the
remaining to be used as adversary’s prior knowledge. In Section 5.5.2.1, we vary the
size of the adversary’s prior knowledge and find attacks possible even in severely
data-limited settings (e.g., 1-50 prior samples).

Evaluation of fw. We evaluate performance of the collaboratively-trained models
on a 20% held-out test set. For reference, we similarly evaluate models trained in a
centralized manner i.e., standard training from a single pool of training data. The
performances of FL-trained models (represented as ‘X-FL’) and SGD-trained models
(‘X-SGD’) are presented in Table 5.2. When possible, we also present the K-Nearest
Neighbours (KNN, with K=10) baseline. We observe strong performances of the
FL-trained models fw across all datasets, where they consistency recover 80− 98%
performance of models trained using centralized SGD.

5.5 evaluation

In the previous section, we discussed training ML models in an FL setup for four
different datasets covering various tasks such as image classification and language
modeling. Within this FL scenario, we now detail the training of deanonymization
attack models (§5.3.3), evaluate their effectiveness, and work towards understanding
how the parameter updates leak user-identifiable information.

Evaluation metrics. We use the following metrics (computed using scikit-learn
(Pedregosa et al., 2011)) to evaluate the adversary’s attack performance: (i) Mean
Average Precision (AP): Adversary’s precision-recall curves for held-out user data
is computed. We then compute the per-user Average Precision (area under the
precision-recall curves). We report the mean of Average Precisions across users in
percentages (i.e., AP×100); (ii) Increase over Chance: In order to analyze adversary’s
information gain, we compute this as (predicted AP)/(chance AP). We display this
alongside AP scores in the form: �×; and (iii) Top-1 accuracy: We compute the
classification success rates over all parameter updates in the test set. These metrics
are common among classification tasks e.g., (Everingham et al., 2010b; Lin et al.,
2014; Wang et al., 2016) for AP and (Krizhevsky et al., 2012; He et al., 2016a; Deng
et al., 2009) for Top-1 accuracy. We use the AP as the primary metric, since it also
takes into account ranking among predicted classes.

Training and evaluation data for attacker f adv. We train the ML models ( fw in
Table 5.1) in an FL system simultaneously using two disjoint sets of devices per
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PIPA (#Users U = 53)

random chrono

AP Top-1 Top-5 AP Top-1 Top-5

MLP 91.0 (48×) 84.7 96.3 42.2 (22×) 40.0 68.8

SVM 81.3 (43×) 89.3 91.9 27.7 (15×) 43.7 49.6

kNN 85.4 (45×) 82.6 92.6 31.5 (17×) 38.4 54.8

Chance 1.9 (1×) 2.0 9.9 1.9 (1×) 2.0 9.9

OpenImages (U = 327)

random chrono

AP Top-1 Top-5 AP Top-1 Top-5

MLP 53.7 (175×) 51.9 77.9 32.5 (106×) 31.9 57.1

SVM 49.0 (159×) 66.5 67.0 24.6 (80×) 41.7 42.5

kNN 46.0 (150×) 49.2 63.9 25.1 (82×) 30.3 43.1

Chance 0.3 (1×) 0.3 1.5 0.3 (1×) 0.3 1.5

Blog (U = 55)

random chrono

AP Top-1 Top-5 AP Top-1 Top-5

MLP 52.9 (29×) 50.1 89.9 44.8 (25×) 47.6 81.3

SVM 35.7 (20×) 46.3 49.2 27.0 (15×) 42.1 46.0

kNN 35.6 (20×) 39.8 64.9 29.5 (16×) 35.6 58.3

Chance 1.8 (1×) 1.7 8.8 1.8 (1×) 1.6 8.8

Yelp (U = 118)

random chrono

AP Top-1 Top-5 AP Top-1 Top-5

MLP 23.5 (28×) 25.2 50.1 16.0 (19×) 18.9 38.9

SVM 25.9 (31×) 43.2 44.9 17.1 (20×) 33.3 36.7

kNN 21.6 (25×) 25.3 41.1 15.4 (18×) 21.0 32.9

Chance 0.9 (1×) 0.8 4.1 0.9 (1×) 0.9 4.3

Table 5.3: Re-identification Attack Evaluation (∆wanon → u). Performed in a closed-world.
Chance-level AP ≈ 1/U.
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user: (a) Kanon: anonymous user devices (that adversary wants to deanonymize);
and (b) Kprior: adversary’s shadow devices containing target users’ prior information
(that we use to generate training data for attack models in §5.3.3). For simplicity,
we restrict each of these sets to contain a single user. During training of fw over
multiple rounds, we accumulate the parameter updates ∆wt

k communicated by all
devices in FL. To train the attack models f adv, we use the set of parameter updates
{(∆wt

k, u) : k ∈ Kprior}, where we know a priori the device k to user u mapping.
We discuss in detail training data-limited adversaries in Section 5.5.2.1. We evaluate
attacks on the disjoint set of parameter updates {∆(wt

k, u) : k ∈ Kanon}.

Representing ∆wt
k for attacks. The parameter updates contain hundred thousands

to millions of parameters. To enable faster training and evaluation of attack models,
we choose a subset of parameters by representing ∆wt

k using weights of layers which
achieves best attack performance: (i) CNN-PIPA-FL, CNN-OI-FL: Fully Connected
Layer (19K parameters); (ii) NNLM-FL: LSTM layer (10K parameters); and (iii) NNSA-FL:
Embedding layer (50K parameters). This has little impact to our attack; influence of
each layer is discussed in Section 5.5.2.2. Furthermore, we flatten ∆wt

k into a vector
and L2 normalize it.

5.5.1 Effectiveness of Deanonymization Attacks

In this section, we validate effectiveness of the deanonymization attacks. We begin by
understanding the effectiveness in relation to adversary’s prior knowledge (§5.5.1.1
and §5.5.1.2) and discuss how it can be coupled with attribute inference attacks
(§5.5.1.3).

5.5.1.1 Impact of Adversary’s Prior Distributions

In this section, we focus on how types of adversary’s prior knowledge (§5.4.2.2)
influences effectiveness of deanonymization. Consequently, we address a range of
scenarios, such as when the adversary has similar (random) or historical prior data
(chrono) of the targeted users to perform deanonymization. We also evaluate the
novel challenge where the prior data is from a different modality (cross-modal).

Leveraging random and chrono prior to deanonymize. We present key results
of the re-identification attack model ‘MLP’ (§5.3.3): f re-id : ∆wt

anon → u (in a
closed-world setting) in Table 5.3. In addition, as baseline attack methods, we also
demonstrate performances of ‘SVM’ (a linear support vector machine) and ‘kNN’ (a
k-nearest neighour classifier using k=10).

From the results presented in Table 5.3, we observe: (i) All deanonymization attacks
greatly outperform chance-level performances, with as much as 175× boost for MLP
on the OpenImages dataset under the random prior, highlighting the effectiveness
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of the proposed deanonymization attack; (ii) Even the most simple K-NN attack is
reasonably effective and already presents a significant threat (150× over random
chance on OpenImages, random prior); (iii) MLP is highly effective across all datasets
and splits (175× over random chance on OpenImages, random prior); (iv) Although
the absolute AP scores are lower for the more challenging and larger OpenImages
dataset (53.7% AP on random prior), the increase over chance level performance
is significantly higher (48× on PIPA vs. 175× on OpenImages under the same
random prior); (v) The attack is effective (19-106×) even on chrono priors, where the
adversary uses historical prior information to deanonymize users.

The above experiments were performed in a non-IID data-distribution among
devices, which is natural in FL since users participate with personal data exhibiting
unique biases (§5.3.2). We also perform attack evaluation in a contrasting IID setup,
where we manually unbias data on devices by replacing each user example with an
example drawn IID from D =

⋃
kDk. We observed near-chance-level adversary per-

formance (e.g., 1.5× chance-level for PIPA) since user data is no longer characteristic.
There is strong evidence that anonymous model parameter updates contain ample
user information in an FL setup that allows for effective deanonymization.

Cross-modal attacks. We now evaluate the effectiveness of deanonymization at-
tacks with a cross-modal prior (Section 5.4.2.2). Here, the adversary is limited to
prior knowledge from a different modality from the data used during training by
the users. In particular, we consider the case where the prior data consists of text
samples and the private data consists of images. As we are not aware of any dataset
which provides cross-modal user-generated data to evaluate the attack, we substitute
PIPA prior image samples with corresponding text-representations obtained using
a Neural Image Caption generator (Vinyals et al., 2015). Using this setup, we train

the cross-modal matching network f cm-mat : (∆wanon, φu) → anon ?
= u (Eq. 5.7).

To obtain a compact text representation φu over the prior knowledge (set of text
sentences for a particular user), we: (i) obtain the 4096-dim sentence-level embed-
ding using InferSent (Conneau et al., 2017); and (ii) compute the mean over the
sentence embeddings for the user. We evaluate f cm-mat on a balanced set of 10K pairs
{((∆wanon, φu),1anon=u)}. We observe an attack performance of 76.3 AP (chance =
50.0 AP), indicating that model updates can be interestingly deanonymized even
using data from another modality.

Attacking using profile prior. In the previous attacks we looked at the task of
deanonymizing devices by associating the parameter updates to prior data of users.
We now look at a slightly different task of linking devices that fit a certain profile

prior. We achieve this by manually constructing Dprofile to comprise of examples
of interest e.g., weapons. In Figure 5.5 we display the top users (in the OpenIm-
ages dataset) found using the re-identification attack who fit the corresponding
profiles. We observe: (i) devices can be remarkably singled out using various proxy
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Figure 5.5: profile prior. Devices can be isolated using proxy distributions of certain profiles
e.g., guitars. Rows denote private data Dprivate

u of users on devices.

distributions (of e.g., handgun, guitar) circumventing the need for real user data; (ii)
however, valid correlations in data can sometimes lead to false positives. For instance,
‘dumbbells’ which often co-occur in images along with other physical equipment
devices leads to bicycle images of user 128 (which also displays similar correlations)
being falsely identified.

5.5.1.2 Impact of Number of Seen and Unseen Users

In the previous section, we evaluated attacks in a closed-world scenario (§5.4.2.1),
where the adversary was aware of every users’ existence (i.e., included in prior
knowledge). We now consider the open-world scenario, where at test-time the
adversary additionally encounters model updates generated by unseen users (i.e.,
not in the prior knowledge). This introduces the challenge of differentiating between
seen and unseen identities when deanonymizing.

User split. In our experimental setup, we split the users U into three variably-
sized disjoint sets: (a) Uunseen: prior data is unavailable and should be classified as
unseen at test-time; (b) Useen: prior data is available and should be deanonymized
at test-time; and (c) Uholdout: these users are reserved purely for training purposes.

Re-identification setup. Previously in the closed-world scenario, we trained the
MLP (§5.3.3) classifier f re-id : ∆wk → u with |U| classes representing all users at
test time. Now we train a similar classifier over |Useen|+ 1 output classes with the
additional class unseen collectively denoting unseen users. During training, we use
users Uholdout and their parameter updates to train the unseen class.
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Figure 5.6: Open-world evaluation. Across re-identification (MLP) and matching (Siamese)
attack models.

Matching setup. We train a Siamese network (§5.3.3) using parameter updates
from held-out and seen set of users. Given a pair (∆wi, ∆wj), the network predicts
the probability P[i = j] of being generated by the same user.

Evaluation. The performances are evaluated at different ratios of seen and unseen
users at test time. We keep the size of the hold-out set constant to one-third of
the total number of users. Evaluation for both re-identification and matching tasks
on the challenging chrono prior distributions per dataset are presented in Figure
5.6. We observe: (i) even in the open-world scenario, we perform much higher
than chance-level for both the tasks consistently across a wide range of seen vs.
unseen scenarios; (ii) for the re-identification attack, as % seen users increase, the
complexity of the task increases as well (due to larger output-space). Hence, we notice
a drop in AP performance (67%→43% in PIPA). However, performance compared
to chance-level significantly increases (3× →14×); (iii) in the matching task, the
Siamese model performs much higher than chance-level even in a purely open-world
setting, with no seen users (1.5× for PIPA and 1.8× for OpenImages). We find both
the re-identification and matching attacks generalize well in the presence of unseen
users at test time.
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STL MTL

Attributes # Attrs AttrInf Deanon AttrInf Deanon

Age 5 89.1 - 90.8 90.9

Gender 2 93.1 - 94.4 91.6

Glasses 3 98.5 - 98.9 91.3

Hair Color 3 85.2 - 88.7 90.1

Hair Length 5 91.3 - 91.3 90.1

- - - 87.6 - -

Table 5.4: Attribute inference and deanonymization attack performances. Results are re-
ported in top-1 accuracies. Columns indicate when the inference tasks are trained
individually (STL) and jointly (MTL).

5.5.1.3 Amplification with Attribute Inference Attacks

We now discuss how deanonymization attacks can be coupled with related inference
attacks on model updates. Specifically, we consider the recent attribute inference
attack (Melis et al., 2019), which recovers sensitive properties (e.g., race) that holds for
subsets of training data. In this particular case, our attack objective involves jointly
inferring both identity (via our deanonymization attacks) and sensitive attributes
(via attribute inference attacks) via transmitted model updates.

To evaluate the attacks, we closely follow the data setup on Melis et al. (Melis
et al., 2019) on the PIPA dataset. Attribute inference in this setting involves inferring
sensitive attributes (e.g., age) from the model updates. To this end, we first train
individual attribute classification models for each of the five attributes, and an
additional re-identification model. All the classification models are MLPs following
the architecture of the re-identification model. Table 5.4 (column STL) presents results
over the five attribute inference (column AttrInf) tasks and deanonymization (column
Deanon). Here, we observe that an attacker can consistently achieve 85.2-98.5%
accuracy in inferring various attributes from model updates and 87.6% accuracy in
inferring identities of participants. These results suggest that model updates indeed
leak details unrelated to the trained task (recognizing chair, couch, etc.) and allows
an attacker to recover sensitive attributes of the users’ training data (via attribute
inference) and further link them to an identity (via deanonymization).

We now recast the problem of inference on attributes and identities as a multi-task
learning (MTL) (Caruana, 1997) problem. The core idea is to exploit commonalities
between the two related tasks to learn a better representation jointly benefiting the
tasks. To achieve this, we extend our re-identification model (§5.3.3, which performs
user classification) with a secondary classification head (which performs attribute
inference; see Fig. 5.3d). Consequently, the model is simultaneously trained for
both attribute inference and deanonymization using their corresponding losses. The
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Figure 5.7: Number of prior examples per user. Evaluated on closed-world re-identification.

results for the model is presented under the MTL column in Table 5.4. We observe
by learning the two tasks jointly can improve attribute inference performances
consistently by 0-3.5% and deanonymization by 2.5-4%. Our results suggest that
apart from jointly inferring sensitive attributes and recovering identities, the two
related attacks surprisingly amplify each other’s performances.

