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Abstract
Event-related potentials (ERPs) provide a multidimensional and real-time window 
into neurocognitive processing. The typical Waveform-based Component Structure 
(WCS) approach to ERPs assesses the modulation pattern of components—system-
atic, reoccurring voltage fluctuations reflecting specific computational operations—
by looking at mean amplitude in predetermined time-windows. This WCS approach, 
however, often leads to inconsistent results within as well as across studies. It has been 
argued that at least some inconsistencies may be reconciled by considering spatiotem-
poral overlap between components; that is, components may overlap in both space and 
time, and given their additive nature, this means that the WCS may fail to accurately 
represent its underlying latent component structure (LCS). We employ regression-
based ERP (rERP) estimation to extend traditional approaches with an additional layer 
of analysis, which enables the explicit modeling of the LCS underlying WCS. To 
demonstrate its utility, we incrementally derive an rERP analysis of a recent study on 
language comprehension with seemingly inconsistent WCS-derived results. Analysis 
of the resultant regression models allows one to derive an explanation for the WCS in 
terms of how relevant regression predictors combine in space and time, and crucially, 
how individual predictors may be mapped onto unique components in LCS, revealing 
how these spatiotemporally overlap in the WCS. We conclude that rERP estimation 
allows for investigating how scalp-recorded voltages derive from the spatiotemporal 
combination of experimentally manipulated factors. Moreover, when factors can be 
uniquely mapped onto components, rERPs may offer explanations for seemingly in-
consistent ERP waveforms at the level of their underlying latent component structure.
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1 |  INTRODUCTION

Event-related potentials (ERPs) offer a high resolution, mul-
tidimensional window into the time course of neurocognitive 
processing. Of interest in the ERP signal are systematic, re-
occurring voltage fluctuations called components, which are 
taken to reflect the neural activity underlying specific com-
putational operations carried out in given neuroanatomical 
networks (cf. Luck, 2005a; Näätänen & Picton, 1987; Rugg 
& Coles,  1995). Indeed, many questions in cognitive sci-
ence are concerned with how the modulation pattern of such 
components in the signal—identified by looking at mean 
amplitude in predetermined time-windows—differs between 
experimental manipulations (Handy,  2005; Luck,  2005a; 
Luck & Kappenman, 2012). This approach, however, often 
leads to inconsistent results within (e.g. Delogu, Brouwer, 
& Crocker,  2019; Kim & Osterhout,  2005; Kolk, Chwilla, 
Van Herten, & Oor,  2003; Kuperberg, Kreher, Sitnikova, 
Caplan, & Holcomb, 2007) as well as as across studies (see 
Bornkessel-Schlesewsky & Schlesewsky,  2008; Brouwer, 
Fitz, & Hoeks,  2012; Kuperberg,  2007; van Petten & 
Luka, 2012, for reviews).

Crucially, such inconsistencies in Waveform-based 
Component Structure (WCS)—component structure de-
rived from the ERP waveforms—may be reconciled by fac-
toring in spatiotemporal overlap between components (e.g. 
Brouwer & Crocker,  2017; Donchin, Ritter, & 
McCallum, 1978; Duncan et al., 2009; Luck, 2005a, 2005b; 
Näätänen, 1982; Squires, Squires, & Hillyard, 1975). That 
is, computational operations may be carried out simultane-
ously, and even dynamically interact, which means that the 
ERP components that index these operations will overlap 
in both space and time (e.g. Hagoort, 2003; Luck, 2005a, 
2005b). Given that ERP components are additive, a direct 
implication of this spatiotemporal overlap is that WCS may 
look very different from its underlying latent component 
structure (LCS; see Brouwer & Crocker, 2017, for discus-
sion). While the importance of focusing on LCS is gener-
ally acknowledged, investigating LCS has proven very 
challenging, as the scalp-recorded ERP signal inherently 
conflates the contributions of different components. 
Indeed, traditional approaches to analyzing ERPs, for ex-
ample, using ANOVAs or linear mixed models, are there-
fore limited to assessing WCS. Furthermore, even more 
complex approaches such as “decoding” using multivariate 
pattern analysis (MVPA; see King & Dehaene, 2014, for an 
introduction), which have been proposed as a viable tool to 
assess LCS (Heikel, Sassenhagen, & Fiebach, 2018), do not 
truly decompose the observed signal into its different con-
stituent sources. Hence, analyses using such methods thus 
remain at best suggestive. In the present paper, by contrast, 
we show how traditional approaches can be extended with 
an additional layer of analysis that does enable true 

decomposition of WCS into it's underlying LCS. To this 
end, we employ the rERP estimation framework proposed 
by Smith and Kutas (2015a) (and Smith & Kutas, 2015b), a 
powerful extension of traditional ERP averaging that natu-
rally allows for dealing with designs that combine categor-
ical and continuous covariates, the correction of overlap 
due to temporally adjacent stimuli, effects that are non-lin-
ear, and more. We show how this rERP framework can be 
harnessed to explicitly model the LCS underlying WCS, 
and how such an LCS analysis allows one to reconcile the 
seemingly internally inconsistent results from a recent 
study on language comprehension by Delogu et al. (2019, 
henceforth DBC).1

DBC examined the effect of plausibility (the degree to 
which an utterance makes sense in light of our knowledge 
of the world) and semantic association (the degree to which 
a critical word is related in meaning to the prior context) on 
the processing of mini-discourses. A first contrast looked 
at the effect of manipulating plausibility only (“John [left/
entered] the restaurant. Before long, he opened the menu 
[…]”). Relative to the plausible baseline (opening the menu 
after entering the restaurant), the critical word “menu” in 
the implausible condition (opening the menu after leaving 
the restaurant) produced an effect on the amplitude of the 
P600 component, a positive deflection in the signal starting 
around 600 ms post word-onset. A second contrast looked 
at the effect of manipulating both plausibility and seman-
tic association (“John entered the [apartment/restaurant]. 
Before long, he opened the menu […]”). Here, the critical 
word “menu” in the implausible and semantically unassoci-
ated condition (opening the menu after entering the apart-
ment) produced an effect on the amplitude of the N400 
component, a negative deflection in the signal between 300 
and 500 ms, which continued into a sustained negativity, 
and a small positivity at occipital electrodes only. Hence, 
while the first contrast seems to clearly suggest that plau-
sibility is reflected in P600 amplitude, the second contrast 
calls this into question. The DBC results thus appear in-
ternally inconsistent, and inconsistencies such as these are 
widespread, both within and across studies (Brouwer & 
Crocker, 2017; van Petten & Luka, 2012).

One could seek an explanation for such apparent incon-
sistencies in cognitive architecture. That is, in the DBC 
study, it could be that plausibility and semantic association 
interact in such a way that their combined manipulation 
leads to a qualitatively different type of processing, and 
hence a qualitatively different modulation of the ERP sig-
nal: one in which plausibility does not affect the amplitude 
of the P600 component, or at least not at the same electrode 
sites and to the same degree as when only plausibility is 

 1See ‘Data Availability Statement’ below.
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manipulated. However, such an explanation seems incon-
sistent with findings from studies reporting biphasic N400/
P600 patterns for combined manipulations (e.g. Kutas 
& Hillyard,  1980; Kolk et  al.,  2003; Hagoort,  2003; 
Hoeks, Stowe, & Doedens,  2004; also see van Petten & 
Luka, 2012). Alternatively, one could seek an explanation 
for the apparent inconsistencies in the signal itself. That is, 
rather than producing a qualitatively different modulation 
pattern, plausibility and semantic association could com-
bine quantitatively: while the manipulation of plausibility 
increases P600 amplitude, the manipulation of semantic as-
sociation results in a negativity, thus attenuating the P600.

More specifically, the unit of measurement underlying the 
ERP signal is a single scalar representing the scalp-recorded 
voltage at a given electrode and point in time (for a given sub-
ject and experimental trial), and any recorded voltage could 
in principle reflect the combined contribution of multiple rel-
evant factors. Standard approaches to analyzing ERPs (e.g. 
using ANOVAs or linear mixed models), however, model sig-
nal variance at the voltage level, and hence do not allow for 
assessing such a quantitative combination of factors. Indeed, 
in order to investigate if and how different factors combine 
in the signal, one needs to isolate their independent contribu-
tions to the recorded voltages. This is, however, non-straight-
forward (Brouwer & Crocker, 2017).

