
Saarland University

Faculty of Mathematics and Computer Science

Department of Computer Science

Retrofitting Privacy Controls
to Stock Android

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von
Philipp von Styp-Rekowsky

Saarbrücken,
Dezember 2019

Tag des Kolloquiums: 18. Januar 2021

Dekan: Prof. Dr. Thomas Schuster

Prüfungsausschuss:
Vorsitzender: Prof. Dr. Thorsten Herfet
Berichterstattende: Prof. Dr. Michael Backes

Prof. Dr. Andreas Zeller
Akademischer Mitarbeiter: Dr. Michael Schilling

Zusammenfassung

Android ist nicht nur das beliebteste Betriebssystem für mobile Endgeräte, sondern
auch ein ein attraktives Ziel für Angreifer. Um diesen zu begegnen, nutzt Androids Sicher-
heitskonzept App-Isolation und Zugangskontrolle zu kritischen Systemressourcen. Nutzer
haben dabei aber nur wenige Optionen, App-Berechtigungen gemäß ihrer Bedürfnisse
einzuschränken, sondern die Entwickler entscheiden über zu gewährende Berechtigungen.
Androids Sicherheitsmodell kann zudem nicht durch Dritte angepasst werden, so dass
Nutzer zum Schutz ihrer Privatsphäre auf die Gerätehersteller angewiesen sind. Diese
Dissertation präsentiert einen Ansatz, Android mit umfassenden Privatsphäreeinstellun-
gen nachzurüsten. Dabei geht es konkret um Techniken, die ohne Modifikationen des
Betriebssystems oder Zugriff auf Root-Rechte auf regulären Android-Geräten eingesetzt
werden können. Der erste Teil dieser Arbeit etabliert Techniken zur Durchsetzung von
Sicherheitsrichtlinien für Apps mithilfe von inlined reference monitors. Dieser Ansatz
wird durch eine neue Technik für dynamic method hook injection in Androids Java
VM erweitert. Schließlich wird ein System eingeführt, das prozessbasierte privilege
separation nutzt, um eine virtualisierte App-Umgebung zu schaffen, um auch komplexe
Sicherheitsrichtlinien durchzusetzen. Eine systematische Evaluation unseres Ansatzes
konnte seine praktische Anwendbarkeit nachweisen und mehr als eine Million Downloads
unserer Lösung zeigen den Bedarf an praxisgerechten Werkzeugen zum Schutz der
Privatsphäre.

iii

Abstract

Android is the most popular operating system for mobile devices, making it a prime
target for attackers. To counter these, Android’s security concept uses app isolation and
access control to critical system resources. However, Android gives users only limited
options to restrict app permissions according to their privacy preferences but instead
lets developers dictate the permissions users must grant. Moreover, Android’s security
model is not designed to be customizable by third-party developers, forcing users to
rely on device manufacturers to address their privacy concerns. This thesis presents
a line of work that retrofits comprehensive privacy controls to the Android OS to put
the user back in charge of their device. It focuses on developing techniques that can be
deployed to stock Android devices without firmware modifications or root privileges.
The first part of this dissertation establishes fundamental policy enforcement on third-
party apps using inlined reference monitors to enhance Android’s permission system.
This approach is then refined by introducing a novel technique for dynamic method
hook injection on Android’s Java VM. Finally, we present a system that leverages
process-based privilege separation to provide a virtualized application environment that
supports the enforcement of complex security policies. A systematic evaluation of our
approach demonstrates its practical applicability, and over one million downloads of our
solution confirm user demand for privacy-enhancing tools.

v

Background of this Dissertation

This dissertation is based on the papers mentioned in the following. I contributed to all
papers as one of the main authors.

The author had the idea for the initial work AppGuard [P1, P2, T1, T2] and was
responsible for its technical design, implementation and evaluation. Sebastian Gerling
contributed the SOSPoX policy language to this work and developed further use-cases
for AppGuard. He was also involved in design discussions as well as the process of
writing the paper. All authors performed reviews of the paper.

The method hooking technique presented in [P4] was developed by the author based
on insights gained in our prior work on program instrumentation. While the author
was solely responsible for the technical implementation of the idea, Sebastian Gerling
and Christian Hammer contributed with general writing tasks. All authors performed
reviews of the paper.

The initial idea for Boxify [P3] resulted from a discussion between the author and
Sebastian Gerling following their joint work on AppGuard. Again, the author was
responsible for architecture, implementation and evaluation of Boxify, while Sven
Bugiel contributed to the requirements analysis as well as to the writing progress. The
paper was also reviewed by all the authors involved.

Author’s Papers for this Thesis

[P1] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P.
von. AppGuard – Enforcing User Requirements on Android Apps. In: Proceedings
of the 19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2013). Springer-Verlag, 2013.

[P2] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Fine-grained Policy Enforcement for Untrusted Android
Applications. In: Proceedings of the 8th International Workshop on Data Privacy
Management (DPM 2013). Springer-Verlag, 2013.

[P3] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P.
von. Boxify: Full-fledged App Sandboxing for Stock Android. In: Proceedings of
the 24th USENIX Security Symposium (SEC 2015). USENIX Association, 2015.

[P4] Styp-Rekowsky, P. von, Gerling, S., Backes, M., and Hammer, C. Callee-
site Rewriting of Sealed System Libraries. In: Proceedings of the 5th International
Symposium on Engineering Secure Software and Systems (ESSoS 2013). Springer-
Verlag, 2013.

Further Contributions of the Author

[S1] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. An-
droid Security Framework: Extensible Multi-Layered Access Control on Android.
In: Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC 2014). ACM, 2014.

vii

[S2] Backes, M., Bugiel, S., Schranz, O., Styp-Rekowsky, P. von, andWeißger-
ber, S. ARTist: The Android runtime instrumentation and security toolkit. In:
Proceedings of the 2nd IEEE European Symposium on Security and Privacy
(EuroS&P 2017). IEEE, 2017.

[S3] Backes, M., Bugiel, S., Styp-Rekowsky, P. von, and Wißfeld, M. Seamless
In-App Ad Blocking on Stock Android. In: Proceedings of the 2017 Mobile Security
Technologies Workshop (MoST 2017). IEEE, 2017.

[S4] Jamrozik, K., Styp-Rekowsky, P. von, and Zeller, A. Mining Sandboxes. In:
Proceedings of the 38th International Conference on Software Engineering (ICSE
2016). ACM, 2016.

Technical Reports of the Author

[T1] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Real-time policy enforcement for third-party applications.
Tech. rep. A/02/2012. Saarland University, 2012.

[T2] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Fine-grained Policy Enforcement for Untrusted Android
Applications. Tech. rep. A/02/2013. Saarland University, 2013.

[T3] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Enabling Generic and Extensible Access Control on Android.
Tech. rep. A/01/2014. Saarland University, 2014.

viii

Acknowledgments

First and foremost, I would like to thank my advisor Michael Backes: For the trust
put in me, his patience and motivation, and his unwavering support throughout the
writing of this thesis. Michael not only provided me with the opportunity to work in
both academia and industry but also inspired me to think outside of the box and to
explore new research directions. There also was an exciting period in early 2016, when
we were in negotiations with a major tech company from the United States, which at
that time showed interest in Boxify. I will personally never forget our long calls at the
most unusual times where we discussed and refined our strategy. This experience is one
that I do not want to miss and for which I am very thankful to Michael as well.

My sincere thanks also go to my long-time friend and university classmate Sebastian
Gerling, who accompanied me throughout my studies from the very beginning and who
first introduced me to Michael. It was also Sebastian, who initially pitched the idea to
pursue a Ph.D. after my master’s thesis. His structured and disciplined way to work
proved incredibly helpful during our first years of university together, and the countless
hours spent at his place doing exercise sheets not only paved the way for this thesis but
also created a strong and valuable friendship.

I also want to thank my colleague Sven Bugiel, not only for his contributions to
our research projects but also for our discussions about Android security in general.
Sven’s in-depth knowledge of the Android framework internals as well as his feedback
and his advice that he was always happy to provide proved invaluable to the writing of
this thesis. Mutual trips for work allowed me to get to know Sven’s fun and social side,
and I will fondly remember our matches of Cards against Humanity. I also thank my
long-time office partner Erik Derr, who contributed to a workplace atmosphere that
was enjoyable and often outright fun and who was always up for stimulating discussions.
He also showed almost angelic patience with my collection of returnable bottles that
only ever grew over the time we shared an office.

Many thanks also go to my closest collaborators and colleagues who contributed to
this thesis in one way or the other. To these belong, in no particular order, Christian
Hammer, Sven Obser, Fabian Bendun, Oliver Schranz, Sebastian Weisgerber, and Stefan
Nürnberger. Together with Sebastian, Sven, and Erik, they all contributed to making
my academic life fun and enjoyable, and we had lots of good times together outside of
the office, be it at parties, over a beer at “Canossa” or other fun ventures like a round
of laser-tag or karting. Our trips to Washington and San Francisco are also memories I
fondly look back on when thinking about my years spent at Saarland University.

I also want to use this opportunity to thank Andreas Zeller for agreeing to be my
examiner and for his ongoing encouragement and his insightful comments.

Last but not least, I want to thank my family and my friends, without whose support,
love, and encouragement, this thesis would not have been possible. Special mention
deserves Frederik Dressel for his help in finding the focus and motivation to conclude
the writing down of this thesis and his invaluable literary support. I thank my parents,
who instilled me with a love of science and who never ceased to support me in all the
pursuits and endeavors that laid the groundwork for this Ph.D. thesis. Finally, I am
especially grateful to my wife, Jasmin, who never ceases to provide me with moral and

ix

emotional support, not only during the writing of this thesis but through my life as a
whole.

x

Contents

1 Introduction 1

2 Technical Background on Android 7
2.1 Android Software Stack . 9
2.2 Android Applications . 11
2.3 Android Security Design . 12

3 AppGuard 15
3.1 Introduction . 17

3.1.1 Contributions . 17
3.2 AppGuard . 18
3.3 Implementation . 20

3.3.1 Policies . 20
3.3.2 Inliner . 21
3.3.3 Management . 23
3.3.4 Challenges . 23
3.3.5 Deployment . 24

3.4 Experimental Evaluation . 25
3.4.1 Performance Evaluation . 25
3.4.2 Case Study Evaluation . 27
3.4.3 Discussion . 31

3.5 Conclusion . 31

4 Dynamic Method Hook Injection on Android 33
4.1 Introduction . 35
4.2 Background . 36
4.3 Implementation . 38
4.4 Evaluation . 39
4.5 Conclusion . 40

5 Boxify 41
5.1 Introduction . 43
5.2 Background on Android OS . 45
5.3 Requirements Analysis and Existing Solutions 47

5.3.1 Objectives and Threat Model . 47
5.3.2 Existing Solutions . 48

xi

CONTENTS

5.4 Boxify Architecture . 52
5.4.1 Design Overview . 52
5.4.2 Target . 54
5.4.3 Broker . 58
5.4.4 System Integration . 63

5.5 Evaluation . 64
5.5.1 Performance Impact . 64
5.5.2 Runtime Robustness . 65
5.5.3 Portability . 65
5.5.4 Use-cases . 66
5.5.5 Security Discussion . 66

5.6 Conclusion . 68

6 Related Work 69

7 Conclusion 77

xii

List of Figures

2.1 Background: Android software stack 10

3.1 AppGuard: Architecture overview . 19
3.2 AppGuard: Host restriction example policy 20
3.3 AppGuard: HTTPS redirection example policy 21
3.4 AppGuard: Illustration of call-site monitoring 22

4.1 Hooking: Rewriting approaches . 37
4.2 Hooking: Library usage example . 39

5.1 Boxify: Android interactions overview 46
5.2 Boxify: OS extension instrumentation points 48
5.3 Boxify: Rewriting/Inlining instrumentation points 49
5.4 Boxify: Dr. Android and Mr. Hide approach 50
5.5 Boxify: Architecture overview . 52
5.6 Boxify: Target process components . 54
5.7 Boxify: App loading process . 56
5.8 Boxify: Broker architecture . 59
5.9 Boxify: Evaluated Android APIs . 60
5.10 Boxify: Internal API stability . 61

xiii

List of Tables

3.1 AppGuard: Inliner evaluation . 26
3.2 AppGuard: Runtime performance evaluation 26

4.1 Hooking: Runtime performance evaluation 40

5.1 Boxify: Deployment option comparison 48
5.2 Boxify: Middleware benchmarks . 64
5.3 Boxify: Syscall benchmarks . 64
5.4 Boxify: Benchmark tools . 65
5.5 Boxify: Supported Android versions . 65

xv

1
Introduction

1

Smart devices have become part and parcel of everyday life, shaping the way
we collect, share, and interact with information today. Pocket-size computers like
smartphones and tablets accompany their bearers anywhere and come equipped with
a plethora of features. Those include a wide range of embedded sensors, such as a
microphone, camera, gyroscope, and GPS, as well as features like instant messaging,
contact management, and multimedia collections. Combined with cheap data plans and
comprehensive cell coverage, smart devices enable end-users to stay online at all times.

A driving force for the adoption of mobile devices is the ability to enhance their
functionality through third-party apps. Initially intended for productivity assistance and
information retrieval, including email, calendar, weather and stock market information,
public demand, and the availability of developer tools drove rapid expansion into other
categories, such as gaming, shopping, navigation, education, entertainment, and health.
Apps are conveniently discovered and installed through centralized marketplaces such
as Google’s Play Store, with the number of apps on that marketplace alone peaking at
3.6 million in 2018 [80]. Today, apps are no longer confined to handheld devices only,
but find increasing use in cars, televisions, and smart home devices.

Despite these advantages, the rapidly increasing prevalence of smart devices has
created a vast potential for misuse. The plethora of sensitive information they store
about their users, such as private messages, emails, contacts, and photos, makes them
an attractive target for attackers. Permanent Internet access and a wide range of sensors
allow attackers to turn smart devices into surveillance tools that can potentially track
their bearer at all times. A typical attack vector to gain access to these devices is
to disguise malware as a seemingly harmless app and to distribute it via application
marketplaces, which has been shown to be successful even with app vetting processes
in place [96, 97]. But malicious actors are not the only threat to the user’s privacy:
Overly-curious apps and advertisement libraries collect sensitive user data, often without
the user’s knowledge or consent [33, 43]. For instance, social network apps have been
criticized for silently downloading and storing the user’s entire address book to the
network’s servers to mine the social graph, even of non-platform users. [76]. This practice
is particularly prevalent in apps that are seemingly offered free of charge, because the
user unknowingly “pays” by disclosing their private information to the app provider
[58].

The evolution of today’s mobile app ecosystem was facilitated by the introduction
of operating systems tailored explicitly to smart devices. In 2008, a group of companies
led by Google, called the Open Handset Alliance, entered the smartphone market with
the open-source software stack Android. As of today, Android has become the most
popular operating system for mobile devices, with 2.5 billion monthly active users and
an 88% share of the global mobile operating system market [79]. This popularity among
end-users paired with the sensitivity of available data makes Android the prime target
platform for attackers. Despite this, Android’s set of security and privacy features used
to be – and still largely continues to be – quite limited. Its application security model,

3

CHAPTER 1. INTRODUCTION

based on app isolation and access control for critical system resources, used to leave
users with only two options: granting access to all requested resources as a whole at
installation time, or not installing the app at all. Up to version 6.0, neither permission
revocation after the installation of an app nor dynamic permission assignment was
supported. While Android more recently started to support checking permissions on
first use – thus making it more contextual and transparent for the end-user – app
developers still need to actively opt-in to enable this functionality. This results in a
situation where app developers dictate the permissions their apps are granted, with
any need for customization on the user side being neglected. Furthermore, the current
permission system tends to be impractical for many purposes and can not be easily
refined. Ironically, customizations of Android’s security model are impeded by its app
isolation paradigm, which effectively prevents third-party applications from enforcing
custom security policies.

In their efforts to address these limitations, many researchers have proposed modifi-
cations or extensions of the Android software stack. The proposed solutions, however,
are rarely adopted by Google or the device vendors, thus forcing users to resort to
customized aftermarket firmware if they wish to deploy new security extensions on their
devices. This, in turn, poses a technological barrier for average users.

In order to find a solution that provides users with an effective and practical means to
protect their privacy, this dissertation focuses on systems for security policy enforcement
that can be deployed to ordinary, stock Android devices. In particular, we aim for a
solution that can be deployed entirely as an app on stock Android without modifications
to the firmware or code of the monitored applications. Our work to establish security
policy enforcement on the Android application layer explores inline reference monitoring,
application virtualization, and dynamic program instrumentation in Androids Java
virtual machine. This research resulted in several peer-reviewed publications [P4, P1,
P2, P3], which each contributed to the solution presented in this dissertation.

AppGuard Our first approach to address the shortcomings in Android’s security
model leverages inline reference monitors to enforce custom security policies on third-
party apps. It extends Android’s permission system to impede overly curious behaviors,
supports complex policies, and can mitigate vulnerabilities in apps. It thus is the first
solution that provides a practical extension of the current Android permission system as
it can be deployed to all Android devices without modification of the firmware or root
access to the smartphone. Experimental analysis shows that we can remove permissions
for overly curious apps as well as defend against several real-world attacks on Android
phones with negligible space and runtime overhead.

Despite these advances, there are some limitations to this approach. Instrumenta-
tion is performed statically and thus cannot adapt dynamically to user requirements.
Furthermore, the approach uses caller-side instrumentation, which can be incomplete in
certain circumstances, e.g., if application code is dynamically loaded at runtime. We

4

address these limitations in our paper on Dynamic Method Hook Injection that presents
a technique for dynamic callee-side program instrumentation.

Dynamic Method Hook Injection Rewriting all calls to security-relevant methods
requires significant space and time, in particular if this process is performed on a smart
device. Our work proposes a novel approach to inline reference monitoring that abstains
from caller-site instrumentation even in the case where the monitored method is part of
a sealed library. To that end, we divert the control flow towards the security monitor
by modifying references to security-relevant methods in the Dalvik Virtual Machine’s
internal bytecode representation. This method is similar in spirit to modifying function
pointers and effectively allows callee-site rewriting. Our initial empirical evaluation
demonstrates that this approach incurs minimal runtime overhead.

Another limitation of AppGuard is that it provides only insufficient app sandboxing
functionality [50] as the reference monitor and the untrusted application share the same
process space. Hence, they lack the strong isolation that would ensure tamper-protection
and non-bypassability of the reference monitor. Moreover, inlining reference monitors
requires modification and hence re-signing of applications, which violates Android’s
signature-based same-origin model and puts these solutions into a legal gray area.

Boxify To address these shortcomings, we propose a system based on application
virtualization and process-based privilege separation to securely encapsulate untrusted
apps in an isolated environment. In contrast to all related work on stock Android, we
eliminate the necessity to modify the code of monitored apps, and thereby overcome
legal concerns and deployment problems that rewriting-based approaches have been
facing. We realize our concept as a regular Android app called Boxify that can be
deployed without firmware modifications or root privileges.

Outline

The remainder of this dissertation is structured as follows: Relevant technical background
information on the Android OS and its security architecture is provided in Chapter 2.
We present AppGuard in Chapter 3, our technique for dynamic method hook injection
in Chapter 4, and Boxify in Chapter 5. Chapter 6 provides an overview of related
work and Chapter 7 concludes the dissertation.

5

2
Technical Background on Android

7

2.1. ANDROID SOFTWARE STACK

The following chapter provides background information on the technical specifics of
Android to facilitate an understanding of the ensuing chapters (Chapters 3 to 5). More
specific background information related to individual chapters will be provided in the
respective chapters.

2.1 Android Software Stack

Android OS is an open-source software stack for mobile devices released in 2008 by a
group of companies led by Google, called the Open Handset Alliance. The Android op-
erating system is specifically tailored to handheld devices such as tablets or smartphones
and has heavily profited from an ever-growing smartphone market since its launch.
Today, Android has become the dominant mobile operating system with a worldwide
market share of 88% [79], the current version being 9.0 (called Pie). At the time of
writing of the last contribution to this thesis, the market share was already about the
same, with the latest version then being 5.1.1 (Lollipop). Android’s success is driven
by a wide variety of apps available for the platform. These can be conveniently found,
browsed, and downloaded through several centralized market places, the biggest one
being Google’s Play Store, with the number of apps on this market place alone peaking
at 3.6 million in 2018 [80].

The Android software stack (see Figure 2.1) consists of a Linux kernel, a middleware
framework comprised of libraries and APIs written in C, and application software
running on an application framework, which includes Java-compatible libraries. In the
following, we describe these components in more detail.

Linux Kernel The kernel is at the core of every modern operating system, facilitating
the communication between hardware and software and providing all essential operating
system services, such as memory management, hardware abstraction, and inter-process
communication (IPC). The Linux kernel used in Android OS has been slightly modified
to fulfill the specific requirements of mobile devices, for example, low-frequency CPUs or
scarcity of available resources such as power and memory. For their Android OS, Google
uses a custom IPC mechanism initially not part of the Linux kernel called Binder,
a lightweight implementation of OpenBinder developed by Palm Inc., to facilitate
cross-process boundary calls.

Runtime and Native Libraries The Android middleware built on top of the Linux
kernel consists of native libraries (e.g., Android’s bionic LibC, OpenGL and SSL), and
the application framework. Furthermore, it contains the Android Runtime (ART), which
replaced the Dalvik Virtual Machina (DVM) from Android version 5.0 onwards. While
the DVM, which executes Dalvik executable (DEX) bytecode, was already optimized for
resource-constrained mobile devices, ART utilizes ahead-of-time compilation to further
improve runtime performance and efficiency of apps - at the cost of increased binary size.

9

CHAPTER 2. TECHNICAL BACKGROUND ON ANDROID

APPLICATIONS

APPLICATION FRAMEWORK

LIBRARIES ANDROID RUNTIME

LINUX KERNEL

Activity
Manager

Surface
Manager

Media
Framework DVM / ART

Window
Manager

Content
Providers

View
System

Notification
Manager

Package
Manager

Telephony
Manager

Recource
Manager

Location
Manager

XMPP
Manager

Display
Driver

Camera
Driver

Blotooth
Driver

Flash Memory
Driver

Binder (IPC)
Driver

USB
Driver

Keypad
Driver

WIFI
Driver

Audio
Drivers

Power
Management

Home Contacts Phone

OpenGL/ES FreeType Webkit SSL libc

SQLite

Browser ...