5.5.2 Analysis

In this section, we take a closer look at various factors that influence (e.g., amount
of training data) the effectiveness of attacks. For simplicity, we study the factors
using the re-identification attack in a closed-world setup. We conclude the section by
reasoning why model updates lend themselves to deanonymization risks.

5.5.2.1 Amount of Training Data

We study the influence of data-limitation in deanonymization attacks in a closed-
world re-identification scenario. We previously used the entire reserve set of prior
information to perform the deanonymization attacks. We first address the influence
in the amount of this prior information available per target user. From Figure 5.7,
we observe: (i) even a single prior example of the user leads to non-chance-level
re-identification, with as much as 13.4% AP (7 ×) performance on PIPA; (ii) perfor-
mance of the attack increases significantly with the size of prior knowledge across
all datasets e.g., 67% increase in performance on OpenImages by using 16→32 prior
examples; (iii) some tasks require more prior information than others. For instance,
although Blog and PIPA contain similar number of users, an adversary requires
approximately 5× as many prior Blog examples to achieve 20% AP. We attribute this
to a weaker signal generated from sparse text content in Blog, as compared to dense
pixel content in PIPA.

We also address the impact of size of training set ({∆wt
k : k ∈ Kanon}) for attack

models. We train multiple re-identification MLP adversary models, each trained on
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Figure 5.8: Number of training examples per user. Evaluated on closed-world re-
identification.

a random subset of training data with increasing sizes. In Figure 5.8, we observe an
adversary can train reasonably effective attack models, even with extremely limited
labeled data. In particular, attack performances of 3-22× can be obtained with a single
labeled example per user. While the amount of data (either training or prior) does
strongly influence the attack performance, we nonetheless find deanonymization is
possible in strongly data-limited situations.

5.5.2.2 Impact of Parameter Layers

The deanonymization targets (i.e., model updates ∆w) comprise of parameters from
multiple layers of a deep neural network. We now analyze how the layer type and
depth affect attacker performance, since they influence the type of task-specific
information learnt by the model. For instance, in CNNs, layers at various depths of
the network are known to learn various concepts (Zeiler and Fergus, 2014) – lower
level features (e.g., corners, edges) in the initial layers and higher level features (e.g.,
wheel, bird’s feet) in the final layers. For parameters updates contributed by each
individual layer, we train a total of 27 attack models for CNN-based models and
3 attack models for LSTM-based models. We were limited by storage capacity to
evaluate on OpenImages as it would require > 3TB.

From layer-wise performances in Figure 5.9 and Table 5.5, we observe: (i) all layers
provide above-chance level information to perform re-identification attacks; (ii) in
the CNN model, higher level layers contain more identifiable information with the
final fully connected (FC) layer being the most informative; (iii) in the RNN-based
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Figure 5.9: Re-identification performance by depth. Bubble sizes indicate the number of
parameters in each layer. Last two layers contains 1M and 19K parameters respec-
tively.

NNLM-D (92K) NNSM-D (141K)

Depth Layer type AP # params AP # params

1 Embedding 15.7 (9×) 50K 23.5 (28×) 50K

2 LSTM 46.0 (25×) 10K 19.2 (23×) 91K

3 FC 38.8 (21×) 32K 17.6 (21×) 128

Table 5.5: Re-identification performance by depth. For models trained on Blog and Yelp.

models, the LSTM parameters are more informative for language modeling, whereas
it is the embedding layer for sentiment analysis.

5.5.2.3 Impact of Optimization State

We now analyze the influence of training progress of the ML model on deanonymiza-
tion attacks. We group the parameter updates (separately for train and test attack
sets), based on the epoch ranges during which they were generated. We split param-
eter updates collected during training of fw over 200 epochs into 10 ranges, each
with 20 epochs. We train and evaluate the MLP re-identification attack model over
all 10× 10 train-eval pairs. From Figure 5.10, we observe that the training progress
at which the update was generated has little influence on the performance indicating
an adversary can re-identify users at any stage of training.

5.5.2.4 Reasoning About Effectiveness of Attacks

In Section 5.3.2 (Fig. 5.2), we observed that users display a bias resulting in lower
variations in data they capture. Consequently, we conjectured that the resulting bias
is consistently encoded in the parameter updates, even when they are computed
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Figure 5.10: Effect of the epoch t. On the re-identification attack ∆wt
anon → u. As an example,

the top-right cell denotes when the MLP was trained on ∆wt
u, t ∈ [0, 20] and

evaluated on ∆wt′
anon, t′ ∈ [180, 200]

on different (prior and private) sets of users’ data. To validate, we take a closer
look at the parameter updates ∆wprior

u , ∆wprivate
u ∈ RD×K in the FC layer of eight

users in the PIPA FL setup, where K (=19) is the number of classes and D(=1024)
represents weights per class. In Figure 5.11, we illustrate bias per user (columns) in
the parameter delta space by computing the L2-norm of each of the K class weight
vectors (column-dimension in ∆wu). We observe: (i) for users who can be re-identified
highly accurately (e.g., u=10), we find that the user is more biased towards images
containing ‘tie’, ‘tv’, and ‘laptop’. Furthermore, this bias is consistent in both the
user’s prior and private update signals; and (ii) surprisingly, even when biases are
not entirely consistent (e.g., u=17), we find attacks to be reasonable effective (AP=95);
and (iii) for users who cannot be re-identified easily (e.g., u=13), the biases are
inconsistent between the prior (biased towards cars and cups) and private (biased
towards chairs, ties, and umbrellas) update signals. We find our conjecture that
the user bias signal translates to the parameter delta space, holds reasonably well,
leading to highly effective deanonymization attacks we saw in the previous sections.

5.6 countermeasures

In the previous section, we evaluated our threat models across a variety of challeng-
ing scenarios and consistently observed deanonymization risks. In this section, we
present mitigation strategies to counter these attacks.

We attributed (§5.5.2.4) the effectiveness of the attacks to user bias, which is a
powerful statistical signal in both the limited set of adversary’s prior data and the
users’ private data. The focus of our mitigation strategies is to perturb the data bias
on the anonymous device, to provide a false signal to the adversary. We spell out
our requirements for the defense as: (a) maximally retain utility (performance of
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Figure 5.11: User bias visualized on parameter updates.

D Source (D) Dbkg Source (Dbkg) |Dbkg|

PIPA (Zhang et al., 2015) Flickr OpenImages Flickr 59K

OpenImages (Krasin et al., 2017) Flickr OpenImages Flickr 490K

Blog (Schler et al., 2006) Blogger WikiReading (Hewlett et al., 2016) Wikipedia 3M

Yelp (Challenge, 2013) Yelp Amazon Reviews (He and McAuley, 2016) Amazon 1.7M

Table 5.6: Background datasets and sources. Used to mitigate deanonymization attacks.

fw); (b) involve low computation overhead; (c) not rely on a trusted-third party; and
(d) allow users to selectively employ the strategy to various extents depending on
personal preferences.

5.6.1 Methods

Based on the requirements, we propose data-centric mitigation strategies: devices
adversarially bias their data distribution on devices, rather than directly perturb
model parameters. More specifically, users mix their original data Du with certain
“background” data Dbkg to “blend into the crowd”, thereby rendering the parameters
less user-specific. Here, the mixing takes place prior to participation in FL.

Collecting Dbkg. The background dataset Dbkg can be any large (labeled) set of
training examples for the same federated learning task (e.g. user-annotated dataset,
scraped data from the Internet, a trusted open-source dataset). The background
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datasets used in our experiments, their sources and sizes are listed in Table 5.6. We
only select a random subset of the original background datasets (s.t. |Dbkg| � |Du|)
in each case, for experiments to complete within a feasible amount of time. The
preprocessing of Dbkg and D are identical.

Now, we present three countermeasures which alter the characteristic data-
distribution of the users.

Data replacement (bkg-repl). Each user replaces a fraction α ∈ [0, 1] of his/her
data Du with ones from Dbkg. At α = 0, no mitigation strategy takes place; at
α = 1, every user has identical data composition. However, the strategy skews FL
to learn from a noisy background data distribution displaying different statistics,
instead of learning from interesting user data on which evaluation metrics need to
be maximized.

Data augmentation (rand-aug). Instead of replacing, the user augments random
data (since more data helps (Sun et al., 2017a; Halevy et al., 2009)) from Dbkg:

D̂u ← Du ∪ {(xi, yi) ∼ Dbkg}α·|Du|
i=1 , (5.8)

where α ≥ 0 determines the size of augmentation. As α → ∞, devices’ empirical
data distributions converge to Dbkg, making them indistinguishable from each other.

Mode-specific data augmentation (mm-aug). So far, the users’ strategies were to
mix their data with background data from a single source Dbkg. We now consider the
strategy where each device mixes data from different topics i.e., modes of the data dis-
tribution. For instance, Alice adversarially adds sports content to her data to mask her
interest in automobiles before participating in FL. We perform this by first clustering
Dbkg into M clusters⋃M

m=1D
bkg
m . We use the k-means clustering over the ImageNet pretrained Mobilenet

features. Each user u picks a cluster m at random, and augments its data with ones
from the cluster:

D̂u ← Du ∪ {(xi, yi) ∼ Dbkg
m }α·|Du|

i=1 (5.9)

where α ≥ 0 controls the degree of mix. We use M=100 for PIPA, M=500 for
OpenImages, M=300 for Blog and Yelp.

We additionally consider two perturbation-based baselines to our data-augmentation
strategies.

DP-FederatedAveraging (dp-fedavg). We implement a differentially private vari-
ant (McMahan et al., 2018) of the Federated Averaging algorithm. They key idea is
to provide (ε, δ) participant-level differential privacy guarantees by bounding the
contribution (the parameter update) provided by each participant. In practise, the
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Figure 5.12: Mitigation strategies evaluation. Re-identification AP obtained by varying α

and σ2 in closed-world scenario. Top-left is the ideal region. Higher α and σ2

values pushes operating points towards the left (i.e., lower deanonymization
performance).

contributions are bounded by clipping the parameter updates and further adding ran-
dom noise. In our experiments, we fix the clipping value to 50 and vary magnitude
of gaussian noise added during training.

Random perturbations (noise). Although dp-fedavg has shown success in large-
scale scenarios (with thousands of users), we found difficulty achieving reasonable
results in our setup. Hence, we consider a relaxed version of introducing pertur-
bations, where the user introduces zero-centered Gaussian noise to model updates
before leaving the device.

5.6.2 Evaluation

We evaluate the proposed mitigation strategies by measuring the adversary’s per-
formance against our countermeasures. We analyze the effectiveness of the defense
against the strongest adversary: closed-world re-identification attack on random prior
(§5.5.1.1, Table 5.3).

We evaluate the strategies in terms of trade-off between privacy (reduction in
adversary’s performance) and utility (decentralized learning performance). As in
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§5.5.1.1, we measure the adversary’s performance as increase over chance-level AP.
We measure utility by performance scores normalized to have utility=1.0 when no
mitigation takes place.

The mitigation strategies are evaluated on a curve by varying hyperparameters.
For bkg-repl, we use α ∈ {0.0, 0.25, 0.50, 0.75, 1.0}. For rand-aug and mm-aug, we
use α ∈ {0.0, 0.5, 1.0, 2.0}. For dp-fedavg, we fix the clip value to 50 and vary the
noise multiplier in the range [10−5, 10−1]. For noise, we consider Gaussian noise
with µ = 0 and σ2 ∈ {10−2, 10−1, 100, 101, 102}.

We present evaluation for our strategies in Figure 5.12. Better mitigation strategies
have curves towards the top-left corners in each plot (high privacy, high utility).
We observe: (i) the perturbation-based baselines (noise and dp-fedavg) in most
cases severely decreases utility at a small gain in privacy; (ii) replacing data with
background samples (bkg-repl) is a good alternative strategy: we have both higher
privacy and utility than perturbation methods. However, due to a domain-shift
between Dbkg and D, utility is often impacted. This can be observed in PIPA, Blog
and Yelp datasets, where it achieves < 0.75× utility since the user data is no longer
used; (iii) the augmentation-based strategies rand-aug and mm-aug outperforms
noise and bkg-repl in terms of utility and privacy; (iv) for the mm-aug strategy,
already at α = 0.5, we observe a good combination of privacy and utility (75%
decrease in adversary’s AP in OpenImages, compared to 45% for rand-aug and 67%
for bkg-replace).

We find the strategy mm-aug offer the most effective and practical operating points,
requiring the user to perform minimal augmentation to achieve reasonable privacy.
We remark that the utility for mm-aug can be more than 1.0 even at higher privacy
level, as can be seen in PIPA and OpenImages. This is due to the effect of additional
data (Halevy et al., 2009; Sun et al., 2017a). This increased privacy and utility comes
at the cost of preparing a labeled dataset and increased training time (training set
becomes (1+ α)× bulky). However, this overhead will be less costly with increasingly
powerful devices and energy-efficient ML models for mobile devices (Howard et al.,
2017; Sandler et al., 2018).

5.7 conclusion

In this chapter, we were motivated to understand privacy threats in Federated
Learning, which is designed towards large-scale learning on user data on personal
devices. We questioned whether devices can truly participate anonymously with-
out compromising the identity of individuals. Our results indicate that the devices
can be effectively deanonymized using the transmitted model parameter updates
and a reasonable amount of prior data. We found this to be possible due to the
inherent user bias in captured data acting as a fingerprint that is consistent across
different sets of data captured by the user. To mitigate such attacks, we proposed cali-



88 understanding and controlling deanonymization in federated learning

brated domain-specific data augmentation, which shows strong results in preventing
deanonymization with minimal impact to utility.



Part III

L E A K A G E D U R I N G I N F E R E N C E

Having discussed leakage of information in raw data (i.e., visual content)
and during training (i.e., in model parameters), we now switch focus to
inference time. Understanding leakage at inference time is particularly
important as models are being increasingly deployed in many real-world
environments (e.g., internet APIs, on edge devices). In this part, we
specifically address leakage of model functionality.

In Chapter 6, we begin by presenting model functionality stealing attacks
that pose a confidentiality threat to the model owner’s intellectual prop-
erty. While literature has been successful at executing these attacks on
simple models (e.g., shallow neural networks), our approach highlights
the threat on complex models (e.g., ResNets), despite making weaker
assumptions. Our approach leverages advances in knowledge transfer
and reinforcement learning to demonstrate successful model functionality
stealing attacks.

