
Generating Renderers

Arsène Pérard-Gayot

Dissertation zur Erlangung des Grades des Doktors der
Ingenieurwissenschaften der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

Saarbrücken, 2020

2

Tag des Kolloquiums: 27.11.20
Dekan der Fakultät: Univ.- Prof. Dr. Thomas Schuster
Vorsitzender des Prüfungsausschusses: Prof. Dr.-Ing. Thorsten Herfet
Erstgutachter/Doktorvater: Prof. Dr.-Ing. Philipp Slusallek
Zweitgutachter: Prof. Dr. Sebastian Hack
Drittgutachter: Ass. Prof. Dipl-Ing. Dr. Techn. Markus Steinberger
Akademischer Beisitzer: Dr.-Ing. Richard Membarth

Abstract

Most production renderers developed for the �lm industry are huge pieces of software that
are able to render extremely complex scenes. Unfortunately, they are implemented using the
currently available programming models that are not well suited to modern computing hardware
like CPUs with vector units or GPUs. Thus, they have to deal with the added complexity of
expressing parallelism and using hardware features in those models. Since compilers cannot
alone optimize and generate e�cient programs for any type of hardware, because of the large
optimization spaces and the complexity of the underlying compiler problems, programmers have
to rely on compiler-speci�c hardware intrinsics or write non-portable code. The consequence
of these limitations is that programmers resort to writing the same code twice when they need
to port their algorithm on a di�erent architecture, and that the code itself becomes di�cult to
maintain, as algorithmic details are buried under hardware details.

Thankfully, there are solutions to this problem, taking the form of Domain-Speci�c Lan-
guages. As their name suggests, these languages are tailored for one domain, and compilers can
therefore use domain-speci�c knowledge to optimize algorithms and choose the best execution
policy for a given target hardware. In this thesis, we opt for another way of encoding domain-
speci�c knowledge: We implement a generic, high-level, and declarative rendering and traversal
library in a functional language, and later re�ne it for a target machine by providing partial
evaluation annotations. The partial evaluator then specializes the entire renderer according
to the available knowledge of the scene: Shaders are specialized when their inputs are known,
and in general, all redundant computations are eliminated. Our results show that the generated
renderers are faster and more portable than renderers written with state-of-the-art competing
libraries, and that in comparison, our rendering library requires less implementation e�ort.

3

4

Zusammenfassung

Die meisten in der Filmindustrie zum Einsatz kommenden Renderer sind riesige Softwaresys-
teme, die in der Lage sind, extrem aufwendige Szenen zu rendern. Leider sind diese mit
den aktuell verfügbaren Programmiermodellen implementiert, welche nicht gut geeignet sind
für moderne Rechenhardware wie CPUs mit Vektoreinheiten oder GPUs. Deshalb müssen
Entwickler sich mit der zusätzlichen Komplexität auseinandersetzen, Parallelismus und Hard-
warefunktionen in diesen Programmiermodellen auszudrücken. Da Compiler nicht selbständig
optimieren und e�ziente Programme für jeglichen Typ Hardware generieren können, wegen
des großen Optimierungsraumes und der Komplexität des unterliegenden Kompilierungsprob-
lems, müssen Programmierer auf Compiler-spezi�sche Hardware-“Intrinsics” zurückgreifen,
oder nicht portierbaren Code schreiben. Die Konsequenzen dieser Limitierungen sind, dass
Programmierer darauf zurückgreifen den gleichen Code zweimal zu schreiben, wenn sie ihre
Algorithmen für eine andere Architektur portieren müssen, und dass der Code selbst schwer zu
warten wird, da algorithmische Details unter Hardwaredetails verloren gehen.

Glücklicherweise gibt es Lösungen für dieses Problem, in der Form von DSLs. Diese Sprachen
sind maßgeschneidert für eine Domäne und Compiler können deshalb Domänenspezi�sches
Wissen nutzen, um Algorithmen zu optimieren und die beste Ausführungsstrategie für eine
gegebene Zielhardware zu wählen. In dieser Dissertation wählen wir einen anderen Weg,
Domänenspezi�sches Wissen zu enkodieren: Wir implementieren eine generische, high-level
und deklarative Rendering- und Traversierungsbibliothek in einer funktionalen Programmier-
sprache, und verfeinern sie später für eine Zielmaschine durch Bereitstellung von Annotationen
für die partielle Auswertung. Der “Partial Evaluator” spezialisiert dann den kompletten Renderer,
basierend auf dem verfügbaren Wissen über die Szene: Shader werden spezialisiert, wenn ihre
Eingaben bekannt sind, und generell werden alle redundanten Berechnungen eliminiert. Unsere
Ergebnisse zeigen, dass die generierten Renderer schneller und portierbarer sind, als Renderer
geschrieben mit den aktuellen Techniken konkurrierender Bibliotheken und dass, im Vergleich,
unsere Rendering Bibliothek weniger Implementierungsaufwand erfordert.

5

6

Résumé

La plupart des moteurs de rendu développés pour l’industrie du �lm sont de gigantesques
logiciels qui sont capables de produire des images à partir de scènes très complexes. Mal-
heureusement, ils sont implémentés avec les modèles de programmation courants qui ne sont
pas vraiment adaptés pour programmer des ordinateurs modernes qui possèdent des CPUs
avec des instructions vectorielles ou des GPUs. En conséquence, ces moteurs de rendu doivent
faire face à la di�culté d’exprimer du parallélisme et d’utiliser les fonctionalités o�ertes par
le matériel dans ces modèles. Les compilateurs seuls ne pouvant pas optimizer et générer
des programmes e�caces pour n’importe quel type de machine—parce que la recherche du
programme le plus e�cace est di�cile et complexe—les programmeurs doivent donc utiliser
des fonctions intrinsèques au compilateur, ou de manière générale, écrire du code non portable.
La conséquence de cette limitation est que les programmeurs doivent réécrire le même code à
chaque fois qu’ils veulent le porter vers une architecture di�érente, et que donc la base de code
grossit, devient di�cile à maintenir et comprendre car les algorithmes sont dissimulés sous une
large quantité de détails liés aux aspects matériels de la machine.

Heureusement, il y a des solutions à ce problème, sous la forme de languages spécialisés à
un domaine. Ces languages sont comme leur nom l’indique spécialisés dans un domaine, dont
la connaissance permet aux compilateurs de choisir la meilleure méthode d’exécution sur une
machine donnée lors de l’optimisation de programme. Dans cette thèse, on choisit une autre
façon d’encoder cette connaissance: On implémente une bibliothèque de rendu et de tracé de
rayons générique et déclarative dans un langage fonctionnel, et on la transforme ensuite pour
l’exécution sur une machine particulière à l’aide d’annotations pour une évaluation partielle.
L’évaluateur partiel spécialise alors le moteur de rendu dans son intégralité, en tenant compte
du contenu de la scène: Les "shaders" sont spécialisés lorsque leurs entrées sont connues, et de
manière générale, tous les calculs super�us sont éliminés. Les résultats montrent que les moteurs
de rendu ainsi générés sont plus rapides et portables que ceux écrits avec les bibliothèques
proposées dans l’état de l’art, et que, de plus, l’implémentation de cette technique demande
moins d’e�ort.

7

8

Contents

Introduction 11

1 Background 13
1.1 Rendering . 13

1.1.1 The Rendering Equation . 13
1.1.2 Monte Carlo integration methods . 15
1.1.3 Path Tracing . 16
1.1.4 Next Event Estimation . 18
1.1.5 Multiple Importance Sampling . 19
1.1.6 Traversal . 21
1.1.7 Shading . 22
1.1.8 Libraries . 23

1.2 Compilers . 23
1.2.1 Domain-Speci�c Languages . 24
1.2.2 Vectorization . 25
1.2.3 AnyDSL . 26

2 Generating BVH Traversal Kernels 31
2.1 Motivation . 31
2.2 Common Infrastructure . 32
2.3 CPU Kernels . 34

2.3.1 Ray Packet Traversal . 34
2.3.2 Single-ray Traversal . 36
2.3.3 Hybrid Traversal . 39

2.4 GPU Kernels . 41
2.5 Results . 42

2.5.1 Performance . 42
2.5.2 Implementation E�ort . 48

3 Generating Renderers 49
3.1 Motivation . 49
3.2 Rendering Library . 50

3.2.1 Images and Textures . 50

9

10 CONTENTS

3.2.2 Materials and BSDFs . 52
3.2.3 Lights . 54
3.2.4 Geometric Objects . 55
3.2.5 Shaders . 56
3.2.6 Renderers . 56
3.2.7 Rendering Devices . 58

3.3 Results . 60
3.3.1 Experimental Setup . 60
3.3.2 Performance . 62
3.3.3 Implementation E�ort . 65
3.3.4 Compilation Times . 66

4 Compiling Generators 69
4.1 Type Inference . 69

4.1.1 Algorithm  and Constraint-based Inference Algorithms 69
4.1.2 Local Type Inference . 71

4.2 Pattern Matching . 73
4.2.1 Backtracking Automata . 73
4.2.2 Decision Trees . 74

4.3 Memory Management . 76
4.3.1 Manual Memory Management . 77
4.3.2 Automatic Memory Management . 78

Conclusion 81

Bibliography 85

Acronyms 95

Introduction

Computer Graphics and Compilers are two �elds that belong together. This has become even
more apparent since the invention of programmable shaders in 1988. Introduced by Pixar in
the third version of the RenderMan Interface Speci�cation [88], shaders are small programs
that control the appearance of an object in a 3D scene. Since then, shaders have become
more powerful and generic: They can describe surfaces, volumes, lights, textures, or literally
any rendering parameter. Because of their ubiquity, any type of rendering software—from
o�ine renderers to graphic drivers—has to include a shader compiler or interpreter at its core.
Compilation makes the shaders run faster than interpretation, but more importantly enables
optimizations that are critical for performance.

The typical optimization for shaders is specialization [GKR95; MQP02; Son+14]: Given a
scene speci�cation, constants can be folded and control-�ow branches can be pruned at compile-
time. However, there has been relatively few attempts at compiling more than just shaders
inside a renderer. In fact, early attempts to specialize ray-tracing programs [And96] focus
solely on intersection routines and shading. Clearly, there is also potential for specialization
in other parts of a renderer: The integrator, acceleration data structures, and in general any
scene-dependent code could bene�t from knowledge of the scene that is about to be rendered.
For instance, spectral rendering or instancing can simply be removed from the �nal executable,
along with all the code that handles spectral data and instance transformations, if the scene
con�guration states that these features can be turned o�. Ideally, one could even imagine
writing a renderer-generator : A program that, given the de�nition of a scene, would generate
a renderer specialized for that scene. This would be viable for both o�ine rendering—where
compilation times do not matter, or real-time rendering, provided the renderer is not specialized
for dynamic objects.

Designing such a program is a non-trivial task, much like designing a new compiler: The
input and output languages for this compiler would be the scene description, and the machine
code for the generated renderer, respectively.

This thesis argues that, using partial evaluation [Fut99], writing a new compiler can be
avoided. This powerful technique requires that the input data of a program is split in two
categories: static and dynamic. From such a program and a particular static input data, the
partial evaluator yields a residual program that only operates on dynamic data. In order to
specialize a renderer, it is hence su�cient to partially evaluate [Jon96] the renderer with the
scene description as static data.

Unfortunately, there are multiple challenges linked with partial evaluation as a technique.

11

12 CONTENTS

In particular, it is generally undecidable whether partial evaluation will terminate, due to
the halting problem. Moreover, e�cient rendering is not only about specialization. High-
performance rendering requires fast hardware: GPUs, CPUs with vector units, or any other type
of accelerator. It is crucial to be able to take advantage of such hardware, when it is available,
since it o�ers signi�cantly larger performance. This involves applying transformations to the
code so that it performs better on said hardware: Vectorization, for instance, requires to linearize
control �ow. Sadly, just like for partial evaluation, compilers are usually too conservative when
optimizing programs, and for good reason: Even for a simple program transformation, it can
be hard or even impossible to write an automatic procedure that proves its correctness or
determines its pro�tability.

Therefore, this thesis places this burden on the programmers’ shoulders: The decision of
what, when, and how to transform is their responsibility. Should the annotations be incorrect,
the compiler will at best bail out with an error message, or even fail to terminate. This does not
mean that programmers have to perform the transformation themselves: The compiler will do it
in their stead, but it still requires instructions on how to do it properly.

In this thesis, we �rst present related work on rendering and compilers in Chapter 1. Then,
we show how to develop high-performance, portable, and con�gurable traversal kernels using
partial evaluation and guided-vectorization in Chapter 2. These traversal kernels are then
used in Chapter 3, where we present a renderer generator based on partial evaluation. The
central idea in that chapter is that even though this system generates renderers, it is not itself
implemented as a generator, which is a very desirable property. Finally, in Chapter 4, we
discuss some relevant design decisions made in the AnyDSL compiler framework, which is the
supporting structure enabling this renderer generator.

The work of this thesis is based on several publications [Pér+17; Pér+18; Pér+19]. Other
publications not directly related to the topic discussed here [PKS17] have not been included. All
the code presented in this thesis is Open-Source and available at https://github.com/AnyDSL/
rodent. The AnyDSL framework is also Open-Source, and available at https://github.com/
AnyDSL/anydsl.

https://github.com/AnyDSL/rodent
https://github.com/AnyDSL/rodent
https://github.com/AnyDSL/anydsl
https://github.com/AnyDSL/anydsl

Chapter 1

Background

This section gives an introduction to rendering and compilers. The goal is to give the reader an
overview of the two topics, and present concepts relevant to the rest of the thesis.

1.1 Rendering

Rendering is the process of generating a two-dimensional picture from the description of a
three-dimensional scene. Such a description encompasses the de�nition of the light sources
and objects in the scene, as well as the associated physical properties that are relevant for light
simulation. From this description, the renderer will then solve the Rendering Equation [Kaj86]
in order to produce an image.

1.1.1 The Rendering Equation

The Rendering Equation describes the amount of outgoing radiance for a given point on a
surface as a function of the emitted radiance and incoming radiance for that point, when the
system reached equilibrium:

Lo(x, !o) = Le(x, !o) + ∫
Ω
Li(x, !i)f (!i , x, !o) |cos(�i)| d!i (1.1)

The terms of this equation are as follows: x is a point, !i is the incoming light direction,
!o is the outgoing light direction, �i is the angle between the surface normal at x and !i , Lo
is the outgoing radiance, Le is the emitted radiance, Li is the incoming radiance, and f is the
Bidirectional Scattering Distribution Function (BSDF).

For surfaces that emit light, the radiance emission function Le is part of the scene description,
as an area light source de�nition. For non-emitting surfaces, this term is simply zero.

The BSDF also comes from the scene description, usually in the form of an analytical
representation. Most rendering programs support a �nite set of BSDFs, and the artist can then
combine them and tune their parameters to get the desired surface appearance. Some tools also
allow to capture the re�ectance properties of a surface using a goniore�ectometer and then use

13

14 CHAPTER 1. BACKGROUND

the measured data during rendering. This unfortunately comes at a price in performance, as the
measured data is large and more complex to evaluate than an analytical model.

Note that the rendering equation as stated above does not allow rendering of wavelength-
dependent e�ects, like dispersion. There are techniques and algorithms to e�ectively render
scenes without this approximation [Wil+14], but they are beyond the scope of this thesis.
Instead, we use a standard color space such as sRGB to represent colors, and we evaluate the
rendering equation separately for each component. Similarly, this equation does not include
participating nor polarization.

In free space, it holds that Li(x, !) = Lo(x, −!) [Vea98]. However, the incoming radiance
Li for a point x on a surface is linked to the outgoing radiance by the ray casting function c.
Assuming the surface of the objects in the scene is the set S, we give a de�nition of c, along
with the distance function d :

d(x, !) = inf {t | (x + t!) ∈ S, t > 0}
c(x, !) = x + d(x, !)!

Note that with this de�nition, the distance function d evaluates to +∞ if the ray de�ned by
x and ! exits the scene. We can now express the incoming radiance Li(x, !i) as:

Li(x, !i) = Lo(c(x, !i), −!i)

With this relation, it becomes visible that the rendering equation is a Fredholm equation
of the second kind [Fre03], for which the resolution method is to use the Liouville-Neumann
series. In his PhD thesis, Veach [Vea98] introduced an operator formulation of light transport
to simplify the mathematical presentation of the Neumann expansion. The idea is to build a
light transport operator, de�ned as a combination of the scattering and propagation operators K
and P. The de�nition of K follows strictly the rendering equation integrand:

(Kℎ)(x, !o) = ∫
Ω
f (!i , x, !o)ℎ(x, !i) |cos(�i)| d!i

Now, the propagation operator P can be de�ned with the help of the distance and ray casting
functions de�ned earlier:

(Pℎ)(x, !i) =
{
ℎ(c(x, !i), −!i) if d(x, !i) < ∞,
0 otherwise

With these de�nitions, the rendering equation can be reformulated as:

L = Le + KPL

With T = KP, the solution to the functional equation above is then:

L = (I − T)−1Le

Of course this is under the condition that I − T is invertible. A su�cient condition is to
have ||T|| < 1 where ||T|| is the standard operator norm. This is condition is guaranteed to be

1.1. RENDERING 15

true if the scene is physically valid [Vea98], which means in particular that BSDFs must be
energy-conserving, symmetrical, and absorb at least some energy. Given that condition, the
inverse is given by the Neumann series:

(I − T)−1 =
∞
∑
i=0

T i

As a consequence, the solution of the rendering equation is:

L = Le + TLe + T2Le + …

This means that the �nal radiance is the sum of the emitted radiance plus the emitted
radiance scattered once, plus the emitted radiance scattered twice, and so on.

Another useful transformation of the rendering equation is its surface form, obtained by
change of variables:

Lo(x, !o) = Le(x, !o) + ∫
y∈S

Li(x, x → y)f (x → y, x, !o)G(x, y) dA (1.2)

In this equation, S is the set of all surfaces in the scene, and A is the area measure. Note
the new notation x → y, which represents the direction formed by the two points x and y.
The function G represents the change of variables from solid angle to surface area, called the
geometry term:

G(x, y) = V (x, y)
cos(�1) cos(�2)

||x − y||2

Here, �1 and �2 are the angles between x → y and the surface normal at x and y , respectively,
and V is the visibility function de�ned as:

V (x, y) =
{
1 if x is visible from y,
0 otherwise

This surface form is used in particular for Next Event Estimation, an addition to the Path
Tracing algorithm that improves its convergence. The next section reviews the basic concepts
of Monte Carlo integration used in Path Tracing.

1.1.2 Monte Carlo integration methods

In the general case, evaluating the rendering equation cannot be done analytically, because
of the complexity of the models used for the scene surfaces and materials. An alternative
is to use numerical methods: Monte Carlo (MC) integration methods, in particular, are used
pervasively in rendering because they require very little knowledge of the integrand and have
good convergence properties. The general idea in MC integration is to see the integral of interest

16 CHAPTER 1. BACKGROUND

as the expected value of a random variable:

I = ∫ f (x)dx

= ∫
f (x)
p(x)

p(x)dx

= Ep [
f (X)
p(X)]

The notation Ep[X] refers to the expected value of the random variable X with respect to the
probability distribution p. This expected value can be estimated by computing the following
empirical average, called the Monte Carlo estimator :

In =
1
n

n
∑
i=1

f (xi)
p(xi)

, where Xi ∼ p

According to the Strong Law of Large Numbers [RC05], In is converging almost surely to
I . One advantage of MC methods is that their rate of convergence is independent from the
dimensionality of the integral, since the variance of In is proportional to 1

n . Intuitively, this
means that with n large, one needs to take 100 times more samples to diminish the error by a
factor of 10.

In order to improve the convergence of an MC estimator, variance reduction techniques,
such as Importance Sampling (IS) can be employed. First introduced in 1950 [Kah50], IS takes
advantage of the fact that there is some freedom in the choice of sampling distribution p. For
instance, if we choose p(x) = f (x)

I , we get:

In =
1
n

n
∑
1
I = I (1.3)

In this case, only one sample is enough to compute the integral (i.e. I1 = I)! However, in order
to be able to compute this optimal sampling probability p, one must already have the value of
the integral I , which is in general not possible. What this well-known equality tells us, however,
is that we should try to make the sampling probability as close to the integrand (f) as possible.

This technique is essential to improve the convergence speed of any MC algorithm, including
Path Tracing, which is described in the next section.

1.1.3 Path Tracing

Path Tracing, an algorithm introduced at the same time as the Rendering Equation, in 1986 [Kaj86],
has remained useful in many scenarios, because of its speed and simplicity. The Path Trac-
ing (PT) algorithm is an MC integration method that builds a path by sequential sampling,
starting from the camera, and sampling new random directions at every surface interaction in
order to compute a Monte Carlo estimator of Equation (1.1). Algorithm 1 gives an overview of
the naive, recursive version of PT.

Given a ray representing the outgoing light direction, this function intersects the scene
to �nd a surface. If no surface is found, the function returns a black color. Otherwise, the

1.1. RENDERING 17

Algorithm 1 Basic recursive version of Path Tracing.
function path_trace(ray, scene)

if ray exits scene then
return srgb(0, 0, 0)

end if

ℎitpoint ⟵ intersect(scene, ray)
emission ⟵ emission(ℎitpoint)
normal ⟵ normal(ℎitpoint)
sample ⟵ sample_uniform_hemisphere(ℎitpoint)
pdf ⟵ 1

2�
cos ⟵ cos(normal, sample)
f ⟵ bsdf(ℎitpoint, ray, sample)

return emission + path_trace(sample, scene) × f × cos / pdf
end function

hemisphere at the surface point is sampled, and an incoming direction is obtained. Note that
the probability density of uniform hemisphere sampling is constant and equal to 1

2� , the inverse
of the surface of the unit hemisphere. The algorithm then proceeds with the evaluation of the
integrand in Equation (1.1), and divides the value by the probability density, as in any Monte
Carlo integration algorithm.

There are however multiple issues with this description of the algorithm: First, it may not
terminate if the ray does not escape the scene. It might be tempting to introduce a maximum path
length, but doing so will make the algorithm biased (which in practice means that the rendered
image might be signi�cantly darker than the correct solution, or even miss some important
features). Instead, the correct solution is to use a technique known as Russian Roulette [AK90]:
The idea is to randomly choose to terminate (or kill) the path. The termination probability can
be constant, but it is better to adapt it to the current path throughput, so that paths with low
contribution terminate earlier—or even better, guide it [VK16]. The amount of energy lost by
terminating the path has to be accounted for with surviving paths: If the probability of killing a
path is p and the path survives the Russian Roulette, then its throughput has to be divided by
1 − p.

The second problem with this algorithm is that, at each surface interaction, new directions
are sampled uniformly on a hemisphere. This choice is not optimal: In fact, it is even incorrect
since some BSDFs are zero almost everywhere, meaning that the probability of sampling a
direction on a hemisphere for which the BSDF is non-zero is literally zero: This happens for
instance with perfect mirror materials.

Fortunately, IS can be used to solve this problem: Directions can be sampled using a sampling
function that is adequate for each material. In the case of a perfect mirror, the sampling function
can just return the only valid re�ection direction. In the general case, though, the ideal sampling
distribution should be as close as possible to the integrand. However, in the rendering equation,

18 CHAPTER 1. BACKGROUND

the integrand contains the incoming radiance, which is the function that we are trying to
compute. Thus, a simple and e�ective choice is to consider a sampling procedure that is
proportional to the other two terms: the BSDF, and the cosine. In terms of implementation,
this means that in the scene description, every BSDF now has to come with an accompanying
sampling function. For instance, if the BSDF is purely di�use (i.e. of the form f (!i , x, !o) = k/� ,
with k ∈ [0, 1)), then cosine-weighted hemisphere sampling is an appropriate choice of sampling
probability.

1.1.4 Next Event Estimation

In its naive formulation, PT samples a direction on the support of the BSDF (usually a hemisphere)
around the current point. Then the path is continued by performing a ray tracing step to �nd
the corresponding point in that direction. Another way to build a path would be to sample a
point on the surfaces of the scene directly. It is in general a very ine�cient way to produce
paths, as such points will often be occluded, in which case the geometric term will be zero.
However, this can be done for light sources, since if a non-occluded point can be found on a
light source, then the generated path will likely be largely contributing to the �nal radiance.
This is the general idea behind Next Event Estimation (NEE) [Kaj86]: Separate emitting from
non-emitting objects in the scene, and opportunistically sample a light source at every surface
interaction. There are other variants where some heuristic or importance function is used to
control when NEE is performed, but this is out of the scope of this introduction.

In order to include this in the PT algorithm, we need to sample a point y on the emitting
surfaces of the scene, and then add the following contribution:

LNEE = Le(y)f (x → y, x, !o)G(x, y)
1

p(y)
(1.4)

Note that purely specular surfaces (those for which f is 0 almost everywhere) should not
use NEE, as Equation (1.4) is always 0 in this case. Additionally, computing the geometric term
G(x, y) involves an evalution of the visibility function V , which in terms of implementation
involves tracing a shadow ray. Shadow rays are in general faster to trace than normal rays,
because here we do not care about �nding the closest intersection: V (x, y) is zero if there is any
surface in between x and y .

