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Abstract: Poor adherence to antihypertensive drug therapy is a well-recognized problem and can be
assessed by mass spectrometry-based analyses of body fluids. However, contrary statements exist
whether drug quantification in blood or qualitative screening in urine is more suitable. The present
pilot study aimed to further elucidate the power of blood plasma drug concentrations for adherence
monitoring by developing and validating a quantification procedure for nine antihypertensive drugs
(amlodipine, bisoprolol, candesartan, canrenone, carvedilol, metoprolol, olmesartan, torasemide,
and valsartan) in blood plasma using liquid–liquid extraction and an ultra-high-performance liquid
chromatography-ion trap mass spectrometry analysis. The procedure should then be used for an
adherence assessment and compared with the results of an established qualitative urine screen-
ing. Selectivity, carryover, matrix effect, accuracy, precision, dilution integrity, and stability were
successfully validated, except for amlodipine. The applicability was demonstrated by analyzing
19 plasma samples containing 28 antihypertensive drugs and comparing the measured concentra-
tions with calculated dose-dependent reference plasma concentration ranges. The interpretation of
plasma concentrations was found to be more sophisticated and time-consuming than that of urine
screening results, and adherence could not be assessed in two cases (10%) due to measured plasma
concentrations below the lower limit of quantification. However, 14 out of 19 subjects were classified
as adherent (75%) and three as nonadherent (15%), in contrast to 19 (100%) that were claimed to
be adherent based on the results of the qualitative urine screening. Nevertheless, further data is
needed to estimate whether plasma quantification is superior in terms of assessing adherence to
antihypertensive medication.

Keywords: hypertension; antihypertensive drugs; bioanalysis; adherence monitoring; LC-MS/MS

1. Introduction

Hypertension remains one of the most prevalent cardiovascular risk factors leading
to more than nine million premature deaths each year [1]. Blood pressure lowering has
been shown to reduce the risk of major cardiovascular disease events, such as stroke,
heart failure, coronary heart disease, and all-cause mortality [2,3]. The current guidelines
recommend the administration of antihypertensive drugs such as beta-blockers, calcium
antagonists, diuretics, angiotensin converting enzyme inhibitors, or angiotensin receptor
blockers (ARBs) [3,4], preferably in fixed-dose combinations.
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According to the WHO, adherence is “the extent to which a person’s behavior [ . . . ]
corresponds with agreed recommendations from a health care provider”, and adherence to
prescribed medication poses an essential part [5]. Poor adherence to antihypertensive medi-
cation is frequently observed in patients with uncontrolled blood pressure and might be an
underlying cause for hypertensive urgencies [6–8] but can also be mistaken for treatment
resistance [9]. Numerous studies have reported that about half of hypertensive patients do
not take their blood pressure-lowering medications as prescribed [9–12]. Hence, the assess-
ment of patients’ adherence to antihypertensive medication is becoming an increasingly
recognized component of successful hypertension management [5]. These measures in-
clude interviews, diaries, or questionnaires that are easily accessible, fast, and inexpensive
but were shown to overestimate the adherence [13,14]. The counting of remaining dosage
units such as tablets or the collection of refill data represent objective strategies but have
limited reliability [6]. Electronic monitoring devices, so-called medication event monitoring
systems that record the time and date when a medication container was opened, are a recent
innovation in this field, but the expense of these devices precludes their widespread use
and opening them does not necessarily prove any intake [5]. Bioanalytical methods, which
may be considered as the gold standard [6], allow the unambiguous detection of drugs
and/or their metabolites in body fluids and, thus, a proof an intake. Hence, they directly
and objectively assess patients’ adherence. Such methods are of increasing importance due
to the high specificity and sensitivity of, particularly, liquid chromatography (LC) coupled
to low-resolution or high-resolution mass spectrometry (HRMS) [6,9,15–17]. Furthermore,
repeated measurements were found to improve the adherence [18].

Amongst the analyzed body fluids, urine has become the matrix of choice for qualita-
tive screening of antihypertensive drugs [9,17,19], but blood plasma [20] and oral fluid [15]
were described to also be suitable. Almost all drugs or their metabolites can be detected
in urine, and their complete absence guarantees that the medication has not been taken
for a duration equivalent to several half-lives [6]. Urine can be obtained noninvasively in
large volumes, and the drugs, as well as their metabolites, are usually concentrated [21].
Nevertheless, some major disadvantages of urine screening approaches were described,
such as the elaborate sample collection, simple adulteration, and misclassification of drug
adherence [22,23]. Compounds with a short half-life and/or low assay sensitivity could
yield false negative classifications, while compounds with a long half-life and/or high
assay sensitivity could yield false positive classifications for adherence [22]. Thus, recent
data indicated that a thorough analysis of the blood serum or plasma may be beneficial over
urine [22,24–27]. Accompanying the blood pressure measurement creates the opportunity
to link the drug concentration to the blood pressure profile [22].

The present pilot study aimed to further elucidate the power of measuring blood
plasma drug concentrations for adherence monitoring. Therefore, several objectives were
pursued within the framework of the current study. First, to develop and validate an
adherence monitoring method based on plasma quantification by ultra-high-performance
(UHP) LC-ion trap mass spectrometry (ITMS). The method should cover frequently pre-
scribed antihypertensive drugs [28,29] and be developed and validated in accordance with
guidelines of the European Medicines Agency (EMA) [30]. Second, to apply this method to
assess adherence by using dose-dependent reference plasma concentration ranges. As the
findings should finally be compared with those of an established, metabolite-based urine
screening procedure by LC-HRMS [17], only plasma samples with matched urine samples
that tested positive for antihypertensive drugs should be included in the applicability
testing to enable a comparison of the adherence.

2. Results
2.1. Development of the Analytical Procedure

Nine antihypertensive drugs with different chemical properties were chosen for the
current pilot study, including the beta-blockers bisoprolol, carvedilol, and metoprolol;
the diuretics canrenone and torasemide; the ARBs candesartan, olmesartan, and valsar-
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tan; and the calcium antagonist amlodipine. A representative and reconstructed ion
chromatogram of the m/z of the antihypertensive drugs (1 mg/L, each) and the internal
standard (IS) diazepam-d5 (0.1 mg/L) is depicted in Figure 1A. Different signal intensities
despite the same concentration were observed, most probably due to differences in the
ionization efficiency.
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Figure 1. Reconstructed ion chromatograms of the m/z of the antihypertensive drugs and the inter-
nal standard (IS) diazepam-d5 (1 metoprolol, 2 bisoprolol, 3 olmesartan, 4 torasemide, 5 carvedilol, 
6 amlodipine, 7 candesartan, 8 IS diazepam-d5, 9 valsartan, and 10 canrenone). (A) Methanolic 
solution, antihypertensive drugs 1 mg/L each, IS 0.1 mg/L. (B) Extracted high-quality control sam-
ple. (C) Extracted plasma sample after intake of bisoprolol, torasemide, and candesartan. (D) Ex-
tracted plasma sample after intake of olmesartan. 