In Chapter 7, we work towards the first effective defense to counteract
threats posed by recent model stealing attacks, including our attack
presented in Chapter 6. The key idea to our approach is to treat defense
as optimization problem, where the perturbation is optimized to target
the attacker’s gradient signal during learning. Consequently, we present
the first active defense that actively perturbs the predictions returned by
the model owner (i.e., the defender).





6
K N O C K O F F N E T S

Machine Learning (ML) models are increasingly deployed in the wild to
perform a wide range of tasks. In this chapter, we ask to what extent
can an adversary steal functionality of such “victim” models based solely

on blackbox interactions: image in, predictions out. In contrast to prior work, we
study complex victim blackbox models, and an adversary lacking knowledge of
train/test data used by the model, its internals, and semantics over model outputs.
We formulate model functionality stealing as a two-step approach: (i) querying a
set of input images to the blackbox model to obtain predictions; and (ii) training
a “knockoff” with queried image-prediction pairs. We make multiple remarkable
observations: (a) querying random images from a different distribution than that of
the blackbox training data results in a well-performing knockoff; (b) this is possible
even when the knockoff is represented using a different architecture; and (c) our
reinforcement learning approach additionally improves query sample efficiency in
certain settings and provides performance gains. We validate model functionality
stealing on a range of datasets and tasks, as well as show that a reasonable knockoff
of an image analysis API could be created for as little as $30.

The content of this chapter is based on Orekondy et al. (2019b). As a first author,
Tribhuvanesh Orekondy conducted all the experiments and was the main writer for
the conference paper.

6.1 introduction

Machine Learning (ML) models and especially deep neural networks are deployed
to improve productivity or experience e.g., photo assistants in smartphones, image
recognition APIs in cloud-based internet services, and for navigation and control
in autonomous vehicles. Developing and engineering such models for commercial
use is a product of intense time, money, and human effort – ranging from collecting
a massive annotated dataset to tuning the right model for the task. The details
of the dataset, exact model architecture, and hyperparameters are naturally kept
confidential to protect the models’ value. However, in order to be monetized or
simply serve a purpose, they are deployed in various applications (e.g., home
assistants) to function as blackboxes: input in, predictions out.

Large-scale deployments of deep learning models in the wild has motivated the
community to ask: can someone abuse the model solely based on blackbox access?
There has been a series of “inference attacks” (Shokri et al., 2017; Oh et al., 2018;
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Figure 6.1: An adversary can create a “knockoff” of a blackbox model solely by interacting
with its API: image in, prediction out. The knockoff bypasses the monetary costs
and intellectual effort involved in creating the blackbox model.

Fredrikson et al., 2015; Salem et al., 2019) which try to infer properties (e.g., training
data (Shokri et al., 2017), architecture (Oh et al., 2018)) about the model within the
blackbox. In this chapter, we focus on model functionality stealing: can one create a
“knockoff” of the blackbox model solely based on observed input-output pairs? In
contrast to prior work (Lowd and Meek, 2005a; Tramèr et al., 2016; Papernot et al.,
2017b; Juuti et al., 2019), we work towards purely stealing functionality of complex
blackbox models by making fewer assumptions.

We formulate model functionality stealing as follows (shown in Figure 6.1). The
adversary interacts with a blackbox “victim” CNN by providing it input images and
obtaining respective predictions. The resulting image-prediction pairs are used to
train a “knockoff” model. The adversary’s intention is for the knockoff to compete
with the victim model at the victim’s task. Note that knowledge transfer (Hinton
et al., 2015; Buciluǎ et al., 2006) approaches are a special case within our formulation,
where the task, train/test data, and white-box teacher (victim) model are known to
the adversary.

Within this formulation, we spell out questions answered in our chapter with an
end-goal of model functionality stealing:

1. Can we train a knockoff on a random set of query images and corresponding
blackbox predictions?

2. What makes for a good set of images to query?
3. How can we improve sample efficiency of queries?
4. What makes for a good knockoff architecture?

6.2 problem statement

We now formalize the task of functionality stealing (see also Figure 6.2).
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Figure 6.2: Problem Statement. Laying out the task of model functionality stealing in the
view of two players - victim V and adversary A. We group adversary’s moves
into (a) Transfer Set Construction (b) Training Knockoff FA.

Functionality stealing. In this chapter, we introduce the task as: given blackbox
query access to a “victim” model FV : X → Y , to replicate its functionality using
“knockoff” model FA of the adversary. As shown in Figure 6.2, we set it up as a
two-player game between a victim V and an adversary A. Now, we discuss the
assumptions in which the players operate and their corresponding moves in this
game.

Victim’s move. The victim’s end-goal is to deploy a trained CNN model FV in
the wild for a particular task (e.g., fine-grained bird classification). To train this
particular model, the victim: (i) collects task-specific images x ∼ PV(X) and obtains
expert annotations resulting in a dataset DV = {(xi, yi)}; (ii) selects the model FV
that achieves best performance (accuracy) on a held-out test set of images Dtest

V .
The resulting model is deployed as a blackbox which predicts output probabilities
y = FV(x) given an image x. Furthermore, we assume each prediction incurs a cost
(e.g., monetary, latency).

Adversary’s unknowns. The adversary is presented with a blackbox CNN image
classifier, which given any image x ∈ X returns a K-dim posterior probability
vector y ∈ [0, 1]K, ∑k yk = 1. We relax this later by considering truncated versions
of y. We assume remaining aspects to be unknown: (i) the internals of FV e.g.,
hyperparameters or architecture; (ii) the data used to train and evaluate the model;
and (iii) semantics over the K classes.
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Figure 6.3: Comparison to KD. (a) Adversary has access only to image distribution PA(X)

(b) Training in a KD-manner requires stronger knowledge of the victim. Both S
and FA are trained to classify images x ∈ PV(X)

Adversary’s attack. To train a knockoff, the adversary: (i) interactively queries
images {xi

π∼ PA(X)} using strategy π to obtain a “transfer set” of images and
pseudo-labels {(xi, FV(xi))}B

i=1; and (ii) selects an architecture FA for the knockoff
and trains it to mimic the behaviour of FV on the transfer set.

Objective. We focus on the adversary, whose primary objective is training a knock-
off that performs well on the task for which FV was designed i.e., on an unknown
Dtest

V . In addition, we address two secondary objectives: (i) sample-efficiency: maxi-
mizing performance within a budget of B blackbox queries; and (ii) understanding
what makes for good images to query the blackbox.

Victim’s defense. Although we primarily address the adversary’s strategy in the
chapter, we briefly discuss victim’s counter strategies (in Section 6.5) of reducing
informativeness of predictions by truncation e.g., rounding-off.

Remarks: Comparison to knowledge distillation (KD). Training the knockoff
model is reminiscent of KD approaches (Hinton et al., 2015; Romero et al., 2015),
whose goal is to transfer the knowledge from a larger teacher network T (white-box)
to a compact student network S (knockoff) via the transfer set. We illustrate key
differences between KD and our setting in Figure 6.3: (a) Independent distribution
PA: FA is trained on images x ∼ PA(X) independent to distribution PV used for
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Figure 6.4: Strategy adaptive.

training FV ; (b) Data for supervision: Student network S minimize variants of KD
loss:

LKD = λ1LCE(ytrue, yS) + λ2LCE(yτ
S, yτ

T) (6.1)

where yτ
T = softmax(aT/τ) is the softened posterior distribution of logits a con-

trolled by temperature τ. In contrast, the knockoff (student) in our case lacks logits
aT and true labels ytrue to supervise training.

6.3 generating knockoffs

In this section, we elaborate on the adversary’s approach in two steps: transfer set
construction (Section 6.3.1) and training knockoff FA (Section 6.3.2).

6.3.1 Transfer Set Construction

The goal is to obtain a transfer set i.e., image-prediction pairs, on which the knockoff
will be trained to imitate the victim’s blackbox model FV .

Selecting PA(X). The adversary first selects an image distribution to sample
images. We consider this to be a large discrete set of images. For instance, one of
the distributions PA we consider is the 1.2M images of ILSVRC dataset (Deng et al.,
2009).

Sampling strategy π. Once the image distribution PA(X) is chosen, the adversary
samples images x π∼ PA(X) using a strategy π. We consider two strategies.
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6.3.1.1 Random Strategy

In this strategy, we randomly sample images (without replacement) x iid∼ PA(X)
to query FV . This is an extreme case where adversary performs pure exploration.
However, there is a risk that the adversary samples images irrelevant to learning the
task (e.g., over-querying dog images to a birds classifier).

6.3.1.2 Adaptive Strategy

We now incorporate a feedback signal resulting from each image queried to the
blackbox. A policy π to adaptively sample images (xt ∼ Pπ({xi, yi}t−1

i=1)) is learnt
to achieve two goals: (i) improving sample-efficiency of queries; and (ii) aiding
interpretability of blackbox FV . The approach is outlined in Figure 6.4a. At each
time-step t, the policy module Pπ samples a set of query images. A reward signal
rt is shaped based on multiple criteria and is used to update the policy with an
end-goal of maximizing the expected reward.

Supplementing PA. To encourage relevant queries, we enrich images in the ad-
versary’s distribution by associating each image xi with a label zi ∈ Z. No semantic
relation of these labels with the blackbox’s output classes is assumed or exploited. As
an example, when PA corresponds to 1.2M images of the ILSVRC (Deng et al., 2009)
dataset, we use labels defined over 1000 classes. These labels can be alternatively
obtained by unsupervised measures e.g., clustering or estimating graph-density
(Ebert et al., 2012; Beluch et al., 2018). We find using labels aids understanding
blackbox functionality. Furthermore, since we expect labels {zi ∈ Z} to be correlated
or inter-dependent, we represent them within a coarse-to-fine hierarchy, as nodes of
a tree as shown in Figure 6.4b.

Actions. At each time-step t, we sample actions from a discrete action space
zt ∈ Z i.e., adversary’s independent label space. Drawing an action is a forward-pass
(denoted by a blue line in Figure 6.4b) through the tree: at each node, we sample a
child node with probability πt(z) (which sums to 1 over siblings). The probabilities
are determined by a softmax distribution over the node potentials: πt(z) = eHt(z)

∑z′ eHt(z′)
.

Upon reaching a leaf-node, a sample of images is returned corresponding to label zt.

Learning the policy. We use the received reward rt for an action zt to update
the policy π using the gradient bandit algorithm (Sutton and Barto, 1998). This
update is equivalent to a backward-pass through the tree (denoted by a green line in
Figure 6.4b), where the node potentials are updated as:

Ht+1(zt) = Ht(zt) + α(rt − r̄t)(1− πt(zt)) and (6.2)
Ht+1(z′) = Ht(z′) + α(rt − r̄t)πt(z′) ∀z′ 6= zt (6.3)
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where α = 1/N(z) is the learning rate, N(z) is the number of times action z has
been drawn, and r̄t is the mean-reward over past ∆ time-steps. π0(z) and H0(z) are
intialized such that reaching all leaf nodes in the hierarchy are equally probable.

Rewards. To evaluate the quality of sampled images xt, we study three rewards.
We use a margin-based certainty measure (Settles and Craven, 2008; Joshi et al., 2009)
to encourage images where the victim is confident (hence indicating the domain FV
was trained on):

Rcert(yt) = P(yt,k1 |xt)− P(yt,k2 |xt) (6.4)

where ki is the ith-most confident class. To prevent the degenerate case of image
exploitation over a single label, we introduce a diversity reward:

Rdiv(y1:t) = ∑
k

max(0, yt,k − ȳt:t−∆,k) (6.5)

To encourage images where the knockoff prediction ŷt = FA(xt) does not imitate FV ,
we reward high CE loss:

RL(yt, ŷt) = L(yt, ŷt) (6.6)

We sum up individual rewards when multiple measures are used. To maintain an
equal weighting, each reward is individually rescaled to [0, 1] and subtracted with a
baseline computed over past ∆ time-steps.

6.3.2 Training Knockoff FA

As a product of the previous step of interactively querying the blackbox model, we
have a transfer set {(xt, FV(xt)}B

t=1, xt
π∼ PA(X). Now we address how this is used

to train a knockoff FA.

Selecting architecture FA. Few works (Oh et al., 2018; Wang and Gong, 2018) have
recently explored reverse-engineering the blackbox i.e., identifying the architecture,
hyperparameters, etc. We however argue this is orthogonal to our requirement of
simply stealing the functionality. Instead, we represent FA with a reasonably complex
architecture e.g., VGG (Simonyan and Zisserman, 2014) or ResNet (He et al., 2016a).
Existing findings in KD (Hinton et al., 2015; Furlanello et al., 2018) and model
compression (Buciluǎ et al., 2006; Han et al., 2016a; Iandola et al., 2016) indicate
robustness to choice of reasonably complex student models. We investigate the choice
under weaker knowledge of the teacher (FV) e.g., training data and architecture is
unknown.
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Blackbox (FV) |Dtrain
V |+ |Dtest

V | Output classes K

Caltech256 (Griffin et al., 2007) 23.3k + 6.4k 256 general object categories

CUBS200 (Wah et al., 2011) 6k + 5.8k 200 bird species

Indoor67 (Quattoni and Torralba, 2009) 14.3k + 1.3k 67 indoor scenes

Diabetic5 (Eyepacs) 34.1k + 1k 5 diabetic retinopathy scales

Table 6.1: Four victim blackboxes FV . Each blackbox is named in the format: [dataset][#
output classes].

Training to imitate. To bootstrap learning, we begin with a pretrained Imagenet
network FA (see § D.1 in supplementary for discussion on other initializations).
We train the knockoff FA to imitate FV on the transfer set by minimizing the cross-
entropy (CE) loss: LCE(y, ŷ) = −∑k p(yk) · log p(ŷk). This is a standard CE loss,
albeit weighed with the confidence p(yk) of the victim’s label.

6.4 experimental setup

We now discuss the experimental setup of multiple victim blackboxes (Section 6.4.1),
followed by details on the adversary’s approach (Section 6.4.2).

6.4.1 Black-box Victim Models FV

We choose four diverse image classification CNNs, addressing multiple challenges
in image classification e.g., fine-grained recognition. Each CNN performs a task
specific to a dataset. A summary of the blackboxes is presented in Table 6.1 (extended
descriptions in appendix).