Of course, because the original PT algorithm samples directions around the current point,
and can thus end up building a path that hits a light source, we have to make sure that the
contribution of a light source is not counted twice, as the result would be incorrect. A simple
solution to this problem is to ignore the contribution of light sources when they are hit after a
surface bounce, unless that bounce was specular (because NEE is not performed in that case,
following the remark made above). Applying the simple solution means that paths will always
have their last vertex sampled with NEE, which might not be optimal for some scenes, in
particular when the angle between the light source normal and the outgoing ray is very shallow
(see Figure 1.1). A much better solution is to use Multiple Importance Sampling to combine
direct light hits with NEE.

1.1. RENDERING 19

Figure 1.1: PT with NEE without MIS (left), and with MIS (right). On the top of the walls, it
is apparent that NEE is ine�cient at sampling the large light source. Scene inspired by the
original Cornell box.

1.1.5 Multiple Importance Sampling

The idea behind Multiple Importance Sampling (MIS) [VG95] is to weight the contribution
of direct light hits and NEE such that the total contribution is unbiased. Considering the last
segment xn−1 → xn of a path whose last vertex xn lies on a light source, it is possible to combine
the contributions of NEE LNEE and direct light hits LD using their respective weights wNEE and
wD to form the �nal estimator L:

L(xn−1 → xn) = wNEE LNEE(xn−1 → xn) + wD LD(xn−1 → xn)

For this estimator to be unbiased, it is necessary that the weights wNEE and wD sum to 1 [VG95].
The balance heuristic [VG95] is a particular way of choosing those weights that gives more
importance to the technique that has a higher probability of sampling the point on the light
source. The weights for this heuristic are given here:

wD =
pD(xn−1 → xn)

pD(xn−1 → xn) + pNEE(xn−1 → xn)

wNEE =
pNEE(xn−1 → xn)

pNEE(xn−1 → xn) + pD(xn−1 → xn)

The terms pNEE(xn−1 → xn) and pD(xn−1 → xn) denote the probability densities for sampling
the point xn from xn−1, using NEE and direct light hits only, respectively. In other words,
pNEE(xn−1 → xn) corresponds to sampling the set of emitting surfaces in the scene to �nd xn,
and pD(xn−1 → xn) corresponds to sampling the BSDF at xn−1 and hitting the light source at xn.

Typically, light sources are represented as a collection of objects in the scene. In order to
perfom NEE, the renderer selects a light source Si in this collection at random, using a discrete
probability distribution p(Si |xn−1). In the remaining text, we assume that this probability is
independent from the current surface point xn−1, which means that p(Si |xn−1) = p(Si). Once a

20 CHAPTER 1. BACKGROUND

light source is selected, the point xn is then sampled on the surface of the light Si , using the
probability distribution function p(xn |Si). In this case, the probability pNEE(xn−1 → xn) for a
point xn can be decomposed into:

pNEE(xn−1 → xn) = p(Si |xn−1)p(xn |Si)
= p(Si)p(xn |Si)

Note that the probability pNEE(xn−1 → xn) is expressed in area form, whereas the path probability
pD(xn−1 → xn) is expressed in terms of solid angle [VG95]. Therefore, we need to transform
pD(xn−1 → xn) to the area measure by multiplying it by the geometry term G′(xn−1, xn):

G′(xn−1, xn) =
cos(�n)

||xn − xn−1||2

Where �n is the angle between the normal at xn and the vector xn−1 − xn.
If we notice that the weight wD can be simpli�ed into:

wD =
pD(xn−1 → xn)

pD(xn−1 → xn) + pNEE(xn−1 → xn)

=
1

1 +
pNEE(xn−1 → xn)
pD(xn−1 → xn)

And that similarly,
wNEE =

1

1 +
pD(xn−1 → xn)
pNEE(xn−1 → xn)

Then, the �nal balance heuristic weights are:

wD =
1

1 +
p(Si)p(xn |Si)

pD(xn−1 → xn)G′(xn−1, xn)

wNEE =
1

1 +
pD(xn−1 → xn)G′(xn−1, xn)

p(Si)p(xn |Si)

In terms of implementation, this only requires to attach one �oating point value to the path, to
keep track of pD(xn−1 → xn) [Geo13].

In this thesis, we focus on rendering with PT combined with all the techniques mentioned
in this section, but additional techniques such as guiding [VK16; MGN17], or di�erent rendering
algorithms [Vea98; Geo+12] can provide better convergence rates for complex scenes, at the cost
of being more expensive per sample. Obviously, a complex algorithm may indeed provide better
quality samples, but a decent Path Tracer will generate lower quality samples at a much higher
rate. Another way to produce rendered images faster is by applying software optimization
techniques, as shown in the following sections.

1.1. RENDERING 21

1.1.6 Traversal

Any algorithm based on ray tracing requires to trace rays in the scene. For instance, Algorithm 1
evaluates Equation (1.1) by �nding the closest intersection between a sampled ray and any
object in the scene. Similarly, Equation (1.2) contains a visibility term V (x, y) which is 0 if the
ray between x and y intersects any object in the scene, and otherwise 1. Since this operation
is performed repeatedly during rendering, it follows that a large part of the rendering time is
spent tracing rays, even in optimized renderers [Áfr+16; Lee+17].

High-performance renderers typically rely on an acceleration data structure to perform
those ray queries. For instance, Bounding Volume Hierarchies (BVHs) represent the scene
as a tree in which each node is associated with a bounding volume, and each leaf contains a
list of primitives. In order to intersect a ray with the scene, this tree is traversed recursively
from the root, processing only the nodes whose bounding volumes intersect the ray. Other
data structures include grids [FTI86], Kd-trees [Ben75] or even octrees [Mea82], but major
high-performance libraries like Embree [Wal+14] or OptiX [Par+10] typically prefer BVHs.
One reason for this is that regular grids tend to perform poorly when the primitives are not
distributed uniformly in the scene, a problem known as the teapot in the stadium [Wal04]. There
exist solutions to this problem [KBS11; PKS17], but they often mean changing the construction
and traversal algorithms considerably. Additionally, grids, Kd-trees, and octrees are spatial data
structures: They subdivide space—unlike BVHs, which partition the set of objects in the scene.
In a spatial data structure, primitives can appear in di�erent nodes or cells, which requires to
store references to the original primitive data. Consequently, spatial data structures use more
memory and are often slower to build than BVHs, although high-performance construction
algorithms do exist, e.g. [WH06].

On CPUs with vector units, BVH traversal routines are often vectorized to maximize their
performance. There are four main categories of vectorized traversal algorithms: packet, single-
ray, hybrid, and streaming traversal. Packet traversal is an algorithm that traverses the BVH
with a group of N rays—a packet—with N being a multiple of the vector width [ORM08;
Wal+01]. Intersection routines are then modi�ed to intersect the N rays with a single primitive
or bounding volume. When traversing the data structure, the children of the current node
are pushed onto the stack if at least one ray in the packet intersects them. For this reason,
this type of traversal is often deemed speculative [AL09], since only a subset of the rays in the
packet might be active for a given subtree. Naturally, this makes packet traversal ine�cient for
incoherent rays: If the rays in the packet di�er signi�cantly in their origins and directions, they
will most likely traverse di�erent parts of the tree, meaning that only a few rays in the packet
will be active at a time. Single-ray traversal algorithms try to solve this problem by optimizing
the intersection of a single ray with the BVH. Typically, this is done by making the BVH wider
and using vector instructions to perform intersection tests [DHK08; WBB08; EG08]. The BVH
is built so that each node has N children, with N being the number of vector lanes for the target
hardware. During traversal, the ray is then intersected with N bounding volumes at a time
using Single Instruction Multiple Data (SIMD) instructions. Unfortunately, single-ray traversal
is not as e�cient as packet traversal for coherent rays: It fails to take advantage of the fact that
similar rays traverse similar parts of the tree. The solution to this problem is to combine packet
traversal with single-ray traversal [Ben+12] to form a hybrid algorithm. The idea is to start

22 CHAPTER 1. BACKGROUND

traversal with packets, and switch to single-ray traversal when too many rays in the packet are
inactive. This algorithm can therefore handle any kind of ray distribution, and is faster than
both packet and single-ray traversal. Another way to extract coherence from ray distributions
is to trace large groups of rays. Streaming traversal algorithms exploit this idea, by reordering
or partitioning rays during traversal [Pha+97; Wal+07; Tsa09; BA14]. These algorithms can
sometimes outperform hybrid ray traversal, but they require to process larger groups of rays.

On GPUs, BVH traversal routines should minimize memory tra�c, and maximize SIMD
e�ciency [AL09]. Memory latency can also be a problem, which can be addressed by using
wider BVHs [Gut14].

In order to minimize the amount of memory used per ray, and make BVH traversal more
hardware-friendly, traversal algorithms can be made stackless. Sadly, stackless algorithms are
slower than their stack-based counterparts [Lai10; BA13; Hap+13; ÁS14], since they need to
perform additional work to remember the path taken in the hierarchy.

Even if traversal is often one of the most expensive parts of a renderer, shading can become
the bottleneck in scenes containing complex materials. Fortunately, there are techniques to
make shading more e�cient.

1.1.7 Shading

Shading is a vague term that initially referred to the action of assigning a color for a given pixel:
Early renderers would take the angle between the light source and the object visible from that
pixel to produce a shade of gray [Pho75]. Since the introduction of complex material models,
the term has been extended to refer to any computation that involves the material model. For
instance, evaluating or sampling the BSDF in Algorithm 1 would be considered shading.

In most renderers, shading is programmable, and each material is assigned a small program
called a shader. Depending on the type of material used, the shader might need to perform
texture lookups, or evaluate some complex mathematical model. Shader execution can hence be
either memory-bound or compute-bound, depending on the type of shader.

If the rays to shade are coherent, shader vectorization will be pro�table [Áfr+16]: In this case,
every SIMD execution thread of a vectorized shader will access similar parts of memory, and
perform similar computations, maximizing both SIMD utilization and cache usage. However,
for PT or any algorithm that produces incoherent workloads, sorting of large batches of rays
may be necessary to extract enough coherence [Eis+13; Áfr+16].

Another way to speed up shaders is to specialize them. Shaders are typically written
separately from the renderer, possibly even in a di�erent programming language: This makes
them reusable and independent from the rest of the renderer. However, this modularity comes
at a cost, since the interface between the renderer and the shading system has to be generic
enough to handle every possible shader. This interface introduces an overhead, but this can be
avoided if the shaders are specialized to the type of scene and rendering algorithm [GKR95;
MQP02; Son+14]. Of course, this requires to design a shader compiler that is tightly integrated
with the rest of the renderer.

Implementing and optimizing shading systems or traversal algorithms is a tedious process,
since compiler optimizations are often unreliable. Renderer developers therefore avoid costly

1.2. COMPILERS 23

abstractions and use low-level, platform-dependent compiler intrinsics to maximize perfor-
mance [Lee+17]. A similar observation can be made for GPU renderers, since they are written
in platform-speci�c languages and duplicate parts (if not all) of their CPU counterparts. As a
result, implementations become di�cult to maintain and non-portable, which is undesirable. A
�rst approach to this problem is to build reusable software libraries that abstract some or even
all of the low-level details of rendering, as discussed in the next section.

1.1.8 Libraries

Two major types of libraries for rendering exist: High-level libraries target rendering as a whole,
and let users of the library design an entire renderer [SS95; DH02]. Their focus is on ease of
use, reusability, and genericity: Using object orientation, these libraries de�ne classes for every
rendering concept and de�ne clean interfaces between them. This type of library is however
di�cult to optimize for a traditional compiler: Most virtual calls cannot be eliminated and the
layout of objects in memory prevents e�ective vectorization.

Lower-level libraries like OptiX [Par+10] or Embree [Wal+14] de�ne a scene management
and traversal library, and contain heavily optimized implementations for ray traversal and
intersection. Users of such libraries have to develop their own shading system and infrastructure
around this base functionality. While such libraries do not su�er from the performance problems
of higher-level libraries, they do not address most of the functionality required to build a complete
renderer. Additionally, they o�er only limited con�gurability, since they have been optimized
for a particular usage scenario: Adding more features will bring the performance down for
others scenarios.

Ultimately, renderers should be portable, fast, and generic. With traditional programming
models and libraries, developers are forced to choose at most two out of those three: For instance,
Vision [SS95] is portable and generic, and OptiX or Embree are fast but neither really generic
nor portable. Modern compilers and Domain-Speci�c Languages (DSLs) o�er an alternative to
this conundrum: With domain-speci�c knowledge, compiler optimizations can be made more
aggressive and transform high-level constructs into high-performance code. Previous works
on compilers and DSLs for ray tracing have attempted to specialize [And96] ray tracers, or
provide a vectorization and traversal library for renderers [GS08; ZWL17], but they were either
too restricted in their scope, or limited by the choice of host language. Thus, the novelty of
our approach is both in its scope—we implement an entire rendering library—and the method
used—we leverage partial evaluation to generate high-performance code.

1.2 Compilers

Compilers traditionally transform or translate a program written in a programming language into
another one (possibly in a di�erent language). In this process, they might apply optimizations,
in order to maximize the performance of the compiled program.

Some high-level optimizations try to execute as much code as possible during compilation
(like constant folding), and others try to tune the code for a particular architecture (this includes
transformations like parallelisation, vectorization, or even loop blocking). In any case, optimiza-

24 CHAPTER 1. BACKGROUND

tions should be safe: They should not impact the correctness of the program. In the presence of
non-termination, this becomes di�cult to ensure, and compilers must be conservative in their
decisions, because of the halting problem. Even when non-termination is not a problem, search
spaces are often so large that heuristics must be used to make the problem tractable [ASU86].
As a consequence, some code that could have been executed at compile-time or folded into
constants will remain unoptimized, and some bene�cial transformations will not be performed
automatically.

There are typically two solutions for these problems: Better heuristics, or user-driven
annotations. Note that these approaches are not mutually exclusive, as heuristics can always
help the user write annotations. This work will focus on the second approach, and is therefore
connected to Domain-Speci�c Languages and techniques that perform guided optimization of
the source program.

1.2.1 Domain-Speci�c Languages

Domain-Speci�c Languages (DSLs) are languages that are speci�cally designed and constrained
for a particular domain. Compiling such a language is therefore easier than compiling a
general-purpose language, and domain-speci�c knowledge can be exploited in order to make op-
timizations more aggressive. DSLs can either be implemented from the ground up, or embedded
inside a host language, in which case most of the existing infrastructure for that language can
be reused. We distinguish between two di�erent types of DSL embedding: deep, and shallow.

Deep embedding refers to DSLs that generate specialized, high-performance programs: The
user of such a DSL essentially builds a program generator. In order to generate programs, these
DSLs rely on the ability to execute code at compile-time in the host language. This feature is also
known as staging, since it allows to stage expressions of the source program for later evaluation
(at runtime, for instance). Examples of deeply embedded DSLs are Spiral in Scala [Ofe+13],
OptiML [Suj+11], or Liszt [DeV+11]. The �rst one uses Lightweight Modular Staging [RO10],
a Scala library for building code generators, and the other two rely on Delite [Bro+11], a
framework for parallel embedded languages. Another example is Halide [Rag+13], a DSL for
image processing that leverages C++ as a host language.

On the other hand, shallowly embedded DSLs can be compiled by a standard, unchanged
compiler for the host language. Nonetheless, these DSLs require a specialized compiler to
produce e�cient executables. A specialized compiler can optimize the program representation
using domain-speci�c knowledge for the DSL, something that a general-purpose compiler
cannot do. HIPAcc [Mem+16] and SYCL1 are two examples of this approach.

In this thesis, we use a form of shallow embedding that relies on partial evaluation to
remove any abstraction overhead. Fundamentally, we are harnessing the �rst Futamura pro-
jection [Fut83], a famous result of meta-programming. In that setting, we write a renderer
as a program R(S, D), that given the description of a scene S (the type of lights, materials,
geometries) and the scene data D (bu�ers, vertex arrays or textures), produces an image R(S, D).
This program can be viewed as a scene interpreter, taking the program S that describes how
to render the scene, and D the data needed by program S. According to the �rst Futamura

1https://www.khronos.org/sycl/

https://www.khronos.org/sycl/

1.2. COMPILERS 25

projection, it is possible to partially evaluate R for S and yield a specialized renderer RS that is
identical to the result of executing a hypothetical renderer generator with the scene S as input.

With this technique, we get the best of both worlds: We do not have to reimplement a
domain-speci�c compiler, as with traditional shallow embedding, nor do we write a program
generator, as with deep embedding. Our code will get specialized at compile-time by a partial
evaluator, requiring only a minimum amount of annotations. Conceptually, this is not really
di�erent from building a domain-speci�c compiler for rendering. While we do not write compiler
code per se, we add domain-speci�c knowledge to a generic compiler in the form of annotations.

1.2.2 Vectorization

Vectorization is the process of transforming a scalar program where instructions operate on
one value at a time, into a vector program in which each operation processes N elements of
a speci�c data type simultaneously [NT98]. The transformed program may run faster if the
target machine has vector instructions, which is the case for almost all modern processors. It
is possible to automatically vectorize code, with recursive program vectorization [Ren+15],
or loop vectorization [NZ08], for instance. These techniques are limited to certain classes of
programs and will fail if the source program does not match their requirements.

An alternative solution is to add support for vectorization in the source language: ispc [PM12],
a compiler for a C-based language with support for vector programming, and Sierra [LHH14], an
extension to C++, use vector types and overloaded control-�ow statements. In these languages,
a variable can be varying, meaning that each vector lane may have a di�erent value for that
variable, or uniform, in which case every vector lane contains the same value. The problem
is that types are a poor choice to represent this information: Variables can become varying
either explicitly because of data-�ow, or implicitly because of control-�ow. It is therefore often
di�cult to write the most precise type for a variable, and subtle changes in the code, including
those resulting from program optimizations, will make type information less accurate.

In regular programming languages with vector types where control-�ow statements are
not overloaded, the code has to be linearized: Non-scalar control �ow must be replaced with
data �ow. The library RaTrace [Pér+17] performs this transformation manually, and uses type
inference to avoid writing complex vector types. However, this forces the programmer to mask
out inactive lanes by hand in conditionals, and clutters APIs and functions signatures with
execution masks.

The semantics of the language can also be modi�ed to enable an implicit vector execution
model, as in CUDA or OpenCL. In this thesis, we follow this idea: We let the programmer
annotate regions in which the program behaves as if it was executing on a SIMD processor.
We rely on RV [MH18], a vectorization framework based on LLVM, to analyze the region and
determine what can remain scalar, and what should be vectorized. The result of this analysis is
a map from the variables and statements of the original program to a vector shape. RV vector
shapes are a�ne[CDZ10], and represent the fact that a value is uniform or varying, along with
additional information such as alignment and type of memory access, if any.

26 CHAPTER 1. BACKGROUND

1.2.3 AnyDSL

AnyDSL [Lei+18] is the compiler framework that we will be using in this thesis. It consists
of a language named Impala, and an intermediate representation named Thorin with a partial
evaluator, and a backend targetting LLVM. Impala is based on an earlier version of Rust, and
allows both an imperative and functional programming style.

Partial Evaluation

The AnyDSL partial evaluator can be controlled in Impala by specifying a �lter, a small boolean
expression, on the signature of a function. When the partial evaluator encounters a call to that
function, it instantiates the �lter by replacing occurences of the parameters of the function
by the supplied arguments in the call. If the resulting expression evaluates to true after this
substitution, then the partial evaluator inlines the call. As an example, consider the following
function, whose �lter is highlighted in orange:
fn @(?n) pow(x: i32 , n: i32) -> i32 {

if n == 0 {
1

} else if n % 2 == 0 {
let y = pow(x, n / 2);
y * y

} else {
x * pow(x, n - 1)

}
}

The �lter for this function is the expression ?n, pre�xed with the symbol @ to indicate a �lter.
When the partial evaluator reaches the call:
pow(z, 5)

It replaces the symbolic parameter n by the constant 5 in the expression ?n. The result is the
symbolic expression ?5, which in turns evaluate to true, because the operator ? returns true if
its argument is a constant at compile-time. Therefore, the call will be inlined, resulting in:
z * pow(z, 4)

Note that the partial evaluator executed the conditionals, and only the recursive call remains.
Then, the procedure is repeated on the remaining call to pow until the �nal program reads:
let w = z * z;
z * w * w

When no �lter is present, the partial evaluator does nothing. If the �lter symbol @ is present but
no condition is given, it is as if the �lter was always true. This means that the function f in the
listing below will always be recursively inlined:
fn @f() -> i32 { 42 }

It is possible to obtain the same e�ect by annotating the call site of a function:
@@g()

1.2. COMPILERS 27

This inlines the call to g, and that, regardless of its �lter.
In Impala, the following for loop:

for i in range(0, n) {
print(i)

}

is actually syntactic sugar for a call to range:
range(0, n, |i| {

print(i)
})

In other terms, the for loop body is the third argument in a call to range, under the form of an
anonymous function taking the loop counter i as parameter. In this way, the programmer can
design his own iteration functions for other domains, such as a 2D image:
let img = Img { width: 640, height: 480, pixels: /* ... */ };
for x, y in iterate_img(img) {

img.pixels(x, y) = 0;
}

In this case, a simple implementation of iterate_img will simply iterate through the rows and
columns of the image:
fn iterate_img(img: Img , body: fn (i32 , i32) -> ()) -> () {

for y in range(0, img.height) {
for x in range(0, img.width) {

body(x, y)
}

}
}

The body of the for loop is available as a function parameter in iterate_img, allowing the
programmer to apply various loop transformations. In general, this idea of passing the body of
a loop as a function to a higher-order function that iterates over some domain is not really new
and can in fact be linked to the map function of many programming languages [McC60].

Sometimes, it is necessary to modify the �ow of the program: For instance, if the loop
body contains an early exit or an error condition that terminates the loop. This is no longer
possible to implement using regular functions, unless control-�ow is encoded as data-�ow (i.e.
by placing the error condition in a boolean variable and testing it at every iteration). In order to
solve this problem, Impala allows the use of continuations (informally, “functions that never
return”) to modify the control-�ow of the program.

Continuations

First discovered in 1964 [Rey93], continuations represent control �ow in a program, and can be
used to encode loops, exceptions, or any control structure in a programming language. In Impala,
continuations are �rst class citizens, and regular functions are encoded using continuation
passing style. In fact, the following two functions are equivalent:
fn foo(i: i32) -> bool {

i < 3
}

fn foo(i: i32 , return: fn (bool) -> !) -> ! {
return(i < 3)

}

28 CHAPTER 1. BACKGROUND

Note how the return type ! indicates a continuation.
Programmers can use explicit continuations to write functions that can return di�erent

types, just like with checked exceptions:
fn safe_div(x: i32 , y: i32

, return: fn (i32) -> !
, error: fn () -> !
) -> ! {

if y != 0 {
return(x / y)

} else {
error()

}
}

Additionally, standard continuations like return, break or continue can be captured and used
like any other function:
for i in range(0, 100) {

let exit_outer = break;
for j in range(0, 100) {

exit_outer () // Breaks out of the outer loop
}

}

In this example, the break continuation is captured by the variable exit_outer, and later invoked
inside the inner loop to exit from the outer one. In C, the same behavior could be obtained by
placing a label at the end of the outer loop and using the goto keyword to jump to that label
from the inner loop.

Vectorization and Device Code Generation

Impala also o�ers the possibility to vectorize and parallelize code. For instance, a more e�cient
implementation of iterate_img for CPUs with multiple cores and vector units could be:
fn iterate_img(img: Img , body: fn (i32 , i32) -> ()) -> () {

let num_cores = 4;
let simd_width = 4;
for y in parallel(num_cores , 0, img.height) {

for x in range_step (0, img.width , simd_width) {
for i in vectorize(simd_width) {

body(x + i, y)
}

}
}

}

The functions vectorize and parallel are provided by the compiler and perform vectorization
using RV (see Section 1.2.2), and parallelization using Intel TBB, respectively. In the example
above, vectorization is performed by extracting the region to vectorize, highlighted in orange,
and marking every variable that is de�ned outside the vectorized region, like y, as uniform.
RV will then propagate this information to determine the vector shapes of all the variables
and statements in the region, and then linearize the control-�ow graph accordingly, producing
the vectorized program. As a consequence, there is no need to annotate types with vector
information, as with ispc or other vectorizing compilers. This also means that the same function

1.2. COMPILERS 29

can be �rst used with vector arguments, and can then be called later in the same program with
scalar arguments. In this instance, RV will generate two versions of the function, one for each
use case: We call this polyvariant vectorization. Both parallel and vectorize expect a compile-
time known value for their �rst argument: the number of threads for parallel, and the number
of vector lanes for vectorize. As an example, using the call pow(2, 2) with the de�nition of pow
given above as the number of vector lanes (or threads) for vectorize (or parallel), is perfectly
acceptable, since the call will be reduced to 4 at compile-time. Additionally, and in contrast to
#pragma in C-based languages, these functions can be passed around to other functions, just
like any regular Impala function.

