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Abstract

Modern interactive applications offer so many interaction opportunities that automated
exploration and testing becomes practically impossible without some domain specific
guidance towards relevant functionality. In this dissertation, we present a novel funda-
mental graphical user interface testing method called topic-driven testing. We mine the
semantic meaning of interactive elements, guide testing, and identify core functional-
ity of applications. The semantic interpretation is close to human understanding and
allows us to learn specifications and transfer knowledge across multiple applications
independent of the underlying device, platform, programming language, or technology
stack—to the best of our knowledge a unique feature of our technique.
Our tool ATTABOY is able to take an existing Web application test suite say from Ama-
zon, execute it on ebay, and thus guide testing to relevant core functionality. Tested on
different application domains such as eCommerce, news pages, mail clients, it can trans-
fer on average sixty percent of the tested application behavior to new apps—without any
human intervention. On top of that, topic-driven testing can go with even more vague
instructions of how-to descriptions or use-case descriptions. Given an instruction, say
“add item to shopping cart”, it tests the specified behavior in an application–both in a
browser as well as in mobile apps. It thus improves state-of-the-art UI testing frame-
works, creates change resilient UI tests, and lays the foundation for learning, transfer-
ring, and enforcing common application behavior. The prototype is up to five times
faster than existing random testing frameworks and tests functions that are hard to cover
by non-trained approaches.
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Zusammenfassung

Moderne interaktive Anwendungen bieten so viele Interaktionsmöglichkeiten, dass eine
vollständige automatische Exploration und das Testen aller Szenarien praktisch unmög-
lich ist. Stattdessen muss die Testprozedur auf relevante Kernfunktionalität ausgerichtet
werden. Diese Arbeit stellt ein neues fundamentales Testprinzip genannt thematisches
Testen vor, das beliebige Anwendungen über die graphische Oberfläche testet. Wir un-
tersuchen die semantische Bedeutung von interagierbaren Elementen um die Kernfunk-
tionenen von Anwendungen zu identifizieren und entsprechende Tests zu erzeugen. Statt
typischen starren Testinstruktionen orientiert sich diese Art von Tests an menschlichen
Anwendungsfällen in natürlicher Sprache. Dies erlaubt es, Software Spezifikationen zu
erlernen und Wissen von einer Anwendung auf andere zu übertragen unabhängig von
der Anwendungsart, der Programmiersprache, dem Testgerät oder der -Plattform. Nach
unserem Kenntnisstand ist unser Ansatz der Erste dieser Art.
Wir präsentieren ATTABOY, ein Programm, das eine existierende Testsammlung für
eine Webanwendung (z.B. für Amazon) nimmt und in einer beliebigen anderen An-
wendung (sagen wir ebay) ausführt. Dadurch werden Tests für Kernfunktionen gener-
iert. Bei der ersten Ausführung auf Anwendungen aus den Domänen online Shopping,
Nachrichtenseiten und eMail, erzeugt der Prototyp sechzig Prozent der Tests automa-
tisch. Ohne zusätzlichen manuellen Aufwand. Darüber hinaus interpretiert themen-
getriebenes Testen auch vage Anweisungen beispielsweise von How-to Anleitungen
oder Anwendungsbeschreibungen. Eine Anweisung wie ”Fügen Sie das Produkt in den
Warenkorb hinzu” testet das entsprechende Verhalten in der Anwendung. Sowohl im
Browser, als auch in einer mobilen Anwendung. Die erzeugten Tests sind robuster und
effektiver als vergleichbar erzeugte Tests. Der Prototyp testet die Zielfunktionalität fünf
mal schneller und testet dabei Funktionen die durch nicht spezialisierte Ansätze kaum
zu erreichen sind.
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1 Introduction

Testing applications has always been an integral part of the software development pro-
cess. Testing is not only a matter of quality assurance just before the software is finally
deployed or shipped to the customer. Instead, it is a repeated process in all levels of
development from requirement engineering, design, prototyping, implementation, veri-
fication, and maintenance. Testing is further complicated by team structure and product
structure. While individuals can test their implementation independent of dependent
system parts (i.e. unit testing), integrating different project parts into a final product
requires adapted testing strategies (e.g. integration testing).

In the last two decades, information technology has gained a major development and
disposability boost. In 2018 alone, 4.93 billion mobile devices, more than 2.1 billion
personal computers and about 9 billion Internet of Things (IoT) devices are connected to
the web worldwide. While these numbers are impressive, the potential growth also im-
pacts the software development process. Software systems are continuously evolving,
while more and more competitors publish alternative software solutions and develop
markets on other platforms. Essentially, this means that software is available on multi-
ple platforms (e.g. desktop, mobile, etc.), connected to other services (e.g. integrated
services), and new features have to be shipped with tremendous speed at low cost. Even
sophisticated development techniques like agile development combined with Continu-
ous Integration (CI) can barely counteract this troublesome pressure.

For developers and product owners, software quality encompasses many aspects.
While functionality is essential, software should also be maintainable, secure, and ex-
tendable such that future use case scenarios can be realized. However, even these
keywords only define coarse concepts of what is expected of a system. Laymen of-
ten naı̈vely associate software quality with the terms “software without bugs” or even
“works as expected”. These assessments hardly translate into a formal development
goals, but is rather intuitively based on experience in related subjects or domains. Es-
pecially these expectations explain how users, in contrast to developers, experience a
system.

For most users, an application is experienced through the Graphical User Interface
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2 Chapter 1. Introduction

(GUI), which abstracts complex technical events into human readable output comprised
of text in a natural language, images, and icons. Typically, the GUI also reflects the
state of the application, which can be changed by the user by interacting with the user
interface (UI) elements like input fields, drop down menus, or the like. Again, tech-
nical events (e.g. network events, event handler communication, or data access) are
not explicitly observable. Nevertheless, there exist established procedures to notify
users about the success/failure of operations with appropriate success/error message and
styling/coloring properties. To further ease the use of applications, there are established
workflows for using common functions such as logins, buying a product, or writing
emails. All these characteristics are required to follow established usability standards.
This includes which UI elements should be present, which interactions are required,
and what information should be provided. In contrast to developers, who develop a sys-
tem and its testing procedures from the technical point of view, the user perspective is
based on the subjective experience of certain use cases. In other words, users interpret
the UI by checking for semantic concepts and can thus transfer their previously learned
experience even if the application has syntactic differences.

Accordingly, developers face a serious technical debt while developing an applica-
tion. Not only do they have to implement each and every use case (i.e. every feature) for
every application anew, integrate them into the environment, but also have to provide ex-
tensive tests to ensure software quality. Imagine you want to test the shopping procedure
of an application. Figure 1.1 shows how complex this workflow is. Repeatedly testing
this workflow manually (e.g. for regression) or developing reproducible test cases re-
quires significant effort for developers. They cannot automatically leverage established
common knowledge from other application to speed-up and improve testing, because
existing test frameworks are interpreting all instructions syntactically. If the application
changes the UI structure, the test case cannot be translated. In addition to that, they
cannot simply fall back to random testing. The likelihood that a state-of-the-art random
testing technique effectively tests a complex procedure, such as shopping, is negligible.
Certain actions have to be executed in a specific order (search for the item, select the
correct one from a list, add to cart) and the sheer number of possible interactive UI
elements in each page leads to a combinatorial state explosion.

This is where topic-driven testing (or short TDT) comes into play. By mining a
large set of existing applications, topic-driven testing gains use case specific knowledge,
interprets the semantic concepts behind every Graphical User Interface (GUI) element,
and is able transfer this knowledge to other applications. This dissertation introduces
the novel concept of topic-driven testing and it makes two major contributions in the
field of software testing.
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(i) First, it presents a way to automatically detect features in existing applications, by
mining its existing system test cases (UI-tests) and randomly crawling their user
interfaces. With this knowledge, topic-driven testing learns which features should
be present in an application of a certain domain, how features are accessed by
the users, and also observe how a software behaves both visibly and technically
while these features are executed. On top of that, TDT can also interpret vague
step-by-step instructions written in natural language to test explicit application
behavior.

(ii) The second major and most noteworthy contribution of this thesis targets the abil-
ity to transfer this knowledge across applications to guide testing. This devel-
opment might allow a shift of paradigms in the future of software testing and
development. Instead of independently developing and testing features always
anew from scratch, developers can check if their implementation is at least as
good as a competitor’s from a user perspective—or at least follows established
(by majority vote) standards that are familiar to a user. Given tests can also be
executed on multiple applications. By interpreting semantic entities, topic-driven
testing (TDT) is robust against syntactic changes, be it reordering of UI elements,
different labels, or the like. Finally, TDT allows to relate the application models
of two different applications, bringing the capabilities of model checking into the
testing scenario. We can learn and transfer state-of-the-art policies from a set of
applications on how applications should behave and detect outliers—even telling
a user if something is different.

Reconsidering the motivating example in Figure 1.1 of a shopping workflow, TDT
mines a natural language description of the workflow (which serves as an input) and
semantically executes the instruction on an arbitrary system under test (SUT). The topic-
driven procedure can learn, how a use case is executed and execute this knowledge on
any application with a GUI. The input to the presented procedure can vary. During the
conducted empirical studies, the input to topic-driven testing has been changed from
pre-defined test cases (e.g. SELENIUM test scripts) for web applications as well as more
general use case descriptions for Android apps. In other words, the procedure deals
with a wide variety of inputs and can be executed on multiple browsers, platforms, or
devices. More precisely, it provides cross-platform and cross-browser compatibility.

Of course there exists a multitude of tools—i.e. automated testing procedures—to
help developers in their testing effort, which we further discuss in terms of related work
in Section 2.3. Basically, we can differentiate between random testing approaches and
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Figure 1.1: Typical workflow for buying a product in an eCommerce application

guided testing approaches. Random testing techniques require virtually no prior knowl-
edge about the SUT and have a low initial setup cost for a developer. In order to test
the application, the testing procedure explores all possible input combinations until the
exploration space is exhausted. Due to the cheap setup costs, random testing is widely
used to get basic application models, or apply penetration testing (especially in the area
of fuzz testing, i.e. fuzzing). For real world applications, random testing approaches
rarely scale. The state model and the input space for potential GUI actions is too large
to explore the application exhaustively. Furthermore, random testing rarely offers more
than the most simplistic oracles (i.e. a ground truth for the correct application behav-
ior). Complex reactions on inputs (e.g. error messages or incorrect behavior) require a
basic understanding of the SUT which results in higher setup costs. Instead, the testing
procedure can check if the application breaks.

The second area of testing approaches are guided testing procedures or model-based
testing procedures. This group is trained with prior knowledge, such as how to interact
with the SUT (e.g. with grammars or input languages), and the expected outcome for
the inputs (the oracle). The better the provided ground truth and interaction methods are
specified, the more realistic the achieved test coverage and error detection are. In this
scenario, ‘better’ translates to more effort for setting up the testing procedure.

Without trivializing the contribution of these works, there also is an indisputable
huge gap between the academic advances and their acceptance in industry. Many tech-
niques have been adopted into industry to ease methods of testing. Both areas, random
and guided tests, discover thousands of software faults and save millions of dollars. Still,
there are test areas, say for instance acceptance testing, which are mainly done manually.
The reason is quite simple: expressing testable, i.e. machine executable, specifications
from vague descriptions is complex and in all generality does not yield the expected re-
sults. The human language as well as the human perception is often not precise enough
to be expressed in hard facts, which developers can reliably use for testing. Instead, hu-
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man developers close this gap by either manually executing the SUT and test it for bugs
or write test cases to automatize this process in the future. This effort is repeated over
and over again; for every application, platform, or even software release.

Instead of discussing literally hundreds of contributions and research projects, such
as cross-browser, cross-platform, or staging system (e.g. for regression testing) that can
partially tackle these challenges, let us take a step back and check what crucial edge
human developers have on automatic approaches. Humans can infer and transfer knowl-
edge across application. Based on the prerequisite that humans have an understanding
on what a system should do, they can develop tests including an oracle. This oracle
is a definition of the correct behavior. Humans can use their experience from other
applications or problems and transfer this experience to the new system. This includes
which functions a system should offer, how a system should be used, and how the sys-
tem should behave. Furthermore, humans can go with vague, sometimes incomplete
instructions, such as “buy a knife on Amazon“, because they can semantically interpret
them. Instead, machines need precise instructions which are then syntactically executed
on a system, which includes an understanding about the involved entities (i.e. knife and
amazon) as well as sequence of actions for the action “buy”.

Topic-driven testing serves as the interface to translate observable application be-
havior across applications and is further able to interpret imprecise natural language
commands. A semantic interpretation of the displayed texts closes the gap between
vague instructions, and testing procedures and machine executable instructions.

1.1 Topic Driven Testing in a Nutshell

In essence, topic-driven testing derives for each element presented in the GUI of an
application a semantic meaning. It allows to compare application features and functions
independent of their underlying programming language, architecture, or platform. It
allows us to learn the semantics of a SUT by mining the GUI and observing the UI
changes which follow interactions, to transfer knowledge across application, and enable
new testing principles that are closer to a human understanding of a software.

Figure 1.2 gives a simplified process overview to summarize topic-driven testing in
a nutshell. The idea is pretty simple. Topic-driven testing takes arbitrary use case spec-
ifications as an input. We tested our technique on existing web test suites (SELENIUM

test scripts) as well as more general process snippets, i.e. short natural language de-
scriptions of use cases. In the first case, the given input test suite is first executed on the
application they were designed for. During this execution, we observe the UI changes
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Figure 1.2: Process overview about the new testing principle of topic-driven testing. The
central part is the application and platform agnostic semantic analysis and interpretation
unit, called Semantic Processing. The input to the testing procedure (on the top) is
interchangeable (test instructions, test cases or application models). The bottom is the
execution part to the underlying application under test (AUT) that interprets and executes
the generated test instructions and allows to extract the state model.

and targets for test actions to extract the natural language content of the GUI targets.
Now, we start the exploration on a new target application and observe the state that is
displayed in the GUI (‘UI Extraction’).

The technical complexity of interacting with the specific device or platform is hidden
in the AUT interface layer. Topic-driven testing builds on an existing technology stack
by integrating the testing procedure into existing approaches to interact with the SUT.
As a consequence, the test principles can be applied (and have been tested) on both
traditional web applications as well as Android apps. This provides credible evidence
that topic-driven testing can be applied on arbitrary applications with a GUI.

The ‘UI extraction’ interface allows the technique to analyze the UI screen of the
test application to bind interactive elements with their describing texts. Now, the central
part ‘semantic processing’ puts those two parts together. The test guidance is given by
the provided use case specification and topic-driven testing interprets and matches these
to the target application by calculating the semantic similarity. The semantic decision
communicates with the executor to send appropriate testing commands to the SUT.
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1.1.1 Contributions

In the scope of this dissertation, we developed a prototype implementation for web ap-
plications as well as Android apps, and conducted a series of empirical evaluation to
show the effectiveness of topic-driven testing. All results and prototype implementa-
tion are made publicly available to foster external inspection, replication, and further
development of the techniques.

The core contribution of this dissertation is a novel testing technique/concept which
tests a system through the GUI based on semantic properties. So far, TDT has been
tested and executed on dozens of real world industry-sized applications both in the do-
main of web application as well as Android apps. In both cases, the test applications
origin from different application domains to show the generality of the technique. The
empirical studies provide credible evidence that we can use topic-driven testing can be
used to transfer existing test suites to new applications with only minor effort. The anal-
ysis shows that on average more than sixty percent of the test cases can be automatically
transferred and that we can guide a web crawler towards relevant functions seven times
faster than a random approach. The presented technique is effective in identifying ap-
plication specific functions. Derived from the test cases, topic-driven testing identifies
and matches 75% of the tested functions with a high precision of 83%.

Furthermore, topic-driven testing allows to mine simple natural language instruc-
tions (called process snippets). Defining process snippets is a one time effort and can
even be automatized by mining existing how to instructions [41]. The semantic inter-
pretation of these instructions (and their translation into machine executable statements)
is precise. Compared to random testing, the integration of test guidance based on the
semantic interpretation of process snippets speeds up the exploration process by a factor
of five, while discovering twice the amount of core functions in this time. The main test
advantage is gained in the first few minutes of the exploration. Thus, the technique can
be further integrated with other testing techniques.

Summarized, this dissertation presents the following contributions to the field of
software testing and analysis:

Novel Testing Technique

Topic-driven testing offers a novel testing angle for testing the GUI that is complemen-
tary to existing testing. By mining semantic structures we can learn how humans interact
with the SUT and automatically generate tests that are centered around use cases rather
then syntactic properties. This property makes the generated tests robust against syntac-
tic changes that are typical for evolving software systems (i.e. robustness for regression
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testing [42]).
The central contribution is another step into full test automation that is superior to

random testing. Testing can be steered towards relevant core functions and areas of
interest by converging the exploration towards semantically similar areas. The definition
of semantic instructions is a matter of mere minutes, but the presented results indicate
that they are executable on dozens of applications. The implications are obvious: with
low effort, a tester can test a wide variety of applications. The conducted empirical
studies give credible evidence that the tests can be executed on hundreds of applications
without significant additional (manual) effort and allow to observe their behavior. This
is especially valuable for further academic research since they generate reproducible test
traces targeted to specific use cases.

The testing technique is independent on the underlying platform and can be executed
on arbitrary GUI applications. While a cross-browser and cross-platform compatibility
is also achieved by other state-of-the-art frameworks, the ability to additionally run it on
multiple different applications at once is a unique feature.

Feature Identification

To the best of my knowledge, no-one before matched features across applications inde-
pendent of the underlying application platform. Topic-driven testing reliably identifies
75% of the features in our test set with a precision of 85%.

Detecting specific functionality, i.e. features and concepts in source code, is an es-
sential part of program comprehension [63]. We already discussed that the user view
on the definition of functionality is different than the definition from a developers point
of view. In practice, users reduce functionality down to interactive UI elements and
a certain procedure. A basic authentication function is thus build on inserting a user-
name/password combination into the appropriate input fields followed by pressing the
proceed button. One of the contributions of this work is to mine the GUI for such
features by executing a combination of system tests together with random exploration.
This lays the foundation to extract semantic properties of the natural language content
describing the interactive elements. Furthermore, it allows to learn, which features are
realized in an application.

The presence, absence, and location of these features in the SUT can be automat-
ically verified and tested by learning features and transferring this knowledge to new
applications. This procedure also allows to test general application specifications such
as the system behavior and the reactions of the SUT on certain actions.
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Automated Model Translation

Even though web applications are accessible through a more or less stable browser inter-
face, they naturally have differences in layout, styling, structure, and workflow. These
syntactic differences have so far rendered automated feature matching approaches use-
less. Existing techniques, e.g. for cross-platform feature matching [72] or methods
based on string similarity [90], are insufficient to translate application models. In order
to learn standard behavior, this thesis presents a newly developed matching and transla-
tion strategy based on semantic text similarity [30,55]. The same holds for mobile apps
as well.

Topic-driven testing allows to learn common behavior from a wide variety of ap-
plications and lays a foundation for further research both in an academic as well as in
an industrial setting. The provided mapping between two applications allows to transfer
knowledge and compare common application behavior based on their workflows. Poten-
tial further research could analyze for every use case under test the acquired resources,
the access to sensitive data, or perform a security analysis. Automatic outlier detection
and behavior analysis was part of the conducted research [7] and shows initial evidence
that the correct access to sensitive resources (guarded by the API access) is bound to the
description of interactive elements or rather their meaning.

Baseline for Further Testing Methods

The core contribution of this dissertation is the novel testing principle topic-driven test-
ing. The conducted empirical studies in the later sections show its versatility and value
to automatize GUI testing. Time and scope of the dissertation limit the possible extent
of empirical evaluation. Despite that, I would like to discuss further possibilities that
lay in the scope of the presented testing technique.

It is reasonable to extend the prototype to further automatize acceptance testing.
The conducted studies show the capabilities to work with natural language descriptions
(use case descriptions) to test a SUT. This is the first half of typical acceptance testing
that is conducted by human testers and so far cannot be automatized. The other half
of acceptance testing is the specification of the expected behavior of the application
when certain steps are executed. These specification include the presence, styling, and
position of the UI and its elements. On top of that, the workflow of the application is
part of the use case specifications as well. Our data indicates that topic-driven testing
can be useful or be extended to perform this task. In order to prove the applicability of
acceptance testing it is mandatory to perform additional user studies with real testers.

The same can be said about usability testing. The IEEE standard computer dic-
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tionary [25] literally describes usability as ‘the ease with which a user can operate,
prepare inputs for, and interpret outputs of a system or component’. Nielsen [58] fur-
ther break usability down to five main attributes: learnability, efficiency, memorability,
error proneness, and user satisfaction. Usability is a fundamental concern for every
end-user application. As a consequence, learnability and memorability are taken into
consideration to ensure users do know how to complete a task. The textual content or
replacing icons presented to the user must allow for a natural understanding of the un-
derlying task. Existing testing frameworks [6, 32] tackle some of these main attributes,
but also require extensive specifications in the first place. The ability to transfer and
learn transfer these specifications allows a huge benefit for testing. An integration with
machine learning frameworks to observe common usability patterns in a majority of ap-
plications might be helpful. TDT lays the groundwork for such a method by introducing
the capability to compare application behavior.

1.1.2 Assumptions and Limitations

Every testing technique and empirical evaluation follows certain assumptions and lim-
itations that originate from time and resource constraints for conducting the empirical
evaluation as well as technical limitations. We already discussed the potential benefits of
topic-driven testing in general. Before delving into the the technical details and discuss
the conducted empirical studies, I would like to sketch the limitation and assumptions
made in this dissertation. This readies us to judge the benefits openly.

Topic-driven testing is a model-based dynamic testing technique that analyzes the
client-side GUI to guide testing. The application itself, especially the server-side back-
end code, is treated as a black-box. Therefore, it suffers from technical limitations that
are also bound to the underlying technology stacks (i.e. the AUT interface).

First of all, changes to the SUT are only observed at discrete points in time, say for
example every second. Second, the UI extraction is not instantaneous. Remembering
the process overview in Figure 1.2, the UI analysis part that retrieves the application
state in the GUI is integrated into an existing technology stack. Between the individual
discreet points of extraction the testing method can miss certain application behavior.
This lack of precision cannot be prevented beyond a certain point. Network latencies,
device utilization, and device load prevent completely deterministic results. To prevent
or at least limit bias in the individual empirical studies, all experiments were repeated
ten times (cross validation) and the results shown in the dissertation are averaged.

Second, our testing only detects changes that are observable through the GUI, but
does not keep track of internal changes of the program state outside the UI—again a
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side-effect of treating the application as a black-box. Server-side errors that occur in the
back-end, but are not propagated to the GUI or do not manifest in visible UI changes,
are not transparent to our technique. At this moment, this cannot be changed. I think
the proposed method is orthogonal to existing testing approaches and further research
might tackle this limitation. Giving the testing method insight into the application itself
in order to satisfy additional requirements is still possible. This dissertation limits it-
self by considering every application as a black-box and can thus focus on showing the
generality of the proposed technique.

Due to the dynamic nature of the proposed testing technique, the analysis may be
sound, but not complete. Imagine we start a testing procedure for a web application at a
certain web page and even manage to explore the complete input space. There could still
exist a certain part of the application that is not reachable from this start page. Its main
limitation is that all studies never completely cover all application behavior or the com-
plete input space. This is also not the intended contribution of this dissertation, since
a complete testing procedure would not scale on real world applications. Nevertheless,
it puts a certain perspective on all discussed results. The drawn conclusions might not
be generalizable on the complete application behavior. Since the coverage of the testing
procedure cannot be measured in a black-box application, the evaluation cannot simply
measure the impact as well. At this point, we assume that the application behavior does
not simply change for certain system parts. Even the unexplored parts of the GUI are
intended to be used by human users. As a consequence, they should follow the same
design principles as the explored application parts. Still, this assumption is discussed as
a potential threat to validity of the technique.

A final, maybe negligible limitation, is the language of the applications under test.
All experiments presented in this dissertation are executed on applications with a GUI in
English using a pre-calculated word vector model—the word2vec-GoogleNews-vector
(googleNewsVector) [29]. While it is possible to train such models for other languages
(or use other off-the-shelf models), the used model was trained on three million words
and phrases. The effort to transfer the technique to other language is manageable,
though. The size and diversity of this corpus might positively influence our results.
Moreover, the technique cannot be executed on multiple language inputs, i.e. multilin-
gual apps, at once without further steps. Since the semantic meaning might also suffer
from cultural influence, additional analysis might be necessary. At this point, the em-
pirical evaluation set is limited to appropriate applications.
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1.2 Thesis Structure

Chapter 2 provides a short introduction into automated UI testing techniques for both
Android apps and web applications, related definitions, and related work. After
presenting these concepts and covering the most common information retrieval
frameworks, we will see a brief overview on state of the art natural language
analysis methods.

Chapter 3 presents how interactive elements are bound to their describing labels, i.e.
how topic-driven testing infers the semantic properties of UI elements. It includes
how page segmentation is used to group elements with their description and de-
tails about the noise reduction, which is employed on the textual description for
the semantic analysis. This lays the basic for topic-driven testing in general.

Chapter 4 follows up with a discussion on how we identify features in the GUI. Our
investigation on five hundred top web applications shows that features can be
grouped by their semantic similarity. This knowledge allows to re-identify fea-
tures (i.e. map features) across applications. The empirical studies indicate preci-
sion rates of about 85% for identifying features across web applications.

Chapter 5 focuses on how topic-driven testing can be used to improve web testing.
The executed empirical studies show that we can learn from already completed
web test suites how to interact and test functionality. This knowledge can be
transferred to new previously untested target applications to guide testing towards
relevant functionality and it is possible to at least partially translate test suites
across applications.

Chapter 6 describes how topic-driven testing can be used to automatize Android app
testing through the GUI. By providing a general set of use case descriptions writ-
ten in human understandable language, testing can be quickly guided to relevant
functionality on a large set of applications and better penetrate a SUT.

Chapter 7 concludes this dissertation with a summary of the results, the lessons learned
on the way, and key ideas for future research.
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discussed in this dissertation are designed and executed by the author.
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2 State of the Art

This chapter shortly introduces the technical background and terminology on which
this dissertation builds on. It presents the current state-of-the-art in the area of infor-
mation retrieval techniques (Section 2.1), provides introduction into natural language
processing , and semantic analysis (Section 2.2). The final Section 2.3 concludes with
a presentation of state-of-the-art test automation frameworks in the domains of Android
and web.

2.1 Information Retrieval (IR)

In general, information retrieval (IR) describes the process of retrieving information
(relevant to a specific need) from a set of resources, such as web pages or other docu-
ments. Primary examples are search engines that let us search for web pages by short
search queries and return a sorted list of more or less relevant results.

IR has a long history starting in the early 1900s when Joseph Marie Jacquard invented
the Jacquard loom, the first machine to control a sequence of operations using punch
cards, but we limit ourselves to present the areas and research directions relevant for
this dissertation in the domains of Android and web. Even though topic-driven testing
is per se independent of the underlying platform, it is necessary to extract the natural
language content first. The following sections describe how this is currently done for
a SUT running on Android and web. Chapter 3 will later describe the changes to the
underlying technology required for topic-driven testing.

The GUI structures content in a human understandable way to convey information
and abstracts the underlying technical complexity, such as network communication or
event handlers that take care of the actual user actions. This technical complexity is not
relevant for human understanding. Nevertheless, due to the abundance of information
available in the web and Android apps it is essential to filter for relevant information
that can be found in text content, images or icons. Both, web applications and Android
apps, structure the GUI into a hierarchical tree structure, where the leaves represents the
UI elements.

15
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Retrieving the relevant information typically encapsulates two tasks, which are pre-
sented in the following sections: (i) structuring the raw input and (ii) filtering irrelevant
information, so called noise.

2.1.1 Information Extraction

Android In Android, the UI is structured into a so called tree-like widget hierarchy.
The nodes of this tree, called widgets, are the technical interface that encapsulates all UI
elements, e.g. structural elements, container elements, ImageViews, text labels, icons,
or buttons. For static elements, their layout can be predefined by an external property
file (i.e. layout.xml). In additions, apps can load dynamic content over the network
into so called WebViews. By nature, the layout of WebViews and their content can be
dynamically changed as well.

Each widget has certain properties which can be used to determine if an element is
visible, can be clicked, or the like. Furthermore, properties contain information about
the displayed text (text and description property) and determine the element position
and element dimension in the UI. Android offers to access this information for testing
using the android debug bridge (ADB). This interface is used by most Android testing
frameworks to remotely executes commands on the device and exchange data between
computer and device. The underlying technology stack is of minor interest for this thesis,
but extracting this widget structure is implemented by the UI testing tools presented
later in Section 2.3.2. Topic-driven testing analyzes the UI hierarchy and analyzes the
presented properties. The initial UI extraction is built upon existing Android testing
frameworks.

