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Stereoselective Allylic Alkylations of Amino Ketones and Their
Application in the Synthesis of Highly Functionalized Piperidines

Cynthia Prudel, Kai Huwig, and Uli Kazmaier*[a]

Introduction

Piperidines are widespread found in nature, for example, as al-
kaloids, and are privileged structures in medicinal chemistry.[1]

Amino acids derived from piperidines, such as pipecolic acid

and the elongated homopipecolic acid are also common, for
example, in peptidic natural products and peptidomimetics.[2]

Calvine, a piperidinic lactone isolated from a ladybird beetle of
genus Calvia[3] can be seen as a bicyclic homopipecolic acid

derivative (Figure 1). Highly substituted homopipecolic acid de-
rivatives, for example, A have been used as synthetic inter-

mediates in the synthesis of decahydroquinoline alkaloids such

as the lepardins,[4] while polyhydroxylated homopipecolic acids
such as B act as glycosidase inhibitors.[5]

Therefore, it is not surprising that a wide range of protocols

have been developed for the synthesis of piperidines in gener-

al, and also for homopipecolic acids in particular. Whereas
these approaches are generally applicable for the synthesis of
2,6-disubstituted[6] or 3-hydroxylated piperidines,[7] methods for
the synthesis of higher substituted piperidines are significantly

less developed.[8] Many procedures advanced for b-amino acid
syntheses[9] can also be applied for homopipecolic acids. Be-

sides homologation of the corresponding pipecolic acids using
the Arndt–Eistert protocol,[10] 1,4-additions of amines are also
very common. While an intermolecular amine addition requires

a subsequent cyclization step,[11] the intramolecular version

(Scheme 1) is more straightforward, but the stereochemical
outcome of the cyclization step is difficult to control.[12]

Our group is involved in the synthesis of amino acids using

chelated enolates as thermally stable and highly selective nu-
cleophiles.[13] These enolates can be used in a wide range of re-

actions, such as transition-metal-catalyzed allylic alkylations[14]

or Michael additions, for example, towards nitroalkenes[15] or

a,b-unsaturated esters (Scheme 2 a).[16] Allylic alkylations
cannot only be used for the synthesis of g,d-unsaturated

amino acids, but also for the modifications of peptides in a

highly stereoselective fashion.[17] Recently, we could show that
Pd-catalyzed allylic alkylations can also be performed with

chiral chelated a-aminoketone enolates with excellent diaste-
reoselectivity (Scheme 2 b).[18, 19] The stereochemical outcome

of the reaction is mainly controlled by the enolate geometry

Figure 1. Natural occurring homopipecolic acid derivatives.

Scheme 1. Homopipecolic acids via intramolecular aza-Michael addition.

[a] C. Prudel, K. Huwig, Prof. Dr. U. Kazmaier
Organic Chemistry, Saarland University
Campus C4.2, 66123 Saarbrecken (Germany)
E-mail : u.kazmaier@mx.uni-saarland.de

Supporting information and the ORCID identification number(s) for the
author(s) of this article can be found under :
https ://doi.org/10.1002/chem.202000051.

T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
This is an open access article under the terms of the Creative Commons At-
tribution License, which permits use, distribution and reproduction in any
medium, provided the original work is properly cited. Scheme 2. Michael addition and allylic alkylations of chelated enolates.

Chem. Eur. J. 2020, 26, 3181 – 3188 T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim3181

Full PaperDOI: 10.1002/chem.202000051

http://orcid.org/0000-0001-9756-0589
http://orcid.org/0000-0001-9756-0589
https://doi.org/10.1002/chem.202000051
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fchem.202000051&domain=pdf&date_stamp=2020-02-21


and the sterical bulk of the side chain, which shields one face
of the enolate in the allylation step. Especially good results are

obtained with arylated enolates. Here the (Z)-enolate A is
formed almost exclusively, avoiding 1,3-allyl strain[20] between

the aromatic ring and the side chain, which would be signifi-
cant in the (E)-enolate.

Our goal was now to use this approach for the synthesis of
highly substituted homopipecolic acids and related structures

via subsequent intramolecular aza-Michael additions. There-

fore, an electron-withdrawing functionality at the double bond
is required.

Results and Discussion

We started our investigations with the previously synthesized
unsaturated a-amino ketone 1 a,[18] which could be reduced to
the corresponding alcohol with excellent selectivity

(Scheme 3). The configuration of the new formed stereogenic
center was determined by NMR of the corresponding oxazoli-

dinone, which was obtained by treatment of 2 a with base.[18]

For the introduction of the required electron-withdrawing
group we decided to use a cross metathesis with Grubbs II cat-
alyst.[21] 2.5 Equivalents of methyl acrylate and 10 mol % of cat-

alyst were necessary for complete conversion. The excess of
acrylate was required, because the styrene formed during

metathesis can also react with the acrylate in cross metathesis.
Acetylation of the secondary alcohol 3 a and subsequent de-

protection of the nitrogen gave rise to the free amine salt,

which was subjected to base treatment to undergo the desired
aza-Michael addition in good yield. The two diastereomeric ho-

mopipecolic acids 5 a were formed as almost 2:1 mixture and
their configuration was determined by NMR and X-ray struc-

ture analysis. Obviously, this protocol is well suited for the syn-
thesis of tetra-substituted piperidine rings.

To get access to even higher substituted piperidines we de-
cided to use chiral allylic substrates such as 6 to introduce an

additional substituent at the 3-position (Scheme 4). With (R)-6
a matched situation was observed and the allylation pro-

duct 1 b was obtained as a single diastereomer. Also the next

step, the stereoselective reduction worked perfectly. Unfortu-

nately, we were unable to convert 2 b into the corresponding
a,b-unsaturated ester 3 b, although a wide range of metathesis

protocols has been investigated.

Therefore, we decided to change our strategy and to intro-
duce the electron-withdrawing group (EWG) directly via allylic

alkylation using functionalized allylic substrates C (Scheme 5).
This is a more straightforward protocol, but it was unclear

which substituents and EWG’s are favoring the allylic alkylation
and which the Michael addition, because in general, both reac-

tions can proceed already at @78 8C (depending on the substi-

tution pattern).

In addition, these allylic substrates might undergo deproto-

nation of the p-allyl Pd intermediate under the basic reaction
conditions, providing electron-poor dienes, which might also

cause side reactions. This might be the reason why these types

of allylic substrates have been used only very sporadically in
palladium-catalyzed allylic alkylations.[22]

The corresponding methyl-substituted allylic substrates can
easily be obtained from O-protected lactic acid ester via Dibal

reduction/ Horner–Wadsworth–Emmons (HWE) olefination,
which provides the corresponding a,b-unsaturated ester 7 a

Scheme 3. Synthesis of tetrasubstituted homopipecolic acids 5.

Scheme 4. Attempt to synthesize pentasubstituted homopipecolic acids.