Figure 2.1: Components of the Android software stack.

ART comes equipped with an on-device compiler that translates DEX bytecode into
native code specific to and optimized for the concrete hardware platform. To further
reduce installation time, a just-in-time compiler was added with Android 7.0.

Application Framework The application software on Android devices is running
on an application framework, which is another part of the middleware comprised of
core system services written primarily in Java. The application framework implements
most of Android’s feature-rich application API that allows app developers to access
functionality such as retrieving geolocation or capturing audio from the microphone.
This functionality is exposed through several system services (e.g., notification manager,
location manager, GUI manager), each of which is responsible for one specific system
resource. These system services are built on top of Binder IPC and are remotely callable
via well-defined interfaces, which are specified in the Android Interface Definition
Language (AIDL). From AIDL, required boilerplate marshaling code for both the
receiver and the sender can be generated. Only a few framework services implement the

10

2.2. ANDROID APPLICATIONS

Binder interface directly without relying on AIDL.

System Apps At the application layer itself, a set of default system apps such as
browser, phone, or contacts, completes the application framework. These default system
apps are technically identical to third-party apps in as far as they build upon the same
framework APIs. However, they come pre-installed with the Android firmware, which
enables them to gain privileges to an extent not available to third-party apps. Unlike
the application framework, system apps are generally optional, and therefore many
device manufacturers often opt to replace them by custom implementations.

2.2 Android Applications

Java used to be the go-to language for developers writing Android applications. More
recently, however, Kotlin has begun to see increasing use due to it being a modern,
lightweight programming language where developers have to write significantly less code,
a development further facilitated by the inherent interoperability between Java and
Kotlin. The Android toolchain then compiles the application source to dex bytecode
for execution by the Android Runtime (DVM or ART) in use on the device. For
performance-critical operations or low-level interactions with the operating system such
as direct memory access, Android furthermore supports the use of native code libraries
as part of Android applications. Using the Java Native Interface (JNI), application
developers can easily invoke functions in these native code libraries from their Java or
Kotlin applications.

Android applications consist of four fundamental types of app components, acting
as entry points to the app: Activities, Services, Content Providers, and Broadcast
Receivers.

• Activities: Foreground components displaying a single screen with a user inter-
face.

• Services: Components used for long-running background operations such as
fetching data from the network or playing music in the background. The functions
provided by a service are not exclusive to the application defining that component
but can also be made available to other applications on the device. To that end,
services expose an interface (typically specified in AIDL) that can be accessed
using Binder IPC.

• BroadcastReceivers: Components responding to events external to the app,
enabling the app to react to system-wide broadcasts even if it’s not currently
running. While many broadcasts, such as incoming SMS, are sent by the system,
apps can also initiate broadcasts, for example, to let other apps know that a
download was completed.

11

CHAPTER 2. TECHNICAL BACKGROUND ON ANDROID

• ContentProviders: Components exposing structured application data to other
apps, through which those apps can query or modify the data if the content
provider allows it. The Android system, for example, provides a content provider
that manages the user’s contact information.

These Android application components establish inter component communcation
(ICC) through Android’s Binder IPC mechanism. With Binder as the basic building
block for this communication, developers do not interact with Binder directly, but only
through Android’s ICC abstractions. There are two different layers of abstraction used
by Android: the Android Interface Definition Language (AIDL) mentioned earlier and
Intents. AIDL enables developers to declaratively specify remotely-callable interfaces,
e.g., to create bindable Service components, which is extensively used for the system
services in Android’s application framework. Unlike AIDL, where a concrete recipient
component needs to be known in advance, ICC via Intents defers the resolution of the
recipient to the Android system. The app only describes the high-level operation that
should be performed, while Android makes sure it is delivered to the right receiver. An
example of such an Intent would be capturing an image from the camera, where the
concrete component providing the captured image is irrelevant to the initiator of the
Intent.

2.3 Android Security Design

With its ascent towards one of the most popular operating systems for mobile devices
over the last decade, Android became a prime target for attackers. To counteract these
threats, Android developed a security concept based on app isolation and access control
for critical system resources.

App isolation is achieved by forcing each application to run in a separate, sandboxed
environment that isolates data and code execution from other apps. In contrast to
traditional desktop operating systems where applications run with the privileges of the
invoking user, Android assigns a unique Linux user ID (UID) to every application at
installation time. It is possible for multiple apps from the same developer, identified
by their developer signature, to share a UID. Based on this UID, the components of
the Android software stack enforce access control rules that govern the application
sandboxing.

Furthermore, Android introduces permissions, privileges that an app requests at
installation time, which the user has to grant to install the app. As of version 6.0,
Android supports prompting for user consent once a permission is first required, making
permission requests more contextual for the user. Permissions are a crucial component
to ensure privilege separation between apps. They are specified by the developer
via the XML manifest file that comes with every application package, thus enabling
developers to define their app’s security policy. Most permissions are String labels that

12

2.3. ANDROID SECURITY DESIGN

are immutably assigned to the respective app’s UID. These permissions, without which
an app cannot access any resources that are security- or privacy-sensitive, are enforced
at two different points in the system architecture: the kernel and the middleware.

Every app process, like any other Linux process, uses system calls to the kernel to
access low-level resources. The kernel then enforces discretionary access control (DAC)
on these system calls based on the UID of the application process to ensure that the
process in question has the necessary permissions to issue that call. For instance,
each app has a private directory that is not accessible by other applications, which
is enforced by the kernel’s DAC. Since Android version 4.3, this discretionary access
control is complemented with SELinux mandatory access control (MAC) to harden the
system against low-level privilege escalation attacks and to reinforce this UID-based
compartmentalization.

Furthermore, apps can interact with highly privileged resources via the Android
middleware APIs. They are, however, prohibited direct access to these resources, in
order not to jeopardize system security and stability. The permission check to determine
whether an app has the necessary privileges to call a particular API is performed within
the respective system service or app; a centralized policy for checking permissions does
not exist. Instead, any framework service providing security- or privacy-critical methods
must enforce the corresponding permission connected to the system resources it might
expose. This check is facilitated by the Binder IPC mechanism, which provides the
calling app’s UID to the callee, allowing it to determine whether their current caller
possesses the required permissions. If that is not the case, it can throw an exception or
take otherwise appropriate action.

13

3
AppGuard

Enforcing User Requirements on Android Apps

15

3.1. INTRODUCTION

3.1 Introduction

As the development of new security concepts did not keep pace with the emergence
of new features, the rapidly growing number of mobile devices has created a vast
potential for misuse. Android’s security concept is based on isolation of third-party
apps and access control. While this model provides users with the opportunity to review
permissions at install time, they are limited to a binary decision: either they grant
all permissions - or do not install the app at all. Users can neither dynamically grant
and revoke permissions at runtime, nor add restrictions according to their personal
needs. Furthermore, users are often not aware of a permission’s impact. They usually
do not have enough information to judge whether a permission is indeed required to
fulfill a certain task. Research has shown that this is the case even for Android app
developers [65, 40].

In order to overcome these limitations, researchers have proposed several approaches.
At the time of writing there had been work [64, 63, 62, 23] focused on extending the
current permission system, e.g. to prevent critical permission combinations [30], but
most approaches [17, 33, 40, 32, 41, 67] targeted the detection of privacy leaks and
malicious third-party apps. However, the vast majority relied on modifications of the
underlying software stack, which prevented deployment to off-the-shelf Android phones,
thus rendering them unsuitable for our objective of putting users back in control of
their data.

3.1.1 Contributions

In this work we present a novel policy-based security framework for Android to address
the aforementioned limitations of Android’s security model, proposing solutions for a
variety of situations, in particular for:

1. Revoking Android permissions dynamically. Permissions can be granted and
revoked at any time after installation of an app. Graceful revocation is supported
by selectively suppressing undesired operations without terminating the program.

2. Enforcing complex stateful and fine-grained security policies. Policies can transform
the sequence of program actions in case the program deviates from the security
policy. Security policies can be arbitrary predicates over that sequence, enabling
enforcement of any security property [56].

3. Policy-based quick-fixes for vulnerabilities in third-party applications. When an
app uses the API in an insecure way, the execution can be transformed into a
secure alternative. While it would be cleaner to fix the app directly, a rapid
work-around like this provides a temporary solution until the vendor provides an
update.

17

CHAPTER 3. APPGUARD

4. Policy-based mitigation for vulnerabilities in the operating system itself. Known
OS vulnerabilities have always posed a major threat to system security [18]. Our
framework defends against malicious apps that try to exploit a vulnerability, which
is paramount to relieve the late update problem, where vendors integrate the fix at
a later time than Google, or do not provide security patches at all.

We built a prototypical implementation called AppGuard that supports all features
listed. Our system does not require any modification to the core software stack of
the Android device and thus supports widespread deployment as a stand-alone app.
AppGuard is based on inline reference monitoring [34]. It takes user-defined policies as
input and produces a secured self-monitoring app. Our evaluation on typical Android
apps has shown very little overhead in terms of space and runtime. The case studies
demonstrate the effectiveness of our approach: we successfully limited excessive curiosity
of apps, demonstrated complex policies and prevented several real-world attacks on
Android phones. At the time of publication, AppGuard was the first practical defense
against these attacks on devices with standard firmware.

3.2 AppGuard

Android’s current permission system fails to address some challenges of mobile applica-
tions: apps basically dictate the permissions deemed necessary and users have to grant
them as requested short of not installing the application. Therefore, the individual
security requirements of users are ignored as they are not really given a choice. In
particular, they are unable to grant each permission individually and to grant and
revoke certain permissions at a later time. This deficiency becomes particularly severe
as not only users have problems with Android’s permission system. Song et al. [65]
have shown that even application developers have problems requesting the “correct”
permissions for the functionality of their applications, since the Android documentation
lacks completeness. If in doubt, they will therefore request too many permissions in
order to make their application work.

AppGuard puts the user back in charge of application permissions. With our
system users are given the opportunity to decide both at installation time of an app,
as well as at any later point in time what an app is allowed to access. AppGuard
provides more fine-grained policies than Android does itself, and, in contrast to other
proposed solutions [62, 23], it is oblivious of the installed Android firmware. It can
be installed on all existing Android phones without modifying the core system, which
enables wide-spread deployment.

Runtime policy enforcement for third-party applications is not an easy feat on
unmodified Android systems. Android’s security concept strictly isolates different
applications installed on the same device, preventing them from interfering with each
other at runtime. Furthermore, applications cannot gain elevated privileges that would
enable them to observe the behavior of other applications. Communication between

18

3.2. APPGUARD

App
Monitor

App

Rewriter

Policies

logging

configManage-
ment

Figure 3.1: High-level architecture of APPGUARD

apps is only possible via Android’s inter-process communication (IPC) mechanism. So
far, such communication requires both parties to cooperate, rendering this channel
unsuitable for a generic runtime monitor.

AppGuard tackles this open problem by following an approach pioneered by
Erlingsson and Schneier [35] called inline reference monitor (IRM). The basic idea is
to rewrite an untrusted application such that the code that monitors the application
is directly embedded into its code. To this end, IRM systems incorporate a rewriter
or inliner component, that injects additional security checks at critical points into the
application bytecode. This enables the monitor to observe a trace of security-relevant
events, which typically correspond to invocations of trusted system library methods from
the untrusted application. To actually enforce a security policy, the monitor controls
the execution of the application by suppressing or altering calls to security-relevant
methods, or even by terminating the program if necessary.

In the IRM context, a policy is typically specified by means of a security automaton
that defines which sequences of security-relevant events are acceptable. Such policies
have been shown to express exactly the policies enforceable by runtime monitoring [78].
Ligatti et al. differentiate security automata by their ability to enforce policies by
manipulating the trace of the program [56]. Some IRM systems [35, 28] implement
simple truncation automata, which can only terminate the program if it deviates from
the policy. However, this is often undesirable in practice. In their paper [56], Ligatti
et al. formulate the notion of edit automata, which can transform the program trace
by inserting or suppressing events. Monitors based on edit automata are able to
react gracefully to policy violations, e.g. by suppressing an undesired method call and
returning a dummy value, but allowing the program to continue.

AppGuard is an IRM system for Android with the transformation capabilities of an
edit automaton. Figure 3.1 provides a high-level overview of our system. We distinguish
three main components:

1. A set of security policies. AppGuard provides various Android-specific security
policies that govern access to platform API methods that are protected by coarse-
grained Android permissions. These methods comprise e.g. methods for reading
personal data, creating network sockets, or accessing device hardware like the

19

CHAPTER 3. APPGUARD

1 class InternetPolicy extends Policy {
2 @MapSignatures({"Ljava/net/URL;->openConnection()"})
3 public void checkConnection(URL url) throws Exception {
4 if (!"wetter.com".equals(url.getHost()))
5 throw new IOException();
6 }}

Figure 3.2: Example policy protecting calls to java.net.URL.openConnection(). The
callback method checkConnection(URL) allows connections to one host only.

GPS or the camera. As a starting point for the security policies, we used the
Android permission map by Song et al. [65].

2. The program rewriter. Android applications run within a custom register-based
Java VM called Dalvik. Our rewriter manipulates Dalvik executable (dex) bytecode
of untrusted Android applications and generates monitoring code according to
the policies to harness the untrusted app.

3. A management component. It offers a graphical user interface that allows the user
to set individual policy configurations on a per-application basis. In particular,
policies can be turned on or off and be parameterized. In addition, the management
component keeps a detailed log of all security-relevant events, enabling the user
to monitor the behavior of an application.

3.3 Implementation

AppGuard is a stand-alone Android application written in pure Java and comprises
about 6500 lines of code. It builds upon the dexlib library, which is part of the smali
disassembler for Android by Ben Gruver [45], for manipulating dex files. The size of
the application package is roughly 750 Kb.

3.3.1 Policies

In our system, a policy is defined by a set of security-relevant method signatures and
corresponding callback methods. In our system policies are implemented as Java classes.
The callback methods are mapped to a set of method signatures using a custom method
annotation MapSignatures. Consider Figure 3.2 as a basic example. This policy guards
access to the openConnection() method in the java.net.URL class and only allows
connections to the host “wetter.com”.

A policy callback method gains access to the arguments of the original method call
by declaring an equivalent list of parameters. In our example, the checkConnectiony
(URL) callback method uses the URL parameter to decide whether a connection should
be allowed. If allowed, the callback method will simply return such that the original

20

3.3. IMPLEMENTATION

1 class HttpsRedirectPolicy extends Policy {
2 @MapSignatures({"Ljava/net/URL;->openConnection()"})
3 public void checkConnection(URL url) throws Exception {
4 if (redirectToHttps(url)) {
5 URL httpsUrl = new URL("https", url.getHost(), url.getFiley

());
6 URLConnection returnValue = httpsUrl.openConnection();
7 throw new MonitorException(returnValue);
8 }}}

Figure 3.3: Example policy that redirects HTTP connections to HTTPS if available.

method call can proceed. If the connection is not allowed, an exception will be thrown
that is either caught by the surrounding application code or by a synthetic handler
introduced by the inliner. In both cases the original method call will be prevented by
this scheme. Details will be discussed in the next subsection.

Furthermore, policies can be stateful and store security state information in member
variables of the policy class. The values of these variables are preserved across callback
method invocations. Member variables could also be used to store the complete history
of intercepted methods.

In general, policy callbacks can perform arbitrary operations. As an example,
consider a policy that intercepts HTTP connections and relays them to encrypted
HTTPS, if available (see Figure 3.3.) After calling the original method with the
new arguments, it throws an exception containing the returned value, which will be
substituted for the return value of the original method as described in the next section.

3.3.2 Inliner

The task of the inliner component is to divert the control flow of the target application
to the monitoring code at invocation instructions to security-relevant methods. There
are two strategies for passing control to the monitor: Either at the call-site in the
application code, right before the invocation of the security-relevant method, or at the
callee-site, i.e. at the beginning of the security-relevant method. The latter strategy
is simpler and more efficient, because callee sites are easier to identify and less in
number [7]. Unfortunately, callee-site rewriting is not applicable in our scenario, as
security-relevant methods are declared in the trusted Android platform libraries, which
are part of the non-modifiable firmware image. Thus, our inliner implements a call-site
control flow diversion strategy. The inlining process consists of three steps:

1. Merging the policy classes into the target application’s classes.dex file, which
contains all Dalvik bytecode for the app.

2. Generating the MonitorInterface, which serves as a bridge between application
code and policies.

21

CHAPTER 3. APPGUARD

Original snippet
1 URL url = new URL(loc);
2 URLConnnection conn =
3 url.openConnection();

After inlining
1 URL url = new URL(loc);
2 URLConnection conn;
3 try {
4 MonitorInterface.y

checkConnection(url);
5 conn = url.openConnection();
6 } catch (MonitorException e) y

{
7 conn = (URLConnection) e.y

value();
8 }

Figure 3.4: Illustration of the call-site monitoring code for the security-relevant
method java.net.URL.openConnection().

3. Injecting monitoring code around invocations of security-relevant methods.

The policy classes are stored precompiled in a separate dex file. In the first step, the
inliner copies all class declarations from this file to the classes.dex file of the untrusted
application.

In order to connect invocations of security-relevant methods to their policy callbacks,
the inliner generates a utility class called MonitorInterface as the second step of the
process. For each security-relevant method specified by the policies, the inliner generates
a static guard method in the MonitorInterface class. The purpose of this guard
method is two-fold: First, callback methods of different policies may be defined for a
single security-relevant method. Thus, the guard method invokes all policy callbacks
defined for this method signature. Second, the guard method shares the signature of the
security-relevant method, including the receiver object for virtual calls, which is passed
as the first method argument, if available. Thus, calls to the MonitorInterface require
only minimal modifications to the application code.

In the final step, the inliner identifes all call sites of security-relevant methods. If a
matching instruction is found, the inliner adds monitoring code around the method call
as depicted in Figure 3.4. First, a method call to the corresponding guard method in
the MonitorInterface is inserted right before the invocation of the security-relevant
method. Second, the inliner adds a new try/catch-block around the inserted guard
and the original method call. This block enables policy callbacks to pass a return
value to the application code if the original call is suppressed, which also allows to
protect security-relevant constructor methods. To this end, policy callbacks can throw
a special MonitorException that carries the return value to the application code. In
the inserted catch block this value is assigned to the intended variable (possibly after
type conversion).

As pointed out earlier, another option for the policy is to throw an exception that
will be caught by the original application code. Our example policy in Figure 3.2 makes

22

3.3. IMPLEMENTATION

use of this technique: If a connection is not allowed, the policy callback throws an
IOException, which resembles the behavior of the original URL->openConnection()
method if a connection error occurs.

3.3.3 Management

The management component of AppGuard allows for monitoring the behavior of
inlined apps and for configuring policies at runtime. The policy configuration is provided
to the inlined app as a world-readable file. Its location is hardcoded into the monitor
code during the inlining process. This is motivated by the fact that invocations of
security-relevant methods can occur before the inlined application is fully initialized
and able to perform Android IPC.

The management component provides a log of all security-relevant events, which
enables the user to make informed decisions about the current policy configuration.
The log is maintained based on the security-relevant method invocations encountered in
the self-monitoring application, which sends its events to the management application.
For this direction of the communication we are leveraging a standard Android Service
component. The asynchronous nature of Android IPC is not an issue, since security-
relevant method invocations that occur before the service connection is established are
buffered locally.

3.3.4 Challenges

In our implementation we faced two main difficulties: The handling of reflection and
the handling of virtual methods. In the following we will discuss both in detail.

3.3.4.1 Reflection

The Java Reflection API enables the inspection and manipulation of classes, fields,
methods, and constructors at runtime without knowing their names at compile time.
It can also be used to instantiate new objects and to invoke methods. The latter two
features are relevant to our IRM system as they provide alternative ways to invoke
security-relevant methods without their signatures appearing in the application bytecode.

We deal with reflection by monitoring critical methods of the Reflection API.
To this end, we implement a ReflectionPolicy that guards invocations of javay
.lang.reflect.Method->invoke(), Constructor->newInstance(), and java.y
lang.Class->newInstance(). Whenever one of these methods is invoked, the policy
identifies the target method of the reflective call by inspecting the method parameters.
If the target matches a security-relevant method, the policy reflectively invokes the
corresponding guard method in the MonitorInterface with the arguments of the reflective
call. This scheme ensures that the Reflection API cannot be used to circumvent the
inlined monitor.

23

CHAPTER 3. APPGUARD

3.3.4.2 Virtual methods

Virtual methods are a core concept of object-oriented programming. The target of a
virtual method invocation is not determined statically, but dynamically based on the
runtime type of the receiving object. More specifically, an invoke-virtual instruction
with static target A->m can be resolved to any method B->m at runtime, where B is a
subclass of A or A itself. Thus, virtual method invocations require special treatment by
our inliner.

We analyze the class hierarchy of application code before the rewriting step and
identify classes that inherit security-relevant methods. If a class does not override
the security-relevant method, we add the signature of the inherited method to the set
of security-relevant methods. The new signature is associated with the same guard
method as the security-relevant method in the base class. If the class does override a
security-relevant method, we can safely ignore invocations referencing the overridden
method because any calls to the base class within the overridden method will be already
protected by the inliner.

At the current state of the implementation, policy callbacks have to examine the
runtime type of the receiver if they want to parameterize according to the target object.
In our experiments, we have not encountered any case where this was required.

3.3.5 Deployment

In comparison to existing approaches AppGuard’s novel security framework can be
used on existing Android phones without requiring any changes to the operating system.
In particular, it does not require root access to the smartphone at any time.

Third party applications installed on Android are usually assigned distinct user
ids. By default, application A can neither access nor modify application B.1 Therefore,
our rewriter cannot simply modify already installed applications. Instead, we leverage
the fact that installation packages of third party applications can be read from the
file system by any application. We read and unpack the application packages of the
application to be secured, inline the security monitor, and finally repackage and reinstall
the application. In order to start this installation process, the user is asked in a
preparatory step to uninstall the existing version of the application. Afterwards, it is
possible to install the repackaged application without further problems.

As mentioned, all Android applications need to be signed with a developer key. Since
our rewriting process breaks the original signature, we sign the modified app with a
new key. However, apps signed with the same key can access each other’s data if they
declare so in their manifests. Thus, rewritten apps are signed with keys based on their
original signatures in order to preserve the intended behavior. In particular, two apps
that were originally signed with the same key, are signed with the same new key after

1Applications signed with the same developer key and those that have the “shared user id”-flag set
constitute special cases.