  

Figure 1. Reconstructed ion chromatograms of the m/z of the antihypertensive drugs and the internal
standard (IS) diazepam-d5 (1 metoprolol, 2 bisoprolol, 3 olmesartan, 4 torasemide, 5 carvedilol,
6 amlodipine, 7 candesartan, 8 IS diazepam-d5, 9 valsartan, and 10 canrenone). (A) Methanolic
solution, antihypertensive drugs 1 mg/L each, IS 0.1 mg/L. (B) Extracted high-quality control sample.
(C) Extracted plasma sample after intake of bisoprolol, torasemide, and candesartan. (D) Extracted
plasma sample after intake of olmesartan.
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Liquid–liquid extraction (LLE) was found as suitable sample preparation procedure.
However, the addition of formic acid was crucial for the extraction of the acidic antihy-
pertensive drugs candesartan, olmesartan, and valsartan from blood plasma. Repeated
vortexing and shaking was needed to reliably homogenize the samples during sample
preparation. Figure 1B shows a plasma extract at a high level of quality control (QC) (for
concentrations, see Table 1) with an IS concentration of 10 ng/mL. The sample preparation
procedure was tested for interferences preventing the reducibility by determination of the
coefficients of variation (CVs) of the peak area ratios after three extractions. CVs were
found to be between 2% (torsemide) and 12% (metoprolol) and, thus, acceptable. All ana-
lytes were successfully separated via UHPLC within 12 min, obtaining retention times (tR)
between 4.2 and 11.7 min (details are given in Table 2). The total run time was 16 min per
run. Furthermore, the smartMRM mode increased the UHPLC-ITMS sensitivity compared
to autoMSn mode, which is used by default for plasma screening and quantification aiming
to detect intoxications in emergency toxicology [31].

Table 1. Final plasma concentrations (ng/mL) of the antihypertensive drugs in the six calibrator samples (Cal 1–6) and
quality control samples (QC) at four levels (LLOQ, low, medium, and high), as well as weighting factors used in a linear
calibration model. Lower limit of quantification (LLOQ), upper limit of quantification (ULOQ), and medium (Med).

Analyte Cal 1
(≡LLOQ) Cal 2 Cal 3 Cal 4 Cal 5 Cal 6

(=ULOQ)
LLOQ

QC
Low
QC

Med
QC

High
QC Weigh-ting

Amlodipine 10 50 100 150 200 250 10 30 120 240 1/x
Bisoprolol 5 25 50 75 100 125 5 15 60 120 1/x2

Candesartan 10 50 100 150 200 250 10 30 120 240 1/x2

Canrenone 20 100 200 300 400 500 20 60 240 480 1/x2

Carvedilol 1 5 10 15 20 25 1 3 12 24 1/x2

Metoprolol 10 50 100 150 200 250 10 30 120 240 1/x2

Olmesartan 5 25 50 75 100 125 5 15 60 120 1/x
Torasemide 5 25 50 75 100 125 5 15 60 120 equal
Valsartan 10 50 100 150 200 250 10 30 120 240 1/x

Table 2. Precursor ion m/z after positive ionization (M + H+), retention order, and retention times (tR)
of the antihypertensive drugs and internal standards (IS).

Analyte Precursor Ion m/z Retention Order tR, min

Amlodipine 409.15 6 8.8
Bisoprolol 326.23 2 5.2

Candesartan 441.17 7 10.5
Canrenone 341.21 10 11.7
Carvedilol 407.20 5 7.8

Diazepam-d5 (IS) 290.11 8 11.3
Metoprolol 268.19 1 4.2
Olmesartan 447.21 3 5.7
Torasemide 349.13 4 6.1
Valsartan 436.23 9 11.5

2.2. Method Validation

Atorvastatin-d5 and atorvastatin, as well as diazepam-d5 and diazepam, were found
to coelute and were therefore tested for the effects of the nondeuterated compounds on the
peak area of the deuterated compounds. Ion suppression of atorvastation-d5 (−17%) was
detected in the presence of atorvastatin, while diazepam did not influence the diazepam-d5
peak area. Therefore, further analyses were performed using only diazepam-d5 as IS.

Method validation was performed in accordance with the “Guideline on bioanalytical
method validation” of the EMA [30]. Selectivity was given for all antihypertensive drugs,
as well as for the IS diazepam-d5. No carryover was observed, except for torasemide with
an analyte response greater than 20% of its lower limit of quantification (LLOQ), which
corresponded to the concentration of Cal 1. However, the analyte response was not greater
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than 20% of Cal 2. After five washing runs injecting an eluent mixture A/B (1:1, v/v, see
Materials and Methods) immediately after the analysis of Cal 6, the analyte response was
below 20% of the LLOQ of torasemide.

A linear calibration model was successfully applied using a six-point calibration of
all analytes. However, different weighing factors (equal, 1/x, 1/x2) had to be used. The
details are given in Table 1. The acceptance criteria (AC) were checked for each individual
calibration. Calibration parameters such as slope, y-axis intercept, and the deviation of
the back-calculated concentrations of the three calibrations acquired during the validation
procedure are available in the Supplementary Materials (Table S1). If the AC for the
back-calculated concentrations were not fulfilled, this calibration standard sample was
rejected for the specific analyte, and the calibration without this calibration standard was
reevaluated, including a regression analysis according to the guidelines [30]. Nevertheless,
at least five out of six calibration standards fulfilled these criteria for each calibration, and
neither Cal 1 nor Cal 6 had to be excluded in accordance with the EMA guidelines.