Training the black-boxes. All models are trained using a ResNet-34 architecture
(with ImageNet (Deng et al., 2009) pretrained weights) on the training split of the
respective datasets. We find this architecture choice achieve strong performance
on all datasets at a reasonable computational cost. Models are trained using SGD
with momentum (of 0.5) optimizer for 200 epochs with a base learning rate of 0.1
decayed by a factor of 0.1 every 60 epochs. We follow the train-test splits suggested
by the respective authors for Caltech-256 (Griffin et al., 2007), CUBS-200-2011 (Wah
et al., 2011), and Indoor-Scenes (Quattoni and Torralba, 2009). Since GT annotations
for Diabetic-Retinopathy (Eyepacs) test images are not provided, we reserve 200

training images for each of the five classes for testing. The number of test images per
class for all datasets are roughly balanced. The test images of these datasets Dtest

V are
used to evaluate both the victim and knockoff models.

After these four victim models are trained, we use them as a blackbox for the
remainder of the chapter: images in, posterior probabilities out.
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6.4.2 Representing PA

In this section, we elaborate on the setup of two aspects relevant to transfer set
construction (Section 6.3.1).

6.4.2.1 Choice of PA

Our approach for transfer set construction involves the adversary querying images
from a large discrete image distribution PA. In this section, we present four choices
considered in our experiments. Any information apart from the images from the
respective datasets are unused in the random strategy. For the adaptive strategy, we
use image-level labels (chosen independent of blackbox models) to guide sampling.

PA = PV . For reference, we sample from the exact set of images used to train the
blackboxes. This is a special case of knowledge-distillation (Hinton et al., 2015) with
unlabeled data at temperature τ = 1.

PA = ILSVRC (Russakovsky et al., 2015; Deng et al., 2009). We use the collection
of 1.2M images over 1000 categories presented in the ILSVRC-2012 (Russakovsky
et al., 2015) challenge.

PA = OpenImages (Kuznetsova et al., 2018). OpenImages v4 is a large-scale
dataset of 9.2M images gathered from Flickr. We use a subset of 550K unique images,
gathered by sampling 2k images from each of 600 categories.

PA = D2. We construct a dataset wherein the adversary has access to all images in
the universe. In our case, we create the dataset by pooling training data from: (i) all
four datasets listed in Section 6.4.1; and (ii) both datasets presented in this section.
This results in a “dataset of datasets” D2 of 2.2M images and 2129 classes.

Overlap between PA and PV . We compute overlap between labels of the blackbox
(K, e.g., 256 Caltech classes) and the adversary’s dataset (Z, e.g., 1k ILSVRC classes)
as: 100× |K ∩ Z|/|K|. Based on the overlap between the two image distributions, we
categorize PA as:

1. PA = PV : Images queried are identical to the ones used for training FV . There
is a 100% overlap.

2. Closed-world (PA = D2): Blackbox train data PV is a subset of the image
universe PA. There is a 100% overlap.

3. Open-world (PA ∈ {ILSVRC, OpenImages}): Any overlap between PV and PA
is purely coincidental. Overlaps are: Caltech256 (42% ILSVRC, 44% OpenIm-
ages), CUBS200 (1%, 0.5%), Indoor67 (15%, 6%), and Diabetic5 (0%, 0%).
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Figure 6.5: Performance of the knockoff at various budgets. Across choices of adversary’s
image distribution (PA) and sampling strategy π. represents accuracy of black-
box FV and represents chance-level performance. Enlarged version available in
supplementary.

6.4.2.2 Adaptive Strategy

In the adaptive strategy (Section 6.3.1.2), we make use of auxiliary information
(labels) in the adversary’s data PA to guide the construction of the transfer set. We
represent these labels as the leaf nodes in the coarse-to-fine concept hierarchy tree.
The root node in all cases is a single concept “entity”. We obtain the rest of the
hierarchy as follows: (i) D2: we add as parents the dataset the images belong to; (ii)
ILSVRC: for each of the 1K labels, we obtain 30 coarse labels by clustering the mean
visual features of each label obtained using 2048-dim pool features of an ILSVRC
pretrained Resnet model; (iii) OpenImages: We use the exact hierarchy provided by
the authors.

6.5 results

We now discuss the experimental results.

Training phases. The knockoff models are trained in two phases: (a) Online: during
transfer set construction (Section 6.3.1); followed by (b) Offline: the model is retrained
using transfer set obtained thus far (Section 6.3.2). All results on knockoff are
reported after step (b).

Evaluation metrics. We evaluate two aspects of the knockoff: (a) Top-1 accuracy:
computed on victim’s held-out test data Dtest

V (b) sample-efficiency: best performance
achieved after a budget of B queries. Accuracy is reported in two forms: absolute
(x%) or relative to blackbox FV (x×).

In each of the following experiments, we evaluate our approach with identical
hyperparameters across all blackboxes, highlighting the generalizability of model
functionality stealing.
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random

PA Caltech256 CUBS200 Indoor67 Diabetic5

PV(FV) 78.8 (1×) 76.5 (1×) 74.9 (1×) 58.1 (1×)

PV (KD) 82.6 (1.05×) 70.3 (0.92×) 74.4 (0.99×) 54.3 (0.93×)

Closed D2
76.6 (0.97×) 68.3 (0.89×) 68.3 (0.91×) 48.9 (0.84×)

Open
ILSVRC 75.4 (0.96×) 68.0 (0.89×) 66.5 (0.89×) 47.7 (0.82×)

OpenImg 73.6 (0.93×) 65.6 (0.86×) 69.9 (0.93×) 47.0 (0.81×)

adaptive

PA Caltech256 CUBS200 Indoor67 Diabetic5

PV(FV) - - - -

PV (KD) - - - -

Closed D2
82.7 (1.05×) 74.7 (0.98×) 76.3 (1.02×) 48.3 (0.83×)

Open
ILSVRC 76.2 (0.97×) 69.7 (0.91×) 69.9 (0.93×) 44.6 (0.77×)

OpenImg 74.2 (0.94×) 70.1 (0.92×) 70.2 (0.94×) 47.7 (0.82×)

Table 6.2: Accuracy on test sets. Accuracy of blackbox FV indicated in gray and knockoffs
FA in black. KD = Knowledge Distillation. Closed- and open-world accuracies
reported at B=60k.

6.5.1 Transfer Set Construction

In this section, we analyze influence of transfer set {(xi, FV(xi)} on the knockoff. For
simplicity, for the remainder of this section we fix the architecture of the victim and
knockoff to a Resnet-34 (He et al., 2016a).

Reference: PA = PV (KD). From Table 6.2 (second row), we observe: (i) all knock-
off models recover 0.92-1.05× performance of FV ; (ii) a better performance than FV
itself (e.g., 3.8% improvement on Caltech256) due to regularizing effect of training
on soft-labels (Hinton et al., 2015).

Can we learn by querying randomly from an independent distribution? Unlike
KD, the knockoff is now trained and evaluated on different image distributions (PA
and PV respectively). We first focus on the random strategy, which does not use any
auxiliary information.

We make the following observations from Table 6.2 (random): (i) closed-world: the
knockoff is able to reasonably imitate all the blackbox models, recovering 0.84-0.97×
blackbox performance; (ii) open-world: in this challenging scenario, the knockoff
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Figure 6.6: Qualitative results. (a) Samples from the transfer set ({(xi, FV(xi))}, xi ∼ PA(X))
displayed for four output classes (one from each blackbox): ‘Homer Simp-
son’, ‘Harris Sparrow’, ‘Gym’, and ‘Proliferative DR’. (b) With the knockoff
FA trained on the transfer set, we visualize its predictions on victim’s test set
({(xi, FA(xi))}, xi ∼ Dtest

V ). Ground truth labels are underlined. Objects from these
classes, among numerous others, were never encountered while training FA.

model has never encountered images of numerous classes at test-time e.g., >90% of
the bird classes in CUBS200. Yet remarkably, the knockoff is able to obtain 0.81-0.96×
performance of the blackbox. Moreover, results marginally vary (at most 0.04×)
between ILSVRC and OpenImages, indicating any large diverse set of images makes
for a good transfer set.

Upon qualitative analysis, we find the image and pseudo-label pairs in the transfer
set are semantically incoherent (Fig. 6.6a) for output classes non-existent in training
images PA. However, when relevant images are presented at test-time (Fig. 6.6b), the
adversary displays strong performance. Furthermore, we find the top predictions by
knockoff relevant to the image e.g., predicting one comic character (superman) for
another.

How sample-efficient can we get? Now we evaluate the adaptive strategy (dis-
cussed in Section 6.3.1.2). Note that we make use of auxiliary information of the
images in these tasks (labels of images in PA). We use the reward set which obtained
the best performance in each scenario: {certainty} (Eq. 6.4) in closed-world and
{certainty, diversity, loss} (Eq. 6.4-6.6) in open-world.

From Figure 6.5, we observe: (i) closed-world: adaptive is extremely sample-
efficient in all but one case. Moreover, we also find the label hierarchy result in
better performance (see supp. §D.3). Its performance is comparable to KD in spite
of samples drawn from a 36-188× larger image distribution. We find significant
sample-efficiency improvements e.g., while CUBS200-random reaches 68.3% at B=60k,
adaptive achieves this 6× quicker at B=10k. We find comparably low performance
in Diabetic5 as the blackbox exhibits confident predictions for all images resulting
in poor feedback signal to guide policy; (ii) open-world: although we find marginal
improvements over random in this challenging scenario, they are pronounced in few



6.5 results 103

air
pla

ne
s-1

01

m
ot

or
bik

es
-1

01

fa
ce

s-e
as

y-
10

1

t-s
hir

t

ha
m

m
oc

k

bil
lia

rd
s

ho
rse

lad
de

r

ba
th

tu
b

bin
oc

ula
rs

go
ril

la

pe
op

le

m
us

hr
oo

m

wa
tc

h-
10

1

gr
ap

es

lig
ht

-h
ou

se

m
at

tre
ss

leo
pa

rd
s-1

01

so
cc

er
-b

all

m
us

se
ls

m
ar

s

pe
ng

uin

ho
t-t

ub

ba
se

ba
ll-

glo
ve

ba
ck

pa
ck

tre
ad

m
ill

he
ad

-p
ho

ne
s

ra
cc

oo
n

br
ea

dm
ak

er

te
ap

ot

Actions z

0.0

0.02

fi
z

Caltech256 · PA = D2

caltech
cubs
diabetic

ilsvrc
indoor
openimg

go
ldfi

nc
h

ho
us

efi
nc

h
jun

co
ind

igo
bu

nt
ing

br
am

bli
ng

jac
am

ar
ch

ick
ad

ee
hu

m
m

ing
bir

d
vin

es
na

ke
jag

ua
r

am
er

ica
n

ch
am

ele
on

bu
lbu

l
cr

ick
et

re
db

re
as

te
d

m
er

ga
ns

er
gr

ee
n

liz
ar

d
be

ee
at

er
gr

ee
n

sn
ak

e
gr

ee
n

m
am

ba
leo

pa
rd

du
go

ng
tig

er jay
dr

ak
e

ro
bin

re
db

ac
ke

d
sa

nd
pip

er
tre

ef
ro

g
alb

at
ro

ss
m

an
tis

da
m

se
lfly be

e

Actions z

0.0

0.01

fi
z

CUBS200 · PA = ILSVRC

animal bird bird 1 carnivore

Figure 6.7: Policy π learnt by the adaptive approach. Each bar represents preference for ac-
tion z. Top 30 actions (out of 2.1k and 1k) are displayed. Colors indicate parent of
action in hierarchy.

cases e.g., 1.5× quicker to reach an accuracy 57% on CUBS200 with OpenImages. (iii)
as an added-benefit apart from sample-efficiency, from Table 6.2, we find adaptive

display improved performance (up to 4.5%) consistently across all choices of FV .

What can we learn by inspecting the policy? From previous experiments, we
observed two benefits of the adaptive strategy: sample-efficiency (although more
prominent in the closed-world) and improved performance. The policy πt learnt by
adaptive (Section 6.3.1.2) additionally allows us to understand what makes for good
images to query. πt(z) is a discrete probability distribution indicating preference
over action z. Each action z in our case corresponds to labels in the adversary’s image
distribution.

We visualize πt(z) in Figure 6.7, where each bar represents an action and its
color, the parent in the hierarchy. We observe: (i) closed-world (Fig. 6.7 top): actions
sampled with higher probabilities consistently correspond to output classes of FV .
Upon analyzing parents of these actions (the dataset source), the policy also learns
to sample images for the output classes from an alternative richer image source e.g.,
“ladder” images in Caltech256 sampled from OpenImages instead; (ii) open-world
(Fig. 6.7 bottom): unlike closed-world, the optimal mapping between adversary’s
actions to blackbox’s output classes is non-trivial and unclear. However, we find
top actions typically correspond to output classes of FV e.g., indigo bunting. The
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Figure 6.8: Reward ablation. cert: certainty, uncert: uncertainty, div: diversity, L: loss, none:
no reward (random strategy).

policy, in addition, learns to sample coarser actions related to the FV’s task e.g.,
predominantly drawing from birds and animals images to knockoff CUBS200.

What makes for a good reward? Using the adaptive sampling strategy, we now
address influence of three rewards (discussed in Section 6.3.1.2). We observe: (i)
closed-world (Fig. 6.8 left): All reward signals in adaptive helps with the sample ef-
ficiency over random. Reward cert (Eq. 6.4, which encourages exploitation) provides
the best feedback signal. Including other rewards (Eq. 6.5-6.6) slightly deteriorates
performance, as they encourage exploration over related or unseen actions – which is
not ideal in a closed-world. Reward uncert, a popular measure used in AL literature
(Ebert et al., 2012; Beluch et al., 2018; Settles and Craven, 2008) underperforms in our
setting since it encourages uncertain (in our case, irrelevant) images. (ii) open-world
(Fig. 6.8 right): Using all rewards (Eq. 6.4-6.6) display only none-to-marginal im-
provements for all choices of FV , with the highest improvement in CUBS200. However,
we notice an influence on learnt policies where adopting exploration (div + L) with
exploitation (cert) goals result in a softer probability distribution π over the action
space and in turn, encouraging related images.

Can we train knockoffs with truncated blackbox outputs? So far, we found ad-
versary’s attack objective of knocking off blackbox models can be effectively carried
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Figure 6.9: Truncated posteriors. Influence of training knockoff with truncated posteriors.

out with minimal assumptions. Now we explore the influence of victim’s defense
strategy of reducing informativeness of blackbox predictions to counter adversary’s
model stealing attack. We consider two truncation strategies: (a) top-k: top-k (out of
K) unnormalized posterior probabilities are retained, while rest are zeroed-out; (b)
rounding r: posteriors are rounded to r decimals e.g., round(0.127, r=2) = 0.13. In
addition, we consider the extreme case “argmax”, where only index k = arg maxk yk
is returned.