Web Applications The GUI of web applications is typically rendered in browsers. As
with Android apps, the UI is structured into a tree-like structure, called the Document
Object Model (DOM). All UI elements are nodes in this XML-like structure that have a
unique identifier, the xpath. It also stores UI properties such as HTML object type (e.g.
div, img, label), text content, placeholder texts, rendering options, dimensions and
display position.

To extract information from the UI, there exist web testing frameworks, such as SE-
LENIUM [15]. SELENIUM offers an HTTP interface to remotely control a test browser
and exchange information, such as the DOM-content, between the controlling computer
and a web application.
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2.1.2 Page Segmentation

An important step for information retrieval is to structure the retrieved raw text content
from the SUT for further classification, such as ranking the content according to its
relevance or filtering out irrelevant information such as advertisement (i.e. noise). Es-
pecially web applications have a lot of irrelevant content present on the page. Examples
are external content (advertisement), tracking utilities (activity monitors), or template
structures used to unify the interface on all pages of an application. These structures
do typically not include useful properties for classifying a web page. It is therefore
necessary to partition each page to identify relevant and coherent information. Even
though both of the discussed platforms structure their UI in a tree hierarchy, developers
can freely place UI elements independently with additional layout properties. In other
words, a proximity of elements in the DOM or the widget hierarchy does not imply a
visual proximity in the rendered UI.

Álvarez et al. [3] proposed to use clustering techniques as well as edit distance tech-
niques to extract data from the web automatically. By analyzing the UI hierarchy one
can extract and group table structures according to their position in the DOM. With the
development of highly reactive web applications and apps, this strict hierarchy analysis
yields unsatisfactory results. Win et al. [85] showed why structural DOM properties
are insufficient or downright harmful for correct information retrieval and classifica-
tion. Purely structural page segmentation do not follow a human understanding of the
presented content and are susceptible to dynamic advertisement our noise. Instead,
Vision-based Page Segmentation (VIPS) techniques [16] are superior in filtering and
structuring the displayed content. If the data set is large enough (e.g. a few hundred web
pages), it is possible to train heuristic models for instance based on the distribution and
density of UI elements [38].

One of the main goal of topic driven testing is to guide quickly testing towards rel-
evant functionality. With a heuristic page segmentation that requires an input of a few
hundred pages first, let us say just for testing the Amazon application, every testing ad-
vantage is lost due to the extensive setup/training phase of page segmentation. The latest
version of a more lightweight approach was presented by Akpınar and Yeşilada [1] that
is able of segmenting HTML documents. They apply a set of predefined rules (see Ta-
ble 2.1) to replace the heuristically learned distribution and can be applied without an
initial learning phase, accordingly.

Algorithm 1 shows a pseudo-code implementation of their technique. By iterating
the DOM recursively, their advanced VIPS algorithm groups together visually close
elements. First, all invalid nodes, i.e. nodes with no visual representation like STYLE,
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Table 2.1: Vision-based Page Segmentation (VIPS) rules for element clustering. If the
node property is fulfilled for a certain node, the listed action is executed. ’NC’ creates a
new visual cluster. ’T’ - traverse recursively and analyze child nodes

Action Node Property

NC tag is HEADER, FOOTER NAV
T dimensions equal to parent-node dimension

NC all children are virtual text nodes1

NC tag is UL or OL and has only one child
T tag is UL or OL and has multiple children

NC tag is LI, i.e. list item
NC & T tag is TD or TR (table row or cell), width > 100 pixel
NC & T is line-break node

T is not an inline node

SCRIPT or META, are removed out of the DOM. After that—starting with BODY as the
root node—the DOM tree is further traversed recursively. For each node, the algorithm
checks, if the element is in between predefined boundaries isValid(), i.e. that an element
is within the viewport of the page and has no empty dimensions. isValid() thus checks,
if a UI element can actually be seen by the user. However, if a node is invalid, possible
child nodes are still traversed. Otherwise, container nodes with zero height or width
would be excluded and we could not achieve the desired granularity. Afterwards, the
node properties are checked against a set of extended VIPS rules (see Table 2.1). The
idea is to generate a new visual cluster (NC), whenever a new visually aligned group is
presented in the DOM.

After processing a DOM tree, this algorithms provides us with a list of visually
aligned elements, which allows for a more efficient noise reduction.

2.1.3 Noise Reduction

Noise reduction is a methodology to differentiate valuable information from irrelevant
information. Bar-Yossef and Rajagopalan [9] define noise as a combination of template
structures and pagelets that hinder information retrieval and data mining, e.g. crawling.
Especially web applications use predefined layout templates and boilerplate code to
structure their pages. This allows for an easy maintenance and styling, but also includes

1An inline node that contains text and/or (inline) child nodes with text content
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Input: n, root node of a DOM tree
Result: B, a list of block b
// LBN = LineBreakNodes
// IN = InlineNodes
begin

Let C← n.getChildren()
if C 6= /0 then

for c in C do
if isValid(c) then

applyRules(c)
else if (c ∈ LBN∧ c /∈ IN∧ c.getChildren 6= /0) then

blockExtraction(c)
end

end
end

Algorithm 1: Visual Element Clustering - Recursive algorithm extracting visual
clusters of a given DOM tree. These clusters can be used to extract the describing
context of a UI element.

irrelevant information. Using state-of-the-art noise detection techniques allows us to
exclude irrelevant information from further analysis.

Li et al. [89] present a noise detection that is based on the styling properties of el-
ements. They follow two assumptions: (i) boilerplate code follows simplistic styling
properties. In order to ease consistency when this code is reused, the styling properties
of boilerplate code is summarized in specialized CSS classes. This means that within
the actual DOM, elements with less styling properties are less likely to present relevant
information. (ii) The second assumption is that relevant elements have diverse actual
content. By analyzing the DOM tree each element gets annotated with a certainty fac-
tor called node importance. After mining about 500 pages, the algorithm scales and
determines an appropriate cut-off value to classify noisy elements.

Vieira et al. [82] build on this work and extend it by a tree mapping algorithm to cal-
culate the similarity of the styling properties of partial DOM-trees. If elements within a
subtree are repeatedly styled the same way this implies that they are created by boiler-
plate code. The technique is based on the tree edit distance [71] requires less samples,
but does not differentiate between global noises (e.g. caused by templates) and local
(intra-page noise) such as local advertisements. Lingwal [45] presented a combined
noise reduction and content retrieval framework. The presented Content Extractor clas-
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sifies the content by building a word vector that extracts information by analyzing the
text content using term frequency-inverse document frequency (TF-IDF).

2.2 Natural Language Processing

Topic-driven testing is essence mining and interpreting the natural language of the GUI
to learn testing procedures and guide testing through an application. Natural Language
Processing (NLP) is a subfield of computer science that investigates how computers
process and analyze large amounts of natural language data and includes tasks such as
speech recognition, natural language understanding, and natural language generation.
It may also be seen as an extension to information retrieval, i.e. as a way to interpret
retrieved information.

While the field of Natural Language Processing (NLP) itself offers many techniques,
we will focus on a small sub-class which is beneficial for the presented method of topic
driven testing: inferring the semantic meaning of a system under test. According to
Baroni et al. [10], there exist two categories of techniques for such a semantic analysis:
context-count-based methods which we discuss in Section 2.2.1, and context-predictive
methods, which we discuss in Section 2.2.3.

Explained in a nutshell, count based methods statistically count how often some
words occur or co-occur with other words in a large text corpus. The produced statistic
is then mapped to a small dense vector for each word. Predictive approaches rather try
to predict a word from its neighbors. They are trained on smaller, dense embedding
vectors that represent the parameters of the model.

2.2.1 Topic Analysis

Standard NLP techniques allow to process the textual content, create short summaries,
and extract the main topics. In natural language, every combination of words—from
sentences to paragraphs or complete documents—are supposed to convey a meaning. At
the document level, text understanding can be done by analyzing its topics. Technically,
a topic describes a distribution within a vocabulary. In other words, the combination
of certain words describe a topic. Learning, recognizing and extracting the topics of
a document is called topic modeling. In general, all topic modeling techniques are
following two basic assumptions: (i) each document consists of a number of topics,
and (ii) each topic consists of a certain word distribution.

Topic-driven testing already encapsulates the term topic and is relying on topic mod-
eling techniques. Topic analysis is used to tie functionality of a system to a describing
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label and is used to identify what functionality is present in a given UI. This section
gives a brief introduction into state-of-the-art topic modeling techniques. Later, we will
see how they are incorporated into our framework.

One of the first topic modeling techniques was presented by Luhn [46] in 1958.
He presented a heuristic method to summarize technical documentations called Luhn’s
methods. Sentences in a document are ranked after the number of occurrences of sig-
nificant words. Sentences with a high ranking are then selected for each paragraph as
representatives and can be used to summarize a document. In practice, all topic model-
ing methods are enhancement to this fundamental idea. A representative term describes
the underlying topic. One of the extension to this method is the term frequency-inverse
document frequency (TF-IDF) algorithm already briefly mentioned in the previous sec-
tion of information retrieval. Erkan and Radev [21] describe the two relevant parts of
this method:

tft =
count(t)

∑t ′ count(t ′)
(2.1)

idft = log
(

N
nt

)
(2.2)

tf .idft = tft · idft (2.3)

First, the term frequency (tft) describes the probability in which a term t, i.e. a word,
occurs in a document. Second, the inverted document frequency (idft) describes how
often t occurs in a set of documents, where N is the total number of documents and nt is
the number of all documents that contain t. A large term frequency value tf indicates a
high importance of t, but only if the self-information of t with respect to all the document
(idft) is high. Accordingly, TF-IDF is the product of these values.

Mihalcea and Tarau [54] propose a ranking method based on an undirected un-
weighted graphs. The nodes of this graph model co-occurring terms in a document.
Like the presented Luhn’s method, terms are associates with scores depending on their
importance of the document. Elements with a high chance to occur together are chosen
as representatives for a part of the document and express a topic.

Yihong and Liu [26] presented a topic modeling method that is based on the latent se-
mantic meaning and derive sentences that describe a document. Their method describes
a document as a sentence matrix.

In order to find out which sentences describe a document, they apply a principal
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component analysis on the matrix, called singular value decomposition (SVD). By doing
so, they find those sentences that cover most of the variance in the documents [75].

Finally, Blei et al. [13] introduced Latent Dirichlet Allocation (LDA), a probabilistic
topic model to annotate document archives with thematic information. LDA assumes
that the order of words in a document is irrelevant for the underlying topic model (bag-
of-words assumption). Intuitively, LDA takes a list of documents, an estimation about
the number of topics n that are present in these documents, as well as a value m, which
is the number of terms that describe this topic. n and m can for instance be defined
manually. Now, LDA analyzes the documents and identifies for each of the n topics,
which m keywords describe a topic best. The result is an n×m probability matrix that
defines the significant keywords in the given documents. Technically, LDA is based on
a three-level Bayesian network. Each term of a document is modeled as a finite mixture
over an underlying set of topics, while each topic is modeled as an infinite mixture over
an underlying set of probability values. Using an empirical Bayes parameter estimation
algorithm on the network, LDA can derive those words in a document that express a list
of topics best.

The presented methods need to be trained on a large set of documents (i.e. corpora),
may require supervised learning, or previous document labeling. For the sake of topic
driven testing, the derived topic models are also often not precise enough. The func-
tionality we try to encode, is typically not found in large text documents. In the end,
we depend on a hybrid approach for topic analysis, if the textual content in the UI is
significant enough, otherwise we interpret and match the semantic meaning of elements
by analyzing word vector models (see Section 2.2.3).

2.2.2 Neural Networks

Neural networks originally refer to a network of circuits or neurons such as the human
brain. In computer science, they are typically used to express an artificial intelligence
or machine learning models. In this section, we will do a short digression into this topic
since most state-of-the-art predictive models rely on neural networks to learn semantic
correlations between words, sentences and documents. A neural network can be used
for information processing and models information as part of a network. Based on the
connectivity within the network, information is linked to each other.

The amount of relevant information in a document is limited. Count based models
have to iterate over the whole text corpora and have to keep track of all counts. Prediction
based algorithms based on neural networks do not have this particular disadvantage,
since they only keep information on a local level called layer. Irrelevant information
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is thus not accumulated and training on neural networks can be done on a larger set of
documents.

2.2.3 Word Vector Models

While topic modeling is able to derive the semantic concepts behind documents, the
produced output is typically not precise. Topic modeling is more focused on creating
summaries or is designed for efficient indexing of information. In contrast to modeling
information with neural networks, training a count based model is expensive and does
not scale when the training corpora gets large [55].

To counteract this shortcoming, one possible alternative are so called word embed-
dings. Traditionally, natural language processing systems consider words as unique
symbols. A term such as ‘shopping’ is assigned a fixed identifier (say id1234) while
the term ‘ordering’ is modeled as id4321. The encodings can be arbitrary, for instance
created by their occurrence in a certain text. The identifiers themselves do not convey
any useful information such as relationships that may exist between the terms. Learning
something about how ‘shopping’ and ‘ordering’—e.g. that the terms are semantically
linked—is unlikely and means that training statistical models requires much more data.

Vector models encode words in a continuous vector space. Semantically similar
words are mapped to nearby points. Intuitively, vector models depend on the Distribu-
tional Hypothesis, which expresses that a semantic meaning is often expressed by words
that occur in the same context. Formally, a word vector model (word2vec) is a “map of
words” representation, i.e.:

R : Words = {w1, ...,wN}→ Vectors = {R(w1), ...,R(wN)} ⊂ Rd (2.4)

such that the meaning of words is equivalent to the distance of vectors

wi ≈ w j ≡ R(wi)≈ R(w j) (2.5)

2.2.4 Semantic Similarity

The graphical user interface abstracts complex technical events and is designed for hu-
man understanding. The natural language content helps users to achieve their goal by
understandably exposing the functionality, i.e. the features of the application, e.g. by
presenting a describing label next to input fields or by filling fields with expressive de-
fault data. Human understanding allows to grasp the underlying semantic meaning of
such descriptions. Even with a vague idea of a semantic concept, a human can transfer
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domain specific knowledge from one application to another by matching semantically
similar concepts (like selecting a proper payment method and providing valid input).

Semantic similarity itself has been intensively researched in the field of human ma-
chine interface (HMI) and document classification methods. It has been shown that one
can find semantic similarities between words [70] and strings [30] by training a word
vector model (short word2vec) on a large set of documents, i.e. large text corpora. The
key idea of these models is to express the words as vectors in a vector space. Based on
the training data, words expressing similar concepts are mapped to nearby points. These
word vectors capture meaningful semantic regularities, i.e. within the given documents
one can observe constant vector offsets between pairs of words sharing a particular re-
lationship.

In order to measure the semantic similarity between two words one calculates the
distance between their vectors. As per the definition above, vectors close to each other
represent words with a similar semantic meaning. The cosine-similarity (cos(θ)) is
a measure of similarity between two vectors that are non-zero. It measures the angle
between two vectors. The cosine ranges between 1 for an angle of 0◦ and is less than 1
for angles in the interval (0,π]. Orthogonal vectors (90◦) have a cosine of 0.

Accordingly the cosine-similarity (cos(θ)) of two given word vectors A and B ex-
presses the similarity or dissimilarity of the represented words:

cos(θ) =
A ·B

‖A‖2‖B‖2
=
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The values of cos(θ) typically range in the interval [−1,1], where negative values
converging to −1 express a high dissimilarity and values close to 1 express semantic
equivalence.

In contrast to many other vector similarity measures (e.g. the Euclidean distance that
measures the straight-line distance between two points), the cosine is a judgment of ori-
entation of two vectors rather than the magnitude. The magnitude does not express the
semantic similarity of two words. On top of that, cosine similarity has a low complexity
and scales very well even on higher dimensional vector spaces with sparse vectors: it
only considers the non-zero dimensions of each vector.
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2.3 Automated UI Testing

So far, we have seen the technical background on how information can be retrieved from
a SUT and how the natural language texts can be processed. On the other hand, we did
not discuss how applications are tested. Automated testing procedures are not a recent
development. The advantages are obvious. Manual testing is expensive, not repro-
ducible and error prone in itself. To find bugs efficiently, software is typically tested on
multiple levels. On Unit level, small entities (e.g. individual functions and classes) are
tested in isolation. Since the setup cost for unit tests is small, a wide variety of potential
inputs can be executed. In order to test the interplay of different system components, the
application is also tested on a set of Integration tests. Especially components communi-
cating with other entities (e.g. interfaces) are tested together.

In the end though, both unit and integration tests may test behavior, which is not
reachable in a productive environment. The business logic of the application could for
instance prohibit access to restricted resources by encoding the authentication in the
state model itself or integrate special ’guards’ in the front-end code which disallow po-
tential invalid inputs before they harm a system. From an end-user perspective, system
tests are closest to reality as all system parts are actually executed together. Most soft-
ware, which is developed for non-expert end-users, typically features a GUI which hides
the technical background and instead shows a human understandable interface. Testing
a system through the GUI is another important step for developing software.

With the recent requirements to be functional on multiple platforms manual testing
has become further unfeasible. Instead, the focus is put on random testing (e.g. random
crawlers) and platform independent frameworks to communicate with the underlying
system resource such as a browser. Random crawlers are effective for load and pen-
etration testing. Without an application specific configuration, random crawlers tend
to randomly click through the application and also fill input fields with random input.
Thus, they explore all possible input combinations to exhaustively detect every reachable
UI state. Given enough (e.g. infinite) time, all application behavior can be explored.

2.3.1 Web Testing Frameworks

Modern web applications rarely present static HTML content anymore. Instead, they
often are highly dynamic and depend on Asynchronous JavaScript and XML (AJAX),
a web development that allows to create asynchronous web applications. The idea is to
split the web application code into two parts. First, there is the server side, which is run
on a remote web server and offers an asynchronous data exchange layer. Second, there is
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// Request a browser connection
val driver = new RemoteWebdriver();
// Open web page
driver.get("http://www.ebay.com")

// find + select element with DOM property name equals ’email’
val element = driver.findElement(By.name("email"))

// send appropriate text inputs to field and confirm
element.clear() // remove current text content
element.sendKeys("test@test.com")
element.sendKeys(Keys.RETURN)

Figure 2.1: A short SELENIUM test script that simply opens a web page, searches for an
input element with name ‘email‘ and sends a random string as input.

the client side, which is displaying the GUI in a web browser, such as Internet Explorer,
Chrome, or Firefox. The content, displayed in the browser, can be dynamically changed
without the need to reload the entire page, which is a lot more efficient.

Testing the application should be independent of the underlying browser. To au-
tomatize system testing on these applications, it is necessary to control them remotely
without the need for a specialized infrastructure for each browser. SELENIUM [59] is a
test automation platform that abstracts the underlying browser for testing purposes and
allows to remote control a browser using simple HTTP commands. SELENIUM offers
a web API, that allows to send commands, such as ’click’, ’hover’, or the like to the
browser and thus execute user commands on the interactive web elements. SELENIUM

takes care of the translation of commands and executes the appropriate JavaScript code
to interact with the elements in the browser.

Developers can define test scripts that control the browser, retrieve the content and
state of individual DOM elements, and thus effectively test an application. Figure 2.1
shows an example for a short test snippet. The test script is simplified and does not con-
tain any robustness measures (e.g. waiting for the DOM element ’email’ to be loaded)
or an oracle to verify that the actions were successful. Opening a web page and sending
inputs to a target element is straightforward. The test scripts can be executed as part of
an automated CI process and be used for regression testing. Nevertheless, the sample



Chapter 2. State of the Art 27

Change
Settings

Login

Account

Result

Success

Cart

Payment

Check
Out

Search

Error

StartPage

…

Figure 2.2: An incomplete sample exploration graph of a web application. The states of
this finite state machine (FSM) are the reachable GUI states as displayed in the browser.
The edges include the required actions to transition from one UI screen to another.

test is highly susceptible to changes of the underlying application. If the selector is a
concrete xpath, the simple addition of an element above the target element may change
the DOM structure and break the test execution. While it is possible to generate tests
that are robust against application changes, it still reflects a core problem of transfer-
ring tests or application behavior. Interpreting instructions syntactically, makes them
breakable.

Modern crawlers [20,51,52,74] communicate with the browser to control the SUT by
using scripting commands via SELENIUM or directly execute JavaScript command in the
test browser. Mesbah et al. [51,52] presented CRAWLJAX, an open source web crawling
framework with a default random strategy. It builds a client-side state model of the SUT
and explores all click-able elements and sends random strings to input elements. An
example is given in Figure 2.2. The state model is a representation of the observable
GUI changes in the browser. The state model is a finite state machine (FSM) that models
each UI screen as a node and each controlling action of the crawler as an edge. Instead
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of purely randomly clicking on UI elements, CRAWLJAX tries to maximize the model
coverage.

Dallmeier et al. [20] presented WEBMATE , another web testing framework that com-
bines crawling with cross-browser testing. WEBMATE is not only crawling an applica-
tion in one browser, but also analyzes the DOM for visual and behavioral differences
when the same application is displayed in different browsers. WEBMATE features ad-
vanced DOM analysis capabilities and UI element analysis components. WEBMATE can
compare DOM structures to identify differences and further analyzes UI elements for
their visibility, styling properties, and position. This dissertation builds on WEBMATE

and its advanced analysis capabilities to evaluate the effectiveness of topic-driven testing
in the area of web testing (Chapter 5).

2.3.2 Android App Testing Framework

The development of smartphones, tablets and other mobile devices started about a
decade ago. Not only did it open up a new market for application development, for
instance mobile games, but it also started a trend to develop applications which are both
accessible over the web as well as (native) apps installed on the mobile device itself. It
is also an advancement of the already presented AJAX principle. The front-end code on
the client side is accessible through the web browser, and the app running on the mobile
device. The back-end code is still executed on a remote server, but can be queried by
both the mobile app and the browser. As of today, the leading operating systems for
running mobile applications are Android and iOS. This dissertation focuses on Android
apps, which has a wider tool support. Still, the principles presented in this work should
be applicable on all mobile platforms as well as other software accessible via the GUI.

From a testing perspective, the availability of a software on multiple end-user de-
vices requires additional testing effort. This so called cross-platform testing ensures the
correctness of a system independent of the test device.

In contrast to web applications, mobile apps have to adhere to strict hardware depen-
dent limitations, such as the screen size, energy consumption restrictions, or a limited
network bandwidth. App development and app testing have to take these limitations into
account. Android offers a software-interface called android debug bridge (ADB), which
can be used to connect an Android device to a computer, remotely execute commands
or exchange data between the device and the computer. Furthermore, Android offers
the testing framework UI Automator. Like SELENIUM, it offers an API that allows to
inspect the layout hierarchy (i.e. the widgets), retrieve state information and perform op-
erations on the SUT. Both frameworks are widely established and build the foundation
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of many automated Android testing tools that test an app through the GUI.
Testing mobile applications through the graphical user interface is nowadays heavily

automatized. monkeyrunner [5], for instance, is a random testing framework that simply
emits random UI events and is a default testing tool of Android offered alongside the
operating system. monkeyrunner does not analyze the SUT at all and does also not give
feedback about what happens during the exploration. Text inputs are only generated by
chance for instance if the keyboard is opened and the generated events trigger an input.
While easy to use, most of the generated events do not have an effect on the SUT.

Choudhary et al. [19] assembled a study about state-of-the-art testing frameworks
for Android. For one, there are purely random input fuzzers, such as Dynodroid [47],
DroidFuzzer [88], and IntentFuzzer [73]. Dynodroid is a more efficient version of mon-
keyrunner as it observes UI system events to generate more targeted UI events. It can
select guide exploration to regions which were not covered yet by analyzing the distri-
bution of the already executed UI actions. Furthermore, it can analyze the UI context to
select more relevant UI events for testing and lets a user manually define inputs (e.g. for
authentication). Intent Fuzzer is a tool that is analyzing how an app interacts with an-
other app installed on the same device. It incorporates a static analysis component that
identifies the structure of intents—the Android mechanism to allow inter-app and inter-
process communications, such as resource accesses. Intent Fuzzer crafts these intents to
analyze apps for security vulnerabilities. DroidFuzzer is a specialized input generator
that generates inputs for apps that accept specific formats such as AVI, MP3, or HTML
files. It identifies vulnerabilities in these apps, i.e. by dealing with errors handling these
inputs.

The second category are tools that provide model-based explorations. Like the pre-
sented web crawlers CRAWLJAX and WEBMATE they systematically explore the behav-
ior of the app and craft specific events targeted on the SUT. Using an application model,
e.g., a FSM, should allow to create more effective crawling strategies that exceed the ca-
pabilities of the random approaches in terms of code coverage or function coverage by
creating less redundant inputs. On the other hand, model-based approaches typically ex-
tract the current state of an application only through the UI at discreet points in time, say
every second for instance. In other words, internal changes not observable through the
GUI or changes that occur in between the discreet points in time are not observable to
the testing approach. As already mentioned, this limitation is also present topic-driven
testing, since it is built upon a dynamic model-based technique.

GUIRipper [4] dynamically builds an exploration graph while testing the SUT. Again,
the states of the graph are the UI screens and the edges the applied action to go from one
state to another. Upon reaching a new state, GUIRipper analyzes the current state for all
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possible activities (that is all possible things a user can do) and extracts a list of events
that can be generated. By doing so, it systematically explores the state model using a
Depth First Search (DFS) algorithm until no new states are discovered. It also accepts
a set of inputs that are then inserted into the app during the exploration. ORBIT [87]
is principle using the same exploration method like GUIRipper, but analyzes the source
code of the AUT to further filter the list of events. It optimizes the exploration by filter-
ing events that are unlikely to succeed in the current state. Both test frameworks restart
an application if no state change can be observed for a certain period in order to explore
novel behavior. SwiftHand [18] aims to reduce the necessity of restarting the applica-
tion as it is quite costly. In our experiments it takes about five to ten seconds to re-start
an application, but it is also costly to re-navigate to a previously reached state, since one
has to re-execute all performed actions. The exploration strategy of SwiftHand is purely
executing click and scroll UI events, which can be fast and efficient, but also limits the
usefulness. A3E-Depth-first [8] introduces another state model for their testing proce-
dure. Instead of being based on the UI screen, it is purely based on the activities. This
model is rather abstract and not as precise as the state model and misses even more ap-
plication behavior, but can have a higher performance. PUMA [27] is a test framework
that allows a test developer to programmatically define testing procedures, and include
arbitrary dynamic testing features.

Besides Intent-Fuzzer and ORBIT, all presented frameworks are purely black-box
approaches. They do not analyze or instrument the source code of the application and
can thus run arbitrary pre-compiled applications. Unfortunately, all model-based testing
techniques in the presented set require at least an instrumentation of the app in order to
extract the activities. Instrumentation is the process of changing the compiled code of a
piece of software in order to change its behavior. In dynamic testing it is often used to
integrate external code snippets for analysis purposes, such as calculating coverage data,
runtime analysis or extracting the possible activities in a UI screen. Changing the app
behavior while testing is common, but also raises the question if the real system behavior
is actually the same. At least an additional runtime overhead can typically be expected,
which may have an impact on the analysis. To counteract this, Li et al. [43] presented
DROIDBOT, “a lightweight UI-Guided test input generator for Android”. Without in-
strumenting the SUT, DROIDBOT generates test inputs and dynamically learns a state
model. It allows to define custom exploration strategies and to analyze the UI hierarchy.
DROIDMATE developed by Jamrozik et al. [35] and its refined version DROIDMATE-2
(DM-2) by Borges et al. [14] are comparable techniques. They offer a compromise:
the exploration can be done without an instrumentation by analyzing the widget hierar-
chy, screenshots, or the like, but one can define an instrumentation if further analysis
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properties are required.

The app testing part of our evaluation of topic-driven testing (see Chapter 6) is in-
tegrated into DROIDMATE-2 (DM-2). We describe the necessary extensions to the un-
derlying code base of DM-2 and how it can be integrated in further testing. DM-2 and
its extensions are publicly available [48]. For our purpose, DM-2 offers an extendable
plug-in technology for external exploration strategies and UI analysis purposes and lays
the foundation for topic-driven testing to interact with the test applications. In theory
though, the testing principles are independent of the underlying testing framework as
long as it allows us to analyze the GUI and to remotely execute control commands.

The presented list of tools and testing techniques barely scratches the surface of the
ongoing research in the area of Android testing. Vásquez et al. [81] present an even more
detailed overview containing more than seventy mobile app testing frameworks. It suf-
fices to say that none of these frameworks offers a testing technique that is close to TDT
in terms of versatility (runnable on multiple apps), platform-independence (applicable
to web and mobile testing), or expressiveness (knowledge transfer).

2.3.3 Semantic Crawling

So far, we have discussed non-specialized crawlers for the web and mobile apps. The
following section presents so called semantic crawlers that are closer to topic-driven
testing.