Scheme 5. Allylic alkylation of chelated aminoketone with functionalized
allyl substrates C.
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and ketone 8 a as single (E)-isomer, while in case of nitrile 9 a a
3:7 (E/Z)-mixture was obtained, which could easily be separat-

ed by flash chromatography. If a Boc-protecting group was
used on the lactate, the leaving group for the allylic alkylation

could directly be introduced. In case of other carbamates it is
recommended to introduce this leaving group after the HWE

reaction, because Dibal reduction in this case resulted in the
formation of side products. To investigate also the influence of

the substitution pattern at the double bond we synthesized

the isopropyl- and phenyl-substituted esters 7 b and 7 c from
the corresponding a-hydroxy esters (Scheme 6).

With these allylic substrates in hand, we next investigated
the allylic alkylation of several amino ketones with the lactic

acid-derived allylic substrate 7 a. Under standard conditions we
used 2.5 equiv LHMDS for the deprotonation (conditions A)
and 1.3 equiv ZnCl2 for the formation of the chelated enolate

complex. Alternatively, in some cases also 2.05 equiv LDA were
used as base (conditions B). In this case, less base was used to

avoid epimerization of the allylation product after the reaction
with this stronger base. In general, better yields were obtained

if the amino ketone was used in excess (1.5 equiv) compared
to the allyl carbonate because of complete conversion of the

allylic substrate (according to crude NMR and TLC). The results

obtained are summarized in Table 1.
To determine the diastereomeric ratio, the crude product

was analyzed by NMR and also by HPLC, especially in cases

where more than two diastereomers were formed (mis-

matched situations). In general, the diastereomers could easily
be separated by flash chromatography, providing enantio- and

diastereomerically pure products.

With the phenylalanine-derived benzyl ketone 10 a the allyla-
tion proceeded cleanly. With (S)-7 a the (4S,5R)-diastereomer of

13 a was obtained with high diastereoselectivity and in high

Scheme 6. Synthesis of functionalized allylic substrates.

Table 1. Allylic alkylations using a,b-unsaturated esters 7.

Ratio
Entry Ketone R1 R2 7 R3 Cond.[a] Prod. (4S,5R) (4S,5S) (4R,5R) (4R,5S) Ratio (E/Z) Yield [%]

1 10 a Bn Ph (S)-7 a Me A 13 a 94 6 >99:1 90
2[b] 10 a Bn Ph (S)-7 a Me A 13 a 97 3 >99:1 92
3 10 a Bn Ph (R)-7 a Me A 13 a 2[c] 71 27 98:2 96
4 11 a iPr Ph (S)-7 a Me A 14 a 93 7 >99:1 91
5 11 a iPr Ph (S)-7 a Me B 14 a 93 7 >99:1 99
6 11 a iPr Ph (R)-7 a Me A 14 a 3[c] 95 2 80:20 91
7 11 a iPr Ph (R)-7 a Me B 14 a 3[c] 93 4 87:13 99
8 12 a sBu Ph (S)-7 a Me A 15 a 98 2 92
9 12 a sBu Ph (S)-7 a Me B 15 a 96 4 88
10 12 a sBu Ph (R)-7 a Me B 15 a 2 93 5[d] 88:12 99
11 10 b Bn Me (S)-7 a Me A 13 b 3[e] 97 59
12 10 b Bn Me (S)-7 a Me A[f] 13 b 5[e] 95 80
13 10 b Bn Me (S)-7 a Me B 13 b 3[e] 97 79
14 10 b Bn Me (R)-7 a Me B 13 b 20[e] 80 95:5 64
15 11 b iPr iPr (S)-7 a Me B 14 b 1[e] 99 >99:1 70
16 10 b Bn Me (S)-7 b iPr B 13 c <1[e] >99 >99:1 48
17 11 a iPr Ph (S)-7 b iPr B 14 c >99 <1 >99:1 95
18 10 a Bn Ph (R)-7 c[e,g] Ph A 13 d 94[e,h] 6 89

[a] Reactions conditions: A: 2.5 equiv LHMDS, 1.3 equiv ZnCl2 ; B: 2.05 equiv LDA, 1.3 equiv ZnCl2. [b] Reaction quenched at @20 8C. [c] (R)-7 a : 97 % ee.
[d] The (5S/5R)-isomers could not be separated in this case. [e] Change of configuration caused by change of CIP-priorities of R2 or R3. [f] 4.0 equiv LHMDS
were used. [g] 93 % purity. [h] Ratio determined by NMR.
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yield (entry 1). Only the formation of the (E)-configured double
bond was observed. The stereoselectivity could be improved

by quenching the reaction mixture at @20 8C (entry 2). The re-
action starts at around @65 8C and is finished at @20 8C. Inter-

estingly, the opposite enantiomer of 7 a, (R)-7 a gave even a
better yield, although this seemed to be the mismatched case

(entry 3). Here, also traces of the (Z)-isomer could be deter-
mined. This effect became more significant in reactions of the

valine-derived benzyl ketone 11 a. The yields and selectivities

were comparable to the results obtained with 10 a, while no
big difference was observed if the different bases are used (en-

tries 4,5). In case of the (R)-7 a a higher ratio for the (Z)-isomer
was formed. Here LDA not only gave a higher yield, but also a

better (E/Z)-ratio. A similar situation was found with the isoleu-
cine-derived benzyl ketone 12 a (entries 8–10).

The high diastereoselectivity probably results from a clear

preference of the conjugated (Z)-enolate C over the (E)-isomer.
One might expect that the stereoselective outcome of alkyl-

substituted enolates should significantly depend on the steric
size of the substituent. Therefore, we also subjected the ethyl
and isobutyl ketones 10 b and 11 b to our reaction conditions.
However, with the methyl-substituted enolate resulting from

10 b, no significant difference in diastereoselectivity (3:97) was

observed, almost independent on the base used (entries 11–
13). With these n-alkyl substituted ketones the yields were sig-

nificantly lower, compared to the aryl derivatives. Under our
standard conditions using 2.5 equiv LHMDS a yield of only

59 % was obtained. It could be improved to 80 % by using
4 equiv of base or by switching to the stronger base LDA. With

(R)-7 a the yield dropped again, and in this case also the diaste-

reoselectivity (entry 14). Here 5 % of the (Z)-isomer were
formed. Increasing the steric bulk of the enolate substituent

also increased the diastereoselectivity of the reaction, although
here with a small decrease in yield (entry 15).

With these results in hand, we next investigated the influ-
ence of the substitution pattern on the allyl substrate. Replac-

ing the methyl substituent of (S)-7 a by a sterically more de-

manding isopropyl group resulted in the exclusive formation
of a single diastereomer, independent which ketone was used

(entries 16 and 17). But also here, the alkyl ketone 10 b gave
significantly lower yield (entry 16).

Obviously, allylic carbonates bearing an ester functionality as
an electron-withdrawing group are excellent substrates for al-

lylic alkylation. In none of the reactions 1,4-addition of the
enolate towards the double bond was observed. Therefore, we
also investigated the lactic acid-derived ketones 8 a and nitrile-

s 9 a. The results observed with ketone 8 a were comparable to
those obtained with the corresponding ester (Table 2), the dia-

stereoselectivities were only slightly worse. But in this case a
stronger dependence on the workup temperature was ob-

served. Here, quenching the reaction at @25 8C resulted in a

significant increase in the diastereoselectivity (entries 2/3, 4/5).
As expected, the yields and selectivities were lower with the

alkyl ketone 10 b (entry 6). Prolonging the reaction time had
no significant influence on the yield of 16 b, only more side

products are formed. In this case, 20–25 % of the correspond-
ing Michael adduct could be identified as one of the major

side products. In all examples investigated, the (E)-configured
allylation product was formed exclusively.