Concerning the matrix effect experiments, Table 3 summarizes the IS-normalized
matrix factors (MF) of all analytes, ranging from 0.82 (candesartan) to 2.56 (amlodipine) for
the low QC and 0.96 (candesartan and olmesartan) to 1.37 (amlodipine) for the high QC.
CVs were not greater than 15% for bisoprolol, canrenone, and torasemide in the case of low
QC, while all other analytes exceeded the AC with CVs between 17% (metoprolol) and 42%
(valsartan). For high QC, CVs were not greater than 15% for all analytes except amlodipine
(16%), candesartan, olmesartan (both 17%), and valsartan (25%). In general, the matrix
effects were observed to be more pronounced in the case of low analyte concentrations, but
the difference between the IS-normalized MF determined for low and high QC was highest
in the case of amlodipine.

Table 3. Internal standard (IS)-normalized matrix factors of the analytes and coefficients of variation
(CV) derived from measurements of six lots of the matrix at a low (low QC, see Table 1) and a high
concentration (high QC, see Table 1).

Analyte
Low QC

CV, %
High QC

CV, %
IS-Normalized Matrix Factor IS-Normalized Matrix Factor

Amlodipine 2.54 26 * 1.37 16 *
Bisoprolol 1.12 11 1.07 13

Candesartan 0.82 24 * 0.96 17 *
Canrenone 1.10 11 0.99 10
Carvedilol 1.15 19 * 1.08 7
Metoprolol 1.16 17 * 1.07 10
Olmesartan 0.95 22 * 0.96 17 *
Torasemide 1.06 12 1.08 12
Valsartan 1.12 42 * 1.07 25 *

Values outside the recommended European Medicines Agency (EMA) guideline limits [30] are marked with an
asterisk (*).

The accuracy of an analytical method describes the closeness of the determined
value obtained by the method to the nominal concentration of the analyte. The precision
of the analytical method describes the closeness of repeated individual measures of the
analyte [30]. The within-run accuracy was found to be acceptable with mean concentrations
within ±15% of the nominal values for the low, medium, and high QC samples (1–15%)
and within ±20% for the LLOQ QC samples (2–15%) for all analytes, except for amlodipine
(medium QC, 17%), carvedilol (medium QC, 21%), torasemide (LLOQ QC, 34% and low
QC, 20%), and valsartan (low QC, 20%). The between-run accuracy was found to be
acceptable, with mean concentrations within ±15% of the nominal values for the low,
medium, and high QC samples (0–15%) and within ±20% for the LLOQ QC samples
(1–19%) for all analytes, except for carvedilol (LLOQ QC, 28%), olmesartan (LLOQ QC,
26%), and torasemide (low QC, 26%). The within-run and between-run precision were
expressed as the CV and found to be acceptable with CV values within 15% for the low,
medium, and high QC samples (1–14%) and within 20% for the LLOQ QC samples (3–20%)
for all analytes with the exception of valsartan (within-run precision, medium QC, CV 19%).
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After the dilution of samples spiked above the ULOQ (= Cal 6), the determined
concentrations were found to be precise (CVs of 6–15%) for all analytes. The determined
values were also found to be accurate for bisoprolol, candesartan, canrenone, olmesartan,
and valsartan (1–12% variation). In the case of amlodipine (25%), carvedilol, metoprolol
(both 30%), and torasemide (17%), the AC of the EMA concerning accuracy after dilution
were exceeded.

Methanolic stock solutions were found to be stable at −20 ◦C with CVs below 15%
for all analytes. All analytes were found to be stable in plasma extracts after 20 h in the
autosampler at 8 ◦C, except for amlodipine with a decrease of 16% compared to the nominal
concentration.

2.3. Applicability and Assessment of Adherence by Using the Dose-Dependent Reference Plasma
Concentration Range

Applicability testing was performed using 19 different plasma samples. A total of 28
antihypertensive drugs were prescribed (7 × bisoprolol, 5 × candesartan, 1 × canrenone,
1 × carvedilol, 2 ×metoprolol, 3 × olmesartan, 6 × torasemide, and 3 × valsartan), and
all of them could successfully be identified in plasma. Three different antihypertensive
drugs were present in two samples (ID 6 and 14) and two drugs in five samples (IDs 4,
11, 12, 13, and 18), while one drug was quantified in the remaining 12 plasma samples
(IDs 1, 2, 3, 5, 7, 8, 9, 10, 15, 16, 17, and 19). Reconstructed ion chromatograms after the
analysis of two samples are given in Figure 1C (sample ID 14) and Figure 1D (sample ID 10).
Previously, matching urine samples were tested positive for the antihypertensive drugs
and/or their metabolites using an established, metabolite-based urine screening procedure
by LC-HRMS [17].

The plasma quantification results given in Table 4 also contained the therapeutic
plasma concentration range described in the literature [32]; they prescribed daily doses of
the antihypertensive drugs and calculated dose-dependent reference plasma concentration
ranges with the underlaying pharmacokinetic parameters taken from Baselt [33]. The
calculated dose-dependent reference plasma concentration ranges were defined to comprise
cmin–20% to cmax. The trough plasma concentration 24 h after the latest drug intake, cmin,
was calculated using the elimination half-life t1/2, peak plasma concentration cmax, and
the corresponding time after intake when cmax was reached (tmax) for the corresponding
dose described by Baselt [33]. The shortest given elimination half-life t1/2 was always used
for the calculation. A subtraction of 20% from cmin led to cmin–20%, which was defined
as lower end of the calculated dose-dependent reference plasma concentration range.
The peak plasma concentration cmax was defined as the upper end. A summary of the
pharmacokinetic parameters used for calculation of the reference plasma concentration
ranges, as well as an example for such a calculation, are available as Supplementary
Materials Tables S2 and S3, respectively.

The dose used for the calculation of the reference plasma concentration range was
given in brackets if it was different from the patient’s prescribed daily dose. The measured
plasma concentration was above the ULOQ of olmesartan, torasemide, or valsartan, respec-
tively, in the case of six samples (IDs 3, 6, 8, 11, 14, and 19), which were diluted (1:10 with
pooled blank plasma), extracted, and reanalyzed. The measured plasma concentration
was still above the ULOQ of valsartan in the case of one sample (IDs 11), and it was thus
diluted (1:20 with pooled blank plasma), extracted, and reanalyzed.

