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“Beautiful is better than ugly. 

Explicit is better than implicit. 

Simple is better than complex. 

Complex is better than complicated. 

Flat is better than nested. 

Sparse is better than dense. 

Readability counts. 

Special cases aren't special enough to break the rules. 

Although practicality beats purity. 

Errors should never pass silently. 

Unless explicitly silenced. 

In the face of ambiguity, refuse the temptation to guess. 

There should be one—and preferably only one—obvious way to do it. 

Although that way may not be obvious at first unless you're Dutch. 

Now is better than never. 

Although never is often better than right now. 

If the implementation is hard to explain, it's a bad idea. 

If the implementation is easy to explain, it may be a good idea. 

Namespaces are one honking great idea—let's do more of those!” 

“Zen of Python” by Tim Peters, Software engineer 
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Short Summary 
 

The complex Gram-negative bacterial cell envelope is an important factor of intrinsic 

and acquired antibiotic resistance and explains the limited treatment options for 

infections caused by such pathogens.  

To support the discovery of highly permeating and thus potentially more active 

compounds, in vitro models based on permeable well plate inserts have been 

developed, advanced, and characterized.   

Advancing an approach by F. Graef1, which mimics the total envelope structure of 

Gram-negative bacteria, similarities to the actual cell envelope structure have been 

revealed by CLSM and x-ray microtomography. Commercially available antibiotics 

have been tested with nalidixic acid permeating fastest.   

A second model was obtained by exploring if polysaccharide gels allow to distinguish 

high from low accumulating antibiotics. With 20 % (w/v) starch gel performing best, the 

preparation was automated, structure-permeation relationships investigated and 

validated by machine learning.  

A third model is based on extracellular vesicles of Escherichia coli. These vesicles and 

the model derived thereof have been characterized by electron microscopy, while the 

performance of the model was investigated by comparing in vitro data to in bacterio 

accumulation and to permeability data from liposome-based models.  

Lacking porins, the total envelope model was limited to predict porin-independent 

permeation. This was, however, better achieved by using the starch-based and vesicle-

based models. 
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Kurzzusammenfassung 
 

Die Zellmembran gramnegativer Bakterien ein wichtiger Faktor für intrinsische und 

erworbene Antibiotikaresistenzen. Um die Entdeckung von gut permeierenden und 

folglich potenziell wirksameren Antibiotika zu fördern, wurden in vitro-Modelle 

basierend auf Wellplatten mit durchlässiger Membran (weiter-)entwickelt und 

charakterisiert.  

Bei der Weiterentwicklung eines Ansatzes von Gräf et al.1, der die Gesamtstruktur der 

gramnegativen Zellmembran nachbildet, wurde die Ähnlichkeit zum tatsächlichen 

gramnegativen Membranaufbau durch CLSM und Röntgenmikrotomographie 

festgestellt. Kommerziell erhältliche Antibiotika wurden getestet, wobei Nalidixinsäure 

am schnellsten permeierte.  

Ein zweites Modell wurde erhalten, als explorativ untersucht wurde, ob 

Polysaccharidgele im Stande sind, gute von schlechtakkumulierenden Antibiotika zu 

unterscheiden. Mit 20%igem (m/v) Stärkegel, welches am besten abschnitt, wurde die 

Modellherstellung automatisiert, Struktur-Wirkungsbeziehungen untersucht und diese 

durch maschinelles Lernen validiert.  

Ein drittes Modell basiert auf extrazellulären Vesikeln von Escherichia coli. Die Vesikel 

und das Modell wurden durch Elektronenmikroskopie charakterisiert, während die 

Leistung durch Vergleich der erhaltenen Permeabilitätsdaten Daten mit bakteriellen 

Akkumulationsdaten und Permebilitätsdaten von liposomenbasierten Modellen 

überprüft wurde.  

Durch die fehlenden Porine im ersten Ansatz war dieser lediglich auf die Vorhersage 

von porinunabhängiger Permeation beschränkt. Die Vorhersage von porinabhängiger 

Permeation wurde besser durch die stärkebasierten und vesikelbasierten Modelle 

erzielt. 
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Abbreviations 
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1. General introduction – State-of-the-art 
 

1.1 The composition of the Gram-negative bacterial cell envelope in comparison 

to Gram-positive and mammalian cells as well as their standard organelles 

 

A comparative look at the membrane structures of Gram-negative, Gram-positive and 

mammalian cells reveals significant differences. However, when looking close, unexpected 

similarities occur. Figure 1 illustrates the membrane architecture of Gram-negative, Gram-

positive, and mammalian cells. Starting with the plasma membrane (PM), similarities between 

Gram-positive and Gram-negative bacteria and differences to mammalian cells become 

obvious. In contrast to mammalian cell membranes, which contain primarily 

phosphatidylcholines (PC) and phosphatidylethanolamines (PE), the main phospholipids of the 

bacterial membranes are PE, phosphatidylglycerols (PG) and cardiolipin (CL), whereas the 

quantitative composition of these phospholipids is strongly species-dependent2,3. Generally, 

PMs feature membrane receptors, proteins maintaining membrane stability and regulating the 

uptake of nutrients and electrolytes or acting as enzymes4–7. Mammalian PMs, in addition, 

feature proteins for cell-to-cell adhesion, direct intercellular nutrient transfer, receptors with 

immune functions and ion pumps for the maintenance of the membrane potential5,8. Bacteria 

also create a membrane potential. This is caused by proteins of the respiratory chain, which are 

located directly in the PM9,10. In the case of Gram-negative bacteria, this respiratory chain 

creates a distinct proton gradient between the periplasmic space and the cytoplasm. This 

gradient creates the so-called proton motif force (PMF) and is known to be involved in the uptake 

of aminoglycosides from the PS across the PM into the cytoplasm11,12.  

Whereas mammalian cells are only bordered by a plasma membrane (PM), Gram-negative and 

Gram-positive cells feature a combination of PM and cell wall. This cell-wall giving cell stability 

is composed of a peptidoglycan layer, which is much thicker in Gram-positive than Gram-

negative bacteria13. Moreover Gram-positive cell walls contain cell wall-associated proteins (for 

example LPXTG proteins, and CWBD proteins), resistance related enzymes such as -

lactamases as well as polymers (teichoic acids, teichuronic acids, neutral or acidic 

polysaccharides)14.  
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Figure 1. Membrane structure of Gram-negative, Gram-positive and mammalian cells. The cell envelope of 

Gram-negative bacteria comprises three major compartments: outer membrane (OM), inner membrane (IM) and 

the periplasmic space (PS) between both membranes containing a peptidoglycan layer (PG). Peptidoglycan layer 

and outer membrane are regarded as Gram-negative cell wall15. The OM features lipopolysaccharides (LPS) at its 

outer leaflet and phospholipids at its inner leaflet. OM proteins, such as channel proteins (porins), OM efflux 

proteins and proteins involved in active uptake mechanisms are embedded. The IM is a symmetric16 phospholipid 

layer providing internal support17 and features efflux pumps, transport proteins and protein complexes of the energy 

related metabolism9. Gram-positive bacteria have a peptidoglycan layer surrounding the plasma membrane (PM). 

Some Gram-positive and -negative species, are surrounded by a surface layer (S-layer)18. Mammalian membranes 

only consist of a PM with channel, receptor and efflux proteins embedded and polysaccharide chains attached to 

it forming the glycocalyx. 
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Like Gram-positive species, resistance related enzymes of Gram-negative bacteria, can also be 

found alongside the peptidoglycan layer. However, in Gram-negative bacteria, the outer 

membrane (OM) separates these enzymes and peptidoglycan from the extracellular 

environment and thus forms an additional compartment: the periplasmic space. This 

compartment is highly viscous and contains in addition to enzymes and peptidoglycan high 

concentrations of electrolytes, structural proteins, transport proteins, amino acids19.  

The aforementioned asymmetric OM of Gram-negative bacteria can be subdivided into an outer 

leaflet (OL) composed of lipopolysaccharides (LPS) and an inner leaflet (IL) composed of 

phospholipids. More or less specific porin channels embedded in the OM grant a certain degree 

of access to small polar compounds20. Other outer membrane proteins are related to active 

compound uptake (TonB-dependent transporters, e.g. BtuB, FhuA, FepA21), virulence (OmpX22, 

OmpA23, flagellin24), metabolism (OmpT25, OmpP26) and structural maintenance(OmpA27, 

nlpB28). In Gram-positive bacteria, these processes are usually covered by proteins of the PM14.  

In contrast to the uniqueness of the OM asymmetry in Gram-negative bacteria, the three-layered 

structure of their envelopes can also be found within eukaryotic cells, namely in mitochondria, 

nuclei and chloroplasts.   

By looking closer, further similarities become obvious particularly for mitochondria. The proteins 

of the respiratory chain, located in the Gram-negative inner membrane can also be found in the 

inner membrane of mitochondria and pore proteins, similar to the Gram-negative outer 

membrane, can be found on the mitochondrial outer membrane. In addition, mitochondria shed 

outer membrane vesicles like Gram-negative bacteria and the typical Gram-negative 

phospholipids PE, PG and CL are present. These similarities do not only remarkably 

demonstrate the Gram-negative origin of mitochondria and the endosymbiotic theory; this fact 

should probably be more intensely considered in future to reduce side effects of antibiotics.  

A general similarity between mammalian and bacterial membranes is the presence of 

membrane fluidity regulating molecules. While cholesterol is found in mammalian cell 

membranes, so-called hopanoids facilitate this task in bacteria29. Both are mainly saturated 

polycyclic hydrocarbons. Furthermore all three types of cells can feature efflux pumps on their 

membrane30–32. 
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1.2 The Gram-negative bacterial cell envelope as cause for antibiotic resistance 

 

Different factors are known to cause antibiotic resistance. Apart from mutations at binding sites 

of intracellular targets33 and degrading enzymes located in the cytoplasm34, most of the activity-

affecting entities are apparently associated with the cell envelope. This holds true for efflux 

pumps, -lactamases and the outer membrane proteins.   

Porins can be currently regarded as the main entrance route for antibiotics active in many 

pathologically relevant Gram-negative bacteria. As shown in Table 1, the most abundant porins 

in Acinetobacter baumannii, E. coli, Klebsiella pneumoniae, Salmonella typhimurium seem to 

have a molecular weight cut-off of 500-700 Da. However, even within a single porin, the cut-off 

should never be considered as an absolute limit, since various physicochemical properties of 

the permeating molecule as well as the electrostatic interactions with the porin and its 

fluctuations in diameter also play a significant role35.  

Besides, it is important to realize that cut-off numbers not always give a hint to the degree of 

molecular translocation across porins.  Although OprF in P. aeruginosa is known to be the most 

abundant outer membrane protein, which even allows for compounds as large as 3 kDa to 

permeate, is was found that the permeation speed is generally low36. OmpAab in A. baumannii 

also shows remarkably slow permeation37. The selectivity of porins and deceleration of 

permeation velocity may account for the intrinsic resistance of Gram-negative species to a broad 

number of antibiotic classes, such as macrolides, glycopeptides, ansamycins, lincosamides and 

steroid antibiotics. Furthermore, Gram-negative bacteria can also acquire resistance by 

downregulating porin expression, as has been reported for OmpF in E. coli38 OprD in P. 

aeruginosa39 and OmpK35 and OmpK36 in K. pneumoniae40. It must be mentioned that the 

above discussed porins in spite of their general selectivity for rather small and hydrophilic 

molecules are regarded as unspecific porins. Porins, for example LamB (passive transport of 

maltose, malto-oligosaccharides) and Tsx (passive transport of nucleosides, deoxynucleosides) 

in E. coli have a much higher substrate specificity and are thus termed “specific porins”. Among 

those, so-called ligand-gated channels, for example FadL (passive transport of long fatty acids, 

E. coli and others) and CymA (passive transport of -cyclodextrins, Klebsiella oxytoca) even 

open only in the presence of their substrate19.   

Enzymes in the periplasm can also be related to antimicrobial resistance. -lactamases are the 

most common, very versatile (almost 2800 unique proteins) and evolutionary adaption has 

hitherto constantly succeeded in hydrolysing the -lactam ring of every new generation of -

lactam antibiotics including carbapenems and monobactams41,42. In Gram-negative bacteria, 

extended spectrum -lactamases, serine carbapenemases and metallo--lactamases are 
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among the most frequent causes of -lactam resistance.  

 

Table 1. Selection of outer membrane proteins with channel function (“porins”). n.r.: not reported 

Species Porin Molecular weight cut-off Selectivity 

Acinetobacter 

baumannii 

OmpA ~500 Da37 Non-selective37  

Escherichia coli OmpF ~600-70043 slightly cation selective44 

OmpC ~600-70043 Non-selective44 

PhoE n.r. Anion selective44 

Klebsiella 

pneumoniae 

OmpK35 Similar to OmpF45 Similar to OmpF, less selective 

towards larger, lipophilic molecules45 

OmpK36 Similar to OmpC45 Similar to OmpC45 

Pseudomonas 

aeruginosa 

OprF ~300046 Non-selective47 

OprD n.r. Basic amino acids, small peptides, 

Carbapenems39 

OprP n.r. Phosphate anions46 

Salmonella 

enterica ser. 

typhimurium 

OmpF ~60048 Non-selective31 

 

Furthermore, the accumulation of antibiotics at the target site can be reduced by efflux pumps. 

Their protein complex spans over the entire cell envelope. The AcrAB-TolC complex is the most 

prominent one in E. coli. MexAB-OprM, MexCD-OprJ and MexXY-OprM are the dominant efflux 

pumps in Pseudomonas aeruginosa, whereas AdeABC are typically found in A. baumannii49. 

The selectivity of E. coli and P. aeruginosa efflux was previously studied by Astra Zeneca, 

indicating that molecules are less likely to undergo efflux when small (<450 Da) and highly 

charged50.  Other reports emphasize species specific differences of physicochemical 

properties making molecules prone to efflux51.  Table 2 summarizes the main uptake pathway, 

metabolic modifications and reported efflux pathways of antibiotic classes commonly used to 

treat infections by Gram-negative bacteria.  

Efflux pumps have also been reported for Gram-positive bacteria52 and mammalian cells53, and 

are known for their efficient removal of drug molecules.  
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Table 2. Established antibiotics for the treatment of Gram-negative bacterial diseases, selected 

physicochemical properties, major uptake pathways and metabolic modifications  

Name Example  

with the key structural motif 

highlighted 

Physico-

chemical 

properties 

Uptake Metabolism 

in bacterio 

Efflux 

(examples) 

Amino-

glycosides 

 
Tobramycin 

- polycationic 

- clogD7.4 –8.1[a] 

- MW 526 Da[a] 

- N[b] 

Self-promoted 

uptake11 

N-acetylation, 

O-AMP-

conjugation, 

O-phospho-

rylation54   

Yes 

(AcrD, E. 

coli55; 

MexA-MexB-

OpmG, P. 

aerug.56) 

 

Chlor-

amphenicol 

 

- non-ionic 

- clogD7.4 0.86[c] 

- MW 323 Da 

- T[b] 

Porin11,57 O-acetylation58 Yes,  

(MexA-MexB-

OprM, P. 

aerug. 56) 

Penicillins 

 
Amoxicillin 

- an-, 

zwitterionic 

- clogD7.4 –2.4[a] 

- MW 413 Da[a] 

- (N), T, (R)[b] 

Porin59 β-lactam 

hydrolysis42 

Yes60,  

(e.g. AcrAB-

TolC, E. coli61 

MexAB-OprM, 

P. aerug.62) 

 

Cephems 

 
Cefuroxim 

- an-, 

zwitterionic 

- clogD7.4 –3[a] 

- MW 452 Da[a] 

- (N), T, (R)[b] 

Porin63 β-lactam 

hydrolysis42 

Yes, 

(AcrAB-TolC, 

E. coli61) 

Carbapenems 

 
Imipenem 

- zwitterionic 

- clogD7.4 –5.8[a] 

- MW 397 Da[a] 

- T, (R)[b] 

Porin63 
β-lactam 

hydrolysis42 

Yes,  

(AcrAB-TolC, 

E. coli64 

MexAB-OprM, 

P. aerug.65) 

Monobactams 

 
Aztreonam 

- an-, 

zwitterionic 

- clogD7.4 –2.8[c] 

- MW 423 Da[d] 

- (N), T[b] 

(Porin)66 β-lactam 

hydrolysis67 

weak 

evidence 

(MexA-MexB-

OprM, P. 

aerug.68) 

Fluoro-

quinolones 

 
Ciprofloxacin 

- zwitterionic 

- clogD7.4 –0.8[a] 

- MW 371 Da[a] 

- T, R[b] 

Porin, outer 

membrane 

lipids15 

N-acetylation58 Yes,  

(MexA-MexB-

OprM, P. 

aerug. 56) 

Tetracyclines 

 
Tetracycline 

- zwitterionic 

- clogD7.4 –3.6[a] 

- MW 481 Da[a] 

- T, (R)[b] 

Porin 

outer 

membrane       

lipids11,15 

oxidation69,70 Yes, 

(AcrAB-TolC, 

E. coli71, 

MexA-MexB-

OprM, P. 

aerug. 56) 
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Fosfomycin 

 

- anionic 

- clogD7.4 –3.2[c]  

- MW 138 Da 

- R[b] 

(Porin)72 nucleophilic 

addition73 

Yes, but so far 

only reported 

for A. 

baumannii 

(AbaF)i74 

Sulfonamides 

 
Sulfadiazin 

- non-ionic 

- clogD7.4 –0.1[a] 

- MW 273 Da[a] 

- T, R[b] 

Passive, not 

further 

specified 75 

oxidation of 

sulfanilic acid 

moiety, 

hydrolysis of 

sulfamate 

ester76 

Yes,  

but only 

reported for P. 

aerug. (MexB-

OprM77) 

Polymyxins 

 
Colistin A 

- polycationic 

- clogD7.4 2.9[c] 

- MW 1176 Da[d] 

- N[b] 

Self-promoted 

uptake44, pore 

formation 

 (proteolysis)78 - 

[a] Average values reported by O’Shea and Moser.79 [b] The fulfilment of eNTRy rules.80,81 N = ionisable amine, T = low three dimensionality, R = rigidity.  

[c] Values generated by StarDrop v. 6.6.1.22652, [d] Values generated by StarDrop 6.6.4.23412; the antibiotic panel used for [b] and [c] is listed in appendix 7.1, 

MW = molecular weight, n.r. = not reported
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1.3 Experimental determination of membrane permeability 
 

The amount of substance (n) that diffuses across a defined surface area (A) in a certain 

time interval (t) is called flux (J). According to Fick’s first law, the flux is dependent on 

the diffusion coefficient (D), the distance of the diffusion (s) and the concentration 

gradient (c, Equation 1). 

𝐽 =
𝑛

𝐴𝑡
 =  𝐷 ∗

𝑐

𝑠
 

Permeability is defined as the motion of a substance across a membrane82. It can be 

studied for example by static systems such as Franz cells or coated Transwells®, 

consisting of a donor compartment and an acceptor compartment, which is divided by 

a membrane. Since those systems consist of an interface of two materials, the partition 

coefficient (Kp) of the respective combination of materials plays an additional role 

(Equation 2).   

𝐽 = 𝐾𝑝 ∗ 𝐷 ∗
𝑐

𝑠
 

Here, s stands for the thickness of the membrane, since the particle motion across this 

is material is considered as the major diffusion delimiting step. (Fig. 2) 

 

Figure 2. Concentration profile within a typical static experimental set-up to determine 

compound permeability. Because of the higher concentration in the donor compartment, 

particles move towards the acceptor compartment, separated by a membrane with the defined 

thickness s. Over the course of time, concentrations in both compartments will reach an equal 

level (ceq). 

 
[mol*m-2*s-1 ] (2) 

[mol*m-2*s-1 ] (1) 
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The diffusion coefficient D depends on the viscosity (), temperature (T) and the 

hydrodynamic diameter of the diffusing particle (r, Equation 3).  

 

𝐷 =
𝑘𝐵 ∗ 𝑇

6𝜋 ∗  ∗ 𝑟
 

D = diffusion coefficient 

kB= Boltzmann constant (1.380649*10−23 J*K-1) 

T = absolute temperature 

 = viscosity 

r = hydrodynamic diameter of diffusing particle 

 

Hence, the viscosity and temperature should be kept constant throughout the entire 

permeation experiment. The hydrodynamic diameter indicates that larger particles are 

likely to move slower than smaller particles, regardless of equal concentration or choice 

of diffusion barrier.  

If the membrane thickness remains the same in all experiments, s, D and Kp can be 

simplified to one coefficient “P” - the permeability coefficient (Equation 4). This is a 

value, which is characteristic for every diffusing particle and biphasic system. Hence it 

can be for example used to either compare particle permeability while not altering the 

biphasic system or to compare biphasic systems, while using the same kind of particle.  

 

𝐽 = 𝑃 ∗ 𝑐 

 

To further simplify experimental conditions for permeability studies, so-called sink 

conditions are assumed. Normally, sink conditions are achieved by continuous removal 

of the permeated compound to maintain a maximum concentration gradient. In a closed 

and static system, sink conditions describe that the particle concentration in the donor 

compartment is at least ten times higher than in the acceptor compartment. Under 

these conditions the concentration in the acceptor compartment can be neglected. The 

concentration gradient remains virtually the same throughout this phase, is equal to the 

initial particle concentration (c0) in the donor compartment, and does not depend on 

time (Equation 5, 6). 

𝐽 = 𝑃 ∗ 𝑐0       | ∶  𝑐0 

𝑃 =
𝐽

𝑐0
                          

[mol*m-2*s-1] (5) 

[m*s-1] (6) 

[m2*s-1] (3) 

[mol*m-2*s-1] (4) 
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J can be determined experimentally by taking samples at defined amounts of time, 

determining the particle concentration, and based on that calculating the permeated 

amount (n). This amount is then divided by the membrane surface area (A) and the 

respective time interval (t). The most robust way is to perform a linear regression over 

several time intervals (Fig. 3) and divide the slope of the obtained regression function 

by the membrane surface area.  

 

Figure 3. Permeation-time course of a typical transport experiment under static 

conditions. Permeated amounts at defined time intervals are plotted cumulatively over time. 

Often, a lag time can be observed (Phase I), in which the compound enriches inside the 

membrane. After the membrane is saturated with the compound, a second phase (II) starts, in 

which the permeated amount increases linearly, since the concentration gradient remains still 

close to the maximum (sink conditions). There, a linear regression can be performed. It yields 

the regression function (dashed line) y = mt + z. To obtain the flux (J), the slope m is divided 

by the membrane surface area. At the end of the transport experiment a phase III starts, in 

which the compound accumulation in the acceptor compartment decreases, as a result of the 

decreasing concentration gradient. It approaches ceq (Fig. 2) asymptotically. 

 

Notably, the units of the permeability coefficient are the same as for the velocity. Hence, 

the permeability coefficient can be regarded as the velocity of the molecule or particle, 

resp., while it is crossing the membrane. In this thesis, the term apparent permeability 

coefficient (Papp) is used, since the “true” permeability coefficient is experimentally not 

accessible. Experimental imperfections are the assumption of sink conditions in a static 

set-up, variations in membrane thickness, shifts in temperature, compound adhesion, 

degradation, electrostatic interactions between the permeating compounds, 

interactions with the respective phases and others. 
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1.4 Overview, comparison, and evaluation of assays to study factors of 

bacterial bioavailability 
 

1.4.1 Cell-based assays 
 

The study of compound accumulation in cells, generally follows three principles: i) 

quantification of the decrease of concentration in the bacterial suspension medium 

(Fig. 4 A), ii) quantification of the compound accumulation within living bacteria (Fig. 4 

B) or iii) quantification of the accumulated compound after lysing the bacteria (Fig. 4 

C).  Decad et al. was the first to determine the permeability across the outer membrane 

of the Gram-negative bacteria E. coli and S. typhimurium83. Instead of using antibiotics, 

however, they employed radiolabeled oligosaccharides of different molecular weight, 

incubated them with the respective bacteria and measured the radioactivity of the 

bacterial pellet after centrifugation.  

Nikaido later determined the accumulation-time course of different antibiotics indirectly 

by incubating bacteria with an antibiotic solution and determining the decrease of 

antibiotic concentration in the supernatant by spectrophotometry84. Only recently the 

same principle has been reported again using LC–MS for quantification85 and still 

requires further validation and upscaling efforts.  

Rosselet and Zimmermann investigated a so-called “permeability parameter” 

(comparable to the flux in Fick’s laws) of antibiotics on E. coli 205 by determining the 

velocity of -lactam hydrolysis within intact bacteria and bacterial lysate. They 

hypothesized a rapid formation of a steady state, at which the diffusion rate of -

lactams across the outer membrane of E. coli equals the velocity of -lactam hydrolysis.  

The group of Chapman and Georgopapadakou first reported the measurement of 

antibiotic accumulation in E. coli by employing fluorometry, a comparably fast method 

being less sensitive than radioactivity quantification, but sensitive enough to measure 

the uptake of fluoroquinolones at therapeutic concentrations. Piddock et al. extended 

the application to other bacterial strains and species including P. aeruginosa86–90. In 

addition, Vergalli et al. reported three methods for studying the antibiotic permeation 

covering different aspects91, whereas two of the methods employ fluorescence 

microscopic techniques. Using fluorescence microscopy allows for studying the 

permeation time course of intrabacterial antibiotic accumulation in single living cells. 

However, since bacteria are small organisms to investigate, usually synchrotron 

radiation is required as a source for the generation of deep ultraviolet light. This makes 

investigations rather sophisticated and not applicable on a regular base. Fluorometric 
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methods may, however, become more popular in near future, since they can be 

employed to study the uptake of emerging nano-scaled antimicrobial agents, such as 

phages, nucleic acids and antibodies. Considering their comparably large size, the 

conjugation with fluorescent probes is not expected to lead to a significant impact in 

permeation. An alternative reported technique not depending on fluorescence is 

RAMAN-microscopy92. Furthermore these microscopic techniques cannot only be 

applied to genuine cells but also to spheroplasts80,93. Their size can be increased by 

fusion with liposomes, which would make microscopic methods easier.   

More recently, other in bacterio assays have been employed detecting the 

accumulated amount after bacterial lysis by liquid chromatography-coupled mass 

spectrometry (LC–MS)80,94,95. The use of LC–MS makes it possible to investigate the 

accumulation of a large variety of antibiotics. Prochnow et al. was even able to further 

differentiate between the accumulations in different bacterial compartments. However, 

covalent binding to intracellular structures and bacterial metabolism may change the 

molecular weight and lead to underestimation of the actual accumulated drug. Such 

drug candidates typically are -lactams80, aminoglycosides96 and phosphomycin73.  

The speed of quantification is steadily increasing. Lately, a fast SPE–MS method was 

developed with an analysis time of 9 s per sample97. LC–MS can be considered as a 

gold standard to study accumulation. The effort in experimental preparation and 

sample purification, however, must still not be underestimated.   

Systematic knock-out and stimulus-triggered expression of proteins involved in specific 

uptake and efflux can also make it possible to compare minimum inhibitory 

concentrations of different antibiotics and allow for studies on structure–permeation 

relationships, as shown by the Titrable Outer Membrane Permeability Assay System 

(TOMAS)98. 

Overall, whole-cell assays are recommended as reference systems to directly measure 

the accumulation of antibiotics, because they also cover active uptake and efflux 

processes. Studies can be performed on specific strains and clinical isolates. Blocking 

or knock-out of diverse uptake, degradation and efflux mechanisms moreover allows 

investigation of the specific factors involved in antimicrobial accumulation. Assays with 

living bacteria, however, are prone to a number of errors99: 
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1. Even little knockout mutations in the bacterial genome may lead to a 

fundamental shift in protein expression, potentially leading to a fundamental 

change in outer membrane composition, as shown on E.coli TolC mutants100. 