As mentioned earlier, the HWE-olefination provided a mix-

ture of (E)- and (Z)-a,b-unsaturated nitrile 9 a. In general, such
unselective reactions are undesired, but in this case, it was an

advantage, because it gave us the opportunity to investigate
the two different allylic substrates separately (Table 3). One

might expect the formation of four different products, depend-
ing on the allylic substrate used. The configuration at C-4 re-

sults mainly from stereoretention in the allylic fragment, while

the configuration at C-5 is controlled by the adjacent side
chain at C-7. In all previous cases the (E)-configured allylation

product was formed almost exclusively.
The situation seemed quite different in case of the nitriles 9.

Here, the (S)-configured compounds obviously represent the
mis-matched case (Table 3). Although the allylation products

were formed with good diastereoselectivities, a significant iso-

merization of the double bond was observed. With LHMDS as
a base, the (Z)-isomer was formed preferentially from the (E)-al-

lylic substrate (ratio E/Z 1:2) (entry 1), while with LDA almost a
1:1 mixture was obtained (entry 2). If the (S,E)-9 a is the mis-

matched case, the (R,E)-isomer should represent the matched
one. And indeed, with this (E)-isomer, the (E)-allylation product

was formed with good E/Z-selectivity and perfect diastereose-

lectivity (entry 3).
On the other hand, if the p-allyl–Pd complex intermediate

undergoes fast equilibration, the same product as from (R,E)-
9 a should also be obtained from the (S,Z)-isomer. Very similar

results were obtained using LHDMS as a base, although the
diastereoselectivity for the minor (Z)-isomer was lower in this

case (entry 4). Also in this example with LDA a higher amount

of the (E)-isomer was obtained (entry 5). To prove the generali-
ty of this observation, we also subjected some of our other

aminoketones to the same reaction conditions. Comparable re-
sults were obtained with the valine-derived ketone 11 a and

ethyl ketone 10 b, although the E/Z-selectivity was worse (en-
tries 6–10).

Table 2. Allylic alkylations using a,b-unsaturated ketone 8 a.

Ratio
Entry Ketone R1 R2 Prod. (5S,6R) (5S,6S) Yield [%]

1 10 a Bn Ph 16 a 95 5 96
2 11 a iPr Ph 17 a 90 10 88
3[a] 11 a iPr Ph 17 a 98 2 86
4 12 a sBu Ph 18 a 94 6 94
5[a] 12 a sBu Ph 18 a 99 1 85
6 10 b Bn Me 16 b 6[b] 94 43

[a] Reaction quenched at @25 8C. [b] Change of configuration caused by
change of CIP priorities of R2.
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With these allylation products in hand, we came back to our
original idea to synthesize highly substituted homopipecolic

acid derivatives via aza-Michael addition. In principle, all posi-
tions of the piperidine ring can be modified by using suitable

aminoketone and allylic substrates. Also different functionali-
ties (ester, ketone, nitrile) can be introduced at C-1 allowing

further synthetic transformations. Exemplarily, we subjected

ester (4S,5R)-13 a to the previously described (Scheme 1) reac-
tion conditions. Reduction of the keto functionality delivered

also here a single diastereomer (Scheme 7). Cleavage of the
Boc-group and cyclization under basic conditions provided the

desired homopipecolic ester 21 in good overall yield as a '2:1
diastereomeric mixture, as determined by NMR, while the (2R)-

isomer was formed preferentially. Unfortunately, the two dia-
stereomers could not be separated at this stage, that’s why we

tried to acylate the secondary piperidine-N to get separable
amides. Surprisingly, no N-acylation was observed neither with
Boc2O nor Cbz-Cl, only uncharacterized by-products were ob-

tained. With Ac2O an acetylation was observed, but not as ex-
pected on the N- but on the OH-functionality. But in this O-
acetylated form a separation of the two diastereomers (2R)-
and (2S)-22 could be accomplished. To prove, if the acetate

substituent has an influence on the stereoselectivity, we
changed also the order of steps. But if the OH-functionality

was first acetylated and then the amine deprotected/cyclized,

the diastereoselectivity was comparable (70:30).
To investigate the influence of the 4-methyl group and the

double bond geometry on the stereochemical outcome of the
reaction, we subjected all four nitrile allylation products 19 a to

deprotection/ cyclization. In case of the (4R) isomers, the (Z)-
isomer gave definitely a much higher selectivity in the cycliza-

tion step (Scheme 8). The acetate was also here found to be

superior to the alcohols. In addition, we subjected the alcohols
and acetates of the (4S)-series to cyclization. In case of the (E)-

isomer, the configuration at C-4 obviously has no tremendous
influence on the selectivity, while the effect was significant in

case of the (Z)-isomer. Here, the reaction mixture had to be
warmed to 30 8C for one hour for complete conversion.

Table 3. Allylic alkylations using a,b-unsaturated nitriles 9 a.

Ratio (5R/5S)
Entry Ketone R1 R2 9 a Cond.[a] Product Ratio (E/Z) (4S,E) (4R,Z) (4R,E) (4S,Z) Yield [%]

1 10 a Bn Ph (S,E) A 19 a 36:64 85:15 95:5 82
2 10 a Bn Ph (S,E) B 19 a 60:40 91:9 96:4 89
3 10 a Bn Ph (R,E) A 19 a 87:13 98:2 86:14 93
4 10 a Bn Ph (S,Z) A 19 a 94:6 98:2 n.d. 95
5 10 a Bn Ph (S,Z) B 19 a 92:8 97:3 n.d. 95
6 11 a iPr Ph (S,E) A 20 a 17:83 88:12 95:5 99
7 11 a iPr Ph (S,E) B 20 a 42:58 91:9 >99:1 88
8 11 a iPr Ph (S,Z) B 20 a 73:27 99:1 98:2 92
9 10 b Bn Me (S,E) B 19 b 73:27 5:95[b] 3:97[b] 88
10 10 b Bn Me (S,Z) B 19 b 91:9 8:92[b] 5:95[b] 80

[a] Reactions conditions: A: 2.5 equiv LHMDS, 1.3 equiv ZnCl2 ; B : 2.05 equiv LDA, 1.3 equiv ZnCl2. [b] Change of configuration caused by change of CIP pri-
orities of R2.