Here, we show how rERP estimation (Smith & 
Kutas,  2015a, 2015b) extends standard approaches to ERP 
analysis by adding a layer of signal variance modeling that 
does allow for assessing how relevant, manipulated fac-
tors combine quantitatively in the signal. The core idea is 
to replace every single observed, scalp-recorded voltage by 
a regression-based estimate, which derives from a linear 
combination of factors relevant to the experimental manip-
ulations. More specifically, the idea is to first fit linear re-
gression models to the voltage-level data, in order to split the 
observed scalar voltages into the contributions made by these 
factors at the underlying level; that is, at the level at which 
they combine into the scalp-recorded voltage. Henceforth, we 
will refer to this underlying level as the latent voltage level. 
The resultant models then allow for the regression-based esti-
mation of rERP waveforms, while offering strict control over 
the individual factors that contribute to it. Hence, they offer a 
means of assessing how factors quantitatively combine at the 
latent voltage level. Crucially, the resultant regression-based 
rERP waveforms are no different in nature than the ERP 
waveforms based on observed voltages, and can therefore 
be plotted and analyzed using standard analysis tools (e.g., 
ANOVAs or linear mixed models).

In what follows, we will first introduce the rERP frame-
work, and discuss how it extends traditional approaches 
towards ERP analysis with an additional layer of signal 
variance modeling. Next, we will incrementally derive an 
rERP analysis of the DBC results, and show how this reveals 

spatiotemporal component overlap between the N400 and the 
P600, thereby offering an explanation for the WCS-derived 
inconsistencies in terms of its underlying LCS. Finally, we 
discuss the implications of our results for past and future 
studies as well as for neurocognitive theories.

2 |  REGRESSION-BASED ERP 
ESTIMATION

In order to model the how experimental manipulations com-
bine at the latent voltage level, we will employ rERP estima-
tion (Smith & Kutas, 2015a, 2015b). The core idea is to replace 
each individual voltage measurement in the ERP data—each 
observed voltage scalar—with a voltage estimate from a linear 
regression model that optimally combines the manipulated var-
iables to explain the variance in the signal. The resultant rERP 
data can then be analyzed in a similar manner as the original 
ERP data, but crucially, it can also be analyzed when manipu-
lations are controlled for (kept constant), thus allowing one to 
examine how the manipulations combine at the latent voltage 
level, and how this in turn affects the voltage-level averaged 
signal, that is, the rERP waveforms.

Smith and Kutas (2015a) motivate the ERP framework 
from the observation that the traditional method of ERP 
estimation through averaging is a specific instance of gen-
eral least squares regression, and hence that the full power 
of linear (and non-linear) regression can be harnessed to es-
timate ERPs. That is, an ERP is the stimulus-locked neural 
activity caused by post-synaptic potentials. When recorded 
for a single trial (within a subject) this activity will include 
stimulus-evoked potentials, as well as background activity 
that is not related to the stimulus. ERP estimation through 
averaging, then, is grounded in the idea that across trials 
y1 … yn, the stimulus-locked ERP β is stable (i.e. the brain's 
systematic response to the stimulus of interest), whereas the 
background noise �i is random. That is, if one averages over 
trials, �1 … �n will cancel each other out, and the ERP β will 
be isolated. For a given electrode (e.g. Pz) and latency (e.g., 
400 ms), the ERP β is thus estimated as the average of the 
scalp-recorded potentials y1 … yn:

where n equals the number of trials within a given experimental 
condition and subject.

Crucially, Smith and Kutas (2015a) show that this averag-
ing procedure can be recast as linear regression, such that the 
scalp-recorded potential at each electrode, latency, and trial yi 
is estimated as the ERP β plus by-trial varying noise εi:

(1)1

n

n
∑

i

yi =�,

(2)yi =�+�i,
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while yi is known, both β and εi are not, and hence neither can 
be solved for. Least squares regression, however, allows for the 
estimation of β by minimizing the total squared noise 

�
∑n

i
�2

i

�

. 
Crucially, it can then be shown that the best estimate of β is in 
fact the mean of y1 … yn as estimated in Equation (1) (see Smith 
& Kutas, 2015a, for a derivation). Indeed, this means that ERP 
averaging is just a special instance of least squares regression, 
implying that one can replace the simplistic regression model 
in Equation (2) with a more general least squares regression 
model:

Here, yi is again the voltage measured for given a trial, electrode 
and latency, and εi is again the by-trial varying noise. The ERP 
part of the right-hand side, however, is now broken down into a 
sum of weighted predictors. Each predictor xji represents a spe-
cific property of the stimulus presented at trial i,2 typically re-
flecting experimental manipulations. Predictors may be either 
categorical (e.g. stimulus felicity) or continuous (e.g. 
probability).

By finding the set of βj's that minimizes total squared 
noise across trials, the ERP at this electrode and latency 
thus effectively gets decomposed into a linear combination 
of the predictors xji.

3 In a fitted regression model, these 
predictors can then be set to values representing the prop-
erties of a specific trial stimulus, such that computing 
�1x1i+�2x2i+… gives the predicted voltage for that trial at 
a given electrode and latency. When computed for each 
subject, electrode, and latency, one obtains an rERP data 
set, in which each observed voltage is replaced by an esti-
mated voltage that derives from a linear combination of 
weighted predictors encoding stimulus properties. 
Crucially, to the extent that the resultant rERP data closely 
matches the ERP data—which can be assessed by examin-
ing voltage residuals and variance (see below)—an analy-
sis of how the predictors combine to produce the voltage 
estimates provides a window into how experimental manip-
ulations combine at the latent voltage level.

It is important to note that the regression models are 
not explicitly exposed to any categorical condition-cod-
ing predictors, but rather to predictors encoding stimu-
lus-related properties of the individual trials. That is, 
within each subject, a regression model is fitted over tri-
als for each electrode and latency, and a voltage estimate 
is then computed for each trial from this fitted model. 
From these estimated voltages, rERPs can then be com-
puted in the same way ERPs are computed from observed 

voltages. To keep the distinction between rERPs and 
ERPs clear, we will henceforth follow Smith and Kutas 
(2015a) in using the label rERPs to refer to waveforms 
derived from averaging estimated voltages, and ERPs to 
refer to waveforms derived from averaging observed volt-
ages. Although regression models are not exposed to con-
dition-coding predictors, trials can be regrouped by 
condition after fitting and estimation is completed, such 
that rERPs, like ERPs, can be compared across condi-
tions, and subjected to standard statistical analyses. 
Figure 1 gives a schematic comparison between the ERP 
and rERPs approach.4

(3)yi =�1x1i+�2x2i+ … +�i.

 2This in fact is no different from Equation (2) which is shorthand for 
yi =�

1
x

1i +�i with x
1i =1 for all trials.

 3Although � j's are no longer found through simple averaging, they can still 
be efficiently estimated using standard techniques.  4Please refer to the electronic version for color figures.

F I G U R E  1  Schematic comparison of event-related potentials 
(ERPs) and rERPs. Both approaches start from the scalp-recorded 
voltages. The ERP approach averages these observed voltages directly, 
and subjects the resultant averages to statistical analysis. Hence, the 
ERP approach only involves voltage-level modeling of the signal. 
The rERP approach, by contrast, first employs regression modeling 
to replace each observed voltage by a voltage estimate that derives 
from a linear combination of relevant, experimentally manipulated 
factors. It is these voltage estimates that are then averaged, and 
subjected to statistical analysis. The rERP approach thus adds a layer 
of latent voltage-level signal modeling
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In sum, the rERP framework extends traditional ap-
proaches to ERP analysis by offering a means to isolate the 
independent contributions of relevant factors at the latent 
voltage level, and to examine how they quantitatively com-
bine into the voltage-level rERP signal. In what follows, we 
will demonstrate how this additional layer of statistical mod-
eling allows one to offer a quantitative explanation for the 
puzzling results from the Delogu et al.  (2019) experiment, 
by reconciling apparent inconsistencies in voltage-level 
modulations of the ERP waveforms at the underlying, latent 
voltage level.

