

On the Analysis of
Stochastic Timed Systems

Thesis for obtaining the title of
Doctor of Engineering Science

of the Faculty of Natural Science and Technology I
of Saarland University

by

Arnd Hartmanns

Saarbrücken
February 2015

© 2015 universaar
Universitätsverlag des Saarlandes
Saarland University Press
Presses Universitaires de la Sarre

Postfach 151150, 66041 Saarbrücken

ISBN 978-3-86223-181-2 gedruckte Ausgabe
ISBN 978-3-86223-182-9 Online-Ausgabe
URN urn:nbn:de:bsz:291-universaar-1389

Thesis for obtaining the title of Doctor of Engineering Science of the
Faculty of Natural Science and Technology I of Saarland University

Day of the Colloquium: 4 February 2015
Dean of the Faculty: Univ.-Prof. Dr. Markus Bläser
Chair of the Committee: Prof. Dr. Gert Smolka
Reviewers: Prof. Dr. Holger Hermanns

Prof. Kim G. Larsen, Ph.D.
Prof. Dr. Jaco C. van de Pol

Academic Assistant: Dr. Jan Krčál

Projektbetreuung universaar: Susanne Alt

Satz: Arnd Hartmanns
Umschlaggestaltung: Julian Wichert

Bibliografische Information der Deutschen Nationalbibliothek:
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen
 National bibliografie; detaillierte bibliografische Daten sind im Internet über
<http://dnb.d-nb.de> abrufbar.

Abstract
The formal methods approach to develop reliable and efficient safety- or perfor-
mance-critical systems is to construct mathematically precise models of such
systems on which properties of interest, such as safety guarantees or perform-
ance requirements, can be verified automatically. In this thesis, we present
techniques that extend the reach of exhaustive and statistical model checking to
verify reachability and reward-based properties of compositional behavioural
models that support quantitative aspects such as real time and randomised de-
cisions.
We present two techniques that allow sound statistical model checking for the
nondeterministic-randomised model of Markov decision processes. We invest-
igate the relationship between two different definitions of the model of prob-
abilistic timed automata, as well as potential ways to apply statistical model
checking. Stochastic timed automata allow nondeterministic choices as well
as nondeterministic and stochastic delays, and we present the first exhaustive
model checking algorithm that allows their analysis. All the approaches intro-
duced in this thesis are implemented as part of the MODEST TOOLSET, which
supports the construction and verification of models specified in the formal
modelling language MODEST. We conclude by applying this language and
toolset to study novel distributed control strategies for photovoltaic microgen-
erators.

Zusammenfassung
Formale Methoden erlauben die Entwicklung verlässlicher und performanter
sicherheits- oder zeitkritischer Systeme, indem auf mathematisch präzisen Mo-
dellen relevante Eigenschaften wie Sicherheits- oder Performance-Garantien
automatisch verifiziert werden. In dieser Dissertation stellen wir Methoden vor,
mit denen die Anwendbarkeit der klassischen und statistischen Modellprüfung
(model checking) zur Verifikation von Erreichbarkeits- und Nutzenseigenschaf-
ten auf kompositionellen Verhaltensmodellen, die quantitative Aspekte wie zu-
fallsbasierte Entscheidungen und Echtzeitverhalten enthalten, erweitert wird.
Wir zeigen zwei Methoden auf, die eine korrekte statistische Modellprüfung
von Markov-Entscheidungsprozessen erlauben. Wir untersuchen den Zusam-
menhang zwischen zwei Definitionen des Modells des probabilistischen Zeit-
automaten sowie mögliche Wege, die statistische Modellprüfung auf diese Art
Modelle anzuwenden. Stochastische Zeitautomaten erlauben nichtdeterministi-
sche Entscheidungen sowie nichtdeterministische und stochastische Wartezei-
ten; wir stellen den ersten Algorithmus für die klassische Modellprüfung die-
ser Automaten vor. Alle Techniken, die wir in dieser Dissertation behandeln,
sind als Teil des MODEST TOOLSETs, welches die Erstellung und Verifikati-
on von Modellen mittels der formalen Modellierungssprache MODEST erlaubt,
implementiert. Wir verwenden diese Sprache und Tools, um neuartige verteilte
Steuerungsalgorithmen für Photovoltaikanlagen zu untersuchen.

Acknowledgments

There are many people that contributed directly or indirectly to the existence of
this thesis, to its contents, and to the ten years of my time at Saarland University
before this thesis was finally written and defended. I am grateful to all of these
people for their support, advice, contributions, and friendship.

First and foremost, this thesis would not have been possible without the ad-
vice, guidance and funding provided by my advisor, Holger Hermanns. On the
organisational side, Christa Schäfer’s skills and continued support were invalu-
able. I am grateful for Gert Smolka’s advice and support, from my undergradu-
ate times ten years ago right up to taking on the task of heading my committee.
When it comes to my reviewers, Kim G. Larsen not only accepted the job of
reviewing this thesis, but also taught me how to deal with tough questions dur-
ing presentations early on in the QUASIMODO project, while Jaco van de Pol
provided a long list of deep questions and helpful comments before the defence
that surely improved both my talk and this final version of the thesis document.
I am grateful to Jan Krčál for joining the committee and making sure that all
the reviewers arrived safely and in time for the defence.

A number of people have directly contributed to my research and thus the
contents of this thesis. Although my official time as a Ph.D. candidate only
began in May 2009, I had been exposed to the MODEST modelling language
much earlier. Reza Pulungan helped with several technical challenges during
this period. The development of the MODEST TOOLSET, which now imple-
ments the new techniques presented in this thesis, was aided in the first years
by the programming work of Jonathan Bogdoll. He initiated the work on using
partial order reduction for statistical model checking, which later also benefited
from input by Luis María Ferrer Fioriti. This idea was originally due to Pedro
D’Argenio, who continued to help with discussions on modelling, the MOD-
EST language, and stochastic timed systems every time he visited us in Saar-
brücken. The alternative of using confluence reduction was the result of the
most efficient and enjoyable scientific collaboration I was part of so far, with
Mark Timmer from the University of Twente. This collaboration would not
have taken place without the ROCKS project and its fruitful meetings in nice
locations throughout Germany and the Netherlands. Alexandre David must
be mentioned for providing insights into UPPAAL and the effective joint work
that made the development of the mctau tool possible towards the end of the
QUASIMODO project. Another enjoyable collaboration was with Ernst Moritz
Hahn and Joost-Pieter Katoen on extending MODEST to the hybrid systems
setting, which later led to the development of the first model checking tech-
nique for stochastic timed automata by specialising Moritz’ results for hybrid

systems. Pascal Berrang helped evaluate the microgenerator control strategies
by running the experiments and creating beautiful graphs of the results.

I would like to thank Dominique Borrione for inviting me to give a tutorial
on MODEST at FDL 2012, and Thorsten Tarrach for arranging the opportunity
to present my work at IST Austria in early 2014. I met David Parker at sev-
eral conferences and workshops, and our discussions always left me with new
insights and ideas. I am grateful for having had the opportunity to work with
great colleagues like Hernán Baró Graf, Jonathan Bogdoll, Yuliya Butkova,
Pepijn Crouzen, Christian Eisentraut, Alexander Graf-Brill, Luis María Ferrer
Fioriti, Ernst Moritz Hahn, Vahid Hashemi, Hassan Hatefi, Jan Krčál, Gilles
Nies, Lei Song, Andrea Turrini and Björn Wachter at the chair of Dependable
Systems and Software as well as with our visitors Pedro D’Argenio, Tugrul Da-
yar and Hubert Garavel, and also for the exchange of ideas with Verena Wolf’s
group for Modeling and Simulation, including Aleksandr Andreychenko, Thilo
Krüger, Linar Mikeev and David Spieler.

Over the ten years I spent at Saarland University as a computer science
student and Ph.D. candidate, I have always been most grateful for the sup-
port of my entire family: Ursula, Jörg, Anke, Annaliese, Hans-Hermann, Rolf,
thank you! Furthermore, these years would have been much less enjoyable
without the friendship of Mirren Augustin, Sebastiano Barbieri, Hernán & Vir-
ginia Baró Graf, Jan & Agnes Christoph, Sven Dahms, Christian Doczkal, Fa-
bienne Eigner, Fiona Gutjahr, Pascal Gwosdek, Ernst Moritz Hahn, Michaela
Hardt, Steffen & Tamara Heil, Anne Krätschmer, Markus Mainberger, Se-
bastian Meiser, Esfandiar Mohammadi, Markus Rabe, Raphael Reischuk and
Thorsten Tarrach—who knows what this thesis would be like without you?

Being a student or Ph.D. candidate means having a certain scheduling flex-
ibility, which can be used explore our beautiful planet. The exploration of the
Northeastern U.S., as well as of the game of golf, has been kindly supported by
Corrine & Rick Jurgens. The collaboration with Mark Timmer also extended,
with the same ease and efficiency, to the exploration of the national parks of
Arizona, California, Nevada and Utah together with Alfons and Laura. Visits
to Argentina started in 2013 together with Pedro D’Argenio, Alexander Graf-
Brill, Luis María Ferrer Fioriti, Vahid Hashemi, Hassan Hatefi, Holger Her-
manns, Andrea Turrini and Lijun Zhang, and were continued with the amazing
hospitality of Carlos Budde and his family in 2014, including activities with
Pedro D’Argenio, Raúl Monti and Silvia Pelozo. Norway was visited together
with Manuel Jöris, and a trip to Canada was caused and supported by Marianne
Boivin. Last but very far from least, I have only been to Ireland due to Thors-
ten Tarrach, and would not have experienced Serbia, Bosnia and Herzegovina,
Croatia and Montenegro without Thorsten Tarrach and Sanja Pavlović.

Funding
The research leading to the results presented in this thesis was supported by
the German Research Council (DFG) as part of the Transregional Collabor-
ative Research Center “Automatic Verification and Analysis of Complex Sys-
tems” (SFB/TR 14 AVACS); by the European Community’s Seventh Framework
Programme under grant agreements no. 214755 (QUASIMODO), no. 295261
(MEALS) and no. 318490 (SENSATION); by the DFG/NWO Bilateral Research
Program ROCKS; and by the CAS/SAFEA International Partnership Program
for Creative Research Teams.

Contents

1 Introduction 13
1.1 Modelling and Verification 14
1.2 Quantitative Requirements and Models 16
1.3 Exhaustive and Statistical Model Checking 20
1.4 The MODEST Approach . 23
1.5 Contributions and Origins of the Thesis 26

2 Preliminaries 29
2.1 Mathematical Notation . 29
2.2 Probability Theory . 31
2.3 Variables and Expressions 35

3 Basic Models 39
3.1 Labelled Transition Systems 39

3.1.1 Parallel Composition 43
3.1.2 Variables . 46
3.1.3 Modelling . 53
3.1.4 Properties . 64
3.1.5 Analysis . 66

3.2 Discrete-Time Markov Chains 70
3.2.1 Modelling . 74
3.2.2 Properties . 75
3.2.3 Analysis . 78

3.3 Compositionality . 85

4 Markov Decision Processes 89
4.1 Definition . 91
4.2 Variables . 100
4.3 Modelling . 104
4.4 Properties . 105
4.5 Model Checking . 107
4.6 Statistical Model Checking 112

4.6.1 Resolving Nondeterminism 114
4.7 SMC for Spuriously Nondeterministic MDP 117

4.7.1 Using Partial Order Reduction 123
4.7.2 Using Confluence Reduction 133
4.7.3 Evaluation . 148
4.7.4 Caching the Reduction Function 158

4.8 SMC for General MDP . 160
4.8.1 Using Learning Algorithms 161
4.8.2 Sampling Schedulers with PRNG and Hashing 165
4.8.3 Failed Idea: Exhaustive SMC 168

4.9 Summary and Discussion . 169

5 Probabilistic Timed Automata 175
5.1 Definition . 178
5.2 Deadlines . 187
5.3 Modelling . 195
5.4 Properties . 199

5.4.1 Reachability . 199
5.4.2 Rewards . 201

5.5 Model Checking . 204
5.6 Statistical Model Checking 212

5.6.1 Time-Deterministic PTA 213
5.6.2 Scheduling in Time 216
5.6.3 Implicit Stochastic Semantics 220
5.6.4 SMC for General PTA 222

5.7 A Bounded Retransmission Example 224
5.8 Summary and Discussion . 229

6 Stochastic Timed Automata 233
6.1 Definition . 235
6.2 Submodels . 238
6.3 Modelling . 243
6.4 Properties . 246
6.5 Model Checking . 248

6.5.1 Bounds for Reachability and Rewards 250
6.5.2 Implementation . 255
6.5.3 Evaluation . 256

6.6 Statistical Model Checking 262
6.7 Summary and Discussion . 265

7 Self-Stabilising Photovoltaic Power Generation 267
7.1 Last Mile Power Microgrids 269

7.1.1 Elements of Power Microgrids 270
7.1.2 Modelling and Abstraction Choices 272
7.1.3 Properties and Challenges 274

7.2 Decentralised Stabilisation Techniques 276

7.2.1 Centralised vs. Decentralised Control 277
7.2.2 Current Approaches 277
7.2.3 Probabilistic Alternatives 278

7.3 Modelling Decentralised Controllers 280
7.3.1 A Model Template for Power Microgrids 281
7.3.2 Control Strategy Models 283

7.4 Evaluation . 286
7.4.1 Stability . 286
7.4.2 Availability and Goodput 290
7.4.3 Fairness . 291
7.4.4 Scaling the Model 292

7.5 Summary and Discussion . 295

8 Discussion 299

A Modest Syntax and Semantics 305
A.1 Syntax . 305
A.2 Symbolic Semantics . 308

Bibliography 317

List of Abbreviations 333

Index 335

Introduction 1
Information technology enables us to rely on an increasing amount of increas-
ingly complex systems in our individual daily lives and as the basis for our
modern society. We have been able to replace manual tasks and mechanical or
electrical machinery with electronic components and computer-based systems.
For example, fly-by-wire technology has steadily taken the place of mechan-
ical or hydraulic flight control systems in new commercial airliners since the
early 1980s. The ensuing reduction of weight and simplification of handling
improve aircraft economy. Once a luxury, flying has become a normal mode
of mass transportation. Trading, formerly the realm of brokers on stock ex-
change floors, can today be carried out electronically with precise split-second
timing. The reader’s pension funds may well be in the hands of such a real-time
electronic trading system, and so is our economy. The recent trend of “smart”
power grids revolves around the embedding of computing and communication
components in decentralised electricity producers and consumers. The goal
is to cut off overproduction when necessary and dynamically schedule flex-
ible consumers like off-peak storage heaters or air conditioning systems. The
power grid of the future will thus be ready to deal with the increase of volat-
ile renewable energy sources such as the photovoltaic generators installed on
many private rooftops. The same pattern can be found over and over again in
the large, where e.g. industrial automation systems are becoming networked,
and in the small as our daily lives depend on more and more Internet services.

However, this increase of complexity comes at a cost. Fly-by-wire sys-
tems have failed due to small errors and incorrect assumptions, leading to
loss of lives and aircraft [Job96]. Unexpected interactions combined with the
sheer speed of electronic trading have caused severe stock market fluctuations
and million-dollar losses for banks and funds [LSS10, SC13]. Controllers for
photovoltaic microgenerators deployed on hundreds of thousands of rooftops
have been shown to adversely affect grid stability by introducing oscillatory
behaviour [BBZL11]. When nuclear power plants are controlled by networked

14 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

computer systems and people can no longer imagine life without constant high-
speed Internet access, the necessity to use information technology not only as a
part of these systems, but also to study their safety, reliability, and performance
is evident.

1.1 Modelling and Verification

The field of formal methods [CW96] is concerned with the development of
mathematically rigorous techniques for the design and analysis of complex crit-
ical systems. As illustrated in Figure 1.1, the core components of the formal
methods approach are
– a precise mathematical model of the behaviour of the system under study,
– a set of requirements that formally specify the desired behaviour, and
– a verification procedure to check if the model satisfies the requirements.
Any result obtained in this way obviously applies to the actual system imple-
mentation only as much as the model correctly reproduces all aspects that are
relevant for the satisfaction or violation of the requirements. Model-based test-
ing [Tre08] should therefore be applied to validate the model, i.e. to gain con-
fidence that the model correctly reflects what is implemented, or equivalently
that the implementation actually conforms to the model.

Models A system design is usually described in a natural language text, or
using an informal representation such as UML [ISO12a, ISO12b]. The model-
ling step is the creation of a formal model from such an informal description. It
is usually performed manually, and often reveals inconsistencies and omissions
in the design document. The process of constructing a formal model has thus
been shown to already be beneficial to the system design [SSBM11]. If we
study a software system that has already been implemented, we may be able to
automatically extract a model from its source code.

In this thesis, we focus on reactive systems, i.e. processes that interact with
their environment and run continuously. We thus consider behavioural models.
This is in contrast to the analysis of transformational programs, which can be
characterised by their input-output relation. Behavioural models can be repres-
ented in any of a large number of formalisms with widely differing degrees of
expressiveness and conciseness: low-level automata specifications, networks of
interacting symbolic automata, Petri nets, process algebras, and formal model-
ling languages, to name a few categories.

Requirements Just like a formal model needs to be created based on the in-
formal design documents, the requirements of interest have to be extracted from

INTRODUCTION 15

modelling formalisation

testing (desired)

verification
(model checking)

Design / Idea
natural language, UML

Modelprocess algebra, petri
net, automata model Requirements temporal

logics

Implementation
software, hardware, embedded

system, process, protocol specifi-
cation, critical infrastructure

Figure 1.1: The formal methods approach

these documents as well. Again, their formalisation may highlight inconsisten-
cies and previously ignored corner cases. For behavioural models, a natural
way to express requirements formally is through the use of temporal logics.
Abstractly speaking, a temporal logic formula characterises the desired evol-
utions of the system state (the state-based approach) or the system’s desired
interactions with the environment (the action-based approach) over time. Ex-
amples of temporal logics are LTL [Pnu77], CTL [EC82] and their various
derivatives.

Verification Given a formal model and a set of requirements, a verification
procedure establishes whether the model satisfies or violates the requirements.
The set of concrete verification procedures can broadly be divided into those
based on theorem proving and those based on model checking. Although the-
orem proving has been partly automated and tool support is available, it remains
a manual procedure in key steps. Theorem proving tools are thus known as in-
teractive theorem provers or proof assistants. On the other hand, very large or
infinite-state models can naturally be dealt with.

The key characteristic of model checking, in contrast, is that it is a fully
automatic technique (also known as a “push-button approach”), with an ex-
haustive exploration of a model’s state space at its core. Not surprisingly, mod-
els with extremely large or infinite state spaces cannot be dealt with in a naïve
model checking approach, giving rise to the state space explosion problem.
Various techniques to reduce, minimise, truncate, abstract or otherwise trans-
form state spaces in a way that introduces no or a clearly quantifiable error have

16 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

been developed over the last decades. Model checking has thus become applic-
able to real-life-size systems using one of the many available model checking
tools, known as model checkers.

In the remainder of this thesis, we only consider verification using tra-
ditional exhaustive model checking techniques as described above as well as
so-called statistical model checking. The latter is an attempt to tackle the state
space explosion problem by using an entirely different approach while keeping
the quantifiable error property that is so fundamental for the applicability of
model checking to critical systems and infrastructures.

1.2 Quantitative Requirements and Models

Let us reconsider the examples of fly-by-wire control, electronic real-time trad-
ing, smart power grids, networked industrial automation systems and the Inter-
net. Most of these are clearly safety- or mission-critical, i.e. a malfunction may
lead to the loss of lives or at least significant amounts of money. We thus need
to verify functional, or qualitative, requirements in the first place. Classic ex-
amples are indeed safety, requiring that “bad things never happen” (e.g. “thrust
reversers will never engage in flight” as they did on Lauda Air Flight 004 in
1991 [Job96]), but also liveness, the requirement that “something good will al-
ways eventually happen” (e.g. “whenever a plane is in flight, it will safely land
again in the future”).

However, functional correctness is usually not enough. A correct elec-
tronic trading system, to stay with our examples, is useless if it cannot realise
orders within certain time constraints; an algorithm to ensure power grid sta-
bility needs to react to changes in a matter of milliseconds to be useful; and a
wireless temperature sensor in an industrial process must not empty its battery
within the first hour of operation. Performance requirements therefore need to
be considered as well. These are necessarily expressed as quantitative require-
ments, such as “the minimum time until the battery is empty must be more than
10 hours”. In general, time is not the only quantity we may be interested in. The
last example already includes costs in the form of battery usage. Additionally,
the satisfaction of requirements can only be guaranteed with a certain probab-
ility in many scenarios, leading to probabilistic statements like “the expected
time until the battery is empty must be at least 16 hours”. In the quantitative
setting, it is often convenient to ask for an actual value instead of wrapping it in
a Boolean requirement: “What is the minimum probability of success without
exceeding battery capacity?” We refer to these types of questions, or to the
value they relate to, as queries. In the remainder of this thesis, we use the word
property as a generic term for queries and requirements.

INTRODUCTION 17

In order to refer to quantities in properties, they need to be included in the
models in the first place. Model checking has traditionally been used to verify
qualitative requirements with modelling formalisms that represent the possible
behaviours of a system using nondeterministic choices, such as variants of la-
belled transition systems. Quantitative properties, on the other hand, have been
studied in the field of performance evaluation, using Markov chains or more
elaborate stochastic processes. As we have argued above, though, the analysis
of today’s and tomorrow’s complex systems requires a unified treatment of cor-
rectness and performance. Not surprisingly, a variety of integrative approaches
that combine quantitative reasoning with formal verification techniques have
therefore been developed over the last decades [BHHK10]. In this thesis, we
use a number of automata-based modelling formalisms that capture various
kinds of quantitative aspects as highlighted in Figure 1.2:

Nondeterminism A nondeterministic choice is an unquantified choice be-
tween two or more alternative behaviours. It signifies the absence of any in-
formation related to the relative frequency in which the alternatives will occur
or the precise conditions that influence the decision, and can be used to
– model the influence of an unknown environment on the system,
– represent the unknown scheduling of concurrent components,
– abstract details and create a coarser model from a very detailed one,
– allow implementation freedom regarding a certain choice, or simply
– represent true absence of knowledge of the modeler about a certain choice.
Nondeterministic choices are the core feature of the labelled transition sys-
tem formalism (LTS [BK08], presented in Chapter 3), also known (with minor
differences in purpose and definition depending on the source) as Kripke struc-
tures or finite automata. An LTS consists of a set of states, each of which has a
number of outgoing labelled transitions. The nondeterminism is in the choice
of the transition to take from a state. Each transition in turn leads to a single
next state.

Probabilities In contrast to this, a probabilistic choice is a quantified one: it
assigns a certain, precise probability to the alternatives. Probabilistic choices
represent quantified uncertainty, which can be uncontrollable or inherent to the
system at hand:
– the influence of the environment may be modelled as probabilistic, e.g. by as-

signing a probability to the event of message loss in wireless communication;
on the other hand,

– randomised algorithms intentionally use probabilistic experiments to achieve
correctness or improve performance.

18 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

A classic example for randomised algorithms that require probabilistic choices
for correctness are distributed, fully-symmetric leader election protocols.

Based on the underlying probability distribution, probabilistic choices can
be categorised into discrete and continuous choices: discrete probability dis-
tributions assign probabilities to a countable (or even finite) set of alternatives,
while this set is uncountably infinite—usually the set of real numbers—for con-
tinuous distributions (which therefore also require a more intricate definition
taking into account the issue of measurability). We call formalisms and models
that use only discrete probability distributions probabilistic, whereas stochastic
ones use continuous distributions. In the remainder of this thesis, we also dis-
tinguish between a probabilistic choice over a finite set of outcomes, i.e. using
a finite-support distribution, and the (stochastic) sampling of a value from an
infinite-support distribution.

The most basic probabilistic modelling formalism used in this thesis is the
discrete-time Markov chain (DTMC [GS01, BK08], presented in Chapter 3).
In contrast to LTS, each state in a DTMC has a single, unlabelled outgoing
transition that leads to a discrete and usually finite-support probability distri-
bution over target states. Combining the features of LTS and DTMC results
in the nondeterministic-probabilistic formalism of Markov decision processes
(MDP [Put94], presented in Chapter 4). For our purposes, we can consider
the formalism of probabilistic automata (PA [Seg95, Sto02]) as an equivalent
of MDP. In a given MDP model, the result of a query depends on the way the
nondeterministic choices are resolved and is thus usually given as the interval
from minimum to maximum possible value. In terms of stochastic formalisms,
the most basic one supporting continuous distributions in this thesis is that of
stochastic timed automata (STA [BDHK06], presented in Chapter 6). STA in
fact allow arbitrary distributions; there is also a significant family of stochas-
tic formalisms based solely on the exponential distribution, the most basic of
which would be the continuous-time Markov chain (CTMC [GS01], see Sec-
tion 6.2). CTMC can be extended with nondeterministic choices to interactive
Markov chains (IMC [Her02]), and additionally with discrete probability dis-
tributions to Markov automata (MA [EHZ10]).

Time It was evident in our earlier examples of quantitative properties that
time plays an important role in many applications. The notion of time, or of a
delay, is crucial
– for communication protocols that incur transmission delays and make use of

timeouts to detect message loss;
– when studying performance and response times of network servers that need

time to process incoming requests, which themselves occur in intervals at

INTRODUCTION 19

SHA

DTMC

MDP

PTA

STA

HA

PHA

LTS

TA

CTMC

IMC

MA

+ continuous
probability

+ contin.
dynamics

+ real time

nonde-
terminism

discrete
probabilities

exp. distr.
delays

Key:
SHA stochastic hybrid automata
PHA probabilistic hybrid automata
STA stochastic timed automata
HA hybrid automata
PTA probabilistic timed automata
MA Markov automata
TA timed automata
MDP Markov decision processes
IMC Interactive Markov chains
LTS labelled transition systems
DTMC discrete-time Markov chains
CTMC continuous-time Markov chains

Figure 1.2: Automata-based modelling formalisms relevant for this thesis

a certain rate, and can handle a certain number of requests per time unit
(throughput); and

– when looking at time-critical control applications, where inputs need to be
processed within very small delays.

There are various ways to model time, depending on the desired level of ab-
straction and the given requirements. They can be categorised in two di-
mensions: discrete- and continuous-time models, where delays can in turn be
deterministic, nondeterministic or stochastic. In discrete-time models, time
progresses in steps and delays are natural numbers; in continuous-time mod-
els, the time domain is the set of positive real numbers, allowing arbitrarily
small delays. Notably, the semantics of a continuous-time model is an un-
countably infinite-state object, but in certain cases, a finite or at least countable
representation is sufficient for verification. Delays, in the simplest case, are
fixed natural or real numbers, i.e. they are deterministic. However, if precise
timings are unknown, we may prefer a model with stochastic delays if we have
reason to assume a certain probability distribution for inter-event times, or one
with nondeterministic delays in other cases. A nondeterministic delay may, for
example, be that a certain event takes place at any moment in the interval [0,1);
the reasons to use nondeterminism for time intervals are much the same as for
nondeterministic choices.

In DTMC, as the name implies, there is an implicit notion that every trans-
ition takes one unit of model time. For the purposes of this thesis, we do
not consider DTMC or MDP models as truly timed. Instead, we focus on

20 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

continuous-time models and only use MDP for their analysis when this is pos-
sible. The basic continuous-time formalism we consider is the timed automaton
(TA [AD94, HNSY94]) and its probabilistic version, the probabilistic timed
automaton (PTA [KNSS02], presented in Chapter 5). PTA allow nondetermin-
istic and (using an encoding with probabilistic choices) probabilistic delays, but
not stochastic ones; the latter become possible when moving to STA.

Continuous dynamics Continuous time can be seen as a variable that in-
creases over time with derivative one. This leads to the obvious generalisation
of “continuous” variables that evolve over time in more complex ways, for ex-
ample specified by differential equations. In this way, behaviours according
to physical laws can be captured in a natural fashion. For the special case of
otherwise read-only continuous variables that evolve with a constant derivative
that only changes with the discrete state of the system, we obtain the classic
representation of time-dependent costs or rewards. A cost may be a system’s
energy consumption, which in turn may be higher or lower depending on the
operational mode; for example, a wireless station consumes more power when
in receiving or sending mode than when idle. A reward is looking at the same
issue from the other side, where a cost is simply a negative reward.

The addition of continuous rewards to essentially all continuous-time mod-
els is sufficiently straightforward so that we do not explicitly consider, say,
“timed automata with rewards” as a dedicated modelling formalism, but merely
as a variant of TA. General continuous variables, however, can have a profound
impact on expressiveness, but also limit verification possibilities. We therefore
expressly mention hybrid automata (HA [Hen96]), probabilistic hybrid auto-
mata (PHA [ZSR+10]) and stochastic hybrid automata (SHA [FHH+11]), al-
though we do not treat them in this thesis. SHA are a generalisation of the STA
we use here; all other formalisms mentioned so far are special cases of SHA.

1.3 Exhaustive and Statistical Model Checking

As mentioned, an exhaustive exploration of a model’s state space is at the core
of model checking for all the formalisms described in the previous section. For
those that give rise to uncountably infinite state spaces, such as TA or SHA, a
finite representation that is either sufficient to precisely verify all requirements
(in the case of TA) or that is a safe overapproximation of the real state space
(in the case of complex hybrid models) can be used. Still, what limits the
applicability of model checking is the state space explosion problem: in the
worst case, introducing a new variable that can take m different values leads to a
factor-m multiplication of the number of states, i.e. the state space exponentially

INTRODUCTION 21

in the number of variables. Yet all the states need to be represented in some
form in limited computer memory. Even when this is still possible, the runtime
of model checking of probabilistic formalisms such as MDP is also severely
affected by state space explosion because it involves numerical computations
on the states to obtain probability values.

Several techniques have been introduced to stretch the limits of model
checking while preserving its basic nature of performing state space explor-
ation to obtain results that unconditionally, certainly hold for the entire state
space. One class of techniques aims at finding ways to represent a state space
efficiently in memory. A very successful example is the use of binary decision
diagrams (BDD) to compactly represent sets of states [dAKN+00], achieving
an exponential reduction in memory usage for some models. However, as with
all such approaches, there exist models where the use of BDD does not yield
space savings and merely increases verification runtime.

State space reduction The other significant class of approaches are state
space reduction techniques. They provide procedures that, given a model, yield
a state space that is smaller than what would be obtained via a naïve exploration
of all reachable states while retaining the same results for all relevant proper-
ties. Ideally, state space reduction is applied on-the-fly, i.e. replacing the naïve
approach by directly generating the reduced state space instead of reducing the
full state space post-exploration. The decisive point is to try to minimise the
largest intermediate state space that ever needs to be stored in memory.

The relationship between the original and the reduced model needs to be
such that the verification results for the properties of interest are the same for
both. Various bisimulation [Mil89] relations fulfill this purpose for wide ranges
of properties and formalisms. For example, two MDP related by divergence-
sensitive probabilistic visible bisimulation satisfy the same formulae specified
in the temporal logic PCTL∗ as long as its “next” operator is not used [Tim13].
And in fact, various effective minimisation procedures are known that can be
used to obtain the minimal representation of a model w.r.t. to some concrete
notion of bisimulation [BK08]. Unfortunately, most of them require access to
the full reachable state space and thus only lead to reductions in verification
runtime, but not in memory usage.

On the other hand, there exist overapproximating approaches that lead to
smaller, bisimilar models, but not necessarily minimal ones. Two of them,
which will be used later in this thesis (beginning in Chapter 4), are partial
order reduction (POR) [BDG06, God96, Pel94, Val90] and confluence reduc-
tion [BvdP02, TSvdP11, TvdPS13]. Both can be used on-the-fly during state
space exploration. POR relies on syntactic information from the modelling

22 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

language used to work in practice, whereas confluence can easily be applied
on the level of the concrete state space without such extra information. Again,
both POR and confluence reduction can result in significant memory savings on
some models, while they may not provide much of an improvement on others.

Finally, we mention techniques that use abstraction, e.g. counterexample-
guided abstraction refinement (CEGAR) [CGJ+00, HWZ08]. They use coarser
representations of the real state space, where one abstract state summarises sev-
eral concrete states and their behaviour. The resulting model is related to the
original not through a bisimulation, but a simulation relation, such that e.g. its
behaviours are at least those of the original, but may include more. The verific-
ation results for an abstract model are thus safe in some precisely specified way
depending on the exact simulation relation used; in probabilistic models, for
example, the probability of reaching any set of (“unsafe”) states in the abstract
model is typically greater than or equal to that in the original. Techniques ex-
ist to automatically refine abstract models, and through repeated refinements,
the desired tradeoff between verification precision and memory usage can be
reached. In a quantitative setting, however, it is not always possible to determ-
ine how far the computed result is from the actual value. In this thesis, we
only make use of abstraction where it is necessary to analyse continuous-time
(chapters 5 and 6) models that would otherwise yield uncountably infinite state
spaces. Other than that, we rely on bisimulation-based state space reduction
techniques.

Statistical model checking Despite its name, and although it tries to meet the
same goal of providing trustworthy verification results with quantifiable error,
statistical model checking (SMC) [YS02, HLMP04, LDB10, BBB+10, ZPC10]
is very different from model checking. When necessary for clarity, we refer to
model checking as exhaustive model checking to distinguish it from SMC.

Instead of exploring—and storing in memory—the entire state space, or
a reduced version of it, simulation is used in SMC to generate traces of paths
through the state space. This comes at constant memory usage and thus cir-
cumvents state space explosion entirely, but cannot deliver results that hold
with absolute certainty. Statistical methods such as sequential hypothesis test-
ing [Wal45] are then used to make sure that e.g. the probability of returning the
wrong result is below some threshold. Figure 1.3 contrasts model checking and
SMC schematically. The accuracy and precision of the SMC results depend on
the system parameters and especially (that is, logarithmically) on the number
of paths explored. Here, theoretical complexity is practical complexity, and as
a result, SMC is most competitive time-wise for lower accuracy analysis.

INTRODUCTION 23

model properties

(exhaustive)
model checker

state space
exploration

analysis
(e.g. SCC detection,
value iteration, . . .)

results

!%

counter-
example

model
desired level
of confidence properties

statistical
model checker

trace generation

statistical
analysis

results

!% ?

more
traces

needed

. . .

Figure 1.3: Exhaustive and statistical model checking, schematically

While some studies have made efforts to compare the effectiveness of SMC
versus model checking empirically [YKNP06, KZ09], such a comparison is
inherently problematic: As a simulation-based approach, SMC is limited to
fully stochastic models such as Markov chains, whereas model checking is
usually applied to variations of nondeterministic transition systems. Indeed,
in the traditional simulation community, the unprejudiced application of sim-
ulation to models that actually exhibit nondeterministic behaviour has already
led to notorious suspicions about hidden assumptions that affect the analysis
results [AY06, CSS02]. Attempts to solve this problem, which would allow
sound SMC for MDPs, have only been investigated very recently. The author
has been involved in the development of two such approaches (presented in
Chapter 4) which form a major contribution of this thesis.

1.4 The MODEST Approach

For a formal model to be analysed by a model-checking tool, it needs to be
specified in a computer-readable format, i.e. a modelling language. Even if a
model checker were to process input as close to the underlying mathematical
model as possible, it would need to be given in a specific syntax. However,

24 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

MODEST:
process Channel()
{
snd palt {
:99: delay(2)

rcv
: 1: // msg lost

{==}
};
Channel()

}

Guarded Commands:
module Channel
l: [0..2]; // control loc
c: clock; // for delay
invariant
l = 1 => c <= 2

endinvariant
[snd] l = 0 -> 0.01:(l’ = 0)

+ 0.99:(l’ = 1) & (c’ = 0)
[rcv] l = 1 & c >= 2 -> (l’ = 0)

endmodule

UPPAAL TA:

Figure 1.4: Three modelling languages

when models are to be written by humans, a higher-level language that al-
lows modularisation and compositional modelling (i.e. the construction of large
models from smaller, independently specified parts) and that has an expressive,
easy-to-use and easy-to-learn syntax is desirable. For any such language, a
formal semantics specifies the mapping from its syntax to the underlying math-
ematical model, for example one of the automaton formalisms presented earlier.

Today, quantitative modelling and verification is supported by a wide range
of tools, most of which use their own dedicated modelling language. Ex-
amples include the CADP [GLMS11] toolkit centered around the LOTOS lan-
guage [BB87] and its successor LNT; the PRISM [KNP11] model checker and
similar tools [HHWZ09, HHWZ10a, HHWZ10b] operating on guarded com-
mands; and UPPAAL [BDL04], which allows the graphical modelling of net-
works of TA. The variety of different languages used by tools in this area, how-
ever, is a major obstacle for new users seeking to apply formal methods in their
field of work: they usually need to learn several of these languages, and still
models built for one tool need to be rewritten to be usable with a different one.

The MODEST language The MODEST1 modelling language, on the other
hand, was designed to be as expressive as possible instead of being restric-
ted to the formalism and supported analysis approaches of any specific tool.
While rooted in process algebra, MODEST borrows syntax and concepts from
widely-used programming languages to make it accessible to programmers and
engineers. At the same time, its expressive syntax allows complex models to
remain concise and readable. MODEST was originally specified with a formal
semantics in terms of STA [BDHK06]. We have extended it to cover the full

1Originally, MODEST was an acronym for “a modelling and description language for stochastic
timed systems”, and was written as MODEST.

INTRODUCTION 25

MODEST

Guarded Cmds

UPPAAL TA

Networks of
Stochastic Hybrid

Automata

prohver PHAVER

mcpta PRISM

mcsta

mctau UPPAAL

modes

Results

Figure 1.5: Schematic overview of the MODEST TOOLSET’s components

expressiveness of SHA [HHHK13]; our presentation of MODEST in this thesis
is based on this revised syntax and semantics. Figure 1.4 gives an impression
of MODEST in comparison with guarded commands as used by PRISM and
the graphical representation of TA as presented by UPPAAL based on its XML
format. The example represents a simple communication channel as could be
used in models of wireless communication protocols, with a message loss prob-
ability of 0.01 and a transmission delay of 2 time units.

The MODEST TOOLSET To support the analysis of MODEST models, we
have developed the MODEST TOOLSET [HH14]. Originally intended to sup-
port the single-formalism, multiple-solution approach that MODEST was de-
signed for, it has evolved into a multiple-formalism, multiple-solution toolset:
Aside from MODEST, which is still the primary input language, the aforemen-
tioned guarded commands and UPPAAL’s XML format are also supported. This
is a first step to make model reuse in formal methods easier. At the core of the
MODEST TOOLSET is the formalism of networks of SHA, i.e. sets of con-
current, communicating automata. Verification, using exhaustive or statistical
model checking, is available through five tools, three of which reuse existing
model checkers as backends in order to avoid unnecessary reimplementation:

– prohver computes upper bounds on maximum probabilities of probabilistic
safety properties in SHA [HHHK13]. It relies on a modified version of
PHAVER [Fre05] to model-check HA.

– mcpta performs model checking of PTA using PRISM for a probabilistic ana-
lysis; it supports probabilistic and expected-time/expected-reward reachabil-
ity properties in unbounded, time- and cost-bounded variants [HH09].

– mcsta performs model checking of STA, PTA and MDP using an explicit-
state engine. It supports the same kinds of properties as mcpta, but is only
able to computes upper/lower bounds for true STA models [HHH14].

26 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

– mctau connects to UPPAAL for model checking of TA [BDHH12], for which
it is more efficient than mcpta. It automatically overapproximates probabil-
istic choices with nondeterminism when given a PTA, providing a quick first
check of such models.

– modes performs SMC of STA with an emphasis on the sound handling of
nondeterministic models [BFHH11, BHH12, HT13]. Its trace generation fa-
cilities are useful for model debugging and visualisation.

Fig. 1.5 gives a schematic overview of the input languages and the analysis
backends that form the MODEST TOOLSET. In this thesis, we briefly review
the approach used by mcpta to reuse a probabilistic model checker to analyse a
probabilistic-timed model in Section 5.5. We present the abstractions and ana-
lysis technique used by mcsta in detail, which is the first tool to support model
checking of full STA (in Section 6.5). This is similar to the chain of abstractions
used by prohver to decompose the SHA analysis problem into model checking
of an MDP and a HA. We describe the techniques implemented in modes to
soundly perform SMC for nondeterministic formalisms in detail in Section 4.7.

1.5 Contributions and Origins of the Thesis

This thesis is structured along the model hierarchy of Figure 1.2: After introdu-
cing basic notions and notation in Chapter 2, we define the foundational mod-
els of LTS and DTMC in Chapter 3, including the corresponding subsets of the
MODEST language, and give an overview of the existing approaches to exhaust-
ive and statistical model checking. In Chapter 4, we move to MDP, where—
after defining the model and summarising how to analyse it with exhaustive
model checking—we focus on ways to soundly extend statistical model check-
ing to handle the added nondeterminism. We then add real-time modelling
capabilities in Chapter 5, which covers the model of PTA. We highlight the
two ways of defining PTA—with invariants or with deadlines—and investigate
the respective expressiveness as well as giving a procedure to convert a large
subset of PTA with deadlines into PTA with invariants. We review the exist-
ing exhaustive model checking techniques and give an overview of potential
ways to perform sound SMC for PTA. It is then time to move on to STA for
Chapter 6, which are syntactically a small extension of PTA that, however, re-
quires important changes in semantics. The main part of that chapter is on
a novel technique to perform exhaustive model checking for STA with con-
tinuous and discrete nondeterminism. Finally, we conclude with a report on
the modelling and evaluation of distributed control strategies for power grids
with significant volatile microgeneration based on renewable energy sources in
Chapter 7.

INTRODUCTION 27

Contributions The main contributions of this thesis, aside from presenting
a unified view of the various quantitative models supported by the MODEST

language, are the following:
– Chapter 4: Two approaches for sound statistical model checking of spuri-

ously nondeterministic MDP, based on partial order and confluence reduc-
tion.

– Chapter 5: An in-depth comparison of PTA with deadlines vs. PTA with
invariants and a procedure to convert a large subset of the former into the
latter.

– Chapter 6: The first model checking approach for STA with discrete non-
deterministic choices, nondeterministic delays, and stochastic timing.

– Chapter 7: The modelling and analysis of novel distributed control algorithms
for photovoltaic microgenerators that are inspired by solutions to similar
problems in Internet protocols.

We have implemented algorithms for sound SMC of spuriously nondetermin-
istic MDP in the modes tool and present an evaluation of their applicability
and performance as well as an extension with caching. The conversion of PTA
with deadlines into PTA with invariants is implemented in the core libraries of
the MODEST TOOLSET and is in particular used by mcpta. The new model
checking technique for STA is implemented in the mcsta tool; we assess its
effectiveness and efficiency using four varied examples. The evaluation of the
new control strategies presented in Chapter 7 has been performed using MOD-
EST models and the modes simulator.

Sources At the beginning of every chapter, we briefly summarise its origins
and clearly state the author’s personal contributions. At the time of publication,
the main contributions of this thesis have appeared in the following conference
papers (listed in chronological order):
– Model-Checking and Simulation for Stochastic Timed Systems, presented at

FMCO 2010 [Har10] (for Chapter 5);
– Partial Order Methods for Statistical Model Checking and Simulation, joint

work with Jonathan Bogdoll, Luis M. Ferrer Fioriti and Holger Hermanns,
presented at FMOODS/FORTE 2011 [BFHH11] (for Chapter 4);

– Modelling and Decentralised Runtime Control of Self-stabilising Power Mi-
cro Grids, joint work with Holger Hermanns, presented at the 2012 ISoLA
Symposium [HH12] (for Chapter 7);

– A Comparative Analysis of Decentralized Power Grid Stabilization Strate-
gies, joint work with Pascal Berrang and Holger Hermanns, presented at the
Winter Simulation Conference 2012 [HHB12] (for Chapter 7);

28 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

– On-the-fly Confluence Detection for Statistical Model Checking, joint work
with Mark Timmer, presented at the 2013 NASA Formal Methods Sym-
posium [HT13] (for Chapter 4);

– The Modest Toolset: An Integrated Environment for Quantitative Modelling
and Verification, joint work with Holger Hermanns, presented at TACAS
2014 [HH14] (for the MODEST TOOLSET as a whole); and

– Reachability and Reward Checking for Stochastic Timed Automata, joint
work with Ernst Moritz Hahn and Holger Hermanns, presented at AVoCS
2014 [HHH14] (for Chapter 6).

Preliminaries 2
Before we go into technical details of modelling and verification, we need to
establish notions and notation that will occur repeatedly in the remainder of
this thesis. We start with basic mathematical notation in Section 2.1 before we
cover the essentials of probability theory for both the discrete and continuous
setting in Section 2.2. The syntax of several models and the modelling language
MODEST includes variables, expressions and various derived constructs such as
assignments, which we define formally in Section 2.3.

2.1 Mathematical Notation

Let us start with a recap of basic mathematical notions—in particular related to
sets, relations and functions—and the notation we use for them in this thesis:

Numbers and sets We denote the empty set by∅. For a given set S, its power
set, i.e. the set of all sets with elements only in S, is written as P(S). Remember
that ∅ ∈ P(S) for all S. We denote the set {0,1,2, . . .} of the natural numbers
by N. Observe that it includes 0; we use N+ to refer to the set N \ {0} of the
positive natural numbers. Similarly, we refer to the set of real numbers as R,
to the set of positive real numbers as R+, and to the set of non-negative real
numbers as R+

0 . The closed interval {z ∈R | x ≤ z ≤ y} will be written as [x,y],
while (x,y) refers to the open interval {z∈R | x < z < y}. Half-closed intervals
follow this notation analogously. Other particular sets that we use are the set
of integers Z = { . . . ,−1,0,1, . . .}, the set of rational numbers Q, and the set
of Boolean values B = { true, false}. When space is tight, we may choose to
write tt and ff in place of true and false, respectively.

For a finite number of sets S1, . . . ,Sn with n ∈ N+, S1 × ∙∙ ∙ × Sn denotes
the set of n-tuples 〈s1, . . . , sn〉, or tuples of length n, such that we have si ∈ Si

for each component si. We also use Sn as a shorthand for the set of tuples
of length n where all components are elements of S. For a given set S, we

30 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

denote by S∗ the set of finite sequences of elements of S. We identify a concrete
finite sequence s1 . . . sn ∈ S∗ with the tuple 〈s1, . . . , sn〉 ∈ Sn. The set of infinite
sequences s1s2 . . . of elements of S is referred to as Sω .

Relations Given two sets S1 and S2, a relation R over S1 and S2 is a set of
pairs R ⊆ S1 ×S2. Its domain is Dom(R) = {s1 ∈ S1 | ∃s2 ∈ S2 : 〈s1,s2〉 ∈ R}.
R is
– injective if 〈s1,s2〉 ∈ R and 〈s′1,s2〉 ∈ R implies s1 = s′1,
– functional if 〈s1,s2〉 ∈ R and 〈s1,s′2〉 ∈ R implies s2 = s′2,
– surjective if ∀s2 ∈ S2 : ∃s1 ∈ s1 : 〈s1,s2〉 ∈ R, and
– total if Dom(R) = S1.
A bijective relation is one that is injective and surjective. Observe that a biject-
ive relation is also functional. The restriction of the relation R to a subset
S′1 ⊆ S1 is written as R|S′1 = {〈s1,s2〉 ∈ R | s1 ∈ S′1 }. The inverse relation of R

is denoted by R−1 = {〈s2,s1〉 | 〈s1,s2〉 ∈ R}. The image of s1 ∈ S1 is a subset
of S2, denoted by R(s1) = {s2 ∈ S2 | ∃s1 ∈ S1 : 〈s1,s2〉 ∈ R}, and the preimage
of s2 ∈ S2 is defined as R−1(s2) = {s1 ∈ S1 | ∃s2 ∈ S2 : 〈s1,s2〉 ∈ R}. We may
also write R(s1,s2) or s1 R s2 in place of 〈s1,s2〉 ∈ R. Two sets S1 and S2 are
isomorphic if there exists a total bijective relation over S1 and S2. In that case,
we write S1

∼= S2. The identity relation is defined as Id(S) = {〈s,s〉 | s ∈ S}, or
simply Id when S is clear from the context.

A relation R ⊆ S× S is reflexive if R ⊇ Id(S), it is symmetric if we have
R(s,s′) ⇒ R(s′,s), and it is transitive if R(s,s′′)∧R(s′′,s′) ⇒ R(s,s′). An equi-
valence relation is a reflexive, symmetric and transitive relation. Given an equi-
valence relation R ⊆ S×S, we write [s]R for the equivalence class induced by s,
that is, [s]R = {s′ ∈ S | 〈s,s′〉 ∈ R}. We denote the set of all such equivalence
classes by S/R.

Functions A function is a total functional relation. We denote by S1 → S2 the
set of functions from S1 to S2, i.e. the set of total functional relations over S1

and S2. We call a functional but not necessarily total relation a partial function.
All the notation and definitions for relations can thus be applied to functions as
well. However, for clarity, we may also write the function {〈a,b〉,〈c,d〉, . . .}
as {a 7→ b,c 7→ d, . . .}, and we take f (s) to denote the single element of the
(relational) image of s when we focus on f as a function and not as a relation.
A bijection between S1 and S2 is a bijective function in S1 → S2. If f1 ∈ S1 → S2

and f2 ∈ S2 → S3, we denote by f2 ◦ f1 the sequence of the two functions, i.e.
the function f ∈ S1 → S3 such that f (s) = f2(f1(s)). For f ∈ S1 → S2, x ∈ S1

and y ∈ S2, we write f [x 7→ y] to denote f |S1\{x} ∪{x 7→ y}, i.e. the function f

PRELIMINARIES 31

with the image of x changed to y. This notation can be extended to sets, such
that f [X 7→ y] for X ⊆ S1 denotes f |S1\X ∪{x 7→ y | x ∈ X }.

2.2 Probability Theory

In order to formally define models that include probabilistic decisions, such as
selecting an element of a finite or countable set with a certain probability or
sampling a value from a continuous set, we need certain basic notions from
probability theory which we define in the remainder of this section. Unless
noted otherwise, these definitions are based on [HHHK13] and [GS01].

Probability Measures and Distributions

We want to use general definitions that cover phenomena where elements of
finite, countable, and uncountable sets are selected with certain probabilities. In
the uncountable case, the probability for any single element of the set to occur
is usually zero. We thus need to use particular subsets to assign probabilities to
as follows:

Definition 1 (σ -algebra, measurable space). Given a set Ω (a sample space),
a family Σ of subsets of Ω is a σ -algebra over Ω if Ω ∈ Σ and Σ is closed
under complementation and countable union. In that case, a set B ∈ Σ is called
measurable, and the pair 〈Ω ,Σ〉 is called a measurable space. We say that a
function f ∈ Ω1 → Ω2 is Σ1-Σ2-measurable if every preimage of a measurable
set is measurable, i.e. if f−1(B) ∈ Σ1 for all B ∈ Σ2.

We also call the elements of Σ events. Given a family of sets A , by σ(A) we
denote the σ -algebra generated by A , that is the smallest σ -algebra containing
all sets of A . The Borel σ -algebra over Ω is generated by the open subsets
of Ω , and it is denoted B(Ω). We will also need the hit σ -algebra defined as
follows:

Definition 2 (Hit σ -algebra [Wol12]). Given a σ -algebra Σ , we define the hit
σ -algebra over Σ by

H (Σ) def= σ({HB | B ∈ Σ }) where HB
def= {C ∈ Σ |C∩B 6= /0}.

HB consists of all measurable sets C which have a nonempty intersection with B.
H (Σ) is then generated by all sets of sets {C1, . . . ,Cn } such that there is a set
B which “hits” all Ci. On measurable spaces, we can now define functions that
associate probabilities to events:

32 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Definition 3 (Probability measure). Given a measurable space 〈Ω ,Σ〉, a func-
tion μ ∈ Σ → [0,1] is called σ -additive if μ(∪i∈I Bi) = ∑i∈I μ(Bi) for countable
index sets I and pairwise disjoint sets Bi ⊆ Σ . We speak of a probability meas-
ure if additionally μ(Ω) = 1. In that case, 〈Ω ,Σ ,μ〉 is a probability space.
We denote the set of probability measures on 〈Ω ,Σ〉 by Prob(Ω ,Σ), or just
Prob(Ω) when Σ is clear from the context.

We write D(s) for the Dirac measure for s, defined by D(s)(ω) = 1 ⇔ s ∈ ω .
When a probability space 〈Ω ,Σ ,μ〉 is assumed or clear from the context, we
also use the notation P(e) where e describes an event s ∈ Σ to refer to “the
probability of e”, i.e. μ(s).

In the models we define in chapters 3 to 5, we only need countable sample
spaces. In this discrete setting, we can make the σ -algebra implicit and use the
following definitions:

Definition 4 (Probability distribution). A (discrete) probability distribution
over a countable sample space Ω is a function μ ∈Ω → [0,1] such that we have
∑ω∈Ω μ(ω) = 1. The support of μ is support(μ) def= {s ∈ S | μ(s) > 0}. The
corresponding probability space is 〈Ω ,P(Ω),μC〉 where μC ∈ P(Ω) → [0,1]
with μC(S) = ∑s∈S μ(s). We denote by Dist(Ω) the set of all probability distri-
butions over Ω .

By implicitly falling back upon the corresponding probability measure, we can
interchangeably treat probability distributions as functions over elements or
subsets of Ω . In the other direction, we can treat e.g. the Dirac measure as
a probability distribution, too.

Given two probability distributions μ ,μ ′ ∈ Dist(Ω) and an equivalence
relation R ⊆ Ω ×Ω , we overload notation by writing 〈μ ,μ ′〉 ∈ R to denote that
μ([s]R) = μ ′([s]R) for all s ∈ S. For a finite set Ω = {ω1, . . . ,ωn }, we denote
by U (Ω) = {ω1 7→ 1

n , . . . ,ωn 7→ 1
n } the uniform distribution over Ω . The

product of two discrete probability distributions μ1 ∈ Dist(Ω1), μ2 ∈ Dist(Ω2)
is determined by (μ1 ⊗μ2)(〈ω1,ω2〉) = μ1(ω1) ∙μ2(ω2).

Product Measures

While the definition of the product of two probability distributions was short
and straightforward, a more involved construction is needed to achieve the same
in a correct manner for probability measures. We first define the σ -algebra of
probability distributions, which we need in the actual product definition later:

Definition 5 (σ -algebra of measures). The set Prob(Ω) of probability meas-
ures on 〈Ω ,Σ〉 can be endowed with the σ -algebra Δ(Σ) [Gir82] generated

PRELIMINARIES 33

by the measures that, when applied to B ∈ Σ , give a value greater than some
q ∈Q∩ [0,1]:

Δ(Σ) def= σ({Δ>q(B) | B ∈ Σ ∧q ∈Q}) where Δ>q(B) def= {μ | μ(B) > q}.

Note that Δ(Σ) is a set of sets of probability measures. Together with Prob(Ω),
it forms the measurable space 〈Prob(Ω),Δ(Σ)〉. We can now define the product
of σ -algebras and then of probability measures:

Definition 6 (Product σ -algebra and measure). Given a finite index set I and a
family (Σi)i∈I of σ -algebras, the product σ -algebra

⊗
i∈I Σi is defined as

⊗
i∈I Σi

def= σ({
Ś

i∈I Bi | ∀ i ∈ I : Bi ∈ Σi }),

while for a family (μi)i∈I of probability measures on Σi, the product measure
is the uniquely defined probability measure

⊗
i∈I μi ∈ Δ(

⊗
i∈I Σi) such that

(
⊗

i∈I μi)(
Ś

i∈I Bi)
def= ∏i∈I μi(Bi) for all Bi ∈ Σi, i ∈ I.

We can extend this definition to families of sets of measures (Mi)i∈I with Mi ∈
Δ(Σi) by ⊗

i∈I Mi
def= {

⊗
i∈I μi | μi ∈ Mi for all i ∈ I }.

We use ⊗ as an infix operator on two σ -algebras, probability measures or sets
of probability measures.

Random Variables and Expectations

We are sometimes not so much interested in a particular probabilistic exper-
iment itself but rather in some quantity derived from its outcomes. Such a
quantity can be represented as a random variable:

Definition 7 (Random variable). Given a measurable space 〈Ω ,Σ〉 and a prob-
ability measure μ ∈ Prob(Ω ,Σ), a Σ -B(R)-measurable function X ∈ Ω → R
is called a random variable. The cumulative distribution function (or cdf for
short) of X is the function F ∈ R→ [0,1] given by

F(x) = P(X ≤ x) = μ({ω ∈ Ω | X(ω) ≤ x}).

F is a discrete random variable if Dom(F) is countable. In that case, its prob-
ability mass function f ∈ R→ [0,1] is given by f (x) = P(X = x). F is a con-
tinuous random variable if its cdf can be expressed as

F(x) =
∫ x

−∞
f (u) du

for x ∈ R and some integrable function f ∈ R→ R+
0 , which is called the prob-

ability density function (or pdf) of X .

34 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

For brevity, when we do not need operations such as addition for its domain, we
may use discrete random variables that map to some arbitrary countable set S
and implicitly assume a bijection to R to formally make the definitions above
work. When we want to describe the evolution of a system that is subject to
uncertainty, we may use stochastic processes:

Definition 8 (Stochastic process). A stochastic process (X)i∈I is a collection
of random variables for some index set I.

The index set I often represents a notion of time; in particular, we talk of dis-
crete time if I = N and of continuous time if I = R+

0 .

Example 1. Useful random variables include, for example, the Bernoulli vari-
ables: Let Ω = {ω1,ω2 } and μ = {ω1 7→ p,ω2 7→ 1− p} for some parameter
p ∈ [0,1]. μ is a probability distribution. Then X = {ω1 7→ 1,ω2 7→ 0} is a
Bernoulli random variable, and its cdf is

F(x) =

0 if x < 0

1− p if x ∈ [0,1)

1 otherwise.

We also call this cdf “the Bernoulli distribution”.

When we perform a number of probabilistic experiments, we can compute the
average of the outcomes if they are themselves numeric, or in any case the
average of some given random variable. In the long run and for “well-behaved”
random variables, we expect this average to tend to some particular expected
value:

Definition 9 (Expected value). Given a discrete random variable X with prob-
ability mass function f , its expected value, expectation, or mean is

E(X) def= ∑x∈{y| f (y)>0}x ∙ f (x)

whenever this sum is absolutely convergent. If X is a continuous random vari-
able with pdf f , then its expectation is

E(X) def=
∫ ∞

−∞
x ∙ f (x) dx

whenever this integral exists.

Independence

The probability that some event A occurs may change when another event B
occurs. In case that the two events do not influence each other, we say that they
are independent. Formally, these phenomena can be defined as follows:

PRELIMINARIES 35

Definition 10 (Conditional probability, independence). The conditional prob-
ability that A ∈ Σ occurs given that B ∈ Σ has occurred is

P(A | B) def= P(A∩B)/P(B).

A family (Ai)i∈I of events is independent if

P(
⋂

i∈J

Ai) = ∏
i∈J
P(Ai)

for all finite subsets J ⊆ I.

The notion of independence generalises to random variables: Two discrete vari-
ables X and Y are independent if, for all x and y, the events {ω ∈Ω |X(ω) = x}
and {ω ∈ Ω | Y (ω) = y} are independent. Likewise, two continuous variables
X and Y are independent if, for all x and y ∈R, the events {ω ∈ Ω | X(ω)≤ x}
and {ω ∈ Ω | Y (ω) ≤ y} are independent.

2.3 Variables and Expressions

We define several symbolic models in this thesis whose syntax makes use of
variables, expressions and various other derived notions such as assignments.
In this section, we give abstract definitions of these notions and in particular
introduce different classes of expressions (again based on [HHHK13]) that will
be used in different parts of the symbolic models.

Variables and Valuations

A variable x is an object that has an associated domain (or type) Dom(x) with an
(implicit) σ -algebra DomΣ(x)⊆P(Dom(x)). We typically use the symbol Var
to denote (finite) sets of variables. Common types of variables include Boolean
variables, with Dom(x) = { true, false} and DomΣ(x) = σ({{ true},{ false}});
integer variables, where Dom(x) =Z and DomΣ(x) = P(Z); bounded integers,
with Dom(x) = {a, . . . ,b} for a,b∈Zwith a≤ b and DomΣ(x) = P(Dom(x));
and real variables, where Dom(x) = R and DomΣ(x) = B(R).

For a set of variables Var, we let Val(Var) denote the set of variable valu-
ations, that is of functions Var →

⋃
x∈Var Dom(x) that map variables to values

such that v ∈ Val(Var) ⇒ ∀x ∈ Var : v(x) ∈ Dom(x). When Var is clear from
the context, we may write Val in place of Val(Var). If Var is finite and we
are given an ordering on the variables (or we assume one), we can represent a
valuation v as a tuple whose i-th component is the value of the i-th variable ac-
cording to v. Two valuations v1 ∈ Val(Var1) and v2 ∈ Val(Var2) are consistent
if x ∈ Var1 ∩Var2 ⇒ v1(x) = v2(x). Then their union v1 ∪ v2 is a valuation in
Val(Var1 ∪Var2).

36 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Expressions

Given a set of variables Var, by Exp(Var) we denote the set of expressions over
the variables in Var. When Var is clear from the context, we may write Exp
in place of Exp(Var). In this thesis, we treat expressions in an abstract man-
ner: We assume a standard expression syntax as in e.g. the C programming
language [ISO11] with a few extensions that we explicitly describe where ne-
cessary, but we formally work mostly with the semantics of expressions as
functions that take a valuation over the relevant variables and return some kind
of value depending on the expression class and the type of model the expres-
sion is used in. For an expression e, we denote its function semantics by JeK,
and consequently write its evaluation for a given valuation v as JeK(v). Just like
a variable has a domain, an expression has a type t = type(e) with an assumed
corresponding σ -algebra Σt .

We distinguish three important subsets of Exp based on the expressions’
types, whether subexpressions with nondeterministic values (using the any op-
erator) are allowed—we call such expressions nondeterministic—and whether
sampling of values according to probability measures is possible. The three
subsets are
– Sxp: sampling expressions that may be nondeterministic and use sampling,

for example
x+ UNIFORM(0,2)+any(y | x+ y == z)

where UNIFORM(x,y) denotes sampling from the continuous uniform dis-
tribution over the interval [x,y] and any(x | e) nondeterministically selects a
value y such that e[x/y] (see below) evaluates to true in the current valuation;

– Bxp: simple Boolean expressions such as i = 1 that contain neither non-
determinism nor sampling and have type B; and

– Axp: arithmetic expressions such as 2.5 + x or ceil(y), which evaluate to
values in R and, like Boolean expressions, contain no nondeterminism and
no sampling.

As for Exp, we may write Sxp(Var) or just Sxp and so on for all the expression
classes depending on whether Var is clear from the context. We denote by
e[x/e′] the replacement of all occurrences of variable x in the syntax of the
expression e by the expression e′. Formally, this means that

∀v ∈ Val : Je[x/e′]K(v) = JeK(v[x 7→ Je′K(v)]).

For Chapters 3 to 5, we restrict sampling expressions to contain no nondeter-
minism and not use sampling. The expression semantics for these chapters can
thus formally be defined as follows:

Definition 11 (Deterministic expression semantics). The semantics JeK of an
expression e over variables in Var with type(e) = t is such that JeK ∈ Val → t.

PRELIMINARIES 37

In Chapter 6, we for the first time allow expressions in Sxp to be nondetermin-
istic and actually contain sampling. From that point on, we thus need to use the
following expression semantics:

Definition 12 (Stochastic-nondeterministic expression semantics). The seman-
tics JeK of an expression e over variables in Var with type(e) = t is such that
– JeK ∈ Val → Δ(Σt) is a ΣVar-H (Δ(Σt))-measurable function if e ∈ Sxp,
– JeK ∈ Val → B is a ΣVar-P(B)-measurable function if e ∈ Bxp, and
– JeK ∈ Val → R is a ΣVar-B(R)-measurable function if e ∈ Axp
where ΣVar =

⊗
x∈Var DomΣ(x) is the product σ -algebra of the variable do-

mains.

The semantics of an expression in Sxp maps a variable valuation to a set of
measures over values, thereby combining a nondeterministic selection (of an
element of the set) and a stochastic one (via the selected measure). The restric-
tions to measurable functions (here and in the remainder of this chapter) are
technical requirements that we do not dwell on further in this thesis. They are
of particular importance when it comes to modelling stochastic hybrid systems;
see e.g. [FHH+11, HHHK13] for more detailed explorations of these issues.

Assignments and Consistency

An assignment, which we can write as x := e, is formally a pair 〈x,e〉 of a vari-
able x and a sampling expression e. The set of assignments to variables in Var is
Asgn(Var) = Var×Sxp(Var), or just Asgn if Var is clear from the context, such
that if 〈x,e〉 ∈ Asgn, then for all valuations v ∈ Var either JeK(v) ∈ Dom(x) in
the deterministic case or JeK(v) ∈ Δ(Σt) in the stochastic-nondeterministic case
with t = type(e). Two assignments 〈x1,e1〉 and 〈x2,e2〉 are consistent if x1 6= x2

or Je1K(v) = Je2K(v) for all valuations v. A finite set of pairwise consistent as-
signments is called an (atomic) update, and two updates are consistent if their
union is an update. The set of all updates to variables in Var is Upd(Var),
or just Upd when Var is clear from the context. We can identify the assign-
ment u with the update {u}. Due to consistency, we can also treat an update
U = {〈x1,e1〉, . . . , 〈xn,en〉} consisting of n ∈ N assignments where possibly
xi = x j for some i 6= j as a function U ∈ Var → Sxp with

U = {〈x,e〉 | (∃ i : x = xi ∧ e = ei ∧@ j < i : x = x j)⊕ (e = x∧@ i : x = xi)}

where ⊕ denotes the exclusive disjunction operator. This merely means that we
ignore assignments that are syntactically different, but semantically equivalent.

For the deterministic assignments of Chapters 3 to 5, the formal semantics
of an update U (and thus also of a single assignment u via its corresponding
update) can simply be defined as follows:

38 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Definition 13 (Deterministic assignment semantics). The semantics JUK of up-
date U is such that JUK∈Val→Val, and it is defined by JUK(v)(x) def= JU(x)K(v).

For Chapter 6 and beyond, where expressions in Sxp may contain nondetermin-
ism and sampling, the semantics of an update U combines all the possible dis-
tributions to the variables:

Definition 14 (Stochastic-nondeterministic assignment semantics). The se-
mantics JUK of an update U is such that JUK ∈ Val → Δ(ΣVar), and it is defined
by JUK(v) def=

⊗
x∈VarJU(x)K(v).

An element of ΣVar is a set of |Var|-tuples and thus corresponds to a set of valu-
ations. The semantics of an update thus maps a valuation to a set of probabil-
ity measures over valuations. The measurability restrictions on the expressions
guarantee that the semantics of an assignment is ΣVar-H (Δ(ΣVar))-measurable.

The set of variables of an expression, assignment or update y is

Var(y) = {x ∈ Var | ∃v ∈ Val,z ∈ Dom(x) : JyK(v) 6= JyK(v[x 7→ z])},

that is the set of variables that JyK depends on. It is usually a subset of the
variables that appear in y on the syntactical level.

Basic Models 3
At the very foundation of the automata-based formalisms used in this thesis as
outlined in Figure 1.2 are the two concepts of nondeterminism and probabilistic
choices. The corresponding formalisms are labelled transition systems (LTS)
and discrete-time Markov chains (DTMC). In this chapter, we define both form-
ally. For each, we introduce the corresponding subset of the MODEST model-
ling language and review the standard ways to specify and verify properties.
We show how to analyse reachability properties on LTS using exhaustive and
stateless model checking as well as randomised testing. For DTMC, we focus
on probabilistic reachability properties. We show how to compute the corres-
ponding probabilities or compare them to fixed bounds. This can be achieved
through exhaustive probabilistic model checking as well as by using simulation
to perform statistical model checking.

In order to support compositional modelling on the level of automata, i.e.
the creation of complex models from smaller interacting components, we define
a parallel composition operator for each formalism. Parallel composition al-
lows the specification of networks of automata. After having defined the two
basic models of this thesis, we therefore briefly explore the concept of compos-
itionality in general terms.

3.1 Labelled Transition Systems

Labelled transition systems are the fundamental nondeterministic modelling
formalism. An LTS consists of a set of states, which are connected by trans-
itions. Transitions in turn are labelled with elements from a given alphabet.
These labels are usually called actions.

States are opaque and can be any kind of concrete mathematical object that
represents a “snapshot”, or configuration, of the system under study in a more
or less abstract fashion. Ideally, the set of states—and the underlying class of
mathematical objects—is chosen such that it is as small as possible without

40 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

mapping two concrete configurations to the same state when they would, in
reality, lead to relevant differences in behaviour.

Transitions connect states. They model the behaviour of the system as
it evolves from state to state over time. One state can have any number of
outgoing transitions. The nondeterminism of LTS is in the choice of transition
to take from a state, each of which in turn leads to a single next state. The
transition labels are used for communication between the component LTS in a
parallel composition (see Section 3.1.1 below).

Additionally, we equip each LTS with a set of atomic propositions and a la-
belling function that assigns atomic propositions to states. The propositions that
this labelling assigns define what is “visible” of the otherwise opaque states. In
properties, we will use atomic propositions to refer to (sets of) states.

Definition

Our following definition of LTS is largely inspired by the way transition sys-
tems are defined in the excellent textbook by Baier and Katoen [BK08], which
provides a very detailed description of LTS, the associated classes of properties
and (exhaustive) model checking approaches. In this section, we give a com-
paratively compact overview of these aspects as far as they are relevant for the
remainder of this thesis.

Definition 15 (LTS). A labelled transition system (LTS) is a 6-tuple

〈S,A,T,sinit,AP,L〉

where
– S is a countable set of states,
– A ⊇ {τ } is the system’s alphabet, a countable set of transition labels (or

actions) that includes the silent action τ ,
– T ∈ S → P(A×S) is the transition function,
– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and
– L ∈ S → P(AP) is the state labelling function.

Note that what we intuitively described as states having a number of outgoing
labelled transitions is implemented by assigning a set of action/successor-state
pairs 〈a,s′〉 to each state s. In the remainder of this thesis, we require all models
that have a transition (or edge) function whose domain is some powerset to be
finitely branching unless we say otherwise, i.e. we restrict to functions where
|T (s)| ∈ N for all states s (and analogously for edges and locations later on).

For a given LTS M with transition function T , we will also write s
a
−→ s′

instead of 〈a,s′〉 ∈ T (s), or say that “M has a transition labelled a from s to s′.”

BASIC MODELS 41

s0

∅

s1

∅

s2

{success}

snd_data

rcv_ack

timeout

Figure 3.1: An LTS model of a sender in a simple communication protocol

In case we are only interested in the successor states and not in the transition
labels, we also use the abbreviations Ta(s) to denote the set {s′ | 〈a,s′〉 ∈ T (s)}
for some a ∈ A, and T∗(s) for ∪a∈ATa(s). If T (s) = ∅, we say that s is dead-
locked or a deadlock state. We call a self-loop, i.e. the case where s ∈ T∗(s),
simply a loop, and the possibility to return to some state via one or more trans-
itions is a cycle.

In this thesis, an important aspect of models specified in a formalism that
allows nondeterministic choices is whether the model at hand actually contains
any such choices:

Definition 16 (Deterministic LTS). An LTS M = 〈S,A,T,sinit,AP,L〉 is de-
terministic if and only if |T (s)| ∈ {0,1} for all s ∈ S, and nondeterministic
otherwise.

Depending on context, an LTS may also be called a Kripke structure (usually
when parallel composition is not considered and the transition labels can thus
be left out) or a finite automaton (when it is primarily its language, i.e. the set
of action traces (see below), that is of interest).

Example 2. A very abstract LTS model of the sending component in a simple
communication protocol is shown in Figure 3.1: The sender first tries to send
data via an unspecified communication channel to an equally unspecified re-
ceiver. This is modelled by action snd_data. As the channel may lose mes-
sages, it then waits for either a timeout, which causes the data to be resent, or
the receipt of an acknowledgment from the receiver through action rcv_ack.
On receiving the acknowledgment, the sender moves to a deadlocked state.
That state is labelled to indicate the successful transmission. Formally, this
LTS can be written as

MSnd = 〈{s0,s1,s2 },{snd_data,timeout,rcv_ack},

TSnd,s0,{success},LSnd〉

42 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

where the transition function TSnd is given by TSnd(s0) = {(snd_data,s1)},
TSnd(s1) = {(timeout,s0),(rcv_ack,s2)} and TSnd(s2) = ∅, and the state la-
belling function is given by LSnd(s0) = LSnd(s1) =∅ and LSnd(s2) = {success}.
MSnd is nondeterministic. It has no loops, one cycle, and one deadlock state (s2).

Paths

The individual behaviours of an LTS—where the nondeterministic choices re-
garding which transition to take next have been resolved—can be represented
as paths. Formally,

Definition 17 (Finite paths in LTS). Given M = 〈S,A,T,sinit,AP,L〉, a (finite)
path in M from s0 to sn of length n ∈ N is a finite sequence s0 a1 s1 a2 s2 . . .an sn

where si ∈ S for all i ∈ {0, . . . ,n} and ai ∈ A∧ si−1
ai−→ si for all i ∈ {1, . . . ,n}.

The length of a path π is denoted |π|, its last state is last(π). For s,s′ ∈ S,
Paths(s,s′) is the set of all paths in M from s to s′. If Paths(s,s′) is non-empty,
we say that s′ is reachable from s. For an entire LTS, s ∈ S is reachable in
M if Paths(sinit,s) 6= ∅, and Reach(M) = {s ∈ S | Paths(sinit,s) 6= ∅} is the
set of reachable states of M. We refer to the set of all finite paths of M as
Pathsfin(M) def= ∪s∈SPaths(sinit,s).

Definition 18 (Infinite paths in LTS). Given an LTS M = 〈S,A,T,sinit,AP,L〉,
an (infinite) path in M starting from s0 is an infinite sequence s0 a1 s1 a2 s2 . . .
where si ∈ S for all i ∈ N and ai ∈ A∧ si−1

ai−→ si for all i ∈ N+.

For s ∈ S, Paths(s) is the union of the set of all paths in M starting from s
and the sets Paths(s,s′) for all deadlock states s ∈ S. We call the paths in
Paths(s) maximal. For the entire LTS M as above, we define its set of paths
as Paths(M) = Paths(sinit), i.e. the maximal paths starting in its initial state.

Example 3. In the simple sender LTS given as Example 2, there is one infinite
path (which continuously cycles between s0 and s1) and infinitely many max-
imal finite paths (which all end in deadlock state s2). As examples for path sets
(using ω-regular expression notation [BK08, Section 4.3.1] where convenient),
we have
– Paths(s0,s1)=Js0 snd_data s1 (timeout s0 snd_data s1)∗K and
– Paths(MSnd)=Js0 snd_data s1 (timeout s0 snd_data s1)ωK∪Paths(s0,s2).

Traces

As the states of an LTS are opaque objects, paths contain more information than
necessary e.g. for the verification of properties or the definition of the language

BASIC MODELS 43

of an LTS seen as a finite automaton. Instead, traces are used, which represent
the projections of paths on either the actions or the atomic propositions corres-
ponding to the states:

Definition 19 (Traces in LTS). Given an LTS M = 〈S,A,T,sinit,AP,L〉 and a
(finite or infinite) path π = s0 a1 s1 a2 s2 . . . , the trace of the path π is defined as
trace(π) def= L(s0)L(s1)L(s2) . . . , and its action trace is atrace(π) def= a1 a2

The sets of paths Paths(s,s′), Paths(s) and Paths(M) can be lifted to the sets
of traces Tr(s,s′), Tr(s) and Tr(M) by applying the trace(∙) operation to all
their elements. Since we focus on state-based verification in this thesis and
consequently use transition labels merely for parallel composition, we actually
need (the atomic proposition-based) traces only. We note that when an LTS is
seen as a finite automaton where all states are accepting, then the set of action
traces is the language of the automaton.

Example 4. The sets of traces corresponding to the sets of paths given in Ex-
ample 3 are Tr(s0,s1) = J∅∗K and Tr(MSnd) = J∅ω |∅∗{success}K.

3.1.1 Parallel Composition

Modelling a large, complex system as a single, atomic LTS quickly becomes an
exercise in frustration. We need a way to build a complex LTS out of smaller,
manageable parts. A common approach in modelling reactive systems is there-
fore to separate the model into a number of components that execute in parallel
and communicate only via well-defined interfaces.

For LTS, this approach can be realised with a parallel composition oper-
ation that takes two (component) LTS and gives a well-defined meaning for
the parallel execution and communication. The notion of parallel composition
was originally introduced with process algebras, in particular CCS [Mil80] and
CSP [Hoa85]. There are various ways to define a concrete parallel composition
operator w.r.t. how the parallel components communicate. CCS, for example,
provides for binary communication between two processes only, which natur-
ally includes a notion of “direction” resp. of a sender and a receiver. This style
of communicating has been adopted in current tools like UPPAAL, which ad-
ditionally provides for a broadcast extension that allows multiple receivers for
a single sender. CSP’s multi-way communication, on the other hand, makes
no distinction between the communicating parties, and has been adopted by
languages like LOTOS [BB87], the PRISM model checker’s [KNP11] guarded
commands, and MODEST [BDHK06]. The latter is why, in the remainder of
this thesis, we use CSP-style parallel composition operators.

44 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

In the operator that we now introduce for LTS, it is the transition labels that
define the communication structure: Transitions bearing a label that is in the in-
tersection of both components’ alphabets (the shared alphabet, which does not
include τ) must synchronise, i.e. when one component performs such a trans-
ition, the other component must also do so at the same time. For all other trans-
itions, an interleaving semantics is used to represent the asynchronous parallel
execution: When each component LTS can perform some non-synchronising
transitions, then it is not specified in which order the two components do so.
Instead, a nondeterministic choice between the available transitions of both
components is used. The result of this semantics is that the parallel compos-
ition represents all possible orderings of transitions of the two components as
long as no synchronisation takes place. Intuitively, this means that the relative
execution speeds of the components are unspecified. Verification results for a
parallel composition are thus independent of the actual way the asynchronous
execution is implemented. For example, it does not matter if the components
run as threads on the same processor with fair scheduling, or if alternatively
they run on different machines of different execution speeds.

Formally, the parallel composition operator ‖ for LTS is defined as follows:

Definition 20 (Parallel composition of LTS). The parallel composition of two
LTS Mi = 〈Si,Ai,Ti,siniti ,APi,Li〉, i ∈ {1,2}, is the LTS

M1 ‖ M2 = 〈S1 ×S2,A1 ∪A2,T,〈sinit1 ,sinit2〉,AP1 ∪AP2,L〉

where
– T ∈ (S1 ×S2) → P((A1 ∪A2)× (S1 ×S2))

s.t. 〈a,〈s′1,s
′
2〉〉 ∈ T (〈s1,s2〉) ⇔ a /∈ B∧〈a,s′1〉 ∈ T1(s1)∧ s2 = s′2

∨ a /∈ B∧〈a,s′2〉 ∈ T2(s2)∧ s1 = s′1
∨ a ∈ B∧〈a,s′1〉 ∈ T1(s1)∧〈a,s′2〉 ∈ T2(s2)

with B = (A1 ∩A2)\{τ }, and
– L ∈ (S1 ×S2) → P(AP1 ∪AP2) s.t. L(〈s1,s2〉) = L1(s1)∪L2(s2).

We call the transitions resulting from the first two cases of the definition of T
interleaved, while the others are synchronising transitions. We also say that the
two LTS synchronise on labels in the shared alphabet.

Observe the role that nondeterministic choices play in this definition of
parallel composition: On the one hand, they are essential to realise the inter-
leaving semantics. In this way, parallel composition may introduce additional
nondeterministic choices into a model. Even if the components were determ-
inistic to start with, their composition can thus be nondeterministic. On the
other hand, nondeterministic choices can be removed by the synchronisation
mechanism: transitions may be disabled when the synchronisation partner is

BASIC MODELS 45

c0

∅

c1

∅

snd_data

rcv_data

timeout

r0

∅

r1

∅

rcv_data

snd_ack

a0

∅

a1

∅

snd_ack

rcv_ack

Figure 3.2: LTS for communication channels (left, right) and receiver (middle)

〈s0,c0〉

∅

〈s1,c1〉

∅

〈s1,c0〉

∅

〈s2,c1〉

{success}

〈s2,c0〉

{success}

snd_data

timeout

rcv_d
ata

rcv_ack

rcv_ack

rcv_d
ata

Figure 3.3: LTS for the parallel composition of sender and left channel

not ready. Thus, the composition of two nondeterministic LTS can also turn
out to be deterministic.

Example 5. Let us revisit the LTS modelling the sender in a simple commu-
nication protocol scenario introduced in the previous examples. The as yet
unspecified components of this model are, as mentioned, the communication
channel and the receiver. It is natural to model them as separate LTS and use
parallel composition to combine them.

Figure 3.2 shows the individual components. We actually use two com-
munication channels: The one on the left models the transmission of data from
sender to receiver, while the one on the right takes acknowledgments back from
receiver to sender. We see that message loss is included in the data channel
model by a nondeterministic choice between a transition with label rcv_data,
which would hand the data to the receiver, and a transition with label timeout,
which indicates message loss to the sender. For simplicity, we do not allow the
loss of acknowledgments in the other channel.

The parallel composition of sender (Figure 3.1) and data channel (Fig-
ure 3.2) is shown in Figure 3.3. We see that the two LTS synchronise on
snd_data and timeout, while the transitions labelled rcv_data and rcv_ack
are interleaved—they will later synchronise with the receiver and the acknow-
ledgment channel. For now, however, they form a classic interleaving diamond:

46 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈〈〈s0,c0〉,r0〉,a0〉

∅

〈〈〈s1,c1〉,r0〉,a0〉

∅

〈〈〈s1,c0〉,r1〉,a0〉

∅

〈〈〈s1,c0〉,r0〉,a1〉

∅

〈〈〈s2,c0〉,r0〉,a0〉

{success}

snd_data

timeout

rcv
_da
ta snd_ack

rcv
_ac
k

Figure 3.4: Parallel composition of sender, receiver and both channels

Aside from not synchronising, they do not disable each other and they are com-
mutative (i.e. both execution orders end in the same state). This is an example
where parallel composition introduces new nondeterminism.

Finally, we see the parallel composition of all four components in Fig-
ure 3.4. Here, the nondeterministic choices introduced in the intermediate LTS
have been resolved again. All remaining nondeterminism was already present
in the sender LTS. The composition with sender and receiver has therefore re-
moved nondeterministic choices.

3.1.2 Variables

Even though the availability of a parallel composition operation is a signific-
ant improvement in ease of modelling, parallel LTS in their pure form remain
a poor choice in practice: realistic systems typically have a large number of
possible configurations that would need to be explicitly represented as opaque
states.