24

3.4. EXPERIMENTAL EVALUATION

the rewriting process.
Moreover, we ask the user to enable the OS-option to allow installation of apps that

have not been signed by the Google Android market. Due to these two user interactions,
no additional root privileges are required for AppGuard.

3.4 Experimental Evaluation

In this section, we present the results of our experimental evaluation. It focuses on
the performance of our framework and the evaluation of its effectiveness in different
case studies. As testbed we used the Google Galaxy Nexus smartphone with Android
4.0.2. It has a dual-core 1.2 GHz ARM CPU from Texas Instruments (OMAP 4460)
and features 1GB RAM. For our off-the-phone evaluation we use a notebook with an
Intel Core i5-2520M CPU (2.5 Ghz, two cores, hyper-threading) and 8GB RAM.

3.4.1 Performance Evaluation

AppGuard modifies apps installed on an Android device by adding code at the bytecode
level. We analyze the time it takes to inline an app and its impact on both size and
execution time of the modified app.

Table 3.1 provides an overview of our performance evaluation for the inlining process.
We have tested AppGuard with 13 apps and inlined each of the apps with 9 policies (see
Section 3.4.2 for details on the policies). In particular, we list the following results for
each of the apps: size of the original application package (Apk), size of the classes.y
dex file before and after the inlining process (Dex and Inl, respectively) and the resulting
file size difference (Diff), total number of instructions in the application code (Total),
number of instructions that have been instrumented by the inliner (Chg), and, finally,
the duration of the whole inlining process, both on the laptop and smartphone (PC and
Phone, respectively).

The size of the classes.dex file increases on average by approximately 45 Kb.
The majority of this increase results from merging the monitoring framework and
policy class definitions into the application code, while the inserted security checks
only have a minor influence on the file size. The applications in our benchmark exhibit
significant differences in the total number of instructions as well as in the size of the
application package. These differences are reflected in the execution times of the inliner.
In most cases, the total instruction count has the largest impact on the runtime, as all
instructions in the application code need to be scanned in order to identify invocations
of security-relevant methods. For a few apps (e.g. Angry Birds), however, the runtime
is dominated by re-building and compressing the application package file (which is
essentially a zip archive). The evaluation also clearly reveals the difference in computing
power between the laptop and the phone. While the inlining process takes considerably
more time on the phone than on the laptop, we argue that this should not be a major

25

CHAPTER 3. APPGUARD

Table 3.1: Inliner evaluation: sizes of apk file, classes.dex, inlined classes.dex, diff. of dex
file, # of total and changed instructions, inlining time on PC and phone.

App (Version) Size [Kb] Instructions Time [sec]
Apk Dex Inl Diff Total Chg PC Phone

Angry Birds (2.0.2) 15018 994 1038 +44 79311 100 6.5 43.4
Barcode Scanner (4.0) 508 352 397 +45 46337 31 1.8 4.1
Chess Free (1.55) 2240 517 561 +45 52615 71 3.2 7.9
Dropbox (2.1.1) 3252 869 913 +44 90334 86 1.9 14.1
Endomondo (7.0.2) 3263 1635 1680 +45 134452 88 2.6 23.0
Facebook (1.8.3) 4013 2695 2744 +48 224285 218 3.2 47.3
Instagram (1.0.3) 12901 3292 3337 +46 254032 137 4.2 66,4
Post mobil (1.3.1) 858 1015 1056 +41 84407 58 1.7 11.6
Shazam (3.9.0) 3904 2642 2690 +48 259644 221 2.8 47.5
Tiny Flashlight (4.7) 1287 485 531 +46 46878 109 1.8 7.3
Twitter (3.0.1) 2218 764 813 +48 105594 107 3.6 16.7
Wetter.com (1.3.1) 4296 958 1000 +43 89655 36 2.2 15.7
WhatsApp (2.7.3581) 5155 3182 3230 +48 437874 235 3.0 57.5

Table 3.2: Runtime comparison with micro-benchmarks for function calls in unmodified
apps and inlined apps with policies disabled and enabled. The runtime overhead is
presented for the inlined app with disabled policies.

Function Call Original Inlined App Overhead
App Pol. disabled Pol. enabled

Socket-><init>() 0.2879 ms 0.3022 ms 0.0248 ms 5.0%
ContentResolver->query() 10.484 ms 11.138 ms 0.1 ms 6.2%
Camera->open() 150.8 ms 152.36 ms 0.6 ms 1.0%

concern as the inliner is only run once per application.
The runtime overhead introduced by the inline reference monitor is measured through

micro-benchmarks (see Table 5.3.) We compare the execution time of single function
calls in three different settings: the original code with no inlining as well as the inlined
code with disabled and enabled policies (i.e. policy enforcement turned on or off) .
Additionally, we present the overhead incurred for the case where policies are disabled.
We list the average execution time for each function call. For the case where we enforce
policies we prevent the execution of the respective function.

For all function calls the instrumentation adds a small runtime overhead due to
additional code. However, when enabled policies prevent the particular function call,
the control flow change leads to a smaller overall execution time. Therefore, it is
incomparable to the other execution times, so that we compute the overhead only for
the disabled policies. In either case, the incurred runtime overhead is negligible and
does not adversely affect the application’s performance.

26

3.4. EXPERIMENTAL EVALUATION

3.4.2 Case Study Evaluation

The conceptual design of AppGuard focuses on flexibility and introduces a variety of
possibilities to enhance Android’s security features. In this section, we evaluate our
framework in several case studies by applying different policies to real world apps from
Google’s application market Google Play. As a disclaimer, we would like to point out
that we use apps from the market for exemplary purposes only, without implications
regarding their security unless we state this explicitly.

For our evaluation, we implemented 9 different policies. Five of them are de-
signed to revoke critical Android platform permissions, in particular the Internet
permission (InternetPolicy), access to camera and audio hardware (CameraPolicy,
AudioPolicy), and permissions to read contacts and calendar entries (ContactsPolicyy
, CalendarPolicy). Furthermore, we introduce a complex policy that tracks possible
fees incurred by untrusted applications (CostPolicy). The HttpsRedirectPolicy

and MediaStorePolicy address security issues in third-party apps and the OS. Finally,
the ReflectionPolicy described in Section 3.3.4.1 monitors invocations of Java’s Re-
flection API. In the following case studies, we highlight 6 of these policies and evaluate
them in detail on real-world apps.

Our case studies focus on (a) the possibility to revoke standard Android permissions -
which is arguably the feature Android users desire most. Additionally, it is possible to (b)
enforce fine-grained permissions that are not supported by Android’s existing permission
system, and, (c) to enforce complex and stateful policies based on the current execution
trace. Finally, our framework provides quick-fixes and mitigation for vulnerabilities
both in (d) third-party apps and (e) the operating system.

(a) Revoking Android permissions
Many Android applications request more permissions than necessary for achieving
the intended functionality. A prominent example is the Internet permission an-
droid.permission.INTERNET, which allows sending and receiving arbitrary data to and
from the Internet. Although the majority of applications requests this permission, it is
not required for the core functionality of an app in many cases. It is often used just
for providing in-app advertisements. However, overly curious apps that, e.g., upload
the user’s entire contact list to their servers, and even trojan horses are reported on a
regular basis. Unfortunately, users cannot simply add, revoke, or configure permissions
dynamically at a fine-grained level. Instead, users have to decide at installation time
whether they accept the installation of the app with the listed permissions or they reject
them with the consequence that the app cannot be installed at all.

AppGuard overcomes this unsatisfactory all-or-nothing situation by giving users
the chance to safely revoke permissions at any time at a fine-grained level. We aim at
a “safe” revocation of permissions, so that applications with revoked permissions will
not be terminated by a runtime exception. To this end, we carefully provide proper
dummy return values instead of just blocking unsafe function calls [52]. We tested the

27

CHAPTER 3. APPGUARD

revocation of permissions on several apps, of which we highlight two in the following.
Case study: Twitter
As an example for the revocation of permissions, we chose the official app of the popular
micro-blogging service Twitter. It attracted attention in the media [76] for secretly
uploading phone numbers and email addresses stored in the user’s address book to the
Twitter servers. While the app requested the permissions to access both Internet and
the user’s contact data, it did not indicate that this data would be copied off the phone.
As a result of the public disclosure, the current version of the app now explicitly informs
the user before uploading any personal information.

We can stop the Twitter app from leaking any private information by completely
blocking access to the user’s contact list. The contact data is used as part of Twitter’s
“Find friends” feature that makes friend suggestions to new users based on information
from their address book. Since friends can also be added manually, AppGuard leverages
the ContactsPolicy to protect the user’s privacy at the cost of losing only minor
convenience functionality. Actual policy enforcement is done by monitoring queries to
the ContentResolver, which serves as a centralized access point to Android’s various
databases. Data is identified by a URI, which we examine to selectively block queries
to the contact list by returning a mock result object. Our tests were carried out on an
older version of the Twitter app, which was released prior to their fix.
Case study: Tiny Flashlight
The core functionality of the Tiny Flashlight app is to provide a flashlight, either using
the camera’s LED flash, or by turning the whole screen white. At installation time, the
app requests the permissions to access the Internet and the camera. Manual analysis
indicates that the Internet permission is only required to display online advertisements.
However, in combination with the camera permission this could in principle be abused
for spying purposes, which would be hard to detect without further detailed code
or traffic analysis. AppGuard can block the Internet access of the app with the
InternetPolicy (see Section 3.3.1 and Figure 3.2), which, in this particular case, has
the effect of an ad-blocker. We monitor constructor calls of the various Socket classes,
the java.net.url.openConnection() method as well as several other network I/O
functions, and throw an IOException if access to the Internet is forbidden.

Apart from the Internet permission, users might not easily see why the camera
permission is required for this app. Here, our analysis indicates that – depending on the
actual smartphone hardware – the flashlight can in some cases be accessed directly, while
in others only via the camera interface. Although requesting this permission seems to
be benign for this app, our approach offers the possibility to revoke camera access. We
enforce the CameraPolicy by monitoring the android.hardware.Camera.open()

method. The policy simulates hardware without a camera by returning a null value.
The Tiny Flashlight app gracefully handles the revocation of the camera permission by
falling back to the screen-based flashlight solution.

(b) Enforcing fine-grained permissions

28

3.4. EXPERIMENTAL EVALUATION

Besides the revocation of existing permissions, it is also possible to design fine-grained
permissions that restrict the access of third-party apps. These permissions can add new
restrictions to a functionality that is not yet limited by the current permission system
and to a functionality that is already protected, but not in the desired way. Here, again,
the Internet permission is a good example. From the user’s point of view, most apps
should only communicate with a limited set of servers.

The wetter.com app provides weather information and should only communicate with
its servers to query weather information. The InternetPolicy of AppGuard provides
fine grained Internet access enabling a consequent white-listing of web servers on a
per-app basis. For this particular app we restrict the Internet access as illustrated in the
first case study and extend it with regular-expression-based white-listing: ^(.+\.)?y
wetter\.com$. Similar to the Tiny Flashlight app, no more advertisements are shown
while the application’s core functionality is preserved. The refined Internet policy
can also be applied in a general setting as the white-listing can be configured in the
management interface by choosing from a list of hosts the app has tried to connect to
in the past.

(c) Enforcing complex and stateful policies
Stateless permissions, as discussed in the previous case studies, cannot be used to
enforce policies that depend on the trace of the current execution. Using AppGuard
it is also possible to implement complex stateful policies, e.g. to limit the number of
text messages or phone calls to costly numbers, or to block the Internet access after
sensitive information like contacts or calendar entries has been accessed.

The Post mobil app provided by the German postal service Deutsche Post offers,
besides informative services, the possibility to buy stamps online via premium service
calls or text messages. To limit the cost incurred by this application, it is necessary
to track the number of previous calls. AppGuard tracks these numbers and provides
the CostPolicy that limits the number of possible charges. We monitor the relevant
function calls for sending text messages and for making phone calls, e.g. android.y
telephony.SmsManager.sendTextMessage(). In order to monitor the start of phone
calls, it is necessary to track so-called Intents, Android’s message format for inter- and
intra-app communication. Intents contain two parts, an action to be performed and
parameter data encoded as URI. For example, intents that start phone calls have the
action ACTION_CALL. We track intents by monitoring intent dispatch methods like
android.app.Activity.startActivity(Intent).

(d) Quick-fixes for vulnerabilities in third-party apps
Our system can also fix vulnerabilities in third-party applications. As an example, some
applications still transmit sensitive information over the Internet via the HTTP protocol.
Although most apps use encrypted HTTPS for the login procedures to web servers,
there are still some applications that return to unencrypted HTTP after successful
login, thereby transmitting their authentication tokens in plain text over the Internet.
Attackers could eavesdrop on the connection to impersonate the current user.

29

CHAPTER 3. APPGUARD

The Endomondo Sports Tracker uses the HTTPS protocol for the login procedure
only, and returns to the HTTP protocol afterwards, which transmits the unencrypted
authentication token. As the Web server supports HTTPS for the whole session, the
HttpsRedirectPolicy of AppGuard enforces its usage throughout the session (see
Figure 3.3), which protects the user’s account and data from identity theft. Whenever
the app attempts to open a HTTP connection, we instead open an HTTPS connection
(see the monitored method invocations in the first case study). Depending on the
monitored function, we either return the redirected HTTPS connection, or the content
from the redirected connection.

(e) Mitigation for operating system vulnerabilities
We also found our tool useful to mitigate operating system vulnerabilities. As we cannot
change the operating system itself, we instrument all applications with a global security
policy to prevent exploits.

Case study: Access to photos without a permission
An example for an operating system vulnerability is the lack of protection of the user’s
photos on Android phones. Any application can access these photos on the phone
without any permission check [18]. Together with the Internet permission, an app
could copy all photos to arbitrary servers on the Internet. This was demonstrated by a
proof-of-concept exploit that – disguised as an inconspicuous timer app – uploads the
user’s personal photos to a public photo sharing site.

Android stores photos in a central media store, that can be accessed via the
ContentResolver object, similar to contact data in the first case study. Leveraging
the MediaStorePolicy, we block access to the stored photos, successfully preventing
the exploit.

Case study: Local cross-site scripting attack
Similar to the mitigation of the photo access bug, it is also possible to fix security
vulnerabilities in core applications that cannot be inlined directly. The Android browser
that comes with all devices is vulnerable to a local cross-site scripting attack [4] up to
Android version 2.3.4. If the Android browser receives VIEW intents from another app
with an HTTP or HTTPS URI, it opens a new browser window and loads the requested
web site. Similarly, it also handles VIEW intents with a javascript: URI, however, up
to Android version 2.3.4, the browser reuses the currently active window. Consequently,
the JavaScript code given in the intent will be executed in the context of the current
web site, which leads to a local cross-site scripting vulnerability.

This attack can be mitigated by disallowing this combination of intents. The
InternetPolicy monitors startActivity(Intent) calls and throws an exception if
the particular intent is not allowed. The same approach can be leveraged to preclude
third-party apps with no Internet permission from using intents with an HTTP URI to
send data to arbitrary servers on the Internet.

30

3.5. CONCLUSION

3.4.3 Discussion

The presented framework solves a pressing security problem of the Android platform.
Coarse-grained and static policies like the access control mechanism of Android open
the door for silent privacy violations and trojan horses, as the user never sees what an
application actually does with the requested permissions. Our fine-grained dynamic
policies can, e.g., be used to distrust the app and only grant a permission once the
user finds that the app does not perform as expected. The logging-based approach in
our tool allows a user to see which API calls were denied, possibly with the value of
significant parameters. Granting access to those calls that are deemed necessary with
restrictions on parameters (like accessible host names) will eventually lead to a minimal
set of permissions that fulfills the privacy and security needs of a user.

We demonstrated that our solution is practical, as the runtime overhead and the
increase in package sizes are negligible. The actual runtime overhead obviously depends
on the complexity of the policy. However, when a policy denies access, the program
will in general take a different execution path that usually leads to shorter times. The
user experience does not suffer from rewriting the application. In particular, we did not
notice any delays using the rewritten app. The rewriting process proceeds fast even on
the limited hardware of a mobile phone. The inlining time is already reasonable, but
we still see a large potential for reducing this time with some optimizations.

We outline some challenges and future work in the following: We currently do not
monitor any code outside of the classes.dex file, in particular we might miss code in
native libraries accessed via Java’s Native Interface (JNI), dynamically loaded classes
(from external sources), and external programs accessed via inter-procedure calls.

Android programs are multi-threaded by default. Issues of thread safety could
therefore arise in the monitor. While we do not yet offer policies that take the relative
timing of method calls in different threads into account, we plan to extend our system
to support race-free policies [24] in the future.

3.5 Conclusion

We have presented a practical approach to overcome Android’s limitations regarding
secure, user-driven permission management. The system is based on an inline reference
monitor and can be deployed to all Android devices as it does not rely on modifying
the firmware. Most prominently, the system can curb the pervasive overly curious
behavior of Android apps. Apart from that, we are able to enforce complex stateful
security policies and mitigate vulnerabilities of both third-party apps as well as the OS.
Our experimental analysis demonstrates that the overhead of both space and runtime
are negligible. Further, the case studies illustrate the prevention of several real-world
attacks on Android vulnerabilities.

31

4
Dynamic Method Hook Injection

on Android

33

4.1. INTRODUCTION

4.1 Introduction

With AppGuard, we have introduced a practical approach for security policy enforce-
ment on stock Android devices by leveraging inline reference monitors. To that end,
untrusted apps are rewritten to invoke a security monitor before each security-sensitive
operation, which is typically a call to a method defined in Android’s system libraries.
The monitor checks whether the security policy allows the attempted operation: In
the positive case, it lets the original call proceed, while a negative decision blocks the
security-sensitive operation. In the latter case, it returns a mock value to prevent the
app’s termination due to an exception, if necessary. This variant of inline reference
monitoring is called caller-site rewriting, as all call sites to security-sensitive operations
must be instrumented.

However, this approach has a number of drawbacks. First, it only monitors calls that
can be found by static analysis. In particular, this includes calls executed via Java’s
Native Interface (JNI) or from dynamically loaded code (e.g., code downloaded post-
installation). In consequence, this can lead to incomplete enforcement of the security
policy as security-relevant method invocations might bypass the security monitor.
Furthermore, the approach requires modifications to the bytecode of the monitored app
at all invocation points of security-sensitive methods, which requires significant time, in
particular, if this process is performed on a smart device.

These issues are addressed by an alternative reference monitor style, called callee-site
rewriting. This style is far less invasive, as it only instruments the entry of the security-
sensitive method itself instead of all the invocation points. On top of that, it also
monitors method invocations that are not statically determinable, such as calls executed
via Java’s Reflection API or the Java Native Interface mentioned above. Unfortunately,
static callee-site rewriting is not feasible for almost all security-relevant code, as this
code is defined in sealed libraries (i.e. which cannot be modified) and loaded before any
client code executes. Thus static rewriting of these libraries is impossible, rendering
callee-site rewriting unsuitable for use on Android devices.

Our contribution is that we enable callee-site rewriting for sealed libraries. We
achieve this by diverting control flow in the virtual machine. This insight is based on
the observation that the VM-internal data structures that represent the libraries in
memory are modifiable. Therefore, it is possible to alter the control flow by modifying
the reference to the library method’s bytecode, which reroutes a call to this method to
another piece of bytecode. For the purpose of inline reference monitoring, we relay an
invocation of a security-relevant method to a method that checks whether the security
policy allows the original invocation. If this is not the case, we simply return (a mock
value); otherwise we invoke the original method with the original parameters. As we are
altering references to Java bytecode, we have access to all the parameters of the original
method call when checking the security policy, just like the caller-site instrumentation
does. At the same time, if an app invokes the security-relevant method from JNI or

35

CHAPTER 4. DYNAMIC METHOD HOOK INJECTION ON ANDROID

via reflection, we will still monitor this call as it jumps into the monitor, as well. We
are not aware of any previous work that modified references to bytecode in a virtual
machine in order to divert control flow to a different functionality.

In more detail, we make the following contributions:

1. We propose to rewrite references to the bytecode of security-relevant methods
in-memory in order to achieve the same effects as callee-site rewriting does. To that
end, we invoke a native method at program entry that diverts control flow from
security-sensitive methods to our monitor methods. We achieve this by modifying
the reference to the bytecode of the security-sensitive method and storing the
original reference inside the monitor, which effectively makes the original method
available to our monitor only.

2. Our in-memory callee-site rewriting only requires minimal instrumentation of
an app that needs to be protected by a security policy. In practice, all entry
points to the program need to ensure that the references have already been altered.
Otherwise, a piece of native code is invoked that modifies these references.

3. In-memory rerouting of security-sensitive methods allows dynamic policy updates
and is more efficient than static program rewriting, as it only alters the references
of methods that the policy currently protects. Static rewriting would either
need to instrument all potentially security-relevant methods or to re-instrument
whenever the policy is modified. On top of that, our technique is less invasive,
which facilitates on-the-phone instrumentation and minimizes possible conflicts
with the original application.

4. We demonstrate the feasibility of our proposed technique by a prototypical im-
plementation. Initial micro-benchmarks show that the dynamic overhead of this
technique is minimal and negligible in a practical application.

4.2 Background

Runtime policy enforcement for third-party applications cannot be easily integrated
into unmodified Android systems. Android’s security concept strictly isolates different
applications installed on the same device to prevent apps from interfering with each
other at runtime. Furthermore, applications cannot gain elevated privileges to observe
the behavior of other applications. Communication between apps is only possible via
Android’s inter-process communication (IPC) mechanism. However, such communication
requires both parties to cooperate, rendering this channel unsuitable for a generic runtime
monitor.