Scheme 7. Synthesis of pentasubstituted homopipecolic acid esters 22.
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Conclusions

In conclusion we could show, that allylic alkylations of amino

ketones are versatile tools in organic synthesis, not only for
the synthesis of highly functionalized ketones, but also the

generation of highly substituted piperidines and homopipecol-

ic acid derivatives. Up to five stereogenic centers can be incor-
porated, while at least three of them are formed in a highly

stereoselective fashion. The substituent at C-6 originates from
an a-amino acid and controls most of the others. The configu-

ration at C-4 is the result of a highly stereoselective allylation
of a chelated amino ketone enolate and the stereoselective re-

duction of the ketone functionality (C-5) is directed by the two
adjacent stereogenic centers. The configuration at C-3 is trans-

ferred from the allylic substrate. Depending on the configura-
tion of the allyl carbonate and its double bond geometry, both

stereoisomers can be obtained in a highly stereoselective fash-
ion. Several electron-withdrawing groups can also be part of

the allylic substrate, which allows the direct incorporation of
esters, ketones or nitriles onto the piperidine ring. Obviously,

the allylic alkylation is faster than a competitive Michael addi-

tion, because only with the highly reactive a,b-unsaturated ke-
tones a significant amount of Michael adduct was obtained as

side product. a,b-Unsaturated ketones and esters give (E)-con-
figured allylation products exclusively, while nitriles provide (E/

Z)-mixtures. Nevertheless, in the cyclization step all stereoiso-
mers deliver the (2R)-configured piperidines preferentially, al-
though the selectivity depends on the substitution pattern

and the olefin geometry.

Experimental Section

General remarks : All air- or moisture-sensitive reactions were car-
ried out in dried glassware (>100 8C) under an atmosphere of ni-
trogen. Dried solvents were distilled before use. The products were
purified by flash chromatography on silica gel (0.063–0.2 mm). Mix-
tures of EtOAc and petroleum ether were generally used as elu-
ents. Analytical TLC was performed on pre-coated silica gel plates
(Macherey–Nagel, PolygramS SIL G/UV254). Visualization was ac-
complished with UV-light and KMnO4 or Ninhydrin solution. Melt-
ing points were determined with a Laboratory Devices MEL-TEMP
II melting point apparatus and are uncorrected. 1H and 13C NMR
spectra were recorded with Bruker AV II 400 [400 MHz (1H) and
100 MHz (13C)] spectrometer in CDCl3, unless otherwise specified.
Chemical shifts are reported in ppm relative to TMS, and CHCl3

was used as the internal standard. Mass spectra were recorded
with a Finnigan MAT 95 spectrometer (quadrupole) using the CI
technique.

Methyl (5R,6R,7S,E)-7-[(tert-butoxycarbonyl)amino]-6-hydroxy-8-
methyl-5-phenylnon-2-enoate (3 a): The solutions of amino alco-
hol 2 a[18] (821 mg, 2.00 mmol) in CH2Cl2 (23 mL) and methyl acry-
late (430 mg, 5.00 mmol) in CH2Cl2 (6 mL) were added simultane-
ously to a stirring solution of Grubbs II-catalyst (180 mg, 212 mmol)
dissolved in CH2Cl2 (6 mL). The reaction mixture was refluxed
under nitrogen atmosphere for 16 h. The solvent was evaporated
in vacuo and the crude product purified by column chromatogra-
phy (silica, petroleum ether/Et2O 80:20, 60:40, 50:50) to yield 3 a
(629 mg, 1.61 mmol, 81 %) as a colorless viscous oil. [a]20

D =@61.4
(c = 1.00, CHCl3) ; 1H NMR (400 MHz, CDCl3): d= 7.23–7.36 (m, 5 H),
6.79 (m, 1 H), 5.82 (d, J = 15.6 Hz, 1 H), 4.17 (d, J = 10.3 Hz, 1 H), 3.74
(ddd, J = 6.8, 6.8, 3.9 Hz, 1 H), 3.67 (s, 1 H), 3.45–3.50 (m, 1 H), 2.97
(td, J = 7.6, 3.8 Hz, 1 H), 2.71 (dd, J = 7.1, 7.1 Hz, 2 H), 1.89–1.97 (m,
1 H), 1.82 (d, J = 7.0 Hz, 1 H), 1.42 (s, 9 H), 0.92 (d, J = 6.8 Hz, 3 H),
0.87 (d, J = 6.7 Hz, 3 H) ppm; 13C NMR (100 MHz, CDCl3): d= 166.8,
156.3, 147.0, 139.3, 129.3, 128.8, 127.3, 122.6, 79.3, 74.9, 57.5, 51.4,
46.5, 35.9, 28.4, 28.3, 20.4, 17.3 ppm; LC-MS: Luna, 0.6 mL min@1,
MeCN/H2O 50:50, tR (3 a) = 7.76 min; HPLC (Reprosil 100 Chiral-NR
8 mm, n-hexane/iPrOH 95:5, 1.5 mL min@1, 210 nm): tR (3 a) =
12.03 min; HRMS (CI) calcd for: C22H33NO5 [M++H]+ : 392.2431,
found: 392.2441.

Methyl (5R,6R,7S,E)-6-acetoxy-7-[(tert-butoxycarbonyl)amino]-8-
methyl-5-phenylnon-2-enoate (4 a): To a solution of alcohol 3 a
(98.0 mg, 250 mmol) in CH2Cl2 (1.5 mL) NEt3 (43.0 mL, 306 mmol),

Scheme 8. Synthesis of pentasubstituted homopipecolic acid nitriles 23 and
24.
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Ac2O (29.0 mL, 301 mmol) and DMAP (3.0 mg, 24.6 mmol) were sub-
sequently added at room temperature. The mixture was stirred for
0.5 h before it was washed with HCl (1 m). The aqueous layer was
extracted three times with Et2O, the combined organic layers were
dried (MgSO4), and the solvent was evaporated in vacuo. Flash
chromatography (silica, petroleum ether/EtOAc 80:20) gave rise to
4 a (99.7 mg, 230 mmol, 92 %) as a colorless resin. [a]20

D =@82.2 (c =
1.00, CHCl3) ; 1H NMR (400 MHz, CDCl3): d= 7.23–7.33 (m, 5 H), 6.76
(dt, J = 15.6, 7.2 Hz, 1 H), 5.78 (d, J = 15.6 Hz, 1 H), 5.13 (dd, J = 7.8,
3.5 Hz, 1 H), 3.98 (d, J = 10.6 Hz, 1 H), 3.67 (s, 3 H), 3.59–3.65 (m, 1 H),
3.60–3.11 (m, 1 H), 2.59–2.63 (m, 2 H), 2.05 (s, 3 H), 1.69–1.77 (m,
1 H), 1.41(s, 9 H), 0.89 (d, J = 6.8 Hz, 3 H), 0.79 (d, J = 6.7 Hz, 3 H)
ppm; 13C NMR (100 MHz, CDCl3): d= 170.3, 166.7, 155.4, 146.3,
139.1, 129.2, 128.4, 127.2, 122.8, 79.1, 75.3, 55.6, 51.4, 45.7, 35.7,
28.5, 28.3, 21.0, 20.1, 16.7 ppm; LC-MS (Luna, 0.6 mL min@1, MeCN/
H2O 55:45): tR (4 a) = 11.81 min; HPLC (Reprosil 100 Chiral-NR 8 mm,
n-hexane/iPrOH 95:5, 1.5 mL min@1, 210 nm): tR (4 a) = 25.75 min;
HRMS (CI) calcd for: C24H36NO6 [M++H]+ : 434.2537, found: 434.2537.