From Figure 6.9 (with K = 256), we observe: (i) truncating yi – either using top-k
or rounding – slightly impacts the knockoff performance, with argmax achieving
0.76-0.84× accuracy of original performance for any budget B; (ii) top-k: even small
increments of k significantly recovers the original performance – 0.91× at k = 2 and
0.96× at k = 5; (iii) rounding: recovery is more pronounced, with 0.99× original
accuracy achieved at just r = 2. We find model functionality stealing minimally
impacted by reducing informativeness of blackbox predictions.

6.5.2 Architecture choice

In the previous section, we found model functionality stealing to be consistently
effective while keeping the architectures of the blackbox and knockoff fixed. Now
we study the influence of the architectural choice FA vs. FV .

How does the architecture of FA influence knockoff performance? We study the
influence using two choices of the blackbox FV architecture: Resnet-34 (He et al.,
2016a) and VGG-16 (Simonyan and Zisserman, 2014). Keeping these fixed, we vary
architecture of the knockoff FA by choosing from: Alexnet (Krizhevsky et al., 2012),
VGG-16 (Simonyan and Zisserman, 2014), Resnet-{18, 34, 50, 101} (He et al., 2016a),
and Densenet-161 (Huang et al., 2017a).
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Figure 6.10: Architecture choices. FV (left: Resnet-34 and right: VGG-16) and FA (lines in
each plot).

From Figure 6.10, we observe: (i) performance of the knockoff ordered by model
complexity: Alexnet (lowest performance) is at one end of the spectrum while
significantly more complex Resnet-101/Densenet-161 are at the other; (ii) perfor-
mance transfers across model families: Resnet-34 achieves similar performance when
stealing VGG-16 and vice versa; (iii) complexity helps: selecting a more complex
model architecture of the knockoff is beneficial. This contrasts KD settings where
the objective is to have a more compact student (knockoff) model.

6.5.3 Stealing Functionality of a Real-world Black-box Model

Now we validate how our model functionality stealing attack translates to a real-
world scenario. Image recognition services are gaining popularity allowing users
to obtain image-predictions for a variety of tasks at low costs ($1-2 per 1k queries).
These image recognition APIs have also been used to evaluate other attacks e.g.,
adversarial examples (Liu et al., 2017; Bhagoji et al., 2017; Ilyas et al., 2018). We
focus on a facial characteristics API which given an image, returns attributes and
confidences per face. Note that in this experiment, we have semantic information of
blackbox output classes.

Collecting PA. The API returns probability vectors per face in the image and thus,
querying irrelevant images leads to a wasted result with no output information.
Hence, we use two face image sets PA for this experiment: CelebA (220k images) (Liu
et al., 2015) and OpenImages-Faces (98k images). We create the latter by cropping
faces (plus margin) from images in the OpenImages dataset (Kuznetsova et al., 2018).
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Figure 6.11: Knocking-off a real-world API. Performance of the knockoff achieved with two
choices of PA.

Evaluation. Unlike previous experiments, we cannot access victim’s test data.
Hence, we create test sets for each image set by collecting and manually screening
seed annotations from the API on ∼5K images.

How does this translate to the real-world? We model two variants of the knock-
off using the random strategy (adaptive is not used since no relevant auxiliary
information of images are available). We present each variant using two choices of
architecture FA: a compact Resnet-34 and a complex Resnet-101. From Figure 6.11, we
observe: (i) strong performance of the knockoffs achieving 0.76-0.82× performance
as that of the API on the test sets; (ii) the diverse nature OpenImages-Faces helps
improve generalization resulting in 0.82× accuracy of the API on both test-sets; (iii)
the complexity of FA does not play a significant role: both Resnet-34 and Resnet-101

show similar performance indicating a compact architecture is sufficient to capture
discriminative features for this particular task.

We find model functionality stealing translates well to the real-world with knock-
offs exhibiting a strong performance. The knockoff circumvents monetary and labour
costs of: (a) collecting images; (b) obtaining expert annotations; and (c) tuning a
model. As a result, an inexpensive knockoff can be trained which exhibits strong
performance, using victim API queries amounting to only $30.

6.6 conclusion

In this chapter, we investigated the problem of model functionality stealing where an
adversary transfers the functionality of a victim model into a knockoff via blackbox
access. In spite of minimal assumptions on the blackbox, we demonstrated the
surprising effectiveness of our approach. Finally, we validated our approach on a
real-world image recognition API and found strong performance of knockoffs. We
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find functionality stealing poses a real-world threat that potentially undercuts an
increasing number of deployed ML models.

In the next chapter, we work towards the first effective defense that mitigates the
threat highlighted in this chapter.



7
P R E D I C T I O N P O I S O N I N G

Having studied the effectiveness of model stealing attacks in Chapter 6, we
now focus on defenses to mitigate such attacks. It is particularly important
to work towards effective defenses, as advances in model functionality

stealing attacks threaten the business model of ML applications, which require a lot
of time, money, and effort to develop. Existing defenses take a passive role against
stealing attacks, such as by truncating predicted information. We find such passive
defenses ineffective against DNN stealing attacks. In this chapter, we propose the
first defense which actively perturbs predictions targeted at poisoning the training
objective of the attacker. We find our defense effective across a wide range of
challenging datasets and DNN model stealing attacks, and additionally outperforms
existing defenses. Our defense is the first that can withstand highly accurate model
stealing attacks for tens of thousands of queries, amplifying the attacker’s error rate
up to a factor of 85× with minimal impact on the utility for benign users.

The content of this chapter is based on Orekondy et al. (2020b). As a first author,
Tribhuvanesh Orekondy conducted all the experiments and was the main writer for
the conference paper.

7.1 introduction

Effectiveness of state-of-the-art DNN models at a variety of predictive tasks has
encouraged their usage in a variety of real-world applications e.g., home assistants,
autonomous vehicles, commercial cloud APIs. Models in such applications are valu-
able intellectual property of their creators, as developing them for commercial use is
a product of intense labour and monetary effort. Hence, it is vital to preemptively
identify and control threats from an adversarial lens focused at such models. In
this chapter we address model stealing, which involves an adversary attempting to
counterfeit the functionality of a target victim ML model by exploiting black-box
access (query inputs in, posterior predictions out).

Stealing attacks dates back to Lowd and Meek (2005a), who addressed reverse-
engineering linear spam classification models. Recent literature predominantly focus
on DNNs (specifically CNN image classifiers), and are shown to be highly effective
(Tramèr et al., 2016) on complex models (Orekondy et al., 2019b), even without
knowledge of the victim’s architecture (Papernot et al., 2017b) nor the training data
distribution. The attacks have also been shown to be highly effective at replicating
pay-per-query image prediction APIs, for as little as $30 (Orekondy et al., 2019b).

109
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tions ỹ = y + δ, with an ob-
jective of poisoning the adver-
sary’s gradient signal.

Defending against stealing attacks however has received little attention and is
lacking. Existing defense strategies aim to either detect stealing query patterns (Juuti
et al., 2019), or degrade quality of predicted posterior via perturbation. Since detec-
tion makes strong assumptions on the attacker’s query distribution (e.g., small L2
distances between successive queries), our focus is on the more popular perturbation-
based defenses. A common theme among such defenses is accuracy-preserving
posterior perturbation: the posterior distribution is manipulated while retaining the
top-1 label. For instance, rounding decimals (Tramèr et al., 2016), revealing only
high-confidence predictions (Orekondy et al., 2019b), and introducing ambiguity at
the tail end of the posterior distribution (Lee et al., 2018). Such strategies benefit from
preserving the accuracy metric of the defender. However, in line with previous works
(Tramèr et al., 2016; Orekondy et al., 2019b; Lee et al., 2018), we find models can
be effectively stolen using just the top-1 predicted label returned by the black-box.
Specifically, in many cases we observe <1% difference between attacks that use the
full range of posteriors (blue line in Fig. 7.1) to train stolen models and the top-1
label (orange line) alone. In this chapter, we work towards effective defenses (red
line in Fig. 7.1) against DNN stealing attacks with minimal impact to defender’s
accuracy.

The main insight to our approach is that unlike a benign user, a model stealing
attacker additionally uses the predictions to train a replica model. By introducing
controlled perturbations to predictions, our approach targets poisoning the training
objective (see Fig. 7.2). Our approach allows for a utility-preserving defense, as well
as trading-off a marginal utility cost to significantly degrade attacker’s performance.
As a practical benefit, the defense involves a single hyperparameter (perturbation
utility budget) and can be used with minimal overhead to any classification model
without retraining or modifications.
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We rigorously evaluate our approach by defending six victim models, against
four recent and effective DNN stealing attack strategies (Papernot et al., 2017b; Juuti
et al., 2019; Orekondy et al., 2019b). Our defense consistently mitigates all stealing
attacks and further shows improvements over multiple baselines. In particular, we
find our defenses degrades the attacker’s query sample efficiency by 1-2 orders
of magnitude. Our approach significantly reduces the attacker’s performance (e.g.,
30-53% reduction on MNIST and 13-28% on CUB200) at a marginal cost (1-2%) to
defender’s test accuracy. Furthermore, our approach can achieve the same level of
mitigation as baseline defenses, but by introducing significantly lesser perturbation.

Contributions. (i) We propose the first utility-constrained defense against DNN
model stealing attacks; (ii) We present the first active defense which poisons the
attacker’s training objective by introducing bounded perturbations; and (iii) Through
extensive experiments, we find our approach consistently mitigate various attacks
and additionally outperform baselines.

7.2 preliminaries

Model functionality stealing. Model stealing attacks are cast as an interaction
between two parties: a victim/defender V (‘teacher’ model) and an attacker A
(‘student’ model). The only means of communication between the parties are via
black-box queries: attacker queries inputs x ∈ X and defender returns a posterior
probability distribution y ∈ ∆K = P(y|x) = FV(x), where ∆K = {y � 0, 1Ty = 1}
is the probability simplex over K classes (we use K instead of K− 1 for notational
convenience). The attack occurs in two (sometimes overlapping) phases: (i) querying:
the attacker uses the black-box as an oracle labeler on a set of inputs to construct a
‘transfer set’ of input-prediction pairs Dtransfer = {(xi, yi)}B

i=1; and (ii) training: the
attacker trains a model FA to minimize the empirical risk on Dtransfer. The end-goal
of the attacker is to maximize accuracy on a held-out test-set (considered the same
as that of the victim for evaluation purposes).

Knowledge-limited attacker. In model stealing, attackers justifiably lack complete
knowledge of the victim model FV . Of specific interest are the model architecture
and the input data distribution to train the victim model PV(X) that are not known
to the attacker. Since prior work (Hinton et al., 2015; Papernot et al., 2016; Orekondy
et al., 2019b) indicates functionality largely transfers across architecture choices,
we now focus on the query data used by the attacker. Existing attacks can be
broadly categorized based on inputs {x ∼ PA(X)} used to query the black-box: (a)
independent distribution: (Tramèr et al., 2016; Correia-Silva et al., 2018; Orekondy et al.,
2019b) samples inputs from some distribution (e.g., ImageNet for images, uniform
noise) independent to input data used to train the victim model; and (b) synthetic
set: (Papernot et al., 2017b; Juuti et al., 2019) augment a limited set of seed data by
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adaptively querying perturbations (e.g., using FGSM) of existing inputs. We address
both attack categories in our chapter.

Defense objectives. We perturb predictions in a controlled setting: ỹ = Fδ
V(x) =

y + δ s.t. ỹ, y ∈ ∆K. The defender has two (seemingly conflicting) objectives: (i)
utility: such that perturbed predictions remain useful to a benign user. We consider
two utility measures: (a) Acc(Fδ

V ,Dtest): accuracy of defended model on test examples;
and (b) dist(y, ỹ) = ||y− ỹ||p = ε to measure perturbation. (ii) non-replicability: to
reduce the test accuracy of an attacker (denoted as Acc(FA,Dtest)) who exploits the
predictions to train a replica FA on Dtransfer. For consistency, we evaluate both the
defender’s and attacker’s stolen model accuracies on the same set of test examples
Dtest.

Defender’s assumptions. We closely mimic an assumption-free scenario similar
to existing perturbation-based defenses. The scenario entails the knowledge-limited
defender: (a) unaware whether a query is malicious or benign; (b) lacking prior
knowledge of the strategy used by an attacker; and (c) perturbing each prediction
independently (hence circumventing Sybil attacks). For added rigor, we also study
attacker’s countermeasures to our defense in Section 7.4.

7.3 approach : maximizing angular deviation between

gradients

Motivation: Targeting first-order approximations. We identify that the attacker
eventually optimizes parameters of a stolen model F(·; w) (we drop the subscript ·A
for readability) to minimize the loss on training examples {(xi, ỹi)}. Common to a
majority of optimization algorithms is estimating the first-order approximation of
the empirical loss, by computing the gradient of the loss w.r.t. the model parameters
w ∈ RD:

u = −∇wL(F(x; w), y) (7.1)

Maximizing Angular Deviation (MAD). The core idea of our approach is to
perturb the posterior probabilities y which results in an adversarial gradient signal
that maximally deviates (see Fig. 7.2) from the original gradient (Eq. 7.1). More
formally, we add targeted noise to the posteriors which results in a gradient direction:

a = −∇wL(F(x; w), ỹ) (7.2)

to maximize the angular deviation between the original and the poisoned gradient
signals:

max
a

2(1− cos∠(a, u)) = max
â
||â− û||22 (â = a/||a||2, û = u/||u||2) (7.3)
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Given that the attacker model is trained to match the posterior predictions, such
as by minimizing the cross-entropy loss L(y, ỹ) = −∑k ỹk log yk we rewrite Equation
(7.2) as:

a = −∇wL(F(x; w), ỹ) = ∇w ∑
k

ỹk log F(x; w)k = ∑
k

ỹk∇w log F(x; w)k = GTỹ

where G ∈ RK×D represents the Jacobian over log-likelihood predictions F(x; w)
over K classes w.r.t. parameters w ∈ RD. By similarly rewriting Equation (7.1),
substituting them in Equation (7.3) and including the constraints, we arrive at our
poisoning objective (Eq. 7.4-7.7) of our approach which we refer to as MAD. We can
optionally enforce preserving accuracy of poisoned prediction via constraint (7.8),
which will be discussed shortly.

max
ỹ

∥∥∥∥ GTỹ
||GTỹ||2

− GTy
||GTy||2

∥∥∥∥2

2
(= H(ỹ)) (7.4)

where G = ∇w log F(x; w) (G ∈ RK×D) (7.5)

s.t ỹ ∈ ∆K (Simplex constraint) (7.6)
dist(y, ỹ) ≤ ε (Utility constraint) (7.7)
arg max

k
ỹk = arg max

k
yk (For variant MAD-argmax) (7.8)

The above presents a challenge of black-box optimization problem for the defense
since the defender justifiably lacks access to the attacker model F (Eq. 7.5). Apart
from addressing this challenge in the next few paragraphs, we also discuss (a)
solving a non-standard and non-convex constrained maximization objective; and (b)
preserving accuracy of predictions via constraint (7.8).