3 |  REGRESSION-BASED 
ESTIMATION OF DBC

Delogu et  al.  (2019, DBC) conducted an ERP experiment 
on language comprehension, in which they manipulated 
the plausibility and semantic association (henceforth asso-
ciation) of a target word in German mini-discourses, across 
three conditions:

Baseline [+plausible, +associated]

Johann betrat das Restaurant. Wenig später öffnete er die 
Speisekarte und […]

‘John entered the restaurant. Before long, he opened the menu and 
[…]’

Event-related [−plausible, +associated]

Johann verließ das Restaurant. Wenig später öffnete er die 
Speisekarte und […]

‘John left the restaurant. Before long, he opened the menu and 
[…]’

Event-unrelated [−plausible, −associated]

Johann betrat die Wohnung. Wenig später öffnete er die 
Speisekarte und […]

‘John entered the apartment. Before long, he opened the menu and 
[…]’

In this context manipulation design, the critical word in 
the sentence (e.g., “Speisekarte”/“menu”) rendered the en-
tire mini-discourse either plausible (baseline) or implausible 
(event-related and event-unrelated). Figure  2 (right) shows 
the plausibility ratings (1–7 point scale) obtained from 30 
participants. Moreover, the critical word was either associ-
ated with a prime word in the first sentence (e.g. “restau-
rant” in the baseline and event-related conditions) or not 
(“Wohnung”/“apartment” in the event-unrelated condition). 
Figure  2 (right) shows the prime-target association ratings 
(1–7 point scale) obtained from 20 participants.

The ERP results are shown in Figure 3. DBC found that 
the event-related condition—in which only plausibility was 
low—produced a P600 effect relative to baseline in the 600–
1,000 ms time-window. Indeed, consistent with the literature 
this seems to suggest that the plausibility manipulation affects 
the processes underlying the P600 component of the ERP 
signal (see Bornkessel-Schlesewsky & Schlesewsky,  2008; 
Brouwer et al., 2012; Kuperberg, 2007, for reviews). However, 
in the event-unrelated condition—in which both plausibility 
and association were low—an N400 effect was observed in 
the 300–500 ms time-window, which continued as sustained 

F I G U R E  2  Distributions of the Plausibility (left) and Association (right) ratings by condition for the stimuli of the DBC experiment

(a) (b)
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negativity until the end of the ERP epoch (–1,200 ms), but 
crucially, no clear P600 effect, although a small but signif-
icant positivity was present at occipital sites. The apparent 
absence of a P600 effect appears inconsistent with the pattern 
of results for the event-related condition, and requires an ex-
planation (see van Petten & Luka, 2012, for more instances of 
such conflicting results).

One possibility is that the manipulation of plausibility 
affects processing—and thereby the ERP signal—differ-
ently depending on whether it co-occurs with a manipula-
tion of association (event-unrelated) or not (event-related). 
This implies an architectural explanation, and while possi-
ble, none of the extant neurocognitive theories of the N400 
and the P600 in language processing predicts such a pat-
tern of findings (see Delogu et al., 2019, for discussion). 
Another possibility, by contrast, is that the plausibility and 
association manipulations do both independently affect 
processing, but that these manipulations combine at the 
latent voltage level, thereby rendering it unclear what is 
going on in the ERP waveforms derived from voltage-level 
averaging. More specifically, it is possible that plausibility 

and association have an opposite influence on the ERPs: 
While decreasing plausibility drives waveforms to go more 
positive in the 600–1,000 ms P600 time-window, leading 
to an increase in P600 amplitude for the implausible but 
associated (event-related) trials relative to baseline, lower 
association simultaneously exerts an even stronger pull in 
the negative direction, yielding a net sustained negativity 
for implausible and unassociated (event-unrelated) trials. 
Below, we will explore this latter explanation of the data 
by incrementally deriving an rERP analysis of the DBC 
results.

3.1 | Establishing a baseline—Modeling no 
difference between conditions

A first step towards an rERP analysis is to establish a base-
line account of the variance in the signal. Assume that no 
factors were systematically manipulated, and that all trials 
effectively belonged to the same condition. The optimal volt-
age estimate for each subject, electrode and time point, would 

F I G U R E  3  Grand-average event-related potential waveforms for the DBC experiment. Negative is plotted upwards. Shaded regions show 
mean voltage ±2 SE across subjects
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then simply be the average over trials y1 … yn, which in re-
gression terms is equivalent to an intercept-only model (see 
Section 3):

Here, the intercept β0 is the expected mean of y across trials 
(and conditions). Regression models are fitted for each elec-
trode (N = 18: Fz, Cz, Pz, F3, FC1, FC5, F4, FC2, FC6, P3, 
CP1, CP5, P4, CP2, CP6, O1, Oz, and O2), and within each 
subject (N = 21) and time point (N = 700, given a sample rate 
of 500 Hz and ERP epochs lasting from −200 to 1,200 ms), 
yielding a total of 26,400 models. If one estimates voltages 
from a regression model for a given electrode, time point, and 
subject, the same voltage estimate will thus result for each 
trial (and hence each condition). Figure  4 shows the rERP 
waveforms resulting from these voltage estimates.

As the intercept-only model predicts the expected mean 
of y for each trial, it predicts no differences between trials. 
The intercept-only model does thus not adequately account 

for the differences in variance between conditions (all con-
ditions in Figure 4 fully overlap), and hence offers a poor 
fit to the data. The differences between the observed and 
estimated voltages, the residuals, quantify this fit: The 
closer this difference is to 0, the better the fit of the esti-
mates to the observed voltages. These residuals, shown in 
Figure 5, reveal that in the 300–500 ms N400 time-window, 
there is error for trials from each condition: event-unrelated 
(implausible and unassociated) trials should be more neg-
ative, while event-related (implausible but associated) and 
baseline trials should be more positive. Moreover, in the 
600–1,000 ms P600 time-window, the intercept-only model 
fails to explain the more sustained negative going deflec-
tion for the event-unrelated trials, as well as the more posi-
tive deflection for event-related trials. This does, however, 
provide us with a clear baseline to improve upon; that is, 
the aim is to explain away the error of the intercept-only 
model by extending it with predictors that encode stimu-
lus properties that were experimentally manipulated in the 
DBC experiment: plausibility and association.

(4)yi =�0+�i.

F I G U R E  4  Grand-average regression-based event-related potential waveforms resulting from the intercept-only model (estimated voltage y 
from Equation 4). Note that only one line is shown as the predictions for the different conditions fully overlap. Negative is plotted upwards. Shaded 
regions show mean estimated voltage ±2 SE across subjects
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3.2 | Modeling the influence of plausibility

DBC manipulated plausibility such that trials from the event-re-
lated and event-unrelated condition were more implausible than 
trials from the baseline condition (see Figure 2). Plausibility rat-
ings were collected offline for each item, meaning that by-trial 
plausibility can be entered as a predictor into an rERP analysis. 
Prior to entering this predictor into the models, however, two 
transformations are applied to the plausibility ratings:

1. First, in order to render the interpretation of the slopes 
more intuitive in relation to the ERP components, the 
scale of the plausibility ratings is inverted by subtracting 
each rating (which was expressed on a 1–7 point scale) 
from the maximum possible rating (7). As a result, higher 
ratings now indicate more implausible trials, whereas 
lower ratings indicate more plausible trials;

2. Subsequently, these inverted ratings are z-transformed, 
such that a rating of 0 indicates mean (im)plausibility, 
while negative ratings reflect plausible, and positive rat-
ings implausible trials.