A solution to this problem is to add a level of abstraction on top of LTS
in the form of labelled transition systems with variables (VLTS), which have
a semantics in terms of LTS. VLTS retain the basic labelled transition system
structure in that they contain locations (instead of states) and labelled edges
(instead of transitions). Additionally, they include a set of variables that can be
used in
– guards on edges, which specify when an edge is enabled and the correspond-

ing transition is thus present in the underlying LTS semantics; in
– updates, to be executed when an edge is taken in order to modify not only the

current location, but also the values of the variables; and in
– visible expressions, which represent the aspects of the system visible to prop-

erties and thus replace the labelling with atomic propositions of LTS.

BASIC MODELS 47

l0 l1 l2
{ctr := 0,success := ff , failure := ff}

tt, snd_data, ∅
tt, rcv_ack,

{success := tt}

ctr < 2, timeout,
{ctr := ctr +1}

ctr ≥ 2, timeout,
{failure := tt}

Figure 3.5: A VLTS model of a sender in a bounded retransmission protocol

Definition

Formally, we define VLTS as follows:

Definition 21 (VLTS). A labelled transition system with variables (VLTS) is a
7-tuple 〈Loc,Var,A,E, linit,Vinit,VExp〉 where
– Loc is a countable set of locations,
– Var is a finite set of variables with countable domains,
– A ⊇ {τ } is the system’s alphabet,
– E ∈ Loc → P(Bxp×A×Upd×Loc) is the edge function, which maps each

location to a set of edges, which in turn consist of a guard, a label, an update
and a target location,

– linit ∈ Loc is the initial location,
– Vinit ∈ Val(Var) is the initial valuation of the variables, and
– VExp ⊆ Bxp is the set of visible expressions.

For a given VLTS M with edge function E, we also write l g,a,U−−−→ l′ instead of
〈g,a,U, l′〉 ∈ E(l) in the remainder of this thesis.

Example 6. Let us return to the sender in our simple communication protocol
built in the previous examples. We now want to remove the infinite path where
a timeout occurs, the data is resent, another timeout occurs, the data is resent
again, and so on. Since we cannot realistically assume that messages may not
get lost and thus no timeouts will occur (although the current channel model
is unrealistically unfair in also allowing all messages ever sent to be lost), we
make the sender simply give up and report failure after a certain number of
timeouts. We concisely model this as a VLTS with an integer variable ctr to
count timeouts as shown in Figure 3.5. In this model, the sender gives up after
its transmission has timed out for the third time. To be able to observe whether
the sender succeeds or gives up, we include two Boolean variables success and
failure and use {success, failure} as the set of visible expressions. In terms of
notation, we represent the initial valuation by an update on the arrow leading

48 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

into the initial location. In the remainder of this thesis, we omit constant true
guards and empty assignment sets when drawing automata with variables.

Semantics

The LTS semantics of a VLTS can be obtained by using pairs of locations and
variable valuations as states and evaluating the edges’ guards and updates on
these valuations:

Definition 22 (Semantics of VLTS). The semantics of a VLTS

M = 〈Loc,Var,A,E, linit,Vinit,VExp〉

is the LTS
JMK= 〈Loc×Val,A,T,〈linit,Vinit〉,VExp,L〉

where
– T ∈ Loc×Val → P(A× (Loc×Val)) such that

〈a,〈l′,v′〉〉 ∈ T (〈l,v〉) ⇔∃〈g,a,U, l′〉 ∈ E(l) : JgK(v)∧ v′ = JUK(v),

and
– L ∈ Loc×Val → P(VExp) such that, for all 〈l,v〉 ∈ Loc×Val, we have that

L(〈l,v〉) = {e ∈ VExp | JeK(v)}.

It directly follows from this definition that the number of states and thus the
worst-case number of reachable states of the LTS corresponding to a VLTS as
above is |Loc| ∙∏v∈Var |Dom(v)|. Liberal use of variables with large domains
can thus quickly lead to state space explosion.

Example 7. The semantics of the VLTS modelling the sender with retransmis-
sion bound 3 from the previous example is shown in Figure 3.6. Valuations are
written as tuples for variable order 〈ctr, success, failure〉.

Parallel Composition

As for plain LTS, we can define a parallel composition operator for VLTS. This
operator has the same effect on the graph structure (of locations and edges)
as the one for LTS (on states and transitions), including synchronisation on
the shared alphabet. However, symbolic operations on the expression level are
needed to combine guards and assignments:

Definition 23 (Parallel composition of VLTS). The parallel composition of
two consistent VLTS Mi = 〈Loci,Vari,Ai,Ei, liniti ,Viniti ,VExpi〉, i ∈ {1,2}, is
the VLTS

M1 ‖ M2 = 〈Loc1 ×Loc2,Var1 ∪Var2,A1 ∪A2,E,
〈linit1 , linit2〉,Vinit1 ∪Vinit2 ,VExp1 ∪VExp2〉

BASIC MODELS 49

〈l0,〈0, ff , ff 〉〉

∅

〈l1,〈0, ff , ff 〉〉

∅

〈l2,〈0, tt, ff 〉〉

{success}

〈l0,〈1, ff , ff 〉〉

∅

〈l1,〈1, ff , ff 〉〉

∅

〈l2,〈1, tt, ff 〉〉

{success}

〈l0,〈2, ff , ff 〉〉

∅

〈l1,〈2, ff , ff 〉〉

∅

〈l2,〈2, tt, ff 〉〉

{success}

〈l2,〈2, ff , tt〉〉

{ failure}

snd_data rcv_ack

tim
eou
t

snd_data rcv_ack

tim
eou
t

snd_data rcv_ack

timeout

Figure 3.6: LTS semantics of the VLTS for the bounded retransmission sender

where E ∈ (Loc1 ×Loc2) → P(Bxp×A1 ∪A2 ×Upd× (Loc1 ×Loc2)) s.t.
〈g,a,U,〈l′1, l

′
2〉〉 ∈ E(〈l1, l2〉) ⇔ a /∈ B∧〈g,a,U, l′1〉 ∈ E1(l1)∧ l2 = l′2

∨ a /∈ B∧〈g,a,U, l′2〉 ∈ E2(l2)∧ l1 = l′1
∨ a ∈ B∧∃g1,g2,U1,U2 :

〈g1,a,U1, l′1〉 ∈ E1(l1)
∧ 〈g2,a,U2, l′2〉 ∈ E2(l2)
∧ (g = g1 ∧g2)∧ (U = U1 ∪U2)

with B = (A1 ∩A2)\{τ}.

We do not require that Var1 ∩Var2 =∅, i.e. we allow shared variables. This is
why we need the two VLTS to be consistent:

Definition 24 (Consistent VLTS). Two VLTS Mi as in the previous definition
are consistent if their initial valuations are consistent and, for all l1 ∈ Loc1,
l2 ∈ Loc2 and a ∈ (A1 ∩A2)\{τ } we have that

U1 ∈ f1(l1,a)∧U2 ∈ f2(l2,a) ⇒U1 and U2 are consistent

where fi(l,a) def= {U | 〈g,a,U, l′〉 ∈Ei(l)} are the sets of all updates on the edges
labelled with a from a location l.

Consistency as defined above is a sufficient condition to ensure the absence of
concurrent assignments to shared variables that assign the same values. Al-
ternative definitions that keep this property but classify more pairs of VLTS as
consistent are possible, for example by also taking the guards of the edges into
account. The parallel composition of two inconsistent VLTS is not defined. In

50 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

l0

M1:

l1 l2

M2:

l3
{x := tt} tt, τ , {x := ff} {x := tt} x, a, ∅

〈〈l0, l2〉,〈tt〉〉

JM1 ‖ M2K:

〈〈l1, l2〉,〈ff 〉〉 〈〈l0, l3〉,〈tt〉〉

〈〈l1, l3〉,〈ff 〉〉

〈〈l0,〈tt〉〉,〈l2,〈tt〉〉〉

JM1K ‖ JM2K:

〈〈l1,〈ff 〉〉,〈l2,〈tt〉〉〉 〈〈l0,〈tt〉〉,〈l3,〈tt〉〉〉

〈〈l1,〈ff 〉〉,〈l3,〈tt〉〉〉

τ a

τ

τ a

τa

Figure 3.7: LTS parallel composition does not work with shared variables

practice, we consider an attempt to do so as a modelling error; tools should
simply reject such models.

Distributivity

Now that we have defined a semantics for VLTS in terms of LTS as well as a
parallel composition operator for both formalisms, an obvious question is: Are
the semantics operation J∙K and parallel composition ‖ for both VLTS and LTS
distributive? The answer is, unfortunately, no [BK08]:

Theorem 1. For two VLTS M1 and M2, we have

JM1 ‖ M2K∼= JM1K ‖ JM2K

when M1 and M2 have no shared variables, but it does not hold in general.

Proof. A counterexample for the shared variable case is given in Figure 3.7.
For the case when there are no shared variables, let Mi, i ∈ {1,2}, be two VLTS

Mi = 〈Loci,Vari,Ai,Ei, liniti ,Viniti ,VExpi〉

with Var1 ∩Var2 = ∅. The semantics of their parallel composition JM1 ‖ M2K
is

〈SSem,A1 ∪A2,TSem,〈〈linit1 , linit2〉,Vinit1 ∪Vinit2〉,VExp1 ∪VExp2,LSem〉

where SSem = (Loc1×Loc2)×(Val(Var1∪Var2)), and the parallel composition
of their individual semantics JM1K ‖ JM2K is

〈S‖,A1 ∪A2,T‖,〈〈linit1 ,Vinit1〉,〈linit2 ,Vinit2〉〉,VExp1 ∪VExp2,L‖〉

BASIC MODELS 51

where S‖ = (Loc1 ×Val(Var1))× (Loc2 ×Val(Var2)). We need to show that
there is an isomorphism between JM1 ‖ M2K and JM1K ‖ JM2K. We thus need
to show that a bijection exists between all states and for all other parts of both
systems.

First, observe that the alphabets and the sets of atomic propositions are
identical, so we can use relation Id for them. For states, we relate 〈〈l1, l2〉,v〉
to 〈〈l1,v1〉,〈l2,v2〉〉 for all li ∈ Loci, vi ∈ Val(Vari), v ∈ Val(Var1 ∪Var2) if and
only if v = v1 ∪ v2. This is a bijection because the sets of variables of both
components are disjoint. For simplicity, we will directly denote the valuations
of the reachable states of JM1 ‖ M2K by v1 ∪ v2 in the remainder of this proof.

Recall that, by Definitions 20 and 22, we have

TSem ∈ SSem → P(A1 ∪A2 ×SSem)

and T‖ ∈ S‖ → P(A1 ∪A2 ×S‖). We show that both functions agree on all
related states 〈〈l1, l2〉,v1 ∪ v2〉 ∈ SSem and 〈〈l1,v1〉,〈l2,v2〉〉 ∈ S‖:

〈a,〈〈l′1, l
′
2〉,v

′
1 ∪ v′2〉〉 ∈ TSem(〈〈l1, l2〉,v1 ∪ v2〉)

⇔∃〈g,a,U,〈l′1, l
′
2〉〉 ∈ E(〈l1, l2〉) : JgK(v1 ∪ v2)∧ (v′1 ∪ v′2) = JUK(v1 ∪ v2)

(Def. 22)

⇔ ∃〈g,a,U,〈l′1, l
′
2〉〉 : JgK(v1 ∪ v2)∧ (v′1 ∪ v′2) = JUK(v1 ∪ v2)

∧ (a /∈ B∧〈g,a,U, l′1〉 ∈ E1(l1)∧ l2 = l′2
∨a /∈ B∧〈g,a,U, l′2〉 ∈ E2(l2)∧ l1 = l′1
∨a ∈ B

∧ 〈g1,a,U1, l
′
1〉 ∈ E1(l1)∧〈g2,a,U2, l

′
2〉 ∈ E2(l2)

∧ (g = g1 ∧g2)∧U = U1 ∪U2)
(Def. 23)

⇔ ∃〈g,a,U,〈l′1, l
′
2〉〉 : a /∈ B ∧〈g,a,U, l′1〉 ∈ E1(l1)

∧ JgK(v1)∧ v′1 = JUK(v1)∧ l2 = l′2
∨a /∈ B ∧〈g,a,U, l′2〉 ∈ E2(l2)

∧ JgK(v2)∧ v′2 = JUK(v2)∧ l1 = l′1
∨ a ∈ B∧〈g1,a,U1, l

′
1〉 ∈ E1(l1)

∧〈g2,a,U2, l
′
2〉 ∈ E2(l2)

∧ Jg1K(v1)∧ Jg2K(v2)

∧ v′1 =JU1K(v1)∧ v′2 =JU2K(v2)

∧ (g = g1 ∧g2)∧U = U1 ∪U2

(distributivity ∧/∨ and Var1 ∩Var2 =∅)

52 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

⇔ a /∈ B ∧
(
∃〈g,a,U, l′1〉 ∈ E1(l1) : JgK(v1)∧ v′1 = JUK(v1)

)

∧〈l2,v2〉 = 〈l′2,v
′
2〉

∨ a /∈ B ∧
(
∃〈g,a,U, l′2〉 ∈ E2(l2) : JgK(v2)∧ v′2 = JUK(v2)

)

∧〈l1,v1〉 = 〈l′1,v
′
1〉

∨ a ∈ B ∧
(
∃〈g,a,U, l′1〉 ∈ E1(l1) : JgK(v1)∧ v′1 = JUK(v1)

)

∧
(
∃〈g,a,U, l′2〉 ∈ E2(l2) : JgK(v2)∧ v′2 = JUK(v2)

)

(distributivity ∃/∨)

⇔ a /∈ B∧〈a,〈l′1,v
′
1〉〉 ∈ T1(〈l1,v1〉)∧〈l2,v2〉 = 〈l′2,v

′
2〉

∨ a /∈ B∧〈a,〈l′2,v
′
2〉〉 ∈ T2(〈l2,v2〉)∧〈l1,v1〉 = 〈l′1,v

′
1〉

∨ a ∈ B∧〈a,〈l′1,v
′
1〉〉 ∈ T1(〈l1,v1〉)∧〈a,〈l′2,v

′
2〉〉 ∈ T2(〈l2,v2〉)

(Def. 22)

⇔〈a,〈〈l′1,v
′
1〉,〈l

′
2,v

′
2〉〉〉 ∈ T‖(〈〈l1,v1〉,〈l2,v2〉〉) (Def. 20)

We finally show that the labelling functions agree for all related states, i.e. that
LSem(〈〈l1, l2〉,v1 ∪ v2〉) = L‖(〈〈l1,v1〉,〈l2,v2〉〉) for all li ∈ Loci, vi ∈ Val(Vari):

L‖(〈〈l1,v1〉,〈l2,v2〉〉) = L1(〈l1,v1〉)∪L2(〈l2,v2〉) (Def. 20)

= {e ∈ VExp1 | JeK(v1)}∪{e ∈ VExp2 | JeK(v2)}
(Def. 22)

= {e ∈ VExp1 ∪VExp2 | JeK(v1 ∪ v2)}
(Var1 ∩Var2 =∅)

= LSem(〈〈l1, l2〉,v1 ∪ v2〉) (Def. 22)

The underlying problem is that the modification of a global variable in one com-
ponent directly influences the other components, but that influence is not taken
into account when constructing the parallel composition of the component se-
mantics. In other words: While the semantics of a VLTS and the LTS parallel
composition operator together preserve the possibility for further (V)LTS to
influence the system via synchronisation on shared actions, they remove the
possibility for similar influences via changes to global variables.

This problem can be avoided by changing the VLTS semantics to gener-
ate an overapproximation of the local state space w.r.t. the unknown influence
of other parallel components on global variables; see [ZZ14] for an example
of such an approach in one specialised setting. In this thesis, we do not fo-
cus on compositional verification and minimisation, which would require the
application of VLTS semantics followed by LTS parallel composition. We in-
stead assume all VLTS to be small enough for their parallel composition to

BASIC MODELS 53

be constructed explicitly, followed by an (ideally on-the-fly) generation of the
composition’s LTS semantics during verification.

3.1.3 Modelling

VLTS can be seen as a simple graphical modelling formalism. Although VLTS
with parallel composition already allow the creation of relatively manageable
models, the only operation that allows reuse of parts of models is parallel com-
position. MODEST, on the other hand, is a text-based modelling language that
provides a rich syntax for modelling and, in particular, component reuse. It
allows very concise models to be built in a fashion similar to standard pro-
gramming languages. In this section, we introduce the subset of the MODEST

syntax that allows the modelling of LTS and VLTS. While the full semantics of
MODEST maps to SHA, we present it step-by-step in this thesis, always using
as simple a submodel of SHA as possible. The subset of MODEST introduced
in this thesis is presented as a whole in Appendix A. Beyond that, the full
MODEST syntax and semantics for SHA can be found in [HHHK13].

MODEST for LTS

A MODEST model consists of a number of declarations followed by a process
behaviour according to the following grammar (for the LTS subset):

P ::= act | stop | abort | break | P1;P2 |

alt{ ::P1 . . . ::Pk } | do{ ::P1 . . . ::Pk } |

throw(excp) | try{P}catch excp1 {P1 } . . . catch excpk {Pk }

Its semantics is the LTS 〈S,Act]Excp,T,sinit,AP,L〉 where
– Act contains all declared actions plus the predefined actions τ , [and ⊥,
– Excp contains all declared exceptions,
– S, the set of states, is the set of all (syntactically valid) process behaviours

using labels in Act∪Excp,
– sinit ∈ S is the model’s process behaviour itself,
– AP and L are determined by the properties introduced as part of the declara-

tions, and finally
– T is the largest set of transitions that satisfy the inference rules that we present

in the remainder of this section and thesis.
We introduce the inference rules together with a running example, where we
model a communication protocol similar to the one presented in the previous
examples of this section:

54 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Actions To create action-labelled transitions, the actions need to be declared
first. This is done using the keyword action. The silent action τ , which can
also be written as tau in MODEST, the special break action, written as break
in MODEST and as [in inference rules, and the error action ⊥, created by the
abort keyword (see the paragraph on exception below), cannot and need not
explicitly be declared.

A transition labelled with some action is then created by simply “calling”
that action as shown in Figure 3.8 for the snd_data step of the communication
protocol’s sender. The corresponding inference rule is

(a ∈ Act \{⊥})

a
a
−→X

(act)

where X represents the successfully terminated process, a syntactically valid
process behaviour that is only used in the inference rules and that must not be
part of a model.

Sequential composition Two process behaviours are executed one after the
other when combined by the sequential composition operator ;. In Figure 3.9,
the sender now uses this to wait for an acknowledgment after having sent the
data. The inference rules are

P
a
−→ P′ (P′ 6=X)

P;Q
a
−→ P′;Q

(seqA) and P
a
−→X

P;Q
a
−→ Q

(seqB)

where, here and in all following inference rules, P, Q and variants denote pro-
cess behaviours while a denotes elements of Act∪Excp.

Nondeterministic choice A central feature of LTS is the ability to express
nondeterministic choices. These are specified in MODEST as choices between
two or more process behaviours using the alt keyword. This allows us to also
include the alternative of a timeout occurring instead of the acknowledgment
being received in our example in Figure 3.10. The corresponding inference rule
is

Pi
a
−→ Q (i ∈ {1, . . . ,n})

alt { ::P1 . . . ::Pn }
a
−→ Q

(alt)

Cycles In order to allow the sender to retransmit a message once a timeout
has occurred, it needs to be able to go back to its initial state. In MODEST,
such cyclic behaviour can be achieved with the do keyword. To exit the cycle,

BASIC MODELS 55

action snd_data;

snd_data

snd_data

Figure 3.8: Actions in MODEST

action snd_data, rcv_data;

snd_data;
rcv_ack

snd_data rcv_ack

Figure 3.9: Sequential composition in MODEST

action snd_data, rcv_data,
timeout;

snd_data;
alt {
:: rcv_ack
:: timeout
}

snd_data

rcv_ack timeout

Figure 3.10: Nondeterministic choice in MODEST

action snd_data, rcv_data,
timeout;

do {
:: snd_data;

alt {
:: rcv_ack; break
:: timeout
}

}

snd_data

rcv_ack

timeout

τ

Figure 3.11: Cycles in MODEST

56 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

the special action break ([in inference rules) is used. Figure 3.11 shows these
new behaviours at work as part of the communication protocol’s sender.

The inference rules for do are complicated by the fact that we need to keep
track of the original behaviour to return to after each iteration. We use the
auxiliary auxdo behaviour for this purpose:

do { ::P1 . . . ::Pn }
def= auxdo { alt { ::P1 . . . ::Pn } } { alt { ::P1 . . . ::Pn } }

Its second component is where the original behaviour is preserved for later re-
initialisation. Note that do follows the same syntax as alt and, as the expan-
sion to auxdo shows, in fact includes an initial nondeterministic choice. The
inference rules are then

P
a
−→ P′ (a 6= [∧P′ 6=X)

auxdo { P } { Q }
a
−→ auxdo { P′ } { Q }

(auxdoA),

P
a
−→X (a 6= [)

auxdo { P } { Q }
a
−→ auxdo { Q } { Q }

(auxdoB),

and P
[
−→ P′

auxdo { P } { Q }
τ
−→ P′

(breakout)

where rule auxdoA defines the semantics of performing a step within the cycle,
auxdoB ensures that we return to the next iteration when the previous iteration’s
the last step has been performed (restoring the original behaviour preserved in
the auxdo’s second component), and finally breakout defines the consequences
of executing the break action [.

Exceptions Many programming languages provide mechanisms to throw (or
equivalently to raise) and catch (or equivalently to handle) exceptions to make
dealing with rare situations that need exceptional control flow easier. Inspired
by this, MODEST also has exceptions as a special kind of transition label. We
use this feature in our example to raise an error by throwing exception err on
timeout in Figure 3.12. The inference rule for throwing exceptions is

excp ∈ Excp

throw(excp)
excp
−−→ abort

(throw).

The immediate result of throwing an exception is that we move to the abort
behaviour, which generates a loop labelled with the previously mentioned error
action ⊥:

abort
⊥
−→ abort

(abort)

BASIC MODELS 57

action snd_data, rcv_data,
timeout;

exception err;

do {
:: snd_data;

alt {
:: rcv_ack; break
:: timeout; throw(err)
}

}

snd_data

rcv_ack

τ

timeout

err

⊥

Figure 3.12: Throwing exceptions in MODEST

action snd_data, rcv_data,
timeout;

exception err;

try {
do {
:: snd_data; alt {

:: rcv_ack; break
:: timeout; throw(err)
}

}
} catch(err) {

stop
}

snd_data

rcv_ack

τ

timeout

τ

Figure 3.13: Catching exceptions in MODEST

58 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

To put exceptions to more productive use in a model, they can be wrapped
within a try behaviour. This allows them to be caught using exception handlers
specified by the catch keyword as shown in Figure 3.13. The inference rules
for try-catch are the following:

P
a
−→ P′ P′ 6=X (a /∈ {excp1, . . . ,excpn })

Q(P)
a
−→ Q(P′)

(tryA)

P
a
−→X (a /∈ {excp1, . . . ,excpn })

Q(P)
a
−→X

(tryB)

P
excpi−−−→ P′ (i ∈ {1, . . . ,n})

Q(P)
τ
−→ Pi

(catch)

where Q(P) denotes any behaviour of the form

Q(P) def= try { P } catch excp1 { P1 } . . . catch excpn { Pn }

for process behaviours P1, . . . ,Pn and exceptions excpi ∈ Excp, i ∈ {1, . . . ,n}.
In the example of Figure 3.13, no useful exception handling is performed. The
absence of any further behaviour is indicated by the stop keyword, which con-
sequently has no associated inference rule.

We point out that we have thus far seen three static operators, namely ;, auxdo
and try-catch. In contrast to the other operators like alt, they appear on both
sides of the transition in the conclusion of at least one of their inference rules.
Intuitively, this means that they usually do not “disappear” when a transition
is taken. Static operators therefore always need a dedicated inference rule like
tryB that removes them when the inner behaviour terminates successfully.

MODEST for VLTS

The model shown in Figure 3.11 corresponds very well to the original LTS of
the communication protocol sender as shown in Figure 3.1, save for the extra
τ step. Our goal, however, is a protocol with a bounded number of retrans-
missions. As we saw, using variables greatly simplifies such a model. We
therefore introduce variables and constructs to specify guards and assignments
into MODEST at this point. From now on, the semantics of a MODEST model
is thus no longer an LTS, but a VLTS whose variables are given in the declar-
ation section. We extend the grammar for process behaviours by the following
options:

P ::= . . . | act {= u1, . . . ,un =} | when(e) P | par{ ::P1 . . . ::Pk } |

relabel{ I }by{G}{P} | extend{H }{P} | ProcName(e1, . . . ,ek)

BASIC MODELS 59

where act ∈ Act, the u j ∈ Asgn form an update, e ∈ Bxp, H ⊆ Act \ {τ } is a
set of observable actions, and I and G are vectors of equal length which have
elements in Act \ {[,⊥} such that all elements in I are pairwise different and
not equal to τ . To keep the code small, we from now on omit the explicit action
and exception declarations in the MODEST examples.

Variables, guards and assignments The syntax for variable declarations is
similar to standard programming languages such as C or C#: it assigns a type
and an initial value to a variable name. Our example in Figure 3.14 declares
a single integer variable (i.e. a variable with domain Z) with initial value 3.
Declared variables can then be modified in assignment blocks that use the
{= . . . =} syntax. To add a guard to an edge resulting from some process
behaviour, that behaviour is prefixed with the when keyword. Guards and as-
signments are used in the example to obtain the desired behaviour of limiting
the number of retransmissions to three. The inference rules for assignments
and guards are

(a ∈ Act)

a {= u1, . . . ,un =}
tt,a,{u1,...,un }−−−−−−−−→X

(assgn) P
g,a,U
−−−→ P′

when(e) P
g∧e,a,U
−−−−→ P′

(when)

where u1, . . . ,un ∈ Asgn, the ui are pairwise consistent and e ∈ Bxp. If the
action prefix of an assignment block is τ , the MODEST syntax also allows it to
be omitted.

Processes and process calls In order to reuse process behaviours, they can be
encapsulated in a named process in the declaration section. In Figure 3.15, we
do so for the sender from the previous examples (but with at most one retrans-
mission). We also replace the do construct by a recursive call to the Sender
process. (Note that this results in two edges labelled snd_data because the
initial location is Sender(2), which does not occur again inside the behaviour
of the process.) The inference rule for a call to a process declared as

process ProcName(t1 x1, . . . , tn xn) { P }

with types ti and parameter names xi is straightforward:

P
g,a,U
−−−→ P′

ProcName(e1, . . . ,en)
g,a,U
−−−→ P′

(call)

where e1, . . . ,en ∈ Sxp are the actual parameters. However, assignments of ac-
tual to formal parameters do not appear in this rule. This is because the para-
meter variables must already be set to their concrete values to determine the

60 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

edges leading out of the inner process behaviour P (which could, for example,
be a guard referencing some of the parameters). The corresponding assign-
ments must therefore occur before the location that “directly” contains the pro-
cess call is entered. At this point, we informally note that this means extending
all “sequential” inference rules such as seq or catch by adding the parameter
assignments of the following process calls in the correct way. The complete
inference rules that do so via an assignment collecting function can be found in
Appendix A.

Parallel composition The parallel composition of process behaviours is sup-
ported by MODEST’s par keyword, with syntax similar to alt and do to specify
the parallel components. The semantics for par is given via an auxiliary binary
parallel composition operator that keeps track of its synchronisation alphabet:

par { ::P1 . . . ::Pn }
def= (. . . ((P1 ‖B1 P2) ‖B2 P3) . . .) ‖Bn−1 Pn

where the synchronisation alphabets are computed as the shared alphabets of
the process behaviours,

B j = (
j⋃

i=1

α(Pi))∩α(Pj+1),

with a function α that collects all called actions in Act\{τ , [,⊥} from a process
behaviour and recursively from the behaviours of the processes called within it.

The semantics of the MODEST parallel composition operator ‖B is essen-
tially the same as that of operator ‖ for VLTS, except that the set of actions B is
used instead of the full shared alphabet as for VLTS (which could include the
non-synchronising labels [, ⊥ and exceptions). Again, we refer the interested
reader to Appendix A for a formal definition of function α and the semantics
of ‖B.

Alphabet manipulation At this point, we would be ready to complete our
example by first adding the processes for the two channels and the receiver and
then specifying their parallel composition to be the overall process behaviour of
the model. However, MODEST is about component reuse and concise models,
so we would like to avoid including two versions of the channel that only differ
in their action labels. This is indeed possible by renaming edge labels with the
relabel keyword. Its semantics is given by the following rules:

P
g,a,U
−−−→ P′ (P′ 6=X)

Q(P)
g, f (a),U
−−−−−→ Q(P′)

(tryA) P
g,a,U
−−−→X

Q(P)
g, f (a),U
−−−−−→X

(tryB)

BASIC MODELS 61

int n = 3;

do {
:: snd_data {= n = n - 1 =};

alt {
:: rcv_ack; break
:: timeout; alt {

:: when(n > 0) tau
:: when(n == 0) throw(err)
}

}
}

{n := 3}

snd_data,
{n := n−1}

rcv_ack

n > 0, τ

τ n = 0, err

timeout

⊥

Figure 3.14: Variables, guards and assignments in MODEST

process Sender(int n)
{

snd_data {= n = n - 1 =};
alt {
:: rcv_ack
:: timeout; alt {

:: when(n > 0) Sender(n)
:: when(n == 0) throw(err)
}

}
}

Sender(2)

n > 0, snd_data,
{n := n−1}

{n := 2}

snd_data,
{n := n−1}

rcv_ack

n = 0, err

timeout

⊥

Figure 3.15: Process declarations and calls in MODEST

62 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Sender

Channel

Channel

Receiver

snd_data

timeout

timeout

rcv_ack

rcv_data

snd_ack

Figure 3.16: Synchronisation structure of the simple BRP model

where Q(P) denotes behaviours of the form

Q(P) def= relabel {a1, . . . ,an } by {b1, . . . ,bn } { P }

for ai ∈ Act∪Excp\{τ , [,⊥}, bi ∈ Act∪Excp\{[,⊥} and

f (a) =

{
bi if a = ai

a otherwise

for i ∈ {1, . . . ,n} with the restriction that actions may only be mapped to ac-
tions (including τ but not [or ⊥) and exceptions may only be mapped to ex-
ceptions or τ .

The renaming of actions is also taken into account in function α when
computing the alphabet of a process behaviour for parallel composition. To
allow a more concise syntax for relabelling actions to τ , MODEST provides the
hide shorthand:

hide {a1, . . . ,an } { P } def= relabel {a1, . . . ,an } by {τ , . . . ,τ } { P }

Example 8. Figure 3.17 shows the complete MODEST model of a simple com-
munication protocol with lossy channels and an upper bound on the number of
retransmissions, henceforth referred to as the simple bounded retransmission
protocol (simple BRP). Its synchronisation structure is depicted schematically
in Figure 3.16. This structure is achieved through relabelling and nested par-
allel composition. The latter is necessary in order to avoid synchronisation
between the two Channel instances on action timeout.

MODEST also includes an extend keyword that allows the inclusion of actions
not occurring in a process behaviour into the set of labels collected by α and
thus into the synchronisation alphabets of parallel composition. Its inference

BASIC MODELS 63

action snd, rcv, snd_data, rcv_data, snd_ack, rcv_ack,
timeout, to;

bool success, failure;

property E_Succ = E<>(success);
property E_Fail = E<>(failure);

process Sender(int n)
{

snd_data {= n = n - 1 =};
alt {
:: rcv_ack {= success = true =}
:: timeout; alt {

:: when(n > 0) Sender(n) // retry
:: when(n == 0) {= failure = true =};

stop // deadlock on failure
}

}
}

process Receiver()
{

rcv_data; snd_ack; Receiver()
}

process Channel()
{

snd; alt {
:: rcv
:: timeout // message lost
};
Channel()

}

par {
:: Sender(2)
:: relabel { to } by { timeout }

{
par {
:: relabel { snd, rcv }

by { snd_data, rcv_data } Channel()
:: relabel { snd, rcv, timeout }

by { snd_ack, rcv_ack, to } Channel()
}

}
:: Receiver()
}

Figure 3.17: The simple BRP model in MODEST

64 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

rules are simply

P
g,a,U
−−−→ P′ (P′ 6=X)

extend {a1, . . . ,an } { P }
g,a,U
−−−→ extend {a1, . . . ,an } { P′ }

(extendA)

and
P

g,a,U
−−−→X

extend {a1, . . . ,an } { P }
g,a,U
−−−→X

(extendB)

since its presence only makes a difference for α . We do not use extend in any
examples or models in the remainder of this thesis.

3.1.4 Properties

To perform verification for LTS models, we need to introduce a formalism for
the specification of properties. Such a formalism will make use of the atomic
propositions and the state labelling function that are included in an LTS model.
As we noted, this means that we choose to focus on state-based verification in
this thesis. The alternative would have been to keep states entirely opaque and
instead reason about the transition labels that occur.

In this thesis, we mainly focus on the basic class of reachability properties.
A reachability property has the form

∃�φ

where ∃� is read as “exists eventually” and φ is a Boolean expression over the
atomic propositions of the given model, i.e. it is built according to the grammar

φ ::= p | true | false | ¬φ | φ ∧φ | φ ∨φ

with p ranging over the atomic propositions. We call such an expression a state
formula and denote the set of all state formulas over the atomic propositions
AP by ΦAP (where the index AP may be omitted if it is clear from the con-
text). Given a concrete set V of atomic propositions, a state formula φ can be
evaluated to true or false by replacing all occurrences in φ of each atomic pro-
position by true if the proposition is in V and by false otherwise. We write the
result of such an evaluation as φ(V). If φ(L(s)) holds for a state s in an LTS
with labelling function L, we say that s is a φ -state.

Reachability properties ∃ � φ ask whether it is possible to encounter a φ -
state at some point on some path from the initial state. They are thus useful
for establishing that certain undesired configurations characterised by a state
formula cannot occur in (the model of) a system. Likewise, if a (desirable) in-
variant of all configurations can be formulated as state formula φ , the negation
of J∃� (¬φ)K tells us whether φ really holds in all states of the model.

BASIC MODELS 65

The semantics of a reachability property is formally defined in terms of the
reachable states of the LTS under study as follows:

Definition 25 (Semantics of LTS reachability properties). Given an LTS M
with M = 〈S,A,T,sinit,AP,L〉 as usual and a reachability property ∃ � φ over
the atomic propositions of M, the semantics of the property is

J∃�φKM
def= ∃s ∈ Reach(M) : φ(L(s)).

We omit the index M from the J∙K operator when it is clear from the context.

Example 9. For the simple MODEST BRP model presented in Example 8, the
Boolean variables success and failure can be used to specify the two reach-
ability properties ∃�success and ∃�failure. Verification of the model for
these two properties will then determine whether transmission of the message
can succeed or fail. The two properties are already included in the MODEST

code shown in Figure 3.17 in lines 3 and 4. Properties in MODEST models
are named such that they can easily be referred to, for example in a table of
verification results. In this case, the two properties are named ESucc and EFail.

Safety and liveness

As mentioned in Section 1.2 previously, classic examples of functional require-
ments are safety and liveness properties. While a safety property is the state-
ment that “bad things never happen”, liveness requires that “good things will al-
ways eventually happen”. Reachability properties are the special case of safety
in which all bad “things” can be characterised by referring to any single set
of states only. In general, however, the undesirable behaviours can be in the
evolution of the model over multiple transitions, i.e. they can be characterised
by traces. The set of (finite or infinite) traces a model must not have in order to
satisfy some safety property is fully determined by a set of finite bad prefixes.
Conversely, for some liveness property to be satisfied, all traces of a model
must be infinite and exhibit certain patterns over and over again after ignoring
an arbitrary finite prefix. For more details about safety and liveness properties
for LTS, we refer the interested reader to e.g. [BK08].

Logics for LTS properties

An even more general way to specify properties is by using temporal logics. A
formula from some temporal logic characterises the paths starting in a model’s
reachable states. Well-known examples are LTL [Pnu77], CTL [EC82] and
CTL* [EH86]. Due to the focus of this thesis on reachability, we only give a

66 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

brief characterisation of these logics in relation to states, traces and reachability
and again refer the reader to e.g. [BK08] for details:

An LTL formula represents a set of (usually infinite) traces. If this set
contains all traces of some LTS, then that LTS satisfies the formula. An LTL
formula thus implicitly refers to all traces starting in the initial state. In partic-
ular, this means that we cannot directly give an equivalent LTL formula for a
reachability property. However, we can use an LTL verification procedure for
reachability by observing that

¬J∃�φKM ⇔ M satisfies LTL formula �¬φ

where � is read as “always”.
In CTL, on the other hand, the quantification over paths is explicit and

formulas can refer to paths that start in states other than the initial one. (It is due
to this capability of referring to various states that we use paths instead of traces
for CTL.) CTL formulas are constructed according to a grammar that forces an
alternation between state formulas (which include the ∃ and ∀ quantifiers over
the paths starting in a state) and path formulas, which include the � and �
operators. Notably, a reachability property ∃ � φ is a valid CTL formula with
the same meaning, in which subformula � φ is a path formula.

There is a common subset of LTL and CTL that includes, as we have seen,
negated reachability. Still, some LTL formulas cannot be expressed in CTL
and vice-versa. The temporal logic CTL* adds the quantification over paths
to LTL or, equivalently, removes the strict alternation requirement of state and
path formulas from CTL. The set of properties that can be expressed in CTL* is
a strict superset of the sets of properties that can be expressed in either CTL or
LTL alone. Reachability—positive and negative—is thus also a CTL* property.

3.1.5 Analysis

The verification of reachability properties on labelled transition systems can
be performed in several very straightforward ways based on graph search al-
gorithms. The practical challenge lies in the fact that the LTS under study are
extremely large for most interesting models. As mentioned in Section 1.3, vari-
ous techniques exist to reduce an LTS to an equivalent, but smaller one in order
to speed up the verification procedure or make it feasible in the first place. We
return to some of these techniques in more detail in Chapter 4. In this section,
we instead present three verification procedures that contain the fundamental
ideas used in all other analysis algorithms presented in the remainder of this
thesis: classic exhaustive model checking, stateless model checking, and ran-
domised testing. The latter is similar to the concept of statistical model check-
ing that we introduce for DTMC in Section 3.2.3.

BASIC MODELS 67

Input: Finite-state LTS M = 〈S,A,T,sinit,AP,L〉 and property ∃�φ
Output: J∃�φKM (true or false)

1 agenda := {sinit }
2 visited :=∅
3 while agenda 6=∅ do
4 s := arbitrarily chosen element of agenda
5 agenda := agenda\{s}
6 if s /∈ visited then
7 if φ(L(s)) then return true
8 visited := visited∪{s}
9 agenda := agenda∪T∗(s)

10 end
11 end
12 return false

Algorithm 1: Exhaustive model checking for LTS

In the remainder of this section, we denote the number of reachable states of
the LTS under study by n and the total number of transitions of all reachable
states by m. n and m can be ∞ for infinite-state LTS. We measure memory usage
in terms of the number of relevant “objects”, usually states, that are stored in
memory at any one time point. For runtime, we assume that all operations (e.g.
on sets or stacks, or to evaluate T∗(s)) take constant time. We also assume that
the transition function is already given (usually as a compact computer program
or function that can be invoked, for example an implementation of the MODEST

semantics), i.e. it does not affect memory usage.

Model Checking

The core of the classic model checking approach is an exhaustive search of
the model’s state space. Standard graph search algorithms such as depth-first
search (DFS) or breadth-first search (BFS) can be used. For a reachability prop-
erty ∃�φ , it suffices to find a single state whose labelling satisfies φ in order to
establish that J∃�φK= true. For the converse, however, it is necessary to have
checked that the labelling of all states does not satisfy φ . It is therefore ne-
cessary to keep track of the entire set of states that have already been checked,
which is also required for the graph search to terminate. We thus need n 6= ∞
(or we could only achieve a semi-decision algorithm). Algorithm 1 is a generic

68 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

formulation of a basic model checking algorithm for reachability on LTS. Ob-
serve that it uses DFS if agenda is maintained as a last-in, first-out stack, and
BFS if agenda is a first-in, first-out queue. Consequently, the memory usage
and runtime of Algorithm 1 are in O(n) and O(m), respectively.

We mention that model checking of LTL, CTL or CTL* formulas is more
involved: For LTL, the formula is usually converted to an automaton, and the
state space to be explored is the product of this automaton and the LTS under
study. The size of the formula automaton is exponential in the size of the LTL
formula, and so is the product. The exploration of this product then also needs
somewhat more complicated (but not necessarily more complex) algorithms
like nested depth-first search. CTL model checking, on the other hand, can be
done by recursively computing satisfying sets for subformulas. Its runtime is
only linear in the size of the formula. Worst-case memory usage however, and
therefore the state space explosion problem, remain unchanged whether one
verifies reachability or temporal logics—be it LTL, CTL or CTL*—properties.
This is one of the reasons why we focus on reachability in this thesis.

Stateless Model Checking

In case that the system under study is terminating or we are not interested in
the falsification of reachability properties, stateless model checking [God97]
is an alternative approach that trades increased analysis time for dramatically
reduced memory usage. The key is that in both cases, it suffices to explore
finite paths: If the system is terminating, we can model it as a finite acyclic
LTS, which can only have finite paths. If on the other hand we can accept the
answer unknown in addition to true for property ∃�φ , then it suffices to explore
only finite prefixes of paths and simply return unknown when no state whose
labelling satisfies φ is found on any of these prefixes.

Stateless model checking was originally introduced as a way to analyse
a concurrent program implementation directly (instead of a model) and takes
its name from the fact that no program state has to be captured and stored for
later use. It is the extreme case of state-space caching approaches [God97], in
which the currently explored path and a bounded cache of additional states is
kept. The technique we describe below takes the main ideas of stateless model
checking and state-space caching, but still works on an (LTS) model.

Algorithm 2 performs reachability verification for LTS in a way inspired by
stateless model checking and state-space caching. The sets agenda and visited
of Algorithm 1 have been replaced by a stack schedule that keeps track of the
outgoing transitions that have already been followed on the path that is currently
being explored. In this way, it exhaustively follows all paths up to length d
looking for states whose labelling satisfies φ . Note that, if we knew that the LTS

BASIC MODELS 69

Input: LTS M = 〈S,A,T,sinit,AP,L〉, property ∃�φ and d ∈ N
Output: J∃�φKM (true or unknown)

1 if φ(L(sinit)) then return true
2 schedule := empty stack, schedule.push(〈sinit,1〉)
3 while schedule 6= empty stack do
4 〈s, i〉 := schedule.pop()
5 succ := T∗(s) ordered according to a total order on transitions
6 if i ≤ |succ|∧ |schedule| < d then
7 schedule.push(〈s, i+1〉)
8 s′ := i-th element of succ
9 if φ(L(s′)) then return true

10 schedule.push(〈s′,1〉)
11 end
12 end
13 return unknown

Algorithm 2: Stateless model checking for LTS

was finite and acyclic, d could be set to n. In that case, we know that the actual
result should be false whenever unknown is returned. Otherwise, d = n gives
us what could also called bounded model checking [BCCZ99]. Its memory
usage is very obviously in O(d), but runtime strongly depends on the structure
of the graph corresponding to the LTS. If we denote by b = maxs∈S |T (s)| the
maximum fan-out of the LTS, we can guarantee that the runtime of stateless
model checking is in O(d ∙bd).

Algorithm 2 can be extended and improved in various ways. An obvious
example is detecting cycles by checking whether the successor state s′ obtained
in line 9 is already part of schedule. This could improve runtime for reachab-
ility and would actually be necessary to detect cyclic behaviour as required for
the analysis of liveness or many LTL properties. On the other hand, memory
usage can be further reduced by not storing the states themselves on the stack.
Instead, they would be recomputed as needed from the initial state based on the
stored schedule. This would give us true stateless model checking at the cost
of increased runtime and the inability to easily perform cycle detection.

Randomised Testing

We can also see stateless model checking as a form of exhaustive testing where
prefixes of all possible paths are enumerated in a systematic fashion. This at

70 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Input: LTS M = 〈S,A,T,sinit,AP,L〉, property ∃�φ , d ∈ N and k ∈ N
Output: J∃�φKM (true or unknown)

1 for i = 1 to k do
2 s := sinit

3 for j = 1 to d do
4 if φ(L(s)) then return true
5 else if T∗(s) =∅ then break
6 s := randomly chosen element of T∗(s)
7 end
8 end
9 return unknown

Algorithm 3: Randomised testing for LTS

least guarantees that, when unknown is returned, state formula φ cannot be
satisfied within d steps from the initial state. If we do not even care for this
guarantee, we can use randomised testing instead, as shown in Algorithm 3:
We simply explore the prefixes of length d of k random paths starting from
the initial state. The algorithm is extremely simple to describe and implement,
and its memory usage is clearly in O(1) with runtime in O(k ∙ d). In spite of
its simplicity, it also has one advantage over stateless model checking in that
longer paths can be explored at the cost of reduced coverage of the initial area
of the state space: when we pick n much lower than the original bd bound of
stateless model checking, the newly chosen d can be much higher while still
achieving the same actual runtime.

3.2 Discrete-Time Markov Chains

The other fundamental ingredient of the models we consider in this thesis are
probabilistic decisions. The simplest model that includes discrete probabilistic
choices is the model of discrete-time Markov chains (DTMC). From a mathem-
atical perspective, Markov chains are a particular class of stochastic processes:

Definition 26 (Markov chain [GS01]). A family X = {Xt | t ∈ N} of discrete
random variables that take values out of a countable set S is a Markov chain if
it satisfies the Markov property, i.e.

P(Xn = s | X0 = x0,X1 = x1, . . . ,Xn−1 = xn−1) = P(Xn = s | Xn−1 = xn−1)

for all n ≥ 1 and all s,x1, . . . ,xn−1 ∈ S.

BASIC MODELS 71

The set S is called the state space of the Markov chain. The Markov property
simply states that the value of the stochastic process, or equivalently the state
of the Markov chain, at the next step only depends on its current value, but not
any previous ones. Alternatively, we can say that its future only depends on the
present, not on the past. Markov chains are therefore also called memoryless.

In the above definition, the probability of moving from one state to an-
other, i.e. P(Xn+1 = xn+1 | Xn = xn), is determined by the current state xn, the
next state xn+1, and the current time n. The dependence on the current time
is often an undesirably concrete property that can be ruled out by considering
only homogenous Markov chains, as we do in the remainder of this thesis:

Definition 27 (Homogenous Markov chain [GS01]). A Markov chain X with
state space S is called homogenous if

P(Xn+1 = xn+1 | Xn = xn) = P(X1 = x1 | X0 = x0)

for all n ≥ 1 and all x0,x1, . . . ,xn−1 ∈ S.

A homogenous Markov chain is thus fully characterised by its state space S
and its transition probabilities pxy = P(Xn+1 = y | Xn = x). If we identify each
element of S with a natural number, we can directly write these probabilities as
a |S|× |S| transition matrix.

While it is useful to define Markov chains in this way to study their math-
ematical properties, we shall use an equivalent formulation (based on [BK08])
that is more in line with the way we already defined LTS in Section 3.1:

Definition 28 (DTMC). A discrete-time Markov chain (DTMC), for the pur-
pose of this thesis, is a 5-tuple 〈S,T,sinit,AP,L〉 where
– S is a countable set of states,
– T ∈ S → Dist(S) is the probabilistic transition function,
– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and
– L ∈ S → P(AP) is the state labelling function.

For a given DTMC with transition function T , we also write s −→ μ and s −→ s′

instead of T (s) = μ and T (s)(s′) > 0, respectively. We carry over the notation
T∗(s) from LTS and define T∗(s)

def= {s′ ∈ S | s −→ s′ }. Note that DTMC by defin-
ition do not have deadlock states. Given a DTMC according to Definition 28,
the underlying Markov chain in the mathematical formulation of Definition 26
has state space S and transition probabilities pxy = T (x)(y).

Example 10. Figure 3.18 shows the graphical representation of a random walk
on the set of integers Z where the probability of moving from one value to the

72 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

0

∅

1

{1}

2

{2}

3

{3}

4

{4}

∙ ∙ ∙1

∅

2

∅

3

∅

4

∅

∙ ∙ ∙

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.40.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

0.4

0.6

Figure 3.18: DTMC corresponding to a random walk, graphical representation

next larger value is p. It can be written as the DTMC Mrw = 〈Z,T,0,N+,L〉
with T (x) = {x+1 7→ 0.6,x−1 7→ 0.4} for all x ∈ Z and L(x) = {x} if x ∈N+

and L(x) = ∅ otherwise. In this case, the particular combination of atomic
propositions and labelling function indicates that we are only interested in the
positive integers (states) when it comes to verification.

Paths

While a path represented a concrete resolution of the nondeterministic choices
for an LTS, it represents concrete outcomes of the probabilistic choices for a
DTMC:

Definition 29 (Paths in DTMC). Given a DTMC M = 〈S,T,sinit,AP,L〉, a (fi-
nite) path in M from s0 to sn of length n∈N is a finite sequence s0 s1 . . .sn where
si ∈ S for all i ∈ {0, . . . ,n} and si−1 −→ si for all i ∈ {1, . . . ,n}. An (infinite)
path in M starting from s0 is an infinite sequence s0 s1 s2 . . . where for all i ∈ N
we have that si ∈ S and si −→ si+1.

All the notation derived from the definition of finite and infinite paths (such as
the length of a path or the set Reach(M) of reachable states) carries over from
LTS unchanged. As DTMC have no deadlock states, all maximal paths are
infinite. The trace of a path can be defined for DTMC in the same way as for
LTS.

Parallel Composition

As DTMC are not closed under a concurrency semantics built on interleav-
ing [Her02, HZ11], we have to be careful to define a parallel composition oper-
ator that, given two DTMC, actually maps to a product that is a DTMC again.
A natural [HZ11] parallel composition operator that achieves this goal can be
defined as follows:

Definition 30. The parallel composition of two DTMC

Mi = 〈Si,Ti,siniti ,APi,Li〉,

BASIC MODELS 73

〈 0, 0〉

∅

〈 1, 1〉

{1}

〈 1,−1〉

{1}

〈−1,−1〉

∅

〈−1, 1〉

{1}

〈−2, 0〉

∅

〈 2, 0〉

{2}

.
.

.

. .
.

. . . .

. . .

. .
.

. .
.

. . .
0.36

0.16

0.24

0.24

0.24

0.24

0.16

0.36 0.36

0.16

0.24

0.24

0.36

0.16

0.24

0.24

Figure 3.19: DTMC lock-step parallel composition of two random walks

i ∈ {1,2}, is the DTMC M1 ‖ M2 = 〈S1 × S2,T,〈sinit1 ,sinit2〉,AP1 ∪ AP2,L〉
where
– T ∈ (S1 ×S2) → Dist(S1 ×S2) s.t. T (〈s1,s2〉) = T1(s1)⊗T2(s2) and
– L ∈ (S1 ×S2) → P(AP1 ∪AP2) s.t. L(〈s1,s2〉) = L1(s1)∪L2(s2).

In contrast to LTS, there is no interleaving; both component DTMC instead pro-
ceed in a synchronous fashion. This is similar to the parallel composition of two
LTS in which all transitions have the same label a, τ 6= a ∈ A1∩A2, and is often
called fully synchronous parallel composition with both components proceed-
ing in lock-step [HZ11, Sha12]. We call this the lock-step semantics for parallel
composition to contrast it with the interleaving semantics that we use for LTS
(cf. Section 3.1.1). It avoids the introduction of nondeterminism, which would
otherwise result in the parallel composition of two DTMC no longer being a
DTMC itself. This also means that it makes sense to think of every transition
in both the components and the composition as taking “one time unit”. With
an interleaving semantics as for LTS, this way of adding time into the formal-
ism would not work out: When each of two parallel components independently
performs a transition that takes one time unit, the total time to perform both
transitions should also be one time unit. When interleaved, however, the two
transitions are executed in sequence in the product (albeit nondeterministically
in any order), which would take two time units.

Example 11. Figure 3.19 shows the parallel composition of two identical ran-
dom walks Mrw1 ‖ Mrw2 from Example 10. Observe how the probabilities are
multiplied and states such as 〈0,1〉 are unreachable due to the lock-step se-
mantics.

74 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Variables

We finally note that DTMC can be extended to VDTMC through the addition of
discrete variables similarly to how we extended LTS in Section 3.1.2. Notable
differences are that
– the edge function is in Loc → Bxp×P(Upd×Loc → Axp), i.e. an edge leads

to a function mapping pairs of an update and a target location to a weight
expression, and

– the case that the guard of the (only) edge leaving a location evaluates to false
should be interpreted as the existence of a self-loop in the underlying DTMC.

A function m ∈ Upd×Loc → Axp that evaluates to a non-zero weight expres-
sion only on a countable range R ⊂ Upd×Loc denotes a symbolic probability
distribution. Given a valuation v for the variables of the VDTMC, the corres-
ponding concrete probability distribution is determined as

mv
conc(〈U, l〉) =

Jm(〈U, l〉)K(v)

∑〈U ′,l′〉∈R Jm(〈U ′, l′〉)K(v)
.

We require that, for all reachable valuations v, we have
– Jm(〈U, l〉)K(v) ≥ 0 for all 〈U, l〉 ∈ R and
– ∑〈U,l〉∈R Jm(〈U, l〉)K(v) converges to a value in R+.
We consider it a modelling error if this is not the case, just like inconsistent as-
signments in parallel composition. We omit the complete definition of VDTMC
here as we formally define VMDP, of which VDTMC can be seen as a special
case, in Section 4.2.

3.2.1 Modelling

In order to build VDTMC models with MODEST, we first of all need to be
able to specify probabilistic choices. This can be accomplished with the palt
keyword, the probabilistic version of alt, which extends our grammar of pro-
cess behaviours as follows:

P ::= . . . | act palt{ :w1: U1;P1 . . . :wk: Uk;Pk }

where the w j are expressions in Axp and the Uj are updates. The corresponding
inference rule (palt) is

(a ∈ Act)

a palt { :w1: U1; P1 . . . :wn: Un; P1 }
tt,a
−−→ {〈U1,P1〉 7→w1, . . . , 〈Un,Pn〉 7→wn }

Edges now lead to symbolic probability distributions over an update and a tar-
get MODEST process behaviour. We call each of the 〈wi,Ui,Pi〉 a branch of
the probabilistic choice. We keep the edge labels in the inference rule as for

BASIC MODELS 75

process RandomWalk(int i)
{

sync palt {
:6: {= i = i + 1 =}; RandomWalk(i)
:4: {= =}; RandomWalk(i - 1)
}

}

RandomWalk(0)

Figure 3.20: A random walk in MODEST

VLTS although they are not supported by VDTMC. We assume that MODEST

models intended to represent VDTMC use a unique label sync ∈ Act\{τ , [,⊥}
on all edges instead. Also, care must be taken not to introduce nondetermin-
istic choices in MODEST code intended to represent a VDTMC; this primarily
means that we cannot use the alt keyword, and we must specify only one
alternative per do construct.

Example 12. Figure 3.20 shows a MODEST model of the random walk DTMC
presented before in Figure 3.18. The parallel composition of two RandomWalk
processes results in a model whose semantics correspond to the DTMC shown
in Figure 3.19.

Syntactically, MODEST allows the omission of either the assignment block
following the weight or the process behaviour following the semicolon. The
former is equivalent to an empty assignment set; this could be done in line 5
of the MODEST code of the previous example. The latter is treated as if the
process behaviour wereX instead (which cannot be specified syntactically oth-
erwise). Omitting the action prefix of the palt keyword is equivalent to the
prefix τ . In the full semantics of MODEST (see Appendix A), the inference rule
(assgn) as presented in Section 3.1.3 in fact does not exist. Process behaviours
of the form a {= . . . =} are instead treated as shorthands for a probabilistic al-
ternative that is prefixed by a and has a single branch with weight 1 and process
behaviour X.

3.2.2 Properties

In the analysis of Markov chains, we are again primarily interested in reach-
ability properties. For LTS, these properties had the form ∃ � φ . The exist-
ential quantifier in this formulation, intuitively speaking, quantifies over the
nondeterministic choices in the LTS. As DTMC have no nondeterminism, but

76 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

are instead based on probabilistic choices, we replace ∃ by a probabilistic quan-
tifier or query operator. The result are probabilistic reachability properties:

P(�φ) (quantitative form) P(�φ) ∼ x (qualitative form)

where ∼ ∈ {<,≤,>,≥} and x ∈ [0,1]. The quantitative form specifies a query
for the probability of reaching a state whose labelling satisfies φ , while the
qualitative form expresses a constraint on that probability, i.e. a requirement. A
verification procedure for the quantitative form can also be used for the qual-
itative one by simply comparing the result to the bound x. However, special-
ised approaches that may perform better are available for the verification of
the qualitative form. Note that both forms are quantitative properties in the
sense of Section 1.2 since they refer to a quantitative modelling aspect, namely
probabilities.

Example 13. For the random walk model introduced in Example 10, property
P(� 5) asks for the probability of reaching state 5 (which is labelled 5). In the
same way, property P(� 6) > 1/2 states the requirement that the probability of
reaching state 6 has to be greater than 1/2.

To include these properties in the corresponding MODEST model of Ex-
ample 12, parameter i of process RandomWalk needs to be turned into a global
variable. Then, the two properties can be expressed in MODEST syntax as

property P_5 = P(<> i == 5);

and
property P_6 = P(<> i == 6) > 0.5;

giving them names P5 and P6.

In order to define the meaning of probabilistic reachability properties, we need
to precisely say what “the probability of reaching a state” is. We do this by
assigning probabilities to the (finite) paths that lead to this state (from the ini-
tial state of the DTMC). Intuitively, these probabilities are the product of the
probabilities given by the probabilistic transition function. Formally, we need
the construct of cylinder sets to properly define a probability measure on finite
paths (since, for example, one finite path can be a prefix of infinitely many
others):

Definition 31 (Cylinder set [BK08]). Given a DTMC M, the cylinder set of a
finite path π̂ ∈ Pathsfin(M) is defined as

Cyl(π̂) def= {π ∈ Paths(M) | π̂ is a prefix of π }.

Recall that, for a DTMC, all elements of Paths(M) are infinite paths. Now let

Cyl(M) def= {Cyl(π̂) | π̂ ∈ Pathsfin(M)}

BASIC MODELS 77

denote the set of all cylinder sets of a DTMC M. Then 〈Cyl(M),σ(Cyl(M))〉
is a measurable space. This allows us to define a probability measure μM for M
by assigning probabilities to cylinder sets as follows [BK08]:

Definition 32 (Probability of a cylinder set). For DTMC M = 〈S,T,sinit,AP,L〉,
μM is the probability measure on the measurable space 〈Cyl(M),σ(Cyl(M))〉
that is uniquely determined by

μM(Cyl(s0 . . .sn)) = ∏
0≤i<n

T (si)(si+1)

where s0 = sinit by definition.

We can informally say that the measure μM assigns probabilities to finite paths,
which is what is needed to define the semantics of a probabilistic reachability
query [BK08]:

Definition 33 (Semantics of DTMC probabilistic reachability queries). Given
a DTMC M = 〈S,T,sinit,AP,L〉 and a probabilistic reachability query P(� φ)
over the atomic propositions of M, the semantics of that property is

JP(�φ)KM
def= μM

(
∪π̂∈Pathsfin(φ ,M)Cyl(π̂)

)

= ∑
π̂∈Pathsfin(φ ,M)

μM(Cyl(π̂))

where

Pathsfin(φ ,M) = {s0 . . .sn ∈ Pathsfin(M) | φ(L(sn))∧∀0 ≤ i < n : ¬φ(L(si))}

is the set of finite paths on which the last state is the only one whose labelling
satisfies φ .

Again, we will omit M when it is clear from the context. Since Pathsfin(φ ,M)
is a countable set, the union of the corresponding cylinder sets is a countable
union and thus measurable. JP(�φ)K is therefore well-defined. The probability
of the union is equal to the sum of the probabilities of the individual cylinder
sets because they are pairwise disjoint by the definition of Pathsfin(φ ,M). The
semantics of a probabilistic reachability property in qualitative form P(�φ)∼ x
is simply the result of the comparison of JP(�φ)K with x according to ∼.

Temporal Logics for DTMC

We mention that more complex properties can be specified for DTMC using
temporal logics. As an example that will reappear later, PCTL* [Bai98] is an
adaption of CTL* to the probabilistic setting. The ∀ and ∃ quantifiers over
paths of CTL* are replaced by a probabilistic quantifier P∼x that obtains the

78 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

probability of a set of paths characterised by a path formula and compares that
probability to the bound x just as in our definition of probabilistic reachability.
In this way, the property P(�φ) ∼ x can be written in PCTL* as P∼x(�φ).

3.2.3 Analysis

When it comes to the verification of probabilistic reachability properties on
DTMC, there are fundamentally two techniques: The first is to find the states
of interest with a standard reachability analysis (as for LTS) and then explicitly
compute the total probability mass of the paths that reach them. This is the
exhaustive model checking approach for DTMC. The other way is to randomly
generate a number of paths, determine for each whether the relevant set of states
is reached, and then use statistical methods to derive an approximation of the
reachability probability. We refer to the path generation step as simulation of
the DTMC, and the complete procedure is called statistical model checking, or
SMC for short. It is the DTMC analogue of the randomised testing approach of
Section 3.1.5.

We will see that the results of exhaustive model checking are exact, or
can at least be made arbitrarily close to the true probabilities, up to numerical
precision. However, exhaustive model checking is only applicable to finite-
state DTMC and suffers from the state-space explosion problem. SMC, on the
other hand, can be used with infinite-state models and can work with just a
constant amount of memory. The drawback is that its results are correct only
with a certain confidence or probability, the details depending on the method
used for the statistical evaluation step. When we evaluate memory usage and
runtime in the remainder of this section, we use the notation and assumptions
from LTS analogously.

Model Checking

The basic exhaustive model checking algorithm for DTMC reduces the compu-
tation of reachability probabilities to the problem of solving a linear equation
system as shown in Algorithm 4 (based on [BK08]). The equation system in
line 11 has a unique solution because of the finiteness of M and the way S=0,
S=1 and S=? are chosen [BK08, Theorem 10.19]: As computed in lines 1 and 2,
S=0 contains exactly those states from which the probability of reaching a φ -
state is zero, while S=1 contains exactly those from which this probability is
one. The preprocessing step of computing these sets can be performed based
on graph searches similar to LTS model checking as in Algorithm 1.

The memory usage of a naïve implementation of this algorithm is in O(n2)
in order to explicitly store the matrix, which is a |S| × |S|-matrix in the worst

BASIC MODELS 79

Input: Finite-state DTMC M = 〈S,T,sinit,AP,L〉 and property P(�φ)
Output: JP(�φ)KM (value in [0,1])

1 S=0 := {s ∈ S | ¬φ(L(s))∧∀s′ ∈ S : (Paths(s,s′) 6=∅⇒¬φ(L(s′)))}
2 S=1 := smallest S′ ⊆ S s.t. s ∈ S′ ⇔ φ(L(s))∨∀s′ : (s −→ s′ ⇒ s′ ∈ S′)
3 S=? := S\{S=0 ∪S=1 }
4 if sinit ∈ S=1 then return 1
5 else if sinit ∈ S=0 then return 0
6 else
7 f := some bijection {1, . . . , |S=?|} → S=?

8 A := matrix with entries ai j := T (f (i))(f (j))
9 b := 〈b1, . . . ,b|S=?|〉 with bi := ∑s∈S=1

T (f (i))(s)
10 with x = 〈x1, . . . ,x|S=?|〉:
11 solve linear equation system x = Ax+b
12 return x f (sinit)

13 end
14 end

Algorithm 4: Model checking for DTMC using linear equation systems

case. The probability matrix of typical models, however, is sparse, so memory
can in practice be saved by using a more compact representation. The runtime
depends on n and the method used to solve the equation system. Exact lin-
ear equation system solving has polynomial runtime, e.g. O(n3) for Gaussian
elimination. It does not scale to realistic model sizes in practice, but various
numerical approaches that approximate a solution up to some error ε > 0 (in
a numerically stable manner) exist and are commonly used by model checking
tools [KNP10].

We can alternatively reformulate the algorithm to explicitly use a (numeric)
dynamic programming technique called value iteration. In this approach, a
value is stored for each state. That value is then iteratively improved for all
states based on the values of the respective successor states. In our case, shown
in Algorithm 5, that value approximates the probability of reaching a φ -state.
Given a state s and the values of the successor states, the (new) value of s is
simply the sum of the values of the successors s′i weighted by the probability of
moving from s to s′i. In this way, the value of s in iteration k is (greater than or
equal to) the probability of reaching a φ -state from s in no more than k steps. In
Algorithm 5, these improving values are calculated in line 6. If the DTMC at
hand contains cycles, the algorithm will in general not obtain the exact reach-
ability probabilities but merely an ever-improving approximation. This is why

80 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Input: Finite-state DTMC M =〈S,T,sinit,AP,L〉, property P(�φ), ε > 0
Output: JP(�φ)KM (value in [0,1])

1 with v ∈ S → [0,1]:
2 foreach s ∈ S do v(s) := 1 if φ(L(s)), otherwise 0
3 repeat
4 error := 0
5 foreach s ∈ {s′ ∈ S | ¬φ(L(s′))} do
6 vnew := ∑s′∈support(T (s)) T (s)(s′) ∙ v(s′)
7 if vnew > 0 then error := max{error, |vnew − v(s)|/v(s)}
8 v(s) := vnew

9 end
10 until error < ε
11 return v(sinit)
12 end

Algorithm 5: Model checking for DTMC using value iteration

we use an additional parameter ε to specify an upper bound for the acceptable
difference between subsequent values. This allows value iteration to terminate.
We chose to compare ε to the relative difference here, which in turn is com-
puted in line 7. It is important to note that while this termination scheme works
well in practice, it does not give any guarantee on the relationship between ε ,
the computed probability, and the actual (exact) probability [FKNP11]. As
given, the algorithm does not rely on an a priori reachability analysis. In prac-
tice, however, performing value iteration on restricted sets such as Reach(M),
{s ∈ S | ∃s′ ∈ S : φ(L(s′))∧Paths(s,s′) 6=∅} or their intersection instead of S
can significantly improve performance and reduce memory usage.

The memory usage of the value iteration approach is in O(n) since we only
store a vector of values instead of a matrix of probabilities. Its runtime strongly
depends on the threshold ε in combination with the (cyclic) structure of the
model. In particular, value iteration may converge slowly even for models with
relatively small state spaces [SGS+13].

Statistical Model Checking

Exhaustive model checking for DTMC still suffers from state-space explosion,
and takes longer than LTS model checking due to the extra numeric computa-
tions involved. Additionally, problems of numeric stability arise [WKHB08].

BASIC MODELS 81

1 function simulate(M = 〈S,T,sinit,AP,L〉, φ , d)
2 s := sinit, seen :=∅
3 for i = 1 to d do
4 if φ(L(s)) then return true
5 else if s ∈ seen then return false
6 else if T (s) is Dirac then seen := seen∪{s}
7 else seen :=∅
8 s := choose a state randomly according to T (s)
9 end

10 return unknown

Algorithm 6: Path generation for DTMC, with cycle detection

An alternative approach is to extend the randomised testing technique of Algo-
rithm 3 to become statistical model checking (SMC) for DTMC, all the while
keeping its desirable properties: very low memory usage, and runtime only
depending on the desired “precision”. SMC consists of two largely separate
steps: The exploration of individual paths through the model, and the statist-
ical evaluation of data collected from those paths. We refer to the first step as
simulation.

Finite paths for unbounded reachability As we are interested in probab-
ilistic reachability properties of the form P(� φ) and P(� φ) ∼ x, we need to
explore paths in a way that allows us to determine whether a φ -state is even-
tually reached or not. In contrast to LTS randomised testing, we now want to
at least try to avoid giving up and returning unknown when no φ -state is seen
up to a certain path length. Algorithm 6 shows a practical approach to this
problem: It keeps track of the states visited since the last non-Dirac choice;
when we return to such a state, we have discovered a cycle of probability-one
transitions without φ -states. Since we cannot escape from this kind of cycle,
we can then conclude that no continuation of the current path will ever reach a
φ -state. To ensure termination for models whose non-φ -paths do not all end in
a Dirac cycle, we still include a depth parameter d as we did in LTS random-
ised testing. (Observe that we could already have implemented an analogous
check there, but instead accepted that it was merely a semi-decision algorithm.)
The memory usage of Algorithm 6 is therefore in O(d); constant memory us-
age could be achieved by only checking for loops instead (as is done in e.g.
PRISM [KNP11]).

82 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

This entire complication results from the fact that we verify unbounded reach-
ability properties, yet we can only explore finite prefixes of paths. If instead we
were interested in step-bounded reachability properties of the form P(�≤k φ)1,
Algorithm 6 could be simplified to use d = k, omit cycle detection, and just re-
turn false in line 10. However, our approach is more general since a step bound
can just as well be encoded in the model. If the model is given as a VDTMC,
we simply have to add a new integer variable, increment it in every assignment,
and add a clause to every guard checking whether the variable does not yet
exceed the step bound. This solution is a special case of a general recipe to
transform models of reactive systems into a form that has all paths terminate in
a Dirac cycle: We first identify a finite horizon of the system behaviour as the
simulation scenario. Then, we make all states reached after the conclusion of
the scenario loop back to themselves with probability one. As an example, con-
sider modelling a communication protocol that continuously sends files from a
sender to a receiver: We could pick the transmission attempt for a certain single
file (not necessarily the first one) as the simulation scenario. In fact, the simple
BRP model of Example 8 is already built in this way: It deadlocks after the first
piece of data has been transmitted successfully or the sender has given up. In
the remainder of this section, we shall assume that the DTMC to be analysed
is such that there exists a d ∈ N for which function simulate of Algorithm 6
always returns true or false, and that value is used for d.

Sample mean and confidence Every run of function simulate (a simulation
run) under these conditions (assuming it never aborts with unknown) explores
a finite path π̂ and returns true if π̂ ∈ Pathsfin(φ ,M), otherwise false (which
in particular means that no path in Cyl(π̂) contains a φ -state). Since the prob-
ability distributions used in line 8 of Algorithm 6 are exactly those given by
the model, the probability of encountering any one of these paths in a single
run is μM(Cyl(π̂)). We let the random variable X be the result of a simulation
run. If we interpret true as 1 and false as 0, then X follows the Bernoulli dis-
tribution with expected value JP(�φ)K. This is the foundation for the statistical
evaluation of simulation data [Ros06, Chapter 7]: A batch of k simulation runs
corresponds to k random variables that are independent and identically distrib-
uted with expected value p = JP(� φ)K. The average X = ∑k

i=1 Xi/k of the k
random variables, the sample mean, is then an approximation of p. (It is in fact
an unbiased estimator of that actual mean.)

The single quantity of sample mean, however, is fairly useless for verific-
ation. We also need to know how good an approximation of p it is. The key

1Read: “What is the probability of reaching a φ -state in at most k steps from the initial state?”

BASIC MODELS 83

Input: DTMC M = 〈S,T,sinit,AP,L〉, P(�φ), d ∈ N, two of {k,ε ,δ}
Output: JP(�φ)KM (value in [0,1]) and confidence 〈k,ε ,δ 〉, or unknown

1 compute {k,ε ,δ} s.t. k ≥ ln(2
δ)/(2 ∙ ε2) // requires that k ∙ ε2 < ln(2)/2

2 i := 0
3 for j = 1 to k do
4 v := simulate(M, φ , d)
5 if v = true then i := i+1
6 else if v = unknown then return unknown
7 end
8 return j/k and 〈k,ε ,δ 〉

Algorithm 7: SMC for DTMC using the APMC method

parameter to influence the quality of approximation is k, the number of sim-
ulation runs performed. The higher k is, the more confident can we be that a
concrete observed sampled mean x is close to p. There are various statistical
methods to precisely describe this notion of confidence and determine the ac-
tual confidence for a given set of simulation results. A widely-used method
is to compute a confidence interval [Ros06] of width 2ε around x with confid-
ence level 100 ∙ (1−α)%. Typically, k and α are specified by the user and ε
is then derived from α and the collected observations of the Xi. For confidence
intervals, we have that

P(X − ε < p < X + ε) ≈ 1−α .

This means the following: In the long run, 100 ∙ (1−α)% of the confidence
intervals [x− ε ,x + ε] around concrete values x obtained from entirely inde-
pendent sets of simulation runs will contain the actual mean p. In particular,
for a single given confidence interval, there is no statement directly relating x
and p. Aside from this slightly non-straightforward interpretation, basic confid-
ence interval methods have other problems in different scenarios [AC98], too.
This is why we prefer to use the APMC method for quantitative and sequential
testing for qualitative probabilistic reachability properties instead. We give a
summary of both methods below that is sufficient for the way we use them in
the remainder of this thesis:

The APMC method The approximate probabilistic model checking (APMC)
method was introduced together with and originally implemented in a tool
of the same name [HLMP04]. The key idea is to use Chernoff-Hoeffding
bounds [Hoe63] to relate the three parameters of approximation ε , confidence

84 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

level δ and number of simulation runs k in such a way that we have

P(|X − p| > ε) < δ ,

i.e. for one simulation experiment, the difference between computed and actual
probability is at most ε with probability 1−δ . Note that in this formula, para-
meter k appears inside the definition of X . There are at least two ways to relate
the three values: APMC originally used

P(|X − p| > ε) < 2 ∙ e−
kε2

4 ,

which leads to the bound k ≥ 4 ∙ ln(2/δ)/ε2 for the number of runs, whereas

P(|X − p| > ε) < 2 ∙ e−2kε2

leads to fewer simulation runs in practice [Nim10] with the resulting bound of

k ≥ ln(2/δ)/(2 ∙ ε2) (3.1)

Whenever two of the parameters are given, the third can thus be derived. Al-
gorithm 7, based on [HLMP04] and [Nim10], combines this relationship and
the simulate function of Algorithm 6 to implement the APMC method in our
setting. In particular, the number of simulation runs that is necessary to achieve
the desired confidence is either given, or it can be computed as the very first
step.

Sequential testing for qualitative reachability In case the property to be
verified is in qualitative form P(� φ) ∼ x, i.e. a Boolean decision needs to be
made, we can use sequential testing: After each simulation run, we check
whether we have collected enough evidence to answer true or false with the
desired confidence. If that is not the case, more simulation runs are performed
until we can decide the property.

The test we use is Wald’s sequential probability ratio test (SPRT, [Wal45]).
It has three parameters: the type I error α , the type II error β , and the indif-
ference ε . It tests for whether hypothesis H0 = JP(�φ)K > x + ε or hypothesis
H1 = JP(� φ)K < x − ε is true. The type I error specifies the probability of
wrongly accepting H0, whereas the type II error specifies the probability of
wrongly accepting H1. If the actual value of JP(� φ)K lies within the indiffer-
ence region [x− ε ,x+ ε], there are no guarantees for the result. The test works
by keeping track of the product of the likelihood ratios, and after every run,
comparing that (newly updated) value to bounds computed based on α and β .
A decision will eventually be reached with probability 1. An implementation
of the SPRT-based approach for DTMC in our setting is shown in Algorithm 8,
which is based on [YKNP06] and [Nim10] with the SPRT computations trans-
ferred to the logarithmic domain as in the UPPAAL SMC tool [DLL+11a].

BASIC MODELS 85

Input: DTMC M = 〈S,T,sinit,AP,L〉, P(�φ) ∼ x, d ∈N, ε ,α ,β ∈ (0,1)
Output: JP(�φ) ∼ xKM (true or false), or unknown

1 p0 := min{x+ ε ,1}, p1 := max{x− ε ,0}
2 a := log((1−β)/α), b := log(β/(1−α))
3 r := 0
4 repeat
5 v := simulate(M, φ , d)
6 if v = unknown then return unknown
7 else if v = true then r := r + log p1 − log p0

8 else r := r + log(1− p1)− log(1− p0)
9 if r ≤ b then return ∼ ∈ {>,≥} // likely JP(�φ)K> p0 > x

10 else if r ≥ a then return ∼ ∈ {<,≤} // likely JP(�φ)K< p1 < x
11 end

Algorithm 8: Statistical model checking for DTMC using Wald’s SPRT

Memory usage and runtime As both approaches presented only keep track
of a fixed number of real or integral values, their memory usage is determined
by that of Algorithm 6, which in turn depends on the way the cycle detection
is performed: It is in O(d) as specified or in O(1) if just loop detection is
used instead. The runtime entirely depends on the desired confidence. For the
APMC method, we can directly see the dependence on δ and ε in Formula 3.1.
For the SPRT-based approach, the difference between the actual probability p
and the bound x plays an important role: as x and p get closer, the number
of simulation runs needed explodes. This is shown very clearly in [YKNP06],
and [Nim10] extensively compares the performance of the different statistical
methods in terms of the number of simulation runs needed.

3.3 Compositionality

We have now seen the modelling formalisms of LTS and DTMC as well as
their extensions with variables, VLTS and VDTMC. For all of them, there is a
parallel composition operator that allows two smaller models to be combined
into a single, larger one of the same type. In fact, such an operator can be
specified in a natural way for all automata-based models that will be introduced
in this thesis. In this section, we briefly review useful notions related to building
larger models out of components using these parallel composition operators.

86 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Open and Closed Systems

In the case of LTS, the transitions of the components in a parallel composition
can be taken asynchronously unless their label is in the shared alphabet. This
principle in fact applies to all models that support nondeterministic choices
(i.e. all models except for DTMC). However, if we know that a model will not
be used in a parallel composition, the transition labels have no influence on
verification results since properties only refer to the atomic propositions of the
states. We therefore distinguish between open model and closed models: We
expect that an open model will be composed in parallel to some yet-unknown
other component. Therefore, transition labels are important; in particular, trans-
itions not labelled τ could be disabled in certain states in the composition (or
delayed, in the timed models that will be introduced in Chapter 5). A closed
model, however, will only be subject to verification procedures, but not parallel
composition. No expressiveness is therefore lost if we change the labels of all
transitions to τ . Obviously, an open model can at any time be transformed into
a closed one, but not vice-versa:

Definition 34 (Closed models). Given an automata-based model M with trans-
ition or edge labels from an alphabet A, the corresponding B-closed model
closedB(M) with B ⊆ A is identical to M except that all transitions or edges
that have label a ∈ B in M are instead labelled τ . We denote the closed model
corresponding to M by closed(M) def= closedA(M). We say that M is closed if all
its transitions or edges have label τ .

If a model M corresponds to a MODEST model with process behaviour P, then
closedB(M) corresponds to hide B {P}.

Networks of Systems

The parallel composition operators we define for the automata models con-
sidered in this thesis are associative and commutative. It is therefore natural to
think of the parallel composition of several components as the composition of
a set of models instead of as a parallel composition tree. We call such a set of
automata models a network of automata:

Definition 35 (Network of automata). For any transition- or edge-labelled auto-
mata-based modelling formalism with an associative and commutative parallel
composition operator ‖, a network of automata is a set N of models M1, . . . ,Mn,
n ∈ N. Its semantics is the closed parallel composition of the models,

closed(((M1 ‖ M2) ‖ . . .) ‖ Mn).

BASIC MODELS 87

We denote the modelling formalism “network of . . . ” with the prefix N; for
example, networks of LTS are referred to as NLTS. We have already seen mod-
els that were automata networks: the set consisting of the four LTS given in
figures 3.1 and 3.2 is an NLTS whose semantics is shown in Figure 3.4. Also, a
MODEST model whose (overall) process behaviour is the parallel composition
par { ::P1 . . . ::Pn } represents a network of automata, the component automata
being the semantics of the Pi for i ∈ {1, . . . ,n}. In fact, the MODEST TOOLSET

directly converts a parsed MODEST model into a network of automata intern-
ally. Using this internal representation for all further operations and algorithms
allows it to easily support other modelling languages such as PRISM’s guarded
commands, whose modules are simply a different name for the components of
an automata network.

Markov Decision Processes 4
Nondeterminism is a crucial feature for complex modelling and verification
tasks: It opens the door for abstraction, it permits underspecification, and it
allows compositionality and component-based modelling beyond lock-step se-
mantics [HZ11]. The availability of probabilistic decisions enables the model-
ling of systems subject to an environment whose behaviour is only statistically
predictable, and of systems that employ randomisation internally to achieve
correctness or good performance. If we combine the two basic formalisms
of labelled transition systems for nondeterministic choices and discrete-time
Markov chains for probabilistic decisions, the result is a unified probabilistic-
nondeterministic modelling formalism known as Markov decision processes
(MDP, [Put94]). MDP are a mainstay of optimisation tasks in economics and
of planning problems in artificial intelligence [KS06]. In these settings, the
controllable choices are represented as nondeterministic, while an environment
reacts in a probabilistically quantified manner. The usual objective is then to
obtain a strategy, i.e. a way of resolving the nondeterministic choices, that max-
imises some goal function.

In the area of modelling and verification, MDP were originally introduced
as probabilistic automata (PA, [Seg95]). Although there is a small difference in
definition between MDP and PA, we treat the two as equivalent in this thesis,
and in fact use the slightly more general PA-style definition. After the formal
definition of MDP, including their path semantics and a parallel composition
operator, we clearly state the relationship between MDP and the previous mod-
els of LTS and DTMC. We also formally describe the extended model of MDP
with variables, as these are what we specify in the MODEST language. As in the
previous chapter, the class of properties we focus on is probabilistic reachabil-
ity. We formally define their meaning on MDP and summarise exhaustive prob-
abilistic model checking techniques available for their analysis. In contrast to
the optimisation or planning scenario described above, in the verification con-
text we cannot consider the nondeterministic decisions as controllable (cf. the

90 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

uses of nondeterminism given in Section 1.2). Verification therefore needs to
consider all possible resolutions, and we get an interval of probabilities instead
of a single reachability probability as for DTMC. Every concrete value out of
such an interval corresponds to particular resolutions of the nondeterministic
choices. Our properties will thus query for or compare bounds to the maximum
or minimum reachability probability.

A core contribution of this thesis is in providing sound techniques to use
statistical model checking for nondeterministic models, in particular MDP. The
underlying problem is that SMC, as a simulation-based approach, is limited
to fully stochastic models like Markov chains: The choices available in each
state encountered during simulation have to be resolved in order to proceed to
a single next state. This includes the nondeterministic choices. Unless special
care is taken, the result of SMC is thus merely some value out of the interval
of reachability probabilities. This is useless for many verification scenarios.
Consider checking whether the probability of reaching a certain set of bad states
is below some value close to 0: The only value relevant to this property is the
maximum, or worst-case, probability of reaching those states. Any other value
may be unfoundedly optimistic. We present five approaches to deal with this
problem, two of which have been developed by the author and collaborators
and will be explained in full detail.

Origins

The partial order reduction-based approach presented in Section 4.7.1 has been
developed by the author with support from Jonathan Bogdoll and Luis María
Ferrer Fioriti [BFHH11]. Jonathan wrote the first implementation of the tech-
nique within the modes tool while Luis provided valuable insights into the dif-
ferent variants of probabilistic partial order reduction and suggested using the
BEB model as a case study.