While humans by default use semantic concepts to interact with applications, the
nowadays widely used automated random crawlers do not leverage this information.
Generating valid input, i.e. user actions, for complex applications and differentiating
the resulting output states is crucial to every crawling technique and automated testing
solution [47]. Random crawlers use randomly generated inputs (or a set of user specified
rules to fill for instance password fields) to test an application exhaustively. If applied
to real industrial applications, having huge state spaces, they often face a state explosion
problem. In other words, a GUI offers so many interaction possibilities in every state,
that exploring them is already a problem. Pure random testing does not scale to large
applications [17]. But even worse, the possible interactions are linked to each other.
Take for instance an authentication step. Typically, the login procedure first enables
further functionality in an application to protect sensitive data from external access.
That means that single actions (insert user name, insert password) cannot be considered
independently, but have to be executed in a specific order. This leads to a combinatorial
explosion of exploration paths.

Random crawling techniques suffer from two major challenges: (i) guiding the crawler
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towards relevant core functionality, and (ii) generating valid input combinations. We al-
ready discussed the differences between random crawling and the possibility to integrate
model based testing techniques in order to reduce the amount of repetitive actions or ac-
tions that do not cover more functions. Testing is in general bound to a certain budget, be
that time constraints, hardware limitations or simply money. Accordingly, it is essential
to test those application parts that bear a high risk of containing software bugs.

In the area of web site crawling, Chakrabarti et al. [17] presented the concept of fo-
cused crawling. In essence, their crawler is given an example-based “canonical topic
taxonomy” that is used to identify relevant pages in an AUT. The user is generating a
list of URLs that contains valuable or interesting information. The focused crawler now
offers a list of classes that can be discovered on these pages (say topics such as business,
traffic, or sports). The user can now filter this list according to her preferences. Using
this semi-supervised learning, the focused crawler learns relevant “vantage points”, i.e.
words that are expressing the topic, and follows links that are expressing similar top-
ics. The training is typically done on a few dozen starting examples per topic. Focused
crawling was developed in the era of static HTML pages and in general used for infor-
mation retrieval and indexing purposes. While the approach is no longer state-of-the-art,
focused crawling is designed to crawl and extract content based on user specified prop-
erties, which is also a goal of topic-driven testing. In contrast to topic-driven testing the
presented focused crawler cannot express complex use cases such as buying a product
nor qualifies as a testing procedure because it does not create inputs.

Generating valid input combination is a severe challenge for every crawling tech-
niques. Syntactic differences between applications make a transfer between previously
learned input specifications to new applications virtually impossible. In other words,
the task to create valid inputs has to be repeated if the AUT evolves (and changes the
syntactic structure), or if new applications should be tested. Without valid inputs, it is
hardly possible to test applications and their use cases.

Use cases [33] describe frequently used interactions scenarios between a user and
a piece of software. Such an interaction scenario is a detailed description to achieve
a certain goal, such as buying a product. Our initial example (Figure 1.1) showed the
workflow for “buying a product”. A concrete use case description (i.e. in Pressman style
[60]) incorporates a list of specific How-To instructions that express the corresponding
work flow. Lau et al. [41] performed a study on how written How-To instructions can
be mined into machine executable commands for testing. Their intention is to guide
users through complex scenarios. Most real world application somewhere include a
frequently asked question section (FAQ) or a help section, where they present a step-
by-step instruction list on certain use cases. They are grouped under a general problem
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Statement 1: Enter Username “test@samplecomain.com”

Statement 2: Click     Login
Verb Noun Object

Verb Noun <null>

Figure 2.3: Example for deriving ATDs (a, t,d) from natural language using Part-of-
Speech Tagging. For each statement, the verb specifies the action a, the noun the target
t and other nouns (i.e. objects) the data d.

description (e.g. log into your account) followed by a list of single line instructions.
Lin et al. [44] present the problems of mining such natural language instructions for

further test usage, such as out-of-order instructions or the presence of implicit knowl-
edge that is not part of the instructions themselves. Thummalapenta et al. [78] presented
an extension of this work and present an automated testing technique (later called ATA)
for GUI-based applications. ATA is essentially translating natural language test descrip-
tions into machine-executable instruction, i.e. use them for automated test creation.
Given the description of a manual test case specification akin to a use case description,
they process the natural language instructions to build an exploration graph. Figure 2.3
shows some example instructions for a login procedure. Using a part-of-speech tag-
ger [79], the individual instructions are split into verb, noun and an (optional) object.
The verb represents the action which should be executed on the AUT (e.g. click or en-
ter), the noun a description of the target (the field name, such as the username field), and
the object optional data that should be inserted (e.g. the email address of a user). Sum-
marized into so called Action Target Data Tuples (ATD), the instructions can then be
executed by an automated testing procedure. In a proof-of-concept evaluation on three
web applications, they show that ATA 68% of the given instructions could be executed
on average in a semi-supervised environment. This lowers the complexity of transfer-
ring manual test instructions into an automated testing procedure and further produces
test snippets that are more resilient to syntactic changes to the AUT [76].

In a later work, Thummalapenta et al. [77] replace the test instructions with a more
general business logic that allows to generate oracle-like information. The presented
Web Application TEst generator (WATEG) is a framework crawls an application, while
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simultaneously building a state model. The business logic of an application contains
additional properties such as “one the user has logged in, there is a logout button”.
These properties are verified by WATEG and can thus serve as assertions for testing.

ATA and WATEG tackle both the problem of crawler guidance and generating valid
inputs for an semi-automated testing procedure. Both tools are proprietary black-box
testing procedures. They both parse natural language process snippets specifically tai-
lored for each AUT. The effort for generating the manual test instructions has to be
repeated for each application, though. The model does not allow to transfer knowledge
to another testing platform (say mobile applications) or to other applications (say from
Amazon to ebay). The mined instructions are still syntactically processed. Syntactic
techniques are limited to be executed on the original application and cannot be easily
transferred across applications. The tools show the potential of natural language as-
sisted testing approaches, but are on the other hand restricted to interpret instructions
syntactically, while this dissertation focuses on semantic concepts instead.

In recent years, research has made some advances in mining valid input information
and integrating them into testing and crawling. Lin et. al [44] recently presented a
semantic crawling technique that trains a neural network (i.e. a word vector model) on
a large set (i.e. hundreds) of manually labeled states (DOM-trees), which allows them
to re-identify complex form fields and even similar states within an application. They
leverage the semantic similarity to identify input topics. Software functionality, use
cases, and input forms are not identical, though. Think of a “reset password” link. It is
not an input form, but still triggers underlying code. Still, it is reasonable to assume that
one can extend this work to identify general features as well.

Integrating valid input values into the learning phase would also allow to leverage the
procedure for improved testing. While not being evaluated for cross-platform testing, it
stands to reason that with an even larger training set it is possible to extend the approach
to also handle this case. We have seen how difficult it can be to train a neural network
and how many data points it needs to scale. The required human expertise and effort to
train such a model is significant. The sheer size of the training data is another issue.

Hu et al. [28] also tackle the problem of generating robust and reusable UI tests
by training a machine learning model with manually labeled UI screen samples and
manually created tests to train a crawler how it can interact with different UI screens.

Compared to the work presented in this dissertation, the effort for training the initial
model is significant. Lin and Wang trained their model on manually labeled document
corpora meaning that identification of new features would require to relearn the mod-
els, especially as the model is domain-specific due to the relatively small training setup.
Mikolov et al. [55] have shown that the quality of the word vectors increases signifi-
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cantly with the amount of training data at hand and that an unspecialized model trained
on a large data set is superior to one trained on a small, but specialized data set. The
generated models are difficult to understand and retrain. If new features have to be
added to a previously trained model (in case the software evolves—say implementiing a
new use case), the impact on other parts of the model are hard to estimate or control.

Semantic crawling is different to topic-driven testing in two points. (i) It has to be
trained on a large set of input forms in order to learn how inputs are structured and how
testing can provide valid inputs. (ii) Filling input forms is a sub problem for a guided
testing procedure. Topic-driven testing cannot only fill input forms, but effectively steer
the whole exploration to fulfill pre-defined use cases. In this respect it is closer to tools
such as ATA and WATEG while simultaneously also leveraging semantic similarity
across applications to facilitate testing.

Recently, Fazzini et al. [22] presented YAKUSU, a technique, which parses existing
bug reports for a mobile application to extract an actionable list of instructions. These
bug reports are tailored to allow humans to reproduce faulty behavior—i.e. the steps to
reproduce. YAKUSU mines these instructions, identifies target descriptors and matches
them to UI labels in the applications. While both our approach and YAKUSU interpret
natural language instruction to guide testing, there are considerable differences in how
these instructions can improve testing. First of all, YAKUSU is again limited to execute
the instructions on the app they were written for. The main contribution of this disser-
tation is to improve exploration in all AUTs. Secondly, the steps to reproduce typically
start in the first app screen and give the shortest path. In Chapter 6 we will show, how
complete use cases that are integrated in different parts of the application can be tested.
These may not be executable in the initial step. Moreover, these locations may be incon-
sistent in different application. Each app can freely place their functions in the UI. In
other words, one has to find the use cases in the FSM that expresses the AUT first. Nev-
ertheless, both techniques have complementary advantages which could be exploited in
further research.

Another branch of research addresses the area of feature identification and program
comprehension. Topic-driven testing also offers insight into how different features in
a system can be controlled via the GUI, where they are located and connected. Xin et
al. [86] presented FEATUREFINDER, a tool that analyzes the method call hierarchy (i.e.
the stacktrace) of Android apps while testing it. The method location (i.e. the package),
the method name and the parameters give an indication towards their purpose. A feature
can be identified by a group of methods (i.e. a cluster) that is executed together.
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2.3.4 Leveraging Other Applications for Testing

Testing (indivdual) applications is already a significant challenge. If the effort for set-
ting up the test code and test infrastructure has to be repeated for every new application,
platform or software version the testing costs explode. We have seen that there exist suit-
able random testing approaches for various platforms. Black-box testing approaches are
arguably for the most part impartial to the underlying AUT. We have discussed the ad-
vantages and problems of random testing techniques. Treating and testing applications
independently wastes valuable and important information, though.

Nowadays, software is not only developed for one end-system. To be accessible by a
large majority of people, it is available on traditional desktop machines (independent of
the underlying operating system or browser), through mobile browsers on smartphones
and tablets, native mobile applications, embedded systems, and the like. You immedi-
ately see the effort, if the testing effort has to be repeated over and over again.

WEBMATE by Dallmeier et al. [20] was already shortly introduced as a web testing
framework (Section 2.3.1). While it includes a crawler, its primary goal is to identify
cross-browser issues. Intuitively, web applications are developed with the assumption
that if a web server delivers the same code to a client browser, it is displayed the same
way on the clients side. This assumption is far from reality. Clients have different net-
work and hardware constraints, which influences how network resources are loaded.
Network latency, network throughput, or available screen resolution are possible rea-
sons for why an application might show differences on the client side even if the same
code is send over the network. But even then, browsers and operating system offer dif-
ferent rendering engines which causes further inconsistencies and possible bugs. WEB-
MATE crawls an AUT on different test browsers and builds an application model. It
then compares the generated state models and the DOM structure for differences. WEB-
MATE searches for missing DOM elements, which might indicate missing information
or functionality, and differences on where elements are displayed or styled.

Choudhary et al. [72] follow a different approach and propose an automated tech-
nique for matching features across different versions of a multi-platform web application
(e.g. mobile and desktop version) called Feature Matching Across Platforms (FMAP).
They compare features and functionality across mobile and desktop versions of a web
application, by analyzing the underlying network communication. The abstraction of a
network trace and the involved components are the basis for their feature matching algo-
rithm. FMAP tracks the network requests the application is executing on the client side
both in the mobile app as well as in the desktop application to identify and match com-
mon features. Network requests are typically captured by a man-in-the-middle proxy
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interacting as a gateway between client browser and server back end. The proxy records
HTTP requests and their respective response in form of a serialized string, i.e. HTTP
archive record (HAR) file. An HAR file contains information about all network requests
that is executed from a client (e.g. a browser) to the back-end services (e.g. run on
the remote server), e.g. the type of the request (GET, POST, etc.), the target URL, the
execution time and execution duration, the MIME type, the status code and payload of
the response and much more. And complete specification is available by the W3C [83]

Essentially, FMAP transforms the HTTP-requests into a set of actions and clusters
them using the Jaccardian distance. Given two traces (one for the mobile app and one for
the desktop app), FMAP models the clusters in a maximum weighted bipartite match-
ing (MWBM) problem and finds matches using the Hungarian algorithm [40]. As a
consequence, FMAP is able to identify features in applications if the given test suite
is interacting with them and the interaction causes a network request to the service
back-end under the assumption that the applications are communicating with the same
back-end interface. Their preliminary evaluation shows that their proposed approach
could identify several missing features in real-world, multi-platform web applications.

FMAP is very related to our work. Not only do they automatically identify features,
but FMAP is also intended to identify features across applications. By design, it is
restricted to identify features in applications communicating with the same back-end
server (cross-platform applications).

By transferring domain specific knowledge across applications, a crawler can iden-
tify testable features and their desired output. Cross-browser testing [20] and cross-
platform testing approaches [72] use existing application models (also in the form of
test cases) to gain knowledge of the application under test (AUT) on one platform under
the assumption that the same observations apply on another test platform. Both tech-
niques are specialized to executions within the same application on different platforms
or browsers. Hence, they cannot be used to transfer knowledge across applications with-
out specifying additional executions for each application under test. Both approaches are
complementary to topic-driven testing. By generating better applications models with
topic-driven testing, it is possible to identify more features as well as inconsistencies
between different platforms. Furthermore, topic-driven testing allows to identify and
gain even more knowledge on an inter-application level.

Behrang and Orso [12] also researched the area of test migration on mobile apps with
similar functionality, which can be seen as a very valuable extension to the early work
of this dissertation [67]. Their tool APPTESTMIGRATOR shows that the principles of
GUI test transfer are universal among web application tests and mobile app tests. While
our work in 2018 focused on transferring test cases from one web application to others
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with similar features, Behrang and Orso applied the principle of semantic analysis on
Android apps one year later. The foundation is pretty similar. Both works leverage the
semantic similarity of labels, content descriptions and other texts to create an ontology
of their test subjects. By learning from a set of initial tests, both works learn which
actions are applied to the software under test and reproduce the same behavior on the
target application. In the area of APPTESTMIGRATOR and android apps, this is done via
observing and replicating GUI events, while the web test transfer is done by interacting
with UI elements with similar semantic meaning. Behrang and Orso also transferred
test assertions during their test transfer, which allows them to test the correctness of
their target applications.



3
Mining the Semantics of

Interactive Elements

Parts of this chapter have been published in Rau et al. [67, 69].

Generating tests for GUI testing is hard. First, it can be difficult to decide which
actions are allowed for a specific interactive element. For some element types (e.g.
checkbox, dropdown menu), it is obvious which interaction is required—e.g. a click or
the selection of an item. For others, say input elements, it may be not as simple: the
context implies, which input is required—a digit combination, a ZIP code, the name of
a city.

In both cases, one has to be able to (a) generate valid as well as invalid inputs, and
(b) be able to differentiate the observable output of the AUT for being correct (i.e.
expected) or incorrect (i.e. unexpected). The latter problem is known as the oracle
problem. Finally, test actions may change the application state (both on the client side
and the server side). A simple example would be a shopping cart: in order to test the
removal of an item, another (prior) test must have added it first. The sheer number
of possible interactions together with a combinatorial explosion when trying to explore
them all requires us to semantically abstract the GUI for better testing—the way humans
do.

In this chapter, we discuss how we extract the semantic meaning of a GUI and its
elements. Remembering the process overview of topic-driven testing in the first chapter
(Figure 1.2), we discuss the right-hand side, i.e. the platform specific Test Executor part.
This is the technical baseline for testing an application. For guiding the test procedure,
the most important part is the identification of interactive elements (see Section 3.1) and
linking them to their descriptive texts for a further semantic analysis (Section 3.2). We
present the necessary extension made to the underlying test platforms WEBMATE (the
test executor for web applications) and DM-2 (the test executor for Android apps). These
extensions serve as interfaces for the later test execution, and the potential knowledge
transfer.

39
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Essential for our approach is identifying valid targets for a given test instruction and
guiding the exploration process towards desired functionality. The key idea is to calcu-
late the semantic text similarity between the describing labels of the GUI elements in
the AUT and each target descriptor. We process each UI element in each state of the
AUT and repeatedly identify target UI elements based on their semantic similarity to a
given text description, for instance a machine executable statement or an ATD.

Summarized, the overall process is as follows:

1. Feature Detection: The displayed UI screen is analyzed to determine potential
targets (interactive widgets or UI elements).

2. Natural Language Extraction: For each interactive target, we search for a descrip-
tive text in the visual vicinity. This text can be found in the widget properties of
the potential target itself or other surrounding labels, icons, texts.

3. Text Sanitization: We sanitize the descriptions to remove noise, tokenize the raw
strings into words, and trim redundant spaces or illegal characters.

4. Semantic Analysis: We compute the semantic similarity between the extracted
natural language content and the potential target, i.e. the corresponding descriptor
in another target application (matching, knowledge transfer) or a use case descrip-
tion.

3.1 Identifying Features in the GUI

While the concepts of topic-driven testing are in general independent of the underlying
test platform, observing and controlling an AUT requires platform specific implemen-
tations. Given a UI screen, such as the a login screen in Figure 3.1, we have to extract
the interactive elements as well as their description, called labels. These labels can then
be used for a semantic analysis.

3.1.1 Web Applications

Extracting Targets

The content displayed in the browser can be analyzed by inspecting the DOM. Each
state in an application contains a DOM and each UI element is represented in the DOM.
The DOM shows the effective properties of each web site element and for instance
integrates external configuration such as style files (’.css’ properties). It contains the
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Figure 3.1: Sample login screen. The boxes indicate the interactive elements together
with their describing label.

relevant information such as the type of the element, styling attributes, display position,
event handlers, and more.

Event handlers are a programmable group of properties that manage how that ele-
ment reacts on events, e.g. user clicks, hover actions, or the like. To interact with an
element on the page, the controlling instance tells the SELENIUM server to search for
an element in the displayed DOM by giving an identifier such as the xpath or a certain
attribute identifier (e.g. id, CSS-attributes). Afterwards, commands can be executed on
the identified web element (e.g. click, sendKeys, hover).

In order to guide a test execution, we retrieve and analyze the DOM after every
test action. We make use of the analysis capabilities of WEBMATE to decide if an
element is visible, interactive, and where it is displayed. First of all, we extract a list of
interactive elements in the DOM. That is each element with an attached event handler,
e.g. anchors (<a>), buttons (<button>), menus (<menuitem>), options (<option>) and
input fields (<input>). A full specification of interactive elements can be found in the
HTML5 specification of the World Wide Web Consortium (W3C) [84]. Elements such
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as head, body, meta, script are excluded from the analysis, since they have no visual
representation in the UI. In this dissertation the analysis is further limited to HTML5
element. External frameworks such as video players or flash are not supported by our
testing framework WEBMATE and thus not further analyzed.

This list is now filtered to remove elements invisible to a human user. Imagine an
invisible label somewhere on the web page. It cannot really describe the semantics of a
button in the vicinity, because a human would not be able to see it. The same holds for
buttons that only become visible after a preliminary actions, such as a drop down menu
or a settings structure. After clicking it, a menu structure with further options becomes
visible. There are valid technical reasons, why elements are invisibly loaded into the
UI. A pop-up menu structure would be an example. In order to optimize the responsive-
ness of the system, a web application loads the required HTML content, but may hide
them with additional styling options. Our analysis does not ‘miss’ hidden elements, but
models them into a different state that is discovered by clicking the appropriate button
first. On top of that, certain websites integrate so called honeypot items into the page to
counteract non-human testing agents.

A machine-executable visibility analysis for web elements can be challenging. In or-
der to check if an element is visible, WEBMATE analyzes the cascading style sheet (css)
styling properties of elements (e.g. visibility), checks if an element is within the
viewport (i.e. part of the UI that is shown in the browser), has a color that is differen-
tiable from the background color, and checks if the element is overlain by another. The
latter is done both by calculating the position of other elements and checking the stack-
ing context (z-index) of the elements. On a side note, WEBMATE has been extended
to scroll to the bottom of the page after executing an action. This is necessary, because
certain web pages only load certain content after they are in the viewport of the browser.
Furthermore, we consider elements to be visible, if a user can scroll to them.

Mining the Element Description

Depending on the nature of the extracted UI elements, the extracted list may not contain
any analyzable natural language text content. Although certain DOM elements (e.g. of
type INPUT store the displayed text in their attributes (e.g. the value or placeholder
field), even more information is stored in the surrounding elements, i.e. the element’s
context. As a consequence, we need to extract the text content of the describing labels
as well, without including too much context as this may introduce noise into the later
classification.

Our analysis is based on the assumption that a short relevant description is found
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Remote
Control

Browser Proxy AUT

Figure 3.2: Prototype setup for capturing the application model. The SELENIUM in-
stance controls a test browser. Network traffic between the browser and the AUT is
captured by a man-in-the-middle proxy.

in the near visual vicinity of an element. Either an element has its own description
(e.g. ‘value’ entry, ‘placeholder’ entry, ‘alt’ text, or the displayed text of anchors) or the
surrounding elements describe the functionality. The larger the visual distance between
description and interactive element, the less likely that a description is related to the
element. This assumption relies on the observations of Mariani et al. [11], who analyzed
the description of widgets in a GUI. They conclude that a description is in the proximity
as well as typically aligned to an element. That means that they are either on the same
height (horizontal aligned), or the descriptive text is directly above or below an element
(vertical aligned).

We group elements of the DOM using the presented VIPS algorithm [1] (see Sec-
tion 2.1.2) and calculate the Euclidean distance. If the element contains its own descrip-
tive text, the distance is set to zero. Lengthy texts (i.e. texts with more than ten words)
are excluded from the analysis, due to the assumption that there should be a short text
describing the functionality. Texts longer than ten words are probably rather conveying
other information. The list of descriptions is now sorted in ascending order (with respect
to the Euclidean distance). The first element has the highest chance to be the descriptive
element.

Extracting the Application Model

At this point, we have seen the technical extensions made to extract interactive elements
together with their describing labels out of the browser interface. While WEBMATE
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offers an application model in form of a FSM, it cannot freely interpret semantic in-
structions or generate an application model that is required to transfer knowledge, such
as tests, across applications. WEBMATE interprets individual test commands and ex-
ecutes them on the AUT. After executing a test command, say a click instruction for
instance, WEBMATE extracts the DOM.

The key behind transferring semantic concepts across applications lays in identify-
ing features and the elements describing their functionality using natural language (i.e.
the label next to it or at least in the near vicinity of it). This information can be used
to calculate the semantic similarity of features across applications. Now consider the
payment screens of two sample applications (see Figure 3.3). They both have similar
interaction possibilities. Both screens offer the same functions, e.g. adding a credit card
for payment. A close inspection reveals that the structure is significantly different, the
position of elements is different, and finally the displayed texts are different. How can
we—as humans—decide that the function of this screen is to enter payment informa-
tion? We first have to define what a function, i.e. a feature is, before we can train a
machine to semantically interpret it. Intuitively, a feature is a sequence of actions that
achieve a certain (common) goal. Now this informal definition has to be translated to a
machine-executable specification.

The structural differences in the structure make a direct identification of the function
of a UI element difficult. Instead, we follow the idea of the already presented FMAP ap-
proach, a new state can be reached after a network request has been executed against the
application back-end service. In order to implement platform independent applications,
the code of a system is split into the client-side UI code and the server-side back-end
code. The front-end systems exchange data, and commands with the back-end. Our pre-
vious example on payment showed that features are a group of actions. In many cases a
feature cannot be expressed by one single UI action. In order to enter payment informa-
tion, one has to select the payment method (say credit card), the credit card company,
enter a valid card number, the name on the card, expiration date and the credit card ver-
ification number. In isolation, each of these actions are not testable functions. But after
submitting the information (by pressing ’Ok’, ’Submit’, ’Proceed’ or something simi-
lar), an network request is send to the back-end service with all the relevant information.
Additionally, the GUI changes to reflect a successfully interaction. By observing the
network communication, we can learn which group of actions belong together and form
a feature.

We extend SELENIUM to group individual interactions with web elements together
to features. Figure 3.2 gives a brief overview on how the controlling instance finally
communicates with the AUT. In order to extract the application model, we extend SE-
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LENIUM to record all incoming HTTP requests from the controlling instance (i.e. the
actions) and proxy all requests from the browser to the AUT through a network proxy.

By recording any executed test command, we learn which elements have been in-
teracted with, i.e. the edges of the application model graph. The remote proxy allows
us to further capture all networks requests the browser is sending to the AUT. The re-
sponses from the server can be filtered to only check for specific MIME types, especially
text/html or text/javascript. By grouping together all recorded user actions in be-
tween such network requests, we derive the set of tested features, namely the list of UI
elements on which SELENIUM actions have been executed upon. Taking the example of
the earlier payment use case (Figure 3.3), the UI elements used to register a new debit
card on eBay and the button Done or Cancel are grouped together as they represent a
single form submission.

The extensions to SELENIUM do not only group UI interactions into features, but
also allow us to learn and integrate arbitrary SELENIUM based test services. That is test
scripts or any external crawling framework that uses SELENIUM to communicate with
the AUT. This offers further integration opportunities with existing frame, but is not
further investigated in this dissertation.

After grouping together the elements with their describing natural language context
and learning the relevant UI interactions that form individual features. This information
can be used for the semantic analysis that is the foundation of topic-driven testing. Due
to the platform specific differences between Android apps and web applications, we will
first look into the UI analysis of Android apps and then proceed to the semantic analysis
which is platform independent (see Section 3.2).

3.1.2 Android Apps

Interactive Widget Detection

As with the presented web testing, we first have to identify which UI elements are likely
to trigger new behavior in the app. For us as users, interacting with an app is pretty
easy. We already discussed that Figure 3.1 shows a simplified authentication screen for
an eCommerce application. We see for each input argument the respective target (email,
password, and the “Sign in” button) and touch it with our finger. From a programmatic
point of view, this is not as trivial—there likely is not only the sign in button which
can be clicked, but rather a multitude of alternate UI elements which may be overlayed
with the button. Android is using empty container elements, which are purely used to
structure the UI and have no real functionality. Moreover, buttons (or other elements
like input fields for the matter) are not guaranteed to be conveniently named to be easily
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Figure 3.3: For the given payment selection screen, a user selects a suitable option based
on the available ones. For testing the application automatically this allows to select a
valid payment method.

identifiable. In the worst case, there may even be hidden elements behind this button
which we do not want to falsely identify as our target widget. Obviously a user would
not be able to click hidden nor overlayed (layout) elements by design. To simulate this,
we have to ensure that we only extract one interactive widget for the buttons area. The
Android operating system provides an interface to retrieve the UI element hierarchy.
Thereby each element is represented as a node within a tree. Each node has certain
properties which can be used to determine if an element is e.g. visible, can be clicked
etc. We consider an element to be interactive if it is:

interactive≡ enabled∧ visible∧accessible

∧ (editable∨ clickable∨ checkable

∨ longClickable∨ scrollable)

accessible≡ bounds.width > min.width∧bounds.height > min.height

We introduce our own property accessible to handle scenarios in which widgets can
be only reached by scrolling through the screen or when they are hidden behind other
UI elements like navigation bars to make them invisible or inaccessible for the user.
The values min.width and min.height express the pixel value at which we assume a
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human user to be able to interact with the item. This value is statically set to five in
all our experiments, because smaller elements are subjectively hard to hit. We identify
elements which are currently not in the viewport based on their boundary property. If an
action target is out of this area, DM-2 first scrolls into the respective direction such that
it becomes visible, before interacting with it. The corresponding extension have been
integrated into the code base of DM-2.

Furthermore, we ensure that only one interactive widget is extracted for a respective
boundary. While iterating through the UI element tree, we select the deepest interactive
element as distinct target for the respective subtree. This counteracts the problem of
selecting overlayed widgets that are not accessible to a human user. The result of this
procedure is a list of interactive widgets and the possibility to interact with them.

Mining the Element Description

Now we have successfully identified all potential target elements, which are present in
the UI in Figure 3.1, but so far we are not aware of their underlying function. We would
like to extract their labels, such as “Sign in”, or “Email (phone for mobile accounts)”.
The labels for these elements could be defined as their own text, or description text
properties, as well as through their sibling leaf node. These siblings potentially contain
a text label as a property in one of the ancestor nodes or sometimes even completely
unrelated to the buttons sub-tree.

If there is a text or description information on the interactive element itself, we use
that text for our semantic analysis, otherwise we derive the natural language content
from the nearest visually aligned UI element [11]. For each interactive widget from
the earlier phase that has no descriptive text on its own we calculate the neighboring
non-interactive elements with textual content. Starting from the top of the UI screen,
we calculate the Euclidean distance of the neighboring elements and sort it in ascending
order. Next, we consider the bounding boxes of both the interactive element as well
as those of the potential label element. If their bounding boxes are intersecting, we
do consider them as being correlated. Now, the text of the first element of this list is
extracted as the describing label for this element. In our example, this filters out a few
potential false positives for the later semantic similarity. For instance, we group together
the password input field with the label “password” instead of grouping it with “Forgot
your password”. The same is true for the “Sign in” button.