Entering the transformed plausibility ratings as a predic-
tor into the intercept-only model (4), yields the following re-
gression model:

Figure 6 shows the resulting rERP waveforms. Two things imme-
diately stand out. First, in the 300–500 ms N400 time-window, 
both implausible conditions (event-related and event-unrelated) 
are more negative than the plausible one (baseline). Second, there 
are no large differences in the 600–1,000 ms P600 time-window, 
other than a slight frontal–posterior negative–positive gradient 
for the implausible conditions relative to baseline.

While it is unsurprising that the rERPs deriving from 
the plausibility-only model do not match the ERPs observed 
by DBC, it is informative to see how the voltage estimates 
underlying these rERPs arise. Figure 7 shows the residuals 
for the plausibility-only model. These residuals reveal that 
the model neatly captures the variance for the baseline trials 
across the entire epoch. They further reveal, however, that 
from the onset of the N400 time-window onwards, it fails to 

(5)yi =�0+�1 plausibility +�i.

F I G U R E  5  Grand-average residuals between the observed voltages and the voltages estimated from the intercept-only model. Negative is 
plotted upwards. Shaded regions show mean voltage ±2 SE across subjects



982 |   BROUWER Et al.

account for the more negative going voltages in the event-un-
related trials, as well as for the more positive going voltages 
in the event-related trials. Let us unpack how this leads to the 
rERPs depicted in Figure 6. Starting with the increased neg-
ativity for the implausible conditions, half of the implausible 
trials that the model is exposed to occur with a larger neg-
ative deflection (event-unrelated trials) relative to the other 
half of the implausible trials (event-related trials), which 
match the baseline trials in the N400 time-window. Hence, 
the optimal voltage estimates for implausible trials (minimiz-
ing 

∑n

i
�2

i
) are ones that are intermediate to the voltages ob-

served for event-related and event-unrelated trials (compare 
mean amplitudes within the highlighted N400 time-window 
in Figures 3 and 6). Note that the slight difference between 
the implausible conditions (event-unrelated > event-related) 
can be attributed to the fact that event-unrelated conditions 
were rated as slightly more implausible than event-related 
conditions (see Figure 2, left). Indeed, this is exactly why 
the residuals show that the event-unrelated trials should be 
more negative, while the event-related trials should be more 
positive. A similar explanation applies to the absence of 

any differences, other than the frontal–posterior negative–
positive gradient for implausible conditions, in the 600–
1,000 ms P600 time-window. Again, half of the implausible 
trials (event-unrelated) are more negative than plausible tri-
als (baseline), while the other half of the implausible trials 
(event-related) are more positive. Hence, optimal voltage 
estimates for implausible trials are again estimates that are 
intermediate to the observed voltages, which in this case 
neatly align with the voltages observed for the plausible tri-
als. This is clearly reflected in the residuals as well, which 
again show that the event-unrelated trials should be more 
negative, while event-related trials should be more positive. 
In sum, plausibility alone does thus not suffice to explain 
the DBC results.

3.3 | Modeling the influence of association

DBC also manipulated association, such that the critical 
word in the baseline and event-related trials were semanti-
cally associated with the prior context, while this was not 

F I G U R E  6  Grand-average regression-based event-related potentials resulting from the intercept plus plausibility model (estimated voltage y 
from Equation 5). Negative is plotted upwards. Shaded regions show mean estimated voltage ±2 SE across subjects
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the case in the event-unrelated trials (see Figure 2). As with 
plausiblity, association ratings were collected offline for 
each item, and hence by-trial association ratings can be en-
tered as a predictor into an rERP analysis. Prior to doing so, 
the same transformations that were applied to the plausibility 
ratings are also applied to the association ratings:

1. The scale of the association ratings is inverted by sub-
tracting each rating (which was expressed on a 1–7 point 
scale) from the maximum possible rating (7). As a result, 
lower ratings now indicate more associated trials, whereas 
higher ratings indicate less associated trials;

2. Subsequently, these inverted ratings are z-transformed, 
such that a rating of 0 indicates mean association, while 
negative ratings reflect more associated, and positive rat-
ings less associated trials.

To examine the influence of association independent of 
plausibility, we again first extend the intercept-only model 
(4) with association as a predictor, yielding the following 
model:

Figure  8 shows the rERP waveforms resulting from this 
model. While association alone is enough to adequately 
explain the sustained negative deflection for the event-un-
related relative to the baseline trials, it fails to explain 
increased positivity for event-related relative to baseline 
trials. Indeed, this pattern was to be expected, given that 
only event-unrelated trials differ in association. The re-
siduals, shown in Figure 9, show that while the estimated 
voltages of the model are very close to the observed volt-
ages for the event-unrelated trials with low association, 
there is considerable error for event-related and baseline 
trials, which have equally high association, especially in 
the 600–1,000  ms P600 time-window. That is, estimates 
for the baseline trials should be more negative, while es-
timates for the event-related baseline should be more pos-
itive. Indeed, the estimated voltages for these trials are 
again intermediate to the observed voltages, as the model 
cannot distinguish between these conditions on the basis 
of association alone.

(6)yi =�0+�1 association +�i.

F I G U R E  7  Grand-average residuals between the observed voltages and the voltages estimated from the intercept plus plausibility model. 
Negative is plotted upwards. Shaded regions show mean voltage ±2 SE across subjects
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3.4 | Modeling the combined influence of 
plausibility and association

The analyses above establish that neither plausibility, nor 
association alone are sufficient to adequately account for 
the observed variance in the signal across trials. Crucially, 
however, trials differed on combinations of both of these di-
mensions, raising the question if an rERP analysis that in-
cludes both plausibility and association as predictors could 
adequately explain the data.

Entering both predictors into the rERP analysis, yields the 
following model:

Figure  10 shows the rERP waveforms resulting from 
this model. Visual inspection clearly shows that this 
model provides a better fit to the data than the previous 
analyses. First, in the 300–500 ms N400 time-window, it 

captures the negativity for the event-unrelated trials (rel-
ative to the baseline and the event-related trials). Second, 
in the 600–1,000 ms P600 time-window it captures both 
the sustained negativity for the event-unrelated (relative 
to baseline), as well as the positivity for the event-related 
trials (relative to baseline).

While this qualitative fit looks promising, the next step 
is to quantify goodness of fit. Like in the previous analyses, 
we can turn to the residual voltages to see how close the 
voltage estimates of the models are to the observed volt-
ages. Figure 11 shows the residuals for the current model. 
Given that over the entire epoch, the mean residuals for 
each condition are much closer to 0 than in the previous 
analyses, it can be concluded that the current rERP analysis 
offers the best quantitative fit to the data. An open question, 
however, remains whether the rERP data leads to the same 
effect structure as the ERP data. To investigate this, we can 
subject the rERP data to the same statistical analyses as the 
ERP data.

(7)yi =�0+�1 plausibility + �2 association + �i.

F I G U R E  8  Grand-average regression-based event-related potentials resulting from the intercept plus association model (estimated voltage y 
from Equation 6). Note that the baseline condition is not visible, as the predictions for the event-unrelated and baseline trials overlap. Negative is 
plotted upwards. Shaded regions show mean estimated voltage ±2 SE across subjects
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3.4.1 | Statistical analyses

Following DBC, we computed mean amplitudes for 
each condition and electrode in the 300–500 ms (N400) 
and 600–1,000  ms (P600) time-window from the esti-
mated voltages. To examine the topographic distribution 
of the effects, data from midline and lateral electrodes 
were treated separately. Data from midline sites in-
cluded three electrodes (Fz, Cz, Pz). Data from lateral 
sites were grouped into four regions of interest (ROIs): 
left anterior (F3, FC1, FC5), right anterior (F4, FC2, 
FC6), left posterior (P3, CP1, CP5), and right posterior 
(P4, CP2, CP6). Within each time-window, ANOVAs 
over midline electrodes were carried out with Condition 
(baseline, event-related, event-unrelated) and anterior–
posterior (AP) distribution (anterior, central, posterior) 
as repeated measure factors. The ANOVAs over later 
sites included Condition, AP distribution (anterior, pos-
terior) and Hemisphere (left, right) as within-subject fac-
tors. The Greenhouse–Geisser correction was applied to 
all ANOVAs with greater than one degree of freedom 

in the numerator. In such cases, the corrected p-value is 
reported. Generalized eta-squared (η2G) is reported as a 
measure of effect size.