Impala provides additional vectorization intrinsics: any, all, shuffle, extract, and ballot.
These work in a similar way to the CUDA [20] intrinsics of the same name: any and all are
functions that return true if any lane, or all lanes of their arguments are true, respectively.
shuffle performs a circular permutation whose order is given by its second argument, extract
extracts the contents of one vector lane, and ballot returns a bit mask containing ones for each
lane in which the argument evaluates to true. When used outside of a vectorized region, these
intrinsics behave as if there was only one vector lane. Here is an example showing the behavior
of these functions:
for i in vectorize (4) {

// i is a vector containing 0, 1, 2, 3
let a = any(i > 3); // a = false
let b = any(i > 2); // b = true
let c = all(i > 2); // c = false
let d = all(i >= 0); // d = true
let e = ballot(i > 1); // e = 0b1100
let f = shuffle(i, 2); // f = vector containing 2, 3, 0, 1
let g = extract(i, 2); // g = 2

}

Other built-in functions are available: cuda triggers code generation for CUDA, and amdgpu

does the same for AMD GPUs. These two functions extract a GPU kernel from a for loop body:
let grid = (64, 64, 64);
let block = (8, 8, 8);
/* Creates an 8x8x8 grid with block of size 8x8x8 */
for work_item in cuda(grid , block) {

// same as threadIdx.x in CUDA or get_local_id (0) in OpenCL
let thread_id_x = work_item.tidx();
// ...

}

With this, a programmer can write a version of iterate_img that runs on a CUDA-enabled GPU:
fn iterate_img(img: Img , body: fn (i32 , i32) -> ()) -> () {

let grid = (img.width , img.height , 1);
let block = (8, 8, 1);
for work_item in cuda(grid , block) {

let x = work_item.gidx();
let y = work_item.gidy();
body(x, y)

}
}

Using such a method, the programmer can cleanly separate the algorithm—the for loop body—
from its mapping—the way it is executed, speci�ed as in iterate_img. In this thesis, we strive

30 CHAPTER 1. BACKGROUND

to formulate algorithms in this way, using a very descriptive style of writing programs.
Vectorization, GPU execution, and specialization are extremely useful tools in general, and

are in fact essential to write e�cient BVH traversal kernels [Wal+14; Par+10]. Since AnyDSL
o�ers these transformations as primitives, it becomes possible to write such kernels as high-level
code, and then use those primitives to optimize them for the target architecture. The next chapter
will explain in detail how to do this without losing genericity, portability, or performance.

Chapter 2

Generating BVH Traversal Kernels

Ray traversal is an essential operation in Path Tracing (PT) and every rendering algorithm based
on ray tracing. Depending on the scene and rendering algorithm, more than half of the time
can be spent traversing rays [Áfr+16; Lee+17]: Making ray traversal faster is thus essential to
performance. In this chapter, we investigate a method to generate e�cient, hardware-aware
traversal kernels for di�erent platforms and use cases, all from a common code base. The
techniques and ideas presented here are based on a previous publication presenting traversal
kernels written in Impala [Pér+17], adapted to re�ect the changes in the compiler and renderer
infrastructure that were made in a later publication [Pér+19].

2.1 Motivation

Libraries such as Embree [Wal+14], or OptiX [Par+10] expose highly-tuned traversal kernels
developed by hardware vendors. These libraries contain di�erent variants of the same algorithm,
tuned for di�erent use cases and di�erent architectures.

However, these variants are implemented manually, which eventually means that the code
will be duplicated instead of shared. An example of this problem is shown in Figure 2.1: This
extract from Embree’s implementation shows the same ray-triangle intersection algorithm
implemented twice, once for packets of rays, and once for single rays. In general, this problem
is not limited to the intersection routines, since the interface to the traversal has to expose
vector types. The user of Embree, for instance, has to �ll a packet of rays of a speci�c size (4,
8, or 16) and pass it to the traversal routines. If for some reason the user wants to port his
implementation to another packet size, code has to be rewritten.

The reason why developers prefer to implement each version separately is mostly due to
compilers. The current generation of compilers is not able to properly perform vectorization,
and does not allow a good programming model to perform guided or semi-automatic vectoriza-
tion. As a result, programmers have to rely on target-speci�c compiler intrinsics and manual
vectorization to implement vectorized traversal kernels. Vectorizing compilers such as ispc do
not o�er the feature set required to implement complex traversal algorithms. Worse, they do
not solve the code duplication problem as they force the programmer to annotate variable types
with vector quali�ers.

31

32 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

__forceinline bool intersect(
const vbool <M>& valid0 ,
Ray& ray ,
const Vec3vf <M>& tri_v0 ,
const Vec3vf <M>& tri_e1 ,
const Vec3vf <M>& tri_e2 ,
const Vec3vf <M>& tri_Ng ,
MoellerTrumboreHitM <M>& hit) const

{
vbool <M> valid = valid0;
const Vec3vf <M> O = Vec3vf <M>(ray.org);
const Vec3vf <M> D = Vec3vf <M>(ray.dir);
const Vec3vf <M> C = Vec3vf <M>(tri_v0) - O;
const Vec3vf <M> R = cross(D,C);
const vfloat <M> den = dot(Vec3vf <M>(tri_Ng),D);
const vfloat <M> absDen = abs(den);
const vfloat <M> sgnDen = signmsk(den);

const vfloat <M> U = dot(R,Vec3vf <M>(tri_e2)) ^ sgnDen
;

const vfloat <M> V = dot(R,Vec3vf <M>(tri_e1)) ^ sgnDen
;

valid &= (den != vfloat <M>(zero)) &
(U >= 0.0f) & (V >= 0.0f) &
(U+V<= absDen);

/* ... */
}

(a) Uniform ray, varying triangle

__forceinline bool intersectN(
const Vec3vf <M>& ray_org ,
const Vec3vf <M>& ray_dir ,
const vfloat <M>& ray_tnear ,
const vfloat <M>& ray_tfar ,
const Vec3vf <M>& tri_v0 ,
const Vec3vf <M>& tri_e1 ,
const Vec3vf <M>& tri_e2 ,
MoellerTrumboreHitM <M>& hit) const

{
const Vec3vf <M> tri_Ng = cross(tri_e1 ,tri_e2);
const Vec3vf <M> &O = ray_org;
const Vec3vf <M> &D = ray_dir;
const Vec3vf <M> C = Vec3vf <M>(tri_v0) - O;
const Vec3vf <M> R = cross(D,C);
const vfloat <M> den = dot(Vec3vf <M>(tri_Ng),D);
const vfloat <M> absDen = abs(den);
const vfloat <M> sgnDen = signmsk(den);

const vfloat <M> U = dot(R,Vec3vf <M>(tri_e2)) ^ sgnDen
;

const vfloat <M> V = dot(R,Vec3vf <M>(tri_e1)) ^ sgnDen
;

vbool <M> valid = (den != vfloat <M>(zero)) &
(U >= 0.0f) & (V >= 0.0f) &
(U+V<= absDen);

/* ... */
}

(b) Varying ray, varying triangle

Figure 2.1: Excerpt from the manually vectorized ray-triangle intersection routines in Embree
2.16.

Sadly, this is only part a small part of the picture: Since programming models and compilers
used for GPU programming are profoundly di�erent from their CPU counterparts, developers
who want to port their traversal routine to GPUs will have to re-implement them from scratch.
Evidently, current programming models for CPUs and GPUs are lacking in that regard.

Ideally, traversal libraries should be implemented as a set of reusable components that
can be instanciated in di�erent vectorization contexts. This would allow the CPU and GPU
implementation to be derived from the same code base, with minor changes specifying target-
speci�c details such as vector width or scheduling strategy.

This chapter presents an approach that allows for doing exactly this. Using AnyDSL [Lei+18],
a compiler framework for high-performance applications, we describe a set of BVH traversal
kernels that can be con�gured to a particular use case. Vectorization and GPU execution are
performed transparently, from the same code base, and traversal algorithms share most of their
logic. We start by presenting the common infrastructure, and then describe the traversal kernels
themselves.

2.2 Common Infrastructure

Since the data layouts for BVH traversal vary depending on the architecture—e.g. GPU [AL09]
or CPU [Wal+14]—and instruction set—e.g. AVX2 vs. SSE4.2 [Wal+14], it makes sense to
abstract the data types over which a traversal algorithm operates. In particular, the data type
representing a BVH should not enforce a particular arity, nor should it force a particular node

2.2. COMMON INFRASTRUCTURE 33

layout. In object-oriented languages, this could be achieved with an interface that speci�es a
behavior, and a set of implementations for this interface. However, in those languages, treating
the object as an interface means that the compiler loses information about the concrete type of
the object, and thus any call to a method will result in an expensive virtual function call. In
Impala, we can build a generic data type that does not su�er from this drawback, by creating
structures with function members. Take for instance the Bvh data type in our traversal kernels:

struct Bvh {
node: fn (i32) -> Node ,
prim: fn (i32) -> Prim ,
prefetch: fn (i32) -> (),
arity: i32

}

With this structure, a traversal algorithm can access a particular node or a primitive by its index,
and prefetch it if necessary. The arity member de�nes the number of children per node in
the BVH (wider BVHs are used for single-ray traversal algorithms, as explained in Section 2.3).
Note that each variable of type Bvh has its own �elds, and that thus the members node, prim,
prefetch and arity are not methods in the traditional sense.

Every concrete implementation of this abstract data type makes sure that calls to one of its
�elds are turned into regular function calls—not virtual function calls—using partial evaluation
annotations. In practice, this means that any function that returns (or takes as an argument) a
Bvh object has to be annotated with an @ sign, to force its inlining. This is not as restrictive as it
may seem, as such a function would have to be inlined anyway for performance: In a language
that supports higher-order functions, closures are generated if the function passed or returned
is not known at compile-time. Chapter 3 will discuss those annotations in more detail, and give
a general rule to decide where to place them.

Another example is the node structure returned by the node member of a BVH:

struct Node {
bbox: fn (i32) -> BBox ,
ordered_bbox: fn (i32 , RayOctant) -> BBox ,
child: fn (i32) -> i32

}

Each node has a bounding box, accessible with the bbox �eld. When traversing a single ray,
one possible optimization is to precompute the ray octant in order to minimize the number of
comparisons in the ray-box test. To allow this optimization, a node can also return a bounding
box with its near and far planes ordered according to a given octant via the ordered_bbox

function. Finally, each node has at least two children whose indices are given by the child

member. If this index is a negative number, it represents a leaf whose �rst primitive is located
at the absolute value of the index plus one (so that 0 is a valid inner node index). Otherwise, it
represents an inner node and points to the array of nodes of the associated Bvh.

Finally, one common aspect of all BVH traversal algorithms is that they eventually need
to intersect a ray with a primitive. However, primitives are often grouped by packets in
the BVH leaves. Therefore, we represent a primitive packet with the following structure:

34 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

struct Prim {
intersect: fn (i32 , Ray) -> Hit ,
is_valid: fn (i32) -> bool ,
is_last: bool ,
size: i32

}

To intersect a primitive contained in the packet prim, the programmer must provide the index of
the primitive in the packet, from 0 to size - 1, and a ray. The result of the intersection is a Hit

structure containing the distance along the ray, along with the surface coordinates. Since the
packet might not be full, it is possible to check if a primitive is valid or not by calling is_valid.
There can be several packets in a leaf, and the last one to be processed has the is_last member
set to true. If the implementation wishes to avoid using primitive packets, it is possible to set
the size to 1, and get the expected behavior.

With this common design, intersection routines and BVH data layouts can be exchanged
between traversal algorithms, at no performance cost, since the code will be specialized by the
partial evaluator of AnyDSL. Therefore, our BVH traversal implementations act as generators,
that take the description of a BVH data layout and a set of intersection routines as input, and
produces an optimized traversal algorithm as an output. The �exibility of this approach is
essential, since traversal algorithms may perform better or worse when paired with di�erent
data layouts and intersection routines (see Table 2.1 to see the impact of changing the BVH and
ray data layouts, for instance).

2.3 CPU Kernels

Most modern processors o�er a small vector instruction set, like SSE or AVX for x86 processors,
or NEON for ARM architectures. Traversal kernels optimized for CPUs take advantage of these
instructions by vectorizing intersection routines, and processing several rays or primitives
together. In this section, we look at three vectorization strategies: ray packet, single-ray, and
hybrid traversal.

2.3.1 Ray Packet Traversal

Ray packet BVH traversal is a form of speculative traversal: Several rays are traversed together,
and a node is pushed onto the stack if any ray in the packet intersects it. Consequently, this type
of algorithm performs better if the rays in the packet agree on the nodes to intersect, in which
case the rays are said to be coherent (see Section 1.1.6). In order to simplify the presentation,
we �rst discuss the implementation of a speculatively vectorized binary tree search, but as
we explain later, this can easily be generalized to packet traversal. The following listing is an
Impala implementation of this binary tree search, taking a tree and the element to search for,
and returning true if the element is found:

2.3. CPU KERNELS 35

fn traverse(stack: Stack , tree: Tree , elem: int) -> bool {
let mut found = false;
stack.push(tree.root)

while !stack.is_empty () && !all(found) {
let node = tree.node(stack.pop());

if elem == node.elem {
found = true;

}

if !node.is_leaf {
if any(elem < node.elem) {

stack.push(node.left)
}

if any(elem > node.elem) {
stack.push(node.right)

}
}

}

found
}

In a binary search tree, for an inner node, all the elements of the left subtree are smaller than the
current node, and all the elements of the right one are greater. The binary tree search algorithm
exploits this property to only process the nodes that can potentially contain the element that is
being searched for. This version of the algorithm is very similar: It pops the current node from
the stack, tests if the element we are looking for is contained in the node, and if not, pushes the
child of the current node that potentially contains the element on the stack. The only di�erence
is the presence of calls to any and all to inform the compiler that a condition should be reduced
over all lanes.

To trigger vectorization, the programmer has to place the call to traverse in a vectorized
region:
let elems = [0, 1, 2, 3];
let mut found = [false , false , false , false];
let tree = binary_tree ();
let stack = alloc_stack ();
for i in vectorize (4) {

found(i) = traverse(stack , tree , elems(i));
}

Let us now detail how RV [MH18] will determine the shapes of the variables in this example.
Initially, the vectorized loop counter i is marked as a�ne with an o�set of 0 and a stride of 1,
meaning that the lane k of i is equal to 0 + 1 × k: In other words, i is the vector [0, 1, 2, 3].
Additionally, the variables elems, found, tree, and stack are marked uniform (identical for all
lanes), because they are outside the vectorized region.

From this initial state, RV will infer that found(i) and elems(i) are varying, and that the
memory accesses are contiguous and aligned, because of the shape of i. With this, it follows that
for this call to traverse, the parameters stack and tree are uniform, and elem is varying. Inside
traverse, every call to a reduction intrinsic like any or all will be considered uniform. Therefore,
the calls to push will be uniform, as all lanes agree on when to push, and consequently, the

36 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

stack and traversal loop will remain uniform. only the variable found will be varying, because
of the conditional assignment highlighted in orange. Indeed, since the condition is varying, the
assignment to found is not executed by lanes for which the condition false.

By replacing elements to search in the tree by rays, and element comparisons by bounding
volume intersections, we obtain a packet traversal algorithm. This simple analogy does not
take into account the fact that BVH traversal order matters for performance, since we are often
interested in the closest intersection. To solve this problem, we can store the distance with the
packet of rays for each node in the stack. Then, a reasonable heuristic is to push a node under
the top of the stack if its distance is larger than the distance of the top node, for all lanes:
for i in range(0, bvh.arity) {

let (tentry , texit) = intersect_ray_box(packet , node.bbox(i));
let hit = tentry <= texit;
if any(hit) {

let distance = if hit { tentry } else { inf };
if all(stack.top().distance < distance) {

// This pushes the node under the top
stack.push_under(node.child(i), distance)

} else {
stack.push(node.child(i), distance)

}
}

}

Note that in this example, since the ray is varying, the entry and exit distances tentry and
texit are also varying. The algorithm must hence ensure that lanes for which the ray does not
hit the box get valid distance values using an if-expression.

As mentioned earlier, we do not have to annotate anything else than the vectorization region.
This means that any function, including intersection routines like intersect_ray_box, can have
its parameters vectorized di�erently without having to rewrite anything: It only depends on
the shapes of the arguments at the call site.

2.3.2 Single-ray Traversal

Instead of processing several rays together, single-ray traversal extracts parallelism from the
BVH itself. For this to work, the BVH must be made wider : Inner nodes must be large enough to
contain N children, where N is the number of vector lanes. Similarly, leaves of the tree contain
packets of N primitives, grouped together to make intersections faster.

The following listing intersects a single ray with multiple children of an inner node in a
BVH: Varying or uniform vector shapes are given in the comments to simplify the exposition:
for i in vectorize(bvh.width()) {

let (tentry , texit) = intersect_ray_box(/* uniform */ ray , /* varying */ node.bbox(i));
let hit = /* varying */ tentry <= texit;
let mask = /* uniform */ ballot(hit);
for j in one_bits(mask) {

stack.push(/* uniform */ node.child(j), /* uniform */ extract(tentry , j));
}

}

In this listing, a ray is intersected with several boxes at a time, and the ballot intrinsic is used
to get a mask indicating which children have been intersected. The one_bits function then

2.3. CPU KERNELS 37

iterates through the set bits in this mask, using bit manipulation instructions. This mechanism
is similar to foreach_active in ISPC.

Once the intersected children are pushed onto the stack, they need to be sorted according
to their distance, or rely on some precomputed traversal order. When opting for exact sorting,
the typical solution is to use a fast, in-register algorithm if the number of intersected children
is small, and resort to a slow algorithm like insertion sort in the general case. Instead of
implementing this logic manually, we rely on sorting networks, also known as comparator
networks. These networks take a �xed number of input values in any given order, and sort them
using a �xed sequence of compare-and-swap operations. Since the sequence of comparisons is
�xed, a sorting network may be less e�cient than other sorting algorithms like insertion sort
or merge sort. However, this is also an advantage because this allows the implementation of a
sorting network to operate only in registers, and avoid any costly branch.

In our traversal algorithm, we use both bitonic sort and the Bose-Nelson sorting algorithm
to generate sorting networks, depending on the BVH arity. We achieve this by giving every
sorting network the same type, a function that takes the number of elements to sort and a
function to perform the compare-and-swap operation:

type SortingNetwork = fn (i32 , fn (i32 , i32) -> ()) -> ();

Since every sorting network now has the same type, we can choose the appropriate sorting
network at compile-time in the traversal routine:

let sorting_network : SortingNetwork = match bvh.arity {
8 => bitonic_sort ,
_ => bose_nelson_sort

};

This particular choice of networks has been determined based on performance measurements.
The reason for this is that the performance of a sorting network is not only a function of its
size—the number of comparisons it contains, but it also depends on its depth—the number
of steps required to execute a network, assuming all non-con�icting comparisons can run in
parallel. In turn, these parameters impact the �nal run-time performance, depending on the
amount of Instruction-Level Parallelism that is exploited by the target machine, or the number
of registers. Even if an accurate model for this was available, it would still be required to know
how many registers a given compiler assigns to a sorting network and how the generated
machine instructions are scheduled, based on those two parameters alone, which is di�cult
to predict as the comparison function might do more than just comparing and swapping two
registers.

Sorting networks themselves are implemented so that they can be specialized for a particular
size, by forcing the inlining of functions when the range of elements to sort is known. We give
the Impala implementation of a specializable bitonic sort here, for instance:

38 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

fn @bitonic_sort(n: i32 , cmp_swap: fn (i32 , i32) -> ()) -> () {
fn @(?i & ?len) merge(i: i32 , len: i32 , dir: bool) -> () {

if len > 1 {
let m = 1 << (ilog2(len) - 1); // Greatest power of two lower than len
for j in unroll(i, i + len - m) {

cmp_swap(select(dir , j, j + m), select(dir , j + m, j));
}
merge(i, m, dir);
merge(i + m, len - m, dir);

}
}
fn @(?i & ?len) sort(i: i32 , len: i32 , dir: bool) -> () {

if len > 1 {
let m = len / 2;
sort(i, m, !dir);
sort(i + m, len - m, dir);
merge(i, len , dir);

}
}
sort(0, n, true)

}

A call to bitonic_sort(n, cmp_swap) will generate a sorting network optimized for n elements
and the given compare-and-swap function. It is important to note that writing similar code
with C++ templates would require to duplicate the implementation: In our case, the algorithm
works even if n is not known at compile-time, thanks to the �lters attached to merge and sort,
but a C++ implementation would have to choose whether n has to be a template or function
parameter.

With all this machinery, we can generate and specialize sorting networks for each possible
number of intersected children:

for n in unroll(0, bvh.arity + 1) {
if n == bvh.arity || n_intr == n {

sorting_network(n, @ |i, j| {
if stack.elem(i).distance <

stack.elem(j).distance {
stack.swap(i, j)

}
});
break ()

}
}

Since the number of intersected children n_intr is only known at run-time, it cannot be used to
specialize sorting networks. Instead, the call to unroll will create bvh.arity + 1 copies of the
loop body, each instanciated with a di�erent loop index n that is known at compile time. Thus,
this code generates several sorting networks with di�erent sizes, one for each possible case.
Essentially, this snippet is equivalent to a manually written sequence of if/else statements,
except it works with any BVH width.

A related problem arises when we intersect primitives: We only need the intersection with
the smallest distance along the ray. Hopefully, this does not require sorting, but only �nding
the minimum value in a vector. This can be implemented with a vector reduction, either in
hardware, if there is such an instruction, or emulated in software with a series of applications
of the reduction operator. Since both SSE and AVX do not o�er hardware support for �nding

2.3. CPU KERNELS 39

value = 1 5 7 3
shu�e(value, 2) = 7 3 1 5

min(value, shu�e(value, 2)) = 1 3 1 3

(a) First reduction step

value = 1 3 1 3
shu�e(value, 1) = 3 1 3 1

min(value, shu�e(value, 1)) = 1 1 1 1

(b) Second reduction step

Figure 2.2: Finding the minimum of a vector using a logarithmic vector reduction.

the minimum value among the vector lanes of a register, we have to rely on software emulation.
In Impala, a generic reduction operator can be implemented like this:
fn @reduce(width: i32 , value: f32 , op: fn (f32 , f32) -> f32) -> f32 {

fn @(? width) reduce_inner(width: i32 , value: f32 , op: fn (f32 , f32) -> f32) -> f32
{

if width >= 2 {
let shift = width / 2;
let res = op(value , shuffle(value , shift));
reduce_inner(shift , res , op)

} else {
value

}
}
extract(reduce_inner(width , value , op), 0)

}

This function works by shifting the lanes of a vector by half the vector width, and applying the
reduction operator on the result of the shift and the original vector, and repeating the operation
until the vector width is just one. Because of the �lters attached to reduce and reduce_inner, no
recursive call will remain in the program after partial evaluation if the vector width is known,
which is the case in our setting. The diagram in Figure 2.2 illustrates a reduction to �nd the
minimum value of a vector register.

The astute reader will notice that the vectorization analysis of RV marks the result of a call
to reduce_inner as varying. Indeed, if value is a vector, then the result of the if must also be a
vector. This is unfortunate, as we know by de�nition of a reduction that the result should be
uniform. RV cannot prove this property, because the return value is uniform only after the last
recursive call: A compiler wanting to infer this would have to execute the function! We solve
this problem simply by calling extract in the wrapper function reduce.

2.3.3 Hybrid Traversal

Hybrid traversal switches between ray packet and single-ray traversal depending on SIMD
utilization, and is therefore an adaptive algorithm: Its performance does not degrade as much as
ray packet traversal for incoherent rays, but it can still take advantage of ray coherence, when
present. The algorithm starts by traversing the BVH with a ray packet, and checks, for every
traversal step, that the number of rays intersecting the current node is above some threshold.
When the threshold is reached, the algorithm switches to single-ray traversal for each active
ray in the packet. A sketch of the algorithm is given below:

40 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

for i in vectorize(packet_size) {
// Packet traversal loop
/* ... */
while !stack.is_empty () {

// Test SIMD utilization
let mask = ballot(active);
if popcount(mask) < switch_threshold {

for lane in one_bits(mask) {
// Vectorize using a different vector width
let ray = extract(packet , lane);
for j in vectorize(bvh.arity) {

// Single -ray traversal
/* ... */

}
}

} else {
// Continue with packet traversal
/* ... */

}
}

}

In this sample code, there are two calls to vectorize: One is outside the packet traversal loop,
and the other is inside. This form of nested vectorization, where the vector width can be
changed from inside a vectorized region, is something that other vectorization frameworks, like
ispc [PM12] or Sierra [LHH14], cannot do naturally. ispc would require separate compilation
of the packet and single-ray traversal, and Sierra would require the programmer to manually
annotate types everywhere in order to make the switch possible.

On a machine with the AVX2 instruction set, we derived experimentally the best threshold
for every combination of packet size and BVH arity:

let switch_threshold = match packet_size {
4 => 3,
8 => if bvh.arity == 4 { 4 } else { 6 },
_ => packet_size / 2 // default case , not possible on AVX2

};

Note that these values might not be optimal for a di�erent machine, since they depend on many
factors, including the speed of the vector units, or the cache hit ratio and memory performance
of each individual part of the algorithm. Nonetheless, it seems reasonable to expect that, for
other machines, these values are not too far o� from the optimum, since they are in fact very
close or even identical to those used in Embree, even though they were derived independently.