Compared to the therapeutic plasma concentration ranges described in the litera-
ture [32], the determined plasma concentrations of 12 out of 28 antihypertensive drugs
were within (43%), 15 below (53%), and one above (4%) the given ranges. Compared to the
calculated dose-dependent reference plasma concentration ranges, the determined plasma
concentrations of 21 out of 28 antihypertensive drugs were within (75%), three below (11%),
and two above (7%) the range. In the case of two antihypertensive drugs, the determined
plasma concentrations were below the LLOQ (7%). However, the latter was higher than
cmin–20% in both cases.
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Table 4. Quantification results of 19 plasma samples containing 28 antihypertensive drugs in total, along with the prescribed
daily doses, therapeutic plasma concentration ranges according to Schulz et al. [32], elimination half-lives t1/2, time
after intake when the peak plasma concentration was reached (tmax), and calculated dose-dependent reference plasma
concentration ranges (cmin–20%-cmax). The dose used for calculation of the reference plasma concentration range was given
in parentheses if it was different from the patient’s prescribed daily dose. Plasma concentrations below the LLOQ are
indicated by < LLOQ. Plasma concentrations below the given concentration ranges are marked by (↓), within by (↔), and
above by (↑). If the measured plasma concentration cannot be classified using the given concentration ranges, they are
marked by (?).

Analyte Sample ID Measured Plasma
Conc. ng/mL

Daily Dose,
mg

Therapeutic Plasma
Conc., ng/mL [32]

t1/2, h
[33]

tmax, h
[33]

Calculated Reference
Plasma Conc., ng/mL

Bisoprolol

2 5.9 2.5 10–100 (↓)

7–15 2

2.0–21 (5 mg) (↔)
4 27 10 10–100 (↔) 4.8–52 (↔)
6 17 5 10–100 (↔) 2.0–21 (↔)
9 9 5 10–100 (↓) 2.0–21 (↔)

12 17 5 10–100 (↔) 2.0–21 (↔)
13 <LLOQ (5 ng/mL) 2.5 10–100 (↓) 2.0–21 (5 mg) (?)
14 5.5 5 10–100 (↓) 2.0–21 (↔)

Candesartan

12 66 8 80–400 (↓)

8–13

9.2–61 (↑)
14 160 32 80–400 (↔) 4 39–260 (↔)
15 92 32 80–400 (↔) 39–260 (↔)
16 83 16 80–400 (↔) 18–120 (↔)
17 49 16 80–400 (↓) 18–120 (↔)

Canrenone 4 90 50 50–500 (↔) 13–23 2 160–600 (100 mg) (↓)
Carvedilol 18 2.4 6.25 20–300 (↓) 4–7 1 0.36–58 (12.5 mg) (↔)

Metoprolol 5 38 50 20–600 (↔) 2.5–7.5 1 0.10–72 (↔)
7 <LLOQ (10 ng/mL) 100 20–600 (↓) 2 0.26–140 (?)

Olmesartan
1 52 40 100–1000 (↓)

6–15 2
55–830 (↓)

3 1100 40 100–1000 (↑) 55–830 (↑)
10 14 20 100–1000 (↓) 26–390 (↓)

Torasemide

6 41 10 64–2000 (↓)

2–6 1

0.47–1600 (↔)
8 240 10 64–2000 (↔) 0.47–1600 (↔)

11 18 10 64–2000 (↓) 0.47–1600 (↔)
13 30 10 64–2000 (↓) 0.47–1600 (↔)
14 170 5 64–2000 (↔) 0.47–1600 (10 mg) (↔)
18 9.2 2.5 64–2000 (↓) 0.47–1600 (10 mg) (↔)

Valsartan
6 920 320 800–6000 (↔)

4–12 3
240–11,000 (↔)

11 3000 320 800–6000 (↔) 240–11,000 (↔)
19 410 320 800–6000 (↓) 240–11,000 (↔)

3. Discussion
3.1. Development and Validation of the Analytical Procedure

The chosen antihypertensive drugs, including beta-blockers, ARBs, diuretics, and
a calcium antagonist, are frequently prescribed [28]. Canrenone can be used as diuretic
drug itself but also represents the active main metabolite of its prodrug spironolactone [34].
The method is therefore suitable for the adherence monitoring of both drugs. All of these
antihypertensive drugs are also available in fixed-dose combinations, the use of which is
recommended by the current guidelines [28].

Only 100 µL of blood plasma were required for the analysis. The duration of a
single analytical run (including equilibration) of 16 min is expected to be appropriate and
applicable in the daily laboratory routine. A single injection and analysis per sample saved
run time and was found to be adequate during the method development. Diazepam-d5 was
chosen as a suitable IS. In contrast to atorvastatin-d5, which provided a higher tR (12.4 min)
than all the antihypertensive drugs, diazepam-d5 eluted between candesartan and valsartan
(see Table 2). Furthermore, neither ion suppression nor the enhancement of its peak area
was detected in the presence of coeluting diazepam. Remane et al. [35] demonstrated
the importance of ion suppression and enhancement experiments for developing LC-
based mass spectrometry procedures if the baseline separation is not possible, and the
current results confirmed their findings. Some patients may be advised to take atorvastatin,
diazepam, and antihypertensive drugs at the same time. Ion suppression and enhancement
of the peak area of the IS may lead to false quantification results. Atorvastatin suppressed
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the atorvastatin-d5 peak area, which may lead to overestimation of the antihypertensive
drug plasma concentrations. In contrast, diazepam did not influence the diazepam-d5
area, and the current method is therefore also applicable for patients advised to take
diazepam. No other analytes were tested for ion suppression or enhancement due to
sufficient chromatographic separation (see Figure 1A).

The bioanalytical methods applied for measuring drug concentrations in biological
matrices have to be validated in order to provide reliable results [30]. The developed
method was fully validated according to the EMA guidelines [30]. The limitations observed
during validation will be discussed in the following. Due to the carryover of torasemide,
several washing runs injecting the eluent mixture A/B (1:1, v/v, see Materials and Methods)
are recommended after the analysis of Cal 6, high QC, or torasemide-containing patient
samples to ensure that the analyte response is below 20% of the LLOQ. Based on the
validation procedure, five washing runs were recommended. However, this option is quite
time-consuming (>1 h). Washing runs are also recommended if patient samples containing
plasma concentrations above those of Cal 6 were analyzed. In these cases, the washing run
should be checked for carryover of the analyte. In the case of torasemide, the elevation
of its LLOQ to the concentration of Cal 2 (25 ng/mL) represents a less time-consuming
alternative, which may complicate the adherence assessment of low torasemide plasma
concentrations. The first option, consisting of washing runs, was chosen for the subsequent
validation and application experiments described in the current study, but the latter may
be more suitable for routine application of the presented method.