In essence, this methodology is similar to the one for web analysis, but takes the plat-
form specific differences in terminology and technology into account. At this point, the
platform specific differences between web applications and Android apps can be hidden
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Figure 3.4: Example for interpreting ATDs for crawling. The highlighted boxes indicate
the valid target matching between the ATD target and a UI element.

in an appropriate application programming interface (API). The semantic interpretation
layer builds upon this interface and is thus independent of the platform.

3.2 Semantic Element Analysis

Up to this point, we have presented platform specific analysis frameworks that extract
the potential targets for UI actions as well as their descriptive labels. In other words, the
previous steps present the technical foundation on which we can execute topic-driven
tests, semantic comparisons, and knowledge transfer. In the next step, we discuss the
central part of our technique, the semantic analysis and matching procedures from Fig-
ure 1.2. After having extract suitable targets with the previous analysis, we analysis the
semantic properties of features in order to guide testing.

Figure 3.4 is an extension of the earlier presented login screen. The example now
includes a machine executable list of instructions (ATDs) that cannot be executed by
syntactic means. The instructions were not written for the AUT, but are vague in nature
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Figure 3.5: Semantic analysis pipeline implemented in MALLET. Starting with the raw
text input, each text is transformed into a vector

and just describe a typical login. So far, existing frameworks cannot interpret these
instructions. Topic-driven testing now links the semantic meaning to the actual GUI.
Each label is first pre-processed (i.e. ‘Text Sanitization’) to have a comparable and stable
baseline for each string in the AUT, see Section 3.2.1. Afterwards, a semantic vector
representing the label is computed, which can be used to express semantic similarities,
see Section 4.1.

3.2.1 Text Sanitization

Before the labels of an ATD can be matched to their counterpart in the AUT based on
semantic similarity, the labels extracted from the UI have to be pre-processed in order
to sanitize the given input. Of course, the same procedure can be applied on an ATD,
especially the target descriptor, in case the pre-processing is not done in advance. The
extracted descriptive label text is typically not purely in natural language, but may also
contain illegal characters (e.g. special Unicode characters), line breaks, or the like. Be-
cause of this, each text is pre-processed according to standard NLP operations [56].
Figure 3.5 shows a general process pipeline that we integrated into the MAchine Learn-
ing for LanguagE Toolkit (Mallet) framework, a popular machine learning toolkit. Each
step in Figure 3.5 is written as a Mallet pipe allowing for a fast processing of the nat-
ural language input. Algorithm 2 presents all pre-processing steps. In the first step all
illegal characters are replaced by a whitespace character to get rid of invalid/incomplete
HTML-tags (e.g. ’<’,/) or special symbols (e.g. special Unicode characters). After
tokenizing the given string of the label into individual words.

In order to follow the established grammatical rules of the language, the processed
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Data: a: set of UI elements, word2vec: WordModel
Result: preparedStrings, Set of valid words
foreach str← UIElement.textualContent do

// Replace non-literal chars with whitespace
sstr← sanitize(str)
stem← foreach word← tokenize(sstr) do

yield stemWord(word)
end
noSW← removeStopWords(stem)
yield noSW.filter(word→ word2vec.contains(noSW))

end
Algorithm 2: Word pre-processing algorithm for given UI elements. After remov-
ing illegal characters, each word is reduced to its base form using stemming and
lemmatization, the stopwords and unknown words are removed.

labels use different forms of a word, such as proceed, proceeds, or proceeding. Our se-
mantic analysis ignores the order of the words. It is thus useful to reduce the inflectional
form of each given word (and also of derivationally related forms) by morphological
stemming [57] and lemmatization [36] to a common base. The methodology follows
the assumption that the inflectional form introduced by the grammar of a language and
even the order of words is of minor importance for a human to understand the meaning
of a given label (bag-of-words assumptions). As a consequence, words like am, are,
or is are reduced to their base form be. In the last pre-processing step, we filter out
the most common words of the language (stopword removal) and remove unknown or
invalid words, which are not in the corpus of our word vector model.

Stemming usually refers to a crude heuristic process that chops off the ends of words
in the hope of achieving this goal correctly most of the time, and often includes the
removal of derivational affixes. Lemmatization usually refers to doing things properly
with the use of a vocabulary and morphological analysis of words, normally aiming to
remove inflectional endings only and to return the base or dictionary form of a word,
which is known as the lemma. If confronted with the token ‘saw’, stemming might return
just ‘s’, whereas lemmatization would attempt to return either ‘see’ or ‘saw’ depending
on whether the use of the token was as a verb or a noun. The two may also differ in
that stemming most commonly collapses derivationally related words, whereas lemma-
tization commonly only collapses the different inflectional forms of a lemma. Linguistic
processing for stemming or lemmatization is often done by an additional plug-in compo-
nent to the indexing process, and a number of such components exist, both commercial
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and open-source.

3.2.2 Semantic Analysis

After the individual labels have been pre-processed, we now have the technical means
to extract on each UI screen in the AUT all interactive elements together with their san-
itized descriptive labels. Central to topic-driven testing is the ability to infuse these
items with a semantic meaning. A word vector model (word2vec), as presented in Sec-
tion 2.2.3, can be used to derive the semantic meaning of words and sentences. Our
goal is to infuse the interactive elements of the pages with their semantic meaning. To
do so, the accompanying labels are processed and we extract the word vector of each
(pre-processed) word from a given word vector model.

Typically, these word2vec are trained on pre-labeled documents, which requires a
supervised training phase. In our case, every feature requires a training set of a couple
of hundred web pages [44] that have to be (manually) labeled. On top of that, this type of
model requires retraining as soon as a new feature is added. In order to facilitate topic-
driven testing as a testing procedure without a high setup cost, this kind of model is not
appropriate. An alternative are models trained on unlabeled pages. While the training
phase may be unsupervised, the required training data (i.e. the set of documents) has
to be larger by multiple orders of magnitude. This amount of data is hard to come by
and time consuming to train even on specialized hardware. Word vector models have
become pretty popular in recent years and it has been shown that models trained on a
large set of unspecific documents are even superior to models trained on a very specific,
but relatively small data set [55].

We forego this expensive process and instead choose the googleNewsVector model [55]
off-the-shelf, henceforth just referred to as the word2vec model. This model has been
trained on non-domain-specific documents including more than three billion words.
Non-domain-specific models have the advantage to be easily applicable to any arbi-
trary application domain. Meanwhile, specialized models, e.g. as the one presented by
Lin et al. [44], need to be retrained for each new domain and even features.

The labels of the interactive elements on the pages can now be associated with their
corresponding word vectors in the word2vec model, which allows us to calculate the
semantic similarity between the labels of different applications.





4 Topic Driven Testing

Parts of this chapter have been published in Rau [64], Rau et al. [67], and Avdiienko et
al. [7].

So far, we have discussed the technical background to extract the interactive UI ele-
ments and their semantic meaning both from Android apps as well as applications ac-
cessible through a browser interface. The semantic meaning of the elements is encoded
in the corresponding word vectors. In this chapter, we discuss how this technical base
can be used to calculate the similarity between UI elements in different applications
(Section 4.1), and apply this concept on the top five hundred pages of the Quantcast
index [62] that lists the most popular pages Section 4.2. On this set of representative
applications we will analyze the feasibility of an automated feature learning and knowl-
edge transfer that is the essential contribution of topic-driven testing.

4.1 Semantic Similarity of UI Structures

In the previous chapters, we discussed how interactive elements in the graphical user
interface of both android apps and web apps can be analyzed together with their semantic
meaning that is expressed in the labels in their visual vicinity. The pre-processed labels
can now be matched against another natural language target, for instance the UI element
labels in another application (knowledge transfer) or we can calculate the similarity
between a given command in natural language into a corresponding machine executable
statement.

An educated look into common applications reveals that the textual descriptions vary
from single words (e.g. address, street, username) to sentences, short paragraphs and
sometimes grammatically invalid word combinations. Standardized sentence or sen-
tenced based vector models (i.e. trained on sentences or paragraphs) that can analyze
similarities between sentences and paragraphs are ruled out as they can hardly handle
invalid structures and the high variance in the used labels (e.g. length, structure) would
decrease the efficiency dramatically. Despite its ease of use, this is the main reason why
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≡sem (str1,str2) =



Insert username here

Enter 0.455887 0.254257 0.0790675

username 0.208744 1.0 0.128865

email 0.152182 0.397393 0.111652

address 0.074623 0.213060 0.1640389



=

[
0.455887

1.0
0.1640389

]
=

dim(v)
∑

i=0
vi

dim(v)
= 0.5399753

Figure 4.1: Sample matrix for calculating the semantic similarity of two strings “Enter
username email address” and “Insert username here” using pair-wise cosine similarity
of two words.

word2vec are used in topic-driven testing for further analysis. The word2vec models
work—as the name already indicates— on the smallest semantic unit in the sentence:
words. As such, they cannot analyze arbitrary strings (e.g. whole sentences). Instead,
we implement a novel similarity to calculate the similarity between labels. In order to
do that, we use the word2vec model to compute the cosine similarity (??) between all
possible word pairs.

Figure 4.1 shows the sample output for two given sample strings. The cosine similar-
ity of each word pair is expressed in an n×m matrix, where n and m are the respective
lengths of the given strings. We then select the best matching word pairs (ignoring the
order of words) under the conditions that every word is only matched once. The re-
sulting points in the vector are summed up and normalized using the dimension of the
result vector. In our example, the procedure does not allow that the words “username”,
“email”, and “address” are all matched to the word “username” in the second string, even
if the resulting normalized sum of the vector would be higher then. Although the order
of words is neglected, both strings express a different amount of concepts. By excluding
multi-matches, the given method reflects this. The computed value≡sem (normalized by
dividing it by the dimension of the vector) is in the interval [−1,1]. Again, a value close
to −1 indicates highly dissimilar concepts, while values close to 1 indicate a semantic
match.

The similarity value ≡sem serves as a certainty factor that the UI elements in the
target application match the wanted feature. The returned list of potential matches is
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sorted in descending order. Elements with a high semantic similarity thus are ranked at
the top, as they are most likely to match.

As a preliminary optimization, we omit label pairs in which the ratio in the num-
ber of words is larger than five; i.e., if the number of words in one label is more than
five times the number of words in the second label. We just assume that they are not
matching because this ratio is large enough to assume that two labels convey a differ-
ent meaning. The applied normalization reduces the calculated value drastically, if the
length difference increases. Sorting the results according to the similarity causes the
results to be ranked at the bottom. This optimization allows for a faster calculation and
also circumvents to match items to large text blocks throughout the target application.

The presented algorithm allows us to finally calculate the semantic similarity be-
tween two given UI elements and lays the foundation for any topic-driven testing method.

4.2 Semantic Analysis of Real World Applications

In contrast to traditional testing methods, topic-driven testing is focused on linking in-
teractive elements together with their descriptive labels to a semantic meaning. Before
we get started to integrate the feature matching into testing procedures and frameworks,
we now take a look into the data of real world web applications and check how their
functionality is encoded into semantic properties. The previous Chapter 3 introduced
the technical methods on how the semantic meaning is extracted from web applications
and Android apps. Now we apply the same technique on the top five hundred web pages
out of the Quantcast index [62]. Quantcast is a web ranking page that lists web pages
according to the number of monthly visitor counts. We inspect the top U.S. web pages,
which have a monthly active user base of one million to eighty million people.

Now we apply the semantic analysis (Section 3.2) on these pages and extract the word
vectors corresponding to the elements with the presented technique. We are interested
in the feasibility, correctness, and usefulness of topic-driven testing when we analyze
the GUI on a large scale, e.g. on a large number of web applications. In a nutshell, we
try to assess the following research questions:

RQ 1 (Feasibility) Have real world applications common language features exploitable
for testing?

RQ 2 (Correctness) Can we identify features with semantic means by analyzing the
distance between word vectors, proximity in the word vector space, or clustering tech-
niques?
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RQ 3 (Novelty) How do existing syntactic metrics compare against semantic metrics
for mapping features?

By answering RQ 1, we get a basic understanding on whether the procedure is feasi-
ble for testing. In order to interpret test snippets, transfer knowledge, or transfer features,
these entities need to be present in a significant part of the application set. RQ 2 inves-
tigates if semantic similarity is the correct technique to identify features. Finally, we
compare ourselves against syntactic techniques to show that semantic means are actu-
ally superior (RQ 3).

4.2.1 Feasibility of Topic-Driven Testing

The word vector model used in this dissertation models each word as 300-dimensional
vector. In order to visualize this high-dimensional data, it is necessary to transform
the vectors into a two-dimensional representation. To do so, we use the t-Distributed
Stochastic Neighbor Embedding (t-SNE) technique developed by Maaten and Hinton [80].
By applying a Barnes-Hut approximation of the data points, this method transforms the
set of 300-dimensional word vectors into a two-dimensional set of points.

Figure 4.2 shows a visualization of all the descriptive texts of the top five hundred
Quantcast pages in the U.S., combined with a density analysis. A detailed list of the
used evaluation subjects is available in the appendix (see Appendix A) together with
an estimation of monthly visitors. About thirty applications could not be evaluated,
due to an incompatibility with WEBMATE—e.g. because they use outdated JavaScript
libraries that are not compatible with WEBMATE. Still the data set is large enough for
an analysis. The chart is pretty dense and visualizes the word vectors of more than three
hundred thousand words.

The individual dots in the chart each detail a single word from one of the web pages.
We checked the dataset to ensure that the visualized data represents a proportional spa-
tial distance to the original data set. In other words, t-SNE transformations keep local
similarities and do a decent job do preserve the global structure of data (clusterization).
Words close to each other in the original dataset are mapped to nearby points in the
visualization.

The dataset shows that certain words in the vector space occur often. The yellow
cloud structures surrounding the words represent a the results of a kernel density esti-
mation. Their shape and size indicates the the density of the data points within. Take
the three almost circular shapes at the very top of Figure 4.2 (highlighted by the red
circle). The structures each contain many close-by points. The words represented by the
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Figure 4.2: Word vector visualization of the Quantcast top 500 web pages after apply-
ing a t-SNE-transformation to reduce the high-dimensional vector to a two-dimensional
vector space. The x-axis and y-axis show the respective vector values after the trans-
formation. The bar-plots on the top and right show the absolute number count at this
point.
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vectors occur multiple times in the five hundred web applications. At this moment, this
observation cannot be translated into any insignificance of these words.

We can also observe that their exist other larger structures in the visualized data that
indicate less dense areas. Since t-SNE-transformation tries to preserve the local similar-
ities, these less dense areas might either occur to the linear embeddings or there might
exist semantic structures that are less common throughout the analyzed application set.
The Quantcast index contains applications coming from a multitude of domains, rang-
ing from search engines, coding platforms, social platforms, and more. Not all offer the
same functionality. As a consequence there exist rather unique semantic entities.

On the other hand, we can see larger groups of data points that are bundled together
especially in the center, lower center, and lower right part of the chart. Even in this
crowded chart with lots of data points they are clearly identifiable. These are not just
repeated single words, but instead groups of words that are semantically related. We can
see that there exist semantic entities throughout the applications, i.e. topics. We can also
see that they are often not expressed with the same word, otherwise the data structures
would always look like the circular shapes we have seen earlier. Like single UI elements
do often not represent an application feature, individual words are also not indicators
for functions. Still, the data indicates general semantic properties that are present in
more than one application. Transferring these properties and use them for testing is the
incentive for topic-driven testing.

The principle of topic-driven testing is thus backed by the data and allows us to
answer RQ 1 on feasibility:

RQ 1 (Feasibility) Have real world applications common language features exploitable
for testing?

� The data indicates that there exist universal semantic structures (clusters) that can
be representatives for features

� We can use semantic means to identify features and use them for testing

� There also exist localized semantic structures that only exist in a minority of the
applications. The corresponding features may not be easily testable or a require
additional effort.
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Figure 4.3: Word vector visualization using a t-SNE transformation for the features ‘con-
figuration’ (brown), ‘account creation’ (light blue), and ‘authentication’ (light brown).

4.2.2 Semantic Feature Identification

In order to get a grasp of how semantic features materialize in this word vector space, we
now check for specific keywords that are representatives for certain functions. We pick
features that are common for a large majority of applications and check how they are
semantically presented in the dataset and which words are closest. Figure 4.3 shows the
word distribution for the features ‘configuration’ that is used to change account settings,
‘authentication’, i.e. functionality related to logging in, and ‘account creation’, i.e.
signing up for an account. The displayed vector space is the same as before.

The data indicates rather dense distributions for each feature for both ‘authentication’
(beige solid circle), and ‘configuration’ (dark brown dotted circle). Considering the
previously crowded vector space, this shows a pretty clear cut picture. Both functions
are mapped to close rather specific areas. Also the distance, between the two areas is
not significant. Right in the middle between those areas (see arrow) are words such as
username, user, and password. These terms are obviously not bound to either function,
but instead present in both. The googleNewsVector shows that the terms occur in a
relevant context to both features.
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The ‘account creation’ function shows erratic data entries. Keywords such as email,
or password are bundled together, but typically the account creation also integrates cap-
tures, first name, and surname. In the vector space these terms are located in different
areas. For the later testing, this missing cohesion is of minor importance, since the indi-
vidual labels (and thus the terms) are matched one-by-one. Nevertheless, the other two
features show that the relevant terms are also semantically close and we can actually
learn features by grouping terms due to their position in the vector space.

As a side effect of the t-SNE transformation the distance between the vectors might
be different from the initial high-dimensional vector space. The visual clues indicate
that we can use arbitrary distance methods (e.g. Euclidean distance) to calculate the
semantic similarity. Even if the relations are preserved, we use cosine similarity on
the original data. Literature [61] shows that cosine similarity is better suited to express
semantic similarities.
This essentially answers RQ 2 to a certain extent:

RQ 2 (Correctness) Can we identify features with semantic means by analyzing the
distance between word vectors, proximity in the word vector space, or clustering tech-
niques?

� The data indicates that keywords expressing certain functions are semantically
close and appear in the same area in the vector space.

� The distance between word vectors can be used to predict features across appli-
cations.

4.2.3 Syntactic Mapping Procedures

Mapping features is an essential step for a further integration into testing. We now
analyze the data set to verify why syntactic matching methods cannot be exploited for
mapping procedures. That is, why using semantic similarity can improve state-of-the-art
testing.

Figure 4.4 is again showing words of the Quantcast top five hundred web pages.
Again, the set of words was reduced to relevant words for the functions ‘configuration’,
‘account creation’, and ‘authentication’. In Figure 4.3, the same words were displayed,
but only with their word vector. Figure 4.4 now includes the two dimensional vector
that represents the element position (in this case the position of the label, not the inter-
active element). In a direct comparison, one can immediately see significant differences.
While the word vectors in Figure 4.3 present us with very tight groups for each function,
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Figure 4.4: Distribution of word vectors including the display position (x,y-coordinates)
of the features ‘configuration’, ‘account creation’, and ‘authentication’.

including the x and y coordinates into the vector leads to rather unpredictable results.
The vectors are now distributed all over the vector space and also the features are inter-
mingled. Clustering and distance calculations cannot produce useful prediction results.
On a side notice: one can notice the dubious large empty space right in the middle of
the vector space. This space is an artifact of the t-SNE transformation and does not nec-
essarily indicate a large part of the UI screen where keywords from our samples do not
occur. The t-SNE transformation does preserve the distance between the elements and
the overall distribution. As a consequence, we cannot clearly pinpoint the empty region
to an equally empty region in the GUI.

Alternatively, one can try to match the strings of the appropriate keywords directly.
The problem with this technique is that even small differences in the words do have a
strong impact on the effectiveness, i.e. in this case more precisely the recall. Besides,
the presented basic NLP measures, such as stemming, offer already a wide variance of
tools. Still, small differences, e.g. a capitalization of words (‘Sign In’ vs. ‘sign in’),
additional characters such as hyphens that link some words, or changes to prepositions
(‘Sign In’ vs. ‘Sign On’) can make the mapping difficult. Tackling each syntactic dif-
ference individually might be possible, though. To measure the effect of small syntactic
differences, we investigate the Levenshtein distance to the keywords referenced by the
same features as above (‘configuration’, ‘account creation’, and ‘authentication’). The
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(a) Levensthein Distance 1 (b) Levensthein Distance 2

(c) Levensthein Distance 3

Figure 4.5: Word distribution for the features ‘configuration’, ‘account creation’, and
‘authentication’. The sub-figures highlight for each feature the word distribution of the
words in the corresponding Levensthein distance.
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Levenshtein distance measures the edit distance between two given character sequences,
i.e. the number of insertions, deletions or character changes necessary to transform one
string into another.

Figure 4.5 displays the word vector space of the same keywords as before, but also
highlights words with a small Levenshtein distance. The sub-figures show an increasing
Levenshtein distance starting from one to three. It is interesting to see how many words
are in close syntactic proximity. The number of potential targets grows exponentially
with an increasing Levenshtein distance. While the data does not show that seman-
tic measures are superior to syntactic means per se, we can now estimate the number
potential targets if we apply syntactic means. If we implement an algorithm that is ro-
bust against three character changes, the data in Figure 4.5c indicates a large number of
potential targets—more than thirty thousand.

Another interesting observation is the comparison between semantic similarity and
syntactic changes to the underlying words. As already mentioned, the distribution of
word vectors increases dramatically, if the Levenshtein distance is increased. It shows
that the language is diverse and that the spelling stands in no relation to the semantic
meaning. The word vectors express semantic similarities and the t-SNE transformation
preservers the overall relations. The erratic distribution in Figure 4.5 can thus be seen
as a confirmation that the semantic correlation is not bound to the spelling. The obser-
vations from Figure 4.4 and Figure 4.5 allow us to answer RQ 3 about the capabilities
of semantic analysis compared to syntactic measures.

RQ 3 (Novelty) How do existing syntactic metrics compare against semantic metrics
for mapping features?

� Syntactic measures are insufficient for mapping features. The number of potential
targets increases exponentially with syntactic changes to the underlying test set.

� The position of features and their interactive elements in the graphical user inter-
face is not consistent across applications.

� Semantic measures are superior in identifying features and mapping them across
applications.

4.3 Conclusion

As depicted in Figure 1.2, topic-driven testing consists of three central parts. The pre-
vious chapter Chapter 3 presented the technical foundation to extract features from an
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AUT and infer a semantic meaning from their descriptive labels. These were the two
bottom layers of the overview figure. In this chapter, we analyzed a large group of five
hundred real world web applications to show the feasibility of using semantic word vec-
tors for feature identification and for a potential transfer across applications. This is the
topmost layer.

We investigated more than three hundred thousand words in five hundred popular
real world web applications and identify groups of elements that are clustered in close
proximity and exist in a majority of applications. These clusters of semantically close
words are indicators that there are common features in these applications. The presented
data backs our assumption that we can exploit semantic text similarity to identify fea-
tures and their corresponding UI elements. This is essential to guide testing, transfer
application specific knowledge, or learn from existing test suites. The data also indi-
cates that the keywords that represent certain features are mapped to nearby points. This
allows to learn common features from a set of applications. On the other hand, the data
also indicates sparse areas, i.e. regions in the vector space that have words only present
in a minority of the applications. Considering the idea that we want to learn how to
test common features (be that from test scripts or use case descriptions), this means that
there are rather unique features in some applications. While not untestable per se, we
would require additional effort to specify how these features can be tested. And this
effort only pays of for single applications, not for a majority.

The following chapter discusses how the gained observation can be applied and
shows that semantic concepts can be leveraged to re-use existing test suites, or trans-
late simple natural language test specifications into machine executable statements to
improve testing or learn application behavior.



5
Topic Driven Testing in the

Web

Parts of this chapter have been published in Rau et al. [66, 67, 69].

Now it is time to put the theory into practice. In this chapter, we apply topic-driven test-
ing on web applications in order to improve and generalize existing testing procedures.
The input to topic-driven testing can be rather generic, i.e. everything that carries a
semantic meaning to guide testing. In this chapter, we show how we can use existing
system web tests (written in SELENIUM) to learn features that exist in the AUT, to guide
web testing in new applications, and even partially transfer existing tests to new appli-
cations. Essentially the technique can be used on arbitrary applications with a GUI, but
in this chapter we concentrate our analysis on web applications. We implemented the
technique into a self-contained framework called ATTABOY . ATTABOY takes an exist-
ing SELENIUM test suite for one web application A and executes it on another target web
application B.

Identifying features in web applications and then apply this knowledge to test/guide
testing in other applications allows for better testing with very low additional effort.
Writing one test for an application, translates into the possibility to execute it on a mul-
titude of applications. It also lowers the initial effort of testing an application. Since
developing and testing applications are often done by different people in a company, the
second part can be simplified by this knowledge transfer. Having the intentions of topic-
driven testing in mind, we also want to see, if there exist common implicit specifications
that humans expect to see in certain systems. In topic-driven testing, this assumption is
somewhat integrated with a tacit understanding. We assume that the target application
has the same underlying semantic structure. Otherwise, transferring tests would not be
possible by construction.

The core of our presented technique consists of two steps as depicted in Figure 5.1.
In the feature identification phase (technical background presented in Section 3.1), we
identify essential features given an existing SELENIUM test suite. The UI elements, on
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Figure 5.1: Generating tests from tests of other apps. After extracting features (as GUI
elements and textual labels) from an existing application, we match these features se-
mantically while exploring a new application, As a result, we obtain a mapping between
features that helps adapting tests from the existing application to the new one.

which the test suite executed commands are relevant for a feature together with their
describing labels. After extracting the textual content of these elements, we can match
these features across applications using semantic text similarity as a metric (as pre-
sented in Section 4.1). The matched features then guide test generation on new applica-
tions in the test set.

In order to identify features in a target application B, we use the discovered elements
together with their describing labels. The presented method does not require any other
test suite to generate an application model for the target application B, but only requires a
number of states, i.e. DOM-trees, which can be for instance generated from the traversed
states while guiding a crawler through the application.

The earlier Chapter 3 described how for every interactive element the descriptive
label is extracted and how the semantic meaning is expressed as a word vector. Given
a state of an application A, we now check each state in the target for potential labels
describing the same semantic concepts using semantic text similarity as a metric. The
describing labels in the target application contain the same natural language content a
human would see and we try to identify the closest semantic entity to the label in the
target application by computing the word-wise cosine similarity.

We tested ATTABOY in an emprical study on 12 web applications each tested with
a SELENIUM test suite. We transferred these test suites to the other applications in
the same domain to evaluate the feasibility of the feature transfer, the possible speed-
up compared to random crawlers, and for the success of the test transfer. The study
offers initial evidence of the capabilities of topic-driven testing and is very successful in
identifying features across applications.
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Summarized, the empirical study yields the following results:

1. Our technique maps features between source and target applications with a recall
of 75% and a precision of 83%.

2. Using our most conservative estimate, this mapping speeds up exploration from a
single state on average by 740%.

3. If the searched functionality is deeper in the application, this speedup multiplies
across states, yielding a total speedup along the path that can be exponential.

4. All this greatly simplifies test generation for new web applications when tests in
the same domain already exist.

5.1 Introduction

As an example of the difficulties computers encounter, assume you want to generate a
test that purchases some item on a shopping site like eBay, starting from its home page,
ebay.com. For the moment, let us assume that a test generator already found out how
to select a product, how to place it in a shopping cart, and how to proceed to checkout.
Then, the test generator is faced with the payment screen shown in Figure 5.2.

As an experienced human, you would know what to do here—namely fill out the
forms, and press one of the highlighted buttons (first, “Done”, then “Confirm and Pay”).
For a test generator, filling out such a form is much more difficult. Besides the problem
of having appropriate payment data to fill out, it is hard to determine which interaction
to perform next. Overall, the eBay checkout site sports no less than 1,269 user inter-
face elements in its document object model (DOM). On the screenshot, we already see
payment options, feedback forms, guarantee options, cancel options; further below fol-
low address and shipping options, as well as a myriad of photo links to possibly related
products. For a computer, with all UI elements being equal, the chance of hitting the
“Confirm” button on the first try is less than one in a thousand. Of course, an exhaustive
test generator can easily try triggering each of the 1,269 UI elements and spend hours
wading through all the legal and promotional material—a commercial site like eBay
has on its pages—and eventually determine that the “Confirm” button is the one that
opens up new functionality. However, remember that we initially assumed that the test
generator already has managed to select a product, placed it in the cart, and proceed to
checkout. Each of these steps is just as difficult to complete as the checkout step dis-
cussed above—the eBay home page itself sports more than 2,268 UI elements, and the

ebay.com
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Figure 5.2: Besides providing fields to enter payment details, this page also provides
additional UI elements with additional payment options, guarantees, and offers—1,269
UI elements in total. For a human, it is clear that one of the highlighted buttons (“Con-
firm”) is supposed to be pressed next. But how would a computer know?

low probabilities of following the purchase path multiply with each other. This is what
makes discovering “deep” functionality within a web site such as eBay so inherently
challenging. A crawler would have to explore thousands to millions of states before
reaching new and test-worthy functionality.

