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Abstract

Due to the risk of new synthetic opioids (NSOs) for human health, the knowledge of

their toxicokinetic characteristics is important for clinical and forensic toxicology. U‐

48800 is an NSO structurally non‐related to classical opioids such as morphine or

fentanyl and offered for abuse. As toxicokinetic data of U‐48800 is not currently

available, the aims of this study were to identify the in vitro metabolites of U‐

48800 in pooled human liver S9 fraction (pS9), to map the isozymes involved in the

initial metabolic steps, and to determine further toxicokinetic data such as metabolic

stability, including the in vitro half‐life (t1/2), and the intrinsic (CLint) and hepatic clear-

ance (CLh). Furthermore, drug detectability studies in rat urine should be done using

hyphenated mass spectrometry. In total, 13 phase I metabolites and one phase II

metabolite were identified. N‐Dealkylation, hydroxylation, and their combinations

were the predominant metabolic reactions. The isozymes CYP2C19 and CYP3A4

were mainly involved in these initial steps. CYP2C19 poor metabolizers may suffer

from an increased U‐48800 toxicity. The in vitro t1/2 and CLint could be rated as mod-

erate, compared to structural related compounds. After administration of an assumed

consumer dose to rats, the unchanged parent compound was found only in very low

abundance but three metabolites were detected additionally. Due to species differ-

ences, metabolites found in rats might be different from those in humans. However,

phase I metabolites found in rat urine, the parent compound, and additionally the N‐

demethyl metabolite should be used as main targets in toxicological urine screening

approaches.
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1 | INTRODUCTION

New psychoactive substances (NPS) can be subdivided in different

groups such as stimulants, synthetic cannabinoids, hallucinogens, or

new synthetic opioids (NSOs). Although the total number of emerging

NPS has slowly decreased in recent years, more and more NSOs have

appeared on the market.1-3 They are usually sold via the Internet and

only limited pharmacological and toxicological data are available. Sev-

eral cases of acute intoxications and deaths were described recently

and clearly underline the health risks associate with an NSO abuse.4,5

Investigations on the toxicokinetic characteristics of NSOs are of

great importance regarding analytical questions but also for a thor-

ough general risk assessment, particularly in terms of simultaneous

drug intake.

The NSO U‐48800 [trans‐2‐(2,4‐dichlorophenyl)‐N‐2‐

(dimethylamino)cyclohexyl)‐N‐methylacetamide, monohydrochloride]

appeared in 2017 for the first time on the market in seized material.6

Together with its regioisomer U‐51754 (methene‐U‐47700), which

was also described as an NSO,7,8 it belongs to the so‐called U‐drugs

and is structurally non‐related to classical opioids such as morphine

and fentanyl.6,9 Both chemical structures are given in Figure 1. U‐

48800 receptor affinity studies were not yet performed, but based

on the analogy to U‐51754, comparable pharmacological effects are

likely.6,7 Due to a higher affinity to the κ‐receptor in comparison to

the μ‐receptor, analgesia with fewer unwanted pharmacological

effects such as respiratory depression could be expected. Solimini

et al recently reviewed the pharmacotoxicology of non‐fentanyl‐

derived NSOs and found U‐48800 available as a “research chemical”

of the opioid analgesic class to replace U‐47700 and that conventional

drug tests do not detect such compounds.10 Due to the growing num-

ber of acute intoxication cases, they encouraged pharmacological, tox-

icological, and forensic research on these compounds to provide

effective detection methods, amongst others.