The EMA guidelines do not define AC for the MF but for the CV of the IS-normalized
MF calculated from six lots of matrix that should not exceed 15%. However, CVs were
>15% in the case of six analytes for low QC and in the case of four analytes for high
QC. However, half of them (two analytes for low QC and three analytes for high QC)
had CVs between 15% and 20%. Other guidelines for the quantitative determination
of drugs, such as the “Recommendations of criteria for development and validation of
analytical methods for estimating concentrations of drugs in blood to be used in 24/7
clinical toxicology” published by the Society of Toxicological and Forensic Chemistry
(GTFCh) [36], include different instructions for assessing matrix effects. The GTFCh
recommendations stated that the matrix effect should not exceed ±30%. This means, for
the current study, that IS-normalized MF between 0.70 and 1.30 would be acceptable.
According to this recommendation, all analytes fulfilled the AC except for amlodipine in
low and high QC.

According to the EMA guidelines, the mean concentration determined in the accuracy
experiments should be within±15% of the nominal value (LLOQ±20%) [30]. The accuracy
of the AC was not fulfilled for the individual concentration levels in the case of five
antihypertensive drugs (amlodipine, carvedilol, olmesartan, torasemide, and valsartan).
However, the AC were still within 25% in most cases. For precision experiments, CVs
should not exceed 15% (LLOQ 20%), and the precision AC were only exceeded in the case
of valsartan but still within 20%. In comparison, the aforementioned recommendations of
the GTFCh allow 30% of the nominal value of two QC levels at the lower (20%) and upper
(80%) end of the calibration range, as well as the precision of <30% [36]. Accordingly, the
current validation experiments would be in line with those recommendations, except for
torasemide concerning the within-run accuracy at the LLOQ QC level (34%) supporting
the elevation of the LLOQ of torasemide to the concentration of Cal 2.

After dilution, the determined concentrations turned out to be precisely in accordance
with the EMA AC, while the quantification results of four antihypertensive drugs exceeded
the accuracy AC of the EMA. Nevertheless, the quantified concentrations did not exceed
the cut-off of ±30% of the nominal value, which was recommended by the GTFCh.

According to the EMA guidelines, evaluation of the stability must be carried out
to ensure that every step taken during the sample preparation and sample analysis, as
well as the storage conditions used, do not affect the concentration of the analyte [30].
The current experiments investigated whether the storage conditions used for the spiking
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solutions, as well as the conditions in the autosampler during short-term storage of the
plasma extracts, influenced the analytes’ concentrations. The stability of methanolic stock
solutions could be ensured for the whole validation process and subsequent applicability
testing. However, it should be regularly retested in case the current method is used for
routine work. Extracted plasma samples were stable for at least 20 h in the autosampler. It
is therefore recommended to finalize the batch analysis within this timeframe.

The stability of the analytes in the current sample matrix plasma was not investigated,
as this information was available from the literature [33]. Baselt described all analytes to be
stable for 24 h in plasma if stored at room temperature and for at least a month if stored in
the freezer. This means that plasma should be separated by centrifugation immediately
after sample collection. If samples cannot be transferred to the laboratory within 24 h, it is
recommended to freeze them and ship them frozen to ensure the analytes’ stability.

In summary, the current method was successfully validated and fulfilled the AC of
the EMA and/or the GTFCh [30,36]. It is therefore regarded as applicable for adherence
monitoring of hypertensive patients by drug quantification in blood plasma. The only
exception is amlodipine, whose IS-normalized MF exceeded the AC of both guidelines
in low and high QC. Furthermore, amlodipine is known to be photosensitive [26], but
all amlodipine-containing solutions were handled in amber-colored vials during method
development and validation. The amlodipine plasma concentrations should be interpreted
with caution, and clinicians must be advised to immediately protect amlodipine-containing
plasma samples from light. As both high matrix effects and photosensitivity might impact
a reliable quantification, amlodipine was not included in the applicability study.

3.2. Applicability and Assessment of Adherence by Using the Dose-Dependent Reference Plasma
Concentration Range

Applicability was tested using 19 plasma samples containing 28 antihypertensive
drugs. Each of the eight antihypertensive drugs that passed the validation procedure
contained at least in one plasma sample (see Table 4). Interpretation of the analytical
results is one crucial step. Classification of the plasma concentrations is more sophisticated
and time-consuming than the evaluation of qualitative urine screening results, where the
presence or absence of a drug and/or its metabolites represents the main criterion.

Thus, the measured plasma concentrations were compared to the plasma concentra-
tions described as therapeutic (“normal”) in the paper by Schulz et al. [32]. These data are
intended to help toxicologists to decide whether a patient may suffer from an intoxication
and do not focus on adherence monitoring. Only a single range is given for each drug,
independent of the prescribed daily dose. Plasma concentrations of only 12 antihyperten-
sive drugs were found to be within the described therapeutic range, while even more were
below it. These findings are in accordance with the observations by Ritscher et al. [25]. They
developed a plasma quantification procedure including four beta-blockers (amongst them,
bisoprolol and metoprolol) and four diuretics (amongst them, canrenone and torasemide)
with a focus on the adherence assessment and compared their quantification results with
the therapeutic plasma concentration ranges according to the article by Schulz et al. from
2012 [37]. About 30% were below the described therapeutic concentration ranges, and
the authors concluded that these ranges cannot be used to evaluate adherence, as drug
ingestion was monitored in their study. Therefore, Ritscher et al. used a dose-related con-
centration approach and compared measured concentrations with trough serum drug
concentrations calculated individually for each patient using data from pharmacokinetic
studies, including bioavailability, total body clearance, and elimination rate constants [25].
Rognstad et al. also addressed the problem of lacking serum reference ranges of antihy-
pertensive drugs and preventing the widespread use of therapeutic drug monitoring in
cardiology [38]. Nevertheless, the serum concentrations measured by Ritscher et al. [25]
were comparable to the plasma concentrations determined in the current study. In the case
of bisoprolol, Ritscher et al. described the trough serum levels between 8.9 and 41 ng/mL
for patients with prescribed daily doses between 2.5 and 10 mg. Two trough serum con-
centrations each were described for canrenone (26 and 48 ng/mL, daily spironolactone
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dose 25 mg, each), as well as metoprolol (6.6 and 13 ng/mL, daily dose 50 or 100 mg,
respectively). Concerning torasemide, Ritscher et al. reported trough serum levels between
18 and 370 ng/mL for patients with prescribed daily doses of 5 or 10 mg [25].