2. Using so-called “chemosensitizers” (e.g. enzyme inhibitors or efflux inhibitors, 

such as carbonyl cyanide m-chlorophenylhydrazine101) can either lack 

specificity and/or unintentionally interfere with other bacterial processes. 

3. Living organisms undergo continuous adaptations to their environment. Small 

deviations in the experimental protocol have severe effects on reproducibility. 

4. Relevant bacterial species for antibiotic research are usually infectious and thus 

hazardous. Special facilities are needed to fulfil safety regulations and to protect 

the experimenter and the environment.  

 

Hence, alternative cell-free and computational approaches emerged to study very 

specific pathways and to make investigations faster and easier. 

 

1.4.2 Cell-free assays 

 

1.4.2.1 Vesicle-swelling assays 

 

Alternative cell-free approaches emerged to study specific pathways and to make 

investigations more distinct, faster, and easier. Nikaido followed the hypothesis that the 

access of most anti-infective compounds is controlled by porins44. He proved this 

hypothesis for glycosides as well as for several -lactam antibiotics, by creating 

proteoliposomes containing the OmpF59 and other porins. The uptake of the 

investigated substances happened indirectly by investigating the increase in vesicular 

size caused by the osmosis driven permeation of molecules into the vesicles. This so-

called vesicle swelling assay (Fig. 4 D) allows for specific permeability studies on 

different porins. It would be worth investigating if the vesicular swelling can be 

monitored by turbidimetry instead of dynamic light scattering. If successful, this 

technique can enable the liposome swelling assay to be used to screen compound 

libraries on 96 or more well plates. The isolation and purification of proteins may, 

however, be a bottleneck for this approach. This approach appears to be only 

applicable for compounds with good solubility, because only then the necessary higher 

osmotic gradients can be created. Ferreira and Kasson, therefore, used outer 

membrane vesicles of the wild type strain E. coli K-12 MG1655 instead. These naturally 



14 
 

shed bacterial extracellular vesicles usually contain a wide range of porins and feature 

an asymmetric membrane as in the actual OM. The vesicle swelling for the different 

tested antibiotics correlated with the permeability through OmpF calculated from 

molecular dynamics simulations. However the high standard deviation makes 

conclusions about antibiotic permeability and accumulation difficult102. Transferring this 

approach to other species cannot be generally recommended, since, as in the case of 

e.g. P. aeruginosa for example, the membrane composition of OMVs does not always 

represent the outer membrane composition of the bacterium they originate from103.

   

Nakae and Ishii also employed membrane vesicles for their studies. These were 

reconstituted from lysed Salmonellae104. The accumulated amounts within these 

vesicles were quantified directly by radiometry after radiolabeling the investigated 

compounds.   

     

1.4.2.2 Electrophysiological assays 

 

Taking the principle of so-called “patch clamp”-assays on Gram-negative bacterial 

membranes105, electrophysiological methods were developed to study the blocking 

events of bacterial porins106 (Fig. 4 E), which were integrated in an artificial free floating 

phospholipid bilayer (“black lipid membranes”107,108). Schindler and Rosenbusch 

investigated the permeation of sugars across the LamB porin of E. coli109. Nestorovich 

et al. used this setup first to study the interactions of an antibiotic (ampicillin) with a 

bacterial porin (OmpF)110. Electrophysiological studies performed in this fashion, 

however, lacked of evidence that blocking events on the membrane channels were 

correlated to actual molecular translocation across the membrane111. Just recently, 

Jiajun Wang et al., could introduce OmpF channels featuring a cystein moiety that acts 

as a counter for permeated molecules. Molecules that permeated will undergo retention 

at this additional narrow passage, which leads to an extended time of current drops112. 

Most recently, electrophysiological studies were also performed on membranes after 

fusion with outer membrane vesicles113.   

Using the electrophysiological approach leads to molecule-resolved studies of 

permeation events. By looking at the length and frequency of current drops one can 

estimate the extent of antibiotic translocation and speculate about possible molecule-

to-porin interactions. Studies like this are generally possible with any antibiotic, 

however, the application of voltage, particularly on charged molecules, leads to a 
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charge-dependent molecular migration. This is not representative for the concentration 

driven permeation of molecules, hence making it difficult to compare permeabilities 

between antibiotics.  

 

1.4.2.3 PVPA-like assays 

  

Another approach, which is of most importance for this dissertation is based on a so-

called phospholipid vesicle-based permeation assay (PVPA), developed by Flaten et 

al.3,114–116 a similar assay was developed using liposomes composed of phospholipids 

representative for E. coli. These liposomes were fused on top of a Transwell®-filter 

support117. Transwells® and other filter plates are usually employed for cell cultures. 

They consist of two compartments surrounding the (usually individually coated) filter 

support. For permeation studies, the donor compartment contains the drug solution 

and the acceptor compartment plain buffer. This creates a concentration gradient 

forcing molecules to permeate from the donor compartment across the filter membrane 

into the acceptor compartment (Fig. 4 F). The molecule concentration in the acceptor 

compartment increases and can be monitored by drawing and quantifying samples at 

desired time intervals. The resulting permeated amounts at defined time points as well 

as the velocity of the increase of concentration can be compared between different 

molecules, e.g. antibiotics. Encouraged by results obtained with the phospholipid-

based membrane model. Graef et al. enhanced the complexity of the model, by 

additionally coating a hydrogel, further phospholipids and LPS consecutively on top of 

each other in order to represent the entire multi-layered Gram-negative bacterial cell 

envelope. Whereas this model showed consistent results for molecules smaller than 

300 Da, permeation data obtained for compounds larger than 300 Da were only 

consistent for antibiotics following porin independent passive permeation. The overall 

permeation of compounds larger than 300 Da was rather low, whereas compounds 

smaller than 300 Da showed a size and logP dependent correlation with their 

permeability. This is typical of a porin-less permeation model and is in agreement with 

previous notions11.  

 

1.4.2.4 Efflux assays 

 

Efflux as another important factor has so far not been extensively studied in cell-free 

assays. Notably, studies on this type of transport are much more challenging, since it 
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is an energy dependent – proton motive force driven – one, which depends on a 

complex of proteins. Zgurskaya and Nikaido created special proteoliposomes, 

containing fluorescing phospholipids within their membrane118. These proteoliposomes 

had the AcrAB pumping complex of E. coli embedded in their membrane. Moreover, 

they were loaded with another fluorescent phospholipid. These proteoliposomes were 

assembled with unlabelled, unloaded liposomes. By creating a proton gradient across 

the liposomal membrane, they could activate the pumping complex, which then 

pumped the fluorescent cargo from the proteoliposomes into the plain unlabelled 

liposomes. The decrease of fluorescent compound concentration within the 

proteoliposomes led to a dequenching and hence an increase of the fluorescent signal, 

which could be quantified over time. Verchére et al.119 advanced this approach and 

embedded the two P. aeruginosa efflux pump subunits MexAB and OprM into separate 

groups of liposomes (Fig. 4 G). Those containing the MexAB complex on their surface 

featured a pH dependent fluorescence indicator, whereas those with OprM had RNA 

inside. Ethidium bromide located in the acidic suspension medium surrounding the 

liposomes was taken up by the pump and intercalated with the RNA leading to an 

increase of fluorescence intensity. Further studies with fluorescent derivatives may 

help to find more distinct rules, which can potentially keep antibiotics from efflux. 

 

1.4.2.5 Supported phospholipid bilayers 

 

Moreover, more or less complex supported phospholipid bilayers have been created, 

to mimic  the entire cell envelope120 or the outer membrane121,122. Hsia et al. used outer 

membrane vesicles to include more specific bacterial structures121. The similarity to 

actual bacterial membranes was studied either by surface plasmon resonance (Fig. 4 

H) or dissipation monitoring by a quartz crystal microbalance (QCM-D, Fig. 4 I). 

Although these membrane models might be the closest artificial approximation to the 

actual bacterial envelope, the plain surface, these membranes were built on, will not 

allow to study translocation events properly, but rather membrane interactions with 

different agents (antimicrobial peptides, self-supported uptake, attachment of drug 

delivery systems etc.).   
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1.4.3 In silico assays 
 

1.4.3.1 Molecular dynamics 

 

The predominant technique to assess the permeability of antibiotics is molecular 

dynamics simulations on pure lipid membranes or patches with introduced porins (Fig. 

4 J). Di Meo et al. gave a comprehensive review about simulations on drug partitioning 

and crossing through the lipid membrane including antimicrobial peptides123, while 

Pothula et al. reviewed advances in the field of porin mediated drug transport covering 

OmpF124–126 using -lactams or fluoroquinolones, but also other outer membrane 

proteins of E. coli, such as OmpC127. Several groups studied further channels, e.g. 

OmpG, OmpA of E. coli; FecA, OprP, OprO, OprD, and OccK5 of P. aeruginosa; PorB 

of Neisseria meningitidis, CarO of Acinetobacter baumannii128,129, and CymA130 of 

Klebsiella oxytoca. Simulating translocation processes can be demanding, especially 

when performing all-atom simulations. Hence, simulations usually cover short time 

frames only (nanosecond range) to keep the processing time within an acceptable 

range. This leads to a time scale problem131, since biological processes usually happen 

within ms range. Prospectively, it is possible to reduce the complexity and increase the 

calculated time interval by using coarse grain models, where groups of atoms are 

merged to one ‘grain’. Molecular dynamic simulations of compound permeation are 

usually accompanied with experimental data, predominantly from electrophysiological 

experiments or the aforementioned OMV swelling assay. This indicates that molecular 

dynamics simulations can either be used to develop hypotheses, which can then be 

experimentally confirmed or if experimental data are available first, to explain the 

permeation behaviour of a compound. An additional MD-based application was 

reported using a scoring function, which features physicochemical properties (charge, 

dipole, minimum projection area) of the diffusing molecule, properties of the porin 

(diameter of constriction zone, electrostatic potential, electric field) and their mutual 

interactions, which enables for the prediction of molecular permeability.  
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1.4.3.2 Machine learning 

 

In addition to molecular dynamics simulations, machine learning techniques deserve 

particular attention, when predicting the overall antibiotic accumulation, but also 

permeation, degradation and efflux. Machine learning is an approach that can take an 

infinite number of variables into account, which are expected to be involved in these 

processes. Random forest analyses (Fig. 4 K) are particularly advantageous machine 

learning applications in fields of research, which depend on empiric data from living 

organisms, since they require a comparably low amount of data for the training, which 

can even be partially incomplete. So it is no surprise that the documented machine 

learning applications related to bacterial bioavailability are random forest 

analyses80,132. Recently, the employment of a neuronal network yielded new promising 

anti-infective compounds, even though not using accumulation data but large data sets 

of MIC133.  

 

Figure 4. Selection of most important techniques to investigate bacterial bioavailability 

and membrane interactions of antibiotics. 
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Table 3. Selection of assays for studies on bacterial accumulation and related 

processes. 

Assay class Method Advantages Disadvantages Applicable for 

Whole-cell assays Indirect compound 

quantification via 

supernatant[77,100] 

+ low equipment requirements 

+ easy quantification 

- no distinction between molecule 

accumulation, adhesion, partition 

- more extensive validation 

Accumulation, 

(permeability) 

Intracellular quantification 

by  

-LC–MS[46,80] 

+ highly specific 

+ suitable for automation 

- compound purification 

- sophisticated equipment 

- comparably slow 

Accumulation,  

(permeability) 

-Spectrofluorimetry[82] As in LC–MS, but  

+ less sophisticated equipment 

+ upscalable/automation 

- only fluorescent compounds 

- photobleaching 

Accumulation, 

(permeability)  

-Fluorescence 

microscopy[82] 

+ accumulation-time course  

+ upscalable/automation  

- only fluorescent compounds 

- high resolution required 

- photobleaching 

Accumulation,  

partition studies, 

(permeability) 

TOMAS[86] + upscalable 

+ information about efficacy 

+ less sophisticated equipment 

- does not monitor accumulation directly 

- sophisticated biotechnological 

preparation of bacterial strains 

Accumulation, 

permeability studies  

Vesicle-swelling 

assays 

Liposome-[101]/OMV-[89] 

swelling assay 

+ less sophisticated equipment 

+ covers lots of aspects of 

passive permeation across OM 

(using OMV’s) or specific ones 

(using proteoliposomes) 

- only for known membrane proteins 

- isolation of membrane proteins/OMV’s 

necessary 

- only highly soluble compounds 

- lack of precision 

Permeability 

Electrophysiology Black lipid membrane-

based[87] 

+ translocation of single 

molecules 

+ adjustable to different bacterial 

strains by OMV 

- migration along electric field instead of 

concentration gradient 

- susceptible to disturbances 

- insertion and gating of porins difficult 

to control 

Structure–

permeability 

relationship studies 

on single substances  

PVPA-like assays  Lipid-coated filter 

supports[79,93] 

+ upscalable 

+ easy-to-handle 

- unspecific 

- expensive phospholipids 

Prediction of 

permeability 

hypothesizing porin-

independent uptake   

Efflux assay Liposome assembly[94,102] + study of efflux pump function 

+ mimicry of active transport 

mechanisms 

- preparation and loading of 

proteoliposomes 

 

Efflux studies on 

single efflux pump 

systems 

Supported 

phospholipid-

bilayers 

Surface plasmon 

resonance, QCM-D 

+ most accurate morphology 

+ highly sensitive 

- highly fragile, sensible to impurities 

- only studies of adsorption but no 

Binding studies of 

compounds to 

membrane structures 

In silico Molecular dynamics[97] + detailed elucidation of 

structure–permeation 

relationships 

+ strain and structure specific 

- time consuming 

- requires deep experience 

- complex 

Support or creation of 

hypotheses regarding 

different uptake 

routes 

Machine-learning[46] + fast 

+ less sophisticated equipment 

+ relatively straight forward 

+ predictive 

- large experimental data set  Prediction of 

accumulation and 

related factors; 

investigation of 

structural relations 

 

1.5 Known physicochemical properties for good accumulation into Gram-

negative bacteria 
 

Physicochemical optimizations are commonly done on drug candidates, in order to 

enhance their target specific binding or their bioavailability in the patient. For most of 

the anti-infectives the bioavailability within the bacterial organism must be also 

considered. Since most of the established anti-infectives follow passive uptake into 
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Gram-negative bacteria, this section will only consider rules for enhanced passive 

permeation.  

Currently known physicochemical properties for good bacterial bioavailability partially 

differ from those known to yield a good bioavailability in the patient. Here, it is 

recommended to first summarize the criteria to increase the likelihood for good human 

bioavailability reported by Lipinkski et al.134 and Ghose et al.135: 

• < 5 hydrogenbond donors 

• < 10 hydrogenbond acceptors 

• < 500 Da of molecular weight (160 – 480 Da) 

• clogP < 5 (-0.4 – 5.6)  

• molar refractivity (40 – 130) 

• number of atoms (20-70) 

Overall, molecules should be small and have a slightly lipophilic tendency.   

In contrast to this, an average logP of -4 was reported for compounds active in Gram-

negative bacteria indicating that those compounds should be rather hydrophilic. This 

notion was further supported by analysing the clogD at pH 7.479,136 and by looking at 

the polar surface area, which was found to be comparatively high.  

Molecular size was also found to be important for good accumulation in Gram-negative 

bacteria. Often, the limit of 600 Da is stated19,79,137, but this value should not be 

considered as generally applicable for every species or a sharp cut-off, as older 

studies138 and very recent ones show139. It indicates that good accumulating 

compounds in Gram-negative bacteria may be slightly larger than those optimal for 

human bioavailability. Apart from these traditional parameters, so-called “eNTRy”-rules 

have been suggested. Antibiotics with good accumulation in E. coli were found to have 

preferably an primary amine (“N”), a low thee-dimensionality (“T”, globularity < 0.25) 

and a high rigidity (“R”, rotatable bonds < 5) 80,140.   

Pursuing these rules indeed led to the development of novel anti-infectives80,141, 

however their toxicity to mammalian cells remains unknown. Acosta-Gutierrez et al. 

reported a computational tool to predict the permeation into Gram-negative bacteria 

via general porins, where a high partial atomic charge, dipole moment and net charge 

together with a low minimal projection area benefit the predicted permeability35.  

Moreover, positive charges are favourable for good permeation, particularly as a part 

of a zwitterionic structure35,59,142. Their approach takes into account porin-specific 

morphologies, which may become more relevant for drug discovery in future.  Recent 

findings point to the direction that possibly different bacterial strains will have their own 
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specific favoured physicochemical properties for enhanced permeation and 

accumulation132.  

Generally, it is currently known that the following features are likely to enhance Gram-

negative accumulation or activity, respectively: 

• primary amine80,140 

• zwitterionic structure35,59,142 

• Flat molecular shape (globularity 0.25)80,140 

• Rigidity (rotatable bonds 5)80,140 

• slight hydrophilicity (clogP ~ -0.1, clogDpH7.4 ~ -2.8, rel. PSA ~ 42 Å)79,136 

• Molecular weight  ca. 600 Da19,79,137 

It is, however, important to bear in mind that certain features might also enhance the 

toxicity. Primary amines together with aromatic system are known to enhance the QT-

time, potentially leading to a life-threatening arrythmia143. Small, flat rigid molecules 

bear the risk to act as intercalators to DNA144.  

The aforementioned basic guidelines for good antibiotic accumulation may have 

already been indirectly implied by Paul Ehrlich, who established the term of 

“chemotherapy” and “magic bullet”, reasoning that there are certain dyes, which will 

selectively kill pathogenic microorganisms145. The attempt to seek antibiotic 

compounds among dyes is an interesting approach, which indeed led to arsphenamine 

(‘salvarsan’, 1910) and neoarsphenamine (‘neosalvarsan’, 1912), the first 

commercially available antibiotics146,147. It was used for the treatment of gonorrhoea 

caused by Treponema pallidum – a Gram-negative bacterial species. 

Sulfamidochrysoidin (prodrug of sulfanilamide) found by Gerhard Gomagk in 1935, is 

a dye also with activity against E. coli148–150.  

Notably, the aforementioned features: low globularity and high rigidity are typical of 

dyes commonly featuring aromatic systems. The presence of amine groups causes 

negative mesomeric (-M) effects (ammonium groups) at physiological pH, while 

phenolic OH-groups cause positive mesomeric (+M) -effects. If both moieties are 

combined with an aromatic system, bathochromic and hyperchromic shifts are 

achieved at pH 7.4, also leading to a zwitterionic structure. The obtained substance is 

likely to be coloured and meets the most crucial criteria for accumulation in Gram-

negative bacteria at the same time. More timely examples of such compounds are 

fluoroquinolones, tetracyclines and some -lactam antibiotics. 
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1.6 Aim of this Thesis 
 

As was pursued already by Florian Gräf et al.1, the general aim of this dissertation is to 

present possible in vitro solutions to for a better assessment and prediction of antibiotic 

accumulation in Gram-negative bacteria. Although in the past years particular effort 

has been spent on the improvement of probing the accumulation of antibiotics directly 

within bacteria with doubtlessly remarkable achievements (see section 1.4.1 Cell-

based assays), those methods still have disadvantages, making those studies costly, 

sophisticated and time consuming. In contrast to the previous approach, the main 

hypothesis of this dissertation is that the reduction of the model to the most important 

permeation delimiting features will enable for sufficient performance in predicting the 

accumulation in bacterio, while it will simplify and shorten model preparation as well as 

permeability investigation under lower material costs.   

The obtained modelling approaches would then be upscalable and usable by a large 

amount of applicants, ranging from small sparsely-equipped chemistry labs to big 

pharmaceutical companies, engaged in antibiotic research.  

 

Three chapters will be devoted to these aims: 

i) Completion of the functional characterization of the overall membrane 

model 

ii) Polysaccharide gels as membrane model  

iii) OMV-based PVPA  
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Bacterial Envelope 
 

Florian Graef*, Robert Richter*, Verena Fetz, Xabier Murgia, Chiara De Rossi, Martin 

Empting, Felix Beckmann, Mark Brönstrup, Rolf Hartmann, Sarah Gordon, Nicole 

Schneider-Daum, Giuseppe Allegretta, Walid Elgaher, Jörg Haupenthal, and Claus-

Michael Lehr, In Vitro Model of the Gram-Negative Bacterial Cell Envelope for 

Investigation of Anti-Infective Permeation Kinetics, ACS Infect. Dis. ;4(8):1188-1196 

* F.G. and R.R. contributed to this manuscript equally.  

Previously published parts were reprinted (adapted) with permission from the American Chemical 

Society. Copyright © (2018) 

The authors made the following contributions:  

R. Richter  optimized the membrane model, performed permeability 

investigations, CLSM investigation of the outer 

membrane structure, X-ray microtomography, and 

stereomicroscopic investigation of the three-layered 

membrane model  

F. Graef  led the model development studies (PS model, OM 

model, and total envelope model), performed model 

characterization (of the PS, OM model, and total 

envelope model) and permeability investigations 

(fluorescent dyes, PqsD, and RNAP inhibitors) 

X. Murgia contributed to the design of the nebulization chamber 

C. D. Rossi performed CLSM investigations and LC-MS/MS 

quantification 

F. Beckmann performed X-ray microtomography of the total membrane 

model 

  



24 
 

G. Allegretta, W. Elgaher      synthesized the RNAP and PqsD inhibitor compounds 

 J. Haupenthal, M. Empting 

& R. Hartmann   

M. Brönstrup, V. Fetz contributed uptake studies, analyzed data, and edited the       

manuscript. 

 S. Gordon,  

N. Schneider-Daum,  

C.-M. Lehr    

 

 

  

analyzed data, edited the manuscript, and supported in 

project administration 

conceived the project, supervised the PhD students 

F.G. and R.R. and are responsible for the final 

manuscript 



25 
 

2.1. Introduction 
 

Sufficient bacterial bioavailability is the key for the activity of antibiotics with intracellular 

targets. Especially, overcoming the Gram-negative bacterial cell envelope is not a 

trivial venture. While several in vitro models were developed to easily predict oral 

bioavailability, as for example Caco-2 cell assays, MDCK cell assays or so-called 

parallel artificial membrane permeability assays (PAMPA) employing liposomes 

(phospholipid-based permeation assay, PVPA) or aliphatic materials, such as 

hexadecane, equivalents to measure bacterial bioavailability are missing. Inspired by 

a liposome-based approach by Flaten et al.3,114–116 mimicking the mammalian 

phospholipid membrane, a similar procedure was followed employing liposomes 

partially representing the membrane phospholipid composition of E. coli and P. 

aeruginosa2,117. This mono-layered phospholipid-based permeation model was further 

advanced with the aim to obtain a multi-layered membrane structure representing the 

total Gram-negative cell envelope94. A brief summary of the membrane preparation and 

structure is given in Figure 5.  

 

Figure 5. Overview of the preparative steps to build the total membrane model. Filter 

supports of a 12-well Transwell®-plate are coated with a liposomal suspension to create the 

inner membrane (IM). After liposome fusion, an alginate solution is placed on top and cross-

linked by a CaCl2 solution to create the periplasmic space (PS) compartment. The outer 

membrane (OM) on top of the alginate gel is created by a phospholipid coating for the inner 

leaflet (IL) and subsequent LPS nebulization to form the outer leaflet (OL). 
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Various microscopy techniques were performed, such as (correlative) scanning 

electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) to clarify 

the structure of the created model. While, these could successfully demonstrate an 

even distribution of LPS after its nebulization and the inner membrane layer, the 

asymmetry of the outer membrane and the total four-layered structure (inner 

membrane, periplasmic space, inner- and outer leaflet of outer membrane) could not 

be sufficiently proven.   

Moreover, the validity of the model needed further investigation employing clinically 

established antibiotics, whose way and extent of uptake is widely understood. 

In this chapter, the aforementioned total envelope model is further structurally and 

functionally assessed to obtain a more complete picture of its potential applications and 

limitations. 
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2.2 Materials  
 

1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phosphoethanolamine (POPE), 1-

hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-(1′-rac-glycerol) (sodium 

salt) (POPG), and 1,1′,2,2′-tetra-(9Z-octadecenoyl) cardiolipin (sodium salt) (CL) were 

obtained from Avanti Polar Lipids Inc. (Alabaster, AL, USA), while 

Transwell® filter supports 3460 (0.4 µm pore Ø) were obtained from Corning Inc. 

(Acton, MA, USA). Protanal LF 10/60FT (alginate) was purchased from FMC 

BioPolymer (Ayrshire, UK). Tetracycline-HCl was obtained from chemodex (St. Gallen, 

Switzerland). Rifampicin was obtained from USBiological (Swampscott, MA, USA). and 

pipemidic acid were obtained from LKT Laboratories, Inc. (St. Paul, MN, USA). , 

novobiocin sodium was purchased from Cayman Chemical Company (Ann Arbor, MI, 

USA). Hydrochloric acid and sodiumhydroxide solutions (1 M each) were used from 

Bernd Kraft (Duisburg, Germany). Methanol, Acetonitrile (both HPLC grade), Acetic 

acid (glacial) were obtained from VWR Chemicals (VWR International S.A.S., 

Fontenay-sous-Bois, France). Smooth lipopolysaccharides (LPS; from Escherichia 

coli, 0111:B4) with or without fluorescein isothiocyanate (FITC) label and other 

reagents and chemicals not further specified were sourced from Sigma-Aldrich (St. 

Louis, MO, USA).  

 

2.3 Methods   

 

2.3.1 Preparation of total envelope model 

 

Inner membrane: 

5 mL bacteriomimetic liposomes were prepared from the synthetic phospholipids 134 

mg POPE, 66 mg POPG, 33 mg CL by thin film hydration technique. The blend of 

phospholipids was dissolved inside a 250 mL round bottom flask by 5 mL of a blend of 

chloroform and methanol (3 : 1). The solvents were evaporated by a Rotavapor R-205 

(BÜCHI Labortechnik GmbH, Essen, Germany) at 200 mbar, 80°C, 135 rpm for 30 min 

followed by further pressure reduction to 40 mbar for 1h. The formed lipid film was 

hydrated in 5 mL of PBS (pH 7.4) containing 10 % (v/v) ethanol using the same rotary 

evaporator without reduced air pressure at 70°C, 135 rpm for 1h. The obtained 

liposomal suspension was broken down to small unilamellar vesicles using an 
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ultrasonication bath for 1h (RK 106, Bandeln electronic GmbH & Co. KG, Berlin, 

Germany). Subsequent homogenization of the liposomes happened by 10 fold 

extrusion through an ISOPORETM ATTP membrane filter with 0.8 µm poresize (Merck 

Millipore Ltd, Tullagreen, Carrigtwohill Co., Cork, Ireland) using a Liposofast L-50 

extruder (Avestin Europe GmbH, Mannheim, Germany) at 70 °C.  

Periplasmic space model 

Two different protocols were followed to prepare the periplasmic space model.  

In case of the standard protocol 75 µL/well of a 2 % (w/v) alginate solution were pipetted 

on top of the inner membrane model followed by adding 25 µL/well of a 5 % (w/v) 

calcium chloride solution and resting at room temperature for 1 h.  

In the case of the improved protocol 5 times 100 µL 5 % (w/v) calcium chloride solution 

were nebulized on top of previously pipetted 75 µL/well 2 % (w/v) alginate solution. 

Nebulization was performed with an Aerogen Solo nebulizer (Aerogen Ltd., Galway, 

Ireland) in combination with a customized nebulization chamber. After nebulization, 

membranes rested for 1 h at room temperature. 