Several approaches tackled this problem by following an approach pioneered by
Erlingsson and Schneider [35] called inline reference monitor (IRM). The basic idea is
to rewrite an untrusted application such that the code that monitors the application

36

4.2. BACKGROUND

a) Caller-site rewriting b) Callee-site rewriting c) Call diversion

Legend:

Original code

Monitor

foo foo

foo

call foo()

call foo()

call foo()

call foo()

call foo()

call foo()

Figure 4.1: Visualization of different rewriting approaches

is directly embedded into its code. To this end, IRM systems incorporate a rewriter
or inliner component that injects additional security checks, called guards, at critical
points into the application bytecode. A guard can be injected into the control flow
at different positions, but clearly, such a guard should be executed before the critical
functionality is executed. There are two semantically equivalent approaches to IRM, as
presented in Figure 4.1: Caller-site-rewriting (a) adds the guard before every critical
call, while callee-site rewriting (b) injects the guard into the entry of the critical function
itself. The latter is usually more efficient, since the guard only needs to be injected
once. Unfortunately, Android’s system libraries are sealed so that inlining the guards
into a library is impossible. In order to achieve the same effect as traditional callee-site
rewriting we divert all function calls from the security-critical library method to our
security guard (see Figure 4.1(c)). Once the guard allows the execution, the original
library function is invoked. This redirection, however, incurs an additional method call.

The injected security guards can now efficiently enforce a security policy. To actually
enforce a policy, the monitor may suppress or alter calls to security-relevant functionality,
or even terminate the program if necessary.

In the IRM context, a policy is typically specified by means of a security automaton
that defines which sequences of security-relevant events are acceptable. Such policies
have been shown to express exactly the policies enforceable by runtime monitoring [78].
Ligatti et al. differentiate security automata by their ability to enforce policies as they
manipulate the trace of the program [56]. Some IRM systems [35, 28] implement
truncation automata, which can only terminate the program if it deviates from the
policy. However, this is often undesirable in practice. Ligatti et al. [56] formulate
the notion of edit automata, which can transform the program trace by inserting or
suppressing events. Monitors based on edit automata are able to react gracefully to
policy violations, e.g. by suppressing an undesired method call and returning a mock
value, while allowing the program execution to continue.

On top of providing an elegant security policy enforcement mechanism, a key aspect
of IRM-based security solutions is ease of deployment. User’s need to be able to install
the security system without requiring expert knowledge (e.g. gaining root access or
changing the smartphone firmware). Our prior work AppGuard [P1, P2] demonstrates

37

CHAPTER 4. DYNAMIC METHOD HOOK INJECTION ON ANDROID

that rewriting apps directly on the phone and subsequently installing the instrumented
apps is possible without modifying the base operating system or requiring root access.

4.3 Implementation

Our approach is based on diverting function calls to system libraries to functions in
our own library that first perform a security check. The diversion is achieved by
replacing the reference to a method’s bytecode in the VM’s internal representation
(e.g. a virtual method table) with the reference to our security guard. Our security
guards reside in an external library which is dynamically loaded on application startup.
Therefore, we do not need to reinstrument the app when the security policy is modified.
Additionally, we store the original reference in order to access the original function later
on, e.g., in case the security check grants the permission to execute the security-critical
method. In order to ensure instrumentation of security-sensitive methods before their
execution, we create an application class that becomes the superclass of the existing
application class1. Our new class contains a static initializer, which is the very first
code executed upon application startup. The initializer loads our native C-library using
System.loadLibrary().

Invocations of security-critical methods do not need to be rewritten statically.
Instead, we use Java Native Interface (JNI) calls at runtime to replace the references
to each of the functions to be monitored. More precisely, we call the JNI method
GetMethodID() which takes a method’s signature, and returns a pointer to the
internal data structure describing that method. This data structure contains a reference
to the bytecode instructions associated with the method, as well as metadata such as
the method’s argument types or the number of registers. In order to redirect the control
flow to our guard method, we overwrite the reference to the instructions such that it
points to the instructions of the security guard’s method instead. Additionally, we
adjust the intercepted method’s metadata to be compatible with the guard method’s
code. In particular, we adjust the number of registers to the number of the guard
method’s registers. This approach works for pure Java methods as well as methods with
a native implementation.

We illustrate how to replace a method using the functionality provided by our
instrumentation library in Figure 4.2. Calling Instrumentation.replaceMethody
() replaces the instruction reference of method foo() of class com.test.A with the
reference to the instructions of method bar() of class com.test.B. It returns the
original reference, which we store in a variable A_foo. Therefore, subsequently calling
A.foo() will invoke B.bar() instead. The original method can still be invoked by
Instrumentation.callOriginalMethod(A_foo). Note that the handle A_foo will
be a secret of the security policy in practice, therefore the original method can not be
invoked directly by the instrumented app.

1In case no application class exists, we register our class as the application class.

38

4.4. EVALUATION

1 public class Main {
2 public static void main(String[] args) {
3 A.foo(); // calls A.foo()
4

5 MethodHandle A_foo = Instrumentation.replaceMethod(
6 "Lcom/test/A;->foo()", "Lcom/test/B;->bar()");
7

8 A.foo(); // calls B.bar()
9

10 Instrumentation.callOriginalMethod(A_foo); // calls A.foo()
11 }
12 }

Figure 4.2: Example illustrating the functionality of the instrumentation library

Our approach relies only on the layout of Dalvik’s internal data structure for methods,
which has not changed since the initial version of Android. However, our instrumentation
system could be easily adapted if the layout were to change in future versions of Android.

We are not aware of any possibility to bypass or disable our instrumentation in
Java code, as this code is strongly typed. It can even handle cases like reflection or
externally loaded libraries, which have not been instrumented. However, native code
could potentially alter the references we modified, but it wouldn’t know the original
references, as our native code executes first. Native code could also modify the guard’s
bytecode instructions or data structures, which is out of the scope of our approach.

4.4 Evaluation

In the following we present the results of our experimental evaluation. We measure the
performance overhead of our call diversion approach through several micro-benchmarks
(see Table 5.3.) All benchmarks have been executed on a Google Galaxy Nexus
smartphone running Android version 4.1.1 (Jelly Bean). The smartphone has a dual-
core 1.2 GHz ARM CPU from Texas Instruments (OMAP 4460) and 1GB of RAM.
Our techniques require no custom firmware, which allows widespread deployment. We
envision a instrumentation process similar to our previous work [T1], where a third-party
app can be rewritten directly on the phone. The rewriting process only adds code to
load the policy classes and executes native code that modifies the references to methods
that need to be monitored.

For the evaluation of the runtime overhead we chose to conduct time measurements
on three method calls with different runtime complexity, namely Socket-><init>(),
ContentResolver->query(), and Camera->open(). We measured time using
the System->nanoTime() function. One measurement cycle consists of x iterations
over the particular function call inside a loop, where x = 25 for Camera->open(),
x = 500 for ContentResolver->query(), and x = 10000 for Socket-><init>().

39

CHAPTER 4. DYNAMIC METHOD HOOK INJECTION ON ANDROID

Table 4.1: Runtime comparison with micro-benchmarks for normal function calls and
guarded function calls with policies disabled as well as the introduced runtime over-
head.

Function Call Original Call Guarded Call Overhead
Socket-><init>() 0.0186ms 0.0212 ms 21.4%
ContentResolver->query() 19.5229 ms 19.4987 ms 0.8%
Camera->open() 74.498 ms 79.476 ms 6.4%

We executed each cycle 10 times per benchmark. Table 4.1 reports the median runtime
for the original function, for the rewritten function with disabled policies (i.e., we directly
call the original function), and, finally, the runtime overhead in percent. We do not
report the overhead with enabled policies as this would result in negative overhead as
the original methods would not be executed.

During the evaluation we found that in a few cases the monitored calls were faster
than the original calls, even though we explicitly invoke garbage collection before each
cycle to minimize its distortion. These cases are clearly outliers, possibly due to the
operating system’s scheduling strategies for other apps running on the same phone. The
reported median overhead abstracts from such effects and is always positive. While the
relative overhead may seem high, the absolute value is almost negligible and does not
adversely affect the application’s performance, in particular as any realistic program
only invokes a limited number of security-sensitive methods. The micro-benchmarks
give a worst-case approximation of the overhead incurred by a program that would only
invoke protected functionality.

4.5 Conclusion

We presented an efficient new approach to inline reference monitoring for Android
apps. Our call diversion approach follows the idea of callee-site rewriting and heavily
reduces the number of changes that have to be performed during app instrumentation.
Furthermore, it reduces the runtime of the inlining process and facilitates on-the-phone
instrumentation. Our approach allows for dynamic updates of security policies as only
references to bytecode need to be changed. We demonstrated the feasibility of the
approach through an experimental evaluation and have integrated it into our prior work
AppGuard.

40

5
Boxify

Full-fledged App Sandboxing for Stock Android

41

5.1. INTRODUCTION

5.1 Introduction

Security research has shown that the privacy of smartphone users – and in particular of
Android OS users, due to Android’s popularity and open-source mindset – is jeopardized
by a number of different threats. Those include increasingly sophisticated malware
and spyware [96, 97],overly curious libraries [33, 43], but also developer negligence and
absence of fail-safe defaults in the Android SDK [44, 37]. To remedy this situation, the
development of new ways to protect the end-users’ privacy has been an active topic of
Android security research during the last years.

From a deployment perspective, the proposed solutions followed two major directions:
The majority of the solutions [30, 62, 64, 12, 23, 98, 74, 83] extended the UID-centered
security architecture of Android. In contrast, a number of solutions [54, 88, 27, 70, 26,
P1] promote inlined reference monitoring (IRM) [34] as an alternative approach that
integrates security policy enforcement directly into Android’s application layer, i.e., the
apps’ code. AppGuard as presented in this dissertation (see Chapter 3) stands in line
with this latter research direction.

However, this dichotomy is unsatisfactory for end-users: While OS security extensions
provide stronger security guarantees and are preferable in the long run, they require
extensive modifications to the operating system and Android application framework. In
contrast, solutions that rely on inlined reference monitoring such as AppGuard avoid
this deployment problem by moving the reference monitor to the application layer and
allowing users to install security extensions in the form of apps. However, the currently
available solutions provide only insufficient app sandboxing functionality [50] as the
reference monitor and the untrusted application share the same process space. Hence,
they lack the strong isolation that would ensure tamper-protection and non-bypassability
of the reference monitor. Moreover, inlining reference monitors requires modification and
hence re-signing of applications, which violates Android’s signature-based same-origin
model and puts these solutions into a legal gray area.

To overcome this dichotomy we aim for the sweet spot between the two directions
that could provide immediate strong privacy protection against rogue applications. It
should combine the security guarantees of OS security extensions with the deployability
of IRM solutions, while simultaneously avoiding their respective drawbacks. Effectively,
such a solution would provide an OS-isolated reference monitor that can be deployed
entirely as an app on stock Android without modifications to the firmware or code of
the monitored applications. In this chapter we present a novel concept for Android
app sandboxing based on app virtualization, which provides tamper-protected reference
monitoring without firmware alterations, root privileges or modifications of apps.

The key idea of our approach is to encapsulate untrusted apps in a restricted
execution environment within the context of another, trusted sandbox application. To
establish a restricted execution environment, we leverage Android’s “isolated process”
feature, which allows apps to totally de-privilege selected components—a feature that

43

CHAPTER 5. BOXIFY

has so far received little attention beyond the web browser. By loading untrusted
apps into a de-privileged, isolated process, we shift the problem of sandboxing the
untrusted apps from revoking their privileges to granting their I/O operations whenever
the policy explicitly allows them. The I/O operations in question are syscalls (to access
the file system, network sockets, bluetooth, and other low-level resources) and the
Binder IPC kernel module (to access the application framework). We introduce a novel
app virtualization environment that proxies all syscall and Binder channels of isolated
apps. By intercepting any interaction between the app and the system (i.e., kernel and
app framework), our solution is able to enforce established and new privacy-protecting
policies. Additionally, it is carefully crafted to be transparent to the encapsulated
app in order to keep the app agnostic about the sandbox and retain compatibility to
the regular Android execution environment. By executing the untrusted code as a
de-privileged process with a UID that differs from the sandbox app’s UID, the kernel
securely and automatically isolates at process-level the reference monitor implemented
by the sandbox app from the untrusted processes. Technically, we build on techniques
that were found successful in related work (e.g., libc hooking [88]) while introducing new
techniques such as Binder IPC redirection through ServiceManager hooking. We realize
our concept as a regular app called Boxify that can be deployed on stock Android.
To the best of our knowledge, Boxify is the first solution to introduce application
virtualization to stock Android.
In summary, we make the following contributions:

1. We present a novel concept for application virtualization on Android that leverages
the security provided by isolated processes to securely encapsulate untrusted apps
in a completely de-privileged execution environment within the context of a regular
Android app. To retain compatibility of isolated apps with the standard Android
app runtime, we solved the key technical challenge of designing and implementing an
efficient app virtualization layer.

2. We realize our concept as an app called Boxify, which is the first solution that
ports app virtualization to the Android OS. Boxify is deployable as a regular app
on stock Android (no firmware modification and no root privileges required) and
avoids the need to modify sandboxed apps.

3. We systematically evaluate the efficacy and efficiency of Boxify from different
angles including its security guarantees, different use-cases, performance penalty, and
Android API version dependence across multiple Android OS versions.

The remainder of this chapter is structured as follows. In Section 5.2, we provide
necessary technical background information on Android. We define our objectives and
discuss related work in Section 5.3. In Section 5.4, we present our Boxify design and
implementation, which we evaluate in Section 5.5. We conclude the paper in Section 5.6.

44

5.2. BACKGROUND ON ANDROID OS

5.2 Background on Android OS

Android OS is an open-source software stack (see Figure 5.1) for mobile devices con-
sisting of a Linux kernel, the Android application framework, and system apps. The
application framework together with the pre-installed system apps implement the An-
droid application API. The software stack can be extended with third-party apps, e.g.,
from Google Play.

Android Security Model. On Android, each application runs in a separate, simple
sandboxed environment that isolates data and code execution from other apps. In
contrast to traditional desktop operating systems where applications run with the
privileges of the invoking user, Android assigns a unique Linux user ID (UID) to
every application at installation time. Based on this UID, the components of the
Android software stack enforce access control rules that govern the app sandboxing. To
understand the placement of the enforcement points, one has to consider how an app
can interact with other apps (and processes) in the system:

Like any other Linux process, an app process uses syscalls to the Linux kernel
to access low-level resources, such as files. The kernel enforces discretionary access
control (DAC) on such syscalls based on the UID of the application process. For instance,
each application has a private directory that is not accessible by other applications
and DAC ensures that applications cannot access other apps’ private directories. Since
Android version 4.3 this discretionary access control is complemented with SELinux
mandatory access control (MAC) to harden the system against low-level privilege
escalation attacks and to reinforce this UID-based compartmentalization.

The primary channel for inter-application communication is Binder Inter-Process
Communication (IPC). It is the fundamental building block for a number of more
abstract inter-app communication protocols, most importantly Inter-Component Com-
munication (ICC) [31] among apps and the application framework. For sandboxing
applications at the ICC level, each application UID is associated with a set of platform
permissions, which are checked at runtime by reference monitors in the system services
and system apps that constitute the app framework (e.g. LocationService). These
reference monitors rely on the Binder kernel module to provide the UID of IPC senders
to the IPC receivers.

In general, both enforcement points are implemented callee-sided in the framework
and kernel, and hence agnostic to the exact call-site within the app process. This means
that enforcement applies equally to all code executing in a process under the app’s UID,
i.e., to both Java and native code.

Additionally, Android verifies the integrity of application packages during installation
based on their developer signature. The corresponding developer certificate is afterwards
used to enforce a same-origin policy for application updates, i.e., newer app versions
must be signed with the same signing key as the already installed application.

Isolated Process. The Isolated Process, introduced in Android version 4.1, is a security

45

CHAPTER 5. BOXIFY

Application Framework App (UIDApp)

Linux Kernel

Binder IPC Module

Service / System App
(Platform Permissions) Components

Syscall API
(DAC + MAC)

Native Libs

SyscallBinder IPC

Figure 5.1: High-level view of interaction between apps, application framework, and
Linux kernel on Android.

feature that has received little attention so far. It allows an app developer to request
that certain service components within her app should run in a special process that is
isolated from the rest of the system and has no permissions of its own [2]. The isolated
process mechanism follows the concept of privilege separation [69], which allows parts
of an application to run at different levels of privilege. It is intended to provide an
additional layer of protection around code that processes content from untrusted sources
and is likely to have security holes. Currently, this feature is primarily geared towards
web browsers [47] and is most prominently used in the Chrome browser to contain the
impact of bugs in the complex rendering code.

An isolated process has far fewer privileges than a regular app process. An isolated
process runs under a separate Linux user ID that is randomly assigned on process startup
and differs from any existing UID. Consequently, the isolated process has no access
to the private app directory of the application. More precisely, the process’ filesystem
interaction is limited to reading/writing world readable/writable files. Moreover, the
isolated process’ access to the Android middleware is severely restricted. The isolated
process runs with no permissions, regardless of the permissions declared in the manifest
of the application. More importantly, the isolated process is forbidden to perform any of
the core Android IPC functions: Sending Intents, starting Activities, binding to Services
or accessing Content Providers. Only the core middleware services that are essential to
running the service component are accessible to the isolated process. This effectively
bars the process from any communication with other apps. The only way to interact
with the isolated process from other application components is through the Service
API (binding and starting). Further, the transient UID of an isolated process does not
belong to any privileged system groups and the kernel prevents the process from using
low-level device features such as network communication, bluetooth or external storage.
As of Android v4.3, SELinux reinforces this isolation through a dedicated process type.
With all these restrictions in place, code running in an isolated process has only minimal
access to the system, making it the most restrictive runtime environment Android has
to offer.

46

5.3. REQUIREMENTS ANALYSIS AND EXISTING SOLUTIONS

5.3 Requirements Analysis and Existing Solutions

We first briefly formulate our objectives (see Section 5.3.1) and afterwards discuss
corresponding related work (see Section 5.3.2 and Table 5.1).

5.3.1 Objectives and Threat Model

In this paper, we aim to combine the security benefits of OS extensions with the
deployability benefits of application layer solutions. We identify the following objectives:

O1 No firmware modification: The solution does not rely on or require customized
Android firmware, such as extensions to Android’s middleware, kernel or the
default configuration files (e.g., policy files), and is able to run on stock Android
versions. This also excludes availability of root privileges, since root can only
be acquired through a firmware modification on newer Android versions due to
increasingly stringent SELinux policies.

O2 No app modification: The solution does not rely on or require any modifications
of monitored apps’ code, such as rewriting existing code.

O3 Robust reference monitor: The solution provides a robust reference monitor.
This encompasses: 1) the presence of a strong security boundary, such as a process
boundary, between the reference monitor and untrusted code; and 2) the monitor
cannot be bypassed, e.g., using a code representation that is not monitored, such
as native code.

O4 Secure isolation of untrusted code: This objective encompasses fail-safe de-
faults and complete mediation by the reference monitors. The solution provides a
reference monitor that mediates all interaction between the untrusted code and
the Android system, or, in case no complete mediation can be established, enforces
fail-safe defaults that isolate the app on non-mediated channels in order to prevent
untrusted code from escalating its privileges.

Threat model. We assume that the Android OS is trusted, including the Linux
kernel and the Android application framework. This includes the assumption that an
application cannot compromise the integrity of the kernel or application framework
at runtime. If the kernel or application framework were compromised, no security
guarantees could be upheld. Protecting the kernel and framework integrity is an
orthogonal research direction for which different approaches already exist, such as
trusted computing, code hardening, or control flow integrity.

Furthermore, we assume that untrusted third-party applications have full control
over their process and the associated memory address space. Hence the attacker can
modify its app’s code at runtime, e.g., using native code or Java’s reflection interface.

47

CHAPTER 5. BOXIFY

Application Framework App (UIDApp)

Linux Kernel

Binder IPC Module

Service / System App
(Platform Permissions) Components

Syscall API
(DAC + MAC)

Native Libs

SyscallBinder IPC

Service / System App

Syscall API

New Reference Monitor added

Figure 5.2: Instrumentation points for operating system security extensions.

Objectives O
S

ex
t.

IR
M

Se
p.

ap
p

B
ox

ify

O1: No system modification 8 4 4 4

O2: No application modification 4 8 8 4

O3: Robust reference monitor 4 8 4 4

O4: Secure isolation of untrusted code 4 8 8 4

4= applies; 8= does not apply.

Table 5.1: Comparison of deployment options for Android security extensions based on
desired objectives.

5.3.2 Existing Solutions

We systematically analyze prior solutions on app sandboxing.

5.3.2.1 Android Security Extensions

Many improvements to Android’s security model have been proposed in the literature,
addressing a variety of shortcomings in protecting the end-user’s privacy. In terms of
deployment options, we can distinguish between solutions that extend the Android OS
and solutions that operate at the application layer only.

Operating system extensions. The vast majority of proposals from the litera-
ture (e.g. [30, 62, 64, 12, 23, 86]) statically enhance Android’s application framework
and Linux kernel with additional reference monitors and policy decision points (see Fig-
ure 5.2). The proposed security models include, for instance, context-aware policies [23],
app developer policies [64], or Chinese wall policies [12]. More recent approaches [74, 61,
83] avoid static changes to the OS by dynamically instrumenting core system services
(like Binder and Zygote) or the Android bootup scripts in order to interpose [68] un-

48

5.3. REQUIREMENTS ANALYSIS AND EXISTING SOLUTIONS

Application Framework App (UIDApp)

Linux Kernel

Binder IPC Module

Service / System App
(Platform Permissions) Components

Syscall API
(DAC + MAC)

Native Libs

SyscallBinder IPC

Components Native Libs

Rewritten / Reference Monitor added

Figure 5.3: Instrumentation points for application code rewriting and inlining reference
monitors.

trusted apps’ syscalls and IPC. Since in all approaches the reference monitors are part of
the application framework and kernel, there inherently exists a strong security boundary
between the reference monitor and untrusted code (O3: 4). Moreover, this entails
that these reference monitors are by design part of the callee-side of all interaction of
the untrusted app’s process with the system and cannot be bypassed (O4: 4). On
the downside, these solutions require modification of the Android OS (image) or root
privileges to be deployed (O1: 8; O2: 4).

Additionally, a number of solutions exist that particularly target higher-security
deployments [10, 73, 55, 3], such as government and enterprise. Commercial products
exist that implement these solutions in the form of tailored mobile platforms (e.g.,
Blackphone1, GreenHills2, or Cryptophone3). These products target specialized user
groups with high security requirements—not the average consumer—and are thus
deployed on a rather small scale.