In the current study, drug intake was not monitored, and the exact time between intake
and sampling was unknown, as is usually the case for outpatients. Therefore, adherence
cannot be assumed, even if matching urine samples were tested positive for the antihyper-
tensive drugs and/or their metabolites [17]. Instead, a simplified assessment approach was
used by calculating the dose-dependent reference plasma concentration range (cmin–20%–
cmax) for each antihypertensive drug by using data from Baselt [33], such as the peak
plasma concentrations cmax, the time at which cmax was reached (tmax), and the elimination
half-life t1/2. The latter usually represents a range, and the shortest given half-life was used
for the calculations. The dosing regimens were simplified by calculating the total daily
dose with a hypothetical dosing interval of 24 h according to Hiemke et al. [39]. The least-
expected plasma concentration at 24 h after the latest drug intake (trough concentration)
was cmin. A subtraction of 20% led to cmin–20% which was defined as the lower end of the
reference plasma concentration range to exclude the influence of interindividual differences
and measurement uncertainties. As Baselt [33] did not report peak plasma concentrations
for all doses prescribed to the patients, the quantification results were evaluated using the
most comparable dose of which the peak plasma concentration cmax was available.

The determined plasma concentrations of 21 out of 28 antihypertensive drugs were
found to be within the calculated dose-dependent reference plasma concentration ranges
underlining the importance of including the individual daily dose and trough concentra-
tions. Three plasma concentrations were below the calculated reference ranges, but the
drugs could successfully be identified in plasma. In the case of canrenone (sample ID 4),
the patient was advised to take only 50 mg per day, but the peak plasma concentration
cmax was only available after an intake of 100 mg. In the case of olmesartan (sample ID 1
and 10), the concentrations were slightly below the lower limit of the reference plasma
concentration ranges. In all three cases, a follow-up analysis may be recommended.

Two plasma concentrations were above the calculated reference concentration ranges.
However, the upper limit of the reference range was defined by the peak plasma concen-
tration cmax. This value only reflects the mean value of a patient collective. In conclusion,
higher peak plasma concentrations may be expected in some patients, leading to the
conclusion that patients with plasma concentrations exceeding the given peak plasma
concentration cmax (e.g., sample ID 3 and 12) are considered as adherent. Furthermore, the
concentrations of olmesartan, torasemide, or valsartan were above the ULOQ in the case of
six samples, which were subsequently diluted to determine the plasma concentration. It
should be mentioned that this dilution step was not necessary to assess the adherence, as
the ULOQ (125 ng/mL for olmesartan and torasemide and 250 ng/mL for valsartan) was
within the calculated dose-dependent reference plasma concentration range in all cases.

In two cases containing bisoprolol (sample ID 13) or metoprolol (sample ID 7), the
determined plasma concentrations were below the LLOQ, which was higher than cmin–20%.
Therefore, an adherence assessment was not possible in both cases. However, it must be
mentioned that additional torasemide in the case of sample ID 13 was within the reference
plasma concentration range. Furthermore, if the torasemide LLOQ would be elevated to
the concentration of Cal 2 (25 ng/mL) due to the carryover, the adherence of the patients
with sample IDs 11 and 18 to torasemide could not be assessed anymore.

Of course, the current procedure has limitations. First of all, calculating the dose-
dependent reference plasma concentration ranges is time-consuming, but as soon as they
are available, they can be used for patients receiving the same daily dose. Furthermore,
most data from Baselt described plasma concentrations after a single dose [33], and higher
plasma concentrations may be expected in a steady state. Interindividual differences,
for example, in the expression of metabolic enzymes were not considered. Finally, some
analytes were only contained in a single plasma sample, as only a limited number of
samples was analyzed. As a future perspective, more plasma samples should be analyzed
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to further evaluate and improve the current dose-dependent reference plasma concentration
ranges approach.

In summary, the measured plasma concentrations of 12 out of 19 samples were within
the calculated reference plasma concentration ranges for all analyzed antihypertensive
drugs (65%), of two times above (10%), and of three times below (15%). The adherence
of sample IDs 7 and 13 could not be assessed, due to bisoprolol or metoprolol plasma
concentrations and cmin–20% below the LLOQ. Fourteen out of 19 samples were classified
as adherent (75%) and three as nonadherent (IDs 1, 4, and 10).

4. Materials and Methods
4.1. Chemicals, Reagents, and Human Biosamples

Amlodipine besylate was purchased from Pfizer (Karlsruhe, Germany); canrenone
from the European Directorate for the Quality of Medicines & HealthCare (Strasbourg,
France); bisoprolol fumarate, metoprolol tartrate, carvedilol, candesartan, valsartan, olme-
sartan, torasemide, and a diazepam-d5 solution (1 mg/mL in methanol) from LGC Stan-
dards (Wesel, Germany); atorvastatin-d5 calcium salt from Alsachim (Shimadzu Group,
Illkirch Graffenstaden, France); and methanol, acetonitrile (ACN), diethyl ether, ethyl
acetate, and natrium sulfate from VWR International GmbH (Darmstadt, Germany), as
well as ammonium formate and formic acid from Merck KGaA (Darmstadt, Germany).
All chemicals were of analytical grade. Water was purified with a Millipore filtration unit
(18.2 Ω × cm water resistance) from Merck (Darmstadt, Germany). Drug-free pooled hu-
man blank plasma was obtained from a local blood bank. The analysis of human samples
was approved by the local ethics committee to assess medication adherence using toxico-
logical analyses objectively and complied with the Declaration of Helsinki. All patients
provided written informed consent.

4.2. Preparation of Stock Solutions for Calibrators and Quality Controls

Stock solutions (1 mg/mL) of the antihypertensive drugs and of the IS atorvastatin-d5
were prepared in methanol. All solutions were stored at −20 ◦C. Methanolic mix solutions
for the calibrators and QC samples were prepared using different stock solutions and
freshly spiked in pooled human blank plasma during sample preparation. Amlodipine-
containing solutions were handled in amber-colored vials during method development
and validation. Final plasma concentrations of the calibrators (Cal 1−6), as well as QC
samples (at four levels: LLOQ, low, medium, and high), are given in Table 1.