The confluence reduction-based approach of Section 4.7.2 has been de-
veloped by the author in close collaboration with Mark Timmer [HT13]. Start-
ing from the jointly developed idea and a first algorithm sketch, Mark adapted
confluence to the SMC setting (i.e. state-based verification of closed models),
worked out the details of algorithms 19 and 20 and proved correctness. The
author implemented the technique in the modes tool and selected and analysed
the example models shown in Section 4.7.3. Lemma 4 and its proof have been
newly developed for this thesis by the author with feedback from Mark.

The evaluation of both approaches that is presented in Section 4.7.3 has
been performed by the author with feedback from Luis and Mark. It is based
on the case studies and evaluation sections of [BFHH11] and [HT13]. The ex-
tension with caching mechanisms, which is presented in Section 4.7.4, has been

MARKOV DECISION PROCESSES 91

developed, implemented and evaluated by the author. Sections 4.7.1 to 4.7.4 of
this thesis are also the basis of a recent journal paper [HT15] which received
additional feedback from Mark.

In Section 4.8, we review approaches to the problem of performing SMC
for general MDP. Section 4.8.1 summarises a first attempt by Henriques et
al. [HMZ+12] to use reinforcement learning, and then gives an overview of
the more general learning-based framework recently presented by Brázdil et
al. [BCC+14]. Section 4.8.2 summarises an alternative strand of work done
by Legay and Sedwards [LST14] and details why the error bounds they ap-
pear to present cannot be correct without further qualification. Finally, in Sec-
tion 4.8.3, we very briefly outline another idea that was based on discussions
with colleagues of the author. We give an example that shows that it does not
work.

4.1 Definition

A Markov decision process incorporates both nondeterministic and probabil-
istic choices on a discrete state space. It can be seen as the orthogonal combin-
ation of LTS and DTMC: As in the former, transitions are labelled, and several
transitions can be enabled in one state. As in the latter, the target of a transition
is a probability distribution over states. This means that moving from one state
to the next involves the resolution of a nondeterministic choice followed by a
probabilistic experiment. Formally:

Definition 36 (MDP). A Markov decision process (MDP) is a 6-tuple

〈S,A,T,sinit,AP,L〉

where
– S is a countable set of states,
– A ⊇ {τ } is the process’ alphabet, a countable set of transition labels (or ac-

tions) that includes the silent action τ ,
– T ∈ S → P(A×Dist(S)) is the transition function, with the restriction that

T (s) is countable for all s ∈ S,
– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and
– L ∈ S → P(AP) is the state labelling function.

Observe that Dist(S) is always an uncountable set, which is why we need the
extra restriction on the transition function in order to be able to enumerate trans-
itions. Remember that we anyway restrict to finitely branching models in this
thesis, unless we say otherwise. We say that an MDP M is finite if it is finitely

92 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

branching and its set of states is finite. We call the pairs 〈a,μ〉 ∈ T (s) the trans-
itions of s and the triples 〈s,a,μ〉 such that 〈a,μ〉 ∈ T (s) the transitions of M.
We thus overload the notation for transitions by also writing 〈s,a,μ〉 ∈ T (s) for
〈a,μ〉 ∈ T (s). Just like for LTS and DTMC, we also write s a−→ μ for the trans-
ition 〈s,a,μ〉 and s a−→ s′ for ∃μ : 〈a,μ〉 ∈ T (s)∧μ(s′) > 0 in the remainder of
this thesis. In the same way, the notions of deadlock state, loop and cycle carry
over. A nonprobabilistic (or Dirac) loop or cycle is one on which all probabil-
ity distributions are the Dirac distribution, i.e. one target state has probability 1.
However, since deadlock states would needlessly complicate almost all of the
following definitions and algorithms, we assume from now on that all MDP
are deadlock-free. Any MDP can be transformed into one that is equivalent
for the purposes of this thesis and deadlock-free by simply adding a τ-labelled
Dirac loop to every deadlock state.

In the traditional definition of MDP, the nondeterminism is a choice be-
tween actions and for every a ∈ A, a state therefore has at most one outgoing
transition labelled a. PA allow more than one outgoing transition with the same
label. Since we use transition labels only for parallel composition and disregard
them during verification, it is the slightly more general definition from PA that
we use here.

We also define the notion of end components, which are subsets of the
states and transitions of an MDP that are strongly connected with transition
probabilities greater than 0:

Definition 37 (End component). In an MDP 〈S,A,T,sinit,AP,L〉, a n end com-
ponent is a pair 〈Se,Te〉 where Se ⊆ S and Te ∈ Se → P(A×Dist(S)) with
Te(s) ⊆ T (s) for all s ∈ Se such that for all s ∈ Se and transitions 〈a,μ〉 ∈ Te(s)
we have μ(s′) > 0 ⇒ s′ ∈ Se and the underlying directed graph of 〈Se,Te〉 is
strongly connected.

Finally, we need to precisely say when a transition is visible to an outside ob-
server of an MDP. In the case of an open system (cf. Section 3.3), this could
be another MDP that runs in parallel, so in this context transition labels would
be considered visible. In any case, the labelling of the current state needs to be
considered visible as this is what a verification procedure works on.

Definition 38 (Visible transitions). A transition 〈s,a,μ〉 of an MDP as above is
visible if there exists a state s′ ∈ support(μ) such that L(s) 6= L(s′). Addition-
ally, if we consider the MDP as an open system, it is also visible if a 6= τ .

Note that by default we consider closed systems, so unless we explicitly state
otherwise, the visibility of a transition depends only on the changes of atomic
proposition labels.

MARKOV DECISION PROCESSES 93

c0

c1

c2

c3 {collision}
snd_data

95
100

5
100

rcv_data

timeout

snd_data

snd_
data

τ

Figure 4.1: MDP for a lossy communication channel with collision detection

Example 14. To illustrate what can be expressed in MDP models, let us revisit
the communication channel for data originally introduced in Example 5 for our
running example of the communication protocol. The decision between losing
and successfully transmitting a message was a nondeterministic one in the LTS
model shown in Figure 3.2. Our new MDP model for the channel, shown in
Figure 4.1, uses a probabilistic decision instead. We fix the probability of losing
a message to be 0.05 in this case.

Graphically, we represent transitions in MDP as lines with an action label
that lead to an intermediate node from which the branches of the probabilistic
choice lead to the respective successor states. We omit the intermediate node
and probability 1 for transitions that lead to a Dirac distribution.

In addition to the now probabilistically quantified message loss, we include
collision detection in our new channel model: Whenever another attempt is
made to send a message (via action snd_data) while the previous one is still
“in transit”, we move to an error state. This results in a nondeterministic choice
between two outgoing transitions in states c1 and c2. Since we do not allow
deadlocks, the error state c3 has a (nonprobabilistic) τ-loop. There are exactly
two end components: The first consists of state c3 with its τ-loop, while the
second is {c0,c1,c2 } with the transitions labelled rcv_data and timeout as
well as the transition labelled snd_data out of c0.

Paths

The semantics of an MDP is captured by the notion of paths and traces. A path
through an MDP represents a concrete resolution of both nondeterministic and
probabilistic choices:

Definition 39 (Paths in MDP). Given an MDP M = 〈S,A,T,sinit,AP,L〉, a (fi-
nite) path in M from s0 to sn of length n ∈ N is a finite sequence

s0 〈a0,μ0〉s1 〈a1,μ1〉s2 . . . 〈an−1,μn−1〉sn

94 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

where si ∈ S for all i ∈ {0, . . . ,n} and 〈ai,μi〉 ∈ T (si)∧μi(si+1) > 0 for all i ∈
{0, . . . ,n−1}. An (infinite) path in M starting from s0 is an infinite sequence

s0 〈a0,μ0〉s1 〈a1,μ1〉s2 . . .

where for all i ∈ N, we have that si ∈ S, 〈ai,μi〉 ∈ T (si) and μi(si+1) > 0.

Where convenient, we identify the infinite path s0 〈a0,μ0〉s1 〈a1,μ1〉 . . . with
the sequence of transitions 〈s0,a0,μ0〉〈s1,a1,μ1〉 . . . that it corresponds to. All
the notation derived from the definition of finite and infinite paths (such as
the set Reach(M) of reachable states) carries over from LTS unchanged. As we
only consider MDP without deadlock states, all maximal paths are infinite. The
trace of a path can be defined for MDP in the same way as for LTS.

Schedulers and Reduction Functions

A path embodies a resolution of the nondeterministic choices for the states it
contains. A state may be visited several times, and different outgoing trans-
itions may be chosen in different visits. The resolution of nondeterminism
along a path can thus be history-dependent, i.e. it can depend on the current
state and on the current prefix of the path up to that state. Lifting the concept of
“resolution of nondeterminism” from a single path to an entire MDP, we obtain
the notion of a scheduler (based on [BK08]):

Definition 40 (Scheduler for MDP). A history-dependent scheduler for a given
MDP as usual is a function S∗ ∈ Pathsfin(M) → Dist(A×Dist(S)) such that
support(S∗(s0 . . .s)) ⊆ T (s) for all s ∈ S. A (memoryless) scheduler is a func-
tion S ∈ S → A×Dist(S) such that S(s) ∈ T (s) for all s ∈ S.

Schedulers are also called adversaries, policies or strategies. Our definition
of history-dependent schedulers is very general by allowing the nondetermin-
ism to be resolved in a probabilistic way and taking the entire path history into
account. However, we will see that memoryless schedulers are sufficient for
all properties and verification procedures on MDP that we consider in the re-
mainder of this thesis. We thus exclusively use memoryless schedulers from
now on. We note that an important class of properties for which memoryless
schedulers do not suffice are step-bounded ones, i.e. properties in which one
refers to the number of transitions taken on paths up to some point. However,
we do not consider such properties in this thesis.

Closely related to schedulers is the notion of reduction functions: They
select a subset of the outgoing transitions of every state.

Definition 41 (Reduction function [HT13]). A reduction function for a given
MDP M = 〈S,A,T,sinit,AP,L〉 is a function f ∈ S → P(A×Dist(S)) such that

MARKOV DECISION PROCESSES 95

f (s)⊆ T (s) and | f (s)|> 0 for all s ∈ S. If | f (s)|= 1 for all states, we say that f
is a deterministic reduction function. Given a reduction function f , the reduced
MDP for M with respect to f is

red(M, f) def= 〈S f ,A, f |S f ,sinit,AP,L|S f 〉

where S f is the smallest set such that

sinit ∈ S f ∧ s′ ∈ S f ⇒ S f ⊇ ∪〈a,μ〉∈ f (s′)support(μ).

We say that s ∈ S f is a reduced state if f (s) 6= T (s). All outgoing transitions
of a reduced state are called nontrivial transitions. We say that a reduction
function is acyclic if there are no cyclic paths in Mf starting in any state when
only nontrivial transitions are considered.

A scheduler corresponds to a deterministic reduction function. We can establish
the following relationship between schedulers and general reduction functions:

Definition 42 (Valid scheduler for a reduction function). For a given MDP
with set of states S, a scheduler S is valid for a reduction function f if ∀s ∈
S : S(s) ∈ f (s).

The result of removing all the transitions not selected by a scheduler from an
MDP is a deterministic MDP. We will later in this section show that a determ-
inistic MDP is indeed a DTMC when transition labels are dropped. For now,
we define:

Definition 43 (Induced DTMC for a scheduler). The DTMC induced by a
scheduler S for an MDP M = 〈S,A,T,sinit,AP,L〉 is

ind(M,S) = red(M,{s 7→ {S(s)}}).

If the choices represented by a path are the same choices that a scheduler would
make, then we say that the path is valid for that scheduler:

Definition 44 (Valid paths for a scheduler). A given (finite or infinite) path
s0 〈a0,μ0〉s1 . . . in an MDP 〈S,A,T,sinit,AP,L〉 is valid for a scheduler S if,
for all i, we have S(si) = 〈ai,μi〉. We denote by Paths(M,S) ⊆ Paths(M)
(or Pathsfin(M,S) ⊆ Pathsfin(M)) the set of all maximal (or finite) paths valid
for S.

It is easy to see that all paths in an induced DTMC correspond to valid paths
for the scheduler in the MDP and vice-versa:

96 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

c0

c1

c2

c3 {collision}

95
100

5
100

1

1
1

Figure 4.2: DTMC induced by a scheduler for the comm. channel MDP

Proposition 1. Given an MDP M = 〈S,A,T,sinit,AP,L〉 and a scheduler S for
M, we have that

{s0 μ0 s1 . . . | s0 〈a0,μ0〉s1 . . . ∈ Paths(M,S)}

= {s0 T (s0)s1 . . . | s0 s1 . . . ∈ Paths(ind(M,S))}

where T denotes the the probabilistic transition function of the respective in-
duced Markov chains. The same holds analogously for finite paths.

Note in particular that the cylinder sets and probability distributions are pre-
served. We use this fact in our definition of the semantics of reachability prop-
erties for MDP in Section 4.4.

Example 15. Schedulers for the MDP model of the channel with collision de-
tection from Example 14 can only make a nontrivial choice for states c1 and c2,
namely between finishing the transmission and detecting a timeout. A history-
dependent scheduler could, for example, choose to finish the transmission twice
before selecting the collision afterwards. The memoryless schedulers we con-
sider do not have this option. An example of a memoryless scheduler is

S= { c0 7→ 〈snd_data,{c1 7→ 0.99,c2 7→ 0.01}〉,

c1 7→ 〈rcv_data,D(c0)〉,c2 7→ 〈snd_data,D(c3)〉,c3 7→ 〈τ ,D(c3)〉 }

The DTMC induced by this scheduler is shown in Figure 4.2. A valid path for
S is

c0 〈snd_data,{c1 7→ 0.99,c2 7→ 0.01}〉c2 〈snd_data,D(c3)〉(c3 〈τ ,D(c3)〉)
ω

while the path

(c0 〈snd_data,{c1 7→ 0.99,c2 7→ 0.01}〉c2 〈timeout,D(c0)〉)
ω

is not valid for S.

MARKOV DECISION PROCESSES 97

〈s0,c0〉

〈s1,c1〉

〈s1,c2〉

〈s1,c0〉

〈s2,c1〉

{success}

〈s2,c0〉

{success}

snd_data

95
100

5
100

timeout

rcv_data

rcv_ack

rcv_ack

rcv_data

Figure 4.3: The parallel composition of sender and probabilistic channel

Parallel Composition

As MDP allow nondeterministic choices, we can define the parallel composi-
tion of two MDP using an interleaving semantics as previously done for LTS in
Section 3.1.1:

Definition 45. The parallel composition of two MDP

Mi = 〈Si,Ai,Ti,siniti ,APi,Li〉,

i ∈ {1,2}, is the MDP

M1 ‖ M2 = 〈S1 ×S2,A1 ∪A2,T,〈sinit1 ,sinit2〉,AP1 ∪AP2,L〉

where
– T ∈ (S1 ×S2) → P((A1 ∪A2)×Dist(S1 ×S2))

s.t. 〈a,μ〉 ∈ T (〈s1,s2〉) ⇔ a /∈ B∧∃μ1 : 〈a,μ1〉 ∈ T1(s1)∧μ = μ1 ⊗D(s2)
∨ a /∈ B∧∃μ2 : 〈a,μ2〉 ∈ T2(s2)∧μ = D(s1)⊗μ2

∨ a ∈ B∧∃μ1,μ2 : 〈a,μ1〉 ∈ T1(s1)
∧ 〈a,μ2〉 ∈ T2(s2)∧μ = μ1 ⊗μ2

with B = (A1 ∩A2)\{τ }, and
– L ∈ (S1 ×S2) → P(AP1 ∪AP2) s.t. L(〈s1,s2〉) = L1(s1)∪L2(s2).

The only difference to the parallel composition operator for LTS is that the
target of a synchronising transition is the product of the probability distributions
of the individual component transitions, i.e. probabilities are multiplied. This
is like in the parallel composition of DTMC, which however had to use a lock-
step semantics in absence of nondeterminism. As for LTS, parallel composition
can both introduce and remove nondeterministic choices to a model:

Example 16. We take the communication protocol components introduced as
LTS in Example 5 and interpret them as MDP. Instead of the LTS data chan-
nel, however, we use the lossy channel with collision detection modelled as
an MDP in Example 14. The parallel composition of sender and channel is

98 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈s0,c0,r0,a0〉

〈s1,c1,r0,a0〉

〈s1,c2,r0,a0〉

〈s1,c0,r1,a0〉

〈s1,c0,r0,a1〉

〈s2,c0,r0,a0〉

{success}

snd_data

95
100

5
100

timeout

rcv_data

snd_ack

rcv_ack

Figure 4.4: MDP for the comm. protocol with one probabilistic channel

shown in Figure 4.3. The product MDP contains nondeterminism that was not
present in the components due to the interleaving of rcv_data and rcv_ack.
However, the nondeterministic choice between finishing the transmission and
detecting a collision in the channel has been removed because the sender never
allows a collision to occur. Figure 4.4 shows the composition of sender, prob-
abilistic channel, receiver and (nonprobabilistic) acknowledgment channel. We
interpret this as a network of MDP and thus flatten the composition structure;
this is why the states are simple four-tuples. Note that, as in the LTS case in
Figure 3.4, the overall composition contains no nondeterminism any more.

In Section 4.7.1, we need to identify transitions that appear, in some way, to be
the same. For this purpose, we shall use equivalence relations ≡ on transitions
and denote the equivalence class of tr = 〈s,a,μ〉 under ≡ by [tr]≡. This nota-
tion can naturally be lifted to sets of transitions: The equivalence class [Tr] of a
set Tr of (not necessarily equivalent) transitions is the union of the equivalence
classes of the individual transitions in Tr. When working with a network of
MDP, one useful equivalence relation has tr ≡ tr′ iff transitions tr and tr′ in the
product MDP result from the same set of transitions { tr1, . . . , trm } in the com-
ponent automata according to Definition 45. We denote this particular relation
by ≡T . For illustration, consider the network of MDP {M1,M2,M3 } shown in
Figure 4.5. The product MDP on the right has two equivalence classes of trans-
itions, as shown below the MDP in the figure: The transitions labelled a are in
the same class because they both result from the synchronisation of 〈0,a,D(1)〉
from M1 and 〈2,a,D(3)〉 from M2. The two transitions labelled τ belong to the
same class because they both result from transition 〈4,a,D(5)〉 of M3.

Submodels

As mentioned, MDP can be seen as the orthogonal combination of the mod-
els of LTS and DTMC. We now formally state what this means, i.e. when an

MARKOV DECISION PROCESSES 99

0

M1

1

a ‖

2

M2

3

a ‖

4

M3

5

τ ⇒

6

M1 ‖ M2 ‖ M3

7

8

9

a a

τ

τ

[〈6,a,D(7)〉]≡T = {〈6,a,D(7)〉,〈8,a,D(9)〉}

[〈7,τ ,D(9)〉]≡T = {〈6,τ ,D(8)〉,〈7,τ ,D(9)〉}

Figure 4.5: Transition equivalence ≡T for networks of MDP

MDP is an LTS or a DTMC, and how LTS and DTMC can be represented as
equivalent MDP.

Labelled transition systems The common feature of LTS and MDP are the
nondeterministic choices between the labelled transitions leading out of a state;
the feature not supported by LTS are probabilistic decisions. The only MDP
that can be equivalent to LTS are thus those that do not contain such decisions:

Definition 46 (Nonprobabilistic MDP). In an MDP M = 〈S,A,T,sinit,AP,L〉,
a transition 〈a,μ〉 ∈ T (s) for s ∈ S is nonprobabilistic if ∃s′ : μ = D(s′), and
probabilistic otherwise. The entire MDP M is nonprobabilistic if all its trans-
itions are nonprobabilistic. Otherwise, it is probabilistic.

It is then easy to see that a nonprobabilistic MDP turns into an LTS if the Dirac
distributions in the transitions are replaced by the respective states, and that an
LTS is an MDP where the new transitions lead to the Dirac distributions for
their original target states. Formally:

Proposition 2. A nonprobabilistic MDP 〈S,A,T,sinit,AP,L〉 is isomorphic to
the LTS 〈S,A,T ′,sinit,AP,L〉 where 〈a,s′〉 ∈ T ′(s) ⇔ 〈a,D(s′)〉 ∈ T (s) for all
s ∈ S. We say that a nonprobabilistic MDP is an LTS, and an LTS is a nonprob-
abilistic MDP.

Discrete-time Markov chains MDP inherit their probabilistic choices from
DTMC. As nondeterminism is not supported by DTMC, we first state clearly
what it means for an MDP to be “deterministic”:

Definition 47 (Deterministic MDP). Given an MDP M = 〈S,A,T,sinit,AP,L〉,
a state s ∈ S is deterministic if |T (s)| = 1, and nondeterministic otherwise. The

100 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

entire MDP M is deterministic if all its states s∈ S are deterministic. Otherwise,
it is nondeterministic.

Note that a deterministic MDP may well be probabilistic. In any case, as we
already hinted at in Definition 43, a deterministic MDP directly corresponds to
a DTMC when we drop all transition labels:

Proposition 3. A deterministic MDP 〈S,A,T,sinit,AP,L〉 is isomorphic mod-
ulo transition labels to the DTMC 〈S,T ′,sinit,AP,L〉 where T ′(s) = μ ⇔∃a ∈
A : T (s) = {〈a,μ〉} for all s ∈ S. We say that a deterministic MDP is a DTMC,
and a DTMC is a deterministic MDP (for an arbitrarily chosen alphabet).

The correspondence between deterministic MDP and DTMC is not as direct as
that for LTS since we need to drop transition labels when going from MDP to
DTMC, and we can introduce arbitrary labels in the other direction. This in par-
ticular means that there are infinitely many MDP that are isomorphic to a single
DTMC modulo transition labels. Another effect is that this correspondence is
not compositional when it comes to the parallel composition operators: First
of all, the parallel composition of two deterministic MDP is not necessarily de-
terministic itself. But even if it is, its corresponding DTMC in general need not
be the same as the parallel composition of the two DTMC corresponding to the
individual MDP. This is, of course, due to the use of a lock-step semantics in
DTMC parallel composition versus an interleaving semantics for MDP. Com-
positionality in the above sense can be achieved in special cases, though: If
all transitions in the MDP are labelled with the same action sync 6= τ , then the
two notions of parallel composition for MDP and DTMC coincide since all
transitions in the MDP product synchronise.

4.2 Variables

Like for LTS, building MDP models becomes easier when we allow the inclu-
sion of variables. Although variable-decorated MDP, VMDP for short, again
merely combine the features of VLTS and VDTMC, we give their full defin-
ition in this section because VMDP are the basic model of the partial order
reduction-based approach to SMC that we present in Section 4.7.1.

Definition

As in VLTS, the variables of a VMDP can be referred to in guards and changed
in assignments. As in VDTMC, the target of an edge is a symbolic probability
distribution that assigns weights to pairs of updates and target locations.

MARKOV DECISION PROCESSES 101

c0

c1

c2

snd_data

{i := 95}
100− i

i

rcv_data

timeout

d0 d1

snd_data

snd_data

{i := 95}

1, {i := 50}
9

9, {i := 95}
1

Figure 4.6: VMDP for the communication channel and an environment

Definition 48 (VMDP). A Markov decision process with variables (VMDP) is
a 7-tuple 〈Loc,Var,A,E, linit,Vinit,VExp〉 where
– Loc is a countable set of locations,
– Var is a finite set of variables with countable domains,
– A ⊇ {τ} is the process’ alphabet,
– E ∈ Loc → P(Bxp×A× (Upd×Loc → Axp)) is the edge function, which

maps each location to a set of edges, which in turn consist of a guard, a label
and a symbolic probability distribution over updates and target locations,

– linit ∈ Loc is the initial location,
– Vinit ∈ Val(Var) is the initial valuation of the variables, and
– VExp ⊆ Bxp is the set of visible expressions.

For a given VMDP M with edge function E, we also write l g,a−→ m instead of
〈g,a,m〉 ∈ E(l) in the remainder of this thesis. As for MDP, we may refer to an
edge as 〈l,g,a,m〉 if 〈g,a,m〉 ∈ E(l).

Example 17. Figure 4.6 on the left shows a VMDP model for the probabilistic
communication channel introduced as an MDP in Example 14. It omits the col-
lision detection mechanism as we found out in Example 16 that the sender any-
way does not cause collisions on this channel. In contrast to the MDP model,
though, the message loss probability is now determined by an integer variable i
instead of being fixed to 0.95. On the right of Figure 4.6 is a VMDP that models
a possible environment for wireless communication: From time to time (here:
whenever a message is sent, to make the next example more interesting), a
disturbance may appear—such as a microwave oven being switched on—that
significantly increases message losses (by modifying the value of i, which de-
termines the channel’s message loss probability), only to later disappear again.
The appearance of the disturbance is a probabilistic decision, just like its later
disappearance.

102 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Semantics

The semantics of a VMDP is an MDP whose states keep track of the current
location and the current values of all variables. Based on these current values,
the symbolic probability distributions can be turned into concrete ones.

Definition 49 (Semantics of VMDP). The semantics of a VMDP

M = 〈Loc,Var,A,E, linit,Vinit,VExp〉

is the MDP
JMK= 〈Loc×Val,A,T,〈linit,Vinit〉,VExp,L〉

where
– T ∈ Loc×Val → P(A×Dist(Loc×Val)) s.t.

〈a,μ〉 ∈ T (〈l,v〉) ⇔ ∃〈g,a,m〉 ∈ E(l) : JgK(v)∧μ = mv
conc

∨a = τ ∧μ = D(l)∧@〈g,a,m〉 ∈ E(l) : JgK(v)
(4.1)

where mv
conc is the concrete probability distribution corresponding to m for

valuation v as defined in Section 3.2, and
– L ∈ Loc×Val → P(VExp) s.t.

∀〈l,v〉 ∈ Loc×Val : L(〈l,v〉) = {e ∈ VExp | JeK(v)}.

Observe that the second line of Equation 4.1 adds a loop to a state in the MDP in
case no edge is enabled. This explicitly ensures that the result is deadlock-free.
The same issues regarding the conversion from symbolic to concrete probability
distributions arise as for VDTMC: VMDP models are considered invalid, i.e. a
modelling error, if for any reachable valuation in the semantics, a single weight
would evaluate to a negative number or the sum of all weights of a distribution
would not converge or would evaluate to zero.

Parallel Composition

The definition of a parallel composition operator for VMDP is straightforward;
the symbolic probability distributions are combined by simply creating multi-
plication expressions:

Definition 50 (Parallel composition of VMDP). The parallel composition of
two consistent VMDP Mi = 〈Loci,Vari,Ai,Ei, liniti ,Viniti ,VExpi〉, i ∈ {1,2}, is
the VMDP

M1 ‖ M2 = 〈Loc1 ×Loc2,Var1 ∪Var2,A1 ∪A2,E,

〈linit1 , linit2〉,Vinit1 ∪Vinit2 ,VExp1 ∪VExp2〉

MARKOV DECISION PROCESSES 103

with E ∈ (Loc1×Loc2)→P(Bxp×A1 ∪A2 × (Upd× (Loc1 ×Loc2) → Axp))
s.t. 〈g,a,m〉 ∈ E(〈l1, l2〉) ⇔ a /∈ B∧∃m1 :

〈g,a,m1〉 ∈ E1(l1)∧m = m1 ×{〈l2,∅〉 7→ 1}
∨ a /∈ B∧∃m2 :

〈g,a,m2〉 ∈ E2(l2)∧m = {〈l1,∅〉 7→ 1}×m2

∨ a ∈ B∧∃g1,g2,m1,m2 :
〈g1,a,m1〉 ∈ E1(l1)∧〈g2,a,m2〉 ∈ E2(l2)
∧ (g = g1 ∧g2)∧ (m = m1 ×m2)

with B = (A1∩A2)\{τ} and the product of two consistent symbolic probability
distributions mi ∈ Upd×Loci → Axp, i ∈ {1,2}, defined as

m1 ×m2 ∈ Upd× (Loc1 ×Loc2) → Axp s.t.

(m1 ×m2)(〈U1 ∪U2,〈l1, l2〉〉) = m1(U1, l1) ∙m2(U2, l2).

Again, just as for VLTS, the two components need to be consistent in order
to avoid conflicting assignments. The definition of consistency that we use is
similar to the one we gave for LTS in Definition 24, and is also a sufficient
condition only:

Definition 51 (Consistent VMDP). Two VMDP Mi as in the previous definition
are consistent if their initial valuations are consistent and, for all l1 ∈ Loc1,
l2 ∈ Loc2 and a ∈ A1 ∩A2 \{τ}, we have that

U1 ∈ f1(l1,a)∧U2 ∈ f2(l2,a) ⇒U1 and U2 are consistent

where

fi(l,a) def= {U | 〈g,a,m〉 ∈ Ei(l)∧∃ l′ ∈ Loci : m(U, l′) 6= 0}

is the set of all assignments that have non-constant-zero weight on the edges
from l labelled with a.

Also just like for LTS, we allow shared variables, which leads to the recurrence
of the effect that the application of parallel composition and MDP semantics is
not commutative in general (cf. Theorem 1).

Example 18. The parallel composition of the communication channel and en-
vironment VMDP shown in the previous example can be seen in Figure 4.7.
It would have been more realistic to have the edges of the environment model
labelled τ instead of snd_data since, for example, a microwave usually does
not switch on or off in reaction to some independent wireless communication.
The resulting parallel composition, however, would not have showed the way
the product of symbolic probability distributions is built. Drawing that more
realistic composition is instead left as an exercise to the reader.

104 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈c0,d0〉

〈c1,d0〉

〈c1,d1〉

〈c2,d1〉

〈c2,d0〉

〈c0,d1〉
snd_data snd_data

{i := 95}
(100−

i) ∙
9

(100− i) ∙1,

{i := 50}

i ∙1,
{i := 50}

100− i

rcv_data

timeout

rcv_data

timeou
t

(100− i) ∙9, {i := 95}

(100− i) ∙1

i ∙1

100− i, {i := 95}

Figure 4.7: The VMDP parallel composition of the channel and its environment

As an analogue to ≡T for MDP parallel composition, a useful equivalence re-
lation ≡ over the transitions of the MDP semantics of a network of VMDP is
the one that identifies those transitions that result from the same (set of) edges
in the component VMDP. We denote this relation by ≡E .

4.3 Modelling

To model VMDP in MODEST, all we need in addition to the facilities for mod-
elling VLTS is a way to specify a probabilistic choice. For this purpose, we
introduced the palt keyword in Section 3.2.1. Although we used it to model
VDTMC, the (palt) inference rule at that point was already given in a form that
is suitable for modelling VMDP. In fact, we can now freely use any actions
we declare, mix in nonprobabilistic choices via alt and do, or in short: use
all MODEST keywords for VLTS without restrictions. The VMDP feature of
nondeterministic choices followed by probabilistic ones can be used by nesting
palts inside an alt or do. MODEST’s parallel composition via par also turns
out to precisely match the VMDP parallel composition we just introduced in
Definition 50.

Example 19. Figure 4.8 contains MODEST code whose semantics1 is the MDP
for the communication channel with probabilistic message loss introduced in
Example 14. If we replace the Channel process of the simple BRP model of
Example 8 by this new probabilistic channel, we obtain a model that we will
refer to as the simple probabilistic BRP.

1To be precise: “the semantics of whose semantics”, since the semantics of MODEST is now a
VMDP.

MARKOV DECISION PROCESSES 105

process Channel()
{

snd palt {
:95: alt { :: rcv :: snd {= collision = true =}; stop }
: 5: alt { :: timeout :: snd {= collision = true =}; stop }
};
Channel()

}

Channel()

Figure 4.8: The lossy comm. channel with collision detection in MODEST

4.4 Properties

Reachability properties for MDP are probabilistic and thus come in a quantit-
ative and a qualitative form as for DTMC. However, the actual probability of
reaching a certain set of states depends on how the nondeterministic choices
are resolved. When ranging over all possible resolutions, we obtain an inter-
val ⊆ [0,1] of possible probabilities. For verification, it is the interval’s extremal
values that we are interested in. In quantitative form, we can thus ask for the
maximum or minimum probability of reaching a set of target states (resp. for
the infimum and supremum if these values do not exist in general). In qual-
itative form, we perform a worst-case analysis: upper bounds are compared
to maximum, lower bounds to minimum probabilities. This ensures that the
bound is satisfied no matter how the nondeterminism is resolved. Syntactically,
we write probabilistic reachability properties for MDP as follows:

Pmax(�φ) –and– Pmin(�φ) (quantitative form) P(�φ) ∼ x (qualitative form)

where ∼ ∈ {<,≤,>,≥} and x ∈ [0,1].

Example 20. Interesting properties for the simple probabilistic BRP model
from the previous example are
– P(� collision) ≤ 0 “the probability of a collision on the data channel is zero”,
– Pmin(� success) “what is the worst-case probability of success?”, and
– Pmax(� failure) “what is the worst-case probability that the sender gives up?”
Observe how, for the properties in quantitative form, the meaning of “worst-
case” w.r.t. maximum and minimum probabilities depends on whether we ob-
serve a “bad” or a “good” event. In MODEST, we can express these three
properties as
– property P_NoCollision = P(<> collision) <= 0;
– property P_Success = Pmin(<> success);
– property P_Failure = Pmax(<> failure);

106 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

To define the semantics of probabilistic reachability properties for MDP, we
simply formalise the meaning of “ranging over all possible resolutions of non-
determinism” via schedulers:

Definition 52 (Semantics of MDP probabilistic reachability properties). For
an MDP 〈S,A,T,sinit,AP,L〉, the semantics of a probabilistic reachability query
Pmax(�φ) or Pmin(�φ) is defined as

JPmax(�φ)KM
def= sup
S∗

JP(�φ)Kind(M,S∗)

= max
S
JP(�φ)Kind(M,S)

JPmin(�φ)KM
def= inf
S∗
JP(�φ)Kind(M,S∗)

= min
S
JP(�φ)Kind(M,S)

The semantics of a probabilistic reachability property in qualitative form is
defined as follows:

JP(�φ) ∼ xKM
def=

{
JPmax(�φ)KM ∼ x if ∼ ∈ {<,≤}

JPmin(�φ)KM ∼ x if ∼ ∈ {>,≥}

As usual, we omit the subscript M when it is clear from the context. A proof
of the facts that 1) a scheduler exists that maximises/minimises the reachab-
ility probability and that 2) this scheduler is memoryless can be found in, for
example, [BK08] as the proof of lemmas 10.102 and 10.113.

Temporal Logics for MDP

The temporal logic PCTL* that we mentioned in Section 3.2.2 for DTMC is
equally applicable to MDP. The interpretation of its P∼x operator is a com-
parison with maximum or minimum probability similar to how we defined the
semantics of the qualitative form of probabilistic reachability above. LTL (see
Section 3.1.4) formulas can also be interpreted probabilistically for MDP: An
LTL formula f represents a set of traces. The probability of f can then, intuit-
ively speaking, be defined via the probabilities of the paths that correspond to
the traces in a given MDP. What is important for this thesis, in particular for
the correctness of the techniques presented in sections 4.7.1 and 4.7.2, is that
probabilistic reachability can be expressed via probabilities of LTL formulas as
well as in PCTL*:
– A query Pmax(�φ) is equivalent to asking for the maximum probability of the

LTL formula �φ (and analogously for minimum queries).
– Properties of the form P(� φ) ∼ x are equivalent to PCTL* formulas of the

form P∼x(�φ).

MARKOV DECISION PROCESSES 107

4.5 Model Checking

In this section, we summarize the standard existing algorithms to perform ex-
haustive model checking of probabilistic reachability properties for finite-state
MDP. The first two, which use linear programming and value iteration, are sim-
ilar to the algorithms we presented for DTMC in Section 3.2.3. The third ap-
proach, policy iteration, is based on the enumeration of schedulers and thus has
no DTMC counterpart. Again, we use the notions and assumptions from LTS
analogously here when describing memory usage and runtime. In particular,
the MDPs considered have n states, maximum fan-out b = maxs∈S |T (s)|, and
we are able to evaluate/store the transition function in constant time/memory.

Using Linear Programming

Exact reachability probabilities for DTMC can be computed by solving a linear
equation system. The equations capture the relation between the probability
values of a state and those of its successors: a state’s reachability probability is
the weighted sum of the probabilities of its successors according to the probab-
ilistic transition function. For MDP, this relationship is more complex due to
the additional nondeterministic choice between probability distributions over
successors. Depending on whether we are interested in maximum or minimum
reachability probabilities, we need to determine, for all states at once, the max-
imum or minimum of the weighted sums over all the successor distributions.
This can be formulated as a linear programming (LP) problem as shown in
Algorithms 9 and 12, which are based on [BK08, FKNP11]. Let us focus on
Algorithm 9 for the moment, which computes maximum reachability probab-
ilities. It builds the LP problem based on sets of states that reach a target state
with maximum probability one (Smax

=1) or zero (Smax
=0). As for DTMC, these sets

can be obtained with standard graph algorithms inside functions Smax0 and
Smax1, the details of which we omit here. In particular, no numeric compu-
tations are necessary. The variables xs of the LP problem represent, for each
state s, the (maximum) probability of reaching a φ -state. Line 7 produces one
constraint for every transition of every relevant state. By using the greater-or-
equal operator here and asking for maximal values in line 3, we achieve the
global maximisation of the reachability probability.

Minimum reachability probabilities can be computed with LP as shown
in Algorithm 12. In the LP problem itself, we see that maximisation has
been replaced by minimisation, and the probability values xs are required to
be less than or equal than the weighted sum over the successors. However,
the graph-based computations necessary to obtain the sets of probability-one
and probability-zero states are also different and cannot directly be expressed

108 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Input: Finite MDP M = 〈S,A,T,sinit,AP,L〉 and property Pmax(�φ)
Output: JPmax(�φ)KM (value in [0,1])

1 Smax
=1 := Smax1(M, φ),e.g.{s ∈ S | φ(L(s))}

2 Smax
=0 := Smax0(M, φ),

e.g.{s ∈ S\Smax
=1 | ∀s′: (Paths(s,s′) 6=∅⇒¬φ(L(s′)))}

3 lp := maximise ∑s∈S xs subject to
4 xs = 1 for all s ∈ Smax

=1
5 xs = 0 for all s ∈ Smax

=0
6 0 < xs < 1 for all s /∈ Smin

=1 ∪Smin
=0

7 xs ≥ ∑s′∈S μ(s′) ∙ xs′ for all s /∈ Smax
=1 ∪Smax

=0 and 〈a,μ〉 ∈ T (s)
8 end
9 solve the linear program lp and return xsinit

Algorithm 9: MDP max. reachability checking with linear programming

1 function Smin0(M = 〈S,T,sinit,AP,L〉, φ)
2 R := {s ∈ S | φ(L(s))}
3 repeat
4 R′ := R
5 R := R′ ∪{s ∈ S | ∀〈a,μ〉 ∈ T (s) : ∃s′ ∈ R : μ(s′) > 0}
6 until R = R′

7 return S\R

Algorithm 10: Computing the set of states Smin
=0 for an MDP [FKNP11]

1 function Smin1(M = 〈S,T,sinit,AP,L〉, Smin
=0)

2 R := S\Smin
=0

3 repeat
4 R′ := R
5 R := R′ \ {s ∈ R′ | ∃〈a,μ〉 ∈ T (s) : ∃s′ ∈ S\R′ : μ(s′) > 0}
6 until R = R′

7 return R

Algorithm 11: Computing the set of states Smin
=1 for an MDP [FKNP11]

MARKOV DECISION PROCESSES 109

with our established notions like states reachable via finite paths. We thus give
the (non-numeric) fixpoint computations to obtain these sets in Algorithms 10
and 11.

There is a wide range of methods to solve LP problems. The complex-
ity of solving an LP problem is polynomial in the number of variables. The
worst-case runtime of algorithms 9 and 12 with an asymptotically optimal LP
solution algorithm is consequently a polynomial in n. In practice, the state
spaces of realistic and relevant MDP models are too large to be analysed with
LP methods [FKNP11]. Memory usage depends on the way the LP problem
is represented and solved; what we see in our algorithms is that the number
of constraints we generate is in O(n ∙ b). Clearly, exhaustive model checking
for MDP suffers from the state space explosion problem again (which affects
the value and policy iteration approaches presented below just as well as this
LP-based one).

Value Iteration

For DTMC models, the practical limitations of the exact linear equation system-
based technique can be alleviated by using numeric dynamic programming in
the form of value iteration. As mentioned, state space explosion is still the prin-
cipal problem, but value iteration can be used on much larger state spaces before
it becomes a limitation in practice. The value iteration algorithm for DTMC
(Algorithm 5) only needs small changes to be applicable to MDP. The result is
shown as Algorithm 13, which is the “Gauss-Seidel” variant of [FKNP11]. The
main difference is that we need to compute the maximum over all transitions in
addition to the weighted sum according to the probability distributions in line 8.
To model-check minimum instead of maximum reachability queries, we would
simply replace every occurrence of min by max, except for the one in line 9.
Memory usage is in O(n) as for DTMC, and runtime is dependent on ε and the
structure of the model, too.

Policy Iteration

A new approach for MDP is to use policy iteration, also called Howard’s al-
gorithm for its discoverer Ronald A. Howard. Policy is an alternative name for
what we called a scheduler in Definition 40. The idea of the algorithm, which
is shown as Algorithm 14 [FKNP11], is to
1. start with some arbitrary (memoryless) scheduler (line 1),
2. use one of the DTMC model checking techniques to obtain the reachability

probabilities for the Markov chain induced by the current scheduler (line 4),

110 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Input: Finite MDP M = 〈S,A,T,sinit,AP,L〉 and property Pmin(�φ)
Output: JPmin(�φ)KM (value in [0,1])

1 Smin
=0 := Smin0(M, φ)

2 Smin
=1 := Smin1(M, Smin

=0)
3 lp := minimise ∑s∈S xs subject to
4 xs = 1 for all s ∈ Smin

=1
5 xs = 0 for all s ∈ Smin

=0
6 0 < xs < 1 for all s /∈ Smin

=1 ∪Smin
=0

7 xs ≤ ∑s′∈S μ(s′) ∙ xs′ for all s /∈ Smin
=1 ∪Smin

=0 and 〈a,μ〉 ∈ T (s)
8 end
9 solve the linear program lp and return xsinit

Algorithm 12: MDP min. reachability checking with linear programming

Input: Finite MDP M = 〈S,T,sinit,AP,L〉, property Pmax(�φ) and ε > 0
Output: JPmax(�φ)KM (value in [0,1])

1 Smax
=0 := Smax0(M, φ)

2 Smax
=1 := Smax1(M, φ)

3 with v ∈ S → [0,1]:
4 foreach s ∈ S do v(s) := 1 if s ∈ Smax

=1 , otherwise 0
5 repeat
6 error := 0
7 foreach s ∈ S\ (Smax

=1 ∪Smax
=0) do

8 vnew := max
{

∑s′∈support(μ) μ(s′) ∙ v(s′) | 〈a,μ〉 ∈ T (s)
}

9 if vnew > 0 then error := max{error, |vnew − v(s)|/v(s)}
10 v(s) := vnew

11 end
12 until error < ε
13 return v(sinit)
14 end

Algorithm 13: MDP model checking with value iteration [FKNP11]

MARKOV DECISION PROCESSES 111

Input: Finite MDP M = 〈S,A,T,sinit,AP,L〉, property Pmax(�φ)
Output: JPmax(�φ)KM (value in [0,1])

1 S := arbitrary scheduler for M
2 repeat
3 S′ :=S
4 compute ps := JP(�φ)K in ind(M,S) with initial state s for all s ∈ S
5 foreach s ∈ S doS(s) := arg〈a,μ〉∈T (s) max

{
∑s′∈support(μ) μ(s′) ∙ ps′

}

6 until S=S′

7 return psinit

Algorithm 14: MDP model checking with policy iteration [FKNP11]

3. improve the scheduler by changing its decisions where it does not yet go to
the successors with the highest probabilities (line 5), and

4. repeat until the scheduler cannot be improved any more.
As shown, Algorithm 14 computes maximum probabilities. To compute min-
imum probabilities instead, the max operation in line 5 would need to be re-
placed by min. Note also that the computation in line 4 can be performed for
all states in one go using only a slightly modified version of any of the tech-
niques presented for DTMC model checking in Section 3.2.3.

An upper bound on the runtime of policy iteration is the number of different
schedulers, which is exponential. However, the performance of policy iteration
in practice is competitive and comparable to that of value iteration [FKNP11].
Memory usage is obviously in O(n).

Other Approaches and Implementations

A prominent and widely-used tool that implements these standard techniques
for exhaustive MDP model checking is PRISM [KNP11]. There are also other
approaches, implemented in different tools, in addition to the three described
so far. To name a few examples:
– The PASS tool [HHWZ10b] uses probabilistic counterexample-guided ab-

straction refinement [HWZ08] to combat the state space explosion problem.
Instead of performing its analysis on the full state space of the given MDP,
it extracts predicates from the high-level description of the process (i.e. a
VMDP) to compute a more abstract model. It exploits the bounds given as
part of qualitative form of probabilistic properties to improve the abstraction
until the probability in that abstraction is lower or higher than the bound.
This approach works very well whenever a coarse abstraction is sufficient to

112 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

satisfy the bound, but takes very long if many refinement steps are needed.
By representing an infinite number of variable valuations in a finite number
of predicates, PASS can deal with some infinite-state models.

– Another tool that can deal with infinite-state MDPs is INFAMY [HHWZ09].
Originally developed for continuous-time Markov chains, it has been exten-
ded to also work for MDP models. The key idea is to explore only the part of
the model’s state space, similar to a number of BFS layers around the initial
state, that is sufficient for the bounds of the given property or the acceptable
error in answering a query.

– Finally, an early implementation that used refinement and very specific state
space reduction techniques [DJJL01, DJJL02] was the RAPTURE tool.

4.6 Statistical Model Checking

As mentioned at the beginning of this chapter, using statistical model checking
to analyse probabilistic reachability properties on MDP models is problematic:
If we are to perform simulation as we did for DTMC in Algorithm 6, we not
only have to conduct a probabilistic experiment in each state, but also resolve
the nondeterminism between the outgoing transitions first. That is, we have
to mimic a scheduler’s decisions. These scheduling choices determine which
probability out of the interval between maximum and minimum we actually
observe in SMC. As the only relevant values in verification are the actual max-
imum and minimum probabilities, we would need to be able to use the corres-
ponding extremal schedulers to obtain useful results. These schedulers are not
known upfront, however.

In the remainder of this chapter, we present several approaches to tackle
this problem. First, in this section, we adapt the DTMC simulation algorithm
to the MDP setting and show that naïve scheduling choices cannot lead to
trustworthy, useful results. We then give a detailed presentation of two ap-
proaches in Section 4.7 that make use of the fact that a particular nondetermin-
istic choice may not make a difference for the property at hand. In that case,
the nondeterminism is spurious, and any resolution leads to the same probab-
ility. Provided all nondeterministic choices in an MDP are spurious for some
property, its maximum and minimum reachability probability coincide and sim-
ulation results can be relied upon. The first approach (Section 4.7.1) is to use
techniques adapted from partial order reduction to detect, on-the-fly during
simulation, if the nondeterministic choice just encountered in a state is spurious
and simulation can continue. However, the partial order-based check is conser-
vative: It may not be able to identify all spurious choices as such. It works

MARKOV DECISION PROCESSES 113

on networks of VMDP and can in particular only prove interleavings, i.e. non-
determinism resulting from the interleaving semantics of parallel composition,
as spurious. This limitation can be overcome by using the notion of confluence
instead of partial order reduction (Section 4.7.2). The confluence-based check
applies directly to the concrete state space of a model, i.e. to MDP. It is not
limited to spurious interleavings, but it still is conservative. In contrast to the
notion of partial order reduction we used previously, confluence can only deal
with choices between nonprobabilistic transitions. Thus, the two approaches
turn out to be incomparable w.r.t. the classes of MDP they are applicable to.

The goal of the two techniques outlined above, both based on state space re-
duction methods, is to prove on-the-fly during simulation that all nondetermin-
istic choices encountered are spurious. This guarantees that the chosen resolu-
tion leads to the maximum and minimum probability. It indeed means that the
minimum and maximum probabilities of reaching the target states are the same,
i.e. the interval of probabilities is a singleton. This is, of course, not the case
in general for arbitrary MDP models. Three approaches to perform SMC for
general nondeterministic MDP have been developed by others, and we briefly
present them for completeness and comparison in Section 4.8.

Henriques et al. [HMZ+12] first proposed the use of reinforcement learn-
ing, a technique from artificial intelligence, to actually learn the resolutions of
nondeterminism (by memoryless schedulers) that maximise probabilities for a
given bounded LTL property. While this allows SMC for models with arbitrary
nondeterministic choices (not only spurious ones), scheduling decisions need
to be stored for every explored state. Memory usage can thus be as in traditional
model checking, but is highly dependent on the structure of the model and the
learning process. However, several problems in their algorithm w.r.t. conver-
gence and correctness have recently been described [LST14]. Similar learning-
based methods have been picked up again by Brázdil et al. [BCC+14]. They
propose two techniques that require different amounts of information about
the model, but provide clear error bounds. Memory usage can again be as
high as in model checking but depends on the model structure. We summarise
these two learning-based approaches in Section 4.8.1. Our approaches based
on confluence and POR have the same theoretical memory usage bound as the
learning-based ones, but use comparatively little memory in practice. They do
not introduce any additional overapproximation and thus have no influence on
the usual error bounds of SMC.

Legay and Sedwards recently developed a second technique [LST14]. It is
based on randomly generating a (large) number of schedulers, for each of which

114 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

1 function simulate(M = 〈S,A,T,sinit,AP,L〉, R, φ , d)
2 s := sinit, seen :=∅
3 for i = 1 to d do
4 if φ(L(s)) then return true
5 else if s ∈ seen then return false
6 μ :=R(s)
7 ν := choose a transition 〈a,ν〉 randomly according to μ
8 if μ and ν are Dirac then seen := seen∪{s} else seen :=∅
9 s := choose a state s randomly according to ν

10 end
11 return unknown

Algorithm 15: Path gen. for an MDP and a resolver, with cycle detection

a standard SMC analysis is performed. To achieve the necessary memory effi-
ciency, they propose an innovative O(1) encoding of a subset of all (memory-
less or history-dependent) schedulers. However, their method cannot guarantee
that the optimal schedulers are contained in the encodable subset, and cannot
provide an error bound. We give a more detailed overview of this technique
in Section 4.8.2, before concluding this chapter with an overall summary in
Section 4.9.

4.6.1 Resolving Nondeterminism

In order to simulate an MDP, i.e. to generate paths through it, the nondetermin-
istic choices need to be resolved. Adapting the DTMC simulation algorithm
to MDP thus results in Algorithm 15. It takes as an additional parameter a re-
solver R, i.e. a function in S → Dist(A×Dist(S)) such that, for all states s of
the MDP at hand, we have 〈a,μ〉 ∈ support(R(s)) ⇒ 〈a,μ〉 ∈ T (s). We can
say that a resolver is a memoryless but probabilistic scheduler. If we burden
the user with the task of specifying a resolver, SMC for MDP is easy: we can
apply Algorithms 7 and 8 by merely changing the simulate function they use
to the new one of Algorithm 15.

Many simulation tools, including e.g. the simulation engine that is part of
PRISM, in fact implicitly use a specific built-in resolver so users do not even
need to bother specifying one. On the other hand, this means that users are not
able to do so if they wanted to, either. The implicit resolver that is typically used
simply makes a uniformly distributed choice between the available transitions:

RUni
def= {s 7→ U (T (s)) | s ∈ S}

MARKOV DECISION PROCESSES 115

However, one can think of other generic resolvers. For example, a total order
on the actions (i.e. priorities) can be specified by the user, with the correspond-
ing resolver making a uniform choice only between the available transitions
with the highest-priority label. A special case of this appears when we con-
sider MDP that model the passage of a unit of physical time with a dedicated
tick action: If we assign the lowest priority to tick, we schedule the other
transitions as soon as possible; if we assign the highest priority to tick, we
schedule the other transitions as late as possible. We will revisit these ASAP
and ALAP schedulers when we investigate real-time models in Chapter 5.

Unfortunately, performing SMC with some implicit scheduler as described
above is not sound: While a probabilistic reachability property asks for the
minimum or maximum probability of reaching a set of target states, using an
implicit scheduler merely results in some probability in the interval between
minimum and maximum.

Definition 53. An SMC procedure for MDP is sound if, given any MDP M
and probabilistic reachability query Pmax(�φ) or Pmin(�φ), it returns a sample
mean psmc and a useful confidence statement relating psmc to JPmax(� φ)K or
JPmin(� φ)K, respectively. Likewise, for qualitative probabilistic reachability
properties, the reported decision must be connected to the correct (but un-
known) result with a useful confidence statement.

Observe that we informally require a “useful” confidence statement. This is
in order to remain abstract w.r.t. the concrete statistical method used. We con-
sider e.g. confidence intervals with small ε and α or an APMC confidence
〈k,ε ,δ 〉 with small ε and δ useful. In contrast, merely reporting some prob-
ability between minimum and maximum means that the potential error can be
arbitrarily close to 1. This may still be of use in some applications, but is not a
useful statement for verification.

In fact, doing so can be very misleading in verification where, after all, non-
determinism is assumed to be uncontrollable. The actual implementation of a
system that we model with an MDP will need to actually resolve the decisions
that were modelled as nondeterministic in some way2, but there is no guarantee
that this resolution matches the resolver we used for SMC. In particular, if the
SMC result happens to be very optimistic (e.g. by not considering some few
adverse environments or unfortunate implementations), the implicit-resolver
approach can lead to unfounded conclusions that may jeopardise the safety of
the actual system whose study the model was built for. Although nondetermin-
ism can model the total absence of knowledge about a certain choice and a

2Assuming that reality is deterministic (and possibly probabilistic).

116 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

. . .

{final}

{final}

{final}

10t = 2 3 100

tick

go

tick tick tick

τ

go
tic
k

go

τ

tick tick tick tick

τ

Figure 4.9: An anomalous discrete-timed system

uniformly random resolution seems to make sense because it is the maximum-
entropy resolution, it still carries the risk of catastrophic behaviours being bal-
anced by excellent ones in SMC, leading to an acceptable average result.

Example 21. Figure 4.9 shows a nonprobabilistic MDP that models a discrete-
timed system with a special tick action as described above. It contains two
nondeterministic choices between the action go and letting time pass. Let the
property of interest be one of performance, namely whether a state labelled with
atomic proposition final can be reached with probability at least 0.5 in time at
most t, i.e. by taking at most t transitions labelled tick. When we encode
that number in the atomic propositions as well, we need to verify properties
Ri = Pmax(� final∧ i) ≥ 0.5 for i ∈ {0, . . . ,100} (since we can easily see for
this model that the maximum number of tick-labelled transitions that can be
taken on any path is 100). The maximum and minimum i for which JRiK is true
are then the maximum and minimum time needed to reach a final-state with
probability ≥ 0.5.

The results we would obtain via exhaustive model-checking are a minimum
(best-case) time of 2 ticks and a maximum (worst-case) time of 100 ticks. For
an SMC analysis, the nondeterminism needs to be resolved. Using RUni, the
result would be around 27 ticks. Note that this is quite far from the actual worst-
case behaviour. In particular, by adding more “fast” or “slow” alternatives to
the model, we can arbitrarily change the SMC result. Even worse, a very small
change to the model can make quite a big difference: If the go-labelled trans-
ition to the upper branch were available in the initial state instead of after one
tick, the “uniform” result would be 35 ticks.

MARKOV DECISION PROCESSES 117

Knowing that this is a timed model, we could try the ASAP and ALAP resolv-
ers. Intuitively, we might expect to obtain the best-case behaviour for ASAP
and the worst-case behaviour for ALAP. Unfortunately, the results run counter
to this intuition: ASAP yields a time of 3 ticks, ALAP leads to the best-case
result of 2 ticks, and the worst case of 100 ticks is completely ignored. This
is because the example exhibits a timing anomaly: It is best to wait as long as
possible before taking go in order to obtain the minimum time. For this toy
example, the anomaly can easily be seen by inspecting the model, but similar
effects (not limited to timing-related properties) may of course occur in com-
plex models where they cannot so easily be spotted.

While problems with the credibility of simulation results have been observed
before [AY06], most state-of-the-art simulation and SMC tools still implicitly
resolve nondeterminism, typically using RUni. We argue that using some resol-
ution method under-the-hood in an SMC tool—without warning the user of the
possible consequences—is dangerous. As a consequence, the modes tool that
provides SMC for MODEST models within the MODEST TOOLSET (cf. Sec-
tion 1.4, page 25) in its default configuration aborts with an error when a non-
deterministic choice is encountered. While it is possible to select between dif-
ferent built-in resolvers to havemodes simulate such models anyway, including
RUni, this requires deliberate action on part of the user.

4.7 SMC for Spuriously Nondeterministic MDP

We now present two first approaches to perform SMC for MDP in a sound way.
They exploit the fact that resolving a nondeterministic choice in one way or
another does not necessarily make a difference for the property at hand. In
such a case, the choice is spurious, and any resolution leads to the same prob-
ability. When all nondeterministic choices in an MDP are spurious for some
reachability property, then the maximum and minimum probability coincide
and simulation results can be relied upon. Consider the following example:

Example 22. In the BRP models we considered so far, sender and receiver
exchanged messages over dedicated channels. However, communication pro-
tocols often have to transfer messages in a broadcast fashion over shared media
where a collision results if two senders transmit at the same time. In such an
event, receivers are unable to extract any useful data out of the ensuing distor-
tion. In Figure 4.10, we show VMDP modelling the sending of a message in
such a scenario3. Processes Ha

i represent the senders, or hosts, which commu-
nicate with two alternative models Mvar and Msync for the shared medium that

3We omit the τ-loops that need to be added to deadlock states for brevity from now on.

118 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

h1

Ha
i :

h2 h3

h4

a

{ j := 0}

1/2 1/2

sndi, { j++}
tick

v1

Mvar:

X

{success} {collide}

{ j := 0}

j = 1,
tick

j = 2,
tick

s1

Msync:

s2 s3

s4 s5

X

{success} {collide}

snd1 snd2

tick ti
ck

snd
2 snd1

τ τ

Figure 4.10: VMDP modelling hosts (H) that send on a shared medium (M)

observes whether a message is transmitted successfully or a collision occurs.
Communication with Mvar is by synchronisation on tick and via shared vari-
able j, while communication with Msync is purely by synchronisation. The full
models we are interested in are the networks Na

v = {Ha
1 ,Ha

2 ,Mv } for all four
combinations of a ∈ {act,τ } and v ∈ {var,sync}.

Seen on their own, the host VMDP as well as their MDP semantics are
deterministic. Mvar looks nondeterministic as a VMDP (as v1 has two outgoing
edges) but its semantics is a deterministic MDP (since the guards of the edges
are disjoint), while Msync and its semantics are nondeterministic (because it has
no variables and thus already is an MDP). If we consider the MDP semantics of
the four networks, we can with moderate effort see that they all contain at least
one nondeterministic state (namely when both hosts happen to be in location h2

and thus at least the two transitions labelled snd1 and snd2 are enabled) and
possibly more. Still, we have that Pmin(� success) = Pmax(� success) = 0.5 and
Pmin(�collide) = Pmax(�collide) = 0.25. For the given atomic propositions, all
the nondeterministic choices are thus spurious. As for the problem highlighted
by Figure 4.9 previously, this is relatively easy to see for these small models,
but will usually be anything but obvious for larger, more complex and realistic
networks of MDP.

Reduced Deterministic MDP

In order to perform SMC for spuriously nondeterministic MDP as those presen-
ted in the previous example, it suffices to supply a resolver to the path gener-
ation procedure of Algorithm 15 that corresponds to a deterministic reduction

MARKOV DECISION PROCESSES 119

function and that preserves minimum and maximum reachability probabilities.
Formally, we want to use a function f such that

f is a deterministic reduction function

∧ JPmax(�φ)KM = JPmax(�φ)Kred(M, f)

∧ JPmin(�φ)KM = JPmin(�φ)Kred(M, f)

(4.2)

Observe that the existence of such a reduction function for a given MDP and
property indeed means that the minimum and the maximum probability are the
same:

Lemma 1. Given an MDP M and a state formula φ over its atomic propositions,
we have that

∃ f satisfying Condition 4.2 ⇒ JPmax(�φ)KM = JPmin(�φ)KM.

Proof. Because f is deterministic, red(M, f) is a DTMC. Therefore, we have

JPmax(�φ)Kred(M, f) = JPmin(�φ)Kred(M, f)

and by Condition 4.2, it follows that JPmax(�φ)KM = JPmin(�φ)KM .

The existence of a reduction function satisfying Condition 4.2 consequently
means that all nondeterministic choices in the MDP can be resolved in such a
way that SMC computes the actual minimum and maximum probability (which
are necessarily the same). Moreover, it means that no matter how we resolve
the nondeterminism, we obtain the correct probabilities:

Theorem 2. Given an MDP M and a state formula φ over its atomic proposi-
tions, we have that

∃ f satisfying Condition 4.2

⇒ ∀ reduction functions f ′ : JPmax(�φ)KM = JPmax(�φ)Kred(M, f ′)

∧ JPmin(�φ)KM = JPmin(�φ)Kred(M, f ′).

Proof. We show the contraposition

∀ reduction functions f : f does not satisfy Condition 4.2

⇐ ∃ reduction function f ′ : JPmax(�φ)KM 6= JPmax(�φ)Kred(M, f ′)

∨ JPmin(�φ)KM 6= JPmin(�φ)Kred(M, f ′).

We observe that, for reduction functions f ′,

∃ f ′ : JPmax(�φ)KM 6= JPmax(�φ)Kred(M, f ′)

⇒ ∃ f ′,S1,S2 : JP(�φ)Kind(M,S1) 6= JP(�φ)Kind(red(M, f ′),S2)

120 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

if we apply the definition of the semantics of probabilistic reachability prop-
erties for MDP. Since a scheduler for red(M, f ′) is also a scheduler for M, it
follows that

∃S1,S2 : JP(�φ)Kind(M,S1) 6= JP(�φ)Kind(M,S2)

which, again using the probabilistic reachability semantics for MDP, implies

JPmax(�φ)KM 6= JPmin(�φ)KM

which is in contradiction to Lemma 1. Thus no reduction function can sat-
isfy Condition 4.2. The same argument works analogously if we start with the
Pmin(∙) case instead of Pmax(∙).

With small modifications to the proof, we could also show the same result for
resolvers instead of reduction functions. This means that we could use RUni
and obtain correct results, too—that is, if we know that a reduction function sat-
isfying Condition 4.2 exists for the given model and property. Unfortunately,
attempting to find such a function in an “offline” manner before we start simu-
lation, i.e. for all states at once, would negate the core advantage of SMC over
exhaustive model checking: its constant or low memory usage.

Preservation of Probabilistic Reachability

The reduction functions we are looking for need to satisfy two relatively separ-
ate requirements according to Condition 4.2: they need to be deterministic, and
they need to preserve maximum and minimum reachability probabilities. The
former is a simple property that appears easy to check or ensure by construc-
tion. However, it is not so obvious what kind of criteria would guarantee the
latter.

In exhaustive model checking, equivalence relations that divide the state
space into partitions of states with “equivalent” behaviour have been studied
extensively: They allow the replacement of large state spaces with smaller quo-
tients under such a relation and thus help alleviate the state space explosion
problem. We aim to build upon this research to construct our reduction func-
tions. As we are interested in the verification of probabilistic reachability prop-
erties, we could potentially use any equivalence relation that preserves those
properties:

Definition 54 (Preservation of probabilistic reachability). An equivalence rela-
tion ∼ over MDP preserves probabilistic reachability if, for all pairs 〈M1,M2〉
of MDP with atomic propositions AP, we have that

M1 ∼ M2 ⇒∀φ ∈ ΦAP : JPmax(�φ)KM1 = JPmax(�φ)KM2

MARKOV DECISION PROCESSES 121

and also

M1 ∼ M2 ⇒∀φ ∈ ΦAP : JPmin(�φ)KM1 = JPmin(�φ)KM2 .

In case this statement is correct even if we replace the implications by equival-
ences, we say that ∼ characterises probabilistic reachability. On the other hand,
if only one of the two conditions holds, we say that ∼ preserves maximum or
minimum probabilistic reachability, respectively.

Candidates for ∼ would be appropriate variants of trace equivalence, simu-
lation or bisimulation relations. In fact, it turns out that there are two well-
known techniques to reduce the size of MDP in exhaustive model checking
that appear promising: partial order reduction [BDG06, God96, Pel94, Val90]
and confluence reduction [BvdP02, TSvdP11, TvdPS13]. Both provide an al-
gorithm to obtain a reduction function such that the original and the reduced
model are equivalent according to relations that preserve probabilistic reach-
ability. Both algorithms can be performed on-the-fly while exploring the state
space [GvdP00, Pel96], which avoids having to store the entire (and possibly
too large) state space in memory at any time. Instead, the reduced model is gen-
erated directly. We therefore study in sections 4.7.1 and 4.7.2 whether the two
algorithms can be adapted to compute a reduction function on-the-fly during
simulation with little extra memory usage.

Partial Exploration during Simulation

If we compute the reduction function on-the-fly, however, we only compute it
for a subset of the reachable states, namely those visited during the simulation
runs of the current SMC analysis. We are thus unable to check whether the
supposedly simple first requirement of Condition 4.2, determinism, actually
holds for all states of the model, or at least (and sufficiently) for all states in the
reduced state space.

Yet, requiring determinism for all states is more restrictive than necessary.
Instead of Condition 4.2, let us require that the reduction function f computed
on-the-fly during the calls to function simulate in one concrete SMC analysis
satisfies

f is a reduction function s.t.

s ∈ Π ⇒ | f (s)| = 1∧ s /∈ Π ⇒ f (s) = T (s)

∧ JPmax(�φ)KM = JPmax(�φ)Kred(M, f)

∧ JPmin(�φ)KM = JPmin(�φ)Kred(M, f)

(4.3)

where T is the transition function of M and Π is the set of paths explored
during the simulation runs and we abuse notation to write s ∈ Π in place of

122 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

s ∈ {s′ ∈ S | ∃ . . .s′ . . . ∈ Π}. This means that the function still has to preserve
probabilistic reachability, and it still must be deterministic on the states we
visit during simulation, but on all other states, it is now required to perform
no reduction instead. As before, if we compute f such that M ∼ red(M, f) is
guaranteed for a relation ∼ that preserves probabilistic reachability, we already
know that the second line of Condition 4.3 is satisfied.

Although Lemma 1 and Theorem 2 do not hold for such a reduction func-
tion in general, let us now show why it still leads to a sound SMC analysis in the
sense of Definition 53. Recall that, for every MDP M and state formula φ , there
are schedulers Smax and Smin that maximise resp. minimise the probability of
reaching a φ -state, i.e.

JPmax(�φ)KM = JP(�φ)Kind(M,Smax) and JPmin(�φ)KM = JP(�φ)Kind(M,Smin).

If f is a reduction function that satisfies Condition 4.3, then there is at least one
such maximising (minimising) scheduler Smax (Smin) that is valid for f . For
the states where f is deterministic, this is the case due to the first (second) part
of the second line of Condition 4.3. For this scheduler, we therefore also have

JPmax(�φ)Kred(M, f) = JP(�φ)Kind(M,Smax)

(and the corresponding statement for Smin). When exploring the set of paths
Π, by following f , the simulation runs also follow both Smax and Smin (due
to determinism of f on Π and the schedulers being valid for f). The resulting
sample mean is thus the same as if we had performed the simulation runs on
either of the DTMC ind(M,Smax) or ind(M,Smin). In consequence, whatever
statement connecting the sample mean and the actual result we obtain from
the ensuing statistical analysis (such as those in algorithms 7 and 8) is correct.
In particular, we do not need to modify the reported confidence to account
for nondeterministic choices that we did not encounter on the paths in Π: We
already did simulate the correct “maximal” respectively “minimal” DTMC.

We can now adapt the simulation function of Algorithm 15 to use instead of
a resolver R a procedure A that acts as a function in S → (A×Dist(S))∪{⊥}
(i.e. it deterministically selects a transition or ⊥ whereas a resolver returns a
distribution over transitions) and on-the-fly computes the output of a reduction
function satisfying Condition 4.3. It returns a transition to follow during simu-
lation if the current state is deterministic or if it can show the nondeterminism to
be spurious. Otherwise, it returns ⊥, which causes both the current simulation
run as well as the SMC analysis to be aborted. In particular, for the underlying
reduction function f to satisfy Condition 4.3, A must be implemented in a de-
terministic manner, i.e. it must always return the same transition for the same
state. When the SMC analysis terminates successfully (i.e. A has never re-
turned ⊥), A will have determined f to singleton sets for the states visited, and

MARKOV DECISION PROCESSES 123

1 function simulate(M = 〈S,A,T,sinit,AP,L〉, A, φ , d)
2 s := sinit, seen :=∅
3 for i = 1 to d do
4 if φ(L(s)) then return true
5 else if s ∈ seen then return false
6 tr := A(s)
7 if tr = ⊥ then return unknown
8 〈a,μ〉 := tr
9 if μ is Dirac then seen := seen∪{s} else seen :=∅

10 s := choose a state randomly according to μ
11 end
12 return unknown

Algorithm 16: Simulation with an algorithm computing a reduction function

we complete f to map all other states s to T (s) for the correctness argument.
We show the adapted simulation function as Algorithm 16.

It now remains to find out whether there are such procedures A that are both
efficient (i.e. they do not destroy the advantage of SMC in memory usage and
they do not excessively increase runtime) and effective (i.e. they never return ⊥
for practically relevant models). It turns out that at least two approaches work
well: using a check inspired by partial order reduction techniques, which we
present in Section 4.7.1, and checking for confluent transitions as we show in
Section 4.7.2. We investigate their efficiency and effectiveness using three case
studies in Section 4.7.3.

4.7.1 Using Partial Order Reduction

For exhaustive model checking of networks of VLTS, an efficient method to
deal with models containing spurious nondeterminism resulting from the in-
terleaving of parallel processes already exists, namely partial order reduction
(POR, [God96, Pel94, Val90]). It reduces such models to smaller ones con-
taining only those paths of the interleavings necessary to not affect the end
result. POR was first generalised to the probabilistic domain preserving linear
time properties, including the probabilities of LTL formulas without the next
operator X [BGC04, DN04], with a later extension to preserve branching time
properties without next, i.e. PCTL*\X [BDG06]. In the remainder of this sec-
tion, we first recall how POR for MDP works and then detail how to harvest
it to compute a reduction function satisfying Condition 4.3 on-the-fly during

124 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

A0 For all states s ∈ S, ample(s) ⊆ T (s).
A1 If s ∈ S f and ample(s) 6= T (s), then no transition in ample(s) is visible.
A2 For every path (tr1 = 〈s,a,μ〉), . . . , trn, tr, trn+1, . . . in M where s ∈ S f and

tr is dependent on some transition in ample(s), there exists i ∈ {1, . . . ,n}
such that tri ∈ [ample(s)]≡.

A3 In each end component 〈Se,Te〉 of Mf , there exists a state s ∈ Se that is fully
expanded, i.e. ample(s) = T (s).

A4 If ample(s) 6= T (s), then |ample(s)| = 1.

Table 4.1: Conditions for the ample sets

simulation. The relation ∼ between the original and the reduced model guaran-
teed by this approach is stutter equivalence, which preserves the probabilities
of LTL\X properties [BDG06].

Partial Order Reduction for MDP

The aim of partial order techniques for exhaustive model checking is to avoid
building the full state space corresponding to a model. Instead, a smaller state
space is constructed and analysed where the spurious nondeterministic choices
resulting from the interleaving of independent transitions are resolved. The
reduced system is not necessarily deterministic, but smaller, which increases
the performance and reduces the memory demands of model checking (if the
reduction procedure is less expensive than analysing the full model right away).

Based on the ample set method [Pel94] for nonprobabilistic systems, par-
tial order reduction has been generalised to the MDP setting for both linear-
time [BGC04, DN04] and branching-time properties [BDG06]4. A method
based on stubborn sets [Val90] has been developed later, too [HKQ11]. Our
approach is based on ample sets. The essence is to identify an ample set of
transitions ample(s) for every state s ∈ S of the MDP M, yielding the reduction
function

f = fample = {s 7→ {〈a,μ〉 | s a−→ μ ∈ ample(s)}},

such that conditions A0-A4 of Table 4.1 are satisfied (where S f denotes the
state space of Mf = red(M, f), cf. Definition 41).

For partial order reduction, the notion of (in)dependent transitions5 (see
rule A2) is crucial. Intuitively, the order in which two independent transitions

4We mostly cite [BDG06] in the remainder of this section as it nicely summarises the linear-time
approaches as well.

5By abuse of language, we use the word “transition” when we actually mean “equivalence class of
transitions under ≡”.

MARKOV DECISION PROCESSES 125

are executed is irrelevant in the sense that they do not disable each other (for-
ward stability) and that executing them in a different order from a given state
still leads to the same states with the same probabilities (commutativity). Form-
ally:

Definition 55. Two equivalence classes [tr′1]≡ 6= [tr′2]≡ of transitions of an
MDP M = 〈S,A,T,sinit,AP,L〉 are independent if and only if for all states s ∈ S
with tr1, tr2 ∈ T (s), tr1 = 〈s,a1,μ1〉 ∈ [tr′1]≡, tr2 = 〈s,a2,μ2〉 ∈ [tr′2]≡,

I1 s′ ∈ support(μ1) ⇒ tr2 ∈ [T (s′)]≡ and vice-versa (forward stability),
and then also

I2 ∀s′ ∈ S : ∑s′′∈S μ1(s′′) ∙μs′′
2 (s′) = ∑s′′∈S μ2(s′′) ∙μs′′

1 (s′) (commutativity)

where μs′′
i is the single element of {μ | 〈s′′,ai,μ〉 ∈ T (s′′)∩ [tri]≡ }.

Checking dependence by testing these conditions on all pairs of transitions for
all states of an MDP is impractical. Partial order reduction is thus typically
applied to the MDP semantics of networks of VMDP where sufficient and easy-
to-check conditions on the symbolic level can be used. In that setting, ≡E is
used for the equivalence relation ≡. Then, two transitions tr1 and tr2 in the
MDP correspond to two edges ei = 〈li,gi,ai,mi〉 on the level of the parallel
composition semantics of the network of VMDP. Each of these edges in turn
is the result of one or more individual edges in the component VMDP. We
can thus associate with each transition tri a (possibly synchronised) edge ei

and a (possibly singleton) set of component VMDP. The following are then an
example of such sufficient and easy-to-check symbolic-level conditions:

J1 The sets of VMDP that tr1 and tr2 originate from are disjoint, and
J2 for all valuations v, m1(〈U1, l′〉) 6= 0∧m2(〈U2, l′〉) 6= 0 implies that

Jg2K(v) ⇒ Jg2K(JA1K(v)))∧ JA1K(JA2K(v)) = JA2K(JA1K(v)

and vice-versa.

J1 ensures that the only way for the two transitions to influence each other is via
global variables, and J2 makes sure that this does not actually happen, i.e. each
transition modifies variables only in ways that do not disable the other’s guard
and the assignments are commutative. This check can be implemented on a
syntactic level for the guards and the expressions occurring in assignments.

Using the ample set method with conditions A0-A4 and I1-I2 or J1-J2 gives
the following result:

Theorem 3 ([BDG06]). If an MDP M is reduced to an MDP red(M, fample)
using the ample set method as described above, then M ∼ red(M, fample) where
∼ is stutter equivalence.

126 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

A0 For all states s ∈ S, ample(s) ⊆ T (s).
A1 If s ∈ S f and ample(s) 6= T (s), then no transition in ample(s) is visible.
A2’ Every path in M starting in s has a finite acyclic prefix 〈tr1, . . . , trn〉 of

length at most kmax (i.e. n ≤ kmax) such that trn ∈ [ample(s)]≡ and for all
i ∈ {1, . . . ,n−1}, tri is independent of all transitions in ample(s).

A3’ If more than l states have been explored, one of the last l states was fully
expanded.

A4 If ample(s) 6= T (s), then |ample(s)| = 1.

Table 4.2: On-the-fly conditions for every state s encountered during simulation

Stutter equivalence preserves the probabilities of LTL\X properties and thus
probabilistic reachability. For simulation, we are not particularly interested
in smaller state spaces, but we can use partial order reduction to distinguish
between spurious and actual nondeterminism.

On-the-fly Partial Order Checking

We can use partial order reduction on-the-fly during simulation to find out
whether nondeterminism is spurious: For any state with more than one out-
going transition, we simply check whether a singleton set of transitions exists
that is an ample set according to conditions A0 through A4. This check can
be used as parameter A to Algorithm 16: If a singleton ample set exists, we
return its transition. If all valid ample sets contain more than one transition, we
cannot conclude that the nondeterminism between them is spurious, and ⊥ is
returned to abort simulation and SMC. To make the algorithm deterministic in
case there is more than one singleton ample set, we assume a global order on
transitions and return the first set according to this order.

Algorithm The ample set construction relies on conditions A0 through A4,
but looking at their formulation in Table 4.1, conditions A2 and A3 cannot
be checked on-the-fly without possibly exploring and storing lots of states—
potentially the entire MDP. To bound this number of states and ensure termina-
tion for infinite-state systems, we instead use the conditions shown in Table 4.2,
which are parametric in kmax and l. Condition A2 is replaced by A2’, which
bounds the lookahead inherent to A2 to paths of length at most kmax. Nota-
bly, choosing kmax = 0 is equivalent to not checking for spuriousness at all
but aborting on the first nondeterministic choice. Instead of checking for end
components as in Condition A3, we use A3’ that replaces the notion of an end
component with the notion of a sequence of at least l states.

MARKOV DECISION PROCESSES 127

1 function simulate(M = 〈S,A,T,sinit,AP,L〉, A, φ , d, l)
2 s := sinit, seen := empty stack, lcurrent := 0
3 for i = 1 to d do
4 if φ(L(s)) then return true
5 else if s ∈ seen then
6 lencycle := 1
7 while seen.pop() 6= s do lencycle := lencycle +1
8 if lencycle ≤ lcurrent then return unknown else return false
9 end

10 if |T (s)| = 1 then lcurrent := 0, tr := the single element of T (s)
11 else if lcurrent +1 = l then return unknown
12 else lcurrent := lcurrent +1, tr := A(s)
13 if tr = ⊥ then return unknown
14 〈a,μ〉 := tr
15 if μ is Dirac then seen.push(s) else seen := empty stack
16 s := choose a state randomly according to μ
17 end
18 return unknown

Algorithm 17: Simulation with reduction function and cycle condition check

We first modify Algorithm 16 to include the cycle check of Condition A3’.
The result is shown as Algorithm 17. A new variable lcurrent keeps track of the
number of transitions taken since the last fully expanded state. It is reset when
such a state is encountered in line 10, and otherwise incremented in line 12.
When lcurrent would reach the bound of Condition A3’, given as parameter l,
simulation aborts in line 11. While this is so far straightforward and guarantees
that Condition A3’ holds when simulate returns true, the case of returning
false, which relies on cycle detection, needs special care: We need to make
sure that the detected cycle also contains at least one fully expanded state. For
this purpose, we compute the length of the cycle and compare it to lcurrent in
lines 6 to 8. Finally, whenever a nondeterministic state is encountered, we call
the procedure A to check whether the nondeterminism is spurious in line 12.

In order to complete our partial order-based simulation procedure, proced-
ures for checking conditions A1 and A2’ are needed. This can be done by using
the resolvePOR function of Algorithm 18 in place of A. resolvePOR simply
iterates over the outgoing transitions of the nondeterministic state and returns
the first one that constitutes a valid singleton ample set according to conditions
A1 and A2’. Checking that these two conditions hold for a candidate ample set

128 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

is the job of function chkAmpleSet. It first compares the labelling of s with
that of each successor to make sure that Condition A1 holds. If that is the case,
chkPaths is called to verify A2’. chkPaths takes four parameters: The state s
from which to check all outgoing paths, the single transition trample in the po-
tential ample set, a reference to a set seen of states already visited during this
particular POR check, and a natural number steps counting the transitions taken
from the initial nondeterministic state. The function follows all paths starting
in s in the MDP recursively (i.e. via depth-first search) until it finds a transition
that is either equivalent to or dependent on the one in the candidate ample set
(lines 16 and 17). If the former happens before the latter, the path satisfies the
condition of A2’. On the other hand, if a dependent transition occurs before an
“ample” one, the current path is a counterexample to the requirements on all
paths of A2’ and { trample } is not a valid ample set. All other transitions are
neither equivalent to trample nor dependent on it, so we recurse in line 20 with
an incremented step counter. If step reaches the bound kmax before an ample or
dependent transition is found (line 14), a counterexample to A2’ (though not
necessarily to A2) has been found, too. Finally, chkPaths ignores cycles of
independent transitions (line 12), which is what the set seen is used for. This
means that indeed, only acyclic prefixes of length up to kmax are considered.

Function chkPaths uses two additional helper methods that we do not
show in further detail: equivalent and dependent. The former returns true
if and only if its two parameters are equivalent transitions according to ≡E .
If the latter returns false, then its two parameters are independent transitions.
equivalent necessarily needs to go back to the network of VMDP that the
MDP at hand originates from in order to be able to reason about ≡E . This is
also the case in typical implementations of dependent that use conditions J1
and J2 (which includes our implementation in modes).

Correctness We can now state the correctness of the on-the-fly partial order
check as described above:

Lemma 2 (Correctness of SMC with on-the-fly POR check). If an SMC ana-
lysis terminates and does not return unknown
– using function simulate of Algorithm 17 to explore the set of paths Π
– together with function resolvePOR of Algorithm 18 in place of A,
then the function f = fPOR ∪{s 7→ T (s) | s /∈ Π} satisfies Condition 4.3, where
fPOR maps a state s ∈ Π to T (s) if it is deterministic and to the result of the call
to resolvePOR otherwise.

Proof. By construction and because resolvePOR is deterministic, f is a re-
duction function that satisfies s ∈ Π ⇒ | f (s)| = 1∧ s /∈ Π ⇒ f (s) = T (s). It

MARKOV DECISION PROCESSES 129

1 function resolvePOR(s)
2 foreach tr ∈ T (s) in fixed global order do
3 if chkAmpleSet({ tr}) then return tr
4 end
5 return ⊥

6 function chkAmpleSet({s a−→ μ })
7 foreach s′ ∈ support(μ) do
8 if L(s) 6= L(s′) then return false
9 end

10 return chkPaths(s, s a−→ μ , {s}, 0)

11 function chkPaths(s, trample, ref seen, steps)
12 if s ∈ seen then return true // cyclic path w/o dependent trans.
13 seen := seen∪{s}
14 if steps ≥ kmax then return false // lookahead bound exceeded
15 foreach tr = s a−→ μ ∈ T (s) do
16 if equivalent(tr, trample) then continue // ample tr. reached
17 if dependent(tr, trample) then return false // dependent trans.
18 foreach s′ ∈ support(μ) do
19 if ¬chkPaths(s′, trample, ref seen, steps+1) then
20 return false
21 end
22 end
23 end
24 return true // all paths satisfy Condition A2’

Algorithm 18: On-the-fly partial order check

remains to show that minimum and maximum probabilistic reachability prob-
abilities for any state formula over the atomic propositions are the same for the
original and the reduced MDP. From Theorem 3, we know that this is the case
if f maps every state to a valid ample set according to conditions A0 through
A4. Note that T (s) is always a valid ample set, so this is already satisfied for
the states s /∈ Π. If conditions A2’ and A3’ hold, then so do A2 and A3. All the
conditions of Table 4.2 are indeed guaranteed for the states s ∈ Π:

A0 is satisfied by construction.
A1 is checked for nondeterministic states by chkAmpleSet, and does not ap-

ply to deterministic states.