Application layer solutions. At the application layer, the situation for third-party
security extensions is bleak. Android’s UID-based sandboxing mechanism strictly
isolates different apps installed on the same device. Android applications run with
normal user privileges and cannot elevate to root in order to observe the behavior
of other apps, e.g., like classical trace or anti-virus programs on desktop operating
systems [42]. Also, Android does not offer any APIs that would allow one app to
monitor or restrict the actions of another app at runtime. Only static information about
other apps on the device is available via the Android API, i.e., application metadata,
such as the package name or signing certificate, and the compiled application code
and resources.Consequently, most commercially available security solutions are limited
to detecting potentially malicious apps, e.g. by comparing metadata with predefined
blacklists or by checking the application code for known malware signatures, but they

1https://blackphone.ch
2http://www.ghs.com/mobile/
3http://esdcryptophone.com

49

https://blackphone.ch
http://www.ghs.com/mobile/
http://esdcryptophone.com

CHAPTER 5. BOXIFY

App Framework Zero-Perm App (UIDApp)

Linux Kernel

Binder Module

Service / System App
(Platform Permissions)

Syscall API
(DAC + MAC)

SyscallBinder IPC

Mr. Hide Native Libs

Rewritten / Reference Monitor added

Dr. Android

Ref. Monitor

Figure 5.4: Dr. Android and Mr. Hide approach [54].

lack the ability to observe or influence the runtime behavior of other applications. As a
result, their effectiveness is, at best, debatable [71, 97].

Few proposals in the academic literature [54, 88, 27, 70, P1] focus on application
layer only solutions (see Figure 5.3). Existing systems mostly focus on access control by
interposing security-sensitive APIs to redirect the control flow to an additionally inlined
reference monitor within the app (e.g., Aurasium [88], I-ARM-Droid [27], RetroSkele-
ton [26], AppGuard [P1]). DroidForce [70] additionally pre-processes target apps with
static data flow analysis to identify strategic policy enforcement points and to redirect
policy decision making to a separate app.

All these systems are based on rewriting the application code to inline reference
monitors or redirect control flows, which works without modifications to the firmware
and is thus suitable for large-scale deployment (O1: 4; O2: 8). However, app rewriting
causes security problems and also a couple of practical deployment problems. First,
inlining the reference monitor within the process of the untrusted app itself might be
suitable for “benign-but-buggy” apps; however, apps that actively try to circumvent
the monitor will succeed as there exists no strong security boundary between the app
and the monitor. In essence, this boils down to an arms race between hooking security
critical functions and finding new ways to compromise or bypass the monitor [50],
where currently native code gives the attacker the advantage (O3: 8; O4: 8). Moreover,
re-writing application code requires re-signing of the app, which breaks Android’s
signature-based same origin policy and additionally raises legal concerns about illicit
tampering with foreign code. Lastly, re-written apps have to be reinstalled. This is not
technically possible for pre-installed system apps; other apps have to be uninstalled in
order to install a fresh, rewritten version, thereby incurring data loss.

Separate app. Dr. Android and Mr. Hide [54] (see Figure 5.4) is a variant of inlined
reference monitoring (O1: 4; O2: 8) that improves upon the security of the reference
monitor by moving it out of the untrusted app and into a separate app. This establishes
a strong security boundary between the untrusted app and the reference monitor as
they run in separate processes with different UIDs (O3: 4). Additionally, it revokes

50

5.3. REQUIREMENTS ANALYSIS AND EXISTING SOLUTIONS

all Android platform permissions from the untrusted app and applies code rewriting
techniques to replace well-known security-sensitive Android API calls in the monitored
app with calls to the separate reference monitor app that acts as a proxy to the application
framework. The benefit of this design is that in contrast to inlined monitoring, the
untrusted, zero-permission app cannot gain additional permissions by tampering with
the inlined/rewritten code. However, this enforcement only addresses the platform
permissions. The untrusted app process still has a number of Linux privileges (such
as access to the Binder interface or file system), and it has been shown that even a
zero-permission app is still capable of escalating its privileges and violate the user’s
privacy [66, 44, 20, 13, 89, 60, 94, 95] (O4: 8).

5.3.2.2 Sandboxing on traditional OSes

Restricting the access rights of untrusted applications has a longstanding tradition in
desktop and server operating systems. Few solutions set up user-mode only sandboxes
without relying on operating system functionality by making strong assumptions about
the interface between the target code and the system (e.g., absence of programming
language facilities to make syscalls or direct memory manipulation). Among the most
notable user-space solutions are native client [92] to sandbox native code within browser
extensions and the Java virtual machine [53] to sandbox untrusted Java applications.

Other solutions, which loosen the assumptions about the target interface to the
system rely on operating system security features to establish process sandboxes. For
instance, Janus [42], one of the earlier approaches, introduced an OS-supported sandbox
for untrusted applications on Solaris 2.4, which was based on syscall monitoring and
interception to restrict the untrusted process’ access to the underlying operating system.
The monitor was implemented as a separate process with necessary privileges to monitor
and restrict other processes via the /proc kernel interface. Modern browsers like
Chromium [82, 21, 81] employ different sandboxing OS facilities (e.g, seccomp mode)
to mitigate the threat of web-based attacks against clients by restricting the access of
untrusted code.

App virtualization. Sandboxing also plays a role in more recent application virtual-
ization solutions [46, 85, 22, 59], where applications are transparently encapsulated into
execution environments that replace (parts of) the environment with emulation layers
that abstract the underlying OS and interpose all interaction between the app and the
OS. App virtualization is currently primarily used to enable self-contained, OS-agnostic
software, but also provides security benefits by restricting the interface and view the
encapsulated app has of the system.

Similarly to these traditional sandboxes and in particular to app virtualization,
Boxify forms a user-mode sandbox that builds on top of existing operating system
facilities of Android. Thereby, it establishes app sandboxes that encapsulate Android
apps without the need to modify the OS and without the need to make any assumptions

51

CHAPTER 5. BOXIFY

Isolated App A
(Target)

SyscallBinder IPC

Isolated App B
(Target)

Process
boundaries Broker (Reference Monitor)

Shim Shim

Linux Kernel

Binder Module Syscall API
(DAC + MAC)

App Framework

Boxify

Service / System App
(Platform Permissions)

Process
boundaries

Figure 5.5: Architecture overview of BOXIFY.

about the apps’ code.

5.4 Boxify Architecture

We present the Boxify design and implementation.

5.4.1 Design Overview

The key idea of Boxify is to securely sandbox Android apps, while avoiding any modifi-
cation of the OS and untrusted apps. Boxify accomplishes this by dynamically loading
and executing the untrusted app in one of its own processes. The untrusted application
is not executed by the Android system itself, but runs completely encapsulated within
the runtime environment that Boxify provides and that can be installed as a regular
app on stock Android (see Figure 5.5). This approach eliminates the need to modify
the code of the untrusted application and works without altering the underlying OS
(O1: 4; O2: 4). It thus constitutes the first solution that ports the concept of app
virtualization to the stock Android OS.

The primary challenge for traditional application sandboxing solutions is to com-
pletely mediate and monitor all I/O between the sandboxed app and the system in order
to restrict the untrusted code’s privileges. The key insight for our Boxify approach is
to leverage the security provided by isolated processes in order to isolate the untrusted
code running within the context of Boxify by executing it in a completely de-privileged
process that has no platform permissions, no access to the Android middleware, nor the
ability to make persistent changes to the file system.

However, Android apps are tightly integrated within the application framework, e.g.,

52

5.4. BOXIFY ARCHITECTURE

for lifecycle management and inter-component communication. With the restrictions
of an isolated process in place, encapsulated apps are rendered dysfunctional. Thus,
the key challenge for Boxify essentially shifts from constraining the capabilities of
the untrusted app to now gradually permitting I/O operations in a controlled manner
in order to securely re-integrate the isolated app into the software stack. To this end,
Boxify creates two primary entities that run at different levels of privilege: A privileged
controller process known as the Broker and one or more isolated processes called the
Target (see Figure 5.5).

The Broker is the main Boxify application process and acts as a mandatory proxy
for all I/O operations of the Target that require privileges beyond the ones of the
isolated process. Thus, if the encapsulated app bypasses the Broker, it is limited to the
extremely confined privilege set of its isolated process environment (fail-safe defaults;
O4: 4). As a consequence, the Broker is an ideal control-flow location in our Boxify
design to implement a reference monitor for any privileged interaction between a Target
and the system. Any syscalls and Android API calls from the Target that are forwarded
to the Broker are evaluated against a security policy. Only policy-enabled calls are then
executed by the Broker and their results returned to the Target process. To protect the
Broker (and hence reference monitor) from malicious app code, it runs in a separate
process under a different UID than the isolated processes. This establishes a strong
security boundary between the reference monitor and the untrusted code (O3: 4). To
transparently forward the syscalls and Android API calls from the Target across the
process boundary to the Broker, Boxify uses Android’s Binder IPC mechanism. Finally,
the Broker’s responsibilities also include managing the application lifecycle of the Target
and relaying ICC between a Target and other (Target) components.

The Target hosts all untrusted code that will run inside the sandbox. It consists of a
shim that is able to dynamically load other Android applications and execute them. For
the encapsulated app to interact with the system, it sets up interceptors that interpose
system and middlware API calls. The interceptors do not form a security boundary
but establish a compatibility layer when the code inside the sandbox needs to perform
otherwise restricted I/O by forwarding the calls to the Broker. All resources that the
Target process uses have to be acquired by the Broker and their handles duplicated
into the Target process.

By encapsulating untrusted apps and interposing all their (privileged) I/O operations,
Boxify is able to effectively enforce security- and privacy-protecting policies. Based
on syscall interposition, Boxify has fine-grained control over network and filesystem
operations. Intercepting Binder IPC enables the enforcement of security policies that
were so far only achievable for OS extensions, but at application layer only.

Moreover, with this architecture, Boxify can provide a number of interesting novel
features. Boxify is capable of monitoring multiple (untrusted) apps at the same
time. By creating a number of Target processes, multiple apps can run in parallel yet
securely isolated in a single instance of Boxify. Since the Broker fully controls all

53

CHAPTER 5. BOXIFY

Target (Isolated Process)

Untrusted App Code
Sa

nd
bo

x
Se

rv
ic

e

Binder IPC Interceptor Syscall Interceptor

SyscallBinder IPCC
on

tr
ol

 C
ha

nn
el

Shim code

Broker

Figure 5.6: Components of a Target process.

inter-component communication between the sandboxed apps, it is able to not only
separate different apps from one another but also to allow controlled collaboration
between them. Further, Boxify has the ability to execute apps that are not regularly
installed on the phone: Since Boxify executes other apps by dynamically loading their
code into one of its own processes and handles all the interaction between the sandboxed
application and the OS, there is no need to register the untrusted app with the Android
system. Hence, applications can be installed into, updated, or removed from Boxify
without involving the PackageInstaller or having system privileges. A potential
application of these features are application containers (e.g., enterprise app domain, see
Section 5.5.4).

5.4.2 Target

The Target process contains four main entities (see Figure 5.6): The SandboxService
(1) provides the Broker with a basic interface for starting and terminating apps in the
sandbox. It is also responsible for setting up the interceptors for Binder IPC (2) and
syscalls (3), which transparently forward calls issued by the untrusted application to
the Broker.

1) SandboxService. Isolated processes on Android are realized as specifically tagged
Service components (see Section 5.2). In Boxify each Target is implemented as such a
tagged SandboxService component of the Boxify app. When a new Target should be
spawned, a new, dedicated SandboxService is spawned. The SandboxService pro-
vides an IPC interface that enables the Broker to communicate with the isolated process
and to call two basic lifecycle operations for the Target: prepare and terminate.
The Broker invokes the prepare function to initialize the sandbox environment for
the execution of a hosted app. As part of this preparation, the Broker and Target
exchange important configuration information for correct operation of the Target, such
as app meta-information and Binder IPC handles that allow bi-directional IPC between

54

5.4. BOXIFY ARCHITECTURE

Broker and Target. The terminate function shuts down the application running in
the sandbox and terminates the Target process.

The biggest technical challenge at this point was “How to execute another third-party
application within the running isolated service process?” Naïvely, one could consider, for
instance, a warm-restart of the app process with the new application code using the exec
syscall. However, we discovered that the most elegant and reliable solution is to have the
Broker initially imitate the ActivityManager by instructing the Target process to
load (i.e., bind) another application to its process and afterwards to relay any lifecycle
events between the actual application framework and the newly loaded application in the
Target process. The bind operation is supported by the standard Android application
framework and used during normal app startup. The exact procedure is illustrated
in Figure 5.7. The Broker first creates a new SandboxService process (1), which
executes with the privileges of an isolated process. This step actually involves multiple
messages between the Broker process, the Target process and the system server, which we
omitted here for the sake of readability. As a result, the Broker process receives a Binder
handle to communicate with the newly spawned SandboxService. Next, the Broker
uses this handle to instruct the SandboxService to prepare the loading of a sandboxed
app (2) by setting up the Binder IPC interceptor and syscall interceptor (using the
meta-information given as parameters of the prepare call). The SandboxService
returns the Binder handle to its ApplicationThread to the Broker. The application
thread is the main thread of a process containing an Android runtime and is used by
the ActivityManager to issue commands to Android application processes. At this
point, the Broker emulates the behavior of the ActivityManager (3) by instructing
the ApplicationThread of the Target with the bindApplication call to load the
target app into its Android runtime and start its execution. By default, it would be
the ActivityManagerService as part of the application framework that uses this
call to instruct newly forked and specialized Zygote processes to load and execute an
application that should be started. After this step, the sandboxed app is executing.

As an example how a sandboxed app can be used, we briefly explain how an Activity
component of the sandboxed app can be launched, e.g., as result of clicking its entry in
a launcher. As explained in Section 5.4.3, the Virtualization Layer creates a mapping
from generic Boxify components to Target components. In this case, it maps the
Activity component of Target to an Activity component of Boxify. The Broker requests
the Activity launch from the ActivityManager in the SystemServer (4), which
allocates the required resources. After allocation, it schedules the launch of the Activity
component by signaling the ApplicationThread of the targeted app (5), which
in this case is the Boxify app. Thus, the Virtualization Layer resolves the targeted
Activity component and relays the signal to the corresponding Target process (6).

2) Binder IPC Interceptor. Android applications use the Binder IPC mechanism to
communicate with the (remote) components of other applications, including the appli-
cation framework services and apps. In order to interact via Binder IPC with a remote

55

CHAPTER 5. BOXIFY

System Server Broker Target

1

2

3

4

5

6

System creates isolated process
and starts SandboxService

IPC & Syscall
interceptions are set up

Activity is started

System allocates Activity
resources

Untrusted application
is started

Create Mapping
Broker Activity <-> Target Activity

Resolve Mapping
Broker Activity <-> Target Activity

ActivityManager.startActivity()

ApplicationThread.
scheduleLaunchActivity()

ApplicationThread.
scheduleLaunchActivity()

bindService()

Binder SandboxService

SandboxService.prepare()

Binder ApplicationThread

ApplicationThread.bindApplication()

St
ar

tu
p

Ph
as

e
La

un
ch

 A
ct

iv
ity

 P
ha

se

Figure 5.7: Process to load an app into a Target process and to launch one its Activities.

component, apps must first acquire a Binder handle that connects them to the desired
component. To retrieve a Binder handle, applications query the ServiceManager, a
central service registry, that allows clients to lookup system services by their common
names. The ServiceManager is the core mechanism to bootstrap the communication
of an application with the Android application framework. Binder handles to non-
system services, such as services provided by other apps, can be acquired from the core
framework services, most prominently the ActivityManager.

56

5.4. BOXIFY ARCHITECTURE

Boxify leverages this choke point in the Binder IPC interaction to efficiently
intercept calls to the framework in order to redirect them to the Broker. To this end,
Boxify replaces references to the ServiceManager handle in the memory of the
Target process with references to the Binder handle of the Broker (as provided in the
prepare function). These references are constrained to a few places and can be reliably
modified using the Java Reflection API and native code. Consequently, all calls directed
to the ServiceManager are redirected to the Broker process instead, which can then
manipulate the returned Binder objects in such a way that any subsequent interactions
with requested services are also redirected to the Broker. Furthermore, references to
a few core system services, such as the ActivityManager and PackageManager,
that are passed by default to new Android app runtimes, need to be replaced as well.
By modifying only a small number of Binder handles, Boxify intercepts all Binder IPC
communication. The technique is completely agnostic of the concrete interface of the
redirected service and can be universally applied to all Binder interactions.

3) Syscall Interceptor. For system call interception, we rely on a technique called
libc hooking (used, for instance, also in [88]). On Android, libraries or shared objects
like libc are relocatable ELF files that are mapped into a process’ address space when
loaded. Android applications and shared objects shipped with Android are dynamically
linked against the Bionic libc library to avoid code duplication and conserve memory.
In contrast to static linking, where addresses of library functions are fixed at compile
time, dynamically linked shared objects can be loaded at an arbitrary location in
memory. Hence, the addresses of symbols defined in such a shared object need to be
dynamically resolved at runtime. To this end, ELF files that are dynamically linked to
some shared object do not call the functions defined in the shared object directly, but
instead jump to a stub function in the ELF’s procedure linkage table (PLT). This stub
function retrieves the real target address of the library function from the ELF’s global
offset table (GOT) and then branches to it. In other words, the ELF’s global offset
table contains an array of function pointers of all dynamically linked external functions
referenced by its code. Libc hooking leverages this level of indirection introduced by
dynamic linking to efficently intercept calls to libc functions: it suffices to iterate over
every loaded ELF file and replace the functions pointers in its global offset table by
pointers to an alternative implementation. Using this technique, we efficently intercept
calls to libc functions and redirect these calls to a service client running in the Target
process. This client forwards the function calls via IPC to a custom service component
running in the Broker.

In contrast to the IPC interception, which redirects all IPC communication to the
Broker, the syscall interception is much more selective about which calls are forwarded:
We do not redirect syscalls that would be anyway granted to an isolated process, because
there is no security benefit from hooking these functions: a malicious app could simply
remove the hook and would still succeed with the call. This exception applies to calls to
read world-readable files and to most system calls that operate purely on file descriptors

57

CHAPTER 5. BOXIFY

(e.g. read, write). Naturally, by omitting the indirection via our Broker, these exempted
calls perform with native performance. However, Boxify still hooks calls that are
security-critical and that are not permitted for isolated processes, such as system calls
to perform file system operations (e.g. open, mkdir, unlink) and network I/O (socket,
getaddrinfo). For a few calls, such as file operations, whose success depends on the
given parameter, the syscall interception is parameter-sensitive in its decision whether
or not to forward this operation to the Broker.

5.4.3 Broker

The Broker is the main application process of Boxify and is thus not subject to the
restrictions imposed by the isolated process. It holds all platform permissions assigned
to the Boxify app and can normally interact with the Android middleware. The Broker
acts as a mandatory proxy for all interactions between the Target processes and the
Android system and thus embodies the reference monitor of Boxify. These interactions
are bi-directional: On the one hand, the untrusted app running in the Target process
issues IPC and syscalls to the system; on the other hand, the Android middleware
initiates IPC calls to Target (e.g., basic lifecycle operations) and the Broker has to
dispatch these events to the correct Target.

The Broker is organized into three main layers (see Figure 5.8): The API Layer
(4) abstracts from the concrete characteristics of the Android-internal IPC interfaces
to provide compatibility across different Android versions. It bridges the semantic
gap between the raw IPC transactions forwarded by the Target and the application
framework semantics of the Core Logic Layer (5), which implements the fundamental
mechanics of the virtual runtime environment that Boxify provides. All interaction
with the system happens through the Virtualization Layer (6), which translates between
the virtual environment inside of Boxify and the Android system on the outside. In
the following, we will look at every layer in more detail.

4) API Layer. The API Layer is responsible for receiving and unwrapping the redirected
syscall parameters from the Syscall Interceptor in the Target and relaying them to the
Core Logic Layer for monitoring and execution. More importantly, it transforms the
raw Binder IPC parcels received from the IPC Interceptor into a representation agnostic
of the Android version.

In order to (efficiently) sandbox applications at the Binder IPC boundary, Boxify
must semantically interpret the intercepted Binder parcels. However, intercepted
parcels are in a raw representation that consists only of native types that the kernel
module supports and the sender marshalled all higher-level objects (e.g., Java classes)
to this representation. This impedes an efficient sandboxing. To solve this problem,
Boxify leverages the default Android toolchain for implementing Binder-based RPC
protocols: To ensure that sender and receiver can actually communicate with each other,
the receiver must know how to unmarshal the raw parcel data (exactly like Boxify).

58

5.4. BOXIFY ARCHITECTURE

Target A

SyscallBinder IPC

Target B

B
R
O
K
E
R

API
Layer

Core Logic
Layer

Virtualization
Layer

Process boundaries

IPC Receiver

Policy
Module

Srv Stub
(AMS)

Syscall Recv

Srv Stub
(Location)...

Service
PEP

Service
PEP

Syscall
PEP

Core
Services

Component Broker

...

Figure 5.8: Architecture of the Broker.

Android supports the developers in this process through the Android Interface Definition
Language (AIDL), which allows definitions of Binder interfaces very similar to Java
interfaces, including the names and signatures of remotely callable functions. The
Android SDK toolchain generates the required boilerplate marshalling code from AIDL
definitions both for the receiver (Stub) and the sender (Proxy). For system services,
these Stubs are automatically generated during system build and Boxify uses the
generated Stubs (which ship with Android OS and are conveniently accessible to third-
party application) to unmarshal the raw Binder IPC parcel back to their application
framework semantic (i.e., Java objects, etc). In essence, this allows us to generate the
API layer of the Broker in an almost fully-automatic way for each Android version on
which Boxify is deployed. Since Boxify is in full control of the Binder handles of
the encapsulated app (i.e., calls to the ServiceManager, ActivityManager, etc.),
it can efficiently determine which Binder handle of the app addresses which system
service and hence which Stub must be used to correctly unmarshal the raw Binder
parcel intercepted from each handle.