N400 time-window (300–500 ms)
The ANOVA on midline electrodes revealed a significant ef-
fect of Condition, F(2, 40) = 23.97, p < .001, η2G = 0.19. No 
other effects or interactions were significant (all Fs < 12). 
As shown in Table 1, the difference between event-unrelated 
(M = −1.95; SD = 2.7) and baseline (M = 0.98; SD = 2.96) 
was significant, but the difference between event-related 
(M = 1.36; SD = 3.17) and baseline was not.

The ANOVA on lateral sites revealed an effect of 
Condition, F(2, 40)  =  22.42, p  <  .001, η2G  =  0.198. No 
other effects or interactions were significant (all Fs < 1). As 
shown in Table  1, the difference between event-unrelated 
(M = −1.64; SD = 2.27) and baseline (M = 0.87; SD = 2.43) 
was again significant, while the difference between event-re-
lated (M = −1.06; SD = 2.73) and baseline was not.

Finally, to further assess the fit of the rERPs to the 
ERPs, we re-ran the ANOVAs with Type (rERP, ERP) as a 

F I G U R E  9  Grand-average residuals between the observed voltages and the voltages estimated from the intercept plus association model. 
Negative is plotted upwards. Shaded regions show mean voltage ±2 SE across subjects
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between-subjects factor. Both the ANOVAs on midline elec-
trodes, as well as the ANOVAs on lateral sites, revealed no 
significant effect of Type (all Fs < 1).

P600 time-window (600–1,000 ms)
The ANOVA on midline sites revealed a significant ef-
fect of Condition, F(2, 40) = 6.59, p < .005, η2G = 0.07, 
and an interaction of Condition and AP distribution, F(4, 
80) = 3.02, p <  .04, η2G = 0.009. As shown in Table 1, 
the comparison between event-unrelated (M  =  −1.59; 
SD = 2.99) and baseline (M = 2.51; SD = 2.49) showed a 
significant interaction of Condition and AP distribution, 
indicating a more pronounced negativity for the event-un-
related condition over more anterior sites (see Figure 10), 
while the comparison between event-related (M  =  3.55; 
SD  =  2.52) and baseline revealed a significant effect of 
Condition.

The ANOVA on lateral sites showed an effect of 
Condition, F(2, 40) = 4.82, p < .02, η2G = 0.05, and an in-
teraction of Condition and AP distribution, F(2, 40) = 5.14, 
p < .02, η2G = 0.008. As shown in Table 1, the comparison 

of both event-unrelated (M = 1.51; SD = 2.65) and even-re-
lated (M  =  3.03; SD  =  2.46) with baseline (M  =  2.29; 
SD = 2.17) revealed a significant interaction of Condition 
and AP distribution, indicating a more anterior negativ-
ity for event-unrelated and a more posterior positivity for 
event-related.

Again, to further assess the fit of the rERPs to the ERPs, 
we re-ran the ANOVAs with Type (rERP, ERP) as a be-
tween-subjects factor. Both the ANOVAs on midline elec-
trodes, as well as the ANOVAs on lateral sites, revealed no 
significant effect of Type (all Fs < 1).

In summary, the rERP data neatly replicate the ERP 
data reported by DBC. In the N400 time-window, implau-
sible and unassociated (event-unrelated) trials elicited an 
N400 effect compared to the baseline condition, while no 
such N400 effect was observed for implausible but associ-
ated (event-related) trials relative to baseline. In the P600 
time-window, in turn, the rERPs revealed a sustained neg-
ativity for implausible and unassociated (event-unrelated) 
trials relative to baseline, while a P600 effect was observed 
for implausible but associated (event-related) trials compared 

F I G U R E  1 0  Grand-average regression-based event-related potentials resulting from the intercept plus plausibility plus association model 
(estimated voltage y from Equation 7). Negative is plotted upwards. Shaded regions show mean estimated voltage ±2 SE across subjects
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to baseline. Crucially, none of the ANOVAs with Type as 
between-subjects factor, revealed a significant difference be-
tween the rERPs and ERPs. Hence, beyond offering a close 

quantitative fit, as evidenced by the voltage-level residuals 
(see Figure 11), the rERP data do thus also adequately mimic 
ERP data in terms of variance.

F I G U R E  1 1  Grand-average residuals between the observed voltages and the voltages estimated from the intercept plus plausibility plus association 
model. Negative is plotted upwards. Shaded regions show mean voltage ±2 SE across subjects

df

300–500 ms 600–1,000 ms

F p η2G F p η2G

Event-related vs baseline
Midline Cond (1, 20) <1 .47 0.003 5.56 .03 0.04

Cond × AP (2, 40) <1 .56 <0.001 2.05 .16 0.005
Lateral Cond (1, 20) <1 .68 0.001 2.83 .11 0.02

Cond × AP (1, 20) <1 .71 <0.001 5.16 .03 0.006
Cond × H (1, 20) <1 .60 <0.001 <1 .89 <0.001

Event-unrelated vs baseline
Midline Cond (1, 20) 40.1 <.001 0.19 2.65 .12 0.02

Cond × AP (2, 40) <1 .41 0.001 5.15 .02 0.011
Lateral Cond (1, 20) 41.6 <.001 0.20 2.70 .12 0.02

Cond × AP (1, 20) <1 .88 <0.001 10.1 <.01 0.01
Cond × H (1, 20) <1 .88 <0.001 <1 .89 <0.001

Notes: Cond × AP = Condition × Anterior–Posterior distribution; Cond × H = Condition × Hemisphere.

T A B L E  1  ANOVAs on rERPs to 
target nouns across the N400 time-window 
and the P600 time-window



988 |   BROUWER Et al.

3.4.2 | How plausibility and 
association combine

Up to this point, we have added the rERP layer, and estab-
lished that the resultant voltage estimates provide a close fit 
to the observed voltages, both in terms of residuals, as well as 
in terms of variance. The aim of adding this layer of analysis 
was to obtain a means to split the observed scalar voltages 
into the individual contributions made by plausibility and as-
sociation. The fitted regression coefficients offer precisely 
that: A means to examine how these factors individually con-
tribute to the scalp-recorded voltages.

Figure 12 plots the fitted coefficients over time. Note 
that while the intercept (β0) is shown as is, the coeffi-
cients for the predictors are “anchored” to the intercept 
to aid interpretability (plausibility: β0 + β1; association: 
β0 + β2). The coefficients reveal two things. First, in the 
300–500  ms N400 time-window, the increased negativ-
ity for the unassociated (event-unrelated) trials is en-
tirely driven by association; that is, the coefficients for 

association are negative (and hence have a negative offset 
from the intercept in Figure 12), such that they yield more 
negative voltages when trials are less associated, while 
the coefficients for plausibility are near-zero (and hence 
close to the intercept in 12), meaning that plausibility 
does not affect the voltage estimates in this time-win-
dow. The N400 effect observed for event-unrelated rel-
ative to baseline (and event-related) trials thus seems to 
be driven by the difference in association. Second, in the 
600–1,000 ms P600 time-window, the coefficients for as-
sociation and plausibility pull in opposite direction: the 
coefficients for association remain negative (and keep 
their negative offset to from the intercept in Figure 12), 
again yielding more negative voltage estimates for less 
associated trials, while the coefficients for plausibility 
are positive (as reflected by a positive offset from the in-
tercept in Figure 12), yielding more positive voltage esti-
mates for more implausible trials. This straightforwardly 
explains the P600 effect for the event-related condition 
relative to baseline: Implausible, but associated trials 

F I G U R E  1 2  Grand-average coefficients from the intercept plus plausibility plus association model. Slopes of predictors are “anchored” to the 
intercept (e.g. β1 is plotted as β0 + β1; see text for details). Negative is plotted upwards. Shaded regions show mean voltage ±2 SE across subjects



   | 989BROUWER Et al.

produce an increased positivity relative to baseline tri-
als, which is driven by the difference in plausibility. The 
explanation for the sustained negativity for the event-un-
related condition relative to baseline, by contrast, is more 
complex, as it arises from the independent quantitative 
contribution of both plausibility and association. That 
is, while plausibility yields more positive voltage esti-
mates for the implausible-unassociated trials, association 
yields more negative voltage estimates. Crucially, as the 
absolute coefficients for association are larger than the 
absolute coefficients for plausibility, association is the 
stronger force: For the event-unrelated trials, which have 
both low plausibility and low association, the sustained 
negativity thus arises as the negative pull of association 
overrules the positive pull of plausibility, thereby produc-
ing a negativity relative to baseline. Indeed, as event-re-
lated trials have low plausibility but high association, this 
negative pulling force is not exerted for these trials, hence 
producing an increased positivity relative to baseline, 
driven purely by lower plausibility.