 

Outer membrane model 

For the inner leaflet, 37.5 μL of a phospholipid mixture of POPE and POPG (90:10 

weight ratio) were coated on Transwell® filter inserts were coated in two cycles the 

phospholipid composition was chosen according to the composition 151,152 divided by a 

drying step of 4 min at 55 °C using an incubator (Memmert UN75, Memmert GmbH & 

Co, KG; Schwabach, Germany) following each cycle. To prepare the OL, a 0.3 mg/ mL 

LPS solution was then nebulized in five cycles onto the prepared IL structure, using an 

Aerogen Solo nebulizer (Aerogen Ltd., Galway, Ireland) together with an in-house 

developed nebulization chamber (see Supporting Information). A final drying step of 5 

min at 55 °C was then employed.  

 

2.3.2 Confocal laser scanning microscopy of outer membrane model and total 

envelope model 

 

The OM and total envelope models were prepared as described above, employing 

fluorescein isothiocyanate (FITC)-labeled lipopolysaccharides (LPS) to form the outer 

leaflet (OL) and staining the inner leaflet and inner membrane (IL) with laurdan (ratio 

phospholipids to laurdan 400:1 mol/mol). Samples were subsequently cut out of the 
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plastic holder support, attached to a glass slide using medium viscous Baysilone® 

silicone paste (GE Bayer Silicones GmbH & Co. KG, Leverkusen, Germany) as a fixing 

agent, and covered with a coverslip. Imaging was performed at 40x magnification by 

z-stacking using a Zeiss LSM 710 AxioObserver (Carl Zeiss Microscopy GmbH, Jena, 

Germany; λex=405 nm and λem= 457 nm in the case of laurdan and λex= 488nm and 

λem= 564 nm in the case of FITC-labeled LPS).  

 

2.3.3 Stereomicroscopy of total envelope model 

 

Samples were prepared as described above, cut out of the plastic holder support and 

attached to a glass slide using a nitrocellulose solution. Uncovered samples were 

investigated under a Zeiss Discovery-V20 featuring an Axiocam MRC camera and run 

with AxioVision Rel. 4.8.2 software (all by Carl Zeiss AG, Oberkochen, Germany). 

 

2.3.4 X-ray microtomography of total envelope model 

 

The structure of the total envelope was characterized by X-ray microtomography 

employing beamline P05 operated by Helmholtz Zentrum Geesthacht (HZG) at the 

storage ring PETRA III of DESY, Hamburg. Therefore, the total membrane was 

prepared using the standard and the improved protocol (see above) for the PS and 

subsequently fixed and stained by exposing the coated Transwells® for 2 h to a 1% 

(w/v) OsO4 solution. Afterwards, slices of 3 mm width and 12 mm length were cut out 

and placed into a thin plastic tube of 3 mm diameter. Samples were exposed to X-ray 

synchrotron radiation using a photon energy of 12 keV. The tomographic 

reconstructions were performed from 1200 projections equally stepped while turning 

180°. Visual data were processed employing VGSTUDIO MAX software (Volume 

Graphics GmbH, Heidelberg). 

2.3.5 Total envelope model functional characterization  

 

The permeation of two sets of clinically established antibiotics, novobiocin, rifampicin, 

and erythromycin as porin-independent antibiotics and tetracycline as a porin-

dependent control and the gyrase inhibitors ciprofloxacin, norfloxacin, pipemidic acid, 

and nalidixic acid, was determined. Regarding ciprofloxacin and norfloxacin a 1 mg/mL 

stock solution was prepared in 0.1 M hydrochloric acid. 1 mg/mL stock solutions of 

pipemidic acid and nalidixic acid were prepared in 0.1 M sodium hydroxide solution. 
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Novobiocin and tetracycline were directly dissolved in KRB (pH7.4) to obtain a 1 mg/mL 

stock. Erythromycin (1 mg/mL) and rifampicin (100 μg/mL) stock solutions were 

prepared by dissolution in KRB (pH7.4) containing 2% DMSO. All stock solutions were 

diluted to an initial donor concentration of 50 μg/mL using KRB, and the pH was 

adjusted to 7.4. For studies employing tetracycline and nalidixic acid, samples were 

taken after 0, 0.5, 1, 1.5, 2, 2.5 and 4.5 h. In the case of erythromycin and rifampicin. 

an additional time point was taken at 4.5 h. For novobiocin, ciprofloxacin, norfloxacin 

and pipemidic acid, samples were taken after 0, 2, 2.5 and 4.5 h.  

 

2.3.6 LC-MS/MS analysis 

 

An Accela UHPLC system coupled TSQ Quantum Access Max tandem quadrupole 

mass spectrometer (both from Thermo Fisher Scientific, Waltham, MA, USA) was 

employed. The UHPLC device featured a quaternary mixing pump, an online degasser, 

a thermostated autosampler and a column oven containing an accucore RP-MS 

column (150 x 2.1, 2.6 µm, Thermo Fisher Scientific, Waltham, MA, USA). The entire 

system was operated through the standard software XcaliburTM (Thermo Fisher 

Scientific, Waltham, MA, USA).  

For ciprofloxacin, norfloxacin and pipemidic acid an isocratic binary solvent mixture 

was used (A: acetonitrile + 0.1% formic acid; B: ammoniumformate-buffer 10 mM pH3) 

with 18% of A 82% of B. As for novobiocin, tetracycline and erythromycin, a gradient 

run was employed shifting from 18% to 90 % of A and from 82% to 10% of C (water + 

0.1% formic acid) within 2 min. After that A and C were kept constant for another 3 min. 

Due to practical reasons the quantification of erythromycin was performed by 

determining the main compound erythromycin A. Regarding rifampicin, a gradient was 

used starting from 18% of A  and 82% of C and then shifting to 90% of A and 10% of 

C within 3min. After that, the amount of C was lowered to 5% and A was increased to 

95%. This ratio was kept for another minute.  

The detection of the compounds in the MS happened after heated electrospray 

ionization (H-ESI) during positive ion mode using for Sulfamethoxazole single ion 

monitoring (SIM) and for all others selective reaction monitoring (SRM). The detailed 

LC–MS/MS Quantification parameters are listed in Table 4. 
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Table 4. Quantification parameters of employed gyrase inhibitors, erythromycin, 

rifampicin and tetracycline, as determined by LC-MS/MS. 

Compound Retention 

time (min) 

Spray 

voltage 

(mV) 

Capillary 

temperature 

(°C) 

Parent mass 

(m/z) 

Fragment 

mass (m/z) 

Erythromycin A 3.06 4000 280 716.3 558.4;158.0;

540.4;522.4 

Rifampicin 3.77 4500 270 823.3 791.5;399.1;

151.0;163.0 

Novobiocin 2.40 5000 260 613.2 189.1;133.1;

396.1;218.1 

Tetracycline 2.46 4000 300 445.1 410.2;154.0;

226.0;241.0 

Ciprofloxacin 2.37 5500 300 332.1 231.0;245.0;

288.1;314.1 

Norfloxacin 2.28 4500 300 320.1 302.2;231.1;

276.2;282.2 

Pipemidic acid 1.69 5500 300 304.1 286.1;217.1;

215.1;189.1 

Nalidixic acid 3.36 5000 300 233.1 131.1;159.1;

187.1;215.1 

 

2.3.7 Statistical analyses 

 

Tests for significance and plotting of permeation data were all carried out using 

GraphPad Prism® 7.04 software (GraphPad Prism software Inc., San Diego, CA, USA). 

A Gaussian distribution was assumed for all significance tests.  
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2.4 Results and discussion 
 

2.4.1 Structural characterization of outer membrane model 

 

Even though CLSM was performed previously to evaluate, if the IL and OL of the total 

model form an asymmetric combination of layers, results were unsatisfying. In general, 

optical microscopy of such a membrane model is a challenging task, as the LPS are 

hydrophilic and may be dissolved again if sample preparation features hydrophilic 

liquids. Hydrophobic liquids on the other side may dissolve the phospholipid layer 

underneath. To solve this problem, it was hypothesized that a highly viscous and highly 

hydrophobic gel, such as silicon grease (Baysilone®) may be suitable to mount the 

sample for microscopy. In contrast to other highly hydrophobic materials with high 

viscosity, as for example Vaseline, Baysilone is completely translucent.   

By staining the phospholipids with the fluorescent dye lauran prior to filter coating and 

nebulizing FITC-labelled lipopolysaccharides, two fluorescence signals could be 

obtained. The embedding in silicon grease proved indeed to be a suitable means to 

preserve the bilayered structure of this amphiphilic combination of layers (Fig. 6). 

However, light green spots on the lower side indicate, that parts of the 

lipopolysaccharide solution were able to penetrate the phospholipid layer and 

accumulated in the pores of the filter membrane. Nevertheless, the obtained 

micrograph allows for an estimation of the thickness of the outer membrane being 

approximately 10 µm.   

The outer leaflet, which, seemingly seems to not be entirely homogenously distributed, 

appears to have a thickness of up to 3 µm, whereas the significantly thicker leaflet 

reaches partially up to 9 µm. A two layered structure can be observed with FITC-labeled 

LPS located on top of the laurdan stained inner leaflet, composed of phospholipids. 

Light green spots underneath indicate a certain degree of leakiness of the inner 

membrane. 
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Figure 6. CLSM micrograph of the outer membrane compartment of the total membrane 

model. FITC-labelled LPS (light green), representative for the outer leaflet lie on top of the 

laurdan-stained phospholipid layer (blue) representing the inner leaflet. A certain quantity of 

the added lipopolysaccharide could penetrate the phospholipid layer and enrich in the 

unstained Transwell® filter membrane.  

 

2.4.2. Structural characterization of total envelope model 

 

In addition, CLSM was applied to elucidate the entire model structure. However, after 

preparation of the sample according to the same protocol, CLSM imaging failed to 

reveal an actual three-layered membrane structure of the model, composed of an IM, 

PS and OM part (Figure 7). This has several reasons. First, it seems that phospholipids 

of the inner leaflet accumulate at specific points of the membrane and form partially 

cloud-like structures leaving other parts uncoated. Notably, those parts with a 

phospholipid top layer have no visible layer underneath pointing to a dramatic decrease 

in laser intensity after passing the top layer. Hence, no emitted light signal could be 

detected in these areas.   
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Figure 7. CLSM mircrograph of the total envelope model. IL and IM were stained with 

laurdan. Cloud like structures of the IL at the 700 µm mark are located approximately 100 µm 

over a second layer (IM).  

Further structural studies on the total envelope model employing stereomicroscopy 

(Fig. 8) revealed that it features concentric grooves, when the periplasmic space 

surrogate is prepared by pipetting the crosslinking CaCl2-solution directly on the 

alginate layer.  

Figure 8. Comparison of the surface structures of the entire model obtained with either 

pipetting (A) or nebulizing 5 % (w/v) CaCl2-solution on top of the 2 % (w/v) alginate 

solution. Concentric rings in A indicate an inhomogenous gel formation, whereas nebulization 

led to a more even surface structure. Observed bubbles result from the excision of the models 

from the filter support. Scalebar represents 2000 µm. 

A B 
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As x-ray microtomography demonstrated, these grooves, indeed, lead to an uneven 

distribution of the IL phospholipids within the total envelope model, hence leaving parts 

of the alginate layer uncoated (Fig. 9).  

 

Figure 9. X-ray microtomographic image of the total envelope model. The different grey 

tones are specific for the three layers (inner membrane, IM; periplasmic space, PS; outer 

membrane, OM) of the model. An accumulation of OM phospholipids is visible in the valleys of 

the PS coating. 

In order to improve the distribution of phospholipids and LPS on top of the alginate 

layer the gelatinization technique was therefore altered. The 5% CaCl2-solution (w/v) 

was nebulized instead of pipetted. This method could guarantee that the gelatinization 

process became initiated at every part of the alginate surface at the same time, while 

also assuring an equal amount of CaCl2 to be distributed over the entire alginate layer. 

This procedure led to the disappearance of the concentric grooves (Fig. 8, B) and a 

more distinct separation between inner membrane, periplasmic space and outer 

membrane of the model (Fig. 10 A, B). 
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Figure 10. X-ray microtomographic images of the total envelope model after the calcium 

chloride solution was pipetted (A) and after the calcium chloride solution was nebulized 

on top of the alginate gel (B). Nebulization according to the new protocol thus led to a better 

separation of the three layers as well as the formation of a more even membrane structure. 

 

2.4.3 Functional characterization 

 

Graef et al. designed a membrane model of the entire Gram-negative bacterial cell 

envelope. While he could demonstrate a dependency between PqsD-inhibitor 

permeability across this in vitro model and the potential to inhibit the production of HHQ 

in P. aeruginosa, the direct dependency between in vitro permeation and in bacterio 

accumulation still needed to be proven and structure permeability relationships needed 

to be discussed. We therefore employed a small panel of antibiotics expected to follow 

passive porin-independent or largely porin-dependent permeation (Fig. 11). Figure 11 

B depicts the absolute permeated amounts of the three porin-independent antibiotics 

novobiocin, rifampicin and erythromycin after 2.5 h and 4.5 h and tetracycline as a 

porin-dependent control. The overall permeated amount of these compounds is 

remarkably low. For porin-independent antibiotics, such as novobiocin, rifampicin and 
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erythromycin A, the low permeability is in agreement with their classification as low 

accumulating compounds80. The comparatively low degree of tetracycline permeation 

observed in the total envelope model is expectable, because of its documented 

reliance on porins in order to permeate across the Gram-negative cell envelope153 and 

is additionally validated by a high degree of observed accumulation in porin-competent 

E. coli. Notably, these distinct differences between compound permeabilities only 

emerged at the 4.5 h time point. 

 

Figure 11. Permeability of the porin-independent antibiotics novobiocin, erythromycin 

A, and rifampicin as well as the porin-dependent compound tetracycline across the 

improved total envelope model. Compound characteristics can be seen in (A), with their 

respective permeated amounts after 2.5 h and 4.5 h are shown in (B). Low accumulating, porin-

independent compounds are highlighted in red, while compounds with reported high 

accumulation in bacterio and porin-dependent uptake are highlighted in green.  Values 

represent mean ± SE; n ≥ 12 from three independent experiments. Two-way ANOVA was 

performed with Tukey’s multiple comparisons test, ***P<0.001 

 

Figure 12. Permeation of structurally related gyrase inhibitors in the improved total 

envelope model. Compound structures and key physicochemical parameters are provided in 

(A), while their respective permeated amounts after 2.5 h and 4.5 h are shown in (B). NXD = 

nalidixic acid, PIP = pipemidic acid, NOR = norfloxacin, CIP = ciprofloxacin. Values represent 

mean ± SE; n ≥ 12 from at least three independent experiments. Two-way ANOVA was 

performed with Tukey’s multiple comparisons test, **P<0.01, ***P<0.001, ****P<0.0001 
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Another step toward the establishment of such a model for studies of structure-

permeation relationships was taken by probing the permeability of the structurally 

related gyrase inhibitors ciprofloxacin, norfloxacin, pipemidic acid, and nalidixic acid 

(Fig. 12). Nalidixic acid showed a significantly higher permeation than the other 

compounds after 2.5 h and 4.5 h, likely due to its status as the smallest and least 

hydrophilic molecule154. The permeabilities of ciprofloxacin, norfloxacin, pipemidic acid, 

and nalidixic acid were observed to increase with decreasing molecular weight (Mw), 

pointing to a stronger impact of this parameter than of compound polarity (logDpH7.4, 

Figure 12 A). Another fact contributing to the good permeability of nalidixic acid is 

certainly the increased amount of uncharged microspecies at pH 7.4 (ca. 2%), while 

such a microspecies is virtually absent for the other largely zwitterionic gyrase 

inhibitors155,156. This corroborates the earlier reported inferior permeation of zwitterionic 

ciprofloxacin across a lipid layer in comparison to its neutral species157. This 

permeation behaviour through porin-free membranes is in contrast to porin-expressing 

E. coli, where a positive charge in particular seems necessary to allow for an enhanced 

access to the constriction region of the porins OmpF and OmpC158–160. In spite of the 

absence of those passive diffusion channels and active transporters, the obtained data 

illustrate the value of such a model to exclude, e.g., poorly permeable candidates at a 

rather early stage of drug development or to further optimize the design of novel anti-

infectives toward better permeability. 

2.5 Conclusion 
 

Based on previous work by Graef et al.161, a Transwell®-based model of the entire 

Gram-negative bacterial cell envelope was further improved and characterized. The 

asymmetry of the outer membrane was shown by CLSM, while after optimizing the 

gelation process of the alginate solution, a smooth, three-layered structure resembling 

the outer membrane, periplasmic space and inner membrane could be observed using 

X-ray microtomography. Permeation studies employing already marketed and well-

established antibiotics show that the porin-less model is able to predict the permeability 

of those antibiotics following passive, porin-independent uptake. As in conventional 

bilayered membranes the permeation of zwitterionic compounds was inhibited 

compared to compounds devoid of charge.  

Overall, it must be said that this model has potential to become employed for predicting 

the permeation into Gram-negative strains with downregulated porins or species, 

where porin-mediated transport is less relevant per sé. 
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3. Polysaccharide Gels as Membrane Model 
 

Main Contributors: 

Robert Richter, Mohamed Ashraf M. Kamal, Mariel A. García-Rivera, Jerome Kaspar, 

Maximilian Junk, Walid A. M. Elgaher, Sanjay Kumar Srikakulam, Alexander Gress, 

Anja Beckmann, Alexander Grißmer, Carola Meier, Michael Vielhaber, Olga Kalinina, 

Anna K. H. Hirsch, Rolf W. Hartmann, Mark Brönstrup, Nicole Schneider-Daum, Claus-

Michael Lehr 

 

The contributions were as follows:  

R. Richter  performed all experiments related to model development 

and validation, including support of the random forest-

mediated investigation of structure-permeation 

relationships, developed the printing protocol, 

developed, and assessed structural membrane analysis 

on a plate reader, writing of chapter 

M. A. M. Kamal  supported the experiments as an undergraduate student.  

M. Garcia-Rivera &       performed and conceived bacterial uptake studies,  

M. Brönstrup        LC-MS analysis and revised the manuscript  

W. A. M. Elgaher  synthesized RNAP inhibitors and performed activity   

studies, supervised by.   

R. W. Hartmann       supervision of RNAP synthesis and activity 

& A. K. H. Hirsch      studies  

M. Junk performed the construction and engineering part of the 

customized printer 

J. Kaspar & M. Vielhaber  supervision of printer construction and engineering 

S. K. Srikakulam, A. Gress    carried out random forest analysis  

& O. Kalinina   

A. Beckmann, A. Grißmer       contributed the freeze-fracture experiments and  

& C. Meier         analysed data 
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N. Schneider-Daum        are the initiators of the project and responsible for the   

& C.-M. Lehr         overall coordination, manuscript outline and finalization. 
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3.1. Introduction 

 

After the “Golden Age of Antibiotic Discovery” (1930’s to 60’s) the number of novel 

antibiotic classes being introduced into the market has been steadily decreasing162–164, 

while bacterial resistance is continuously increasing165. Especially, the treatment of 

infections caused by Gram-negative bacteria lacks novel classes of anti-infectives, and 

the antibiotic drug pipeline is only poorly filled166. While the limited profitability of 

antibiotic research is one crucial factor for this crisis, the development of novel 

antibiotics is additionally hampered due to intrinsic and acquired resistance 

mechanisms of bacteria167. Since most of the antibiotics for the treatment of Gram-

negative bacteria, such as -lactams, tetracyclines, fluoroquinolones and 

aminoglycosides have to reach intracellular targets, it is obvious that the Gram-

negative bacterial cell envelope is an important hurdle for the efficacy for such 

antibiotics. The elements of this biological barrier (e.g. outer membrane proteins, 

lipopolysaccharides, periplasmic space, -lactamases, cytoplasmic membrane), which 

antibiotics have to overcome on their way to the target, have already been described 

previously11,19,31,158,168–171 and are detailed in chapter 1.1 and 1.2 of this thesis.   

In this chapter, we present a hydrogel-based assay for a relatively simple, quick and 

cost-effective high throughput concept. Among hydrogel forming agents, 

polysaccharides are particularly advantageous, since some of them are already 

regularly employed for analytical and preparative methods, such as size exclusion 

chromatography, dialysis, and gel electrophoresis. Furthermore, their gelation is 

straightforward, the material costs are low, and they are considerably diverse in 

physicochemical as well as structural properties. This allows for the imitation of a wide 

range of different barrier properties.  

By measuring the compound permeability across positively, negatively and uncharged 

polysaccharide-gels, correlations to their accumulation and activity in Gram-negative 

bacteria were investigated. In spite of the simplicity of this approach, especially 

permeability data from 20% (w/v) starch hydrogels showed a surprisingly good 

prediction, qualifying it as an interesting tool for optimizing the transport of anti-infective 

compounds across this important biological barrier and omitting potentially inactive 

compounds at an early stage of antibiotic drug development.  
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3.2 Materials  

 

 

MultiScreen® 96-well Filter plates with 0.4µm PCTE membrane and MultiScreen® 96-

well Transport Receiver Plates were obtained from EMD Millipore Corporation 

(Billerica, Ma, USA). Sodium Alginate (Protanal LF 10/60 FT) was obtained from FMC 

Biopolymer UK Ltd. (Girvan, Ayrshire, UK). Amylopectin (ELIANE 100) and potato 

starch (Partially hydrolysed, Mw>1.500 kDa, amylose content 33%) were donated by 

AVEBE U.A. (Veendam, NE). Agarose SERVA (research grade) and Streptomycin-

SO4 were obtained from SERVA Electrophoresis GmbH (Heidelberg, Germany). 

Ampicillin-Na (CELLPURE®) was obtained from Carl Roth GmbH + Co. KG (Karlsruhe, 

Germany). Aztreonam was obtained from MP Biomedicals, LLC (Illkirch, France). 

Tetracycline-HCl was obtained from chemodex (St. Gallen, Switzerland). Rifampicin 

was obtained from USBiological (Swampscott, MA, USA). Tigecycline and pipemidic 

acid were obtained from LKT Laboratories, Inc. (St. Paul, MN, USA). Imipenem was 

obtained from MOLEKULA® GmbH (Munich, Germany). Amylose, novobiocin sodium 

and sulfamethoxazole were purchased from Cayman Chemical Company (Ann Arbor, 

MI, USA). Phosphate buffered saline (pH 7.4) was prepared from dissolution of 0.02M 

PBS tablets without potassium (Genaxxon Bioscience, Ulm, Germany) in 1 l of Milli-Q 

water. Hydrochloric acid and sodiumhydroxide solutions (1 M each) were used from 

Bernd Kraft (Duisburg, Germany). Methanol, Acetonitrile (both HPLC grade), Acetic 

acid (glacial) were obtained from VWR Chemicals (VWR International S.A.S., 

Fontenay-sous-Bois, France). Methylene blue was obtained from J.T. Baker 

(AvantorTM Performance Materials, Radnor, PA, USA). FluoraldehydeTM (o-

phthaldialdehyde reagent solution) was obtrained from Thermo Fisher Scientific 

(Waltham, MA, USA). Chitosan (high molecular weight), tobramycin, kanamycin 

monosulfate, phosphomycin disodium, erythromycin, ciprofloxacin, chloramphenicol, 

norfloxacin, minocycline hydrochloride, sparfloxacin, fusidic acid sodium, levofloxacin, 

clindamycin hydrochloride, lincomycin hydrochloride, cefuroxime sodium were 

obtained from Sigma-Aldrich Co. (St. Louis, MO, USA). 
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3.3 Methods  
 

3.3.1 Assessment of polysaccharide gels 

 

3.2.1.1 Membrane preparation 

 

Due to differences in the viscoelastic properties of the employed polysaccharide gels, 

concentrations varied between the different polysaccharides. Alginate gels of 5, 10, 15 

and 20 % (w/v) were made by suspending respective amounts of Protanal LF 10/60 FT 

in 30 mL of Milli-Q water. The suspension was kept overnight at a 70 °C water bath to 

allow for complete dissolution. 3 % (w/v) high molecular weight chitosan gel was 

prepared by suspending 300 mg chitosan in 10 mL acetic acid (1% v/v) and letting stir 

overnight until complete dissolution. 0.02M sodiumhydroxide solution was optionally 

given to neutralize the gel (pH7.4). 2.5, 5, 7.5, 10 % (w/v) agarose gels were prepared 

by suspending the respective amount of agarose in 10 mL Milli-Q water and heating 

the suspension in the microwave for 1 min at 600 W. 10, 15, 20, 25, 30, 35 % (w/v) 

Starch gels were prepared by suspending respective amounts of slightly acid degraded 

potato starch in 10 mL of Milli-Q water and boiling the suspension while stirring until a 

clear solution was obtained. The same procedure was performed for 10, 15, 20 and 

25 % (w/v) amylopectin and 30, 40, 50, 60 % amylose. A displacement pipet 

(Transferpettor®, Brand GmbH & CoKG, Wertheim, Germany) was used to coat each 

filter support of the MultiScreen® 96-well filter plate with 40 µL of the respective 

polysaccharide formulation. Gelatinization was supported by keeping the covered and 

coated filter plate overnight at 4°C. 

 

3.3.1.2 Preparation of donor solutions 

 

100 µg/mL donor solutions of rifampicin, novobiocin, tetracycline, clindamycin and 

chloramphenicol were prepared by direct dissolution of the compounds in PBS (pH 

7.4). 100 µg/mL solutions of quinolones were prepared by dissolving 1 mg of compound 

in 1 mL of 0.1 M sodium hydroxide solution, addition of 4 mL of PBS (pH 7.4), 

neutralization by 1 M hydrochloric acid solution and filling up to 10 mL by PBS (pH 7.4). 

 

3.3.1.3 In vitro permeation assay  

 

Assays were performed using the gel coated donor wells of a 96-well filter plate in 

combination with a 96-well receiver plate. For equilibration, 200 µL of PBS (pH 7.4) 
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were given to each well of the filter plate and 300 µL to the respective acceptor wells 

of the receiver plate followed by assembling filter and receiver plate and incubating the 

obtained transport system for 30 min with PBS (pH 7.4) at 37°C while being placed on 

an orbital shaker (IKA®- Werke GmbH and Co KG, Staufen, Germany) at 180 rpm. 

After incubation, PBS was removed from both plates. 230 µL pre-warmed antibiotic 

donor solution (37°C) was given into the respective donor wells, while 30 µL were 

immediately removed and diluted 1:10. The absorbance of the obtained dilutions was 

measured in an additional receiver plate using a Tecan Infinite® 200 PRO (Tecan 

Trading AG, Maennedorf, Switzerland) plate reader. 300 µL of fresh PBS (pH 7.4) were 

given into the respective acceptor wells of the receiver plate and their absorbance was 

also measured. After that, filter and acceptor plate were reassembled, the donor wells 

sealed with adhesive foil, covered with a lid, and incubated (37°C, 180 rpm). After 10, 

20, 30, 45, 60, 90, 120, 150, 180, 210, 240 min the transport system was temporarily 

disassembled to measure the absorbance in the acceptor wells of the receiver plate. 

An adjusted protocol was followed for substances with insufficient λmax. In these cases, 

220 µL of donor solution were given in each donor well. 20 µL were immediately 

removed and diluted 1:10. At all aforementioned time points, samples of 40 µL were 

drawn from acceptor wells and diluted 1:5 for subsequent liquid chromatography 

coupled mass spectrometry (LC–MS). In case of tobramycin and kanamycin, samples 

of 20 µL were drawn and a previously reported quick fluorimetric approach was 

followed (o-phthalaldehyde assay).  The removed volume was replaced using fresh 

PBS (pH 7.4). Permeated amounts of each compound were calculated in reference to 

calibration curves, which were prepared from the applied donor solution. Details 

regarding the absorbance and LC–MS measurements can be seen below. 