However, the exact structure of the unmarshalled data and the functions (name
and signature) depend entirely on the AIDL file. Since the system service interfaces
describe the internal Android API, these interfaces change frequently between Android
versions. Hence Boxify would have to implement each possible version of a Stub
for every available Android version. Since this Stub implementation, in contrast to
the marshalling logic, can not be automated, this complicates efficient sandboxing of
apps across multiple Android versions. Consequently, it is desirable to transform the
unmarshalled IPC data into a version-agnostic representation and then implement each
Stub once and for all for this version. To accomplish this in Boxify, we borrow ideas
from Google’s proprietary SafeParcel class: In contrast to the regular Binder parcel,

59

CHAPTER 5. BOXIFY

/core/java/android/view/accessibility/IAccessibilityManager.aidl
/core/java/android/accounts/IAccountManager.aidl
/core/java/android/app/IActivityManager.java
/media/java/android/media/IAudioService.aidl
/core/java/android/app/backup/IBackupManager.aidl
/core/java/android/content/IClipboard.aidl
/core/java/android/net/IConnectivityManager.aidl
/core/java/android/content/IContentService.aidl
/core/java/android/hardware/input/IInputManager.aidl
/core/java/com/android/internal/view/IInputMethodManager.aidl
/location/java/android/location/ILocationManager.aidl
/core/java/android/os/storage/IMountService.java
/core/java/android/nfc/INfcAdapter.aidl
/core/java/android/app/INotificationManager.aidl
/core/java/android/content/pm/IPackageManager.aidl
/core/java/android/os/IPowerManager.aidl
/core/java/android/os/IServiceManager.java
/voip/java/android/net/sip/ISipService.aidl
/telephony/java/com/android/internal/telephony/ITelephonyRegistry.aidl
/core/java/android/hardware/usb/IUsbManager.aidl
/core/java/android/app/IWallpaperManager.aidl
/core/java/android/os/IVibratorService.aidl
/wifi/java/android/net/wifi/IWifiManager.aidl
/core/java/android/view/IWindowManager.aidl
/core/java/android/net/nsd/INsdManager.aidl

Figure 5.9: Android internal APIs considered in our evalution

the SafeParcel carries structural information about the data stored in it, which allows
the receiver of an IPC request to selectively read parts of the payload without knowing
its exact structure. We achieve the same result by transforming the version-dependent
parcel into a version-agnostic key-value store (where keys are the parameter names of
methods declared in the interface definitions) and adapting the Core Logic Layer and
Stub implementations to work with these version-agnostic data stores. Thus, while the
API layer is version-dependent and automatically generated for each Android version,
the remaining layers of Broker are version-agnostic and implemented only once.

To illustrate the need for a version abstraction such as the API Layer, we evaluated
the changes of the internal API between minor versions of the Android OS. We used
the interface descriptions of the Android core system services as basis for our evaluation
(see Listing 5.9).

Figure 5.10 summarizes our results and illustrates the differences of the API between
two consecutive minor versions. We measured the methods added (MA), methods
removed (MR), parameters added (PA), parameters removed (PR), parameters type
changed (PTC), and method return type changed (MRTC). Not surprisingly the biggest
changes occurred on a jump to a new major version. Although the cumulative changes
are moderate, our statistics illustrate the unreliability of the internal API and any
solution relying on the internal API has to cope with this unreliability. Thus, it is
preferable if any version dependent code can be automatically generated.

5) Core Logic Layer. The Core Logic Layer provides essential functionality re-

60

5.4. BOXIFY ARCHITECTURE

0	

50	

100	

150	

200	

250	

300	

350	

400	

450	

500	

4.1
.1_
r1	

4.1
.2_
r1	

4.2
.0_
r1	

4.2
.1_
r1	

4.2
.2_
r1	

4.3
.0_
r1	

4.3
.1_
r1	

4.4
.0_
r1	

4.4
.1_
r1	

4.4
.2_
r1	

4.4
.3_
r1	

4.4
.4_
r1	

5.0
.0_
r1	

5.0
.1_
r1	

5.0
.2_
r1	

Cu
m
ul
a&

ve
	
 C
ha

ng
es
	
 T
o	

Pr
ed

ec
es
so
r	
 V

er
si
on

	

Android	
 Version	

MRTC	

PTC	

PR	

PA	

MR	

MA	

Figure 5.10: Internal API stability between minor Android versions.

quired to run apps on Android by replicating a small subset of the functionality that
Android’s core system services provide. Most prominently, this layer provides a minimal
implementation of the PackageManager, which manages the packages installed into
the Boxify environment. Every call to a system service that is not emulated by the
Core Logic Layer is passed on to the Virtualization Layer and thus to the underlying
Android system. Other system services, such as the LocationManager, which are not
necessarily required, can be instantiated at this layer as well, in case encapsulated apps
are supposed to use the local, Boxify service implementation instead of the pristine
Android service (e.g., servicing sandboxed apps with fake location data [98]). Hence,
this layer decides whether an Android API call is emulated using a replicated service
or forwarded to the system (through the Virtualization Layer). This layer is therefore
responsible for managing the IPC communication between different sandboxed apps
(abstractly like an “ICC switch”).

Furthermore, the Core Logic Layer implements the policy enforcement points (PEP)
for Binder IPC services and syscalls. Because the API Layer already bridges the semantic
gap between kernel-level IPC and Android application framework semantics, this removes
the burden for dealing with low-level semantics in the IPC PEPs. We emulate the
integration of enforcement points into pristine Android services by integrating these
points into our mandatory service proxies. This allows us to instantiate security models
from the area of OS security extensions (see Section 5.3.2), but at the application layer.
One default security model that Boxify provides is the permission enforcement and
same origin model of Android. For instance, the replicated ActivityManager will
enforce permissions on calls between components of two sandboxed apps. We present

61

CHAPTER 5. BOXIFY

further security models from related work on OS security extensions that we integrated
at this layer in Section 5.5.4 and for future work we consider a programmable interface
for extending Core Logic Layer security in the spirit of ASM [51] and ASF [S1]. For
calls that are not protected by a permission, the Broker can also choose to enable direct
communication between the target app and the requested Android system service. This
can improve performance for non-critical services such as the SurfaceFlinger (for
GUI updates) at the cost of losing the ability to mediate calls to these services.

The syscall PEP enforces system call policies in the spirit of [68] with respect to
network and filesystem operations. Its responsibilities are twofold: First, it functions as
a transparent compatibility layer by emulating the file-system structure of the Android
data partition (e.g., chroot of sandboxed apps by emulating a home directory for each
sandboxed app4 within the home directory of the Boxify app). Second, it emulates
the access control of the Linux kernel, i.e., compartmentalization of sandboxed apps
by ensuring that they cannot access private files of other apps as well as enforcing
permissions (e.g., preventing a sandboxed app without Internet permission from creating
a network socket).

6) Virtualization Layer. The sandbox environment must support communication
between sandboxed apps and the Android application framework, because certain
system resources cannot be efficiently emulated (e.g., SurfaceFlinger for GUI) or
not emulated at all (e.g., hardware resources like the camera). However, the sandbox
must be transparent to the Target and all interaction with the application framework
must appear as in a regular app. At the same time, the sandbox must be completely
opaque to the application framework and sandboxed apps must be hidden from the
framework; otherwise, this leads to inconsistencies that the framework considers as
runtime (security) exceptions.

In Boxify, the Virtualization Layer is responsible for translating the bi-directional
communication between the Android application framework and the Target. It achieves
the required semi-transparent communication with a technique that can be abstractly
described as “ICC Network Address Translator” : On outgoing calls from Target to
framework, it ensures that all ICC appears as coming from the Boxify app instead of
the sandboxed app. As described earlier, all Binder handles of a Target are substituted
with handles of the Broker, which relays the calls to the system. During relay of
calls, the Virtualization Layer manipulates the call arguments to hide components of
sandboxed apps by substituting the component identifiers with identifiers of components
of the Boxify app. On incoming calls from the framework, the Virtualization Layer
substitutes the addressed Boxify component with the actually addressed component of
the sandboxed app and dispatches the call. In order to correctly substitute addressed
components, the Virtualization Layer maintains a mapping between Target and Boxify
component names, or in case the Target component is not addressed by a name but

4Recall that sandboxed apps are not installed in the system but only in the Boxify environment,
and hence do not have a native home directory.

62

5.4. BOXIFY ARCHITECTURE

a Binder handle that was given prior to the framework, the mapping is between the
released Binder handle and its owning Target component.

A concrete example where this technique is applied is requesting the launch of a
Target Activity component from the application framework (see Figure 5.7). The Virtu-
alization Layer substitutes the Activity component with a generic Activity component
of Boxify if a call to the ActivityManager occurs. When the service calls back for
scheduling the Activity launch, the Virtualization Layer dispatches the scheduling call
to the corresponding Target Activity component.

Lastly, we hook the application runtime of Boxify’s Broker process (using a
technique similar to [P4]) in order to gain control over the processing of incoming Binder
parcels. This enables the Broker to distinguish between parcels addressed to Boxify
itself and those that need to be forwarded to the Target processes.

5.4.4 System Integration

Lastly, we discuss some aspects of integrating sandboxed apps into the default application
framework.

Launcher. Since sandboxed apps have to be started through Boxify (and are not
regularly installed on the system), they cannot be directly launched from the default
launcher. A straightforward solution is to provide a custom launcher with Boxify in
form of a dedicated Activity. Alternatively, Boxify could register as a launcher app
and then run the default launcher (or any launcher app of the user’s choice) in the
sandbox, presenting the union of the regularly installed apps and apps installed in the
sandbox environment; or Boxify launcher widgets could be placed on the regular home
screen to launch sandboxed apps from there.

App stores. Particularly smooth is the integration of Boxify with app store appli-
cations, such as the Google Play Store. Since no special permissions are required to
install apps into the sandbox, we can simply run the store apps provided by Google,
vendors, and third-parties in Boxify to install new apps there. For example, clicking
install in the sandboxed Play Store App will directly install the new app into Boxify.
Furthermore, Play Store (and vendor stores) even take care of automatically updating all
apps installed in Boxify, a feature that IRM systems have to manually re-implement.

Statically registered resources. Some resources of apps are statically registered in
the system during app installation. Since sandboxed apps are not regularly installed, the
system is unaware of their resources. This concerns in particular Activity components
that can receive Intents for, e.g., content sharing, or package resources like icons.
However, some resources like Broadcast Receiver components can be dynamically
registered at runtime and Boxify uses this as a workaround to dynamically register
the Receivers declared statically in the Manifests of sandboxed apps.

63

CHAPTER 5. BOXIFY

Table 5.2: Micro-benchmarks middleware (200 runs)

API Call Native on Boxify Overhead

Open Camera 103.24 ms 104.48 ms 1.24ms (1.2%)
Query Contacts 7.63 ms 8.55 ms 0.92 ms (12.0%)
Insert Contacts 66.49 ms 67.51 ms 1.02 ms (1.5%)
Delete Contacts 75.86 ms 76.81 ms 0.95 ms (0.9%)
Create Socket 120.83 ms 121.58 ms 0.75 ms (0.6%)

Table 5.3: Micro-benchmarks syscalls (15k runs)

Libc Func. Native on Boxify Overhead

create 47.2 µs 162.4 µs 115.2 µs
open 9.5 µs 122.7 µs 113.2 µs
remove 49.5 µs 159.6 µs 110.1 µs
mkdir 88.4 µs 199.4 µs 111.0 µs
rmdir 71.2 µs 180.7 µs 109.5 µs

5.5 Evaluation

We discuss the prototypical implementation of Boxify in terms of performance impact,
security guarantees, and app robustness, and present concrete use-cases of Boxify. Our
prototype comprises 11,901 lines of Java code, of which 4,242 LoC are automatically
generated (API Layer), and 3,550 lines of additional C/C++ code. All tests described
in the following were performed on an LG Nexus 5 running Android 4.4.4, which is
currently the most widely used version in the Android ecosystem.

5.5.1 Performance Impact

To evaluate the performance impact of Boxify on monitored apps, we compare the
results of common benchmark apps and of custom micro-benchmarks for encapsulated
and native execution of apps.

Table 5.2 and Table 5.3 present the results of our micro-benchmarks for common
Android API calls and for syscall performance. Intercepting calls to the applica-
tion framework imposes an overhead around 1%, with the exception of the very fast
Query Contacts (12%). For syscalls, we measured the performance of calls that
request file descriptors for file I/O in private app directories (or external storage) and
that are proxied by the Broker. We observe a constant performance overhead of ≈ 100µs,
which corresponds to the required time of the additional IPC round trip for the commu-
nication with the Broker on our test platform. However, the syscall benchmarks depict
a worst-case estimation: The overall performance impact on apps is much lower, since
high-frequent follow up operations on acquired file descriptors (e.g., read/write) need
not to be intercepted and therefore run with native speed. We measured the overall
performance penalty by excecuting several benchmarking apps on top of Boxify, which

64

5.5. EVALUATION

Table 5.4: Benchmark tools (10 runs)

Tool Native on Boxify Loss

CF Bench v1.3 16082 Pts 15376 Pts 4.3%
Geekbench v3.3.1 1649 Pts 1621 Pts 1.6%
PassMark v1.0.4 3674 Pts 3497 Pts 4.8%
Quadrant v2.1.1 7820 Pts 7532 Pts 3.6%

Table 5.5: Android versions supported by BOXIFY.

Version < 4.1 4.1 4.2 4.3 4.4 5.0 5.1

Supported 8† 4 4 4 4 4 4

4: supported; 8: not supported
†: no isolated proccess

show an acceptable performance degradation of 1.6%–4.8% (see Table 5.4).

5.5.2 Runtime Robustness

To assess the robustness of encapsulated apps, we executed 1079 of the most popular,
free apps from Google Play (retrieved in August 2014) on top of Boxify. For each
sandboxed app we used the monkeyrunner tool5 to exercise the app’s functionality by
injecting 500 random UI events. From the 1079 apps, 93 (8.6%) experienced a crash
during testing. Manual investigation of the dysfunctional apps revealed that most errors
were caused by apps executing exotic syscalls or rarely used Android APIs which are
not covered by Boxify yet and thus fail due to the lack of privileges of the Target
process (fail-safe defaults). This leads to a slightly lower robustness than reported for
related work (e.g., [88, P1]) where bypassed hooks do not cause the untrusted app to
crash but instead silently circumvent the reference monitor. The remaining issues were
due to unusual application logic that relies on certain OS features (e.g., the process
information pseudo-filesystem proc), which the current prototype of Boxify does not
yet support. However, all of these are technical and not conceptual shortcomings of the
current implementation of Boxify.

5.5.3 Portability

Table 5.5 summarizes the Android versions currently supported by our prototypical
Boxify implementation. Our prototype supports all Android versions 4.1 through 5.1
and can be deployed on nine out of ten devices in the Android ecosystem [1]. Android
versions prior to 4.1 are not supported due to the lack of the isolated process feature.

5http://developer.android.com/tools/help/monkeyrunner_concepts.html

65

http://developer.android.com/tools/help/monkeyrunner_concepts.html

CHAPTER 5. BOXIFY

5.5.4 Use-cases

Boxify allows the instantiation of different security models from the literature on
Android security extensions. In the following, we present two selected use-cases on
fine-grained permission control and domain isolation that have received attention before
in the security community.

Fine-Grained Permission Control. The TISSA [98] OS extension empowers users
to flexibly control in a fine-grained manner which personal information will be accessible
to applications. We reimplemented the TISSA functionality as an extension to the
Core Logic Layer of the Boxify Broker. To this end, we instrumented the mandatory
proxies for core system services (e.g. LocationManager, TelephonyService) so
that they can return a filtered or mock data set based on the user’s privacy settings.
Users can dynamically adjust their privacy preferences through a management Activity
added to Boxify. In total, the TISSA functionality required additional 351 lines of
Java code to Core Logic Layer.

Domain Isolation. Particularly for enterprise deployments, container solutions have
been brought forward to separate business apps from other (untrusted) apps [83, 10,
75].

We implemented a domain isolation solution based on Boxify by installing business
apps into the sandbox environment. The Broker provides its own version of the
PackageManager to directly deliver inter-component communication to sandboxed
applications without involving the regular PackageManager, enabling controlled
collaboration between enterprise apps while at the same time isolating and hiding them
from non-enterprise apps and the OS.

To separate the enterprise data from the user’s private data, we exploit that the
Broker is able to run separate instances of system services (e.g., Contacts, Calendar)
within the sandbox. Our custom ActivityManager proxy now selectively and trans-
parently redirects ContentProvider accesses by enterprise apps to the sandboxed
counterparts of those providers.

Alternatively, the domain isolation concept described above was used to implement
a privacy mode for end users, where untrusted apps are installed into a Boxify
environment with empty (or faked) system ContentProviders. Thus, users can test
untrusted apps in a safe environment without risking harm to their mobile device or
private data. The domain isolation extension required 986 additional lines of code in
the Core Logic Layer of Boxify.

5.5.5 Security Discussion

Our solution builds on isolated processes as fundamental security primitive. An isolated
process is the most restrictive execution environment that stock Android currently has
to offer, and it provides Boxify with better security guarantees than closest related

66

5.5. EVALUATION

work [54]. In what follows, we identify different security shortcomings and discuss
potential future security primitives of stock Android that would benefit Boxify and
defensively programmed apps in general.

Privilege escalation. A malicious app could bypass the syscall and IPC interceptors,
for instance, by statically linking libc. For IPC, this does not lead to a privilege
escalation, since the application framework apps and services will refuse to cooperate
with an isolated process. However, the kernel is unaware of the concept of an “isolated
process” and will enforce access control on syscalls according to the process’ UID.
Although the transient UIDs of isolated processes are very restricted in their filesystem
access (i.e., only world readable/writable files), a malicious process has the entire kernel
API as an attack vector and might escalate its privileges through a root or kernel exploit.
In this sense, Boxify is not more secure than existing approaches that rely on the
assumption that the stock Android kernel is hardened against root and kernel exploits.

To remedy this situation, additional layers of security could be provided by the
underlying kernel to further restrict untrusted processes. This is common practice on
other operating systems, e.g., on modern Linux distributions, where Chromium—the
primary user of isolated process on Android—uses the seccomp-bpf facility to selectively
disable syscalls of renderer processes and we expect this facility to become available on
future Android versions with newer kernels. Similarly, common program tracing facilities
could be made available in order to interpose syscalls more securely and efficiently [42,
68, 74].

Violating Least-Privilege Principle. The Broker must hold the union set of all
permissions required by the apps hosted by Boxify in order to successfully proxy
calls to the Android API. Since it is hard to predict a reasonable set of permissions
beforehand, this means that the Broker usually holds all available permissions. This
contradicts the principle of least privilege and makes the Broker an attractive target
for the encapsulated app to increase its permission set. A very elegant solution to this
problem would be a Broker that drops all unnecessary permissions. This resembles the
privilege separation pattern [69, 84] of established Linux services like ssh, which drop
privileges of sub-processes based on setting their UIDs, capabilities, or transitioning them
to seccomp mode. Unfortunately, Android does not (yet) provide a way to selectively
drop permissions at runtime.

Red Pill. Even though Boxify is designed to be invisible to the sandboxed app,
it cannot exclude that the untrusted app gathers information about its execution
environment that allow the app to deduce that it is sandboxed (e.g., checking its
runtime UID or permissions). A malicious app can use this knowledge to change its
runtime behavior when being sandboxed and thus hide its true intentions or refuse to
run in a sandboxed environment. Prevention of this information leak is an arms race
that a resolute attacker will typically win. However, while this might lead to refused
functionality, it cannot be used to escalate the app’s privileges.

67

CHAPTER 5. BOXIFY

5.6 Conclusion

We presented the first application virtualization solution for the stock Android OS. By
building on isolated processes to restrict privileges of untrusted apps and introducing
a novel app virtualization environment, we combine the strong security guarantees
of OS security extensions with the deployability of application layer solutions. We
implemented our solution as a regular Android app called Boxify and demonstrated its
capability to enforce established security policies without incurring significant runtime
performance overhead.

68

6
Related Work

69

Since the release of Android in 2008, researchers have worked on improving and
enhancing various of its security aspects. A major focus of their research has been
overcoming the limitations of Android’s security model, in particular, its shortcomings
in protecting the end-user’s privacy. The following chapter aims to give a broad overview
of the approaches we consider relevant to our work. We classify these approaches by
deployability, which has not only been one of the key motivations for our research
in the first place but which we consider one of its distinguishing features. Hence, we
differentiate between solutions extending the Android OS and solutions that operate
solely at the application layer.

Operating system extensions Android’s inflexible and coarse-grained permission
system inspired many researchers to propose extensions to the operating system. As
early as 2009, Ongtang et al. [64] focused on the security requirements of smartphone
applications and augmented the existing Android OS with a framework to meet them,
by extending the permission system for inter-app communication. In their paper, they
introduced a system called Saint, short for Secure Application INTeraction (Saint),
a modified infrastructure that governs install-time permission assignment and their
run-time use. Also focused on permissions was Kirin, a policy-based system proposed by
Enck et al. [30] in 2009 that seeks to detect potential malware at installation time based
on the permissions requested by an app. In 2010, Ongtang et al. introduced Porscha [63],
a policy-based system for digital rights management on smartphones. In the same year,
Nauman et al. [62] presented a modification of the Android software stack called Apex
that enables dynamic permission revocations, while Conti et al. [23] went one step
further with CRePE, a context-related policy enforcement mechanism to the Android
software stack. In the following year, Grace et al. [44] were able to detect capability leaks
on Android by analyzing phone images of different vendors, while Fragkaki et al. [39]
presented SORBET, an external reference monitor approach to enforce coarse-grained
secrecy and integrity policies. More recently, Wang et al. published DeepDroid, a system
for enterprise policy enforcement via in-memory instrumentation of the system server,
making use of our hooking technique for their instrumentation. With DALF [72], Raval
et al. presented an extension to Android’s permission system that enables Android
applications to act as policy plugins.

Other, more data-driven approaches were able to demonstrate the need for improve-
ments to Android’s permission-based access control system. Barrera et al. [6] conducted
an empirical analysis of Android’s permission system on 1,100 Android applications
and, as a consequence, suggested refinements to its granularity. In a publication from
2011, Felt et al. [38] analyzed the effectiveness of application permissions making use of
case studies on both Google Chrome extensions and Android apps. Using automated
testing techniques, Felt et al. were further able to show that the mapping of permissions
to APIs was only insufficiently documented [65]. Their analysis showed that roughly
one-third of the tested applications were over-privileged, corroborating the hypothesis

71

CHAPTER 6. RELATED WORK

that developers have difficulty implementing apps according to the principle of least
privilege. Expanding on the work done by Felt et al., Backes et al. in 2016 published
their analysis of Android’s permission specification [5], in which they revisited the per-
mission to API mapping and analyzed policy enforcement point placement to advance
the general understanding of Android’s application framework.