Estimating G. Since we lack access to adversary’s model F, we estimate the
jacobian G = ∇w log Fsur(x; w) (Eq. 7.5) per input query x using a surrogate model
Fsur. We empirically determined choice of architecture of Fsur robust to choices of
adversary’s architecture F. However, the initialization of Fsur plays a crucial role, with
best results on a fixed randomly initialized model. We conjecture this occurs due
to surrogate models with a high loss provide better gradient signals to guide the
defender.

Heuristic solver. Gradient-based strategies to optimize objective (Eq. 7.4) often
leads to poor local maxima. This is in part due to the objective increasing in all
directions around point y (assuming G is full-rank), making optimization sensitive
to initialization. Consequently, we resort to a heuristic to solve for ỹ. Our approach
is motivated by Hoffman (1981), who show that the maximum of a convex function
over a compact convex set occurs at the extreme points of the set. Hence, our two-step
solver: (i) searches for a maximizer y∗ for (7.4) by iterating over the K extremes
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FV Acc(FV) Acc(FA)

jbda jbself jbtop3 k.off

MNIST (LeNet) 99.4 89.2 89.4 87.3 99.1

FashionMNIST (LeNet) 92.0 38.7 45.8 68.7 69.2

CIFAR10 (VGG16) 92.0 28.6 20.7 73.8 78.7

CIFAR100 (VGG16) 72.2 5.3 2.9 39.2 51.9

CUB200 (VGG16) 80.4 6.8 3.9 21.5 65.1

Caltech256 (VGG16) 80.0 12.5 16.0 29.5 74.6

Table 7.1: Victim models and accuracies. All accuracies are w.r.t undefended victim model.

yk (where yk=1) of the probability simplex ∆K; and (ii) then computes a perturbed
posterior ỹ as a linear interpolation of the original posteriors y and the maximizer
y∗: ỹ = (1− α)y + αy∗, where α is selected such that the utility constraint (Eq. 7.7)
is satisfied.

Variant: MAD-argmax. Within our defense formulation, we encode an additional
constraint (Eq. 7.8) to preserve the accuracy of perturbed predictions. MAD-argmax
variant helps us perform accuracy-preserving perturbations similar to prior work. But
in contrast, the perturbations are constrained (Eq. 7.7) and are specifically introduced
to maximize the MAD objective. We enforce the accuracy-preserving constraint
in our solver by iterating over extremes of intersection of sets Eq.(7.6) and (7.8):
∆K

k = {y � 0, 1Ty = 1, yk ≥ yj, k 6= j} ⊆ ∆K.

7.4 experimental results

7.4.1 Experimental Setup

Victim models and datasets. We set up six victim models (see column ‘FV’ in
Table 7.1), each model trained on a popular image classification dataset. All models
are trained using SGD (LR = 0.1) with momentum (0.5) for 30 (LeNet) or 100 epochs
(VGG16), with a LR decay of 0.1 performed every 50 epochs. We train and evaluate
each victim model on their respective train and test sets.

Attack strategies. We hope to broadly address all DNN model stealing strategies
during our defense evaluation. To achieve this, we consider attacks that vary in query
data distributions (independent and synthetic; see Section 7.2) and strategies (random
and adaptive). Specifically, in our experiments we use the following attack models:
(i) Jacobian-based Data Augmentation ‘JBDA’ (Papernot et al., 2017b); (ii,iii) ‘JB-self’
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and ‘JB-top3’ (Juuti et al., 2019); and (iv) Knockoff Nets ‘knockoff’ (Orekondy et al.,
2019b); We follow the default configurations of the attacks where possible.

In all attack strategies, the adversary trains a model FA to minimize the cross-
entropy loss on a transfer set (Dtransfer = {(xi, ỹi)}B

i=1) obtained by using the victim
model FV to pseudo-label inputs xi (sampled or adaptively synthesized). By default,
we use B=50K queries, which achieves reasonable performance for all attacks and
additionally makes defense evaluation tractable. The size of the resulting transfer set
(B=50K examples) is comparable (e.g., 1× for CIFAR10/100, 2.1× for Caltech256) to
size of victim’s training set. In line with prior work (Papernot et al., 2016; Orekondy
et al., 2019b), we too find (Section 7.4.2.3) attack and defense performances are
unaffected by choice of architectures, and hence use the victim architecture for
the stolen model FA. Due to the complex parameterization of VGG-16 (100M+), we
initialize the weights from a pretrained TinyImageNet or ImageNet model (except for
the last FC layer, which is trained from scratch). All stolen models are trained using
SGD (LR=0.1) with momentum (0.5) for 30 epochs (LeNet) and 100 epochs (VGG16).
We find choices of attacker’s architecture and optimization does not undermine the
defense (discussed in Section 7.4.2.3).

Effectiveness of attacks. We evaluate accuracy of resulting stolen models from the
attack strategies as-is on the victim’s test set, thereby allowing for a fair head-to-head
comparison with the victim mode. The stolen model test accuracies, along with
undefended victim model FV accuracies are reported in Table 7.1. We observe for all
six victim models, using just 50K black-box queries, attacks are able to significantly
extract victim’s functionality e.g., >87% on MNIST. We find the knockoff attack to
be the strongest, exhibiting reasonable performance even on complex victim models
e.g., 74.6% (0.93×Acc(FV)) on Caltech256.

How good are existing defenses? Most existing defenses in literature (Tramèr
et al., 2016; Orekondy et al., 2019b; Lee et al., 2018) perform some form of information
truncation on the posterior probabilities e.g., rounding, returning top-k labels; all
strategies preserve the rank of the most confident label. We now evaluate model
stealing attacks on the extreme end of information truncation, wherein the defender
returns just the top-1 ‘argmax’ label. This strategy illustrates a rough lower bound on
the strength of the attacker when using existing defenses. Specific to knockoff, we
observe the attacker is minimally impacted on simpler datasets (e.g., 0.2% accuracy
drop on CIFAR10). While this has a larger impact on more complex datasets involving
numerous classes (e.g., a maximum of 23.4% drop observed on CUB200), the strategy
also introduces a significant perturbation (L1=1±0.5) to the posteriors. The results
suggest existing defenses, which largely the top-1 label, are largely ineffective at
mitigating model stealing attacks.
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Defenses: Evaluation. We evaluate all defenses on a non-replicability vs. utility
curve at various operating points ε of the defense. We furthermore evaluate the
defenses for a large query budget (50K). We use as non-replicability the accuracy of
the stolen model on held-out test data Dtest. We use two utility metrics:

(a) accuracy: test-accuracy of the defended model producing perturbed predictions
on Dtest; and

(b) perturbation magnitude ε: measured as L1 distance ||y− ỹ||1.

Defense: Baselines. We compare our approaches against three methods:

(i) reverse-sigmoid (Lee et al., 2018): which softens the posterior distribution
and introduces ambiguity among non-argmax probabilities. For this method,
we evaluate non-replicability and utility metrics for the defense operating at
various choices of their hyperparameter β ∈ [0, 1], while keeping their dataset-
specific hyperparameter γ fixed (MNIST: 0.2, FashionMNIST: 0.4, CIFAR10: 0.1,
rest: 0.2).

(ii) random noise: For controlled random-noise, we add uniform random noise δz
on the logit prediction scores (z̃ = z + δz, where z = log( y

1−y )), enforce utility
by projecting δz to an εz-ball (Duchi et al., 2008), and renormalize probabilities
ỹ = 1

1+e−z̃ .

(iii) dp-sgd: while our method and previous two baselines perturbs predictions, we
also compare against introducing randomization to victim model parameters
by training with the DP-SGD algorithm (Abadi et al., 2016b). DP is a popular
technique to protect the model against training data inference attacks. This
baseline allows us to verify whether the same protection extends to model
functionality.

7.4.2 Results

In the follow sections, we demonstrate the effectiveness of our defense rigorously
evaluated across a wide range of complex datasets, attack models, defense baselines,
query, and utility budgets. For readability, we first evaluate the defense against attack
models, proceed to comparing the defense against strong baselines and then provide
an analysis of the defense.

7.4.2.1 MAD Defense vs. Attacks

Figure 7.3 presents evaluation of our defenses MAD (Eq. 7.4-7.7) and MAD-argmax (Eq.
7.4-7.8) against the four attack models. To successfully mitigate attacks as a defender,
we want the defense curves (colored solid lines with operating points denoted by
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Figure 7.3: Attackers vs. our defense. Curves are obtained by varying degree of perturbation
ε (Eq. 7.7) in our defense. ↑ denotes higher numbers are better and ↓, lower
numbers are better. Non-replicability objective is presented on the x-axis and
utility on the y-axis.

thin crosses) to move away from undefended accuracies (denoted by circular discs,
where ε=0.0) to ideal defense performances (cyan cross, where Acc(Def.) is unchanged
and Acc(Att.) is chance-level).

We observe from Figure 7.3 that by employing an identical defense across all
datasets and attacks, the effectiveness of the attacker can be greatly reduced. Across
all models, we find MAD provides reasonable operating points (above the diago-
nal), where defender achieves significantly higher test accuracies compared to the
attacker. For instance, on MNIST, for <1% drop in defender’s accuracy, our defense
simultaneously reduces accuracy of the jbtop3 attacker by 52% (87.3%→35.7%) and
knockoff by 29% (99.1%→69.8%). We find similar promising results even on high-
dimensional complex datasets e.g., on CUB200, a 23% (65.1%→41.9%) performance
drop of knockoff for 2% drop in defender’s test performance. Our results indicate
effective defenses are achievable, where the defender can trade-off a marginal utility
cost to drastically impede the attacker.
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ỹ|
| 1

�

MNIST

20 40 60

0.0

0.5

1.0

1.5

FashionMNIST

40 60 80

0.0

0.5

1.0

1.5

CIFAR10

0 20 40

0.0

0.5

1.0

1.5

CIFAR100

0 20 40 60

0.0

0.5

1.0

1.5

CUBS200

0 20 40 60

0.0

0.5

1.0

1.5

Caltech256

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

Ac
c(

De
fe

nd
er

)
�

75

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

25

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

75

mad mad-argmax randnoise dpsgd reversesigmoid ideal defense

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

40 6050

75

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

70

80

0 20 40 60 80 100
Acc(Attacker) �

0

20

40

60

80

100

70

80100

10090
90

80 50 5080

90
25 50 75 60 8025

40 60 80 100

0.0

0.5

1.0

1.5

||y
�
ỹ|
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Figure 7.4: Knockoff attack vs. ours and baseline defenses (best seen magnified). Non-
replicability is presented on the x-axis. On y-axis, we present two utility measures:
(a) top: Utility = L1 distance (b) bottom: Utility = Defender’s accuracy. Region
above the diagonal indicates instances where defender outperforms the attacker.
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Figure 7.5: Attacker argmax. Follow-up to Figure 7.4b (CIFAR10), but with attacker using
only the argmax label.

7.4.2.2 MAD Defense vs. Baseline Defenses

We now study how our approach compares to baseline defenses, by evaluating the
defenses against the knockoff attack (which resulted in the strongest attack in our
experiments). From Figure 7.4, we observe:

(i) Utility objective = L1 distance (Fig. 7.4a): Although random-noise and reverse-
sigmoid reduce attacker’s accuracy, the strategies in most cases involves larger
perturbations. In contrast, MAD and MAD-argmax provides similar non-replicability
(i.e., Acc(Att.)) with significantly lesser perturbation, especially at lower magnitudes.
For instance, on MNIST (first column), MAD (L1 = 0.95) reduces the accuracy of the
attacker to under 80% with 0.63× the perturbation as that of reverse-sigmoid and
random-noise (L1 ≈ 1.5).

(ii) Utility objective = argmax-preserving (Fig. 7.4b): By setting a hard constraint
on retaining the label of the predictions, we find the accuracy-preserving defenses
MAD-argmax and reverse-sigmoid successfully reduce the performance of the attacker
by at least 20% across all datasets. In most cases, we find MAD-argmax in addition
achieves this objective by introducing lesser distortion to the predictions compared to
reverse-sigmoid. For instance, in Fig. 7.4a, we find MAD-argmax consistently reduce
the attacker accuracy to the same amount at lesser L1 distances. In reverse-sigmoid,
we attribute the large L1 perturbations to a shift in posteriors towards a uniform
distribution e.g., mean entropy of perturbed predictions is 3.02 ± 0.16 (max-entropy
= 3.32) at L1=1.0 for MNIST; in contrast, MAD-argmax displays a mean entropy of
1.79 ± 0.11. However, common to accuracy-preserving strategies is a pitfall that the
top-1 label is retained. In Figure 7.5 (see overlapping red and yellow cross-marks),
we present the results of training the attacker using only the top-1 label. In line
with previous discussions, we find that the attacker is able to significantly recover



120 prediction poisoning

0◦

20◦

40◦

60◦
80◦100◦

120◦

140◦

160◦

180◦
1 10 100 1k 10k

114.7◦

24.9◦

15.9◦

4.4◦
0.6◦

0.01 0.1 0.5 1.0 2.0
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Figure 7.7: Test loss. Visualized dur-
ing training. Colours and
lines correspond to ε val-
ues in Fig. 7.6.

the original performance of the stolen model for accuracy-preserving defenses
MAD-argmax and reverse-sigmoid.

(iii) Non-replicability vs. utility trade-off (Fig. 7.4b): We now compare our defense
MAD (blue lines) with baselines (rand-noise and dp-sgd) which trade-off utility to
mitigate model stealing. Our results indicate MAD offers a better defense (lower
attacker accuracies for similar defender accuracies). For instance, to reduce the
attacker’s accuracy to <70%, while the defender’s accuracy significantly degrades
using dp-sgd (39%) and rand-noise (56.4%), MAD involves a marginal decrease of
1%.

7.4.2.3 Analysis

How much angular deviation does MAD introduce? To obtain insights on the
angular deviation induced between the true and the perturbed gradient, we conduct
an experiment by tracking the true gradient direction (which was unknown so far)
at each training step. We simulate this by training an attacker model using online
SGD (LR=0.001) over N iterations using B distinct images to query and a batch
size of 1. At each step t of training, the attacker queries a randomly sampled input
xt to the defender model and backpropogates the loss resulting from ỹt. In this
particular experiment, the perturbation ỹt is crafted having exact knowledge of the
attacker’s parameters. We evaluate the angular deviation between gradients with (a)
and without (u) the perturbation.