 

3.3.1.4 Calculation of the apparent permeability coefficient (Papp) 

 

A linear regression was performed on a cumulative permeation-time curve, at which 

the accumulated drug amount has not yet exceeded 10% and no lag time occurred. 

The obtained slope was divided by the surface area of the filter to obtain the compound 

flux (J). Papp is then calculated using the following formula:  

𝑃𝑎𝑝𝑝(𝑐𝑚 ∗ 𝑠−1) =
𝐽

𝑐0

 

Where c0 is the initial donor concentration (µg/cm3), A is the surface area of the filter 

support (cm²) and J is the compound flux (µg/cm2s).  
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3.3.1.5 Printing of membranes 

 

For an automated coating of the membranes a custom 3D-printer was designed based 

on modular aluminium construction profiles with controls based on a Duet 2 32 Bit 3D-

printer controller running a customized version of RepRapFirmware 2.02. The printer 

features igus® SHT spindle drive linear axes fitted with igus® MOT-AN-S-060-020-056-

L-A-AAAA motors (both igus® GmbH, Cologne, Germany) for x/y/z motion with a 

resolution of 5 µm ± 5 % and theoretical microstepped resolution of up to 0.625 µm. 

Extrusion of the starch solution is accomplished by a 10 mL Hamilton® SaltLine 

reagent syringe (model 1010 TLL-SAL, Hamilton® Company, Reno, NV, USA) driven 

by a Nanotec L4118S1404-M6X1 Hybrid linear actuator (Nanotec Electronic GmbH & 

Co. KG, Feldkirchen, Germany; full-step volume resolution of the driven syringe 0.837 

µL per step). The syringe was kept at 80 °C by a VWR® refrigerated circulating bath 

with a digital temperature controller (model 1166D, VWR® International, LLC., Radnor, 

PA, USA). The hot water supply for the syringe consisted of a Masterflex L/S® easy-

load® peristaltic pump (Cole-Parmer, Vernon Hills, IL, USA) adjusted to speed 1 and 

OMNILAB silicone tubing (5 x 2 x 9 mm, OMNILAB-LABORZENTRUM GmbH & Co. 

KG, Bremen, Germany) as well as PhthalateFree® PVC Pump Tubes (3.18 mm ID, 

Gilson® Company Inc., Lewis Center, OH, USA). A trimmed Sterican® needle for 

special indications (G 14 x 3 1/8” / Ø 2.10 x 80 mm, B. Braun Melsungen AG, 

Melsungen, Germany) was used as a nozzle.   

For investigating the accuracy and precision of the printing in comparison to pipetting, 

the volumes 20, 30, 40, 50, 60, 70 and 80 µL were extruded into an empty 1.5 mL 

Eppendorf tube® of known weight. The weight of the extruded volume was measured 

and converted into the corresponding volume after determining the density of water at 

the current experimental conditions. Same procedure was done using a positive 

displacement pipette “Transferpettor”, Digital, DE-M (Brand GmbH + Co.KG, 

Wertheim, Germany).   

The g-code used to print the starch solution into the donor wells can be found in 

supporting information 3.  

 

3.3.1.6 Absorbance scan of membranes and quantitative structural comparisons 

 

As a quick check for batch homogeneity and evenness, 20 % (w/v) starch solutions 

were stained with 100 µg/mL methylene blue before coating the filter membrane. The 

coated filter plates were afterwards assembled to their support plate and their 
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absorbance was scanned without lid using the Tecan Infinite® 200 PRO plate reader, 

with Tecan i-control, 1.10.4.0 software (Tecan Trading AG, Maennedorf, Switzerland). 

The membrane scan was done at 666 nm (bandwidth 9 nm), using 15 x 15 reads/well 

with 25 flashes/read, no settle time and a border of 850 nm. As plate type, ‘Millipore 

MultiScreen 96 Flat Bottom Transparent Polysterol’ was selected. The obtained 

absorbance values per well were aligned in x and y direction and subsequently plotted 

as a 3D surface diagram using Microsoft® Office Excel 2016 (Version 16.0, Microsoft® 

Corp., Redmond, WA, USA).          

Gel deposition was calculated by computing the average absorbance per membrane 

using the previously obtained data and calculating the overall mean. For the intra well 

variability, the mean of the standard deviations of absorbance for each membrane was 

calculated. Regarding the intra batch variability, the absorbance standard deviation of 

each membrane was averaged for each batch, before calculating the mean of the 

obtained values, while as for the inter batch variability, the standard deviation of the 

mean absorbance from each batch of membranes was calculated. Obtained data 

originate from at least 3 batches of membranes consisting of at least triplicates.  

 

3.3.1.7 Stereomicroscopy 

 

In order to assess and compare the thickness of printed and pipetted membranes. 20 

% starch solutions were stained with 100 µg/mL methylene blue before coating the filter 

membrane. Following membrane coating the donor wells were cut off using a hot blade 

and embedded in Tissue-TEK® O.C.T.TM cryo embedding compound (Sakura Finetek 

Europe B.V., Alphen aan den Rijn, NE) and frozen to -20°C. Afterwards, vertical 

sections were performed until reaching the centre of the well. Cryosectioning was done 

using a SLEE ECO Cryostat MEV (SLEE medical GmbH, Mainz, Germany). The 

remaining half of the well was mounted onto a glass slide and investigated under a 

Zeiss Discovery-V20 stereo microscope featuring an Axiocam 512 colour camera and 

processed with AxioVision Rel. 4.8.2 software (all by Carl Zeiss AG, Oberkochen, 

Germany). Obtained data are from at least 3 batches consisting of at least triplicates. 

 

3.3.1.8 Transmission electron microscopy (TEM) of freeze-fracture replicas 

 

For the analysis of the polysaccharide gels in TEM, starch hydrogels were prepared by 

dissolving modified potato starch in water (final concentrations were 10% or 20% or 

40% (w/v)). Hydrogels of 10% agarose, 20% amylopectin and 30% amylose (w/v) were 
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prepared in water too. The solutions were dropped onto glass cover slips and kept in 

the refrigerator for solidification. 24 hours later, small slices of the hardened hydrogel 

were cut with a scalpel. The slices were incubated with phosphate-buffered saline 

(PBS) for 30 min at 37°C and 5% CO2. Thereafter, small pieces of the hydrogel slices 

were mounted in between a sandwich of copper carriers (one flat-bottom, one with 

depression) and plunge-frozen into a nitrogen-cooled liquid ethane-propane mixture 

using the Leica plunge freezer EM CPC (Leica Microsystems, Wetzlar, Germany). 

For analysis of hydrogels made of 20% alginate, 3% chitosan (acidic) or 3% chitosan 

(neutralized) (each prepared in water), small drops of 24h-old solution were pipetted 

into a well of a 96 well plate and incubated with PBS at RT. 30 min later, the PBS was 

taken off and small drops of the hydrogels were plunge-frozen in a sandwich of two 

flat-bottom copper carriers.  

Afterwards, the sandwich carriers were mounted in a cryo-preparation box onto a 

nitrogen-cooled finger replica table and transferred with an EM VCT shuttle into the EM 

BAF060 freeze-fracture and etching device (all devices from Leica Microsystems). 

Freeze-fracturing was performed at -162°C and 1x10-7 mbar by chipping off the upper 

copper carrier. Fractured samples were etched for 5 min at -100°C. The etched faces 

were rotary shadowed with a 1.5 nm platinum-carbon coat applied at a 60°C angle, 

followed by a 20 nm carbon coat applied at 90°. The replicas were stabilized on a gold 

index grid using 0.5% Lexan polycarbonate plastic dissolved in dichloroethane (DCE). 

After evaporation the DCE by incubating the sample-replica-Lexan-grid at -20°C for 16 

h, the samples were thawed at room temperature and the carriers were removed. The 

grids were floated on 70% H2SO4 for 3 h to dissolve the starch from the replicas. After 

removal of the starch, the grids were floated for 1 h on double-distilled water. The grids 

were dried on filter sheets and a 20nm carbon coat was applied at 90° for further 

stabilization. After removal of the Lexan film by incubation in hot DCE, analysis was 

performed using a FEI Technai G2 transmission electron microscope (FEI, Thermo-

Fisher Scientific, Munich, Germany) at 100 kV, equipped with a digital 8-bit camera. 

The negative contrast was reversed for image interpretation, so that the heavy metal 

appears white and the shadow appears black.  

 

3.3.1.9 Validation of permeation assay 

 

Membrane preparation, creation of donor solutions and permeation assays were 

performed as mentioned under ‘Assessment of polysaccharide gels’, however, with few 

changes. The amount of time points was reduced to 10, 20, 30, 45, 60 and 90 min and 
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donor solutions contained an equimolar concentration of 200 µM for each tested 

compound. Since the most valid results were obtained at a time interval, at which not 

all compounds showed a linear permeation behaviour, the area under the curve 

(AUC10-30 min) was calculated instead of the Papp. Therefore, GraphPad Prism® 

7.04 software (GraphPad Prism software Inc., San Diego, CA, USA) was used. 

 

3.3.1.10. Application examples  

Permeation studies were performed as under ‘Assessment of polysaccharide gels’, 

however with few changes. The amount of time points was reduced to 10, 20, 30, 45, 

60 and 90 min. For the assessment of RNAP inhibitors, donor solutions contained an 

equimolar concentration of 100 µM, while for the assessment of Fluoroquinolone-

copper-phenanthrene complexes equimolar donor concentrations of 300 µM were 

employed. 

 

3.3.1.10 LC–MS/MS 
 

For compound quantification, an Accela UHPLC system coupled TSQ Quantum 

Access Max tandem quadrupole mass spectrometer (both from Thermo Fisher 

Scientific, Waltham, MA, USA) was used. The UHPLC device featured a quaternary 

mixing pump, an online degasser, a thermostated autosampler and a column oven. 

The entire system was operated via the standard software XcaliburTM (Thermo Fisher 

Scientific, Waltham, MA, USA). Streptomycin samples were quantified using a 

Synchronis HILIC column (50 x 2.1 mm, 1.7 µm, Thermo Fisher Scientific, Waltham, 

MA, USA) column. For all other compounds, an Accucore RP-MS column (150 x 2.1, 

2.6 µm, Thermo Fisher Scientific, Waltham, MA, USA) was employed. The 

chromatographic analysis was performed with a binary solvent mixture using optionally 

acetonitrile + 0.1 % formic acid (A), MilliQ-Water + 0.1 % formic acid (B), Methanol + 

0.1 % formic acid (C) or ammonium formate buffer (10 mM, pH 3, D). Ampicillin and 

sulfamethoxazole were analysed using an isocratic run with 60 % B and 40 % C or 40 

% A and 60 % B, respectively. All other compounds followed a gradient run. As for 

clindamycin and lincomycin, the initial value of 18 % A and 72 % D was shifted to 30 

% A and 70 % D within 2 min and then kept constant for another 2 min. As for 

tobramycin and streptomycin, 95 % A and 5 % B was shifted after 2 min to 5 % A and 

95 % B within 1.5 min. This ratio was kept for 3.5 min. Vancomycin samples were run 

for the first minute with 5 % A and 95 % B before shifting within 1 minute to 95 % A and 
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5 % B and keeping the values for 3 min. Erythromycin was run starting with an 

immediate shift from 18 % A and 82 % D to 90 % A and 10 % D within 2 min. The latter 

ratio was kept constant for 3 min. Fusidic acid started with 35 % B and 65 % C. After 2 

min, the values changed to 5 % B and 95 % C within 1 min. After that, these values 

were kept constant for 4 min. The detection of the compounds in the MS happened 

after heated electrospray ionization (H-ESI) during positive ion mode using for 

Sulfamethoxazole single ion monitoring (SIM) and for all others selective reaction 

monitoring (SRM). Employed LC–MS parameters are listed in Table 5.
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Table 5. LC-MS parameters used for in vitro assay. 

Name Flow rate 
(mL/min) 

Column 
temp. (°C) 

Rt 
(min) 

Parent 
mass (m/z) 

Fragment 
mass (m/z) 

Collision 
Energy 
(V) 

Tube 
Lens 
Offset 

Spray 
voltage 
(V) 

Vaporizer 
temp. 
(°C) 

Capillary 
temp. 
(°C) 

Sheath 
Gas 
Pressure 

Ion Sweep 
Gas Pressure 

Aux Gas 
Pressure 

Ampicillin 250 25 2.32 350.185 106.2 
192.1 

19 
15 

174 5500 300 310 25 0 10 

Clindamycin 500 25 3.34 425.154 126.1 
377.2 
389.2 
335.2 

28 
17 
16 
17 

95 4500 300 300 35 0 10 

Lincomycin 500 25 1.07 407.187 83.3 
124.3 
126.2 
359.3 
389.2 

39 
68 
29 
18 
16 

86 4500 350 300 35 0 5 

Streptomycin 500 30 2.26 582.346 263.1 
246.1 

30 
34 

105 5000 350 350 30 30 10 

Erythromycin A 300 25 3.06 716.296 558.4 
158.0 
540.4 
522.4 

12 
29 
18 
20 

102 4000 280 280 40 0 2 

Fusidic acid 300 25 6.34 539.400 479.4 18 124 5000 260 280 45 0 25 

Vancomycin 300 25 2.61 725.000 82.5 
100.3 
329.4 
773.3 
1306.0 

65 
17 
30 
39 
14 

95 5000 300 300 15 0 5 

Sulfamethoxa- 
zole 

300 25 2.04 254.095 - - - 4000 300 210 35 0 15 
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3.3.1.11 UV-Spectroscopy 

 

At selected time points, the antibiotic concentration in the receiver plates was 

quantified without lid by absorbance using a Tecan Infinite® 200 PRO plate reader, 

run by Tecan i-control, 1.10.4.0 software (Tecan Trading AG, Maennedorf, 

Switzerland). Antibiotics and the wavelengths used for their quantification are shown 

in Table 6. The measurement was done with a bandwidth of 9 nm, 25 flashes per read 

and without settle time. As plate model ‘Millipore MultiScreen 96 Flat Bottom 

Transparent Polysterol’ was selected. 

Table 6. Absorbance wavelengths used for the in vitro assay 

Compound Wavelength 

(nm) 

Ciprofloxacin 322 

Nalidixic acid 330 

Norfloxacin 324 

Pipemidic acid 330 

Levofloxacin 330 

Novobiocin 304 

Tetracycline 372 

Tigecycline 352 

Minocycline 346 

Amidochelocardin 432 

Rifampicin 330 

Sorangicin A 304 

Aztreonam 300 

Cefuroxim 300 

Imipenem 298 

Chloramphenicol 298 
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3.3.1.12 Fluorimetry 

 

20 µL samples of tobramycin and kanamycin were given into corresponding wells of a 

96-well microplate (Polystyrene, F-bottom, non-binding; Greiner Bio-One GmbH, 

Frickenhausen, Germany). 200 µL of FluoraldehydeTM were given to each well and 

after 5 min the fluorescence was measured (λex=360 nm, λem=470 nm) using a Tecan 

Infinite® 200 PRO plate reader and Tecan i-control, 1.10.4.0 software (both Tecan 

Trading AG, Maennedorf, Switzerland). 

 

3.3.2 In bacterio control assay 
 

3.3.2.1 Bacterial uptake 

 

5 mL of Luria Bertani broth (LB broth) were inoculated with E. coli K-12 MG1655 and 

incubated overnight at 37 °C and 150 rpm. 2 x 60 mL of fresh LB broth were inoculated 

with 1 mL of overnight culture (starting OD600 ≈0.1) and incubated at 37 °C, 150 rpm 

till OD600 = 0.7 was reached. The bacterial culture was centrifuged in 50 mL Falcon 

tubes (9 min, 4500xg, 20°C), the supernatant was removed and following resuspension 

of the pellet in 5 mL NaPi-MgCl2 buffer (50 mM sodium phosphate (NaPi) + 5 mM 

MgCl2 adjusted to pH=7.0, sterile filtrated) the suspension was centrifuged under the 

same conditions. Again, the supernatant was discarded, and the pellet resuspended 

in enough warm NaPi buffer to reach OD600= 5.0. The obtained suspension was kept 

at 37°C for 5 min. 100 µL of bacterial suspension were given per well into a 

MultiScreenHTS DV filter plate (transparent, pore size 0.45 µm, Merck Millipore, 

Tullagreen, IRL) wetted with 2 µL NaPi buffer. At time points 0, 2, 5, 10, 20, 30, 42, 47, 

50, 52 min, 25 µL of the respective antibiotic solution was added and mixed in the 

corresponding wells to give a final volume of 125 µL and a concentration of 200 µM. 

The filter plate was shaken at 350 rpm and 37°C in a ThermoMixer® C (Eppendorf 

GmbH, Hamburg, Germany) during antibiotic addition. For the 0 min time point, 25 µL 

of antibiotic solution were added right before filtration. The Incubation was stopped at 

the respective timepoint by fast removal of the supernatant with a vacuum manifold 

(~15 s) and washing the cells twice with 100 µL of ice-cold NaPi buffer done by a Bravo 

Automated Liquid-Handling Platform (Agilent Technologies, Santa Clara, CA, USA) 

and filtered again. The filter plate was pressed against absorbent paper to remove the 

remaining liquid after every filtration. The filter plate was put on top of a 350 µL conical 
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bottom receiver plate (clear poplypropylene, Greiner Bio-One GmbH, Frickenhausen, 

Germany) and the pellets were resuspended in 100 µL of ice-cold methanol-water 

blend (8:2). After that, the suspension was incubated for 30 min at room temperature 

(RT) and 400 rpm while being sealed with Parafilm® (Bemis Company Inc., Neenah, 

WI, USA) and closed with a lid. Following the incubation step the filter plate was 

centrifuged at 2250 x g for 5 min and the filtrate collected in the receiver plate. The cell 

debris was further lysed by adding 100 µL of ice-cold acetonitrile to the filtrate and 

mixing before it was incubated for 30 min at RT and 400 rpm. Further centrifugation at 

2250 x g for 15 min and collection of filtrate was then followed by evaporation using a 

centrifugal vacuum concentrator at 20 °C coupled to a cold trap at -50°C (both from 

Labconco Corporation, Kansas, MO, USA). The dry remnants were reconstituted in 

100 µL of a methanol-acetonitrile blend containing 0.1 % formic acid and 10 ng/mL 

caffeine as internal standard, with the exception of streptomycin and tobramycin, which 

were reconstituted in 100 µL of water containing 0.1 % formic acid and 10 ng/mL 

caffeine. Samples were subsequently measured with an LC-MS method specific for 

each compound. To determine the unspecific binding of the tested compounds, 100 

µL of NaPi buffer were added to a blank filter plate and incubated for 5 min at 37°C. 25 

µL of compound from stock solutions were added and mixed as mentioned before. The 

plate was incubated until the last time point in the assay and, from then on, treated like 

the bacteria-containing plate. Standard curves were obtained by measuring predefined 

concentrations of antibiotic. The integrated peak area where then plotted over antibiotic 

concentration in µM, and a linear regression curve was performed by least squares. 

The amount of antibiotic in bacterial samples was determined based on the regression 

curve and the sample volume (100 µL). To calculate the effective accumulated amount 

obtained, the amount of corresponding compound in nmol from unspecific binding was 

subtracted from all data obtained from bacterial incubation.  

To correct for a four times higher drug concentration compared to the protocol by M. Richter 

et al.80, obtained accumulated amounts were multiplied by 0.25.  
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3.3.2.2 LC–MS/MS 

 

Samples were quantified by an Agilent 1290 UHPLC (Agilent Technologies, Santa 

Clara, CA, USA) coupled to an AB Sciex QTrap 6500 ESI-QQQ (AB Sciex Germany 

GmbH, Darmstadt, Germany) mass spectrometer. For chromatographic separation a 

ZORBAX Eclipse Plus C18 (2.1x5.0, 1.8 µm, Agilent Technologies, Santa Clara, CA, 

USA) column was employed. A linear gradient was applied using water + 0.1 % formic 

acid (A) and acetonitrile + 0.1 % formic acid (B), in which the initial amount 99 % A 

shifted to 1 % A over a period of 5 min and at a flow rate of 0.7 mL/min. 

Chromatographic separation of tobramycin samples was carried out in a Shodex 

HILICpak VC-50 2D column (20x150mm, 5µm, Showa Denko America Inc., NY, USA). 

A linear gradient was applied using water + 1.5 % ammonia (A) + and acetonitrile 0.1 

% formic acid, starting at 70 % A and reaching 90 % A over a period of 5 min and at a 

flow rate of 0.3 mL/min. Further employed LC–MS parameters are listed in Table 7. 
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Table 7. LC-MS parameters used for in bacterio assay. 

Name Rt  
(min) 

Column 
temp. (°C) 

Parent 
mass (m/z) 

Fragment 
mass (m/z) 

Collision 
Energy 
(V) 

Declustering 
potential (V) 

Entering 
potential (V) 

Cell exit 
potential (V) 

Ciprofloxacin 2.64 30 
 

332.040 314.2 
231.2 

27 
49 

111 
 

10 16 
12 

Nalidixic acid 4.92 30 233.200 215.1 
187.2 

19 
33 

80 10 14 
13 

Novobiocin 5.49 30 613.200 189.3 
218.2 

45 
18 

80 10 13 
11 

Clindamycin 3.67 30 425.188 126.1 
377.3 

40 
20 

80 10 11 
11 

Lincomycin 1.86 30 407.222 126.2 
82.1 

31 
109.5 

80 10 6 
9.3 

Sulfamethoxazole 3.35 30 254.000 156.0 
108.0 

21 
29 

76 10 10 
8 

Tobramycin 3.09 40 468.261 163.1 
324.3 

31 
19 

101 10 10 
24 

Streptomycin 0.22 30 582.274 263.2 
246.2 

42.7 
50.6 

248 10 15 
12 

Tetracycline 2.77 30 445.148 410.1 
427.1 

25 
15 

66 10 22 
30 

Tigecycline 1.56 30 586.288 569.2 
513.3 

24 
64 

80 10 11 
11 

Caffeine 2.14 30 195.116 138.1 
110.1 

27 
31 

66 10 10 
6 
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3.3.3 Permeability-activity investigations 

 

Based on the obtained in vitro permeation data the apparent permeability coefficient 

(Papp) was calculated. These data were plotted against MICs for E. coli, P. aeruginosa, 

A. baumannii, K. pneumoniae, C. jejuni, Salmonella spp., and N. gonorrhoeae obtained 

from the database of the European Committee on Antimicrobial Susceptibility Testing 

(EUCAST). Since this data base usually provides distributions of reported MICs, those 

values were selected, which had the highest number of reports.  

 

3.3.4 Statistical analyses 

 

Tests for significance and plotting of permeation data were all carried out using 

GraphPad Prism® 7.04 software (GraphPad Prism software Inc., San Diego, CA, USA). 

3.3.5 Random forest analysis 

 

The random forest model was created using randomforest library172 in R (v. 3.6.1; R 

Core Team, R Foundatation for Statistical Computing; 2017, Vienna, Austria). The 

input data (AUC10-30 min, net charge, molecular weight, minimum projection area, 

relative abundance of unsaturated bonds, number of rotatable bonds, number of 

hydrogen bond acceptors, number of hydrogen bond donors, globularity, clogDpH7.4) 

was initially processed and stored as a table. We used leave-one-out cross validation 

to develop this model with the hyperparameters ntree of 100, mtry of 2 and maxnodes 

of 8. Where ntree is the number of decision trees we allow this model to grow, mtry is 

the number of variables randomly sampled at each split or tree node and maxnodes is 

the maximum number of terminal nodes every tree in the forest can have. The depth 

of the tree can be controlled using the maxnodes hyperparameter. In the process of 

model optimization clogDpH7.4 and number of rotatable bonds were removed as input 

parameters to enhance robustness and avoid overprediction. To ensure reproducibility, 

the seed value ‘6’ was randomly selected. All physicochemical parameters were 

calculated by MOE (relative abundance of unsaturated bonds, number of rotatable 

bonds, H bond acceptors and donors, globularity) and chemicalize.com (net charge, 

molecular weight, minimum projection area, clogDpH7.4). The code used for the analysis 

is enclosed in appendix 7.4 “R-code for random forest analysis”. 
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3.4 Results and discussion 
 

3.4.1 Selection of filter plate 

 

To enhance the throughput of compounds, the 12-well Transwell®-system was 

exchanged for a 96-well filter plate (MPC4TR10) by Merck Millipore. The different 

specifications are depicted in Table 8.  

Table 8. Feature comparison of the previously used 12-well corning plate and the 

favoured 96-well filter plate. 

 Corning® Costar 3460 

Transwell® 

MPC4NTR10 Multiscreen 

Permeability 

Number of wells 12 96 

Material of filter 

membrane 

Polyethylene tetraphthalate 

(PET)[a] 

Polycarbonate  

(PC)[b] 

Membrane thickness 

[µm] 
10[a] 17-22[b] 

Pore size [µm] 0.4[a] 0.32 – 0.4[b] 

Porosity [pores/cm²] 4*106[a] 108[b] 

Cost per Transport 

system in total [€] 
82.00[c] 73.62[c] 

Cost per well [€] 6.83 0.77 

[a] data kindly provided by Corning Inc., Corning, NY, USA   
[b] data kindly provided by Merck KGaA, Darmstadt, Germany  
[c] price calculated from: https://www.sigmaaldrich.com/catalog/product/sigma/cls3460?lang= 
de&region=DE (last access: 18.06.2020, 7:00 pm)   
[d] price calculated from: https://www.merckmillipore.com/DE/de/product/96-well-Collection-
Plate,MM_NF-MATRNPS50 and https://www.merckmillipore.com/DE/de/product/MultiScreen-
Permeability-Filter-Plate-0.4m-non-sterile,MM_NF-MPC4NTR10?ReferrerURL=https%3A%2F%2Fww 
w.google.com%2F (last access: 18.06.2020, 7:20 pm)  
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Moreover, the surface properties of both filter membranes were investigated by SEM 

(Fig. 13). Notably, the filter membrane of the Merck Millipore filter plate is rougher and 

contains more pores than the Transwell®-filter membrane. Rough surfaces, can be of 

advantage, especially for coating processes, since they normally show enhanced 

adherence to the coated biomaterial173.  

Figure 13. Comparison of the surface structure of Corning® Costar 3460 Transwell® (A) 

and MPC4NTR10 Multiscreen Permeability (B) filter supports. Transwell®-filter supports 

have a much smoother surface structure than those attached to MPC4NTR10 filter plates, 

which may be due to different protocols in the track-etching procedure to create the membrane 

pores. 

3.4.2 Selection of hydrogel 

Based on these considerations, the four polysaccharides alginate, chitosan, slightly 

acid degraded potato starch and agarose were selected. Hydrogels obtained from 

these polysaccharides were coated onto 96-well filter plates using different mass 

concentrations followed by permeation studies of four representative antibiotics on 

these coatings. Out of these substances, ciprofloxacin (CIP) and tetracycline (TET) are 

known to be high accumulating compounds in the Gram-negative model bacterium E. 

coli MG1655, whereas rifampicin (RIF) and novobiocin (NOV) belong to low 

accumulating compounds80.  

Since the filter supports of the chosen MPC4NTR10 microtiter plate can be also 

considered as a permeation barrier, it is first necessary to investigate the permeation 

of CIP, TET, RIF and NOV across these uncoated filters (Fig. 14).  