Methyl 2-[(2S,4R,5R,6S)-5-acetoxy-6-isopropyl-4-phenylpiperidin-
2-yl]acetate [(2S)-5 a] and methyl 2-[(2R,4R,5R,6S)-5-acetoxy-6-
isopropyl-4-phenylpiperidin-2-yl]acetate [(2R)-5 a]: Acetate 4 a
(94.0 mg, 220 mmol) was dissolved in CH2Cl2 (1.50 mL) and TFA
(210 mL, 2.64 mmol) was added at 0 8C. After stirring for one hour
at room temperature, the solvent was removed in vacuo. The resi-
due was dissolved in CH2Cl2 (2.40 mL), NEt3 (180 mL, 1.10 mmol)
was added and the reaction mixture was stirred overnight. The re-
action mixture was diluted with CH2Cl2, the organic layer was
washed three times with H2O and dried (Na2SO4). The solvent was
removed in vacuo and column chromatography (silica, petroleum
ether/EtOAc 80:20) provided a mixture of (2S)-5 a and (2R)-5 a
(57.2 mg, 171 mmol, 78 %, d.r. 63:37) as colorless solid. The isomers
were separated by further column chromatography (silica, petrole-
um ether/EtOAc 85:15) to obtain (2S)-5 a (36.0 mg, 108 mmol) and
(2R)-5 a (21.2 mg 63.0 mmol) as colorless solids. (2S)-5 a : M.p. 70–
72 8C. [a]20

D = + 9.1 (c = 1.00, CHCl3) ; 1H NMR (400 MHz, CDCl3): d=
7.17–7.28 (m, 5 H), 4.95 (dd, J = 9.9, 9.9 Hz, 1 H), 3.69 (s, 3 H), 3.11
(m, 1 H), 2.76 (ddd, J = 14.3, 10.4, 3.9 Hz, 1 H), 2.66 (dd, J = 9.5,
2.3 Hz, 1 H), 2.46 (d, J = 6.5 Hz, 2 H), 1.75–1.96 (m, 3 H), 1.73 (s, 3 H),
1.57 (ddd, J = 12.9, 12.9, 11.1 Hz, 1 H), 1.01 (d, J = 7.1 Hz, 3 H), 0.92
(d, J = 6.9 Hz, 3 H) ppm; 13C NMR (100 MHz, CDCl3): d= 172.7, 169.
7, 141.6, 128.2, 127.9, 126.8, 74.4, 65.1, 52.9, 51.6, 49.4, 40.3, 39.5,
27.6, 20.6, 20.2, 15.5 ppm. (2R)-5 a : M.p. 96–98 8C; [a]20

D =@24.9 (c =
1.00, CHCl3) ; 1H NMR (400 MHz, CDCl3): d= 7.16–7.29 (m, 5 H), 4.94
(dd, J = 10.0, 10.0 Hz, 1 H), 3.70 (s, 3 H), 3.64–3.70 (m, 1 H), 2.99 (dd,
J = 15.0, 15.0, 10.0 Hz, 1 H), 2.89 (m, 1 H), 2.83 (dd, J = 9.6, 1.9 Hz,
1 H), 2.47 (dd, J = 15.0, 5.0 Hz, 1 H), 2.15 (ddd, J = 13.5, 13.5, 5.4 Hz,
1 H), 1.75–1.82 (m, 2 H), 1.73 (s, 3 H), 0.94 (d, J = 7.0 Hz, 3 H), 0.90 (d,
J = 6.9 Hz, 1 H) ppm; 13C NMR (100 MHz, CDCl3): d= 172.8, 169.6,
141.4, 128.3, 127.9, 126.9, 75.0, 57.8, 51.6, 48.8, 44.5, 37.0, 35.7,
27.1, 20.6, 20.2, 15.1 ppm; LC-MS (Luna, 0.6 mL min@1, MeCN/H2O
50:50): tR (2R)-5 a = 6.13 min, tR (2S)-5 a = 7.97 min; HRMS (CI) calcd
for: C19H28NO4 [M++H]+ : 334.2013, found: 334.2026.

Ethyl (4S,5R,7S,E)-7-[(tert-butoxycarbonyl)amino]-4-methyl-6-
oxo-5,8-diphenyloct-2-enoate [(4S,5R)-13 a] (Table 1, entry 1): In a
Schlenk tube zinc chloride (44.3 mg, 325 mmol) was dried with a
heat gun under high vacuum. After cooling to room temperature,
ketone 10 a (85.0 mg, 250 mmol) was added dissolved in THF
(1.5 mL). At @78 8C LHMDS (1 m in THF, 630 mL, 630 mmol) was
added and the solution was stirred for 0.5 h. In a second Schlenk
tube [Pd(allyl)Cl]2 (1.2 mg, 334 mmol), PPh3 (3.50 mg, 13.3 mmol)
and carbonate (S)-7 a (36.1 mg, 167 mmol) were dissolved in THF
(1.70 mL). The solution was stirred for 5 min before being added
dropwise to the enolate solution. The reaction mixture was

warmed to room temperature, before it was diluted with Et2O and
hydrolyzed with aq. KHSO4 (1 m). The aqueous layer was extracted
three times with Et2O, the combined organic layers were dried
(MgSO4) and evaporated in vacuo. Flash chromatography (silica,
petroleum ether/EtOAc 97:3, 95:5, 90:10) of the crude residue gave
rise to (4S,5R)-13 a (69.9 mg, 150 mmol, 90 %, d.r. 94:6) as a colorless
solid. M.p. 105–107 8C; [a]20

D =@122.4 (c = 1.00, CHCl3) ; 1H NMR
(400 MHz, CDCl3): d= 7.27–6.82 (m, 10 H), 6.61 (dd, J = 15.7, 8.2 Hz,
1 H), 5.59 (dd, J = 15.8, 0.8 Hz, 1 H), 4.80 (d, J = 8.5 Hz, 1 H), 4.48
(ddd, J = 8.0, 8.0, 6.3 Hz, 1 H), 4.08 (qd, J = 7.1, 1.3 Hz, 2 H), 3.89 (d,
J = 10.3 Hz, 1 H), 3.22–3.12 (m, 1 H), 2.82 (dd, J = 14.3, 6.0 Hz, 1 H),
2.67 (dd, J = 14.1, 7.8 Hz, 1 H), 1.41 (s, 9 H), 1.21 (t, J = 7.0 Hz, 3 H),
1.13 (d, J = 6.5 Hz, 3 H) ppm; 13C NMR (100 MHz, CDCl3): d= 206.9,
166.3, 155.3, 150.6, 136.2, 135.4, 129.1, 129.0, 128.9, 128.3, 127.8,
126.6, 121.3, 80.1, 62.0, 60.1, 59.5, 39.1, 36.2, 28.2, 18.4, 14.1 ppm;
(4S,5S)-13 a (selected signals): 1H NMR (400 MHz, CDCl3): d= 6.80
(dd, J = 15.7, 8.1 Hz, 1 H), 5.86 (d, J = 15.7 Hz, 1 H), 4.48 (m, 1 H),
3.40 (d, J = 10.0 Hz, 1 H), 0.71 (d, J = 6.7 Hz, 1 H) ppm; HPLC (Repro-
sil 100 Chiral-NR 8 mm, n-hexane/iPrOH 90:10, 1.5 mL min@1,
210 nm): tR (4S,5S)-13 a = 13.81 min, tR (4S,5R)-13 a = 15.85 min;
HRMS (CI) calcd for: C28H35NO5 [M++H]+ : 466.2588, found: 466.2576.