In Figure 7.6, we visualize a histogram of deviations: θ = arccos u·a
||u||||a|| , where

u = ∇wL(wt, y, ·) and a = ∇wL(wt, ỹ, ·). We observe: (i) although our perturbation
space is severely restricted (a low-dimensional probability simplex), we can introduce
surprisingly high deviations (0-115

◦) in the high-dimensional parameter space of
the VGG16; (ii) for ε values at reasonable operating points which preserves the
defender’s accuracy within 10% of the undefended accuracy (e.g., ε ∈ [0.95, 0.99] for
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Figure 7.8: MAD ablation experiments. Utility = (left) L1 distance (right) defender test accu-
racy.

CIFAR10), we see deviations with mean 24.9◦ (yellow bars in Fig. 7.6). This indicates
that the perturbed gradient on an average leads to a slower decrease in loss function;
(iii) on the extreme end, with ε = εmax = 2, on an average, we find the perturbations
successfully flips (>90

◦) the gradient direction leading to an increase on the test
loss, as seen in Figure 7.7 (blue line). We also find the above observations reasonably
transfers to a black-box attacker setting, where the perturbations are crafted without
knowledge of the attacker’s parameters. Overall, we find our approach considerably
corrupts the attacker’s gradient direction.

Ablative analysis. We present an ablation analysis of our approach in Figure 7.8.
In this experiment, we compare our approach MAD and MAD-argmax to: (a) G = I:
We substitute the jacobian G (Eq. 7.5) with a K× K identity matrix; and (b) y∗=rand:
Inner maximization term (Eq. 7.4) returns a random extreme of the simplex. Note
that both (a) and (b) do not use the gradient information to perturb the posteriors.

From Figure 7.8, we observe: (i) poor performance of y∗=rand, indicating random
untargeted perturbations of the posterior probability is a poor strategy; (ii) G = I,
where the angular deviation is maximized between the posterior probability vectors is
a slightly better strategy; (ii) MAD outperforms the above approaches. Consequently,
we find using the gradient information (although a proxy to the attacker’s gradient
signal) within our formulation (Equation 7.4) is crucial to providing better model
stealing defenses.

Subverting the defense. We now explore various strategies an attacker can use to
circumvent the defense. To this end, we evaluate the following strategies: (a) argmax:
attacker uses only the most-confident label during training; (b) arch-*: attacker trains
other choices of architectures; (c) nquery: attacker queries each image multiple times;
(d) nquery+aug: same as (c), but with random cropping and horizontal flipping; and
(e) opt-*: attacker uses an adaptive LR optimizer e.g., ADAM (Kingma and Ba, 2014).
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Figure 7.9: Subverting the defense.

We present results over the subversion strategies in Figure 7.9. We find our defense
robust to above strategies. Our results indicate that the best strategy for the attacker
to circumvent our defense is to discard the probabilities and rely only on the most
confident label to train the stolen model. In accuracy-preserving defenses (see Fig.
7.5), this previously resulted in an adversary entirely circumventing the defense
(recovering up to 1.0× original performance). In contrast, we find MAD is nonetheless
effective in spite of the strategy, maintaining a 9% absolute accuracy reduction in
attacker’s stolen performance.

7.5 conclusion

In this chapter, we were motivated by limited success of existing defenses against
DNN model stealing attacks. While prior work is largely based on passive defenses
focusing on information truncation, we proposed the first active defense strategy
that attacks the adversary’s training objective. We found our approach effective
in defending a variety of victim models and against various attack strategies. In
particular, we find our attack can reduce the accuracy of the adversary by up to 65%,
without significantly affecting defender’s accuracy.



8
C O N C L U S I O N A N D O U T L O O K

We have seen significant progress in machine learning recently. The progress
has enabled a dizzying array of applications e.g., managing photo collec-
tions, smart home assistants, aiding medical diagnosis. Central to many

such applications is sharing of information (e.g., data, parameters) between owners
(e.g., individuals, medical organizations). There are many incentives for the own-
ers to share the information, such as social rewards (when sharing photographs)
or financial benefits (when monetizing predictions). However, we argue that the
incentives present only one side of a double-edged sword. One the other side, the
shared information can also be exploited by untrusted parties. In the specific case
where the information is a function of private and confidential data, it is important
to identify and mitigate entailing privacy risks.

In this thesis, we addressed leakage in machine learning systems along three
research directions, which we will now briefly summarize. In the first direction,
leakage in visual data, we argued that personal photos (similar to that shared on
social networks) encodes a broad range of private information. Part I presented
datasets, user studies, and techniques to identify and further mitigate privacy risks
by redacting multimodal privacy-sensitive content in a utility-preserving manner. In
the second direction, leakage during learning, we switched focus to a family of learning
algorithms that requires individuals to share training artifacts computed on their
corresponding private datasets. Here, we found that the artifacts unintentionally
encode user-identifiable information across a wide range of challenging scenarios and
tasks. In the third direction, leakage during inference, we investigated model stealing
attacks and defenses. We initially found that attacks are surprisingly possible on
complex black-box models and worked our way to propose defenses to withstand
such attacks.

In this chapter, in Section 8.1, we begin by presenting a detailed summary of the
chapters in this thesis and share resulting insights. Section 8.2 builds on some of these
insights and reviews open problems to better understand leakage of information in
machine learning systems.

8.1 key insights and conclusions

This thesis we presented a framework to understand leakage of private and confiden-
tial information in machine learning techniques. In this framework, we considered a
owner who (i) in possession of some private data (iii) trains a supervised predictive
model and (iii) exposes the model as a black-box to perform inferences. At each
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step, there are many incentives (e.g., financial) for the owner to share information.
Over the following sections, we summarize our methods to understand and control
privacy leakage when sharing such information.

8.1.1 Part I: Leakage via Visual Data

In the first part of the thesis, we studied the scenario where the owner wishes to share
visual data – specifically personal photos – on the internet e.g., on social networks. To
control the amount of private information leaked by such photos, existing research
provides numerous solutions to mitigate information corresponding to facially
identifiable features. However, there is scant research to address privacy aspects in
images beyond facial features e.g., location, full name. This is problematic because
such privacy aspects of individuals, when in explicit forms receive scrutiny, but do
not when the same information is embedded in visual content.

In Chapter 3, we took the first steps towards addressing privacy in images from a
broader perspective. We presented the first taxonomy of 68 privacy attributes over 9

categories inspired by privacy laws surrounding explicit content. Furthermore, we
proposed the Visual Privacy (VISPR) dataset consisting of 22k images annotated
with the privacy attributes. Using the VISPR dataset, we performed a user study to
better understand the interplay of individuals, their privacy preferences, and their
perception of privacy risks in images. The user study highlighted that individuals
having diverse privacy preferences, suggesting that there does not exist a ‘one size
fits all’ approach to controlling privacy leakage in images. More surprisingly in the
user studies, we found that individuals consistently underestimate the privacy risk of
image content and fail to enforce their own privacy preferences. To better evaluate
privacy risks in visual content, we proposed an end-to-end method to estimate the
privacy attributes revealed in an image and the resulting privacy risk. Remarkably,
we found our approach in some scenarios outperforms the individuals themselves
in estimating the privacy risk when sharing images.

In Chapter 4, we extended our work from Chapter 3 by controlling privacy leakage
on a pixel-level. Here, we studied the problem of visual redactions: to identify and
obfuscate privacy-sensitive regions in images while preserving its aesthetic quality
(i.e., the utility). As a first step, we extended a 8.4k image subset of the VISPR
dataset to additionally contain pixel-level annotations at an instance-level. Here,
we found pixel-level localization of privacy-sensitive regions introduces a multi-
modality challenge, as attributes arise from visual (e.g., fingerprints), textual (e.g.,
names), and multimodal (e.g., drivers license) sources. Consequently, by leveraging
recent advances in instance-level segmentation and text processing, we proposed
an ensemble approach to specifically address these challenges. While our approach
allows to (imperfectly) identify privacy-sensitive regions, we found further redacting
these regions introduces a privacy-utility trade off. Specifically, that under-redactions
drastically increases privacy risks, and over-redacting gradually decreases the images’
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overall utility rendering the image unsuitable for online sharing. Nonetheless, by
exploiting variances in spatial extents of different attributes, our redaction approach
was able to achieve 83% performance of human-based redactions.

In the above chapters, we studied our approaches as a zero-sum game over a
user’s privacy objective set against an adversarial objective; the objective is the user
minimizing (alternatively the adversary maximizing) inference over various privacy
attributes in a single personal image. While our approaches achieved promising
results, we acknowledge that the performances might be unjustifiably optimistic in
certain scenarios, such as when a user shares a stream of personal images (e.g., video
clip). In such cases, we believe it might be more appropriate to identify and mitigate
privacy risks assuming an adversary’s access to the entire stream (i.e., worst-case
estimates) rather than assessing risk in expectation (i.e., average-case estimates) as
studied in our work. Furthermore, we also identify that the stream of photos might
reveal additional privacy-related patterns that are not evident in a single photo (e.g.,
embarrassing actions). In spite of these limitations, we make some key contributions.
We take the first steps towards identifying that images reveals a wide spectrum of
private information and additionally collect large-scale image datasets annotated
image-level and pixel-level labels across a range of privacy attributes. Furthermore,
we propose techniques to automatically identify and mitigate privacy leakage (such
as by redacting relevant pixels) in personal photos while preserving the utility
of the image. We find that our privacy-enforcing techniques achieve performance
comparable to human-level performance and in some cases also outperform them.

8.1.2 Part II: Leakage during Learning

In the second part of the thesis, we considered the scenario where the owner
contributes data towards the training of model. Specifically, where the shared data
corresponds to anonymous model parameters resulting from few gradient descent
steps over the owner’s private data. Such a sharing scheme is central to federated
learning approaches where multiple owners intend to collaboratively train a model
without sharing their raw data. As a result, it is vital that the model updates (shared
instead of the raw data) does not reveal any information specific to the owner, or the
training data.

In Chapter 5, we however found that the shared model parameters encodes
subtle variations in which users capture and generate data. We found the statistical
signal provided by variations can be exploited to re-identify users behind the model
updates in a variety of challenging settings. To further exacerbate the concern, we
additionally observed that user re-identification helps associate the identity to other
sensitive attribute inferences. As the effectiveness of re-identification attacks is to a
large degree the product of biases in the training data subsets, we propose a defense
which introduces a decoy bias into the training data. Our defense strategies against
re-identification attacks offered substantial protections with little effect to utility.



126 conclusion and outlook

8.1.3 Part III: Leakage during Inference

In the final part of the thesis, we investigated how model predictions potentially leak
confidential information. Specifically, we studied this leakage from the lens of model
functionality stealing, where an adversary exploits the black-box interface to create a
replica of the model and thereby stealing the intellectual property of the owner.

In Chapter 6, we proposed the first model functionality stealing attack that is
effective on complex CNNs, while making fewer assumptions. In particular, we
found that the attacker can leverage a large independent pool of unlabeled ‘public’
data to transfer knowledge from the victim blackbox model to a ‘knockoff’ model. In
addition, we extended the attacker to perform sample-efficient querying by treating
sampling as a multi-armed bandit problem, where (learnt) arms correspond to
semantically similar groups in the public data. Our results especially raises concerns
around Machine Learning as a Service (MLaaS) providers, who monetize prediction
APIs to their models by charging a small fee per prediction (around $1-1.5 for 1k
predictions). In the form of a case study, we found that our approach was able to
steal a popular MLaaS model for as little as $30.

In Chapter 7, to address the concerns posed by our findings in Chapter 6, we
proposed the first effective defense against model stealing attacks. As model stealing
approaches predominantly involve an attacker training a model using the predictions,
the key idea in our defense was to poison the attacker’s training by perturbing
predictions. Our optimization-based defense perturbed predictions to maximize
deviations in the attacker’s gradient signal, while minimally distorting the prediction.
We found our defense able to withstand model stealing attacks for tens of thousands
of queries while significantly amplifying the attacker’s error rate.

8.2 future perspectives

In this section, we discuss future perspectives along the three research directions
between the thesis. In the last section, we conclude with a broader outlook for the
field.

8.2.1 Visual Privacy

In Part I of the thesis, we investigated methods to identify and control leakage across
a broad range of privacy attributes in personal photos. The end goal of our work was
to study techniques that enables photo sharing by data owners (e.g., social media
users) by revealing the minimal amount of information necessary in images. Now
we layout some research directions to realize the goal of a ‘Visual Privacy Advisor’.
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Minimizing supervision. A general theme towards training models to identify
private content in images – including our own work – is leveraging a large amount
of annotated training data for supervising the training process. In here lies the key
challenge that in most practical scenarios, availability of such training data, especially
for high-risk categories (e.g., credit cards), is scarce. Consequently, minimizing the
amount of supervision plays a major role to aid visual privacy tasks. One potential
approach is to transfer the supervision burden from private annotated data to public
prior knowledge e.g., in the form of Wikipedia text descriptions of certain attributes.
Approaches in few-shot classification (Xian et al., 2016; Sung et al., 2018) show
reasonable success towards this goal of training in spite of data scarcity.

Learning to obfuscate from obfuscated data. Previously, we discussed when a
minimal amount of annotated clean training data is available to train visual privacy
approaches. An alternate data availability scenario is when large amounts of pre-
obfuscated training data is available (Gurari et al., 2019), where the privacy-sensitive
regions are corrupted prior to sharing. However, this raises the paradoxical question
on how to train approaches to identify private content without having ever seen it. A
possible solution is to solve the paradox is exploiting contextual information outside
the obfuscated region. For instance, recognizing adjacent computer peripherals (e.g.,
keyboard) to guide obfuscating content on computer screens, or the human body to
obfuscate a person’s face. Explicitly exploiting contextual location priors has shown
reasonable success (Gould et al., 2008; Fulkerson et al., 2009; Krähenbühl and Koltun,
2011) in localizing objects, especially when only partial information (Verbeek and
Triggs, 2008) is available. Perhaps similar contextual priors could form the basis for
learning locations of private content from pre-obfuscated images.

Minimax formulation. Having presented some research directions to deal with
data scarcity, we now move focus on directions to better control privacy leakage. One
such direction involves viewing obfuscation as a minimax problem (Neumann, 1928):
to find the best obfuscation that minimizes leakage while maximally preserving
the obfuscated image’s utility. Our approach in Chapter 4 did not entirely solve
this minimax problem, but rather we used heuristics to find a range of possible
obfuscations that satisfied the minimax objective. Consequently, it left the data owner
with no guarantees on the resulting obfuscation. We believe one could build on top
of recent advances (Roy and Boddeti, 2019; Bertran et al., 2019) to obtain obfuscation
that provides theoretical bounds on resulting leakage. However, as these advances
have a narrow notion of utility (by treating it as a discrete random variable), it is
an open question whether they will directly apply to our problem where utility
corresponds to image aesthetics.