Toxicokinetic studies including metabolism of compounds similar

to U‐48800 were for example published for AH‐7921.11 Wohlfarth

et al studied the metabolic stability and in vitro metabolism of AH‐

7921 and confirmed findings in a urine sample.11 They identified 12

metabolites in vitro and 11 in urine with the demethyl and

bisdemethyl metabolites being the most abundant in vitro. However,

such studies are essential for developing e. g. urinary screening proce-

dures. Since authentic human samples are often unavailable and stud-

ies of drugs of abuse in human are not feasible for ethical reasons,

alternative in vivo models, such as rats, have to be used. However,

species differences might occur. Detailed toxicokinetic data including

metabolism of U‐48800 had not yet been described. Therefore, the

aims of the present study were to elucidate its in vitro metabolic sta-

bility, including in vitro half‐life (t1/2), intrinsic clearance (CLint), hepatic

clearance (CLh), its qualitative metabolism, involvement of single

monooxygenases in the initial steps, as well as its plasma protein bind-

ing (PPB). Finally, the detectability of U‐48800 intake should be

shown in rat urine samples after administration of an assumed con-

sumer's dose.

2 | EXPERIMENTAL

2.1 | Chemicals, reagents, and enzymes

U‐48800 was provided for research purposes by the State Bureau of

Criminal Investigation Bavaria (Munich, Germany). A stock solution

was prepared in methanol (1 mg/mL). Trimipramin‐d3 was from LGC

(Wesel, Germany). Isocitrate, isocitrate dehydrogenase, superoxide

dismutase, 3′‐phosphoadenosine‐5'phosphosulfate (PAPS), S‐(5′‐

adenosyl)‐L‐methionine (SAM), dithiothreitol (DTT), reduced

glutathione (GSH), magnesium chloride (MgCl2), potassium

dihydrogenphosphate (KH2PO4), dipotassium hydrogenphosphate

(K2HPO4), and tris hydrochloride were obtained from Sigma Aldrich

(Taufkirchen, Germany) and NADP+ from Biomol (Hamburg, Germany).

Acetonitrile (LC–MS grade), methanol (LC–MS grade), ammonium for-

mate (analytical grade), formic acid (LC–MS grade), and all other

reagents and chemicals (analytical grade) were obtained from VWR

(Darmstadt, Germany). The creatinine immunoassays and the PIA2

device were from Protzek Diagnostik (Lörrach, Germany). The

baculovirus‐infected insect cell microsomes (Supersomes) containing

1 nmol/mL of human cDNA‐expressed cytochrome P450 (CYP) iso-

forms CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,

CYP2D6, CYP2E1 (2 nmol/mL), CYP3A4, CYP3A5 (2 nmol/mL), flavin‐

containingmonooxygenase (FMO) 3 (5 mg/mL), pS9 (20mgmicrosomal

protein/mL), UGT reaction mixture solution A (25mM UDP‐glucuronic

acid), and UGT reaction mixture solution B (250mM Tris HCl, 40mM

MgCl2, and 125 μg/mL alamethicin) were obtained from Corning

(Amsterdam, Netherlands). After delivery, the enzymes and pS9 were

thawed at 37°C, aliquoted, snap‐frozen in liquid nitrogen, and stored

at −80°C until use.

2.2 | Pooled human liver S9 fraction incubation for
identification of phase I and II metabolites and
investigation of metabolic stability

U‐48800 was incubated with pS9 (2 mg microsomal protein/mL) in

accordance to a previous publication with minor modifications.12 First,

25 μg/mL alamethicin (UGT reaction mixture solution B), 90mM phos-

phate buffer (pH 7.4), 2.5mMMg2+, 2.5mM isocitrate, 0.6mM NADP+,

0.8 U/mL isocitrate dehydrogenase, 100 U/mL superoxide dismutase

were preincubated for 10 minutes at 37°C. Thereafter, 2.5mM UDP‐

glucuronic acid (UGT reaction mixture solution A), 40 μM PAPS,

1.2mM SAM, 1mM DTT, 10mM GSH, and 2.5 μM substrate were
FIGURE 1 Chemical structures of U‐48800 and its isomer U‐51754
(methene‐U‐47700)
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added. The amount of organic solvent was below 1%.13 All given con-

centrations are concentrations in the final incubation mixture (final

volume: 300 μL).