A B 
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Figure 14. Permeation-time course of CIP, TET, RIF and NOV obtained from uncoated 

MPC4NTR10 filter supports. RIF and NOV permeate slightly faster through the uncoated 

filter membrane than CIP and TET. As expected, the overall permeability decreased 

dramatically after the starch coating. Graphs represent mean permeated amounts ± SD. N=9, 

from 3 independent experiments.  

In contrast to a hypothesized faster permeation of the smaller molecules ciprofloxacin 

and tetracycline, rifampicin and novobiocin proved to be faster permeating. Perhaps, 

this phenomenon can be explained by the mediocre hydrophilicity of the membrane 

material174, allowing the passage slightly hydrophobic rather than hydrophilic 

compounds. The low permeability of CIP can be also partially caused by its stacking 

behaviour in solution, which can reduce the accessibility to the membrane pores157. As 

the overall permeation of the four compounds was comparably quick – the compound 

accumulation exceeded sink conditions already after 20 min –, insufficient time points 

were available for the calculation of the apparent permeability coefficient (Papp). In 

contrast to the plain filter support, the compound permeation was sufficiently 

decelerated by all hydrogel coatings and Papp-values could be obtained. Interestingly, 

almost all gel formulations showed separating tendencies between the high and low 

accumulating representatives, with 20 % (w/v) starch gel performing the best (Fig. 15 

A). Charge, as present in alginate and chitosan (Fig. 15 B, C) did not seem to play a 

crucial role. In case of chitosan, deprotonation of the amine groups at neutral pH did 

not affect permeability.   
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Figure 15. Papp of CIP, TET, RIF and NOV obtained from different polysaccharide gel 

formulations. The membrane permeability was studied using different formulations of starch 

(A), agarose (B), chitosan (C), alginate (D) as well as of its subcomponents amylopectin (E) 
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and amylose (F). The tendency of discriminating high accumulating from low accumulating 

antibiotics is particularly given at 20 % (v/w) starch formulations. At low concentrations the 

polysaccharide network will not dense enough to allow for differences in permeation, whereas 

too high concentrations of the tested polysaccharides lead to a too dense network and to 

viscoelastic properties, which are non-favourable for a sufficient coating of the filter support. 

Graphs represent mean ± SD. N=9-12, from 3-4 independent experiments. A two-way ANOVA 

was performed with Tukey’s multiple comparisons test. *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001 

Freeze fracture images suggest that in comparison to starch the network structures 

might be too wide (e.g. for chitosan, Fig. 16 A-B) or too narrow (e.g. for alginate, Fig. 

16 C) to make a difference. Agarose as a further uncharged polymer, forms a rather 

wide and regularly meshed hydrogel network with larger pores (>100nm, Fig. 16 D), 

obviously too large to discriminate the permeability of small antibiotic molecules. 

Additional permeation studies on the two starch components amylose and amylopectin 

(Fig. 16 E, F) demonstrate that the discrimination between CIP and TET on the one 

hand, and NOV and RIF on the other hand is more pronounced by the branched 

polysaccharide amylopectin, but still not as effective as a blend of both.   

 

 

Figure 16. TEM of replicas from various freeze-fractured, etched and replicated vitrified 

gel samples. A: Chitosan (3 % (w/v) pH 3); B: chitosan (3 % (w/v) pH 7.4); C: alginate 20 % 

(w/v); D: agarose 10% (w/v); E: amylopectin 20 % (w/v); F: amylose 30 % (w/v). Where 

possible, hydrogel formulations of 20 % (w/v) were observed to allow for best comparison to 

20 % (w/v) starch gel. In all other cases those concentrations where selected, which are closest 
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to 20% (w/v). The chitosan network, regardless if at low or neutral pH appears to be 

comparatively loose. Alginate, which allowed for higher working concentrations, shows an 

extremely dense gel network that delimits molecular permeation and adequate membrane 

coating. In contrast, the gel network of agarose appears too wide at concentrations suitable 

for membrane coating. The same holds true for amylopectin, whereas the polysaccharide 

strands of amylose also seems again too dense to enable for selective delimitation of antibiotic 

permeation. All micrographs were taken at 98,000x magn. Colours were inverted. Scale bars 

represent 100 nm. 

The latter, according to our findings, leads to slightly denser polysaccharide networks 

of mixed and homogeneously distributed pore sizes (comp. Fig. 16 E, F to Fig. GHZ 

B, E), which may explain the good discriminating performance of 20 % starch gels. 

Moreover, the rare case of volume expansion in course of amylose gelation175 

contributes to the formation of a leak tight gel barrier on top of the filter support after 

deposition, whereas contraction usually causes leakage and affects reproducibility. 

Lower starch concentrations as well as higher concentrations may again lead to 

suboptimal network densities (Fig. 17 A, D and C, F).  

 

Figure 17. Free fracture TEM images of 10 % (A, D), 20 % (B, E) and 40 % (w/v) starch (C, 

F). The mesh width decreases with increasing concentration of starch. Scale bars represent 

100 nm. Moreover, the mesh size distribution becomes more and more homogenous the higher 

the starch concentration is. 
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 The additional investigation of the high accumulating chloramphenicol (CHL) and the 

low accumulating clindamycin (CLI) on the 20% starch formulation also leads to an 

accurate separation by their Papp (Fig. 18). This is noteworthy considering that CLI and 

TET are of similar molecular weight (444.44 Da vs. 424.98 Da). It moreover indicates 

that additional factors other than solely molecular weight must be considered to explain 

their different permeability coefficients.   
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Figure 18. Permeation velocity in vitro and accumulation in bacterio80 of a small set of 

high and low accumulating antibiotics. Permeation coefficients of high accumulating CIP, 

TET and CHL as well as low accumulating RIF, NOV and CLI qualitatively match in bacterio 

compound accumulation. N = 9-11 from 3-4 independent experiments. One-way ANOVA was 

performed with Tukey’s multiple comparisons test. *P<0.05, **P<0.01, ***P<0.001, 

****P<0.0001  

Since the absorbance maxima of clindamycin are too low to be used for the 

quantification on the plate reader, liquid chromatography-coupled tandem mass 

spectrometry (LC–MS/MS) was performed. Here, one might ask if both quantification 

methods are comparable. To answer this issue, tetracycline was selected and 

transport studies on the 20% starch hydrogel model were performed using both, 

absorption spectroscopy and LC–MS/MS for quantification. As shown in Figure 19, the 

obtained permeability coefficients differ insignificantly from each other, suggesting that 

both quantification methods are comparable. However, it is worth mentioning that the 

standard deviation of the apparent Permeability coefficient is higher, when obtained 

from LC–MS/MS analysis. This agrees with practical considerations: LC–MS/MS 

requires more preparative steps until the measurement is performed, namely sample 

drawing, volume replacement and sample dilution. While the direct absorbance 

readout from the acceptor plate omits all these steps and hence potential sources of 

error. Due to the comparatively long time of liquid chromatography-based analyses. 

There is a longer time span between sample drawing and sample measurement, which 

can be particularly problematic for substances that undergo oxidation or hydrolysis in 

the meantime. Consequently, direct spectroscopic methods should be favoured for the 

analysis of permeated amounts. 
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Figure 19. Comparison of apparent permeability coefficients (Papp) of 

Tetracycline obtained from LC–MS/MS and from absorption spectroscopy. The 

Papp obtained from plate reader-based absorption spectroscopy does not significantly 

differ from the Papp obtained from LC–MS/MS. However, the spectroscopic method 

appeared to be more precise. Values represent mean ± SD. n = 9 from 3 independent 

experiments. Mann-Whitney-U-test was performed. n. s. = not significant. 

Moreover, it was investigated if a combination of phospholipid coating and a starch gel 

could have synergistic effects on permeation. Therefore the 20% (w/v) starch 

formulation was coated on phospholipid membranes, as prepared for the inner 

membrane compartment of the total envelope model. Two different concentrations of 

liposomal suspensions were employed to study the impact of the thickness of the 

phospholipid layer. As depicted in Figure 20, the addition of phospholipids favours the 

permeation of small uncharged molecules, such as chloramphenicol, whereas the 

permeation of slightly larger and zwitterionic molecules, such as ciprofloxacin and 

tetracycline are hampered. At the same time, the introduction of an additional layer 

considerably affects the reproducibility of the model, as indicated by the increase of 

standard deviation. The introduction of higher amounts of phospholipids into the 

membrane system may also affect the spectrophotometric quantification, especially 

when measuring the absorbance at 300 nm and lower, loosened phospholipids can 

form small aggregates in the basolateral compartment and increase the absorbance, 

which explains the unexpected increase of chloramphenicol permeability under the 

additional phospholipid layer. On the other hand, the significant difference between 

high and low accumulating compounds, as previously achieved by plain 20% (w/v) 
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starch gel, becomes lost in this hydrogel-phospholipid combination. Only at the lower 

phospholipid concentration, the membrane model shows again a tendency towards 

favourable permeation properties. However, here, it seems that again the starch gel 

dictates compound permeability, while the impact of the phospholipid layer becomes 

subtle. Compared to the accumulation in bacterio (Fig. 18), the pattern of permeabilities 

of the selected panel still appear best, when omitting an additional phospholipid 

coating. 

 

Figure 20. Permeability of four antibiotics across two different gel-phospholipid 

coatings.  As previously shown, Papp-values obtained from 20% (w/v) starch gel for in bacterio 

high-accumulating ciprofloxacin, chloramphenicol and tetracycline are significantly higher than 

Papp-values for low accumulating antibiotics such as novobiocin. When combined with 

phospholipid coatings of different liposomal suspensions (lipos.) the permeability dramatically 

changes. The higher the phospholipid content the less distinct the difference between Papp-

values of high and low accumulating drugs and the higher their standard deviations. 

Chloramphenicol the permeation of chloramphenicol seems favoured, whereas the permeation 

of ciprofloxacin and tetracycline gets affected. n6 from at least two independent experiments.   
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3.4.3 Automation of hydrogel preparation 

 

For better investigation of structure-permeation relationships on a wider antibiotic 

panel, we established a printing method for a more reproducible and standardized 

model production. Therefore, a customized modular and multifunctional bioprinter was 

constructed (Fig. 21) featuring a heated Hamilton® syringe as a print head.  

 

Figure 21. Customized bioprinter. The bioprinter consists of three movable axes (a, 

b, c), which allows for three-dimensional printing. It features an additional vertical axis 

(d) which extrudes the liquid hydrogel into wells of a 96-well filter plate (e). A Hamilton® 

syringe (f) serving as a reservoir and nozzle for the polysaccharide formulation, can be 

heated by a thermostat (g) combined with a peristaltic pump (h) to keep the formulation 

at sol state. Commands are given in g-code via a web browser (i) that addresses the 

control panel. 
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The customized bioprinter works according to so-called g-code commands. A list of 

commands used in this work is given in Table 9. 

Table 9. List of g-code commands relevant for the development of an automated coating 

protocol.  

Command range meaning 

G90 - Use absolute coordination system for all following moves in x, y, 

or z-direction 

G91 - moves printed head relative to current position in x, y, or z-direction 

for all following moves 

G0 - Move print head consecutively in x, y and z direction  

G1 - Interpolate movement of the print head in x, y and z direction 

G2 - Move print head clockwise in a circle  

G3 - Move print head counter clockwise in a circle 

G4 - Pause printing 

X >0.1 Movement of print head along x axis in mm 

Y >0.1 Movement print head along y axis in mm 

Z >0.1 Move print head along z axis in mm 

T 0 Activate tool (syringe extruder) 

E >0.005 Extrude (controls piston of the syringe) in mm 

I >0.1 Defines the location of the centre of the circle, around which the 

print head moves in mm 

J >0.1 Defines radius of the circular movement of the print head in mm 

F 0-1000 Defines speed of print head movement 

M42 - Addresses Peltier element 

P P0, P60 P0: activates heating of Peltier elements      

P60: activates cooling of Peltier elements 

S 0-255 Regulates heating or cooling rate respectively, S1 and S255 cause 

maximum heating or cooling performance, S0 switches off Peltier 

element 

 

Before employing the printer for gel coating, several functions were briefly investigated. 

To find the right working range of the extruder, the required movement of the syringe 

piston (l) can be calculated, when extruding 40 µL (= 40 mm³) of a liquid. This can be 

easily done by assuming the inner space of the syringe to be a perfect cylinder. The 

equation to calculate the cylinder volume is: 
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𝑉 =  ∗ 𝑟2 ∗ 𝑙     | ∶  ∗ 𝑟2  

𝑙 =
𝑉

 ∗ 𝑟2
 

 With Vcylinder= 40 mm3 and the inner radius of the syringe rinner syringe= 7.3 mm we obtain 

the value of 0.239 mm. This represents the ideal piston range for extruding 40 µL of 

liquid. Different amounts of water were printed, which were smaller and larger than 40 

µL. The actual extruded volumes were compared to corresponding pipetted and 

nominal volumes. Figure 22 demonstrates that printed water volumes very closely 

match the corresponding nominal volumes indicating a good accuracy, whereas 

pipetted water seems to be systematically below. Both extrusion methods, however, 

show a good linear correlation (R²printed
 = 0.9955 vs. R²pipetted = 0.9991). (R²printed 

=0.9997, when excluding 80 µL.)  

 

Figure 22. Comparison of several printed and pipetted water volumes. Extruding water 

by using the customized printer led to more accurate results within the range of 5 to 70 µL 

compared to pipetted water. A systematic error occurs when using a positive displacement 

pipet. Within 5 to 70 µL the standard deviation of both techniques remains low, whereas the 

standard deviation of printed volumes seems even lower. Points represent mean volume ± SD 

of n = 6, from 2 individual experiments. 

By looking at the standard deviation within the range of 10-70 µL, printing resulted in 

slightly lower standard deviations compared to pipetting.   

The establishment of a printing protocol eligible for a reproducible and complete 

coating required numerous empiric adjustments of the g-code. Especially, the distance 

[m3] 

[m] 
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of the needle from the filter membrane, the movement pattern and the distance 

between the wells is crucial.   

Further small explorative studies led to a final code, which is partially displayed in 

Figure 23. Notably, the selected piston range of two times 0.128 mm (Fig. 23 d,e) would 

in the ideal case extrude 42.85 µl instead of 40.00 µL. This seemingly higher nominal 

volume was chosen to compensate for the slightly negative error at these volume 

ranges as previously observed (Fig. 22, blue line). 

 

Figure 23. Excerpt of the g-code used to coat 96-well filter plates. a) Calibration step 

before the actual gel printing: the needle moves to the letter “A” engraved on the 96-well filter 

plate (a). In relative position to this letter all wells are then printed. The needle moves as close 

as possible to the wall of the starting well (b) and stops ca. 0.5 mm over the filter membrane 

(c). From there, the needle performs a slow circular movement while extruding the nominal 
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volume of 20 µL (d). Afterwards, the needle does the same movement with faster velocity while 

extruding another 20 µL (e). To assure complete covering of the filter membrane, the needle 

moves three more times (f), followed by moving to the centre of the well (g) before lifting (h) 

and moving to the next well (i). 

With the refined g-code an entire 96-well filter plate could be adequately coated with a 

20 % (w/v) starch gel.  

For the structural investigation of the obtained starch coatings, a new spectroscopy-

based method was developed. Hydrogels usually suffer from dramatic morphological 

changes in course of their gelatinization and exposure to an environment with low 

humidity, making comparative microscopic studies difficult. Furthermore, the 

preparation for microscopy can cause modifications or damage to the hydrogel 

samples, for example while cutting out the coated filter or while attaching a cover slip 

on top. Investigating the gel morphology directly out of the respective filter well without 

sample preparation is therefore a desirable approach.   

A possible solution would be the absorbance read out on single coated filters using the 

“multiple reads per well” function of a plate reader. In principle fluorescence can be 

used as well. However, the fluorescence read out has a couple of disadvantages, as 

for example the work under light protection,  quenching effects leading to non-linear 

thickness-signal correlations, which holds true especially for thicker membranes and a 

low number of reads per well leading only to a poorly resolved view on the membrane 

topology.  

In contrast, absorbance scans can be performed with up to 177 reads in a filled circle 

pattern. Gelatinized hydrogels are usually turbid. Their turbidity can be measured at 

UV-wavelengths wavelengths from 300 to 350 nm. However, as the spectroscopy at 

low wavelengths is prone to become disturbed by impurities of the gel, the filter 

membrane or the plastic scaffold, the gel can be stained with dyes having an 

absorbance maximum at higher wavelengths. Methylene blue with absorbance 

maxima at 606 and 666 nm (Fig. 24) is one example and was employed in this 

dissertation for the topological investigations.   



72 
 

 

Figure 24. Absorbance spectra of water and methylene blue. While at lower wavelengths 

also the filter plate itself absorbs, absorbance maxima at 606 nm and 666 nm seem particularly 

suitable for a specific detection of methylene blue-stained gel coatings. 

Applying these basic considerations for the characterization of printed and pipetted 

20% (w/v) starch gels indeed allowed for a comparative structural analysis of both 

techniques. In our studies, printed membranes generally had a higher average 

absorbance per well than manually pipetted membranes (Fig. 25 A, B; Fig. 26 A) 

indicating an increased thickness. Moreover, the starch distribution of printed coatings 

was more homogenous, both within and between the produced batches (Fig. 26 B-D) 

In addition, the formation of a meniscus was less prominent after printing (Fig. 25, 27 

A, B).   

 

Figure 25. Topological comparison of pipetted (A) and printed starch (B) 

membrane models. The printed starch coating is thicker and has a less pronounced 

meniscus. Absorbance reads of 177 positions/ well were plotted as a three-

dimensional plotting style.  
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Figure 26. Quantitative absorbance comparisons of pipetted and printed coatings. 

Varying absorbance allows for characterizations regarding the gel deposition per well (A), 

membrane evenness per well (B), fluctuations of gel deposition within a batches (C) as well as 

fluctuations of gel deposition between batches (D). Printed membranes show slightly increased 

deposition rates as well as a slightly enhanced coating homogeneity per well, batch and 

between batches. Bars represent mean ± SD. n9 from at least three batches. AU = 

absorbance units 

 

Figure 27. Stereomicrographs of pipetted (A) and printed (B) 20 % (w/v) starch coatings. 

Pipetted starch gels are more irregular in shape and their deposition is lower. Membranes were 

stained for better contrast with methylene blue. Pictures are representative for at least 9 

samples from at least 3 batches each.   
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In order to evaluate the functionality of the printed membrane model, the permeation 

of the previously employed panel of CIP, TET, RIF and NOV on printed starch 

membranes was studied and compared to the results to manually prepared (Fig. 28) 

membranes. While the permeability pattern of the four selected antibiotics was 

essentially the same, permeation of tetracycline through the printed starch membrane 

was decreased, reflecting that printed coatings were slightly thicker than pipetted ones. 

The data obtained with printed coatings were, however, in even better agreement to in 

bacterio data, indicating a less strong accumulation of tetracycline compared to 

ciprofloxacin80. The standard deviation of the obtained permeability coefficients did not 

noticeably change when the starch gel was printed suggesting that the main causes of 

errors do not happen during the coating process.  

Figure 28. Functional comparison of manually pipetted and printed starch membrane 

models. Permeability coefficients (A) as well as the permeation-time courses (B, C) of two 

high (green) and two low accumulating drugs (red) do not reveal obvious differences. The 

permeation velocity – represented by the Papp-values – slightly decreased for all four 

compounds on printed membranes, with some stronger decrease for tetracycline. The 

decrease can be explained by the increased thickness of printed starch layers. Values 

represent mean ± SD. n=12 from 3 independent experiments. Two-way ANOVA with Tukey’s 

multiple comparisons test was performed. *P<0.05, **P<0.01, ****P<0.0001. 
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3.4.4 Validation of starch gel 

 

After automation of the membrane coating process, we selected 27 antibiotics and 

generated in vitro membrane permeability data to validate the model (Fig. 29, Tab. 10).  

 

Figure 29. Permeation-time course of 27 antibiotics across the starch-based in vitro 

model. The figure depicts differences between permeation kinetics of the investigated 

antibiotics. 
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Table 10. Mean permeated amounts and standard error (SE) of the 27 tested antibiotics. 

 

  

Time point [min] 

Ciprofloxacin Nalidixic acid Novobiocin Chloramphenicol 

Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 1.01 0.14 16 1.24 0.11 12 0.49 0.06 16 1.13 0.14 16 

20 1.75 0.20 16 1.96 0.13 16 0.76 0.05 16 1.98 0.16 16 

30 2.54 0.28 16 2.59 0.13 16 1.06 0.07 16 2.56 0.17 16 

45 3.61 0.38 16 3.57 0.16 16 1.50 0.09 16 3.50 0.19 16 

60 4.43 0.44 16 4.37 0.14 16 1.92 0.09 16 4.28 0.19 16 

90 5.85 0.55 16 5.71 0.15 16 2.70 0.09 16 5.81 0.19 16 

Time point [min] 

Streptomycin Tobramycin Sulfamethoxazole Norfloxacin 

Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.28 0.14 12 0.18 0.04 12 0.34 0.09 16 0.92 0.11 16 

20 0.27 0.13 12 0.36 0.04 12 0.94 0.16 16 1.64 0.16 16 

30 0.70 0.18 12 0.61 0.05 12 1.43 0.19 16 2.07 0.13 16 

45 1.34 0.30 12 1.04 0.07 12 2.36 0.28 16 2.81 0.15 16 

60 1.72 0.32 12 1.52 0.11 12 3.96 0.10 16 3.64 0.22 16 

90 3.06 0.37 12 2.34 0.14 12 5.64 0.10 16 4.79 0.18 16 

Time point [min] 

Cefuroxime Imipenem Amidochelocardin Sorangicin A 

Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.96 0.16 16 0.87 0.11 16 0.66 0.12 12 0.44 0.07 12 

20 1.50 0.20 16 1.64 0.17 16 1.09 0.09 12 0.72 0.08 12 

30 2.03 0.21 16 2.22 0.17 16 1.56 0.10 12 1.00 0.10 12 

45 2.62 0.20 16 3.13 0.21 16 2.10 0.06 12 1.49 0.11 12 

60 3.41 0.19 16 3.76 0.24 16 2.54 0.05 12 1.92 0.12 12 

90 4.46 0.23 16 5.04 0.33 16 3.58 0.05 12 2.84 0.13 12 

Time point [min] 

Tetracycline Tigecycline Lincomycin Clindamycin 
Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.68 0.06 16 0.47 0.08 16 0.23 0.05 12 0.49 0.13 16 

20 1.18 0.08 16 0.90 0.13 16 0.70 0.11 12 1.10 0.19 16 

30 1.78 0.12 16 1.36 0.19 16 1.41 0.26 12 1.42 0.15 16 

45 2.46 0.15 16 1.96 0.19 16 2.01 0.14 12 2.05 0.16 16 

60 3.07 0.16 16 2.54 0.21 16 2.87 0.16 12 2.94 0.25 16 

90 3.90 0.18 16 3.48 0.20 16 3.99 0.12 12 4.26 0.28 16 

Time point [min] 

Pipemidic acid Rifampicin Vancomycin Aztreonam 
Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.89 0.11 16 0.35 0.07 16 0.07 0.02 16 1.16 0.17 16 

20 1.51 0.12 16 0.70 0.11 16 0.21 0.03 16 1.80 0.18 16 

30 2.06 0.14 16 1.10 0.11 16 0.50 0.08 16 2.29 0.21 16 

45 2.92 0.16 16 1.68 0.12 16 0.76 0.09 16 3.10 0.21 16 

60 3.68 0.17 16 2.22 0.13 16 1.14 0.11 16 3.70 0.22 16 

90 4.81 0.16 16 3.16 0.14 16 1.87 0.11 16 4.92 0.23 16 

Time point [min] 

Fusidic acid Ampicillin Erythromycin Levofloxacin 
Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.04 0.01 12 0.60 0.10 16 0.07 0.02 16 0.18 0.07 12 

20 0.09 0.01 12 1.58 0.24 16 0.16 0.03 16 0.47 0.10 12 

30 0.18 0.02 12 2.46 0.36 16 0.30 0.06 16 0.85 0.12 12 

45 0.28 0.03 12 3.44 0.47 16 0.56 0.10 16 1.47 0.14 12 

60 0.49 0.05 12 4.13 0.54 16 0.97 0.17 16 2.11 0.16 12 

90 0.90 0.09 11 5.55 0.56 16 1.91 0.60 16 3.13 0.16 12 

Time point [min] 

Minocycline Kanamycin Sparfloxacin 

 

Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n Mean 
[nmol] 

SEM [nmol] n 

10 0.06 0.04 12 0.03 0.01 12 0.32 0.04 12 

20 0.17 0.08 12 0.14 0.03 12 0.56 0.04 12 

30 0.46 0.09 12 0.31 0.05 12 0.79 0.04 12 

45 1.04 0.11 12 0.56 0.06 12 1.10 0.04 12 

60 1.73 0.10 12 0.87 0.08 12 1.44 0.04 12 

90 2.83 0.09 12 1.39 0.09 12 1.97 0.05 12 
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Among those, the in vitro data of 10 compounds were compared to their already 

reported in bacterio permeation into wild type E. coli strain MG1655 using the 10 

minutes time point80. As depicted in Figure 30 A, high (green area) and low (red area) 

accumulating compounds according to the in bacterio assay could be analogously 

identified by the starch-based in vitro assay after the same amount of time. It is worth 

mentioning that ampicillin (AMP), which reportedly lacks good accumulation in 

bacterio, shows rather high permeability in vitro. Bearing in mind that -lactams bind 

to their target covalently and may undergo -lactamase mediated hydrolysis, the 

quantification of those compounds by mass spectrometric methods leads to an 

underestimation of their accumulation in bacterio as already discussed previously80. 

Ampicillin fulfils all postulated “eNTRy” rules176 and recently published results of an 

outer membrane vesicle based permeation assay support the assumption of an 

elevated accumulation of ampicillin102. Since there is evidence that ampicillin achieves 

a high accumulation at its target site in the periplasm, the previous classification of 

ampicillin as a low accumulating antibiotic80 should perhaps be reconsidered.   

 

Figure 30. In vitro – in bacterio quadrant analysis. Permeated amounts obtained from the 

in vitro starch model qualitatively suit the reported accumulation in bacterio (A). The in bacterio 

as well as the in vitro assay show a separation into high (green quadrant) and low accumulating 

(red quadrant) antibiotics. Matching results were also found for an additional selection of 

antibiotics (B). Points represent mean permeated amounts ± SE, nin vitro 12 from at least 3 

independent experiments. nin bacterio=4 from 2 biological replicates. [a] reported accumulated 

amounts80. ERY = Erythromycin; VAN = Vancomycin, FUS = Fusidic acid. 
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To further validate our starch-based membrane model, in vitro permeation data of 

additional antibiotics were compared to those obtained from an alternative in bacterio 

control assay95 (Fig. 30 B), which allows for time-resolved permeation studies. Like 

before, an accurate match was found between high accumulating compounds in 

bacterio and fast permeating compounds in vitro already after 10 min. The same held 

true for low accumulating or slow permeating compounds, respectively. TET, CIP, CLI 

and NOV served as comparability check between reported and generated in bacterio 

data. The comparability was confirmed, because a clear separation between high 

accumulating TET and CIP, and low accumulating CLI and NOV, resp., was obtained 

with either assay. By having a look at the permeation-time curves of the in bacterio 

control assay (Fig. 31 A) one can easily notice the division into a low accumulating 

section (streptomycin (STR), tobramycin (TOB), clindamycin (CLI), lincomycin (LIN), 

sulfamethoxazole (SUL), tigecycline (TIG) and NOV) and a small high accumulating 

section (CIP, TET and nalidixic acid (NXD)). As for the starch-based in vitro model an 

accurate discrimination of the antibiotic panel can be seen within the time interval of 

10-30 min (Fig. 31 B). By looking more specifically at the quinolones, nalidixic acid and 

ciprofloxacin reach a high level of accumulation in bacterio, even though NXD 

accumulates more slowly (Fig. 31 A). The comparably high accumulation of NXD 

stands in contrast to results obtained from molecular dynamics simulations performed 

on OmpF and vesicle swelling assays102. Furthermore, it lacks an ionisable nitrogen 

and consequently disagrees with the proposed “eNTRy” rules. However, previous 

permeation studies on a multi-layered lipid in vitro model suggest an extensive 

permeation of nalidixic acid across the LPS and phospholipid layers of the cell 

envelope of E. coli94. The fact that a negatively charged substance highly accumulates 

in rather unspecific in vitro models as well as in living E. coli demonstrates that less 

specific exclusion effects can be already sufficient for adequate predictions.   