Finally, note that the packet traversal part of the hybrid algorithm should operate on the
same (wide) BVH as the single-ray part: This prevents cache pollution resulting from switching
data structures [Ben+12]. In fact, in our implementation, we apply other memory-aware
optimizations to maximize performance. More speci�cally, we tune the node or triangle data
layout [DHK08] so that the size of a node or primitive is a multiple of the cache line size. For
instance, the size of our 4-wide BVH node is 128 bytes, which is the same size as two cache lines
on most CPUs: In that case, prefetching a 4-wide node can be done with exactly two prefetching
instructions. Prefetching itself is only used in the single-ray variant, and there, the traversal
rountine just calls the prefetch member of the node right after the ray-box test, in order to
prefetch the children that were intersected.

2.4. GPU KERNELS 41

2.4 GPU Kernels

Traversal kernels for GPUs do not require explicit vectorization: SIMD processors automatically
take care of masking. Instead, other aspects will drive the performance of the traversal algorithm,
like the traversal loop shape, or the use of texture memory [AL09]. Therefore, we use Aila and
Laine’s while-while loop layout [AL09], and read every node and triangle from the read-only
texture cache. For this reason, and because the CUDA compiler and the NVPTX backend in
LLVM are both extremely sensitive to the input program, we found that it was easier to design
another traversal loop, instead of sharing the same one with the CPU traversal variants. Most
importantly, we can still reuse the rest of the infrastructure, including intersection routines or
sorting networks. Only the traversal loop, which amounts to around 60 lines of code, di�ers
between implementations.

Another improvement is to use the PTX video instructions vmin and vmax to speed up the
ray-box test on NVIDIA hardware [ALK12]. Those instructions allow to perform two minimum
or maximum operations together, and can therefore be employed in the ray-box test of the
traversal code. The ray-box intersection function supports this feature by taking user-speci�ed
comparison functions as arguments:

struct MinMax {
fmaxmaxf: fn (f32 , f32 , f32) -> f32 ,
fminminf: fn (f32 , f32 , f32) -> f32 ,
fminmaxf: fn (f32 , f32 , f32) -> f32 ,
fmaxminf: fn (f32 , f32 , f32) -> f32 ,
fmaxf: fn (f32 , f32) -> f32 ,
fminf: fn (f32 , f32) -> f32

}

This structure contains enough information to encode the classical ray-box slabs test [KK86],
and the three-operand minimum and maximum functions can be implemented with vmin or
vmax instructions on hardware that supports them.

The kernels are generated using either cuda or amdgpu, depending on the target machine,
and we launch the traversal kernel with a 1-dimensional grid large enough to hold all rays:
let accelerator = match gpu_type {

GpuType ::AMD => amdgpu ,
GpuType :: NVIDIA => cuda

};

let grid = (round_up(num_rays , block_width), 1, 1);
let block = (block_width , 1, 1);

for work_item in accelerator(device , grid , block) {
let i = work_item.gidx();
if i >= num_rays { continue () }

hits(i) = traverse(rays(i), bvh);
}

In this example, rays and hits are loaded from memory, but it is also possible to generate them
on the �y inside the kernel itself. The device variable holds the index of the target device.
The block_width variable is used to specify the width of each block in the grid. Finding the
optimal block width usually depends on the type of workload and the limitations of the kernel.

42 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

(a) Sponza (262K tris.) (b) Crown (3.5M tris.) (c) San Miguel (6.5M tris.) (d) Powerplant (12.8M tris)

Figure 2.3: Scenes used in our comparison.

In practice, we used a pro�ler to determine the optimal value for each traversal variant.

2.5 Results

In this section, we compare the performance and complexity of the traversal kernels presented
above with hand-tuned implementations by hardware vendors.

2.5.1 Performance

Performance on x86-64 with AVX2

We present the evaluation of our traversal kernels on an Intel Skylake i7 6700K CPU with AVX2
in Table 2.1. As a reference, we use Embree 2.7.15, a manually optimized ray-tracing library
by Intel written in C++. Both our kernels and Embree’s use the same BVHs, obtained by using
Embree’s own high-quality BVH builder. We do not provide any number for packet tracing
with Embree since it does not expose this variant. For a fair comparison, Embree is compiled
with clang 7.0.1, which is based on the same LLVM version as the one used in the backend of
Impala. The ray distributions used in this test come from a real renderer, but we only evaluate
raw traversal times in these benchmarks, and exclude any shading. We stress di�erent aspects
of the traversal routines: As mentioned before, packet tracing is more e�cient with primary
rays than incoherent rays, for instance. Additionally, the test scenes (Figure 2.3) have di�erent
geometric complexity, and range from 262K to 13M triangles.

Overall, except for a few outliers, the performance of our traversal routines is always
between −20% and +10% of Embree’s. Considering that Embree is written with architecture-
speci�c intrinsics, and has been optimized over the course of several years, this result shows
that the vectorization features of Impala are competitive and can get really close to the gold
standard.

The performance di�erences and the irregularities of the results observed in this evaluation
are mostly due to the quality of the machine code generated by LLVM. One of the main reasons
for this is that LLVM 7.0.1 generates lower quality assembly when the source code does not
contain SIMD intrinsics: In particular, the register allocation and instruction schedule are often
sub-par. In Figure 2.4, we give the assembly generated for the ray-box test of our kernels and
Embree. The number of register spills and reloads and the overall instruction schedule is much
worse in the assembly generated for our kernels than it is for Embree, except for the ray-packet

2.5. RESULTS 43

BVH4
Primary AO Di�use

Scene Fig. Ours Embree Ours Embree Ours Embree

Sponza (2.3a)
Single 2.88 (-7%) 3.11 5.56 (-13%) 6.42 1.60 (-14%) 1.86
Packet 7.72 – 17.14 – 1.39 –
Hybrid 6.93 (-0%) 6.94 16.15 (+7%) 15.03 1.63 (-10%) 1.82

Crown (2.3b)
Single 9.87 (-14%) 11.52 5.82 (-16%) 6.93 3.03 (-18%) 3.71
Packet 22.24 – 7.46 – 2.79 –
Hybrid 20.61 (+11%) 18.57 8.19 (-10%) 9.12 3.34 (-14%) 3.88

San-Miguel (2.3c)
Single 2.17 (-21%) 2.74 3.01 (-23%) 3.93 1.08 (-23%) 1.41
Packet 4.90 – 2.81 – 0.88 –
Hybrid 4.41 (-2%) 4.51 3.31 (-18%) 4.05 1.03 (-24%) 1.37

Powerplant (2.3d)
Single 4.77 (-21%) 6.03 9.10 (-16%) 10.78 2.05 (-18%) 2.50
Packet 10.80 – 25.39 – 1.65 –
Hybrid 9.75 (+0%) 9.75 22.86 (+10%) 20.74 1.98 (-20%) 2.49

BVH8
Primary AO Di�use

Scene Fig. Ours Embree Ours Embree Ours Embree

Sponza (2.3a)
Single 3.95 (-6%) 4.19 7.75 (-6%) 8.25 2.08 (-9%) 2.29
Packet 8.28 – 16.58 – 1.48 –
Hybrid 7.13 (+1%) 7.08 16.03 (+9%) 14.70 1.98 (-8%) 2.14

Crown (2.3b)
Single 12.08 (-7%) 13.06 7.37 (-10%) 8.22 3.68 (-16%) 4.40
Packet 22.34 – 7.83 – 2.92 –
Hybrid 19.81 (+11%) 17.80 8.78 (-7%) 9.47 3.76 (-12%) 4.27

San-Miguel (2.3c)
Single 2.82 (-15%) 3.31 3.87 (-19%) 4.79 1.34 (-20%) 1.67
Packet 4.36 – 3.00 – 0.90 –
Hybrid 3.83 (-3%) 3.97 3.69 (-23%) 4.78 1.17 (-26%) 1.59

Powerplant (2.3d)
Single 6.03 (-6%) 6.43 12.76 (-5%) 13.48 2.56 (-14%) 2.99
Packet 9.91 – 23.98 – 1.77 –
Hybrid 8.67 (+3%) 8.44 21.71 (+11%) 19.61 2.36 (-14%) 2.76

Table 2.1: Performance of every variant of our traversal kernels for two BVH branching factors
compared with Embree, in Mrays/s (higher is better), measured on a Skylake i7 6700K. Speed-
ups (slow-downs) with respect to Embree are indicated in parentheses. A dash (–) indicates
that a traversal variant is not available in Embree. We perform 5 warm-up iterations and
report the average of 20 runs. Primary rays start from the camera, AO rays compute Ambient
Occlusion [Mil94], and Di�use rays compute purely di�use re�ections.

44 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

intersection code, where our assembly appears mostly similar to that of Embree, or even slightly
better. This explains why our single-ray variant is slower than Embree’s in every case, and
why our hybrid variant is most of the times marginally faster than Embree’s for coherent rays:
Remember that the hybrid variant is made of the packet and single ray traversal routines, and
switches between the two based on SIMD e�ciency. When rays are coherent, SIMD e�ciency
stays high and the traversal does not switch to single rays, so the results showcase mostly the
performance of the packet traversal part, hence the overall good results in that scenario. The
reverse observation can be made for fully incoherent rays, where our hybrid kernel performs
the worst compared to Embree: There, the results are mostly due to the performance of the
single-ray traversal part. For ambient occlusion [Mil94] rays, there is a mixed picture where our
hybrid kernel performs better on some scenes (Sponza and Powerplant) than on others. This
can be explained by the fact that ambient occlusion rays are more or less coherent depending
on the scene and point of view [AL09].

Performance on ARMv8-A

Our routines can also be compiled for ARM CPUs with vector units. We list the performance of
our routines on the CPU of the Jetson TX1 board in Table 2.2. This CPU is a Cortex A-57 with the
NEON instruction set, which introduces 128-bit vector registers that can hold 4 single-precision
�oating point numbers. In that sense, this instruction set is similar to SSE for x86-64, except
that it has 32 registers to work with, instead of 16 on x86-64. Additionally, like VEX-encoded
SSE or AVX instructions, NEON instructions can have three operands.

Since, at the time of writing, there was no reference high-performance ray-tracing library
on ARM, we compare the performance of the vectorized packet kernel against the scalar (non-
vectorized) one. As side note, we obtain the scalar version simply by setting the vector with to
1 in the packet kernel. Due to the lack of instruction to perform a call to ballot, and because
emulating this behavior with a sequence of instructions is too expensive, we do not list the
performance of the hybrid or single-ray kernels.

The performance of the packet traversal is at its peak for coherent rays, including ambient
occlusion rays, for which coherence is still present although usually lower than for primary
rays. However, for completely incoherent rays generated by di�use bounces, performance drops
to the level of the scalar traversal, as expected.

Performance on NVIDIA GPUs

We evaluated the performance of our kernel on an NVIDIA GPU, and compared it with the state-
of-the-art traversal kernel from Aila et al. [ALK12]. We present the results of our benchmarks on
a GTX Titan X (Maxwell) GPU in Table 2.3. Overall, the performance of our kernel is between
−10% and +14% of the reference. Since we chose to implement the same single-ray traversal
algorithm as the one used in the reference traversal routine [ALK12], there is not much of a
lesson to learn here: The di�erent performance is not due to fundamental algorithmic reasons,
or a di�erent data layout, but is rather an artefact of the di�erent compiler stacks used—nvcc
for the reference, and the NVPTX backend of LLVM for our kernels. However, it is important
to point out that we can reach the same level of performance with high-level, generic code,

2.5. RESULTS 45

vmovaps 64(%rcx ,%r11), %ymm1
vfmadd132ps %ymm5 , %ymm4 , %ymm1
vmovaps 64(%rcx ,%rbx), %ymm2
vfmadd132ps %ymm6 , %ymm9 , %ymm2
vpmaxsd %ymm2 , %ymm1 , %ymm1
vmovaps 64(%rcx ,%r10), %ymm2
vfmadd132ps %ymm7 , %ymm10 , %ymm2
vpmaxsd %ymm2 , %ymm8 , %ymm2
vpmaxsd %ymm2 , %ymm1 , %ymm1
vmovaps 64(%rcx ,%r15), %ymm2
vfmadd132ps %ymm5 , %ymm4 , %ymm2
vmovaps 64(%rcx ,%r13), %ymm3
vfmadd132ps %ymm6 , %ymm9 , %ymm3
vpminsd %ymm3 , %ymm2 , %ymm2
vmovaps 64(%rcx ,%r14), %ymm3
vfmadd132ps %ymm7 , %ymm10 , %ymm3
vpminsd %ymm3 , %ymm0 , %ymm3
vpminsd %ymm3 , %ymm2 , %ymm2
vpcmpgtd %ymm2 , %ymm1 , %ymm2
vmovmskps %ymm2 , %esi
xorl $255 , %esi
vmovdqa %ymm1 , 320(% rsp)
je .LBB98_76

(a) Embree, single-ray vs. multiple boxes

movslq %r12d , %rbx
addq $-1, %rbx
movslq %r15d , %r15
movl 488(%rsp ,%r15 ,4), %eax
addl $-1, %r15d
shlq $8, %rbx
addq %r9, %rbx
vmovaps (%rbx ,%rdx ,4), %ymm0
vfmadd213ps %ymm8 , %ymm13 , %ymm0
vmovaps (%rbx ,%r8 ,4), %ymm1
vfmadd213ps %ymm8 , %ymm13 , %ymm1
vmovaps (%rbx ,%r10 ,4), %ymm2
vfmadd213ps %ymm9 , %ymm14 , %ymm2
vpminsd %ymm2 , %ymm0 , %ymm0
vmovaps (%rbx ,%r11 ,4), %ymm2
vfmadd213ps %ymm9 , %ymm14 , %ymm2
vpmaxsd %ymm1 , %ymm2 , %ymm1
vmovaps (%rbx ,%rcx ,4), %ymm2
vfmadd213ps %ymm10 , %ymm15 , %ymm2
vpmaxsd %ymm2 , %ymm4 , %ymm2
vpmaxsd %ymm1 , %ymm2 , %ymm5
vmovaps (%rbx ,%rdi ,4), %ymm1
vfmadd213ps %ymm10 , %ymm15 , %ymm1
vpminsd %ymm12 , %ymm1 , %ymm1
vpminsd %ymm1 , %ymm0 , %ymm0
vpcmpgtd %ymm0 , %ymm5 , %ymm0
vmovmskps %ymm0 , %esi
xorl $255 , %esi
je .LBB13_101

(b) Our kernel, single-ray vs. multiple boxes

vbroadcastss 64(%r12 ,%rbx ,4), %ymm2
vmovaps 1088(% rsp), %ymm0
vmovaps 1120(% rsp), %ymm3
vmovaps 1152(% rsp), %ymm4
vmovaps 1184(% rsp), %ymm5
vfmsub213ps %ymm5 , %ymm0 , %ymm2
vbroadcastss 128(%r12 ,%rbx ,4), %ymm6
vmovaps 1216(% rsp), %ymm7
vfmsub213ps %ymm7 , %ymm3 , %ymm6
vbroadcastss 192(%r12 ,%rbx ,4), %ymm8
vmovaps 1248(% rsp), %ymm9
vfmsub213ps %ymm9 , %ymm4 , %ymm8
vbroadcastss 96(%r12 ,%rbx ,4), %ymm10
vfmsub213ps %ymm5 , %ymm0 , %ymm10
vbroadcastss 160(%r12 ,%rbx ,4), %ymm5
vfmsub213ps %ymm7 , %ymm3 , %ymm5
vbroadcastss 224(%r12 ,%rbx ,4), %ymm3
vfmsub213ps %ymm9 , %ymm4 , %ymm3
vpminsd %ymm10 , %ymm2 , %ymm0
vpminsd %ymm5 , %ymm6 , %ymm4
vpmaxsd %ymm4 , %ymm0 , %ymm0
vpminsd %ymm3 , %ymm8 , %ymm4
vpmaxsd %ymm4 , %ymm0 , %ymm0
vpmaxsd %ymm10 , %ymm2 , %ymm2
vpmaxsd %ymm5 , %ymm6 , %ymm4
vpminsd %ymm4 , %ymm2 , %ymm2
vpmaxsd %ymm3 , %ymm8 , %ymm3
vpminsd %ymm3 , %ymm2 , %ymm2
vpmaxsd 1376(% rsp), %ymm0 , %ymm3
vpminsd 1408(% rsp), %ymm2 , %ymm2
vcmpleps %ymm2 , %ymm3 , %ymm2
vtestps %ymm2 , %ymm2
je .LBB1_41

(c) Embree, ray packet vs. single box

vbroadcastss (%r9 ,%rcx), %ymm0
vfmsub213ps %ymm15 , %ymm10 , %ymm0
vbroadcastss 64(%r9 ,%rcx), %ymm3
vmovaps 416(% rsp), %ymm7
vfmsub213ps %ymm7 , %ymm11 , %ymm3
vbroadcastss 128(%r9 ,%rcx), %ymm4
vmovaps 448(% rsp), %ymm12
vfmsub213ps %ymm12 , %ymm14 , %ymm4
vbroadcastss 32(%r9 ,%rcx), %ymm5
vfmsub213ps %ymm15 , %ymm10 , %ymm5
vbroadcastss 96(%r9 ,%rcx), %ymm6
vfmsub213ps %ymm7 , %ymm11 , %ymm6
vbroadcastss 160(%r9 ,%rcx), %ymm7
vpmaxsd %ymm0 , %ymm5 , %ymm8
vpminsd %ymm5 , %ymm0 , %ymm0
vfmsub213ps %ymm12 , %ymm14 , %ymm7
vpmaxsd %ymm3 , %ymm6 , %ymm5
vpminsd %ymm5 , %ymm8 , %ymm5
vpminsd %ymm6 , %ymm3 , %ymm3
vpmaxsd %ymm0 , %ymm3 , %ymm0
vpmaxsd %ymm4 , %ymm7 , %ymm3
vpminsd %ymm7 , %ymm4 , %ymm4
vpminsd %ymm1 , %ymm3 , %ymm3
vpminsd %ymm3 , %ymm5 , %ymm3
vpmaxsd %ymm4 , %ymm2 , %ymm4
vpmaxsd %ymm0 , %ymm4 , %ymm0
vpcmpgtd %ymm3 , %ymm0 , %ymm3
vmovmskps %ymm3 , %ebx
cmpl $255 , %ebx
jne .LBB13_33

(d) Our kernel, ray packet vs. single box

Figure 2.4: Assembly generated by clang/LLVM 7.0.1 for the two ray-box intersection rou-
tines (single-ray/packet) of the hybrid ray-tracing algorithm in Embree (2.4a, 2.4c) and our
implementation (2.4b, 2.4d).

46 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

BVH4
Scene Fig. Primary AO Di�use

Sponza (2.3a) Scalar 0.22 0.44 0.19
Packet 0.60 (+165%) 1.15 (+162%) 0.21 (+10%)

Crown (2.3b) Scalar 1.05 0.66 0.38
Packet 2.08 (+98%) 0.85 (+28%) 0.42 (+9%)

San-Miguel (2.3c) Scalar 0.18 0.38 0.16
Packet 0.45 (+152%) 0.42 (+10%) 0.16 (+6%)

Powerplant (2.3d) Scalar 0.45 0.72 0.24
Packet 0.98 (+116%) 1.95 (+169%) 0.24 (+1%)

Table 2.2: Performance of a scalar (without vectorization) traversal kernel and a packet trac-
ing kernel generated from our traversal code, in Mrays/s (higher is better), measured on a
Cortex-A57 CPU. Speed-ups (slow-downs) with respect to the scalar traversal are indicated in
parentheses. We perform 5 warm-up iterations and report the average of 20 runs. Primary rays
start from the camera, AO rays compute Ambient Occlusion [Mil94], and Di�use rays compute
purely di�use re�ections.

whereas the reference often relies on non-portable constructs like inline PTX assembly and
CUDA intrinsics.

Performance on AMD GPUs

We measured performance of our GPU kernel on an AMD R9 Nano, using the AMDGPU backend
of Impala. Since there is no reference traversal library for this GPU, we can only provide absolute
numbers. The results of this evaluation are listed in Table 2.4.

For primary rays, the performance of the traversal routine on this GPU is consistently
between −20% and −28% of its performance on the GTX Titan X. With ambient occlusion rays,
the performance comparably improves and is between −11% and −22%. Finally, on di�use
rays, the performance varies wildly, sometimes better (+25% on San-Miguel), worse (−23% on
Powerplant), or even similar (−4% on Sponza).

In general, comparing these two GPUs is di�cult, since their hardware architecture is
di�erent: The R9 Nano has wavefronts containing 64 work items, and uses HBM memory,
while the GTX Titan X has warps made of 32 threads, and uses GDDR5 memory. Moreover, the
software stack used in both cases is also not directly comparable: CUDA has established itself
since 2007 as a platform to program NVIDIA GPUs, but ROCm, the software stack of AMD that
we run our traversal kernels on, was only released in 2016. However, the numbers obtained in
this evaluation are in line with benchmarks of these two GPUs: Folding@home, for instance,
also shows a similar −20% di�erence between the two GPUs [Smi15b; Smi15a].

2.5. RESULTS 47

BVH2
Primary AO Di�use

Scene Ours Aila et al. Ours Aila et al. Ours Aila et al.
Sponza 373.10 (+3%) 363.22 1031.68 (+6%) 975.01 146.28 (+2%) 143.59
Crown 788.19 (-3%) 816.36 372.40 (-7%) 401.61 157.34 (-4%) 164.53
San-Miguel 194.70 (-5%) 204.34 149.80 (-2%) 153.25 67.61 (+14%) 59.08
Powerplant 473.34 (-10%) 525.02 1086.86 (-2%) 1112.64 130.62 (-8%) 142.31

Table 2.3: Performance of the GPU traversal kernel on a NVIDIA GTX Titan X (Maxwell)
GPU, in Mray/s (higher is better). Speed-ups (slow-downs) with respect to the traversal kernel
of Aila et al. [AL09] are indicated in parentheses. We perform 100 warm-up iterations and
report the average of 500 runs. Primary rays start from the camera, AO rays compute Ambient
Occlusion [Mil94], and Di�use rays compute purely di�use re�ections.

BVH2
Scene Primary AO Di�use
Sponza 297.27 903.33 137.39
Crown 599.86 289.89 136.37
San-Miguel 146.53 133.80 74.69
Powerplant 342.19 923.91 109.48

Table 2.4: Performance of the GPU traversal kernel on an AMD R9 Nano GPU, in Mray/s (higher
is better). We perform 100 warm-up iterations and report the average of 500 runs. Primary rays
start from the camera, AO rays compute Ambient Occlusion, and Di�use rays compute purely
di�use re�ections.

48 CHAPTER 2. GENERATING BVH TRAVERSAL KERNELS

2.5.2 Implementation E�ort

Since Embree provides more features than our library, a direct comparison with its code base is
out of the question. However, it is clear that using SIMD intrinsics to vectorize code—either
directly or by wrapping them inside structures—is not a practical way of vectorizing algorithms.
In Embree, almost all intersection routines are duplicated at least twice: once for packets of rays,
and a second time for single rays. Interestingly, the packet and single-ray implementations of
each routine are mostly identical, except of course for the type of the rays. These routines alone
represent 22% of the total number of lines of code in the whole library. Using the approach
presented here, we could halve this number of lines of code.

Compared to existing auto-vectorization approaches, we can nest calls to vectorize: By
doing so, we can easily change the vector width during execution. In ispc , this would require
separate compilation and code duplication to enforce proper type signatures for variables and
functions. Using Sierra, a programmer would have to use templates specifying the vector length
and varying-ness of every function parameter. This is a direct consequence of the fact that
in these frameworks, vector information is contained in the types, while Impala infers this
information automatically.

Additionally, every variant of our CPU and GPU kernels share most of their code, except for
the traversal loop. This means fewer bugs and less maintenance e�ort, but also allows porting
the code to another platform easily. For instance, the source code provided by Aila et al. only
works for NVIDIA GPUs, whereas our code can also run on AMD GPUs without any change.

In conclusion, our kernels are con�gurable, e�cient, and performance portable. It is worth
clarifying that the last point is not provided by frameworks like OpenCL. While it is true that
code written using OpenCL is portable—provided the OpenCL driver follows the standard, the
performance of an OpenCL kernel is not guaranteed to be similar across di�erent machines.
In fact, vendors often advocate completely di�erent ways of writing high-performance ker-
nels [Car18; AMD15]. Frameworks such as SYCL or Thrust that are built on top of OpenCL
or CUDA are not the solution either, as they inherit all the problems of the underlying solu-
tion, mainly the lack of portability (if the SYCL implementation is not standard-compliant), or
performance portability. Moreover, all these systems fail to provide a uni�ed way to represent
programs for any architecture: Software has to be written with one system or target architecture
in mind, and it is di�cult to predict its performance on any other platform, if it runs there at all.
For that reason, designing a fully portable, high-performance renderer with those frameworks
is an arduous task. As we show in the next chapter, AnyDSL is a compelling alternative for
this, as it provides a common infrastructure to program di�erent types of hardware, and apply
domain- or hardware-speci�c optimizations with partial evaluation, triggered code generation,
and vectorization.