Improving utility via fine-grained obfuscations. In our work on performing au-
tomatic redactions (Chapter 4), we viewed image obfuscation as a trade-off between
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privacy and utility. In the previous paragraphs, we briefly presented some solutions
to push the Pareto frontier of the privacy-utility curve along the privacy-axis. Now,
we switch focus to the utility-axis: are there better alternatives than the black-out
obfuscation strategy studied in Chapter 4? Literature from the human-computer
interaction studies (Li et al., 2017c; Hasan et al., 2018) suggests a wide variety of
such strategies exist (e.g., blurring, pixelization) that better preserve utility of the
obfuscated image. While these provide a good starting point to better craft ob-
fuscations, it is unclear whether they are equally effective to hide a broad range
of private information. For instance, blurring a wheelchair in an image might be
insufficient to prevent leakage of disability-related information. Alternatively, to-
wards the goal of improving utility, it thus might be beneficial to ‘delete-and-replace’
selected privacy-sensitive regions by leveraging generative methods (Goodfellow
et al., 2014b). To replace the an image region while simultaneously preserving global
image consistency, recent advances in image inpainting (Pathak et al., 2016) and
object removal (Shetty et al., 2018a) might be beneficial.

Privacy beyond personal photos. In Part I of the thesis, we were specifically
concerned with privacy leakage across a specific medium: high-resolution personal
photos captured using an RGB camera. However, massive amounts of visual data
are captured in other forms and using complementary sensors that potentially
reveals additional private information. For instance, RGB video sequences can
convey information that a single frame cannot e.g., text typed on virtual keyboards
(Raguram et al., 2011; Xu et al., 2013), light diffused on a window by a TV (Xu et al.,
2014). As another example, by capturing eye-tracking patterns, augmented reality
devices can additionally profile an individual’s interest when he visits a shopping
mall. While some works (Speciale et al., 2019b; Speciale et al., 2019a) have recently
started addressing privacy beyond 2d visual data, there is little understanding of
leakage in many forms of captured visual data.

Group-level visual privacy. The predominant focus in research, including our
approaches in Part I, mitigates privacy leakage on a record-level i.e., at the granularity
of a single image. However, most scenarios (e.g., social media) involves individuals
sharing a group of images (e.g., an album of images). Such groups of images further
amplifies privacy risks as they reinforce details about the individual. Such details can
be used, for instance, to reconstruct 3d face models of individuals to spoof authenti-
cation systems (Xu et al., 2016). Furthermore, groups of images additionally capture
private ‘stories’ that would not be possible with a single image, such as the evolution
of an individual’s social circles or interests over time. As a result, understanding
the extent of privacy leakage from a group of images requires further investigation.
We can also explore an alternate ‘defense’ viewpoint when an individual shares a
group of images, but by selectively including certain images into the set to fulfill
a particular poisoning objective. We further motivate this objective by presenting
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two ideas. First, reminiscent to our strategy in Chapter 5, where an individual adds
a curated set of ‘decoy’ images to introduce uncertainty into the individual’s true
privacy attributes. Second, where the individual carefully perturbs (Shafahi et al.,
2018) or watermarks (Uchida et al., 2017) a subset of images before sharing to prevent
training, or help attribute training of downstream ML models on the individual’s
data.

8.2.2 Privacy-Preserving Collaborative Learning

In Part II, we evaluated privacy leakage in a collaborative learning scenario i.e., when
multiple data owners (each with their own private dataset) intend to train a model
without sharing their raw data. In this section, we present some insights to head
towards the goal of privacy-preserving collaborative learning settings, and suggest
some applications where the techniques might be especially beneficial.

Alternate modes of sharing information. For a set of data owners to collabora-
tively train a model, it is necessary to communicate (e.g., to server) at least some
meaningful information derived from their private datasets. However in this thesis,
we observed that sharing such information is problematic: both in its raw form
(Part I) as well as from parameters derived from the raw data (Part II). As a result, it
would be beneficial studying alternate methods of transferring knowledge (derived
from the raw data) from the owner to the server. We believe one potential approach,
by extending Liang et al. (2020), is to decompose the trainable parameters of a model
into a global (that everyone contributes towards) and a personal (that the owner
does not share) parameter set. By sharing only user-invariant global parameter,
one could reduce the amount of individual-specific information encoded into the
shared parameters. Another promising approach is motivated by our findings in
Chapter 6, where the owner could share local knowledge via annotations on a set
of publicly-available data. As a result, information shared is over a much lower
dimension (e.g., predictions over a small number of classes) compared to parameters
(hundreds of thousands for deep models). We believe some recent approaches (Li
and Wang, 2019; Chang et al., 2019) that have taken initial steps in realizing this idea
will further benefit from our findings in Chapter 6.

Client-sided threats. To complement the server-sided threats explored in Chap-
ter 5, we believe it is equally critical to investigate client-sided threats i.e., the owner
assuming the adversary’s role. The investigation of client-sided threats is especially
important given two factors: (i) since FL is typically designed for a massive number
(>100K) of clients, it exposes a large attack surface for adversaries; and (ii) as FL
provides a layer of anonymity and privacy to clients (such as by securely aggre-
gating updates), it is challenging to attribute and exclude malicious devices from
participation. Bhagoji et al. (2019) and Bagdasaryan et al. (2020) have made good
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steps towards analyzing client-sided threats by studying poisoning and backdooring
attacks.

Federated learning for visual privacy. We now present an interesting application
domain for federated learning techniques, motivated by privacy concerns around
data collection to aid supervised visual privacy approaches (previously discussed in
Section 8.2.1). Learning to obfuscate images in an federated learning framework is
promising, as the raw sensitive data is never shared, but rather only the minimal
representations (model updates) to learn the obfuscation task. However, this presents
three key challenges. First, in terms of privacy leakage, it is critical to understand and
control unintentional leakage in shared representations. Many recent works (Melis
et al., 2019; Zhu et al., 2019; Nasr et al., 2019), including our own in Part II, have
taken steps to better understand leakage. Second, in terms of supervision quality, it is
unlikely that individuals provide pixel-perfect instance-level annotations of privacy
attributes, like the ones presented in our VISPR dataset (Chapter 4). Instead, one
could leverage weak supervisory signals, such as in the form of image-level (Joon Oh
et al., 2017), key-point (Papadopoulos et al., 2017), or bounding-box (Khoreva et al.,
2017) annotations to achieve pixel-level identification of privacy attributes. Third,
in terms of communication, standard visual models are parameter-heavy (in the
order of millions of trainable parameters), and regularly communicating these bulky
parameters over mobile networks is energy-inefficient. Advancements in model
compression (Han et al., 2016b; Iandola et al., 2016) and communication-efficiency
techniques (Konečnỳ et al., 2016b; Lin et al., 2018) might gradually alleviate such
communication concerns. Overall, we find a push in multiple research directions
that in symphony enables learning visual privacy approaches without resorting to
data collection.

8.2.3 Knowledge Transfer and Black-box Interactions

Model stealing and knowledge transfer. We begin by remarking that model
stealing studied in Chapter 6 is an instantiation of a more general problem of
knowledge transfer (KT). In knowledge transfer (or ‘distillation’), the goal is to train
(often a more compact) student model to mimic the functionality of a (bulky) teacher
model, typically using the teacher’s training data. When the teacher’s training data
is unavailable (e.g., for privacy reasons), a recent line of work proposes zero-shot
KT (Micaelli and Storkey, 2019; Nayak et al., 2019) approaches despite the training
data unavailability. Such zero-shot KT is reminiscent of model stealing approaches
(where the student is the stolen model), but instead with a white-box teacher model
(i.e., exact parameters are known). While zero-shot KT and model stealing research
run in parallel, we believe they can profit from each other. In one direction, zero-shot
KT approaches tend to be sample-inefficient and one could leverage feedback-driven
techniques in model stealing approaches, such as our own adaptive approach
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(Chapter 6) to boost convergence rates. In the other direction, some zero-shot KT
approaches (Yoo et al., 2019; Yin et al., 2020) recover the teacher’s training data as a
stepping stone to perform knowledge transfer; we believe these approaches highlight
stealing of training data is possible in addition to functionality. Consequently, going
forward in this section, we believe the ideas presented is generally applicable to
problems around model stealing as well as (zero-shot) knowledge transfer.

Functional equivalence. In Part III, we modeled an adversary whose primary
goal was to extract the ‘functionality’ (i.e., accuracy on test inputs) of the victim
model; such a goal highlights the risk to intellectual property of the victim model.
However, from a security perspective, it is often more important to extract ‘fidelity’
(i.e., accuracy on all inputs) of the victim model. By extracting fidelity, an adversary
recovers a faithful white-box replica of the victim model. The white-box model
can be exploited to compute exact gradient-information – which is crucial to craft
adversarial (Goodfellow et al., 2014a) or poisoning instances (Lowd and Meek, 2005b;
Gu et al., 2017) – and thereby target the safety of the victim model. A recent line of
work (Jagielski et al., 2020; Carlini et al., 2020) demonstrates preliminary success in
recovering fidelity on shallow ReLU fully-connected networks. We believe extending
this line of work to more complex models will further improve our understanding
on the capabilities of an adversary during model deployment scenarios.

Sample-efficient interactions. Central to black-box adversarial attacks, including
model stealing attacks in Part III, is making sample-efficient interactions with the
black-box. Such efficient interactions are important as most practical scenarios involve
some query overhead, such as in the form of financial costs (for pay-per-prediction
APIs) or latency (to thwart models in real-time). Towards the goal of sample-efficient
model stealing, we present three interesting research directions. First, assuming
a large pool of ‘public’ input data (e.g., internet images, wiki text sentences) is
available to the adversary, developing a sampling strategy to select the minimal subset
of inputs to query. This is reminiscent of research along active learning (Cohn et al.,
1996) approaches, which are designed to select the most promising candidates from
a pool of semantically meaningful inputs for human annotation. Similar to model
stealing, the promising candidates are inputs that provide the best performance
gains when training a (stolen) model. As a result, one could build on top of recent
advances in active learning (AL) (Beluch et al., 2018; Gao et al., 2020) methods to
improve sample-efficiency. Second, motivated by recent findings (Papernot et al.,
2017b; Micaelli and Storkey, 2019; Krishna et al., 2020) which indicate that inputs
need not be semantically meaningful when querying the victim black-box, one could
instead learn an efficient generative distribution to sample from. To aid learning such a
distribution, data compression techniques (Wang et al., 2018) provides a good starting
point. Third, as shown in ours (Chapter 6) as well as similar works (Krishna et al.,
2020), rather than train the stolen model from scratch, it is beneficial to incorporate



132 conclusion and outlook

some prior knowledge. The most popular form to incorporate this knowledge is by
good initialization of the ‘knockoff’ model, such as Imagenet pretrained weights
in Chapter 6, or BERT (Devlin et al., 2019) weights in Krishna et al. (2020). In this
direction, we believe it is interesting to explore more suitable initialization strategies
(Mishkin and Matas, 2015; Finn et al., 2017) for the stolen model to help warm-start
the sampling strategy.

Stealing beyond image classification. Recent studies in model stealing, including
our own work in Part III, predominantly focus on attacks targeted on an image
classification model. While these models provide a good starting point, it remains
unclear to what extent existing techniques generalize to other deep neural network
models, especially in other domains. It is crucial to understand this, as deep models
in practical scenarios take many forms (e.g., recommendation systems, machine
translation). Specific to understanding effectiveness of stealing attacks targeting
natural language models, Krishna et al. (2020) (question answering) and Wallace
et al. (2020) (machine translation) have made good first steps.

Out of distribution. Having discussed strategies to further understand capabilities
of a model stealing adversary, we now switch focus on defending against such attacks.
Common to existing attacks is exploiting the property that the black-box victim
model meaningfully responds to anomalous inputs, such as inputs outside the training
distribution (Chapter 6) or in the extreme case, even randomly-generated patterns
(Tramèr et al., 2016). We believe training models to be more capable of recognizing
uncertainty in their predictions, especially on out-of-distribution images is a good
research direction which potentially benefits defenses against adversarial attacks. By
leveraging this insight, Kariyappa and Qureshi (2020) show promising initial results
by adaptively perturbing outputs based on prediction uncertainty.

8.2.4 A Broader Outlook

In the previous section, we presented interesting research directions to better under-
stand leakage and additionally address certain shortcomings of existing approaches.
Now, we take a step back and outline challenges from a broader perspective.

A deeper look at inferring visual privacy attributes. Literature predominantly
addresses recognizing private attributes (e.g., faces, political opinions) in images as
an object recognition problem. However, while objects can be identified by distinct
visual cues, this does not entirely hold true for recognizing privacy attributes.
Recognizing many attributes requires associating cues to strong prior knowledge e.g.,
recognizing location of an individual from an image of the Taj Mahal. In addition,
certain attributes might require causal reasoning (Pearl, 2009) e.g., recognizing
religion based on a person’s presence at a holy site. Effective recognition of privacy
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attributes will benefit from breakthroughs in visual scene understanding at a more
fundamental level by associating cues with a vast amount of knowledge.

Interplay between extraction and manipulation goals. In this thesis, we were
primarily concerned with extracting private information unintentionally leaked by
content (e.g., images) revealed by a owner. In parallel, a range of works study
manipulating information prior to sharing it with the owner. Unlike extraction goals
which highlights privacy loopholes, manipulation goals exploit safety loopholes by
influencing a system to work outside its intended specification. For instance, consider
the long line of work on adversarially manipulating images, where imperceptible
perturbations (Biggio et al., 2013; Goodfellow et al., 2014a; Koh and Liang, 2017)
are introduced targeted to reduce the accuracy of the system. However, we believe
both of extraction and manipulation goals are intertwined. Manipulative objectives
often require internal knowledge of the target system (e.g., parameters, gradients)
and extraction (as studied in Chapter 6) might hold a key. Similarly, extraction
performances can be amplified by manipulating the target system into revealing
additional information. Understanding the interplay opens up new routes to further
understand bounds on capabilities of an adversaries in real-world environments.
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Konečnỳ, Jakub, H Brendan McMahan, Daniel Ramage, and Peter Richtárik (2016a).
“Federated optimization: Distributed machine learning for on-device intelligence.”
In: arXiv preprint arXiv:1610.02527.
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