Reactions were started by adding U‐48800. The maximum incuba-

tion time was 360 minutes and 30 μL aliquots were taken after 1, 15,

30, 45, 60, 75, 90, 180, and 360 minutes. Reactions were terminated

by addition of 10 μL ice‐cold acetonitrile containing trimipramin‐d3

(5 μM) as internal standard (IS). Afterwards, the tubes were cooled

for 30 minutes at −20°C, centrifuged at 18,407 × g for 2 minutes,

the supernatants transferred to autosampler vials, and analyzed by liq-

uid chromatography coupled to high‐resolution tandem mass spec-

trometry (LC−HRMS/MS). Blank incubation (without substrate) and

control incubation (without pS9) were done to confirm the absence

of interfering compounds and to identify not metabolically formed

compounds. All incubations were performed in duplicate.

Metabolic stability was evaluated by substrate depletion. Statistical

analysis was done using GraphPad Prism 5.00 (GraphPad Software,

San Diego, CA, USA). The natural logarithm of the area ratio of the

analyte to the IS was plotted versus incubation time (1–90 minutes).

The slope of the linear regression was used to calculate in vitro half‐

life. A t‐test was performed to confirm that the ln[peak area ratio]initial

of the remaining analyte was not significantly different from the

ln[peak area ratio] of the control incubation without pS9. The follow-

ing settings were used: unpaired; two‐tailed; significance level, 0.05;

confidence intervals, 99%.

Following equations were used according to Baranczewski and

Obach14,15:

t1=2 ¼ ln2
k minð Þ (1)

ln peak area ratio½ �remaining ¼ ln peak area ratio½ �initial − k × t (2)

CLint ¼ ln2
t1=2 minð Þ ×

V½ �incubation mlð Þ
P½ �incubation mgð Þ ×

Liver½ � gð Þ
BW½ � kgð Þ × SF

mg
g

� �
(3)

CLh ¼ Q × fu × CLint
Qþ fu × CLint

(4)

CLh ¼ Q × CLint
Qþ CLint

(5)

(well‐stirred model with4 and without5 free fraction in plasma)

CLh ¼ Q × 1 − e
−fu×CLint

Q

� �� �
(6)

CLh ¼ Q × 1 − e
−CLint

Q

� �� �
(7)

(parallel tube model with6 and without7 free fraction in plasma)

with k = slope of the linear regression fit, t1/2 = in vitro half‐life,

CLint = intrinsic clearance, [V]incubation = incubation volume = 0.3,

[P]incubation = amount of S9 protein in the incubation = 0.6, [Liver]

[BW] = liver weight normalized by body weight = 26,16 and SF = scaling

factor S9 protein per gram of liver = 121,17 CLh = hepatic clearance,

Q = hepatic blood flow rate in human = 20 mL/min/kg,18 f u = free

fraction in plasma.

2.3 | Isozyme mapping

Monooxygenases activity screening was performed in accordance to a

previous studywithminormodifications.19 U‐48800 (2.5 μM)was incu-

bated with CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19,

CYP2D6, CYP2E1, CYP3A4, CYP3A5 (50 pmol/mL each), or FMO3

(0.25 mg protein/mL) for 30 minutes at 37°C. All given concentrations

are concentrations in the final incubation mixture (final volume:

250 μL). Furthermore, the incubation mixtures contained 90mM phos-

phate buffer (pH 7.4), 5mM Mg2+, 5mM isocitrate, 1.2mM NADP+,

0.5 U/mL isocitrate dehydrogenase, and 200 U/mL superoxide dismut-

ase. For incubations with CYP2A6 or CYP2C9, phosphate buffer was

replaced by 90mM tris buffer, according to the manufacturer's recom-

mendation. The reactions were initiated by addition of the respective

enzyme and terminated after 30 μL aliquots were taken at 1, 5, 10, 15,

20, 25, and 30 minutes by addition of 10 μL ice‐cold acetonitrile. After-

wards, the samples were centrifuged at 18 407 × g for 5 minutes, the

supernatants transferred to autosampler vials, and analyzed by LC

−HRMS/MS. Blank incubation with CYP2E1 and without substrate

and a negative control without enzyme were done to confirm the

absence of interfering compounds and to identify not metabolically

formed compounds. All incubations were performed in duplicate.