Chapter 3

Generating Renderers

This chapter elaborates on the core idea of this thesis: generating renderers. It is mostly
based on previously published work [Pér+19], and has been adapted and extended to better
�t the format of this thesis. In the traversal kernels described in the previous chapter, partial
evaluation was rarely used, except perhaps to generate sorting networks or to force the inlining
of speci�c functions. Here, we will show how to use partial evaluation to generate an entire
renderer. While this idea may sound surprising, it is in fact a very logical evolution of the current
trends in renderer design: More and more renderers incorporate compilers for their shading
systems, sometimes using existing frameworks [18b; 18a]. Such frameworks typically include
optimizations that specialize shaders at run-time, removing redundant computations whenever
possible. In our setting, we apply this technique to the entire renderer: We compile, optimize
and specialize everything using as much of the (available) knowledge of the scene as possible.

3.1 Motivation

Rendering systems have never been more complex: Commercial renderers o�er a huge set of
features, all designed to improve the artist’s creativity. This complexity is often getting in the
way of performance, since the renderer has to test which features are enabled, and must contain
code paths to handle each case, losing performance on the way. Hopefully, this problem can
be solved for shaders: Specialization can be applied at run-time to generate a more e�cient
version of the shader in which unnecessary tests are elided [GKR95; MQP02; Son+14].

Naturally, shaders are not the only place where specialization can bene�t performance. In
fact, we argue here that the entire renderer can bene�t from the knowledge of the scene. For
instance, optimizing interfaces between rendering modules is essential: Knowing which mesh
or vertex attributes are used, the size of each shader, or the total number of shaders in the scene
will allow the renderer to make intelligent decisions for scheduling of di�erent parts of the
renderer, like shader fusion.

In order to specialize an entire renderer, we build a library of functions that describe
the scene, following similar high-level APIs for rendering [SS95; DH02]. Thanks to partial
evaluation, we have the same freedom and expressivity as any other functional language, at
no cost: By placing annotations on constructors and the functions they return, closures are

49

50 CHAPTER 3. GENERATING RENDERERS

guaranteed to be removed, along with any overhead. Because we separate the rendering code
from the low-level aspects, we can repurpose the same algorithm on di�erent machines, and
with di�erent parallelization strategies.

3.2 Rendering Library

Rodent, our rendering library, is a collection of interfaces with accompanying implementations,
which we will just refer to as abstractions. The design of the API is in�uenced by domain-speci�c
languages like Halide [Rag+13], or GraphIt [Zha+18], where the algorithm—what is computed—
is decoupled from its execution—how it is computed. This is achieved by making interfaces
generic enough to express di�erent behaviors, in a very similar way to the various BVH-related
data types introduced in the previous chapter. Additionally, the user of the library does not
need to know how any of those abstractions work: Once combined into a scene description,
they will be automatically specialized by the partial evaluator, following the annotations inside
the library itself.

For clarity, this presentation only covers Path Tracing with MIS, but more complex al-
gorithms can be implemented in the same way. We list abstractions by order of increasing
complexity, separating rendering-related ones (Section 3.2.1 through Section 3.2.6), from those
de�ning execution on the target hardware (Section 3.2.7).

3.2.1 Images and Textures

Let us �rst describe the ideas that underpin the design of this library by giving the example of
textures and images. In Rodent, images are de�ned as a two-dimensional discrete collection of
pixels:
struct Image {

pixels: fn (i32 , i32) -> Color ,
width: i32 ,
height: i32 ,

}

An important detail of this data type is that no particular layout is enforced on the image pixels.
In fact, this image could even be procedural, as the pixels �eld is just a regular function, that
can either return pixel data from memory, or compute some color based on the pixel coordinates.

Then, we can de�ne an image �lter as a function that maps an image and a position in the
unit square [0, 1]2 to a color:
type ImageFilter = fn (Image , Vec2) -> Color;

Note how the following constructor yields a nearest neighbor �lter:
fn @make_nearest_filter () -> ImageFilter {

@ |img , uv| {
let x = min((uv.x * img.width as f32) as i32 , img.width -1);
let y = min((uv.y * img.height as f32) as i32 , img.height -1);
img.pixels(x, y)

}
}

3.2. RENDERING LIBRARY 51

The placement of partial evaluation annotations (introduced with @) is worth a couple of
notes. Recall that our goal is to ensure performance, which in this case involves two things:
avoiding closures, and allowing caller-callee optimizations. Closures have to be avoided since
they require dynamic memory allocations for the captured environment. Unfortunately for
us, returning a function from another function requires a closure. We avoid this by placing
an annotation on make_nearest_filter that forces inlining: This is logical, after all, since
constructors usually create objects and do not perform large computations—particularly in this
example, where it just returns a function. Note that closures will also be generated for functions
that capture variables from their environment, but this does not happen in our example. Finally,
a good practice is to force inlining of small functions or functions that take other functions
as arguments: This will allow caller-callee optimizations, which can be extremely bene�cial.
Consider the case where img is a constant color:
let black_img = Image {

pixels: |_, _| black , // always black , regardless of position
width: 1024,
height: 1024

};

Because we annotated the anonymous function returned by make_nearest_filter, the img

parameter is known inside the �lter. Thus, when we call the �lter with black_img as an
argument, bounds check will be eliminated since the compiler will determine that x and y

are not used in img.pixels. In Rodent, we follow this strategy to the letter: We annotate
constructors and the functions they return with a force-inline (@) annotation.

There is an analogy to be made between this API design and object-oriented approaches: In
an object-oriented language, a �lter would be represented as an ImageFilter interface, and a
nearest �lter would be a class that derives from ImageFilter. In our library, returning a function
is similar to creating an object that contains a vtable. The notable di�erence with object-oriented
languages is that we give the compiler enough information to remove calls to functions, instead
of relying on heuristics and devirtualization.

In Rodent, we de�ne a border handling mode with a pair of functions that bring back texture
coordinates into the unit square:
struct BorderHandling {

horz: fn (f32) -> f32 ,
vert: fn (f32) -> f32 ,

}

We apply the horz border mode for the �rst texture coordinate and vert for the second one. For
example, the following constructor yields a clamping border handling mode:
fn @make_clamp_border () -> BorderHandling {

let clamp = @ |x| min (1.0f, max (0.0f, x));
BorderHandling {

horz: clamp ,
vert: clamp

}
}

Rodent de�nes textures as a mapping from 2D points to colors:
type Texture = fn (Vec2) -> Color;

52 CHAPTER 3. GENERATING RENDERERS

From an Image, an ImageFilter and a BorderHandling object, we can build a texture:
fn @make_texture(border: BorderHandling

, filter: ImageFilter
, image: Image
) -> Texture {

@ |uv| {
let (u, v) = (border.horz(uv.x), border.vert(uv.y));
filter(image , make_vec2(u, v))

}
}

Application developers de�ne textures by calling this constructor with the desired border
handling mode and �lter:
let tex = make_texture(make_repeat_border (), make_bilinear_filter (), image);

Evaluating the color for a particular texture coordinate is just a matter of invoking the texture
function:
let color = tex(make_vec2 (0.5f, 0.7f));

Because Rodent de�nes textures as ordinary functions, we can also implement procedural
textures:
fn @make_checkerboard_texture () -> Texture {

@ |uv| {
let (x, y) = (uv.x as i32 , uv.y as i32);
if (x + y) % 2 == 0 { white } else { black }

}
}

3.2.2 Materials and BSDFs

Recall the rendering equation from Section 1.1.1:

Lo(x, !o) = Le(x, !o) + ∫
Ω
Li(x, !i)f (!i , x, !o) cos(�i) d!i

This equation de�nes how light is scattered on a surface point x in the direction !o . The BSDF f
controls scattering at point x , and can be represented with analytical models or measured data.
In practice, artists de�ne f by combining simple prede�ned models whose inputs are connected
to textures or mesh attributes.

From the point of view of a MC simulation, though, a BSDF is an abstract object that can be
evaluated and sampled. It might be useful to also provide other properties such as sampling
probability, or �ags that specify the type of material, so that the renderer can adapt its sampling
strategy. In Rodent, we de�ne BSDFs as follows:
struct Bsdf {

eval: fn (Vec3 , Vec3) -> Color ,
pdf: fn (Vec3 , Vec3) -> f32 ,
sample: fn (&mut RndState , Vec3) -> BsdfSample ,
is_specular: bool

}

3.2. RENDERING LIBRARY 53

The sample function takes a random number generator state, an outgoing direction, and returns a
BsdfSample containing the sample value, direction, sampling probability, and the cosine between
the surface normal and the sample:
struct BsdfSample {

color: Color ,
in_dir: Vec3 ,
pdf: f32 ,
cos: f32

}

As an example, the purely di�use BSDF fkd (!i , x, !o) = kd /� is de�ned like so:
fn @make_diffuse_bsdf(elem: SurfaceElement , kd: Color) -> Bsdf {

let color = kd * (1.0f / pi);
Bsdf {

eval: @ |in_dir , out_dir| color ,
pdf: @ |in_dir , out_dir|

cosine_hemisphere_pdf(positive_cos(in_dir , elem.normal)),
sample: @ |rnd , out_dir| {

let sample = sample_cosine_hemisphere(rnd);
BsdfSample {

color: color ,
in_dir: mat3x3_mul(elem.local , sample.dir),
pdf: sample.pdf ,
cos: sample.dir.z

}
},
is_specular: false

}
}

This implementation follows a textbook de�nition: Evaluation always return kd /� , and sam-
pling on the hemisphere is weighted by the cosine between the direction and the surface
normal [Dut03]. Here, sample_cosine_hemisphere returns a sample on the hemisphere oriented
around the Z axis, so we have to transform it back into the local coordinate system at the
hit point to obtain the �nal sampling direction in_dir. This also means that the cosine be-
tween the normal and the sampled direction is just the Z coordinate of the sample returned by
sample_cosine_hemisphere. Note that in this example, when the parameter of the BSDF kd is
known, the returned color evaluates to a constant, but this cannot happen if kd is obtained by
looking up a texture or if it is an expression that is not resolved at compile-time. There is also a
bit of redundancy in this code as both the value returned by eval and the color member of the
returned BsdfSample are the same. That is not the case for BSDFs that are perfectly specular,
because those have an eval function that always returns zero, even if the color returned by
their sampling function is non-zero.

Additionally to the BSDF, the right-hand side of the rendering equation also speci�es an
emission function Le(x, !o) that returns the emitted radiance at point x in direction !o . In
Rodent, we model this concept by combining an emission function and a BSDF into a Material

structure:
struct Material {

bsdf: Bsdf ,
emission: fn (Vec3) -> EmissionValue ,
is_emissive: bool ,

}

54 CHAPTER 3. GENERATING RENDERERS

If the material does not emit light, the is_emissive �ag is set to false. Alternatively, one could
test if the emission value is black, but that would be more expensive than testing a single
boolean �ag if the test has to be done at run-time (e.g. when the emission value is not known).

The emission function returns an EmissionValue made of the intensity and probabilities for
the given direction:
struct EmissionValue {

intensity: Color ,
pdf_area: f32 ,
pdf_dir: f32 ,

}

The pdf_area member represents the probability of sampling the current point on the surface,
and the pdf_dir member corresponds to the probability of sampling the direction using emission
sampling (sampling from the light source). These probabilities are necessary to implement MIS.

In order to build simple, non-emissive materials, we provide a handy constructor:
fn @make_material(bsdf: Bsdf) -> Material {

Material {
bsdf: bsdf ,
emission: @ |dir| EmissionValue {

intensity: black ,
pdf_area: 1.0f,
pdf_dir: 1.0f

},
is_emissive: false

}
}

Note that emission probabilities are irrelevant, as the material is marked as non-emissive. Setting
them to 1 lets the compiler optimize away any division or multiplication if the programmer
forgot to check the is_emissive �ag.

3.2.3 Lights

Light sources are usually kept distinct from other surfaces, in order to make NEE possible.
Depending on the rendering algorithm, it might be necessary to sample them and produce a
position and direction on the light source, as is for instance the case in Photon Mapping (PM)
or any algorithm which includes tracing paths from the light sources. Furthermore, lights may
not have an area and may be handled di�erently by the integrator: This is the case for point
light sources, for instance.

In order to support these features, we represent lights with the following structure:
struct Light {

sample_direct: fn (&mut RndState , Vec3) -> DirectLightSample ,
sample_emission: fn (&mut RndState) -> EmissionSample ,
emission: fn (Vec3 , Vec2) -> EmissionValue ,
has_area: bool ,

}

Direct emission sampling is done during NEE: The integrator invokes sample_direct with a
random number generator state and a point on a surface, and in return gets a sample contain-
ing a position on the light source, the light intensity and cosine on the light source for the

3.2. RENDERING LIBRARY 55

corresponding light direction, and a pair of probabilities:
struct DirectLightSample {

pos: Vec3 ,
intensity: Color ,
cos: f32 ,
pdf_area: f32 ,
pdf_dir: f32 ,

}

The probability pdf_area represents the probability of sampling the point on the surface of the
light source. The other probability pdf_dir represents the probability of sampling the direction
between the point on the surface and the point on the light source using direction sampling.

The sample_emission function generates a point and a direction (along with the probabilities)
from a random number generator state:
struct EmissionSample {

pos: Vec3 ,
dir: Vec3 ,
intensity: Color ,
cos: f32 ,
pdf_area: f32 ,
pdf_dir: f32

}

This structure is mostly identical to DirectLightSample except that it additionally contains a di-
rection. The probabilities are computed in a di�erent way, though: When calling sample_direct,
the pdf_dir member of the returned DirectLightSample value is the probability of sampling
the direction between the given surface point and the sampled point on the light source, as if it
had been sampled using emission sampling. When calling sample_emission, the probability is
the actual probability of sampling the returned direction.

As an example, a point light source could be implemented by connecting the point on the
surface to the light position to create a direction in sample_direct, and sampling a direction
uniformly around a sphere centered on the light position in sample_emission.

3.2.4 Geometric Objects

Inside a rendering algorithm, geometric objects act like proxies to the surface information, and
are associated with a shader. With this in mind, Rodent represents geometric objects like this:
struct Geometry {

surface_element: fn (Ray , Hit) -> SurfaceElement ,
shader: Shader

}

The SurfaceElement structure represents the surface element at the hit point, with a normal, tan-
gent, bitangent, and interpolated vertex attributes, if any. The renderer invokes surface_element
on the geometric object with the current ray and hit to obtain the surface information at the hit
point. Then, it passes this information to the shader contained in the object, along with the ray
and hit, in order to produce a Material. Note that the shader is an ordinary Impala function,
and not a shader program written in another shading language. Other languages can of course
be supported by implementing a translator or compiler between from that language and Impala.

56 CHAPTER 3. GENERATING RENDERERS

3.2.5 Shaders

In Rodent, shaders produce a Material from a ray, a hit point, and the surface information
around the hit point:
type Shader = fn (Ray , Hit , SurfaceElement) -> Material;

Unlike in libraries like OptiX, these shaders are only describing a material and do not have to
return a new ray to continue the path: Only the renderer decides how paths are traced and
de�ned.

As an example, here is a physically-corrected Phong shader [Dut03] controlled by a texture:
let image = device.load_image("data/textures/wall.png");
fn phong_like_shader(ray: Ray

, hit: Hit
, elem: SurfaceElement
) -> Material {

let tex = make_texture(make_repeat_border (), make_bilinear_filter (), image);
let diffuse = make_diffuse_bsdf(elem , tex(elem.uv_coords));
let ks = make_color (0.9f, 0.9f, 0.9f);
let ns = 150f;
let specular = make_phong_bsdf(elem , ks, ns);
let bsdf = make_mix_bsdf(diffuse , specular , 0.5f);
make_material(bsdf)

}

In this example, we use the device (see Section 3.2.7) to load an image, and then create a material
from the combination of two BSDFs. The di�use component is driven by a texture created from
the previously loaded image, with the repeat border mode and bilinear �ltering.

An interesting feature of this listing is that it contains no partial evaluation annotations.
This property is vital because shaders are part of the user interface of the renderer: They are
often written with little to no knowledge of its internal design. To avoid writing annotations in
the shader, it is su�cient to place annotations on the calls to the shaders used in the renderer
using the call-site annotation syntax @@ introduced in Chapter 1.

3.2.6 Renderers

The traditional description of a ray-tracing algorithm like Path Tracing (PT) is often decomposed
into several steps (see Figure 3.1): emission of camera rays, acceleration data structure traversal,
shading computations, emission of shadow ray, and continuation or termination of a path [Gla89].
It turns out that most variants of PT can be represented using this framework, even bidirectional
algorithms like Bidirectional Path Tracing—in this case, by starting the process both from the
camera and light sources and adding a �nal connection step to form full paths.

In Rodent, we build on this idea and represent a renderer using the following structure to
represent rendering algorithms:
struct Tracer {

on_emit: OnEmitFn ,
on_hit: OnHitFn ,
on_shadow: OnShadowFn ,
on_bounce: OnBounceFn

}

3.2. RENDERING LIBRARY 57

Figure 3.1: Diagram of a standard ray-tracing algorithm like Path Tracing. Green nodes are
represented by the members of the Tracer structure. Blue nodes are scheduling nodes that are
implemented in the rendering device (see Section 3.2.7).

This structure represents the actions the renderer will take when emitting rays, hitting a
surface, tracing shadow rays, or bouncing o� a surface. Most of those member functions contain
continuations in their type, so as to allow the renderer to perform di�erent actions, depending on
the situation. For instance, the type OnShadowFn is in fact de�ned as the following function type:
type OnShadowFn = fn (

Ray , Hit , &mut RayState , SurfaceElement , Material ,
fn (Ray , Color) -> !,
fn () -> !
) -> !;

Intuitively, this type can be read as: “A function that takes a ray, a hit, a state for the ray, the
surface information, and a material, and either returns a ray and a color, or nothing”. In fact, this
function type indicates that there are two return continuations: one of type fn (Ray, Color) ->

!, and the other of type fn () -> !. While a normal function only has one return continuation,
having more than one allows to return di�erent values depending on the situation. This is
similar to checked exceptions in Java [Gos+14], or sum types in Haskell [Mar10], where the
programmer can encode several possible outcomes in the return value of a function. The other
members types OnEmitFn, OnHitFn, and OnBounceFn follow the same idea.

Once a renderer is implemented with this structure, it becomes possible to reorder and
schedule the emission, tracing, or shading of rays in many di�erent ways. Since there are many
options to consider, domain knowledge is necessary to choose the particular schedule that will
maximize device utilization and parallelism, which is why the concept of rendering device is

58 CHAPTER 3. GENERATING RENDERERS

presented next.

3.2.7 Rendering Devices

In Rodent, rendering devices de�ne the actual mapping of a rendering algorithm to the hardware
device. Essentially, a rendering device is a scheduler that speci�es when to run each part
of the renderer, and on which rays. It also contains helper functions to load data (such as
an image or a mesh) into the device, which is necessary for GPU execution, and maintains
acceleration data structures. Rendering devices are represented with the following structure:
struct Device {

trace: fn (Scene , Tracer) -> (),
load_image: fn (&[u8]) -> Image ,
// ...

}

The trace function schedules a rendering algorithm de�ned by a Tracer object on the device,
and e�ectively renders the given scene.

Thanks to this library design, the user of the library can easily port all his rendering algo-
rithms to a new platform: He only has to implement one new device to perform scheduling.
Similarly, rendering algorithm developers can harness high-performance devices already im-
plemented in the library and focus on writing high-level rendering code instead of low-level
scheduling code.

Currently, three rendering devices are implemented:

1. A tile-based CPU device that uses vectorization (and counting sort to order rays by
material and maximize SIMD utilization) to shade rays, and parallelizes tiles over several
CPU cores,

2. A megakernel-based GPU device,

3. A wavefront-based GPU device [LKA13].

Each of these devices is designed to allow optimization of all rendering subsystems and the
interface between them. In particular, they perform shader specialization, either by using a
static dispatch mechanism (as in the megakernel GPU device), or by sorting rays by material
and processing contiguous ranges of rays (as in the CPU and wavefront GPU devices).

As an example, in the trace function of the CPU device, we render tiles of the image in
parallel. For each of these tiles, we maintain a stream (wavefront) of rays that we traverse and
shade together. Before shading, we sort rays by increasing geometric object ID—and thus, also
by shader—and process ranges of rays within the stream with the same shader:

3.2. RENDERING LIBRARY 59

fn trace(scene: Scene , tracer: Tracer) -> () {
// ...
for geom_id in unroll(0, scene.num_geometries) {

// Get the range of rays that hit this geometric object
let (begin , end) = geometry_range(geom_id);
for i in vectorize_range(vector_width , begin , end) {

// Use tracer.on_hit/on_bounce /...
}

}
// ...

}

This extract assumes that rays are already traced and sorted, and that the ranges of rays that hit
the same geometric object are returned by geometry_range. The function used to iterate over
a range of rays, vectorize_range, is merely a wrapper around the vectorize built-in function.
Unlike vectorize, this function can process any range, including those whose size is not a
multiple of the vector size.

In order to specialize the shaders, we need to unroll the outer loop running over geometric
objects. Using the unroll function, we produce n di�erent copies of the inner loop, where n is
the number of geometric objects in the scene. Thanks to partial evaluation annotations placed
inside unroll, each of these copies is specialized for a di�erent object, and any computation
depending on the type of material or geometry is transparently optimized.

The wavefront-based GPU device functions is implemented in a comparable manner, except
that the ray streams correspond to an entire image, and that the inner loop uses cuda instead of
vectorize_range. Thanks to this, we generate di�erent, specialized compute kernels for each
geometric object.

The megakernel-based GPU device, on the other hand, does not use streams at all. One
unique kernel contains the entire rendering loop, in which each execution thread is in charge
of tracing one path:
fn trace(scene: Scene , tracer: Tracer) -> () {

for work_item in cuda(grid , block) {
let (x, y) = (work_item.gidx(), work_item.gidy());
let (ray , state) = tracer.on_emit(x, y);
let mut terminated = false;
while !terminated {

// Intersect , shade and continue path
}

}
}

Typical megakernel-based renderers often exhibit high register pressure and important
execution divergence. In a wavefront-based renderer, the individual register requirements of
each shader do not impact each other. But when all shaders are merged together into one
megakernel, the total number of registers used by the kernel is equal to the maximum register
requirement among all shaders. Since, in general, registers limit occupancy, and therefore
parallelism, every shader in a megakernel becomes as expensive as the most expensive shader.
However, wavefront-based renderers have to transfer results from kernel to kernel, resulting
in increased global memory tra�c compared to a megakernel. The trade-o� between the two
designs is discussed further in the literature [LKA13], and the consensus is that with the current
architectures, a wavefront-based renderer will scale better than a megakernel-based one—a

60 CHAPTER 3. GENERATING RENDERERS

conclusion corroborated by our results.
Regardless of performance considerations, a notable property of our library is that we do

not enforce any particular schedule. Other, not yet invented schedules will not be di�cult to
add, because we clearly separated the algorithm—the Tracer, from its mapping—the Device. On
the contrary, in OptiX, the programmer has no choice but to develop a megakernel renderer.
We argue that a clean API design should focus on the high-level concepts of rendering, and
not force the programmer into a programming model, like what OptiX, ispc , or Embree do.
Without proper separation of concerns, developers are bound to duplicate code and maintain
di�erent code bases in order to provide performance portable software.

3.3 Results

In this section, we evaluate the performance and code complexity of renderers written with
Rodent, compared to renderers written with state-of-the-art, high-performance rendering
libraries.

3.3.1 Experimental Setup

Reference Renderers

Embree [Wal+14] and OptiX [Par+10] o�er low-level APIs to design renderers. In order to
compare them against Rodent, we have implemented renderers with both of them, following
the examples provided in their respective documentation (the Embree example renderer1 and
the OptiX path tracer 2). These reference renderers only support triangle meshes of a certain
type and a small set of prede�ned shaders corresponding to the set of possible materials in our
tested scenes, so as to make them more e�cient for the tested scenes and avoid unecessary
computations. Rodent supports more features and is more �exible than those renderers, and
relies on partial evaluation to remove redundant computations automatically. Moreover, our
Embree implementation uses ispc [PM12] to vectorize shading code. Acceleration data struc-
tures performance hints suggested in the documentation have been applied for both renderer
implementations: We use the SBVH data structure in OptiX and Embree, and make sure to have
a minimum amount of divergence for both implementations.

Generating Renderers with Rodent

Since Rodent expects a scene description written in Impala, we have written a small converter
from a 3D scene format to Rodent’s scene representation. In order to generate a renderer, we
only need to run the converter on a scene of our choice, choose a device (e.g. by inserting a
line like let device = make_cpu_device() in the converted scene or specifying a command line
option in the converter), and then compile the result using Impala. The �nal result is a renderer
specialized for that scene that runs on the chosen device. A real application can embed the
Impala compiler and convert a scene at run-time, using Just-In-Time compilation.

1see https://embree.github.io/renderer.html
2https://developer.nvidia.com/designworks/optix/download

https://embree.github.io/renderer.html

3.3. RESULTS 61

(a) Living Room (b) Bathroom

(c) Bedroom (d) Dining Room

(e) Kitchen (f) Staircase

Figure 3.2: Scenes used in the performance evaluation.