The influence of association independent of plausibility
The rERP analysis allows us to examine how plausibility and 
association combine in more depth by keeping the influence 
of one (or more) predictor(s) constant. One can, for instance, 
isolate the influence of association by setting plausibility to 
its mean (0; as the predictor is z-transformed) for all trials in 
the fitted models:

Note that we do not need to re-fit the models, rather we use 
the fitted models to re-estimate the rERP waveforms. Figure 13 
shows the rERP waveforms from model (7), with mean plau-
sibility for all trials (8). First, this confirms that the N400 ef-
fect in the 300–500 ms time-window is driven by association. 
Second, it also shows the that the sustained negativity in the 
600–1,000 ms time-window does indeed arise from a quanti-
tative combination between plausibility and association; that 
is, by neutralizing the influence of plausibility, the sustained 
negativity now gets overestimated (compare Figures 3 and 13).

(8)yi =�0+�10+�2 association +�i.

F I G U R E  1 3  Grand-average regression-based event-related potentials resulting from the intercept plus plausibility plus association model 
when plausibility is set to its mean rating (0) for all trials (estimated voltage y from Equation 8). Negative is plotted upwards. Shaded regions show 
mean estimated voltage ±2 SE across subjects
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The influence of plausibility independent of association
We can also keep association constant by setting it to its 
mean (0) for all trials in the fitted models:

Figure 14 shows the re-estimated rERP waveforms from model 
(7), with mean association for all trials (9). By neutralizing the 
influence of association, two things become apparent. First, 
we lose the increased negativity in the 300–500  ms N400 
time-window for event-unrelated trials relative to baseline (and 
event-related) trials, as only the coefficients of association have 
an effect in this time-window, and association is now the same 
for all trials. Second, both event-related and event-unrelated tri-
als now yield an increased positivity in the 600–1,000 ms P600 
time-window (note that for the event-related trials, this positiv-
ity is overestimated due to neutralizing the negative pull of as-
sociation; compare Figures 3 and 14). Indeed, this suggests that 
plausibility is reflected in an increase in positivity. Moreover, 
these positivities already start to emerge at 400 ms, that is, in 

the middle of the N400 time-window. We will return to this 
latter observation in the discussion.

Statistical analysis (see above) confirms this pattern:

N400 time-window (300–500 ms)
ANOVAs on midline and lateral sites revealed no significant 
effects or interactions (all Fs < 1).

P600 time-window (600–1,000 ms)
ANOVAs on midline electrodes revealed a significant ef-
fect of Condition, F(2, 40) = 5.33, p < .03, η2G = 0.04. No 
further effects or interactions were significant. As shown in 
Table  2, both event-unrelated (M  =  2.95; SD  =  2.41) and 
event-related (M = 2.87; SD = 2.31), were significantly dif-
ferent from baseline (M = 1.83; SD = 2.73).

ANOVAs on lateral sites revealed a significant interac-
tion between Condition and AP distribution, F(2, 40) = 5.13, 
p < .04, η2G = 0.006. As shown in Table 2, the comparison of 
both event-unrelated (M = 2.55; SD = 2.30) and event-related 
(M = 2.51; SD = 2.19) with baseline (M = 1.78; SD = 2.38) 

(9)yi =�0+�1 plausibility +�20+�i.

F I G U R E  1 4  Grand-average regression-based event-related potentials resulting from the intercept plus plausibility plus association model 
when association is set to its mean rating (0) for all trials (estimated voltage y from Equation 9). Negative is plotted upwards. Shaded regions show 
mean estimated voltage ±2 SE across subjects
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produced a significant interaction with AP distribution, indi-
cating a more pronounced effect over posterior sites.

In summary, statistical analysis confirms absence of 
an N400 effect and presence of a P600 effect for both the 
event-unrelated and the event-related conditions compared to 
baseline.

3.5 | Discussion

We have presented an rERP analysis of the DBC data that 
extends the standard voltage-level approach to ERP analy-
sis by adding a layer of analysis that allows for splitting the 
observed scalar voltages into the contributions made by the 
relevant, experimentally manipulated factors: plausibility 
and association. Our rERP analysis was validated by show-
ing that the voltage estimates closely match the observed 
voltages, both in terms of residuals, as well as in terms of 
variance. Crucially, the fitted coefficients of the regression 
models reveal that plausibility and association combine 
quantitatively in producing the voltage estimates: While a 
lower degree of association tends to pull the estimated volt-
ages to be more negative, from the 300 ms until the end of 
epoch, a lower degree of plausibility pulls the estimated volt-
ages to be more positive, from about 400 ms until the end of 
the epoch. Indeed, the fact that association and plausibility 
pull in opposite direction from about 400 ms onwards, offers 
a quantitative, signal-based explanation for why DBC did not 
observe a positivity for implausible and unassociated (event-
unrelated) trials. Even though the implausibility of these tri-
als leads the coefficients for plausibility to produce a positive 
shift in the estimated signal, the coefficients for association 

simultaneously produce a negative shift, and as the absolute 
coefficients for association are larger than the absolute coef-
ficients for plausibility, this leads to the net effect of a sus-
tained negativity. Moreover, it was shown that if the influence 
of association is controlled for, by setting association with its 
mean across all trials, we do observe an increased positivity 
in the rERPs for event-unrelated trials in the 600–1,000 ms 
P600 time-window, while we no longer observe any negativ-
ity in the 300–500 ms N400 time-window. Overall, the rERP 
analysis thus clearly supports the conclusion that 1) associa-
tion is reflected in N400 amplitude (and that in the DBC data 
this negativity sustains into the 600–1,000 ms time-window), 
2) plausibility is reflected in P600 amplitude, and 3) associa-
tion (N400) and plausibility (P600) combine quantitatively in 
producing the rERP waveforms (see Figures 10 and 12), most 
notably in the 600–1,000 ms P600 time-window.

How does this rERP analyis map onto the neural gen-
erator dynamics underlying the ERP signal? Indeed, the 
rERP analysis suggests that the N400 and the P600 overlap 
in time, with the plausibility-driven P600 emerging in the 
300–500 ms N400 time-window (see Figure 14), and the as-
sociation-driven N400 sustaining into the 600-1,000 ms P600 
time-window (see Figure 13). When mapped onto neural gen-
erator dynamics, the implication would be that the processes, 
and hence the generators, underlying the N400 component 
and the P600 component are active simultaneously, which in 
turn leads to spatiotemporal overlap between the N400 and the 
P600 in the scalp-recorded ERP signal. Brouwer and Crocker 
(2017) have recently pointed out that if such spatiotemporal 
component overlap is at play, the standard Waveform-based 
Component Structure (WCS) approach to ERPs—which de-
rives component structure (e.g., the modulation pattern of the 
N400 and the P600) by looking at effects on mean amplitude 
in predetermined time-windows—may lead to the spurious 
presence or absence of effects, and consequently to inconsis-
tent data patterns. In fact, they argue that taking mean am-
plitudes in these time-windows as indicative of components 
is incorrect, as at any given point a waveform may merely 
show the summation of the latent components contributing 
to the ERP signal at that time (see also Donchin et al., 1978; 
Duncan et  al.,  2009; Luck, 2005a, 2005b; Näätänen, 1982; 
Squires et al., 1975). Crucially, given that components index 
specific computational processes (Näätänen & Picton, 1987), 
and that these processes may temporally overlap, multiple 
components may be contributing to the scalp-recorded ERP 
signal at any point in time. The observed WCS is thus nothing 
more than an epiphenomenon of its underlying LCS, and due 
to spatiotemporal component overlap, WCS and LCS may 
look very different.