4.3. Sample Preparation

Plasma samples were prepared by LLE. First, 100 µL of blood plasma, 10 µL of formic
acid (100%), 10 µL of diazepam-d5 (100 ng/mL in methanol), and 10 µL of methanol were
mixed and vortexed for 10 s. For preparation of the calibrator and QC samples, methanol
was replaced by 10 µL of the respective mix solution (concentrations given in Table 1).
Afterwards, 100 µL of a saturated sodium sulfate solution were added, the mixture was
vortexed for 10 s, and 500 µL of diethyl ether-ethyl acetate (1:1, v/v) were added. After
another vortexing step (10 s), manual shaking for 30 s, and centrifugation (5 min, 18,407× g),
300 µL of the clear organic phase were transferred to an amber-colored vial and evaporated
to dryness at 30 ◦C under a stream of nitrogen. The residue was reconstituted in 40 µL of
a mixture of eluents A and B (60:40, v/v, 2-mM aqueous ammonium formate containing
0.1% formic acid and 1% ACN:ACN containing 2-mM ammonium formate, 0.1% formic
acid, and 1% water). Reproducibility of the sample preparation procedure was tested by
determination of the CVs of the peak area ratios of the analyte (m/z of M + H+, given in
Table 2) and the IS diazepam-d5 at a plasma concentration of 100 ng/mL, each, after three
extractions (n = 3).
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4.4. UHPLC-ITMS Conditions

A Dionex UltiMate 3000 LC-system (Thermo Fisher Scientific, TF, Dreieich, Germany)
connected to an amaZon speed ion trap mass spectrometer (Bruker Daltonik, Bremen,
Germany) with an electrospray ionization source were used. Gradient elution was per-
formed on a TF Acclaim RSLC120 C18 column (100 mm × 2.1 mm × 2.2 µm) at a column
temperature of 45 ◦C using eluent A (2-mM aqueous ammonium formate containing 0.1%
formic acid and 1% ACN) and eluent B (ACN containing 2-mM ammonium formate, 0.1%
formic acid, and 1% water). The gradient was programmed as follows: 0 to 1 min hold
1% B, 1–4 min increase to 21% B, 4–10 min increase to 33% B, 10–13 min increase to 99% B,
13–15 min hold 99% B, 15 to 15.1 min decrease to 1% B, and 15.1–16 min hold 1% B, each
step at a constant flow rate of 0.7 mL/min. The injection volume was 10 µL. The mass spec-
trometer operated in smartMRM mode using a scheduled precursor list (SPL) to generate
MS2 spectra of scheduled precursors and a mass range from m/z 70–500 at m/z/s 32,500.
SmartMRM mode parameters were programmed as follows: ionization mode, positive;
ICC target (determines how many ions should be transferred into the trap), 50,000; max.
accumulation time, 50 ms; MS spectra, interval 0.01; averages (determines how many scans
will be summed and averaged for one spectrum), 1; SPS for tandem mass spectrometry
(MS/MS) acquisition enabled; fast chromatography, not selected; edit parameters, link
edit-enabled; and rolling averaging (filtering out short-term fluctuations), No. 1. Source
parameters were as follows: capillary voltage, 4500 V; end plate offset, 500 V; nebulizer gas,
80 psi; dry gas, 10 L/min; and dry temperature, 159 ◦C.

4.5. Method Validation

Method validation was performed according to the “Guideline on bioanalytical
method validation” of the EMA [30]. Drug identification was based on three criteria:
first, the mass of the protonated precursor ion, second, the MS2 spectrum, and third, the
tR. Data handling was done using Bruker Compass Data Analysis Version 4.4 (Bruker
Daltonik). For quantification, peak area ratios of the analyte (m/z of M + H+ are given in
Table 2) and the IS diazepam-d5 (M + H+ at m/z 290.11, tR 11.30 min) were used. Graphs
and structures of analytes were edited using CorelDraw X7 Version 17.0.0.491 (Munich,
Germany). Statistical analysis was done using Microsoft Excel 2010 (Redmond, WA, USA)
and GraphPad Prism 5.00 (GraphPad Software, La Jolla, CA, USA).

4.5.1. Ion Suppression and Enhancement of Coeluting Analytes

Coelution and subsequent ion suppression and enhancement of possible IS was tested
for diazepam-d5 (M + H+ at m/z 290.11) and diazepam (M + H+ at m/z 285.08), as well as
atorvastatin-d5 (M + H+ at m/z 564.29) and atorvastatin (M + H+ at m/z 559.26). Substances
in separate methanolic solutions (1 mg/L) were injected onto the UHPLC-ITMS system
(n = 3). The absolute peak areas were compared to the absolute peak areas of a mixture
(n = 3) containing both substances (1 mg/L), respectively.

4.5.2. Selectivity

Ten plasma samples from different donors were extracted without the addition of IS
diazepam-d5, individually analyzed, and evaluated for interferences in order to evaluate
whether the current method can differentiate the analytes of interest and IS from endoge-
nous components in the sample. The plasma samples also contained exogenous com-
pounds such as ethanol, sedatives (e.g., midazolam), antidepressants (e.g., mirtazapine),
antiepileptics (e.g., valproic acid), analgesics (e.g., metamizole), other antihypertensives
(e.g., urapidil), or local anesthetics (e.g., mepivacaine), but none of the cardiovascular drugs
were included in the current method development. Selectivity was given if the response
was less than 20% of the LLOQ for the antihypertensive drugs and less than 5% for the IS
diazepam-d5 [30].
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4.5.3. Carryover

For carryover testing, an extract of pooled blank plasma was injected after the highest
calibration standard (Cal 6, plasma concentrations of analytes; see Table 1). Carryover
should not be greater than 20% of the LLOQ for the antihypertensive drugs and 5% for IS
diazepam-d5 [30].

4.5.4. Calibration

Six calibrator (Cal 1–6) and four QC (LLOQ, low, medium, and high) levels were
prepared for each analyte by spiking pooled human blank plasma with predefined analyte
concentrations, which are given in Table 1. The LLOQ was defined to be equal to the
concentration of Cal 1 and the upper limit of quantification (ULOQ) to the concentration of
Cal 6. In total, four different calibration ranges with individual LLOQ and ULOQ levels
were defined depending on the analyte. A blank sample (extracted sample without IS
diazepam-d5 or analytes) and zero sample (extracted sample with IS diazepam-d5 but
without analytes) were prepared. QCs were prepared in duplicates (n = 2), and each
calibrator, QC, blank, and zero sample was injected and analyzed once. For evaluation,
linear and nonlinear regression models were tested, as well as different weighing factors
(equal, 1/x, and 1/x2). The AC for the back-calculated concentrations of the calibrator
standards were set to ±15% of the nominal value, except for the LLOQ, for which the
back-calculated concentration should be within ±20% [30]. At least 75% of the calibration
standards must fulfill these criteria, meaning that, in the current case, five out of six
calibrator samples must fulfill the criteria.