62 CHAPTER 3. GENERATING RENDERERS

CPU (i7 6700K) GPU (Titan X) GPU (R9 Nano)

Scene Rodent Embree Rodent1 Rodent2 OptiX Rodent1 Rodent2

Living Room 9.77 (+23%) 7.94 38.59 (+25%) 43.52 (+42%) 30.75 24.22 33.42
Bathroom 6.65 (+13%) 5.90 27.06 (+31%) 35.32 (+42%) 20.64 14.48 26.19
Bedroom 7.55 (+ 4%) 7.24 30.25 (+ 9%) 38.88 (+29%) 27.72 18.49 30.72
Dining Room 7.08 (+ 1%) 7.01 30.07 (+ 5%) 40.37 (+29%) 28.58 16.10 28.71
Kitchen 6.64 (+12%) 5.92 22.73 (+ 2%) 32.09 (+31%) 22.22 16.32 24.65
Staircase 4.86 (+ 8%) 4.48 20.00 (+18%) 27.53 (+39%) 16.89 11.20 20.71

Table 3.1: Performance comparison between the renderers generated by Rodent and the reference
renderers (not available for the R9 Nano) in Msamples/s (higher is better). On the GPUs, we list
the numbers for both the megakernel device (1) and the wavefront device (2).

3.3.2 Performance

For the performance evaluation, we use a workstation with a Intel i7-6700K CPU, an NVIDIA
Titan X (Maxwell) GPU, and an AMD R9 Nano GPU. The numbers for our test scenes are listed
in Table 3.1, and the associated reference images are presented in Figure 3.2. Note that OptiX
does not run on the R9 Nano, which is why there is no reference for this GPU.

In all tested scenes, the renderers generated by Rodent outperform the reference renderers.
On both GPUs, the megakernel-based renderers generated by Rodent are less e�cient than the
wavefront-based ones, replicating the results of existing literature [LKA13].

Distribution of Execution Time

We present the distribution of time spent in each part of the CPU renderers in Figure 3.3. In
this graph, it appears that the time spent tracing rays is nearly identical between the renderer
generated by Rodent and the Embree-based reference. This is not surprising, considering that
on the CPU, we use the same traversal algorithm as Embree. However, shading is much less
expensive, sometimes more than 2× faster than the reference. In Rodent, both specialization and
sorting improve vectorization: Specialization decreases the number of branches, and sorting
allows similar rays to be processed together [Áfr+16].

We designed a synthetic benchmark to explain which part of the performance increase is
due to sorting, and which part is due to specialization. In this benchmark, we shade a 4096 rays
using a physically-corrected Phong BSDF. Each ray is associated with an integer S ∈ [0..3] that
de�nes how the parameters kd , ks , and ns of the BSDF are chosen:

• For S = 0, every parameter is a constant.

• For S = 1, kd is a texture, ks and ns are constants.

• For S = 2, ks is a texture, kd and ns are constants.

• For S = 3, ks and kd are textures, ns is a constant.

3.3. RESULTS 63

Liv
ing Roo

m

Bath
roo

m

Bedr
oo

m

Dining Roo
m

Kitc
hen

Sta
irc

ase
0

2,000

4,000

6,000

8,000

Ti
m

e
pe

rF
ra

m
e

(m
s)

Camera Secondary Shadow Shading Others

Figure 3.3: Average distribution of the execution time for renderers generated by Rodent (right)
and the Embree-based reference (left) over all tested scenes on an i7 6700K. We measure time
tracing camera/secondary/shadow rays, and performing shading. Other tasks include generating,
sorting or compacting rays.

We implemented this shader using both Rodent and ispc , and measured performance
before and after specialization. With ispc , specialization is a di�cult, manual process, and
relies on macros to duplicate some functions in order to make sure everything remains uniform
whenever possible. This is not practical in any way, and is only used for demonstration purposes,
because it breaks every good programming practice by forcing the programmer to break existing
abstractions. With Rodent, specialization is done transparently, when the number of shaders is
known. When specialization is enabled, we let the compiler know that there are 4 shaders. As a
result, the generated program will contain 4 di�erent paths, one for each value of S. Another
big advantage over ispc is that we do not have to write annotations to specify what is scalar
or vectorial: The compiler will infer the best possible annotation for us [MH18].

The results of this benchmark, in Figure 3.4, show that specialization brings a performance
improvement of around 25% in both the Rodent-generated version and the manually-specialized
ispc version. This con�rms the intuition that specialization is, even in such a simple example
with only 4 trivial shaders, an e�cient optimization technique.

Cross-Layer Optimizations

Rodent does not only specialize shaders, but also the interfaces between each rendering compo-
nent. In Rodent, these interfaces materialize as functions calls, but in traditional programming
languages, modules or class hierarchies could play that role. When Rodent specializes these
interfaces, it is doing a form of cross-layer optimization. Traditional compilers usually only

64 CHAPTER 3. GENERATING RENDERERS

base specialized
0

20

40

60

34.2
43.4

35.3
43.6

M
ra

ys
/s

ispc
Rodent

Figure 3.4: Shading performance on an i7 6700K for the simple shader described in Section 3.3.2
implemented using Rodent and ispc (higher is better). Specialization is done manually in the
ispc version.

optimize very conservatively around interfaces, and cross-layer optimizations are often viewed
as dangerous. The reason for this is that cross-layer optimizations, just like other optimizations,
may change the performance of the target program. However, because of their global nature,
they often impact performance dramatically, and it is hard to understand why some transforma-
tion happenened. For instance, aggressive inlining may increase register pressure, which can
impact performance negatively if the code is running on a GPU and is limited by occupancy.

Even though they might be scare some, we argue here that cross-layer optimizations are
essential. In fact, they are critical for shader specialization too since the information has to �ow
from the top level of the program, where the user de�nes the scene, to the innermost part of the
renderer, where the shader is executed. If this �ow of information is interrupted because some
interface cannot be optimized, then specialization cannot occur at the deeper levels, where it is
most necessary. Take for example the �ltering mode of a texture, which is usually given at the
“highest level”, in the scene description. If this information is not available in the innermost
loop of the renderer, or inside the GPU kernel that performs shading, then the generated code
will contain the equivalent of a switch statement to select the appropriate �ltering function,
which is suboptimal.

We designed another synthetic benchmark to test the claim that cross-layer optimizations
are critical for performance. In this benchmark, we run a simple di�use shader on a batch
of rays. This time, we enabled or disabled specialization for two di�erent interfaces: the one
between the texture and the shader, and the one between the mesh attributes and the shader.
An easy way to do this is to add a boolean parameter to every function that speci�es whether
or not to perform specialization, as in the following example:
fn @(specialize) f(specialize: bool , /* ... */) { /* ... */ }

Using this trick, the call f(true, /*...*/) will trigger specialization, but f(false, /*...*/)

will not.
We show the results of this benchmark in Figure 3.5. There, we compute only very basic

mesh attributes (shading normal, face normal, and texture coordinates), and use only an image

3.3. RESULTS 65

base T A T + A

100

1,000

43.9 45.8

217.5 225.5
305.3

729.7
1,112 1,160

M
ra

ys
/s

CPU
GPU

Figure 3.5: Performance when specializing the interfaces between the shader and the texturing
function (T), or between the shader and attribute computation (A). We present the results for an
i7 6700K CPU, using all cores, and on a Titan X GPU. Note the logarithmic scale on the vertical
axis.

texture whose border handling mode and �lter are controlled by the shader. These results
show that specializing interfaces is bene�cial, as expected, but also that some interfaces are less
interesting to specialize than others. This indicates that some modules can be kept truly separate
with almost no performance hit, while others should be optimized together. Our framework
allows us to do exactly that: We can specify exactly where cross-layer optimizations happen
using partial evaluation annotations. This, and unlike traditional cross-layer optimizations like
LTO, is completely predictable and in the hands of the programmer.

3.3.3 Implementation E�ort

Since we must compare the e�ort required to write the reference renderers with the e�ort
required to write Rodent, we need a language-agnostic measure of implementation e�ort.
Halstead’s well-known software complexity measure [Hal77] is based on the number of operators
and operands in the program, and serves exactly this purpose. We list Halstead’s e�ort along
with numbers of Lines of Code (LoC) for all the renderers in Table 3.2. For Rodent, we separate
the core library from the rendering devices to allow a better comparison with the reference
renderers. In this comparison, we only included the relevant parts of each renderer: The scene
loader, for instance, has been omitted for every renderer.

Even though Rodent is more generic, has more features, and allows scenes that are not
supported by the reference renderers—we even provide a wavefront-based GPU implementation
not provided by OptiX—the e�ort required to code Rodent and all its devices is lower than the
e�ort required to write the two references.

It is also worth noting that every renderer written with Rodent uses the same core concepts.
For the reference renderers, everything had to be reimplemented from scratch: Even though both
CUDA and ispc use a C-based language, they are too di�erent—syntax-wise and semantics-
wise—to allow sharing parts of the implementation.

Finally, remember that none of our references uses specialization. The only tools available

66 CHAPTER 3. GENERATING RENDERERS

Rodent

Core CPU GPU Embree OptiX

LoC 1086 471 600 869 930
E�ort 3.798M 4.403M 5.724M 7.856M 9.605M⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟ ⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

13.93M 17.46M

Table 3.2: Implementation e�ort for Rodent’s core rendering library, the CPU device, the GPU
devices (including megakernel and wavefront), and for the Embree-based and OptiX-based
references. The e�ort is measured using Halstead’s metric.

with ispc or the CUDA compiler are macros and template meta-programming. These are
completely impractical in our setting: Dynamic (run-time) and static (compile-time) data should
be represented in the same language because the scene may be only partially known. In fact,
the set of scene parameters that are static can vary from scene to scene, and thus multiple
implementations of the same renderer would be required, some with those scene parameters
represented with macro or template parameters for the case where those parameters are static,
and others using regular function parameters for the case where those parameters are dynamic.

3.3.4 Compilation Times

Depending on the use case, the time spent compiling and generating renderers might also be
relevant. We measured compilation times for all three devices on our test scenes and present the
results in Figure 3.6. Overall, the compiler takes between tens of seconds to 2mins, depending
on the number of shaders and the device used. The CPU device is the slowest to compile due to
the calls to vectorize and the complex transformations that ensue.

Unfortunately, these results mean that our approach is currently reserved to situations
where render times dominate. However, the compiler itself is not particularly well-optimized,
and runs in a single-thread, so there is hope that compilation can be made faster by distributing
partial evaluation work to di�erent cores.

Another approach to overcome this problem is to pre-specialize parts of the code that do
not change, or simply avoid specialization of certain parts of the renderer. For instance, we
already do not specialize the renderer for the camera position, which allows us to move the
camera without having to recompile the renderer.

3.3. RESULTS 67

Liv
ing Roo

m

Bath
roo

m

Bedr
oo

m

Dining Roo
m

Kitc
hen

Sta
irc

ase
0

20

40

60

80

100

120

14 18

48

87

112

33

5 6
17

30
41

11
2 2 3

9 5 4

Co
m

pi
la

tio
n

Ti
m

e
(s)

CPU
GPU (Wavefront)
GPU (Megakernel)

Figure 3.6: Compilation times for various scenes and rendering devices.

68 CHAPTER 3. GENERATING RENDERERS

Chapter 4

Compiling Generators

This chapter presents a small set of interesting current and future design decisions in the
implementation of AnyDSL, and discusses alternatives. Investigating them allows us to draw
conclusions and present potential new directions for the project.

4.1 Type Inference

The type system of Impala is fundamentally a simple ML-style (or Hindley-Milner) type system:
A type system in which polymorphic types can only be introduced by the keyword let [Pie02] (or
the equivalent version of that keyword in Impala, fn). For this reason, this type of polymorphism
is often called let-polymorphism. There are two main types of algorithms to infer types in such
systems: constraint-based algorithms, like algorithm  [DM82], and local type inference.

4.1.1 Algorithm and Constraint-based Inference Algorithms

Algorithm  , the type inference algorithm by Impala, was initially designed for an ML-style
language [DM82]. The version used in Impala is adapted to work with explicit type annota-
tions [Pie02]. The basic idea of this algorithm is to collect and solve type equality constraints
when running over the program. Equality constraints are solved by uni�cation [Rob65], an
algorithm that given a set of constraints, generates a type substitution that solves those con-
straints or fails with an error message to indicate that the program does not type-check. This
process of collecting constraints and solving them can either be done in two distinct passes,
or performed in tandem, alternating collection and solving iteratively [Pie02], which has the
bene�t of generating better error locations. Other constraint-based algorithms follow the same
principle: They generate constraints that are then solved to produce the types of each term.

One major drawback of algorithm  in particular is that it cannot be extended easily, as
adding more features often make complete type reconstruction much harder or even undecid-
able [Pie02]. Take subtyping, for instance, a feature of a type system in which a binary relation
S <∶ T between types allows to use a value of type S where a value of a type T is expected. In
Impala, there a very limited form of subtyping that allows mutable pointer types to be treated as
immutable ones. In other words, the rule &mut T <: &T is present in the type system. However,

69

70 CHAPTER 4. COMPILING GENERATORS

the implementation of algorithm  in Impala handles subtyping using ad-hoc rules that have to
be carefully crafted to ensure termination. They also tend to fail if the program is in an unusual
(but in principle, correct) form. The following program, for instance, is rejected:

fn foo(y: &i32) -> () {}
fn bar() -> () {

let mut x = 1;
let id = |i| i;
let y = id(&mut x);
foo(y);
*y = 3;

}

Because the variable y in the body of bar is not annotated with a type, it is initially assigned
an unknown type variable by the algorithm, and the call to foo immediately constrains that
variable to the type &i32, which causes the compiler to report an error when later assigning the
value 3 to that pointer, as it is not mutable. Even though this can be solved by a user-placed
annotation on y to tell the compiler that its type is in fact &mut i32, this excerpt shows that
ad-hoc rules are not enough to infer the types correctly in all cases, as the order in which they
are applied impacts the �nal result [TBN11]. Properly adding subtyping to algorithm  requires
to change the algorithm to propagate type inequality constraints [TBN11]—as opposed to type
equality constraints, in the original form of the algorithm. This change is unfortunately not as
simple as adding ad-hoc rules, and mandates that constraint collection happens separately from
constraint solving.

Another issue with algorithm  is the location of errors. When type inference is performed
globally, type con�icts are often reported at the wrong location. For instance, take the following
Impala program:

let a = |x| x;
// ...
let b = a(5);
// ...
let c = a(1.0);

There is a type con�ict here, because a will be assigned the type fn (i32) -> i32 when checking
the declaration for b, but later, when checking c, it will be assigned the incompatible type fn

(f64) -> f64. The original intent was perhaps to make a a function that takes �oating point
values, but the decimal point is missing in the �rst invocation. Depending on the order in which
the type checker goes over the source code, it is possible that the con�ict is reported either at
the location of a, b, or c. Obviously, only one of those locations is correct. This problem does
not have a simple solution, and there are many publications that try to improve the situation by
using heuristics, changing the order of uni�cation, or listing all options [Hee05].

All these drawbacks make algorithm  and other constraint-based algorithms impractical.
Thankfully, there is another class of inference algorithms that supports ML-style type systems
with various extensions, including subtyping, and that produces good error messages: local type
inference [PT00].

4.1. TYPE INFERENCE 71

4.1.2 Local Type Inference

Recall that with algorithm  , constraints are generated when going over the entire program,
and that they might thus be connecting types that are linked to completely di�erent parts of
the AST. In contrast, local type inference algorithms only propagate type information across
neighboring AST nodes.

In the original publication on local type inference [PT00], two techniques were introduced:
local type argument synthesis and bidirectional type-checking. The �rst one only infers type
arguments in polymorphic function applications, and can be combined with the second. Bidi-
rectional type-checking, the second one, is according to Pierce, a well-known method that is
part of the “folklore” on programming language design. It infers both annotations on local
variable bindings and anonymous function abstractions, by switching between two modes:
inference, and checking modes. In the inference mode, the algorithm synthesizes types, while
in the checking mode, it veri�es that an AST node can be assigned a given type.

The traditional typing relation is given as Σ ⊢ e ∶ T , which informally means “e types as T
in context Σ”. Associated with that relation are rules that de�ne the type of an expression. For
instance the rule to type a tuple expression (e1, e2, … en) could be written as:

Σ ⊢ e1 ∶ T1 Σ ⊢ e2 ∶ T2 ⋯ Σ ⊢ en ∶ Tn Tuple
Σ ⊢ (e1, e2, … en) ∶ (T1, T2, … Tn)

This rule states that the tuple (e1, e2, … en) has type (T1, T2, … Tn) in context Σ if all the hypotheses
above the rule are ful�lled, that is, if each ei∈[1,n] types as Ti in context Σ. Bidirectional type
inference essentially splits typing judgments such as these in two: Σ ⊢ e ∶ T becomes Σ ⊢ e ⇒
T and Σ ⊢ e ⇐ T . The judgment Σ ⊢ e ⇒ T synthesizes type T from expression e in context
Σ. Here, T is an output variable. On the contrary, Σ ⊢ e ⇐ T checks if e has type T in context
Σ. In this case, T is an input variable. For instance, the rule for tuples presented above is split
like this:

Σ ⊢ e1 ⇒ T1 Σ ⊢ e2 ⇒ T2 ⋯ Σ ⊢ en ⇒ Tn Tuple-Infer
Σ ⊢ (e1, e2, … en) ⇒ (T1, T2, … Tn)

Σ ⊢ e1 ⇐ T1 Σ ⊢ e2 ⇐ T2 ⋯ Σ ⊢ en ⇐ Tn Tuple-Check
Σ ⊢ (e1, e2, … en) ⇐ (T1, T2, … Tn)

The nice property about these judgments is that they are algorithmic. In other words, they
can be translated directly into code. The checking relation, for instance, is usually implemented
as a function that takes an AST node and a type, and returns a boolean to indicate when the
node type-checks:
bool check(AST ast , Type type) { /* ... */ }

The synthesis relation, on the other hand, will look like this:
std::optional <Type > infer(AST ast) { /* ... */ }

This function just takes an AST node, and returns a type for that node or nothing if the type
cannot be inferred.

72 CHAPTER 4. COMPILING GENERATORS

Bidirectional type-checking then just traverses the AST in one of those two modes, switching
from one to the other depending on the context. For instance, upon encountering a typing anno-
tation, like a ∶ i32, the algorithm switches from synthesis to checking mode. The corresponding
typing rule is as follows:

Σ ⊢ e ⇐ T
Σ ⊢ e ∶ T ⇒ T

The following pseudo-C++ code shows a possible implementation:
std::optional <Type > infer(AST ast) {

switch (ast) {
// ...
case Annotation:

// Expression of the form "<expression > : <annotated_type >"
if (!check(ast.expression , ast.annotated_type))

return std:: nullopt;
return std:: make_optional(ast.annotated_type);

// ...
}

}

In the above code, the implementation switches from inference mode to checking mode when
seeing a type annotation. This is in practice done by calling the function check with the
annotated expression, and the annotated type. When check fails (after reporting an error to
the user), the function returns an std::nullopt, indicating that inference failed. When check

succeeds, the function returns the annotated type, since the call to check made sure that the
expression has that type.

With bidirectional type checking, the type checker is simpler to implement and maintain,
since there is a direct connection between the typing rules and the type-checker implementation.
In turn, this simplicity allows to implement more advanced type system extensions such as
subtyping or higher-order polymorphism [Pey+05]. Moreover, because knowledge is propagated
only locally in the AST, error locations are unambiguous.

Sadly, local type inference algorithms may fail on programs that do not have enough type
annotations. Take for example this Impala program:
let f = |i| i;
f(1);

Here, a constraint-based algorithm would have generated a constraint that binds the type
of i to the type of 1, which is i32, and thus f would be assigned the type fn (i32) -> i32.
Bidirectional type-checking would fail in this instance because the type of f cannot be inferred
just by analyzing the let statement.

Fortunately for us, we have found such programs to be very rare. In fact, when porting
the benchmark test suite of Impala to a local type inference-based front-end1, not a single time
did we have to add an explicit type annotation. This result is not surprising anyway, since the
syntax of Impala already forces users to annotate top-level functions. Therefore, most calls
can already be inferred using only local knowledge. For Impala, we hence believe that local
type inference is a very compelling alternative to constraint-based type inference algorithms,
particularly in terms of user-friendliness, robustness, and implementation e�ort: In fact, we

1https://github.com/AnyDSL/artic

https://github.com/AnyDSL/artic

4.2. PATTERN MATCHING 73

are planning to replace the old constraint-based type inference completely in favor of the new,
local type inference-based front-end.

4.2 Pattern Matching

Pattern matching is an essential feature of any functional language, as it allows to express
algorithms that operate on sum and product types (tuples, structures, or enumerations in
Impala) very concisely. However, generating code for such patterns is not obvious. Consider
the following snippet:

enum E { A, B(i32) }
fn foo(x: (bool , E))) -> i32 {

match x {
(true , E::A) => 1, // P1
(true , E::B(1)) => 2, // P2
(false , E::B(y)) => y + 2, // P3
(_, E::A) => 3, // P4
(_, _) => 4 // P5

}
}

In this small example, it becomes obvious that generating code for this expression requires to
inspect the structure of the value contained in x. The naive way to tackle that problem is to
test each pattern in turn, until there is a match. This is what the current version of Impala is
doing, but this is clearly suboptimal, since some patterns will generate redundant tests: In the
example above, Impala will generate one test per pattern, everytime checking that the pattern
matches the argument (for instance, with P1, this means checking that the �rst element is true

and that the second one is E::A). As a consequence, if the function foo above is called very
often with the value (true, E::B(2)), then, the code generated by Impala will be very slow: It
will have to go through all the patterns from P1 to P4—that all fail to match the value, before
eventually reaching the pattern P5—which �nally accepts the value. In fact, part of the reason
enumerations are not used very often in Rodent is that Impala generates poor quality code when
dealing with complex match expressions. Mercifully, the literature already contains methods to
approach that problem, all based on either decision trees or backtracking automata.

4.2.1 Backtracking Automata

Backtracking automata, introduced as early as 1985 [Aug85], are a simple way to compile
patterns into code, by eliminating data type constructors (e.g. true, 5, E::A, ...) from the
patterns present in the match expression until the pattern contains no more constructors.
Prior to constructor elimination, patterns are grouped by constructor, and the algorithm
recurses with each group to compile the rest of the expression. When a pattern fails to
match and there are no more patterns to test, the algorithm backtracks and tests the pat-
terns of the parent expression. For instance, the match expression above would be translated to:

74 CHAPTER 4. COMPILING GENERATORS

let (x0, x1) = x;
fn case_true () -> i32 {

match x1 {
E::A => 1, // P1
E::B(y) => match y {

1 => 2, // P2
_ => case_default ()

}
}

}
fn case_false () -> i32 {

match x1 {
E::B(y) => y + 2, // P3
_ => case_default ()

}
}
fn case_default () -> i32 {

match x1 {
E::A => 3, // P4
_ => 4 // P5

}
}
match x0 {

true => case_true (),
false => case_false ()

}

This code starts by inspecting the �rst element of the pair, x0, and depending on the value calls
either one of case_true or case_false. Now, for the true case, there are two patterns that have
that constructor: The patterns commented as P1 and P2. Therefore, the case_true function
tests those two patterns, and calls the default case when none match. In the false case, there
is only one pattern that has that constructor, P3, and case_false therefore tests if it matches
and switches to the default case when it does not. Finally, case_default corresponds to P4, the
only default pattern (the one with a �rst element not being a data type constructor). Note that
this example is a simpli�cation of what would happen in practice, because cases are usually
modelled as basic blocks in the generated program, not functions.

This code generation method, on top of reducing the number of tests compared to the naive
method used in Impala, guarantees that the generated code size is linear in the number of arms
of the original match expression. However, because it applies backtracking when patterns do
not match, it has the disadvantage that a particular element may be inspected several times: In
the example above, x1 can be tested up to two times, if the input value is of the form (true, E

::B(y)) with y != 2, or if it is of the form (false, E::A). Consequently, if performance is the
primary goal of the code generator, decision trees should be used instead.