2.4 | Plasma protein binding studies

Two‐chambered Centrifree devices from Merck (Darmstadt, Germany)

were used for determination of PPB and f u. According to published

procedures,20,21 450 μL fresh human plasma samples were spiked

with 50 μL U‐48800 methanolic solution (final concentration:

0.5 μM) and incubated for 30 min at 37°C (n = 3). Before filtration, a

100 μL aliquot (global approach, GA) was transferred to a new reac-

tion tube. After filtration for 35 minutes at 37°C and 1,600 × g,

100 μL of the ultrafiltrate (UF) was also transferred to a new reaction

tube. All reactions were terminated by addition of 50 μL ice‐cold ace-

tonitrile containing trimipramin‐d3 (2.5 μM) as IS. Afterwards, samples

were cooled for 30 minutes at −20°C, centrifuged for 2 minutes at

18,407 × g, transferred into autosampler vials and analyzed by LC

−HRMS/MS. Calculation of lipophilicity was done using ChemDraw

Professional 16.0.1.4 (PerkinElmer, Waltham, MA, USA). The PPB

was calculated using the following equations:

fu ¼
peak area ratio

U48800UF

ISUF

� �

peak area ratio
U48800GA

ISGA

� � (8)

PPB; % ¼ 1 − fuð Þ × 100 (9)
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2.5 | Rat urine samples

As reported earlier,22 drug detectability studies were performed using

rat urine samples from male Wistar rats (Charles River, Sulzfeld, Ger-

many) for toxicological diagnostic reasons according to the corre-

sponding German animal protection law. The rat dosage was based

on a common consumer U‐47700 dosage (http://drugs.tripsit.me/)

due to unavailable consumer data of U‐48800. After a single

0.6 mg/kg body mass dose administration, urine and faces were col-

lected separately over 24 hours. Blank urine was collected before drug

administration to confirm the absence of interfering compounds.

Creatinine was measured in blank urine and after administration by

an immunoassay. Samples were stored at −20°C until use.

2.6 | Sample preparation for drug detectability
studies in rat urine

Urine precipitation (UP) was done in accordance to Wissenbach

et al.23 A volume of 200 μL rat urine was precipitated with 1 mL

ice‐cold acetonitrile, shaken for 2 minutes, and centrifuged at 18

407 × g for 2 minutes. The supernatant was evaporated to dryness

at 70°C under nitrogen stream, and reconstituted in 100 μL eluent

mixture A and B (50:50 v/v, Section 2.7). The samples were analyzed

using both the mass spectrometry settings described in Section 2.7

and by standard urine screening approach (SUSA) in switching mode

and without inclusion list with minor modifications.24

2.7 | LC−HRMS/MS conditions

A Thermo Fisher Scientific (TF, Dreieich, Germany) Dionex UltiMate

3000 RS pump consisting of a degasser, a quaternary pump, and an

UltiMate autosampler, coupled to a TF Q‐Exactive Plus system

equipped with a heated electrospray ionization (HESI)‐II source were

used. A mass calibration was done according to the manufacturer's

recommendations using external mass calibration prior to analysis.

Injection volume was 1 μL for all samples. Gradient elution was per-

formed according to a previous study24 on aTF Accucore PhenylHexyl

column (100 mm x 2.1 mm, 2.6 μm). The mobile phases consisted of

2mM aqueous ammonium formate containing formic acid (0.1%, v/v,

pH 3, eluent A) and 2mM ammonium formate solution with acetoni-

trile: methanol (1:1, v/v), water (1%, v/v), and formic acid (0.1%, v/v,

eluent B). The initial flow rate was set to 500 μL/min (0–10 minutes)

and 800 μL/min (10–13.5 minutes). The gradient was stepped as fol-

lows: 0–1.0 minute hold 99% A, 1–10 minute to 1% A, 10–11.5 minute

hold 1% A, and 11.5–13.5 minute hold 99% A. The HESI‐II source con-

ditions were as follows: heater temperature, 320°C; ion transfer capil-

lary temperature, 320°C; spray voltage, 4.0 kV; ionization mode,

positive; sheath gas, 60 arbitrary units (AU); auxiliary gas, 10 AU;