130 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

A2’ is ensured by chkPaths as described previously.
A3’ is checked via lcurrent in the modified simulate function of Algorithm 17.

In case false is returned by simulate, i.e. a cycle is reached, correctness
of the check can be seen directly. In case true is returned, φ(L(s)) has just
become true, so the previous transition was visible. By Condition A1, this
means that the very previous state was fully expanded.

A4 is satisfied by construction for the states visited because we only select
singleton ample sets, and by definition for all other states since we assume
no reduction for those, i.e. ample(s) = T (s).

Runtime and Memory Usage

The runtime and memory usage of SMC with on-the-fly POR check depends
directly on the amount of lookahead necessary in the function chkPaths. If
kmax, which imposes a bound on this lookahead, needs to be increased to de-
tect all spurious nondeterminism as such, performance in terms of runtime and
memory demand will degrade. Note, though, that it is not the actual user-
chosen value of kmax that is relevant for the performance penalty, but what we
denote by k: the smallest value of kmax necessary for Condition A2’ to succeed
in the model at hand. If a larger value is chosen for kmax, A2’ still only causes
paths of length k to be explored6. The value of l has no performance impact.

More precisely, the memory usage of this approach is bounded by b ∙ k
where b is the maximum fan-out of the MDP. We will see that small k tend to
suffice in practice, and the actual extra memory usage stays very low. Regard-
ing runtime, exploring parts of the state space that are not part of the current
path (up to bk states per invocation of A2’) induces a performance penalty. In
addition, the algorithm may recompute information that was partially computed
beforehand for a predecessor state, but not stored. The magnitude of this pen-
alty is highly dependent on the structure of the model. In practice, however, we
expect small values for k, which limits the penalty, and this is evidenced in our
case studies (see Section 4.7.3).

The on-the-fly approach naturally works for infinite-state systems, both in
terms of control and data. In particular, the kind of behaviour that Condition
A3 is designed to detect—the case of a certain choice being continuously avail-
able, but also continuously discarded—can, in an infinite system, also come
in via infinite-state “end components”. Since A3’ replaces the notion of end
components by the notion of sufficiently long sequences of states, this is no
problem.

6Our implementation inmodes therefore uses large default values for kmax and l so the user usually
need not worry about these parameters. If SMC aborts, the cause and its location is reported,
including how it was detected, which may be that kmax or l was exceeded.

MARKOV DECISION PROCESSES 131

Applicability and Limitations

Although partial order reduction has led to drastic state space reductions for
some models in exhaustive model checking, it is only an approximation: When-
ever transitions are removed, they are indeed spurious nondeterministic altern-
atives, but not all spurious choices may be detected as such. In particular, when
using feasibly checkable independence conditions like J1 and J2, only spuri-
ous interleavings can be reduced. These restrictions directly carry over to our
use of POR for statistical model checking. Worse yet, while not being able
to reduce a certain single choice during exhaustive model checking leads to
the same verification results at the cost of higher memory usage and runtime,
the same would make an SMC analysis abort. More important than any per-
formance consideration is therefore whether the approach is applicable at all
to realistic models. We investigate this question in detail using a set of case
studies in Section 4.7.3 and content ourselves with a look at the shared medium
communication example introduced earlier for now:

Example 23. We already saw that all nondeterminism in the different networks
of VMDP modelling the sending of a message over a shared medium presented
in Example 22 is spurious. However, for which of them would the on-the-fly
POR check work?

First, it clearly cannot work for any of the N∙
sync networks that contain the

Msync process: The nondeterministic choice between snd1 and snd2 that occurs
when both hosts want to send the message is internal to Msync and not a spurious
interleaving. The transitions labelled snd1 and snd2 would thus be marked as
dependent by the function dependent, since they do not satisfy Condition J1.

On the other hand, the nondeterministic choices in both Nτ
var and Nact

var pose
no problem. Let us use Nτ

var for illustration: its concrete MDP semantics, which
all SMC methods except for the two checks equivalent and dependent
work on, is shown in Figure 4.11. The nondeterministic states are the initial
state sinit = 〈h1,h1,v1,0〉 (composed of the initial states of the three compon-
ent VMDP plus the current value of j), the two symmetric states 〈h2,h1,v1,0〉
and 〈h1,h2,v1,0〉, and finally 〈h2,h2,v1,0〉. For brevity, we write hi j for state
〈hi,h j,v1,0〉. The model contains no cycles and all paths have length at most 5,
so the cycle condition A3’ is no problem for e.g. l = 5.

Let us focus on the initial state for this example. The nondeterministic
choice here is between the initial τ-labelled edges of the two hosts. Let { trτ

1 =
sinit

τ−→ {h21 7→ 0.5,h31 7→ 0.5}} be the candidate ample set selected first by
resolvePOR, i.e. it contains the initial τ-labelled transition of the first host.
trτ

1 is obviously invisible as only the transitions labelled tick lead to changes
in state labelling. Thus chkAmpleSet calls chkPaths(sinit, trτ

1, {sinit }, 0) to

132 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈h1,h1,v1,0〉

〈h2,h1,v1,0〉 〈h3,h1,v1,0〉 〈h1,h3,v1,0〉 〈h1,h2,v1,0〉

〈h2,h3,v1,0〉 〈h2,h2,v1,0〉 〈h3,h3,v1,0〉 〈h3,h2,v1,0〉

〈h3,h1,v1,1〉 〈h3,h2,v1,1〉 〈h2,h3,v1,1〉 〈h1,h3,v1,1〉

〈h3,h3,v1,1〉 〈h3,h3,v1,2〉

〈h3,h3,X,1〉 〈h3,h3, ,2〉

{success} {collide}

τ τ

τ τ τ τ

τ τ

1/2 1/2 1/2 1/2

1/2

1/2 1/2

1/2

1/2

1/2

1/2
1/2

snd1 snd2

snd1 snd2

snd1snd2
1/2

1/2

1/2

1/2

ticktick

Figure 4.11: MDP semantics of the network of VMDP Nτ
var

verify Condition A2’. It is trivially satisfied for all paths starting with trτ
1 it-

self because that is the single transition in the ample set. For the paths starting
with trτ

2 = sinit
τ−→ {h12 7→ 0.5,h13 7→ 0.5}, i.e. the case that the second host

performs its initial τ first, chkPaths returns true for successor state h13: It
has only one outgoing transition, namely the initial τ of the first host, which is
thus equivalent to the ample set transition trτ

1. In successor state h12, however,
we have another nondeterministic choice. The τ-labelled alternative is again
equivalent to trτ

1, but the transition labelled snd2 is neither equivalent to nor
dependent on the ample set (it modifies global variable i, but that has no influ-
ence on trτ

1). We thus need another recursive call to chkPaths. In the following
state 〈h1,h3,v1,1〉, we can return true as the only outgoing transition is finally
the first host’s τ that is in [trτ

1]≡E .
The choices in the other nondeterministic states can similarly be resolved

successfully. In state h22, the choice is between two sending transitions which

MARKOV DECISION PROCESSES 133

consequently both modify global variable i, but their assignments just incre-
ment i and are thus commutative.

To summarise our observations: For large enough k and l, this POR-based
approach will allow us to use SMC for networks of VMDP where the non-
determinism introduced by the parallel composition is spurious. Neverthe-
less, if conditions J1 and J2 are used to check for independence instead of I1
and I2, nondeterministic choices internal to the component VMDP, if present,
must already be removed while obtaining the MDP semantics (i.e. by syn-
chronization via actions or shared variables). While avoiding internal non-
determinism is manageable during the modelling phase, parallel composition
and the nondeterminism it creates naturally occur in models of distributed or
component-based systems. We thus expect this approach to be readily applic-
able in practice: the modeller needs to take care to specify deterministic com-
ponents while the nondeterminism from interleaving can usually be handled by
the POR check—as long as it is spurious, of course. Usually, a non-spurious
interleaving represents a race condition in the model and thus, if the model is
useful, in the underlying system. Race conditions are undesirable artifacts of
concurrency in most cases, so aborting simulation and alerting the user to the
potential presence of a race condition as done in this approach to SMC appears
a useful course of action, and is clearly more desirable than hiding the potential
error by using an implicit resolver instead.

4.7.2 Using Confluence Reduction

An alternative to POR in exhaustive model checking is confluence reduction.
It, too, was originally defined for LTS [BvdP02, GvdP00] and has been gen-
eralised to probabilistic systems [HT14, TSvdP11, TvdPS13]. The goal is the
same: generating smaller, but equivalent, state spaces. In the probabilistic gen-
eralisation, confluence reduction preserves PCTL*\X, i.e. branching-time prop-
erties. However, as we will see, the way confluence is defined is very different
from the ample set conditions of POR.

Confluence reduction has recently been shown theoretically to be more
powerful than the variant of partial order reduction that preserves branching-
time properties [HT14]. We have already pointed out that it is absolutely vital
for the search for a valid singleton subset to succeed when a nondeterministic
choice is encountered during simulation: One choice that cannot be resolved
means that the entire analysis fails and SMC cannot safely be applied to the
given model at all. Therefore, any additional reduction power is highly wel-
come. Although we used the more liberal variant of POR that preserves only
linear-time properties in the previous approach and its relation to confluence

134 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

is unknown, this theoretical difference is still a clear motivation to investigate
whether confluence reduction can be used for SMC in place of POR as de-
scribed in the previous section.

Furthermore, in practice, confluence reduction is easily implemented on
the MDP level, i.e. the concrete state space alone, without any need to go back
to the symbolic/syntactic VMDP level for an independence check based on
conditions like J1 and J2. It thus allows even spurious nondeterminism that is
internal to components to be ignored during simulation, lifting the restriction
to spurious interleavings of the POR implementation.

Confluence Reduction for MDP

Confluence reduction is based on commutativity of invisible transitions. It
works by denoting a subset of the invisible transitions of an MDP as conflu-
ent. Basically, this means that they do not change the observable behaviour;
everything that is possible before a confluent transition is still possible after-
wards. Therefore, they can be given priority, omitting all their neighbouring
transitions.

Previous work defined conditions for a set of transitions to be confluent.
In the nonprobabilistic action-based setting, several variants were introduced,
ranging from ultra weak confluence to strong confluence [Blo01]. They are
all given diagrammatically, and define in which way two outgoing transitions
from the same state have to be able to join again. Basically, for a transition
s τ−→ t to be confluent, every transition s a−→ u has to be mimicked by a transition
t a−→ v such that u and v are bisimilar. This is ensured by requiring a confluent
transition from u to v.

To extend confluence to the probabilistic action-based setting, a similar
approach has been taken [TSvdP11]. For a transition s τ−→ D(t) to be confluent,
every transition s a−→ μ has to be mimicked by a transition t a−→ ν such that
μ and ν are equivalent; as usual in probabilistic model checking, this means
that they should assign the same probability to each equivalence class of the
state space in the bisimulation quotient. Bisimulation is again ensured using
confluent transitions.

In this thesis, we are dealing with a state-based context: only the atomic
propositions that are assigned to each state are of interest. Therefore, we
base our definition of confluence on the state-based probabilistic notions given
in [HT14]. It is still parameterised in the way that distributions have to be
connected by confluent transitions, denoted by μ T ν :

Definition 56 (Equivalence up to T -steps). Let M = 〈S,A,T,sinit,AP,L〉 be
an MDP, T a set of nonprobabilistic transitions of M, and μ ,ν ∈ Dist(S) two

MARKOV DECISION PROCESSES 135

s0 s1

s3s2 s4 s5 s6

b
1/3

1/3
1/6

1/6

a

c
2/3 1/3

a

a

a

{p} {p}

{r}

{q}

{r} {r}

{q}

(a) Original system

s0 s1

s5 s6

a

c
2/3 1/3

{p}

{p}

{r}

{q}

(b) Reduced system

Figure 4.12: An MDP to demonstrate confluence reduction

probability distributions. Let R be the smallest equivalence relation containing
the set

R′ = {〈s, t〉 | s ∈ support(μ)∧ t ∈ support(ν)∧∃a ∈ A : s a−→ D(t) ∈ T }.

Then, μ and ν are equivalent up to T -steps, denoted by μ T ν , if 〈μ ,ν〉 ∈ R.

While this definition is abstract w.r.t. the set of transitions T , we only use T for
sets of confluent transitions. Confluent transitions are used to detect equivalent
states. Hence, when T is a set of confluent transitions, the definition means
that two distributions are equivalent if they assign the same probabilities to
sets of states that are connected by confluent transitions. For ease of detection,
we only take into account confluent transitions from the support of μ to the
support of ν . In principle, larger equivalence classes could be used when also
considering transitions in the other direction and chains of confluent transitions.
However, for efficiency reasons we chose not to be so liberal.

Example 24. As an example of Definition 56, consider Figure 4.12a. Let T be
the set consisting of all a-labelled transitions. Note that these transitions indeed
are all nonprobabilistic. We denote by μ the probability distribution associated
with the b-transition from s0, and by ν the one associated with the c-transition
from s1. We find R′ = {〈s2,s6〉,〈s3,s5〉,〈s4,s5〉}, and so

R = Id∪{〈s2,s6〉,〈s6,s2〉,〈s3,s4〉,〈s4,s3〉,〈s3,s5〉,〈s5,s3〉,〈s4,s5〉,〈s5,s4〉}.

Hence, R partitions the state space into {s0 }, {s1 }, {s2,s6 } and {s3,s4,s5 }.
For probabilities we have μ({s0 }) = ν({s0 }) = 0, μ({s1 }) = ν({s1 }) = 0,
μ({s2,s6 }) = ν({s2,s6 }) = 1

3 and μ({s3,s4,s5 }) = ν({s3,s4,s5 }) = 2
3 . Con-

sequently, 〈μ ,ν〉 ∈ R and thus μ T ν .

136 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

We can now formally define the notion of a set of confluent transitions, which
is at the core of the confluence reduction technique:

Definition 57 (Probabilistic confluence). Let M = 〈S,A,T,sinit,AP,L〉 be an
MDP. Then a subset T of the transitions of M is probabilistically confluent if
it only contains invisible nonprobabilistic transitions, and

∀s a−→ D(t) ∈ T : ∀s b−→ μ ∈ T (s) : μ = D(t)∨∃ t c−→ ν ∈ T (t) : μ T ν

Additionally, if s b−→ μ ∈ T , then so should t c−→ ν be. A transition is probab-
ilistically confluent if there exists a probabilistically confluent set that contains
it.

Example 25. Let T be the set of all a-labelled transitions of the MDP shown
in Figure 4.12a as introduced in the previous example. T is a valid conflu-
ent set according to Definition 57. First, all its transitions are indeed invisible
and nonprobabilistic. Second, for the a-transitions from s2, s3 and s4, noth-
ing interesting has to be checked. After all, from their source states there
are no other outgoing transitions, and every transition satisfies the condition
μ = D(t)∨∃ t c−→ ν ∈ T (t) : μ T ν for itself due to the clause μ = D(t). For
s0

a−→ D(s1), we do need to check if the condition holds for s0
b−→ μ . There is a

mimicking transition s1
c−→ ν , and as we saw above μ T ν as required.

We now define confluence reduction functions. Such a function always chooses
to either fully explore a state, or only explore one outgoing confluent transition.

Definition 58 (Confluence reduction). Given an MDP M = 〈S,A,T,sinit,AP,L〉,
a reduction function f is a confluence reduction function for M if there exists
some confluent set T of transitions of M for which, for every s ∈ S such that
f (s) 6= T (s), it holds that f (s) = {〈a,D(t)〉} for some a ∈ A and t ∈ S such
that s a−→ D(t) ∈ T . In such a case, we also say that f is a confluence reduction
function under T .

Confluent transitions might be retaken indefinitely, thereby ignoring the pres-
ence of other actions. This is the well-known ignoring problem [EP10]. In the
ample set method of POR, it is dealt with by the cycle condition. We can just
as easily deal with it in the context of confluence reduction by requiring the
reduction function to be acyclic. Acyclicity can be checked during SMC in the
same way as was done for POR in the previous section: always check whether
in the last l steps at least one state was fully expanded (i.e. the state already had
only one outgoing transition).

Example 26. In the system of Figure 4.12a, we already saw that the set of all
a-labelled transitions is a valid confluent set. Based on this set, we can define

MARKOV DECISION PROCESSES 137

the reduction function f given by f (s0) = {〈a,D(s1)〉} and f (s) = T (s) for
every other state s. That way, the reduced system is given by Figure 4.12b.
Note that the two models indeed share the same properties, such as that the
(minimum and maximum) probability of eventually observing r is 2

3 .

Confluence reduction preserves PCTL∗
\X, and hence basically all interesting

quantitative properties, including LTL\X, which was preserved by partial or-
der reduction as presented in the previous section, and of course probabilistic
reachability.

Theorem 4. Let M be an MDP, T a confluent set of its transitions and f an
acyclic confluence reduction function under T . Then, M and red(M, f) satisfy
the same PCTL∗

\X formulas.

Proof. By minor adjustment of the proofs of Corollary 26 of [HT14], which
precisely corresponds to this theorem, as discussed below.

Compared to [HT14], our definition of equivalence up to T -steps (Defini-
tion 56) is slightly more liberal. In [HT14], the number of states in the sup-
port of μ was required to be at least as large as the number of states in the
support of ν , since no nondeterministic choice between equally-labelled trans-
itions was allowed. Since we do allow this, we take the more liberal approach
of just requiring the probability distributions to assign the same probabilities
to the same classes of states with respect to confluent connectivity. The cor-
rectness arguments are not influenced by this, as the reasoning that confluent
transitions connect bisimilar states does not break down if these support sets
are potentially more distinct.

Our Definition 57 is also more liberal in two aspects. First, not necessarily
b = c. In [HT14], this was needed to preserve probabilistic visible bisimula-
tion. Equivalent systems according to that notion preserve state-based as well
as action-based properties. However, in our setting the actions are only for syn-
chronisation of parallel components, and have no purpose anymore in the final
model: we only need to consider closed systems. Therefore, we can just as well
rename all actions to a single one. Then, if a transition is mimicked, the action
would be the same by construction. We thus simply chose to omit the required
accordance of action names altogether.

Second, we only require confluent transitions to be invisible and nonprob-
abilistic themselves. In [HT14], all transitions with the same label had to be so
as well (for a fairer comparison with POR). Here, this is not an option, since
during simulation we only know part of the state space. However, it is also not
needed for correctness, as a local argument about mimicking behaviour until
some joining point can clearly never be broken by transitions after this point.

138 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

With these differences in mind, let us now describe in detail how to construct
a proof of Theorem 4 based on the proof of the corresponding Corollary 26 as
presented in [HT14]7. That corollary is based on Theorem 25 of that paper,
which states that M ∼pvb red(M, f). Although those results were for MDPs
where each state can have only one outgoing transition for each action label,
this property is not used in any of the proofs. Hence, the results apply just
as well for our type of MDPs. Additionally, we allow countable state spaces,
while in [HT14] finiteness was assumed. However, as we only consider finite
subparts of an MDP during simulation, this also does not matter. More import-
antly, the results are for the old definitions of confluent sets and equivalence
of distributions. Hence, we discuss to what extent the results still hold for our
adapted definitions.

We first discuss the influence of our new definition of equivalence of dis-
tributions (Definition 56). It appears that this change does not influence the
correctness of the old results in any way. To see why, note that the definition of
equivalence is only used in [HT14] in Lemma 22, Lemma 24 and Theorem 25.
In Lemma 22 and Theorem 25, the definition of equivalence is used to show
that D(s) T D(t) implies that either s = t or there is a transition from s
to t in T . This also still directly follows from our Definition 56. After all,
〈D(s),D(t)〉 ∈ R holds only if s and t are in the same equivalence class of R.
This is indeed only the case if either s = t or if there is a T -transition from
s to t (since support(μ) and support(ν) are singletons, no transitivity can be
involved). In Lemma 24 it is shown that μ T ν implies 〈μ ,ν〉 ∈ R for the
set R that relates all states that can join while only following confluent trans-
itions. Since that set R can easily be seen to be a superset of the set R from
Definition 56 if T is a confluent set (using Lemma 22 of [HT14]), the result
still holds by Proposition 5.2.1.5 from [Sto02].

The second change we made was to use a more liberal version of the no-
tion of confluent sets (Definition 57). Although technically probabilistic visible
bisimulation is not preserved anymore under this new definition, the bisimula-
tion notion could be altered to also just require invisible transitions instead of
invisible actions, and also allow transitions to be mimicked by transitions with
a different action. As discussed above, this would not change anything to the
fact that PCTL∗

\X properties are preserved.
Hence, the old proofs from [HT14] can be used practically unchanged to

show that our new definitions preserve the adjusted variant of probabilistic vis-
ible bisimulation, and thus that indeed a reduced system based on confluence
satisfies the same PCTL∗

\X formulas as the original system.

7[HT14] was already submitted for publication at the time of writing of [HT13], which is where
this proof description was first published.

MARKOV DECISION PROCESSES 139

Finally, let us mention notable differences between confluence reduction as
defined here and POR [BDG06]. Confluence also allows mimicking by dif-
ferently-labelled transitions, commutativity in triangles instead of diamonds,
and local instead of global independence [HT14]. Additionally, its coinductive
definition is well-suited for on-the-fly detection, as we show in the next subsec-
tion. However, since confluence preserves branching-time properties, it cannot
reduce when an interleaving involves a probabilistic transition, a scenario that
can be handled by the original linear-time notions of probabilistic POR defined
in [BGC04, DN04] and used in our POR-based simulation approach.

On-the-fly Confluence Checking

The first approach to detect non-probabilistic confluence worked directly on
concrete state spaces to reduce them modulo branching bisimulation [GvdP00].
Although the complexity was linear in the size of the state space, the method
was not very useful: it required the complete unreduced state space to be avail-
able, which might already be too large to generate. Therefore, two directions
of improvements were pursued.

The first idea was to detect confluence on higher-level process-algebraic
system descriptions [Blo01, BvdP02]. Using this information from the sym-
bolic level, the reduced state space could be generated directly without first
constructing any part of the original one. More recently, this technique was gen-
eralised to the probabilistic setting [TSvdP11]. The other direction was to use
the ideas from [GvdP00] to on-the-fly detect non-probabilistic weak or strong
confluence [MW12, PLM03] during state space generation. These techniques
are based on Boolean equation systems and have not yet been generalised to
the probabilistic setting.

We present a novel on-the-fly method, shown as algorithms 19 and 20,
that works on concrete probabilistic state spaces and does not require the unre-
duced state space, making it perfectly applicable during simulation for statist-
ical model checking of MDP models.

Algorithm The functions that implement our approach are presented in al-
gorithms 19 and 20. Given s a−→ λ , the call chkConfluence(s a−→ λ , . . .) tells
us whether or not this transition is confluent. We first discuss this function, and
then chkEquivalence on which it relies (which determines whether or not
two distributions are equivalent up to confluent steps). These functions do not
yet fully take into account the fact that confluent transitions have to be mim-
icked by confluent transitions. Therefore, we have an additional function called

140 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

1 function resolveConfluence(s)
2 foreach tr ∈ T (s) in fixed global order do
3 T :=∅, C :=∅
4 if chkConfluence(tr, ref T , ref C) then
5 if chkConfluentMimicking(T , C) then return tr
6 end
7 end
8 return ⊥

9 function chkConfluence(s a−→ λ , ref T , ref C)
10 if s a−→ λ ∈ T then return true
11 if @ t : λ = D(t)∨L(s) 6= L(t) then return false
12 Told := T , Cold := C, T := T ∪{s a−→ D(t)}
13 foreach trsμ = s b−→ μ ∈ T (s) do
14 if μ = D(t) then continue
15 foreach trtν = t c−→ ν ∈ T (t) do
16 if ¬chkEquivalence(μ , ν , ref T , ref C) then continue
17 if trsμ /∈ T ∨chkConfluence(trtν , ref T , ref C) then
18 C := C∪{〈trsμ , trtν〉}
19 continue outer loop // found a matching transition
20 end
21 end
22 T := Told, C := Cold // restore sets: s a−→ D(t) is not confluent
23 return false
24 end
25 return true

26 function chkEquivalence(μ , ν , ref T , ref C)
27 Q := {{ p} | p ∈ support(μ)∪ support(ν)} // initial partitions
28 foreach u d−→ D(v) such that u ∈ support(μ), v ∈ support(ν) do
29 if chkConfluence(u d−→ D(v), ref T , ref C) then
30 Q := {q ∈ Q | u 6∈ q∧ v 6∈ q}∪{∪q∈Q : u∈q∨v∈q q}
31 end
32 end
33 return ∀q ∈ Q : μ(q) = ν(q) // check that the probabilities match

Algorithm 19: Detecting confluence on a concrete state space (1)

MARKOV DECISION PROCESSES 141

1 function chkConfluentMimicking(T , C)
2 foreach 〈s b−→ μ , t c−→ ν〉 ∈C do
3 if s b−→ μ ∈ T ∧ t c−→ ν 6∈ T then
4 if ¬chkConfluence(t c−→ ν , refT , ref C) then return false
5 return chkConfluentMimicking(T , C) // restart
6 end
7 end
8 return true

Algorithm 20: Detecting confluence on a concrete state space (2)

chkConfluentMimicking that is called after chkConfluence terminates to
see if indeed no violations of this condition occur.

chkConfluence first checks if the transition s a−→ λ was already detected to
be confluent before (line 10). If it was not, we check whether the transition is
nonprobabilistic, i.e. λ = D(t) for some state t, and invisible (line 11). Then,
it is added to the global set T of confluent transitions (line 12). To determine
whether this is valid, the loop beginning in line 13 checks if indeed all outgoing
transitions from s commute with s a−→ D(t). If so, we return true (line 25) and
keep the transition in T . Otherwise, all transitions that were added to T during
these checks are removed again and we return false (lines 22 and 23). Note
that it would not be sufficient to only remove s a−→ D(t) from T , since during
the loop some transitions might have been detected to be confluent (and hence
added to T) based on the fact that s a−→ D(t) was in T . As s a−→ D(t) turned
out not to be confluent, we can also not be sure anymore whether these other
transitions are indeed confluent.

The loop to check whether all outgoing transitions commute with s follows
directly from the definition of confluent sets, which requires for every s b−→ μ
that either μ = D(t), or that there exists a transition t c−→ ν such that μ T ν ,
where t c−→ ν has to be in T if s b−→ μ is. Indeed, if μ = D(t) we immediately
continue to the next transition (line 14; this includes the case that s b−→ μ = s a−→
D(t)). Otherwise, we range over all transitions t c−→ ν to see if there is one such
that μ T ν . For this, we use the function chkEquivalence in line 16, which
is described below. Also, if s b−→ μ ∈T , we have to check that also t c−→ ν ∈T .
We do this by checking it for confluence, which immediately returns if it is
already in T , and otherwise tries to add it.

If indeed we find a mimicking transition, we continue (line 19). If s b−→ μ
cannot be mimicked, confluence of s a−→D(t) cannot be established. Hence, we
reset T as discussed above, and return false. If this did not happen for any of

142 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

the outgoing transitions of s, then s a−→ D(t) is indeed confluent and we return
true.

chkEquivalence checks whether μ T ν . Since T is constructed on-the-fly,
during this check some of the transitions from the support of μ might not have
been detected to be confluent yet, even though they are. Therefore, instead of
checking for connecting transitions that are already in T , we try to add possible
connecting transitions to T using a call back to chkConfluence (line 29). The
two functions are thus mutually recursive.

In accordance with Definition 56, we first determine the smallest equival-
ence relation that relates states from the support of μ to states from the support
of ν in case there is a confluent transition connecting them. We do so by con-
structing a set of equivalence classes Q, i.e. a partitioning of the state space ac-
cording to this equivalence relation. We start with the smallest possible equival-
ence relation in line 27, in which each equivalence class is a singleton. Then, for
each confluent transition u d−→ D(v), with u ∈ support(μ) and v ∈ support(ν),
we merge the equivalence classes containing u and v (line 30). Finally, we can
easily compute the probability of reaching each equivalence class of Q by either
μ or ν . If all of these probabilities coincide, indeed 〈μ ,ν〉 ∈ R and we return
true; otherwise, we return false (line 33).

chkConfluentMimicking is called after the main call to chkConfluence
designated a transition to be confluent, to verify that T satisfies the require-
ment that confluent transitions are mimicked by confluent transitions. After all,
when a mimicking transition for some transition s b−→ μ was found, it might
have been the case that s b−→ μ was not yet in T while in the end it is. Hence,
chkConfluence keeps track of the mimicking transitions in a global set C. If
a transition s a−→D(t) is shown to be confluent, all pairs 〈s b−→ μ , t c−→ ν〉 of other
outgoing transitions from s and the transitions that were found to mimic them
from t are added to C. This happens in line 18 in chkConfluence. If s a−→D(t)
turns out not to be confluent after all, the mimicking transitions that were found
in the process are removed again (line 22).

Based on the set of pairs C, chkConfluentMimicking ranges over all its
elements 〈s b−→ μ , t c−→ ν〉, checking if one violates the requirement. If no such
pair is found, we return true. Otherwise, the current set T is not valid yet.
However, it could be the case that t c−→ ν is not in T , while it is confluent (but
since s b−→ μ was not in T at the moment the pair was added to C, this was not
checked earlier). Therefore, we still try to denote t c−→ ν as confluent. If we
fail, we return false (line 4). Otherwise, in line 5, we check again for confluent
mimicking using the new sets T and C.

MARKOV DECISION PROCESSES 143

Correctness We will now show that, together, the functions chkConfluence
and chkConfluentMimicking correctly identify confluent transitions. For
this proof, we first need the following lemma:

Lemma 3. Given two distributions μ and ν , an initial set of confluent set trans-
itions T , and some set of pairs of transitions C,

chkEquivalence(μ , ν , ref T , ref C)⇒ μ T ν

where the rightmost occurrence of T refers to the updated state of the set of
confluent transitions upon termination of the call to chkEquivalence.

Proof ([HT13]). First of all, note that T only grows during chkEquivalence:
each call to chkConfluence might add transitions to it or leave it unchanged.

Assume that chkEquivalence(μ , ν , . . .) yields true. Hence, we have
μ(q) = ν(q) for every q ∈ Q, using the set Q after the loop. Note that Q is
a partitioning of the set support(μ)∪ support(ν), since initially it contains all
singletons, and the loop only merges some of its elements. Now let

Q′ = Q∪{{q} | q 6∈ support(μ)∪ support(ν)}

be a partitioning of the complete set of states S. We also have μ(q) = ν(q) for
every q ∈ Q′, as both μ and ν assign probability 0 to all newly added classes.
Let Q′′ be the equivalence relation associated with Q′, i.e. 〈s, t〉 ∈Q′′ if and only
if there is a set q′ ∈ Q′ such that s, t ∈ q′. Since the function returns true, by
definition we have 〈μ ,ν〉 ∈ Q′′.

It remains to show that Q′′ ⊆ R; by Proposition 5.2.1.5 of [Sto02], then
indeed 〈μ ,ν〉 ∈ R. Recall that R is the smallest equivalence relation containing
the set

R′ = {〈s, t〉 | s ∈ support(μ), t ∈ support(ν),∃a ∈ A : s a−→ t ∈ T }

where we chose T to be the set at termination of chkEquivalence. Hence,
〈s, t〉 ∈ R if and only if s = t or there are states s0,s1, . . . , sn such that s0 = s,
sn = t and either 〈si,si+1〉 ∈ R′ or 〈si+1,si〉 ∈ R′ for every 0 ≤ i < n.

So, let 〈s, t〉 ∈ Q′′. We show that also 〈s, t〉 ∈ R. If s = t, this is immediate,
so assume that s 6= t. By construction, there is a set q′ ∈ Q such that s, t ∈ q′.
For s and t to be in the same set, some merges must have taken place in the
loop.

If s ∈ support(μ), s1 ∈ support(ν) and s a−→ s1 ∈ T (at some point, so
since T only grows also at the end), then {s} and {s1 } are merged. Hence,
this corresponds to 〈s,s1〉 ∈ R′. Alternatively, the same merge also happens if
s ∈ support(ν), s1 ∈ support(μ) and s1

a−→ s ∈ T , hence, 〈s1,s〉 ∈ R′. The set
{s,s1 } can grow further in the same way, until it at some point contains t. This
procedure corresponds exactly to the requirement that 〈s, t〉 ∈ R.

144 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

(In this proof we used s a−→ μ ∈ T and chkConfluence(s a−→ μ , ref T , . . .)
interchangeably; after all, if chkConfluence(s a−→ μ , ref T , . . .) returns true
then indeed also s a−→ μ ∈ T , and if s a−→ μ ∈ T then chkConfluence(s a−→ μ ,
ref T , . . .) returns true.)

We can now state and prove the correctness of the combination of the functions
chkConfluence and chkConfluentMimicking:

Theorem 5 (Correct detection of confluent transitions). Given a transition p l−→
λ and using initially empty sets T and C, if

chkConfluence(p l−→ λ , ref T , ref C)

returns true as well as subsequently chkConfluentMimicking(T , C), this
together implies that p l−→ λ is probabilistically confluent.

Proof ([HT13]). chkConfluence immediately checks whether p l−→ λ is de-
terministic, i.e. whether it is of the form p l−→ D(q). Then, we need to show
that there exists a confluent set of transitions containing p l−→ D(q). We show
that, upon termination of the algorithm and returning true, the set T fulfills
this condition. Clearly, p l−→ D(q) ∈ T , since it is always added immediately
at the beginning of chkConfluence (except in case that false is returned due
to it being visible), and only removed before returning false. Since we assumed
that true is returned, indeed p l−→ D(q) ∈ T .

To show that T is a confluent set, let s a−→ D(t) ∈ T be an arbitrary ele-
ment. Note that indeed any element of T is nonprobabilistic, since for prob-
abilistic transitions false is returned right at the beginning of chkConfluence
before any modification of T is done. We have to prove that s a−→ D(t) is in-
visible and that, for every s b−→ μ we have either μ = D(t) or there exists a
transition t c−→ ν such that μ T ν . Also, we need to show that t c−→ ν is in T
if s b−→ μ is. We postpone this last part to the end.

Since s a−→ D(t) ∈ T , chkConfluence(s a−→ D(t), ref T , . . .) must have
been called at some point, s a−→ D(t) was added to T and subsequently not
removed. This implies that L(s) = L(t) (and hence indeed the transition is
invisible) and that the algorithm terminated with the final return true state-
ment. Hence, the outermost foreach loop never reached the end of its body,
but was always cut short before by a continue statement. So, for each s b−→ μ
it holds that either μ = D(t) or there exists a transition t c−→ ν for which the
second foreach loop reached its continue statement. In the second case, the
call chkEquivalence(μ , ν , ref T , . . .) yielded true, and by Lemma 3, this
implies that μ T ν was true at the end of each iteration of the loop. Since T
can only grow during the loop, and also afterwards no transitions are removed

MARKOV DECISION PROCESSES 145

from T anymore (because otherwise p l−→D(q) would have been removed too),
the set T at the end of the algorithm is a superset of the set T at the moment
that μ T ν was established. Hence, we also have μ T ν for the final T
(based on Proposition 5.2.1.5 of [Sto02]), as required.

Finally, we show that if s b−→ μ is mimicked by t c−→ ν and s b−→ μ ∈ T ,
then so is t c−→ ν . This follows from chkConfluentMimicking. After all, each
transition and its mimicking transition that are found are added to C in the body
of chkConfluence. Only when T is reset also C is, since the mimickings
that were found in that call are then clearly not relevant anymore. At the end,
chkConfluentMimicking checks all of the mimicking pairs. If one fails the
test, the function checks to see if it can still add t c−→ ν to T to make things
right. Since we assumed that it returns true, no irreparable violation was found,
and indeed all confluent transitions are mimicked by confluent transitions.

Note that the converse of this theorem does not always hold. To see why, con-
sider the situation that chkConfluentMimicking fails because a transition
s b−→ μ was mimicked by a transition t c−→ ν that is not confluent, and s b−→ μ
was added to T later on. Although we then abort, there might have been an-
other transition t d−→ ρ that could also have been used to mimic s b−→ μ and that
is confluent. We chose not to consider this due to the additional overhead of
the implementation. Additionally, this situation did not occur in any of the case
studies we considered so far.

We can now use Theorem 5 to show that the on-the-fly confluence check
implemented by chkConfluence and chkConfluentMimicking can be used
for a trustworthy SMC analysis of MDP:

Lemma 4 (Correctness of SMC with on-the-fly confluence check). If an SMC
analysis terminates and does not return unknown
– using function simulate of Algorithm 17 to explore the set of paths Π
– together with function resolveConfluence of Algorithm 19 in place of A,
then the function f = fconfl ∪{s 7→ T (s) | s /∈ Π} satisfies Condition 4.3, where
fconfl maps a state s ∈ Π to T (s) if it is deterministic and to the result of the call
to resolveConfluence otherwise.

Proof. By construction and because resolveConfluence is deterministic, f
is a reduction function satisfying s ∈ Π ⇒ | f (s)| = 1∧ s /∈ Π ⇒ f (s) = T (s). It
remains to show that minimum and maximum probabilistic reachability prob-
abilities for any state formula over the atomic propositions are the same for the
original and the reduced MDP.

The way it is constructed, we can see f as the combination of individual re-
duction functions fsi = {si 7→ trconfl

i }∪{s′ 7→ T (s′) | s′ /∈ Π} for i ∈ {1, . . . ,n}

146 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

and {s1, . . . , sn } = {s ∈ Π} where trconfl
i is the result of the call to the function

resolveConfluence for si. For each of these fsi , we know that it is acyclic
(otherwise si would be mapped to a self-loop and the cycle check of Algo-
rithm 17 would have aborted simulation) and a confluence reduction function
for M (by Theorem 5). However, fs j is not necessarily a confluence reduc-
tion function for red(M, fsi), i 6= j: resolveConfluence(s j) performed its
checks on M and not on red(M, fsi). However, each fsi gives priority to one
transition between two branching bisimilar states (see [HT14, Tim13]). We
denote branching bisimulation by ∼ here; it is a relation that preserves prob-
abilistic reachability. Therefore, if R∼ is the coarsest concrete bisimulation
relation for M under ∼ and M∼ is an MDP such that 〈M,M∼〉 ∈ R∼, then also
〈M∼, red(M∼, fsi)〉 ∈ R∼. By transitivity, we have 〈M, red(M∼, fsi)〉 ∈ R∼, too.
In consequence, M ∼ Mf since Mf = red(. . . red(red(M, fs1), fs2) . . . , fsn).

Remark. One may want to prove preservation of probabilistic reachability dir-
ectly for f based on theorems 4 and 5. However, this does not work out: It
would have to be shown that f is itself an acyclic confluence reduction function
under a confluent set of transitions T . The acyclicity of the entire function f is
also guaranteed by the modified simulate function of Algorithm 17. It would
remain to show following Definition 58 that T∪ = { tr ∈ f (s) | s ∈ Π} is a con-
fluent set of transitions. While we know from Theorem 5 that each transition
s a−→D(t)∈T∪ is probabilistically confluent, this only means that there exists a
confluent set that contains it, namely the set T computed by chkConfluence
and chkConfluentMimicking for s. Unfortunately, neither is T∪ in general
the union of these individual sets, nor is the union of two confluent sets neces-
sarily a confluent set again [Tim13, Chapter 6].

Runtime and Memory Usage

Exactly as for the POR-based approach, the runtime and memory usage of SMC
with on-the-fly confluence check depends on the amount of lookahead that is
necessary in function chkConfluence. Although we have not included this in
Algorithm 19 as shown, it is in practice parameterised by a lookahead bound
kmax to enforce termination, too, with the same characteristics as in the POR-
based approach. Any differences in runtime and memory usage we see between
the two approaches, which look at in Section 4.7.3, should thus come only from
a more optimised or computationally simpler implementation. There are no
fundamental differences in performance characteristics to be expected.

MARKOV DECISION PROCESSES 147

〈h1,h1,v1,0〉

〈h2,h3,v1,0〉 〈h2,h2,v1,0〉 〈h3,h3,v1,0〉〈h3,h2,v1,0〉

〈h3,h2,v1,1〉 〈h2,h3,v1,1〉〈h3,h3,v1,1〉

〈h3,h3,v1,2〉〈h3,h3,X,1〉

〈h3,h3, ,2〉

{success}

{collide}

act1/4

1/4

1/4

1/4

snd1

snd2
snd1 snd2

snd1snd2

tick

tick

Figure 4.13: MDP semantics of the network of VMDP Nact
var

Applicability and Limitations

Confluence, too, is only a safe approximation when it comes to the detection
of spurious choices. Although the confluence check does not need to resort to
information from the syntactic/symbolic VMDP level like POR with conditions
J1 and J2, and in particular is not limited to detecting spurious interleavings
only, we see a few limitations right in the definition of confluence. The most
significant one is that only nonprobabilistic transitions can be confluent. Let us
again look at the shared medium communication setting of Example 22 to get
an impression of what this may mean in practice.

Example 27. We saw in Example 23 that the POR-based approach works for
the networks Nτ

var and Nact
var , but cannot work for any instance of N∙

sync due to
the nondeterministic choice inside process Msync. This, however, is no prob-
lem for confluence reduction, and SMC with the on-the-fly confluence check
can handle Nact

sync without problems. On the other hand, nonprobabilistic trans-
itions cannot be confluent. Therefore, simulation with the new approach will
abort for Nτ

sync as well as for Nτ
var. What about Nact

var ? We can consider this a

148 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

approach alg. Nτ
var Nact

var Nτ
sync Nact

sync

POR 18 X X – –
confluence 19 – X – X

Table 4.3: Applicability of POR- and confluence-based SMC to Example 22

version of Nτ
var that has been specifically fixed to make it amenable to the con-

fluence check: the interleaving of the probabilistic decision has been replaced
by a synchronisation. All probabilistic reachability properties are unaffected
by this change, but both confluence- and POR-based simulation work with this
model. For comparison with Figure 4.11, we show the MDP semantics of Nact

var
in Figure 4.13. The only nondeterministic choice that remains in this case is
which host sends first in state 〈h2,h2,v1,0〉. It is easy to see that both available
transitions are confluent and indeed are identified as such by Algorithm 19.
Table 4.3 summarises the applicability of the two simulation approaches to all
four variants of the shared medium communication example.

In summary, the new confluence-based approach for the first time allows sim-
ulation of models with spurious nondeterministic choices that are internal to
one component. However, as confluence preserves branching time properties,
it cannot handle nondeterminism between probabilistic choices. Although this
can often be avoided, for example by transforming the example models Nτ

var and
Nτ

sync into Nact
var and Nact

sync, respectively (i.e. by replacing interleaved probabil-
istic transitions by synchronised ones through a change of transition labels—a
technique that we will also use for some of the case studies in Section 4.7.3),
for some models POR might work while confluence does not. Hence, neither
of the techniques subsumes the other, and it is best to combine them: If one
cannot be used to resolve a nondeterministic choice, the simulation algorithm
can try to apply the other. Implementing this combination is trivial and yields
a technique that handles the union of what confluence and POR can deal with.

4.7.3 Evaluation

The modes tool provides SMC for models specified in the MODEST language
and other input formalisms (cf. Section 1.4). It implements both approaches
presented so far to perform SMC for MDP with spurious nondeterministic
choices: the POR-based and the confluence-based check. In this section, we
apply modes and its implementation of the two approaches to three examples
to evaluate their applicability and performance impact on practical examples
beyond the tiny models of Example 22. The case studies were selected so as to

MARKOV DECISION PROCESSES 149

allow us to clearly identify the approaches’ strengths and limitations. For each,
we (1) give an overview of the model, (2) discuss, if POR or confluence fails,
why it does and which, if any, modifications were needed to apply it, and (3)
evaluate memory use and runtime.

The performance results are summarised in Table 4.4. For the runtime as-
sessment, we compare to simulation with uniformly-distributed probabilistic
resolution of nondeterminism. Although such an assumption cannot lead to
trustworthy results in general (but is silently implemented in many tools), it is a
good baseline to judge the overhead of POR and confluence checking. We gen-
erated 10 000 runs per model instance to compute probabilities psmc for case-
specific properties. Using the statistical evaluation of Algorithm 7, this guar-
antees the following probabilistic error bound: P(|p− psmc| > 0.015) < 0.022,
where p is the actual probability of the property under consideration. That is,
the probability of psmc deviating more than 0.015 from the actual probability is
at most 0.022.

We measure memory usage in terms of the maximum number of extra
states kept in memory at any time during POR or confluence checking, de-
noted by s. The average number of states per check is listed as savg. We also
report the maximum number of “lookahead” steps necessary in the POR and
confluence checks as k, as well as the average length t of a simulation trace
and the average number c of nontrivial checks, i.e. of nondeterministic choices
encountered, per trace.

To get a sense for the size of the models considered, we also attempt model
checking usingmcpta , which uses PRISM for the core analysis. Due to model-
ling restrictions of PRISM, we use mcsta , an explicit-state model checker that
is also part of the MODEST TOOLSET and that uses the same core state space
exploration engine that modes relies on, for our first example. (mcsta will
reappear with more detailed explanations in Chapter 6.) We report the prob-
ability p for the model-specific properties as computed by mcpta/mcsta where
possible, and otherwise list “∼ psmc” in that column of Table 4.4 instead. In all
cases, p and psmc match within the expected confidence. Note that we do not
intend to perform a rigorous comparison of SMC and traditional model check-
ing here and instead refer the interested reader to dedicated comparison studies
such as [YKNP06]. Unless otherwise noted, all measurements used a 1.7 GHz
Intel Core i5-3317U system with 4 GB of RAM running 64-bit Windows 8.1.

Binary Exponential Backoff

We first study a model of the IEEE 802.3 Binary Exponential Backoff (BEB)
protocol for a set of network hosts, adapted from the PRISM model of [GDF09].

150 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

R
U

ni
w

ith
partialorder

reduction
w

ith
confluence

m
odelchecking

m
odel

param
s

tim
e

tim
e

k
s

savg
c

t
tim

e
k

s
savg

c
t

states
tim

e
p

B
E

B
(tau)

〈K
,N

,H
〉

〈4,3,3〉
0

s
7

s
3

28
5.9

6.5
22.4

–
–

–
–

–
–

4
660

0
s

0.917
〈8,7,4〉

0
s

59
s

4
736

12.7
11.0

32.3
–

–
–

–
–

–
20

186
888

114
s

0.999
〈16

,15
,5〉

1
s

338
s

5
12

400
30.0

16.4
41.4

–
–

–
–

–
–

–
m

em
out–

∼
1.00

〈16
,15

,6〉
1

s
1

374
s

6
83

536
89.5

22.3
51.3

–
–

–
–

–
–

–
m

em
out–

∼
1.00

B
E

B
(sync)

〈K
,N

,H
〉

〈4,3,3〉
0

s
1

s
3

4
2.8

3.3
11.8

1
s

3
7

4.6
3.3

11.8
2

319
0

s
0.917

〈8,7,4〉
0

s
4

s
4

8
3.9

5.6
16.9

3
s

4
15

6.8
5.6

16.7
10

105
805

59
s

0.999
〈16

,15
,5〉

1
s

11
s

5
16

5.5
8.2

21.4
8

s
5

31
10.0

8.2
21.2

–
m

em
out–

∼
1.00

〈16
,15

,6〉
1

s
26

s
6

32
8.0

11.1
25.9

23
s

6
63

15.1
11.1

25.8
–

m
em

out–
∼

1.00
〈4,3,5〉

0
s

10
s

5
16

5.5
8.2

19.5
7

s
5

31
10.1

8.1
19.3

185
043

1
s

0.670
〈5,4,5〉

0
s

10
s

5
16

5.4
8.4

21.2
7

s
5

31
9.8

8.5
21.3

1
903

921
11

s
0.879

〈6,5,5〉
0

s
10

s
5

16
5.4

8.5
21.8

7
s

5
31

9.8
8.5

21.9
15

237
260

133
s

0.974
〈4,3,6〉

1
s

25
s

6
32

8.2
10.9

22.9
22

s
6

63
15.4

10.9
22.8

1
659

897
10

s
0.544

〈5,4,6〉
1

s
25

s
6

32
7.9

11.6
25.9

22
s

6
63

14.7
11.7

26.3
–

m
em

out–
∼

0.79
〈6,5,6〉

1
s

25
s

6
32

7.9
11.6

26.7
22

s
6

63
14.8

11.6
26.8

–
m

em
out–

∼
0.94

〈4,3,7〉
1

s
58

s
7

64
12.7

13.8
26.4

72
s

7
127

24.1
13.8

26.5
15

111
003

129
s

0.432
〈5,4,7〉

1
s

59
s

7
64

11.8
15.1

30.8
73

s
7

127
22.6

15.1
30.9

–
m

em
out–

∼
0.68

〈6,5,7〉
1

s
59

s
7

64
11.7

15.3
32.6

73
s

7
127

22.6
15.2

32.1
–

m
em

out–
∼

0.89

C
SM

A
/C

D
〈R

F
,B

C
m

ax 〉

〈2,1〉
1

s
–

–
–

–
–

–
4

s
4

46
16.3

5.0
16.3

15
283

11
s

1
〈1,1〉

1
s

–
–

–
–

–
–

4
s

4
46

16.3
5.0

16.3
30

256
49

s
1

〈2,2〉
1

s
–

–
–

–
–

–
8

s
4

150
25.0

4.9
16.0

98
533

52
s

1
〈1,2〉

1
s

–
–

–
–

–
–

8
s

4
150

25.0
4.9

16.0
194

818
208

s
1

dining
crypto-

graphers
N

3
0

s
–

–
–

–
–

–
1

s
4

9
6.5

4.0
8.0

609
1

s
1

4
0

s
–

–
–

–
–

–
4

s
6

25
13.7

6.0
10.0

3
841

2
s

1
5

0
s

–
–

–
–

–
–

17
s

8
67

29.0
8.0

12.0
23

809
7

s
1

6
0

s
–

–
–

–
–

–
92

s
10

177
62.8

10.0
14.0

144
705

26
s

1
7

0
s

–
–

–
–

–
–

–
tim

eout–
864

257
80

s
1

Table
4.4:

SM
C

w
ith

PO
R

or
confluence:

runtim
e

overhead
and

com
parison

MARKOV DECISION PROCESSES 151

It gives rise to a network of VMDP. The model is determined by K, the max-
imum backoff counter value, i.e. the maximum number of slots to wait in the
exponential backoff procedure, by N, the number of times each host tries to
seize the channel, and by H, the number of hosts. The number of component
VMDP is H +1: the hosts plus a global timer process. The probability we com-
pute is that of some host eventually getting access to the shared medium. Our
simulation scenario ends when a host seizes that channel. The MODEST model
is shown in Figure 4.14. Note that it makes use of the if shorthand, which is
syntactic sugar for an alt with two alternatives that are guarded by the if’s
condition and its negation (for the else branch), respectively. The underlying
network of VMDP is similar to Nτ

var of Example 22: there is an interleaved
probabilistic choice (implicitly: the assignment of DISCRETEUNIFORM to wt
is expanded bymodes to a palt construct), and variable cr keeps track of how
many hosts currently try to send, with value 2 indicating a collision. In con-
trast to the simple model of Nτ

var, the hosts react to a collision by starting an
exponential backoff procedure, trying to send again N times before giving up.

First of all, we observe in Table 4.4 in the rows labelled “BEB (tau)” that
model checking with mcsta aborts due to lack of memory for the two larger in-
stances 〈16,15,5〉 and 〈16,15,6〉. We also attempted to perform model check-
ing using PRISM in default configuration on a 64-bit Linux system with 120 GB
of RAM, but this failed due to memory usage for the two large instances, too.

Simulation, on the other hand, works for all instances. In all cases the
nondeterminism is identified as spurious by the POR-based method for small
values of kmax and l. The runtime values for uniform resolution show that
these models are extremely simple to simulate, while the on-the-fly partial or-
der reduction approach induces a significant time overhead. We see a clear
dependence between the number of components and the value of k, with k = H.
In line with our expectations concerning the performance impact from Sec-
tion 4.7.1, the increase in memory usage (not shown in the table because it is
not possible to obtain precise and useful measurements for a garbage-collected
implementation like modes) is more moderate. Although 83 536 states have to
be kept in memory during at least one of the POR checks for the largest instance
〈16,15,6〉, this is just a tiny fraction of the whole state space considering that
the small instance 〈8,7,4〉 already has more than 20 million states. It is also
obvious from the relation between s and savg that a POR check with such a large
amount of on-the-fly state space exploration is a relatively rare occurrence.

Because this model contains nondeterministic choices between probabil-
istic transitions, any attempt to perform SMC with the confluence check im-
mediately aborts. However, just like we transformed Nτ

var into Nact
var without

152 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

action tick, tack, tock;

const int K = 4; // maximum value for backoff
const int N = 3; // number of tries before giving up
const int H = 3; // number of hosts

int(0..2) cr; // #hosts that want to seize the line (0, 1, many)
bool line_seized, gave_up;

property LineSeized = Pmax(<> line_seized);

process Clock() {
tick; tack; tau {= cr = 0 =}; tock; Clock()

}

process Host() {
int(0..N) na; // nr_attempts 0..N
int(0..K) ev = 2; // exp_val 0..K
int(0..K) wt; // slots_to_wait 0..K

do {
:: if(wt > 0)

{
tick {= wt-- =} // wait this slot

}
else
{

tau {= cr = min(2, cr + 1) =}; // attempt to seize line
tick;
if(cr == 1)
{

// someone managed to seize the line
tau {= line_seized = true =}; stop

}
else if(na >= N)
{

// maximum number of attempts exceeded
tau {= gave_up = true =}; stop

}
else
{

// backoff
tau {= wt = DiscreteUniform(0, max(0, ev - 1)),

ev = min(2 * ev, K), na++ =}
}

};
tack; tock

}
}

par { :: Clock() :: Host() :: Host() :: Host() }

Figure 4.14: MODEST model of the BEB case study (interleaved prob. choice)

MARKOV DECISION PROCESSES 153

affecting reachability probabilities in Example 27, we can transform the MOD-
EST code of the BEB model to make the probabilistic choices synchronise on
action tick. The result is shown in Figure 4.15, while the performance num-
bers are in the rows labelled “BEB (sync)” in Table 4.4. Where model checking
with mcsta is possible, we see that the number of states of this synchronised
model is roughly of the same order of magnitude as that of the original.

Simulation now works fine using either of the two approaches. The runtime
overhead necessary to get trustworthy results by enabling either confluence or
POR is now much lower. In particular, the amount of states that need to be ex-
plored during the POR and confluence checks is very low compared to the ori-
ginal model. It thus appears that the probabilistic interleavings actually caused
most of the work for the POR check. This is very similar to Nτ

var into Nact
var : just

compare their concrete state spaces as shown in figures 4.11 and 4.13.
In addition to the four instances that we studied with the unsynchronised

model, we now also look at 〈4,3,H〉, 〈5,4,H〉 and 〈6,5,H〉 for H ∈ {5,6,7}.
This allows us to more systematically investigate how scaling the different
model parameters affects runtime. We first of all see that state space explo-
sion occurs no matter whether we scale the counters K and N or the number of
hosts H, and model checking fails for the larger instances. While simulation
does work for all instances, there is a clear pattern in the runtime and memory
overhead of using the POR or confluence check: It grows significantly with H,
but is almost invariant under increases to K and N. H determines the number
of parallel components in the model and thus the potential amount of interleav-
ing. Both the POR- and the confluence-based approach thus work for models of
arbitrary state space size, but they are sensitive to the size of the interleavings.

Although the confluence-based approach is somewhat faster than POR for
H ≤ 6 and somewhat slower for H = 7, the differences are not very large and
could probably be reduced by further optimising both implementations. Most
importantly, the memory overhead compared to uniform resolution of non-
determinism is in all cases negligible, and one of the central advantages of
SMC over traditional model checking is thus retained.

IEEE 802.3 CSMA/CD

As a second example, we take the MODEST model of the Ethernet (IEEE 802.3)
CSMA/CD approach that was introduced in [HH09]. It consists of two identical
stations attempting to send data at the same time, with collision detection and
a randomised backoff procedure that tries to avoid collisions for subsequent
retransmissions. We consider the probability that both stations eventually man-
age to send their data without collision. The model is a network of probabilistic

154 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

action tick, tack;

const int K = 4; // maximum value for backoff
const int N = 3; // number of tries before giving up
const int H = 3; // number of hosts

int(0..2) cr; // #hosts that want to seize the line (0, 1, many)
bool line_seized, gave_up;

property LineSeized = Pmax(<> line_seized);

process Clock() {
tick; tack {= cr = 0 =}; Clock()

}

process Host() {
int(0..N) na; // nr_attempts 0..N
int(0..K) ev = 2; // exp_val 0..K
int(0..K) wt; // slots_to_wait 0..K

do {
:: if(wt > 0)

{
tick {= wt-- =} // wait this slot

}
else
{

tau {= cr = min(2, cr + 1) =}; // try to seize the line
if(cr == 1)
{

// someone managed to seize the line
tick {= line_seized = true =}; stop

}
else if(na >= N)
{

// maximum number of attempts exceeded
tick {= gave_up = true =}; stop

}
else
{

// backoff
tick {= wt = DiscreteUniform(0, max(0, ev - 1)),

ev = min(2 * ev, K), na++ =}
}

};
tack

}
}

par { :: Clock() :: Host() :: Host() :: Host() }

Figure 4.15: MODEST model of the BEB case study (sync. prob. choice)

MARKOV DECISION PROCESSES 155

timed automata (PTA), but delays are fixed and deterministic, making it equi-
valent to a network of VMDP (with real variables for clocks, updated on edges
that explicitly represent the delays; modes does this transformation automatic-
ally and on-the-fly). We will investigate this model of time-deterministic PTA
in more detail in Section 5.6.1. The model has two parameters: a time reduc-
tion factor RF (i.e. delays of t time units with RF = 1 correspond to delays of
t
2 time units with RF = 2), and the maximum value used in the exponential
backoff part of the protocol, BCmax. The MODEST code can be found on the
MODEST TOOLSET’s website at www.modestchecker.net.

We chose to look into this model because it is similar to the BEB case
study: both model a shared medium access protocol that uses an exponential
backoff procedure. Yet there are two main differences—apart from one being
an untimed, the other a timed model—that justify a separate investigation: the
CSMA/CD model focuses on just two hosts, and it explicitly models the shared
medium with a dedicated process that uses synchronisation to detect collisions.
In this way, it is very similar to Nτ

sync of Example 22.

Unfortunately, but not unexpectedly, modes immediately reports nondeter-
minism that cannot be discarded as spurious when using the confluence-based
check. Inspection of the reported lines in the model quickly shows a non-
deterministic choice between two probabilistic transitions as the culprit again.
Fortunately, this problem can easily be eliminated in the same way as for the
BEB model and the Nτ

∙ examples: with an additional synchronisation. This
appears to be a recurring issue, yet the relevant model code could quite clearly
be identified as a modelling artifact without semantic impact in both examples
where it appeared so far. SMC on the modified model then leads to psmc = 1.0,
which is the correct result.

The POR-based approach also fails for the unmodified model: Initially,
both stations send at the same time, the order (of the interleaving in zero time)
being determined nondeterministically. In the process representing the shared
medium, this must be an internal nondeterministic choice. This is exactly the
same problem that prevented POR from working for the N∙

sync examples. In
contrast to the problem for confluence, this cannot be fixed so easily.

In terms of runtime, the confluence checks incur a moderate overhead for
this example, lower than for the BEB models. However, we also see that the
paths being explored in the confluence checks (value k) are shorter. Perform-
ance appears to quite directly depend on k, which stays low in this case. Again,
we observed no significant increase in memory usage compared to uniform
resolution. Compared to model checking with PRISM, SMC even with the con-
fluence checking overhead appears highly competitive here, and it in particular

http://www.modestchecker.net/

156 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

does not depend on the timing scale (performance is independent of model
parameter RF).

Dining Cryptographers

As a last and very different example, we consider the classical dining cryp-
tographers problem [Cha88]: N cryptographers use a protocol that has them
toss coins and communicate the outcome with some of their neighbours at a
restaurant table in order to find out whether their master or one of them just
paid the bill, without revealing the payer’s identity in the latter case. We model
this problem as the parallel composition of N instances of a Cryptographer
process that communicate via synchronisation on shared actions, and consider
as properties the probabilities of (a) protocol termination and (b) correctness of
the result.

The MODEST code for the model is shown in Figure 4.16 for the case
of N = 3. It is a network of VMDP whose semantics is a nondeterministic
MDP. In particular, the order of the synchronisations between the cryptographer
processes is not specified, and could conceivably be relevant. It turns out that all
nondeterminism can be discarded as spurious by the confluence-based approach
though, allowing the application of SMC to this model.

The POR-based approach does not work: Although the nondeterministic
ordering of synchronisations between non-neighbouring cryptographers is due
to interleaving, the choice of which neighbour to communicate with first for a
given cryptographer process is a nondeterministic choice within that process.
At its core, this is yet again the same problem as with the N ∙

sync networks of
Example 22.

Concerning performance, we see that runtime increases significantly with
the number of cryptographers N. In fact, for N = 7, we aborted simulation after
30 minutes and consider this a timeout. An increase is expected, since the num-
ber of steps until independent paths from nondeterministic choices join again
(k) depends directly on N. It is so drastic due to the sheer amount of branch-
ing that is present in this model. At the same time, the model is extremely
symmetric and can thus be handled easily with a symbolic model checker like
PRISM.

Summary

All in all, these three case studies show that SMC using an on-the-fly POR or
confluence check is effective and efficient. The memory overhead is negligible,
and one of the central advantages of SMC over exhaustive model checking is
thus retained. In terms of runtime, we see two models where the confluence

MARKOV DECISION PROCESSES 157

action flip, end, show_heads, show_tails, see_heads, see_tails;
action show_heads1, show_tails1, show_heads2, show_tails2,

show_heads3, show_tails3;

const int N = 3;

int(0..N) pay, nagree; bool done;

property Terminate = Pmax(<> done);
property Correct = Pmax(<> done && (nagree % 2 == N % 2 && pay == 0

|| nagree % 2 != N % 2 && pay != 0));

process Cryptographer(int(1..N) id) {
bool heads, agree;

process Show() {
alt {
:: when(heads) show_heads
:: when(!heads) show_tails
}

}

process See() {
alt {
:: see_heads {= agree = heads =}
:: see_tails {= agree = !heads =}
}

}

flip palt { :1: {= heads = true =} :1: {= heads = false =} };
par { :: Show() :: See() };
tau {= nagree += ((agree == (pay != id)) ? 1 : 0) =}; end

}

process Payment() {
// Choose a scenario probabilistically
flip {= pay = DiscreteUniform(0, N) =}; end {= done = true =}

}

par {
:: Payment()
:: relabel { show_heads, show_tails, see_heads, see_tails }

by { show_heads1, show_tails1, show_heads3, show_tails3 }
Cryptographer(1)

:: relabel { show_heads, show_tails, see_heads, see_tails }
by { show_heads2, show_tails2, show_heads1, show_tails1 }
Cryptographer(2)

:: relabel { show_heads, show_tails, see_heads, see_tails }
by { show_heads3, show_tails3, show_heads2, show_tails2 }
Cryptographer(3)

}

Figure 4.16: MODEST model of the dining cryptographers case study (N = 3)

158 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

and, when applicable, the POR-based approach induce a moderate overhead,
and one model where runtime explodes. This reinforces our previously stated
expectation that performance will be extremely dependent on the structure of
the model under study. When comparing confluence and POR, we see that con-
fluence struggles with probabilistic interleavings, yet we were able to overcome
this limitation by modifying the models in both cases. On the other hand, SMC
is only possible for two of the three examples with the confluence check due
to POR’s restriction to spurious interleavings from parallel composition. The
different reduction power of confluence is thus relevant and useful, but neither
of the techniques subsumes the other. As mentioned, in practice, it would prob-
ably be best to combine them: if one cannot be used to resolve a nondetermin-
istic choice, the SMC algorithm can still try to apply the other. Implementing
this combination is trivial and yields a technique that handles the union of what
confluence and POR can deal with.

4.7.4 Caching the Reduction Function

A key problem that leads to long runtimes of simulation with on-the-fly POR
or confluence checks for some models is that the same information may have
to be computed over and over again: once a nondeterministic choice has been
proven to be spurious, simulation continues to the next state and this spurious-
ness result is forgotten. We can potentially avoid this problem by caching the
results of the calls to resolvePOR or resolveConfluence, i.e. additionally
storing a mapping from states to (ample or confluent) transitions.

In the worst case, all states are visited on the set of paths Π and they are all
(spuriously) nondeterministic. Then, memory usage would be as in exhaustive
model checking: the entire state space would be stored. Still, we have seen
in the previous section that the fraction of states that are nondeterministic is
usually low: c/t in Table 4.4, which is per simulation run and not for the entire
model, is below 1 for all models, and significantly so (at least less than 1/2)
for all but the dining cryptographers case. For the latter, however, exhaustive
model checking is feasible, so memory usage is unproblematic in any case.

Even if we look at this tradeoff from a high-level point of view, SMC with
on-the-fly POR or confluence check can be seen as performing simulation with
a certain amount of embedded on-the-fly exhaustive model checking. It is thus
a “hybrid” procedure already. Building in more aspects otherwise typical for
exhaustive model checking—i.e. storing more states—thus makes it somewhat
“less SMC” and more exhaustive, but is no fundamental change of character.

MARKOV DECISION PROCESSES 159

POR POR cached confl. confl. cached state space
model params time time states time time states states

BEB (tau)
〈K,N,H〉

〈4,3,3〉 7 s 0 s 248 – – – 4 660
〈8,7,4〉 59 s 9 s 5 304 – – – 20 186 888
〈16,15,5〉 338 s 247 s 21 000 – – – – memout –
〈16,15,6〉 1 374 s 1 096 s 52 594 – – – – memout –

BEB (sync)
〈K,N,H〉

〈4,3,3〉 1 s 0 s 118 1 s 0 s 119 2 319
〈8,7,4〉 3 s 0 s 2 474 2 s 0 s 2 435 10 105 805
〈16,15,5〉 7 s 1 s 9541 5 s 1 s 9 553 – memout –
〈16,15,6〉 16 s 2 s 24 045 13 s 2 s 24 123 – memout –

CSMA/CD
〈RF,BCmax〉

〈2,1〉 – – – 4 s 1 s 49 (15 283)
〈1,1〉 – – – 4 s 1 s 49 (30 256)
〈2,2〉 – – – 8 s 1 s 262 (98 533)
〈1,2〉 – – – 8 s 1 s 262 (194 818)

dining
crypto-

graphers
N

3 – – – 1 s 0 s 128 609
4 – – – 4 s 0 s 480 3 841
5 – – – 17 s 1 s 1 536 23 809
6 – – – 92 s 13 s 4 480 144 705
7 – – – – t/o – – timeout – 864 257

Table 4.5: SMC with POR or confluence: caching the reduction function

Evaluation We have implemented a caching wrapper around the POR and
confluence checks in modes and applied it to the case studies presented in the
previous section. The results are shown in Table 4.5, where the state numbers
reported for the cached variants are the numbers of states for which a POR
or confluence result has been stored at the end of the SMC analysis. They
consequently provide an indication of the additional memory usage due to the
caching. The setting is otherwise the same as in the previous section (10 000
runs, same machine, etc.).

We see that caching leads to speedups in all cases, most of them significant,
and that the number of states cached is always small in comparison to the full
state spaces8. However, it does not seem to drastically improve performance
for the larger instances of the non-synchronising BEB model. This is likely
because, due to the size of the state spaces and the nature of the probabilistic
branching, any particular state is rarely visited several times in 10 000 runs. In
line with this effect is the observation (by looking at modes’ progress indicator)
that, on all models and instances, the first simulation runs take relatively long,
but from some point on the remaining ones need almost no time anymore. This
point is where most of the relevant choices have been proven spurious. The

8For the CSMA/CD models, the state space sizes reported are for the digital clocks semantics of the
PTA created by mcpta and thus not directly comparable to the state spaces that modes explores.

160 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

number of runs after which it is reached depends on the model and parameters,
but the sudden change in simulation speed is clearly visible in all cases (except
for the largest unsynchronised BEB instance).

Still, even caching does not allow us to perform SMC for the dining cryp-
tographers case with N = 7 within acceptable time. Here, even the first dozen
runs take extremely long and do not yet provide enough cached results for any
observable speedup.

In summary, caching the results of the POR or confluence checks appears
to be a very good way to make the approaches scale to a higher number of sim-
ulation runs and thus to more precise and accurate verification results, yet mod-
els where SMC was previously unfeasible due to excessive runtime—probably
caused by huge underlying state spaces and extreme branching—remain un-
feasible.

As an example of scaling accuracy and precision with declining runtime
impact by caching, we also performed SMC with 10 times as many simulation
runs (i.e. 100 000 instead of 10 000) for two of the unsynchronised BEB model
instances. For 〈16,15,5〉, this takes 1272 s, i.e. just around 5 times as long; for
〈8,7,4〉 the time is 27 s, i.e. an increase by a factor of 3 only. Again using the
statistical evaluation of Algorithm 7, this for example means that the probability
of the SMC result deviating more than 0.005 from the actual probability is now
at most 0.014, whereas we previously had 0.015 deviation with probability
0.022—yet we only invested 3 to 5 times the simulation runtime.

4.8 SMC for General MDP

Spuriously nondeterministic MDP, to which the approaches presented in the
previous section can be applied, are but a specific subclass of MDP. Although
we argued that the existence of non-spurious interleavings (i.e. of race con-
ditions) typically indicates an error in itself, nondeterminism (in particular in
all its other forms) is often a desired modelling feature. Finding ways to ap-
ply SMC-like techniques that preserve as much of the memory advantage as
possible to general MDP has thus recently become an active research topic.
In this section, we summarise the two approaches we are currently aware of
that are relevant to our setting of probabilistic reachability verification: the
use of learning algorithms to try to learn the maximising scheduler for a prop-
erty (Section 4.8.1), and sampling over probabilistic choices and schedulers
with a memory-efficient representation of the latter (Section 4.8.2). Finally, we
show that the direct application of stateless model checking techniques (cf. Sec-
tion 3.1.5) to exhaustively explore the nondeterministic choices while resolving
the probabilistic ones does not work (Section 4.8.3).

MARKOV DECISION PROCESSES 161

4.8.1 Using Learning Algorithms

Where nondeterministic choices in an MDP are not spurious, the maximum and
minimum probabilities of reaching a state satisfying a certain state formula φ
are not the same. However, schedulers exist that lead to precisely those probab-
ilities. In exhaustive model checking using e.g. value or policy iteration, they
are (implicitly or explicitly) found by a fixpoint operation over the whole state
space.

Using Reinforcement Learning

Henriques et al. [HMZ+12] instead propose the use of reinforcement learn-
ing [SB98, CFHM07], an artificial intelligence technique, to improve an arbit-
rary candidate probabilistic scheduler to make its decisions closer and closer to
a maximising one. The algorithm works with probabilistic schedulers during
the learning and improvement phase in order to explore more of the state space
instead of completely ruling out certain transitions early on.

The improvement of schedulers is based on a measure of how “good” a
transition is in reaching a target state. This is approximated by performing a
number of simulation traces and observing which decisions actually do lead to
target states. Subsequently, the scheduler is updated such that good transitions
are chosen with a higher probability (but not with probability 1). After a num-
ber of these improvement steps, a nonprobabilistic scheduler is computed by
selecting the most likely decisions of the probabilistic candidate in each state,
and a standard SMC analysis is performed using this scheduler to resolve the
nondeterministic choices. The entire procedure is summarised in Algorithm 21.

First of all, we observe that the procedure is only specified for the qualit-
ative form of probabilistic reachability properties, P(� φ) ≤ x (or equivalently
with bound < x). This is because the scheduler that is being approximated is the
one that maximises the reachability probability. When a scheduler S has been
found that leads a standard SMC analysis (line 8), e.g. using the SPRT of Algo-
rithm 8, to conclude that the property is false, we know—with the usual error
bounds of the SMC algorithm used—that this scheduler is a counterexample to
the bound x. However, the entire process does not give any guarantees about
the optimality of that final scheduler. This means that we simply do not know at
all how far the probability of reaching a φ -state in ind(M,S) is from the actual
maximum probability. This is why it is convenient to primarily consider the
qualitative form, and why the algorithm can only return probably true (a.k.a.
unknown) when a sufficiently large number t of “learned” schedulers does not
lead to a violation of the bound.

162 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Input: MDP M, property P(�φ) ≤ x, d, t, L
Output: JP(�φ) ≤ xKM (false or probably true)

1 for i = 1 to t do
2 S :=RUni
3 for j = 1 to L do
4 f := evaluate transitions in ind(M,S)
5 S := update probabilities in S based on f
6 end
7 S := determinise S
8 if SMC for M and S returns false then return false
9 end

10 return probably true

Algorithm 21: SMC for general MDP with learning [HMZ+12]

Pitfalls A significant problem that is not taken into account in [HMZ+12],
pointed out by Legay and Sedwards [LST14], is that the SMC analysis, using
a test like the SPRT that may sometimes give the wrong answer, is performed
several times until it returns false (or we give up after t tries). This leads to
error accumulation: While a single invocation of SMC in line 8 incorrectly re-
turns false with a certain probability, the probability of the entire Algorithm 21
incorrectly returning false is higher. In fact, if the actual probability of reaching
a φ -state is greater than zero, we are guaranteed to get the result false if we just
iterate the outer loop of the algorithm often enough.

Other oversights include that this technique learns and improves memory-
less schedulers, but it is specified for the verification of step-bounded proper-
ties. For these, the assumption of Definition 52 that memoryless schedulers are
sufficient to maximise or minimise the reachability probability does not hold.
An easy way to fix this problem would be to analyse unbounded properties
instead, using cycle detection as outlined in Section 3.2.3 and used by all the
simulate functions presented so far in this thesis.

Performance The memory usage of this approach clearly depends on how
many scheduling decisions need to be stored by the computed schedulers. For
each iteration of the outer loop of Algorithm 21, the amount of memory used
is thus given by the number of nondeterministic states encountered during the
simulation runs performed for scheduler evaluation in line 4. In the worst case,
this is the number of states n of the MDP under study. However, as we have
already seen for the POR- and confluence-based approaches in Section 4.7.3

MARKOV DECISION PROCESSES 163

and as Henriques et al. also show for other examples, this number can be much
lower, but is in general highly dependent on the structure of the model. In terms
of worst-case runtime, which occurs when the property is actually true (or t is
large enough to incorrectly make the algorithm answer false), the parameters t
and L are decisive as we need to perform up to t ∙L standard SMC analyses.

Learning Framework with BRTDP and DQL

In a different attempt to make use of learning techniques for the analysis of
MDP models, Brázdil et al. [BCC+14] recently proposed a “general frame-
work” to apply different learning algorithms to this problem. They define a
learning algorithm as one that iteratively generates paths via simulation and
updates upper and lower bounds U and L for a value function

V ∈ S× (A×Dist(S)) → [0,1]

over state-transition pairs defined as V (s,〈a,μ〉) = ∑s′∈S μ(s′) ∙V (s′). V maps
each state s′ to its value, which is the maximum probability of reaching a φ -
state from s′. The algorithm terminates when |U(sinit, tr)−L(sinit, tr)| < ε for
all outgoing transitions tr of the initial state sinit. The precision ε is given as an
argument to the algorithm.

While the idea superficially appears similar to the reinforcement learning
approach presented before, and in particular focuses on maximum reachability
probabilities JPmax(�φ)K again, there are crucial differences. For one, there is
no separation between a learning and an evaluation phase; instead, path genera-
tion and the improvement of the approximations occur iteratively in alternation,
starting from safe bounds. This avoids the problem of repeated invocations
causing error accumulation. Furthermore, both a lower and an upper bound are
computed. Memory usage, however, remains similar in that the current approx-
imations U and L need to be stored for every state-transition pair that is visited
during the simulation runs. It is thus again highly dependent on the structure of
the model. The same applies to runtime: The number of iterations performed is
simply the number of iterations needed until the difference between U and L in
the initial state is below ε . This, too, obviously depends on the model at hand.

The framework is instantiated in [BCC+14] using two concrete learning
algorithms, bounded real-time dynamic programming (BRTDP) and delayed Q-
learning (DQL), that require different a priori information about the analysed
model’s state space and that deliver different confidence statements. We omit
the details of how these algorithms work, which in particular involves some
technical complexity to correctly handle MDP with multiple end components,
and just summarise their requirements and the resulting error bounds:

164 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Complete and limited information The BRTDP algorithm requires what the
authors of [BCC+14] call “complete information” and which is mostly equival-
ent to the assumptions we make in this thesis: that the transition function may
be given as a program, but can be evaluated for any state at will, thereby giving
access to the complete information about a state’s outgoing transitions and their
target probability distributions. In addition, however, algorithms working in the
complete information setting are also assumed to have access to global inform-
ation about the MDP at hand, such as the number of states or the maximum
number of outgoing transitions over all states. DQL, on the other hand, can
work with “limited information”, which means that evaluating the transition
function still gives the set of outgoing transitions, but the target probability dis-
tributions are opaque and can only be sampled. In addition, upper bounds on
the numbers of states and outgoing transitions are assumed to be known, as
is a lower bound > 0 for the smallest probability of any branch in the entire
MDP. In summary, this means that both learning algorithms need slightly more
information than what we assume to be available for SMC. Still, global bounds
like those required for DQL could be computed from e.g. the MODEST code of
an MDP model.

Error bounds As mentioned, the proposed learning framework does not ex-
plicitly compute the number of iterations (and thus of simulation runs) ne-
cessary to achieve the desired precision, but instead iterates as long as ne-
cessary. On termination, we get two values u = maxtr∈T (sinit)U(sinit, tr) and
l = maxtr∈T (sinit) L(sinit, tr) that are possibly an upper resp. a lower bound for
JPmax(� φ)K, with |u− l| < ε . For BRTDP, we have the guarantee that the al-
gorithm almost surely terminates with u and l indeed being correct bounds.
For DQL, the corresponding statement is similar to what the APMC method
gives us (cf. Section 3.2.3): The algorithm takes an extra parameter δ , and with
probability at least 1−δ , terminates with u and l being correct bounds.

The bits of global information about the MDP at hand that we mentioned
above are required at various places inside the two algorithms to achieve cor-
rectness and convergence; for example, the state space size is necessary to com-
pute a valid “delay” for use inside DQL.

Exhaustive or statistical? In summary, the two learning algorithms presen-
ted for this “framework” make for sound learning-based approaches to the ana-
lysis of general MDP. However, their memory footprint and especially the fact
that they require some global information about the MDP at hand (which also
means that they cannot be applied to infinite-state models) mean that they de-
part from the spirit of SMC in some way. It may appear more natural to view

MARKOV DECISION PROCESSES 165

Input: MDP M, state formula φ , number of schedulers a, d, ε , δ
Output: 〈 p̂min, p̂max〉 (two real numbers)

1 N := d− ln(1− M
√

1−δ)/(2ε2)e
2 p̂min := 1, p̂max := 0
3 for i = 1 to M do
4 Si := randomly selected scheduler for M
5 truecount := 0
6 for j = 1 to N do
7 res := simulate(ind(M,Si), d)
8 if res = unknown then return unknown
9 else if res = true then truecount = truecount +1

10 end
11 p̂i := truecount/N
12 if p̂max < p̂i then p̂max := p̂i

13 if p̂min > p̂i then p̂min := p̂i

14 end
15 return 〈 p̂min, p̂max〉

Algorithm 22: SMC for MDP with scheduler sampling (based on [LST14])

them as techniques that significantly improve exhaustive model checking by re-
ducing the number of states that have to be explored. In fact, the experimental
section of [BCC+14] focuses on the BRTDP technique in comparison to the
exhaustive model checking implementation of PRISM, where indeed signific-
ant speedups can be observed.

4.8.2 Sampling Schedulers with PRNG and Hashing

Instead of attempting to obtain an optimal scheduler by successive improve-
ment, Legay and Sedwards [LST14] suggest to not only sample paths under
some scheduler, but to also sample from the scheduler space. This is inspired
by the Kearns algorithm [KMN02] that uses local sampling in order to on-the-
fly determine an ε-optimal scheduler decision during simulation. However, that
algorithm is used to verify discounted reward-based properties, and it exploits
the discounting by only doing a bounded lookahead. For the verification of
probabilistic reachability properties, we need to sample over the set of global
schedulers for the entire state space. An outline of the corresponding approach
is given as Algorithm 22.

166 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Avoiding memory explosion for schedulers A naïve implementation would
have to explicitly store the sampled schedulers, i.e. store one decision per (non-
deterministic) state of the entire MDP, and thus have (worst-case) memory us-
age just like exhaustive model checking. The core contribution of Legay and
Sedwards is to use pseudo-random number generators (PRNG) to represent
schedulers instead. A PRNG is a deterministic function that, given an initial
integer seed, produces a sequence of numbers that appears, for all practical
purposes, to be random. Still, given the same seed, the same sequence is pro-
duced every time. Algorithm 22 can be modified to use PRNG for schedulers
as follows [LST14]:
1. Before the start of the outer For loop, initialise PRNG Useed with a random

seed.
2. Replace line 4 by assigning to s the next value obtained from Useed. s is thus

a (pseudo-)random number that represents a scheduler Ss.
3. Ss, which is used in place of S in line 7, is given by

Ss(s) = firstsample(Unondet,s⊗hash(s)) mod |T (s)|

if we assume some bijection between numbers in {0, . . . , |T (s)| − 1} and
transitions in T (s). Here, firstsample(U ,u) initialises the PRNG U with
seed u and returns its first value, hash ∈ S → Z is a hash function that maps
each state to an integer in such a way that collisions, i.e. two different states
being mapped to the same value, are unlikely, and finally ⊗ is some operator
to combine two integers, e.g. concatenation of their binary representation.

In this way, a scheduler is represented by a single integer instead of requiring
memory in the size of the entire state space. However, in a typical machine
implementation, a bounded domain is used for the integer values. In fact, this
is necessary in order to achieve constant memory usage; otherwise, the size of
the representation of the integer values would just grow with the state space.
In consequence, there is a) only a bounded number of seeds and b) a nonzero
probability for hash function collisions on a large enough state space. This
means that the set of schedulers that can be represented by PRNG in this way
is a strict subset of the set of all (memoryless) schedulers. The hope is that it is
sufficiently large to contain (a good approximation of) the optimal schedulers.