For us as humans, such activities are much easier, because we are able to interact with
GUIs based on the semantics of user interfaces—we know what terms like “feedback”,
“pay”, “cancel”, “special offer” mean, and we choose the ones that are closest to our
goals. We also have experience with similar sites; if we have shopped once on, say,
Amazon.com, we know how to repeat the process on other shopping sites, where we can
re-identify familiar concepts like “cart”, “checkout”, or “payment”. Indeed, the payment
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Figure 5.3: Can we use an existing test for this web page to facilitate test generation of
the eBay page in Figure 5.2?

page for Amazon (Figure 5.3) is not that different from the payment page on eBay;
concepts like “name on card” or “card number” are easily found on both. (Amazon,
however, requests possible gift options after card details before finally allowing the user
to place the order.)

Now assume that for the Amazon payment in Figure 5.3, we already have an auto-
mated test that selects a product, adds it to the cart, proceeds to check out, and finally
pays for the product. Would it be possible to leverage the knowledge from this Amazon
test to generate a test for eBay? By extracting the general sequence of actions (select-
ing, adding to a cart, checking out, paying) from the existing Amazon test case, we
could guide test generation for the eBay site towards those actions already found on the
Amazon test suite.

As sketched in Figure 5.1, we start with an automated test for a source application
(say, Amazon). Each step in the test induces a state in the source application. From
these states, we extract the semantic features—that is, the user interface elements the
test interacts with together with their textual labels. While generating a test for a new
target web application (say, eBay), we attempt to match these features while exploring
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the application, determining the semantic similarity between the labels captured in the
source and the labels found in the target. We then guide exploration towards the best
matches, quickly discovering new and deep functionality, which is then made available
for test generation. The final result is a mapping of the features found in the source
to the features found in the target, allowing for easy (and often even fully automatic)
adaptation of the tests created for the source application onto the new target application.

To the best of our knowledge, ours is the first work that allows for generating tests
in new applications by learning from existing tests of other applications, which only
share the general application domain. The results open the door towards automatic
adaptation of tests across applications: Having written a “pay” test once for one web
shop, developers can automatically apply it again and again for one web shop after
another.

In the previous section, we have seen how the natural language texts in a GUI are
linked to the underlying functionality and features of applications. Furthermore, the
descriptive texts are semantically similar across applications. In other words, we can
take a user usable function from one application, extract their descriptions, and transfer
this knowledge across applications using the proposed topic-driven testing approach.

Applied to web application testing, this opens interesting research angles. First of
all, we can guide testing towards desired functionality instead of testing it blindly, e.g.
by using random testing approaches. Second, we can observe application behavior for
an application A and check if other applications behave the same if tested the same way.

In this chapter, we present ATTABOY, a combined mining and test guiding approach.
Figure 5.4 shows a short overview on how it works. ATTABOY mines a given web testing
suite (Section 5.2), say for testing Amazon, and generates a state model that expresses
the application behavior. In a second step, it takes a start URL of another application,
say ebay, and mimics the recorded test commands.

In order to show the effectiveness of TDT, we conducted three empirical studies that
answer the following research questions:

RQ 4 (Accuracy) Can we identify web features using semantic UI element similarity?

This is one of the core contributions of our technique: Mapping features from the source
application towards the features of the target application. We evaluate the accuracy of
the mapping; the better the accuracy, the more effective is the guidance for subsequent
exploration and test generation.

RQ 5 (Impact on web crawling) Can automated feature identification be used to im-
prove web crawling?
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This is the main application of our technique: What difference does it make to a crawler
if guidance exists? We conservatively evaluate the worst case speedup of guided crawl-
ing vs. non-guided crawling.

RQ 6 (Test Transfer) Can a given SELENIUM test suite be transferred to the test suite
of another application within the same domain?

We will investigate on three application domains, if we can re-use existing tests and
transfer them to other applications to test the same behavior. This allows to simplify test
generation, and lower the initial cost for testing an application.

RQ 7 (Test Generation) Can we transfer automatically generated test suite across ap-
plications?

Automatically testing an application faces the aforementioned challenges of generating
valid inputs and covering relevant functions. For certain applications the test creation
might still be simpler than for others, maybe due to a simpler structure, less noise, or
other factors. We analyze our data set if we can transfer automatically generated test
suites.

RQ 8 (Generality) How similar are web applications regarding their features and feed-
back mechanisms?

If web applications show similar functions and behavior that can be exploited for testing,
this increases the generality of topic-driven testing. A high generality indicates a high
pay-off, since the principle can be applied on a wide variety of applications.

The conducted study goes beyond the analysis presented in Chapter 4 and is more
specialized on concrete testable use cases.

5.2 Mining Test Cases

ATTABOY is leveraging a given SELENIUM test suite to generate test traces for the appli-
cation under test. Our prototype features an extended version of a standard SELENIUM

server, allowing us to intercept given commands (i.e. in terms of HTTP requests given
to the SELENIUM grid). ATTABOY records the commands and applies the presented
information retrieval techniques [20] to extract the current state of the application as
currently shown in the web driver instance. The test itself is not changed. Accordingly,
test traces consist of single states of an application, connected by sequences of SELE-
NIUM commands. Such a state represents a single page of the application. The structure
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Figure 5.4: ATTABOY Process Pipeline for automatic test suite generation. A given
reference test suite is executed (1) and processed (3). Meanwhile a random test suite
for the target application is created (2) and processed as well. Afterwards the resulting
behavioral models (4) are transferred by matching the topic set of each functional state
(5). In the last step the action translation is performed to generate the final target test
suite (6).

of a page is specified in an underlying Document Object Model (DOM) in which every
element of the page is expressed as a node. As already mentioned, this tree structure
contains one node for every single element on the page, together with the node content,
its styling properties (e.g. CSS classes), visibility information or likewise. Figure 5.4
presents an overview on ATTABOY’s process pipeline.

Considering the initial example of buying a product on Amazon, the sample test
trace consists of going to the landing page, searching for a product, selecting a product,
adding it to the shopping cart, clicking on ‘Proceed to Checkout’, logging in (entering a
valid ‘username’ & ‘password’ combination) and confirming the payment and shipping
options. The consistency of the application is tested by asserting the presence of cer-
tain key elements in the intermediate pages. A new state is extracted whenever a user
action is executed on the browser under test (i.e. a non-native SELENIUM action like
implicitWait, findElement).

After the test traces have been generated, ATTABOY pre-processes the traces into a
behavioral model by applying visual element clustering (see Section 2.1.2), noise re-
duction (Section 2.1.3) and functional state clustering (Section 5.2.1). After this pre-
processing phase, we extract the main topics describing the content and functionality of
a page (Section 3.2). Mapping the topic model of the functional states against another
test suite (either an automatically generated or another SELENIUM based one) allows us
to automatically transfer the tests across applications.
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Figure 5.5: Simplified functional state overview on two eCommerce web applications.
States with equal labels are clustered and represent the same functional state. Dashed
arrows indicate a mapping to functional similar states. Nodes are labeled with their main
topics.

5.2.1 Functional State Clustering

Functional state clustering is something we did not discuss so far. Instead, we focused
on UI elements and mapping their descriptive labels. This method allows to guide a
testing procedure that is focused on following a certain sequence of commands. In
order to transfer a test suite, we additionally have to check if the resulting state is the
same (or rather semantically similar) to the original application state. Computing the
semantic similarity between all UI elements to derive such a similarity measure would
be too costly. Our ebay example already features more than one thousand UI elements.
Furthermore, the real world applications are very dynamic and even those parts, which
we cannot neglect as noise.

Despite the UI element analysis to guide testing, we therefore extract the overall top-
ics in each state using LDA. LDA returns for each state a list of words that describe
a predefined number of topics (see Section 2.2.1 for details). If this list of describing
words is similar for multiple states in say the source application, these states are clus-
tered. Figure 5.5 shows a simplified graph of two sample applications. States with same
topics can be grouped. When we later check for state similarity across applications, we
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will take these word lists for matching.
In order to extract topics from a single web page with LDA, we first have to divide

a page into different segments consisting of multiple elements. Take a web element
representing a button that is labeled with ’OK’ for instance. Although we can technically
extract the topic of this label, LDA is more appropriate to extract topics of larger texts.
Instead of applying topic extraction on every single element, we have to take its context
into consideration. This is where page segmentation is used again: Extracting blocks
and feeding their textual content into LDA generates a list of topics. Each topic consists
of a ranked list of words. The MALLET1 framework [50], a popular Java-based machine
learning tool kit, features a very fast and scalable LDA implementation using Gibbs-
sampling. This method allows us to extract a fixed number of topics for any web page.
The raw text content of the non-noisy blocks is cleaned from illegal characters (e.g. new
line characters or unknown symbols) before tokenization forms useful semantic units
for further processing. In the stopword removal step, the most common words in the
language (e.g. “a”, “for”, “I”) are removed, allowing the later topic extraction to focus
on actual keywords. Finally, the LDA based topic extraction takes place and returns a
number of tokens for each state. However, topic extraction on single states has a huge
disadvantage. Consider two knowledge base articles presenting two different countries.
Topic extraction will extract a number of tokens in each page, heavily influenced by the
actual content of the page, but less by the underlying functionality. Although the two
sample pages still share common topics, like economic status or population, an article
describing a certain person will not match anymore. To circumvent this ‘overfitting’,
we apply functional state clustering. We cluster all states of a web application, collect
the LDA topics for each state and return the intersection of the describing words. The
resulting topic set is an abstraction of all states within a cluster.

Let us again consider an eCommerce application. We often find several states repre-
senting the same functional meaning. This may be, for instance, states presenting a list
of products or a product description. In other words, they provide a common function-
ality, which we aim to group together. Every produced cluster contains a set of states
which are functional similar and henceforth referred to as functional states. We cluster
states using a cluster algorithm with a custom distance measure. For that purpose, we
integrate the agglomerative clustering algorithm provided by LingPipe2. The functional
states can later on be transferred to other applications in the same domain.

Assuming that functional states share a common layout, they also share the same
set of styling attributes. To style the layout of a website one usually uses Cascading

1MAchine Learning for LanguagE Toolkit
2http://alias-i.com/lingpipe/

http://alias-i.com/lingpipe/
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Figure 5.6: Topic category matching with DISCO across the shopping carts of Amazon
(left) and eBay (right). For each topic list, semantic similarity is computed to the topic
lists in all cross application cluster

Style Sheets (CSS). Furthermore, it is a standard practice to define CSS classes to ef-
ficiently style HTML elements. For this reason, our distance measure for clustering
states is based on the used CSS classes in a state. More specifically, we collect all
CSS classes and styling properties within a state in a set and calculate the intersection
to the comparative set. To compute the actual distance, we calculate the similarity of
each block—called block similarity SBlock. Block similarity is typically part of noise
detection algorithms and defined as

SBlock =
2 ·M

S1 +S2
(5.1)

, where M denotes the number of matching classes (the intersection) and Sn the respec-
tive size of a set. We can configure a cut-off value designates the level of abstraction we
want to use for our model. The smaller the intersection ratio of the CSS classes, the less
likely it this that two states are presenting the same functionality.

Comparing the results of our state clusterer with a manually clustered reference par-
tition shows promising results for different categories of web applications.

5.2.2 Cross App Analysis

Our key idea is that applications within the same domain share common process snippets
to achieve a previously defined goal. SELENIUM test cases represent single workflow
traces through the application and may fail if the absence of a certain ‘key’ element
is detected, e.g. the element labeled with ‘Purchase Complete’ is present. At every
point in time, a test can request a new SELENIUM driver, i.e. a new browser instance.
Every browser instance is independent. That is, previously gained information (e.g.
cookies, application state) are not transferred when a browser session is started. Every
driver generates a new test trace. ATTABOY treats these traces mostly as independent,
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although test cases may influence each other. If for instance the application keeps some
internal state which is not observable by the test case, ATTABOY will not detect an issue.
In our later evaluation, this detail is irrelevant. All test cases are independent. In reality,
one test case could create an account, while another one uses this information for further
system interaction. Since test order dependency is not part of the conducted research,
this characteristic is ignored.

Our information retrieval framework is configured to generate a new test trace when-
ever a new SELENIUM session is requested. A new state is extracted if a user action is
executed, i.e. an action which might change the state of the application and is not a con-
trol command for the browser like implicitWait or findElement. More precisely, we do
not consider time as a factor to change the state of an application, thus ignoring corner
cases like timeouts (auto-logouts) or automatically sliding elements. Finally, the single
test traces are combined into a single unified behavioral model as shown in Figure 5.4
by applying functional state clustering as described in Section 5.2.1.

When relating two behavioral models, two key aspects have an impact on the over-
all mapping: The abstraction level of the application under test, determining the cutoff
value for the functional state clustering and the threshold εT to measure semantic equiv-
alence of the topic model. The topic set of each cluster is compared against each cluster
in the cross application using a performance optimized version of DISCO [39]. DISCO
calculates the semantic text similarity of the topic sets. Figure 5.6 shows a sample
matching between two shopping carts in Amazon and eBay. The highlighted topic set
(cart, item gift, ship and add) represents the best match in this cluster pair. Three of the
topics are identical, although the content of the shopping carts are divers, the matching
process efficiently filters out the uncommon elements. The order of the words within
the single set is ignored by the semantic text similarity of DISCO, following the intu-
ition that the actual wording is of minor importance to understand the overall meaning
of the presented text.

5.3 Evaluation

5.3.1 Evaluation Setup

To evaluate the performance of our semantic feature mapping, we selected 12 industry-
sized real world applications out of 3 different domains (see Table 5.1). The candidates
have been selected because they represent the most widely used applications according
to the Alexa top 500 sites [2] on the web, for the selected domains. For each of these
applications, we developed a custom SELENIUM test suite. These test suites are executed
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Table 5.1: Evaluation subjects for matching features across applications. Features de-
scribes the number of features, which were identified when executing the test cases.
Elements reflect the total number of UI elements per application with natural language
content, which were analyzed for matching the given features.

Test Subject Features
NLC

Elements
Interactive

elements

K
no

w
le

dg
e

B
as

e

en.wikipedia.org 29 6090 5620

en.wikiversity.org 40 3703 3639

wikitravel.org/en 58 1047 2461

en.citizendium.org 32 775 638

eC
om

m
er

ce amazon.com 55 5973 4564

ebay.com 43 4848 3475

homedepot.com 48 5389 4090

walmart.com 66 3636 2249

Se
ar

ch
-

E
ng

in
e

&
M

ai
lC

lie
nt google.com 38 1521 1117

us.yahoo.com 54 1335 1319

bing.com 50 2140 2936

yandex.com 38 795 797

TOTAL 551 37252 32905

as depicted in Figure 3.2 to obtain the web application models and their designated
features.

As already described, the matching method does not require two application models
as an input, but just analyzes one (source) application model A to identify features and
takes the DOM states of the target model B to identify the same features. The test setup
thus runs for instance the test suite for AMAZON, extracts the tested features together
with their describing labels and identifies the features in EBAY for which we provide the
DOM data. To verify the correctness of the matching, we furthermore manually labeled
each of the 551 features and test if the designated XPATHs match the predicted ones.

Each application is tested against all other applications within the same domain to

en.wikipedia.org
en.wikiversity.org
wikitravel.org/en
en.citizendium.org
amazon.com
ebay.com
homedepot.com
walmart.com
google.com
us.yahoo.com
bing.com
yandex.com
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Figure 5.7: Averaged overall results for feature matching. The x-axis shows the threshold
applied on ≡sem, the y-axis displays the values for P@k and Recall (solid yellow line).
The blue (dash-dot) line is P@1, the green (dashed) line is P@3, and the grey (dotted)
line is P@10.

identify the features. Analyzing the produced data, we address the following two re-
search questions:

RQ 4 Can we identify features using semantic UI element similarity?

This is the core contribution of ATTABOY: Mapping features from the source
application, as exercised in the source tests, towards the features of the target
application. We evaluate the accuracy of the mapping; the better the accuracy, the
more effective guidance for subsequent exploration and test generation.

RQ 5 Can automated feature identification be used to improve crawling?

This is the main application of ATTABOY: What difference does it make to a
crawler if guidance exists? We conservatively evaluate the worst case speedup of
guided crawling vs. non-guided crawling.
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Figure 5.8: Averaged feature matching results for the domain eCommerce. The plot
colors are consistent with Figure 5.7.

5.3.2 Identifying Features Across Web Applications

We start with RQ 4, evaluating the accuracy of the mapping of features from source
application to the target application. Figure 5.7 to Figure 5.10 present the results of our
evaluation averaged by the domain. The blue (dash-dot) line shows the overall precision
(P@1) and recall values. In the area of information retrieval the precision at k [49]
denotes how many good results are among the top k predicted ones. P@1 for instance
indicates the precision, of all tested applications within the domain for a perfect match
(the top element is the correct feature), while P@10 indicates that the correct result
was in the top 10. The y-axis represents the threshold for the predictor to classify two
features as matches. The semantic similarity calculation always returns for any given
feature a list of elements, which might be possible matches together with the semantic
similarity index ≡sem.

The threshold value 0 marks the point where only semantically similar concepts are
taken into consideration. Nevertheless, it shows that even with a non-existent filtering
(i.e. threshold 0), the semantic matching allows to correctly identify 69% of the fea-
tures. Increasing the threshold, i.e. raising the minimum semantic similarity to identify
features as matching, not surprisingly increases the precision up to a value of 1, which
means that the given features have identical describing labels. On the other hand, the
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Figure 5.9: Averaged feature matching results for the domain Search Engines & Mail
Client. The plot colors are consistent with Figure 5.7.

recall quickly decreases disproportional compared to the increase in recall, meaning that
a low threshold of 0.15 is producing the best ratio.

Overall, we correctly identify 75% of the 551 features in the test data with a precision
of 83%. This overall value does not reflect the average precision and recall values per
domain, since the number of tested features differs within the domains. When checking
the matching success of the individual domains the result of the domain Knowledge
Base (Figure 5.10) is noteworthy compared to the other results. The features here can
be matched with an average precision and recall of more than 90%. This means that they
not only share pretty much all features, but that they are represented in the same semantic
context. Looking at the test subjects, this is no surprise. The first three sample pages
use the same underlying content management system (i.e. the mediawiki framework3),
the tested features are often encapsulated within the same describing labels. Thus, the
precision values are even higher than in other domains. But even more complicated
features such as filling a shopping cart or filling payment information are identifiable
by the semantic feature matching. Figure 5.8 (eCommerce) shows that direct matching
has a precision of 77% at the same recall rate. The category Search Engines & Mail
Client (Figure 5.9) offers less functions, but the overall matching success shows average
results.

3https://www.mediawiki.org

https://www.mediawiki.org
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Figure 5.10: Averaged feature matching results for the domain Knowledge Base. The
plot colors are consistent with Figure 5.7.

Summarized, this answers our research question RQ 4 about Accuracy: Can we identify
features using semantic UI element similarity?

� Overall, semantic feature identification is able to directly match 75% of the fea-
tures with a precision of 83% (P@1).

� The results provide credible evidence that we can effectively and automatically
match and identify features. The test domain does have an impact on the accuracy,
though.

5.3.3 Crawling Speedup

We continue with RQ 5, assessing how much automated feature identification improves
crawling and subsequent test generation. Random crawling techniques often face two
problems: (i) the number of possible actions in a given state is large, and (ii) generating
valid actions to interact with the elements. With the presented technique, we address
both accounts. The DOM states of our web application models in our test setup feature
a total of 155,858 DOM elements, when we execute the SELENIUM test cases and apply
functional state clustering. Most of them may not be interactive, but the tested real world
application use thousands of event handlers on their pages. The majority is used to track
user behavior and thus do not express features. To evaluate the impact of semantic
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feature identification on crawling we imagine the most simple scenario for generating
tests. Table 5.1 shows the number of naively interactive UI elements for each page —
just counting standard HTML elements like anchors, INPUT, SELECT nodes. In the
recorded test states we thus have more than thirty thousand elements. Even without
considering interdependencies between features or how to reach a feature (leading to
state explosion), the chance to randomly interact with the elements representing a feature
is negligible.

Guiding the crawler to the correct feature does not require a perfect matching, but
instead profits from a ranked list of recommendations to derive a crawling strategy. For
this reason, we evaluated (Figure 5.11) the probability that the correct feature is within
the top 3 (P@3) or top 10 (P@10) results. The Precision at 10 for eCommerce shows
for instance that at a recall rate of 88% semantic matching can identify features with
a precision of 92%. In the domain of search engines and mail clients the matching is
capable of identifying 77% of all features with a precision of 97%. Choosing differ-
ent thresholds for the prediction impacts these values tremendously. Nevertheless, the
values do not tell the direct impact on the crawler effectiveness.

To this end, we evaluate how effective guided crawling is compared to non-guided
crawling. Let us start with a simple crawler that has no guidance (i.e., not using our
technique). Assuming that the application has a number |UI | of user interface elements
the crawler can interact with, a non-guided crawler would have to test each UI element
individually to find a feature:

number of tests without guidance = |UI | (5.2)

Let us now look at a guided crawler, where our guidance provides a recall of r across
the UI elements in the target that are matched in the source. Within the set of r×|UI |
matched features, we have a set number k of top matches, and the probability p@k that
the correct feature is within these top matches. The number of correct matches to explore
can thus be estimated as p@k× k; whereas the number of incorrect matches would be
the converse (1− p@k)×(|UI |−k). (With perfect guidance, p@k = 1.0 would hold, and
the crawler would only have to examine k matches).

If we do not find the target within the matched features, we have to search within the
unmatched features, going through an average number of (1− r)×UI elements. The
total number of tests thus is:
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number of tests with guidance =

r×


correct
matches︷ ︸︸ ︷

(p@k× k)+

incorrect matches︷ ︸︸ ︷
(1− p@k)× (|UI|− k)


︸ ︷︷ ︸

matched features

+((1− r)×|UI|)︸ ︷︷ ︸
unmatched

features

(5.3)

Note how the number of tests with and without guidance are equivalent in the cases of
r = 0.0 (we have no matched features), k = 0 (we make no recommendation), and p@k =

0.0 (all our top predictions are incorrect). In the extreme case of r = 1.0 (all features
are matched), k = 1 (we only examine the top recommendation), and p@k = 1.0 (our
recommendation is always correct), then we have to test only one single (recommended)
UI element.

With the number of tests for both unguided and guided exploration, we can now
compute the average speedup as

speedup =
number of tests without guidance

number of tests with guidance
(5.4)

Figure 5.11 shows the speedup results, as determined from our earlier evaluation re-
sult data. The average speedup over all domains is 740%. Testing knowledge bases,
which already showed good performance in the earlier evaluation step, can even be im-
proved by a factor of 11.75. Figure 5.11 also shows that a high threshold slows down the
exploration process—that is, if backtracking and re-executing an action is not penalized
in terms of execution time. A high recall is thus more important than a high precision.
P@3 and P@10 outperform the direct match by orders of magnitude and are preferred
when it comes to guide test generation.

P@3 and P@10 denote the precision of the algorithm if we allow the correct result
to be among the top three or top ten of all predicted values. It turns out, that this re-
laxation indeed improves the results significantly, which does not come to a surprise. If
we lower the correctness threshold to be predicted among the top ten results, the pre-
diction has more leeway to be correct. Figure 5.7-Figure 5.10 also show the results for
P@3 and P@10@. The results for the domain Knowledge Base are virtually unaffected
for the aforementioned reasons, but especially in the domains of eCommerce (increase
from 61.3% to 83%) and Search Engines/Mail Clients (increase from 65% to 85%) the
precision is drastically improved.
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Figure 5.11: Worst case averaged speed-ups for guided crawling compared to random
crawling in the different domains. As in Figure 5.7, the orange (dotted) line show P@1,
the blue (solid) line P@3, and the grey (dash-dot) line P@10; the x-axis shows the
threshold applied on ≡sem.
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In other words, by testing the top 10 results predicted by the algorithm, we have a
90% chance to test almost all features from the training data. Transferring the knowledge
from the original test suite on how to interact with the UI elements (e.g. if the element
should be clicked, or which values should be send) might be the next step.

These speedups are computed on a per state basis, meaning we assume the crawler
already was able to somehow reach the state with the features under test. In other words,
the speedups for the crawler multiply each other, the deeper we proceed within an exe-
cution trace.

This answers our research question RQ 5 about Impact on web crawling: Can auto-
mated feature identification be used to improve web crawling?

� Semantic feature identification guides and speeds up exploration and test genera-
tion.

� For a single state, the average speed up over random exploration is 740%.

� If backtracking and re-executing an action is cheap, @10 feature identification
with a low threshold is the most efficient crawling strategy.

While a conservative speedup of seven is already impressive, one should note that
this speedup applies for the exploration of one single state only—that is, providing guid-
ance towards all the UI elements that are directly reachable from this state. If the func-
tionality we search is deep within the target application, semantic guidance speeds up
every exploration step along this path. Assume that we need to cover n states before
reaching our target. In the extreme case, each of these n states again provides |UI| el-
ements to explore, only one of which will lead to the target. The average speedup of
guidance over n states thus would be speedupn. Note that n can easily reach values of
five and more; to get to the eBay payment page (Figure 5.2), for instance, one has to go
through six interactions. Assuming the average speedup speedup = 7.40 from above,
we obtain an overall speedup of up to 7.406 = 164,206.

Note, though, that this is the extreme case, in which each state leads to new states
never seen before—but on a site like eBay, crawling will lead to the same states again
and again. While recognizing equivalent states in web pages is a problem in itself, let
us assume a random crawler that is able to recognize states with a precision of 100%,
and a web application in which each and every UI element yields a redundant state.
Even in this worst-case comparison, the speedup would still add up for each state over
the path, yielding an overall speedup for a depth of six of 7.40× 6 = 44. While the
actual speedup for any web application will be between the exponential and the product,
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depending on the application path redundancy, it is clear that the deeper the target, the
higher the speedup.

It stands to reason that the target selection strategy is different if testing faces state
interdependencies or is executing complex use cases that require a strict execution order.
The rather lax selection (P@10) has to be changed to a strict selection, because an
incorrect selection (and the inevitable rollback) is too expensive.

� The deeper the target, the higher the guidance speedup cumulated across multiple
states.

� For an application with little state redundancy, the speedup is exponential over
the depth of the searched functionality.

Given the complexity of business processes and modern web applications, we ac-
tually do not interpret these cumulated speedups as an improvement over existing ran-
dom crawlers; instead, we see our guidance as actually enabling their exploration and
testing—in particular as it comes to cover deep functionality. This opens the door for
writing a test case once for the source application, and reusing it again and again to test
the same functionality in target apps, even if it is hidden deep in the system.

5.3.4 Transferring Test Suites

In order to test the generality of our approach, we selected a set of representative web
applications from three different website categories obtained from the Open Directory
Project4. We manually created a SELENIUM test suite covering the most typical user be-
havior, which is, for example in the eCommerce domain, searching for products, adding
them to a shopping cart and finally making a purchase. Table 5.2 shows the selected
test candidates. The Size of Test Suite represents the number of user actions applied in
the SELENIUM test suite, i.e. internal actions like implicitWait, findElement or likewise
are not part of this metric as discussed before. They are not supposed to cause a vis-
ible change to the content of the website. To have equal conditions, the test cases on
the other application within the domain test the same functional behavior and contain a
comparable distribution of similar states. #Functional States hereby expresses the size
of the extracted reference graph after processing the model as presented in Section 5.2.

In a second phase (see Section 5.3.5) we extended the set of test subjects by yet
another domain (’news papers’). Instead of manually creating test cases, we applied
random crawling to automatically generate test traces through the applications of all

4dmoz.org

dmoz.org
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Table 5.2: Overview on training candidates for manual test case translation. Size of
Test Suite is the number of executed user actions; #Functional States is the number of
covered functional states in the behavioral model.

Start Page
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en.wikipedia.org 35 3

en.wikiversity.org 15 9

en.citizendium.org 15 7

wikitravel.org/en 17 4
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amazon.com 32 7

ebay.com 34 6

homedepot.com 17 4

walmart.com 18 6
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es

google.com 16 8

uk.yahoo.com 30 7

bing.com 32 7

duckduckgo.com 15 4

four domains. Then we compare the test traces in terms of model similarity and the
possibility to share basic test suites.

Transferring a test suite across applications is the key idea of the ATTABOY-prototype.
It executes our manually created test suites against our instrumented SELENIUM server
and matches the intermediate result states (after each single user action has been exe-
cuted). Figure 5.12 presents the results for transferring the test suites across different
domains.