4.2.2 Decision Trees

Decision trees were introduced in the context of pattern matching in 1985 [BM85], at the same
time as backtracking automata. The principle behind this compilation technique is to inspect
an element of a pattern only once, and decide on an action based on the result. A pattern
matching compiler using this technique selects a column of the pattern (e.g. the element of a
pair, or the member of a structure) based on some heuristic, and then groups patterns based
on their data type constructor in that column: This is so far similar to backtracking automata,

4.2. PATTERN MATCHING 75

in that we have now a set of patterns for each data type constructor. However, there is no
backtracking involved: For each data type constructor, we then add to the associated list of
patterns the patterns that have a variable instead of a constructor on that column, so that every
case is covered without having to test the enclosing match expression. Finally, if the data type
constructors that are considered form a signature (they cover all possible values for the element
in the chosen column), then no default case is generated. If they do not, then the default case is
generated by gathering patterns that have a variable in the chosen column. For instance, in
the match expression above, the compiler may choose the �rst column—the �rst element of the
pair—to make a decision: In that case, the patterns are grouped by their data type constructor
in that column, true or false. For the true case, we get a list of patterns containing P1 and
P2, to which we add P4 and P5 since they have a variable (not a data type constructor) in the
�rst column. Likewise, we get the list made of P3, P4, and P5 in the false case. For those
two cases, we can now eliminate the chosen column of each pattern in the associated list and
recurse on the resulting list of patterns. Since true and false form a signature for bool, no
default case is generated. To sum things up, the match expression above would be compiled to:
let (x0 , x1) = x;
fn P1() -> i32 { 1 }
fn P2() -> i32 { 2 }
fn P3(y: i32) -> i32 { y + 2 }
fn P4() -> i32 { 3 }
fn P5() -> i32 { 4 }
fn case_true () -> i32 {

match x1 {
E::A => P1(),
E::B(y) => match y {

1 => P2(),
_ => P5()

}
}

}
fn case_false () -> i32 {

match x1 {
E::B(y) => P3(y),
E::A => P4()

}
}
match x0 {

true => case_true (),
false => case_false ()

}

One obvious di�erence with the generated code from backtracking automata is that each
column—x0 or x1—is inspected only once. Additionally, because patterns that contain variables
may be duplicated several times (once per data type constructor), the value associated with each
pattern must be wrapped into one function to avoid creating too much code. For instance if we
were compiling the following expression by choosing the �rst column as a decision variable:

76 CHAPTER 4. COMPILING GENERATORS

match x {
(true , E::B(_)) => 1,
(false , E::A) => 2,
(_, _) => {

/* Lots of code */
}

}

The generated code would contain the last pattern in both the true and false cases. Thus,
wrapping each pattern in its own function makes sure that the code contained in the last pattern
is not replicated everytime it is used, but that instead, a call to its corresponding function is
made. Note that the remark made in the previous section still applies: This presentation is a
simpli�cation as in practice those functions would in fact be basic blocks of the function being
generated.

Another advantage of using decision trees is that it is easy to see if a match expression is
exhaustive, or if some cases are redundant: Since we have the generated decision tree at hand,
we can easily explore it to see if cases are not covered. With backtracking automata, it is not
so obvious to check the exhaustivity of a match expression, because the generated code might
backtrack in the case where a data type constructor is not covered in the current pattern.

Finally, generating the best possible decision tree, a problem also known as the dispatching
problem, is NP-complete [BM85]. However, the choice of column from which to create the next
level of the decision tree is open to many heuristics [Mar08]. This allows to optimize the shape
of the �nal tree, since matching on some columns might create shallower trees.

To conclude, decision trees seem to be a superior alternative to backtracking automata, both
in terms of performance of the generated code and implementation e�ort, since exhaustivity
checks can be integrated into the pattern matching compiler. Their only disadvantage is in
the size of the generated code, which is mitigated by the fact that we wrap each pattern in its
own function. Thus, we have implemented this compilation technique, along with heuristics
favoring the �rst row of a pattern, small amounts of variable patterns, and a small branching
factor (known as f , d , and b, respectively, in previous work [Mar08]), in another front-end for
AnyDSL 2. Hopefully, this should now allow users to rely more often on sum types and pattern
matching when writing high-performance code, something that we were reluctant to do in the
past, given the poor quality of the code generated by Impala.

4.3 Memory Management

Managing memory is always a major problem in programming language design. Some languages
allow the user to manipulate pointers to memory directly, disregarding any safety concern, like
C. Others try to make allocating memory safe by using either garbage collection or a complex
type system, like Haskell or Rust, respectively. For AnyDSL, the question is even broader than
traditional programming languages. We are dealing with memory that can reside on di�erent
devices, possibly even in di�erent address spaces (shared versus private memory in CUDA, for
example).

2https://github.com/AnyDSL/artic

https://github.com/AnyDSL/artic

4.3. MEMORY MANAGEMENT 77

In general, memory management techniques fall into two categories: automatic memory
management, and manual memory management. The latter is simply referring to the idea of
letting the programmer decide when to allocate and deallocate data structures, and thus can be
at the same time tedious and error-prone: This is the approach chosen in the current version
of Impala. The former is describing a wide array of techniques, which automatically decide
when memory should be allocated and deallocated, either at compile-time, using static program
analysis, or at runtime, using garbage collection.

4.3.1 Manual Memory Management

In Impala, there is currently no automated system to allocate or deallocate memory. In particular,
local variables are placed on the stack, but their lifetime might be extended by partial evaluation.
Take the following piece of Impala code, for example:
fn @f() -> &mut i32 { let mut a = 0; &mut a }
*f() = 5;

In this example, f returns the address of a, which is a variable private to f. If f is not inlined,
the value returned by f is a local stack variable that is no longer alive after the call, and hence
this code will not work. The important note to make here is that after partial evaluation, the
optimized version of this program does not exhibit this issue anymore. The call to f will be
specialized, and a will be pulled out of its scope, into the scope of the callee. In general, partial
evaluation can (and eventually will) change the lifetime of variables. Clearly, a proper language
design would either declare that local variables have a local lifetime and reject this program,
or would handle such cases with a system that ensures that the behavior is the same with and
without partial evaluation.

Moreover, in Impala, manual memory management forces the user to allocate and deal-
locate host or device memory with speci�c functions for each device: alloc_cpu, alloc_cuda,
or alloc_opencl, for instance. These functions return a pointer or some opaque object that
represents the allocated memory that is only valid on the device for which it is allocated. For
instance, the following code would crash at runtime:
let dev = /* ... */;
let grid = /* ... */;
let block = /* ... */;
let ptr = alloc_cpu(/* ... */);
with cuda(dev , grid , block) {

*ptr(id) = 42;
}

Listing 4.1: Incorrect use of a host pointer on a device

Indeed, the pointer ptr obtained from alloc_cpu is only valid on the CPU. Trying to use it on
a GPU using the cuda intrinsic will cause the GPU driver to report an access violation error.
As said previously, two options exist to handle this case: Rejecting the program, or accepting
it, but making sure the pointer is transformed to a device pointer before launching the kernel.
Rejecting problematic programs such as the one above usually requires to add some level of
type-checking. Accepting them, on the other hand, requires to dynamically track ownership
of memory: In the previous example, the pointer ptr was allocated right before the call, but

78 CHAPTER 4. COMPILING GENERATORS

in general, this pointer might come from a function parameter, or could be stored in a data
structure, which makes compile-time tracking impossible in general.

4.3.2 Automatic Memory Management

Automatic memory management systems can run at compile-time, at runtime, or a combination
of both. Compile-time solutions for memory management include e�ect and region-based
type-systems [GL86; TT94], or compile-time analyses [KM05]. Runtime memory management,
on the other hand, is based on various forms of garbage collection, deallocating unreachable
memory—garbage—when it is no longer used.

Region-based Memory Management

One way to control how memory is allocated and deallocated is to use a stack of regions, which
are blocks of memory that contain allocated objects. Then, all the allocations inside one region
can be reclaimed by reclaiming the region itself and its children—the regions that appear above
it in the region stack. This is in essence extending the stack-based allocation technique [Dij60]
to arbitrary data and lifetimes that are potentially larger than the body of a function.

In order to integrate regions to a programming language, one can either add them as
syntactic constructs, or rely on static analysis to perform region inference [TT94]. The issue
with the �rst approach is that it requires to change the way programs are written by explicitly
annotating the lifetimes of variables, which is tedious. The second method does not require
user intervention, but may generate lifetimes that are not optimal in some cases, potentially
covering the entire duration of the program. For such problematic allocations, it is possible to
fall back to garbage collection [HET02].

Linear Type Systems

Instead of using regions, it is also possible to use a linear type system [Laf88], a form of
substructural type system in which the rules of weakening and contraction are disallowed.
By removing those two rules, linear type systems ensure that variables are used at least once
(no weakening), and at most once (no contraction). Thus, in those systems, variables can only
be used once, and this means that their lifetimes can be determined at compile-time, since
the points of the program where they are introduced and eliminated are known. Compared
to languages with region inference, languages with linear type systems require more user
intervention: Programmers have to be careful in the way they design their data structures and
algorithms, otherwise the type-checker will complain that variables are not used, or that they
are used too many times.

In the context of Impala, using a linear type system or implementing region-based memory
management would not completely solve our problems: While those systems would handle allo-
cation and deallocation of objects, they would not solve the problem of rejecting or transforming
programs that access host memory on a device, like the one in Listing 4.1.

4.3. MEMORY MANAGEMENT 79

E�ect Type Systems

In order to disallow or detect programs such as the one in Listing 4.1, the type system would
have to be enhanced with e�ects representing memory allocation, deallocation, and access. Such
a type system is called an e�ect type system [GL86], and has the following type judgment:

Σ ⊢ e ∶� T

Which, intuitively means that, under the assumptions in Σ, the expression e evaluates to a
value of type T , producing e�ects � in the process. With a typing judgment like this, it is now
possible to encode rules that forbid memory accesses to host memory from device code, and
vice-versa, since the well-typedness of an expression can depend on the e�ects performed in
that expression.

Applying these type-based techniques in Impala con�icts with the fact that partial evaluation
might drastically change the lifetime of objects, as noted in the previous section. Since partial
evaluation is run only after type-checking, any analysis done at type-checking time will miss
those changes. The other issue is that these systems either require user intervention or need a
garbage collector to handle corner cases. If a garbage collector has to be implemented anyway,
a combination of static analyses with a garbage collector seem to be a superior alternative for
Impala. In particular, escape analysis [KM05], an analysis that tries to determine what can be
allocated on the stack and what requires dynamic memory management, provides an addition
that would be lightweight to implement, only requiring an additional pass in the compiler.

Garbage Collection

Garbage collection is an umbrella term that can refer to many algorithms, including, but not
limited to reference counting [Col60], mark and sweep [McC60], copying collection [FY69]. In
general, the idea is to dynamically trace objects created in the mutator—the program whose
memory the garbage collector is managing—and to deallocate them when they are no longer
reachable.

Reference counting is a particular case of garbage collection for non-cyclic data structures,
in which a counter is associated with an object. That counter is initialized with 1, and is
incremented when the object enters a scope, and decremented once the object goes out of a
scope. Thus, when the counter becomes 0, the object is no longer reachable at any point in the
program and can then be safely deallocated.

Algorithms like mark and sweep and copying collection are more general and work by
tracing live objects at a given point in the execution of a program, called the roots. With mark
and sweep, the set of roots is inspected in a marking phase, and objects that are not reachable
anymore from that set are marked for deallocation. In a second sweeping phase, objects that
were marked for deallocation are deallocated. This algorithm is simple and fast, but su�ers from
the fact that it can introduce fragmentation.

In the copying garbage collection algorithm, there are two areas of memory, called semi-
spaces. One contains the current, valid objects, and the second contains old, no longer valid
ones. At each collection, the two spaces are exchanged and the objects of the program are
moved from one space to the other, by copying them. This algorithm is also relatively simple

80 CHAPTER 4. COMPILING GENERATORS

and does not exhibit fragmentation, but has the drawback that it has to copy a potentially large
amount of data at each collection.

On top of these basic algorithms, there are variants that allow parallel [ETY97] (using
multiple threads in the garbage collector), concurrent [AEL88] (running the garbage collector
in parallel with the mutator), or incremental collections [Pir98] (interleaving mutator execution
and garbage collection). These additions can improve either the latency or throughput of the
mutator, or, in the case of parallel collections, both.

The traditional complaints made by opponents of garbage collection concern its speed.
Garbage collection is seen as slow, ine�ective and sometimes even wasteful—in the case of
techniques such as copying garbage collection. There are several reasons for this, but they
usually all boil down to one thing: implementation choices. In AnyDSL, the philosophy is to give
the programmer full control, and that should include any runtime garbage collection system.
With that in mind, it makes sense to expose a garbage collection API that allows the programmer
to give performance hints to the garbage collector or trigger collections. Beyond that, the major
problem with garbage collection systems is not garbage collection per se. Languages that feature
a garbage collector typically allocate a lot of small objects and recursive data structures, making
collection pauses very long, and this is simply not the case for the typical application written in
Impala. The traversal library in Chapter 2, for instance, only allocates large arrays containing
non-recursive data types such as rays, BVH nodes (with indices instead of pointers) and hit
points.

To conclude, it seems that garbage collection is a valid option for AnyDSL programs: It
allows to track memory along with the devices on which said memory is valid, and thus would
allow the runtime to automatically transfer memory between devices when necessary. There
are many variants that could be implemented in the runtime, but it seems that non-copying
collectors are better for Impala programs, since copying and compacting data that resides on a
device can be slow. If a garbage collector that may exhibit fragmentation is used (e.g. a mark and
sweep collector), AnyDSL programmers should be advised to use arrays instead of small objects
containing pointers. As noted earlier, Rodent, the renderer presented in this thesis, already
uses large arrays whenever possible, and hence we believe this is a reasonable restriction. In
any case, avoiding small objects connected by pointers is a good programming practice for
high-performance programs, because dereferencing a pointer is an expensive operation, even
more so when the data pointed to is not in cache.

Conclusion

In this thesis, we have presented a way to generate entire renderers. Based on partial evaluation,
our technique allows to generate from traversal kernels to complete renderers. Previous attempts
at using meta-programming for rendering were either limited in their scope [And96] or targeting
rendering subsystems alone [GKR95].

While generating renderers might seem an outlandish idea, there are in fact very strong
incentives behind our work. First, the ever increasing complexity of computing hardware, from
CPUs and GPUs to FPGAs, has lead us into an ever increasing set of incompatible technologies
that prevent software developers from writing high-level, high-performance and portable code.
Second, there is potential to optimize renderers beyond the shading system. Renderers are very
logically con�gurable tools that act like interpreters of scene data. In this context, it is then
natural to use partial evaluation to get the result of compiling a renderer for a scene, instead of
relying on slow interpretation.

Consequently, we believe this work addresses a void in the high-performance rendering
community. In other domains, like image processing, custom solutions to the two problems
mentioned above have been developed, under the form of DSLs, such as Halide [Rag+13]. This
allows the compiler to take advantage of domain-speci�c knowledge to optimize the program
for a particular algorithm on some speci�c hardware platform. Our work essentially addresses
the same issues for rendering, but it is novel in the sense that it presents an alternative to
building custom compilers for rendering. All of the knowledge speci�c to rendering is encoded
as code: partial evaluation annotations and custom accelerator mappings. In the compiler used
in this thesis, there is no heuristic or automatic algorithm to select the best code path for a given
target hardware: The hardware expert knows the best strategy, and the compiler o�er tools to
implement that strategy e�ortlessly, such as guided vectorization or triggered code-generation.

A key bene�t of this design is that we do not have to write a renderer generator, as required
with other meta-programming techniques. All of our code is standard, text-book rendering code,
with a clean API. This is a consequence of the �rst Futamura [Fut99] projection: In essence,
we obtain the compiled version of a program, by partially evaluating an interpreter—in our
case, the renderer—for its input—here, the scene data. Our results demonstrate that we can at
the same time solve the performance-portability issue, and specialize renderers to extract even
more performance.

We provide all the code presented in this thesis as Open-Source at https://github.com/
AnyDSL/rodent. The compiler framework used in this thesis is also distributed as Open-Source,
and is available as https://github.com/AnyDSL/anydsl.

81

https://github.com/AnyDSL/rodent
https://github.com/AnyDSL/rodent
https://github.com/AnyDSL/anydsl

82 CHAPTER 4. COMPILING GENERATORS

Thanks

I would like to thank my entire family and my friends for their strong support all these years,
and all the people in Saarland University. I would also like to thank my all my co-workers
in the Computer Graphics Lab and Compiler Design Lab, in particular Richard Membarth,
Roland Leißa, Pascal Grittmann, and Javor Kalojanov. Finally, I would like to thank both Philipp
Slusallek and Sebastian Hack for supporting this work and sharing their knowledge with me.

83

84 CHAPTER 4. COMPILING GENERATORS

Bibliography

[18a] NVIDIA Material De�nition Language Speci�cation. version 1.4.4. NVIDIA. 2018.
[18b] Open Shading Language Speci�cation. version 1.10. Sony Pictures Imageworks.

2018.
[20] NVIDIA CUDA C Programming Guide. version 10.2. NVIDIA. 2020.
[88] RenderMan Interface Speci�cation. version 3.0. Pixar. 1988.
[AEL88] A. W. Appel, J. R. Ellis, and K. Li. “Real-Time Concurrent Collection on Stock

Multiprocessors”. In: SIGPLAN Not. 23.7 (June 1988), pp. 11–20. issn: 0362-1340.
doi: 10.1145/960116.53992.

[Áfr+16] Attila T. Áfra et al. “Local Shading Coherence Extraction for SIMD-e�cient Path
Tracing on CPUs”. In: Proceedings of High Performance Graphics. HPG ’16. Dublin,
Ireland: Eurographics Association, 2016, pp. 119–128. isbn: 978-3-03868-008-6. doi:
10.2312/hpg.20161198.

[AK90] James Arvo and David Kirk. “Particle Transport and Image Synthesis”. In: SIG-
GRAPH Comput. Graph. 24.4 (1990), pp. 63–66. issn: 0097-8930. doi: 10.1145/
97880.97886.

[AL09] Timo Aila and Samuli Laine. “Understanding the E�ciency of Ray Traversal on
GPUs”. In: Proceedings of High-Performance Graphics 2009. 2009.

[ALK12] Timo Aila, Samuli Laine, and Tero Karras. Understanding the E�ciency of Ray
Traversal on GPUs - Kepler and Fermi Addendum. Tech. rep. 2012.

[AMD15] AMD. OpenCL Optimization Guide. Tech. rep. 2015.
[And96] Peter Holst Andersen. “Partial evaluation applied to ray tracing”. In: Software

Engineering im Scienti�c Computing. Springer, 1996, pp. 78–85.
[ÁS14] Attila T. Áfra and László Szirmay-Kalos. “Stackless Multi-BVH Traversal for CPU,

MIC and GPU Ray Tracing”. In: Computer Graphics Forum 33.1 (2014), pp. 129–140.
doi: 10.1111/cgf.12259.

[ASU86] Alfred V Aho, Ravi Sethi, and Je�rey D Ullman. Compilers, principles, techniques.
Vol. 7. 8. Addison Wesley, 1986, p. 9.

[Aug85] Lennart Augustsson. “Compiling Pattern Matching”. In: Proceedings of a Conference
on Functional Programming Languages and Computer Architecture. Nancy, France:
Springer-Verlag, 1985, pp. 368–381. isbn: 3-540-15975-4.

85

https://doi.org/10.1145/960116.53992
https://doi.org/10.2312/hpg.20161198
https://doi.org/10.1145/97880.97886
https://doi.org/10.1145/97880.97886
https://doi.org/10.1111/cgf.12259

86 BIBLIOGRAPHY

[BA13] Rasmus Barringer and Tomas Akenine-Möller. “Dynamic Stackless Binary Tree
Traversal”. In: Journal of Computer Graphics Techniques (JCGT) 2.1 (2013), pp. 38–
49. issn: 2331-7418. url: http://jcgt.org/published/0002/01/03/.

[BA14] Rasmus Barringer and Tomas Akenine-Möller. “Dynamic Ray Stream Traversal”.
In: ACM Trans. Graph. 33.4 (July 2014), 151:1–151:9. issn: 0730-0301. doi: 10.1145/
2601097.2601222.

[Ben+12] Carsten Benthin et al. “Combining Single and Packet-Ray Tracing for Arbitrary Ray
Distributions on the Intel MIC Architecture”. In: IEEE Transactions on Visualization
and Computer Graphics 18.9 (2012), pp. 1438–1448. issn: 1077-2626. doi: 10.1109/
TVCG.2011.277.

[Ben75] Jon Louis Bentley. “Multidimensional Binary Search Trees Used for Associative
Searching”. In: Commun. ACM 18.9 (Sept. 1975), pp. 509–517. issn: 0001-0782. doi:
10.1145/361002.361007.

[BM85] Marianne Baudinet and David Macqueen. Tree Pattern Matching for ML (Extended
Abstract). Tech. rep. 1985.

[Bro+11] Kevin J. Brown et al. “A Heterogeneous Parallel Framework for Domain-Speci�c
Languages”. In: 12th International Conference on Parallel Architectures and Compi-
lation Techniques (PACT). 2011, pp. 89–100. doi: 10.1109/PACT.2011.15.

[Car18] Michael Royce Carroll. “Improving Performance of OpenCL Workloads on Intel
Processors with Pro�ling Tools”. In: Proceedings of the International Workshop on
OpenCL. IWOCL ’18. Oxford, United Kingdom: ACM, 2018, 6:1–6:1. isbn: 978-1-
4503-6439-3. doi: 10.1145/3204919.3204925.

[CDZ10] Sylvain Collange, David Defour, and Yao Zhang. “Dynamic Detection of Uniform
and A�ne Vectors in GPGPU Computations”. In: Proceedings of the 2009 Inter-
national Conference on Parallel Processing. Euro-Par’09. Delft, The Netherlands:
Springer-Verlag, 2010, pp. 46–55. isbn: 978-3-642-14121-8. url: http://dl.acm.
org/citation.cfm?id=1884795.1884804.

[Col60] George E. Collins. “A Method for Overlapping and Erasure of Lists”. In: Commun.
ACM 3.12 (Dec. 1960), pp. 655–657. issn: 0001-0782. doi: 10.1145/367487.367501.

[DeV+11] Zach DeVito et al. “Liszt: a domain speci�c language for building portable mesh-
based PDE solvers”. In: Conference on High Performance Computing Networking,
Storage and Analysis (SC). 2011, 9:1–9:12. doi: 10.1145/2063384.2063396.

[DH02] J. Döllner and K. Hinrichs. “A Generic Rendering System”. In: IEEE Transactions on
Visualization and Computer Graphics 8.2 (2002), pp. 99–118. issn: 1077-2626. doi:
10.1109/2945.998664.

[DHK08] Holger Dammertz, Johannes Hanika, and Alexander Keller. “Shallow Bounding
Volume Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays”. In: Proceedings
of the Nineteenth Eurographics Conference on Rendering. Sarajevo, Bosnia and
Herzegovina: Eurographics Association, 2008, pp. 1225–1233. doi: 10.1111/j.
1467-8659.2008.01261.x.

http://jcgt.org/published/0002/01/03/
https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1145/2601097.2601222
https://doi.org/10.1109/TVCG.2011.277
https://doi.org/10.1109/TVCG.2011.277
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/PACT.2011.15
https://doi.org/10.1145/3204919.3204925
http://dl.acm.org/citation.cfm?id=1884795.1884804
http://dl.acm.org/citation.cfm?id=1884795.1884804
https://doi.org/10.1145/367487.367501
https://doi.org/10.1145/2063384.2063396
https://doi.org/10.1109/2945.998664
https://doi.org/10.1111/j.1467-8659.2008.01261.x
https://doi.org/10.1111/j.1467-8659.2008.01261.x

BIBLIOGRAPHY 87

[Dij60] E. W. Dijkstra. “Recursive Programming”. In: Numerische Mathematik 2.1 (Dec.
1960), pp. 312–318. issn: 0029-599X. doi: 10.1007/BF01386232.

[DM82] Luis Damas and Robin Milner. “Principal Type-Schemes for Functional Programs”.
In: Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’82. Albuquerque, New Mexico: Association for Com-
puting Machinery, 1982, pp. 207–212. isbn: 0897910656. doi: 10.1145/582153.
582176. url: https://doi.org/10.1145/582153.582176.

[Dut03] Philip Dutré. “Global illumination compendium”. In: (2003).
[EG08] Manfred Ernst and Gunther Greiner. “Multi bounding volume hierarchies”. In:

Interactive Ray Tracing, 2008. RT 2008. IEEE Symposium on. IEEE. 2008, pp. 35–40.
[Eis+13] Christian Eisenacher et al. “Sorted Deferred Shading for Production Path Tracing”.

In: Computer Graphics Forum 32.4 (2013), pp. 125–132. doi: 10.1111/cgf.12158.
[ETY97] Toshio Endo, Kenjiro Taura, and Akinori Yonezawa. “A Scalable Mark-Sweep

Garbage Collector on Large-Scale Shared-Memory Machines”. In: Proceedings of
the 1997 ACM/IEEE Conference on Supercomputing. SC ’97. San Jose, CA: Association
for Computing Machinery, 1997, pp. 1–14. isbn: 0897919858. doi: 10.1145/509593.
509641.

[Fre03] Ivar Fredholm. “Sur une classe d’équations fonctionelles”. In: Acta Mathematica 27
(1903), pp. 365–390. doi: 10.1007/BF02421317.

[FTI86] A. Fujimoto, T. Tanaka, and K. Iwata. “ARTS: Accelerated Ray-Tracing System”.
In: IEEE Computer Graphics and Applications 6.4 (1986), pp. 16–26. issn: 0272-1716.
doi: 10.1109/MCG.1986.276715.

[Fut83] Yoshihiko Futamura. “Partial computation of programs”. In: RIMS Symposia on
Software Science and Engineering. Ed. by Eiichi Goto et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1983, pp. 1–35. isbn: 978-3-540-39442-6.

[Fut99] Yoshihiko Futamura. “Partial Evaluation of Computation Process–An Approach to
a Compiler-Compiler”. In: Higher Order Symbol. Comput. 12.4 (1999), pp. 381–391.
issn: 1388-3690. doi: 10.1023/A:1010095604496.