No error bounds Algorithm 22 uses a statistical evaluation of the simulation
results based on the APMC method as in Algorithm 7, but modified (line 1) to
account for error accumulation, including the fact that in the long run, the same
scheduler will be used multiple times. An alternative that uses the SPRT for
properties in qualitative form with error accumulation taken into account also
exists [LST14, Algorithm 4].

MARKOV DECISION PROCESSES 167

s0

s1 s2 s3 s4 . . . sn {goal}

τ
τ

τ τ
τ

Figure 4.17: Counterexample for error bounds with scheduler sampling

Unfortunately, the resulting confidence, for example the APMC-like statement
that P(|p− psmc|) > ε) < 1− δ , is only valid for the sampled set of sched-
ulers. In particular, it cannot be valid for the MDP at hand in the sense of
Definition 53, i.e. it cannot connect the result 〈 p̂min, p̂max〉 to the actual probab-
ilities 〈JPmin(�φ)KM,JPmax(�φ)KM〉 in a useful way. First of all, it may well be
that no close-to-extremal scheduler is part of the encoding via PRNG and hash
functions. However, the issue remains even when we assume “ideal” scheduler
sampling. The underlying problem is the following: Sampling paths faithfully
reproduces their probabilities (in the absence of nondeterminism), i.e. the prob-
ability to select a path via sampling is its path probability μM (cf. Definition 32).
Schedulers, however, have no probability; they are either (near-)optimal or they
are not. Taking the minimum/maximum of the probabilities computed by an ar-
bitrary finite set of schedulers thus does not tell us anything about how close
these values are to the actual probabilities.

As an example, consider the MDP Mn shown in Figure 4.17, which has
n + 1 states. We are interested in JPmax(� goal)K, i.e. in the maximum probab-
ility of reaching the single state sn. This probability is obviously 1. There are n
different schedulers, and exactly one of them realises that maximum probabil-
ity. If we now fix parameters a, ε and δ for Algorithm 22, it returns the correct
result of 〈0,1〉 for Mn with probability 1− (1− 1/n)a, and 〈0,0〉 otherwise (as-
suming uniform ideal scheduler sampling). Clearly there is no connection to ε
and δ ; in fact, we can select n such that P(|p− psmc|) > ε) = (1− 1/n)a > 1−δ
for any a, ε < 1 and δ < 1. This should come as no surprise: Mn is nonprobab-
ilistic, so for a given scheduler, every simulation run is the same. Since Mn is
a tree, running Algorithm 22 on it therefore has the same effect as performing
randomised testing.

The only potential way we see to solve this problem and arrive at proper
error bounds is to take global information about the MDP into account as well,
such as the size of the state space or the maximum number of outgoing trans-
itions per state—just like it is done in the BRTDP and DQL techniques presen-
ted in the previous section.

168 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

s0

s1

s2

s3

s4

{success}

{ failure}

τ

τ

a

b

0.5

0.5

0.5

0.5

Figure 4.18: Counterexample for an exhaustive simulation approach for MDP

Performance Memory usage of this approach, using PRNG and state hashes,
is the same as for SMC of DTMC: It is constant, or depends only on the way that
cycle detection is performed. Runtime, however, is higher: First, the formula
to compute the number of runs necessary has been changed from Algorithm 7
to Algorithm 22 (and similarly for the SPRT-based variant), and second, this
number of runs needs to be performed for every one of the M sample sched-
ulers. For example, to achieve a confidence of P(|p− psmc|) > 0.015) < 0.022
valid for a set of M = 1000 schedulers, 23808 simulation runs per scheduler,
i.e. a total of 23808000 runs, are necessary. Achieving the same confidence
for a DTMC (which additionally makes it independent of any under-the-hood
process like scheduler selection) requires only about 10000 runs.

4.8.3 Failed Idea: Exhaustive SMC

Where the previous approach combines random experiments over schedulers
with random path generation, an alternative could be to combine an exhaust-
ive search over the nondeterministic choices with the randomised resolution
of probabilistic decisions. Such a technique would bring together elements
of stateless model checking (cf. Section 3.1.5) with the Markov chain SMC ap-
proach. Consider the MDP shown in Figure 4.18 as an example: When generat-
ing paths in the simulate function, we encounter the nondeterministic choice
in the initial state s0. At this point, instead of performing a confluence or par-
tial order check or invoking a resolver, we would branch off two new simulation
runs: One for the choice of action a and thus starting in successor state s1, one
for action b from successor state s2. In case these new runs encounter more non-
determinism, new branches would again be started. The notion of a path that is
generated during simulation is thus replaced by the exploration of a “simulation
tree”. Just like stateless exhaustive model checking, this approach would face
problems of scalability for models with nondeterministic cycles, but could be
expected to work well for MDPs with few but non-spurious nondeterministic
choices.

MARKOV DECISION PROCESSES 169

Unfortunately, it does not work in the first place: How should the results of
the two runs that were started from state s0 be combined, i.e. what is the inter-
pretation of a simulation tree w.r.t. the property at hand? In this example, four
outcomes are possible: both runs end in a success-state, only the first or the
second run does, or both runs end in failure. Note that each of these outcomes
is observed with the same probability of 1/4. Let us assume that the property
of interest are the maximum and minimum probabilities of reaching a success-
state. It is easy to see that the actual maximum and minimum probabilities are
both 1/2.

An obvious, but wrong, interpretation of the outcomes would be to count
trees whose leaves are all success-states toward the minimum and trees that
contain at least one success-state toward the maximum probability. On the
long run, i.e. for many generated simulation trees, each possible outcome as
described above corresponds to about 1/4 of the trees. One of the four outcomes
has all success leaves, while three have at least one failure leaf. We would thus
compute a minimum probability of 1/4 and a maximum probability of 3/4, which
would be incorrect.

We argue that there is no correct way of interpreting these simulation trees
unless either all leaves happen to satisfy the state formula, or all leaves are
on a loop not satisfying the formula. In these cases, the MDP was spuriously
nondeterministic in the first place. Intuitively, selecting certain leaves from any
other tree is equivalent to resolving the nondeterministic choices with a priori
knowledge about how probabilistic choices that occur later will be resolved.
Doing so is making a decision about the present with knowledge about the
future, which no valid scheduler can do.

4.9 Summary and Discussion

In this chapter, we have described the model of Markov decision processes
(MDP), which arise as the orthogonal combination of LTS and DTMC. As
such, they support both nondeterministic and probabilistic choices. We have
shown in detail how MDP can be extended with discrete variables to give rise
to the symbolic model of VMDP. We then described how to specify such mod-
els with MODEST, and defined the class of probabilistic reachability properties
to perform verification of MDP. After a review of the existing exhaustive model
checking approaches, we turned to the problem of performing SMC for MDP,
which is an area of very active research. We presented five different approaches
that attempt to tackle this problem, with a particular focus on the two that are
geared towards spuriously nondeterministic models.

170 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

approach nondeterminism probabilities memory error bounds

RUni any some s = 1 none

POR [4.7.1] spurious
interleavings max = min s � n unchanged

confluence [4.7.2] spurious
nonprobabilistic max = min s � n unchanged

learning [HMZ+12] any max only s < n incorrect

learning [BCC+14] any max only s < n yes

schedulers [LST14] any max and min s = 1 none

Table 4.6: SMC approaches for nondeterministic MDP models (with n states)

We need to point out again that in MDP as we defined them, it is possible
to have two transitions with the same action label that originate in the same
state. This is not allowed in the classical definition of MDP [Put94], and strictly
speaking, the model we introduced is that of probabilistic automata (PA) as ori-
ginally defined by Segala [Seg95]. However, for the purposes of this thesis, the
difference between the two models is but a technicality since we use transition
labels only for synchronisation in parallel composition. Any (closed network
of) PA can thus be transformed into a “classical” MDP by appropriately rela-
belling the problematic transitions.

The contribution of this chapter lies in methods to perform SMC for MDP,
in spite of the presence of nondeterministic choices in the model. Any such
method has to be measured w.r.t. at least four criteria, namely 1) whether it can
deal with any possible MDP or just a subclass of models, usually restricted in
the way nondeterministic choices can be used; 2) what kinds of properties it can
deliver sound results for, in particular whether it allows only maximum, only
minimum, or both extremal probabilities to be computed; 3) how it impacts
memory usage, which was constant for SMC of DTMC models; and finally
4) what kind of error bounds on the computed probabilities it delivers. We
give a condensed overview of the five approaches presented in this chapter in
Table 4.6 (where we measure memory usage as usual in terms of the maximal
number s of states stored at any time).

The first method that we presented, which is to simply resolve the non-
deterministic choices with a resolver such as RUni, needs no more memory
than SMC for DTMC, is very fast, and cannot lead to useful or trustworthy res-
ults: it computes merely some probability out of the range between maximum
and minimum. Yet, it is still used in many tools without warning the user of
these consequences.

MARKOV DECISION PROCESSES 171

We then investigated the restricted, but often useful case of spuriously non-
deterministic MDP. In such models, nondeterministic choices may be present,
but they do not affect the properties that are being verified. As a consequence,
the maximum and the minimum probability values for these properties coin-
cide. The two approaches we presented to handle this subclass of MDP are core
contributions of this thesis. Both are based on existing state space reduction
techniques that were designed to eliminate (some) spurious nondeterministic
choices to speed up exhaustive model checking, and that could be implemented
in an on-the-fly manner during state space exploration. Due to the latter, we
were able to adapt them to the path exploration setting of SMC. The first ap-
proach is based on linear-time partial order reduction (POR), while the second
uses a check based on confluence reduction for branching-time properties.

Both techniques are overapproximations, i.e. they cannot detect all spuri-
ous choices as such, and their detection strengths are incomparable: The POR-
based check is defined for networks of VMDP and takes advantage of inform-
ation only available at this symbolic level, but is thus restricted to spurious in-
terleavings, i.e. it cannot mark nondeterministic choices internal to component
(V)MDP as spurious. This is due to the need for an efficient implementation of
the check for (in)dependence of transitions. The confluence-based method, on
the other hand, is specified on the level of the concrete state space of an MDP
(which could be the semantics of a closed network of VMDP) and thus handles
“internal” nondeterministic choices naturally. However, it is limited to priorit-
ising nonprobabilistic transitions only. This restriction stems from the fact that
confluence reduction also preserves branching-time properties; the branching-
time version of POR has an extra condition with the same effect compared to
the linear-time version we used.

In this thesis, we have limited ourselves to using the two reduction tech-
niques with as few modifications as possible. Although they can trivially be
combined sequentially during SMC, we expect that the two limitations de-
scribed above can also be overcome when some changes are made to the un-
derlying techniques: With a local independence check performed on the level
of the concrete state space, the restriction of POR to interleavings could likely
be removed. A notion of local independence has indeed already been defined
by Hansen and Timmer in their comparison of partial order and confluence re-
duction [HT14]. However, just as they show that the two reduction techniques
are in fact very, very similar (although they work in the branching-time setting
only), we would expect large parts of the resulting implementation for SMC
to be the same. We thus consider our use of the original “standard” imple-
mentation of the independence check to be more interesting from a scientific
viewpoint, especially when it comes to the performance comparison. In order

172 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

to overcome the restriction of confluence to nonprobabilistic transitions in con-
fluent sets, the entire notion would have to be adapted to handle linear-time
properties (which was not its original design goal). We see this as potential
future work that in particular likely needs entirely new correctness proofs. It is
important to point out that in the end, with the limitations overcome for both
techniques, we would still (likely) not arrive at full trace equivalence or bisim-
ulation checks, so the resulting approaches would still be overapproximations,
that should however also offer better performance as a tradeoff.

The latter is important since we have seen in our evaluation of the two
approaches’ performance that the increase in runtime can be problematic for
certain models. However, SMC has always been a matter of trading increased
runtime (at least when a certain level of precision is desired) for reduced mem-
ory usage. While memory usage does not remain constant by adding the on-
the-fly checks, it does remain very low. In combination with the fact that the
error bounds for the computed probabilities are the same as in the DTMC case,
i.e. in particular that it is not necessary to perform more simulation runs to
arrive at the same level of confidence, the two approaches do transfer the core
characteristics of SMC from DTMC to MDP rather well.

We also outlined three approaches developed by others that apply to gen-
eral MDP. Out of these, the reinforcement learning technique [HMZ+12] has
already been found to be flawed in such a way that it cannot lead to trustworthy
results, and the method by Legay and Sedwards [LST14] that is based on PRNG
and hashing does not deliver useful results in the sense that it currently does not
provide any error bounds. As they stand, these two methods are thus not sound
according to our Definition 53. However, the PRNG-based method is likely of
use in practice since it delivers an increased subjective, informal “confidence”
that the results are somewhat close to the desired extremal probabilities. The
new learning-based methods using BRTDP or DQL introduced by Brázdil et
al. [BCC+14] do provide (new) error bounds, they work for any MDP, and they
deliver both maximum and minimum probabilities. However, in particular in
the way they make use of memory, they appear to be closer to exhaustive than
to statistical model checking in spirit.

It thus appears that, at the time of writing this thesis, the partial order- and
confluence-based techniques, albeit restricted to spurious nondeterminism, are
still the only ones for MDP that are clearly statistical model checking (in that
they do not need persistent memory for non-local information or checks) and
that at the same time provide sound results (in the sense of Definition 53).

Finally, we mention that there is also work by Lassaigne and Peyronnet
on handling MDP in a simulation setting that focuses on planning problems

MARKOV DECISION PROCESSES 173

and infinite-state models [LP12]. As we are interested in the verification of
reachability properties, we did not consider their approach in further detail.

Probabilistic Timed Automata 5
Communication protocols must work in an environment where the transmis-
sion of data takes a certain time, and timeouts are the method of choice to
detect message loss. At the same time, the protocol itself should cause minimal
additional delays. Electronic control systems, such as the fly-by-wire system of
a modern airliner, must react to inputs quickly. For electronic trading systems,
the delay between the placement and the execution of an order has an immedi-
ate monetary impact; at the same time, such a trading system must be able to
keep up with a large number of orders within short time periods.

These examples show that time-related aspects of systems can play an im-
portant role for their correctness and performance. We thus need models that
include a notion of time. We must be able to specify the time that certain ac-
tions take, and we must be able to observe the progress of time as well as the
crossing of time bounds. Timed models need to be accompanied by timed prop-
erties: Can a process possibly terminate within a certain time limit? Will all
tasks certainly finish within that time? What is the probability of at least one
job not being ready at time t? Is the expected time until the message is handed
to the upper protocol layers no larger than 1.5 times the wire transmission time?

Timed automata [AD94, HNSY94], or TA for short, are a widely used
model for real-time systems. They extend labelled transition systems with clock
variables (or simply clocks): real-valued variables that synchronously increase
over time with rate 1. As in VLTS, clocks can be referred to in guards in
order to make sure that a certain transition can only be taken before a time
bound or after a certain delay. In assignments, they can be reset to zero, which
allows the subsequent measurement of a time interval. Additionally, states can
be equipped with an invariant to restrict the passage of time and enforce the
execution of transitions within a specified amount of time. Timed automata are
consequently suitable to capture the timing-related aspects we outlined above.

As an extension of LTS, they also allow nondeterministic choices, which
are a key verification feature as we saw. However, these choices as taken over

176 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

from LTS are discrete ones: They represent decisions between certain trans-
itions. To model uncertainty or abstraction with respect to the timed aspects of
a model, we also need nondeterminism over time. Fortunately, this is already
included in the TA model: all conditions on clocks can be comparisons—they
need not necessarily be equality tests. We can thus, for example, use an invari-
ant to specify that an event must happen before t time units (e.g. seconds) have
passed, while the guard of the transition representing the event makes sure that
it can happen only after the passage of t ′ time units with t ′ < t. In this way,
we model a nondeterministic choice over the precise point in time at which the
event happens: it can occur after any delay in the interval [t ′, t].

Since TA were originally proposed in the early 1990s, a lot of research
has been done in the area of model checking algorithms for TA, including
efficient data structures and clever optimisation and approximation methods.
An early implementation was the model-checking tool KRONOS [BDM+98].
Today, the modelling and analysis of TA w.r.t. real-time properties is supported
by a number of tools such as RED/REDLIB [Wan06] and, most prominently,
UPPAAL [BDL04].

Timed automata, however, are a nonprobabilistic model. This means that
randomised algorithms or random outside influences cannot be combined with
time, and the two example properties mentioned above that refer to “the prob-
ability” and “the expected time” cannot be checked. Fortunately, the way time
is added to LTS to obtain TA is largely orthogonal to the way probabilities are
added to obtain MDP. If we combine the two, we obtain probabilistic timed
automata (PTA, [KNSS02]). We can thus see PTA as TA with probabilistic
choices, or alternatively MDP with clock variables.

A family of systems that PTA as a modelling formalism are well-suited
for is network protocols. As we have seen in the previous chapter, many of
them employ randomisation internally to e.g. break symmetries, and they are
often subject to outside disturbances that can be modelled probabilistically. At
the same time, they are inherently timed: The transmission of messages, be it
over wires or wirelessly and even though it occurs at near the speed of light,
takes a certain amount of time. This has practical consequences, as can be seen
in e.g. the maximal cable lengths allowed by different versions of the Ether-
net standards. Additionally, signal processing and other tasks incur delays that
need to be considered. As mentioned, timeouts can subsequently be used to im-
prove performance or, typically, to detect (probabilistic!) message loss. Timed
verification for these PTA models is necessary: The precise values used for
timeouts can determine whether a protocol works correctly or not, and various
time-related measures such as expected or maximum total transmission times
need to be studied to evaluate its performance.

PROBABILISTIC TIMED AUTOMATA 177

In this chapter, we first introduce the model of probabilistic timed automata
(Section 5.1), including its semantics, a parallel composition operator, and its
relation to the submodels of TA and MDP. We then present a variant of TA and
consequently of PTA that uses deadlines [BS00] to impose limitations on the
passage of time (Section 5.2) in place of or in addition to the location invariants
of standard TA. The model originally used by the MODEST language is based
on a variant of TA with deadlines, and we show a way to translate (most) of
these to standard TA with invariants. After we have shown how to build PTA
models in MODEST (Section 5.3), we introduce the set of properties that we
focus on for the verification of PTA (Section 5.4) and summarise the existing
exhaustive model checking approaches (Section 5.5). Finally, we investigate a
number of ways to perform statistical model checking for PTA (Section 5.6).

Origins

The semantics for PTA presented in Section 5.1 is adapted from that given for
STA in [Har10], which in turn is based on the original concrete semantics of the
MODEST language given in [BDHK06], and includes updates from [HHH14].

The comparison between invariants and deadlines as used in MODEST plus
the translation presented in Section 5.2 are based on work done by the author
and originally published in [Har10].

The formal statements for probabilistic timed reachability as well as the
definition of reward-based properties for PTA given in Section 5.4 are adapted
from [HHH14] (where they are defined for stochastic timed automata).

Section 5.5 is based on the original overview of PTA model checking ap-
proaches that was compiled by the author for his Master’s thesis and the paper
that originally introduced mcpta [HH09]. It has been updated and extended
with details from the overview paper on PTA model checking by Normal et
al. [NPS13].

Section 5.6.3 summarises work done by Alexandre David et al. [DLL+11b,
DLL+11a] and an investigation of this work performed by Markus Hoffmann
as part of his Bachelor’s thesis [Hof13], which was supervised by the author.

In Section 5.7, we study an example that has been developed by the au-
thor for his Master’s thesis and that was first mentioned in the corresponding
paper on the mcpta tool [HH09]. The comparison of analyses using mctau,
mcpta as well as modes was performed by the author and first appeared in the
tool demonstration paper on mctau [BDHH12]. We additionally include ana-
lysis results using the mcsta tool, which we describe in more detail in the next
chapter, here.

178 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

5.1 Definition

PTA deal with time through clock variables, often simply called clocks. Their
domain is the set of nonnegative real numbers R+

0 . They all advance synchron-
ously at the same rate over time, which we will formally see in the definition
of the semantics of PTA later. For now, we need some specialised notation for
clock variables, valuations and expressions before we can define the model of
PTA.

Clocks, valuations and clock constraints Given a set of clock variables C ,
the valuation 0C ∈ Val(C), or simply 0 when C is clear from the context, as-
signs zero to every clock c ∈ C . If v ∈ Val(C) and t ∈ R+

0 , then we denote by
v + t the valuation where all clock variables have been incremented by t. (If
v is a general valuation, then only the clock variables are incremented and all
other variables remain unchanged.) Clock constraints over a set of clocks C
are expressions of the form

CC (C) ::= true | false | CC ∧CC | CC ∨CC | c ∼ x | c1 − c2 ∼ x

where ∼ ∈ {>,≥,<,≤,=, 6=}, c,c1,c2 ∈ C and x ∈ R. As usual, we just
write CC for the set of clock constraints when C is clear from the context. If
all x ∈ R are actually integers, we have an integer clock constraint. The last
case, where two clock variables are compared, is called a diagonal, and a clock
constraint that does not contain diagonals is diagonal-free. A clock constraint
that is built using only the last two cases is simple; if it does not contain any
disjunctions (fourth case), it is basic, and if it contains neither disjunctions nor
conjunctions, it is atomic. The set of simple clock constraints is denoted CC S,
that of basic ones CC B. If all comparison operators ∼ used in a clock constraint
are in {≥,≤,=}, it is a closed clock constraint. We treat clock constraints
as expressions in Bxp and thus reuse the corresponding notation, e.g. writing
JeK(v) for v ∈ Val and e ∈ CC to denote the value of e evaluated in v.

We can now formally define probabilistic timed automata:

Definition 59 (PTA). A probabilistic timed automaton (PTA) is an 8-tuple

〈Loc,C ,A,E, linit, Inv,AP,L〉

where
– Loc is a countable set of locations,
– C is a finite set of clock variables,
– A ⊇ {τ } is the automaton’s countable alphabet,

PROBABILISTIC TIMED AUTOMATA 179

l0
true

l1
c ≤ TDmax

l2
c ≤ TDmax

l3
true

{collision}
snd_data

95
100

, {c := 0}

5
100 , {c := 0}

c ≥ TDmin,
rcv_data

c ≥ TDmin, τ

snd_data

snd_
data

Figure 5.1: PTA model of a lossy comm. channel with collision detection

– E ∈ Loc → P(CC ×A×Dist(P(C)×Loc)) is the automaton’s edge func-
tion, which maps each location to a set of edges, which in turn consist of a
guard, a label and a probability distribution over sets of clocks to reset to zero
and target locations,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,
– AP is a set of atomic propositions, and
– L ∈ Loc → P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as also using
arrows to denote edges, can be applied to PTA analogously. Let us now illus-
trate the capabilities of PTA by extending the communication protocol com-
ponent models from previous examples.

Example 28. In Example 14 in the previous chapter, we introduced an MDP
that models a lossy communication channel with collision detection. A model-
ling artifact caused by the use of an untimed formalism was that message loss
was explicitly signalled to the sender via a timeout action, for there was no
other way to make it observable. Now, with PTA, we can use clocks to model
transmission delays and the detection of timeouts in a more realistic way.

Figure 5.1 shows the updated model for the communication channel. The
guards are shown on the transitions before the action label, the clock resets are
represented by standard assignments that set the affected clocks to zero, and
the invariants are given inside the locations, below the location name. Instead
of timeout, the label of the edge that is taken when a message is lost is now
simply τ . However, a new clock c has been introduced that is used to make the
transmission of a message take between TDmin and TDmax time units, modelling

180 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

s0

true

s1

cs ≤ TS
s2

true

{success}

snd_data, {cs := 0}

rcv_ack

cs ≥ TS, timeout

Figure 5.2: PTA model of the simple sender with timeout detection

a nondeterministic transmission delay. Guards on the edges going back to the
initial location from l1 and l2 ensure the lower bound, while the invariants of
those locations are used to obtain the desired upper bound. If, for example, this
abstract channel was implemented using some variant of Ethernet, we could
calculate minimum and maximum transmission delay from the allowed cable
lengths and transmission rates. In that case, we would use the nondeterministic
choice of delay to capture the fact that we do not know the precise length of
cable that will actually be used, but want the protocol to be correct no matter
how long it is.

Now that the channel no longer reports message losses explicitly, we need
to modify the model of the sender, originally given in Example 2, to observe
a timeout. The corresponding PTA is shown in Figure 5.2. In location s1,
we now wait exactly TS time units before concluding that the message or its
acknowledgment has been lost. If the acknowledgment arrives during that time,
we go to the success-state s2 as before. Observe that our use of guards and
invariants leads to a deterministic delay for the edge labelled timeout (which is
no longer synchronising). However, as the guard of the edge labelled rcv_ack
is true (and thus omitted), there is a nondeterministic choice between rcv_ack
and timeout in case the acknowledgment is available exactly TS time units
after the message was sent. Note that this cannot easily be avoided: If we
were to change the invariant of s1 to cs < TS, then the guard of the timeout-
labelled edge could never become true. We could well set the guard of the
rcv_ack-labelled edge to cs < TS to give timeouts priority over the receipt of
an acknowledgment for this corner case—but why should acknowledgments
always be discarded in that situation?

Semantics

So far, we have relied on an intuitive understanding of the timing behaviour of
a PTA that is induced by its clocks, guards and invariants. As this is clearly

PROBABILISTIC TIMED AUTOMATA 181

not sufficient for formal modelling and verification, we now give a precise se-
mantics for PTA. Since they are a real-time model where clocks take values
in R+

0 , the semantics of a PTA is an uncountably infinite object: a timed prob-
abilistic transition system.

Definition 60 (TPTS). A timed probabilistic transition system (TPTS) is a 7-
tuple

〈S,ΣS,A,T,sinit,AP,L〉

where
– S is a (usually uncountable) set of states with an associated σ -algebra ΣS,
– A = R+]A′ is the system’s (uncountable) alphabet that can be partitioned

into delays in R+ and normal actions in A′ ⊇ {τ },
– T ∈ S → P(A×Prob(S,ΣS)) is the transition function, which is explicitly

allowed to map a state to an uncountable set of transitions,
– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and
– L ∈ S → P(AP) is the state labelling function
where, for every delay-labelled transition 〈s,x,μ〉, x ∈ R+, the following three
conditions hold:
– ∃s′ ∈ S : μ = D(s′),
– time determinism: 〈x,μ ′〉 ∈ T (s) ⇒ μ = μ ′, and
– additivity:∃x′ ∈ R+ : 〈x+ x′,D(s′)〉 ∈ T (s)

⇔ ∃s′′ ∈ S : 〈x,D(s′′)〉 ∈ T (s)∧〈x′,D(s′)〉 ∈ T (s′′).

TPTS are a special case of the model of nondeterministic labelled Markov pro-
cesses [Wol12]. They can also be seen as uncountably infinite-state, uncount-
ably-branching MDP. Most MDP notions, such as paths and traces, can thus
directly be transferred to TPTS. The semantics of PTA in terms of TPTS can
now be defined as follows:

Definition 61 (Semantics of PTA). The semantics of a PTA

M = 〈Loc,C ,A,E, linit, Inv,AP,L〉

is the TPTS

JMK= 〈Loc×Val(C),P(Loc)⊗
⊗

c∈C

B(R+
0),R+]A,TM,〈linit,0C 〉,AP,LM〉

where LM(〈l,v〉) = L(l)∪{e ∈ AP∩CC S | JeK(v)} and TM is the smallest func-
tion such that the following two inference rules are satisfied:

l
g,a
−→E μ JgK(v)

〈l,v〉
a
−→TM μv

M

(jump)
t ∈ R+ ∀ t ′ ≤ t : JInv(l)K(v+ t ′)

〈l,v〉
t
−→TM D(〈l,v+ t〉)

(delay)

182 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

where, for l′ ∈ Loc and measurable T , we have the probability measure μv
M for

the discrete distribution μ defined by

μv
M(T) =

{
μ(l′,X) if 〈l′,v[X 7→ 0]〉 ∈ T

0 otherwise

again using the correspondence between valuations and |C |-tuples.

The premise of rule delay is also called the time progress condition for PTA; it
ensures that time can pass if and only if the current location’s invariant is satis-
fied. Observe that states 〈l,v〉 where JInv(l)K(v) does not hold can be reachable
in the semantics of a PTA: An invariant prevents time from progressing any fur-
ther, but there is nothing that prevents a transition according to rule jump from
going into a state where the invariant is violated. We thus use a weak invariant
semantics, whereas TA are usually (e.g. when using UPPAAL) specified with a
strong invariant semantics: a transition that would lead into a state where the in-
variant is violated simply does not exist. The strong semantics thus constitutes
a “one-step lookahead” to prevent violated invariants. Such a semantics would
be problematic for PTA, where edges lead into probability distributions: If an
invariant is violated in one but not all of the target states, should the entire trans-
ition be dropped? Or should the “remaining” probabilities be renormalised? To
avoid this problem, one usually only considers well-formed PTA:

Definition 62 (Well-formed PTA). A PTA M = 〈Loc,C ,A,E, linit, Inv,AP,L〉 is
well-formed if for all l ∈ Loc and v ∈ Val(C), we have JInv(linit)K(0C), and for
all 〈g,a,μ〉 ∈ E(l) and 〈X , l′〉 ∈ support(μ), we have

JInv(l)K(v)∧ JgK(v) ⇒ JInv(l′)K(v[X 7→0]).

In a well-formed PTA, the invariant of a location is thus implied by the guards
of all incoming edges. As we use a weak invariant semantics in this thesis, we
do not need to restrict to well-formed PTA.

Independently of well-formedness, the semantics of a PTA can contain
deadlock and timelock states. A deadlock state is one that has no outgoing
transitions according to inference rule jump, while a timelock state has no out-
going transitions at all. Note that deadlock is thus a prerequisite for a timelock
state. In a timelock state, time simply stops—a very unrealistic behaviour.
Timelocks therefore typically indicate a modelling error and should be fixed
before actual verification is started.

Parallel Composition

As PTA are part symbolic (they use expressions for guards and invariants) and
part explicit (using concrete instead of symbolic probability distributions), the

PROBABILISTIC TIMED AUTOMATA 183

definition of the parallel composition operator for PTA combines aspects we
know from the corresponding operators for both MDP and VMDP:

Definition 63 (Parallel composition of PTA). The parallel composition of two
PTA Mi = 〈Loci,Ci,Ai,Ei, liniti , Invi,APi,Li〉, i ∈ {1,2}, is the PTA

M1 ‖ M2 = 〈Loc1 ×Loc2,C1 ∪C2,A1 ∪A2,E,〈linit1 , linit2〉, Inv,AP1 ∪AP2,L〉

where

E ∈ (Loc1 ×Loc2) → P(CC × (A1 ∪A2)×Dist(P(C)× (Loc1 ×Loc2)))

is such that 〈g,a,μ〉 ∈ E(〈l1, l2〉)
⇔ a /∈ B∧∃μ1 : 〈g,a,μ1〉 ∈ E1(l1)∧μ = μ1 ×D(〈∅, l2〉)
∨ a /∈ B∧∃μ2 : 〈g,a,μ2〉 ∈ E2(l2)∧μ = D(〈∅, l1〉)×μ2

∨ a ∈ B∧∃g1,g2,μ1,μ2 :
〈g1,a,μ1〉 ∈ E1(l1)∧〈g2,a,μ2〉 ∈ E2(l2)

∧ (g = g1 ∧g2)∧ (μ = μ1 ×μ2)

with B = (A1 ∩A2)\{τ }, the new invariant function Inv is defined by

Inv(〈l1, l2〉) = Inv(l1)∧ Inv(l2)

and the location labelling function L maps to the union of the labels of the
original states:

L(〈l1, l2〉) = L(l1)∪L(l2).

Observe that we allow global clock variables, but since clocks can only be reset
to zero, there is no need to require any kind of consistency of the component
PTA.

Example 29. The parallel composition of the channel and sender PTA from
the previous example is shown in Figure 5.3. In locations 〈l1,s1〉 and 〈l2,s1〉,
we see that the invariant function now assigns the conjunction of the component
invariants. The automaton is also very different from what we saw in Figure 4.3
for the corresponding MDP example. The difference is due to the fact that there
is no synchronisation on the timeout action anymore; instead, the timeout to
detect message loss is explicitly modelled with clocks, guards and invariants.
However, whether the sender detects a timeout even in case that the message is
not lost depends on the value of TS in relation to the transmission delays of this
channel and the one for acknowledgments. Therefore, the parallel composition
contains edges for all possibilities. These edges for premature timeouts will
even be present if we were to look at the overall network of PTA semantics
including receiver and acknowledgment channel. Only in the TPTS semantics
of that overall parallel composition will they not be reachable if TS is chosen
correctly. Finding out whether this is the case is clearly a verification task.

184 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈l0,s0〉
true

〈l1,s1〉
c ≤ TDmax
∧ cs ≤ TS

〈l2,s1〉
c ≤ TDmax
∧ cs ≤ TS

〈l1,s0〉
c ≤ TDmax

〈l2,s0〉
c ≤ TDmax

〈l0,s1〉
cs ≤ TS

〈l1,s2〉
c ≤ TDmax

〈l2,s2〉
c ≤ TDmax

〈l0,s2〉
true

〈l3,s1〉
cs ≤ TS

〈l3,s2〉
true

〈l3,s0〉
true

{success} {success}

{success}

{collision,success} {collision} {collision}

snd_data
95

100 , {c := 0,cs := 0} 5
100 , {c := 0,cs := 0}

cs ≥ TS,
timeout

cs ≥ TS,
timeout

c ≥ TDmin,
rcv_data

c ≥ TDmin,
τ

rcv_ack rcv_ack

c ≥ TDmin,
rcv_data

c ≥ TDmin,
τ

cs ≥ TS,
timeout

rcv_ack

c ≥ TDmin,
τ

c ≥ TDmin,
rcv_datasnd_data,

{cs := 0}
snd_data,

{cs := 0}

rcv_ack cs ≥ TS, timeout

Figure 5.3: PTA for the parallel composition of channel and sender

Submodels

As mentioned, PTA can be seen as timed MDP or alternatively as TA with
probabilistic choices. Formally, these relationships can be captured as follows:

Markov decision processes Clearly, as MDP do not include real-time fea-
tures, a PTA can only be an MDP when it does not use clock variables, or
at least does not use them in any nontrivial way. At the same time, there is
a significant difference between the semantics of a state with some outgoing
transitions in an MDP and a similar location in a PTA: In the MDP, we assume
that at some point, one of the transitions will be taken. Whether this happens
in the PTA depends on the location’s invariant: Only if that evaluates to false
at some point does an edge need to be taken. Otherwise, time can also pass up
to infinity while all of the available (and enabled) edges are ignored. Whether
this happens is a nondeterministic choice. While obtaining an equivalent PTA

PROBABILISTIC TIMED AUTOMATA 185

for a given MDP is straightforward, the opposite direction is thus not so clear:
For a PTA to be an MDP, we could
– require the set of clocks to be empty and the invariant function to map all loc-

ations to invariant false (taking advantage of the weak invariant semantics),
or

– allow clock variables, but require the invariant function to map all locations
to an invariant of the form c ≤ 0∧ e, where c is some clock (that could be
different in each state) and e is a clock constraint, or

– allow clock variables and invariants of the forms true, false and c ≤ 0∧ e as
above and require all guards to be true or false; in this case, the state in the
MDP corresponding to a location with invariant true would have a τ-labelled
loop to represent the (unbounded) passage of time.

Of course, these are just three examples; one can surely find many more classes
of PTA that have a corresponding equivalent MDP. For now, we settle for the
simplest definition that will be useful later on.

Definition 64 (Untimed PTA). A given PTA 〈Loc,C ,A,E, linit, Inv,AP,L〉 is
untimed if C = ∅ and for all l ∈ Loc, we have Inv(l) = false and 〈g,a,μ〉 ∈
E(l) ⇒ g = true.

This restricted class of PTA can then be shown to be equivalent to MDP:

Proposition 4. An untimed PTA 〈Loc,∅,A,E, linit, Inv,AP,L〉 is isomorphic to
the MDP 〈Loc,A,T, linit,AP,L〉 where 〈a,μ〉 ∈ T (l) ⇔ 〈true,a,μ∅〉 ∈ E(l) for
all l ∈ Loc where μ∅(〈C, l〉) = μ(l) if C =∅ and 0 otherwise. Additionally, the
semantics of this PTA is isomorphic to the PTA itself. We say that an untimed
PTA is an MDP, and an MDP is an untimed PTA.

The isomorphism between untimed PTA and their semantics is because all in-
variants are false, thus the premise of inference rule delay of Definition 61 is
never fulfilled.

Timed automata If, on the other hand, we place no restrictions on clocks and
clock constraints but require all probability distributions of the edge function
to be Dirac, we obtain nonprobabilistic PTA.

Definition 65 (Nonprobabilistic PTA). A PTA 〈Loc,C ,A,E, linit, Inv,AP,L〉 is
nonprobabilistic if for all l ∈ Loc, we have that

〈g,a,μ〉 ∈ E(l) ⇒∃ l′ ∈ Loc,C ∈ P(C) : μ = D(〈C, l′〉).

In order to establish a relationship between (nonprobabilistic) PTA and timed
automata, we first need to define what a TA actually is.

186 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Definition 66 (TA). A timed automaton (TA) is an 8-tuple

〈Loc,C ,A,E, linit, Inv,AP,L〉

where
– Loc is a countable set of locations,
– C is a finite set of clock variables,
– A ⊇ {τ } is the automaton’s alphabet,
– E ∈ Loc→P(CC ×A×P(C)×Loc) is the edge function, which maps each

location to a set of edges, which in turn consist of a guard, a label, a set of
clocks to reset and a target location,

– linit ∈ Loc is the initial location,
– Inv ∈ Loc → CC is the invariant function,
– AP is a set of atomic propositions, and
– L ∈ Loc → P(AP) is the location labelling function.

Observe that this definition is identical to the one for PTA except for the edge
function, which does not include probability distributions. The semantics of
TA is given in terms of timed transition systems (TTS), which are similarly just
the nonprobabilistic version of TPTS. As the formal definitions of TTS and the
semantics of TA would be repetitions of most of definitions 60 and 61, just like
the definition of TA repeats most of the definition of PTA, we omit them.

Proposition 5. A nonprobabilistic PTA 〈Loc,C ,A,E, linit, Inv,AP,L〉 is iso-
morphic to the TA 〈Loc,C ,A,E ′, linit, Inv,AP,L〉 where

〈g,a,C, l′〉 ∈ E ′(l) ⇔ 〈g,a,D(C, l′)〉 ∈ E(l)

for all l ∈ Loc. Additionally, the semantics of the PTA and the TA are iso-
morphic. We say that a nonprobabilistic PTA is a TA, and a TA is a nonprob-
abilistic PTA.

Example 30. The PTA modelling the simple communication protocol sender
as shown in Figure 5.2 is a TA.

While we can directly model nonprobabilistic PTA, it is also useful to consider
the automaton that results from the replacement of the probabilistic choices of
a given PTA by nondeterministic ones:

Definition 67 (Nonprobabilistic overapproximation of PTA). The nonprobab-
ilistic overapproximation of a PTA 〈Loc,C ,A,E, linit, Inv,AP,L〉 is the non-
probabilistic PTA 〈Loc,C ,A,E ′, linit, Inv,AP,L〉 where, for all l, l′ ∈ Loc and
C ∈ P(C), we have that

〈g,a,μ〉 ∈ E(l)∧〈C, l′〉 ∈ support(μ) ⇔ 〈g,a,D(C, l′)〉 ∈ E ′(l).

PROBABILISTIC TIMED AUTOMATA 187

Within the MODEST TOOLSET, the mctau tool that connects to UPPAAL for
exhaustive model checking of TA can generate and check the nonprobabil-
istic overapproximation of a PTA. In this way, it is able to successfully verify
properties that query for a probability that is 0 or 1, or use a bound of 0
or 1 [BDHH12], for certain models.

Countable TPTS as MDP We mentioned earlier that TPTS can be seen as
uncountably infinite-state, uncountably branching MDP. If we turn the restric-
tion around, we can say that a TPTS with a countable set of states and a count-
able set of transitions actually is an MDP:

Proposition 6. If M = 〈S,ΣS,A,T,sinit,AP,L〉 is a finitely branching TPTS
where S is a countable set and for all s a−→ μ we have that the probability meas-
ure μ is equivalent to a probability distribution μ ′, then M is isomorphic to
the MDP 〈S,AM,TM,sinit,AP,L〉 where TM behaves exactly like T except that it
maps to μ ′ where T maps to μ , and AM = {a∈A | ∃s∈ S,μ ∈Dist(S) : 〈a,μ〉 ∈
T (s)}. We say that a TPTS as above is an MDP, and an MDP is a TPTS.

Observe that the MDP’s alphabet AM is countable by definition because S is
countable and M is finitely branching.

Variables

The extension of PTA with discrete variables to obtain the model of VPTA
follows the same basic recipe as the extension of MDP to VMDP. We thus omit
the details here and merely point out that
– guards and invariants are replaced by expressions that follow the grammar for

clock constraints with an additional case that allows the inclusion of clock-
free Boolean expression in Bxp,

– the concrete probability distributions on edges are replaced by symbolic ones,
and

– instead of sets of clocks to reset, general updates are used, with the restriction
that clocks can only be assigned to 0.

A parallel composition operator for consistent VPTA can then be defined in the
straightforward way, too.

5.2 Deadlines

In standard PTA as defined in the previous section, the passage of time is con-
strained by location invariants: clock constraints associated to locations that
allow time to pass as long as they are satisfied. However, invariants may easily

188 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

lead to undesired timelocks, in particular in combination with parallel com-
position, and they cannot be used to represent certain forms of synchronisa-
tion [Góm09].

In timed automata with deadlines [BS00], expressions associated to the
edges control the passage of time. That makes it possible to avoid the problems
hinted at above and, for example, build models that are timelock-free by con-
struction. Several different ways to compose the clock constraints in a parallel
composition are possible. Of particular note is that deadlines allow as soon
as possible (ASAP) synchronisation of edges, which is useful when two edges
in different components need to synchronise because their actions are part of
the synchronisation alphabet, but they have different guards that enable them
after different points in time. ASAP synchronisation allows time to progress
until both edges’ guards are enabled, i.e. one edge waits for the other, without
introducing timelocks.

Example 31. Let us take another look at the PTA modelling BRP sender and
receiver introduced in Example 28 and their parallel composition as shown in
Example 29. When both automata are in their respective initial locations, data
can be sent via action snd_data. However, there is no invariant to enforce
that the corresponding edge is actually taken, so we can also wait indefinitely.
We could try to avoid this problem by assigning invariant false to location l0.
This, however, causes problems in the parallel composition: The invariants of
all states of the form 〈l0, ∙〉 would also become false, even if they do not have
an outgoing edge labelled snd_data. One of these cases is 〈l0,s1〉, where
rcv_ack would thus effectively get priority over timeout. This is clearly
an undesirable effect, so we cannot use an invariant in this way to avoid the
problem of infinite waiting. What we really would like is to specify that data is
sent as soon as possible, i.e. no time is spent waiting whenever the sender wants
to perform snd_data and the channel is ready to synchronise on it. Product
locations where snd_data is not an option should not be affected. This can be
achieved with deadlines.

PTA as defined in the previous section exclusively use invariants to control the
passage of time. If we wanted to use deadlines instead, we would modify the
PTA model of Definition 59 as follows: In addition to its guard, every edge
carries a deadline as a second clock constraint, and the invariant function is
dropped from the tuple defining the PTA. We use the letter d to refer to dead-
lines in the same way that we refer to guards as g. In the semantics (Defini-
tion 61), the premise of inference rule delay is replaced by the time progress
condition for deadlines [BDHK06], which states that t > 0 time units can pass

PROBABILISTIC TIMED AUTOMATA 189

in state 〈l,v〉 if

∀ t ′< t : J¬
∨

〈g,d,a,μ〉∈E(l) dK(v+ t ′)

holds. Contrast this to the time progress condition for PTA with invariants,
which requires that

∀ t ′ ≤ t : JInv(l)K(v+ t ′).

A fine point here is the use of < instead of ≤ in the first quantification for
deadlines. This has some interesting consequences, for example that the dead-
lines c > x and c ≥ x are equivalent, and affects the expressivity of deadlines in
general.

In parallel composition (Definition 63), the invariant of a product location
is defined as Inv(l1)∧ Inv(l2), i.e. using the logical conjunction operator, which
is the only sensible choice. In contrast, a significant advantage of deadlines is
the flexibility to use any of a number of different operators for this purpose:
The parallel composition of two PTA with deadlines is largely analogous to
Definition 63, except that the invariant function is left out and the new edge
function is defined by

〈g,d,a,μ〉∈E(〈l1, l2〉) ⇔ a /∈ B∧〈g,d,a,μ1〉 ∈ E1(l1)∧μ = μ1 ×D(〈∅, l2〉)
∨ a /∈ B∧〈g,d,a,μ2〉 ∈ E2(l2)∧μ = D(〈∅, l1〉)×μ2

∨ a ∈ B
∧〈g1,d1,a,μ1〉 ∈ E1(l1)∧〈g2,d2,a,μ2〉 ∈ E2(l2)
∧ (g = g1 ∧g2)∧ (d = d1 ⊗d2)∧ (μ = μ1 ×μ2)

(5.1)
where ⊗ is a binary operator on clock constraints. A number of useful operators
for ⊗ have been proposed [BS00], in particular in combination with variations
of the operator used for guards. In the remainder of this thesis, we focus only
on ⊗ ∈ {∧,∨}, i.e. logical conjunction and disjunction, since these are the
operators available in the MODEST language.

In MODEST, it is the edge label that decides which of the two is used for a
synchronising edge: If it is a patient action, conjunction is used; if the action is
impatient, disjunction. Consequently, the alphabet of a PTA with deadlines that
is the semantics of a MODEST model contains distinguished subsets of patient
actions PAct and impatient actions IAct with PAct∩ IAct =∅.

Observe that deadlines and invariants are orthogonal features, so we can
also define the model of PTA with deadlines and invariants by just extending
Definition 59 with deadlines on the edges, without dropping its invariant-related
parts. The same can be done for parallel composition, and the semantics of
PTA with deadlines and invariants uses the conjunction of the two time pro-
gress conditions as its premise for inference rule delay. While MODEST was

190 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

deadline c > x c ≥ x c < x c ≤ x c1 − c2 ∼ x c 6= x c = x c ≤ x∧ c ≥ x
invariant c ≤ x c ≤ x c ≥ x c > x c1 − c2 ∼ x c = x –

Table 5.1: Converting between deadlines and invariants

originally specified with deadlines only [BDHK06], the language in its current
form supports both deadlines and invariants [HHHK13].

Example 32. We can now solve the problem presented in the previous ex-
ample: We use deadlines to make sender and channel synchronise on snd_data
as soon as possible. We thus obtain models that are PTA with deadlines and
invariants. There are two ways to do this:
a) We make snd_data an impatient action, set the deadline of the correspond-

ing edge in the sender to true, and set all other edges’ deadlines (including
the snd_data edges in the channel) to the default value false.

b) We make snd_data a patient action, set the deadlines of all edges labelled
snd_data in both automata to true, and set all other edges’ deadlines to
false.

While both ways work equally well, using an impatient action in the sender
and not changing the channel appears slightly more natural: It more directly
captures the intuition of the sender being the active part that initiates the sending
while the channel just passively waits for input from other components.

Expressivity

Due to the use of < in the time progress condition for deadlines, certain dead-
lines cannot be expressed as invariants and vice-versa. Table 5.1 summarises
the differences: We already saw that the deadlines c > x and c ≥ x are equi-
valent. A location l with a single outgoing edge with such a deadline can be
equivalently represented by Inv(l) = c ≤ x. However, the invariant c < x can-
not be represented by any deadline, because deadlines cannot prevent the time
point c = x from being reached from below due to the use of <. For c < x,
c ≤ x and all instances of c1 ∼ c2, the translation between deadline and invari-
ant is straightforward and simply based on the differences in the time progress
conditions.

c = x and c 6= x are interesting cases: The deadline c 6= x is equivalent to
the invariant c = x, but both the deadline c = x and the invariant c 6= x do not
have a corresponding equivalent. The reason for the latter is the same as for the
invariant c < x, while the deadline c = x is a curious case: Starting at a point in
time where c ≤ x, the deadline c = x allows time to progress just until c = x is

PROBABILISTIC TIMED AUTOMATA 191

reached, but no further. Starting at c > x, time progress is not constrained. This
behaviour cannot be represented by an invariant: In order to prevent time from
passing when c = x, there must be an ε > 0 such that the open interval (x,x+ε)
is not included in the invariant, but this would prevent time from passing when
already c > x, for example when c = x+ 1

2 ε .
The first seven columns of Table 5.1 define a function Conv ∈ CC → CC to

convert atomic clock constraints from deadlines to equivalent invariants (true
and false are simply negated, and ∼ denotes the “opposite” of the correspond-
ing operator ∼, e.g. < for ≥). This function can be lifted to general clock con-
straints by applying it to the atomic subexpressions and flipping the Boolean
operators (∧ 7→ ∨,∨ 7→ ∧). However, this lifting fails if the deadline c = x is
encoded in an indirect way as shown in the table’s last column:

Conv(c ≤ x∧ c ≥ x) = c > x∨ c ≤ x = true,

but the deadline c ≤ x∧ c ≥ x cannot be represented as an invariant.

From Invariants to Deadlines

A PTA with invariants that can all be expressed as deadlines can be transformed
into an automaton with deadlines by simply adding a permanently disabled loop
l ff ,¬ Inv(l),τ−−−−−−→ D(〈∅, l〉) to every location l and setting the deadline of all other
edges to false. This makes use of the fact that disabled guards do not influence
the effect of deadlines. If a strong invariant semantics were desired, the guards
of all of the other, original edges from locations l would need to be set to the
conjunction g∧

∧
〈C,l′〉∈support(μ) Inv(l′) to prevent any edge from being taken

when the invariant is violated, where g is the edge’s guard and μ its probability
distribution in the original PTA with invariants. This transformation is also
correct for a network of automata when performed for each of the components
independently. A more detailed explanation and a correctness proof can be
found in [BDHK06, Section VI].

From Deadlines to Invariants

For a single PTA whose deadlines are all (and, to avoid the “obfuscation” prob-
lem with Conv shown above, in combination) expressible as invariants, the
transformation into a PTA with weak invariants is straightforward and follows
from the time progress conditions: Set Inv(l) =

∧
〈g,d,a,μ〉∈E(l) Conv(d) and keep

everything else as-is. Due to the flexible handling of deadlines in parallel com-
position with patient and impatient actions, however, transforming a network of
PTA with deadlines into a network of PTA with invariants is more complicated.

192 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

l0
(true)

M1:

l1
(x ≤ 5)

l2
(true)

tt, false, τ

tt, x > 5, a

lA
(x ≤ 3)

M2:

lB
(true)

tt, x > 3, a

〈l0, lA〉
(x ≤ 3)

M1 ‖ M2:

〈l1, lA〉
(x ≤ 5∧ x ≤ 3)

〈l2, lB〉
(true X)

tt, false, τ

tt, x > 5⊗ x > 3, a

Figure 5.4: Converting deadlines to invariants compositionally (failed attempt)

Example 33. Figure 5.4 shows two PTA with deadlines M1 and M2 and their
translation into invariants according to Conv (in brackets inside the locations).
If we just perform a componentwise transformation of deadlines to invariants as
described above, the resulting parallel composition is wrong, as shown on the
rightmost automaton: The deadline x > 3 should not have an effect on location
〈l0, lA〉, and if a is a patient action (i.e. ⊗ = ∧), then the invariant of location
〈l1, lA〉 is also incorrect—it should be a disjunction, but invariants only support
conjunction in parallel composition.

We thus need to take the context in terms of automata in parallel compositions
(and, for MODEST, also in terms of relabellings) into account to transform
deadlines for edges labelled a into invariants: We need to make sure that they
only apply when an edge labelled a is actually available, i.e. when all auto-
mata that must synchronise on a can do so (to solve the problem of location
〈l0, lA〉), and that we use the correct operators to compose deadlines (to solve
the problem of location 〈l1, lA〉).

In order to achieve this without flattening a network of PTA into a single
PTA (with invariants) using the parallel composition semantics, we compute a
global invariant gi(ê) for an expression ê describing the network. In addition
to the parallel composition M1 ‖ M2 of two PTA M1 and M2, we also allow in
such an expression the relabelling of the edge labels of a PTA M according to a
function f ∈ A → A, written as f (M). We call ê a process-algebraic expression,
and denote its PTA semantics by JêK. The relabelling operation corresponds to
MODEST’s relabel construct. We then add a single-location PTA GI with
invariant gi(ê) to the network, while all other locations’ invariants are set to
true.

PROBABILISTIC TIMED AUTOMATA 193

Definition 68 (Deadlines to invariants). We compute the global invariant re-
cursively over the process-algebraic expression for a network of PTA as fol-
lows, with shared(a) def= a ∈ A(e1)∩A(e2)\{τ }:

gi(e) =
∧

a∈A(e) gia(e)

gia(e1 ‖ e2) =

{
Ena(e1)∧Ena(e2) ⇒ gia(e1) ⊗ gia(e2) if shared(a)

gia(e1)∧gia(e2) otherwise

gia(f (e)) =
∧

b : f(b)=a gib(e)

gia(M) =
∧

l∈LocM

(
PM

l ⇒
∧

〈g,d,a,μ〉∈EM(l) Conv(d)
)

where e, e1 and e2 are process-algebraic expressions, M refers to PTA, A(e)
is the union of the alphabets of the PTA in the (sub-)expression e, PM

l is de-
termined as PM

l ⇔ (M is in location l), ⊗ is ∨ if a is a patient action and ∧
otherwise, and Ena(e) is a predicate that characterises the locations in which an
edge labelled a is available in the automaton represented by e:

Ena(e1 ‖ e2) =

{
Ena(e1)∧Ena(e2) if shared(a)

Ena(e1)∨Ena(e2) otherwise

Ena(f (e)) =
∨

b : f(b)=a Enb(e)

Ena(M) = PM
a

where PM
a is true iff the PTA M is in a location with an outgoing edge labelled a.

Theorem 6. For a process-algebraic expression e, we have that JeK (with dead-
lines) and JGI ‖ eK (with invariants computed as described in the definition
above) are isomorphic.

Proof. Because GI has a single location lg without any edges and the synchron-
isation alphabet is empty, l 7→ 〈lg, l〉 is a bijection between the locations of the
parallel composition and relabelling semantics of e and GI ‖ e and the two PTA
are isomorphic (up to deadlines and invariants). In the following, we denote
the PTA that makes up the aforementioned semantics of a process algebraic
expression e by [e].

It remains to show (indicated by ?⇔) that the time progress conditions for
all l and 〈lg, l〉 are equivalent, i.e. that for all l ∈ Loc[e], we have

∀ t ′< t :J¬
∨

〈g,d,a,μ〉∈E[e](l)
dK(v+ t ′) ?⇔∀ t ′ ≤ t :JInv[e](〈lg, l〉)K(v+ t ′)

⇔ ∀ t ′< t :J
∧

〈g,d,a,μ〉∈E[e](l)
¬dK(v+ t ′) ?⇔∀ t ′ ≤ t :J

∧
a∈A(e) gia(e)K(v+ t ′)

⇔ ∀t ′ ≤ t :J
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d)K(v+ t ′) ?⇔∀ t ′ ≤ t :J

∧
a∈A(e) gia(e)K(v+ t ′)

⇐
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d) ?⇔

∧
a∈A(e) gia(e)

194 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

The last equivalence is in particular satisfied if we have that

∀ l ∈ Loc[e], a ∈ A(e) :
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d) ⇔ gia(e).

We will now show this by induction over the structure of e, using ∗ to mark
steps where the induction hypothesis was applied:
1. Case e = M:

gia(e) = gia(M)

=
∧

l′∈LocM

(
PM

l′ ⇒
∧

〈g,d,a,μ〉∈EM(l′) Conv(d)
)

⇔
∧

〈g,d,a,μ〉∈EM(l) Conv(d) (def. of PM
l)

=
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d)

2. Case e = f (e′):

gia(e) = gia(f (e′))

=
∧

b : f(b)=a gib(e
′)

∗
⇔
∧

b : f(b)=a
∧

〈g,d,b,μ〉∈E[e′](l)
Conv(d)

⇔
∧

〈g,d,a,μ〉∈E[f (e′)](l)
Conv(d)

=
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d)

3. Case e = e1 ‖ e2:
Let l = 〈l1, l2〉, i.e. the li are the component locations of the [ei] that make
up l. We consider three subcases:
(a) Case a /∈ A(e1)∩A(e2)\{τ}:

gia(e) = gia(e1 ‖ e2)

= gia(e1)∧gia(e2)
∗
⇔
∧

〈g1,d1,a,μ1〉∈E[e1](l1) Conv(d1)∧
∧

〈g2,d2,a,μ2〉∈E[e2](l2) Conv(d2)

⇔
∧

〈gi,di,a,μi×D(〈∅,l3−i〉)〉∈E[e1‖e2](〈l1,l2〉) Conv(di)

⇔
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d)

(b) Case a ∈ A(e1)∩A(e2) \ {τ}, and there is no edge labelled a from at
least one of l1 or l2:

gia(e) = gia(e1 ‖ e2)

= Ena(e1)∧Ena(e2) ⇒ gia(e1) ⊗ gia(e2)

⇔ false ⇒ gia(e1) ⊗ gia(e2)

⇔ true

⇔
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d) (@〈g,d,a,μ〉 ∈ E[e](l))

PROBABILISTIC TIMED AUTOMATA 195

(c) Case a ∈ A(e1)∩A(e2) \ {τ}, and there are edges labelled a from both
l1 and l2:

gia(e) = gia(e1 ‖ e2)

= Ena(e1)∧Ena(e2) ⇒ gia(e1) ⊗ gia(e2)

⇔ gia(e1) ⊗ gia(e2)
∗
⇔
∧

〈g1,d1,a,μ1〉∈E[e1](l1) Conv(d1)⊗
∧

〈g2,d2,a,μ2〉∈E[e2](l2) Conv(d2)

⇔
∧

〈g1∧g2,d1⊗d2,a,μ1×μ2〉∈E[e1‖e2](〈l1,l2〉) Conv(d1) ⊗ Conv(d2)

⇔
∧

〈g1∧g2,d1⊗d2,a,μ1∙μ2〉∈E[e1‖e2](〈l1,l2〉) Conv(d1 ⊗d2)

⇔
∧

〈g,d,a,μ〉∈E[e](l)
Conv(d)

Example 34. For the PTA in Example 33, assuming that a is patient, the global
invariant computed according to Definition 68 is

PM1
a ∧PM2

a ⇒ (PM1
1 ⇒ x ≤ 5)∨ (PM2

A ⇒ x ≤ 3).

Since PM1
a ⇔PM1

1 and PM2
a ⇔PM2

A , it is equivalent to what we intuitively expect:

PA1
1 ∧PA2

A ⇒ x ≤ 5∨ x ≤ 3

5.3 Modelling

MODEST allows the specification of models that represent networks of VPTA
with deadlines and invariants. Clock variables can be introduced into a model
by simply declaring a variable of type clock. Variables declared in this way
can only be set to zero in assignments. To enable or disable edges over time,
clock constraints can simply be used in the expressions for guards specified
with when. In order to control the passage of time itself, MODEST provides
support for two new keywords that allow the addition of deadlines and invari-
ants: urgent and invariant, extending the grammar for process behaviours
as follows:

P ::= . . . | urgent(e) P | invariant(e) P | invariant(e){P}

where e ∈ Bxp with subexpressions involving clocks conforming to the syntax
for clock constraints.

Deadlines The urgent keyword to associate a deadline with an edge follows
the same pattern as the when keyword for guards. Its inference rule (with edge

196 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

labels as introduced in the previous section now consisting of a guard, a dead-
line and an action label) is

P
g,d,a
−−−→ W

urgent(e) P
g,d∨e,a
−−−−→ W

(urgent)

where e∈ Bxp and W denotes a symbolic probability distributions over updates
and target MODEST process behaviours (i.e. a function in Upd ×P → Axp).
Note the use of ∨ to combine the new deadline with an existing one: The edge
is now urgent, i.e. time cannot pass any more, if either the new or the existing
deadline (or both) are satisfied. It would not be intuitive to use ∧ here instead
because this would mean that the “addition” of a deadline leads to “less” ur-
gency.

As mentioned, actions in MODEST can be patient or impatient. When de-
claring an action, that declaration is simply prefixed with either patient or
impatient. If omitted, it is impatient by default. MODEST’s parallel compos-
ition then deals with the composition of deadlines using ⊗∈ {∧,∨} for patient
or impatient actions just like the parallel composition operator for PTA with
deadlines (cf. Equation (5.1)).

Invariants Location invariants can be specified by the invariant keyword.
For modelling convenience, it comes in two forms: as a dynamic operator that
“disappears” when an edge is taken (like the when or urgent constructs), and
as a static operator that remains in effect until the contained process behaviour
terminates (like try-catch). Syntactically, the difference is that the former
looks like a guard or deadline, while the latter uses curly brackets around the
process behaviour that it applies to. The inference rule for the dynamic operator
case is very simple:

P
g,d,a
−−−→ W

invariant(e) P
g,d,a
−−−→ W

(inv)

For the static operator case, some effort is needed to preserve the operation in
the process behaviours in the support of the symbolic probability distribution.
The inference rule thus is as follows, with Q(P) = invariant(e) {P}:

P
g,d,a
−−−→ W

Q(P)
g,d,a
−−−→ W ◦M−1

inv

(sinv) where Minv(〈U,P′〉) def=

{
〈U,Q(P′)〉 if P′ 6=X

〈U,P′〉 if P′ =X

The inference rules for the two variants of the invariant construct ignore
the actual invariant expression e ∈ Bxp because it does not become part of the

PROBABILISTIC TIMED AUTOMATA 197

Inv(P) = e∧ Inv(Q) if P = invariant(e) Q or P = invariant(e) {Q}

Inv(P) = tt if P = act, P = act palt { :w1: U1; P1 . . . :wk: Uk; Pk },
P = stop, P = abort, P = break or
P = throw(excp)

Inv(P) = Inv(P1) if P = P1; P2 or P = auxdo {P1 } {P2 }

Inv(P) =
∧k

i=1 Inv(Pi) if P = alt { ::P1 . . . ::Pk }, P = do { ::P1 . . . ::Pk } or
P = par { ::P1 . . . ::Pk }

Inv(P) = Inv(Q) if P = when(e) Q, P = urgent(e) Q,
P = relabel { I } by {G} Q, P = extend {H } Q,
P = try {Q} catch excp1 {P1 } . . . catch excpk {Pk }
or P = ProcName(e1, . . . ,ek) and ProcName is
declared as process ProcName(t1 x1, . . . , tn xk) {Q}

Table 5.2: The invariant function for MODEST process behaviours

edges, but is instead preserved as part of the function Inv that maps each loca-
tion to an invariant. Remember that the locations of the VPTA semantics of a
MODEST model are the MODEST process behaviours. The definition of Inv for
process behaviours, and thus for the VPTA semantics of MODEST, is given in
Table 5.2. This is where the invariant expressions e are picked up to become
part of the automaton.

Example 35. We can now model the timed channel and sender processes in
MODEST that we have built as PTA in previous examples. Figure 5.5 shows the
MODEST code that directly represents the channel PTA as shown in Figure 5.1
(modulo renaming of snd_data to snd). In Figure 5.6, we show MODEST

code that combines the sender with timeout detection introduced in Figure 5.2
with the bounded retransmission approach of the simple BRP sender from Ex-
ample 8. Observe that we use both deadlines and invariants, and that we opted
for making snd_data an impatient action that is urgent in the Sender process.
In MODEST, we can also simply write urgent as a shorthand for urgent(true).
In the model of the sender, we have also made the edge that sets failure to
true urgent, with deadline n == 0. This is to make sure that the assignment
cannot be delayed indefinitely, but the progress of time is only restricted if the
assignment is actually available—thus guard and deadline are the same. Since
the affected edge is (implicitly) labelled τ , it cannot synchronise in parallel
composition, so we could have used invariant(n 6= 0) with the same effect.
If we now take the simple probabilistic BRP model of Example 19, replace its

198 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

process Channel()
{

clock c;

snd palt {
:95: {= c = 0 =};

invariant(c <= TD_MAX) alt {
:: when(c >= TD_MIN) rcv
:: snd {= collision = true =}; stop
}

: 5: {= c = 0 =};
invariant(c <= TD_MAX) alt {
:: when(c >= TD_MIN) tau
:: snd {= collision = true =}; stop
}

};
Channel()

}

Figure 5.5: The lossy comm. channel with transmission delay in MODEST

impatient action snd_data;

process Sender(int n)
{

clock c;

urgent(true) snd_data {= n = n - 1 =};
invariant(c <= TS) alt {
:: rcv_ack {= success = true =}
:: when(c >= TS) timeout;

alt {
:: when(n > 0) Sender(n) // retry
:: when(n == 0) urgent(n == 0) {= failure = true =};

stop // deadlock on failure
}

}
}

Figure 5.6: The simple BRP sender with timeout detection in MODEST

PROBABILISTIC TIMED AUTOMATA 199

channel and sender processes by the ones introduced here (thereby also rela-
belling snd back to snd_data where appropriate), and add deadline true to
the snd_ack in the receiver, then we get what we call the simple probabilistic-
timed BRP.

5.4 Properties

For PTA, we consider two classes of properties: those that refer to the prob-
ability of reaching a certain set of states (extending the reachability properties
of the previous chapters by timed aspects), and those that refer to the expected
value of certain random variables given by so-called rewards.

5.4.1 Reachability

To specify properties to verify on PTA models, we can use standard probab-
ilistic reachability properties as we know them from MDP. To include timing
requirements, they can be extended to probabilistic timed reachability prop-
erties, which include the popular special case of probabilistic time-bounded
reachability.

Probabilistic timed reachability Probabilistic reachability properties in the
form that we already used for MDP are directly applicable to PTA as well:

Pmax(�φ) –and– Pmin(�φ) (quantitative form) P(�φ) ∼ x (qualitative form)

In order to express timed requirements, such as the probability of eventually
reaching a certain state within t time units, simple clock constraints can be
included in the set of atomic propositions AP of a PTA. Although they cannot
sensibly be used by its labelling function L (since there is no way to know
whether a clock constraint is satisfied in a certain location), they are treated
specially by the PTA semantics of Definition 61 to become part of the state
labelling in the underlying TPTS whenever they are satisfied for the current
valuation of the clock variables. Allowing clock constraints in state formulas
leads to the class of probabilistic timed reachability properties. This new class
in particular includes probabilistic time-bounded reachability: A property with
time bound TB can be specified by adding a clock cB to the PTA that is never
reset and including the clause cB ≤ TB in the property. In MODEST, such a
clock is available inside properties with the name time and does not need to be
declared explicitly.

The semantics of probabilistic timed reachability properties for PTA is
simply defined as their semantics on the underlying TPTS. In order to give

200 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

a formal definition, we first need to slightly update our notion of schedulers,
originally introduced in Definition 40 for MDP, to the continuous-probability
setting of TPTS:

Definition 69 (Scheduler). For a TPTS M = 〈S,A,T,sinit,AP,L〉, a scheduler is
a function S : Pathsfin(M) → Prob(A×Prob(S)) s.t. for each π ∈ Pathsfin(M)
we have S(π)(A×Prob(S)\T (last(π))) = 0.

A scheduler assigns probabilities to sets of enabled action-distribution pairs de-
pending on the history seen so far. The schedulers we consider here are thus
more powerful than the memoryless schedulers that were sufficient for MDP
previously. However, we will show later in this chapter when it comes to model
checking that memoryless schedulers (for an MDP abstraction of a PTA) actu-
ally do suffice for the properties we consider. This may come as a surprise since
probabilistic timed reachability properties can reference clock constraints, and
can thus include time bounds. However, this is fundamentally different from
the step bounds for which memoryless schedulers did not not suffice for MDP:
The timing information used in a time-bounded probabilistic timed reachabil-
ity property is part of the TPTS’ state space (within the valuations of the clock
variables), whereas the mentioned step bounds for MDP were not. If we en-
coded step bounds through an extra variable that is incremented on every edge
in a VMDP and referred to in the property, then they would become part of the
state space and memoryless schedulers would suffice, too.

A scheduler resolves the nondeterminism in a TPTS so as to obtain prob-
ability measures, allowing to derive according stochastic processes: A sched-
uler S induces the stochastic processes XSM (∙) ∈ N→ S of the current state
of the TPTS M after a number of transitions have been taken (where always
XSM (0) = sinit) and YSM (∙) ∈ N→ A× Prob(S) of the transition chosen by the
scheduler in the current state.

We already saw that PTA can have timelocks, i.e. situations where time
stops, and we pointed out that these represent an unrealistic situation and should
thus be seen as modelling errors. Similarly, Zeno behaviour should be ruled
out: paths in TPTS that contain infinitely many delay transitions, but where
the sum of the delays is finite. For example, where a delay of one time unit is
possible, a Zeno path could delay for 1/2, then 1/4, 1/8 and so on. When defining
the semantics of PTA properties in terms of the probabilities of sets of paths
in the underlying TPTS, one thus needs to be careful to only consider time-
divergent paths, i.e. paths where the sum of the delays is infinity. On the level
of schedulers, this means that only those must be used that almost surely admit
but time-divergent paths:

PROBABILISTIC TIMED AUTOMATA 201

Definition 70 (Time-divergent scheduler). A scheduler S as in Definition 69
is time-divergent if P(∑∞

i=0 f (YSM (i)) = ∞) = 1 for f (s a−→ μ) = a if a ∈R+ and
f (s a−→ μ) = 0 otherwise. We denote the set of all time-divergent schedulers of
M by S(M).

The semantics of probabilistic timed reachability properties can then be defined
on the TPTS semantics in the usual way using time-divergent schedulers to
get minimal/maximal values, that is infima/suprema over all S ∈ SM as for
MDP in Section 4.4, and then using measurable sets of paths and the cylinder
construction like we have done for DTMC in Section 3.2.2. If the set of φ -
states for a given property is B, then the reachability probability induced by S
is defined as P(∃ i ≥ 0: XSM (i) ∈ B), i.e. the measure of paths with a state in B.

Temporal logics for PTA Various temporal logics have also been extended
with timed aspects. For timed automata, this includes TCTL, the timed vari-
ant of standard CTL. For PTA, TCTL can be combined with PCTL to obtain
PTCTL [KNSS02]. As before, we focus on reachability instead in this thesis;
probabilistic timed reachability can be expressed in PTCTL.

5.4.2 Rewards

To reason about average-case behaviour, it is useful to be able to refer to expec-
ted values: The expected time until a set of states is reached, or the expected
number of messages lost within the first t time units, and so on. These are
examples of the general class of expected accumulated reward properties. To
specify them formally, we first add to a given PTA a reward, which can be seen
as a real-valued variable that is only available to external observers (i.e. it can
be used in properties, but not be read inside the model in guards, invariants
etc.). A reward advances at a certain rate in locations and can be increased
when taking an edge:

Definition 71 (Reward). Given a PTA M = 〈Loc,C ,A,E, linit, Inv,AP,L〉, a re-
ward is a pair r = 〈RewLoc,RewE〉 ∈ (Loc→R)×(E →R) of a function RewLoc

that assigns rate rewards to the locations of M and a function RewE that assigns
edge rewards to its edges.

A particular reward that is useful in many cases is the global time given by

rtime = 〈{〈l,1〉 | l ∈ Loc},{〈e,0〉 | e ∈ E }〉

for any PTA with locations Loc and edges E. It intuitively corresponds to a
clock variable like time that is never reset and only used inside properties. In

202 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

l0
ṙ = 0∧ ṫ = 0

l1
c ≤ TDmax ∧ ṙ = 0∧ ṫ = 1

l2
c ≤ TDmax ∧ ṙ = 0∧ ṫ = 1

snd_data
95
100

, {c := 0}

5
100 , {c := 0}

c ≥ TDmin,
rcv_data

c ≥ TDmin, τ ,
{r := r +1}

Figure 5.7: PTA model of a lossy communication channel with rewards

fact, in MODEST, time doubles as a clock variable (as mentioned previously)
and a reward (as described here).

Example 36. Figure 5.7 shows a variant of the lossy communication channel
introduced in Example 28 without collision detection, but with two rewards:
r assigns an edge reward of 1 to the edge leading back to the initial location
when a message has been lost. Its rate reward is 0 in all locations. r thus counts
the number of message losses. Reward t, on the other hand, has edge reward 0
for all edges, but its rate reward is 1 in l1 and l2. It thus keeps track of the
time spent sending a message (both successfully and unsuccessfully). In the
remainder of this thesis, we will omit edge and rate rewards of 0 when drawing
automata.

The semantics of a reward is a reward structure for the TPTS semantics of the
corresponding PTA:

Definition 72 (Reward structure). A reward structure for a TPTS with trans-
ition function T is a function rew: T → R+

0 assigning a nonnegative reward to
each of the transitions.

Definition 73 (Semantics of a reward). Let r = 〈RewLoc,RewE〉 be a reward for
a PTA M = 〈Loc,C ,A,E, linit, Inv,AP,L〉 and let the transition function of JMK
be TM . Then the semantics of r is the reward structure JrK : TM → R+

0 such that

JrK(tr = 〈〈l,v〉,a,μ〉) =

{
a ∙RewLoc(l) if a ∈ R+

RewE(jump−1(tr)) if a ∈ A

where jump−1(tr) is the edge in M that induced the transition tr according to
the inference rule jump.

PROBABILISTIC TIMED AUTOMATA 203

For transitions labelled with time actions t ∈ R+
0 , we thus assign a reward of

t times the location reward rate according to RewLoc. For A-labelled transitions,
the reward value is as defined by RewE for the original PTA edge. Using re-
wards, we can now define a second class of properties for PTA:

Expected-reward Properties

An expected-reward property has the following syntax:

Xmax(r | φ) –and– Xmin(r | φ) (quantitative form)

X(r | φ) ∼ x (qualitative form)

where r is a reward and φ is a state formula that may include clock constraints.
Intuitively, the semantics of Xmax(r | φ) / Xmin(r | φ) is the maximum/minimum
expected sum of reward values accumulated until a φ -state is reached for the
first time. As before, “maximum” or “minimum” refers to the resolution of
nondeterminism, while “expected” tells us to compute the expected value (or
mean) over the probabilistic choices.

Formally, the semantics of Xmax(r | φ) resp. Xmin(r | φ) is the supremum
resp. infimum over all time-divergent schedulers S of the expected accumu-
lated reward. If the set of φ -states is B, the expected accumulated reward is

E(
j

∑
i=0
JrK(YSM (i))) where j = min{ i | XSM (i) ∈ B}

if P(∃ i ≥ 0: XSM (i) ∈ B) = 1, and ∞ otherwise. It is thus the expected reward
accumulated along paths provided B is reached eventually; otherwise the value
is infinity. This means that, if there is a scheduler that does not almost surely
reach a φ -state, then Xmax(∙ | φ) = ∞; if all schedulers do not almost surely
reach a φ -state, then also Xmin(∙ | φ) = ∞.

In MODEST, rewards are declared as variables of type reward. Such a
reward variable r must not be used in guards, invariants, deadlines etc. or on
the right-hand side of any assignment except
– in assignments of the form r := r+ e to specify an edge reward of e ∈ Axp

and
– in invariant expressions e1 ∧der(r) = e2 with e1 ∈ Bxp and e2 ∈ Axp to spe-

cify a rate reward of e2 for the location that the invariant applies to.
If a reward variable is not referenced in a location’s invariant (in a branch’s
update), it implicitly has rate reward (transition reward) 0 for that location
(branch).

The X/Xmax/Xmin keywords can then be used to write expected-reward
properties:

property E_Success = Xmax(time | success);

204 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

asks for the expected time until the transmission is completed successfully in
our probabilistic timed simple BRP model based on Example 35, using the
implicitly-declared global clock time that can also be used as a reward variable
to refer to the reward rtime.

5.5 Model Checking

The semantics of a probabilistic timed automaton is an object with uncountably
infinitely many states and transitions. The same is true for the submodel of
timed automata. However, model checking techniques have been developed for
TA, and efficient implementations like UPPAAL exist. This is possible because
there is an equivalent, but finite model—an LTS in the case of TA, an MDP in
the case of PTA—for every automaton that uses only integer clock constraints.
In practice, PTA and TA are therefore always assumed to only use integer
clock constraints, and we also do so from now on. With this assumption, there
are several known techniques to perform exhaustive model checking for PTA:
the region graph construction, forwards and backwards reachability, the use of
digital clocks, and the use of stochastic games. In this section, we summarise
these approaches, focussing on details only for the region graph since that is the
key foundation to obtain a finite semantics for PTA that is amenable to model
checking.

Region Graph

A finite model that is equivalent to a given PTA is the region graph [KNSS02],
which is the straightforward probabilistic extension of the concept of the same
name for TA [AD94].

Definition Intuitively, the region graph is the quotient of the TPTS semantics
of a given PTA under the equivalence relation that groups those states that sat-
isfy the same (integer) clock constraints. We now formally define this equival-
ence relation, which allows the reduction of the uncountable state space to a
finite set of regions. We then show how to map the uncountably many timed
transitions to a finite set of representatives, and finally give the formal defini-
tion of the region graph of a PTA. The following definitions are for a given PTA
M = 〈Loc,C ,A,E, linit, Inv,AP,L〉 and based on [NPS13, Section 5.1].

Definition 74 (Clock equivalence). Let i ∈ N. Two valuations v1 and v2 over
the clock variables C are clock equivalent up to i if and only if
– for all c ∈ C , either v1(c) > i∧ v2(c) > i or v1(c) =Z v2(c), and

PROBABILISTIC TIMED AUTOMATA 205

0

1

2

3

4

1 2 3 4

c2

c1

Figure 5.8: Clock equivalence classes for two clocks and maximum constant 2

– for all c1,c2 ∈ C , either v1(c1)− v1(c2) > i∧ v2(c1)− v2(c2) > i or v1(c1)−
v1(c2) =Z v2(c1)− v2(c2)

where x1 =Z x2 for x1,x2 ∈ R+
0 iff bx1c = bx2c∧ (bx1c− x1 = 0 ⇔ bx2c− x2 =

0), i.e. the “integer parts” of the two values are the same and they are either
both in Z or both in R\Z. The equivalence classes are denoted [v1]iC , [v2]iC etc.
We omit i if it is clear from the context.

Example 37. Figure 5.8 graphically shows a view of the clock equivalence
classes for two clocks c1, c2 and i = 2. Each grey area, line and point is a clock
equivalence class.

The states of the region graph will be pairs of locations and clock equivalence
classes. These are called regions:

Definition 75 (Region). A pair 〈l, [v]C 〉 of a location l ∈ Loc and a clock equi-
valence class [v]imax

C for a valuation v is called a region, where imax, the max-
imum clock constant, is the maximum integer that occurs in any clock con-
straint of the PTA M (i.e. in guards, invariants and atomic propositions). The
set of regions of M is denoted RegM , or simply Reg if M is clear from the
context.

Observe that the set of regions of a PTA with a finite number of locations is
finite, but its size is exponential in the number of clocks [NPS13]:

|RegM| ≤ |Loc| ∙ (2 ∙ imax +2)(|C |+1)2

206 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

We now define the time successor of a region, which will later allow us to
specify the equivalent of delay transitions for the region graph.

Definition 76 (Time successor). The time successor of a region 〈l,α〉 is the
region 〈l,β 〉 where either
– β = α if ∀v ∈ α , t ∈ R+

0 : v+ t ∈ α , or
– β is the unique clock equivalence class s.t. β 6= α and

∃v∈α , t ∈R+
0 : v+t ∈ β ∧∀ t ′ ∈ [0, t] : v+t ′ ∈α∪β ∧JInv(l)K(v+t ′) (5.2)

Otherwise, 〈l,α〉 has no time successor.

For PTA with deadlines, Equation (5.2) can easily be modified to check the
time progress condition for deadlines instead of the one for invariants.

Example 38. Let us assume that the clock equivalence classes shown in the
previous example represent the regions for some location l with Inv(l) = true.
Then the time successor of each region can be found by following the line with
gradient 1 from any point inside the region until it hits a new region. If any
such line never leaves a region, then that region is its own time successor.

We now have all the necessary ingredients to formally define what the region
graph of a PTA is:

Definition 77 (Region graph). The region graph of M is the MDP

RG(M) = 〈RegM,A,TM,〈linit, [0C]〉,AP,LM〉

where LM(〈l,α〉) = L(l)∪
⋃

v∈α {e ∈ AP∩CC S | JeK(v)} and TM is the smallest
function such that the following two inference rules are satisfied:

l
g,a
−→T μ ∃v ∈ α : JgK(v)∧μ∗ = μv,α

M

〈l,α〉
a
−→TM μ∗

(jumpReg)

β is the time successor of α

〈l,α〉
τ
−→TM D(〈l,β 〉)

(delayReg)

where

μv,α
M (〈l′,β 〉) =

{
μ(l′,X) if v′ = v[X 7→ 0] and β = [v′]C
0 otherwise.

Observe the overall similarity to Definition 61: We mostly just replaced valu-
ations by regions and hid the time progress condition inside the definition of
the time successor.

Example 39. The region graph for the simple channel PTA of Figure 5.1 with
TDmin = 1 and TDmax = 2 is shown in Figure 5.9. In this graphical represent-
ation, we describe a clock equivalence class with a predicate that characterises
the valuations it contains.

PROBABILISTIC TIMED AUTOMATA 207

〈l0,c = 0〉

〈l0,c ∈ (0,1)〉

〈l0,c = 1〉

〈l0,c ∈ (1,2)〉

〈l0,c = 2〉

〈l0,c > 2〉

〈l1,c = 0〉

〈l1,c ∈ (0,1)〉

〈l1,c = 1〉

〈l1,c ∈ (1,2)〉

〈l1,c = 2〉

〈l2,c = 0〉

〈l2,c ∈ (0,1)〉

〈l2,c = 1〉

〈l2,c ∈ (1,2)〉

〈l2,c = 2〉

〈l3,c = 0〉

{collision}

snd_ data

snd_ data

snd_ data

snd_ data

snd_ data

snd_ data

τ

τ

τ

τ

ττ

τ

τ

τ

τ

τ

τ

τ

τ

τ

95
100

5
100

95
100

5
100

rcv_data

rcv_data

rcv_data

τ

τ

τ

snd_data snd_data

snd_data snd_data

Figure 5.9: Region graph of the lossy communication channel PTA

208 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Model checking The region graph is equivalent to the original PTA in the
sense that the semantics of properties specified in the temporal logic PTCTL
on the PTA and on the region graph lead to the same results as long as the
PTA is structurally divergent. The latter is a syntactic property that ensures that
all schedulers for the PTA’s semantics are time-divergent [NPS13]. Otherwise,
only maximum probabilities are preserved. However, there is an algorithm
that can be used to lift the restriction to structurally divergent PTA even for
minimum probabilities [Spr09].