sweep gas, 0 AU; and S‐lens RF level, 50.0. Mass spectrometry was

performed using full scan data and a subsequent data‐dependent

acquisition (DDA) with priority to mass‐to‐charge ratios (m/z) of par-

ent compounds and their expected metabolites. The settings for full

scan data acquisition were the following: resolution, 35 000;

microscans, 1; automatic gain control (AGC) target, 1e6; maximum

injection time (IT), 120 ms; and scan range, m/z 50–750. The settings

for the DDA mode with an inclusion list of U‐48800 and its expected

metabolites were as follows: option “pick others,” enabled; dynamic

exclusion, 5 seconds; resolution, 17500; microscans, 1; isolation win-

dow, 1.0 m/z; loop count, 5; AGC target, 2e5; maximum IT, 250 ms;

high collision dissociation cell with stepped normalized collision

energy, 17.5, 35.0, 52.5; exclude isotopes, on; spectrum data type,

profile; and underfill ratio, 1%. The inclusion list contained m/z values

of likely formed metabolites such as N‐dealkyl and hydroxy metabo-

lites (phase I) as well as sulfates, glucuronides, methoxy metabolites

(phase II), and combinations thereof. ChemSketch 2010 12.01 (ACD/

Labs, Toronto, Canada) was used to draw structures of hypothetical

metabolites and to calculate the exact masses. TF Xcalibur Qual

Browser software version 2.2 SP1.48 (TF, Dreieich, Germany) was

used for data handling. The following automated peak integration set-

tings were used: peak detection algorithm, INCOS; baseline window,

40; area noise factor, 5; and peak noise factor, 10.

3 | RESULTS AND DISCUSSION

3.1 | In vitro metabolic stability, half‐life, intrinsic
clearance, and hepatic clearance

Metabolic stability was determined by a substrate depletion assay

using a low protein concentration of 2 mg/mL to minimize non‐

specific protein binding.14 Furthermore, a low substrate concentration

(2.5 μM) was used to ensure a linear metabolite formation during incu-

bation time. The t‐test confirmed no significant difference between

the natural logarithms of the peak area ratios of incubations after

1 minute and control incubations.

Metabolic stability data are summarized in Table Table S1 in the

Supporting Information. The calculated in vitro t1/2 of 54.5 minutes

was longer than previously published for the structurally related

compound AH‐7921.11 The CLint was calculated to be 20 mL/min/

kg, which can be considered as intermediate in accordance to

McNaney et al.25 To predict human hepatic clearance (CLh), two dif-

ferent models (well‐stirred, parallel tube) were used. Calculation

using the well‐stirred model including f u yielded 1.4 mL/min/kg

and parallel tube model 1.5 mL/min/kg. In the case of basic sub-

stances, the calculated in vitro CLh values are in higher agreement

with in vivo clearance data without considering the PPB.15 The cal-

culated CLh without considering f u was 10.0 mL/min/kg based on

the well‐stirred model and 12.6 mL/min/kg based on the parallel

tube model. The results obtained by the two models were compara-

ble within the with and without considering f u groups. Within one

model, the clearance was much lower considering f u than without

f u. This would lead to an underestimation of the measured in vivo

clearance.
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3.2 | Identification of in vitro metabolites

Twelve phase I metabolites were tentatively identified in pS9 or CYP

isozyme incubations by comparison of their MS2 spectra to the MS2

spectrum of U‐48800. The measured accurate masses of precursor

ion (PI) and characteristic fragment ions (FI), relative intensities in

MS2, calculated exact masses, elemental compositions, mass devia-

tion errors, and retention times (RT) of U‐48800 and its metabolites

are listed in Table S2. The metabolites were sorted by increasing

mass and RT. Only calculated exact masses will be used in the fol-

lowing chapter for discussion of in vitro phase I metabolites. The

MS2 spectra of U‐48800 and the most abundant metabolites in

pS9 and in monooxygenase activity studies are given in Figure 2.