4.5.5. Matrix Effect

According to the EMA guidelines, single plasma samples from six different donors
were used instead of the pooled matrix, and two different sample sets were prepared with
a low and a high concentration each (for concentrations of low and high QC, see Table 1).
The first sample set contained analytes in a pure methanolic solution (neat standard). For
the second sample set, blank plasma was extracted and spiked with analytes afterwards.

For each analyte and the IS, the MF was calculated for each lot of the matrix as the
ratio of the peak area in the presence of the matrix (sample set 2) and the peak area in
the absence of the matrix (sample set 1). Finally, the IS-normalized MF was calculated
by dividing the MF of the analyte by the MF of the IS. The CV of the IS-normalized MF
calculated from the 6 lots of the matrix should not be greater than 15%.

4.5.6. Accuracy and Precision

The closeness of the determined value obtained by the method to the nominal concen-
tration of the analyte is described by the accuracy, which is expressed in percentage. The
closeness of repeated individual measures of the analyte is described by the precision that
can be expressed as the CV [30]. Freshly prepared QC samples were analyzed against a
freshly prepared calibration.

Within-Run Accuracy and Precision

Within-run accuracy and precision were determined by analyzing five replicates of
QCs (LLOQ and low, medium, and high QC; concentration levels given in Table 1) in a
single run. The mean concentration should be within ±15% of the nominal concentration,
except for the LLOQ, where it should be within ±20% of the nominal value, according to
the EMA [30]. For within-run precision, CVs were calculated and should be within 15%,
except for the LLOQ, where it should be within 20%.

Between-Run Accuracy and Precision

Between-run accuracy and precision were determined by analyzing five replicates of
QCs (LLOQ and low, medium, and high QC; concentration levels given in Table 1) over
three runs on three different days. The mean concentration should be within ±15% of
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the nominal concentration, except for the LLOQ, where it should be within ±20% of the
nominal value, according to the EMA [30]. For between-run precision, CVs were calculated
and should not be >15%, except for the LLOQ, where it should not be >20%.

Dilution Integrity

Dilution integrity was tested by spiking pooled human blank plasma with an analyte
concentration five times higher than the high QC (for concentrations, see Table 1). After
1:10 dilution with pooled blank plasma, concentrations of medium QC were achieved
(concentrations given in Table 1). Samples were extracted and analyzed as described above.
Five replicates were prepared (n = 5). Accuracy and precision should be within 15%,
according to the EMA [30].

4.5.7. Stability of Stock Solutions

A methanolic mixture prepared from the stock solutions of the calibrators containing
the antihypertensive drugs and the IS diazepam-d5 (1 mg/L, each) was analyzed once a
week over a period of ten weeks, and CVs of the peak area ratios of the analyte and the
IS were calculated. Between the analyses, the mixture was stored at −20 ◦C in an amber-
colored vial. CVs not greater than 15% were defined as acceptable. Ten washing runs
injecting an eluent mixture A/B (1:1, v/v) immediately after analysis prevented carryover.

4.5.8. Autosampler Stability

Plasma samples were extracted and analyzed immediately after preparation (t0) and
after the appropriate storage condition (t1) against a freshly spiked calibration. Stability of
the processed samples (low and high QC; concentrations given in Table 1, n = 3, respectively)
in the autosampler was evaluated by reanalyzing the processed samples stored for 20 h
in the autosampler (8 ◦C). The mean concentration at each concentration level should be
within ±15% of the nominal concentration.

4.6. Applicability and Calculation of the Dose-Dependent Reference Plasma Concentration Range

A total of 19 plasma samples of hypertensive patients were extracted and analyzed,
as described above. The lower limit of the reference plasma concentration range was rep-
resented by cmin–20% (=calculated plasma concentration 24 h after the latest drug intake
minus 20%) and the upper limit by the peak plasma concentration cmax. The latter was
taken from Baselt [33], as well as the corresponding time when the cmax was reached,
tmax, and the elimination half-life, t1/2. The shortest given elimination half-life t1/2 was
always used for the calculation of the trough concentration cmin. A summary of the phar-
macokinetic parameters used for calculation of the reference plasma concentration ranges,
as well as an example for such a calculation, are available as Supplementary Materials
(Tables S2 and S3, respectively). If the measured plasma concentration was above the
ULOQ of the corresponding analyte, the sample was diluted, extracted, and reanalyzed.

5. Conclusions

An analytical procedure for the simultaneous quantification of nine cardiovascular
drugs based on the LLE of only 100 µL of blood plasma and fast UHPLC separation
within 12 min, followed by an ITMS analysis, was successfully developed. Validation
was successfully performed in accordance with the international guidelines. Limitations
exceeded the AC for the matrix effects in the case of amlodipine and its instability. The
developed procedure was used for the analysis of 19 plasma samples containing a total of
28 antihypertensive drugs to determine whether a patient can be considered as adherent
or not. For this purpose, the dose-dependent reference plasma concentration ranges were
calculated using pharmacokinetic parameters. The adherence of two subjects out of 19
could not be assessed (10%), due to the measured plasma concentrations and cmin–20%
below the LLOQ, but 14 were classified as adherent (75%) and three as nonadherent (15%).
In contrast, all 19 (100%) were claimed adherent based on the results of the qualitative urine
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screening due to the presence of the antihypertensive drug and/or metabolites in the urine.
The current pilot study demonstrated that the interpretation of plasma concentrations
is far more sophisticated and time-consuming than urine screening results, and further
data is needed to estimate whether plasma quantification is superior to urine screening in
confirming the adherence to antihypertensive medication.

Supplementary Materials: The following are available online: Table S1: Parameters of three different,
freshly prepared calibrations acquired during validation procedure (slope, intercept, and deviation
of back-calculated concentrations of calibrators. Table S2: Summary of the pharmacokinetic data
(elimination half-live t1/2, peak plasma concentration cmax, and time when cmax was reached,
tmax) used for calculating the dose-dependent reference plasma concentration ranges. Table S3:
Example calculation of the lower limit (cmin–20%) of the reference plasma concentration range for
10 mg bisoprolol daily.
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