To check probabilistic timed reachability, we can thus construct the region
graph for the PTA and use MDP model checking techniques on it to verify
maximum probabilistic (timed) reachability properties, but not expected-time
reachability. The boundary region graph can be used for expected-time proper-
ties [NPS13]. However, as the size of the region graph is exponential in the size
of the PTA, model checking in this way has exponential runtime and memory
usage in general. It is considered not to be useful in practice.

Forwards Reachability

The region graph gets very large even for small models. Yet, as we were able
to see in Example 39, the behaviour of many regions may actually be the same.
This observation has already been made for TA and led to the development of
zone-based approaches. A zone is a convex combination of regions:

Definition 78 (Zone). Given a set of clocks C , a zone Z is a set of valuations
described by a basic (integer) clock constraint. Given an integer i > 0, the set
of zones is denoted ZZ (C , i),

ZZ (C , i) def= {{v∈Val(C) | JeK(v)} | e∈CC B(C)∧all constants in e are≤ i}.

The set of zones of a PTA M is ZZ (M) def= ZZ (C , imax) where C is the set of
clocks of M and imax is the maximum integer that occurs in any clock constraint
of M. As usual, we omit C if it is clear from the context.

In the forwards reachability approach to model-check PTA [KNSS02, DKN04],
a finite MDP representing the PTA is constructed by following edges and delay
transitions from the initial state. However, instead of representing the valu-
ations for the clocks as regions, zones are used. Since a single zone can rep-
resent the union of a large number of regions, this can result in significantly
smaller MDP in practice. We omit the details of this construction, which can
be found in [KNSS02], here in favour of an example:

Example 40. The zone MDP for the simple channel PTA of Figure 5.1 is shown
in Figure 5.10, again for TDmin = 1 and TDmax = 2. Compare to the region
graph shown in the previous example.

PROBABILISTIC TIMED AUTOMATA 209

〈l0, true〉〈l1,c ∈ [0,2]〉 〈l2,c ∈ [0,2]〉

〈l3, true〉

{collision}

snd_ data95
100

5
100

rcv_data τ

snd_data snd_data

τ

τ τ

τ

Figure 5.10: Zone MDP for the lossy communication channel PTA

As for the region graph, standard model checking techniques can then be used
on the resulting zone-based MDP to verify the properties at hand. However, this
approach only results in correct upper bounds on maximum probabilistic timed
reachability properties in quantitative form. Consequently, it is only applicable
to properties in qualitative form if the comparison operator used is ≤ or <, and
can only answer true or unknown in that case. On the other hand, although
the zone-based MDP may be the region graph in the worst case, it is usually
significantly smaller, making the forwards reachability approach applicable to
realistic models.

Backwards Reachability

The efficient representation of clock valuations with zones can be used in a
backwards exploration of the PTA, too. In this approach [KNSW07], instead of
computing time and edge successors starting from the initial state as in the pre-
vious two techniques, time and edge predecessors are computed from the target
states of the reachability property, i.e. the φ -states. The result is, again, a finite
MDP, and it allows the verification of the full logic PTCTL. However, some
operations in this approach lead to non-convex “zones”, so a more complicated
data structure needs to be used (such as sets of zones). This has an impact on
runtime. In the end, though, the resulting MDP are usually very small, and the
approach is practically useable.

Digital Clocks

Another alternative that relies on the reduction of a PTA to a sufficiently equi-
valent MDP is the digital clocks approach. It works by replacing the real-valued

210 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

〈l0,cd = 0〉

〈l0,cd = 1〉

〈l0,cd = 2〉

〈l0,cd = 3〉

〈l1,cd = 0〉

〈l1,cd = 1〉

〈l1,cd = 2〉

〈l2,cd = 0〉

〈l2,cd = 1〉

〈l2,cd = 2〉

〈l3,c = 0〉

{collision}

snd_ data

snd_ data

snd_ data

snd_ data

tick

tick

ticktick

tick

tick

tick

tick

tick

95
100

5
100

95
100

5
100

rcv_data

rcv_data

τ

τ

snd_data snd_data

snd_data snd_data

Figure 5.11: Digital clocks MDP of the lossy communication channel PTA

clock variables of the PTA by integer variables that are bounded by the max-
imum constant the relevant clock is compared to in any clock constraint plus
one. When we then apply the PTA semantics (Definition 61) using delays of 1
only, the result is an MDP that is usually larger than the zone-based one, but
smaller than the region graph.

Example 41. The digital clocks MDP for the simple channel PTA of Figure 5.1
with TDmin = 1 and TDmax = 2 is shown in Figure 5.11. Delay transitions are
labelled tick here. Compare to the region graph and zone MDP of the previous
two examples.

However, some information is lost when reals are replaced by integers, namely
the difference between open and closed clock constraints, e.g. between c > 1
and c ≥ 1. The digital clocks method thus only works correctly for PTA in

PROBABILISTIC TIMED AUTOMATA 211

approach prob exp logic results tool support

region graph
[KNSS02]

(X) – (X) exact –

forwards reachability
[KNSS02]

max – – upper bounds (unavailable)

backwards reachability
[KNSW07]

X – X exact (unavailable)

digital clocks
[KNPS06]

X X –
exact

(closed PTA only)
mcpta [HH09],

PRISM

stochastic games
[KNP09]

X – – exact (PRISM)

Table 5.3: Model checking approaches for PTA [HH09, NPS13]

which all clock constraints are closed and diagonal-free1. In that case, however,
the results of verifying probabilistic timed reachability as well as expected-
reward properties on the MDP are valid for the original PTA. This is currently
the only (practical) approach that allows expected-reward properties to be ana-
lysed.

Stochastic Games

The last approach to model checking (diagonal-free) PTA that we mention uses
abstraction refinement based on stochastic games [KNP09]. It also relies on
a forward exploration of the zone MDP for the given PTA, but then uses it to
construct a stochastic game abstraction. In this game, one player controls the
nondeterminism that was originally in the MDP, while the other controls the
nondeterminism that was introduced by the abstraction. This abstraction is then
refined until the probabilities for the probabilistic timed reachability properties
at hand are obtained exactly. Again, the final game obtained upon termination
of the refinement process can be the entire region graph in the worst case, but is
usually much smaller. Indeed, this approach is currently known to be the most
competitive in terms of runtime in practice.

Summary

Table 5.3 gives a concise overview of the approaches we presented in this sec-
tion. Columns “prob”, “exp” and “logics” refer to whether the techniques can

1The support of diagonals is possible with extra bookkeeping information about the relationships
between clocks when the “open regions” beyond the maximum clock constants are reached, but
this is typically not implemented.

212 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

handle probabilistic timed reachability, expected-reward properties, and the full
temporal logic PTCTL, respectively. We see that there is no method that can
verify both PTCTL and expected-reward properties. In fact, the latter can only
be checked using the digital clocks approach. While the region graph (and
boundary region graph) construction works for PTCTL (and expected-reward
properties), its main purpose is to show the decidability of PTA model checking
because an implementation is not considered practical.

Naturally, in practice, tool support is a crucial issue, too. Of the five ap-
proaches presented, only two have been implemented in publicly available,
stable model checking tools: mcpta, developed by the author and part of the
MODEST TOOLSET, was the first tool to allow fully automatic model check-
ing of PTA [HH09]. It uses the digital clocks technique and additional op-
timisations to obtain an MDP that is subsequently handed to PRISM for the
probabilistic, but untimed, analysis. The PRISM language has meanwhile been
extended to cover PTA as well [KNP11], and the digital clocks and stochas-
tic game-based approaches have been implemented. However, only a severely
restricted subset of the PRISM language can be used for the latter (which, for
example, does not allow the use of global variables), making the construction of
realistic models cumbersome. To the author’s knowledge, tools supporting the
forwards and backwards reachability techniques never left a prototypical stage
and have not been released to the public. An implementation using the region
graph has not been attempted because it can only work for tiny PTA models.

5.6 Statistical Model Checking

We have seen in the previous chapter that it is difficult to devise a statist-
ical model checking method that achieves both correct results and almost-
constant memory usage for a model with nondeterministic choices. Probab-
ilistic timed automata contain continuous nondeterminism in delays in addition
to the already challenging nondeterministic choices of MDP. This appears to
make statistical model checking for PTA an even harder problem than for MDP.

In this section, we review a number of approaches to apply SMC to PTA
models. First, we consider the model of PTA without continuous nondetermin-
ism, i.e. time-deterministic PTA, in Section 5.6.1. Then, similar to how we
studied ways to resolve nondeterminism in MDP in Section 4.6.1, we look
at scheduling options for nondeterministic delays in Section 5.6.2. Both ap-
proaches entail removing the continuous nondeterminism, either by restriction
of the model or by introducing a time scheduler, and thus allow us to ap-
ply the SMC techniques we presented for MDP in the previous chapter. A

PROBABILISTIC TIMED AUTOMATA 213

very particular implementation of a scheduling policy for PTA is part of UP-
PAAL SMC [DLL+11b]. We explain the motivation and ideas behind this policy,
as well as some surprising effects, in Section 5.6.3. Finally, we give an over-
view of possible ways to perform SMC for general nondeterministic PTA in
Section 5.6.4, which all ultimately map back to the problem of SMC for non-
deterministic MDP that we studied in the previous chapter.

5.6.1 Time-Deterministic PTA

The main feature of the PTA model is the ability to represent nondeterministic
delays, i.e. continuous nondeterministic choices over time. If all delays in a
PTA have fixed durations, we call it a time-deterministic PTA:

Definition 79 (TDPTA). A PTA M with TPTS semantics

JMK= 〈Loc×Val,ΣLoc×Val,R
+]A,TM,〈linit,0〉,AP,LM〉

is time-deterministic, or equivalently a time-deterministic probabilistic timed
automaton (TDPTA), if AP is countable and for all reachable states 〈l,v〉 of
JMK, we have that if there is an action-labelled transition 〈a,μ〉 ∈ TM(〈l,v〉),
then there is no delay-labelled transition in TM(〈l,v〉).

This means that, in a TDPTA, an edge must be taken as soon as it becomes
enabled. This is usually achieved by combining guards of the form c ≥ x for a
clock c and x ∈ R+

0 with the corresponding invariant c ≤ x. For TDPTA, we do
not need to require clock constraints to be integer, and thus allow general clock
constraints whenever we explicitly deal with a TDPTA.

Time-deterministic Semantics

When a modeller creates a TDPTA model, they use a subset of the features of
PTA, namely clocks and clock constraints, to include real-time aspects in their
model in a natural and concise way. However, the same model could directly
be specified as an equivalent (though arguably less natural or concise) MDP by
dropping all “intermediate” delay transitions from the semantics of the TDPTA:

Definition 80 (Time-deterministic semantics). Given a TDPTA M and its se-
mantics JMK as in Definition 79, we define the time-deterministic semantics
of M to be the TPTS

tdet(JMK) = 〈S,ΣS,R
+]A,T det

M ,〈linit,0〉,AP,LM〉

where 〈l,v〉 x−→T det
M

μ if 〈l,v〉 x−→TM μ and either x ∈ A (it is an action-labelled

transition) or x ∈R+∧maxDelay(〈l,v〉) = x (it represents many delay-labelled

214 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

transitions), the function maxDelay is defined by

maxDelay(〈l,v〉) = min{ t ∈ R+ | L(〈l,v〉) 6= L(〈l,v+ t〉)

∨∃a ∈ A,μ ′ ∈ Prob(S) : 〈l,v+ t〉 a−→TM μ ′ }

if such a minimal t exists and maxDelay(〈l,v〉) = ⊥ (assuming ⊥ /∈ A) other-
wise, and the subset of states S ⊆ Loc×Val∪Loc×{∞} contains exactly those
that are reachable from 〈linit,0〉 according to T det

M and the MDP definition of
paths (which we can use because all probability measures can also been seen
as distributions due to Definitions 59 and 61).

The representative delay chosen by the function maxDelay is the shortest one
that leads to either an observable change (i.e. a change in state labelling) or to a
state where an action-labelled transition is enabled, i.e. where no further delay
is possible (by the definition of TDPTA).

Observe that tdet(JMK) is an MDP (in the sense of Proposition 6): It is
finitely branching because the definition of T det

M selects a single representat-
ive delay-labelled transition whenever time can pass. S is countable because
the system is finitely branching and there are at most countably many states
between two action-labelled transitions. The latter is because the set of atomic
propositions of JMK was required to be countable and thus contains at most
countably many clock constraints.

Theorem 7. For a TDPTA M, the semantics (i.e. the value) of any probabilistic
timed reachability or expected-reward query is the same for JMK and tdet(JMK).

Proof. We show that for any time-divergent scheduler S ∈S(JMK), there ex-
ists a corresponding time-divergent scheduler Sdet ∈S(tdet(JMK)) that results
in the same reachability probabilities and expected accumulated rewards and
vice-versa:

ConsiderS as given and π ∈ Pathsfin(tdet(JMK)) with last(π) = 〈l,v〉. Fol-
lowing Definition 79, we distinguish two cases:
a) There is an action-labelled transition 〈a,μ〉 ∈ T det

M (〈l,v〉). Then there is no
delay-labelled transition out of 〈l,v〉, neither in JMK nor in tdet(JMK), but all
action-labelled transitions are present in both. We thus set Sdet(π) =S(π).

b) There is a delay-labelled transition 〈t,D(〈l,v + t〉)〉 ∈ T det
M (〈l,v〉). Then

there is no action-labelled transition out of 〈l,v〉, neither in JMK nor in
tdet(JMK), so S chooses some delay. We set

Sdet(π) = D(〈maxDelay(〈l,v〉),D(〈l,v+ t〉)〉).

In the other direction, ifSdet is given and we consider a path π ∈ Pathsfin(JMK)
with last(π) = 〈l,v〉 that only contains delays chosen by maxDelay, i.e. π is
also in Pathsfin(tdet(JMK)), the cases are:

PROBABILISTIC TIMED AUTOMATA 215

a) There is an action-labelled transition 〈a,μ〉 ∈ TM(〈l,v〉). Then we again let
the schedulers make the same choice, i.e. S(π) =Sdet(π).

b) There is a delay-labelled transition 〈t,D(〈l,v + t〉)〉 ∈ TM(〈l,v〉). If 〈l,v〉 is
also a state of tdet(JMK), then we set S(π) = D(〈t ′,D(〈l,v + t ′〉)〉) where
t ′ = maxDelay(〈l,v〉).

Otherwise, if π /∈ Pathsfin(tdet(JMK)), then S(π) can be anything (as long as
S remains a valid time-divergent scheduler) because that path is not possible
in ind(JMK,S) in the first place.

When Sdet is given, we have ind(tdet(JMK),Sdet) = ind(JMK,S) by con-
struction. When S is given, then the only difference between the two in-
duced systems is that ind(JMK,S) may make complex probabilistic sequences
of delay-labelled transitions where there is only a single such transition with
delay according to maxDelay in ind(tdet(JMK),Sdet). However, due to time
determinism, time additivity and S being time-divergent, we see the same in-
termediate changes in state labelling with probability one in both, and we reach
the exact same next state with an action-labelled transition with probability one
in both, too. Consequently, all reachability probabilities for probabilistic timed
reachability queries must be the same for both schedulers. Due to time addit-
ivity, rate rewards are also preserved, and thus the values of expected-reward
queries.

As a consequence of all of the above, we could have used TDPTA in our defini-
tion of the class of PTA that actually are an MDP towards the end of Section 5.1.
However, the conditions of Definition 79 are requirements on the level of the
semantics of a PTA, while we were looking for “syntactic” requirements that
would allow us to identify a PTA as an MDP without having to consider its
semantics.

SMC for TDPTA

We have seen above that the semantics of a TDPTA is actually an MDP that
satisfies the same properties (including expected-reward ones if we convert rate
rewards on the TPTS into transition rewards in the MDP by calculating the
multiplication of Definition 73 during the transformation). In order to perform
an SMC analysis of a TDPTA, we can thus just perform an SMC analysis of
its MDP semantics using any of the methods we previously described in Sec-
tion 4.6. In particular, discrete nondeterministic choices are allowed in TDPTA
and are preserved in its MDP semantics—the problems of applying SMC to
such a model thus remain, but all solutions that we develop for MDP can be
reused, too. To keep memory efficiency, the MDP semantics would not be con-
structed explicitly and stored in memory, but computed on-the-fly, the main task

216 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

TDmin TDmax TS P_Collision P_Success P_Failure P_Success3 E_Time

2 2 5 0 0.9913 0.0087 0.9042 4.4875

Table 5.4: SMC analysis results for the simple probabilistic-timed BRP

being an implementation of the maxDelay function, which is however straight-
forward.

Example 42. Let us now perform an SMC analysis of the simple probabilistic-
timed BRP model of Example 35. When we set TDmin = TDmax, it turns out
to be a TDPTA whose MDP semantics is deterministic, too. We use TDmin =
TDmax = 2 and TS = 5 for the sender timeout, and check the following proper-
ties:
– property P_Collision = Pmax(<> collision);
– property P_Success = Pmin(<> success);
– property P_Failure = Pmax(<> failure);
– property P_Success3 = Pmin(<> success && time <= 4);
– property E_Time = Xmax(time | success || failure);
Because the entire model is now deterministic, we can soundly simulate the
MDP semantics as if it were a DTMC and use the APMC method with ε = 0.01
and δ = 0.95, so we need to generate k = 18450 simulation runs. In the end,
we observe the means shown in Table 5.4.

5.6.2 Scheduling in Time

In the case where the PTA at hand is not in fact a TDPTA, but we want to
perform an SMC analysis, we have to resolve the nondeterministic selections of
delays. This is in addition to the need to resolve the (discrete) nondeterministic
choices between different enabled edges, which can be done similar to how we
described it for MDP in Section 4.6.1: A resolver R for a PTA gets the current
location and the current valuation of the clocks and returns a distribution over
edges. It is thus a function in Loc×Val → Dist(CC ×A×Dist(P(C)×Loc))
such that

〈g,a,μ〉 ∈ support(R(〈l,v〉)) ⇒ 〈g,a,μ〉 ∈ E(l)∧ JgK(v).

In order to resolve delays, we may use a time scheduler s which selects one
value out of the delays allowed by the invariants for the current valuation. The
selection may be randomised, and it is usually performed in a way such that
the guard of at least one edge is satisfied or time diverges after the chosen
delay. Similar to the resolver, the random selection is achieved by returning a

PROBABILISTIC TIMED AUTOMATA 217

probability measure. A time scheduler s is thus a function in

(Loc×Val)×B(R+
0)×B(R+

0) → Prob(R+
0 ∪{∞})

such that if s(〈〈l,v〉, Ii, Ig〉) = μ and J ∈ B(R+
0), then

Ii ∩ J =∅⇒ μ(J) = 0

where Ii will be the interval [0,x] or [0,y) with x ∈ R+
0 and y ∈ R+ ∪{∞} of

delays allowed by the invariant (which cannot be empty due to the weak in-
variant semantics) and Ig will be the measurable set of delays that result in at
least one edge being enabled. A time scheduler thus resolves continuous non-
determinism over time in a stochastic manner. It may include ∞ in its selection
when Ii is [0,∞) to indicate that time should immediately diverge without any
more edges being taken.

Algorithm 23 shows the adaptation of the simulate function of Algo-
rithm 15 to handle PTA when given a time scheduler s. The “reduction”
of a PTA w.r.t. a time scheduler results in an object that belongs to a model
class more general than PTA due to the continuous probability measures used
to select delays, namely that of time-deterministic stochastic timed automata
(TDSTA), which we present in some more detail in the next chapter (Sec-
tion 6.6). What Algorithm 23 does is in effect to generate and explore the un-
derlying TDSTA on-the-fly. In particular, the delays that are possible without
at any point violating the current location’s invariant are computed in line 6. In
line 7, the delays that lead to enabled edges are computed. Then the scheduler
is invoked on these sets of delays in line 9, and subsequently a particular delay
is sampled from the resulting measure. The loop starting in line 11 performs the
selected delay, but makes sure that all intermediate changes in state labelling
are observed. In order for the min operation in line 12 to be valid, we have
to restrict to PTA that use only closed clock constraints in their set of atomic
propositions. By using ∞− x def= ∞ and assuming ∞ > x for all x ∈ R, we get
the correct behaviour in case the time scheduler decides to let time diverge: We
observe all state labellings that are reachable by just letting time pass before
we can conclude that φ cannot be satisfied any more and we return false. Al-
gorithm 23 is very close to the actual implementation of PTA simulation in the
modes tool of the MODEST TOOLSET, which allows the user to select from a
set of predefined generic time schedulers (and resolvers), but also handles e.g.
deadlines, which we do not cover here.

There are various “natural” or “interesting” time schedulers. We already
hinted at some of them in Example 21, where we also saw that their use, just
like the use of resolvers, cannot lead to sound SMC results. Let us nevertheless
formally define some time schedulers that are popular in practice:

218 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

1 function simulate(M = 〈Loc,C ,A,E, linit, Inv,AP,L〉, R, s, φ , d)
2 〈l,v〉 := 〈linit,0〉, seen :=∅, i := 1
3 while i ≤ d do
4 if φ(LM(〈l,v〉) then return true
5 else if 〈l,v〉 ∈ seen then return false
6 I′i := { t∈R+

0 | JInv(l)K(v+t)∧@ t ′∈R+
0 : t ′< t∧¬JInv(l)K(v+t ′)}

7 Ig := { t ∈ R+
0 | ∃ l g,a−→ μ : JgK(v+ t)}

8 if I′i ∪{0} = {0}∧ Ig ∩{0} =∅ then return false // timelock
9 μs := s(〈〈l,v〉, I′i ∪{0}, Ig〉) // ∪{0} for weak invariants

10 ts := choose a delay ts randomly according to μs
11 repeat
12 t := min({ ts }∪{ t ′ ∈ R+ | LM(〈l,v〉) 6= LM(〈l,v+ t ′〉))}
13 if t = ∞ then return false
14 v := v+ t, ts := ts− t, i := i+1
15 if μs is Dirac then seen := seen∪{〈l,v〉} else seen :=∅
16 if φ(LM(〈l,v〉) then return true
17 else if 〈l,v〉 ∈ seen then return false
18 else if i > d then return unknown
19 until t = 0
20 if ∃ l g,a−→ μ : JgK(v) then
21 μR :=R(〈l,v〉)
22 ν := choose an edge 〈g,a,ν〉 randomly according to μR
23 if μR and ν are Dirac then
24 seen := seen∪{〈l,v〉}
25 else
26 seen :=∅
27 end
28 〈X , l′〉 := choose reset and location randomly according to ν
29 〈l,v〉 := 〈l′,v[X 7→ 0]〉, i := i+1
30 end
31 end
32 return unknown

Algorithm 23: Path generation for a PTA, a resolver, and a time scheduler

PROBABILISTIC TIMED AUTOMATA 219

– ASAP, the as soon as possible scheduler, always selects the minimum value
in Ii ∩ Ig, i.e.

sASAP(〈s, Ii, Ig〉) =

{
D(min(Ii ∩ Ig)) if Ii ∩ Ig 6=∅

D(min(Ii)) otherwise.

In order for the minima to always exist, care must be taken during modelling
to use closed clock constraints for the relevant lower bounds.

– ALAP, the as late as possible scheduler, always selects the maximum value
in Ii ∩ Ig or lets time diverge, i.e.

sALAP(〈s, Ii, Ig〉) =

{
D(max(Ii ∩ Ig)) if Ii ∩ Ig 6=∅

D(max(Ii)) otherwise

where max([x,∞)) def= max((x,∞)) def= ∞ for all x ∈ R. Again, in order for the
maximum values to always exist, care must be taken during modelling to use
closed clock constraints for the relevant upper bounds.

– INV, the invariant scheduler, is a variant of ALAP: it always waits as long
as the invariant allows without taking into account whether an edge is then
enabled or not, i.e.

sINV(〈s, Ii, Ig〉) = D(max(Ii))

assuming, as usual, that the model is such that the maximum exists.
– St, the stochastic scheduler, uses the probability measure that gives max-

imum entropy for the possible set of delays at hand. For bounded delays, it
thus uses the continuous uniform distribution, while the exponential distribu-
tion with some given rate λ is used for unbounded delays. Formally:

sSt(〈s, Ii, Ig〉) =

{
UNI(inf(Ii ∩ Ig),sup(Ii ∩ Ig)) if sup(Ii ∩ Ig) ∈ R

inf(Ii ∩ Ig)+ EXP(λ) otherwise

with sup([x,∞)) def= sup((x,∞)) def= ∞ /∈ R for all x ∈ R and under the assump-
tions that Ig, like Ii, is a single interval and Ii ∩ Ig 6= ∅. The first assumption
is only to achieve a more readable presentation; it can easily be removed
by distributing the probability mass over the multiple intervals and assigning
probability mass zero to all delays in between.

Example 43. Let us now use Algorithm 23 to perform an SMC analysis of
the same simple probabilistic-timed BRP model that we used in the previous
example with the same parameters for the statistical evaluation, but allowing
TDmin and TDmax to have different values. We observe from the results that
the model does not have timing anomalies (i.e. situations where, for example,

220 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

longer local delays at some points lead to a reduction in an overall global delay):
If we use sASAP, this has the same effect as setting TDmax to the value of TDmin.
Conversely, using the sALAP scheduler is the same as setting TDmin to the value
of TDmax. SMC with sINV leads to the same results as using sALAP. Finally,
if we use sSt, we get results that are between those provided by the sASAP and
sALAP time schedulers.

5.6.3 Implicit Stochastic Semantics

Time schedulers as presented above have a global view of delays in a PTA
model. However, when the model at hand is actually a network of PTA, tak-
ing its component structure into account can allow the specification of even
more interesting time schedulers. One particular such scheduler has been im-
plemented in the UPPAAL SMC tool [DLL+11b] to allow SMC of timed and
probabilistic timed automata specified with UPPAAL’s graphical frontend. Al-
though such an analysis is not, in general, sound according to the PTA analogue
of Definition 53, it is interesting to look into how UPPAAL SMC resolves non-
determinism and what the consequences are.

Component-wise stochastic scheduling In order to use UPPAAL SMC, an
NPTA model must conform to certain restrictions that are necessary for the time
scheduler used and that improve simulation performance [DLL+11a, Hof13]:
– Only broadcast synchronisation can be used: On edges, the actions (except

for τ) are suffixed by either “?” or “!” to indicate that they represent an in-
put or an output of the component automaton, respectively. During parallel
composition, for an action a 6= τ , an edge labelled a! can always be taken,
irrespective of the other component automata. However, it then synchronises
with a?-labelled edges in all the automata in which such an edge is enabled.
An a?-labelled edge cannot be taken alone. In this way, broadcast synchron-
isation makes sure that all components that are ready to synchronise do so,
but the other components do not prevent the synchronisation from happening.
It thus provides input-enabledness for all components on all actions a.

– An action a can only appear as an output a!, and a clock c can only be modi-
fied (i.e. reset), in at most one component automaton.

– The automata must be well-formed, i.e. it must not be possible to reach a
location such that its invariant is immediately violated. This is only due to
UPPAAL’s use of a strong invariant semantics.

– Guards and invariants must be basic diagonal-free clock constraints. Location
invariants must correspond to upper bounds on the progress of time, or a rate
expression must be associated to the location.

PROBABILISTIC TIMED AUTOMATA 221

For a model that satisfies these requirements, UPPAAL SMC then selects delays
and edges according to the following simulation procedure [DLL+11a, Hof13]:
1. For each component automaton M, calculate the upper bound dM

max on the
progress of time given by its current location’s invariant. Then select the
delay dM as follows:
(a) If dM

max = ∞, sample dM from the exponential distribution whose rate is
given by the current value of the location’s rate expression.

(b) If dM
max = x ∈ R+

0 , compute dM
min as the infimum delay after which at

least one edge is enabled, then sample dM from the continuous uniform
distribution over the interval [dM

min,d
M
max].

2. Let Mwin = argminM dM bet the component automaton that has picked the
smallest delay, i.e. the one that has “won the race” between the components.

3. Let time advance by dMwin time units.
4. Let F be the set of edges of Mwin that are now enabled and that are labelled

with an output or with τ .
(a) If F =∅, go to step 1.
(b) Otherwise, pick an edge e ∈ F according to U (F), perform that edge,

and go to step 1.
Edges can additionally be assigned weights in order to make some of them
more likely than others in step 4b.

The basic idea of selecting delays and edges in UPPAAL SMC is similar
to the stochastic scheduler sSt. The key difference is that the UPPAAL SMC

method is built around the idea of independence of components: Every com-
ponent selects a delay on its own, without taking the state of the other compon-
ents into account; only after all components have made their decision, a race
semantics simply selects the one that chose the smallest delay to go forward
and execute one of its (output) edges. In a sense, the resulting scheduler is thus
distributed: Its decisions are only based on local knowledge.

Surprising consequences Although the scheduling policy of UPPAAL SMC

may appear simple and intuitive at first glance, it has surprising consequences
that, again, highlight that performing SMC with some arbitrary scheduler can-
not, in general, deliver trustworthy results:

Example 44. If we perform an SMC analysis of the PTA shown in Figure 5.12
using UPPAAL SMC to compute the probabilities to reach locations l1 or l2,
respectively, within some time bound ≥ 10, we obtain the following results:

JPmax(� one)K≈ 0.1 and JPmax(� two)K≈ 0.9

Clearly, these values are far from the actual probabilities, which are both 1, but
this is of course to be expected in an unsound SMC approach. However, what

222 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

l0
c ≤ 10

l1
true

l2
true

{one} { two}

{c := 0}

c ≤ 1, τ c ≥ 9, τ

Figure 5.12: A PTA with counterintuitive semantics in UPPAAL SMC [Hof13]

should be surprising, knowing the way that UPPAAL SMC selects delays and
edges, is that the edges to reach each of the locations are both enabled for one
tenth of the total time, yet the reachability probabilities are different. This is due
to the fact that the uniform distribution used in step 1b is over the entire interval
of time between the first edge being enabled and the upper bound specified by
the invariant. In particular, whether edges become disabled again inside this
interval is not taken into account. Thus, when a delay in the interval (1,9) is
sampled, which happens with probability 8/10, step 4a has to be applied, and that
probability mass is effectively added to the probability of reaching location l2.

Arguably, this example shows once again that using particular schedulers to
perform SMC for nondeterministic models, no matter whether they resolve dis-
crete nondeterminism as for MDP or additionally nondeterministic delays as in
this case, is dangerous unless one fully understands how the scheduler behaves
for the entirety of the model at hand. Usually, reaching this level of under-
standing is as hard as solving the verification problem for the model in the first
place.

5.6.4 SMC for General PTA

So far, we have not seen a way to perform sound SMC for general PTA, i.e.
those that may have discrete nondeterministic choices as well as nondetermin-
istic delays. In fact, to the author’s knowledge, no such approach currently
exists, but there are some obvious possibilities whose practical viability, how-
ever, is currently doubtful:

– We saw in Section 5.5 that the region graph is PTCTL-equivalent to a PTA’s
TPTS semantics. As the region graph is an MDP, we can apply all techniques
that allow SMC for nondeterministic MDP to the region graph of a general
PTA. Unfortunately, we also saw in Section 4.8 that there is currently no con-
vincing SMC technique for general nondeterministic MDP. While the region

PROBABILISTIC TIMED AUTOMATA 223

graph may be “less nondeterministic” than the original PTA if nondetermin-
istic delays correspond to exactly one region, we expect many nondetermin-
istic choices between letting time pass (i.e. advancing to the successor region)
or taking an edge to remain.

– In a similar direction, we could use the digital clocks approach to transform
the PTA into an MDP instead. The main advantage of using digital clocks
compared to regions for exhaustive model checking was that we achieve
smaller state spaces at the cost of some expressivity. However, for a “true”
SMC approach that has (near-)constant memory usage, the size of the state
space does not matter. Still, since a digital clocks valuation covers more
TPTS states than a region, the digital clocks MDP may contain slightly fewer
nondeterministic choices than the region graph.

– In both of the above approaches, we could use POR or confluence reduction
to perform SMC if the nondeterminism is spurious. However, as others have
observed in attempts to define a useful partial order reduction technique for
TA (see e.g. the overview of Minea [Min99]), the passage of time is an impli-
cit synchronisation between all the components in a network of (P)TA. This
means that many transitions are dependent in the sense of a condition like
J1 of Section 4.7.1. It remains to be seen whether a reduction technique that
works directly on the concrete state space, like our confluence-based tech-
nique for MDP, could overcome this problem. In any case, in order for such
an approach to work, all nondeterministic delays would have to be spurious,
i.e. it must not matter for the properties at hand which particular point in time
is selected. We will see a model that is likely to fulfill this condition in the
form of the BRP model with TDmin 6= TDmin, but without properties that have
time bounds or references to rewards, in the next section.

– Finally, we may try to use zones to represent many regions at once during
simulation. The hope is that all edges will be enabled over the entire dura-
tion represented by a particular zone and the nondeterminism over time thus
does not appear as nondeterminism in the zone graph. However, for this to
work, we would first need to prove whether SMC with zones would actually
allow approximations of the actual reachability probabilities or merely of up-
per bounds as was the case for exhaustive model checking (see Section 5.5).
Additionally, domain experts expect that any implementation of such an ap-
proach would not be competitive in terms of runtime due to the computational
overhead involved in dealing with zones [Dav13].

Unsurprisingly, none of these ideas have been implemented in a tool or evalu-
ated on case studies so far. It however remains future work to find out whether
they actually do not work well, or whether there are relevant models that are
amenable to an SMC analysis with one of these techniques.

224 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

5.7 A Bounded Retransmission Example

To conclude this chapter on probabilistic timed automata, let us look at an ex-
ample PTA model that a) represents a real-life communication protocol, that
b) is parameterised to allow the analysis of more or less realistic instances with
exploding state spaces, and that c) is amenable to both exhaustive and statistical
model checking: the bounded retransmission protocol (BRP).

This protocol, originally developed by Philips, has been studied with vari-
ous techniques and focussing on many different aspects of correctness and per-
formance since the early 1990s [HSV93, GvdP96, DKRT97, DJJL01]. Notably,
a timed automata model was used to study the influence of different timeout val-
ues on the correctness of the procotol [DKRT97] using UPPAAL, and a prob-
abilistic, but untimed, PRISM model was used for a quantitative probabilistic
analysis [DJJL01]. The first model that combined these aspects [HH09] was
built as a network of PTA in MODEST and is what we study in this section as
“the (full) BRP model”.

The Model

The simple BRP model that we have developed as a running example through-
out this thesis, starting from the VLTS model of Example 8 and ending with
the probabilistic timed VPTA model of Example 35, actually contains all the
important ideas of the full BRP model: Data is transferred from a sender to a
receiver over lossy communication channels, and there is an upper bound on
the number of retransmissions. The main difference between the full model
and the simple models is that the scenario of the full model is the transmission
of an entire file consisting of N chunks of data (called frames here), and both
sender and receiver contain more complex logic to keep track of the current
state. In particular, they determine whether they are at the start of the file, in
the middle, and whether they have given up such that the transmission failed or
they are unsure if it was successful (which can happen if the very last acknow-
ledgment is lost repeatedly). Additionally, instead of having upper and lower
bounds on the transmission delay, it is fixed to be nondeterministic over the
interval [0,TD]. Furthermore, the probability of message loss of the channel
from sender to receiver is 0.02, while that of the channel that carries acknow-
ledgments back from the receiver to the sender is just 0.01, modelling the fact
that acknowledgments are shorter and thus less likely to be hit by interference.
The parameters of the full model are thus N, the number of chunks/frames to
transmit; MAX, the maximum number of retransmissions per frame (which was
fixed to 1 in our simple model); and TD, the maximum transmission delay. The

PROBABILISTIC TIMED AUTOMATA 225

bool ff, lf, ab; // channel data: first/last frame, alt. bit
bool premature_timeout;

process Receiver() {
bool r_ff, r_lf, r_ab, bit;
clock c;

// receive first frame
if(ff) {

get_k {= c = 0, bit = ab, r_ff = ff, r_lf = lf, r_ab = ab =}
} else {

get_k {= c = 0, premature_timeout = true =}; stop
};
do {
:: invariant(c <= 0) {

if(r_ab != bit) {
// repetition, re-ack
put_l

}
else {

// report frame to upper layers
if(r_lf) { r_ok }
else if(r_ff) { r_fst }
else { r_inc };
put_l {= bit = !bit =} // ack

}
};
invariant(c <= TR)
{

alt {
:: // receive next frame

get_k {= c = 0, r_ff = ff, r_lf = lf, r_ab = ab =}
:: // timeout

when(c == TR)
if(r_lf) {

// we just got the last frame, though
r_timeout; break

}
else {

r_nok;
// abort transfer
r_timeout; break

}
}

}
};
Receiver()

}

Figure 5.13: The receiver process for the bounded retransmission protocol

226 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

MODEST code of the full BRP model is part of the MODEST TOOLSET down-
load, and we show its receiver process, which gained the most in complexity
compared to the simple models, in Figure 5.13.

Properties

We analyse the following five properties on the full bounded retransmission
protocol model using exhaustive and statistical model checking:
– TA1 checks for the absence of premature timeouts in the receiver, i.e. for the

situation that the receiver thinks that the transmission of a file was aborted
by the sender when in fact it was not. The result is true if no premature
timeout is possible, and false otherwise. We expect the verification result
JTA1K = true if the protocol is correct. It should be noted that this property
is not a probabilistic timed reachability or expected-reward property, but a
non-probabilistic invariant property that is specified in MODEST as

property T_A1 = A[](!premature_timeout);

where the Boolean variable premature_timeout is set inside the receiver
process as shown in Figure 5.13.

– PA is a probabilistic reachability property that queries for the maximum prob-
ability that eventually the sender reports a certain unsuccessful transmission
but the receiver got the complete file. In MODEST syntax, the property is
written as

property P_A = Pmax(<> s_nok_seen && r_ok_seen);

where the two Boolean variables observed in the property are set in the model
when the corresponding conditions are satisfied for the first time; this can be
seen in Figure 5.13 for r_ok_seen. We expect the verification result to be 0
if the protocol is correct, i.e. the view of sender and receiver of what has been
successfully transmitted should not go out of sync.

– P1 is similar to PA: This probabilistic reachability property asks for the max-
imum probability that eventually the sender does not report a successful trans-
mission, but rather that it reports that transmission was not successful (“nok”)
or that it does not know whether it completed successfully (“dk” for “don’t
know”). As mentioned, the latter can happen if the acknowledgments for the
last frame get lost. The property in MODEST is

property P_1 = Pmax(<> s_nok_seen || s_dk_seen);

In this case, we expect some—hopefully low—probability > 0: Due to the
bound on the number of retransmissions, an unsuccessful transmission is ac-
tually possible.

PROBABILISTIC TIMED AUTOMATA 227

– Dmax is a probabilistic timed reachability property,

property D_max = Pmax(<> s_ok_seen && time <= 64);

in MODEST. It asks for the the maximum probability that the sender reports
a successful transmission within 64 time units. The result for this property is
expected to vary with all three of the model parameters.

– Emax, the last property we check, is an expected-reward property that com-
putes the maximum expected time until the transfer of the first file is finished
(successfully or unsuccessfully). In MODEST, it is written as

property E_max = Xmax(time | first_file_done);

using the predefined global time reward time.
Property TA1 was first analysed in [DKRT97]. PA and P1 are from [DJJL01].
Dmax and Emax combine probabilities and time and were introduced together
with the PTA model we study here in [HH09].

Analysis and Results

For exhaustive model checking, we first analyse the nondeterministic overap-
proximation of the model (cf. Definition 67) using mctau, which relies on UP-
PAAL for a timed automata analysis using zone-based techniques. We then
use the digital clocks approach with both mcpta, which relies on PRISM for
the MDP analysis (using PRISM’s default “hybrid” engine that partially relies
on variants of binary decision diagrams to reduce memory usage), and mcsta,
which is a fully explicit-state model checker. Finally, we perform SMC us-
ing modes with the ALAP scheduler, for which we know (by manual analysis
of the behaviour of the model) that it delivers the actual maximum probabilit-
ies/values for all the properties except for Dmax. As in Example 42, we generate
k = 18450 simulation runs to get ε = 0.01 and δ = 0.95 in the APMC method.
All measurements are then performed on a 1.7 GHz Intel Core i5-3317U system
with 4 GB of RAM running 64-bit Windows 8.1.

The analysis results are shown in Table 5.5. For each model instance and
analysis tool used, we show the probabilities respectively values we get for the
different properties. mcsta and modes currently do not support the nonprobab-
ilistic property TA1, but would support computing the probability of a premature
timeout. Conversely, mctau cannot handle the reward-based property Emax. In
column “states”, we give the maximum number of states that had to be kept in
memory at any point in time during the analysis, while column “time” reports
the total runtime needed to complete the analysis of all five properties. We
should note that the number of states is an indicator of memory usage, but in
practice, even similar numbers of states may require vastly different amounts

228 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

parameters tool TA1 PA P1 Dmax Emax states time

N = 16,
MAX = 2,

TD = 1

mctau true 0 [0,1] [0,1] – 833 0 s

mcpta true 0 4.23 ∙10−4 0.99958 33.473 170 885 6 s

mcsta – 0 4.23 ∙10−4 0.99958 33.473 206 498 2 s

modes – ≈ 0 ≈ 3.8 ∙10−4 ≈ 0.9996 ≈ 33.46 2 13 s

N = 16,
MAX = 2,

TD = 4

mctau true 0 [0,1] [0,1] – 833 0 s

mcpta true 0 4.23 ∙10−4 0.99958 132.413 758 163 26 s

mcsta – 0 4.23 ∙10−4 0.99958 132.413 789 271 12 s

modes – ≈ 0 ≈ 3.3 ∙10−4 ≈ 0 ≈ 132.42 2 13 s

N = 64,
MAX = 5,

TD = 1

mctau true 0 [0,1] [0,1] – 7934 1 s

mcpta true 0 4.48 ∙10−8 0.99999 133.897 2 212 828 178 s

mcsta – 0 4.48 ∙10−8 0.99999 133.897 2 422 332 37 s

modes – ≈ 0 ≈ 0 ≈ 0 ≈ 133.88 2 46 s

N = 64,
MAX = 5,

TD = 4

mctau true 0 [0,1] [0,1] – 8151 1 s

mcpta true 0 4.48 ∙10−8 0.99876 529.692 4 916 483 471 s

mcsta – 0 4.48 ∙10−8 0.99876 529.692 5 002 765 149 s

modes – ≈ 0 ≈ 0 ≈ 0 ≈ 529.73 2 47 s

Table 5.5: Analysis results and performance for the full BRP model

of memory depending on how the state space is represented in memory. In par-
ticular, we observed that mcsta consistently used between five and ten times
as much memory as mcpta. This is likely due to PRISM’s use of decision dia-
grams, which however comes at an obvious runtime cost.

The first observation we make when looking at the results that are shown
in Table 5.5 is the clearly visible difference between the exhaustive and statist-
ical model checking approaches. SMC needs only two states in memory at any
time (it cannot do with only one because of the atomic assignment semantics
of MODEST, which means that assignments cannot be performed on-the-fly on
a single state), while exhaustive model checking needs to store up to about five
million states on which to perform value iteration. On the other hand, the dif-
ference in runtime is not so clear; SMC is faster here for the larger instances,
but does not produce useful results for at least P1 because the actual probability
is too small, i.e. the event to observe is too rare. Note that the reported result is
still correct w.r.t. the confidence ε = 0.01 and δ = 0.95 that we used. In order

PROBABILISTIC TIMED AUTOMATA 229

to get numbers 6= 0, we would need a much smaller value for ε , consequently
many more simulation runs, and thus also a much higher runtime. SMC how-
ever works well to estimate expected rewards, but it must be noted that the
APMC method applies only to the estimation of probabilities. The reported
value for Emax is thus simply the mean of the observations during simulation,
without any attached confidence. However, we could, for example, have com-
puted confidence intervals for it.

We furthermore see that the performance of both SMC and the analysis
with mctau appear immune to changes in TD, i.e. to longer (nondeterministic)
delays in the model. For SMC, this is because Algorithm 23 jumps from one
point in time directly to the next point at which either the state labelling changes
or an edge becomes enabled, no matter how much time passes in between.
For mctau, this is rooted in UPPAAL using a zone-based approach, which can
represent larger intervals of time within a single zone. Consequently, the state
spaces that UPPAAL explores are much smaller than the ones of the digital
clocks-based approaches, which suffer from state space explosion when TD
is increased. mcsta generates slightly larger state spaces than mcpta because
it currently does not perform certain optimisations such as an active clocks
reduction.

Finally, we observe that mctau, despite working only on the nondetermin-
istic overapproximation of the PTA, is able to give us useful results: We can
already be sure that TA1 and PA do deliver the expected results without hav-
ing to perform the more expensive probabilistic analysis with mcpta or mcsta.
Also as expected, SMC with modes and the ALAP scheduler gives us results
consistent with exhaustive model checking for all properties save Dmax. This
is because it is actually advantageous to complete transmissions as soon as
possible if one wants to maximise the probability of succeeding within a time
bound. We could thus informally say that the switch between ASAP and ALAP
is done automatically in exhaustive model checking depending on the property,
whereas it is a decision of the user when performing SMC. We argue that this
shows once again that using some scheduler to perform SMC is not a good idea
in general and that there is a dire need for sound techniques to be developed
instead.

5.8 Summary and Discussion

We extended MDP with real-time aspects in this chapter, which led to the model
of probabilistic timed automata. They can be seen as the orthogonal combina-
tion of MDP and timed automata, the latter of which we defined as a submodel

230 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

of PTA here. An alterative name would thus be “timed MDP”. PTA are par-
ticularly well-suited to study communication protocols, as substantiated by our
running example and full BRP case study. After the definition of PTA and
their semantics, we have focused on the difference between PTA with invari-
ants and the alternative model of PTA with deadlines. PTA can be modelled
in MODEST, and we presented the necessary language constructs. For verific-
ation, we specified probabilistic timed reachability properties as an extension
of the probabilistic reachability properties we already considered for MDP, and
we introduced rewards and the corresponding class of expected-reward prop-
erties. We then reviewed the current state of the art in exhaustive PTA model
checking, before looking into how statistical model checking could be applied.

As mentioned, there are two “competing” ways to restrict the passage of
time in PTA: invariants and deadlines. In line with popular tools such as UP-
PAAL and PRISM, we focus on PTA with invariants. As a core contribution
of this thesis, we have shown that the two ways differ in expressiveness and
modelling convenience, but that there are large subclasses of PTA with invari-
ants respectively deadlines that can be converted into each other. We provided
such a transformation procedure for both directions, where the case of trans-
forming deadlines into invariants was more involved. We have shown that the
transformation is correct.

In our comparison, we took the definition of deadlines verbatim as origin-
ally given in [BDHK06]. It would be simple to modify this to achieve the same
basic expressivity as invariants (while the compositionality advantages remain
unchanged) by replacing the strict comparison by a non-strict one in the relev-
ant time progress condition. The question, then, is whether the resulting type
of deadlines is more or less useful than before, and whether the semantics still
matches the intuitive understanding of what a deadline resp. an urgent edge rep-
resent. When it comes to compositionality, deadlines provide the ability to use
various operators to combine the constraints of synchronising edges. In particu-
lar, the choice of operator is not limited to conjunction and disjunction [BS00],
which we focused on. It may be worthwhile to investigate whether other oper-
ator combinations are elegant and useful in the setting of PTA and MODEST.

The problem of exhaustive model checking of PTA appears to be largely
solved: There is a range of methods with different strengths and weaknesses,
and useable tool implementations exist. While there is still room for the devel-
opment of new methods that perform better, or that work well with complex
logic-based properties, we instead focussed more on the problem of SMC for
PTA, for which no reasonable solution currently exists. We have seen that it
should be possible to adapt methods developed for MDP to PTA by using re-
ductions such as the digital clocks approach, but it remains doubtful whether

PROBABILISTIC TIMED AUTOMATA 231

these methods (in particular the POR- and confluence-based ones) can deal with
the kinds of nondeterminism typically present in PTA, and whether they scale to
large models (in particular concerning the more memory-intensive approaches
such as the ones based on learning). In summary, no sound technique for SMC
of general PTA currently exists, but further research in the area of SMC for
MDP can likely be transferred to the PTA setting to a large extent.

Finally, in our study of the bounded retransmission protocol as a large ex-
ample of a PTA model, we saw interesting tradeoffs between, and the character-
istic behaviours of, exhaustive and statistical model checking. The model is a
rather straightforward extension of the ideas that we introduced in the running
example throughout this thesis so far, and highlights the strength of PTA in
representing the aspects necessary to model communication protocols and the
settings they need to operate in. This has been recognised early on in the devel-
opment of PTA, and a number of different protocols have already been studied.
These include the original PTA case study of the IEEE1394 root contention
protocol [KNS03] and a safety-critical hard real-time system in the form of a
wireless bike brake [GHK+11]. PTA with rewards have been used to study the
energy implications of different options of IEEE 802.15.4 [GHP07], which is
the basis of e.g. the ZigBee communication protocols, and to compare the en-
ergy efficiency of simple and distributed slotted Aloha MAC protocols as used
in wireless sensor networks [YBKK11].

Stochastic Timed Automata 6
The model of probabilistic timed automata that we have seen in the previous
chapter is suitable for modelling so-called hard real-time systems. In that set-
ting, delays have exact upper and lower bounds, and timing requirements are
strict. However, in many settings, this is either unrealistic (we may not know
the exact bound, but merely what the average delay is) or it leads to models and
requirements that are too strong w.r.t. the actual system (we may not even be
interested in worst-case timings, but be satisfied with a mean response time that
is low enough).

Consider the example of the electronic trading system that we mentioned
earlier: If part of the communication necessary to execute an order is performed
over the Internet, we will not be able to guarantee an upper bound on the time
between order placement and execution due to the Internet’s best-effort-only
nature. However, we can probably work with an assumption that, given a par-
ticular connectivity setting, communication finishes on average within t time
units with some quantifiable deviation. In that case, we want to be able to still
guarantee, for example, that the expected time between order placement and
execution is within f (t)± t ′ in at least 95% of all cases.

As a standard example where it is not the requirements that need to be
softened, but where we need stochastic delays inside a model, consider the
handling of some kinds of customers at a service desk. This could be a cash
register in a supermarket, or a server handling requests on a network. In the
server case, let us assume that the service time is dominated by the seek time
incurred when fetching some file from a hard disk. If we know some char-
acteristics of the disk, we should be able to obtain a hard upper bound stmax

on that time (e.g. for the worst case that the file is at one “end” of the platter
and the disks heads are as far away as possible). Still, using a nondetermin-
istic delay of [0,stmax] may lead to an overly pessimistic analysis when we
could also assume that, in normal operation, the disk heads are always at a uni-
formly distributed random position; we thus would like to model the delay as

234 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

exactly following U (0,stmax) instead. For the case of the customers, on the
other hand, we rarely have such inside knowledge, but we still need to include
their interarrival time, i.e. the time between the arrival of one customer and the
next, in the model. When all that we know is that they arrive at some rate λ , e.g.
λ = 5customers/minute, we like to take the (continuous) distribution that max-
imises entropy under this knowledge, which means that we model interarrival
times as following the exponential distribution with rate λ .

For cases like these two examples where delays and time bounds are not
“exact” or “strict”, but rather (are allowed to) follow some probability measure
over time, we are dealing with soft real-time systems. A number of modelling
formalisms exist to capture such systems, including continuous-time Markov
chains (CTMC) and derived models such as Markov automata [EHZ10], which
are based on purely exponentially distributed delays, or the more flexible, but
deterministic, generalised semi-Markov processes (GSMP, [HS87]). In this
thesis, we focus on an extension of PTA that allows soft real-time aspects to
be included in addition to hard real-time ones in a single model. Following the
convention of using the word stochastic to refer to uses of continuous probabil-
ity measures, we call this model stochastic timed automata (STA, [BDHK06]).
On the level of syntax, they only add the ability to assign to variables val-
ues sampled from continuous probability measures and values selected non-
deterministically from some (uncountable) sets. In the semantics, however,
some important changes need to be made to accommodate these new features.
In particular, we from now on use the stochastic-nondeterministic semantics for
expressions and updates that we defined in Section 2.3.

We start this chapter with the customary introduction of the extensions
in syntax and semantics necessary to extend PTA to STA (Section 6.1). This
includes the usual overview of submodels, where however, in addition to pre-
cisely characterising the relationship to PTA, we also present a brief outlook on
CTMC-based models and the challenges involved in mapping them to STA and
vice-versa. We then show how to write STA models in MODEST (Section 6.3)
and formally define the meaning of probabilistic reachability and expected-
reward properties (Section 6.4). In Section 6.5, we show how to analyse these
properties with an exhaustive model checking technique, which is the main
contribution of this chapter: an algorithm to compute upper/lower bounds on
maximum/minimum reachability probabilities and expected cumulative reward
values in a given STA. The algorithm uses abstraction to convert the STA into
a PTA, which can then be analysed using existing PTA model checking tech-
niques (cf. Section 5.5). We show the correctness of the abstraction for the
considered properties. The underlying theory was originally developed for sto-
chastic hybrid systems [FHH+11, Hah13]; we explain how we take advantage

STOCHASTIC TIMED AUTOMATA 235

of the specialisation to timed systems to improve scalability, usability and ap-
plicability. We have implemented the new approach as part of the MODEST

TOOLSET, which allows us to investigate its effectiveness and efficiency using
four different example models. Finally, in Section 6.6, we briefly investigate to
what extent the statistical model checking methods we have presented for PTA
in the previous chapter can be transferred to the continuous-probability setting
of STA.

Origins

Stochastic timed automata were originally introduced to define the symbolic
semantics of the MODEST language [BDHK06]. The definitions that we give
in Section 6.1 are based on a combination of [HHH14] and [HHHK13]; in both
cases, the majority of the definition of the concrete semantics was originally
written by Ernst Moritz Hahn. The example of Figure 6.1 was designed by the
author for [HHH14]; likewise, Example 49 was worked out by the author and
first appeared in that same article.

The STA analysis method we present in Section 6.5 has been developed
in joint work with Ernst Moritz Hahn and Holger Hermanns [HHH14]. It is
an adaptation to the STA setting of more general theory originally developed
by Moritz for his Ph.D. thesis [Hah13]. Aside from triggering the research in
the first place, Moritz wrote the correctness proof (in Section 6.5.1), while the
rest of the section has been written by and is based on work (in particular the
implementation in mcsta and the selection and evaluation of the case studies)
performed by the author. The overview of related work has benefited from input
by Holger.

6.1 Definition

Stochastic timed automata are by definition a model with variables, but in con-
trast to e.g. VMDP (Section 4.2), we do not restrict these variables to have
countable domains. This allows us to not only include clocks, but also “nor-
mal” variables whose domain is R, too. These variables can then be used for the
two new features compared to PTA: the ability to assign to such real variables
1) values sampled from some arbitrary distribution or measure or 2) values se-
lected nondeterministically from some set. We can thus use assignments like
x1 := UNI(0,

√
2) to sample a value out of [0,

√
2] according to the continuous

uniform distribution, x2 := EXP(λ) to select y using the exponential distribution
with rate λ , x3 := NORM(5,2) to sample the normal distribution with mean 5
and standard deviation 2, or y := any(z | z >

√
2) to nondeterministically select

a real value greater than
√

2, to name a few examples.

236 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

We want to make sure that, when we allow these non-clock variables to occur in
a model, clocks still remain restricted to expressions that conform to the clock
constraint pattern. To achieve this, we extend our definition of clock constraints
in a conservative way such that they also allow Boolean expressions over non-
clock variables as well as comparisons between clocks and non-clock variables.
From now on, clock constraints over a set of clocks C are thus expressions in
Bxp of the form

CC (C) ::= b | CC ∧CC | CC ∨CC | c ∼ e | c1 − c2 ∼ e

where ∼ ∈ {>,≥,<,≤,=, 6=}, c,c1,c2 ∈ C and b ∈ Bxp, e ∈ Axp are clock-
free expressions. With this extension, the model of stochastic timed automata
can be defined as follows:

Definition 81 (STA). A stochastic timed automaton (STA) is an 8-tuple

〈Loc,Var,A,E, linit, Inv,AP,L〉

where
– Loc is a countable set of locations,
– Var ⊇ C is a finite set of variables with a subset C of clock variables,
– A ⊇ {τ } is the automaton’s countable alphabet,
– E ∈ Loc → P(CC ×A× (Upd×Loc → Axp)) is the edge function, which

maps each location to a set of edges, which in turn consist of a guard, a label
and a symbolic probability distribution over updates and target locations, with
the restriction that assignments involving a clock c ∈ C must be of the form
c := 0,

– linit ∈ Loc is the initial location,
– Inv∈ Loc→CC is the invariant function, which maps each location to a clock

constraint that allows time to pass as long as it evaluates to true,
– AP is a set of atomic propositions, and
– L ∈ Loc → P(AP) is the location labelling function.

The usual notation that we already used for previous models, such as using ar-
rows to denote edges, can be applied to STA analogously. We can also extend
STA with rewards as introduced for PTA in Definition 71, and the parallel com-
position operator of PTA (Definition 63) applies to STA analogously, too. Let
us illustrate the capabilities of STA with a synthetic example that highlights all
the essential features of the model:

Example 45. The graphical representation of an example STA with reward r
is shown in Figure 6.1. Out of location l2, the edge to l4 can only be taken after
a deterministic delay of 16 time units, while the one back to l0 can be taken
after any delay nondeterministically chosen out of [8,16]. After 16 time units,

STOCHASTIC TIMED AUTOMATA 237

l0
true

l1
c ≤ x∧ ṙ = 1

l2
c ≤ 16

l3
true

{ target}

l4
true

{ target}

true, a
1
2 , {c := 0,x := EXP(λ)}

1
2 , {c := 0}

c ≥ 8, τ

c ≥ x, b

c ≥ 16, τ , {r := r +16}

Figure 6.1: An example stochastic timed automaton

the choice of edge in l2 thus becomes nondeterministic. The delay incurred
in l1, on the other hand, is stochastic: x := EXP(λ) assigns to x a value sampled
from the exponential distribution with rate λ , thus the delay is exponentially
distributed with rate λ . The reward r keeps track of the time spent in l1, and is
increased by 16 upon entering l4.

Semantics

The semantics of an STA is again a TPTS. We can in fact reuse most of Defini-
tion 61 verbatim except for the replacement of C by Var and the jump inference
rule. The latter now needs to take into account the symbolic distribution in the
STA as well as the sampling and nondeterministic expressions in the updates.
Consider a location l and a symbolic probability distribution

m = {〈U1, l1〉 7→ w1,〈U2, l2〉 7→ w2, . . .} ∈ Upd×Loc → Axp

and a distribution μ ∈ Prob(Loc×Val). For i ∈ N+, we let

Mi
def= {D(li)}⊗ JUiK(v)

be the set of probability measures resulting from update Ui (remember that,
by Definition 14, we have that JUiK ∈ Val → Δ(ΣVar)) extended to include the
target locations. Let

w def= ∑
i
JwiK(v) ∈ R

+

be the total sum of the weights. Then the predicate Jmp(v, l,m,μ) holds if there
are μi ∈ Mi ⊆ Prob(Loc×Val) such that μ is their weighted sum, i.e.

∀A ∈ P(Loc)⊗ΣVar : μ(A) = ∑
i

JwiK(v)
w

μi(A).

The distribution μ over jump targets is specified such that the successor location
is chosen according to the relative weights of the weight expressions (with the

238 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

usual requirements of non-zero weights and a positive finite sum as before). For
a fixed successor location li, the distribution over the actual assignments results
from a nondeterministic choice between the possible distributions represented
by Ui. The predicate Jmp can now be used for the definition of the semantics
of STA:

Definition 82 (Semantics of STA). The semantics of an STA

M = 〈Loc,Var,A,E, linit, Inv,AP,L〉

is the TPTS

JMK= 〈Loc×Val(Var),P(Loc)⊗ΣVar,R
+
0]A,TM,〈linit,0Var〉,AP,LM〉

where LM(〈l,v〉) = L(l)∪{e ∈ AP∩Bxp | JeK(v)} and TM is the smallest func-
tion such that the following two inference rules are satisfied:

l
g,a
−→E m Jmp(v, l,m,μ) JgK(v)

〈l,v〉
a
−→TM μ

(jump)

t ∈ R+ ∀ t ′ ≤ t : JInv(l)K(v+ t ′)

〈l,v〉
t
−→TM D(〈l,v+ t〉)

(delay)

The semantics of rewards for STA is identical to their semantics for PTA, which
is why we do not repeat Definition 73 here. The same applies to parallel com-
position.

6.2 Submodels

Stochastic timed automata are an extension of PTA, but by using the expo-
nential distribution in sampling expressions, we should also be able to express
continuous-time “Markovian” models such as continuous-time Markov chains
as special cases of STA, as already postulated in Figure 1.2 in the introduction.

Probabilistic Timed Automata

If we do not allow non-clock variables and consequently cannot use sampling
or nondeterminism in assignments (as clocks can only be reset to zero), an STA
becomes a PTA:

Proposition 7. An STA

M = 〈Loc,Var,A,E, linit, Inv,AP,L〉

where Var = C for a set of clock variables C is isomorphic to the PTA

M′ = 〈Loc,C ,A,E ′, linit, Inv,AP,L〉

STOCHASTIC TIMED AUTOMATA 239

where l g,a−→E ′ μ ′ ∈ E ′ ⇔ l g,a−→E μ with μ ′(〈C, l〉) = μ(〈{c := 0 | c ∈C}, l〉) for
all C ⊆ C . In that case, we also have JMK∼= JM′K, and we say that M is a PTA,
and every PTA is an STA according to this correspondence.

Models Based on the Exponential Distribution

Because the exponential distribution can be used in assignments, we can model
exponentially distributed delays in STA by following a simple recipe: With a
dedicated clock c and non-clock variable x, we reset c to zero and assign to x a
value sampled from the exponential distribution with rate λ . In the following
location, we have invariant c ≤ x and a single outgoing edge with guard c ≥ x.
The time that has to be spent in that location then follows the exponential dis-
tribution with rate λ . The basic model that relies on exponentially distributed
delays is that of continuous-time Markov chains:

Definition 83 (CTMC). A continuous-time Markov chain (CTMC), for the pur-
pose of this thesis, is a 5-tuple

〈S,T,sinit,AP,L〉

where
– S is a countable set of states,
– T ∈ S → P(R+ ×S) is the rate-transition function,
– sinit ∈ S is the initial state,
– AP is a set of atomic propositions, and
– L ∈ S → P(AP) is the state labelling function.

We assume w.l.o.g. that CTMC are deadlock-free, i.e. T (s) 6= ∅ for all s ∈ S.
CTMC are the continuous-time counterpart of DTMC; similarly, they are math-
ematically just instances of stochastic processes (see e.g. [GS01, Section 6.9]),
but we use an equivalent automata-based definition here. Informally, the mean-
ing of a CTMC as defined above is as follows: When in some state s ∈ S, an
outgoing transition s λ−→ s′ is taken after an amount of time that is exponentially
distributed with rate λ . If there are multiple outgoing transitions, this becomes a
race: In any particular run, the transition that “picks” the shortest delay is taken.
An equivalent formulation is thus that the time spent in state s is exponentially
distributed with rate parameter λ (s) = ∑〈λ ,s′〉∈T (s) λ , and the target state is then
chosen according to the distribution {s′ 7→ λ/λ (s) | 〈λ ,s′〉 ∈ T (s)}. This ex-
ploits the fact that the minimum of two exponential distributions is an expo-
nential distribution with the sum of the rates. A CTMC can be encoded as an
STA:

240 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

s

M:

t

u v{a} {b}

3

6 1/2

1 1

s
c〈s,3,t〉 ≤ x〈s,3,t〉

STA(M):

t
c〈t,6,u〉 ≤ x〈t,6,u〉 ∧ c〈t,1/2,v〉 ≤ x〈t,1/2,v〉

u
c〈u,1,u〉 ≤ x〈u,1,u〉

v
c〈v,1,v〉 ≤ x〈v,1,v〉

{a} {b}

{c〈s,3,t〉 := 0,x〈s,3,t〉 := EXP(3)}

c〈s,3,t〉 ≥ x〈s,3,t〉,
τ , {c〈t,6,u〉 := 0,x〈t,6,u〉 := EXP(6),

c〈t,1/2,v〉 := 0,x〈t,1/2,v〉 := EXP(1/2)}

c〈t,6,u〉 ≥ x〈t,6,u〉
∧ c〈t,1/2,v〉 ≥ x〈t,1/2,v〉,

τ , {c〈u,1,u〉 := 0,
x〈u,1,u〉 := EXP(1)}

c〈t,6,u〉 ≥ x〈t,6,u〉
∧ c〈t,1/2,v〉 ≥ x〈t,1/2,v〉,
τ , {c〈v,1,v〉 := 0,

x〈v,1,v〉 := EXP(1)}

c〈u,1,u〉 ≥ x〈u,1,u〉, τ ,
{c〈u,1,u〉 := 0,x〈u,1,u〉 := EXP(1)}

τ , c〈v,1,v〉 ≥ x〈v,1,v〉
{c〈v,1,v〉 := 0,x〈v,1,v〉 := EXP(1)}

Figure 6.2: A CTMC and the corresponding STA

Definition 84. For a CTMC M = 〈S,T,sinit,AP,L〉, the corresponding STA is

STA(M) = 〈S]{ linit },CT]VarT ,{τ },E, linit, Inv,AP,L〉

with a set of clocks CT =
⋃

s∈S{ctr | tr ∈ T (s)}, a set of non-clock variables
VarT =

⋃
s∈S{xtr | tr ∈ T (s)} with domain R+

0 , and the edge function

E(s) = { linit 7→ {〈true,τ ,m(sinit)〉}}

∪ {s 7→ {〈ctr ≥ xtr,τ ,m(s′)〉 | tr = 〈λ ,s′〉 ∈ T (s)} | s ∈ S}

where m(s′) = {〈
⋃

tr=〈λ ,s′′〉∈T (s′){ctr := 0,xtr := EXP(λ)},s′〉 7→ 1} performs
the assignments for the variables needed by the transitions of the target state.
The invariant function is Inv = { linit 7→ false}∪{s 7→

∧
tr∈T (s) ctr ≤ xtr | s ∈ S}.

Figure 6.2 shows an example for a CTMC and its corresponding STA. In the
opposite direction, we could formulate restrictions on STA such that the trans-
formation is applicable in both ways.

This correspondence between CTMC and STA relies on the intuitive un-
derstanding that the STA explicitly expresses the (implicit) semantics of the
CTMC and two corresponding models are thus in some sense “equivalent”.
For example, the reachability probability for some set of states are expected to

STOCHASTIC TIMED AUTOMATA 241

s

M1:

t

u

M2:

v

λ1 λ2

⇒

s
c1 ≤ s1

STA(M1):

t
true

u
c1 ≤ s1

STA(M2):

v
true

{c1 := 0,
x1 := EXP(λ1)}

{c2 := 0,
x2 := EXP(λ2)}

c1 ≥ x1, τ c2 ≥ x2, τ

⇓

〈s,u〉

M1‖M2:

〈t,u〉 〈s,v〉

〈t,v〉

λ1 λ2

λ2 λ1

;

⇓

〈s,u〉
c1 ≤ x1 ∧ c2 ≤ x2

STA(M1)‖STA(M2):

〈t,u〉
c2 ≤ x2

〈s,v〉
c1 ≤ x1

〈t,v〉
true

{c1 := 0,x1 := EXP(λ1)
c2 := 0,x2 := EXP(λ2)}

c1 ≥ x1, τ c2 ≥ x2, τ

c2 ≥ x2, τ c1 ≥ x1, τ

Figure 6.3: Non-compositionality of the CTMC-to-STA correspondence

be the same in the CTMC and in its corresponding STA, so the transformation
preserves probabilistic reachability (modulo a formal definition of reachability
properties for CTMC that we do not give in this thesis). However, it is not
clear how far this equivalence goes, or how to capture it formally; in particu-
lar, the completely different semantics of CTMC (which directly correspond to
stochastic processes and thus are their own semantics in a certain sense) and
STA (in terms of dense probabilistic transition systems) makes reasoning about
paths, bisimulations and similar notions difficult. Additionally, the transforma-
tion is not compositional, as the following example shows:

Example 46. Figure 6.3 shows two CTMC M1 and M2 (with the self-loops
in the final states omitted and variable names shortened for clarity) as well
as their corresponding STA STA(M1) and STA(M2). In contrast to DTMC,

242 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

the natural parallel composition operation for CTMC uses an interleaving se-
mantics [HZ11]. The resulting parallel composition M1‖M2, which is a CTMC,
is shown on the bottom left of the figure. On the bottom right is the parallel
composition of the two STA. The parallel composition operator used in that
case is the one for STA, and the result is an STA. Alas, STA(M1)‖STA(M2) is
not the STA that corresponds to M1‖M2, or, in other words, STA(M1)‖STA(M2)
and STA(M1‖M2) are not isomorphic. We see that in the former, the two ex-
ponential distributions are sampled only once, at the very beginning; then both
clocks start to run and are never reset. In the latter, the (remaining) distributions
would be resampled and the clocks reset on the τ-labelled edges as well.

Because of the exponential distribution’s memoryless property, the parallel
composition of STA corresponding to CTMC and the STA corresponding to
the parallel composition of CTMC as shown in the previous example should
actually behave “the same”: It should not matter if we reset the timer for an
exponentially distributed delay at any point or not. Defining a useful relation
according to which two such STA would be equivalent has been a long-standing
problem (that is not the focus of this thesis) to which a first solution has only
appeared very recently [HKK14].

Nondeterministic memoryless-stochastic models We mention two particu-
lar extensions of CTMC that add nondeterministic choices in a compositional
way, namely interactive Markov chains (IMC, [Her02]) and Markov automata
(MA, [EHZ10]). IMC introduce a second kind of interactive transitions la-
belled with actions, whereas the usual rate-labelled transitions are now called
Markovian. When a state has multiple outgoing interactive transitions, the se-
lection of transition to take becomes a nondeterministic choice just like in LTS.
An interesting point is that a maximal progress assumption is applied for closed
(networks of) IMC: If a state has both interactive and Markovian transitions, the
former take precedence and one of them is executed without delay. MA, as an
extension of IMC, add probabilistic branching to interactive transitions, in the
same way that branching is added when going from LTS to MDP. They are thus
a generalisation of both IMC and MDP (cf. Figure 1.2).

For IMC and MA models, Definition 84 can be easily extended to provide
corresponding STA, too; all the caveats we described for this correspondence
then apply in the same way. Additionally, the issue of compositionality is
compounded by the fact that the values sampled from distributions in an STA
become part of the state space of its TPTS semantics. As a consequence, sched-
ulers can use this knowledge to make different decisions depending on the out-
come of a sampling assignment, which would not be possible in the original

STOCHASTIC TIMED AUTOMATA 243

IMC or MA. With increased scheduling power, certain properties may now lead
to different results; we refer the reader to [HKK14] for details on this problem.

6.3 Modelling

The extensions we need to make to the MODEST modelling language to sup-
port the creation of STA models are very small: We only need to add support
for sampling from probability distributions and measures and for nondetermin-
istic selections to the expressions used on the right-hand sides of assignments.
Formally, all we need to do is to say that these expressions need to be in Sxp as
before, but keep in mind how the definition of Sxp changed for this chapter.

The MODEST TOOLSET implementation uses the same syntax for non-
deterministic selections with any that we used in this thesis so far, and supports
the following distributions in assignments:
– DISCRETEUNIFORM(n,m): the (discrete) uniform distribution U (n,m) for

two integer parameters n and m with n ≤ m, which corresponds to a random
variable with mass function {k 7→ 1/(m−n+1) | k ∈ {n, . . . ,m}};

– BINOMIAL(p,n): the binomial distribution for a real parameter p ∈ [0,1] and
an integer n ∈ N+, which corresponds to a random variable of the number of
successes in n independent Bernoulli trials, each of which has success prob-
ability p. Its mass function is {k 7→

(n
k

)
∙ pk ∙ (1− p)n−k | k ∈ {0, . . . ,n}}.

– POISSON(λ): the Poisson distribution with rate λ ∈ R+, whose probability
mass function is {k 7→ (λ k/k!) ∙ e−λ | k ∈ N}.

– GEOMETRIC(p), which takes the probability p ∈ (0,1) as a parameter and
has mass function {k 7→ p ∙ (1− p)k−1 | k ∈ N+ }.

– EXPONENTIAL(λ) or EXP(λ): the exponential distribution with rate λ ∈R+,
whose cdf is {x 7→ 1− e−λx | x ∈ R}.

– UNIFORM(a,b) or UNI(a,b): the continuous uniform distribution for reals a,
b with a ≤ b and cdf {x 7→ 0 | x < a}∪{x 7→ x−a

b−a | x ∈ [a,b)}∪{1 | x ≥ b}.
– NORMAL(μ ,σ) or NORM(μ ,σ): the normal distribution with mean μ ∈ R

and standard deviation σ ∈ R+, which delivers normally distributed real
values around μ that are within [μ −σ ,μ + σ] in about 68.2% and within
[μ −2σ ,μ +2σ] in about 95.4% of all cases.

Example 47. In Example 35, we changed our simple BRP model to use a lossy
channel that additionally incurred a transmission delay (Figure 5.5). That delay
was modelled as nondeterministically chosen out of the interval [TDmin,TDmax]
for each transmission. In Figure 6.4, we show a different variant of this lossy
channel in MODEST. This time, the transmission delay is still at least TDmin

and at most TDmax, but the concrete value is selected according to the uniform
distribution over this interval. The model of Figure 6.4 can thus be seen as a

244 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

process Channel()
{

clock c;
real x;

snd palt {
:98: {= c = 0, x = Uniform(TD_MIN, TD_MAX) =};

invariant(c <= x) alt {
:: when(c >= x) rcv
:: snd {= collision = true =}; stop
}

: 2: {= c = 0, x = Uniform(TD_MIN, TD_MAX) =};
invariant(c <= x) alt {
:: when(c >= x) tau
:: snd {= collision = true =}; stop
}

};
Channel()

}

Figure 6.4: The lossy channel with stochastic transmission delay in MODEST

specific implementation, i.e. resolution of the nondeterministic choice, of the
nondeterministic channel of Figure 5.5. (In fact, this is the effect that using
the time scheduler sSt of Section 5.6.2 during simulation would have.) When
analysing the nondeterministic channel (without predetermining a scheduler),
all possible (combinations of) delays in [TDmin,TDmax] have to be considered,
including the uniform selection; the new stochastic channel of Figure 6.4 ex-
plicitly forces this resolution to be used. We have thus added more information
to the model and thereby reduced the choices that can be made.

While STA allow a lot of flexibility in how probability measures and sampling
can be used, their most common purpose is to model a stochastic delay as
shown in the example we have seen so far. For this particular use of modelling a
delay whose upper and lower bounds are the same and follow a particular (con-
tinuous) probability distribution, the MODEST TOOLSET provides a convenient
delay shorthand:

delay(edelay,econd) P def= Delay()

where edelay ∈ Sxp, econd ∈ Bxp and Delay is a new, unique process name for
every occurrence of the delay shorthand that is defined as

process Delay() { clock c; real x = edelay;
invariant(c ≤ x∨¬econd) when(c ≥ x∧ econd) P }.

STOCHASTIC TIMED AUTOMATA 245

const int C = 5; // maximum queue length
int(0..C) q; // current queue length

process Arrivals()
{

do {
:: delay(Exp(10/60), q < C) {= q = q + 1 =}
}

}

process Server()
{

do {
:: when(q > 0) invariant(q <= 0) {= q = q - 1 =};

delay(Norm(10, 2)) tau {==} // process customer/request/...
}

}

par {
:: Arrivals()
:: Server()
}

Figure 6.5: An M/G/1/C queueing system in MODEST

In this way, we can simply write e.g. delay(EXP(λ), true) instead of manually
introducing a new clock, a new real variable, resetting the clock, assigning to
the real variable a value sampled from EXP(λ), and then using a combination of
guards and deadlines to achieve the desired delay like in the previous example.
The condition expression econd is necessary to allow postponing the execution
of P when the delay has expired, but some other (untimed) condition is not
yet satisfied. We need to include it in the definition of the shorthand because
there is no way to achieve a disjunction in an invariant when the operands must
appear in different syntactical constructs (cf. the invariant function shown in
Table 5.2). It is an optional parameter of the shorthand that defaults to true.

Example 48. Let us now use the delay shorthand to build a concise model of
an M/G/1/6 queueing system in MODEST as shown in Figure 6.5. It represents
a stream of customers (or requests) that arrive at a single service desk (or a
server), where they are processed one after the other. The time between cus-
tomer arrivals is exponentially distributed (i.e. it is memoryless: M) with rate 1

6 .
The time it takes to process one customer follows the normal distribution (i.e. it
is generally distributed: G) with mean 10 and standard deviation 2. Since clocks
cannot be negative, it is implicitly truncated to values ≥ 0 when we compare
the result to a clock. If we interpret a time unit as 10 seconds, this means one

246 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

customer arrival per minute on average and a service time around 100 s that
is in [60s,140s] in about 95 % of all cases. The queue has length C = 5, not
counting the customer being served, and is initially empty. To make sure that
customer arrivals are blocked when the queue is full, we use the delay short-
hand’s ability to include the condition q< c in the Arrivals process.

This section marks the last point in this thesis where we extend the MODEST

language. As mentioned, the complete syntax and semantics in terms of STA is
given in Appendix A. An extended version with support for complex continu-
ous dynamics, its symbolic semantics in terms of stochastic hybrid automata,
and their concrete semantics as NLMP can be found in full detail in [HHHK13].

6.4 Properties

The semantics of STA is defined in terms of TPTS, just like that of PTA. In Sec-
tion 5.4, we introduced probabilistic timed reachability and expected-reward
properties for PTA, but their semantics was actually defined for the TPTS se-
mantics of PTA. We can consequently use these two classes of properties and
their semantics without changes for STA, too. As a reminder, we thus consider
the following forms of properties:

Probabilistic timed reachability: Pmax(�φ), Pmin(�φ) and P(�φ) ∼ x

Expected-reward properties: Xmax(r | φ), Xmin(r | φ) and X(r | φ) ∼ x

where the φ are state formulas that may include clock constraints and r is a
reward.

Example 49. We are interested in the probability of reaching a target-state,
i.e. one whose location is l3 or l4, within at most t time units in the STA of
Example 45. The minimum probability is JPmin(� target)K = 0 because the
invariant of l0 allows us to stay there forever. If t < 8, we can only reach
l3 and thus compute the maximum probability JPmax(� target)K based on the
exponential distribution’s cdf: it is

p =
1
2
∙ (1− e−λ t).

If t ≥ 16, we can also reach l4 and the result is p+ 1/2. For t ∈ [8,16), we get

p′ =
1
2
∙ (1− e−λ t)+

1
4
∙ (1− e−λ (t−8))

by going back to l0 from l2 as soon as possible. Observe that p = p′ for t = 8,
but for t = 16, p′ 6= 1/2 + p: here, the nondeterministic choice available in l2
makes an important difference.

STOCHASTIC TIMED AUTOMATA 247

Now, let us look at the (time-unbounded) minimum and maximum expected
reward r when we reach l3 or l4. By definition, since there is a scheduler that
reaches those locations with probability less than 1 (by staying in l0 forever),
the maximum value is JXmin(r | target)K = ∞. If λ ≥ 1/16, the minimum value
that we can achieve is 1/λ by always returning to l0 from l2; otherwise, it is 1/2 ∙
(16 + 1/λ). If we set the invariant of l0 to c ≤ 0, the maximum is finite and we
can make a similar calculation.

As we would expect, there is no need to extend the MODEST syntax for prop-
erties in any way in order to support STA, either.

Example 50. When studying the M/G/1/6 queueing system introduced in Ex-
ample 48, we are interested in the following values:
– the probability p that the queue is full and ≤ tp time units have elapsed,
– the expected time t until the queue is full for the first time, and
– the expected number c of customers served before the queue becomes full.
In MODEST, the properties that give us the minimum and maximum value for p
are

property QuOverflowPrMin = Pmin(<> (q == C && time <= t_p));
property QuOverflowPrMax = Pmax(<> (q == C && time <= t_p));

where time is a the global clock variable/global time reward mentioned in Sec-
tion 5.4. We also use the latter in order to compute t via the properties

property MinTimeBeforeOverflow = Xmin(time | q == C);
property MaxTimeBeforeOverflow = Xmax(time | q == C);

We need to add an explicit reward variable served_count that is increased
by 1 in the previously empty second update in process Server of Figure 6.5 in
order to be able to determine c using the properties

property MinCustBeforeOverfl = Xmin(served_count | q == C);
property MaxCustBeforeOverfl = Xmax(served_count | q == C);

As a queueing system where all delays follow continuous distributions that in
particular do not assign probability mass 6= 0 to any single point in their sup-
port, the M/G/1/6 queuing system model is a fully deterministic STA (i.e. its
TPTS semantics does not contain any nondeterministic choice between action-
labelled transitions and the STA is time-deterministic in the spirit of the defin-
ition of time-determinism for PTA that we gave in Section 5.6.1). The values
for the Max/Min pairs of properties given above should thus be the same in all
three cases, and we will exploit this fact when we come back to the model in
Section 6.5.3.

248 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

6.5 Model Checking

We have seen in the previous chapter that various exhaustive model checking
techniques for PTA have been developed over the past decade. However, an ex-
haustive analysis method for STA, in particular one that soundly supports (most
of) the various forms of nondeterminism that can be present in an STA, has
been out of reach until recently, when Ernst Moritz Hahn developed exhaustive
model checking techniques for stochastic hybrid automata (SHA) that allow
safety verification [FHH+11] and computing bounds on reward-based prop-
erties [Hah13]. SHA generalise STA by adding continuous variables whose
evolution over time can be described by differential equations and inclusions
in invariants. The safety verification approach has been (partly) implemented
as part of the MODEST TOOLSET in the prohver tool [HHHK13]. The imple-
mentation suffered from the usual limited scalability of hybrid systems analysis
techniques and was encumbered by modelling restrictions and portability prob-
lems stemming from the use of PHAVER [Fre05] as a backend to handle the
continuous behaviour.

We present a specialisation of these SHA analysis techniques here: We
use a combination of abstraction and probabilistic model checking to com-
pute bounds on reachability probabilities and expected reward values for STA.
For maximum probabilities or rewards, we obtain upper bounds; for minimum
probabilities or rewards, we obtain lower bounds. This works as follows: First,
the continuous distributions that occur in the STA are abstracted by a com-
bination of discrete probabilistic choices and continuous nondeterminism. The
result is a PTA, which is then analysed using the digital clocks approach as de-
scribed in Section 5.5. The results are upper/lower bounds on the corresponding
values in the original STA. We describe the method in more detail and prove
its correctness in Section 6.5.1. An implementation is available in the form of
the mcsta tool within the MODEST TOOLSET. We describe implementation
aspects in Section 6.5.2, and then apply mcsta to four example models to study
its effectivity and efficiency in Section 6.5.3.