Some researchers focused on problems arising from inter-app communication on
Android, most prominently the confused deputy problem, which was first highlighted
by Davi et al. in 2010 [25]. This problem occurs when an app exposes permission
protected functionality via an interface (intentionally or unintentionally) to an app
without the permission, enabling privilege escalation attacks. To mitigate this problem,
Felt et al. [66] modified the Android framework to inspect inter-process communication
in order to reduce an app’s permissions if it is invoked from a less privileged application.
In a similar vein, Dietz et al. presented Quire in 2011, [29] a system that allows app
permissions to be dynamically assigned based on IPC call chains. Bugiel et al. [11]
addressed privilege escalation attacks in a paper from 2011, in which they presented
XManDroid, a security framework that detects covert channel attacks such as the
Android trojan Soundcomber [77] They later extended their system to identify colluding
apps [12], before they presented Scippa in 2014. Scippa is an extension to the Android
IPC mechanism that provides provenance information to curb confused deputy attacks,
even across multiple applications.

Another line of work leverages static and dynamic information flow techniques to
detect privacy leaks in third-party apps. In 2009, Chaudhuri et al. introduced an
operational semantics and type system for their Android app description language [16]
that was later used as a basis for their static data flow analysis of Android applica-
tions [17]. The following year, Enck et al. presented the first approach for dynamic
taint tracking on Android called TaintDroid [32], which enabled real-time monitoring of
sensitive data flows. Expanding on the work done by Enck et al., Hornyack et al. [52]
built a system called AppFence based on TaintDroid, which employs data shadowing
and network connection blocking to protect against the exfiltration of sensitive data.
With AndroidLeaks, Gibler et al. proposed a static analysis framework to detect privacy
leaks in Android applications [40]. Zhou et al. developed DroidRanger [96], a tool
for detecting Android malware in marketplaces based on behavioral footprinting and
heuristics-based filtering.

While all these approaches were relevant to our work in their general objective of
enhancing the security and privacy of the Android platform, they have in common that
they cannot be deployed to stock Android devices, which forms a technological barrier
for the average user. Modifying the firmware and platform code has some significant
drawbacks: First, it requires rooting the device, which may void the user’s warranty.
Furthermore, there exists not a single Android version but a plethora of vendor-specific
variants that would need to be supported and maintained across OS updates.

72

Application Layer Solutions Several researchers have proposed security frameworks
for third-party apps that do not rely on modifying the stock Android firmware. All of
these frameworks make use of inlined reference monitors, which means that untrusted
applications are rewritten to include a security monitor, the IRM.

Erlingsson and Schneider first formalized this concept in the development of the
SASI/PoET/PSLang systems [36, 35] in which they implemented IRMs for x86 assembly
code and Java bytecode in order to enforce custom security policies not supported by the
Java virtual machine. Several other IRM implementations for Java followed. Notably,
Polymer [8] is an IRM system based on edit automata that supports the composition of
complex security policies from simple building blocks. In 2005, Chen et al. presented
Monitoring-Oriented Programming (MOP) [19], a software development and analysis
technique for Java that offers developers a rich set of tools to formally specify their
policies. Hamlen et al.’s SPoX [48] establishes a formal connection between aspect-
oriented programming and inlined reference monitoring wherein policy specifications
denote aspect-oriented security automata. IRM systems have also been developed for
other platforms. Mobile [49], for example, is an extension to Microsoft’s .NET Common
Intermediate Language (CIL) that supports certified inlined reference monitoring, while
the S3MS.NET Run Time Monitor [28] enforces security policies expressed in a variety
of policy languages for .NET desktop and mobile applications on Windows phones.

Xu et al. first introduced the IRM technique to the Android platform in 2012 with
Aurasium [88], a system that rewrites low-level function pointers of the libc library
in order to intercept interactions between the application and the OS. Most of the
functionality that is protected by Android’s permission system depends on such system
calls and, thus, can be mediated at this level. However, the request’s semantics need
to be recovered from the system calls’ low-level byte arrays in order to differentiate
security-relevant from benign requests, which may be error-prone and break in the next
version of Android at Google’s discretion. Jeon et al. [54] chose a different approach
by placing the reference monitor into a separate application. Their system named Dr.
Android & Mr. Hide allows removing all permissions from the monitored application
as all calls to sensitive functionality are performed in the monitoring app. In contrast
to Aurasium, it is fail-safe by default as it prevents both reflection and native code
from executing such functionality. However, this enforcement only addresses platform
permissions. The untrusted app process still has several Linux privileges (such as access
to the Binder interface or file system), and it has been shown that even a zero-permission
app is still capable of escalating its privileges and violate the user’s privacy [66, 44, 20,
13, 89, 60, 94, 95]. With I-ARM-DROID [27], Davis et al. present another IRM-based
approach to enforce security policies, in which a set of security-sensitive API methods
is identified by the user who can then accordingly specify and tailor their security
policies to each application. While it supports the instrumentation of any Java method
and covers reflective Java calls, their approach does not allow the instrumentation
of applications directly on the device. Liu et al. [57] explored methods for efficient

73

CHAPTER 6. RELATED WORK

privilege isolation for ad libraries in order to separate resource access permissions for ad
libraries from that of the app logic, which they achieved via binary rewriting. You et
al.’s Reference Hijacking [93], presented in 2016, can still be regarded as an IRM based
approach. However, its use of the technique we proposed with Boxify for resetting app
processes to replace system libs with instrumented versions indicates a blurring of the
line between IRM and sandboxing. A different focus was chosen by Xue et al. when they
presented Malton [91] in 2017. They were more concerned with on-device mobile malware
analysis for which they used comprehensive in-process instrumentation of relevant APIs.
Malton is a dynamic analysis tool that employs multi-layer monitoring, information flow
tracking, and efficient path exploration to provide a holistic view of an app’s behavior.
Most recently, Chandrashekhara et al. presented Duvel [15], a multi-profile manager
for apps via storage sandboxing through bytecode instrumentation. Duvel builts on
BlueMountain [14] by the same authors, which is a tool for app instrumentation that
automatically integrates cloud storage services for Android apps.

The last field of research related to our work is concerned with application sandboxing
and virtualization, which has a longstanding tradition in desktop and server operating
systems. Solutions proposed by researchers from this field generally fall into two
categories: They either set up user-mode only sandboxes without relying on operating
system functionality. They achieve this by making strong assumptions about the
interface between the target code and the system; for example, they assume the absence
of programming language facilities to make syscalls or direct memory manipulation.
Among the most notable user-space solutions are native client [92] to sandbox native
code within browser extensions and the Java virtual machine [53] to sandbox untrusted
Java applications. The alternative to making this assumption is to rely on operating
system security features to establish process sandboxes. Janus [42], for example, one of
the earlier approaches, introduced an OS-supported sandbox for untrusted applications
on Solaris 2.4, which was based on system call monitoring and interception to restrict
the untrusted process’ access to the underlying operating system. Modern browsers
like Chromium [82, 21, 81] employ different sandboxing OS facilities to mitigate the
threat of web-based attacks against clients by restricting the access of untrusted code.
Sandboxing also plays a role in more recent application virtualization solutions [46, 85,
22, 59], where applications are executed in an isolated environment that (partially)
emulates the underlying OS by interposing all interactions between the app and the OS.

We were the first to employ sandboxing and application virtualization on the Android
platform with Boxify. Shortly after the publication of our work in 2015, Bianchi et
al. presented NJAS [9], an alternative approach to application sandboxing on Android.
Like Boxify, NJAS works by executing an application within the context of another
one. However, they achieve sandboxing through system call interposition using ptrace
while we rely on Android’s isolated process feature to deprivilege untrusted applications.
DroidPill [90] from 2017 is a framework for malware creation built on Boxify’s idea of
app virtualization. In their work, Chuan et al. present a technique called app confusion

74

attack that tricks users into interacting with a sandboxed clone of a benign app on their
device. Finally, the authors of SCLib, a library to protect against component hijacking
attacks, proposed deployment via Boxify in their 2018 paper [87].

75

7
Conclusion

77

This thesis started with the observation that Android’s set of security and privacy
features – albeit its status as the most popular mobile operating system – used to be,
and still mostly continues to be, quite limited. This is especially apparent when it
comes to permissions for applications, which are usually dictated by the app developers,
not chosen by the user. While Android more recently started to support checking
permissions on first use, thereby creating context and transparency for the end-user,
developers still need to actively opt-in to enable this functionality. In its current state,
Android’s permission system tends to be impractical in many cases and can furthermore
not be extended easily. In this dissertation, we have presented a line of work that
addresses these shortcomings by retrofitting privacy controls to stock Android devices.

To provide users with an effective and practical means to protect their privacy, we
focused on systems for security policy enforcement that could be deployed to stock
Android devices, merely by downloading and installing an app. A particular challenge
posed by Android’s security model was its app isolation paradigm, which actively
prevents third-party apps from enforcing custom security policies. Currently, to deploy
new or custom security extensions on their devices, users have to resort to specialized
aftermarket firmware or need to gain root access, which poses a technological barrier
for the majority of them.

Our first approach to establish security policy enforcement on the Android application
layer used static on-device program rewriting to inline the reference monitor into the
untrusted application. This technique allowed us to sidestep the app isolation mechanism
by packaging both the reference monitor and the untrusted app into a single Android
application. Security policies were enforced by rewriting all call sites to security-relevant
methods in the untrusted app to divert control flow to the reference monitor. We
implemented our approach as a regular Android app called AppGuard, which was
able to enforce complex user-defined security policies with negligible space and runtime
overhead. Since its public release, AppGuard has been downloaded more than one
million times and has received the 5th German IT Security Award, which demonstrates
the need for practical privacy-preserving tools for mobile devices.

Despite this success, AppGuard still had some shortcomings: First, instrumentation
was performed statically. Therefore, changing the security policy at runtime required
either over-instrumenting the program to account for all possible configuration or re-
installing the app after every change, which is too cumbersome in practice. Furthermore,
under certain circumstances, caller-side instrumentation could be incomplete, e.g., in
scenarios where invocations of security-relevant methods could not be found by static
analysis. Another shortcoming of AppGuard was that it provided only insufficient app
sandboxing functionality.Because the reference monitor and the untrusted application
under observation shared the same process, they lacked the secure isolation necessary
to ensure non-bypassability of the reference monitor and protection against tampering.
Moreover, the modification and re-signing of applications required by inlining reference
monitors violates Android’s signature-based same-origin model, which impedes automatic

79

CHAPTER 7. CONCLUSION

app updates and user data migration. We were able to address some of these limitations
in our paper on dynamic method hook injection that presented a technique for callee-side
program instrumentation.

In this work, we proposed a novel approach for inline reference monitoring that
abstained from static code rewriting entirely, which we achieved by diverting control
flow in the Dalvik virtual machine. This approach was based on the insight that the
VM-internal data structures that represent application code and libraries in memory
are modifiable. Therefore, it was possible to alter the control flow by modifying the
reference to a method’s bytecode, thereby rerouting a call to this method to the reference
monitor. This method is similar in spirit to changing function pointers and effectively
enables callee-site instrumentation. Our initial empirical evaluation demonstrates that
this approach incurs minimal runtime overhead. Using this technique, we were able to
allow for dynamic security policy updates and reliable control flow diversion.

While we were able to address the issues above successfully, other problems persisted:
In order to bootstrap the instrumentation of an untrusted app, the technique mentioned
above relied on write access to the VM’s memory. Without root privileges, such write
access could only be obtained by statically injecting the bootstrapping code in the
monitored app, though, thereby still necessitating re-signing of the application package.
Another problem that remained unsolved was the issue of the reference monitor not
being tamper-proof.

To address these shortcomings, we finally presented a system based on application
virtualization and process-based privilege separation to securely encapsulate untrusted
apps in a restricted execution environment within the context of another, trusted
sandbox application. We were able to establish a restricted execution environment
by leveraging Android’s isolated process feature, which allows apps to completely de-
privilege selected components. We introduced a novel app virtualization environment
that proxies all system call and Binder channels of isolated apps. Technically, we
leveraged our existing approach for dynamic method hook injection while simultaneously
introducing new techniques, such as Binder IPC redirection through ServiceManager
hooking. We realized our concept as a regular app named Boxify that could be deployed
without firmware modifications or root privileges. A subsequent systematic evaluation
of Boxify demonstrated its capability to enforce established and new security policies
without incurring a significant runtime performance overhead.

To find a solution that provides users with a practical means to protect their privacy,
we set out to enable customizations of Android’s rigid permission system. We started by
establishing fundamental policy enforcement on third-party apps using inlined reference
monitors, as presented in Chapter 3. Faced with several limitations inherent to this
approach, we then refined it by introducing a novel technique for dynamic method hook
injection on Android’s Java VM (Chapter 4). Finally, we introduced a system that
leverages process-based privilege separation to provide a fully virtualized application
environment that supports the enforcement of complex security policies on stock Android

80

devices (Chapter 5). The systems developed in this dissertation have not only been
peer-reviewed but have proven themselves in real-world scenarios where actual users
were able to address their privacy concerns.

Future Research Directions

We see the potential for future research to continue this line of work. With Boxify, we
have introduced a generic framework to enforce arbitrary security policies within a virtual
Android instance running on a stock Android device. Beyond the immediate privacy
benefits for the end-user presented in this dissertation, Boxify offers all the security
advantages of traditional sandboxing techniques and is thus of independent interest
for future Android security research. We presented one use case in [S3] that leveraged
Boxify for in-app ad-blocking that provided a high level of effectiveness in blocking
ads while at the time being favorable for end-user deployment by abstaining from
modifications of the operating system or any elevated privileges. Beyond this example,
we envision a wide range of application domains for Boxify, such as application-layer
taint-tracking for sandboxed apps [32], programmable security APIs in the spirit of
ASM [51]/ASF [S1] to facilitate the extensibility of Boxify, as well as Boxify-based
malware analysis tools.

Further, we envision improvements concerning Android device compatibility: The
core issue here is that there is no single Android version, but a plethora of different
releases and vendor-specific flavors. Any application layer solution – ours not being an
exception – needs to account for the differences and specifics of each of these versions
and flavors if they deviate from the open-source platform. This is particularly relevant
if the solution relies on portions of the Android software stack that are not considered
public and not intended for use by application developers as these parts can change at
the manufacturer’s discretion. Whereas AppGuard was largely robust against these
specifics as it relied only on public APIs, in the case of Boxify, the various Android
versions needed to be explicitly considered since it made extensive use of internal APIs.
AppGuard used static code analysis across different Android versions to generate a
compatibility layer between the Android system and the sandbox, which needed to be
updated for every new Android release. While this process was automatic, we envision
a dynamic rule-based approach that is agnostic to the specific Android version used.
This could be achieved by transforming Android Binder IPC communication based on
a generic set of rules to attain transparent app sandboxing, instead of modeling every
single Android middleware API endpoint. This way, only a few selected Android APIs
would need explicit modeling and implementation.

81

Bibliography

Author’s Papers for this Thesis

[P1] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky, P.
von. AppGuard – Enforcing User Requirements on Android Apps. In: Proceedings
of the 19th International Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2013). Springer-Verlag, 2013.

[P2] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Fine-grained Policy Enforcement for Untrusted Android
Applications. In: Proceedings of the 8th International Workshop on Data Privacy
Management (DPM 2013). Springer-Verlag, 2013.

[P3] Backes, M., Bugiel, S., Hammer, C., Schranz, O., and Styp-Rekowsky, P.
von. Boxify: Full-fledged App Sandboxing for Stock Android. In: Proceedings of
the 24th USENIX Security Symposium (SEC 2015). USENIX Association, 2015.

[P4] Styp-Rekowsky, P. von, Gerling, S., Backes, M., and Hammer, C. Callee-
site Rewriting of Sealed System Libraries. In: Proceedings of the 5th International
Symposium on Engineering Secure Software and Systems (ESSoS 2013). Springer-
Verlag, 2013.

Other Papers of the Author

[S1] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. An-
droid Security Framework: Extensible Multi-Layered Access Control on Android.
In: Proceedings of the 30th Annual Computer Security Applications Conference
(ACSAC 2014). ACM, 2014.

[S2] Backes, M., Bugiel, S., Schranz, O., Styp-Rekowsky, P. von, andWeißger-
ber, S. ARTist: The Android runtime instrumentation and security toolkit. In:
Proceedings of the 2nd IEEE European Symposium on Security and Privacy
(EuroS&P 2017). IEEE, 2017.

[S3] Backes, M., Bugiel, S., Styp-Rekowsky, P. von, and Wißfeld, M. Seamless
In-App Ad Blocking on Stock Android. In: Proceedings of the 2017 Mobile Security
Technologies Workshop (MoST 2017). IEEE, 2017.

83

BIBLIOGRAPHY

[S4] Jamrozik, K., Styp-Rekowsky, P. von, and Zeller, A. Mining Sandboxes. In:
Proceedings of the 38th International Conference on Software Engineering (ICSE
2016). ACM, 2016.

Technical Reports of the Author

[T1] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Real-time policy enforcement for third-party applications.
Tech. rep. A/02/2012. Saarland University, 2012.

[T2] Backes, M., Gerling, S., Hammer, C., Maffei, M., and Styp-Rekowsky,
P. von. AppGuard – Fine-grained Policy Enforcement for Untrusted Android
Applications. Tech. rep. A/02/2013. Saarland University, 2013.

[T3] Backes, M., Bugiel, S., Gerling, S., and Styp-Rekowsky, P. von. Android
Security Framework: Enabling Generic and Extensible Access Control on Android.
Tech. rep. A/01/2014. Saarland University, 2014.

Other references

[1] Android Developer Dashboard. https://developer.android.com/about/
dashboards/. Last visited: 02/09/19.

[2] Android Developer’s Guide. https://developer.android.com/guide/.
Last visited: 02/09/19.

[3] Andrus, J., Dall, C., Hof, A. V., Laadan, O., and Nieh, J. Cells: A Virtual
Mobile Smartphone Architecture. In: Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP 2011). ACM, 2011.

[4] Backes, M., Gerling, S., and Styp-Rekowsky, P. von. A Local Cross-Site
Scripting Attack against Android Phones (2011). url: https://publications.
cispa.saarland/36/.

[5] Backes, M., Bugiel, S., Derr, E., McDaniel, P., Octeau, D., and Weis-
gerber, S. On Demystifying the Android Application Framework: Re-visiting
Android Permission Specification Analysis. In: Proceedings of the 25th USENIX
Security Symposium (SEC 2016). USENIX Association, 2016.

[6] Barrera, D., Kayacık, H. G., Oorschot, P. C. van, and Somayaji, A. A
Methodology for Empirical Analysis of Permission-Based Security Models and its
Application to Android. In: Proceedings of the 17th ACM Conference on Computer
and Communication Security (CCS 2010). ACM, 2010.

[7] Bauer, L., Ligatti, J., and Walker, D. A Language and System for Composing
Security Policies. Tech. rep. TR-699-04. Princeton University, 2004.

84

https://developer.android.com/about/dashboards/
https://developer.android.com/about/dashboards/
https://developer.android.com/guide/
https://publications.cispa.saarland/36/
https://publications.cispa.saarland/36/

OTHER REFERENCES

[8] Bauer, L., Ligatti, J., and Walker, D. Composing security policies with
polymer. In: Proceedings of the ACM SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI 2005). ACM, 2005.

[9] Bianchi, A., Fratantonio, Y.,Kruegel, C., and Vigna, G. NJAS: Sandboxing
Unmodified Applications in Non-rooted Devices Running Stock Android. In: Pro-
ceedings of the 5th ACM CCS Workshop on Security and Privacy in Smartphones
and Mobile Devices (SPSM 2015). ACM, 2015.

[10] Bugiel, S., Davi, L., Dmitrienko, A., Heuser, S., Sadeghi, A.-R., and Shas-
try, B. Practical and Lightweight Domain Isolation on Android. In: Proceedings
of the 1st ACM CCS Workshop on Security and Privacy in Mobile Devices (SPSM
2011). ACM, 2011.

[11] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., and Sadeghi, A.-R. XMan-
Droid: A New Android Evolution to Mitigate Privilege Escalation Attacks. Tech.
rep. TR-2011-04. Technische Universität Darmstadt, 2011.

[12] Bugiel, S., Davi, L., Dmitrienko, A., Fischer, T., Sadeghi, A.-R., and Shas-
try, B. Towards Taming Privilege-Escalation Attacks on Android. In: Proceedings
of the 19th Annual Network and Distributed System Security Symposium (NDSS
2012). The Internet Society, 2012.

[13] Cai, L. and Chen, H. TouchLogger: inferring keystrokes on touch screen from
smartphone motion. In: Proceedings of the 6th USENIX Workshop on Hot Topics
in Security (HotSec 2011). USENIX Association, 2011.

[14] Chandrashekhara, S., Marcus, K., Subramanya, R. G. M., Karve, H.
S., Dantu, K., and Ko, S. Y. Enabling Automated, Rich, and Versatile Data
Management for Android Apps with Bluemountain. In: Proceedings of the 7th
USENIX Conference on Hot Topics in Storage and File Systems (HotStorage
2015). USENIX Association, 2015.

[15] Chandrashekhara, S., Ki, T., Dantu, K., and Ko, S. Y. Duvel: Enabling
Context-driven, Multi-profile Apps on Android Through Storage Sandboxing. In:
Proceedings of the 1st International Workshop on Edge Systems, Analytics and
Networking (EdgeSys 2018). ACM, 2018.

[16] Chaudhuri, A. Language-Based Security on Android. In: Proceedings of the 4th
ACM SIGPLAN Workshop on Programming Languages and Analysis for Security
(PLAS 2009). ACM, 2009.

[17] Chaudhuri, A., Fuchs, A., and Foster, J. SCanDroid: Automated Security Cer-
tification of Android Applications. Tech. rep. CS-TR-4991. University of Maryland,
2009. url: http://www.cs.umd.edu/~avik/papers/scandroidascaa.
pdf.

85

http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf

BIBLIOGRAPHY

[18] Chen, B. X. and Bilton, N. Et Tu, Google? Android Apps Can Also Secretly
Copy Photos. 2012. url: http://bits.blogs.nytimes.com/2012/03/
01/android-photos/.