The MS2 spectra of all other metabolites are given in Figure S1.

The metabolic pathways detected in all investigated models are

given in Figure 3.

The MS2 spectrum of U‐48800 (PI at m/z 343.1338), showed FI

at m/z 298.0759, which originated from the separation of the ter-

tiary amine. A cleavage of the cyclohexyl ring led to FI at m/z

218.0133, followed by FI at m/z 158.9762 generated after the

amide cleavage. FI at m/z 112.1120 contained the cyclohexyl ring

coupled with the methylated amine. The cyclohexyl ring was repre-

sented by the FI at m/z 81.0698. M2 (PI at m/z 329.1181), formed

by N‐demethylation of the tertiary amine, had the same FIs as the

parent compound. M1 (PI at m/z 315.1025), originated from N,N‐

bisdemethylation of the tertiary amine, was characterized by the FI

at m/z 298.0759, which was identical with the FI in the MS2 spec-

trum of the parent compound. M8, M11, and M12 (PI at m/z

359.1287) were hydroxylated at the cyclohexyl ring indicated by

the FI at m/z 110.0964, which consisted of the cyclohexyl ring with

the primary amine shifted by two hydrogen after loss of water. M9,

M10 and M13 (PI at m/z 359.1287) were formed by hydroxylation

of the phenyl ring characterized by the FI at m/z 234.0083, which

corresponded to the FI at m/z 218.0133 shifted by an oxygen. The

N‐demethyl hydroxy metabolite M4 (PI at m/z 345.1131) showed

the same FI pattern as the corresponding hydroxy metabolites (M9,

M10, M13). M5 and M6 (PI at m/z 345.1131) are the corresponding

N‐demethyl hydroxy isomers of M8, M11, M12 and their FIs are in

accordance with each other. M3 (PI at m/z 331.0974) originated

from a hydroxylation at the cyclohexyl ring and N,N‐

bisdemethylation at the tertiary amine, which was identified by the

FI at m/z 114.0913, which corresponded to the FI at m/z

128.1069 altered in one CH2 group. The absence of interfering com-

pounds was confirmed by blank incubations. M2 was also identified

in negative control incubations, but with much lower intensity than

in the pS9 and single isozyme incubations, most probably due to

degradation processes during storage.

M3, M4, M5, M6, M8, M9, M10, and M13 were only identified in

CYP isozyme incubations. This was most probably due to higher total

CYP concentrations in incubations with recombinant CYP isozymes in

comparison to pS9 incubations. However, as pS9 represents the rela-

tive CYP isozyme amounts within the human liver, the metabolites

which were only detected in CYP isozyme incubations may be

expected to be minor metabolites in vivo. Another reason could be

suppression or enhancement effects in the different matrices, which

could not be excluded.

3.3 | Isozyme mapping

All metabolites previously identified in pS9 and eight additional

metabolites were found in the isozymes incubations in total (Table

S3). The N‐demethylation, the most abundant step in vitro, was cata-

lyzed by several isozymes (CYP2B6, CYP2C19, CYP2D6, CYP3A4,

CYP3A5). Furthermore, CYP2C19 was involved in all other metabolic

steps. M3, M4, M8, M10, and M13 were only identified in CYP2C19,

while M5 and M9 was formed only in CYP3A4 incubations. Besides

the N,N‐demethyl metabolite (M1), the N‐demethyl‐hydroxy metabo-

lite (M5), and the hydroxy metabolite (M9), the formation of the N‐

demethyl‐hydroxy isomer (M6) and the hydroxy isomer (M11) was

catalyzed by CYP3A4. Thus, CYP2C19 and CYP3A4 are the predomi-

nant isozymes involved in the metabolism of U‐48800. The changes in

the U‐48800 amount and the formation rates of the three most abun-

dant metabolites in pS9, CYP2C19, and CYP3A4 incubations are given

in Figure 4. Inhibition of one or both of these two isozymes, for exam-

ple by drug–drug interactions or varying activity due to different

CYP2C19 expression levels may cause an increased U‐48800 concen-

tration and thus toxicity.