By specialising for STA, we gain scalability, improve usability by requir-
ing less user input and improving automation, and are able to compute useful
lower bounds on minimum probabilities. Figure 6.6 contrasts the SHA and
STA approaches and their implementations in prohver and mcsta graphically.

Related work Kwiatkowska et al. [KNSS00] have pioneered the founda-
tional basis of STA model checking with their work on timed automata with
generally distributed clocks, verified against properties in probabilistic timed

STOCHASTIC TIMED AUTOMATA 249

SHA

prohver for SHA:

PHA

HA
+ labels

label mapping

LTS

MDP results
over-

approx.

mod.
PHAVER

value
iteration

STA

STA specialisation in mcsta:

PTA

MDP

results
over-

approx.

digital

clocks
valueiteration

other PTA model
checking techniques

Figure 6.6: The verification approaches for SHA and STA compared

CTL. They use a semantics based on the region graph where regions are fur-
ther partitioned to cater for the stochastic behaviour. The main differences to
what we present in this paper are that our approach can handle distributions
with unbounded support (e.g. the exponential and normal distributions), sup-
ports expected rewards, and that we avoid the region construction. We also
show a working implementation, which instead currently uses a digital clocks
semantics, but this can be interchanged with other approaches, such as the one
based on stochastic games.

Other related approaches that we find are based on statistical model check-
ing [DLL+11b], numerical discretisation [LHK01], plain discrete event sim-
ulation [HS00], or state classes [BBH+13] (on a different model also called
STA). However, all of these either implicitly or explicitly exclude the presence
of nondeterminism, and thus work in the realm of generalised semi-Markov
processes (GSMP, [HS87]) instead. As an example, consider the “STA” model
of [BBJM12] (which is closely related to the one of [BBH+13]): There, a single
distribution is sampled on every edge, the result being the exact sojourn time
in the following location. In comparison, our model of STA also supports con-
tinuous and discrete nondeterminism as well as multiple samplings per edge
and multiple sampled variables that can memorise their values over several
edges/locations.

In particular, the method we present here is geared towards correctly hand-
ling the general combination of stochastics and nondeterminism. Dedicated
approaches for deterministic models consequently provide better precision or
performance for that special case. We come back to this tradeoff in our evalu-
ation in Section 6.5.3, where we look at two deterministic models for compar-
ison, and two nondeterministic case studies that can only be handled correctly
with our new approach.

250 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

NORM(m,1) :

m−
0.841...

m−
0.253...

m

m+
0.253...

m+
0.841...

=0.2 =0.2 =0.2 =0.2 =0.2

.

Figure 6.7: Overapproximation of a continuous distribution [HHHK13]

6.5.1 Bounds for Reachability and Rewards

We now present details about the abstraction mechanism used to replace con-
tinuous probability distributions by the combination of discrete ones and con-
tinuous nondeterminism. We show that this transformation preserves upper
bounds for minimum and maximum reachability and expected rewards. After
that, we discuss the error introduced by the abstraction as well as the use of the
digital clocks technique to analyse the resulting PTA, and how this error can
sometimes be reduced at the cost of larger state spaces.

Abstracting Continuous Distributions

In the first step of our analysis method (cf. Figure 6.6, bottom), discrete probab-
ility distributions are used to overapproximate continuous ones by introducing
additional nondeterminism: The distribution’s support is divided into a number
of intervals and the probability of each interval is computed. The continuous
sampling is then replaced by a probabilistic choice over the intervals with the
computed probabilities, followed by a nondeterministic choice of which con-
crete value to pick from the chosen interval.

Example 51. For the sampling expression NORM(m,1), Figure 6.7 shows a
decomposition into five intervals with probability mass 0.2 each. In MODEST,
we would replace the action with the corresponding sampling assignment,

a {= x = Norm(m, 1) =}; P,

by a palt with nondeterministic assignments for the intervals:

a palt {
:0.2: {= x = any(y | y <= m - 0.841. . .) =}; P
:0.2: {= x = any(y | m - 0.841. . . <= y && y <= m - 0.253. . .) =}; P
:0.2: {= x = any(y | m - 0.253. . . <= y && y <= m + 0.253. . .) =}; P
:0.2: {= x = any(y | m + 0.253. . . <= y && y <= m + 0.841. . .) =}; P
:0.2: {= x = any(y | m + 0.841. . . <= y) =}; P
}

STOCHASTIC TIMED AUTOMATA 251

l0
true

la
1

c ≤∃ x∧ ṙ = 1
lb
1

c ≤∃ x∧ ṙ = 1

l2
c ≤ 16

l3
true

l4
true

true, a

1−e−λ

2 , {c := 0,x := [0,1]}

e−λ

2 , {c := 0,x := [1,∞)}

1
2 , {c := 0}

c ≥ 8, τ , ∅

c ≥∃ x, b, ∅

c ≥∃ x, b, ∅

c ≥ 16, τ , {r := r +16}

Figure 6.8: A PTA abstraction of the example STA

Observe that the singleton overlaps between the intervals do not matter as they
all have a probability mass of zero.

When using prohver, the probabilities for the intervals created in the abstrac-
tion step had to be concrete real values so they could be split off to obtain a
nonprobabilistic hybrid automaton for use by PHAVER. In our new approach,
we can map to PTA with probabilities that depend on state variables (but not
on clocks or variables that were previously sampled). This makes it possible
to analyse, for example, population models as they typically arise in systems
biology applications where the rates of exponential distributions depend on the
current number of individuals of the involved species.

Furthermore, since PTA allow only integer clock constraints, the choice of
intervals is limited to those with integer bounds. We use this as an opportunity
to improve usability by removing from the user the burden of specifying the set
of intervals to use. Instead, we always overapproximate continuous distribu-
tions with intervals of unit width 1 aligned on integer bounds. For distributions
with unbounded support, such as the exponential or normal distribution, we
generate as many unit width intervals as needed to cover a probability mass of
1−ρ and then add half-open intervals for the residual of the support. Instead
of a set of intervals as with prohver, the only parameter of our approach is this
residual probability ρ . We use a default of ρ = 0.05 unless stated otherwise.

Example 52. For the STA introduced in Example 45, we show the PTA overap-
proximation for the case that a single unit width interval is sufficient to cover
1−ρ probability in Figure 6.8. With ρ = 0.05, this is ensured provided λ ≥ 3.
We use ≥∃ and ≤∃ to denote interval comparisons. They are satisfied whenever
there exists some value in the interval such that the concrete comparison is sat-
isfied. This amounts to a comparison with the upper bound for ≤∃ and with the
lower bound for ≥∃ when the interval operand is on the right-hand side.

252 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Correctness

We now show that, in the PTA that is constructed as described above, the max-
imum/minimum reachability probabilities and expected reward values are in-
deed upper/lower bounds for the corresponding values in the original STA. We
first have to define the effect of abstraction more formally:

Definition 85. Consider an STA M = 〈Loc,Var,A,E, linit, Inv,AP,L〉 and a (po-
tentially infinite) family of sets A = 〈Bi〉i∈I such that

⋃
i Bi = Loc×Val. Each

abstract state Bi ⊆ Loc×Val subsumes certain concrete states of JMK, and all
states are covered. We require that an abstract state only subsume concrete
states of the same location. Assume 〈linit,0Var〉 ∈ Binit, and Bi, B j are disjoint
for i 6= j. The abstraction TPTS is defined as

abs(M,A) def= 〈A ,ΣA ,R+
0]A,T abs

M ,Binit,AP,LA 〉

where T abs
M is defined similar to Definition 82 with the jump rule being

l
g,a
−→E m 〈l,v〉 ∈ Bi Jmp(v, l,m,μ) JgK(v)

Bi
a
−→T abs

M
[∀ j ∈ I : B j 7→ μ(B j)]

where by [∀i : xi 7→ pi] (or [x1 7→ p1, . . . ,xn 7→ pn]) we denote the distribution
∑i piD(xi). We require A to be defined such that all induced [∀ j : A j 7→ μ(A j)]
have finite support. Timed transitions are defined accordingly. The labelling
function LA is {Bi 7→

⋃
s∈Bi

LM(s) | i ∈ I } with LM as in Definition 82. We
assign rewards to abstract states according to the rate assigned to its location
and the rewards of the edges originating from there.

In the context of this paper, A is obtained by splitting the possible values
sampling variables can take into unit width or half-open intervals. This con-
struction ensures the finite-support requirement. For instance, for a single
sampling variable x, all concrete states where x is sampled to take values in
the range between 1 and 2 are subsumed by a single abstract state. For multiple
sampling variables, abstract states are built from the cross product of intervals.

Lemma 5. For an STA M with abstraction sets A as above and some set of
states B, the maximal (minimal) probability or reward to reach B in abs(M,A)
is not lower (not higher) than the maximal (minimal) probability/reward value
in JMK.

Proof ([HHH14]). We only consider disjoint abstract states. Non-disjoint ones
(from overlapping intervals) would not affect correctness, but induce impreci-
sion due to additional transitions in the abstraction. Let

M = 〈Loc,Var,A,E, linit, Inv,AP,L〉

STOCHASTIC TIMED AUTOMATA 253

and A = 〈Bi〉i∈I . We define the intermediate abstraction TPTS

M′ def= 〈Loc×Val,P(Loc)⊗ΣVar,R
+
0]A,TM′ ,〈linit,0Var〉,AP,LM′ 〉

by replacing jump of Definition 82 by

l
g,a
−→E m Jmp(v, l,m,μ) JgK(v) 〈s′j〉 j∈I s.t. ∀ j ∈ I : s′j ∈ B j

〈l,v〉
a
−→TM′ [∀ j ∈ I : s′j 7→ μ(B j)]

Let f map paths from the intermediate abstraction to the semantics JMK, so for
β = s0a0[∀ j : s′j 7→ μ0(B j)]s1a1 . . . we have f (β) def= s0a0μ0s1a1

For σ ∈ SJMK we construct σ ′ ∈ SM′ . Consider some path β for which
last(β) = 〈l,v〉. W.l.o.g. consider a subset A = {a}×Adist ⊆ A×Prob(S) of the
possible successors when choosing edge e = l g,a−→ m ∈ E with 〈l,v〉 a−→TM′ μ .
Let 〈Si〉i∈I ⊆ Ai be the finite set of abstract states for which μ(Si) > 0. We
define μi ∈ Prob(Si) as

μi(Ai)
def=

μ(Ai)
μ(Si)

for measurable Ai ⊆ Si and write μprod ∈ Prob(
Ś

i Si) for their product measure.
Define

U def= {[∀ i : s′i 7→ μ(Si)] | ∀ i : s′i ∈ Si},

let the function g be given by

g([s′1 7→ p1, . . . , s′n 7→ pn])
def= 〈s′1, . . . , s′n〉,

and let μ(B) def= μprod(g(B)). Then we set

σ ′(β)(A) def= μ(Adist ∩U) ∙σ(f (β))({edge e chosen}).

In this way, σ ′ for M′ simulates the continuous probability distributions in JMK
s.t. measures on paths when using σ and σ ′ agree [Hah13, Theorem 4.22].
This implies that reachability probabilities agree, as do reward values when
using equivalent reward structures.

Because distributions in M′ and abs(M,A) have finite support, one can
define a finite automata simulation relation [SL95] such that 〈l,v〉�Bi if 〈l,v〉 ∈
Bi, from which one concludes that abs(M,A) also bounds reachability prob-
abilities of M′. Using extensions of simulation relations similar to e.g. [Hah13,
Definition 7.26] one can also bound reward values in this way.

Digital Clocks and Scaling Time

We model-check the PTA resulting from the abstraction of the continuous dis-
tributions using the digital clocks approach (see Section 5.5). This also motiv-
ates our choice of unit interval width: In the digital clocks MDP resulting from

254 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

l0

la
1

lb
1

l3
true, a

1
2 , . . .

0.475, {c := 0}

0.025, {c := 0}

c ≥ 0, b, ∅

c ≥ 1, b, ∅

true, tick,
{c :=min{c+1,2}}

c ≤ 1−1, tick,
{c :=min{c+1,2},r :=r+1}

c < ∞, tick,
{c :=min{c+1,2},r :=r+1}

true, tick,
{c :=min{c+1,2}}

Figure 6.9: Digital clocks MDP of the PTA abstraction (explicit intervals)

the replacement of clocks by integer variables, all delay transitions are of unit
duration, and thus all integer time points are anyway enumerated in its state
space. If instead one resorts to an approach which can symbolically represent
longer delays, e.g. using zones, then the use of larger or more flexible intervals
seems worthwhile to investigate.

Example 53. The digital clocks MDP for the PTA from the previous example
is shown in Figure 6.9. The delay transitions are labelled tick. We have
excluded the non-stochastic part (locations l2 and l4) and merged the interval-
valued variable x into the locations to show the concrete comparisons on the
edges of la

1 and lb
1 . We have also included the concrete probabilities for λ ≈ 3.

The maximum probability of reaching location l3 or l4 in this MDP in at most
t ∈ N time units is 0.475 for t = 0 and 0.5 for 1 ≤ t ≤ 7. We know from
Example 49 that the actual probability in the STA is 1

2 ∙ (1−e−λ t) < 0.5. In our
case of λ ≈ 3, this is 0 for t = 0, approx. 0.475 for t = 1 and very close to 0.5
for t = 7. The error is thus between 0.475 and almost 0 depending on t.

For reward r, the maximum value is ∞ even if we remove the tick-edge
from l0: We can stay in lb

1 forever due to the right-open interval created for
the unbounded exponential distribution. The minimum value computed in this
MDP is 0.475 ∙0+0.025 ∙1 = 0.025, whereas the actual value for λ ≈ 3 is ≈ 1

3 .

The example shows that the error introduced by the abstraction of the con-
tinuous distributions is highly dependent on the variance of the distributions
in relation to the minimum interval width of 1 required to use PTA. In models
where the dependence between time and property values is similarly direct as
in this example, we can get more accurate results at the cost of larger MDP state
spaces by scaling time: Both the results of the sampling and the non-interval
values that clocks are compared to (including those in the property to verify)

STOCHASTIC TIMED AUTOMATA 255

are multiplied by some factor d ∈ N+. (For the exponential distribution, for
example, the former can be achieved by dividing the rate by d.)

Example 54. By scaling time by a factor of d = 2 in the STA that the previous
examples were based on, two unit width intervals are used for r = 0.05 and
λ ≈ 3, with probabilities 0.388 and 0.087. The upper bound for the probability
drops to 0.388 for t = 0 and 0.475 for t = 1; the lower bound for the min.
expected reward rises to 0.137.

Although scaling time can lead to tighter bounds, there is another, independent
cause of overapproximation error, which is due to the digital clocks requirement
of closed clock constraints: All adjacent intervals have a singleton overlap, and
we can only refer to exactly these overlapping values in clock constraints and
properties. They have probability 0 in the STA, but not in the PTA, which leads
to e.g. the upper bounds for time-bounded reachability probabilities being “one
step ahead”: In Example 54, the upper bound computed for t = 0 is the actual
probability for t = 1, the bound for t = 1 is the probability for t = 2, and so
on. The use of a PTA model checking technique that allows non-closed clock
constraints clearly needs to be investigated as future work.

6.5.2 Implementation

We have implemented our STA model checking approach in the new mcsta
tool within the MODEST TOOLSET. At the current stage, the tool supports the
continuous uniform, exponential and normal distributions. To make the trans-
formation from continuous to discrete distributions possible in a setting where
sampling expressions can in principle refer to arbitrary state variables and com-
bine sampling in arbitrarily complex and nested expressions, we impose the
following restrictions: When an assignment contains a continuous probability
distribution, it must be of one of the following forms, where x is a variable of
type real:
– x := UNI(lower,upper) for the uniform distribution, where lower resp. upper

are expressions in Axp of real type for which a concrete lower bound lb ∈ R
resp. a concrete upper bound ub ∈ R, i.e. values such that

∀v : lb ≤ JlowerK(v)∧ JupperK(v) ≤ ub,

can be determined with lb ≤ ub. The abstraction intervals are then

[blbc,blbc+1], . . . , [dube−1,dube]

and the expressions for the intervals’ probabilities are built according to the
uniform distribution’s cdf, that is cdfUNI(x) = (x− lower)/(upper− lower).

256 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

– x := offset + EXP(rate) for the exponential distribution, where offset is an
expression in Axp of integer type and rate is an expression in Axp of real
type. Here, we only require that a concrete lower bound λ ∈ R+ can be
determined for the expression rate. The abstraction intervals are then

[offset,offset +1], . . . , [offset +n−1,offset +n] and [offset +n,∞)

where n ∈ R is calculated as n = d− lnρ
λ e (using the quantile function of the

exponential distribution). The expressions for the intervals’ probabilities are
built according to the exponential distribution’s cdf: cdfEXP(x) = 1− e−rate∙x.

– x := NORM(m,σ) for the normal distribution, where the mean m is an expres-
sion in Axp of integer type and the standard deviation σ is a concrete value
in R+. The abstraction intervals are

(−∞,m−n], . . . , [m−1,m], [m,m+1], . . . , [m+n,∞).

Since neither the quantile function nor the cdf of the normal distribution have
a closed-form solution, we require σ to be a concrete value to precompute
n and the actual interval probabilities based on σ and ρ close to double
precision.

In this way, we can construct a set of intervals with integer bounds for all three
distributions. These three examples also show a general recipe to support other
continuous distributions using their quantile and cumulative distribution func-
tions; if a distribution has unbounded support, we need to be able to evaluate its
quantile function during transformation to get the necessary number of intervals
based on r. In any case, we need to be able to express its cumulative distribution
function as an expression allowed by the MODEST TOOLSET to support para-
meterisation by state variables, or merely compute it otherwise. In case a distri-
bution is parameterised by an expression that contains state variables, we may
generate more intervals than necessary for some valuations, which then have
zero probability. For example, we generate two intervals for x := UNI(0,2i)
when i has domain {0,1} since the upper bound of expression 2i is 2. How-
ever, since the probabilities are preserved as expressions, the probability of
[1,2] will evaluate to 0 for all states where i 6= 2.

6.5.3 Evaluation

To find out whether the exhaustive STA model checking technique is effect-
ive and efficient in practice, we have applied it to four different examples. We
are interested in how close the computed bounds are to the actual values (ef-
fectiveness), and how large the state spaces of the underlying MDP become1

1Memory was the limiting factor in all examples; runtime was always below 3 minutes.

STOCHASTIC TIMED AUTOMATA 257

Figure 6.10: Reachability results and state space sizes for the M/G/1 example

(efficiency). All measurements presented in the remainder of this section were
performed on the same 1.7 GHz Intel Core i5-3317U system with 4 GB of RAM
running 64-bit Windows 8.1.

The first two models we present to evaluate effectiveness are deterministic.
As mentioned, our method is not targeted for this special case, so we expect
correct and useful, but not very tight, computed bounds. Specialised methods
will perform better or be more precise in these cases. The last two models,
however, contain continuous and discrete nondeterminism, so our technique is
currently the only one available for verification.

M/G/1 Queueing System with Normal Distribution

Our first example takes up the M/G/1/6 queueing system introduced in Ex-
ample 48 (with small modifications that do not affect the intended semantics
but make for smaller state spaces). We check properties that query for the val-
ues p, t and c described in Example 50. Since nondeterminism is absent in this
model by construction, we can perform statistical model checking with modes
to obtain good approximations of t and c as well as p when it is not too small
(i.e. not a rare event).

The results of computing upper and lower bounds on p using our imple-
mentation are shown in Figure 6.10. On the left, we show the computed bounds
for different values of tp as black triangles. We see that there is a noticeable
approximation error, but the general evolution of the probability over time is
preserved. After tp ≈ 80, the lower bound shows no significant improvements.
For tp ≥ 90, we ran out of our 4 GB of RAM, so we increased the residual
probability parameter ρ to 0.1. The number of concrete states in the MDP of
the digital clocks semantics is shown on the right of Figure 6.10. We see that it
increases linearly with tp and can be reduced significantly by increasing ρ , i.e.
by lowering the number of abstraction intervals used for the exponential and
normal distributions.

258 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 6.11: Reachability results and time scale effects for the tandem queues

Asking for minimum expected rewards, we compute the bounds t ≥ 43.4 and
c ≥ 3.52 for the other two values. As we do not need a global clock to check a
time bound like tp here, the underlying MDP has just 136767 states. State space
exploration and computation of both bounds takes only 2.3 s in total. If we ask
for maximum expected rewards, we get bounds of ∞ due to the right-open inter-
vals created by the abstraction of the unbounded distributions (cf. Example 53).
Simulation tells us that t ≈ 61 and c ≈ 6.2 for this deterministic model.

Tandem Queueing Network

We next look at a model from the PRISM benchmark suite [KNP12]: the tandem
queuing network of an M/Cox2/1/4 queueing system followed by an M/M/1/4
queueing system [HMKS99]. It is a CTMC and we can thus model it as an
STA without nondeterminism. The MODEST code for this example is part of
the MODEST TOOLSET download.

We experiment with scaling time as described in Section 6.5.1. We com-
pute the maximum probability pff of the first queue being full in time t, trying to
use as low a value of ρ ≥ 0.05 and as high a time scaling factor without running
out of memory. The result is shown on the left of Figure 6.11. The computed
upper bounds are further from the actual probability than in the previous ex-
ample. This is likely due to the effect of errors adding up with four subsequent
stochastic delays that are individually abstracted. While we get correct results,
using specialised CTMC model checking techniques would obviously be a bet-
ter choice here. (Indeed, e.g. PRISM can perform a precise analysis of large
instances of this model with moderate runtime and memory usage.)

The second property we look at is the maximum probability paf of both
queues becoming full within time t. This happens at a vastly different time
scale: While the first queue is full with probability close to zero for t = 1, paf
only starts to approach 0.5 when t is on the order of 50. We thus focus on the
effect of scaling time on the approximation error for fixed time bound t = 2.

STOCHASTIC TIMED AUTOMATA 259

model type Prmax [E∧
min,E

∧
max]μs [E∨

min,E
∨
max]μs [E1

min,E
1
max]μs states time

wlan PTA 0.1836 [1325,6280] [450,4206] [450,5586] 104804 8 s

wlanuni STA 0.1366 [2325,4607] [950,3018] [950,3880] 264240 15 s

Table 6.1: Results and comparison for the WLAN example

The results are shown on the right of Figure 6.11. In this case, the impact of
increasing ρ is not as significant, but we see that the error can be significantly
reduced by scaling up time.

Finally, we compute bounds on the expected times tff until the first queue
becomes full and taf until both are full. As we increase the time scaling, we
go from lower bounds tff ≥ 0.000012 and taf ≥ 0.56 for time scale d = 1 with
9557 MDP states, computed in 0.1 s, to tff ≥ 0.108710 and taf ≥ 5.87 for d = 10
with 3662958 states, computed in 108 s. Again, upper bounds (i.e. maximum
expected rewards) are all ∞. From simulation, we get tff ≈ 0.29 and taf ≈ 17.9.

Wireless LAN with Uniform Transmission Time

Departing from queueing systems, we now look at the model of a commu-
nication protocol: the carrier-sense multiple-access with collision avoidance
(CSMA/CA) part of IEEE 802.11 WLAN. We take the MODEST PTA model
of [HH09] that was originally described as a PRISM case study2 and replace
the nondeterministic choice of transmission delay out of [200,1250]μs (with a
unit of time representing 50μs) by a uniformly distributed choice over the same
interval. This is the same kind of transformation as we performed on the lossy
channel of our simple BRP model in Example 47. The result here is also an STA
that is no longer a PTA, but that still contains (other) nondeterministic choices.
Again, both MODEST models are part of the MODEST TOOLSET download.

Model checking results for the original PTA model (wlan) and the new
STA model (wlanuni) are shown in Table 6.1. We see that the state space of the
underlying MDP is larger when the uniform distribution is used. This is because
the states not only contain explicit values for all clocks as in the original PTA,
but additionally 21 different concrete intervals that overapproximate the result
of sampling from UNI(4,25). The blowup thus stays far below the worst-case
factor of 21 here.

We analyse six time-unbounded properties. The first is Prmax, the max-
imum probability that either of the two modelled senders’ backoff counters

2http://www.prismmodelchecker.org/casestudies/wlan.php

http://www.prismmodelchecker.org/casestudies/wlan.php

260 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 6.12: Results and state space sizes for the file server example

reaches the upper bound of 2. The other five are E∧
min/E∧

max, E∨
min/E∨

max and
E1

min/E1
max, the minimum/maximum expected times until both senders, either of

them, or the one with id 1 correctly deliver their packets. Because of the model
being nondeterministic, we cannot use simulation or any other technology to
compute the actual values. However, the computed bounds are plausible if we
assume that in the PTA, the longest/shortest possible transmission delay max-
imises/minimises the values. The STA is thus indeed expected to show less
extremal behaviour.

File Server

As a final example, we analyse another model that combines all essential fea-
tures of STA and cannot be model checked with any other approach we know of
(except prohver). It represents a single-threaded file server with slow archival
storage:
– Requests arrive to a single queue of length C = 5. Their interarrival time is

exponentially distributed with rate 1
8 .

– File sizes are uniformly distributed over some range such that sending the file
back to a client takes time uniformly distributed over [1,3].

– 2 % of all files have been moved to a slow archival storage. Retrieving a file
from normal storage is instantaneous, but retrieving it from archival storage
may take between 30 and 40 time units. We do not know anything else about
the archive (e.g. whether it is tapes, a slow disk, goes to standby quickly etc.)
so we model this delay as nondeterministic.

We thus have continuous stochastic delays, a probabilistic choice and non-
deterministic delays. Additionally, we model the initial queue length as uni-
formly distributed in {0, . . . ,bC

2 c}. The MODEST code for this model (with
small changes for clarity of presentation) is shown in Figure 6.13.

STOCHASTIC TIMED AUTOMATA 261

const int C = 5; // queue size
const real T_BOUND; // time bound for reachability
const real LAMBDA = 1 / 8; // request arrival rate
const real ARCH_PR = 1 / 50; // fraction of files in archive
const real FILE_MIN = 1; // min. time to send regular file
const real FILE_MAX = 3; // max. time to send regular file
const real ARCH_MIN = 30; // min. time to send archived file
const real ARCH_MAX = 40; // max. time to send archived file

int(0..C) q;

property QuOverflowProbMax = Pmax(<> (q == C && time <= T_BOUND));
property QuOverflowProbMin = Pmin(<> (q == C && time <= T_BOUND));
property QuOverflowTimeMin = Xmin(time | q == C);
property QuOverflowTimeMax = Xmax(time | q == C);

process Arrivals()
{

clock c; real x;

do {
:: when(c >= x && q < C) invariant(c <= x || q == C)

tau {= q = q + 1, c = 0, x = Exp(LAMBDA) =}
}

}

process Server()
{

clock c; real x;

delay(0, q > 0) palt {
: ARCH_PR: {= q = q - 1, c = 0 =};

when(c >= ARCH_MIN) invariant(c <= ARCH_MAX)
tau {= c = 0, x = Uni(FILE_MIN, FILE_MAX) =}

:1-ARCH_PR: {= q = q - 1, c = 0, x = Uni(FILE_MIN, FILE_MAX) =}
};
when(c >= x) invariant(c <= x) tau {= c = 0, x = 0 =};
Server()

}

par {
:: Arrivals()
:: Server()
:: delay(0) {= q = DiscreteUniform(0, floor(C/2)) =}
}

Figure 6.13: MODEST model of a file server with slow archival storage

262 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

We are interested in the probability p that the request queue becomes full
within time tp, and the minimum (i.e. worst-case) expected time t until this
happens. For t, we obtain a lower bound of 462 time units from an MDP with
107742 states in 6 s. For p, the results are shown in Figure 6.12. On the right,
we see that the number of MDP states again grows linearly with the time bound.
On the left, we have plotted the computed upper/lower bounds using small tri-
angles.

Due to the nondeterministic delay, we cannot use simulation. However, we
can instruct modes to resolve that delay by scheduling events either as soon
or as late as possible (ASAP/ALAP). Simulating these deterministic variants
of the model gives us t ≈ 1012 for ASAP and t ≈ 721 for ALAP. For p, the
simulation results are included on the right of Figure 6.12. Observe that the
highest probability we see is around 0.35. The results that we get via our new
approach are clearly useful for verification: They are safe bounds whereas we
do not know anything about the relationship between simulation results and the
actual values.

6.6 Statistical Model Checking

The main problem in performing statistical model checking of STA models is
the same as for PTA: continuous nondeterministic choices. The other addition,
sampling from continuous probability distributions, does not complicate sim-
ulation because this sampling can just be done while exploring a path, in the
same way that probabilistic choices were simulated. However, it may com-
plicate correctness arguments for advanced SMC techniques, like possible ex-
tensions of the POR and confluence-based approaches. Since the fundamental
issues are so similar to PTA, in this section we just briefly review the notion of
time-deterministic STA, update the path generation procedure of Algorithm 23
to handle sampling and the any construct, and give a brief overview of how
SMC for general STA is more challenging than for PTA.

Time-deterministic STA

We have seen that the subclass of time-deterministic PTA was easy to simulate.
Let us now define a similar subclass of STA. In addition to the requirements
that were already in Definition 79, we also have to ensure that there is no con-
tinuous nondeterminism due to the any construct: This could be used to make a
subsequent delay nondeterministic (in the same way that sampling can be used
to make a subsequent delay stochastic), but even when the result is not used for
delays, it cannot be simulated. We therefore define:

STOCHASTIC TIMED AUTOMATA 263

Definition 86 (TDSTA). An STA M with TPTS semantics

JMK= 〈Loc×Val,ΣLoc×Val,R
+]A,TM,〈linit,0〉,AP,LM〉

is time-deterministic, or equivalently a time-deterministic stochastic timed auto-
maton (TDSTA), if AP is countable and for all reachable states 〈l,v〉 of JMK, we
have that if there is an action-labelled transition 〈a,μ〉 ∈ TM(〈l,v〉), then there
is no delay-labelled transition in TM(〈l,v〉), and furthermore TM(〈l,v〉) is finite.

We use the restriction to finite sets of action-labelled transitions in order to dis-
allow the use of any to create continuous nondeterministic assignments. Since
we assume STA to be finitely branching, such (countably or uncountably) in-
finite sets can only be created by the jump inference rule through use of the any
construct.

The semantics of a TDSTA, however, is not an MDP because sampling
from continuous probability distributions is still allowed. In case the semantics
is deterministic (i.e. there is no discrete nondeterminism in the STA either),
however, a TDSTA is a GSMP, and as such can be simulated easily. In par-
ticular, the choice of time scheduler in the simulate algorithm we describe
below does not affect the SMC results if the model at hand is a TDSTA. (The
choice of resolver (and any-resolver), however, remains important if discrete
nondeterminism is present.)

Path Generation for STA

In order to generate paths through STA with user-specified resolutions of all
nondeterminism, we need an any-resolver N to handle nondeterminism in up-
dates due to the any construct in addition to the resolver R for discrete non-
determinism and the time resolver s for nondeterministic delays. It then takes
only small modifications to make Algorithm 23 applicable to STA. The res-
ult is shown as Algorithm 24; the only relevant changes are in lines 24 and 30
where we first letN select one of the possible measures over valuations allowed
by the chosen updates, and then perform the actual sampling to get the target
valuation v.

SMC for General STA

As for PTA before, when we have to analyse a general STA that is not ne-
cessarily time-deterministic using SMC, we should actually not use implicit
schedulers and resolvers if we want to obtain sound results. However, we saw
that there is currently no technique to do so for PTA, and consequently no tech-
nique to solve the same problem for the more general model of STA, either.
Similar to the ideas of Section 5.6.4, we could try to use the concepts of our

264 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

1 function simulate(M = 〈Loc,C ,A,E, linit, Inv,AP,L〉, R, s, N, φ , d)
2 〈l,v〉 := 〈linit,0〉, seen :=∅, i := 1
3 while i ≤ d do
4 if φ(LM(〈l,v〉) then return true
5 else if 〈l,v〉 ∈ seen then return false
6 I′i := { t∈R+

0 | JInv(l)K(v+t)∧@ t ′∈R+
0 : t ′<t∧¬JInv(l)K(v+t ′)}

7 Ig := { t ∈ R+
0 | ∃ l g,a−→ μ : JgK(v+ t)}

8 if I′i ∪{0} = {0}∧ Ig ∩{0} =∅ then return false // timelock
9 μs := s(〈〈l,v〉, I′i ∪{0}, Ig〉) // ∪{0} for weak invariants

10 ts := choose a delay ts randomly according to μs
11 repeat
12 t := min({ ts }∪{ t ′ ∈ R+ | LM(〈l,v〉) 6= LM(〈l,v+ t ′〉))}
13 if t = ∞ then return false
14 v := v+ t, ts := ts− t, i := i+1
15 if μs is Dirac then seen := seen∪{〈l,v〉} else seen :=∅
16 if φ(LM(〈l,v〉) then return true
17 else if 〈l,v〉 ∈ seen then return false
18 else if i > d then return unknown
19 until t = 0
20 if ∃ l g,a−→ μ : JgK(v) then
21 μR :=R(〈l,v〉)
22 ν := choose an edge 〈g,a,ν〉 randomly according to μR
23 〈U, l′〉 := choose update, location randomly according to ν
24 ν ′ :=N(JUK(v)) // let N select a measure over valuations
25 if μR, ν and ν ′ are Dirac then
26 seen := seen∪{〈l,v〉}
27 else
28 seen :=∅
29 end
30 v := choose target valuation randomly according to ν ′

31 l := l′, i := i+1
32 end
33 end
34 return unknown

Algorithm 24: Path generation for an STA, with any-resolver N

STOCHASTIC TIMED AUTOMATA 265

exhaustive model checking approach for STA in order to turn STA into PTA
on-the-fly and then use sound SMC techniques for PTA, if they existed. How-
ever, due to the problems that we already face with PTA, no such approach has
yet been investigated in detail or even implemented.

6.7 Summary and Discussion

By adding the possibility to sample from continuous probability distributions
and to use continuously nondeterministic assignments, we extended the model
of PTA to obtain stochastic timed automata (STA). Our notion of STA is a
more general one, in particular in the nondeterministic choices it allows, than
some similarly-named formalisms [BBH+13, BBJM12]. After the definition
of the model and its semantics, which included the move from a deterministic
to a more involved stochastic-nondeterministic semantics for expressions and
assignments, we showed how to write STA models in MODEST and that the
property classes we defined for PTA can be applied to STA just as well. We
then presented as a core contribution of this thesis the first fully-automated
exhaustive model checking approach for general STA. Finally, we briefly re-
viewed possibilities to make SMC work for STA.

STA are a very expressive model, and in particular do not only cover ori-
ginally automata-based models such as PTA and MDP as special cases, but
also the growing family of models based on continuous-time Markov chains.
Investigating these submodels from the STA perspective raises a number of
interesting questions related to the effects of memoryless sampling in composi-
tional models as well as to the consequences and to the desirability of including
more information (in this case, the knowledge of the sampling results) in the
state spaces of the underlying semantics, which makes this information avail-
able to the schedulers we use to reason about nondeterminism. Although first
steps to answer these questions have been taken [HKK14], a lot of additional
research is possible and necessary in this area.

The exhaustive model checking approach that we presented works for STA
with general, unbounded distributions as well as nondeterministic choices. It
provides upper bounds for maximum and lower bounds for minimum reachabil-
ity probabilities and expected rewards. It is similar to the idea of Kwiatkowska
et al. [KNSS00], but allows unbounded distributions and also handles reward-
based properties. We investigated causes of approximation error and showed
that it can often be reduced by scaling time. In experiments performed with
our implementation from the MODEST TOOLSET, we saw that the approach
works well in practice, but that state space explosion is a significant problem
for time-bounded properties. As future work, we would like to investigate the

266 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

use of an analysis technique for PTA that supports open clock constraints to
obtain tighter bounds, such as the game-based approach (cf. [KNP09] and Sec-
tion 5.5). An open question is whether we can we prove, like [KNSS00], that
time scaling cannot increase the approximation error, even on models with tim-
ing anomalies.

Finally, we gave a brief overview of the issues of performing SMC for STA,
which turned out to be mostly the same as for PTA. This is because handling
continuous probability distributions during simulation is no conceptual prob-
lem; it is only the any construct for nondeterministic assignments that adds
some complication.

Self-Stabilising Photovoltaic Power Generation 7
The electricity markets in Europe, Asia, and the Americas are evolving towards
decentralised structures, essentially rooted in political decisions to counter the
worldwide climate change. While large conventional power plants dominated
electric power generation up to now, the future will see a drastic increase in
the number of distributed microgenerators based on renewable energy sources
such as solar and wind power. Electric power grids thus move from a setting
in which production was assumed fully controllable so as to always match the
uncontrollable, but well-predictable consumption to a setting where the pro-
duction side becomes uncontrollable, too. External influences such as chan-
ging weather conditions can imply drastically higher fluctuations in available
electric power. The problem has two challenging facets, namely power grid sta-
bility and economy of power production/supply. The stability of the distribu-
tion grids is a priority concern because reliable distribution is a prerequisite for
economic use of power, whether or not renewable. This asks for improved and
better-coordinated diagnostic and prediction techniques, as well as orchestrated
demand-side mechanisms to counter critical grid and/or generation situations.
These challenges are amplified by the difficulty of centrally controlling the vast
number not only of electricity users, but nowadays also of geographically dis-
tributed microgenerators.

One of the fastest changing power grids is the German one, owed to sub-
stantial increases in wind and solar energy production. This is a consequence of
the legal framework enforced by Federal legislation over the last decades: It is
characterised by an emphasis on microgenerated power, which enjoys priority
in the sense that it must be absorbed by the power grid, unless the grid operates
in emergency mode; in that case, however, the wasted power must still be mon-
etarised in the accounting as if it had been fed into the grid. For these reasons,
microgenerators of photovoltaic (PV) power have been rolled out massively on
the rooftops of residential buildings all over the country. In fact, the growth
anticipations for PV microgeneration have in the past years been surpassed by

268 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

a large margin: 7.5 gigawatts (GW) have been installed in 2011, while the Ger-
man government had announced a target growth rate of 1.5 GW per year in
2009.

This growth creates problems. About 75% of the PV microgenerators
rolled out are non-measured and cannot be remotely controlled. Since 2007,
a regulation (EN 50438:2007) was in place that enforced a frequency-based
distributed control strategy. A too high frequency is an indicator for overpro-
duction of power. The regulation stipulated that a PV microgenerator must shut
off once it locally observes the frequency to overshoot 50.2 Hz. While this was
initially meant as a way to stabilise the grid by cutting overproduction, it later
surfaced that due to the high amount of PV generation, an almost synchron-
ous distributed decision to take out this portion may induce a sudden frequency
drop, followed by the PV generators joining back in, and so on. It hence may
lead to very critical, Europe-wide frequency oscillations. As a consequence,
new control strategies have been developed, especially by the VDE, the German
Association for Electrical, Electronic & Information Technologies [BBZL11].

To develop robust and correct mechanisms that do not create unexpected in-
stability, mathematically well-founded models of electric power grids and their
components are needed. However, the modelling space is huge, and a precise
model reflecting all components in a detailed, physically exact manner will be
very complex (if at all possible), and virtually impossible to analyse. Instead,
suitable abstractions need to be developed, tailored to the fragments of the sys-
tem under consideration and to the aspects of interest. This will be the topic of
the first part of this case study chapter, where we give an overview of the vari-
ous system aspects of electric power grids, in particular of last-mile microgrids
with a significant fraction of microgeneration, and the future challenges faced
in such grids (Section 7.1). We also take a look at the modelling challenges
encountered in the study of such systems, surveying different modelling and
abstraction approaches suitable for different system aspects and measures.

A central issue to ensure the stability of future power grids is proper control
for the increasing number of microgenerators. Due to their distributed deploy-
ment, decentralised control strategies offer several advantages over centralised
management approaches. The ideal is that of a network of independent gener-
ators whose control algorithms lead to a self-stabilising system. In the second
part of this chapter, we thus focus on the study of control algorithms for photo-
voltaic microgenerators as an example for the modelling and analysis of future
power grids. We present a potpourri of alternative strategies that take up and
combine ideas from distributed communication protocol design in Section 7.2.
Among them, we find the concept of additive-increase/multiplicative-decrease
known from TCP, the idea of exponential backoff as used in CSMA variations,

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 269

and adaptive probabilistic switching similar to what is done in 802.11e. We
model these strategies formally in MODEST (Section 7.3) and simulate the
models with the help of the modes simulator (Section 7.4). We study the os-
cillatory effect induced by the previous legislatory framework and analyse the
currently required approach developed by the VDE. We explore the properties
of all alternatives with respect to stability, availability, goodput and fairness. It
turns out that Internet-inspired mechanisms to break synchrony, especially by
using randomisation, can be considered as one decisive piece in the puzzle of
making the power grid future-proof.

Related work The modelling of power grids based on behavioural models
with strictly formal semantics is gaining momentum. The most closely re-
lated work is likely the paper by [CFK+12], who analyse a multi-player game
based on a recently proposed distributed demand-side microgrid management
approach [HS11]. Efficiency aspects of demand side management approaches
have also been studied [TA09, LKR11]. Other tangible work includes the ap-
plication of probabilistic hybrid automata with distributed control to the power
grid domain [MPL11], and work on network calculus in battery buffered end
user homes [BT12].

Origins

This chapter combines material from two publications to which the author was
the main contributor: [HH12] is the basis for sections 7.1 to 7.3, while the
simulation study of [HHB12] now mainly forms Section 7.4. For the latter, the
author designed the simulation experiments, which were subsequently executed
by Pascal Berrang, who also created the graphs and traces shown in this chapter
from the collected data.

7.1 Last Mile Power Microgrids

The power distribution grid is hierarchically structured, with a grid of long-
distance high-voltage lines (380 kV) as the top layer, down to the leaves which
traditionally connect end consumers to the upper layers, using 400 V three-
phase current (or 230 V per phase). Typically, these last miles have a tree-like
structure through which electric power is distributed towards the leaves from a
root. This root is a transformer, which constitutes the connection to the upper
layer. Since these grids are relatively small (comprising at most a few hundred
residential homes or business customers) and have a clear point of separation
from the remaining grid, yet may themselves contain multiple independent mi-
crogenerators, we call these last miles power microgrids. Figure 7.1 gives a

270 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 7.1: Power microgrids

schematic overview of an exemplary power microgrid consisting of seven res-
idential homes and a small industrial customer. In this chapter, we put focus on
these leaves, which is where the masses of PV microgenerators are installed.
The power management of these last miles is a particular challenge because
of their sheer number, the lack of measurement and reporting infrastructure,
and the volatility of the photovoltaic production. These problems call for a
highly automatic, decentralised and flexible grid management—a very challen-
ging and pressing problem.

7.1.1 Elements of Power Microgrids

A model of a power microgrid needs to take five central aspects into account:
(1) the influence of the wide-area power grid it is connected to, (2) the local
consumption of electric power, (3, 4) the grid-local electric power generation—
which can be further divided into (3) potential and (4) actual generation, i.e. the
amount of electric power that can be produced in ideal external circumstances
(such as weather and time of day), and the amount that is actually produced
after control algorithms inside the generators have been applied—and finally
(5) the geographic topology and capacities of the cabling inside the microgrid.

Wide-area connection A power microgrid usually has a single connection
point to the wide-area electric power grid. This is a transformer station that
converts the network’s high voltage to the grid’s 400 V three-phase current.
Traditionally, electric power flows from large conventional (mostly thermal)
power plants through the wide area grid into the microgrids. This infeed is
controlled by grid coordinators based on predictions of the local consumption
of all the microgrids [HW12], corrected by runtime observations. Runtime

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 271

deviations must be corrected in order not to destabilise any grid. Due to the
physical limitations related to the power plants in use, only a small fraction of
the total generation potential can be employed for runtime adaptation. This is
mainly realized with the help of pump-storage plants, where subtracting power
is achieved by pumping up water, while adding power is achieved by the re-
verse, turning water downfall into electric power.

As part of the interconnection to the wide-area grid there is also a safety
“fuse”, a device that may disconnect the microgrid, intended as a preventative
measure both for local events, e.g. to prevent fatal accidents when a cable is
damaged during excavation works, as well as for interference from the wide
area grid, e.g. to prevent excessive infeed that would exceed the electric power
flow capacity in the microgrid. With increasing microgeneration inside mi-
crogrids, this safety device may actually turn into a problem, for example by
disconnecting the microgrid in case local overproduction exceeds the fuse spe-
cifications.

Local consumption At the leaves of the cabling inside the microgrid are res-
idential homes and business customers. In the past they acted only as electric
power consumers. The consumption of an individual leaf ultimately depends
on a number of factors and decisions by its “inhabitants”, yet it roughly follows
certain patterns over the course of a day. Variations may be due to external
factors such as temperature, influencing the electric power needed for heating
or cooling. As such, consumption is uncontrollable, but predictable within cer-
tain error bounds. There is a recent trend to make consumption more control-
lable via so-called demand-side mechanisms [HW12], which intend to control
the energy consumption of schedulable devices such as off-peak storage heaters
and air conditioners. The decisions are to be based on electric power costs or
grid stability conditions.

Generation potential More and more traditional consumers at the leaves of
the microgrid are turning into producer-consumers (a.k.a. “prosumers”). At cer-
tain times, they may produce more electric power than they consume. The po-
tential output of the microgenerators installed at these leaves depends first and
foremost on the type of generator: Combined heat and power plants (CHP) can
essentially operate on demand, independent of external circumstances, while
microgenerators based on renewable energy sources such as wind and solar
power are inherently dependent on natural phenomena. These vary over time in
an uncontrollable manner. Wind turbines show relatively moderate fluctuations
since wind intensity usually changes only gradually; the amount of available

272 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

solar power, however, can change rapidly and significantly when cloud cover-
age changes quickly.

Actual generation To avoid grid instability, the consumption and production
of electric power need to be matched continuously in real time. The actual
electric power emitted into the grid by a locally installed microgenerator may
affect this stability. With the further increase of these sources, effective con-
trol mechanisms are needed in order to avoid over- or underprovisioning of
power. Technically, it is no problem to reduce the output of all relevant types
of generators—the problem is to decide when to do so, by which amount, when
to switch the generators back on, and by how much. Control algorithms are
thus an important aspect of future microgenerators. They are expected to have
significant influence on the behaviour of future power microgrids.

Local grid topology The topology and spatial layout of the microgrid in
terms of cable lengths and diameters clearly impacts its behaviour. The grids
have been rolled out in the past with the sole perspective of distributing power
downstream, i.e. towards the leaves of the last miles. Now there might be up-
stream power flow in some parts of the grid. It is easy to come up with scenarios
where this may result in stability violations (such as excessive voltage) inside
the grid that remain unnoticed at the leaves and at the root. The proper reflec-
tion of these influences in a way that generalises to arbitrary last miles is very
difficult, because it crucially depends on a specific layout.

7.1.2 Modelling and Abstraction Choices

Since a full model of all individual components of a power microgrid and
their precise behaviour is extremely difficult to build and most probably en-
tirely impossible to analyse, the various components have to be represented
at appropriate levels of abstraction in a model. These abstractions have to be
chosen carefully to make modelling and analysis feasible, yet provide suffi-
cient information to extract reliable answers to the questions of interest from
the model.

A first candidate for abstraction is the contribution of the wide-area grid. A
detailed modelling of the wide-area grid is clearly out of the scope of a model
focussed on just a single power microgrid, while the reverse, the impact of a
single microgrid on the behaviour of the entire (e.g. European) electric power
grid can be considered negligible. It is thus reasonable to represent the influ-
ence of the wide-area grid in the form of a profile, i.e. a deterministic or sto-
chastic function mapping time to the amount of electric power provided. This is

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 273

an instance of what is called a load profile, and is itself assumed independent of
what happens inside the particular microgrid. In addition, the safety fuse at the
root we mentioned does not need to be explicitly modelled; instead it is present
in the analysis as part of the characterisation of what “unsafe” or “unstable”
states need to be avoided.

When it comes to modelling consumer behaviour, the abstraction level de-
pends on the intended modelling purpose. If the focus is on the effects of
consumer behaviour, as in a study of demand-side management mechanisms,
a detailed consumer model and the explicit representation of individual con-
sumers are obvious necessities. If this is not the focus, two choices are to be
made: Should consumers be represented individually or in aggregated form (i.e.
as a load profile), and how detailed does the individual or aggregated consumer
model need to be? Modelling consumers individually allows the differentiation
of consumer types (e.g. into households and businesses) to be represented dir-
ectly. These distinctions would only lead to variations of the chosen load profile
otherwise. Another fundamental question is whether to use a deterministic, sto-
chastic or nondeterministic model of consumption. While deterministic models
are often easier to analyse, they embody the risk of exhibiting or causing spuri-
ous oscillations or correlations mainly because they may ignore differences
between the participants. A stochastic model typically is a good way to avoid
these phenomena by assigning probabilities to different behaviours that are all
considered part of the model. When it is not possible to assign probabilities to
behaviours, nondeterministic models may capture all possible alternatives, but
may often turn out to be hard or impossible to analyse.

The modelling spectrum on the power generation side is similar to that on
the consumer side. Given a fixed set of generators of different types, a (determ-
inistic or stochastic) load profile is a good representation of the potential gener-
ation. It can represent how the external influences on generation potential vary
over time, and since a power microgrid covers only a very restricted geographic
area (of maybe 1 km2), it can be considered constant throughout the geographic
dimension, since local differences in wind or cloud cover are negligible at this
resolution. With respect to actual generation, a load profile may be a good first
step, but may hide interesting behaviour that can result from inappropriate con-
trol algorithms. For example, the currently deployed control algorithm for PV
generators in Germany can lead to oscillating behaviour in times of high poten-
tial generation once an unsafe grid state is reached (see Section 7.2.2). In order
to study, for example, whether certain demand-side mechanisms can avoid or
buffer these oscillations, one would need at least a simple behavioural model
of the actual generation.

274 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Finally, the role played by the grid topology is closely tied to the way the phys-
ical aspects of electric power are represented in the model. Intertwined differ-
ential equations or calculations with complex numbers are the norm, needed to
provide nontrivial answers about frequency and voltage. They are achievable
for specific layouts. A common abstraction that helps to provide valid answers
on a more abstract level assumes the local grid to behave like a perfect “copper
plate”, thus eliminating any spatial considerations.

7.1.3 Properties and Challenges

As the installed microgeneration capacity increases, the effect of power mi-
crogrids on the whole network gets more significant. At the same time, as most
microgenerators are based on renewable energy sources, the volatility in the
microgrids’ behaviour becomes an important concern. There are two core ob-
jectives of microgrid and microgenerator management: economy and stability,
which are deeply intertwined, yet often conflicting interests.

Objectives and tradeoffs In European legislation, an electric power grid has
two distinct modes of operation: emergency operation, where direct interven-
tion of the grid coordinator is needed to drive the grid to a safe state, possibly
impacting service levels on the consumer side, and normal operation, where
market incentives drive the decisions of the participants. The stability of the
grid is a priority concern because reliable distribution is a prerequisite for eco-
nomic use of energy. However, the most economically beneficial decisions for
individual participants may sometimes run counter to the goal of a stable grid.
Grid instability is caused by over- or underproduction, respectively under- or
overconsumption, i.e. the electric power production does not match the current
consumption. It can be stabilised by suitably adjusting production, consump-
tion, or both.

On the production side, the main issue is to avoid overproduction: While
some generation technologies such as CHP are perfectly controllable, the up-
per limit on potential generation of renewable electric power is dependent on
natural phenomena; control strategies for these microgenerators can thus only
reduce production compared to their genuine potential. On the other hand, the
economic interest of microgenerator owners is to feed as much energy into the
grid as possible. In this sense, grid stability and production economy are con-
flicting interests. Control strategies on the production side, whose overriding
goal is to ensure grid stability, thus have to be evaluated for efficiency and fair-
ness in the economic sense as well.

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 275

In contrast to this, economic interests can be used as a way to guide the con-
sumption side to a behaviour that is beneficial to stability: Over- and underpro-
duction ideally have a direct effect on the price of electricity, which can drive
demand in the desired direction. Nevertheless, the study of effective demand-
side mechanisms that lead to compensation of production volatility, with or
without economic aspects, is an area as widely open for research as the produc-
tion side.

Properties We propose the following set of measures to evaluate production
control algorithms and demand-side mechanisms, which we collectively call
strategies, for electric power microgrids:
– Stability is the ability of a strategy to keep the grid in a safe state with a

minimum of oscillation between safe and unsafe states.
– Availability is the overall fraction of time that the grid spends in a safe state.
– Output measures the (total or individual, cumulative or averaged) electricity

output of the relevant microgenerators, which is usually proportional to the
financial rewards of the respective operators.

– Goodput relates output to availability: the amount of electric power a gener-
ator can add to the grid while the grid is in a safe state.

– Quality of Service measures negative impacts on the consumer side. While
closely tied to availability, quality of service can also vary while the grid is in
a safe state, for example if service reductions are used to achieve safety.

– Fairness is the degree to which a strategy manages to distribute adverse con-
sequences equally among the participants. When the grid state does not allow
all generators to operate at full power, for example, will each of them be al-
lowed to provide an equal share of the allowed power generation?

Formal Modelling Challenges Power microgrids are complex systems that
require expressive modelling formalisms to capture the entirety of their beha-
viour. Even if only abstracted subsets of a microgrid shall be represented, fea-
tures such as real-time behaviour and stochastics are necessary, e.g. to model
delayed reactions by the grid controller as well as stochastic load profiles or
randomised algorithms. In order to faithfully represent the precise physical be-
haviour of the electric components together with a discrete control strategy, a
versatile modelling formalism is a necessity. A more exhaustive discussion on
what kinds of modelling features are needed for this problem domain can be
found in [HW09]. However, there is an inherent tradeoff between expressivity
and the analysis effort needed to compute results. Every modelling study thus
needs to precisely identify the aspects to be included in the model as well as
the kinds of properties to be analysed so as to make it possible to select the best

276 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

matching formalism that is still sufficiently expressive. In the remainder of this
chapter, we will use the MODEST language, but most models will correspond
to STA without nondeterminism. We can thus use the modes tool for a sound
simulation analysis.

7.2 Decentralised Stabilisation Techniques

A major portion of the photovoltaic (PV) microgeneration capacity is mounted
on the rooftops of private households, and is as such connected to the last mile.
The often excessive volatility of solar production asks for a highly flexible grid
management on this level. For the remainder of this chapter, we therefore fo-
cus on control strategies for PV microgenerators. As outlined in the previous
section, the goal of such a strategy is to reduce actual power output compared
to the potential generation whenever this is necessary to maintain grid stability.
Otherwise it should allow the output of as much electric power as can be gener-
ated. Let us first take a deeper look at what constitutes a “safe state” for power
(micro-)grids. There are three fundamental dimensions to stability:
– In Europe, the target frequency is 50 Hz. If the frequency leaves the band of

49.8 to 50.2 Hz, this is a serious Europe-wide phenomenon.
– In the end customer grid, the downstream customers may witness consider-

able voltage fluctuations because of upstream fluctuations in production and
consumption. Deviations of more than 10 % are not tolerable.

– There are individual limits on the capacity of grid strands with respect to
energy, i.e. the product of voltage and amperage.

The capacity limits are due to the local grid layout and the “fuse” at the con-
nection point to the upper layers. Voltage has a direct linear dependency to
production/consumption and is thus a good measure of the grid state. How-
ever, voltage changes are local phenomena, entangled with phase drifts in the
last mile and intimately tied to the grid topology and the distances and cabling
between producers and consumers. Therefore, the frequency is often used in-
stead of voltage as a measure of the grid state, although frequency drifts usually
affect the entire European grid and not only a specific last mile and are subject
to dampening effects. An approximately linear dependency between produc-
tion/consumption and frequency is known, albeit being an indirect effect of
physical realities. However, it is still considered an appropriate abstraction by
domain experts [Leh12, Wie12]. Roughly, a change in production/consumption
of 15 GW approximately corresponds to a 1 Hz change in frequency in the
European grid. The installed PV generation capacity in all of Germany in mid-
2012 thus corresponded to a frequency spread of about 1.7 Hz.

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 277

7.2.1 Centralised vs. Decentralised Control

Photovoltaic microgenerators are difficult to manage. First, this is due to their
sheer number, which leads to problems of scalability for any centralised ap-
proach. A second problem is their distributed nature: There is currently no
measurement, logging and reporting infrastructure in place that enables the
collection of accurate and up-to-date information about the state of the grid
participants, and there is no communication infrastructure that allows safe re-
mote control. These are two good reasons to consider highly local, decentral-
ised and automatic grid management approaches. Additionally, decentralised
approaches that do not need any transmission of information to central coordin-
ators are inherently preferable from a privacy perspective.

The design of a highly local, highly automatic, highly decentralized, and
highly flexible grid management is a challenging and pressing problem. It re-
sembles the field of self-stabilising system (SSS) design [Dol00]. SSS are built
from a number of homogeneous systems that follow the same algorithmic pat-
tern, with the intention that their joint execution results in a stable global be-
haviour, and can recover from transient disturbances. Compared to the setting
usually considered in SSS, there are however some important differences: In
a power grid, destabilisation threats must be countered within hard real-time
bounds. This is usually not guaranteed for SSS. On the other hand, in SSS
usually no participant is considered to have knowledge about the global sys-
tem state, while in a power grid, the participants do in principle have access
to a joint source of localized information by measuring amperage, voltage and
frequency.

7.2.2 Current Approaches

As of 2012, about 75 % of the PV microgenerators rolled out in Germany so far
were non-measured and could not be remotely controlled. Since 2007, a regu-
lation was in place that enforced a frequency-based distributed control strategy
(EN 50438:2007). It stipulated that a microgenerator must shut off once the
frequency is observed to overshoot 50.2 Hz. We call this the on-off controller.
While this was initially meant as a way to stabilise the grid by cutting over-
production, it later surfaced that due to the high amount of PV generation, an
almost synchronous distributed decision to take out this portion may induce a
sudden frequency drop, followed by the PV generators joining back in, and so
on. It hence may lead to critical Europe-wide frequency oscillations.

Due to the obvious problems that widespread use of these rules may lead to,
new requirements have been developed as part of VDE-AR-N 4105 [BBZL11].

278 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Consequently, PV generators are since 2012 required to implement the follow-
ing linear control scheme:
– As long as the observed frequency is below 50.2 Hz, the generator may in-

crease its output by up to 10 % of the maximum output that it is capable of
per minute.

– When the observed frequency crosses the 50.2 Hz mark, the current output
of the generator is saved as pm. When the frequency f is between 50.2 and
51.5 Hz, the generator must reduce its output linearly by 40 % per Hertz rel-
ative to pm, i.e. its output is given by the function

output(f) = pm −0.4 ∙ pm ∙ (f −50.2).

– In case the observed frequency exceeds 51.5 Hz, the generator has to be
switched off immediately and may only resume production once the fre-
quency has been observed to be below 50.05 Hz for at least one minute.

As we will see (Section 7.4), this relatively complex algorithm is designed to
dampen the effect of PV generation spikes and to avoid introducing oscillatory
behaviour, but not to actively steer the system towards a safe state where the
frequency is below 50.2 Hz.

7.2.3 Probabilistic Alternatives

If we look at the PV control problem in a more abstract way, it turns out to
be remarkably similar to problems solved by communication protocols in com-
puter networks such as the Internet: Limited bandwidth (in our case, capa-
city of the power grid to accept produced electric power) needs to be shared
between a number of hosts (in our case, generators) in a fair way. We thus con-
sider several new control algorithms inspired by concepts from communication
protocols, most of which use randomisation to break synchrony and avoid de-
terministic oscillations. We assume that the controllers run a loop of two steps,
with every pair of steps separated by some delay: First, the current grid fre-
quency is measured; then, based on this measurement, the generator output is
changed. We describe this model in more detail in Section 7.3. The new control
algorithms we consider are the following:

Additive increase, multiplicative decrease The first new control algorithm
that we study is inspired by the way the Internet’s Transmission Control Pro-
tocol (TCP) achieves fair usage of limited bandwidth between a number of con-
nections: Bandwidth usage is increased in constant steps (additively), and when
a message is lost (taken as an indication of buffer overflows due to congestion),
it is reduced by a constant factor (multiplicatively). This additive-increase,

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 279

multiplicative-decrease (AIMD) policy ensures that several users of the same
connection eventually converge to using an equal share of the bandwidth. We
directly transfer this approach to PV generators: Power output is increased in
constant steps below 50.2 Hz, and if the frequency is measured above 50.2 Hz,
the output is scaled down by a constant factor.

Probabilistic on-off Our hypothesis is that probabilistic strategies may im-
prove stability without requiring fine-grained modifications of the generators’
power output as in AIMD. After each frequency measurement, our first (very
simple) randomised controller proceeds like the on-off controller with probab-
ility 0.95 or switches off with probability 0.05 to introduce some disturbance to
avoid oscillations.

Dynamic die We next use a p-sided die, p ∈ N, instead of fixed probabilit-
ies to decide between proceeding like the on-off controller or unconditionally
switching off, the latter corresponding to exactly one side of the die. p in-
creases exponentially when the frequency is low, making it more probable for
the generator to switch on, and conversely decreases exponentially when the
frequency is above the 50.2 Hz threshold, thus increasing the probability of the
generator staying off for some time even when the frequency drops below the
threshold again.

Frequency-dependent probabilistic switching Next up, instead of influen-
cing the probability of switching on or off via a stepwise increase or decrease
of die size, the frequency-dependent controller makes the probability a function
of the currently observed frequency. The probability function has been chosen
such that the probability of switching on depends linearly on frequency, being
1 at 50.0 Hz, 0.5 at 50.2 Hz and 0 at 50.4 Hz.

Exponential backoff The previous three policies all decided in a probabil-
istic manner whether to change the power output or not. In a departure from
this, our next controller will unconditionally switch to full power when the
current frequency allows and switch off when 50.2 Hz are exceeded, but then
wait a probabilistically chosen amount of time before measuring and potentially
switching on again.

The precise scheme that we use is exponential backoff with collision de-
tection. In the computer networks domain, this is commonly employed in
CSMA/CD-based (carrier sense multiple access with collision detection) me-
dium access protocols such as Ethernet: When one device connected to the

280 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

shared medium (e.g. the cable) has data to send, it first senses the carrier to
determine whether another device is currently sending. If not, it sends its data
immediately. However, if the channel is occupied or if the sending is interrup-
ted by another device starting to send as well (a collision), it waits a number of
time slots before the next try. This number is sampled from a uniform distri-
bution over a range such as {1, . . . ,2bc }, where bc, the backoff counter, keeps
track of the number of collisions and of the number of times that the channel
was sensed as occupied when this message should have been sent. The range
of possible delays increases exponentially, thus the policy’s name; its goal is to
use randomisation to prevent two devices from perpetually choosing the same
delay and thus always colliding, and to use an exponential increase in the max-
imum waiting time in order to adapt to the number of devices currently having
data to send (again, in order to avoid continuous collisions).

The goals of exponential backoff in network protocols closely match our
goals in designing a power generation control scheme: We want all generators
to be able to feed power into the grid when it is not “occupied”, i.e. when the
frequency is below the threshold of 50.2 Hz, and we want to avoid “collisions”,
i.e. several generators switching on at about the same time and thus creating
frequency spikes above that threshold.

Frequency-dependent switching with exponential backoff Our last con-
troller combines the randomisation of switching decisions from the frequency-
dependent controller with probabilistic waiting times according to an exponen-
tial backoff scheme.

7.3 Modelling Decentralised Controllers

To evaluate the behaviour of the different PV generator control strategies intro-
duced in the previous section, we build MODEST models for power microgrids
that use these controllers. As our focus is on the generator control aspect, we
chose to use the following abstractions:
– Physics: We abstract from the detailed physical characteristics (cf. the local

grid topology element of Section 7.1.1) by looking only at the frequency ob-
served. Since our focus is on effects of overproduction, we only consider the
frequency range above 50 Hz, thus representing 50 Hz as frequency value 0
in our model. This value is assumed when all PV generators are switched off
and there is no (= zero) influence from the upper layer. We treat the grid as a
“copper plate” where adding power has a direct linear effect on the frequency,
so we can describe the grid frequency as the sum of the generator outputs plus
the in-feed from the upper layer minus the consumption. Notably, we could

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 281

equally well use the observed voltage as a reference quantity for the model-
ling instead of the frequency in our models since the models are sufficiently
abstract. Since frequency changes are a Europe-wide phenomenon and not
restricted to a specific last mile, we also exaggerate the influence of each
single PV generator.

– Consumption and upper layer in-feed: The influence from the upper layer
power grid on our last mile as well as the local consumption within the last
mile is modelled as an abstract (randomised or deterministic) load profile.

– Generation potential: We model the “worst case” of a maximally sunny
day. Each PV generator is assumed to be able to contribute the full amount
of power it is capable of (given by a constant MAX) into the grid at any time.

7.3.1 A Model Template for Power Microgrids

The detailed models of the control strategies all fit into the same model tem-
plate shown in Figure 7.2. The control strategies become part of a Generator
process, while a LoadProfile process represents the wide-area influence and
local consumption; the entire system is finally specified as the parallel compos-
ition of G instances of Generator plus a single LoadProfile instance. This
template shows a few more noteworthy modelling choices and abstractions:

A global array output of real-valued variables keeps track of each indi-
vidual generator’s current power generation. Each generator repeatedly meas-
ures the grid’s current frequency, uses this value to decide whether and in which
way to modify its own power output, and finally updates its output according
to this decision. Each of these measure-update cycles takes M time units, with
D ≤ M time units passing between the measurement and the change of power
output. This delay allows us to model decision and reaction times as well as the
time it actually takes for the changes made by one generator to be observed by
the others. Higher values of D will thus lead to decisions being made on “older”
data, while D = 0 implies that every change is immediately visible throughout
the last mile. We have thus chosen a discrete measure-update-wait approach;
an alternative is to make the generators reactive, i.e. to observe the evolution of
the frequency and react when relevant thresholds are crossed.

By use of the GeneratorInit process, each generator begins operation
after a random, uniformly distributed delay in the range between 0 and M time
units; measurements will thus be performed asynchronously. Less realistic, but
easier to analyse alternatives would be to have the generators perform their de-
cisions in a fully synchronous manner, or at the same point of time, but in a

282 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

action init;

const int TIME_BOUND; // analysis time bound
const int G; // number of generators
const int M; // measure every M time units
const int D; // changes take D time units to take effect (D <= M)
const real B = 0.3; // frequency when all generators are on
const real MAX = B / G; // max output of a generator
const real L = 0.1; // max wide-area influence + local consumption

real input; // background generation, in [0, L]
real[G] output; // generator output, each in [0, MAX]

function real freq() = input + /* sum over output array */;

reward r_availability, r_output, r_goodput;
property Availability = Xmax(r_availability | time == TIME_BOUND);
property Output = Xmax(r_output | time == TIME_BOUND);
property Goodput = Xmax(r_goodput | time == TIME_BOUND);

process GeneratorInit(int(0..G) id) {
// Generators are initially in a random state
urgent init {= output[id] = Uniform(0, MAX) =};
// Each generator "starts" after a random delay in [0, M]
delay(Uniform(0, M)) Generator(id)

}

process Generator(int(0..G) id) {
action measure, update;
real fm; // frequency measurement
clock c = 0;

process Measure() {
measure {= fm = freq(), c = 0 =}

}

/* control algorithm modelled will be inserted here */
}

process LoadProfile() {
/* load profile model will be inserted here */

}

par {
:: GeneratorInit(0)

/* ... */
:: GeneratorInit(G - 1)
:: LoadProfile()
:: invariant(der(sumoutput) == (freq() - input) / TIME_BOUND

&& der(goodput) == freq() > 0.2 ? 0 : (freq() - input) / TIME_BOUND
&& der(availability) == freq() > 0.2 ? 0 : 1 / TIME_BOUND) stop

}

Figure 7.2: A model template for power microgrids

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 283

process Generator(int(0..G) id)
{

/* ...template code... */

Measure();
when(c >= D) urgent(c >= D)

update {= output[id] = fm >= 0.2 ? 0 : MAX =};
when(c >= M) urgent(c >= M)

Generator(id)
}

Figure 7.3: 50.2 Hz on-off controller

certain order. However, we have observed that in particular the second alternat-
ive generates extreme results (e.g. for fairness) that are clearly artefacts of that
abstraction.

7.3.2 Control Strategy Models

We now explain how to model the control strategies described in sections 7.2.2
and 7.2.3 in MODEST to fit into the template introduced above. We omit some
of the strategies where the MODEST code would have been mostly repetitive.

Current approaches The MODEST code for the simple on-off strategy that
turns the generator off when a frequency of at least 50.2 Hz is observed and
turns it to full power in all other cases is shown in Figure 7.3. A direct imple-
mentation of the new control scheme according to VDE-AR-N 4105 is shown in
Figure 7.4. The switch between normal and emergency mode is obvious in the
model. Note that when urgent(e) P is a shorthand for when(e) urgent(e) P.

Probabilistic Alternatives Figure 7.5 shows the model of the AIMD con-
troller. In this case, we chose 10% of the maximum generator output as the
constant value when increasing, and 2/3 as the decrease factor. The latter has
shown to provide a good tradeoff between availability and goodput when we
compared our analysis results (see next section) for different reduction factors.
The MODEST code for the frequency-dependent probabilistic switching con-
troller is shown in Figure 7.6. As described previously, we have chosen a linear
function over the range of [50.0Hz,50.4Hz] for the mapping from measured
frequency to switch-off probability. At the critical threshold of 50.2 Hz, the
probability of switching off will thus be 1/2. Finally, the controller based on the
exponential backoff approach can be seen in Figure 7.7; the combination with

284 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

process Generator(int(0..G) id)
{

real p_m = output[id];
/* ...template code... */

process NormalOperation() {
alt {
:: when(fm < 0.2)

// Increase by 10% of MAX per minute
update {= output[id] += (0.1 * MAX) / MINUTE,

p_m += (0.1 * MAX) / MINUTE =};
when urgent(c >= M) Measure()

:: when(0.2 <= fm && fm < 1.5)
// 40% gradient
update {= output[id] = -0.4 * p_m * (fm - 0.2) + p_m =};
when urgent(c >= M) Measure()

:: when(1.5 <= fm)
// Switch off
EmergencySwitchOff()

};
when(c >= D) urgent(c >= D) NormalOperation()

}

process EmergencySwitchOff() {
bool waiting;
clock minute;

// Switch off
update {= output[id] = 0, p_m = 0 =};

// Wait for frequency to be below 50.05 Hz for one minute
do {
:: when urgent(waiting && minute >= MINUTE) break
:: when urgent(c >= M && !(waiting && minute >= MINUTE))

Measure();
urgent alt {
:: when(fm <= 0.05 && !waiting)

{= waiting = true, minute = 0, c = 0 =}
:: when(fm <= 0.05 && waiting)

{= c = 0 =}
:: when(fm > 0.05)

{= waiting = false, c = 0 =}
}

}
}

Measure();
when urgent(c >= D) NormalOperation()

}

Figure 7.4: Model of the controller according to VDE-AR-N 4105

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 285

process Generator(int(0..G) id) {
/* ...template code... */

Measure();
when urgent(c >= D) alt {
:: when(fm < 0.2)

{= output[id] = min(MAX, output[id] + 0.1 * MAX) =}
:: when(fm >= 0.2) {= output[id] *= 2/3 =}
};
when urgent(c >= M) Generator(id)

}

Figure 7.5: Model of additive increase, multiplicative decrease of frequency

process Generator(int(0..G) id) {
/* ...template code... */

Measure();
when urgent(c >= D) update palt {

:max(0, 0.4 - fm): {= output[id] = MAX =}
: fm : {= output[id] = 0 =}

};
when urgent(c >= M) Generator(id)

}

Figure 7.6: Model of the frequency-dependent prob. switching controller

process Generator(int(0..G) id) {
int bc; // backoff counter
int backoff; // number of slots to wait till next try
/* ...template code... */

process Gen() {
Measure();
when urgent(c >= D) alt {
:: when(backoff > 0) update {= backoff-- =}
:: when(backoff == 0) alt {

:: when(fm < 0.2) {= output[id] = MAX, bc = 0 =}
:: when(fm >= 0.2) {= output[id] = 0, bc++,

backoff = DiscreteUniform(0, (int)pow(2, bc)) =}
}

};
when urgent(c >= M) Gen()

}

Gen()
}

Figure 7.7: Model of the controller with exponential backoff

286 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

frequency-dependent switching is just a simple replacement of the when con-
ditions in exponential backoff with a probabilistic alternative (palt) that uses
the chosen probability function.

7.4 Evaluation

We use the modes discrete-event simulator for MODEST to simulate our last
mile model with the different control strategies using G = 32 generators and
evaluate them (cf. Section 7.1.3) for stability, i.e. how prone the algorithms are
to the delay incurred prior to their reactions taking effect and how well they
manage to keep the system in the safe state where the frequency is below the
threshold of 50.2 Hz with a minimum of oscillation; for availability, i.e. we
look at the overall fraction of time that the system spends in the safe state, and
relate this to the goodput, which is the average amount of power a generator
can add to the system while keeping it safe; and for fairness, i.e. whether each
generator will be able to provide an equal share of the allowed power generation
when the system state does not allow all generators to operate at full power,
or whether any of the control schemes continually put certain generators at a
disadvantage.

7.4.1 Stability

In order to find out how prone the different algorithms are to frequency oscil-
lations, we perform two simulation runs per algorithm: one for the case where
there is no delay between a generator’s frequency measurement and the time at
which the effect of its modification of power output can be observed over the
entire branch of the grid (D = 0), and one for the case where this delay amounts
to nine tenths of an entire measurement cycle (D = 9, M = 10). We then plot
and compare the overall system frequency over time. To allow a proper com-
parison, we use a deterministic background load process. The initial power
generation for each generator is randomly determined.

Findings The simulation plots are shown in figures 7.8 to 7.15, with fre-
quency values on the y-axis and simulation time on the x-axis. The safe area
below 50.2 Hz is highlighted. The system frequency is the upper (blue) curve,
while the lower (red) curve is a plot of the background load for reference. The
left-hand plots are for the immediate case (D = 0) while the right-hand plots
show the behaviour in the delayed case (D = 9).

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 287

We first see (Figure 7.8) that the on-off controller indeed produces extreme
frequency oscillations, at least in the delayed setting. Its behaviour in the im-
mediate setting, the details of which are not visible due to the scale of the graph,
is also very predictable (modulo changes in background load): In a system with
G generators, it enters a cycle of length G+1 that starts when a sufficient num-
ber of generators is off such that the system frequency is just below 50.2 Hz.
The next generator to act that is currently off will then switch on, pushing the
frequency above 50.2 Hz and thereby forcing the next generator that is on to
switch off. The set of generators that are off thus moves through the total set
of generators in a round-robin fashion; assuming that K out of the G generators
can be switched on simultaneously without exceeding 50.2 Hz, the frequency
will be below that threshold for a fraction (K +1)/(G+1) of the total time, giv-
ing a simple formula for system availability (albeit for a very simple setting).
We suspect that this behaviour is more of a modelling artefact than realistic,
though, and that a (slightly or severely) delayed setting is a better approxima-
tion of reality.

The linear controller according to VDE-AR-N 4105 is a clear improvement
(Figure 7.9): It exhibits no oscillations or frequency jumps at all and instead
mostly follows the background load. It completely fails at keeping the fre-
quency in the safe area below 50.2 Hz, however. Such a direct frequency control
was most probably not the intention of this controller’s designers, though—in
fact, if one treats the background load as the cause for the unsafety in this case,
one can argue that, if this background load is to a large extent controllable (as
is the case when most power is conventionally generated), modifications of the
background load will suffice to keep the frequency in the desired range because
this linear controller will not interfere with such stabilisation attempts.

The AIMD controller is essentially the on-off controller improved to pro-
ceed in smaller steps, and this shows in the frequency plots (Figure 7.10), which
show a highly dampened version of the on-off controller’s behaviour. Indeed,
the interesting point about the AIMD controller is not so much its improved sta-
bility but the question whether AIMD brings the same fairness into distributed
power generation that it brings to TCP in the computer networks setting.

We now come to the family of probabilistic on-off controllers employing
various degrees of randomisation based on different approaches. Our first ob-
servation is that, from the stability perspective, neither the probabilistic on-off
controller, nor its variant with dynamic die size, nor the exponential backoff-
based controller offer any advantage over the simple deterministic approach
(figures 7.11, 7.12 and 7.14). It is particularly surprising that both approaches
to randomisation (random switching and randomised delays) fail to improve

288 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 7.8: Behaviour of the 50.2 Hz on-off controller

Figure 7.9: Behaviour of the linear controller according to VDE-AR-N 4105

Figure 7.10: Behaviour of the AIMD controller

Figure 7.11: Behaviour of the probabilistic on-off controller

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 289

Figure 7.12: Behaviour of the probabilistic on-off controller with dynamic die

Figure 7.13: Behaviour of the frequency-dependent prob. on-off controller

Figure 7.14: Behaviour of the on-off controller with exponential backoff

Figure 7.15: Behaviour of the frequency-dependent controller with exp. backoff

290 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

stability (except for a very, very slight reduction in the amplitude of the oscilla-
tions when using exponential backoff in the delayed setting). For the random-
ised delay controllers, this appears to be due to the decisions in the delayed case
being effectively 90% synchronous, which means that almost all generators
will decide to switch on as soon as the system has become safe for low backoff
counter values, which leads to the backoff counter being reset frequently and
never even reaching the higher values needed to break synchronicity.

The frequency plots obtained from the two frequency-based on-off con-
trollers, without (Figure 7.13) and with exponential backoff (Figure 7.15), tell
a very different story: In both cases, the behaviour of the system is very differ-
ent from the other on-off controllers, with the frequency changes in the delayed
setting being much closer in magnitude to the AIMD controller. This indicates
that it is indeed possible to achieve the effect of fine-grained deterministic con-
trol using a suitable number of probabilistic controllers employing an adequate
randomisation scheme instead. Evaluating the addition of exponential backoff
in this case is somewhat difficult: We see that the system appears to remain in
the safe area for longer amounts of time when exponential backoff is used, but
this effect might potentially be achieved by skewing the probabilities to favor
switching off in the non-backoff controller as well. Still, it appears that the con-
troller using exponential backoff copes better with the increase of background
load in the middle of the simulation run, so we tend to consider this a beneficial
addition in terms of improving stability.

7.4.2 Availability and Goodput

We obtain results for the system availability by including a (reward-based)
property in the model framework that evaluates to the fraction of time that the
frequency was below 50.2 Hz in a simulation run. We perform 1000 simulation
runs in order to average out the availability numbers over the probabilistic de-
cisions, which in this case also come from using a random background load.
Instead of merely showing the availability numbers on their own, we chose to
also compute the goodput of the generators, i.e. the amount of “useful” power
generated, with power being of no use when the system is unavailable. We then
show, in Figure 7.16, availability compared to total goodput for all generators
per time unit for the different controllers.

Findings In terms of availability, four algorithms behave very similarly: The
on-off controller, the probabilistic on-off controller, its variant with dynamic
die size, and the basic frequency-dependent probabilistic on-off controller. The

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 291

Figure 7.16: Availability vs. total goodput for D = 0 (left) and D = 9 (right)

first three already exhibited almost identical behaviour in the plots used to eval-
uate stability, so their being so close in terms of availability comes as no sur-
prise. The two interesting points about this cluster of algorithms are that 1)
the frequency-dependent controller with its vastly different behaviour is part
of it—however, in the delayed case, it makes this difference shown by provid-
ing notably better goodput, and 2) that the on-off controller with exponential
backoff is not part of it, showing similar goodput, but increased availability—
this being where the reduction in oscillation amplitude compared to the other
severely oscillating controllers, as observed in Figure 7.14, probably comes in.

The linear controller according to VDE-AR-N 4105 is a clear outlier in
the negative sense for availability; as observed before, however, its goal is
probably not to actively stabilise the system but to avoid introducing addi-
tional instability. The two positive outliers are the AIMD controller and the
frequency-dependent controller with exponential backoff. Both manage to im-
prove availability and goodput, with the AIMD controller favouring goodput
and the frequency-dependent exponential backoff controller providing higher
availability at slightly lower goodput, i.e. more severe but shorter spikes into
the unsafe area above 50.2 Hz.

7.4.3 Fairness

Another aspect worth studying is fairness: We want to find out if some of the
controllers allow certain generators to produce significantly more power than
others. Since all generators are identical, any such difference will be due to the
random initial power generation. As such, it does not make sense to compute
averages over several runs, so we perform one very long simulation run instead,
using a scaled version of the usual deterministic load profile. The range of
values we obtain, with one value being the accumulated output of one of the

292 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 7.17: Generator output ranges for D = 0 (left) and D = 9 (right)

generators over the length of the run, is shown in Figure 7.17. The lower (red)
area is below the mean output, the upper (green) area is above the mean, and the
black line indicates one standard deviation from the mean in both directions.

Findings The most unfair controller clearly is the linear one. This is not
unexpected: It does not include any radical changes of output, instead trying
to progress in small steps. A generator that initially has a high output will
thus more or less remain at high output, while a generator that starts low or
off does not get a chance to obtain a significant increase in participation. The
main point of interest concerning fairness is whether the AIMD approach will
result in a fair sharing of the available production possibility in the same way
that it results in a fair sharing of bandwidth when used in TCP. Surprisingly,
while it is indeed better than its fairness-ignoring cousin with additive decrease
(AIAD), both are still comparatively unfair relative to most other controllers in
the delayed setting. This can again be explained by the incremental nature of
AIMD, which makes it similar to the linear controller, compared to the very
randomised on-off behaviour of the remaining controllers, which show a high
degree of fairness both for D = 0 and for D = 9, with the frequency-dependent
controller with exponential backoff being a little worse than the others.

7.4.4 Scaling the Model

One final point of interest is whether the controllers are sensitive to the par-
ticular simulation setting of G = 32 generators with a total contribution to fre-
quency of at most 0.3 Hz. The number of 32 generators is realistic, if not on

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 293

Figure 7.18: The frequency-dependent controller with backoff, scaled setting

the high side, for a typical last mile branch today. However, as mentioned,
frequency is a Europe-wide phenomenon, while voltage is highly local, so it
makes sense to study both lower (more realistic for voltage) and higher num-
bers of generators (more realistic for frequency). We thus performed the simu-
lation analysis for stability and availability/goodput for G ∈ {2,4,8,16,64} as
well, in two different settings:
– Scaled setting: The contribution to frequency of each generator is scaled

such that the total contribution of all generators is the same as for G = 32.
This will allow us to find out how the number of generators affects the con-
trollers’ behaviour.

– Unscaled setting: The contribution of each individual generator is constant
(namely 0.3Hz/32 = 0.009375 Hz, as in all models studied in the previous
sections), leading to a lower (for G < 32) or higher (for G > 32) total contri-
bution of all generators. In particular, with a maximum background genera-
tion of 0.1 Hz, the system cannot become unsafe for up to 10 generators, but
it can reach up to 50.7 Hz for G = 64.