On average, we were able to transfer 65% of the eCommerce test suites, 50% of
the search engine test suites and 62% of the knowledge base test suites denoted by
the fact that the correct functional states have been matched across the applications.
Even more interesting is the distribution of the result. When translating search engines,
the fluctuation of the results is almost nonexistent, meaning that although we could
only translate half of the tests, all applications feature almost identical functional states

en.wikipedia.org
en.wikiversity.org
en.citizendium.org
wikitravel.org/en
amazon.com
ebay.com
homedepot.com
walmart.com
google.com
uk.yahoo.com
bing.com
duckduckgo.com
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Figure 5.12: ATTABOY’s results for transferring the manual test suites across eCom-
merce, search engine and knowledge base applications.

within the covered parts. eCommerce systems on the other hand feature a wider variety
of functional states. The Walmart web shop encapsulates the search & order process
in only four functional states. Amazon in comparison uses seven functional states and
displays certain pieces (e.g. billing address and payment information) in different states.

Accordingly, a greedy mapping algorithm pursuing the best possible match cannot
efficiently map these two test setups. Finally, knowledge data bases show an even wider
range in the matching result. Although 62% of the tests were successfully transferred,
the translation process of ATTABOY is not equally successful to match the states cor-
rectly through all applications. The fact that the applications are used to present differ-
ent articles, causes the topic analysis to overfit on the underlying content. Increasing
the ratio of article pages, might improve the result, since the functional clustering would
group multiple articles. The subsequent topic extraction would collect only the common
topics, thus avoiding the overfitting.

The same variance can be observed in the knowledge bases, although the overall
result of 62% is pretty good, the effect of the clustering techniques comes a bit to a
surprise. All four test candidates are written in the MEDIAWIKI content management
system, thus sharing common styling attributes. Nevertheless, the clustering technique
collapses the intermediate states on Wikipedia and Wikitravel far stronger than their



Chapter 5. Topic Driven Testing in the Web 89

competitors, e.g. due to the content distribution within articles like images, table of
contents entries or likewise. The matched states are featuring the login functionality
and editorial pages, but the article pages cannot be matched. Within this small subset of
tests are structural analysis might yield better results or the data has to be enriched with
more states covering more news articles.

This analysis allows us to answer RQ 6 on Test Transfer: Can a given SELENIUM test
suite be transferred to the test suite of another application within the same domain?

� ATTABOY is able to transfer an average 59% of the manual Selenium test suites
across all domains.

� Results show initial evidence for the feasibility of the approach. A complete test
suite transfer requires further research.

� An oracle transfer is only possible by checking the state similarity. Additional
properties (e.g. contents, computational values, etc.) have to manually trans-
ferred.

5.3.5 Usage for Test Generation

So far, ATTABOY was able to transfer test suites actually designed to verify the correct
behavior of the application under test across other applications with appropriate per-
formance. Writing SELENIUM test cases requires serious effort and is error prone if
the application evolves by adding new features or the structure of the pages is changed.
On the other hand, the usability standards dictate the expected outcome of each action.
Those standards are typically not changing drastically. If they are consistent through-
out the application, we might be able to infer them from other a applications within the
domain.

As a consequence, RQ 7 investigates if an automatically generated test suite can also
be transferred. In the second step of this evaluation, we analyze how efficient ATTABOY

works when integrated with an automatic black box test generator for web applications.
Random crawling solutions like CRAWLJAX [53] or CRAWLER4J [24] can be leveraged
to test the behavior of web applications, although they do not provide an oracle as to
whether the reached state is the one we expect after applying the crawling action. We
provide this oracle by mapping the functional states across application, thus learning the
expected behavior from an existing reference.

Integrating the random crawler into ATTABOY is straightforward. The crawling tech-
niques can be run against a central SELENIUM grid, where we intercept the applied
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Figure 5.13: ATTABOY’s results for transferring automatically generated test suites
across domains.

actions and provide them as discussed earlier in form of test traces into our information
retrieval method. ATTABOY takes the resulting models and compares them against the
models generated in the same domain. Table 5.3 shows an overview on the generated
application models created by the crawler.

A fourth category (’News web site’) has been added to the test set in order to an-
alyze the performance of ATTABOY without training it on existing tests first. Notable
is the ratio in between the number of applied actions against the number of discovered
functional states. Especially in the domain of search engines and knowledge databases
the crawler did apply a significant number of actions, most of them resulting within
the same functional state. As a side effect of randomly crawling the applications, the
distribution of functional state is different compared to manually written tests. In other
words, the knowledge bases are providing thousands of articles, but for instance only
one distinct login or sign-up page. Here, the overfitting against the actual article con-
tent is both reduced by the noise reduction and the clustering technique. Hence, the
functional state distribution is more uniform. Except Amazon and BBC, all applications
show more or less the same number of functional states, while we used the same level
of abstraction in the pre-processing phase.

Figure 5.13 shows the success on transferring the randomly generated test traces.
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Table 5.3: Evaluation setup of automatically generated tests across four domains. Again
Size of Test Suite is the number of executed user actions; #Functional States is the num-
ber of covered functional states in the behavioral model. Starred test suites have been
cut short after one hour of exploration.

Start Page Size of Test
Suite

#Functional
States
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en.wikipedia.org 35 11
en.wikiversity.org 100* 11
en.citizendium.org 100* 8
wikitravel.org/en 63 9
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ce amazon.com 100* 27
ebay.com 138* 16
homedepot.com 86 18
walmart.com 100* 18
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edition.cnn.com 21 6
europe.newsweek.com 35 8
bbc.com 49 14
nytimes.com 100* 6
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google.com 100* 7
uk.yahoo.com 44 11
bing.com 100* 7

On average, ATTABOY is able to translate 49.3% of all automatically generated test
cases. Especially compared against the previously presented results of the manual tests
on knowledge databases, which showed a high fluctuation caused by the different top-
ics within the news articles, the random trace through the application revealed far more
articles and the functional state clustering allowed us the reduce the topic overfitting on
single articles. In the previous analysis, knowledge bases had a fluctuation of almost
43%, the more general tests in the random testing result has only a fluctuation of 23%,
while the average result is more or less stable. In contrast, the variance in the eCom-
merce sector has stayed the same, although the average mapping result has dropped.
Not surprisingly, the random crawling technique did not manage to login or purchase a
product, both established patterns in the eCommerce sector and clearly distinguishable
from other functional states. Instead, other random pages like imprints or even job op-
portunities have been discovered. Since the models are far from being complete, e.g. no
authorized state has been reached.
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RQ 7 (Test Generation): Can we transfer automatically generated test suite across ap-
plications?

� ATTABOY is able to transfer an average of 49.3% of the automatically generated
SELENIUM test suite across all domains.

� Testing can be guided towards relevant functionality without additional manual
effort. The test coverage of 49.3% indicates further potential, but also requires
further research.

5.3.6 Application Similarity

Transferring the randomly generated SELENIUM test suites across domains provides us
also with a notion on how similar two applications are and how established their usabil-
ity and feedback patterns are. A closer look at the random matching data in Figure 5.13
reveals that the matched functional states are common throughout the applications. The
dimensions of the boxes in the plot indicate a range of approximately 20%, meaning
certain functional states are found throughout all applications.

The fact that the actual content of the application can be abstracted to extract the
underlying concepts shows the global acceptance of usability standards throughout the
applications. For a human being, this comes as no surprise and follows the intuition of
global concepts for logging in, shopping carts or sign up functions.

The test analysis in Section 5.3.5 also showed the possibility to transfer complete and
complex process snippets across application boundaries. Not only is the functionality of
single pages a transferable concept, but a sequence of actions leading to the same goal
is transparent to further analysis.

RQ 8 Generality: How similar are web applications regarding their features and feed-
back mechanisms?

� the domain of an applications is strongly correlated to the functionality it offers

� the state changes and the observable feedback is not conclusive enough to serve
as an oracle, but further sentiment analysis might improve these results

� domain specific testing allows to automatize testing to a certain degree
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5.4 Threats to Validity

As any empirical study, this one faces threats to its validity. A severe challenge is the
underlying model abstraction. Based on the chosen level/cutoff value, a functional state
can contain the whole application (i.e. cutoff value equals 0) or almost every single
action leads to a new functional state if only on element is different. The chosen repre-
sentatives allowed us to manually configure the cutoff value throughout whole domains
of applications, but web applications tend to be developed very fast and this behavior
might change over time.

The same can be said about the noise reduction. Due to the dynamic calculation
of the noise threshold, the algorithm is rather robust against changes of the applica-
tion under test. Nevertheless, some information like common menu structures contains
valuable classification information, e.g.filtering options on result lists, which ATTABOY

considers to be noisy. Changing the test subjects or performing the same analysis on a
newly generated test setup might change the results.

ATTABOY shows the ability to transfer complete test suites, even analyzing the com-
monalities in the resulting state models. Still, not all possible decisions within SELE-
NIUM tests can be translated — they are Turing complete. Imagine a test case which
dynamically collects all items in a shopping cart and checks whether the overall price
matches the actual sum of all items. If not, it fails. ATTABOY is not able to draw the
same conclusion, i.e. it would detect that the previous action indeed ended up within
the shopping cart, but not that a displayed element shows the incorrect result.

5.5 Measured and Perceived Success

At this point, I would like to assess and summarize the quality of topic-driven testing for
web testing. Our case studies have shown indications that we can indeed learn relevant
functionality from a sample set of test applications. In the presented setup, the input for
TDT was provided in terms of SELENIUM test scripts. TDT was able to learn and extract
semantic patterns out of the GUI and use them for test generation in new applications.

While feature learning is successful per se, an automated test transfer is—if we are
realistic—not complete or possible, yet. First of all, the training set for our experiments
is too small to draw realistic conclusions for other tests. We tested common features
that we could manually identify and test. The test suites cover default behavior, but
anything beyond that has not been tested so far. Second, the oracle transfer is not suit-
able for testing. The oracle transfer currently only analyzes state similarity and control
flow similarity. Anything beyond that, e.g. calculations of intermediate values, test in-
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terdependencies, or checking properties that are not visible in the GUI, is something
that topic-driven testing alone cannot solve. An integration with other complementary
testing techniques, such as model-based testing, or an instrumentation of the server side
code might yield better results. Extending the learning base might also allow us to gain
additional knowledge. We can grow our learning base by executing the tests on a broader
set of applications. With this additional data, we should be able to gain more knowledge
on the expected system behavior.

The main challenge in conducting the presented empirical studies was the identifi-
cation of common functionality. The test transfer can only be as good as the initial test
suite for the source applications. Missing test cases result in missing tests in the target
application. Tests that cover functionality that is not present in the target applications
(i.e. additional tests) are even more problematic. Intuitively, such a test should just fail.
But in our experiments, we achieved only a partial test transfer in most cases. Differ-
entiating an incomplete test transfer from a failing test or missing functionality requires
manual effort. In other words, filtering existing tests for their relevance for a target AUT
might require a higher effort than just writing a new test.

Regardless of the measured success for test transfer, topic-driven testing actually
enables further analysis possibilities in the first place. It allows to put observations
of multiple test applications into context, and find outliers. Additionally, it stands to
reason that topic-driven testing can be used to strengthen the robustness of existing test
suites. Since we are able to identify UI elements across applications, we can also use
this capability to identify UI elements if the application evolves (regression testing)
or a transfer to a different platform (cross-platform testing). In the following chapter
(Chapter 6), we conduct further studies to show the generality of topic-driven testing
on the Android application (cross-platform compatibility) and also the independence
from the underlying test input. In this section, the feature learning was based on the
observations from existing test cases. Meanwhile, the Android testing part takes vague
natural language instructions and still is able to improve testing compared to random
testing.



6 Testing with Process Snippets

Parts of this chapter have been published by Rau et al. [68]. The author of this disser-
tation contributed the semantic matching and natural language concepts that guided the
exploration. It shows the versatility of the technique in an extended application context.

So far, we have shown that topic-driven testing can be useful to (i) re-identify func-
tionality in web applications, (ii) learn process specifications from UI tests scripts, and
(iii) identify semantic entities in a large application set. For a complete test transfer,
topic-driven testing is not evolved enough and the training set is too small. Instead, it
can effectively guide testing towards relevant functionality. In this chapter, the analysis
will focus on Android testing, which also shows the platform independence of the new
testing principle. We want to have evidence that topic-driven testing is generalizable to
GUI applications in general.

Android applications have some notable and profound differences in contrast to web
applications. Due to hardware specific limitations (such as screen size, or performance
limitations), the UI shows less elements and potentially less noise. Furthermore, the
operating system allows a finer control of security properties, since the relevant access
to sensitive information sources is only available via OS-specific API. The OS thus
controls access to sensitive information or also can limit the information flow to external
parties.

Functional testing of real-world apps typically requires exact specifications of each
and every action to be conducted: “Click on Button A”, “Enter City Name into Field
B”. Such specifications have to be written and maintained for each and every app, again
and again. In this chapter, we will investigate to what extent we can use topic-driven
testing to automatize this process. Instead of repeatedly prepare specifications, we use
topic-driven testing to translate a general set of use case descriptions into machine-
executable statements. These statements are intended to be executed on a large set of
applications at once. Our hypothesis is that this improves system penetration, and guides
testing towards relevant system functions. In a nutshell, we present the novel concept
of process snippets to considerably simplify app testing. Process snippets allow for

95
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abstract, natural language descriptions of the actions to be performed: A step such as
“Add to Cart” selects the available GUI action that is semantically closest; this allows for
the step to be applied and re-applied for several apps and contexts. Process snippets can
be composed from each other: A snippet “Buy a Product” thus can be composed of (i)
selecting a product, (ii) adding it to a cart, (iii) proceeding to checkout, and (iv) entering
delivery and payment information. Once defined, such a snippet would be applicable
on any standard shopping app.

Process snippets serve as the input to topic-driven testing procedure. They are trans-
lated and matched to the GUI of each application under test (AUT). We perform a set of
empirical studies on fifty popular real world Android applications. Our analysis shows
that our approach covers on average twice the amount core functions within twenty per-
cent of the testing time compared to random testing.

6.1 Introduction

Automated application testing has been a common goal of many research projects on all
levels of software products and processes, be it on unit level, integration level, or system
testing. It does not replace the need for manual testing and inspection of the produced
result but can help with tedious and simple tasks such as generating inputs and checking
if the AUT breaks. One of the central techniques for automated application testing is
crawling, i.e., exploring an interactive application through its user interface to discover
functionality. Naı̈ve crawlers, such as MonkeyRunner [5] for Android apps, randomly
emit UI actions. They require little effort for implementation and deployment. Given
sufficient time (i.e. often an infinite), a crawler can exhaust the search space of the appli-
cation by interacting with all UI elements and randomly generating all possible inputs.
Smarter state-of-the-art test generators, such as DM-2 [14] speed-up the exploration by
analyzing the application and only trigger actions on interactive elements.

Since random crawling techniques treat every action with the same priority, they do
not create valid inputs most of the time, and do not guide the exploration process towards
desired core functionality. Moreover, complex use cases like a shopping process (such
as motivating example in Figure 1.1) are unlikely to be completed by chance, as the
number of explorable UI targets grows exponentially with the length of path. To guide
exploration and to provide valid inputs, crawlers are given application specific or domain
specific knowledge about the AUT. Such specifications, however, have to be recreated
for every AUT, which requires significant (often manual) effort.

To address this problem, we build on the observation that process steps of interactive
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# BUY
Do SEARCH // Process with 2

ATDs
Add to Cart
Proceed to Checkout
Do LOGIN // Process with 3

ATDs
Do ADD_ADDRESS // Process

with 8 ATDs
Continue
Do ADD_CREDIT_CARD // Process

with 5 ATDs
Continue �

# Add_Address
Enter Name John Tester
Enter Country "United States"
Enter Street "111 Sproul Hall"
Enter City "Riverside"
... �

#LOGIN
Enter username

"testX0123@test.com"
Enter password "sample42P!" �

Figure 6.1: Sample Snippet for Buying a product. It includes four more basic snippets:
Search, Login, Add Address, and Add Credit Card and thus has a total length of 22.

applications may be syntactically different, but semantically similar. A button to log in
may be named “Sign In”, “Log In”, or “Authenticate”; at a semantic level, they all mean
the same. Our key idea is to introduce so-called process snippets that abstract over such
syntactic differences to introduce semantic entities representing one step in an abstract
interaction process.

Figure 6.1 shows how an abstract shopping process is expressed as a process snippet,
which then can be applied on all applications in the test set. The use case description is
short (i.e. only eight instructions) and references shorter use cases such as searching for
a product, authentication, or providing a valid address. The key point is that descrip-
tions such as “Add to Card” or “Proceed to Checkout” are semantic descriptions which
may or may not have exact syntactic matches in the application. We interpret the use
case description semantically by calculating the semantic text similarity [31] between
the target description and the labels present in UI elements of the AUT, which allows
our prototype to discover the most likely target. For example, in the “LOGIN” process
snippet (referenced from the “BUY” process snippet), the field “username” matches UI
elements such as “User ID”, “Login”, or “e-mail”.

Formally defined, our process snippets are thus a grouped list of ATDs and intuitively
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form a use case, such as authentication or buying a product. The instructions can be
parsed to a machine executable code to guide the crawler.

Once defined, process snippets can be reused again and again for each application
that follows a similar process. We have defined a set of use cases as a repository of
process snippets and tested them on all AUTs in our test set. Even complex use cases,
such as the shopping process in Figure 1.1 can be built by integrating the more basic
steps. The approach is generally applicable to arbitrary GUI applications, however in
the scope of this paper, we target Android apps to evaluate our technique.

To show the effectiveness of our technique, we perform an empirical evaluation on
fifty of the most popular applications in the Google Play Store out of different appli-
cation domains, such as shopping, travel, or food. We show that testing with process
snippets is versatile enough to (1) generalize over these applications, (2) guide crawl-
ing towards core functionality, and (3) outperform random testing in terms of system
penetration and functional coverage.

A part of this chapter was published in Rau et al. [68] and made the following con-
tributions:

� A new, easy, intuitive way of developing and applying UI tests. Testing with pro-
cess snippets (Section 6.2) is intended to serve both industrial testing as well as
academic research purposes. It allows to generate reproducible and comparable
tests on a multitude of applications.

� A repository of extensible widely usable process snippets covering common use
cases for further app testing.

� A runnable implementation of the presented technique for testing Android apps in
a public repository, together with all required artifacts and infrastructure. It in-
cludes a repository of extensible widely usable process snippets covering common
use cases for further app testing [65].

� An empirical evaluation (Section 6.3) that provides initial evidence of the effec-
tiveness and versatility of the approach.

The conducted empirical studies show that the topic-driven testing principle can be
implemented on real problems and that it can improve state-of-the-art testing methods.
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Figure 6.2: Overview of the processing steps for process snipped guided exploration.

6.2 Testing with Process Snippets

This section describes our technique for translating natural language use case descrip-
tions (i.e. process snippets) into executable crawl rules. Figure 6.2 shows a high-level
overview of the technique, which we discuss in further detail in this chapter. In the
first step (Section 6.2.1), we mine process snippets from a set of input files into a list
of Action-Target-Data tuples. Our prototypes resolve simple one-line instructions and
complex interdependent process snippets into an instruction list, which is composed of
the type of action, the target descriptor and optional input data. In the second step Sec-
tion 3.1.2, the set of given test applications (i.e. a set of installable APKs) is deployed
to a target Android device and started. Now, each presented UI screen is analyzed to ex-
tract interactive widgets together with their descriptive labels. These labels are analyzed
in order to decide which exploration action should be prioritized. Finally, Section 6.2.3
describes the third step, which is to guide the crawler to maximize the core functionality
coverage. Essentially, our prototype tries to find suitable targets for the provided ATDs.
If there is no such target, i.e. the probability for a match is too low, the exploration
strategy falls back to randomly explore the application until another suitable target is
found.
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6.2.1 Process Snippet Extraction

In this first step, we extract a machine-comprehensible list of instructions out of a set
of use case descriptions written in natural language. It allows us to describe complex
use cases such as “buying a product” or “book this flight” in a short recipe, a so-called
process snippet. Process snippets describe short use cases of an application. Their main
advantages are that they are easy to write and are human understandable. Figure 6.1
shows a sample snippet for buying a product, which is only eight lines of text. Process
snippets are abstract descriptions of how a certain use case should be completed in
an application. They are not explicitly developed for one target application. Instead,
they are versatile enough to be applied to multiple applications. The given buy snippet
consists of simple clicks and is building upon other sub-snippets such as Login and
Adding Address.

Developing these snippets is straightforward. With a general understanding how
shopping is done, a human can easily write step-by-step list of instructions, roughly
comparable to a how-to description. Sub-processes, such as the authorization, can be
encapsulated in their own process snippets and then be referenced and reused in other
use cases. While parsing a given list of process snippets, each line is treated as a single
Action-Target-Data triple or a previously defined process snippet.

Each line starts with an action (e.g. a verb such as click, goto, enter, or do) followed
by a target descriptor in natural language and optional data in form of a string. By split-
ting each line into verb, noun and an optional object descriptor, a list of these statements
is parsed into a list of executable ATDs. These will guide the crawler through the ap-
plication use cases. Actions with no data (i.e. no object in the parsed instruction) are
typically translated into simple clicks or long-clicks. Input fields or drop-down menus
require a data argument. This characteristic will later narrow down the target space
during execution. Rather than providing a perfect syntactic match (e.g. “Add product
to Amazon shopping cart”), it is beneficial to keep descriptors abstract (e.g. “Add to
Cart”). This allows them to be applied on a broader set of applications.

6.2.2 ATD Candidate Selection

To derive the best matching ATD for any interactive widget, we have to compute the
semantic similarity to all specified ATDs as described in Section 3.2. Note, that not all
action types may be applicable to a specific widget, e.g. you cannot enter text on a but-
ton, but only into input fields. Taking this into account, the set of ATDs is filtered by its
specified action, i.e. ATDs with optional data (i.e. intended to data into the application)
are only allowed for editable widgets and click or goto only for (long-)click-able widgets.
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From this filtered list, the ATDs are sorted in descending order by the calculated seman-
tic similarity value. These may now be executed on the desired interactive widget. This
methodology also allows us to steer the exploration towards the desired functionality.
Imagine the current application screen does not contain any use case represented in our
test set. The exploration now either can fall back to a default random strategy or identify
a potential target which is somewhat semantically similar to one of our use cases. By
calculating the semantic similarity to all ATDs we also identify “Create your Amazon
account” in the provided example as a potential start point for other use cases. In case
there is no better match for completing the “Authentication” use case, our strategy will
select this candidate. Only if all candidates identified by the semantic similarity are
already explored (i.e. the calculated similarities are below the specified threshold t), we
fall back to one of the unmapped targets by random (i.e. we ignore the cut-off value).
At this point, there is no ATD target in the current state and we have to discover the use
case in the application first. This is essential to allow for deeper exploration progress if
the process description is incomplete or imprecise.

6.2.3 Guiding Exploration

So far, we have explained how to determine ATD candidates for a given UI screen. Now,
we show how to guide a crawler to explore states, related to our process snippets.

We implemented testing with process snippets as an exploration strategy in DM-
2 [14] to replace its default random strategy. Furthermore, we extended the code base
such that DM-2 supports the presented extensions for accessible properties and made it
capable to interact with out-of-screen elements. DM-2 is able to distinguish different
states based on the currently visible UI elements and assigns an unique identifier state-
id to each state. It also assigns a unique widget id to each widget, which allows us to
determine which ATD candidates we already interacted with and which are still unex-
plored. The higher the similarity value of an ATD candidate is, the better the chances
that executing the action leads to the desired result. However, if we solely choose the
next action by the highest similarity that would mean we would always do the same ac-
tion in the same state. We do not only want to explore that single ATD candidate but
rather prioritize our target options. This is done by adding a weighting function based
on how often we already interacted with this candidate. Additionally, whenever we see
a state for the very first time we first apply all enter text ATDs and press enter. In most
processes, the data fields have to be filled before the user can progress into the next
state. The ATD candidates for each state are managed in a priority queue, whereas the
priority is computed based on the candidates weight and similarity value.
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Finally, we keep track of the novelty of the discovered UI screens to detect if we are
stuck in a certain use case. In case the process snippet descriptions are incomplete or
a mismatch occurs, we might get stuck in certain UI screens. Instead, we restart the
application and start over if the text content of the UI screen did not change for the last
ten actions.

6.3 Evaluation

We integrated our approach into the already mentioned DM-2 framework [14]. DM-2
is an extensible state-of-the-art app crawling framework with a default random explo-
ration strategy. DM-2 allows us to analyze the UI hierarchy of every screen, as well as
the state model of the AUT, and define our own exploration strategy. DM-2’s default
random strategy is extracting all actionable targets in an application state and randomly
selects the next target to interact with. DM-2 crawls through an application by randomly
clicking keyboard elements if an input field is focused. First of all, this is slower than
sending all keys at once. Secondly, it rarely creates valid inputs. For fairness reasons,
we extended this basic strategy to integrate a dictionary of inputs. DM-2 can fill input
fields by either randomly generating a string or picking an input from a provided list.
For the following evaluation, this list of inputs contains all data entries of the parsed
process snippets. DM-2 can thus fill input fields with legit values only by chance, but
has no deeper knowledge or understanding what these inputs mean. We henceforth refer
to this strategy as the “random” strategy.

To evaluate the effectiveness of testing with process snippets, we conducted a set of
empirical studies on fifty top applications of the Google Play Store from the domains
business, communications, education, food, shopping, social, and travel. These domains
thematically group applications regarding their intended use cases and are offered by
the Play Store itself. Details of the tested application are presented in Table 6.1. Out of
this test set, six apps are incompatible with DM-2 and are dropped from the analysis.
After presenting the evaluation setup, we present the empirical analyses, which compare
the new approach against random testing with a dictionary. The analyses focus on the
following research questions:

RQ 9 (Testing Core Functionality) Do process snippets improve the testing of core
functionality? How does it compare in terms of efficiency?

We analyze the performance of testing with process snippets (the topic-driven approach)
and compare it in practice on a diverge set of fifty popular real world Android appli-
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Table 6.1: Averaged benchmark overview on AUTs grouped by their domain for both
random runs r, and guided p. depth indicates how far the exploration reached into the
application. widgets is the number of covered widgets, states the number of covered app
states and the number of actions executed per exploration on average

App Name depthp depthr widgetsp widgetsr statesp statesr

eCommerce

com.amazon.mShop 17 17 1298 1120 171 204

com.joom 8 24 521 679 178 185

com.thehomedepot 17 25 941 837 169 177

com.walmart.android 26 44 1469 1800 193 265

com.ebay.mobile 8 7 1423 531 93 38

Food

com.hellofresh 22 20 633 753 206 193

com.india.foodpanda 20 11 371 259 122 77

com.global.foodpanda 5 6 33 169 15 25

com.mcdonalds.app 9 8 404 483 44 43

com.starbucks.mobilecard 9 9 372 143 117 65

hu.viala.newiapp 1 5 32 92 3 29

otlob.UI 20 18 680 776 143 178

Travel

com.booking 28 45 1162 1411 219 357

com.cleartrip.android 18 15 1068 884 186 132

com.takatrip.android 13 27 1593 8583 115 330

io.wifimap.wifimap 12 27 653 961 74 182

com.tourego.tourego 7 7 242 317 19 41

com.railyatri.in.mobile 12 12 1167 935 152 101

net.skyscanner 12 6 863 458 81 37

com.google.earth 9 16 1039 903 142 139

Social

com.blued.international 2 1 45 24 8 3

com.f2f.Gogo.Live 5 6 73 84 57 61

com.facebook.katana 11 18 233 352 98 146

com.facebook.lite 8 13 757 1282 49 98

com.instagram.android 6 12 342 450 48 78

com.pinterest 3 2 61 59 13 16

com.snapchat.android 7 8 137 374 66 75

com.tumblr 12 9 2151 751 87 49

com.yy.hiyo 13 21 289 540 84 136

com.zhiliaoapp.musically 9 15 256 1655 43 142

Education

com.ted.android 15 22 279 435 49 121

com.duolingo 12 26 476 619 111 220

com.youdao.hindict 28 22 1701 2041 185 196

com.microblink.photomath 6 11 139 214 43 59

com.memrise.android 4 11 71 240 9 52

Business

cl.taxibeat.driver 2 7 36 197 7 18

com.application.onead 5 10 87 160 20 67

com.facebook.pages.app 1 1 61 10 9 4

com.mobisystems.office 18 14 946 464 154 87

com.mydawa.MyDawa 3 6 41 82 9 23

com.netqin.ps 5 6 42 45 15 17

com.ubercab.driver 7 9 1368 1132 71 82

com.vtg.app.mymytel 5 6 65 75 21 37

team.dev.epro.apkcustom 27 20 543 263 160 130
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cations. We check which core functionality is tested by chance (random testing) and
measure the impact of our approach.