Ethyl 2-[(2R/S,3R,4R,5R,6S)-6-benzyl-5-hydroxy-3-methyl-4-phe-
nylpiperidin-2-yl]acetate (21): To a solution of (4S,5R)-13 a
(62.3 mg, 134 mmol) in THF/MeOH (9:1, 2.2 mL) NaBH4 (10.1 mg,
268 mmol) was added at 0 8C. After stirring at 0 8C until complete
conversion was observed (TLC), the reaction mixture was diluted
with Et2O and hydrolyzed by addition of citric acid (aq. 10 w%).
The aqueous layer was extracted three times with Et2O and the
combined organic layers were washed with satd. NaHCO3 and
dried (MgSO4). The solvent was evaporated in vacuo and the crude
product was reacted with TFA (895 mL, 11.6 mmol) in DCM
(0.45 mL). After complete deprotection, the mixture was diluted
with Et2O and hydrolyzed with satd. NaHCO3. The organic layer
was extracted twice with Et2O, the combined organic layers were
dried (MgSO4) and evaporated in vacuo. After column chromatog-
raphy (silica, petroleum ether/EtOAc 60:40), 21 (39.4 mg, 107 mmol,
82 %) was obtained as a colorless solid. M.p. 95–97 8C. (2R)-21:
1H NMR (400 MHz, CDCl3): d= 7.39–7.24 (m, 10 H), 4.01–3.83 (m,
3 H), 3.44 (dd, J = 13.5, 2.7 Hz, 1 H), 3.29–3.24 (m, 1 H), 2.94 (dd, J =
11.1, 4.0 Hz, 1 H), 2.87 (ddd, J = 9.3, 9.3, 2.4 Hz, 1 H), 2.59 (dd, J =
13.5, = 9.8 Hz, 1 H), 2.36–2.25 (m, 2 H), 1.88–1.84 (m, 1 H), 1.69 (bs,
1 H), 1.08 (t, J = 7.2 Hz, 3 H), 0.71 (d, J = 7.1 Hz, 3 H) ppm; 13C NMR
(100 MHz, CDCl3): d= 172.1, 140.2, 139.0, 129.3, 128.8, 128.7, 128.5,
126.7, 126. , 69.0, 64.2, 60.4, 57.2, 55.7, 40.3, 39.0, 38.9, 14.0,
7.6 ppm. (2S)-21 (selected signals): 1H NMR (400 MHz, CDCl3): d=
3.07–3.01 (m, 1 H), 2.54–2.49 (m, 1 H), 1.82–1.77 (m, 1 H), 1.11 (t, J =
7.2 Hz, 3 H), 0.93 (d, J = 7.2 Hz, 3 H) ppm; 13C NMR (100 MHz, CDCl3)
d= 172.0, 140.1, 138.8, 129.3, 128.7, 128.7, 128.4, 69.7, 60.3, 57.1,
55.3, 49.5, 40.0, 39.1, 37.0, 15.3, 14.1 ppm; HRMS (CI) calcd for:
C23H29NO3 [M++H]+ : 368.220, found: 368.2218.

Ethyl 2-[(2R,3R,4R,5R,6S)-5-acetoxy-6-benzyl-3-methyl-4-phenyl-
piperidin-2-yl]acetate [(2R)-22] and ethyl 2-[(2S,3R,4R,5R,6S)-5-
acetoxy-6-benzyl-3-methyl-4-phenylpiperidin-2-yl]acetate [(2S)-
22]: Alcohol 21 (37.3 mg, 101 mmol) was reacted with NEt3 (15.6 mL,
112 mmol), Ac2O (10.5 mL, 112 mmol) and DMAP (1.2 mg, 10.2 mmol)
in CH2Cl2 (1.0 mL) at 0 8C. Due to incomplete conversion after stir-
ring overnight further NEt3 (4.2 mL, 30.0 mmol) and Ac2O (2.9 mL,
30 mmol) were added to the reaction mixture. After column chro-
matography (silica, petroleum ether/Et2O 75:25, 70:30) 22
(36.8 mg, 90 mmol, 89 %, d.r. (2R/2S) 65:35) was obtained as a color-
less solid. The isomers were separated by further column chroma-
tography (silica, petroleum ether/EtOAc 80:20) and gave (2R)-22
(23.2 mg, 56.7 mmol) and (2S)-22 (12.5 mg, 30.6 mmol) as colorless
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solids. (2R)-22 : M.p. 86–88 8C. [a]20
D = + 24.1 (c = 1.00, CHCl3) ;

1H NMR (400 MHz, CDCl3): d= 7.34–7.15 (m, 10 H), 5.42 (dd, J = 11.4,
9.0 Hz, 1 H), 4.00–3.84 (m, 2 H), 3.27 (ddd, J = 7.9, 5.6, 2.7 Hz, 1 H),
3.14 (dd, J = 11.5, 4.3 Hz, 1 H), 3.00 (ddd, J = 9.5, 9.5, 3.3 Hz, 1 H),
2.92 (dd, J = 13.7, 3.1 Hz, 1 H), 2.60 (dd, J = 13.7, 10.0 Hz, 1 H), 2.35–
2.26 (m, 2 H), 1.94–1.86 (m, 1 H), 1.77 (s, 3 H), 1.07 (t, J = 7.1 Hz, 3 H),
0.76 (d, J = 7.1 Hz, 3 H) ppm; 13C NMR (100 MHz, CDCl3): d= 172.0,
170.9, 140.2, 138.3, 129.0, 128.5, 128.2, 128.1, 126.4, 126.3, 71.1,
62.6, 60.4, 57.0, 53.4, 40.6, 38.9, 38.7, 20.8, 14.0, 7.4 ppm. (2S)-22 :
M.p. 78–80 8C. [a]20

D =@1.1 (c = 1.00, CHCl3) ; 1H NMR (400 MHz,
CDCl3): d= 7.32–7.15 (m, 10 H), 5.44 (dd, J = 11.4, 9.3 Hz, 1 H), 4.95–
3.82 (m, 2 H), 3.29–3.25 (sh, 2 H), 3.17 (ddd, J = 9.5, 9.5, 3.1 Hz, 1 H),
2.97–2.90 (m, 2 H), 2.57–2.50 (m, 2 H), 1.88–1.82 (m, 1 H), 1.78 (s,
3 H), 1.11 (t, J = 7.2 Hz, 3 H), 0.98 (d, J = 7.1 Hz, 3 H) ppm; 13C NMR
(100 MHz, CDCl3): d= 171.7, 170.8, 140.1, 138.2, 129.0, 128.5, 128.3,
128.2, 126.4, 126.3, 71.8, 60.4, 55.6, 55.0, 47.2, 40.3, 39.1, 36.9, 20.8,
15.1, 14.1 ppm. HPLC (Reprosil 100 Chiral-NR 8 mm, n-hexane/iPrOH
95:5, 1.0 mL min@1, 210 nm): tR (2R)-22 = 18.16 min, tR (2S)-22 =
22.35 min; HRMS (CI) calcd for: C25H31NO4 [M++H]+ : 410.2326
found: 410.2321.