TIG showed a poor initial in bacterio accumulation and in vitro permeability. Its 9-t-

(butylglycylamido)-moiety, seems to sterically delimit the access via OmpC and 

OmpF177 in bacterio and also impedes the permeation through the starch network in 

vitro. Additionally, TIG is known for its side chain-mediated decreased efflux178, which 

explains its steadily increasing accumulated amount in course of time without 

fluctuation in bacterio. Another class that turned out to be low accumulating is the 

aminoglycosides. A low accumulation of TOB and STR can be also observed in our in 

vitro model, which is probably due to hydrogen bond formation with the hydroxyl-
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groups of the glucose units of starch. The same effect may occur with LPS, while 

aminoglycosides permeate across the outer membrane in course of ‘self-promoted 

uptake11. Clindamycin and lincomycin, which both feature a carbohydrate structure, 

may suffer from the same mechanism of retention like aminoglycosides. The 

comparably low accumulation of SUL despite its low molecular weight in bacterio is 

remarkable. Probably, the absence of charge at pH 7.4 delimits the permeation through 

porins. At the same time, SUL is rather polar and has a V-shaped structure, which - 

similarly to aminoglycosides and lincosamides - may inhibit the permeation through 

LPS and phospholipids. The structural feature may also play an important role during 

the permeation across starch gel causing an obvious lag time in the beginning. Lag 

times in the beginning of the experiment were also noticed for other compounds, such 

as STR, LIN and minocycline. 
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Figure 31. In bacterio accumulation- (A) and in vitro permeation-time course (B) of 10 

antibiotics. Although the accumulation within the bacterium is a multifactorial process, 

similarities can be found in the permeation across the starch-based in vitro model. High 

accumulating CIP and NXD also clearly permeate remarkably well. Also tetracycline shows a 

comparably good permeation within the time interval of 10-30 min, which holds also true for its 

in bacterio accumulation within the same time interval. nin bacterio = 4 from 2 independent 

experiments. nin vitro= 12-16 from 3-4 independent experiments. Error values are not displayed 

for reasons of clarity. 

Another important aspect is precision. As can be seen in Figure 32 A-E, the overall 

scatter is relatively high, whereas within one single experiment it is low. Moreover, high 

accumulating compounds tend to have a higher scatter than low accumulating 

compounds, which is most likely because of the manual pausing of the permeation 

study before the quantification of permeated amounts. As the permeated amount of 

high accumulating compounds increases faster, little deviations in time points can 

cause higher deviations in the concentration-time courses. Prospectively, an 

automation of the transport study will allow to improve on this aspect, especially when 
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investigating the permeation of large antibiotic panels. Moreover, as starch gels 

undergo the process of retrogradation179, it is also important to precisely control the 

time intervals between the production and the use of the hydrogels for the permeation 

study to ensure optimal reproducibility. 

Figure 32. Permeation-time course of chloramphenicol and novobiocin from 4 

experiments. The scatter within one experiment (A, B, C or D) is less pronounced than 

between experiments (E). 
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3.4.5 Structure-permeability relationships 

 

Since a non-linear phase of permeation behaviour occurs for some compounds at the 

time interval with most validity (10-30 min), the area under the curve (AUC10-30 min) was 

calculated (see appendix 7.1 “List of employed antibiotics and their physicochemical 

properties”) and used instead of Papp for investigations of structure-permeability 

relationships. Besides, a threshold value was introduced, which classifies substances 

with an AUC10-30min < 21 nmol*min as low permeating and all other molecules as high 

accumulating (Figure 33). This threshold value leads to an accurate classification of all 

previously compounds discussed in the previous chapter. Furthermore, it also 

classifies amidochelocardin as a high accumulating and sorangicin A as a low 

accumulating drug, which is in agreement with their previously reported MICs180,181. 

In agreement with previous findings in bacterio79,182, molecular weight (Mw) determines 

the permeability of compounds through the 20% starch gel model. A decrease in 

permeation can be observed, when plotting the molecular weight of our panel of 

antibiotics against their AUC10-30 min (Figure 33 A) with an apparent cut-off of at ca. 500 

Da. This value is lower than the widely assumed cut-off for general porins of 

Enterobacteriaceae (600 Da)19,137,183. However, focusing only at this descriptor is 

misleading since confounding factors will also contribute. A value clearly below 600 Da 

might support the capability of the model to predict antibiotic accumulation. 

Accumulation is – apart from uptake – also a function of efflux. Studies conducted by 

Astra Zeneca indicate that especially those compounds with Mw between 450 Da and 

600 Da undergo efflux in E. coli and P. aeruginosa136. This condition might have 

contributed to the good match between in vitro permeation and in bacterio 

accumulation.  

Another distinct dependency was found between minimum projection area and drug 

permeation (Figure 33 B).  This value being a hybrid parameter for molecular weight 

and three-dimensionality may be particularly helpful in drug development, since it 

implies that a potentially low accumulation due to high molecular weight can be 

compensated by reducing the spatial molecular expansion. Similar conclusions were 

drawn already recently139. By looking at the dependency between permeation and 

globularity a correlation can also be observed, even though it is less strong, if 

compared to the previous parameters (Figure 33 C).  

As for rigidity, unlike previously reported80 no clear correlation could be found between 
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AUC10-30 min and number of rotatable bonds (Figure 33 D). However, as we selected a 

panel which is quite diverse in molecular size, it seems necessary to use a relative 

parameter, which compensates for the molecular size to investigate the permeation-

rigidity dependency. By the introduction of the relative amount of unsaturated bonds 

instead, we could indeed demonstrate a correlation between molecular rigidity and 

AUC10-30 min (Figure 33 E) indicating that more rigid molecules permeate better. In 

contrast, no clear tendency was found among compounds with amine groups: only 2 

compounds with a primary amine showed high accumulation, whereas 9 of the high 

accumulating drugs did not feature any primary amine and 7 compounds with a general 

amine (primary, secondary or ternary) highly accumulated, whereas 12 compounds 

featuring an amine accumulated low (Figure 33 F). The low number of molecules with 

a primary amine (5) within our panel, however, does not allow for conclusions on their 

impact.    

Rather impressively for a non-charged membrane, molecular net charge appears to 

affect permeation. A permeation optimum was reached at a net charge close to zero 

(Figure 33 G). This phenomenon may be explainable due to ion-dipole interactions of 

permeating molecules to the hydroxyl groups of the polysaccharide network. In this 

regard, it is important to mention that most of the well permeating drugs in vitro are 

zwitterions at pH 7.4 (8 out of 11), whereas the majority of low accumulating antibiotics 

are not (3 out of 14).  The preferred permeation of zwitterionic compounds was also 

reported for the porin OmpF59, where ion-ion interactions determine the 

translocation111.  

We also observed that similar to earlier studies79 the number of hydrogen bond donors 

and acceptors had impact on antibiotic permeation in vitro (Figure 33 H, I). In both 

cases a low number was associated to better permeation.  

Notably, clogDpH7.4 as parameter for hydrophilicity or lipophilicity, also seemed to 

influence drug permeation, since molecules with clogDpH7.4-values between 0 and -5 

permeated best (Figure 33 J). This also suits previously assumptions about an 

enhanced permeation of slightly hydrophilic compounds as a typical feature of porin 

mediated uptake31,79,184. 
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Figure 33. Correlations between drug permeation and selected physicochemical 

parameters. From 27 antibiotics, the AUC10-30 min as representative parameter for permeation 

is plotted against (A) molecular weight, (B) minimum projection area, (C) globularity, (D) 

number of hydrogen bond donors and (E) acceptors, (F) net charge, (G) type of amine group, 

(H) number of rotatable bonds, (I) relative abundance of unsaturated bonds, (J) clogDpH7.4. The 

dashed line represents the set AUC10-30min threshold of 21 nmol*min. 
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3.4.6 Random forest analysis 

 

To assess the impact of the chosen physicochemical parameters on the performance 

of the in vitro assay, a random forest regression model (RF) was trained employing 

these physicochemical properties and their AUC10-30 min. Generally, the RF was trained 

with 26 out of 27 tested compounds, whereas the AUC10-30 min of the 27th compound 

was predicted to be high or low accumulating. This was done in 27 cycles, each time 

predicting the AUC10-30 min of another 27th compound after training the model with the 

remaining 26 substances. For the impact of the 10 physicochemical parameters on the 

prediction, we systematically left one parameter out of the RF and compared the 

increase of prediction error (%lncMSE). In this way, the first random forest regression 

confirmed 7 factors (molecular weight, minimum projection area, rigidity, number of 

hydrogen bond donors and acceptors, globularity, charge) to be critical (data not 

shown), for which the process was repeated. With this run, we generated a ranking of 

the importance of the parameters for the prediction (Table 11), where parameters 

representing molecular size and rigidity had the highest impact. When applying the 

threshold of 21 nmol*min  for high and low accumulating compounds on the predicted 

accumulation by RF we achieved an accuracy of 88.89 % compared to the in vitro 

model and 81.25 % compared to those compounds that were tested in bacterio (Table 

12). The absence of clogDpH7.4 as important value is surprising but is perhaps due to 

the low population of antibiotics used to train the RF-model. Nonetheless, we found RF 

model in large agreement with our in vitro and in bacterio results. 

Table 11. Most influential physicochemical parameters according to random forest 
analysis. 

Features %lncMSE 

Globularity 0.71 

# Hydrogenbond donors 3.26 

Net charge 5.19 

# Hydrogenbond acceptors 5.80 

Relative abundance of 

unsaturated bonds 
16.23 

Molecular weight 27.99 

Minimum projection area 40.76 
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Table 12. Comparison of AUCs obtained from random forest analysis, in vitro 

permeation studies and in bacterio accumulation studies. Green cells indicate high 

accumulating, red cells indicate low accumulating drugs. 

 

Class Compound 
AUC10-30 min RF 

[nmol*min] 

AUC10-30 min 

 in vitro 
[nmol*min] 

In bacterio  
compound 

classification 

Aminocoumarins Novobiocin 16.400 15.350  

Aminoglycosides 

Kanamycin A 9.200 3.124  

Streptomycin 8.459 7.620  

Tobramycin 8.291 7.620  

Amphenicols Chloramphenicol 27.916 38.270  

Ansamycins Rifampicin 9.355 14.200  

-lactams 

Ampicillin 27.698 31.090  

Aztreonam 21.308 35.300  

Cefuroxim 25.824 29.990  

Imipenem 26.439 31.820  

Glycopeptides Vancomycin 14.115 4.941  

Lincosamides 
Clindamycin 11.517 20.510  

Lincomyin 20.904 15.180  

Macrolides 
Erythromycin A 10.142 3.474  

Sorangicin A 11.272 14.350  

Pyridopyrimidins Pipemidic acid 30.816 29.790  

Quinolones 

Ciprofloxacin 30.384 35.230  

Levofloxacin 27.883 9.819  

Nalidixic acid 23.400 38.720  

Norfloxacin 31.652 31.310  

Sparfloxacin 20.523 11.100  

Steroids Fusidic acid 13.733 2.038  

Sulfonamides Sulfamethoxazole 29.628 18.230  

Tetracyclines 

Minocycline 14.635 4.309  

Tetracycline 19.968 24.090  

Tigecycline 13.215 18.120  

Tetracycl., atyp. Amidochelocardin 25.271 21.96  

Accuracy of RF [%]   88.89 % 81.25 % 
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3.4.7 Examples of Application 

 

Having demonstrated obvious associations between in vitro permeation and in bacterio 

accumulation, different sets of compounds were tested on the hydrogel model and 

compared to reported data.  

First, we selected three in-house small-molecule inhibitors of RNA-polymerase with 

potent activity against Gram-positive bacteria185 but limited activity on Gram-negative 

species (Table 13). By inspecting the ratio of target inhibition (IC50) and antibacterial 

activity (MIC95) against an E. coli TolC strain, it is obvious that for compound 3 this 

value is below 0.16 indicating a bad access of the compound to its target. This is in 

agreement with its extraordinarily low permeation in our in vitro model (Fig. 34). In 

contrast, the IC50/MIC95 ratio for compounds 1 and 2 was comparatively high and for 

compound 2 even more than twice as high as for compound 1. This difference could 

be reflected by permeability data of our model. In general, it can be noticed that the 

permeability of all three compounds was found to be low despite of their molecular 

weight, which is less than of the fast permeating tetracycline. This, however, is 

plausible considering the absence of a positive charge necessary for the formation of 

a zwitterion and the neutralization of the net charge. Moreover, the lipophilicity of these 

compounds is rather high (clogDpH7.4>2). The particularly slow permeation of 

compound 3 is understandable, since it is the largest, most lipophilic, and most globular 

compound of all three RNA polymerase inhibitors. The overall low permeability of these 

compounds is in agreement with their MIC95 values and could explain the weak activity 

of this class in Gram-negative bacteria.  
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Table 13. RNA polymerase inhibitors and their physicochemical as well as antibacterial 

properties. 

ID Structure 

Activity Permeability 

 

Molecular Features 

 

IC50 

[µM] 

MIC95 

[µM] 

IC50/ 

MIC95 

Papp*10-5
 

[cm*s-1] ± SE 

Min. 

proj. 

area 

[A2] 

Mw 

[Da] 

Rigi-

dity 
# HBA 

Net 

charge 

(pH7.4) 

# HBD Glob. 

1 

 

14 33 0.42 0.37 ± 0.03 51.12 437.3 0,45 5 -1 3 0,013 

2 

 

22 23 0.96 0.34 ± 0.06 39.07 425.3 0,43 6 -1 3 0,011 

3 

 

8 >50 <0.16 0.20 ± 0.08 60.86 562.4 0,48 8 -1 4 0,050 

 

 

Figure 34. Assessment of the permeability of three RNA polymerase inhibitors. The 

comparison to high accumulating CIP and low accumulating NOV indicates that these three 

substances likely belong to low accumulating drugs, whereas 3 probably accumulates 

particularly low. n=9-12 from 3 independent experiments. One-way ANOVA was performed 

with Tukey’s multiple comparisons test. ****P<0.0001, **P<0.01 

 

A further example is the test of the fluoroquinolones CIP, Moxifloxacin (MOX) and 

Sparfloxacin (SPA), being either complexated with phenanthroline and copper(II) ions 

(proportion 1:1:1) or free.  

Significant differences can be found between the permeation of complex-bound and 
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free fluoroquinolones, whereas complexed fluoroquinolones show slower permeation 

(Fig. 35). This is in agreement with docking simulations of free and complex-bound 

forms showing that free fluoroquinolones have better access to the constriction zone 

of OmpF supporting an enhanced porin-mediated permeability of free 

fluoroquinolones186. It must be mentioned, however, that some fluoroquinolone 

complexes show equal bactericidal activity, which can be explained in two ways: (i) the 

compounds are highly potent, and therefore even extremely low concentrations within 

the bacterium are already sufficient for their activity, or (ii) an alternative active pathway 

exists, as found for P. aeruginosa187. 

 

Figure 35. Assessment of the permeability of free and complex-bound fluoroquinolones. 

Complexes permeate significantly slower than free fluoroquinolones.  Generally, the 

permeation of the complex-bound fluoroquinolones is still faster than the permeation of NOV. 

CIP = Ciprofloxacin, MOX = moxifloxacin, SPA = sparfloxacin, NOV = novobiocin. n=12 from 

3 independent experiments. Two-way ANOVA was performed with Tukey’s multiple 

comparisons test. ****P<0.0001 

 

3.4.8 Permeability-activity relationships in different bacterial strains 

As a further step, we investigated direct associations between in vitro permeability and 

antibacterial activity against Gram-negative bacterial species mentioned in the priority 

list by the World Health Organization188. Therefore, we took reported MICs from the 

EUCAST data base for E. coli, Pseudomonas aeruginosa, Acinetobacter baumannii, 

and Klebsiella pneumoniae, Campylobacter jejuni, Salmonella spp. and Neisseria 

gonorrhoeae189 and compared those to their respective Papp (Fig. 36, Table in appendix 

7.2 “Minimum inhibitory concentrations”). Obviously, there is a general tendency 

throughout all seven investigated species, that compounds with a Papp above 1*10-5 
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cm/s show antibacterial activity, whereas only two to three compounds show activity 

although their Papp is below 1*10-5 cm/s. It is worth mentioning that the two mostly active 

compounds despite their low in vitro permeability are the aminoglycosides kanamycin 

and tobramycin. Aminoglycosides are known for their extraordinary potency, which 

might compensate for their low accumulation190. This circumstance opens the 

perspective for this assay to be not only used for the prediction of in bacterio 

accumulation, it may also serve as a tool to exclude inactive compounds at an early 

stage of drug development. 
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Figure 36. Quadrant analysis of in vitro permeability and in bacterio activity 

relationships of Escherichia coli (A), Acinetobacter baumannii (B), and Klebsiella 

pneumoniae (C), and Pseudomonas aeruginosa (D), Campylobacter jejuni (E), 

Salmonella spp. (F) and Neisseria gonorrhoeae (G). Arbitrarily set lines at an apparent 

permeability coefficient (Papp) of 1*10-5 cm/s and a minimum inhibitory concentration (MIC) of 

64 µg/mL demonstrate a high number of cases, where low MIC values are associated with 

high permeability (green area), whereas low in vitro permeability tends to be associated with 

inactivity. Only few points show activity despite low in vitro permeability (red area). Crosses 

indicate non-available MICs according to EUCAST standards. 
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3.5 Conclusion 
 

A polysaccharide-based membrane model capable to discriminate high from low 

accumulating antibiotics in the Gram-negative bacterium E. coli was developed. Based 

on such rather reductionist approach, structure-permeation relationships could be 

revealed in more clarity. Factors disturbing the analysis of antibiotic permeation such 

as enzymatic degradation or efflux could be excluded. The preparation of the model is 

simple, highly reproducible, extremely cost effective, hazard-free and allows for high-

throughput screening applications on molecules with very different physicochemical 

properties. While uptake studies in bacteria or models thereof are much more 

cumbersome to perform, membrane permeation experiments with this model can be 

automated and deliver accurate results already after 10 min. A strong selectivity of the 

model membrane for charges may not be favorable since E. coli  features significant 

amounts of the porins OmpF – being selective for positively charged – and PhoE – 

being selective for negatively charged molecules.31 Room for further improvements of 

the model other than by introducing local charges for better ion selectivity may consist 

in the use of starches with different ratios of amylose and amylopectin as well as further 

variation of gel concentrations. This might be of particular interest for the creation of 

permeation models for intrinsically more resistant bacterial species such as P. 

aeruginosa, A. baumanii or K. pneumoniae. However, extensive in bacterio 

accumulation data for a model validation with respect to these species are still missing. 

Apart from the introduction of a polysaccharide-based permeation model, we 

elucidated the in bacterio accumulation of representative aminoglycosides and 

sulfonamides. The outstanding predictivity of our rather simple starch-based in vitro 

model, which does not feature any element of active transport, suggests that Gram-

negative uptake of antibiotics is essentially governed by passive transport (e.g. through 

porins). Applying contemporary tools of machine learning to our data set provided 

strong evidence to the impact of molecular characteristics. Complementary to the 

previously suggested “eNTRy” rules, we found that a small set of 7 features was 

sufficient of create a robust machine learning model with good predictivity. 

Prospectively, by refining the composition of the alginate formulation, the described 

assay could be modified towards assessing drug permeation across biofilms. 
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4. Membrane Model Based on Bacterial Extracellular 

Vesicles 
 

Main contributors: 

Robert Richter, Adriely Góes, Marcus Koch, Gregor Fuhrmann, Nicole Schneider-

Daum, Claus-Michael Lehr 

Contributions were as follows: 

 

Robert Richter cultured bacteria, isolated vesicles, performed SDS-

Page, dynamic light scattering, laser-doppler 

anemometry and nanoparticle tracking analysis of 

vesicles, developed vesicle isolation protocol, developed 

membrane preparation protocol, characterized 

membrane by SEM, developed, performed and analysed 

transport studies 

Adriely Góes Analysed vesicles by SEM 

Marcus Koch Analysed vesicles by cryo-TEM 

Gregor Fuhrmann,    

& Nicole Schneider-Daum      Supervised the project 

Claus-Michael Lehr      Supervised the project, revised manuscript 
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4.1 Introduction 
 

Extracellular vesicles are membrane vesicles constitutively shed by virtually all cells. 

Although their concept can be even traced back as far as to Charles Darwin191, they 

have become a popular focus of research just in recent years. Depending on their 

origin and composition, extracellular vesicles fulfil different purposes, such as cell-to-

cell communication, disposal of unwanted compounds and defence192. For Gram-

negative bacteria three different vesicle types have been reported: i) outer membrane 

vesicles (OMVs)193, ii) inner membrane vesicles194 and iii) outer-inner membrane 

vesicles195,196. 

Since the outer membrane of Gram-negative bacteria appears to be the major delimiter 

of antibiotic permeation, OMVs seem eligible also for their repurposing towards the 

application as a permeation model for drug permeation studies. Although in this 

chapter strong evidence will be provided that the obtained vesicles are outer 

membrane vesicles, I considered it as more appropriate to refer to the biomaterial as 

extracellular vesicles since there is no evidence that other vesicle types were excluded. 

Generally, OMVs are biomaterials, which can be comparatively easy obtained at low 

costs. Their vesicular structure resembles liposomes but they feature a plethora of 

components27 specific for each bacterial strain and species. Omp’s, LPS, 

phospholipids, parts of efflux pumps and TonB-dependent transporters (TBDT) make 

outer membrane vesicles to a favourite candidate to be assessed as an in vitro 

permeation model. Nakae et al.197, Ferreira et al.198 as well as Wang et al.113 employed 

already bacterial membrane vesicles to investigate the outer membrane permeability 

of saccharides or antibiotics, respectively. Their individual advantages and 

disadvantages are mentioned in section 1.4.2 Cell-free assays. As protocols for 

liposomal coating of filter supports exist3, these can be easily adapted to OMVs. It is 

hypothesized that this approach will have advantages compared to the previously 

mentioned approaches, regarding precision, compound diversity, a more authentic 

environment and more straight forwards handling. 

 

  



95 
 

4.2 Materials 

 

MultiScreen® 96-well Filter plates with 0.4 µm PCTE membrane and MultiScreen® 96-

well Transport Receiver Plates were obtained from EMD Millipore Corporation 

(Billerica, Ma, USA). Agarose SERVA (research grade) was obtained from SERVA 

Electrophoresis GmbH (Heidelberg, Germany). 1-hexadecanoyl-2-(9Z-octadecenoyl)-

sn-glycero-3-phosphoethanolamine (POPE), 1-hexadecanoyl-2-(9Z-octadecenoyl)- 

sn-glycero-3-phospho-(1′-rac-glycerol) (sodium salt) (POPG), and 1,1′,2,2′-tetra-(9Z-

octadecenoyl) cardiolipin (sodium salt) (CL) were obtained from Avanti Polar Lipids 

Inc. (Alabaster, AL, USA). Lipoid E80 was kindly donated by Lipoid GmbH 

(Ludwigshafen, Germany). Tetracycline-HCl was obtained from chemodex (St. Gallen, 

Switzerland). Rifampicin was obtained from USBiological (Swampscott, MA, USA). 

novobiocin sodium was from Cayman Chemical Company (Ann Arbor, MI, USA). 

Phosphate buffered saline (pH 7.4) was prepared from dissolution of 0.02M PBS 

tablets without potassium (Genaxxon Bioscience, Ulm, Germany) in 1 L of Milli-Q 

water. Hydrochloric acid and sodiumhydroxide solutions (1 M each) were used from 

Bernd Kraft (Duisburg, Germany). Methanol and Acetonitrile (both HPLC grade) were 

obtained from VWR Chemicals (VWR International S.A.S., Fontenay-sous-Bois, 

France). FluoraldehydeTM (o-phthaldialdehyde reagent solution) was obtained from 

Thermo Fisher Scientific (Waltham, MA, USA). Trichloro acetic acid, tobramycin, 

ciprofloxacin, chloramphenicol, and clindamycin hydrochloride were obtained from 

Sigma-Aldrich Co. (St. Louis, MO, USA). 

 

4.3. Methods 
 

4.3.1 Bacterial culture 

 

One colony of Escherichia coli BL21 or K-12 MG1655, respectively, was transferred 

into a 100 mL conical flask filled with 20 mL lysogeny broth (LB). After overnight 

incubation at 37°C, 180 rpm the entire broth was transferred to a 1 L conical flask filled 

with 280 mL of LB broth, which was cultured over another 6 nights (37 °C, 180 rpm) 

until isolating the extracellular vesicles. 
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4.3.2 Vesicle isolation  

 

Vesicles were harvested at the death phase (1.2 * 1010 CFU/mL, OD600 = 4.08). 300 

mL of bacterial culture was dispensed into FalconTM tubes and centrifuged for 15 min 

(4°C, 9500 g) using a Hettich Rotina 420 R centrifuge (Andreas Hettich GmbH & Co. 

KG, Tuttlingen, Germany). Following centrifugation, the supernatant was filtered either 

through a 0.20 µm SartoriusTM Minisart® NML or 0.45 µm SartoriusTM Minisart® NY 

syringe filer (Sartorius AG, Göttingen, Germany) The concentration of vesicles was 

done using either ultracentrifugation or a polyethylene glycol (PEG)-mediated 

precipitation method. In the case of ultracentrifugation, the filtrate was equally 

dispensed into 60 mL ultracentrifugation tubes followed by 2h centrifugation at 

100.000g (4°C) using a Beckman Coulter OptimaTM XL-100K Ultracentrifuge 

(Beckman Coulter Corp., Brea, CA, USA). In the case of PEG-precipitation, the filtrate 

was dispensed into 50 mL FalconTM tubes and blended with a 33% (m/m) PEG8000-

sultion in a 4:1 ratio. FalconTM tubes were kept at 4 °C overnight and subsequently 

centrifuged for 30 min at 16,098 g (4°C). The supernatant was discarded and each 

pellet resuspended in 100 µL of PBS (pH7.4). 

4.3.3 Preparation of Liposomes 

 

The preparation of bacteriomimetic and mammalian comparator liposomes was done 

as in the section 2. “A total four-layered Model of the Gram-negative Bacterial 

Envelope” and according to Graef et al.117 In contrast to bacteriomimetic liposomes, 

mammalian comparator liposomes, were prepared from 233 mg Lipoid E80 (egg 

phosphatiylcholine), which were dissolved in 5 mL of a blend of chloroform and 

methanol (3:1). Evaporation, rehydration and extrusion was performed at 50 °C.  