Brouwer and Crocker (2017) argue that apparent WCS-
derived inconsistencies within (e.g. Delogu et al., 2019; Kim 
& Osterhout, 2005) and across (see van Petten & Luka, 2012) 
studies, may be resolved at the LCS level. They also point out, 

T A B L E  2  ANOVAs on rERPs to target nouns across the P600 
time-window: the influence of Plausibility

df

600-1,000 ms

F p η2G

Event-related vs baseline

Midline Cond (1, 20) 5.65 .03 0.035

Cond × AP (2, 40) 2.08 .15 0.005

Lateral Cond (1, 20) 2.85 .11 0.02

Cond × AP (1, 20) 4.94 .04 0.006

Cond × H (1, 20) <1 .91 <0.001

Event-unrelated vs baseline

Midline Cond (1, 20) 5.16 .03 0.04

Cond × AP (2, 40) 2.18 .14 0.006

Lateral Cond (1, 20) 2.57 .12 0.02

Cond × AP (1, 20) 5.27 .03 0.007

Cond × H (1, 20) <1 .93 <0.001

Notes: Cond × AP = Condition × Anterior–Posterior distribution; 
Cond × H = Condition × Hemisphere.
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however, that investigating LCS is non-trivial, as scalp-re-
corded voltage scalars inherently conflate the contributions 
of multiple latent components. Crucially, we have here shown 
how the rERP framework—as proposed by Smith and Kutas 
(2015a, 2015b)—extends the standard voltage-level analysis 
approaches to ERPs, by providing the mathematical tools to 
split these voltage scalars into the independent contributions 
made by different, relevant experimental factors, thereby of-
fering a powerful means to investigate LCS.

4 |  GENERAL DISCUSSION

Traditional analyses of ERPs examine how experimental 
conditions modulate the pattern of observed ERP compo-
nents as reflected by the mean amplitude in predetermined 
time-windows. Crucially, this Waveform-based Component 
Structure (WCS) approach often leads to inconsistent results 
within (e.g. Delogu et  al.,  2019; Kim & Osterhout,  2005; 
Kolk et al., 2003; Kuperberg et al., 2007) as well as across 
studies (see Bornkessel-Schlesewsky & Schlesewsky, 2008; 
Brouwer et  al.,  2012; Kuperberg,  2007; van Petten & 
Luka, 2012, for reviews). Motivated by the observation that 
such WCS-derived inconsistencies may be reconciled by fac-
toring in spatiotemporal overlap between ERP components in 
the LCS underlying the WCS (Brouwer & Crocker, 2017), we 
have here shown how regression-based ERP (rERP; Smith & 
Kutas, 2015a, 2015b) estimation allows for the explicit mod-
eling of LCS using linear regression. Crucially, analysis of 
the resultant regression models allows one to derive an ex-
planation for the WCS in terms of how relevant regression 
predictors combine in space and time, and crucially, how in-
dividual predictors may be mapped onto unique components, 
revealing how these spatiotemporally overlap in the WCS.

The rERP approach effectively extends traditional ap-
proaches towards ERP analysis by adding an additional layer 
of analysis that replaces each observed scalp-recorded volt-
age with a regression-based estimate, which decomposes this 
voltage into the contribution made by different experimen-
tally manipulated factors. For the rERP analysis to be valid, 
it is essential that the differences between the observed volt-
ages and the estimated voltages, the residuals, are as close to 
zero as possible. That is, the observed scalp-recorded volt-
ages represent the true signal and the rERP analysis should 
adequately capture this signal. Indeed, the closer the esti-
mated voltages are to the observed voltages, the closer the 
rERP waveforms will be to the ERP waveforms. In fact, for 
any rERP analysis that closely fits the observed data, there 
is no fundamental difference between ERPs and rERPs; that 
is, it does not matter if one averages the observed or the es-
timated voltages to obtain a waveform, or if one carries out 
statistical analyses on the ERPs or rERPs. Indeed, the only 
difference between ERPs and rERPs is that rERPs derive 

from one additional step of statistical estimation of the signal 
(prediction and averaging), as compared to ERPs (averaging 
only). Crucially, the main advantage of the rERP layer is that 
valid rERP analyses with multiple relevant predictors allow 
one to investigate how these predictors combine by keeping 
one (or more) predictor(s) constant. Indeed, while the resul-
tant voltage estimates may then look very different from the 
observed voltages, these estimates still derive from the true 
signal as recorded from the scalp. As such, rERPs derived 
from averaging these estimated voltages are again just as 
valid a statistical estimate of the signal as the ERPs derived 
from averaging the observed voltages, and hence they can 
also be treated as and subjected to the same statistical analy-
sis as normal ERPs.

The requirement for a valid rERP analysis to minimize 
residuals highlights the fact that we effectively harness the 
additional layer of regression-based modeling as a “machine 
learning” layer rather than an “inferential statistics” layer. 
That is, we employ linear regression modeling to estimate 
voltages from a set of experimentally relevant predictors, and 
these estimates are then processed in the same way as ob-
served voltages are treated in traditional approaches to ERP 
analysis. Indeed, in the present paper we have only looked at 
how individual predictors affect the overall rERP waveforms, 
and we have conducted inferential statistics at the level of 
these waveforms by looking for effects on mean amplitude 
in predetermined time-windows. In theory, one could also 
turn to regression models for inferential statistics by look-
ing at the relative importance of predictors within a given 
model. Indeed, while this could be done at the level of the 
regression models fitted for each subject and time point, one 
would ideally construct a single model for each point in time 
and conflate over subjects. To this end, linear mixed effects 
regression (LMER) could be employed to account for be-
tween-subject (and optionally between-item) variability (see 
Nieuwland et al., 2020, for such an approach).

While this approach is valid, and could potentially be 
insightful, the core requirement of the rERP approach still 
holds: the difference between the observed and estimated 
voltages should be minimal. That is, if the fit between the 
regression-based estimates and the scalp-recorded voltages is 
not assessed, one is at risk of drawing unwarranted conclu-
sions about the importance of predictors: a predictor could 
be highly significant in a model that fits the observed volt-
ages very poorly, potentially leading to wrong conclusions 
about that predictor. For instance, Delogu et al. (2019) also 
collected by-item Cloze ratings for their target words (mea-
sured as the fraction of sentence completions using a spe-
cific word), and when Cloze is entered as a single predictor 
in an rERP analysis, it reveals to be an important predictor, 
while at the same time the residuals reveal that this model in 
fact poorly fits the data. Crucially, the invocation of LMER 
underlines an advantage of harnessing the rERP layer as a 
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machine learning layer: If one is not interested in inferen-
tial statistics within the individual models, standard linear 
regression models can be fitted within each subject and time 
point separately, meaning that there is an optimal, analyti-
cal solution to each regression problem. Indeed, this eschews 
the need for any iterative parameter estimation procedures as 
are typically required to fit linear mixed effects models, and 
thereby any model convergence problems.