RQ 10 (Testing With Use Cases) How does process snippet testing compare against
random testing in terms of application coverage?

Traditional software testing measures the performance of testing procedures by calcu-
lating the achieved coverage (e.g. covered lines of code, or covered blocks). In contrast,
we are only able to observe the visible UI changes (black-box testing). As a replacement
to code coverage, we count the number of states covered in the applications as well as
the distinct UI elements that are displayed during an exploration.

In other words, we collect all UI states that we have ever seen during all explorations
and then calculate the coverage of the individual runs.

RQ 11 (Use Case Generality) How general are generated process snippets?

Process snippets are intended to replace the need to repeat the effort to generate tests
over and over again. We want to measure the reusability of process snippets and their
applicability to a wide variety of applications.

6.3.1 Evaluation Setup

For the evaluation, we implemented a set of 64 process snippets, which are executed on
every test subject. While this number seems fairly small, the process snippets encapsu-
late 362 testable actions (i.e. ATDs). Every application is tested on real Android devices
(i.e. a set of Google Pixel phones running on stock Android 8) until the state model is
either exhausted, i.e. DM-2 reports that there exist no further unexplored widgets, or a
total time of thirty minutes has elapsed.

Borges et al. [14] have shown that DM-2 reaches 96% of its maximum coverage
within 15 minutes. Accordingly, we consider thirty minutes to be a reasonable execution
time to explore and test an application. In order to prevent overfitting in the random
exploration, we repeated the random dictionary testing procedure ten times (ten times
cross validation) and averaged the exploration results. This also counteracts the highly
dynamic nature of the applications and allows us to compare the results on a stable basis.
Thus, the random exploration can take five hours per application in total.

6.3.2 Testing Core Functionality

The core contribution of this paper is to introduce a new testing procedure which is
supremely suited to test and follow a pre-defined set of use cases. In order to show the
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effectiveness of our approach, we manually verified each application and identified the
correct interactive widgets for each ATD which is executable in the AUT. This ground
truth serves as a reference to calculate the coverage and discovery speed of both random
exploration as well as the process snippet exploration.

Figure 6.3 and Figure 6.4 summarize the results for each of the domains under test,
i.e. the number of correctly tested core functions that are part of the set of process
snippets we use for our evaluation. As already mentioned, we averaged the results over
the repeated ten runs.

Immediately, one can see that snippet testing outperforms random tremendously in
almost all categories and applications. The eight test apps of the food domain (Fig-
ure 6.3b) nicely demonstrate the potential of the demonstrated technique. Not only does
it execute almost double the number of the core functions correctly, but also covers two
thirds in the first four minutes. In contrast, random testing takes five times longer until
it reaches this number. The likelihood of clicking the correct button or inserting the
correct input text by chance is considerably low. Moreover, following the provided use
cases allows more complex interaction patterns and actually allows to test deeper func-
tionality. The eCommerce applications (Figure 6.6) and social applications (Figure 6.3c)
show comparable results and can in the eCommerce domain actually proceed to insert
valid credit card data or addresses. Notable outliers to the overall success of process
snippet testing can be seen in the domains of travel apps (Figure 6.4b) and business
apps (Figure 6.4c). For travel apps, the exploration charts show almost identical results
when averaged over all applications. A manual inspection of the results showed us that
even though the Play Store assigns apps into the travel domain the virtually share no
use cases. There are star gazing apps, as well as applications for booking a taxi. In this
domain, process snippets cannot play to its strength and cover more core functionality.
The predefined set of use cases is too small.

RQ 9 (Testing Core Functionality): Do process snippets improve the testing of core
functionality? How does it compare in terms of efficiency?

� Yes. On average, testing with process snippets outperforms random testing in
both function coverage and in effectiveness

� Testing with process snippets discovers 30% more core functions in 20% of the
time.
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(a) eCommerce

(b) Food

(c) Social

Figure 6.3: Averaged evaluation results for covering core functionality in the tested
domains, showing how many ATDs (y-axis) where covered at which time (x-axis, values
are in seconds). Process snippet runs are represented with solid orange lines; the blue
dashed lines show the random runs.
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(a) Education

(b) Travel

(c) Business/Office

Figure 6.4: Averaged evaluation results for covering core functionality in the tested
domains, showing how many ATDs (y-axis) where covered at which time (x-axis, values
are in seconds). Process snippet runs are represented with solid orange lines; the blue
dashed lines show the random runs.
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Figure 6.5: Average total widget coverage of all applications. Displays for both explo-
ration types how many unique widgets (y-axis) where covered at a certain time (x-axis
in seconds). Blue-dashed line are random runs, orange-solid line are TDT tests.

6.3.3 Efficiency of Testing with Process Snippets

In this section we evaluate how effective process snippets are for testing purposes and
how it compares in terms of application coverage. Since all AUT are treated as a black
box and most applications in the test set dynamically load content into WebViews ob-
jects, coverage cannot be measured by traditional code coverage metrics, such as line
coverage or block coverage. Instead, we collect all exploration paths of all runs to build
a supermodel. Using this model we can calculate the exploration depth and the number
of discovered elements (i.e. widgets, which either have content or are interactive).

Table 6.1 shows the general exploration results and app statistics generated by both
testing procedures. The value depth is based on the supermodel analysis and denotes
the length of the longest sequence, which is necessary to cover a unique state in the
application model (i.e. there exists no shorter path to cover this state). In other words it
expresses the system penetration which is achieved during testing. The widgets columns
describe how many relevant UI elements were discovered during the exploration and
states describes how many states were revealed during the exploration. Together, these
values can be interpreted as an alternative to traditional coverage metrics. The actions
columns describe how many actions the crawler executed on average. Together with the
overall execution time, this metric is representing the effectiveness of the crawler and
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Figure 6.6: Average distribution of discovery times of unique widgets: performance
analysis comparing the averaged results of baseline testing (random with dictionary,
dashed blue) against guided (testing with process snippets, solid orange). The x-axis
shows the exploration timeline in seconds.

allow us to argue about the effort to required to reach core functionality or maximize
the app coverage.

Overall, none of the testing procedures is outperforming the other in all categories or
applications. Random testing is on average more successful in terms of pure widget/s-
tate coverage. The previous analysis showed that testing with process snippets reaches
deeper core functionality. Still, this has no measurable impact on actually testing more
functionality. A broad testing procedures allows to discover many application parts (i.e.
widget coverage). To emphasize this, Figure 6.5 shows the overall results of all runs
averaged over the ten repetitions for all applications under test. It shows for both test
methods how many interactive widgets, or widgets with text content were discovered
at which time. Guided testing concentrates on fulfilling the specified process snippets.
Instead, random testing clicks as many different widgets as fast as possible. The tested
real world applications feature large exploration spaces and rapidly clicking through
them reveals lots of widgets, states, and reachable functionality.

Another interesting analysis is the distribution in which different runs reveal new
widgets over time (see Figure 6.6) The random runs discover new widgets in a more or
less normal distribution. In contrast, the box plot shows that the process snippet runs
reach a 75% quartile within ten minutes, half the time the random runs take. Repeating
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the guided exploration also shows less divergence in the discovered widgets, i.e. the runs
are more deterministic. On the downside—when considering absolute coverage—the
process snippet exploration is too focused on following process snippets. While the main
goals, i.e. (i) testing core functionality, and (ii) creating comparable exploration traces,
are achieved, these numbers also show potential for further improvements: testing with
process snippets reaches a peak after about ten minutes of exploration. If the budget
allows for further testing, an alternative approach (fall back to random) can improve
coverage.

One final word must be said about measuring the crawling efficiency in terms of
execution time. Execution time can be highly subjective and is heavily impacted by the
performance of the test infrastructure, e.g. the test device, network latencies, or system
load. By repeating the exploration ten times and averaging the results over all test runs,
the effect of the latter should be minimized. External factors such as network laten-
cies or system load should not be present in different runs. For completeness, we also
evaluated the number of test actions that were executed by the individual exploration
strategies. Table 6.2 shows the number of test actions for both random runs (actionsr)
and guided test runs actionsp. Bold values indicate significant differences in the number
of executed actions. Averaged, the differences are insignificant, though. Only one fifth
of the applications shows major differences (i.e. the bold values), but there is no clear
evidence indicating that random testing or guided testing are on average executing less
actions during the exploration and thus is more efficient. In pure number of actions,
none of the approaches is superior. Only in relation to the achieved widget coverage
or achieved functionality coverage one can argue about efficiency. The previous obser-
vations do not change. Guided testing does cover more core functions, random testing
covers more widgets—with a comparable number of actions.

These observations allow us to answer RQ 10 (Testing With Use Cases): How does
process snippet testing compare against random testing in terms of application coverage?

� Testing with process snippets is inferior to random testing in terms of pure appli-
cation coverage.

� Random testing allows for broad system tests (cheap), while snippet testing con-
centrates on deep functionality (expensive).

� The number of executed crawl actions is comparable in both crawling strategies.
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Table 6.2: Averaged benchmark overview on the tested application set for random runs
(r) and guided runs (p). actions shows the number of exploration actions executed.
correct and incorrect describe the percentage of correctly vs. incorrectly executed ATD
actions. Number in braces are the absolute values.

App Name actionsp actionsr correct incorrect

com.amazon.mShop 842 834 87% [398] 12% [57]

com.joom 597 951 100% [139] 0% [0]

com.thehomedepot 945 1019 62% [86] 37% [52]

com.walmart.android 629 852 90% [274] 9% [30]

com.ebay.mobile 633 652 85% [126] 14% [22]

com.hellofresh 1165 858 94% [454] 5% [27]

com.india.foodpanda 1094 1019 84% [378] 15% [69]

com.global.foodpanda 1310 824 87% [590] 12% [82]

com.mcdonalds.app 789 649 87% [174] 12% [25]

com.starbucks.mobilecard 1114 808 78% [471] 21% [155]

hu.viala.newiapp 1573 1294 53% [230] 46% [199]

otlob.UI 1144 758 100% [174] 0% [0]

com.bookin 742 881 93%[125] 6% [9]

com.cleartrip.android 661 522 75% [57] 25% [19]

com.takatrip.android 594 1110 90% [224] 9% [24]

io.wifimap.wifimap 477 719 98% [267] 1% [4]

com.tourego.tourego 121 766 88% [39] 12% [5]

com.railyatri.in.mobile 693 882 100%[75] 0% [0]

net.skyscanner 645 1203 88% [31] 11% [4]

com.google.earth 404 326 84% [65] 15% [12]

com.blued.international 410 429 0% [0] 0% [0]

com.f2f.Gogo.Live 750 758 87% (309) 12% (43)

com.facebook.katana 1291 1167 59% [209] 40% [144]

com.facebook.lite 934 904 0% [0] 0% [0]

com.instagram.android 1422 795 78% [70] 21% [19]

com.pinterest 51 409 75% [66] 25% [11]

com.snapchat.android 1108 1342 96% [816] 4% [34]

com.tumblr 724 928 71% [117] 29% [46]

com.yy.hiyo 720 875 80% [83] 19% [20]

com.zhiliaoapp.musically 768 688 79% [59] 20% [15]

com.ted.android 232 270 100% [92] 0% [0]

com.duolingo 903 913 90% (448) 9% (47)

com.youdao.hindict 618 785 88% [103] 11% [14]

com.microblink.photomath 351 432 100% [167] 0% [0]

com.memrise.android 29 678 90% [10] 10% [1]

cl.taxibeat.driver 630 366 0% [0] 0% [0]

com.application.onead 1316 1175 100% [5] 0% [0]

com.facebook.pages.app 609 346 50% [150] 50% [150]

com.mobisystems.office 614 757 100% [105] 0% [0]

com.mydawa.MyDawa 807 1371 99% [671] 1% [3]

com.netqin.ps 562 81 100% [260] 0% [0]

com.ubercab.driver 754 922 60% [90] 40% [61]

com.vtg.app.mymytel 1278 1091 97% [167] 2% [5]

team.dev.epro.apkcustom 691 810 93% [42] 20% [15]
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6.3.4 Generalization Analysis

Generating process snippets is supposed to be a one time effort and should improve
testing for apps independent of their domain or the syntactic content of their natural
language text. The initial testing effort for developing test cases for non-trivial apps is
significant. Developing use cases is comparably trivial, since it requires only a basic
understanding how a system is supposed to work. In a way, it is comparable to defining
acceptance test descriptions. While conducting the previously presented studies (espe-
cially generating the SELENIUM test suites in Section 5.3), the main effort was spent on
identifying common application behavior, since we followed the assumption that a test
transfer was the ultimate goal.

In the study about process snippets executed on Android apps, the assumptions are
weaker. Essentially, we generated a set of use case descriptions and more or less exe-
cuted all of them on the test subjects, regardless whether they were actually designed for
the AUT or not. The most important observations so far are the efficiency improvements
as well as the coverage of core functionality compared to random testing. In addition to
that, we investigate how many process snippets we can effectively execute and measure
prediction precision, i.e. if process snippet is executed on the correct targets.

We look into the data presented in Table 6.2. The correct / incorrect columns indicate
our manually inspected results on the execution success of the ATDs supplied for testing.
The great majority of applications show very high success rates with values above 85%.
There are some applications that could not be tested such as the com.facebook.lite,
com.blued.international, or the cl.taxibeat.driver app. We were not able
to discover executable ATD targets for semantic testing. The required functionality is
bound to an existing account, e.g. a Facebook account, that requires additional authen-
tication steps. In these scenarios, we fall back to the random exploration strategy.

For the majority of the remaining applications, the semantic interpretation of the
process snippets instructions has a high precision and thus can improve testing. In a
nutshell, this means that guiding the exploration due to our ATD analysis is very suc-
cessful. Especially the domains eCommerce and food apps show high results across the
board. These results conform with the previous observations about core function cover-
age (Figure 6.3a and Figure 6.3b). The high number of executions (absolute numbers)
together with the high precision is correlated to the efficiency of testing core function-
ality. The domains ‘education’ and ‘social’ are not far off, but the individual results
are more diverse. This effect is in turn observable in the overall results about the core
function coverage. The average advantage of the guided testing is not as good as in the
domains eCommerce and food.
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The absolute numbers (i.e. the number in square brackets) are quite diverse as well
and range between [5,590]. A high number indicates that the guided testing repeatedly
executed many ATD actions. For the majority of the applications the guided approach
effectively matches a high number and thus positively affects the core functionality cov-
erage.

For the remaining applications with low absolute execution numbers, we manually
inspected the application states and narrow down these differences to three main rea-
sons:

Miscategorization. The majority of applications with low absolute values do not
contain most of the use cases tested. While Google labels an application such as skyscan-
ner as a travel app, it does not feature typical use cases such as booking a flight.

Language. The semantic similarity for the target identification is too low, i.e. is cut
off by our similarity metric. In some applications the interactive elements do not have
a descriptive text but are just presenting an icon instead, the language is changed from
English to another language, or there is no semantic match.

Application Complexity. Some of the use cases are located deep in the application,
or are unreachable due to two-factor authentication or comparable security measures.
These limitations are out of scope for our prototype.

Despite the differences in the absolute execution numbers, the high precision values also
indicate that extending the set of process snippets (i.e. developing new use cases) would
be beneficial for testing. Even if a certain function does not exist in the target applica-
tion, topic-driven testing would rather not execute it, if it cannot be clearly identified.
The high precision implies that a use case is only executed if the correct target is present.

The developed set of use cases was arguably small and only covered 64 use cases.
The use cases are publicly available [68] and lay a foundation for further development.
Mining a broad scope of use case descriptions into process snippets enables us to test
more application behavior. Thus, topic-driven testing can serve both academical and
industrial purposes.
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These observations allow us to finally answer RQ 11 (Use Case Generality): How
general are the generated process snippets?

� Although not all applications feature the complete set of use cases, the target de-
scriptors can be interpreted and executed semantically with a high average preci-
sion of 85%.

� Further completion of the set of process snippets would be beneficial for further
testing. The low number of falsely executed process snippets (high precision)
indicates that we would spend more time on the test execution and a negative
effect of having more test cases is not to be expected.

� Extending the list of use cases would allow for better system penetration and cover
more functionality.

6.4 Threats to Validity

As for every empirical study, there are certain threats to its validity to be faced. Most of
them overlap with the studies about employing topic-driven testing on web applications.
First and foremost threated is the feature/use case selection itself. We selected 64 use
cases for the evaluation, which cover distinct functionality. This set is of course far from
complete, which introduces bias into all our evaluation. The evaluation cannot argue
about the behavior and use cases that is not in the test set. There might exist use cases
that cannot be expressed in natural language texts. We can also not argue that we can
semantically match further use case descriptions.

Additionally, there is no way to measure how many features exist in the AUT and cal-
culate the test coverage in the real world applications. They are all treated as a black-box
and the testing framework can only observe changes on the client side. The evaluation
is not intended to produce a test environment, but instead is intended to steer testing to-
wards desired functionality. We have seen that the absolute number for the correct ATD
execution differed and the manual inspection could only analyze the main reasons for
this shortcoming. The generality of the feature transfer might be a threat for the same
reasons. To reduce bias in the presented dataset, we captured a significant set of typical
features within the applications based on the most common use cases or testing scenar-
ios. The high precision of executing ATDs on the target subjects gives enough credible
evidence to support the assumption that we also can transfer other process snippets.

RQ 9 (Testing Core Functionality) concluded that our guided exploration discovers
more of the targeted relevant core functionality in a shorter time period. The presented
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analysis again neglects the fact that the tested use case set is not complete. This might
lead to a better evaluation of the guided procedure. Imagine that there exist more of the
simplistic use case descriptions, such as “Go to Startpage”. It might require a simple
click on a button that is present on every page. What are the chances of this button
to be clicked by a random crawler? The answer is: very likely. Choosing similar use
cases that require a broad exploration instead of complex interaction schemes might
positively affect the performance and efficiency of random crawling. In defense of the
topic-driven testing-approach it can only be said that integrating a random approach into
our technique is still possible. Remembering the exploration time of the unique widgets
(Figure 6.6) and core functions, the data clearly indicates that the highest benefit of test
guidance is achieved in the first few minutes of the exploration. The remainder of the
exploration time can be used for further—broad—explorations.

Although the experiments were run on fifty real world applications out of different
domains, all featuring a distinct functionality, the scope of this analysis is far from being
complete. There exist domains, say for instance file sharing tools, which offer features
for writing, storing, sharing, or printing documents, all functionalities not expressed in
the given application set. Furthermore, certain features are just not represented with
natural language content and therefore cannot be used by this approach for analysis
purposes. A common example would be the representation of buttons with icons or
images, video players, or other overlaying guiding methods. Currently, these functions
would only be tested by chance, i.e. by falling back to the underlying default strategy.
In our experiments, the chosen use cases mostly are represented with descriptive labels
next to the target element and there exist description texts for most icons.

Anything beyond this behavior is out of the scope of this analysis at this moment.
Topic-driven testing could be extended to manage these limitations, though. A possible
solution might be the analysis of alternative tags in images (i.e. alt), which is often dis-
played for the sake of accessibility. An alternative to this is learning image descriptions,
i.e. by training a neural network on a dataset of labeled images [37].

Finally, the speedups we report are all based on models, making simplified assump-
tions about how crawlers do and can operate. Our models are as conservative as possible,
modeling and reporting worst-case scenarios for our technique. Real-world crawlers op-
erating on real-world web applications may perform differently, sporting heuristics to
focus on specific UI elements first, and leverage similarity between pages to perform
better. All these optimizations are orthogonal to our approach and could be combined
with it; we kept them out of our evaluation for better control.
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6.5 Process Snippets for Testing

At this point, I would like to discuss the observations made during the empirical studies
for applying topic-driven testing on the domain of Android testing. By changing the
input to the procedure from existing test suites into even more general use case descrip-
tion, topic-driven testing can effectively guide a crawling procedure towards relevant
core function. It outperforms basic random crawling both in terms of speed as well as
overall coverage. Our topic-driven technique covers twice the amount of the to be tested
functions in a fifth of the time.

Topic-driven testing guides testing towards deep functionality and is superior to ran-
dom testing in this aspect. While random testing explores an app quickly and covers
broad set of functions, targeting the exploration towards relevant (deep) functionality is
not possible. Since the guided approach reaches the majority of its coverage in the first
minutes an integration with existing testing approaches seems promising, if exploration
time is of minor interest. Industrial testing typically intended to be efficient—reach and
test relevant functionality fast. The presented testing procedure achieves that goal on a
broad set of applications, but industrial approaches require further research to get more
reliable results.

For academic purposes though, topic-driven testing can already serve as an efficient
test generator. First of all, testing can be steered towards relevant functionality. Second,
the process snippets are executed on the targets they are designed for—as indicated by
the high precision. Further tests are likely also executed on the same targets.

Finally, the produced exploration traces are more deterministic than those produced
by random explorations. Putting these benefits together, a wide range of applications
can be tested with minimal manual effort. The produced results are reproducible and the
generated application models can be compared to learn common behavior. Especially
an analysis that is focused on identifying common or uncommon behavior or testing an
assumption on a large set of applications is made possible through semantic testing.



7
Conclusion and Open Research

Challenges

The tremendous increase in the number of app releases every day requires further im-
provement and research of automated testing procedures. Apps have to be available,
executable, testable, and maintained on multiple platforms at once. Figuratively, every
day there is a new device on the market with different hardware, screen size, hardware
buttons, or sensors. In the end though, all these devices and applications are used by hu-
man users. The performance, functionality, and usability of an application is judged by
the user. This dissertation presented topic-driven testing as a novel testing technology
that tests applications close to the human experience. Central to the presented technique
is a semantic interpretation of the application functionality as well as test instruction.
This stands in contrast to existing state-of-the-art techniques that interpret test instruc-
tions and the structure of the application by syntactic means.

In Software Engineering, abstraction and reuse have been the two most prominent
drivers of productivity in the past two decades. Process snippets apply these two princi-
ples in the domain of app testing. Taking a list of natural language use case description to
guide exploration to the desired functions, testing with process snippets is by far superior
to random testing in both system penetration and covering relevant core functionality.
Compared to random exploration, our evaluation on fifty of the most popular Android
apps out of six domains shows that testing with process snippets can cover 30% more
functions within 20% of the time. Representing abstract process steps, process snippets
can be easily reused to test one application after another.

In my personal opinion, topic-driven testing has the potential to be the foundation
of a whole new testing procedure. It can be integrated into systematic UI testing and
is complementary to state-of-the-art frameworks. Existing general purpose app testing
frameworks heavily depend on random actions for exploration. While powerful, they
rarely test the core functionality and are not robust against even minor app changes.
Compared to random testing, there is still some manual effort included in setting up the
testing procedures. But especially the results in the section about testing with process
snippets indicates that this effort scales nicely, if the testing is executed on a large set
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of applications. For the majority of the applications, testing with process snippets is far
more efficient then random testing. The test setup and creation of testable snippets is
a matter of hours. Thus, topic-driven testing can have an impact on industrial testing
methods.

In a nutshell, this thesis makes the following contributions to improve mining and
understanding software features and automated user interface testing:

Context Analysis of Interactive Elements Applying visual clustering and analyzing
the alignment of text elements in relation to interactive elements allows to link
the available UI actions with their descriptive texts.

Semantic Feature Identifcation This dissertation describes a new methodology to in-
fuse features with their semantic meaning. Each interactive element is assigned
to a certain position in the word vector space that is determined by its descriptive
texts in the googleNewsVector.

By observing the word vector space of the descriptive texts in five hundred web
applications, the analysis identifies areas and groups of semantically close de-
scriptions from which we can automatically learn common features in these ap-
plications. Using semantic text similarity as a similarity metric, these features can
be effectively identified and matched across applications.

The developed libraries to calculate the semantic similarity are publicly available
and can be integrated into other test frameworks:

https://github.com/amrast/webtest

Automatic Test Transfer We presented ATTABOY, a prototype tool for transferring
web application SELENIUM tests across applications. ATTABOY executes a given
SELENIUM test suite and mines the features of the GUI in the source application.
The gathered knowledge is transferred to other applications using semantic text
similarity as a metric. The transferred knowledge is specifically tailored on the
one applications the tests were originally written for. While a complete test trans-
fer (especially with an oracle) is not achieved, the empirical evaluation shows the
potential to guide testing towards relevant functionality seven times faster than
random testing. This comparison might not be fair, but the execution and setup
costs to guide testing in the target application using ATTABOY is comparable to
random testing—virtually non-existent.

https://github.com/amrast/webtest
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ATTABOY is not capable of achieving a full test transfer, it can merely check if
the application reaches similar UI states during the test case execution. This is not
sufficient for a full test automation. The main limiting factor is that topic-driven
testing cannot automatically transfer or generate an oracle required for testing, so
far.

Testing with Process Snippets I presented a novel methodology, called testing with
process snippets, which takes a list of natural language use case description to
guide exploration to the desired functions. Testing with process snippets was im-
plemented into the existing Android testing framework DM-2. Evaluated on fifty
real-world application from the Google Play Store, testing with process snippets
is by far superior to random testing approaches in both system penetration and
covering relevant core functionality.

The empirical study shows that 30% more core functions are tested within only
20% of the execution time, i.e. within a few minutes. While random testing
explores more software parts (i.e. reaches a higher widget coverage), process
snippets can effectively control the exploration and reliably guide it to relevant
system parts. The remaining 90% of the exploration time can still be used to
fall back to a default random strategy, if coverage maximization is the intended
goal. In addition, our evaluation shows initial evidence that our methodology is
applicable on a large set of domains and their domain specific use cases.

Program/Application Understanding Our analysis offers insights into how applica-
tions are generally structured and how they integrate functionality. The semantic
concepts that express features and their corresponding UI elements are grouped
together in the work vector space and are uniformly expressed independent of the
application. While the position (x-y coordinates) and the descriptive texts can
vary significantly, the inner workflows of a use case are typically similar in order
to facilitate the usability of an application.

In summary, this dissertation makes advances in the state-of-the-art UI testing by
introducing a novel way to express similarities between applications and their function-
ality. The semantic interpretation of features allows to integrate and develop techniques
complementary to existing state of the art tools. To enable researchers and developers to
benefit from this work, the source code, data sets, and empirical evaluation tools used
and developed in this thesis are made publicly available for download.
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7.1 Lessons Learned

I would like to summarize a few general, informal, and subjective observations made
during the implementation and evaluation of the central tools developed in this disserta-
tion. My personal experience with industry in Germany indicates that companies try to
integrate software testing procedures into their continuous integration and release work-
flow, but the adaptation of automated software testing tools is at the very beginning.
Especially in the area of acceptance testing, an automated testing solution is still in its
infancy. For most parts—not only in acceptance testing—testing is still done with a high
manual effort. In my personal opinion, the effort to setup decent and effective test in-
frastructures is too costly at the moment, since testing is not integrated while or before a
product is developed, but afterwards. In any case, software is then tested from the point
of view of a developer rather than an end-user.

Random testing techniques are widely used. Fuzzing, i.e. probe a system with ran-
dom inputs, is also a technique used in industry to test a system. Random UI testing
though does not produce reliable and reproducible results and is unsuitable for many
important testing goals, such as regression testing. Nevertheless, setting up and inte-
grating a decent testing procedure into the development cycle can be costly. It is often
substituted by manual testing, which in turn can be error prone.

ATTABOY

With this motivation in mind, ATTABOY has been developed. Reducing the initial cost
of generating software tests by learning from existing systems and their test suites was
the key idea behind ATTABOY. The prototype was evaluated on real-world subjects in
order to get a realistic view on the potential in an industrial test setting.

In my opinion, the strength of ATTABOY is not the test generation for new appli-
cations. An effective test generation requires further research. The incomplete oracle
generation is a major limitation. Especially in the area of regression and multi-platform
testing, ATTABOY can still play to its strengths. It guides testing towards relevant core
functionality faster. Getting reasonably large tests suites is still a problem though.

Testing with Process Snippets

While there is a lot of potential for future research to improve ATTABOY, we put the
main focus on an even simpler test setup and showed that the principle of topic-driven
testing is independent of the underlying test platform or test device. The results in
Chapter 6 tell their own story. With minor effort, testing can be reliably guided towards
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relevant core functionality. The generated traces are not purely random, but more stable
and reliable instead.

Random testing covers more UI states and there are good examples (e.g. fuzzing)
where random testing is a suitable method. More traditional testing that is part of a de-
ployment cycle needs to be reliable, though. We want certain parts of the application to
be tested well and there should be the option to follow certain use cases. This disserta-
tion already put enough emphasis on the motivation and reasons, why random testing is
incapable of achieving this goal. The results show, that topic-driven testing can improve
testing in this area.

7.2 Open Research Challenges

There is one central final question unanswered. How far is topic-driven testing evolved
or in other words how far is it solving the ongoing problem of testing?