The remaining experimental procedures, spectroscopic data, and
copies of 1H and 13C NMR spectra are available in the Supporting
Information.
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thesis 2009, 1 – 32; b) J. Buch, B. Weiner, .W. Szymanski, D. B. Janssen,
A. J. Minnaard, B. L. Feringa, Chem. Soc. Rev. 2010, 39, 1656 – 1691.

[10] a) B. B. Tour8, D. G. Hall, Angew. Chem. Int. Ed. 2004, 43, 2001 – 2004;
Angew. Chem. 2004, 116, 2035 – 2038; b) W. Maison, Eur. J. Org. Chem.
2007, 2276 – 2284.

[11] a) S. Rougnon-Glasson, C. Tratrat, J.-L. Canet, P. Chalard, Y. Troin, Tetrahe-
dron : Asymmetry 2004, 15, 1561 – 1567; b) S. G. Davies, A. M. Fletcher,
P. M. Roberts, A. D. Smith, Tetrahedron 2009, 65, 10192 – 10213; c) N. M.
Garrido, A. G. Rubia, C. Nieto, D. D&ez, Synlett 2010, 587 – 590.

[12] a) N. Knouzi, M. Vaultier, L. Toupet, R. Carrie, Tetrahedron Lett. 1987, 28,
1757 – 1760; b) M. Breuning, M. Steiner, Synthesis 2006, 1386 – 1389;
c) C. Zhong, Y. Wang, A. W. Hung, S. L. Schreiber, D. W. Young, Org. Lett.
2011, 13, 5556 – 5559.

[13] a) U. Kazmaier, Liebigs Ann. 1997, 285 – 295; b) U. Kazmaier, Org. Chem.
Front. 2016, 3, 1541 – 1560.

[14] a) U. Kazmaier, T. Lindner, Angew. Chem. Int. Ed. 2005, 44, 3303 – 3306;
Angew. Chem. 2005, 117, 3368 – 3371; b) U. Kazmaier, D. Stolz, Angew.
Chem. Int. Ed. 2006, 45, 3072 – 3075; Angew. Chem. 2006, 118, 3143 –
3146.

[15] a) B. Mendler, U. Kazmaier, Org. Lett. 2005, 7, 1715 – 1718; b) B. Mendler,
U. Kazmaier, V. Huch, M. Veith, Org. Lett. 2005, 7, 2643 – 2646.

[16] a) M. Pohlman, U. Kazmaier, Org. Lett. 2003, 5, 2631 – 2633; b) C.
Schmidt, U. Kazmaier, Org. Biomol. Chem. 2008, 6, 4643 – 4648; c) U. Kaz-
maier, C. Schmidt, Synlett 2009, 1136 – 1140.

[17] a) U. Kazmaier, J. Deska, A. Watzke, Angew. Chem. Int. Ed. 2006, 45,
4855 – 4858; Angew. Chem. 2006, 118, 4973 – 4976; b) J. Deska, U. Kaz-
maier, Angew. Chem. Int. Ed. 2007, 46, 4570 – 4573; Angew. Chem. 2007,
119, 4654 – 4657; c) J. Deska, U. Kazmaier, Chem. Eur. J. 2007, 13, 6204 –
6211; d) J. Deska, U. Kazmaier, Curr. Org. Chem. 2008, 12, 355 – 385.

[18] K. Huwig, K. Schultz, U. Kazmaier, Angew. Chem. Int. Ed. 2015, 54, 9120 –
9123; Angew. Chem. 2015, 127, 9248 – 9251.

[19] For Pd-catalyzed allylic alkylations of non-chelated enolates see: a) B. M.
Trost, G. M. Schroeder, Chem. Eur. J. 2005, 11, 174 – 184; b) M. Braun, T.
Meier, Angew. Chem. Int. Ed. 2006, 45, 6952 – 6955; Angew. Chem. 2006,
118, 7106 – 7109; c) W.-H. Zheng, B.-H. Zheng, Y. Zhang, X.-L. Hou, J. Am.
Chem. Soc. 2007, 129, 7718 – 7719; d) M. Braun, T. Meier, F. Laicher, P.
Meletis, M. Fidan, Adv. Synth. Catal. 2008, 350, 303 – 314.

[20] a) R. W. Hoffmann, Chem. Rev. 1989, 89, 1841 – 1860; b) L. F. Tietze, G.
Schulz, Liebigs Ann. 1996, 1575 – 1579.

[21] M. Scholl, S. Ding, C. W. Lee, R. H. Grubbs, Org. Lett. 1999, 1, 953 – 956.
[22] T. Kawasaki, T. Kitazume, Isr. J. Chem. 1999, 39, 129 – 131; T. M. Pedersen,

E. L. Hansen, J. Kane, T. Rein, P. Helquist, P.-O. Norrby, D. Tanner, J. Am.
Chem. Soc. 2001, 123, 9738 – 9742; C.-W. Chang, S. Norsikian, J.-M. Beau,
Chem. Eur. J. 2009, 15, 5195 – 5199.

Manuscript received: January 6, 2020

Accepted manuscript online: January 14, 2020

Version of record online: February 21, 2020

Chem. Eur. J. 2020, 26, 3181 – 3188 www.chemeurj.org T 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim3188