4.3.4. Nanoparticle tracking analysis 

 

Liposomes were diluted 1 in 100.000 and bacterial extracellular membrane vesicles 

were diluted 1 in 10.000 in PBS (pH7.4) before analysis. Each analysis was done in 

triplicates with 30 s per analysis at 25 °C using the Nanosight LM-10 (Malvern 

Instruments Ltd., United Kingdom) equipped with a green laser (532 nm). The camera 

level varied between 12 and 15, while the detection threshold was chosen between 2-

5 accordingly. Data processing was performed by Nanosight 3.1 software (Malvern 

Instruments Ltd., United Kingdom). 
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4.3.5 Zetasizing 

 

For zetasizing, liposomes were diluted 1 in 1000 and bacterial extracellular membrane 

vesicles were diluted 1 in 100 in PBS (pH7.4) before analysis using dynamic light 

scattering to determine the size and laser doppler micro-electrophoresis for the 

determination of the zeta potential (Zetasizer Nano ZS, Malvern Instruments, UK). 

 

4.3.6 SDS-PAGE 

 

Vesicles of E. coli K-12 MG1655 as well as BL21 were obtained from a one-week liquid 

culture of 300 mL as described before using trichloroacetic acid (TCA) precipitation. 

50 mL of bacteria free EV-containing LB-medium were given to 10 g TCA, followed by 

shaking and incubation in an ice bath for 30 min. After that, the liquid was centrifuged 

for 30 min at 11,000 rpm and 4°C. The supernatant was discarded, and the pellet 

resuspended in 0.5 mL ice cold acetone followed by another centrifugation at 30 min 

at 11,000 rpm. After discarding the supernatant, the pellet was resuspended in 40 µL 

of a blend of PBS and resuspension buffer (RSB, 3 parts PBS to 1 part RSB).  

20 µL of the obtained samples were given to 5 µL sample buffer (15 % (v/v) deionized 

water; 50 % (v/v) 0.5 M Tris-HCl (pH 6.8); 30 % (v/v) glycerol; 10 % (w/v) sodium 

dodecyl sulfate (SDS); 0.02 % (w/v) bromophenol blue, 5 % (v/v) -mercaptoethanol), 

heated to 95 °C, and cooled down in ice.  

A 12 % (w/v) polyacrylamide resolving gel and 5 % stacking gel was prepared. The 

stacking gel was loaded with 20 µL of sample at 60 V. Gel electrophoresis was 

performed at 150 V using a Mini-PROTEAN® Tetra handcast system (both Bio-Rad 

Laboratories GmbH, Feldkirchen, Germany) and a PageRulerTM Unstained Protein 

Ladder (Thermo Fischer Scientific Inc., Waltham, Ma, USA). PierceTM Silver Stain Kit 

(Thermo Fischer Scientific Inc.) was employed for protein detection before 

documenting the results by a Gel Doc EZ System (Bio-Rad Laboratories GmbH). The  

4.3.7 Cryo-TEM of bacterial extracellular membrane vesicles 

 

3 µL of the vesicle suspension were placed onto a S147-4 holey carbon film (Plano, 

Germany), followed by blotting to a thin liquid film for 2 s. Afterwards, samples were 

plunged at T = 108 K into liquid ethane employing a Gatan (Pleasonton, USA) CP3 

Cryo plunge system. Visualization was performed at T = 100 K using a JEOL 



98 
 

(Akishima, Japan) JEM-2100 LaB6 TEM operating at an accelerating voltage of 200 

kV at low-dose conditions199. 

4.3.8 Scanning electron microscopy (SEM) of bacterial extracellular membrane 

vesicles 

 

10 µL of vesicles were placed on a silicon wafer and after a brief rest, the wafer was 

gently washed 2 times before staining by phosphotungstic acid. The silicon wafer was 

mounted on aluminium stubs, using double-sided adhesive carbon tape and copper 

grids (Micro to Nano, Netherlands) and let dry overnight at room temperature. Samples 

were then sputtered with gold using a Quorum Q150R ES sputter-coater (Gala 

Instrumente GmbH, Bad Schwalbach, Germany). SEM imaging was facilitated 

employing Zeiss EVO HD15 (Carl Zeiss AG, Jena, Germany) under an acceleration 

voltage of 6 kV, and images were processed with SmartSEM® software (Carl Zeiss 

AG, Jena, Germany).  

 

4.3.9 Coating of filter plate 

 

In the case of bacterial extracellular vesicles, 30 µL of the vesicle suspension were 

given on top of membrane filters of a 96-well filter plate. Afterwards filters were dried 

at 37 °C inside a Memmert UF55 universal oven (fan at 100%). This process was 

repeated for another two times before giving 40 µL of liquefied 0.5 % (w/v) agarose 

solution was given on top. In the case of liposomes, the suspensions were diluted to a 

concentration of 1012 particles/mL. The liposomes were bioprinted onto filters of a 96-

well filter plate (30 µL/well) using a g-code similar to the one used for the starch gel, 

but with some modifications: the piston moved 2x 0.089 mm (E0.089) to extrude overall 

30 µL per layer. After the first coating step was finished, Peltier elements embedded in 

the plate holder dried the coating for 30 min at 60 °C. This coating procedure was 

repeated twice followed by 15 min freezing to -20 °C and heating to 40 °C. The 

obtained phospholipids coatings were covered with 0.5 % (w/v) agarose solution as 

previously described for the extracellular vesicle coating. Prior to permeation studies 

the bottom the coated filter was also coated with a thin film of 0.5 % (w/v) agarose 

using a small brush.  
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4.3.10 SEM of coated filter plate 

 

Membrane filters were coated with bacterial extracellular vesicles as previously 

described. Afterwards they were stripped from the plate and mounted on aluminium 

stubs, using double-sided adhesive carbon tape and let dry overnight at room 

temperature. Samples were then sputtered with gold using a Quorum Q150R ES 

sputter-coater (Gala Instrumente GmbH, Bad Schwalbach, Germany). SEM imaging 

was facilitated employing Zeiss EVO HD15 (Carl Zeiss AG, Jena, Germany) under an 

acceleration voltage of 6 kV, and images were processed with SmartSEM® software 

(Carl Zeiss AG, Jena, Germany).  

 

4.3.11 Permeation studies  

 

The compound permeability was investigated as described in section 3.2.1 

“Assessment of polysaccharide gels”. In brief, coated wells were incubated for 30 min 

with PBS (pH7.4) at 37 °C while shaken at 180 rpm. After incubation, 230 µL of pre-

warmed 200 µM antibiotic donor solution (37°C) replaced the PBS in the respective 

donor wells, while 30 µL were immediately removed and diluted 1:10. The absorbance 

of these dilutions was measured in a receiver plate using a Tecan Infinite® 200 PRO 

(Tecan Trading AG, Maennedorf, Switzerland) plate reader. 300 µL of fresh PBS were 

given into the acceptor wells of the receiver plate followed by absorbance 

measurements. Donor and acceptor plate were reassembled, incubated, and 

disassembled after 10, 20, 30, 45, 60, 90, 120, 150, 180, 210 and 240 min to measure 

the absorbance in the acceptor wells. For substances with insufficient λmax, 220 µL of 

donor solution was given in each donor well. 20 µL were removed and diluted 1 in 10. 

At all time points, samples of 40 µL were drawn, diluted 1 in 5 measured by LC-MS. In 

case of tobramycin samples of 20 µL were drawn and quantified by an o-

phthalaldehyde assay. 200 µL of the commercially available PierceTM Fluoraldehyde 

reagent (Thermo Fisher Scientific) were added to each sample and after an incubation 

at room temperature the fluorescence intensity at 470 nm was measured at an 

excitation wavelength of 360 nm. The removed volume was replaced using fresh PBS 

(pH 7.4).  
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4.4 Results and Discussion 
 

4.4.1 Optimizing vesicle isolation 

 

Coating of filter plates requires a high number of vesicles. While the production of the 

liposomes can be adjusted with minor effort to achieve rather high concentrations, the 

upscaling of extracellular vesicle production is comparatively difficult. To enhance the 

vesicular yield, the hypervesiculating strain BL21 was chosen and different isolation 

and concentration protocols were studied aiming for an additional increase of yield. It 

is common practice to isolate extracellular vesicles by ultracentrifugation200. This, 

however, is a long lasting and tedious process, especially when also applying density 

gradients. Bearing in mind that our approach does not require high sample purity, PEG 

precipitation201 may also be a legitimate concentration process for extracellular 

vesicles. As shown in Figure 37, the application of PEG precipitation showed indeed a 

substantial increase of vesicle concentration. Filtration of the bacterial culture is an 

essential step towards vesicle isolation. However, small pore sizes, such as the 

required 0.2 µm for sterile filtration may also retain a certain number of extracellular 

vesicles. Therefore, another filter with 0.45 µm pore size was used for extrusion and 

the yields obtained from both filter types compared. In seems indeed that the overall 

number of vesicles is higher, when filtered through a filter membrane with 0.45 µm pore 

size (Fig. 37 A). However, the analysis of the area under the curve does not reveal a 

significant difference (Fig. 37 B). In both cases, a similar distribution pattern appears 

having two larger maxima in the range from 100 to 200 nm, whereas those vesicles 

obtained from membranes with 0.2 µm pore diameter show a slight shift towards larger 

sizes. Another vesicle population is noticeable slightly above 200 nm, regardless if 

which filter was used followed by a subsequent drop in concentration. This size being 

located just around the cut-off of the 0.2 µm filter membrane is surprising at first glance, 

but can allow for different interpretations: i) this population of vesicles is natively shed 

by bacteria, ii) this population actually consists of aggregates of 100 nm sized vesicles, 

and iii) this population is an artefact cause for example by nano-sized air bubbles. ii) 

seems unlikely, especially when considering the size shift, which appears at the first 

maximum, but which is missing at the third. iii) seems unlikely, since the third maximum 

follows the regular decrease of peak height beginning from the two. The little population 

peaks at 300 nm and 320 nm are likely to be artifacts. Further preparative processes 
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were done, however, using the PEG precipitation following filtration through 0.45 µm 

pore size membranes, since it also led to sterile filtrates in the case of E. coli BL21 

(Fig. 37) and enabled for an easier vesicle isolation due to the decreased fluid 

resistance.  

Figure 37. Vesicle yields obtained from different isolation protocols.  Precipitation with 

PEG 8000 leads to significantly higher vesicle concentrations than 2h ultracentrifugation (UC) 

at 100,000 x g (A, B). Although the filtration through a 0.45 µm pores leads to higher 

concentration maxima at lower particles sizes in comparison to filters with 0.2 µm sized pores, 

the overall yield is not significantly different.  Values represent mean ± SE. Significance was 

tested by two-way ANOVA, followed by Tukey’s multiple comparisons test, ****P<0.0001, n = 

9 from 3 independent experiments. 
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4.4.2. Vesicle characterization 

 

Subsequently, particle characteristics of extracellular vesicles obtained with the 

optimized isolation protocol were compared to those of EVs obtained from E. coli 

MG1655 as well as from bacteriomimetic liposomes as used for the total membrane 

model (Fig. 38) and mammalian comparator liposomes, as reported by Graef et al.117.  

Figure 38. Comparison of basic particle properties between bacteriomimetic liposomes 

and EVs of E. coli BL21 and MG1655. Liposomes could be obtained in much higher 

concentrations than EVs (A). EVs of both E. coli strains are similarly sized but are significantly 

smaller than the employed liposomes (B), while the polydispersity index (PdI) is in every case 

high (C). The ζ-potential of all strains is negative, whereas the amount of the ζ-potential for EV 

is much lower than of bacteriomimetic liposomes, but slightly higher than of the mammalian 

comparator liposomes (D). Columns represent mean values ± SD. For A: n= 3-6 for EV E. coli 

BL21 and liposomes, n=2 for EV E. coli MG1655, each from independent experiments. For B, 

C, D: n=6-9 from 2-3 independent experiments. Significance was tested using a one-way 

ANOVA with Tukey’s multiple comparisons test. **P<0.01, ***P<0.001, ****P<0.0001. 

Although the EV yield from E. coli strain BL21 is 10 times higher than from E. coli 

MG1655, it is obvious that in spite of the optimized isolation protocol, this yield is still 
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approximately 15 times lower than of the liposome formulations (Fig. 38 A). This points 

to challenges, when attempting further upscaling approaches. Figure 38 B illustrates 

that the size of EVs from E. coli BL21 and MG1655 is similar, while the EV sizes are 

generally significantly lower than of bacteriomimetic and mammalian comparator 

liposomes, while the polydispersity index (PdI) is not significantly different. Notably, the 

standard deviations of the PdI are rather large and throughout all vesicles above 0.2, 

suggesting a high abundance of different vesicle size populations. Inspecting the ζ-

potential, one can notice that it negative for all measured vesicular structures. While 

the ζ-potential of the EV-isolates from E. coli is almost identical (ca. -8 mV), 

bacteriomimetic liposomes feature a much higher ζ-potential (ca. -25 mV). In contrast, 

the ζ-potential of the mammalian comparator liposomes is particularly low (ca. -2 mV). 

The measured data are plausible. Mammalian comparator liposomes are mainly 

composed of zwitterionic phosphatidylcholine with its quaternary amine at its head 

group. Hence, it has a net charge of zero at physiological pH (7.4). The slightly negative 

value could be caused by little impurities of other phospholipids, such as POPE. 

Although POPE is also predominantly zwitterionic at physiological pH, the ammonium 

moiety at its head group can undergo acid base reaction to a certain extent, leading to 

a small species of negatively charged POPE. The cell envelope of E. coli is known to 

be composed of 10 % phosphatidylglycerol - a negatively charged phospholipid, which 

therefore probably accounts for the measured potential of the two EV types. Apart from 

POPE and POPG, bacteriomimetic liposomes are moreover composed of cardiolipin, 

which features three negative charges per molecule and leads to a far higher ζ-

potential in comparison to the other vesicle structures.  

After showing obvious differences in size and charge between EVs and liposomes, the 

presence of the most abundant outer membrane proteins F and C (OmpF, OmpC) on 

the isolated EVs was investigated using SDS-PAGE. As can be easily observed in 

Figure 39 line 10, a strong band is located just below the 40 kDa mark. This is in 

agreement with the molecular mass of 37 kDa and 36.5 kDa of monomeric OmpF202,203 

or OmpC204,205, respectively. These proteins were already found to be present in high 

amounts on vesicles of other E. coli strains206. Because of the intensity of the band, 

these homologous proteins207 could not be further resolved. OmpF and OmpC usually 

form trimers. However, the heating of the samples may have destroyed the protein 

complex203.  
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Fig. 39. Band distribution after SDS-PAGE of E. coli K-12 MG1655 and BL21 EV-pellet.  

A) SDS-PAGE after protein isolation by precipitation protocol with trichloroacetic acid. Columns 

3 and 7 show the protein spectrum of E. coli K-12 MG1655 EVs undiluted and diluted 1 in 10, 

respectively. Columns 5 and 9 show the protein spectrum of E. coli BL21 EVs undiluted and 

diluted 1 in 10, respectively. EVs from both strains feature a band just below 40 kDa. This band 

is especially intense for E. coli BL21 EVs and indicates a high abundance of the major outer 

membrane proteins OmpF (37 kDa) and C (36.5 kDa). In contrast to K-12 MG1655 vesicles, 

BL21 EVs feature a much fainter band at ca. 35 Da. This value is characteristic for OmpA171,208. 

B) SDS-PAGE after a standard ultracentrifugation protocol. The aforementioned bands are 

more prominent. Further faint lines between 50 and 70 kDa and between 70 and 100 kDa are 

characteristic for the TonB-dependent receptors BtuB or FhuA, FecA and Fep, respectively171. 

The smear below 30 kDa might have been caused by LPS. 
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A culture of E. coli over one week seems rather long and one may ask, whether after 

this time not only proteins, but also vesicles are still intact. While for the former we 

demonstrated the abundance of relevant proteins by SDS-PAGE, we employed the 

two electron microscopic techniques SEM (Fig. 40 A) and transmission electron 

microscopy (TEM, Fig. 40 B). Both techniques confirm the polydispersity of vesicles 

with a greater abundance of vesicles with a diameter of approximately 100 nm. 

Moreover, both micrographs show the spherical shape.  

In contrast to SEM, the TEM micrograph also reveals the presence of stacked lamellar 

and tube-like structures. Its composition is unclear, but similar shapes could be 

observed previously along with outer membrane vesicles209. Being similarly electron 

dense like the membrane of the extracellular vesicles, it is possible that they are 

micellar structures formed by phospholipids of burst vesicles. 

 

 

 

 

 

 

 

 Figure 40. Electron micrographs of EVs from E. coli BL21. Vesicular structures can be 

observed by SEM (A) as well as cryo-TEM (B, red arrows). While objects in the SEM-

micrograph are mostly vesicular, TEM revealed the presence of stacked lamellar structures 

(yellow arrows). 

As there are obviously side products among extracellular vesicles, a purification of 

these vesicles can be achieved by performing size exclusion chromatography (SEC), 

while collecting fractions. Subsequently, a bicinchonic acid (BCA)-assay can be 

employed to find out, which fractions contain vesicles, and which contain impurities. A 

purification of vesicles was indeed possible, as depicted in Figure 41. From fraction 

12-14 a dramatic increase of protein concentration is visible, indicating those fractions 

with extracellular vesicles. In the later fractions, smaller protein particles eluted, which 

were not bound to or encapsulated into extracellular vesicles.  
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Figure 41. Bicinchonic acid assay on SEC fractions obtained from the purification of E. 

coli BL21 EVs. SEC could largely separate EV fractions from fractions containing dissolved 

proteins (A). The highest amount of EV-associated proteins could be obtained at fraction 13 

with a protein concentration of circa 42 µg/mL. 

With the aim to create a model with high throughput, the quick preparation of the model 

is also a crucial factor determining the opportunity to translate this model to industrial 

production. Although SEC can purify vesicles, it also decreases the vesicle 

concentration, as the initial suspension volume of 0.7 mL becomes diluted to circa  

3 mL, while losing some part of the vesicle population. As previously shown in Figure 

38, even non-purified vesicles are clearly lower concentrated than bacterio-mimetic 

liposomes. Hence, omitting the SEC step and coating the non-purified vesicle 

suspension directly on the filter support seemed a justified way when aiming for high 

throughput.  

 

4.4.3. Preparation and characterization of the model 

For the coating of the filter plate with extracellular vesicles, a previously reported 

protocol was chosen117 and further adapted. Electron micrographs were taken using 

SEM to study the layer morphology on top of the filter membrane (Fig. 42). Whereas a 

coating with pure PBS lead to the formation of rugged incoherent structures of large 

crystals (Fig. 42 A), PBS containing EVs lead to the formation of smaller and finer salt 

crystals covered with an amorphous layer (Fig. 42 B). This is expectable, since the 

suspension contains a vast number of vesicles and proteins, which act as seeds for 

crystallization. Further coating with the EV suspension decreases the amount of visible 
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salt crystals and the membrane surface appears more and more amorphous (Fig. 42 

C). Since the yield of vesicle suspension remains with about 700 µL low, a threefold 

and not a six-fold coating was performed for the following studies, to allow for higher 

throughput. Using this approach, 700 µL allowed for the coating of circa 8 wells. 

 

Figure 42. SEM images coated filters following different protocols. While membranes 

coated with plain PBS show an incoherent structure of large salt crystals (A, B), a three-fold 

coating of the membrane with in PBS resuspended extracellular vesicles (EVs) leads to the 

formation of a coherent layer containing longer and smaller crystals (C) but also amorphous 

structures (D). A six-fold coating with the EV suspension leads to a thick, coherent, and largely 

amorphous layer as can be expected for phospholipid vesicles. 

In previous experiments on liposome coated membranes, it turned out that a 

phospholipid coated filter membrane is rather fragile and partially detaches when 

giving aqueous solution on top or shaking in an aqueous environment at elevated heat. 

To reduce this effect, is was necessary to cover this layer and hence protect it from 

mechanical stress. On the other hand, detaching phospholipids do not only float within 

the apical donor compartment but are also able to permeate across the filter support 

into the basolateral acceptor compartment and form agglomerates. These can cause 
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artifacts to the absorbance read of the acceptor compartment. Therefore, it is also 

necessary to seal the basolateral side of the filter membrane in a way that 

phospholipids are retained but the permeation of small antibiotic molecules is not 

affected, which is a challenging task. Having investigated previously systematically the 

permeability of different kinds of hydrogels, it seems self-evident to look at these results 

now from a different perspective, aiming for a formulation, which has the least 

discriminating and diffusion decelerating effect. Among the tested gels, agarose 

formulations (Fig. 15 A) overall yielded the highest permeability coefficients for high 

and low accumulating antibiotics at a comparably low standard deviation. Agarose is 

also favourable in other ways, as it is uncharged and forms gels at very low 

concentrations (>0.1 %, w/v)210. To ensure some degree of gel stability, a 

concentration of 0.5 % (w/v) was selected. In agarose gel electrophoresis 

concentrations of 0.5 % (w/v) are recommended to separate DNA from 1000 bp and 

larger211. Hence, it should not represent a significant barrier to small molecules.  

Having found a gel with low discriminating properties, a combined coating was 

undertaken (Fig. 43) 

 

Figure 43. Sketch about preparation protocol of EV-based membrane model. 30 µL of the 

EV-suspension are pipetted into wells of an MPC4NTR10 filter plate and dried for 1h at 37 °C. 

The procedure was repeated another two times. Subsequently, 40 µL of 0.5 % (w/v) 

prewarmed agarose solution are pipetted into the corresponding wells before letting the 

coating rest at 4 °C overnight. Eventually, a thin film of 0.5 % (w/v) agarose was placed by a 

brush on the downside of the filters. 

The obtained membrane model was then subjected to permeation studies, choosing 

ciprofloxacin, tetracycline, chloramphenicol and nalidixic acid – previously identified to 

be high accumulating in bacterio and the low accumulating representatives 

clindamycin, rifampicin, novobiocin.  

As depicted in Figure 44 and as already previously found in the starch model, 

ciprofloxacin, nalidixic acid and chloramphenicol showed higher permeation than those 
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antibiotics belonging to the low accumulating group. Moreover, on this extracellular 

vesicle-based membrane model, novobiocin, unexpectedly, is the best permeating 

compound among the low accumulating antibiotics, although it is 187 Da “smaller” and 

at physiological pH negatively charged, making it less suitable for Gram-negative 

bacterial transmembrane permeation. In fact, novobiocin even surpasses reportedly 

high accumulating tetracycline as per permeated amounts.  

 

Figure 44. Permeation-time course of seven antibiotics. Ciprofloxacin, chloramphenicol 

and nalidixic acid show a fast increase of permeated amounts, while novobiocin, tetracycline, 

rifampicin and clindamycin enrich less fast in the acceptor compartment. Values represent 

mean permeated amounts ± SE. n  9 from at least 3 independent experiments. 

To assess the accuracy of the model, quadrant plots of in bacterio accumulation and 

in vitro permeability parameters are depicted in Figure 45. As can be expected from 

the previously discussed permeation-time curves (Figure. 44), plotting permeated 

amounts in vitro after 10 min against their respective accumulated amounts in bacterio, 

led to inaccuracy regarding tetracycline, which permeated much lower than can be 

expected from the accumulation data (Figure 45 A). In comparison, as in chapter 3 

discussed, the starch-based assay allowed for a better agreement between 

tetracycline accumulation in bacterio and in vitro permeation.  

Exchanging the permeated amounts for apparent permeability coefficients yielded a 

better match to reported and determined accumulation data (Figure 45 B), however 

with novobiocin and tetracycline showing insignificantly different permeability 
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coefficients. This outcome was compared permeability coefficients obtained from a 

previously reported and slightly modified model based on fused bacteriomimetic 

liposomes and its mammalian comparator model.117 The bacteriomimetic model was 

able to yield matching permeability coefficients to in bacterio permeability in only five 

out of seven cases, with TET and CIP permeating extraordinarily low. A similar 

permeation behaviour of these compounds was noticed for the mammalian comparator 

model. Moreover, the good permeability of CLI did not match with its low in bacterio 

accumulation overall leading to four out of seven correct matches.  

 

Figure 45. Quadrant plots of in bacterio accumulation and in vitro permeability 

parameters. Comparing in bacterio accumulation to in vitro permeation across the 

extracellular vesicle-based model at the respective 10 min time point (A), led to a wrong 

prediction of TET. A higher accuracy could be achieved by plotting in bacterio accumulation at 

10 min against the Papp (B). Papp-values obtained from the bacteriomimetic phospholipid-based 

comparator model led to insufficient discrimination between high-accumulating CIP and TET 

and low-accumulating CLI, RIF and NOV (C) and was only slightly better performing than the 
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mammalian comparator model (D). Values represent mean ± SE. n  9 from at least 3 

independent experiments. Red circles indicate reported in bacterio data80, while blue squares 

represent in bacterio data contributed from a collaboration partner. 

Apart from comparing the in vitro permeation of antibiotics to in bacterio accumulation, 

a comparison of compound permeability through different membrane formulations is 

recommended to discuss the impact of their respective structural features. Therefore,  

permeability coefficients of the extracellular vesicle-based model were compared to 

the aforementioned models, representing either Gram-negative or mammalian 

membranes117 (Fig. 46). By doing so, the comparatively good permeability of 

ciprofloxacin and tetracycline across the EV-based model is striking and indicates an 

OmpF/C-mediated permeation. For the bacteriomimetic and mammalian phospholipid 

models, only compounds with low molecular weight, low flexibility, and low net charge, 

such as nalidixic acid, chloramphenicol and clindamycin were able to permeate 

significantly better than other antibiotics. These results are in nice agreement with 

permeation phenomena observed at a previously four-layered model, as described in 

chapter 2.4.3 “Functional characterization” and reported by Graef et al.94, where 

nalidixic acid and PqsD-inhibitors permeated significantly faster than those with 

molecular weights around or greater than 300 Da. Given that the most abundant 

molecular species of nalidixic acid is its corresponding negatively charged base, its 

high permeability seems surprising. However, the molecule seems internally stabilized 

by a hydrogen bond between the hydrogen of the carboxylic acid group and its 

neighbouring carbonyl oxygen. This still allows nalidixic acid to remain in a substantial 

amount as uncharged species easing the permeation across the membrane model. 

The high permeability of novobiocin obtained with the extracellular vesicle-based 

model may be an artifact. Prospectively, an additional EV-coating step seems 

advantageous to increase the stability of the membrane model. When comparing the 

outcome of the bacteriomimetic and the mammalian comparator model the compound 

permeability of neutral molecules is even more enhanced in the mammalian 

comparator model. A possible explanation can be slightly lower rigidity117. Another 

factor might be its low zeta-potential leading to a lower accumulation of electrolytes 

within the diffuse layer on the membrane surface and hence to a better access of 

molecules to the membrane in general. While the extend of permeability seems 

different the qualitative differences in permeability remain largely the same between 

these two models, indicating that a variation in phospholipid composition may change 
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the general membrane permeability but will rather not change qualitative differences 

in compound permeability. This confirms once again the need for biomaterials, which 

feature additional components, such as porins, for a more accurate prediction of 

antibiotic uptake.  

 

Figure 46. Comparison of apparent permeability coefficients (Papp) obtained from 

different vesicle coatings and antibiotics. Among the employed biomaterials starch is best 

in predicting reportedly high (green area) and low accumulating (red area) antibiotics. A coating 

of EV shows also good performance, however, the high Papp and SD for NOV indicates 

drawbacks of this approach, such as low membrane stability and varying EV quality. 