3.4 | Determination of plasma protein binding

As classical ultrafiltration may have the non‐specific binding as disad-

vantages compared to equilibrium dialysis,26 the used filtration mem-

brane consisted of regenerated cellulose, which was shown to avoid

this issue.27 Free fraction of U‐48800 represents unbound drug ( f u)

and was calculated to be 0.078, which resulted in a PPB of 92% (log

P value of 3.4). Amongst other factors, for example ionization state,

there is a high correlation between lipophilicity and PPB.28,29 It is

expected that a PPB over 70% would have significant effects on the

pharmacokinetics and pharmacodynamics such as lower clearance.30

However, this effect will depend on the elimination route and/or

active transport into the hepatocytes,31 which were not part of this

study. Therefore, further studies are encouraged.

3.5 | Detectability of metabolites in rat urine

The only metabolite that could be automatically identified in urine

by automated SUSA was M7. Therefore, a more sensitive but

targeted approach was additionally used to allow the identification

of more than one biomarker. The metabolic pathways in rats are

shown in Figure 3. Two phase I (M5, M7) and one phase II metabo-

lite (M14) could be detected using the settings described in Section

2.7, whereas M5 has already been identified in vitro. M7 (PI at m/z

345.1131) is the N‐demethyl‐hydroxy isomer of M4 with identical

MS2 pattern. The MS2 spectrum of M14 (PI at m/z 375.1236) is

given in Figure S2. M14 was formed by N‐demethylation of the
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tertiary amine and dihydroxylation at the phenyl ring followed by

methylation of one hydroxy group, characterized by the FI at m/z

344.0814, which showed a shift of a CH3 and NH2 moiety. In com-

parison to the listed metabolites, the unchanged parent compound

was only found at a very low abundance in urine. By comparing

these findings in rat urine to findings in human urine of structural

related compounds, except the N‐demethyl‐hydroxy‐methoxy

metabolite, the two phase I metabolites were identified.11,32 There-

fore, analytical procedures should include the parent compound

and the described phase I metabolites. Additionally, the N‐demethyl

metabolite only identified in vitro should be considered due to the

high abundance in the investigated human urine.32 The absence of

FIGURE 2 MS2 spectra of U‐48800 and seven proposed major phase I metabolites in pooled human S9 fraction (pS9) and monooxygenases
incubations sorted by precursor ions and retention time (RT)
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interfering compound was confirmed by analysis of blank urine.

Creatinine values of blank urine and after dose administration were

76 mg/dL and 87 mg/dL.

4 | CONCLUSIONS

The present study describes the in vitro toxicokinetics and in vivo

detectability of the NSO U‐48800. In total, 14 metabolites were

tentatively identified. N‐dealkylation, hydroxylation, and combinations

thereof were the main metabolic reactions. The CYP isozyme mapping

revealed the predominant involvement in the initial steps of CYP2C19

and CYP3A4. CYP2C19 polymorphisms could therefore lead to

increased drug concentrations and subsequent toxicity cannot be

excluded. Predicted CLint and t1/2 is rated as intermediate in compari-

son to another NSO. Detection of a U‐48800 intake in human urine

should be possible by LC−HRMS/MS‐based urine screening

approaches. Both phase I metabolites found in rat urine, the parent

FIGURE 3 In vitro and in vivo (rats) metabolic pathways of U‐48800

FIGURE 4 Changes of the U‐48800 amount in pS9 and isozymes in A and incubations and the formation rates of the most abundant metabolites
compared to parent compound in B, pS9; C, CYP2C19; and D, CYP3A4. Logarithm of the absolute peak areas were plotted against time (min)
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compound, and additionally the most abundant in vitro metabolite N‐

demethyl‐U48800 should be considered as main targets.
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