The machine learning perspective also speaks to the issue 
of partial collinearity, the situation in which two or more pre-
dictors are non-identical yet correlated, thereby potentially 
affecting the degree to which we can interpret the resulting 
regression coefficients. As Smith and Kutas (2015a) point 
out, the presence of collinear predictors does not violate 
any assumptions underlying least squares regression, and 
hence of the rERP framework. Moreover, while they do dis-
cuss how the effects of collinearity can be examined (using 
variance inflation factors, VIFs), they recommend to enter 
all relevant predictors, and to then look for rERPs of interest 
to the scientific question at hand. Crucially, as we are typi-
cally not interested in inferential statistics on the individual 
coefficients, but rather employ the rERP framework as a ma-
chine learning layer, the worst case effect of collinearity is 
that the influence of individual predictors cannot be isolated, 
thus yielding under informative rERP analyses. We therefore 
also recommend to start with a maximal rERP analysis, in-
cluding all relevant predictors of interest. One can then study 
the waveforms and coefficients, and see how the analysis 
changes when one or more predictors are removed. Here, one 
could also consider the generalizability of the fitted models; 
that is, while we fitted our models on all trials within a given 
subject, electrode, and time point, another approach would 
be to fit them on only a subset of the data, and to then assess 
their generalization to unseen data. This could for instance 
inform on whether the models are overfitting the data, as well 
as on whether an analysis transfers to data from other exper-
iments. Indeed, even if an analysis minimizes residuals on 
one data set, this does not mean it necessarily generalizes to 
other data as well (within or across studies). Moreover, even 
on seen data, non-zero coefficients may not always reflect a 
true effect of the factors instantiated by the corresponding 
predictors, for instance due to data sparseness or noise. In 
such cases, to further validate an rERP analysis, and/or to see 
how an analysis transfers to unseen data, generalization per-
formance should be taken into account (also see the literature 
on temporal response functions—which are highly similar to 
rERPs—in which model cross-validation is common prac-
tice; e.g., Crosse, Di Liberto, Bednar, & Lalor, 2016).

To demostrate the utility of the rERP framework as as 
a viable tool to explain WCS-derived inconsistencies, we 
have incrementally derived an rERP analysis of the results 
reported in a recent study on language comprehension by 
Delogu et al. (2019, DBC). DBC manipulated plausibility and 

association across three conditions, and found that relative to a 
baseline condition, in which the target word was both plausible 
and strongly associated, decreasing plausibility only led to an 
increase in P600 amplitude in the 600–1,000 ms time-window, 
while decreasing both plausibility and association led to an in-
crease in N400 amplitude in the 300–500  ms time-window, 
which continued into a sustained negativity. Indeed, these 
WCS-derived results appear internally inconsistent with re-
spect to the effect of plausibility: decreasing plausibility seems 
to increase P600 amplitude in one condition, but relatively less 
so in another. Our rERP analysis, however, which explicitly 
models the LCS underlying the observed WCS, revealed that 
this apparent inconsistency can be explained by means of a 
quantitative combination of plausibility and association. That 
is, the regression coefficients revealed that while decreased 
plausibility pulls the waveforms to be more positive, starting 
from 400 ms onwards until the end of the epoch, decreased as-
sociation simultaneously pulls the waveforms to be more nega-
tive from 300 ms onwards until the end of the epoch. Crucially, 
as the absolute coefficients for association are larger than those 
for plausibility, association is the stronger force. This explains 
the observed WCS, and in particular the relatively weaker in-
crease in positivity for the condition in which both plausibility 
and association are decreased; that is, the opposite pull of plau-
sibility and association, of which the latter is stronger than the 
former, leads to a net negativity. Finally, the relative strength 
of the coefficients does not only vary in time, but also in space, 
explaining the fronto-central gradient that is apparent in both 
conditions with decreased plausibility: more posterior sites go 
more positive.

The rERP analysis further revealed that when associa-
tion is kept constant across trials, a significant late positive 
deflection—a P600 effect—emerges for both conditions in 
the 600–1,000 ms time-window. Conversely, keeping plau-
sibility constant across trials yields a significant negativ-
ity in the 300–500 ms time-window—an N400 effect—for 
the combined manipulation of plausibility and association, 
which sustains until the end of the epoch. Indeed, in terms 
of neurophysiology, this supports the mapping that asso-
ciation is reflected in the N400 component, while plausi-
bility is indexed by the P600 component. Furthermore, it 
suggests that the sustained negativity arises because these 
components overlap from 400 ms onwards, and that their 
summation leads to a net negativity in the 600–1,000 ms 
P600 time-window. Finally, the relative strength of these 
components seems to vary across scalp sites, with the N400 
being more pronounced at frontal sites, and the P600 more 
prominent at posterior sites. Taking together, the WCS-
derived inconsistencies in the DBC results thus seem to 
arise from spatiotemporal component overlap between the 
N400 and the P600.

Crucially, the observation of spatiotemporal overlap be-
tween the N400 and the P600 implies that the generators 
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underlying these components are active simultaneously in time 
for the larger part of the ERP epoch, and that they combine in 
the scalp-recorded signal. Many of the apparent WCS-derived 
inconsistencies, however, common within and across studies, 
derive from the assumption that the N400 does strictly precede 
the P600 in time, hence taking these components to be spa-
tiotemporally independent. Indeed, we believe this assumption 
to be incorrect, and that these inconsistencies can in fact be 
explained by factoring in spatiotemporal overlap between the 
N400 and the P600. This requires a paradigmatic shift in which 
the focus of investigation moves from WCS to LCS, which has 
implications for experimental design, statistical analysis of re-
sults, and neurocognitive theorizing.

Experimental designs should carefully identify which rel-
evant continuous (and/or categorical) predictors derive neatly 
from the experimentally manipulated factors, can be ade-
quately quantified through stimulus pre-testing, and be segre-
gated from each other if they contribute to the signal at the 
same point in space and time (see above). Second, analysis of 
results should focus on how the factors that are manipulated in 
a given design combine in space and time to yield the observed 
signal, and critically, how each of these factors independently 
modulates the signal when the other factors are held constant. 
The rERP framework extends traditional approaches to ERP 
analysis with the tools to investigate this: It allows for model-
ing LCS in terms of how relevant (continuous and categorical) 
regression predictors combine in space in time, and crucially, 
it allows for isolating factors by keeping others constant. The 
core challenge of the rERP analysis is to arrive at regression 
models that minimize the difference between observed and es-
timated voltages. Ideally, however, this process should be facil-
itated by careful experimental design.

Finally, neurocognitive theories which attribute specific 
computational operations to ERP components should factor 
in that the processes indexed by these components may over-
lap in time, for instance by positing architectures in which 
these processes are organized in a temporally cascaded 
manner or in which they dynamically interact. An example 
of the latter is the Retrieval–Integration account of the elec-
trophysiology of language processing (Brouwer, Crocker, 
Venhuizen, & Hoeks, 2017; Brouwer et al., 2012; Brouwer 
& Hoeks,  2013). On this account the N400 component in-
dexes retrieval of word meaning, while the P600 component 
indexes integration of this word meaning into the unfolding 
utterance representation. Crucially, rather than assuming 
that Retrieval strictly precedes Integration, the account as-
sumes that each word involves a reverberating cycle in which 
Retrieval and Integration processes dynamically interact. 
Indeed, Retrieval–Integration theory predicts spatiotempo-
ral overlap between the N400 and P600, and can account 
for the DBC results (see Delogu et al., 2019, for discussion). 
Moreover, assuming the functional-neuroanatomic mapping 
of Retrieval/N400 onto the left posterior middle temporal 

gyrus (lpMTG) and Integration/P600 onto the left inferior 
frontal gyrus (lIFG) brouwer2013time, the Event-Related 
Optical Signal (EROS) results by Tse, Squires, and Hillyard 
(2007) support such reverberating—and thus overlapping—
processing dynamics.

In sum, we believe that apparent inconsistencies in ERP 
results may be reconciled by shifting focus from WCS to 
its underlying LCS. More generally, we have demonstrated 
how the rERP framework, which extends traditional ap-
proaches to ERP analysis with an additional layer of sta-
tistical estimation, offers a powerful means to explicitly 
model and investigate LCS. While the framework can be 
applied to existing data, we believe that careful consider-
ation of future designs may aid data analysis by carefully 
identifying what continuous predictors are relevant, how 
stimulus pre-tests may adequately quantify these predictors 
on a by-item basis, and how different predictors may be 
segregated if they combine in the signal at any given point 
in time. Finally, neurocognitive theories should take into 
account that the processes they attribute to different ERP 
components may be organized in a cascaded manner and 
potentially interact dynamically.
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