Stability

We found that the number of generators itself (= scaled setting) does not change
the system behaviour or the performance of the different controllers in terms of
stability significantly. As an example, consider the behaviour of the frequency-
dependent controller with exponential backoff: Its behaviour in the scaled set-
ting with D = 9 is shown in Figure 7.18, for G = 16 on the left and G = 64 on
the right. Compared to the right-hand plot in Figure 7.15, the only significant
difference is the step size of the changes when a generator is switched on or off.

However, once we increase the total frequency contribution (= unscaled
setting with G = 64, D = 9), the two frequency-dependent controllers start be-
having differently. The plot on the left-hand side of Figure 7.19 shows the be-
haviour of the controller without exponential backoff: It quickly starts to induce

294 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

Figure 7.19: The two frequency-dependent controllers in the unscaled setting

severe oscillations. This happens because the probability function used by the
controller assigns probability 1 to switching off for frequencies beyond 50.4 Hz,
which are more likely to be reached at some point when the total contribution
of all generators is as high as 0.6 Hz. Once this happens, almost all generators
switch off due to the measurement delay of D = 9, only to switch on again with
a very high probability in the next “round”. The frequency-dependent control-
ler with exponential backoff is the only probabilistic one that still works in this
setting, albeit not leading to as stable a system as for G = 32. Still, as shown on
the right-hand side of Figure 7.19, it manages to reduce oscillations over time.
Experiments using different and non-linear functions to compute the switch-
off probability depending on the frequency indicate that these scaling problems
can be reduced by using a “better” probability function [Ber13].

Availability and Goodput

When we look at availability and goodput, we mainly see these findings con-
firmed: Figure 7.20 shows the evolution of availability and goodput for chan-
ging values of G for the three most interesting controllers (again for D = 9).
This time, we show the average goodput per generator and time unit. In the
scaled setting (left-hand side), this implies that a controller that is not affected
by changes of G will have constant availability, and goodput inversely propor-
tional to G. We clearly see that the on-off and AIMD controllers show this
kind of behaviour. The frequency-dependent controller with exponential back-
off, however, performs better as G increases: Availability improves, and for
twice the number of generators, the goodput is actually larger than half the pre-
vious value. This controller’s randomised decisions thus manage to create an
averaging effect for a higher number of participants and thereby successfully
exploit the potential benefits of randomisation.

In the unscaled setting (right-hand side of Figure 7.20), the results are more
difficult to interpret. We first observe that it needs at least 11 generators to reach

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 295

Figure 7.20: Availability vs. goodput per generator, scaled vs. unscaled setting

a system frequency above 50.2 Hz under full background load (22 generators
with no background load). For an ideal controller, the goodput per generator
should thus be the same for all G < 11; after that, an increasing number of gen-
erators has to “share” the safe area below 50.2 Hz, thus goodput should again
be inversely proportional to G. This appears to be the case for the on-off and
AIMD controllers, though both fail to keep availability constant and thus in-
dependent of the number of generators. The frequency-dependent controller
with exponential backoff again behaves differently: While it starts with lower
goodput and does not keep this independent of G, it performs better in terms
of availability compared to the on-off and AIMD controllers. As observed in
Section 7.4.4, it finally starts to break down when G = 64. Still, this shows
that combining probabilistic switching with randomized delays can indeed lead
to a more robust controller; we expect the use of a better probability function
and fine-tuning of the backoff procedure to have the potential for significant
improvement of the frequency-dependent controllers with and without expo-
nential backoff.

7.5 Summary and Discussion

In this chapter, we have discussed elementary mechanisms for distributed con-
trol of power grids facing considerable infeed of renewable energy. We have
focussed on the properties and modelling aspects needed to describe and ana-
lyse these systems and the techniques necessary to manage them in a highly
flexible, highly automated, and highly decentralized manner.

Another system which is highly decentralized, highly flexible and managed
in a highly automated way is the Internet. As we have discussed, certain solu-
tions that have been coined as part of Internet protocols can be adapted to serve

296 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

beneficially in future distributed control of power grids. This benefit might
not be restricted to concrete Internet solutions, but might more generally also
materialise for some of the more universal, genuine Internet design principles,
such as:
– Network neutrality and fairness: There is no discrimination in the way the

network shares its capacity among its users. Ideally, the net is fair in the
sense that if n users are sharing a connection, then on average each user can
use about 1/n-th of the capacity.

– Intelligent edges, dumb core: Putting intelligence into the net itself is much
more cost ineffective than placing it at the edges of the networks, i.e. into the
end user appliances.

– Distributed design and decentralised control: Distributed, decentralised con-
trol is not only a means to assure scalability. It also is a prime principle to
protect end user privacy that would be at stake if centralised authorities would
collect information for decision making.

There are a number of similarities between the Internet and the power grid,
including its excessive size, its hierarchical structure, its organic growth, and
its ultimately high dependability. It seems that this implies a number of very
good reasons why the future management of power grids should take strong
inspirations from the way the Internet is managed. Our research indicates some
first concrete examples of this kind:

We have presented a simulation-based evaluation of a potpourri of decent-
ralised stabilisation strategies inspired by concrete Internet solutions. The dis-
cussion has focussed on the frequency as a single indicator of the grid state,
and has assumed a linear impact of PV production on it. The assumption of lin-
earity is an indirect effect of the physical realities. We could also have used the
observed voltage as a reference quantity for the modelling instead of the fre-
quency. For low voltage rotating current, the allowed voltage interval is 440 V
to 360 V. In this interpretation, the linearity assumption would directly hold,
and the analysis results can therefore be transferred to this interpretation right
away. It is worth noting that frequency drifts usually affect the entire European
grid, and not only a specific last mile. This also means that the influence of
a single last mile on the frequency is in fact negligible, and appears amplified
in our studies. In contrast, voltage changes are local phenomena, entangled
with phase drifts in the last mile. The influence of a single microgenerator on
the observed voltage in a last mile is therefore much more substantial, but may
actually be skewed by spatial properties. In fact, we see the development of
models that use voltage as the central measure, and that thus need to include
more details about the physical and spatial behaviour, as future work. Such
models need to include all the details that affect the strategy under study, but

SELF-STABILISING PHOTOVOLTAIC POWER GENERATION 297

should at the same time still be amenable to an automated analysis. Determin-
istic variants of hybrid automata may fit this bill, but their faithful simulation
(in particular when it is necessary to ensure that no events are ever missed)
already poses technical challenges.

At the same time, the discussion has focussed on grid stability, not grid
economy. The stability of the distribution grids is a priority concern, because
reliable distribution is a prerequisite for economic use of energy, whether re-
newable or not. Of course, the same basic control algorithms can use intraday
and spot market prices in addition to frequency or voltage as indicators for the
grid state in times when the grid is operating well (which will hopefully be
dominating time-wise anyway). These indicators are nowadays easily access-
ible in residential areas over the Internet (provided there is power to run the
residential Internet connection, a grid stability problem) and can be used for
decentralised demand-response management. A massive roll-out of such appli-
ances may however make the power grid fall into a similar trap as the current
German on-off controllers do, cf. Figure 7.8. This is because automatic de-
centralised decisions orchestrated by a central signal may lead to oscillations.
Suitable use of randomisation may again help to avoid such undesired effects.

Concerning the modelling and analysis techniques used in this chapter, we
have seen that the models are stochastic timed automata without nondetermin-
ism. This makes them amenable to a straightforward simulation, i.e. SMC,
analysis without encountering the problems we first described for MDP in Sec-
tion 4.6 and that reappeared for PTA and general STA. When starting the work,
we also studied variants of the model template in which the initial delay or the
ordering between the individual generators was nondeterministic, in contrast
to the uniform stochastic initial delay we used here. However, it emerged in
experiments with hand-picked schedulers that the extremal behaviour would
most likely be obtained when all generators execute at the same time, and that
this behaviour would be very unrealistic. For this reason, we did not consider
nondeterministic models, or the application of exhaustive model checking, any
further. Still, with improvements in efficiency of the exhaustive model check-
ing approach for STA described in the previous chapter, it may become feasible
to scale time such that the uniform initial delay is represented in sufficient detail
in the abstracted model for the unrealistic extremal behaviours to become rare.
Since all generators are currently identical in behaviour, symmetry reduction
techniques may help, too. Then, a model checking analysis may provide new
insights.

Probably the most tangible contribution of this chapter is a first indication
that concepts developed for distributed communication protocols may be at-
tractive candidates for components of future power grid stabilisation strategies.

298 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

We emphasised that there is an urgent need for better stabilisation strategies in
light of the strong growth of PV microgeneration especially in Germany. The
Internet-inspired mechanisms to break synchrony, especially by using random-
isation, appear—at least to the author—as one decisive piece in the puzzle of
making the power grid future-proof.

Discussion 8
On our tour of stochastic timed systems in this thesis, we have given con-
sistent definitions of formal models ranging from the basis of labelled trans-
ition systems and discrete-time Markov chains all the way to the expressive
nondeterministic-stochastic formalism of stochastic timed automata (STA). We
have shown how these models build on each other, and how they can be exten-
ded with additional orthogonal features such as rewards, discrete variables, and
compositional modelling of networks of automata. Our modelling language of
choice is MODEST, and we have step-by-step introduced the necessary syn-
tax and semantics to cover the increasingly expressive formalisms. We have
restricted our attention to the analysis of reachability properties and, after we
introduced real-time aspects, expected accumulated reward values. Our ana-
lysis methods of choice are (exhaustive) model checking and statistical model
checking, and we have investigated their applicability to each model. Finally,
we concluded with a case study from the area of control algorithms for power
microgrids with significant renewable energy infeed.

Achievements

Aside from presenting a consistent view of various related formal models that
cover the quantitative aspects needed to study stochastic timed systems, the
core achievements presented in this thesis lie in statistical model checking for
Markov decision processes (MDP, Chapter 4), the comparison of probabilistic
timed automata (PTA) with invariants and PTA with deadlines (Chapter 5), a
first fully-automated exhaustive model checking method and implementation
for STA (Chapter 6), and an evaluation of the idea to use randomisation and
other ideas from Internet protocols to control PV microgenerators (Chapter 7).

SMC for MDP The problem of model checking has in principle been long
solved for MDP. However, due to the state space explosion problem, i.e. the
excessive memory usage of the model checking techniques, the application

300 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

of SMC to MDP models has recently become an area of significant research
interest. We have presented two approaches to tackle this problem, which
are based on an on-the-fly partial order respectively confluence check. They
provide sound results and preserve the general flavour of SMC as a technique
that conserves memory at the cost of runtime. Both approaches have been im-
plemented in the modes simulator, which is available as part of the MODEST

TOOLSET.

PTA with deadlines As an extension of MDP, performing SMC for PTA
faces the same problems as for MDP (and possibly more). On the other hand,
but again like for MDP, the classical model checking problem has been mostly
solved for PTA. This is why we only summarised the existing model check-
ing techniques and the potential ways to apply SMC to PTA when the problem
has been solved for MDP. The core contribution of Chapter 5 instead lies in
the comparison of the two existing variants of PTA: Those that provide loca-
tion invariants to restrict the passage of time (as used in tools like UPPAAL and
PRISM), and those that rely on the more compositional deadlines to achieve the
same goal (as used in MODEST). We showed that the expressiveness of the two
model variants is incomparable, but that there is a large and useful subset of
each that can be transformed into the other. Of these transformations, the one
from deadlines to invariants is nontrivial, and we have proven the correctness
of the algorithm we introduced. Finally, to top off the presentation of PTA, we
have given a detailed description of the modelling and analysis of a very typical
PTA model of a communication protocol (namely the BRP).

STA model checking STA again inherit the problems of PTA when it comes
to SMC. However, previous to this thesis, they had not been amenable to model
checking either. All studies that used STA models therefore had to carefully
restrict to the fragment of deterministic STA, or with equal care use a hopefully
suitable resolver or time scheduler to remove the nondeterminism. Based on
existing techniques for stochastic hybrid systems, we have developed, imple-
mented and evaluated the first fully-automated model checking algorithm for
general, nondeterministic STA. The resulting mcsta tool is now available as
part of the MODEST TOOLSET.

Internet ideas for microgrids Aside from describing the real-life problems
and ensuing modelling challenges in the area of distributed microgeneration
based on renewable energy sources, in particular on volatile solar power, the
main contribution of Chapter 7 is in taking up the insight that there are strik-
ing similarities between this area and the Internet. Our formal modelling and

DISCUSSION 301

analysis of Internet-inspired control algorithms for photovoltaic microgenerat-
ors shows that transferring ideas and solutions from the Internet to the power
domain may be a key ingredient for the reliable and economic future power
generation largely based on renewable sources.

Limitations and Future Work

We have seen, both in the description and in the evaluation of the techniques
and analyses presented in the previous chapters, that important limitations and
a number of open problems remain.

SMC for MDP and beyond Although we have presented two original ap-
proaches and summarised three other existing techniques to perform SMC for
MDP, the general problem must still be considered as unsolved. The two meth-
ods that we have introduced work well, but are restricted to certain subclasses
of MDP. While some of the technical constraints, such as the limitation of
the POR-based approach to interleavings only, can likely be overcome, both
approaches are fundamentally only applicable to spuriously nondeterministic
MDP. The other three approaches, which tackle the problem for the general
case, all currently have individual limitations that reduce their usefulness: They
are either not sound in the general case, or their memory usage pattern is more
comparable to exhaustive than statistical model checking. With SMC for MDP
being an open problem, the same very much applies to SMC for PTA and STA
as well.

STA model checking While we have shown that our method to perform
model checking of STA works well for some models, we have also seen that it
severely suffers from state space explosion, especially when it comes to time-
bounded properties. It is thus worthwhile to investigate ways of state space
reduction that are applicable to or specifically designed for this new method.
In particular, the essential states reduction originally developed for the RAP-
TURE tool [DJJL02, Section 5] appears promising to yield smaller digital clocks
MDP. Another option would be to use a zone-based analysis of the abstrac-
tion PTA, such as the forwards reachability technique of [KNSS02, DKN04]
(cf. Section 5.5). Its main drawback was that it could only deliver upper bounds
on maximum reachability probabilities, which is less relevant in the STA case
where the computed values are upper bounds from the start. Still, an additional
overapproximation error may be introduced. As the game-based approach to

302 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

PTA analysis [KNP09] (also described in Section 5.5) has been shown to per-
form better than digital clocks, it may also be able to speed up the STA ana-
lysis. An additional benefit of both of these alternatives to the digital clocks
approach is that they can handle open clock constraints and should therefore
lead to a lower overapproximation error. On the other hand, they cannot handle
rewards, so digital clocks will still be needed for reward-based properties—
but these were not the main bottleneck in our experiments anyway. Finally,
finding conditions under which scaling time does not increase the approxim-
ation error and proving this fact (like it was shown in [KNSS00] for the case
of bounded distributions) is already on our agenda for future work. If it can
be proven, this would pave the way for an automatic abstraction-refinement
technique that could deliver the tightest bounds possible given the available
memory and runtime budget.

Microgrid modelling and analysis The main catch of our analysis of the
Internet-inspired microgenerator control algorithms was the use of a copper
plate model with frequency as the key measurement of the power grid’s state.
The reality of power microgrids is much more complex, and a significant por-
tion of the overall challenge of installing masses of distributed microgener-
ators in fact lies in keeping nominal conditions at all points inside these last
mile grid strands. Our models thus need to be extended with the necessary
physical quantities and laws as well as spatial properties of representative mi-
crogrids. This will most likely require a hybrid model that can represent both
the controllers’ discrete decisions and the continuous evaluation of the physical
quantities (usually described as differential equations), as well as a suitable and
trustworthy hybrid system simulation tool. On the other hand, we have not even
taken advantage of many of the techniques already described in this thesis when
we analysed the models described in Chapter 7. We need to go back to the ex-
isting models and see if we can abstract them further in ways that would make
model checking possible while still keeping sufficient detail to show interesting
behaviours.

Current Related Work

In the areas of SMC for MDP and control of renewable energy generation, there
is important ongoing work by others: We have presented three other approaches
to perform something like SMC for general MDP, although they all come with
some restrictions concerning soundness, correctness, or memory usage. The
field of managing renewable energy production to preserve grid stability (and
potentially improve economy) is an extremely wide and active area of research,

DISCUSSION 303

and we have only given a small glimpse into past related work at the beginning
of Chapter 7. We expect significant developments in this area in the near future.

Due to the fact that on the one hand, PTA model checking is mostly a solved
problem, while on the other hand, it is still an open question how to soundly and
efficiently apply SMC even just to the submodel of MDP, it appears that there is
not a large amount of current work in the area of PTA. In fact, the contributions
we presented in this thesis in the area of PTA are among the oldest work we
have included, dating back to 2010 and earlier. The analysis of STA, on the
other hand, has so far received scant attention where nondeterministic models
are concerned even though the pioneering work by Kwiatkowska et al. was
already published in 2000, i.e. 14 years before this thesis was written. In fact,
we see the analysis of STA as the most promising avenue for future research.

Modest Syntax and Semantics A
Throughout the previous chapters, we have introduced the MODEST modelling
language step-by-step for the different models from LTS to STA. As the mod-
els became more expressive, however, we did not update the inference rules
for constructs already presented earlier and instead relied on an intuitive un-
derstanding of how to extend these rules to the new models. For reference, we
present a complete formal syntax and semantics of the MODEST language for
STA in this appendix.

Origins The material presented in this appendix is an adapted and reduced
version of Sections 2 and 3 of [HHHK13], which were written by the author
as an extension and revision of the original MODEST syntax and semantics
introduced in [BDHK06].

A.1 Syntax

We start our discussion by giving the complete grammar for MODEST processes
and process behaviours.

Models, Processes and Declarations

A MODEST model consists of a sequence of declarations and a process beha-
viour. Declarations are constructed according to the following grammar:

dcl ::= [patient | impatient] action act; | (actions)

exception excp; | (exceptions)

type var [= e] ; | (variables)

process ProcName(t1 x1, . . . , tk xk) { dcl P} (processes)

306 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

syntax type domain continuous behaviour

bool Boolean variables { true, false} ẋ = 0

int unbounded integers Z ẋ = 0

int(e1..e2) bounded integers {e1, . . . ,e2 } ẋ = 0

real static real variables R ẋ = 0

clock clocks R+
0 ẋ = 1

reward rewards R+
0 ẋ = 0, or given

by invariants

Table A.1: Types of variables in MODEST

where, for i ∈ {1, . . . ,k}, act, excp, var, ProcName and the xi are identifiers
(names), type and the ti are types (see Table A.1 for the list of types1) and
P is a process behaviour. A MODEST model can thus be treated as a process
without parameters; when we refer to a process in the remainder of this chapter,
we mean a declared process or the model’s unnamed top-level process. The
declarations of a process and its parameters define the following (finite) sets
associated to the process:

– ActP = PActP] IActP]ExcpP]{τ ,⊥, [}, the set of actions partitioned into
patient and impatient actions, exceptions and the silent action τ , the error
action ⊥ and the break action [;

– VarP, the set of variables, which contains both declared variables as well as
the process’ parameters.

To simplify our definitions w.l.o.g., we assume that any particular patient or
impatient action, exception or variable is declared in at most one place in a
given model. Properties are also included in the declarations section of a model
(but not of a process) using a superset of the syntax described in the previous
chapters of this thesis.

Variables can initially be assigned the value of an expression e ∈ Sxp expli-
citly; otherwise, they are implicitly initialised to a default value, typically zero.
As described in Section 2.3, we treat expressions in an abstract manner: We
omit a full grammar in this thesis and only point out the possibility of including
the any and der operators as well as probability distributions as described in
the previous chapters.

1The implementation in the MODEST TOOLSET also supports fixed-size arrays and user-defined
data structures, which are technical extensions but not conceptually relevant for this thesis.

MODEST SYNTAX AND SEMANTICS 307

Process Behaviours

The process behaviours are constructed according to the following grammar:

P ::= act | stop | abort | break | P1;P2 |

when(eb) P | urgent(eb) P | invariant(ei) P | invariant(ei){P} |

alt{ ::P1 . . . ::Pk } | do{ ::P1 . . . ::Pk } | par{ ::P1 . . . ::Pk } |

act palt{ :w1: U1;P1 . . . :wk: Uk;Pk } |

throw(excp) | try{P}catch excp1 {P1 } . . . catch excpk {Pk } |

relabel{ I }by{G}{P} | extend{H }{P} |

ProcName(e1, . . . ,ek)

where for j ∈ {1, . . . ,k}, act ∈ PActQ ∪ IActQ ∪{τ}, Uj ∈ Upd, excp ∈ ExcpQ,
excp j ∈ ExcpQ, eb ∈ Bxp, ei ∈ Bxp′ (see below), w j ∈ Axp, H ⊆ PActQ ∪ IActQ

is a set of observable actions, and I and G are vectors of equal length which
have elements in ActQ \ {[,⊥} such that all elements in I are pairwise differ-
ent and not equal to τ with the current process or any process that contains
the current process as Q. In order to simplify the semantics of process calls
(ProcName(e1, . . . ,ek)), we assume that every process call corresponds to a
unique process declaration in the model, which can be achieved by renaming
in any case.

As mentioned in Section 5.4.2, the variables ri, i ∈ {1, . . . ,n}, of type
reward must not be used in any expressions outside of properties except in
assignments of the form r := r+ e and in invariant expressions of the form

e1 ∧der(rk) = ek
2 ∧der(rk+1) = ek+1

2 ∧ . . .∧der(rm) = em
2

with e1 ∈ Bxp and e j
2 ∈ Axp for j ∈ {k, . . . ,m}. We use Bxp′ to denote the set

of expressions of this form.

Shorthands

Two useful shorthands for more complex process behaviours are the hide and
delay constructs. Using hide, which is useful to modify the action alphabet
and thus the synchronisation interface of a process behaviour for parallel com-
position, is equivalent to relabelling a set of actions or exceptions to the silent
action τ :

hide {H }{P} def= relabel {H } by {τ , . . . ,τ }{P}.

The idea behind the delay construct is to provide an easy way to specify that
a certain process behaviour should be executed after some precise amount of
time. It can be expanded to a process call to newly introduced processes:

delay(edelay,econd) P def= Delay()

308 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

where edelay ∈ Sxp, econd ∈ Bxp and Delay is a new, unique process name for
every occurrence of the delay shorthand that is defined as

process Delay() { clock c; real x = edelay;
when(c ≤ x∧¬econd) urgent(c ≥ x∧ econd) P }.

Intuitively, delay(edelay,econd) P delays the initial behaviour of P until edelay
time units have passed and condition econd becomes true; at that point, the
initial behaviour of P becomes urgent, so that it is performed without further
delay. Condition econd is part of the shorthand because it cannot be added by
hand since writing e.g. urgent(c ≥ x) urgent(econd) would be equivalent to
urgent(c ≥ x∨ econd).

A.2 Symbolic Semantics

In this section, we define the symbolic semantics of a given MODEST process,
which is the first of two steps in defining a semantics for MODEST. It consists
in transforming the process calculus constructs of a process into a stochastic
timed automaton with invariants and deadlines. In this STA, the parts of the
model not related to process calculus-based definitions, such as model vari-
ables or assignments, will still be maintained in a symbolic form. In absence
of non-tail-recursive process calls, the automaton will stay finite, so that it is
possible to build it explicitly. The second step of the MODEST semantics is
the transformation of this symbolic automaton into a concrete, usually infinite,
model. It has already been presented in Section 6.1 for the case of STA with
invariants. The addition of deadlines can be handled as described for PTA in
Section 5.2.

Compared to the original symbolic semantics of MODEST that was given
in [BDHK06], we add two first-level invariant constructs that replace the
previous shorthand of the same name. The shorthand mapped invariant(i) P
to

alt { ::when(i) P ::urgent(¬ i) when(false) throw(excpinvariant)}

where excpinvariant was a new exception only used for this purpose. The short-
hand took advantage of the fact that guards do not influence deadlines, so the
deadline ¬ i would still take effect even though the edge it is associated to is dis-
abled. Since this construction simulated an invariant using a deadline, it could
not be used to represent all possible invariants (cf. Section 5.2).

The semantics presented here also corrects several minor issues with the
original STA semantics; for example, assignments are composed using ◦ in-
stead of ∪ in several places and the semantics for par and palt no longer

MODEST SYNTAX AND SEMANTICS 309

involves any exceptions, which originally led to the order of the parallel beha-
viours being relevant for the semantics, which went against the intuition of an
associative and commutative parallel composition operator.

Definition 87 (MODEST symbolic semantics). The symbolic semantics of a
MODEST process P with process behaviour Q is the STA

〈Loc,Var,Act∪Excp,−→, linit, Inv′,AP,∅〉

where
– Act, Excp and Var are the respective unions of the sets ActP∪{τ , [,⊥}, ExcpP

and VarP of P and the sets Act, Excp and Var given by the symbolic semantics
of the processes that are called from within P’s process behaviour,

– the initial values of the variables are determined by setting them to the default
value of their type and then applying the update v0 = A(Q)◦vdecl where vdecl
represents the initial values assigned to all variables in Var according to their
declarations, A is the assignment collecting function as defined in Table A.2
and the ◦ operator denotes the sequential composition of updates, i.e. the
execution of the second operand followed by that of the first operand,

– linit = Q,
– the invariant function Inv′ is defined as

Inv′(P) def=

{
e1 if Inv(P) is equivalent to e1 ∧der . . . ∈ Bxp′

Inv(P) otherwise

where Inv is the original invariant function as given in Table 5.2 of Chapter 5,
– AP contains the most top-level expressions in Bxp(Var) that occur in the

properties specified in the model,
– the edge relation −→ is given by the inference rules presented below, and
– the set Loc of locations is the set of reachable process behaviours according

to −→
together with a reward rr = 〈rrLoc,r

r
−→〉 for every variable r of type reward

where

rrLoc(P) def=

{
er if Inv(P) is equivalent to . . .∧der(r) = er∧ . . . ∈ Bxp′

0 otherwise

and rr−→ is given by the assignments of the form r := r+ e in −→.

Note that the STA corresponding to a MODEST process contains both invari-
ants for locations, via the invariant collection function, as well as deadlines on
edges. Every edge g,d,a−−−→ thus has three labels: The guard g, the deadline d and
the action (or exception) a. An edge leads to a symbolic probability distribu-
tion over pairs of an update and a target process behaviour. When writing such

310 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

A(P) =∅ if P has one of the following forms:
act, stop, abort, throw(excp), break or
act palt { :w1: U1;P1 . . . :wk: Uk;Pk}

A(P) = A(Q) if P has one of the following forms:
Q;Q′, when(e) Q, urgent(e) Q,
invariant(e) Q, invariant(e) { Q },
try { Q } catch e1 { P1 } . . . catch ek { Pk },
relabel { I } by {G} Q or extend {H } Q

A(P) =
⋃k

i=1 A(Pi) if P has one of the following forms:
alt { ::P1 . . . ::Pk}, do { ::P1 . . . ::Pk} or
par { ::P1 . . . ::Pk}

A(ProcName(e1, . . . ,ek)) = A(Q)◦{x1 = e1, . . . ,xk = ek}
if ProcName is declared as
process ProcName(t1 x1, . . . , tn xk) { Q }

Table A.2: The assignment collecting function [BDHK06]

functions as sets in inference rules in the remainder of this appendix, we may
omit all elements that map to 0 ∈ Axp for brevity.

Inference Rules

The edge relation −→ is given by the following inference rules:

Actions and the like The inference rules for performing an action, includ-
ing the special action [to break out of a loop with the break construct, are
straightforward:

act
tt,ff ,act
−−−−→ {〈∅,X〉 7→ 1}

(act)
break

tt,ff ,[
−−−→ {〈∅,X〉 7→ 1}

(break)

abort
tt,ff ,⊥
−−−→ {〈∅,abort〉 7→ 1}

(abort)

The successfully terminated processX is only used as part of the semantics and
cannot be specified syntactically. The abort process, which can be specified
syntactically but more usually occurs as the consequence of an unhandled ex-
ception (see below), simply performs the unhandled error action ⊥ over and
over again. There is no inference rule for the stop process since its semantics
is precisely to do nothing.

MODEST SYNTAX AND SEMANTICS 311

Conditions Any process behaviour can be decorated with a guard using the
when construct, with a deadline using the urgent construct, and with an invari-
ant using the invariant construct. Guards, deadlines and the invariant(e) P
form of the invariant construct only affect the first, immediate edges result-
ing from the decorated behaviour and then disappear—

P
g,d,a
−−−→ W

when(e) P
g∧e,d,a
−−−−→ W

(when) P
g,d,a
−−−→ W

urgent(e) P
g,d∨e,a
−−−−→ W

(urgent)

P
g,d,a
−−−→ W

invariant(e) P
g,d,a
−−−→ W

(inv)

—while invariant(e){P} is a static operator, i.e. it does not disappear after
following one edge; with Q(P) = invariant(e){P} , its inference rule reads:

P
g,d,a
−−−→ W

Q(P)
g,d,a
−−−→ W ◦M−1

inv

(sinv) where Minv(〈U,P′〉) def=

{
〈U,Q(P′)〉 if P′ 6=X

〈U,P′〉 if P′ =X.

The inference rules for invariant ignore the actual invariant expression e
because it does not become part of the edge relation, but is instead preserved as
part of the function Inv that maps each location to an invariant.

Sequential composition A process behaviour P′ can be performed only after
another process behaviour P has successfully terminated when they are com-
posed using the ; operator for sequential composition:

P
g,d,a
−−−→ W

P;Q
g,d,a
−−−→ W ◦M−1

;

(seq) where M;(〈U,P′〉) def=

{
〈U,P′;Q〉 if P′ 6=X

〈A(Q)◦U,Q〉 if P′ =X.

Nondeterministic choice A nondeterministic choice between several process
behaviours is provided by the alt keyword:

Pi
g,d,a
−−−→ Wi (i ∈ {1, . . . ,k})

alt { ::P1 . . . ::Pk}
g,d,a
−−−→ Wi

(alt)

Loops The semantics of the do construct is defined via the auxiliary auxdo
construct, which is not part of the MODEST syntax. It is used to keep track of
the original behaviour of the loop which must be restored after each iteration:

do { ::P1 . . . ::Pk}
def= auxdo { alt { ::P1 . . . ::Pk} } { alt { ::P1 . . . ::Pk} }

312 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

The semantics of auxdo is defined in two inference rules: The first one handles
the case that the break action is performed to jump out of the loop, while the
second rule defines the semantics of performing a step within the loop, includ-
ing proceeding to the next iteration once the last step has been performed:

P
g,d,[
−−→ W

auxdo { P } { Q }
g,d,τ
−−−→ {〈∅,X〉 7→ 1}

(breakout)

P
g,d,a
−−−→ W (a 6= [)

auxdo { P } { Q }
g,d,a
−−−→ W ◦M−1

do

(auxdo)

where

Mdo(〈U,P′〉) def=

{
〈U, auxdo { P′ } { Q }〉 if P′ 6=X

〈A(Q)◦U, auxdo { Q } { Q }〉 if P′ =X.

Process calls Let process ProcName be declared as

process ProcName(t1 x1, . . . , tn xk) { P }.

Process call ProcName(e1, . . . ,ek) then behaves like its process behaviour P
where the variables x1, . . . ,xk have been assigned the values of the expressions
e1, . . . ,ek. The assignment of variables is performed just before the process
call is executed, which is ensured by the assignment collecting function A (see
Table A.2). The inference rule for process calls is then

P
g,d,a
−−−→ W

ProcName(e1, . . . ,ek)
g,d,a
−−−→ W

(call).

We note that this rule does not include any renaming or stacking of variables,
but this is only possible because of the assumption of unique process declara-
tions for process calls in the previous section, and it only works correctly for
tail-recursive models. To give a semantics for arbitrarily recursive models, we
would need to extend the inference rule above and the assignment collecting
function to include the necessary renamings there. We would also have to ac-
count for (countably) infinite sets of variables in the definition of STA.

Probabilistic choice The probabilistic choice, palt, is action-prefixed: An
action act is performed and the target of the edge labelled act is then the (sym-
bolic) probability distribution over the weighted alternatives that make up the

MODEST SYNTAX AND SEMANTICS 313

body of the palt. The inference rule thus reads as follows:

act palt { :w1: U1;P1 . . . :wk: Uk;Pk}
tt,ff ,act
−−−−→ W

(palt)

where

W (〈A(Pi)◦Ui,Pi〉)
def=

k

∑
j=1

Ind(i, j) ∙w j

and

Ind(i, j) def=

{
1 if A(Pi)◦Ui = A(Pj)◦Uj ∧Pi = Pj

0 otherwise.

Note that W still is a symbolic function in Upd×Loc → Axp. Two problems
that are not taken into account by this inference rule are that a weight wi may
be negative, and that the sum of all weights may be zero. As noted in earlier
chapters, these are considered modelling errors, i.e. the semantics of a (syn-
tactically valid) MODEST model that contains one or more such errors is not
defined. Tool support will check for this and reject such models.

Exceptions Once declared, an exception can be thrown. . .

throw(excp)
tt,ff ,excp
−−−−−→ {〈∅,abort〉 7→ 1}

(throw)

. . . and either be caught or ignored by enclosing try-catch constructs of the
form

Q(P) = try { P } catch excp1 { P1 } . . . catch excpk { Pk };

if caught, the specified exception handler will be executed:

P
g,d,a
−−−→ W (a /∈ {excp1, . . . ,excpk })

Q(P)
g,d,a
−−−→ W ◦M−1

try

(try)

P
g,d,excpi−−−−−→ W (i ∈ {1, . . . ,k})

Q(P)
g,d,τ
−−−→ {〈A(Pi),Pi〉 7→ 1}

(catch)

where

Mtry(〈U,P′〉) def=

{
〈U,Q(P′)〉 if P′ 6=X

〈U,X〉 if P′ =X.

314 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

α(P) = {act}\{τ } if P has the form act

α(P) =∅ if P has one of the following forms:
stop, break, abort or throw(excp)

α(P) = α(Q) if P has one of the following forms:
when(e) Q, urgent(e) Q,
invariant(e) Q, invariant(e) {Q}
or ProcName(e1, . . . ,ek) and process ProcName is
declared as process ProcName(t1 x1, . . . , tn xk) {Q}

α(P) = α(P1)∪α(P2) if P is of the form P1; P2

α(P) =
⋃k

i=1 α(Pi) if P has one of the following forms:
alt { ::P1 . . . ::Pk}, do { ::P1 . . . ::Pk} or
par { ::P1 . . . ::Pk}

α(P) = α(Q)∪
⋃k

i=1 α(Pi) if P has the form
try {Q} catch excp1 {P1 } . . . catch excpk {Pk }

α(P) = {a1 7→ a′1, . . . ,ak 7→ a′k }(α(Q))\{τ } if P has the form
relabel {a1, . . . ,ak } by {a′1, . . . ,a′k } Q

α(P) = α(Q)∪{act1, . . . ,actk } if P has the form
extend {act1, . . . ,actk } Q

α(P) = α(act)∪
⋃k

i=1 α(Pi) if P has the form
act palt { :w1: asgn1;P1 . . . :wk: asgnk;Pk}

Table A.3: The alphabet of a process behaviour [BDHK06]

Parallel composition The process behaviours in a par construct run con-
currently, synchronising on the actions in their shared alphabet. The alphabet
of a process is computed by function α as defined in Table A.3. A parallel
composition terminates successfully whenever all its components do so, i.e.
X ‖B X

def=X for any B.

To define the semantics of parallel composition, we resort to the auxiliary
operator ‖B, with B ⊆ Act. The par construct is then defined as

par { ::P1 . . . ::Pk}
def= (. . . ((P1 ‖B1 P2) ‖B2 P3) . . .) ‖Bk−1 Pk

with

B j = (
j⋃

i=1

α(Pi))∩α(Pj+1).

MODEST SYNTAX AND SEMANTICS 315

The behaviour of ‖B is that action a /∈ B can be performed autonomously, i.e.,
without the cooperation of the other parallel component:

P1
g,d,a
−−−→ W (a /∈ B)

P1 ‖B P2
g,d,a
−−−→ W ◦M−1

parP2

(lpar)
P2

g,d,a
−−−→ W (a /∈ B)

P1 ‖B P2
g,d,a
−−−→ W ◦M−1

parP1

(rpar)

where
MparP(〈U,P′〉) def= 〈U,P′ ‖B P〉 and X ‖B X=X,

while, if we let ⊗a = ∧ if a ∈ PActQ and ⊗a = ∨ if a ∈ IActQ for some pro-
cess Q, the inference rule for synchronisation reads:

P1
g1,d1,a
−−−−→ W1 P2

g2,d2,a
−−−−→ W2 (a ∈ B)

P1 ‖B P2
g1∧g2,d1⊗ad2,a
−−−−−−−−−→ (W1 ×W2)◦M−1

par

(sync)

where (W1 ×W2)(〈α1,α2〉)
def= W1(α1) ∙W2(α2) for all α1 and α2—correspond-

ing to the product of two probability spaces—and

Mpar(〈U1,P
′
1〉,〈U2,P

′
2〉)

def= 〈U1 ∪U2,P
′
1 ‖B P′

2〉 if U1 and U2 are consistent

where, as before,X ‖BX=X. Inconsistent updates are considered a modelling
error.

Alphabet manipulation The alphabet of a process can be modified with the
extend and relabel constructs. The extend construct merely extends the
alphabet of a process (see Table A.3) and may affect behaviour only if it appears
within the context of a par construct: For Q(P) = extend {act1, . . . ,actk } P,

P
g,d,a
−−−→ W

Q(P)
g,d,a
−−−→ W ◦M−1

ext

(extend) where Mext(〈U,P′〉) def=

{
〈U,Q(P′)〉 if P′ 6=X

〈U,X〉 if P′ =X.

The semantics for the relabel construct is as in traditional process algebra:
Observable actions and exceptions are renamed according to a relabelling func-
tion, but the behaviour remains otherwise unchanged. For

Q(P) = relabel {a1, . . . ,ak } by {a′1, . . . ,a′k } P,

the inference rule is thus

P
g,d,a
−−−→ W

Q(P)
g,d, fQ(a)
−−−−−→ W ◦M−1

rel

(relabel)

where

Mrel(〈U,P′〉) def=

{
〈U,Q(P′)〉 if P′ 6=X

〈U,X〉 if P′ =X

316 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

and

fQ(a) =

{
a′i if a = ai

a otherwise

for i ∈ {1, . . . ,n} with the restriction that actions may only be mapped to ac-
tions (including τ but not [or ⊥) and exceptions may only be mapped to ex-
ceptions or τ .

Bibliography
[AC98] Alan Agresti and Brent A. Coull. Approximate is better than “ex-

act” for interval estimation of binomial proportions. The Amer-
ican Statistician, 52(2):119–126, May 1998.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theor. Comput. Sci., 126(2):183–235, 1994.

[AY06] Todd R. Andel and Alec Yasinsac. On the credibility of MANET
simulations. IEEE Computer, 39(7):48–54, 2006.

[Bai98] Christel Baier. On algorithmic verification methods for probab-
ilistic systems. Habilitation thesis, Fakultät für Mathematik &
Informatik, Universität Mannheim, 1998.

[BB87] Tommaso Bolognesi and Ed Brinksma. Introduction to the ISO
specification language LOTOS. Computer Networks, 14:25–59,
1987.

[BBB+10] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Cail-
laud, Benoît Delahaye, and Axel Legay. Statistical abstrac-
tion and model-checking of large heterogeneous systems. In
FMOODS/FORTE, volume 6117 of Lecture Notes in Computer
Science, pages 32–46. Springer, 2010.

[BBH+13] Paolo Ballarini, Nathalie Bertrand, András Horváth, Marco Pao-
lieri, and Enrico Vicario. Transient analysis of networks of sto-
chastic timed automata using stochastic state classes. In QEST,
volume 8054 of Lecture Notes in Computer Science, pages 355–
371. Springer, 2013.

[BBJM12] Patricia Bouyer, Thomas Brihaye, Marcin Jurdzinski, and
Quentin Menet. Almost-sure model-checking of reactive timed
automata. In QEST, pages 138–147. IEEE Computer Society,
2012.

[BBZL11] Jens Bömer, Karsten Burges, Pavel Zolotarev, and Joachim
Lehner. Auswirkungen eines hohen Anteils dezentraler Erzeu-
gungsanlagen auf die Netzstabilität bei Überfrequenz & Ent-
wicklung von Lösungsvorschlägen zu deren Überwindung, 2011.
Study commissioned by EnBW Transportnetze AG, Bundesver-
band Solarwirtschaft e.V. and Forum Netztechnik/Netzbetrieb im
VDE e.V.

318 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[BCC+14] Tomás Brázdil, Krishnendu Chatterjee, Martin Chmelik, Vojtech
Forejt, Jan Kretínský, Marta Z. Kwiatkowska, David Parker, and
Mateusz Ujma. Verification of Markov decision processes using
learning algorithms. In ATVA, volume 8837 of Lecture Notes in
Computer Science, pages 98–114. Springer, 2014.

[BCCZ99] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yun-
shan Zhu. Symbolic model checking without BDDs. In TACAS,
volume 1579 of Lecture Notes in Computer Science, pages 193–
207. Springer, 1999.

[BDG06] Christel Baier, Pedro R. D’Argenio, and Marcus Größer. Partial
order reduction for probabilistic branching time. Electr. Notes
Theor. Comput. Sci., 153(2):97–116, 2006.

[BDHH12] Jonathan Bogdoll, Alexandre David, Arnd Hartmanns, and Hol-
ger Hermanns. mctau: Bridging the gap between Modest and
UPPAAL. In SPIN, volume 7385 of Lecture Notes in Computer
Science, pages 227–233. Springer, 2012.

[BDHK06] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns,
and Joost-Pieter Katoen. MoDeST: A compositional modeling
formalism for hard and softly timed systems. IEEE Trans. Soft-
ware Eng., 32(10):812–830, 2006.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tu-
torial on UPPAAL. In SFM-RT 2004, number 3185 in Lecture
Notes in Computer Science, pages 200–236. Springer, Septem-
ber 2004.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Olivero,
Stavros Tripakis, and Sergio Yovine. KRONOS: A model-
checking tool for real-time systems. In CAV, volume 1427 of
Lecture Notes in Computer Science, pages 546–550. Springer,
1998.

[Ber13] Pascal Berrang. Stabilising power micro grids. B.Sc. thesis, Uni-
versität des Saarlandes, 2013.

[BFHH11] Jonathan Bogdoll, Luis María Ferrer Fioriti, Arnd Hartmanns,
and Holger Hermanns. Partial order methods for statistical model
checking and simulation. In FMOODS/FORTE, volume 6722
of Lecture Notes in Computer Science, pages 59–74. Springer,
2011.

BIBLIOGRAPHY 319

[BGC04] Christel Baier, Marcus Größer, and Frank Ciesinski. Partial order
reduction for probabilistic systems. In QEST, pages 230–239.
IEEE Computer Society, 2004.

[BHH12] Jonathan Bogdoll, Arnd Hartmanns, and Holger Hermanns. Sim-
ulation and statistical model checking for Modestly nondetermin-
istic models. In MMB/DFT, volume 7201 of Lecture Notes in
Computer Science, pages 249–252. Springer, 2012.

[BHHK10] Christel Baier, Boudewijn R. Haverkort, Holger Hermanns, and
Joost-Pieter Katoen. Performance evaluation and model check-
ing join forces. Commun. ACM, 53(9):76–85, 2010.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model
Checking. MIT Press, 2008.

[Blo01] S. C. C. Blom. Partial τ-confluence for efficient state space gen-
eration. Technical Report SEN-R0123, CWI, 2001.

[BS00] Sébastien Bornot and Joseph Sifakis. An algebraic framework for
urgency. Information and Computation, 163(1):172–202, 2000.

[BT12] Jean-Yves Le Boudec and Dan-Cristian Tomozei. A demand-
response calculus with perfect batteries. In MMB/DFT, volume
7201 of Lecture Notes in Computer Science, pages 273–287.
Springer, 2012.

[BvdP02] Stefan Blom and Jaco van de Pol. State space reduction by prov-
ing confluence. In CAV, volume 2404 of Lecture Notes in Com-
puter Science, pages 596–609. Springer, 2002.

[CFHM07] Hyeong Soo Chang, Michael C. Fu, Jiaqiao Hu, and Steven I.
Marcus. A survey of some simulation-based algorithms for
Markov decision processes. Communications in Information &
Systems, 7(1):59–92, 2007.

[CFK+12] Taolue Chen, Vojtech Forejt, Marta Z. Kwiatkowska, David
Parker, and Aistis Simaitis. Automatic verification of compet-
itive stochastic systems. In TACAS, pages 315–330, 2012.

[CGJ+00] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement.
In CAV, volume 1855 of Lecture Notes in Computer Science,
pages 154–169. Springer, 2000.

320 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[Cha88] D. Chaum. The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. Journal of Cryptology,
1(1):65–75, 1988.

[CSS02] David Cavin, Yoav Sasson, and André Schiper. On the accuracy
of MANET simulators. In POMC, pages 38–43. ACM, 2002.

[CW96] Edmund M. Clarke and Jeannette M. Wing. Formal methods:
State of the art and future directions. ACM Comput. Surv.,
28(4):626–643, 1996.

[dAKN+00] Luca de Alfaro, Marta Z. Kwiatkowska, Gethin Norman, David
Parker, and Roberto Segala. Symbolic model checking of prob-
abilistic processes using MTBDDs and the Kronecker represent-
ation. In TACAS, volume 1785 of Lecture Notes in Computer
Science, pages 395–410. Springer, 2000.

[Dav13] Alexandre David, May 2013. Private discussion at the 2013
NASA Formal Methods Symposium.

[DJJL01] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen,
and Kim Guldstrand Larsen. Reachability analysis of probab-
ilistic systems by successive refinements. In PAPM-PROBMIV,
volume 2165 of Lecture Notes in Computer Science, pages 39–
56. Springer, 2001.

[DJJL02] Pedro R. D’Argenio, Bertrand Jeannet, Henrik Ejersbo Jensen,
and Kim Guldstrand Larsen. Reduction and refinement strategies
for probabilistic analysis. In PAPM-PROBMIV, volume 2399
of Lecture Notes in Computer Science, pages 57–76. Springer,
2002.

[DKN04] Conrado Daws, Marta Z. Kwiatkowska, and Gethin Norman.
Automatic verification of the IEEE 1394 root contention protocol
with KRONOS and PRISM. STTT, 5(2–3):221–236, 2004.

[DKRT97] Pedro R. D’Argenio, Joost-Pieter Katoen, Theo C. Ruys, and Jan
Tretmans. The bounded retransmission protocol must be on time!
In TACAS, volume 1217 of Lecture Notes in Computer Science,
pages 416–431. Springer, 1997.

[DLL+11a] Alexandre David, Kim G. Larsen, Axel Legay, Marius Miku-
cionis, Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng

BIBLIOGRAPHY 321

Wang. Statistical model checking for networks of priced timed
automata. In FORMATS, volume 6919 of Lecture Notes in Com-
puter Science, pages 80–96. Springer, 2011.

[DLL+11b] Alexandre David, Kim G. Larsen, Axel Legay, Marius Miku-
cionis, and Zheng Wang. Time for statistical model checking
of real-time systems. In CAV, volume 6806 of Lecture Notes in
Computer Science, pages 349–355. Springer, 2011.

[DN04] Pedro R. D’Argenio and Peter Niebert. Partial order reduction
on concurrent probabilistic programs. In QEST, pages 240–249.
IEEE Computer Society, 2004.

[Dol00] Shlomi Dolev. Self-Stabilization. MIT Press, 2000.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using branching
time temporal logic to synthesize synchronization skeletons. Sci.
Comput. Program., 2(3):241–266, 1982.

[EH86] E. Allen Emerson and Joseph Y. Halpern. “sometimes” and “not
never” revisited: on branching versus linear time temporal logic.
J. ACM, 33(1):151–178, 1986.

[EHZ10] Christian Eisentraut, Holger Hermanns, and Lijun Zhang. On
probabilistic automata in continuous time. In LICS, pages 342–
351. IEEE Computer Society, 2010.

[EP10] Sami Evangelista and Christophe Pajault. Solving the ignoring
problem for partial order reduction. STTT, 12(2):155–170, 2010.

[FHH+11] Martin Fränzle, Ernst Moritz Hahn, Holger Hermanns, Nicolás
Wolovick, and Lijun Zhang. Measurability and safety verifica-
tion for stochastic hybrid systems. In HSCC, pages 43–52. ACM,
2011.

[FKNP11] Vojtech Forejt, Marta Z. Kwiatkowska, Gethin Norman, and
David Parker. Automated verification techniques for probabil-
istic systems. In SFM, volume 6659 of Lecture Notes in Com-
puter Science, pages 53–113. Springer, 2011.

[Fre05] Goran Frehse. PHAVer: Algorithmic verification of hybrid sys-
tems past HyTech. In HSCC, volume 3414 of Lecture Notes in
Computer Science, pages 258–273. Springer, 2005.

322 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[GDF09] Sergio Giro, Pedro R. D’Argenio, and Luis María Ferrer Fioriti.
Partial order reduction for probabilistic systems: A revision for
distributed schedulers. In CONCUR, volume 5710 of Lecture
Notes in Computer Science, pages 338–353. Springer, 2009.

[GHK+11] Hernan Baro Graf, Holger Hermanns, Juhi Kulshrestha, Jens
Peter, Anjo Vahldiek, and Aravind Vasudevan. A verified wire-
less safety critical hard real-time design. In WOWMOM. IEEE,
2011.

[GHP07] Christian Groß, Holger Hermanns, and Reza Pulungan. Does
clock precision influence ZigBee’s energy consumptions? In
OPODIS, volume 4878 of Lecture Notes in Computer Science,
pages 174–188. Springer, 2007.

[Gir82] Michèle Giry. A categorical approach to probability theory.
In Categorical Aspects of Topology and Analysis, pages 68–85.
Springer, 1982.

[GLMS11] Hubert Garavel, Frédéric Lang, Radu Mateescu, and Wendelin
Serwe. CADP 2010: A toolbox for the construction and analy-
sis of distributed processes. In TACAS, volume 6605 of Lecture
Notes in Computer Science, pages 372–387. Springer, 2011.

[God96] Patrice Godefroid. Partial-Order Methods for the Verification
of Concurrent Systems – An Approach to the State-Explosion
Problem, volume 1032 of Lecture Notes in Computer Science.
Springer, 1996.

[God97] Patrice Godefroid. Model checking for programming languages
using Verisoft. In POPL, pages 174–186. ACM Press, 1997.

[Góm09] Rodolfo Gómez. A compositional translation of timed auto-
mata with deadlines to UPPAAL timed automata. In FORMATS,
volume 5813 of Lecture Notes in Computer Science, pages 179–
194. Springer, 2009.

[GS01] Geoffrey R. Grimmet and David R. Stirzaker. Probability and
Random Processes. Oxford University Press, third edition, 2001.

[GvdP96] Jan Friso Groote and Jaco van de Pol. A bounded retransmis-
sion protocol for large data packets. In AMAST, volume 1101
of Lecture Notes in Computer Science, pages 536–550. Springer,
1996.

BIBLIOGRAPHY 323

[GvdP00] Jan Friso Groote and Jaco van de Pol. State space reduction using
partial tau-confluence. In MFCS, volume 1893 of Lecture Notes
in Computer Science, pages 383–393. Springer, 2000.

[Hah13] Ernst Moritz Hahn. Model checking stochastic hybrid systems.
PhD thesis, Universität des Saarlandes, 2013.

[Har10] Arnd Hartmanns. Model-checking and simulation for stochas-
tic timed systems. In FMCO, volume 6957 of Lecture Notes in
Computer Science, pages 372–391. Springer, 2010.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In LICS,
pages 278–292. IEEE Computer Society, 1996.

[Her02] Holger Hermanns. Interactive Markov Chains: The Quest for
Quantified Quality, volume 2428 of Lecture Notes in Computer
Science. Springer, 2002.

[HH09] Arnd Hartmanns and Holger Hermanns. A Modest approach to
checking probabilistic timed automata. In QEST, pages 187–196.
IEEE Computer Society, 2009.

[HH12] Arnd Hartmanns and Holger Hermanns. Modelling and decent-
ralised runtime control of self-stabilising power micro grids. In
ISoLA (1), volume 7609 of Lecture Notes in Computer Science,
pages 420–439. Springer, 2012.

[HH14] Arnd Hartmanns and Holger Hermanns. The Modest Toolset:
An integrated environment for quantitative modelling and veri-
fication. In TACAS, volume 8413 of Lecture Notes in Computer
Science, pages 593–598. Springer, 2014.

[HHB12] Arnd Hartmanns, Holger Hermanns, and Pascal Berrang. A
comparative analysis of decentralized power grid stabilization
strategies. In Winter Simulation Conference. WSC, 2012.

[HHH14] Ernst Moritz Hahn, Arnd Hartmanns, and Holger Hermanns.
Reachability and reward checking for stochastic timed automata.
ECEASST, 70, 2014.

[HHHK13] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and
Joost-Pieter Katoen. A compositional modelling and analysis
framework for stochastic hybrid systems. Formal Methods in
System Design, 43(2):191–232, 2013.

324 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[HHWZ09] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun
Zhang. INFAMY: An infinite-state Markov model checker. In
CAV, volume 5643 of Lecture Notes in Computer Science, pages
641–647. Springer, 2009.

[HHWZ10a] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun
Zhang. PARAM: A model checker for parametric Markov mod-
els. In CAV, volume 6174 of Lecture Notes in Computer Science,
pages 660–664. Springer, 2010.

[HHWZ10b] Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun
Zhang. PASS: Abstraction refinement for infinite probabilistic
models. In TACAS, volume 6015 of Lecture Notes in Computer
Science, pages 353–357. Springer, 2010.

[HKK14] Holger Hermanns, Jan Krčál, and Jan Kretínský. Probabilistic
bisimulation: Naturally on distributions. In CONCUR, volume
8704 of Lecture Notes in Computer Science, pages 249–265.
Springer, 2014.

[HKQ11] Henri Hansen, Marta Z. Kwiatkowska, and Hongyang Qu. Partial
order reduction for model checking Markov decision processes
under unconditional fairness. In QEST, pages 203–212. IEEE
Computer Society, 2011.

[HLMP04] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and
Sylvain Peyronnet. Approximate probabilistic model checking.
In VMCAI, volume 2937 of Lecture Notes in Computer Science,
pages 73–84. Springer, 2004.

[HMKS99] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi terminal
binary decision diagrams to represent and analyse continuous
time Markov chains. In NSMC, pages 188–207. Prensas Uni-
versitarias de Zaragoza, 1999.

[HMZ+12] David Henriques, João Martins, Paolo Zuliani, André Platzer,
and Edmund M. Clarke. Statistical model checking for Markov
decision processes. In QEST, pages 84–93. IEEE Computer So-
ciety, 2012.

[HNSY94] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Ser-
gio Yovine. Symbolic model checking for real-time systems. Inf.
Comput., 111(2):193–244, 1994.

BIBLIOGRAPHY 325

[Hoa85] C. A. R. Hoare. Communicating Sequential Processes. Prentice-
Hall, 1985.

[Hoe63] Wassily Hoeffding. Probability inequalities for sums of bounded
random variables. Journal of the American Statistical Associ-
ation, 58(301):13–30, March 1963.

[Hof13] Markus Hoffmann. Implicit and explicit stochastic semantics
for timed automata in UPPAAL and Modest. B.Sc. thesis, Uni-
versität des Saarlandes, 2013.

[HS87] Peter J. Haas and Gerald S. Shedler. Regenerative generalized
semi-Markov processes. Communications in Statistics. Stochas-
tic Models, 3(3):409–438, 1987.

[HS00] Peter G. Harrison and B. Strulo. Spades - a process algebra for
discrete event simulation. Journal of Logic and Computation,
10(1):3–42, 2000.

[HS11] Hanno Hildmann and Fabrice Saffre. Influence of variable supply
and load flexibility on demand-side management. In EEM’11,
pages 63–68. IEEE Conference Publications, 2011.

[HSV93] Leen Helmink, M. P. A. Sellink, and Frits W. Vaandrager. Proof-
checking a data link protocol. In TYPES, volume 806 of Lecture
Notes in Computer Science, pages 127–165. Springer, 1993.

[HT13] Arnd Hartmanns and Mark Timmer. On-the-fly confluence de-
tection for statistical model checking. In NASA Formal Methods,
volume 7871 of Lecture Notes in Computer Science, pages 337–
351. Springer, 2013.

[HT14] Henri Hansen and Mark Timmer. A comparison of confluence
and ample sets in probabilistic and non-probabilistic branching
time. Theoretical Computer Science, 538C:103–123, 2014.

[HT15] Arnd Hartmanns and Mark Timmer. Sound statistical model
checking for MDP using partial order and confluence reduction.
Software Tools for Technology Transfer, 2015. To appear.

[HW09] Holger Hermanns and Holger Wiechmann. Future design chal-
lenges for electric energy supply. In ETFA. IEEE, 2009.

326 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[HW12] Holger Hermanns and Holger Wiechmann. Embedded Systems
for Smart Appliances and Energy Managment, volume 3 of Em-
bedded Systems, chapter Demand-Response Managment for De-
pendable Power Grids. Springer Science+Business Media, New
York, 2012.

[HWZ08] Holger Hermanns, Björn Wachter, and Lijun Zhang. Probabil-
istic CEGAR. In CAV, volume 5123 of Lecture Notes in Com-
puter Science, pages 162–175. Springer, 2008.

[HZ11] Holger Hermanns and Lijun Zhang. From concurrency models to
numbers - performance and dependability. In Software and Sys-
tems Safety - Specification and Verification, volume 30 of NATO
Science for Peace and Security Series - D: Information and Com-
munication Security, pages 182–210. IOS Press, 2011.

[ISO11] ISO/IEC 9899:2011. Information technology – Programming
languages – C, 2011.

[ISO12a] ISO/IEC 19505-1:2012. Information technology – Object Man-
agement Group Unified Modeling Language (OMG UML) – Part
1: Infrastructure, 2012.

[ISO12b] ISO/IEC 19505-2:2012. Information technology – Object Man-
agement Group Unified Modeling Language (OMG UML) – Part
2: Superstructure, 2012.

[Job96] Macarthur Job. Air Disaster, volume 2. Aerospace Publications,
1996.

[KMN02] Michael J. Kearns, Yishay Mansour, and Andrew Y. Ng. A sparse
sampling algorithm for near-optimal planning in large Markov
decision processes. Machine Learning, 49(2–3):193–208, 2002.

[KNP09] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Sto-
chastic games for verification of probabilistic timed automata. In
FORMATS, volume 5813 of Lecture Notes in Computer Science,
pages 212–227. Springer, 2009.

[KNP10] M. Kwiatkowska, G. Norman, and D. Parker. Advances and chal-
lenges of probabilistic model checking. In 2010 48th Annual Al-
lerton Conference on Communication, Control, and Computing
(Allerton), pages 1691–1698, 2010.

BIBLIOGRAPHY 327

[KNP11] Marta Z. Kwiatkowska, Gethin Norman, and David Parker.
PRISM 4.0: Verification of probabilistic real-time systems. In
CAV, volume 6806 of Lecture Notes in Computer Science, pages
585–591. Springer, 2011.

[KNP12] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The
PRISM benchmark suite. In QEST, pages 203–204. IEEE Com-
puter Society, 2012.

[KNPS06] Marta Z. Kwiatkowska, Gethin Norman, David Parker, and
Jeremy Sproston. Performance analysis of probabilistic timed
automata using digital clocks. Formal Methods in System Design,
29(1):33–78, 2006.

[KNS03] Marta Z. Kwiatkowska, Gethin Norman, and Jeremy Sproston.
Probabilistic model checking of deadline properties in the IEEE
1394 Firewire root contention protocol. Formal Asp. Comput.,
14(3):295–318, 2003.

[KNSS00] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and
Jeremy Sproston. Verifying quantitative properties of continu-
ous probabilistic timed automata. In CONCUR, volume 1877
of Lecture Notes in Computer Science, pages 123–137. Springer,
2000.

[KNSS02] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and
Jeremy Sproston. Automatic verification of real-time systems
with discrete probability distributions. Theor. Comput. Sci.,
282(1):101–150, 2002.

[KNSW07] Marta Z. Kwiatkowska, Gethin Norman, Jeremy Sproston, and
Fuzhi Wang. Symbolic model checking for probabilistic timed
automata. Inf. Comput., 205(7):1027–1077, 2007.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo
planning. In ECML, volume 4212 of Lecture Notes in Computer
Science, pages 282–293. Springer, 2006.

[KZ09] Joost-Pieter Katoen and Ivan S. Zapreev. Simulation-based
CTMC model checking: An empirical evaluation. In QEST,
pages 31–40. IEEE Computer Society, 2009.

328 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical
model checking: An overview. In RV, volume 6418 of Lecture
Notes in Computer Science, pages 122–135. Springer, 2010.

[Leh12] Sebastian Lehnhoff, 2012. Private communication.

[LHK01] Gabriel G. Infante López, Holger Hermanns, and Joost-Pieter
Katoen. Beyond memoryless distributions: Model checking
semi-Markov chains. In PAPM-PROBMIV, volume 2165 of Lec-
ture Notes in Computer Science, pages 57–70. Springer, 2001.

[LKR11] Sebastian Lehnhoff, Olav Krause, and Christian Rehtanz. Dezen-
trales autonomes Energiemanagement (distributed autonomous
power management). Automatisierungstechnik, 59(3):167–179,
2011.

[LP12] Richard Lassaigne and Sylvain Peyronnet. Approximate plan-
ning and verification for large Markov decision processes. In
SAC, pages 1314–1319. ACM, 2012.

[LSS10] Tom Lauricella, Kara Scannell, and Jenny Strasburg. How a trad-
ing algorithm went awry. The Wall Street Journal, October 2010.
Available online at http://online.wsj.com/article/
SB10001424052748704029304575526390131916792.html ,
last checked on 2014-07-12.

[LST14] Axel Legay, Sean Sedwards, and Louis-Marie Traonouez. Scal-
able verification of Markov decision processes. In FMDS,
volume 8938 of Lecture Notes in Computer Science, pages 350–
362. Springer, 2014.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer, 1980.

[Mil89] Robin Milner. Communication and concurrency. PHI Series in
computer science. Prentice Hall, 1989.

[Min99] Marius Minea. Partial order reduction for model checking of
timed automata. In CONCUR, volume 1664 of Lecture Notes in
Computer Science, pages 431–446. Springer, 1999.

[MPL11] João Martins, André Platzer, and João Leite. Statistical model
checking for distributed probabilistic-control hybrid automata
with smart grid applications. In ICFEM, volume 6991 of Lec-
ture Notes in Computer Science, pages 131–146. Springer, 2011.

http://online.wsj.com/article/SB10001424052748704029304575526390131916792.html
http://online.wsj.com/article/SB10001424052748704029304575526390131916792.html

BIBLIOGRAPHY 329

[MW12] Radu Mateescu and Anton Wijs. Sequential and distributed on-
the-fly computation of weak tau-confluence. Science of Com-
puter Programming, 77(10-11):1075–1094, 2012.

[Nim10] Vincent Nimal. Statistical approaches for probabilistic model
checking. Master’s thesis, Oxford University, 2010.

[NPS13] Gethin Norman, David Parker, and Jeremy Sproston. Model
checking for probabilistic timed automata. Formal Methods in
System Design, 43(2):164–190, 2013.

[Pel94] Doron Peled. Combining partial order reductions with on-the-
fly model-checking. In CAV, volume 818 of Lecture Notes in
Computer Science, pages 377–390. Springer, 1994.

[Pel96] Doron Peled. Combining partial order reductions with on-the-fly
model-checking. Formal Methods in System Design, 8(1):39–64,
1996.

[PLM03] Gordon J. Pace, Frédéric Lang, and Radu Mateescu. Calculating-
confluence compositionally. In CAV, volume 2725 of Lecture
Notes in Computer Science, pages 446–459. Springer, 2003.

[Pnu77] Amir Pnueli. The temporal logic of programs. In FOCS, pages
46–57. IEEE Computer Society, 1977.

[Put94] M. L. Puterman. Markov Decision Processes: Discrete Sto-
chastic Dynamic Programming. Wiley Series in Probability and
Mathematical Statistics: Applied Probability and Statistics. John
Wiley & Sons Inc., New York, 1994.

[Ros06] Sheldon M. Ross. Simulation. Elsevier Academic Press, fourth
edition, 2006.

[SB98] Richard S. Sutton and Andrew G. Barto. Reinforcement Learn-
ing: An Introduction. MIT Press, 1998.

[SC13] U.S. Securities and Exchange Commission. In the Matter of
Knight Capital Americas LLC, 2013. Adm. Proc. File No. 3-
15570 (October 16, 2013).

[Seg95] Roberto Segala. Modeling and Verification of Randomized Dis-
tributed Real-Time Systems. PhD thesis, MIT, Cambridge, MA,
USA, 1995.

330 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[SGS+13] Songzheng Song, Lin Gui, Jun Sun, Yang Liu, and Jin Song
Dong. Improved reachability analysis in DTMC via divide and
conquer. In IFM, volume 7940 of Lecture Notes in Computer
Science, pages 162–176. Springer, 2013.

[Sha12] Arpit Sharma. Weighted probabilistic equivalence preserves ω-
regular properties. In MMB/DFT, volume 7201 of Lecture Notes
in Computer Science, pages 121–135. Springer, 2012.

[SL95] Roberto Segala and Nancy A. Lynch. Probabilistic simula-
tions for probabilistic processes. Nordic Journal of Computing,
2(2):250–273, 1995.

[Spr09] Jeremy Sproston. Strict divergence for probabilistic timed auto-
mata. In CONCUR, volume 5710 of Lecture Notes in Computer
Science, pages 620–636. Springer, 2009.

[SSBM11] Marten Sijtema, Mariëlle Stoelinga, Axel Belinfante, and
Lawrence Marinelli. Experiences with formal engineering:
Model-based specification, implementation and testing of a soft-
ware bus at Neopost. In FMICS, volume 6959 of Lecture Notes
in Computer Science, pages 117–133. Springer, 2011.

[Sto02] Mariëlle Stoelinga. Alea jacta est: Verification of Probabilistic,
Real-Time and Parametric Systems. PhD thesis, Katholieke U.
Nijmegen, The Netherlands, 2002.

[TA09] Martin Tröschel and Hans-Jürgen Appelrath. Towards react-
ive scheduling for large-scale virtual power plants. In MATES,
volume 5774 of Lecture Notes in Computer Science, pages 141–
152. Springer, 2009.

[Tim13] Mark Timmer. Efficient Modelling, Generation and Analysis of
Markov Automata. PhD thesis, University of Twente, The Neth-
erlands, 2013.

[Tre08] Jan Tretmans. Model based testing with labelled transition sys-
tems. In Formal Methods and Testing, volume 4949 of Lecture
Notes in Computer Science, pages 1–38. Springer, 2008.

[TSvdP11] Mark Timmer, Mariëlle Stoelinga, and Jaco van de Pol. Conflu-
ence reduction for probabilistic systems. In TACAS, volume 6605
of Lecture Notes in Computer Science, pages 311–325. Springer,
2011.

BIBLIOGRAPHY 331

[TvdPS13] Mark Timmer, Jaco van de Pol, and Mariëlle Stoelinga. Con-
fluence reduction for Markov automata. In FORMATS, volume
8053 of Lecture Notes in Computer Science, pages 243–257.
Springer, 2013.

[Val90] Antti Valmari. A stubborn attack on state explosion. In CAV,
volume 531 of Lecture Notes in Computer Science, pages 156–
165. Springer, 1990.

[Wal45] Abraham Wald. Sequential tests of statistical hypotheses. The
Annals of Mathematical Statistics, 16(2):117–186, 1945.

[Wan06] Farn Wang. REDLIB for the formal verification of embedded
systems. In ISoLA, pages 341–346. IEEE, 2006.

[Wie12] Holger Wiechmann, 2012. Private communication.

[WKHB08] Ralf Wimmer, Alexander Kortus, Marc Herbstritt, and Bernd
Becker. Probabilistic model checking and reliability of results.
In DDECS, pages 207–212. IEEE Computer Society, 2008.

[Wol12] Nicolás Wolovick. Continuous Probability and Nondeterminism
in Labeled Transition Systems. PhD thesis, FaMAF - UNC, Cór-
doba, Argentina, 2012.

[YBKK11] Haidi Yue, Henrik C. Bohnenkamp, Malte Kampschulte, and
Joost-Pieter Katoen. Analysing and improving energy efficiency
of distributed slotted aloha. In NEW2AN, volume 6869 of Lecture
Notes in Computer Science, pages 197–208. Springer, 2011.

[YKNP06] Håkan L. S. Younes, Marta Z. Kwiatkowska, Gethin Norman,
and David Parker. Numerical vs. statistical probabilistic model
checking. STTT, 8(3):216–228, 2006.

[YS02] Håkan L. S. Younes and Reid G. Simmons. Probabilistic veri-
fication of discrete event systems using acceptance sampling. In
CAV, volume 2404 of Lecture Notes in Computer Science, pages
223–235. Springer, 2002.

[ZPC10] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian
statistical model checking with application to simulink/stateflow
verification. In HSCC, pages 243–252. ACM, 2010.

332 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

[ZSR+10] Lijun Zhang, Zhikun She, Stefan Ratschan, Holger Hermanns,
and Ernst Moritz Hahn. Safety verification for probabilistic hy-
brid systems. In CAV, volume 6174 of Lecture Notes in Computer
Science, pages 196–211. Springer, 2010.

[ZZ14] Hao Zheng and Yingying Zhang. Local state space analy-
sis leads to better partial order reduction. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
33(6):839–852, 2014.

List of Abbreviations
AIMD additive-increase, multiplicative-decrease
ALAP as late as possible
APMC approximate probabilistic model checking
ASAP as soon as possible
BDD binary decision diagram
BEB binary exponential backoff
BRP bounded retransmission protocol
BRTDP bounded real-time dynamic programming
cdf cumulative distribution function
CEGAR counterexample-guided abstraction refinement
CSMA/CD carrier sense multiple access with collision detection
CTL computation tree logic
CTMC continuous-time Markov chain
DQL delayed Q-learning
DTMC discrete-time Markov chain
GSMP generalised semi-Markov process
HA hybrid automaton
IMC Interactive Markov chain
LP linear programming
LTL linear temporal logic
LTS labelled transition system
MA Markov automaton
MDP Markov decision process
NLMP nondeterministic labelled Markov process
NLTS network of labelled transition systems
PA probabilistic automaton
PCTL probabilistic computation tree logic
pdf probability density function
PHA probabilistic hybrid automaton
POR partial order reduction
PRNG pseudo-random number generator
PTA probabilistic timed automaton
PTCTL probabilistic timed computation tree logic
PV photovoltaic
SHA stochastic hybrid automaton

334 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

SHA stochastic hybrid automaton
SMC statistical model checking
SPRT sequential probability ratio test
SSS self-stabilising system
STA stochastic timed automaton
TA timed automaton
TCP transmission control protocol
TCTL timed computation tree logic
TDPTA time-deterministic probabilistic timed automaton
TDSTA time-deterministic stochastic timed automaton
TPTS timed probabilistic transition system
TTS timed transition system
VDTMC discrete-time Markov chain with variables
VLTS labelled transition system with variables
VMDP Markov decision process with variables
VPTA probabilistic timed automaton with variables
XML Extensible Markup Language

Index

abort, 56, 310, 313
abstraction, 22, 211, 252, 272
action, 39, 54, 306, 310
action, 54, 305
action trace, 43
action-based approach, 15
additive-increase, multiplicative-

decrease, 279
adversary, see scheduler
alphabet, 39, 60, 314
alt, 54, 311
ample set, 124
any, 306
any-resolver, 263
approximate probabilistic model

checking, 83, 166, 227
arithmetic expression, 36
as late as possible, 115, 219, 227
as soon as possible, 115, 188, 190,

219
assignment, 37, 59
assignment collecting function, 60,

309, 312
atomic clock constraint, 178
atomic proposition, 40
auxdo, 56, 311
availability, 275, 290, 294

backwards reachability, 209
basic clock constraint, 178, 220
behavioural model, 14, 273
bijection, bijective, 30
binary decision diagram, 21
binary synchronisation, 43
bisimulation, 21, 121
Boolean expression, 36
Borel σ -algebra, 31
boundary region graph, 208

bounded model checking, 69
bounded real-time dynamic

programming, 163
bounded retransmission protocol, 224
breadth-first search, 67
break, 56, 310
broadcast synchronisation, 43, 220

caching, 158
CADP, 24
catch, 58, 313
Chernoff-Hoeffding bounds, 83
clock, 175, 178, 236
clock, 195, 306
clock constraint, 178, 236
clock equivalent, 204
closed clock constraint, 178, 211, 217
closed model, 86
collision detection, 93, 153, 279
compositional modelling, 24
computation tree logic, 15
conditional probability, 35
confidence interval, 83
confidence level, 83, 84
configuration, 39
confluence reduction, 21, 133, 223
consistent

assignments, 37
updates, 37
valuations, 35
VLTS, 49
VMDP, 103

continuous dynamics, 20
continuous nondeterminism, 26
continuous time, 19, 34
continuous-time Markov chain, 18,

239
convex zone, 209

336 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

copper plate, 280
cost, see reward
counterexample-guided abstraction

refinement, 22, 111
CTL, 65
CTL*, 66
cumulative distribution function, 33,

256
cycle, 41
cycle detection, 82, 127, 162
cylinder set, 76

deadline, 26, 188, 195, 309
deadlock, 41, 182
delay, 18, 181, 238
delay, 244, 307
delayed Q-learning, 163
demand-side mechanism, 271
depth-first search, 67
der, 203, 306
deterministic, 41, 99
deterministic delay, 19
diagonal, 178
diagonal-free clock constraint, 178,

211, 220
differential equation, 20, 274
digital clocks, 209, 223, 253
dining cryptographers, 156
Dirac, 32
discounting, 165
discrete nondeterminism, 26
discrete time, 19, 34
discrete-time Markov chain, 18, 71,

99
with variables, 74

do, 54, 311
domain, 30
dynamic die, 279
dynamic operator, 196

edge, 46, 101, 179, 236, 309

edge reward, 201
else, 151
EN 50438:2007, 268, 277
end component, 92, 130
equivalence class, 30
equivalence relation, 30
equivalent transitions, 98
event, 31
exception, 53, 306, 313
exception, 57, 305
exhaustive model checking, see

model checking
exhaustive testing, 69
expectation, see expected value
expected accumulated reward, 203
expected value, 34, 201
expected-reward property, 203, 211,

246
exponential backoff, 149, 153, 279
expression, 36, 306
extend, 62, 315

fairness, 275, 291, 296
finite automaton, 17, 41
finitely branching, 40
formal methods, 14
forwards reachability, 208
frequency, 276
frequency-dependent probabilistic

switching, 279
function, functional, 30
functional requirement, 16

generalised semi-Markov process,
234

goodput, 275, 290, 294
guard, 46, 59, 176, 236, 309
guarded commands, 24, 87

hard real-time, 233
hash function, 166

INDEX 337

hide, 62, 307
history-dependent, 94
hit σ -algebra, 31
homogenous, 71
Howard’s algorithm, see policy

iteration
hybrid automaton, 20

identity relation, 30
if, 151
ignoring problem, 136
image, 30
impatient, 189, 306
impatient, 196, 305
independent, 35
independent transitions, 125
indifference region, 84
induced DTMC, 95
INFAMY, 112
injective, 30
input-enabled, 220
integer clock constraint, 178, 204,

251
interactive Markov chain, 18, 242
interarrival time, 234
interleaving, 44
invariant, 26, 64, 176, 179, 182, 188,

219, 236, 309
invariant, 195, 308, 311
inverse relation, 30
isomorphic, 30

jump, 181, 238

Kearns algorithm, 165
Kripke structure, 17, 41
KRONOS, 176

labelled transition system, 17, 40, 99
with variables, 47

labelling function, 40

language, 43
leader election, 18
learning algorithm, 163
likelihood ratio, 84
linear controller, 278
linear equation system, 78
linear programming, 107
linear temporal logic, 15
liveness, 16, 65
LNT, 24
load profile, 273
location, 46, 178, 236, 309
lock-step, 73
loop, 41
LOTOS, 24
LTL, 65, 106, 124

Markov automaton, 18, 242
Markov chain, 17, 70
Markov decision process, 18, 91, 184

with variables, 101
Markov property, 70
maximal progress, 242
maximum fan-out, 69
mcpta, 25, 149, 212, 227
mcsta, 25, 149, 227, 248, 255
mctau, 26, 187, 227
mean, see expected value
measurable, 31
memoryless, 71, 94, 162, 242
microgenerator, 13, 267, 269
microgrid, 269
model, 14
model checking, 15, 20

DTMC, 78
LTS, 67
MDP, 107
PTA, 204
STA, 248

model-based testing, 14

338 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

modes, 26, 117, 148, 217, 276
MODEST, 24, 53, 74, 104, 148, 189,

195, 203, 243, 276, 305
MODEST TOOLSET, 25, 87, 187,

212, 217, 248, 255
multi-way synchronisation, 43

network neutrality, 296
network of automata, 25, 86
nondeterminism, 17, 40, 54
nondeterministic, 41, 99, 273, 311
nondeterministic delay, 19, 176
nondeterministic expression, 36
nondeterministic labelled Markov

process, 181, 246
nonprobabilistic, 99, 185
nontrivial transition, 95

on-off controller, 277
on-the-fly, 21, 121, 139, 217
open model, 86
oscillation, 268, 273

palt, 74, 104, 312
par, 60, 314
parallel composition, 86

DTMC, 72
LTS, 44
MDP, 97
MODEST, 60, 196, 314
PTA, 183
PTA with deadlines, 189
VLTS, 48
VMDP, 102

partial order reduction, 21, 123, 223
PASS, 111
path, 42, 72, 93
path formula, 66
patient, 189, 306
patient, 196, 305
PCTL*, 21, 77, 106, 133, 137

performance evaluation, 17
performance requirement, 16
Petri net, 14
PHAVER, 25, 248
φ -state, 64
photovoltaic, 13, 267, 270
policy, see scheduler
policy iteration, 109
power set, 29
preimage, 30
PRISM, 24, 87, 111, 114, 149, 165,

212, 227
probabilistic, 18, 99
probabilistic automaton, 18, 92
probabilistic choice, 18
probabilistic delay, 20
probabilistic hybrid automaton, 20
probabilistic on-off, 279
probabilistic reachability, 76, 105
probabilistic timed automaton, 20,

155, 178, 238
time-deterministic, 213
with variables, 187

probabilistic timed reachability, 199,
211, 246

probabilistic visible bisimulation, 137
probabilistically confluent, 136
probability, 17, 32, 77
probability density function, 33
probability distribution, 32
probability mass function, 33
probability measure, 32
probability space, 32
process, 59, 306
process, 59, 305, 312
process algebra, 14
process behaviour, 53, 195, 305
process call, 59, 312
process-algebraic expression, 192
product distribution, 32

INDEX 339

product measure, 33
product σ -algebra, 33
prohver, 25, 248
property, 16, 64, 75
pseudo-random number generator,

166
PTCTL, 201, 208, 209, 249

qualitative form, see requirement
quality of service, 275
quantile, 256
quantitative form, see query
query, 16, 76, 105, 199
queueing system, 245, 257

race condition, 133
random variable, 33
random walk, 71, 73
randomised algorithm, 17, 278
randomised testing, 69
RAPTURE, 112
rate reward, 201
reachability probability, 201
reachability property, 64
reachable, 42
reactive system, 14
RED/REDLIB, 176
reduced state, 95
reduction function, 94
reflexive, 30
region, 205
region graph, 206, 222
reinforcement learning, 161
relabel, 60, 192, 315
relation, 30
relative error, 80
requirement, 14, 76, 105, 199
residual probability, 251
resolver, 114
reward, 20, 201, 238, 309
reward, 203, 306, 307, 309

reward structure, 202

safety, 16, 65
sample mean, 82
sample space, 31
sampling, 18, 235
sampling expression, 36
scheduler, 94, 200
self-stabilising system, 277
semantics, 24

expression, 36, 37
PTA, 181
reachability property, 65, 77,

106
reward, 202
STA, 238
TDPTA, 213
update, 38
VLTS, 48
VMDP, 102

sequential composition, 54, 311
sequential probability ratio test, 22,

84
shared alphabet, 44, 60, 314
σ -additive, 32
σ -algebra, 31
silent action, 40, 306
simple BRP, 62
simple clock constraint, 178
simple probabilistic BRP, 104
simple probabilistic-timed BRP, 199
simulation, 22, 81
simulation relation, 22, 121
simulation run, 82
simulation scenario, 82
soft real-time, 234
sound SMC, 115
spurious, 117, 126
spurious interleaving, 133
stability, 275, 286, 293

340 ON THE ANALYSIS OF STOCHASTIC TIMED SYSTEMS

state, 17, 39
state formula, 64
state space exploration, 20
state space explosion, 15, 20, 48, 109
state space reduction, 21
state-based approach, 15
stateless model checking, 68
static operator, 58, 196
statistical model checking, 16, 22

DTMC, 80
MDP, 112
PTA, 212
STA, 262

step-bounded property, 82, 94, 162,
200

stochastic, 18, 234, 273
stochastic delay, 19
stochastic game, 211
stochastic hybrid automaton, 20, 248
stochastic process, 34, 200, 239
stochastic scheduler, 219
stochastic timed automaton, 18, 236,

309
time-deterministic, 263

stop, 58, 310
strategy, see scheduler
strong invariant, 182
structurally divergent, 208
stutter equivalence, 124
successfully terminated process, 54,

310
support, 32
surjective, 30
symbolic probability distribution, 74,

101, 187, 236, 309, 312
symmetric, 30
synchronisation, 44, 315
synchronisation alphabet, 60

tandem queueing network, 258

τ , see silent action
TCTL, 201
temporal logics, 15
theorem proving, 15
throughput, 19
throw, 56, 313
time, 199, 202
time additivity, 181
time determinism, 181
time progress condition, 182, 189,

206
time scheduler, 217
time successor, 206
time-bounded property, 200
time-deterministic, 155, 213, 263
time-divergent, 201, 208
timed automaton, 20, 175, 186
timed probabilistic transition system,

181
timed transition system, 186
timelock, 182, 188
total, 30
trace, 43
trace equivalence, 121
transition, 17, 39, 92
transition matrix, 71
transitive, 30
transmission control protocol, 278
try, 58, 313
tuple, 29
type, 36
type I/II error, 84

UML, 14
uniform resolver, 114
untimed, 185
update, 37
UPPAAL, 24, 176, 204
UPPAAL SMC, 220
urgent, 195, 283, 311

INDEX 341

valid path, 95
valuation, 35
value iteration, 79, 109
variable, 35, 59, 235, 306
VDE-AR-N 4105, 277
verification, 15
visible, 40
visible expression, 46, 101
visible transition, 92
voltage, 276

weak invariant, 182
weight expression, 74
well-formed, 182, 220
when, 59, 195, 283, 311

Zeno, 200
zone, 208, 223, 254

	cover_vorn
	Ebook-A5-v4b
	cover_hinten