Phospholipid layers obtained from liposomal fusion favour the permeation of small, flat 

compounds, such as CHL and NXD. These are mostly high accumulating compounds in 

bacterio. However, other high accumulating compounds, which are slightly larger and more 

polar, such as CIP and TET are repelled, indicating a considerably high rate of false negative 

results. Points represent mean Papp ± SE. n = 7-16 from 3-4 experiments. Two-way ANOVA 

with Tukey’s multiple comparisons test was performed. *P<0.05, **P<0.01, ****P<0.0001. 

The impact of the 0.5 % (w/v) agarose coating on the overall compound permeability 

was investigated as in chapter 3.4.2 “Selection of hydrogel” using the small high-

accumulating compounds ciprofloxacin and tetracycline as well as the large low-

accumulating compounds novobiocin and rifampicin. In comparison to the vesicular 

models, permeability coefficients obtained from the pure agarose coating were 

significantly higher than from the phospholipid-based model (Fig. 47).  This gives 

evidence that the phospholipid layer is the permeability-delimiting entity in the 

respective coatings.  
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Figure 47. Permeability coefficients for ciprofloxacin, tetracycline, novobiocin and 

rifampicin obtained from pure agarose 0.5% (w/v), EV or phospholipid coatings. All 

tested antibiotics permeated significantly faster across the agarose gel proving that the 

phospholipid layers are the major delimiter to antibiotic permeability. Points represent mean 

Papp ± SE. n = 7-14 from 3 independent experiments. Two-way ANOVA with Tukey’s multiple 

comparisons test was performed. **P<0.01, ****P<0.0001. 

Subsequently, permeability coefficients of the EV-based model were compared to their 

respective values obtained from the 20 % (w/v) starch gel coating as described in 

chapter 3. “Polysaccharide Gels as Membrane Model”. Notably, permeability 

coefficients of the starch model seemed in better agreement with in bacterio data than 

those obtained from the EV-based model, since all reportedly high-accumulating 

compounds in bacterio lead to higher permeability coefficients than low-accumulating 

antibiotics (Fig. 48). However, also in comparison to the starch assay, ciprofloxacin 

permeates much faster across the EV-based membrane, while nalidixic acid 

permeates similarly fast. This points to a certain selectivity of the model that goes 

beyond simple size exclusions. Yet, the concrete mechanisms behind, still need to be 

elucidated using a larger set of molecules and complementary analytical methods, 

such as electrophysiology. 
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Figure 48. Comparison of permeability data obtained from extracellular vesicle (EV)-

based and 20% (w/v) starch-based membranes. While the EV-based model favoured the 

permeability of the only two high-accumulating drugs chloramphenicol and ciprofloxacin, the 

starch model revealed an increased permeability for all tested high-accumulating antibiotics 

compared to the low-accumulating ones. Points represent mean Papp ± SE. n = 9-16, from 3 

to 4 experiments. Two-way ANOVA was performed with Tukey’s multiple comparisons test. 

*P<0.05, **P<0.01, ***P<0.001, ****P<0.0001. 
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4.5 Conclusion 

 

Isolating extracellular vesicles of E. coli BL21 using the PEG-precipitation method led 

to a yield sufficient to coat filter supports of a 96-well filter plate and to perform 

permeation studies with a small set of antibiotics. Further increases of the vesicle yield 

could be achieved mechanically by explosive cell lysis212 or French press, by exposure 

of the bacteria to stressors such as antibiotics, depletion of nutrients, media with 

increased acidity or basicity, increased temperature or by genetic modification213. 

There is evidence for the presence of a high abundance of outer membrane proteins, 

especially for the homologs OmpF and OmpC. Permeation studies on the obtained 

membrane models in comparison to plain phospholipid coatings gave support to the 

idea that this presence of proteins has impact on the permeation behaviour of those 

antibiotics which mainly follow the porin-mediated pathway. Compared to the outcome 

of the starch-based membrane model, the EV-based membrane model had an inferior 

performance. This is probably mainly because the EV-based model is very fragile and 

thus susceptible to disintegration and damage. The reason for this is the still 

comparably low yield of extracellular vesicles. Prospectively, larger bacterial cultures 

and certain bacterial stressors will be necessary to enable for higher yield and hence 

higher throughput.  

Western blotting is recommended to give clear evidence to the presence of the 

mentioned outer membrane proteins. With the perspective that TonB-dependent 

receptors are present on the vesicle surface, the model can also be optimized towards 

affinity testing of siderophores. 
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5. Summary and outlook 
 

Three different filter membrane-based approaches were investigated to study and 

predict the permeation of anti-infectives across the Gram-negative bacterial cell 

envelope in vitro. Each one of these investigated membrane models has advantages 

and disadvantages (Tab. 14). And their suitability depends on the investigator’s 

hypotheses and aims.  

Table 14. Comparison of models presented in this dissertation. 

In vitro model Application Advantages Disadvantages Throughput 

Total, four-

layered 

membrane 

model 

- assessment of 

compound 

permeability into 

strains with porin-

independent major 

pathways 

+ no biohazard 

+ easy handling 

+ robust model 

- tedious preparation 

-  relatively long 

transport studies 

(2.5-4.5h) 

- passive transport 

only 

Medium 

throughput 

Starch-based 

membrane 

model 

- passive 

permeation studies 

of water-soluble 

compounds 

+ quick preparation 

+ low safety 

requirements 

+ automation easy 

+ often fast 

analysis due to 

UV-vis-

spectroscopy 

+ valid results 

already within 1 h 

+ low material 

costs 

- difficult to adapt to 

specific strains 

- passive transport 

only 

- constant transition 

of gel structure → 

affected 

reproducibility 

High 

throughput 

Extracellular 

vesicle-based 

membrane 

model 

- passive 

permeation studies 

of water-soluble 

compounds 

+ adjustable to 

various bacterial 

species and strains 

+ fast analysis 

+ low material 

costs 

+ quick assay 

+ non-infectious 

biomaterial 

- low yield of 

vesicles 

- culture of 

potentially 

hazardous 

organisms 

- fragile membranes  

Low to 

medium 

throughput 
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The total envelope model can be valuable when referring to species with much stricter 

delimitation of antibiotic permeation across porins, such as in P. aeruginosa94,214. In 

contrast to E. coli, the permeation of less polar molecules becomes then more 

pronounced215. Results obtained from a simplified coating consisting of bacterio-

mimetic phospholipids as depicted in Figure 46 indicate that probably, the outer 

membrane compartment as part of the total envelope model has negligible barrier 

properties. Hence, a simplified model as previously reported117 would be already 

sufficient and enables for better upscaling and faster production. This model instead of 

being called an “inner membrane” model, should be considered as an “outer 

membrane” model. Although its outward appearance is not comparable to the Gram-

negative outer membrane, its permeation delimiting function strongly suggests this. 

Various reports within the past five decades have given evidence that the outer 

membrane is the major delimiter of antibiotic permeability instead of the inner 

membrane31,44,171,182,216.   

Because of this notion, a hydrogel-based model was developed considering 

hydrophilic compartments of the Gram-negative cell envelope, particularly unspecific 

porins. After a successful automation of the membrane coating, an ambitious validation 

approach was undertaken for this model leading to a good match with accumulation in 

E. coli K-12 MG1655 and giving evidence that the permeation-determining 

physicochemical parameters are similar to those found in E. coli. The simplicity and 

cost efficacy of this model make an implementation also in sparsely equipped 

laboratories possible. Since E. coli K-12 strains are not pathogenic, this model still 

needs evidence that it can predict compound accumulation in clinically more relevant 

strains.   

The extracellular vesicle-based model is potentially more strain specific. The formation 

of a consistent coating despite the low vesicle concentration could be proven.  

Comparing the permeability of a small set of antibiotics to plain phospholipid models 

revealed obvious differences pointing to some degree of porin-mediated permeation 

across the EV-based model. However, the model still requires further investigations 

and characterizations to give conclusive suggestions about its applicability. The data 

set should be extended towards a larger panel of antibiotics, at least as large as the 

one used for the starch hydrogel model. For this, further enhancement of the vesicle 

yield is crucial. At the same time, other extracellular vesicles should be employed, and 

permeability data compared to accumulation in different bacterial strains and species.  
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The shift to 96-wells was, indeed, advantageous, as it led to a more efficient 

performance of experiments and a reduction of material use and thus costs.  

A drawback of all presented filter-based in vitro models is the negligence of active 

transport and self-supported uptake mechanisms. The former way is already exploited 

today217,218 and will become most likely even more important in future. The latter 

mechanism can be attractive, e.g. when looking for uptake mediators (e.g. 

antimicrobial peptides) of novel macromolecular anti-infective classes, especially 

different kinds of nucleic acids (siRNAs, PNAs, LNAs etc.). Especially active transport 

mechanisms appear utterly challenging to establish as a filter membrane-based in vitro 

model. Even the most extensively studied active uptake pathway via TonB-dependent 

transporters is still not entirely understood and depends on a complex interplay 

between different proteins219,220. These proteins will need an authentic environment of 

the entire Gram-negative cell envelope. Although Clifton et al. reported such an 

achievement, even this approach was incomplete120. Hence, as future perspective, the 

field of filter membrane-based models should be left, if active transport should be 

implemented.  

Generally, bacterial assays related to activity and “bacterial bioavailability” must be 

advanced towards higher throughput. This will be the first stage of reducing costs and 

research time. The extensive data generation can lead to a second step, where 

experimental investigation of small homologous series of anti-infectives on well 

characterized in vitro models may become obsolete, because machine learning 

algorithms previously trained on vast data sets will give even faster and comprehensive 

results at minimum requirements to IT infrastructure. Slowly the potential of these 

methods becomes also recognized in the field of antibiotic research80,132,133.  
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7. Appendices 

7.1 List of antibiotics used to calculate the mean molecular weight and clogD7.4 for each antibiotic class 
 

Antibiotic class Panel 

Aminoglycosides Streptomycin, tobramycin, kanamycin, amikacin 

Penicillins 
Ampicillin, amoxicillin, piperacillin, sultamicillin, 

pivampicillin, bacampicillin 

Cephems Cefuroxime, ceftibuten, flomoxef, cefminox, loracarbef 

Carbapenems 
Imipenem, meropenem, ertapenem, doripenem, 

thienamycin 

Monobactams tabtoxin, aztreonam, nocardicin A, tigemonam 

Fluoroquinolones 
Ciprofloxacin, sparfloxacin, gemifloxacin, garenoxacin, 

clinafloxacin, prulifloxacin 

Tetracyclines 
Tetracycline, minocycline, tigecycline, meclocycline, 

lymecycline 

Sulfonamides 
Sulfamethoxazole, sulfaguanidin,sulfadimidin, 

sulfadoxin 

Polymyxins Colistin A, colistin B, polymyxin A, polymyxin B 
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7.2 List of employed antibiotics and their physicochemical properties  

Class 
Name of 
antibiotic 

Structure 
Amine-
group 

Mw / 
Da[a] 

Net 
charge  

(pH 
7.4)[a] 

Zwitter-
ion 

(pH7.4) 
[a] 

Min. 
proj. 
area / 

Å[a] 

Rotb. 
[b] 

Rel. abund.  
unsat. 

bonds[b] 
HBA[b] HBD[b] clogDpH7.4 

[a] 

Glob. 
[b] 

Pol. 
surf. 
area /  

Å[a] 

AUC10-30min / 
nmol*min 

SE / 
nmol* 
min 

Amino-
coumarins 

Novobiocin 
 

N 612.6 -1.08 N 70.07 9 0.209 10 5 2.62 0.058 196.1 15.35 2.344 

Amino-
glycosides 

Kanamycin A 
 

Y  

(prim.) 
484.5 3.5 N 64.65 6 0.000 15 11 -12.2 0.094 282.61 3.12 1.10 

Streptomycin 

 

Y  

(second.) 
581.6 2.93 N 77.86 9 0.037 19 14 -12.13 0.110 331.43 7.62 4.93 

Tobramycin 
 

Y  

(prim.) 
467.5 4.42 N 66.33 6 0.000 14 10 -13.16 0.092 268.17 7.62 1.37 

Amphe-nicols 
Chlor-

amphenicol  
N 323.1 -0.05 N 39.36 6 0.250 5 3 0.86 0.126 112.7 38.27 6.344 

-lactams 

Ampicillin 
 

Y  

(prim.) 
349.4 -0.60 Y 47.21 4 0.200 5 3 -2.36 0.081 112.73 31.09 10.11 

Aztreonam 

 

N 435.4 0.00 Y 60.09 6 0.200 11 4 -6.12 0.098 201.58 35.3 7.337 

Cefuroxime 

 

N 424.4 0.00 N 60.77 8 0.234 7 3 -4.38 0.083 173.76 29.99 7.732 

Imipenem 
 

N 299.4 0.00 Y 37.49 6 0.045 6 4 -3.80 0.071 113.72 31.82 6.265 
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Class 
Name of 
antibiotic 

Structure 
Amine-
group 

Mw / 
Da[a] 

Net 
charge  

(pH 
7.4)[a] 

Zwitter-
ion 

(pH7.4)[

a] 

Min. 
proj. 
area / 

Å[a] 

Rotb 
[b] 

Rel. 
abund.  
unsat. 

bonds[b] 

HBA[b] HBD[b] 
clogDpH7.4 

[a] 
Glob. 

[b] 

Pol. 
surf. 
area /  

Å[a] 

AUC10-30 min / 
nmol*min 

SE / 

nmol* 
min 

Diaza-
naphthalenes 

Nalidixic acid 
 

N 232.3 -0.90 N 34.30 2 0.175 5 1 -0.45 0.021 70.5 38.72 4.894 

Fluoro-
quinolones 

 

Ciprofloxacin 
 

Y  
(second.) 

331.3 -0.01 Y 43.14 3 0.200 6 2 -0.87 0.034 72.88 35.23 8.425 

Levofloxacin 
 

Y  
(second.) 

361.4 -0.80 Y 45.74 2 0.105 7 1 -0.51 0.023 73.32 9.82 3.439 

Norfloxacin 
 

Y  
(second.) 

319.3 -1.08 Y 42.78 3 0.300 6 2 -0.96 0.022 72.88 31.31 5.574 

Sparfloxacin 
 

Y  
(second.) 

392.4 0.00 Y 116.61 3 0.170 7 3 -0.08 0.031 98.9 11.10 1.43 

Glyco-
peptides 

Vancomycin 

 

Y  
(prim.) 

1449.0 0.89 N 143.52 13 0.205 24 19 -4.85 0.114 530.49 4.94 1.936 

Lincosamides 
 

Clindamycin 

 

Y  
(tern.) 

425.0 0.59 N 72.48 7 0.016 6 4 0.65 0.139 102.26 20.51 6.766 

Lincomycin 

 

Y  
(tern.) 

406.5 0.79 N 61.56 7 0.184 7 5 -0.99 0.183 122.49 15.18 5.345 

Macrolides 
 

Erythromycin 
A 

 

Y  
(tern.) 

733.9 0.91 N 105.59 7 0.017 13 5 1.57 0.247 193.91 3.47 1.525 

Sorangicin A 

 

N 807.0 -1.00 N 113.78 5 0.078 10 4 4.04 0.156 161.21 14.35 2.836 
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[a] obtained from Chemicalize (ChemAxon, Budapest, Hungary) 

[b] obtained from Molecular Operating Environment (Chemical Computing Group, Montreal, QC, Canada) 

[c] calculated by dividing the sum of double and aromatic bonds by the total number of covalent bonds per molecule 

Min. proj. area: minimum projection area; Rotb: number of rotatable bonds; rel. abund. unsat bonds: relative abundance of unsaturated bonds; 

HBA: number of hydrogen bond acceptors; HBD: number of hydrogen bond donors; Glob: globularity (without preservation of chirality); Pol. surf. 

area: polar surface area; AUC: area under the curve

Class 
Name of 
antibiotic 

Structure 
Amine-
group 

Mw / 
Da[a] 

Net 
charge  

(pH 
7.4)[a] 

Zwitter-
ion 

(pH7.4) 
[a] 

Min. 
proj. 
area / 

Å[a] 

Rotb 
[b] 

Rel. 
abund.  
unsat. 

bonds[b] 

HBA[b] HBD[b] 
clogDpH7.4 

[a] 
Glob. 

[b] 

Pol. 
surf. 
area /  

Å[a] 

AUC10-30 min / 
nmol*min 

SE / 

nmol* 
min 

Pyrido-
pyrimidines 

Pipemidic 
acid  

Y  
(second.) 

303.3 -0.04 Y 40.69 3 0.220 8 2 -1.81 0.025 98.66 29.79 5.03 

Rifamycins Rifampicin 

 

Y  
(tern.) 

822.9 -0.49 N 122.68 5 0.149 14 6 2.87 0.361 220.15 14.20 3.973 

Steroids Fusidic acid 

 

N 516.7 -1.00 N 76.47 6 0.000 5 3 1.58 0.143 104.06 2.04 0.5732 

Sulfonamides 
Sulfa-

methoxazole  
N 253.3 -0.95 N 46.11 3 0.379 4 2 0.00 0.129 98.22 18.23 6.20 

Tetracyclines 
 

Minocycline 
 

Y  
(tern.) 

457.5 -0.39 Y 63.79 3 0.016 9 5 -2.71 0.167 164.63 4.31 2.537 

Tetracycline 
 

Y 
 (tern.) 

444.4 -0.53 Y 62.01 6 0.186 9 6 -3.70 0.083 181.62 24.09 3.517 

Tigecycline 
 

Y  
(second.) 

603.7 0.36 Y 78.71 7 0.143 11 7 -3.41 0.077 205.76 18.12 5.476 

Tetracyclines, 
atyp. 

Amido-
chelocardin  

Y 
(prim.) 

412.4 -0.20 Y 56.24 1 0.283 8 6 -1.27 0.039 184.17 21.96 3.521 
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7.3 Minimum inhibitory concentrations  

[a] provided by the European Committee on Antimicrobial Susceptibility Testing, "EUCAST" 

(https://mic.eucast.org/Eucast2/ 

Class 
Name of 
antibiotic 

Papp 

*10-5 / 
cm*s-1 

MIC / 
µg*mL-1 

E. coli[a] 

MIC / µg*mL-1 

A. 
baumannii[a] 

MIC / µg*mL-1 
K. 

pneumoniae[a] 

MIC / µg*mL-1 
P. 

aeruginosa[a] 

MIC / µg*mL-1 

C. jejuni[a] 

MIC / µg*mL-1 

Salmonella 
spp.[a] 

MIC / µg*mL-1 

[a] 

N. 
gonorrhoeae 

Amino-
coumarins 

Novobiocin 0.82 X x x x x x x 

Amino-
glycosides 

Kanamycin A 0.55 4 x 2 64 x 0.5 x 

Strepto-
mycin 

1.11 8 x 2 x 1 8 x 

Tobramycin 0.79 1 1 0.5 0.5 x x x 

Amphe-
nicols 

Chlor-
amphenicol 

2.11 4 x 4 x 4 8 2 

-lactams 

Ampicillin 1.58 2 32 16 x 2 1 0.5 

Aztreonam 1.59 0.032 64 32 4 x 0.064 x 

Cefuroxime 1.37 4 32 2 x x 4 0.064 

Imipenem 1.89 0.125 0.25 0.125 1 0.064 0.125 0.125 

Diaza-
naphtha-

lenes 

Nalidixic 
acid 

2.02 2 8 4 x 4 4 x 

Fluoro-
quinolones 

 

Cipro-
floxacin 

1.82 0.016 0.25 0.032 0.125 0.125 0.032 0.002 

Levofloxacin 1.07 0.032 0.125 0.064 0.5 x 0.064 0.008 

Norfloxacin 1.64 x 0.125 0.064 0.5 x x x 

Sparfloxacin 0.62 0.064 x 0.125 0.5 x 0.064 0.008 

Glyco-
peptides 

Vancomycin 0.66 0.016 x 0.064 1 x x x 

Lincos-
amides 

 

Clindamycin 1.19 x x x x 0.125 x x 

Lincomycin 1.38 x x x x x x x 

Macrolides 
 

Erythro-
mycin A 

0.55 x x x x 0.25 x 4 

Sorangicin A 0.84 x x x x x x x 

Pyrido-
pyrimidines 

Pipemidic 
acid 

1.65 x x x x x x x 

Rifamycins Rifampicin 1.00 x 4 x x x x x 

Steroids Fusidic acid 0.33 x x x x x x x 

Sulfon-
amides 

Sulfa-
methoxazole 

1.98 16 x 16 x x 64 x 

Tetra-
cyclines 

 

Minocycline 1.10 1 0.5 2 x x x x 

Tetracycline 1.51 2 128 2 x 128 2 2 

Tigecycline 1.14 0.125 1 0.5 16 x x X 

Tetracycline
s, atyp. 

Amido-
chelocardin 

0.99 x x x x x x x 
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7.4 G-code for starch membrane printing 

 

G90 
G0 X231.2 Y95.3 Z99.0 F1000 
G91  
G0 X-9.5 Y0 F1000 
G0 X0.4 Y-1.5 F1000 
G90 
G0 Z72.10 F1000  
G91 
T0 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 

G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X-10.8 F1000 
G0 Z-16.2 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X-1.8 Y9 F1000 
G0 Z-16.2 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X7.2 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
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G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000G0 X7.2 F1000G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 

G0 X-1.8 Y9 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
 G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
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G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X-10.8 F1000 
G0 Z-16.2 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16.2 F1000 
G0 X-1.8 Y9 F1000 
G0 Z-16.2 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X7.2 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 

G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-1.8 Y9 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
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G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F100 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 

G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X-10.8 F1000 
G0 Z-16.2 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X-1.8 Y9 F1000 
G0 Z-16.2 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X7.2 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
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G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-1.8 Y9 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  

G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000    
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16 F1000 
G0 X-10.8 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F100 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X-10.8 F1000 
G0 Z-16.2 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G0 X1.8 F1000  
G0 Z16.2 F1000 
G0 X-1.8 Y9 F1000 
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G0 Z-16.2 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16.2 F1000 
G0 X7.2 F1000 
G0 Z-16.1 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000   
G0 X1.8 F1000 
G0 Z16.1 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 

G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X7.2 F1000 
G0 Z-16 F1000 
G2 X0 Y-0.00001 I1.9 J0 E0.128 F10  
G2 X0 Y-0.00001 I1.9 J0 E0.128 F1000 
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000  
G2 X0 Y-0.00001 I1.9 J0 F1000 
G0 X1.8 F1000 
G0 Z16 F1000 
G0 X-1000 F1000 
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7.5 R-code for random forest analysis 
 
# Author: Sanjay Kumar Srikakulam 

# Description: Random forest regression model for predicting the AUC values (column named 'AUC' in 
the input data sheet) using Leave One Out cross validation. 

# Note: Require 'randomforest', 'readxl' and 'caret' libraries to run this script and it expects the input 
excel file (chem_data_for_rf.xlsx)  

# to be available in the current working directory and the sheet containing the data should have the 
name 'data_for_rf_regression'. 

 

# Load required libraries 

require(randomForest) 

require(readxl) 

 

# set seed to same values are obtained everytime 

set.seed(6) 

 

# Set current working directory to the current working directory 

setwd(getwd()) 

 

# Checks if input file 'chem_data_for_rf.xlsx' is available in the cuurent working directory, if not raises 
an error output, else will continue with the model creation. 

if(!file.exists("chem_data_for_rf.xlsx")){ 

  cat("\nError: The input file 'chem_data_for_rf.xlsx' does not exist in the current working directory, 
please check! Aborting the script execution.\n") 

  cat("\nInfo: Your current working directory is: ", getwd()) 

} else { 

  # Reading and processing input data and variable initiation 

  chem_data = read_excel("chem_data_for_rf.xlsx", sheet = 'data_for_rf_regression') 

  compound_names = chem_data$compound 

  leave_one_out = NULL 

   

  # Creating data frame to store the feature importance score of all models during the leave one out 
cross validation (CV) 

  variable_importance = setNames(data.frame(matrix(0, ncol =  7)), c("MW", "overall_charge", 
"globularity_non_preserved", "min_projection_area","no_Hbond_donors", "no_Hbond_acceptors", 
"rel_abund_aromatic")) 

   

  # Leave one out CV and prediction with hyperparameters ntree = 100, mtry = 2, maxnodes = 8 

  for (i in compound_names){ 
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    model_rf = randomForest(AUC ~ ., data = chem_data[chem_data$compound!=i,][, -1], ntree = 100, 
mtry = 2, maxnodes = 8, importance = TRUE, type = "regression") 

    leave_one_out[[i]] = predict(model_rf, newdata = chem_data[chem_data$compound==i,][, -1]) 

    variable_importance = rbind(variable_importance, model_rf$importance[, 1]) 

  } 

   

  # Output processing and printing  

  cat("\n******** Root mean squared error (RMSE), R squared (Rsquared) and Mean absolute error 
values (MAE): ********\n") 

  print(caret::postResample(leave_one_out, chem_data$AUC)) 

   

  cat("\n******** Predicted vs Actual/Experimental AUC values: ********\n") 

  print(data.frame("Predicted"= leave_one_out, "Experimental" = chem_data$AUC)) 

   

  cat("\n******** Feature importance values: ********\n") 

  print(data.frame('IncMSE' = sort(colMeans(variable_importance[-1, ])))) 

} 

#to execute all commands of this script first press strg+all and then strg+enter 
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8. Scientific output 
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Florian Graef, Robert Richter, Verena Fetz, Xabier Murgia, Chiara De Rossi, Martin 

Empting, Felix Beckmann, Mark Brönstrup, Rolf Hartmann, Sarah Gordon, Nicole 

Schneider-Daum, Giuseppe Allegretta, Walid Elgaher, Jörg Haupenthal, and Claus-

Michael Lehr, In Vitro Model of the Gram-Negative Bacterial Cell Envelope for 

Investigation of Anti-Infective Permeation Kinetics, ACS Infect. Dis.; 4(8):1188-1196 

(2018) 

Adriely Goes, Philipp Lapuhs, Thomas Kuhn, Eilien Schulz, Robert Richter, Fabian 

Panter, Charlotte Dahlem, Marcus Koch, Ronald Garcia, Alexandra K. Kiemer, Rolf 

Müller, and Gregor Fuhrmann, Myxobacteria-Derived Outer Membrane Vesicles: 

Potential Applicability Against Intracellular Infections, Cells; 9(1):194 (2020) 

Henni-Karoliina Ropponen, Robert Richter, Anna H. K. Hirsch, Claus-Michael Lehr, 

Mastering Gram-Negative Bacterial Barriers – How to Overcome the Limitations of 

Current Antibiotics, Angewandte Chemie, in reply 

Robert Richter, Mohamed Ashraf M. Kamal, Mariel A. García-Rivera, Jerome Kaspar, 

Maximilian Junk, Sanjay Kumar Srikakulam, Alexander Gress, Anja Beckmann, 

Alexander Grißmer, Carola Meier, Michael Vielhaber, Olga Kalinina, Mark Brönstrup, 

Nicole Schneider-Daum, Claus-Michael Lehr, A hydrogel-based in vitro screening 

assay for the fast prediction of antibiotic accumulation in Gram-negative bacteria, to 

be submitted  

Robert Richter, Adriely Góes, Marcus Koch, Gregor Fuhrmann, Nicole Schneider-

Daum, Claus-Michael Lehr, Extracellular vesicles as a basis for strain-specific 

Antibiotic permeability testing, in preparation 
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“An in vitro model of the Gram-negative bacterial cell envelope to predict its 
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permeation of anti-infectives across the Gram-negative cell envelope”, 
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 “A polysaccharide-based permeation model to assess drug transport into 

Gram-negative bacteria”, HIPS Symposium, 2019, Saarbrücken Germany 
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