Modern interactive applications offer so many interaction opportunities that auto-
mated exploration and testing is practically impossible without some guidance towards
relevant functionality. We therefore propose a testing procedure that uses semantic sim-
ilarity to link UI elements to their semantic meaning. By doing so, testing can reuse
existing tests from other applications to effectively guide exploration towards semanti-
cally similar functionality or can follow simple human understandable instructions that
express use cases. This method is highly effective: Rather than spending hours or days
exploring millions of redundant paths, our guidance allows to discover deep functional-
ity in only a few steps. In the long run, this means that one needs to write test cases for
only one representative application in a particular domain (“select a product”, “choose
a seat”, “book a flight”, etc.) and automatically reuse and adapt these test cases for any
other application in the domain, leveraging and reusing the domain experience in these
test cases.

Despite these advances, topic-driven testing does not solve the problem of automated
testing mainly due to the limitations introduced by the missing oracle translation, yet.
On top of that I would like to point out further research opportunities that are enabled
by the topic-driven testing. Central to this research is the capability to identify features
in the GUI of an application and match these in other applications regardless of the
underlying platform or technology. This is a central contribution of this dissertation.
The empirical evaluations show satisfying results and thus lay a foundation for further
research.
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Future work and research could be focused on the following topics:

Oracles. As of now, process snippets only represent interaction steps, but do not
check the resulting app state; they share this “oracle problem” with the bulk of test gen-
eration approaches. Our matching approach is able to match actions that lead to specific
functionality; however, we cannot check whether the particular action was successful or
not. Although this problem is shared by all test generators (which had therefore better
be called execution generators), we have the opportunity not only to reuse actions, but
also the oracles in existing test cases. The challenge here is to identify, match, and adapt
appropriate criteria for success or failure.

The semantic approach of process snippets also offers opportunities for generic or-
acles, expressing conditions such as “Order completed” which would match the wide
variety of “Thank you” messages indicating success, but not “Verify credit card info”,
“Order declined”, and other states indicating failure. We are currently investigating how
to learn common behavior from a large set of application, i.e. derive common obser-
vations after a process snippet has been executed. Since process snippets are general
enough to be tested on a large base, we can learn the expected behavior.

In my personal opinion, the oracle problem cannot be completely solved. A standard
example would be the putting random items into a shopping cart and calculating the
total price. An automated testing procedure would not only need to learn the meaning
of sum, but also check positional properties, e.g. the sum is below the list of items.
In essence, this example can be made arbitrary complex and explains why a complete
automation is unlikely. Instead, I see the possibility for a semi-automated process. As
of now, we can generate better executions with the proposed process snippets. Likewise,
there is the possibility to identify which part of the exploration graph serves which use
case. By infusing this semantic meaning into an exploration trace a developer can easily
identify the shopping cart and integrate further test steps or an oracle.

Outlier Detection. Process snippets also can be useful for detecting outliers—that
is, applications whose process deviates from the norm. If an application uses process
steps (or labels for these steps) that are highly unusual, such deviations could be detected
automatically; this also applies to oracles, as sketched above. In the long run, classifying
applications by their support for common process snippets could lead to quick detection
of user interaction issues—without having to run expensive experiments with humans.

Our previously conducted experiments [7] shows the potential of our technique to
detect security and privacy issues. By learning the purpose of UI elements, we can learn
which access to sensitive information is expected and which is suspicious. Extending
this idea towards other policies seems to be straightforward. Observing how a majority
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of applications behaves (e.g. internal behavior, resource access, device load, timing
properties, or styling) allows to for outlier detection and maybe automated sandboxing.

Other GUI Frameworks. Right now, our work focuses on Android apps and web
applications. However, we are planning to generalize it to other GUI domains. Web
applications are a particularly interesting target, as a web page typically holds more
textual and contextual information, which a process snippet can semantically match.
We have seen that the impact of more text (web application) in contrast to a small screen
size (mobile device) is less significant than expected. This raises the question if (a)
the testing can be generalized for all UI applications and (b) if we can learn or find
differences that are introduced due to incompatibility of a device with the back-end.

Alternate Input Models. So far, our approach leverages test suites or process snip-
pets as a source to guide test generation. Each input expresses a single use case. Human
experience, though, is formed from many examples, and experience with multiple user
interfaces helps interacting with the next one. We are looking into techniques that allow
us to further abstract over multiple examples to guide test generation. Process snippets
could make great helpers for voice-driven systems. Eventually, one should be able to
successfully tell a smart speaker “Go to Expedia and book me a flight to Xi’an, China”
and have the speaker automatically find the correct UI interactions based only on pro-
cess snippets—regardless of whether specific commands or command patterns (“skills”)
are already installed. Likewise, we can imagine assistive technologies and automated
services do the right thing on interfaces that were originally designed for humans.

The presented testing methodology was designed to be further reused for both aca-
demic and industrial purposes. We imagine it to be used for quickly generating repro-
ducible and comparable exploration models. In order to achieve this, all the data referred
to in this paper is publicly available for download and experimentation. The package in-
cludes our set of testable process snippets, the exploration graphs, the application APKs,
the ground truth and the test data to reproduce our results.

Feature Detection and Program Understanding. Basic UI design visually groups
together elements that belong to the same feature to reduce the difficulty of a target
selection task (Fitt’s law [23]). While these element groups are tight, the position of
each group is not fixed. We mined the semantic meaning of interactive UI elements
(Chapter 3) and showed that their describing labels are also close in the word vector
space. The denseness of these features in the vector space over five hundred applications
shows the generality.

Using this method the other way around, we can re-identify features in applications
and even explain them in natural language. This is the basis for program understand-
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ing. Exploration graphs of applications tend to grow quickly into hundreds of states
and thousands of edges, which goes beyond human understanding. I see the potential
of topic-driven testing to gather program understanding and explain these exploration
graphs or at least parts of them. With this information, a developer can gain under-
standing on how different components of a system are bound together, where additional
testing effort should be spent, or even identify unexpected application behavior.
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Glossary

DROIDMATE-2 A testframe to test Android applications through the GUI developed
by Jamrozik et al. [34] and later extended by Borges et al. [14].

SELENIUM is a software testing framework for web applications. It offers a HTTP
interface to communicate and control a variety of test browsers for testing without
the need for browser specific commands.

xpath is a unique identifier which identifies a UI element in the DOM.

Action Target Data Tuple Action Target Data Tuples describe machine executable state-
ments. Action typically describes the type of actions which should be executed
(e.g. click, hover, etc.), Target the interactive element on which the action should
be executed upon, and Data an optional data string which serves as input.

Android An operating system developed by Google Inc. which is mainly run on mobile
devices such as smart phones, smart watches or tablets.

Android Debug Bridge (ADB) is a software interface for Android systems and de-
vices used to connect them to a computer over USB or a wireless connection. It
allows to execute commands on the device and transfer data between device and
computer.

application programming interface (API) is a set of clearly defined methods defining
the communication between various system components.

Application Under Test (AUT) Describes a software application which is tested.

Asynchronous JavaScript and XML (AJAX) is a set of web development techniques.
Typically, the code of a web application is split into the server part (which is run
on the back-end server of the application provider) and a client part, which is
executed in the browser of the user. It allows to refresh the content by running
client-side computations instead of requesting a new HTML page for every page..

cascading style sheet (CSS) is a style sheet language used for describing the presenta-
tion parameters of a markup language, e.g. HTML.
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Continuous Integration In software engineering, continuous integration (CI) is the
practice of merging all developer working copies to a shared mainline several
times a day to prevent integration problems. It is typically combined with auto-
matically running tests on each code change.

Document Object Model The Document Object Model (DOM) is an interface that
unifies HTML, XHTML, or XML documents in a logical tree structure. Each
node contains objects, i.e. elements with attached information or event handlers.
In web applications the HTML structure that represents GUI can be expressed as
a DOM document.

finite state machine (FSM) is a mathematical model of computation that can be ex-
pressed as a finite graph. Each node in the graph represents a state of a system,
while the edges describe the actions to transfer the state from on state to another..

Frames per Second Frames per Second (FPS) describes how often the pixels on a
screen are rendered per second.

Graphical User Interface The interface of a program shown to the user. It replaces
abstract command structures into a graphical representation and allows users to
interact with the program through graphical icons and visual indicators.

HTTP archive record (HAR) is a file format that stores network communication be-
tween client and remote host. Each outgoing and incoming network request is
stored as an entry and contains information about the type of request, the request
content (e.g. payload, headers, etc) as well as the response (including response
code, MIME-type etc).

Human Machine Interaction (HMI) is a research area that investigates the ways in
which between humans interact with computers and vice versa..

information retrieval (IR) describes the process of obtaining information from a set
of resources, documents or texts.

Internet of Things Internet of things (IoT) is the network of physical devices, vehicles,
home appliances, and other items embedded with electronics, software, sensors,
actuators, and connectivity which enables these things to connect, collect and
exchange data.
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Latent Dirichlet allocation (LDA) is a generative statistical model used for topic ex-
traction of documents.

Levenshtein distance is a string metric to measure the difference between two se-
quences. The Levensthein distance measrues how many single-character edits
(i.e. insertions, deletions or substitutions) are required to transform one word to
the other..

MAchine Learning for LanguagE Toolkit (Mallet) framework [50], a popular Java-
based machine learning tool kit.

Natural Language Processing (NLP) is a subfield of computer science that investi-
gates how computers process and analyze large amounts of natural language data
and includes tasks such as speech recognition, natural language understanding,
and natural language generation..

Part-of-Speech Tagging Is a standard natural language processing technique that iden-
tifies the role of words (be it verb, object, etc.) in a given document..

singular value decomposition (SVD) is a factorization method for a matrix (be it real
or complex). It is a generalization of the eigendecomposition that allows for an
analysis of non-symmetric matrices..

System Under Test (SUT) Describes a software system which is tested..

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimension-
ality reduction that is especially suited for the visualization of high-dimensional
datasets..

term frequency-inverse document frequency (tf-idf) is a numerical statistic that re-
flect the importance of a word in a document. In information retrieval this mea-
sure is widely used as a weighting factor to extract the relevant topics including,
or generate text summarizations of documents..

topic-driven testing (TDT) is a novel testing technique presented in this dissertation.
It integrates NLP analysis into UI testing to allow for more precise testing proce-
dures and allows to compare applications based on the UI..

UI Automator UI Automator is an Android UI testing framework suitable for cross-
app functional UI testing across system and installed apps..
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User Interface The interface of a program software that a human uses to interact with
a system.

Vision-based Page Segmentation (VIPS) is a technique that allows to extract the se-
mantic structure for a web page. It groups together DOM elements due to their
visual proximity it allows for efficient information retrieval..

Web Application TEst generator (WATEG) is an automated testing tool for Web ap-
plications presented by Thummalapenta et al. [77] that verifies a pre-defined set
of business rules on an AUT..

word vector model (word2vec) is a model trained on text corpora. Each word is mod-
eled as an n dimensional vector in a vector space. Words which are occuring
together are placed into neighbouring regions in this vector space.

word2vec-GoogleNews-vector The word2vec-GoogleNews-vector is a publicly avail-
able pre-trained 300-dimensional english word vector model. It has been trained
on Google News data that featured more than 3 billion running words. The result-
ing corpus size of the GoogleNews-vectors-negative300.bin.gz [29] models more
than 3 million words..

World Wide Web Consortium (W3C) is an international community to develop Web
standards..
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DROIDMATE-2 A testframe to test Android applications through the GUI developed
by Jamrozik et al. [34] and later extended by Borges et al. [14]. DROIDMATE-2. .

Action Target Data Tuple Action Target Data Tuples describe machine executable state-
ments. Action typically describes the type of actions which should be executed
(e.g. click, hover, etc.), Target the interactive element on which the action should
be executed upon, and Data an optional data string which serves as input. Action
Target Data Tuples. .

Android Debug Bridge (ADB) is a software interface for Android systems and de-
vices used to connect them to a computer over USB or a wireless connection. It
allows to execute commands on the device and transfer data between device and
computer. android debug bridge. .

application programming interface (API) is a set of clearly defined methods defining
the communication between various system components. application program-
ming interface. .

Asynchronous JavaScript and XML (AJAX) is a set of web development techniques.
Typically, the code of a web application is split into the server part (which is run
on the back-end server of the application provider) and a client part, which is
executed in the browser of the user. It allows to refresh the content by running
client-side computations instead of requesting a new HTML page for every page..
Asynchronous JavaScript and XML. .

cascading style sheet (CSS) is a style sheet language used for describing the presen-
tation parameters of a markup language, e.g. HTML. cascading style sheet.
.

Continuous Integration In software engineering, continuous integration (CI) is the
practice of merging all developer working copies to a shared mainline several
times a day to prevent integration problems. It is typically combined with auto-
matically running tests on each code change. Continuous Integration. .

DFS Depth First Search.
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Document Object Model The Document Object Model (DOM) is an interface that
unifies HTML, XHTML, or XML documents in a logical tree structure. Each
node contains objects, i.e. elements with attached information or event handlers.
In web applications the HTML structure that represents GUI can be expressed as
a DOM document. Document Object Model. .

finite state machine (FSM) is a mathematical model of computation that can be ex-
pressed as a finite graph. Each node in the graph represents a state of a system,
while the edges describe the actions to transfer the state from on state to another..
finite state machine. .

FMAP Feature Matching Across Platforms.

Frames per Second Frames per Second (FPS) describes how often the pixels on a
screen are rendered per second. Frame per Second. .

GUI Graphical User Interface.

GUI Graphical User Interface.

HTTP archive record (HAR) is a file format that stores network communication be-
tween client and remote host. Each outgoing and incoming network request is
stored as an entry and contains information about the type of request, the request
content (e.g. payload, headers, etc) as well as the response (including response
code, MIME-type etc). HTTP archive record. .

Human Machine Interaction (HMI) is a research area that investigates the ways in
which between humans interact with computers and vice versa.. human machine
interface. .

information retrieval (IR) describes the process of obtaining information from a set
of resources, documents or texts. information retrieval. .

Internet of Things Internet of things (IoT) is the network of physical devices, vehicles,
home appliances, and other items embedded with electronics, software, sensors,
actuators, and connectivity which enables these things to connect, collect and
exchange data. Internet of Things. .

Latent Dirichlet allocation (LDA) is a generative statistical model used for topic ex-
traction of documents. Latent Dirichlet Allocation. .
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MAchine Learning for LanguagE Toolkit (Mallet) framework [50], a popular Java-
based machine learning tool kit. MAchine Learning for LanguagE Toolkit. .

Natural Language Processing (NLP) is a subfield of computer science that investi-
gates how computers process and analyze large amounts of natural language data
and includes tasks such as speech recognition, natural language understanding,
and natural language generation.. Natural Language Processing. .

Part-of-Speech Tagging Is a standard natural language processing technique that iden-
tifies the role of words (be it verb, object, etc.) in a given document.. Part-of-
Speech Tagging. .

singular value decomposition (SVD) is a factorization method for a matrix (be it real
or complex). It is a generalization of the eigendecomposition that allows for an
analysis of non-symmetric matrices.. singular value decomposition. .

System Under Test (SUT) Describes a software system which is tested.. application
under test. . system under test. .

t-Distributed Stochastic Neighbor Embedding (t-SNE) is a technique for dimension-
ality reduction that is especially suited for the visualization of high-dimensional
datasets.. t-Distributed Stochastic Neighbor Embedding. .

term frequency-inverse document frequency (tf-idf) is a numerical statistic that re-
flect the importance of a word in a document. In information retrieval this mea-
sure is widely used as a weighting factor to extract the relevant topics including, or
generate text summarizations of documents.. term frequency-inverse document
frequency. .

topic-driven testing (TDT) is a novel testing technique presented in this dissertation.
It integrates NLP analysis into UI testing to allow for more precise testing proce-
dures and allows to compare applications based on the UI.. topic-driven testing.
.

Vision-based Page Segmentation (VIPS) is a technique that allows to extract the se-
mantic structure for a web page. It groups together DOM elements due to their
visual proximity it allows for efficient information retrieval.. Vision-based Page
Segmentation. .



134 Acronyms

WATEG Web Application TEst generator.

word vector model (word2vec) is a model trained on text corpora. Each word is mod-
eled as an n dimensional vector in a vector space. Words which are occuring
together are placed into neighbouring regions in this vector space. word vector
model. .

word2vec-GoogleNews-vector The word2vec-GoogleNews-vector is a publicly avail-
able pre-trained 300-dimensional english word vector model. It has been trained
on Google News data that featured more than 3 billion running words. The result-
ing corpus size of the GoogleNews-vectors-negative300.bin.gz [29] models more
than 3 million words.. word2vec-GoogleNews-vector. .

World Wide Web Consortium (W3C) is an international community to develop Web
standards.. World Wide Web Consortium. .
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Evaluation Data - Quantcast
Top 500 US Pages

For the feasability study we retrieved a subset of the Quantcast Top Million U.S. Web
Sites. The most recent rankings are estimated as of Dec 05, 2019. This data is sub-
ject to terms of use described at https://www.quantcast.com/learning-center/
quantcast-terms/website-terms-of-use/

A I

https://www.quantcast.com/learning-center/quantcast-terms/website-terms-of-use/
https://www.quantcast.com/learning-center/quantcast-terms/website-terms-of-use/


A II Appendix . Evaluation Data - Quantcast Top 500 US Pages

Rank Site

1 google.com

2 facebook.com

3 amazon.com

4 youtube.com

5 en.wikipedia.org

6 twitter.com

7 yahoo.com

8 ebay.com

9 nytimes.com

10 reddit.com

11 yelp.com

12 target.com

13 walmart.com

14 buzzfeed.com

15 paypal.com

16 wikia.com

17 bing.com

18 apple.com

19 pinterest.com

20 netflix.com

21 adobe.com

22 espn.com

23 live.com

24 craigslist.org

25 bestbuy.com

26 weather.com

Rank Site

27 realtor.com

28 linkedin.com

29 ranker.com

30 quizlet.com

31 urbandictionary.com

32 wordpress.com

33 spotify.com

34 usps.com

35 legacy.com

36 glassdoor.com

37 chase.com

38 cnet.com

39 giphy.com

40 stackexchange.com

41 cnbc.com

42 whitepages.com

43 bustle.com

44 etsy.com

45 quora.com

46 thepennyhoarder.com

47 instagram.com

48 rumble.com

49 nbcnews.com

50 npr.org

51 groupon.com

52 webmd.com
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Rank Site

53 capitalone.com

54 dailymail.co.uk

55 imdb.com

56 fandango.com

57 imgur.com

58 theguardian.com

59 businessinsider.com

60 tripadvisor.com

61 go.com

62 gizmodo.com

63 goodreads.com

64 microsoft.com

65 cbsnews.com

66 macys.com

67 ups.com

68 att.com

69 zillow.com

70 pagesix.com

71 bankofamerica.com

72 nydailynews.com

73 merriam-webster.com

74 indeed.com

75 nfl.com

76 lowes.com

77 fashionbeans.com

78 bleacherreport.com

Rank Site

79 eonline.com

80 lifehacker.com

81 247sports.com

82 fedex.com

83 healthyway.com

84 wellsfargo.com

85 drudgereport.com

86 thehill.com

87 wikihow.com

88 icloud.com

89 wsj.com

90 latimes.com

91 xfinity.com

92 snopes.com

93 gfycat.com

94 politico.com

95 uproxx.com

96 usatoday.com

97 hulu.com

98 topix.com

99 bedbathandbeyond.com

100 opentable.com

101 twentytwowords.com

102 thekitchn.com

103 rollingstone.com

104 jcpenney.com
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Rank Site

105 slate.com

106 today.com

107 priceline.com

108 answers.com

109 nih.gov

110 people.com

111 foodnetwork.com

112 allrecipes.com

113 cheatsheet.com

114 discover.com

115 definition.org

116 deviantart.com

117 vimeo.com

118 comcast.net

119 aol.com

120 cbssports.com

121 azlyrics.com

122 dmv.org

123 costco.com

124 theverge.com

125 variety.com

126 nickiswift.com

127 deadspin.com

128 citi.com

129 medicalnewstoday.com

130 usnews.com

Rank Site

131 thoughtcatalog.com

132 wayfair.com

133 office.com

134 overstock.com

135 newegg.com

136 homedepot.com

137 healthline.com

138 airbnb.com

139 sbnation.com

140 spanishdict.com

141 yellowpages.com

142 mapquest.com

143 mercurynews.com

144 jalopnik.com

145 southwest.com

146 topix.net

147 americanexpress.com

148 messenger.com

149 expedia.com

150 gamefaqs.com

151 avclub.com

152 vanityfair.com

153 viralthread.com

154 seriouseats.com

155 rare.us

156 romper.com
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Rank Site

157 walgreens.com

158 github.com

159 llbean.com

160 biblegateway.com

161 stackoverflow.com

162 nbc.com

163 nbcsports.com

164 creditkarma.com

165 office365.com

166 miamiherald.com

167 hometalk.com

168 mayoclinic.org

169 kotaku.com

170 city-data.com

171 thesun.co.uk

172 usmagazine.com

173 narvar.com

174 intuit.com

175 dailycaller.com

176 hp.com

177 imore.com

178 urbo.com

179 vox.com

180 sfgate.com

181 iheart.com

182 irs.gov

Rank Site

183 instructables.com

184 androidcentral.com

185 thechive.com

186 informationvine.com

187 lifewire.com

188 mentalfloss.com

189 magiquiz.com

190 outlook.com

191 looper.com

192 roblox.com

193 startribune.com

194 toysrus.com

195 jezebel.com

196 theweek.com

197 weather.gov

198 trulia.com

199 knowyourmeme.com

200 spectrum.net

201 shmoop.com

202 cinemablend.com

203 barnesandnoble.com

204 worldlifestyle.com

205 getitfree.us

206 redd.it

207 tomsguide.com

208 ebates.com
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Rank Site

209 boredpanda.com

210 cafemom.com

211 dickssportinggoods.com

212 t-mobile.com

213 ca.gov

214 newarena.com

215 ancestry.com

216 theroot.com

217 medium.com

218 gofundme.com

219 reuters.com

220 adp.com

221 washingtonexaminer.com

222 trend-chaser.com

223 gap.com

224 msnbc.com

225 kbb.com

226 yourtango.com

227 apartmenttherapy.com

228 verizon.com

229 blogger.com

230 dropbox.com

231 inspiremore.com

232 eventbrite.com

233 flickr.com

234 staples.com

Rank Site

235 rawstory.com

236 discordapp.com

237 gamestop.com

238 thepiratebay.org

239 howtogeek.com

240 aa.com

241 coupons.com

242 gamespot.com

243 polygon.com

244 edmunds.com

245 express.co.uk

246 medicinenet.com

247 sears.com

248 nextdoor.com

249 axs.com

250 cvs.com

251 joinhoney.com

252 drugs.com

253 delish.com

254 dailymotion.com

255 redbubble.com

256 popsugar.com

257 kohls.com

258 dell.com

259 ibtimes.com

260 siriusxm.com



Appendix . Evaluation Data - Quantcast Top 500 US Pages A VII

Rank Site

261 bravotv.com

262 lifedaily.com

263 custhelp.com

264 ikea.com

265 tmz.com

266 ajc.com

267 nasdaq.com

268 worldation.com

269 patch.com

270 consumerreports.org

271 enotes.com

272 pizzabottle.com

273 seccountry.com

274 delta.com

275 inverse.com

276 cbslocal.com

277 tasteofhome.com

278 patient.info

279 tomshardware.com

280 hollywoodreporter.com

281 kiwireport.com

282 denverpost.com

283 ask.com

284 chicagotribune.com

285 distractify.com

286 ibt.com

Rank Site

287 nesn.com

288 petfinder.com

289 excite.com

290 techradar.com

291 offers.com

292 chron.com

293 forever21.com

294 dominos.com

295 bizrate.com

296 force.com

297 sportingnews.com

298 v2profit.com

299 wunderground.com

300 coinbase.com

301 experian.com

302 battle.net

303 ew.com

304 bandcamp.com

305 booking.com

306 macrumors.com

307 healthcare.gov

308 patreon.com

309 leafly.com

310 tributes.com

311 archive.org

312 sciencealert.com
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Rank Site

313 exdynsrv.com

314 bettycrocker.com

315 searchencrypt.com

316 wired.com

317 pizzahut.com

318 cargurus.com

319 washingtontimes.com

320 starbucks.com

321 slideshare.net

322 epicurious.com

323 autotrader.com

324 bestdeals.today

325 retailmenot.com

326 bodybuilding.com

327 telemundo.com

328 united.com

329 michaels.com

330 liveleak.com

331 rottentomatoes.com

332 howstuffworks.com

333 usaa.com

334 com

335 icbook.com

336 mega.nz

337 ssa.gov

338 dailykos.com

Rank Site

339 pbs.org

340 aliexpress.com

341 syf.com

342 autozone.com

343 cabelas.com

344 decider.com

345 playstation.com

346 cbs.com

347 godaddy.com

348 flightaware.com

349 kayak.com

350 blackboard.com

351 dillards.com

352 nordstrom.com

353 zappos.com

354 fortune.com

355 cars.com

356 timeanddate.com

357 mashable.com

358 spokeo.com

359 sprint.com

360 instructure.com

361 brit.co

362 emedicinehealth.com

363 wikimedia.org

364 grtyb.com
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Rank Site

365 netfind.com

366 greatist.com

367 superuser.com

368 chegg.com

369 theonion.com

370 ulta.com

371 thelist.com

372 fidelity.com

373 redfin.com

374 spendwithpennies.com

375 amctheatres.com

376 shopify.com

377 food52.com

378 chewy.com

379 scribd.com

380 directv.com

381 marriott.com

382 evite.com

383 popculture.com

384 state.gov

385 synchronycredit.com

386 history.com

387 usbank.com

388 zimbio.com

389 kansascity.com

390 sharepoint.com

Rank Site

391 khanacademy.org

392 umblr.com

393 hgtv.com

394 wellhello.com

395 victoriassecret.com

396 draxe.com

397 cookingclassy.com

398 hotels.com

399 gunbroker.com

400 mundohispanico.com

401 qz.com

402 bloomingdales.com

403 mirror.co.uk

404 beenverified.com

405 theblaze.com

406 splinternews.com

407 timeout.com

408 nationalgeographic.com

409 victoriabrides.com

410 liftable.com

411 ny.gov

412 seattletimes.com

413 justanswer.com

414 kym-cdn.com

415 harborfreight.com

416 qvc.com
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Rank Site

417 dailysnark.com

418 thefreedictionary.com

419 education.com

420 nj.com

421 duckduckgo.com

422 workingmothertv.com

423 ask.fm

424 newyorker.com

425 pcgamer.com

426 lifebuzz.com



Android UI Widget Hierarchy

Appendix B Figure 1: Payment screen of the Amazon app.
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XII Appendix . Android UI Widget Hierarchy

Listing 1: Extract of the widget hierarchy presented by droidmate for the login screen in
Appendix B Figure 1
<?xml version=’1.0’ encoding=’UTF-8’ standalone=’yes’ ?>
<hierarchy rotation="0">
<node index="0" text="" resource-id=""

class="android.widget.FrameLayout"
package="com.amazon.mShop.android.shopping" content-desc=""

checkable="false" checked="false"
clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false"
long-clickable="false" password="false" selected="false"

bounds="[0,0][1080,1794]">
<node index="0" text="" resource-id=""

class="android.widget.LinearLayout"
package="com.amazon.mShop.android.shopping" content-desc=""

checkable="false" checked="false"
clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false"
long-clickable="false" password="false" selected="false"

bounds="[0,0][1080,1794]">
<node index="0" text="" resource-id="android:id/content"

class="android.widget.FrameLayout"
package="com.amazon.mShop.android.shopping" content-desc=""

checkable="false" checked="false"
clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false"
long-clickable="false" password="false" selected="false"

bounds="[0,63][1080,1794]">
<node index="0" text=""

resource-id="com.amazon.mShop.android.shopping:id/drawer_layout"
class="android.support.v4.widget.DrawerLayout"

package="com.amazon.mShop.android.shopping"
content-desc="" checkable="false" checked="false" clickable="false"

enabled="true"
focusable="false" focused="false" scrollable="false"

long-clickable="false" password="false"
selected="false" bounds="[0,63][1080,1794]">

<node index="0" text=""
resource-id="com.amazon.mShop.android.shopping:id/alx_intercept_layout"
class="android.widget.RelativeLayout"

package="com.amazon.mShop.android.shopping"
content-desc="" checkable="false" checked="false" clickable="false"

enabled="true"
focusable="false" focused="false" scrollable="false"

long-clickable="false" password="false"
selected="false" bounds="[0,63][1080,1794]">

<node index="0" text="" resource-id=""
class="android.widget.RelativeLayout"
package="com.amazon.mShop.android.shopping" content-desc=""

checkable="false" checked="false"
clickable="false" enabled="true" focusable="false" focused="false"

scrollable="false"
long-clickable="false" password="false" selected="false"

bounds="[0,63][1080,1794]">
...
</hierarchy>
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