[FY69] Robert R. Fenichel and Jerome C. Yochelson. “A LISP Garbage-Collector for Virtual-
Memory Computer Systems”. In: Commun. ACM 12.11 (Nov. 1969), pp. 611–612.
issn: 0001-0782. doi: 10.1145/363269.363280.

[Geo+12] Iliyan Georgiev et al. “Light transport simulation with vertex connection and
merging”. In: ACM Trans. Graph. 31.6 (2012), 192:1–192:10. issn: 0730-0301. doi:
10.1145/2366145.2366211.

[Geo13] Iliyan Georgiev. Implementing Vertex Connection and Merging. Tech. rep. 2013.
[GKR95] Brian Guenter, Todd B. Knoblock, and Erik Ruf. “Specializing Shaders”. In: Proceed-

ings of the 22Nd Annual Conference on Computer Graphics and Interactive Techniques.
SIGGRAPH ’95. New York, NY, USA: ACM, 1995, pp. 343–350. isbn: 0-89791-701-4.
doi: 10.1145/218380.218470.

https://doi.org/10.1007/BF01386232
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1111/cgf.12158
https://doi.org/10.1145/509593.509641
https://doi.org/10.1145/509593.509641
https://doi.org/10.1007/BF02421317
https://doi.org/10.1109/MCG.1986.276715
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/363269.363280
https://doi.org/10.1145/2366145.2366211
https://doi.org/10.1145/218380.218470

88 BIBLIOGRAPHY

[GL86] David K. Gi�ord and John M. Lucassen. “Integrating Functional and Imperative
Programming”. In: Proceedings of the 1986 ACM Conference on LISP and Functional
Programming. LFP ’86. Cambridge, Massachusetts, USA: Association for Computing
Machinery, 1986, pp. 28–38. isbn: 0897912004. doi: 10.1145/319838.319848.

[Gla89] Andrew S. Glassner, ed. An Introduction to Ray Tracing. London, UK, UK: Academic
Press Ltd., 1989. isbn: 0-12-286160-4.

[Gos+14] James Gosling et al. The Java Language Speci�cation, Java SE 8 Edition. 1st. Addison-
Wesley Professional, 2014. isbn: 013390069X.

[GS08] Iliyan Georgiev and Philipp Slusallek. “RTfact: Generic concepts for �exible and
high performance ray tracing”. In: 2008 IEEE Symposium on Interactive Ray Tracing.
2008, pp. 115–122. doi: 10.1109/RT.2008.4634631.

[Gut14] Michael Guthe. “Latency Considerations of Depth-�rst GPU Ray Tracing”. In: Euro-
graphics 2014 - Short Papers. Ed. by Eric Galin and Michael Wand. The Eurographics
Association, 2014. doi: 10.2312/egsh.20141013.

[Hal77] Maurice H. Halstead. Elements of Software Science (Operating and Programming
Systems Series). New York, NY, USA: Elsevier Science Inc., 1977. isbn: 0444002057.

[Hap+13] Michal Hapala et al. “E�cient Stack-less BVH Traversal for Ray Tracing”. In:
Proceedings of the 27th Spring Conference on Computer Graphics. SCCG ’11. Viničné,
Slovak Republic: ACM, 2013, pp. 7–12. isbn: 978-1-4503-1978-2. doi: 10.1145/
2461217.2461219.

[Hee05] Bastiaan J Heeren. “Top quality type error messages”. PhD thesis. Utrecht Univer-
sity, 2005.

[HET02] Niels Hallenberg, Martin Elsman, and Mads Tofte. “Combining Region Inference
and Garbage Collection”. In: SIGPLAN Not. 37.5 (May 2002), pp. 141–152. issn:
0362-1340. doi: 10.1145/543552.512547.

[Jon96] Neil D. Jones. “An Introduction to Partial Evaluation”. In: ACM Comput. Surv. 28.3
(1996), pp. 480–503. issn: 0360-0300. doi: 10.1145/243439.243447.

[Kah50] Herman Kahn. “Random sampling (Monte Carlo) techniques in neutron attenuation
problems–I.” In: Nucleonics 6.5 (1950).

[Kaj86] James T. Kajiya. “The Rendering Equation”. In: SIGGRAPH Comput. Graph. 20.4
(1986), pp. 143–150. issn: 0097-8930. doi: 10.1145/15886.15902.

[KBS11] Javor Kalojanov, Markus Billeter, and Philipp Slusallek. “Two-Level Grids for Ray
Tracing on GPUs”. In: Computer Graphics Forum 30.2 (2011), pp. 307–314. doi:
10.1111/j.1467-8659.2011.01862.x.

[KK86] Timothy L. Kay and James T. Kajiya. “Ray Tracing Complex Scenes”. In: SIGGRAPH
Comput. Graph. 20.4 (1986), pp. 269–278. issn: 0097-8930. doi: 10.1145/15886.
15916.

https://doi.org/10.1145/319838.319848
https://doi.org/10.1109/RT.2008.4634631
https://doi.org/10.2312/egsh.20141013
https://doi.org/10.1145/2461217.2461219
https://doi.org/10.1145/2461217.2461219
https://doi.org/10.1145/543552.512547
https://doi.org/10.1145/243439.243447
https://doi.org/10.1145/15886.15902
https://doi.org/10.1111/j.1467-8659.2011.01862.x
https://doi.org/10.1145/15886.15916
https://doi.org/10.1145/15886.15916

BIBLIOGRAPHY 89

[KM05] Thomas Kotzmann and Hanspeter Mössenböck. “Escape Analysis in the Context of
Dynamic Compilation and Deoptimization”. In: Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments. VEE ’05. Chicago,
IL, USA: ACM, 2005, pp. 111–120. isbn: 1-59593-047-7. doi: 10.1145/1064979.
1064996.

[Laf88] Y. Lafont. “The linear abstract machine”. In: Theoretical Computer Science 59.1
(1988), pp. 157–180. issn: 0304-3975. doi: 10.1016/0304-3975(88)90100-4.

[Lai10] Samuli Laine. “Restart Trail for Stackless BVH Traversal”. In: Proceedings of High
Performance Graphics. HPG ’10. Saarbrucken, Germany: Eurographics Association,
2010, pp. 107–111.

[Lee+17] Mark Lee et al. “Vectorized Production Path Tracing”. In: Proceedings of High
Performance Graphics. HPG ’17. Los Angeles, California: ACM, 2017, 10:1–10:11.
isbn: 978-1-4503-5101-0. doi: 10.1145/3105762.3105768.

[Lei+18] Roland Leißa et al. “AnyDSL: A Partial Evaluation Framework for Programming
High-performance Libraries”. In: Proceedings of ACM Program. Lang. 2.OOPSLA
(2018), 119:1–119:30. issn: 2475-1421. doi: 10.1145/3276489.

[LHH14] Roland Leißa, Immanuel Ha�ner, and Sebastian Hack. “Sierra: a SIMD extension for
C++”. In: Proceedings of the 2014 Workshop on Programming models for SIMD/Vector
processing. ACM. 2014, pp. 17–24.

[LKA13] Samuli Laine, Tero Karras, and Timo Aila. “Megakernels Considered Harmful:
Wavefront Path Tracing on GPUs”. In: Proceedings of the 5th High-Performance
Graphics Conference (HPG). ACM, July 2013, pp. 137–143. doi: 10.1145/2492045.
2492060.

[Mar08] Luc Maranget. “Compiling Pattern Matching to Good Decision Trees”. In: Proceed-
ings of the 2008 ACM SIGPLAN Workshop on ML. ML ’08. Victoria, BC, Canada:
Association for Computing Machinery, 2008, pp. 35–46. isbn: 9781605580623. doi:
10 . 1145 / 1411304 . 1411311. url: https : / / doi . org / 10 . 1145 / 1411304 .
1411311.

[Mar10] Simon Marlow. Haskell 2010 Language Report. 2010.
[McC60] John McCarthy. “Recursive Functions of Symbolic Expressions and Their Compu-

tation by Machine, Part I”. In: Commun. ACM 3.4 (Apr. 1960), pp. 184–195. issn:
0001-0782. doi: 10.1145/367177.367199.

[Mea82] Donald Meagher. “Geometric modeling using octree encoding”. In: Computer
Graphics and Image Processing 19.2 (1982), pp. 129–147. issn: 0146-664X. doi:
10.1016/0146-664X(82)90104-6.

[Mem+16] Richard Membarth et al. “HIPAcc : A Domain-Speci�c Language and Compiler for
Image Processing”. In: IEEE Trans. Parallel Distrib. Syst. 27.1 (2016), pp. 210–224.
doi: 10.1109/TPDS.2015.2394802.

https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1145/1064979.1064996
https://doi.org/10.1016/0304-3975(88)90100-4
https://doi.org/10.1145/3105762.3105768
https://doi.org/10.1145/3276489
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/2492045.2492060
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1145/367177.367199
https://doi.org/10.1016/0146-664X(82)90104-6
https://doi.org/10.1109/TPDS.2015.2394802

90 BIBLIOGRAPHY

[MGN17] Thomas Müller, Markus Gross, and Jan Novák. “Practical Path Guiding for E�cient
Light-Transport Simulation”. In: Computer Graphics Forum (Proceedings of EGSR)
36.4 (2017), pp. 91–100. doi: 10.1111/cgf.13227.

[MH18] Simon Moll and Sebastian Hack. “Partial Control-�ow Linearization”. In: SIGPLAN
Not. 53.4 (2018), pp. 543–556. issn: 0362-1340. doi: 10.1145/3296979.3192413.

[Mil94] Gavin Miller. “E�cient Algorithms for Local and Global Accessibility Shading”.
In: Proceedings of the 21st Annual Conference on Computer Graphics and Interac-
tive Techniques. SIGGRAPH ’94. New York, NY, USA: Association for Computing
Machinery, 1994, pp. 319–326. isbn: 0897916670. doi: 10.1145/192161.192244.

[MQP02] Michael D. McCool, Zheng Qin, and Tiberiu S. Popa. “Shader Metaprogramming”.
In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics
Hardware. HWWS ’02. Saarbrucken, Germany: Eurographics Association, 2002,
pp. 57–68. isbn: 1-58113-580-7.

[NT98] Viet N Ngo and Wei-Tek Tsai. Outer loop vectorization. US Patent 5,802,375. 1998.
[NZ08] Dorit Nuzman and Ayal Zaks. “Outer-loop Vectorization: Revisited for Short SIMD

Architectures”. In: Proceedings of the 17th International Conference on Parallel
Architectures and Compilation Techniques. PACT ’08. Toronto, Ontario, Canada:
ACM, 2008, pp. 2–11. isbn: 978-1-60558-282-5. doi: 10.1145/1454115.1454119.

[Ofe+13] Georg Ofenbeck et al. “Spiral in Scala: Towards the Systematic Construction of
Generators for Performance Libraries”. In: International Conference on Generative
Programming: Concepts & Experiences (GPCE). 2013, pp. 125–134. doi: 10.1145/
2517208.2517228.

[ORM08] Ryan Overbeck, Ravi Ramamoorthi, and William R. Mark. “Large Ray Packets
for Real-time Whitted Ray Tracing”. In: 2008 IEEE Symposium on Interactive Ray
Tracing. 2008, pp. 41–48. doi: 10.1109/RT.2008.4634619.

[Par+10] Steven G. Parker et al. “OptiX: A General Purpose Ray Tracing Engine”. In: ACM
Transactions on Graphics (2010). doi: 10.1145/1778765.1778803.

[Pér+17] Arsène Pérard-Gayot et al. “RaTrace: Simple and E�cient Abstractions for BVH
Ray Traversal Algorithms”. In: Proceedings of the 16th ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. GPCE 2017.
Vancouver, BC, Canada: ACM, 2017, pp. 157–168. isbn: 978-1-4503-5524-7. doi:
10.1145/3136040.3136044.

[Pér+18] Arsène Pérard-Gayot et al. “A Data Layout Transformation for Vectorizing Compil-
ers”. In: Proceedings of the 2018 4th Workshop on Programming Models for SIMD/Vec-
tor Processing. WPMVP’18. Vienna, Austria: ACM, 2018, 7:1–7:8. isbn: 978-1-4503-
5646-6. doi: 10.1145/3178433.3178440.

[Pér+19] Arsène Pérard-Gayot et al. “Rodent: Generating Renderers without Writing a
Generator”. In: ACM Transactions on Graphics (Proceedings of SIGGRAPH 2019) 38.4
(July 28–Aug. 1, 2019), 40:1–40:12. doi: 10.1145/3306346.3322955.

https://doi.org/10.1111/cgf.13227
https://doi.org/10.1145/3296979.3192413
https://doi.org/10.1145/192161.192244
https://doi.org/10.1145/1454115.1454119
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.1145/2517208.2517228
https://doi.org/10.1109/RT.2008.4634619
https://doi.org/10.1145/1778765.1778803
https://doi.org/10.1145/3136040.3136044
https://doi.org/10.1145/3178433.3178440
https://doi.org/10.1145/3306346.3322955

BIBLIOGRAPHY 91

[Pey+05] Simon Peyton Jones et al. “Practical type inference for arbitrary-rank types”. In:
Journal of Functional Programming 17 (Jan. 2005). Submitted to the Journal of
Functional Programming, pp. 1–82. url: https://www.microsoft.com/en-
us/research/publication/practical-type-inference-for-arbitrary-
rank-types/.

[Pha+97] Matt Pharr et al. “Rendering Complex Scenes with Memory-coherent Ray Tracing”.
In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive
Techniques. SIGGRAPH ’97. New York, NY, USA: ACM Press/Addison-Wesley
Publishing Co., 1997, pp. 101–108. isbn: 0-89791-896-7. doi: 10.1145/258734.
258791.

[Pho75] Bui Tuong Phong. “Illumination for Computer Generated Pictures”. In: Commun.
ACM 18.6 (1975), pp. 311–317. issn: 0001-0782. doi: 10.1145/360825.360839.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. 1st. The MIT Press, 2002.
isbn: 0262162091.

[Pir98] Pekka P. Pirinen. “Barrier Techniques for Incremental Tracing”. In: Proceedings of
the 1st International Symposium on Memory Management. ISMM ’98. Vancouver,
British Columbia, Canada: Association for Computing Machinery, 1998, pp. 20–25.
isbn: 1581131143. doi: 10.1145/286860.286863.

[PKS17] Arsène Pérard-Gayot, Javor Kalojanov, and Philipp Slusallek. “GPU Ray Tracing
using Irregular Grids”. In: Computer Graphics Forum 36.2 (2017), pp. 477–486. doi:
10.1111/cgf.13142.

[PM12] Matt Pharr and William R Mark. “ispc: A SPMD compiler for high-performance
CPU programming”. In: 2012 Innovative Parallel Computing (InPar). IEEE. 2012,
pp. 1–13.

[PT00] Benjamin C. Pierce and David N. Turner. “Local Type Inference”. In: ACM Trans.
Program. Lang. Syst. 22.1 (Jan. 2000), pp. 1–44. issn: 0164-0925. doi: 10.1145/
345099.345100.

[Rag+13] Jonathan Ragan-Kelley et al. “Halide: a language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines”. In: ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI).
2013, pp. 519–530. doi: 10.1145/2462156.2462176.

[RC05] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer
Texts in Statistics). Berlin, Heidelberg: Springer-Verlag, 2005. isbn: 0387212396.

[Ren+15] Bin Ren et al. “E�cient Execution of Recursive Programs on Commodity Vector
Hardware”. In: SIGPLAN Not. 50.6 (2015), pp. 509–520. issn: 0362-1340. doi: 10.
1145/2813885.2738004.

[Rey93] John C. Reynolds. “The discoveries of continuations”. In: LISP and Symbolic Com-
putation 6.3 (1993), pp. 233–247. issn: 1573-0557. doi: 10.1007/BF01019459.

https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types/
https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types/
https://www.microsoft.com/en-us/research/publication/practical-type-inference-for-arbitrary-rank-types/
https://doi.org/10.1145/258734.258791
https://doi.org/10.1145/258734.258791
https://doi.org/10.1145/360825.360839
https://doi.org/10.1145/286860.286863
https://doi.org/10.1111/cgf.13142
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/2462156.2462176
https://doi.org/10.1145/2813885.2738004
https://doi.org/10.1145/2813885.2738004
https://doi.org/10.1007/BF01019459

92 BIBLIOGRAPHY

[RO10] Tiark Rompf and Martin Odersky. “Lightweight modular staging: a pragmatic
approach to runtime code generation and compiled DSLs”. In: Proceedings of the 10th
International Conference on Generative Programming and Component Engineering
(GPCE). 2010, pp. 127–136. doi: 10.1145/1868294.1868314.

[Rob65] J. A. Robinson. “A Machine-Oriented Logic Based on the Resolution Principle”. In:
J. ACM 12.1 (Jan. 1965), pp. 23–41. issn: 0004-5411. doi: 10.1145/321250.321253.
url: https://doi.org/10.1145/321250.321253.

[Smi15a] Ryan Smith. The AMD R9 Nano Review: The Power of Size. 2015. url: https :
//www.anandtech.com/show/9621/the-amd-radeon-r9-nano-review/15.

[Smi15b] Ryan Smith. The NVIDIA GeForce GTX Titan X Review. 2015. url: https://www.
anandtech.com/show/9059/the-nvidia-geforce-gtx-titan-x-review/15.

[Son+14] Kristian Sons et al. “shade.js: Adaptive Material Descriptions”. In: Computer Graph-
ics Forum 33.7 (2014), pp. 51–60. issn: 1467-8659. doi: 10.1111/cgf.12473.

[SS95] Philipp Slusallek and Hans-Peter Seidel. “Vision - An Architecture for Global
Illumination Calculations”. In: IEEE Transactions on Visualization & Computer
Graphics 1 (1995), pp. 77–96. issn: 1077-2626. doi: 10.1109/2945.468387.

[Suj+11] Arvind K. Sujeeth et al. “OptiML: An Implicitly Parallel Domain-Speci�c Language
for Machine Learning”. In: Proceedings of the 28th International Conference on
Machine Learning (ICML). 2011, pp. 609–616.

[TBN11] Dmitriy Traytel, Stefan Berghofer, and Tobias Nipkow. “Extending Hindley-Milner
Type Inference with Coercive Structural Subtyping”. In: Programming Languages
and Systems. Ed. by Hongseok Yang. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 89–104. isbn: 978-3-642-25318-8.

[Tsa09] John A. Tsakok. “Faster Incoherent Rays: Multi-BVH Ray Stream Tracing”. In:
Proceedings of High Performance Graphics. HPG ’09. New Orleans, Louisiana: ACM,
2009, pp. 151–158. isbn: 978-1-60558-603-8. doi: 10.1145/1572769.1572793.

[TT94] Mads Tofte and Jean-Pierre Talpin. “Implementation of the Typed Call-by-Value
�-Calculus Using a Stack of Regions”. In: Proceedings of the 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. POPL ’94. Portland,
Oregon, USA: Association for Computing Machinery, 1994, pp. 188–201. isbn:
0897916360. doi: 10.1145/174675.177855.

[Vea98] Eric Veach. “Robust Monte Carlo Methods for Light Transport Simulation”.
AAI9837162. PhD thesis. Stanford, CA, USA, 1998. isbn: 0-591-90780-1.

[VG95] Eric Veach and Leonidas J Guibas. “Optimally combining sampling techniques for
Monte Carlo rendering”. In: Proceedings of the 22nd annual conference on Computer
graphics and interactive techniques. ACM. 1995, pp. 419–428.

[VK16] Jiří Vorba and Jaroslav Křivánek. “Adjoint-driven Russian Roulette and Splitting in
Light Transport Simulation”. In: ACM Trans. Graph. 35.4 (2016), 42:1–42:11. issn:
0730-0301. doi: 10.1145/2897824.2925912.

https://doi.org/10.1145/1868294.1868314
https://doi.org/10.1145/321250.321253
https://doi.org/10.1145/321250.321253
https://www.anandtech.com/show/9621/the-amd-radeon-r9-nano-review/15
https://www.anandtech.com/show/9621/the-amd-radeon-r9-nano-review/15
https://www.anandtech.com/show/9059/the-nvidia-geforce-gtx-titan-x-review/15
https://www.anandtech.com/show/9059/the-nvidia-geforce-gtx-titan-x-review/15
https://doi.org/10.1111/cgf.12473
https://doi.org/10.1109/2945.468387
https://doi.org/10.1145/1572769.1572793
https://doi.org/10.1145/174675.177855
https://doi.org/10.1145/2897824.2925912

BIBLIOGRAPHY 93

[Wal+01] Ingo Wald et al. “Interactive Rendering with Coherent Ray Tracing”. In: Computer
Graphics Forum (2001). issn: 1467-8659. doi: 10.1111/1467-8659.00508.

[Wal+07] Ingo Wald et al. SIMD Ray Stream Tracing - SIMD Ray Traversal with Generalized
Ray Packets and On-the-�y Re-Ordering. Tech. rep. 2007.

[Wal+14] Ingo Wald et al. “Embree: A Kernel Framework for E�cient CPU Ray Tracing”.
In: ACM Trans. Graph. 33.4 (2014), 143:1–143:8. issn: 0730-0301. doi: 10.1145/
2601097.2601199.

[Wal04] Ingo Wald. “Realtime Ray Tracing and Interactive Global Illumination”. PhD thesis.
Computer Graphics Group, Saarland University, 2004.

[WBB08] Ingo Wald, Carsten Benthin, and Solomon Boulos. “Getting Rid of Packets: E�cient
SIMD Single-ray Traversal Using Multibranching BVHs”. In: IEEE/Eurographics
Symposium on Interactive Ray Tracing. 2008, pp. 49–57. doi: 10.1109/RT.2008.
4634620.

[WH06] Ingo Wald and Vlastimil Havran. “On building fast kd-Trees for Ray Tracing, and
on doing that in O(N log N)”. In: 2006 IEEE Symposium on Interactive Ray Tracing.
2006, pp. 61–69. doi: 10.1109/RT.2006.280216.

[Wil+14] A. Wilkie et al. “Hero Wavelength Spectral Sampling”. In: Proceedings of the 25th
Eurographics Symposium on Rendering. EGSR ’14. Lyon, France: Eurographics
Association, 2014, pp. 123–131. doi: 10.1111/cgf.12419.

[Zha+18] Yunming Zhang et al. “GraphIt: A High-Performance Graph DSL”. In: PACMPL
2.OOPSLA (2018), 121:1–121:30. doi: 10.1145/3276491.

[ZWL17] Stefan Zellmann, Daniel Wickeroth, and Ulrich Lang. “Visionaray: A Cross-
Platform Ray Tracing Template Library”. In: Proceedings of the 10th Workshop
on Software Engineering and Architectures for Realtime Interactive Systems (IEEE
SEARIS 2017). Mar. 2017, pp. 1–8.

https://doi.org/10.1111/1467-8659.00508
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1145/2601097.2601199
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1109/RT.2008.4634620
https://doi.org/10.1109/RT.2006.280216
https://doi.org/10.1111/cgf.12419
https://doi.org/10.1145/3276491

94 BIBLIOGRAPHY

Acronyms

API Application Programming Interface

AST Abstract Syntax Tree

AVX Advanced Vector Extensions

AVX2 Advanced Vector Extensions, version 2

BPT Bidirectional Path Tracing

BSDF Bidirectional Scattering Distribution Function

BVH Bounding Volume Hierarchy

CPU Central Processing Unit

DSL Domain-Speci�c Language

FLOPS FLoating point OPerations per Second

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

ILP Instruction-Level Parallelism

IS Importance Sampling

LLVM Low-Level Virtual Machine (https://llvm.org)

LoC Lines of Code

LTO Link-Time Optimization

LMS Lightweight Modular Staging

MC Monte Carlo

MIS Multiple Importance Sampling

NEE Next Event Estimation

95

https://llvm.org

96 BIBLIOGRAPHY

OpenCL Open Computing Language

PT Path Tracing

PM Photon Mapping

PPM Progressive Photon Mapping

SIMD Single Instruction Multiple Data

SSA Static Single Assignment

SSE Streaming SIMD Extensions

	Introduction
	Background
	Rendering
	The Rendering Equation
	Monte Carlo integration methods
	Path Tracing
	Next Event Estimation
	Multiple Importance Sampling
	Traversal
	Shading
	Libraries

	Compilers
	Domain-Specific Languages
	Vectorization
	AnyDSL

	Generating BVH Traversal Kernels
	Motivation
	Common Infrastructure
	CPU Kernels
	Ray Packet Traversal
	Single-ray Traversal
	Hybrid Traversal

	GPU Kernels
	Results
	Performance
	Implementation Effort

	Generating Renderers
	Motivation
	Rendering Library
	Images and Textures
	Materials and BSDFs
	Lights
	Geometric Objects
	Shaders
	Renderers
	Rendering Devices

	Results
	Experimental Setup
	Performance
	Implementation Effort
	Compilation Times

	Compiling Generators
	Type Inference
	Algorithm W and Constraint-based Inference Algorithms
	Local Type Inference

	Pattern Matching
	Backtracking Automata
	Decision Trees

	Memory Management
	Manual Memory Management
	Automatic Memory Management

	Conclusion
	Bibliography
	Acronyms