[19] Chen, F. and Roşu, G. Java-MOP: A Monitoring Oriented Programming Envi-
ronment for Java. In: Proceedings of the 11th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS 2005).
Springer-Verlag, 2005.

[20] Chen, Q. A., Qian, Z., and Mao, Z. M. Peeking into Your App without Actually
Seeing It: UI State Inference and Novel Android Attacks. In: Proceedings of the
23rd USENIX Security Symposium (SEC 2014). USENIX Association, 2014.

[21] Chromium: Linux Sandboxing. https://chromium.googlesource.com/
chromium/src/+/master/docs/linux_sandboxing.md. Last visited:
02/09/19.

[22] Citrix. XenApp. https://www.citrix.com/products/xenapp-xendesktop/
application-virtualization.html. Last visited: 02/09/19.

[23] Conti, M., Nguyen, V. T. N., and Crispo, B. CRePE: Context-Related Pol-
icy Enforcement for Android. In: Proceedings of the 13th Information Security
Conference (ISC 2010). Springer-Verlag, 2010.

[24] Dan, M., Jacobs, B., Lundblad, A., and Piessens, F. Security Monitor Inlining
for Multithreaded Java. In: Proceedings of the 23rd European Conference on
Object-Oriented Programming (ECOOP 2009). 2009.

[25] Davi, L., Dmitrienko, A., Sadeghi, A.-R., and Winandy, M. Privilege Es-
calation Attacks on Android. In: Proceedings of the 13th Information Security
Conference (ISC 2010). Springer-Verlag, 2010.

[26] Davis, B. andChen, H. RetroSkeleton: Retrofitting Android Apps. In: Proceedings
of the 11th International Conference on Mobile Systems, Applications, and Services
(MobiSys 2013). ACM, 2013.

[27] Davis, B., Sanders, B., Khodaverdian, A., and Chen, H. I-ARM-Droid: A
Rewriting Framework for In-App Reference Monitors for Android Applications.
In: Proceedings of the 2012 Mobile Security Technologies Workshop (MoST 2012).
IEEE, 2012.

[28] Desmet, L., Joosen, W., Massacci, F., Naliuka, K., Philippaerts, P.,
Piessens, F., and Vanoverberghe, D. The S3MS.NET Run Time Monitor.
Electron. Notes Theor. Comput. Sci. 253, 5 (Dec. 2009).

[29] Dietz, M., Shekhar, S., Pisetsky, Y., Shu, A., and Wallach, D. S. QUIRE:
Lightweight Provenance for Smart Phone Operating Systems. In: Proceedings of
the 20th Usenix Security Symposium (SEC 2011). USENIX Association, 2011.

86

http://bits.blogs.nytimes.com/2012/03/01/android-photos/
http://bits.blogs.nytimes.com/2012/03/01/android-photos/
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md
https://chromium.googlesource.com/chromium/src/+/master/docs/linux_sandboxing.md
https://www.citrix.com/products/xenapp-xendesktop/application-virtualization.html
https://www.citrix.com/products/xenapp-xendesktop/application-virtualization.html

OTHER REFERENCES

[30] Enck, W., Ongtang, M., and McDaniel, P. On lightweight mobile phone
application certification. In: Proceedings of the 16th ACM Conference on Computer
and Communication Security (CCS 2009). ACM, 2009.

[31] Enck, W., Ongtang, M., and McDaniel, P. Understanding Android Security.
IEEE Security and Privacy 7, 1 (2009).

[32] Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., and
Sheth, A. N. TaintDroid: An Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In: Proceedings of the 9th Usenix Sympo-
sium on Operating Systems Design and Implementation (OSDI 2010). USENIX
Association, 2010.

[33] Enck, W., Octeau, D., McDaniel, P., and Chaudhuri, S. A Study of Android
Application Security. In: Proceedings of the 20th Usenix Security Symposium
(SEC 2011). USENIX Association, 2011.

[34] Erlingsson, Ú. The Inlined Reference Monitor Approach to Security Policy
Enforcement. PhD thesis. Cornell University, 2004.

[35] Erlingsson, Ú. and Schneider, F. B. IRM Enforcement of Java Stack Inspection.
In: Proceedings of the 21st IEEE Symposium on Security and Privacy (Oakland
2000). IEEE, 2000.

[36] Erlingsson, U. and Schneider, F. B. SASI enforcement of security policies: a
retrospective. In: Proceedings of the 1999 Workshop on New Security Paradigms
(NSPW 1999). 2000.

[37] Fahl, S., Harbach, M., Muders, T., Smith, M., Baumgärtner, L., and
Freisleben, B. Why Eve and Mallory love Android: An analysis of Android
SSL (in) security. In: Proceedings of the 19th ACM Conference on Computer and
Communication Security (CCS 2012). ACM, 2012.

[38] Felt, A. P., Greenwood, K., and Wagner, D. The Effectiveness of Application
Permissions. In: Proceedings of the 2nd Usenix Conference on Web Application
Development (WebApps 2011). 2011.

[39] Fragkaki, E., Bauer, L., Jia, L., and Swasey, D. Modeling and Enhancing
Android’s Permission System. In: Proceedings of the 17th European Symposium
on Research in Computer Security (ESORICS 2012). Springer-Verlag, 2012.

[40] Gibler, C., Crussel, J., Erickson, J., and Chen, H. AndroidLeaks: Detecting
Privacy Leaks in Android Applications. Tech. rep. CSE-2011-10. University of
California Davis, 2011.

[41] Gilbert, P., Chun, B.-G., Cox, L. P., and Jung, J. Vision: automated security
validation of mobile apps at app markets. In: Proceedings of the 2nd International
Workshop on Mobile Cloud Computing and Services (MCS 2011). ACM, 2011.

87

BIBLIOGRAPHY

[42] Goldberg, I., Wagner, D., Thomas, R., and Brewer, E. A. A Secure En-
vironment for Untrusted Helper Applications Confining the Wily Hacker. In:
Proceedings of the 6th Conference on USENIX Security Symposium, Focusing on
Applications of Cryptography (SSYM 1996). USENIX Association, 1996.

[43] Grace, M., Zhou, W., Jiang, X., and Sadeghi, A.-R. Unsafe exposure analysis
of mobile in-app advertisements. In: Proceedings of the 5th ACM Conference on
Security and Privacy in Wireless and Mobile Networks (WiSec 2012). ACM, 2012.

[44] Grace, M. C., Zhou, Y., Wang, Z., and Jiang, X. Systematic Detection of
Capability Leaks in Stock Android Smartphones. In: Proceedings of the 19th
Annual Network and Distributed System Security Symposium (NDSS 2012). The
Internet Society, 2012.

[45] Gruver, B. Smali: A assembler/disassembler for Android’s dex format. https:
//github.com/JesusFreke/smali. Last visited: 02/09/19.

[46] Guo, P. J. and Engler, D. CDE: Using System Call Interposition to Automati-
cally Create Portable Software Packages. In: Proceedings of the 2011 USENIX Con-
ference on USENIX Annual Technical Conference (USENIXATC 2011). USENIX
Association, 2011.

[47] Hackborn, D. Android Developer Group: Advantage of introducing Isolated-
process tag within Services in JellyBean. https://groups.google.com/
forum/?fromgroups=#!topic/android-developers/pk45eUFmKcM.
Last visited: 02/10/19. 2012.

[48] Hamlen, K. W. and Jones, M. Aspect-oriented in-lined reference monitors. In:
Proceedings of the 3rd ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security (PLAS 2008). 2008.

[49] Hamlen, K. W., Morrisett, G., and Schneider, F. B. Certified In-lined Ref-
erence Monitoring on .NET. In: Proceedings of the 1st ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS 2006). 2006.

[50] Hao, H., Singh, V., and Du, W. On the Effectiveness of API-level Access Control
Using Bytecode Rewriting in Android. In: Proceedings of the 8th ACM Symposium
on Information, Computer and Communication Security (ASIACCS 2013). ACM,
2013.

[51] Heuser, S., Nadkarni, A., Enck, W., and Sadeghi, A.-R. ASM: A Pro-
grammable Interface for Extending Android Security. In: Proceedings of the 23rd
USENIX Security Symposium (SEC 2014). USENIX Association, 2014.

[52] Hornyack, P., Han, S., Jung, J., Schechter, S., and Wetherall, D. These
aren’t the droids you’re looking for: retrofitting Android to protect data from
imperious applications. In: Proceedings of the 18th ACM Conference on Computer
and Communication Security (CCS 2011). ACM, 2011.

88

https://github.com/JesusFreke/smali
https://github.com/JesusFreke/smali
https://groups.google.com/forum/?fromgroups=#!topic/android-developers/pk45eUFmKcM
https://groups.google.com/forum/?fromgroups=#!topic/android-developers/pk45eUFmKcM

OTHER REFERENCES

[53] Java SE Documentation: Security Specification. https://docs.oracle.
com/javase/7/docs/technotes/guides/security/spec/security-

specTOC.fm.html. Last visited: 02/09/19.
[54] Jeon, J., Micinski, K. K., Vaughan, J. A., Fogel, A., Reddy, N., Foster, J.

S., and Millstein, T. Dr. Android and Mr. Hide: Fine-grained security policies
on unmodified Android. In: Proceedings of the 2nd ACM CCS Workshop on
Security and Privacy in Mobile Devices (SPSM 2012). ACM, 2012.

[55] Lange, M., Liebergeld, S., Lackorzynski, A., Warg, A., and Peter, M.
L4Android: A Generic Operating System Framework for Secure Smartphones. In:
Proceedings of the 1st ACM CCS Workshop on Security and Privacy in Mobile
Devices (SPSM 2011). ACM, 2011.

[56] Ligatti, J., Bauer, L., and Walker, D. Edit Automata: Enforcement Mech-
anisms for Run-time Security Policies. International Journal of Information
Security 4, 1–2 (2005), 2–16.

[57] Liu, B., Liu, B., Jin, H., and Govindan, R. Efficient Privilege De-Escalation for
Ad Libraries in Mobile Apps. In: Proceedings of the 13th International Conference
on Mobile Systems, Applications, and Services (MobiSys 2015). ACM, 2015.

[58] Meng, W., Ding, R., Chung, S. P., Han, S., and Lee, W. The Price of Free:
Privacy Leakage in Personalized Mobile In-Apps Ads. In: Proceedings of the 23rd
Annual Network and Distributed System Security Symposium (NDSS 2016). The
Internet Society, 2016.

[59] Microsoft. Application Virtualization (App-V). https://docs.microsoft.
com/en-us/windows/application-management/app-v/appv-for-

windows. Last visited: 02/09/19.
[60] Moulu, A. Android OEM’s applications (in)security and backdoors without

permission. https://www.sh4ka.fr/Android_OEM_applications_
insecurity_and_backdoors_without_permission.pdf. Last visited:
02/09/19.

[61] Mulliner, C., Oberheide, J., Robertson, W., and Kirda, E. PatchDroid:
Scalable Third-party Security Patches for Android Devices. In: Proceedings of the
29th Annual Computer Security Applications Conference (ACSAC 2013). ACM,
2013.

[62] Nauman, M., Khan, S., and Zhang, X. Apex: Extending Android permission
model and enforcement with user-defined runtime constraints. In: Proceedings of
the 5th ACM Symposium on Information, Computer and Communication Security
(ASIACCS 2010). ACM, 2010.

[63] Ongtang, M., Butler, K. R. B., and McDaniel, P. D. Porscha: policy oriented
secure content handling in Android. In: Proceedings of the 26th Annual Computer
Security Applications Conference (ACSAC 2010). ACM, 2010.

89

https://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-specTOC.fm.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-specTOC.fm.html
https://docs.oracle.com/javase/7/docs/technotes/guides/security/spec/security-specTOC.fm.html
https://docs.microsoft.com/en-us/windows/application-management/app-v/appv-for-windows
https://docs.microsoft.com/en-us/windows/application-management/app-v/appv-for-windows
https://docs.microsoft.com/en-us/windows/application-management/app-v/appv-for-windows
https://www.sh4ka.fr/Android_OEM_applications_insecurity_and_backdoors_without_permission.pdf
https://www.sh4ka.fr/Android_OEM_applications_insecurity_and_backdoors_without_permission.pdf

BIBLIOGRAPHY

[64] Ongtang, M., McLaughlin, S. E., Enck, W., and McDaniel, P. Semantically
Rich Application-Centric Security in Android. In: Proceedings of the 25th Annual
Computer Security Applications Conference (ACSAC 2009). ACM, 2009.

[65] Porter Felt, A., Chin, E., Hanna, S., Song, D., andWagner, D. Android Per-
missions Demystified. In: Proceedings of the 18th ACM Conference on Computer
and Communication Security (CCS 2011). ACM, 2011.

[66] Porter Felt, A., Wang, H. J., Hanna, A. M. andSteve, and Chin, E. Per-
mission Re-Delegation: Attacks and Defenses. In: Proceedings of the 20th Usenix
Security Symposium (SEC 2011). USENIX Association, 2011.

[67] Portokalidis, G., Homburg, P., Anagnostakis, K., and Bos, H. Paranoid
Android: Versatile Protection For Smartphones. In: Proceedings of the 26th Annual
Computer Security Applications Conference (ACSAC 2010). ACM, 2010.

[68] Provos, N. Improving Host Security with System Call Policies. In: Proceedings
of the 12th Usenix Security Symposium (SEC 2003). USENIX Association, 2003.

[69] Provos, N., Friedl, M., and Honeyman, P. Preventing Privilege Escalation.
In: Proceedings of the 12th Usenix Security Symposium (SEC 2003). USENIX
Association, 2003.

[70] Rasthofer, S., Arzt, S., Lovat, E., and Bodden, E. DroidForce: Enforcing
Complex, Data-Centric, System-Wide Policies in Android. In: Proc. 9th Inter-
national Conference on Availability, Reliability and Security (ARES’14). IEEE,
2014.

[71] Rastogi, V., Chen, Y., and Jiang, X. DroidChameleon: Evaluating Android
Anti-malware Against Transformation Attacks. In: Proceedings of the 8th ACM
Symposium on Information, Computer and Communication Security (ASIACCS
2013). ACM, 2013.

[72] Raval, N., Razeen, A., Machanavajjhala, A., Cox, L. P., and Warfield, A.
Permissions Plugins As Android Apps. In: Proceedings of the 17th International
Conference on Mobile Systems, Applications, and Services (MobiSys 2019). ACM,
2019.

[73] Russello, G., Conti, M., Crispo, B., and Fernandes, E. MOSES: supporting
operation modes on smartphones. In: Proceedings of the 17th ACM Symposium
on Access Control Models and Technologies (SACMAT 2012). ACM, 2012.

[74] Russello, G., Jimenez, A. B., Naderi, H., and Mark, W. van der. FireDroid:
Hardening Security in Almost-stock Android. In: Proceedings of the 29th Annual
Computer Security Applications Conference (ACSAC 2013). ACM, 2013.

[75] Samsung Electronics. Whitepaper: Samsung Knox Security Solution. https:
//www.samsungknox.com/docs/SamsungKnoxSecuritySolution.pdf.
Last visited: 02/09/19. 2013.

90

https://www.samsungknox.com/docs/SamsungKnoxSecuritySolution.pdf
https://www.samsungknox.com/docs/SamsungKnoxSecuritySolution.pdf

OTHER REFERENCES

[76] Sarno, D. Twitter stores full iPhone contact list for 18 months, after scan.
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-

twitter-contacts-20120214. Last visited: 02/10/19. 2012.

[77] Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., and Wang, X.
Soundcomber: A Stealthy and Context-Aware Sound Trojan for Smartphones.
In: Proceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS 2011). The Internet Society, 2011.

[78] Schneider, F. B. Enforceable Security Policies. ACM Transactions on Informa-
tion and System Security 3, 1 (2000).

[79] Statista. Global mobile OS market share in sales to end users from 1st quarter
2009 to 2nd quarter 2018. https://www.statista.com/statistics/
266136/global-market-share-held-by-smartphone-operating-

systems/. Last visited: 02/07/19. 2019.

[80] Statista. Number of available applications in the Google Play Store from De-
cember 2009 to June 2019. https://www.statista.com/statistics/
266210/number- of- available- applications- in- the- google-

play-store/. Last visited: 02/07/19. 2019.

[81] The Chromium Projects: OSX Sandboxing Design. https://dev.chromium.
org/developers/design- documents/sandbox/osx- sandboxing-

design. Last visited: 02/09/19.

[82] The Chromium Projects: Sandbox (Windows). https://chromium.googlesource.
com/chromium/src/+/master/docs/design/sandbox.md. Last visited:
02/09/19.

[83] Wang, X., Sun, K., Wang, Y., and Jing, J. DeepDroid: Dynamically Enforcing
Enterprise Policy on Android Devices. In: Proceedings of the 22nd Annual Network
and Distributed System Security Symposium (NDSS 2015). The Internet Society,
2015.

[84] Watson, R. N. M., Anderson, J., Laurie, B., and Kennaway, K. Capsicum:
Practical Capabilities for UNIX. In: Proceedings of the 19th Usenix Security
Symposium (SEC 2010). USENIX Association, 2010.

[85] Wine: Run Windows applications on Linux, BSD, Solaris and Mac OS X. https:
//www.winehq.org. Last visited: 02/09/19.

[86] Wu, C., Zhou, Y., Patel, K., Liang, Z., and Jiang, X. AirBag: Boosting
Smartphone Resistance to Malware Infection. In: Proceedings of the 21st Annual
Network and Distributed System Security Symposium (NDSS 2014). The Internet
Society, 2014.

91

http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
http://articles.latimes.com/2012/feb/14/business/la-fi-tn-twitter-contacts-20120214
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266136/global-market-share-held-by-smartphone-operating-systems/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://dev.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
https://dev.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
https://dev.chromium.org/developers/design-documents/sandbox/osx-sandboxing-design
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://chromium.googlesource.com/chromium/src/+/master/docs/design/sandbox.md
https://www.winehq.org
https://www.winehq.org

BIBLIOGRAPHY

[87] Wu, D., Cheng, Y., Gao, D., Li, Y., and Deng, R. H. SCLib: A Practical and
Lightweight Defense Against Component Hijacking in Android Applications. In:
Proceedings of the 8th ACM Conference on Data and Application Security and
Privacy (CODASPY 2018). ACM, 2018.

[88] Xu, R., Saïdi, H., and Anderson, R. Aurasium: Practical Policy Enforcement
for Android Applications. In: Proceedings of the 21st Usenix Security Symposium
(SEC 2012). USENIX Association, 2012.

[89] Xu, Z., Bai, K., and Zhu, S. TapLogger: inferring user inputs on smartphone
touchscreens using on-board motion sensors. In: Proceedings of the 5th ACM
Conference on Security and Privacy in Wireless and Mobile Networks (WiSec
2012). ACM, 2012.

[90] Xuan, C., Chen, G., and Stuntebeck, E. DroidPill: Pwn Your Daily-Use Apps.
In: Proceedings of the 12th ACM Asia Conference on Computer and Communica-
tions Security (ASIACCS 2017). ACM, 2017.

[91] Xue, L., Zhou, Y., Chen, T., Luo, X., and Gu, G. Malton: Towards On-device
Non-invasive Mobile Malware Analysis for ART. In: Proceedings of the 26th
USENIX Security Symposium (SEC 2017). USENIX Association, 2017.

[92] Yee, B., Sehr, D., Dardyk, G., Chen, J. B., Muth, R., Ormandy, T.,
Okasaka, S., Narula, N., and Fullagar, N. Native Client: A Sandbox for
Portable, Untrusted x86 Native Code. In: Proceedings of the 30th IEEE Symposium
on Security and Privacy (Oakland 2009). IEEE, 2009.

[93] You, W., Liang, B., Shi, W., Zhu, S., Wang, P., Xie, S., and Zhang, X.
Reference Hijacking: Patching, Protecting and Analyzing on Unmodified and
Non-rooted Android Devices. In: Proceedings of the 38th International Conference
on Software Engineering (ICSE 2016). ACM, 2016.

[94] Zero-Permission Android Applications. https://www.leviathansecurity.
com/blog/zero-permission-android-applications/. Last visited:
02/09/19.

[95] Zero-Permission Android Applications (Part 2). https://www.leviathansecurity.
com/blog/zero-permission-android-applications-part-2/. Last
visited: 02/09/19.

[96] Zhou, Y., Wang, Z., Zhou, W., and Jiang, X. Hey, You, Get Off of My
Market: Detecting Malicious Apps in Official and Alternative Android Markets.
In: Proceedings of the 19th Annual Network and Distributed System Security
Symposium (NDSS 2012). The Internet Society, 2012.

[97] Zhou, Y. and Jiang, X. Dissecting Android Malware: Characterization and
Evolution. In: Proceedings of the 33rd IEEE Symposium on Security and Privacy
(Oakland 2012). IEEE, 2012.

92

https://www.leviathansecurity.com/blog/zero-permission-android-applications/
https://www.leviathansecurity.com/blog/zero-permission-android-applications/
https://www.leviathansecurity.com/blog/zero-permission-android-applications-part-2/
https://www.leviathansecurity.com/blog/zero-permission-android-applications-part-2/

OTHER REFERENCES

[98] Zhou, Y., Zhang, X., Jiang, X., and Freeh, V. Taming Information-Stealing
Smartphone Applications (on Android). In: Proceedings of the 4th International
Conference on Trust and Trustworthy Computing (TRUST 2011). Springer-Verlag,
2011.

93

	Introduction
	Technical Background on Android
	Android Software Stack
	Android Applications
	Android Security Design

	AppGuard
	Introduction
	Contributions

	AppGuard
	Implementation
	Policies
	Inliner
	Management
	Challenges
	Deployment

	Experimental Evaluation
	Performance Evaluation
	Case Study Evaluation
	Discussion

	Conclusion

	Dynamic Method Hook Injection on Android
	Introduction
	Background
	Implementation
	Evaluation
	Conclusion

	Boxify
	Introduction
	Background on Android OS
	Requirements Analysis and Existing Solutions
	Objectives and Threat Model
	Existing Solutions

	Boxify Architecture
	Design Overview
	Target
	Broker
	System Integration

	Evaluation
	Performance Impact
	Runtime Robustness
	Portability
	Use-cases
	Security Discussion

	Conclusion

	Related Work
	Conclusion