Full Paper

https://doi.org/10.1021/jm901241e
https://doi.org/10.1021/jm901241e
https://doi.org/10.1021/jm901241e
https://doi.org/10.1021/jm901241e
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1016/j.drudis.2009.07.014
https://doi.org/10.1039/c2md20111a
https://doi.org/10.1039/c2md20111a
https://doi.org/10.1039/c2md20111a
https://doi.org/10.1021/jm501100b
https://doi.org/10.1021/jm501100b
https://doi.org/10.1021/jm501100b
https://doi.org/10.7164/antibiotics.42.1763
https://doi.org/10.7164/antibiotics.42.1763
https://doi.org/10.7164/antibiotics.42.1763
https://doi.org/10.7164/antibiotics.43.796
https://doi.org/10.7164/antibiotics.43.796
https://doi.org/10.7164/antibiotics.43.796
https://doi.org/10.7164/antibiotics.46.162
https://doi.org/10.7164/antibiotics.46.162
https://doi.org/10.7164/antibiotics.46.162
https://doi.org/10.1016/S0031-9422(00)00451-9
https://doi.org/10.1016/S0031-9422(00)00451-9
https://doi.org/10.1016/S0031-9422(00)00451-9
https://doi.org/10.1016/S0031-9422(00)00451-9
https://doi.org/10.1016/S0957-4166(99)00226-8
https://doi.org/10.1016/S0957-4166(99)00226-8
https://doi.org/10.1016/S0957-4166(99)00226-8
https://doi.org/10.1016/S0957-4166(99)00226-8
https://doi.org/10.1021/jo990141n
https://doi.org/10.1021/jo990141n
https://doi.org/10.1021/jo990141n
https://doi.org/10.1002/ejoc.201100452
https://doi.org/10.1002/ejoc.201100452
https://doi.org/10.1002/ejoc.201100452
https://doi.org/10.1039/a709071d
https://doi.org/10.1039/a709071d
https://doi.org/10.1039/a709071d
https://doi.org/10.1016/j.tet.2003.11.043
https://doi.org/10.1016/j.tet.2003.11.043
https://doi.org/10.1016/j.tet.2003.11.043
https://doi.org/10.1002/tcr.20035
https://doi.org/10.1002/tcr.20035
https://doi.org/10.1002/tcr.20035
https://doi.org/10.1002/chem.201201539
https://doi.org/10.1002/chem.201201539
https://doi.org/10.1002/chem.201201539
https://doi.org/10.1002/ejoc.200901494
https://doi.org/10.1002/ejoc.200901494
https://doi.org/10.1002/ejoc.200901494
https://doi.org/10.1002/ejoc.200901494
https://doi.org/10.1016/j.tetasy.2008.01.004
https://doi.org/10.1016/j.tetasy.2008.01.004
https://doi.org/10.1016/j.tetasy.2008.01.004
https://doi.org/10.1016/j.tetasy.2008.01.004
https://doi.org/10.1055/s-0028-1087490
https://doi.org/10.1055/s-0028-1087490
https://doi.org/10.1055/s-0028-1087490
https://doi.org/10.1055/s-0028-1087490
https://doi.org/10.1002/anie.200353152
https://doi.org/10.1002/anie.200353152
https://doi.org/10.1002/anie.200353152
https://doi.org/10.1002/ange.200353152
https://doi.org/10.1002/ange.200353152
https://doi.org/10.1002/ange.200353152
https://doi.org/10.1002/ejoc.200700104
https://doi.org/10.1002/ejoc.200700104
https://doi.org/10.1002/ejoc.200700104
https://doi.org/10.1002/ejoc.200700104
https://doi.org/10.1016/j.tetasy.2004.04.008
https://doi.org/10.1016/j.tetasy.2004.04.008
https://doi.org/10.1016/j.tetasy.2004.04.008
https://doi.org/10.1016/j.tetasy.2004.04.008
https://doi.org/10.1016/j.tet.2009.09.104
https://doi.org/10.1016/j.tet.2009.09.104
https://doi.org/10.1016/j.tet.2009.09.104
https://doi.org/10.1055/s-0029-1219375
https://doi.org/10.1055/s-0029-1219375
https://doi.org/10.1055/s-0029-1219375
https://doi.org/10.1016/S0040-4039(00)95413-3
https://doi.org/10.1016/S0040-4039(00)95413-3
https://doi.org/10.1016/S0040-4039(00)95413-3
https://doi.org/10.1016/S0040-4039(00)95413-3
https://doi.org/10.1055/s-2006-926419
https://doi.org/10.1055/s-2006-926419
https://doi.org/10.1055/s-2006-926419
https://doi.org/10.1021/ol202276h
https://doi.org/10.1021/ol202276h
https://doi.org/10.1021/ol202276h
https://doi.org/10.1021/ol202276h
https://doi.org/10.1002/jlac.199719970203
https://doi.org/10.1002/jlac.199719970203
https://doi.org/10.1002/jlac.199719970203
https://doi.org/10.1039/C6QO00192K
https://doi.org/10.1039/C6QO00192K
https://doi.org/10.1039/C6QO00192K
https://doi.org/10.1039/C6QO00192K
https://doi.org/10.1002/anie.200500095
https://doi.org/10.1002/anie.200500095
https://doi.org/10.1002/anie.200500095
https://doi.org/10.1002/ange.200500095
https://doi.org/10.1002/ange.200500095
https://doi.org/10.1002/ange.200500095
https://doi.org/10.1002/anie.200600100
https://doi.org/10.1002/anie.200600100
https://doi.org/10.1002/anie.200600100
https://doi.org/10.1002/anie.200600100
https://doi.org/10.1002/ange.200600100
https://doi.org/10.1002/ange.200600100
https://doi.org/10.1002/ange.200600100
https://doi.org/10.1021/ol050129j
https://doi.org/10.1021/ol050129j
https://doi.org/10.1021/ol050129j
https://doi.org/10.1021/ol050766+
https://doi.org/10.1021/ol050766+
https://doi.org/10.1021/ol050766+
https://doi.org/10.1021/ol034777j
https://doi.org/10.1021/ol034777j
https://doi.org/10.1021/ol034777j
https://doi.org/10.1039/b811382c
https://doi.org/10.1039/b811382c
https://doi.org/10.1039/b811382c
https://doi.org/10.1055/s-0028-1088150
https://doi.org/10.1055/s-0028-1088150
https://doi.org/10.1055/s-0028-1088150
https://doi.org/10.1002/anie.200600509
https://doi.org/10.1002/anie.200600509
https://doi.org/10.1002/anie.200600509
https://doi.org/10.1002/anie.200600509
https://doi.org/10.1002/ange.200600509
https://doi.org/10.1002/ange.200600509
https://doi.org/10.1002/ange.200600509
https://doi.org/10.1002/anie.200700759
https://doi.org/10.1002/anie.200700759
https://doi.org/10.1002/anie.200700759
https://doi.org/10.1002/ange.200700759
https://doi.org/10.1002/ange.200700759
https://doi.org/10.1002/ange.200700759
https://doi.org/10.1002/ange.200700759
https://doi.org/10.1002/chem.200700084
https://doi.org/10.1002/chem.200700084
https://doi.org/10.1002/chem.200700084
https://doi.org/10.1002/anie.201502975
https://doi.org/10.1002/anie.201502975
https://doi.org/10.1002/anie.201502975
https://doi.org/10.1002/ange.201502975
https://doi.org/10.1002/ange.201502975
https://doi.org/10.1002/ange.201502975
https://doi.org/10.1002/chem.200400666
https://doi.org/10.1002/chem.200400666
https://doi.org/10.1002/chem.200400666
https://doi.org/10.1002/anie.200602169
https://doi.org/10.1002/anie.200602169
https://doi.org/10.1002/anie.200602169
https://doi.org/10.1002/ange.200602169
https://doi.org/10.1002/ange.200602169
https://doi.org/10.1002/ange.200602169
https://doi.org/10.1002/ange.200602169
https://doi.org/10.1021/ja071098l
https://doi.org/10.1021/ja071098l
https://doi.org/10.1021/ja071098l
https://doi.org/10.1021/ja071098l
https://doi.org/10.1002/adsc.200700409
https://doi.org/10.1002/adsc.200700409
https://doi.org/10.1002/adsc.200700409
https://doi.org/10.1021/cr00098a009
https://doi.org/10.1021/cr00098a009
https://doi.org/10.1021/cr00098a009
https://doi.org/10.1002/jlac.199619961012
https://doi.org/10.1002/jlac.199619961012
https://doi.org/10.1002/jlac.199619961012
https://doi.org/10.1021/ol990909q
https://doi.org/10.1021/ol990909q
https://doi.org/10.1021/ol990909q
https://doi.org/10.1002/ijch.199900015
https://doi.org/10.1002/ijch.199900015
https://doi.org/10.1002/ijch.199900015
https://doi.org/10.1021/ja005809q
https://doi.org/10.1021/ja005809q
https://doi.org/10.1021/ja005809q
https://doi.org/10.1021/ja005809q
https://doi.org/10.1002/chem.200900093
https://doi.org/10.1002/chem.200900093
https://doi.org/10.1002/chem.200900093
http://www.chemeurj.org

