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Abstract: Aging is an unstoppable process and begins shortly after birth. Each cell of the organism
is affected by the irreversible process, not only with equal density but also at varying ages and
with different speed. Therefore, aging can also be understood as an adaptation to a continually
changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling.
Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+

homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or
compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly
affect the development of age-related disease. This review attempts to summarize changes in Ca2+

signaling due to channels and receptors in T cells and beyond in the context of aging.

Keywords: calcium homeostasis; aging; T cells; T cell function; calcium; STIM; Orai; TRP channels;
potassium channels; voltage-gated calcium channels; purinergic receptors

1. Introduction

Aging is often associated with a loss of function. It describes a cumulative phe-
nomenon that contributes to morbidity and mortality in man due to the greater incidence
of infection, autoimmune phenomena, ineffective vaccination and cancer in elderly in-
dividuals (reviewed in [1–5]). One may also look at aging to be a constant adaptation
and remodeling to the various, and often continuous, stressors encountered during life to
maintain the organism’s overall functionality. The adaptation of cells during aging to envi-
ronmental changes may increase the susceptibility to diseases but often ensures survival.

Dysregulation and changes of ionic fluxes across membranes mediated by ion chan-
nels, transporters, and receptors probably form the basis for a modified cell function not
only during aging but also in disease. Ion channels and transporters evolved various
mechanisms through which the monovalent (K+, Na+, Cl−) and divalent (Mg2+, Ca2+,
Zn2+) ions are gated in response to different cellular signals.

Considering T cells, calcium (Ca2+) is one of the critical ions in generation, coordi-
nation, and control of signals within and between cells. To fulfill these numerous and
wide-ranging tasks, very strictly coordinated and regulated calcium homeostasis and its
maintenance in the cell is required. In the last decades of research, an incline of functional
and signaling defects in elderly T cells has accumulated (reviewed in [6–8]). Most of these
events depend either on transient or sustained Ca2+-influx to keep the intracellular calcium
concentration [Ca2+]i higher than basal levels for minutes to several hours. T cell function
and maintenance are among the most remarkable and most pronounced changes occurring
within an aging immune system.

Since the importance of Ca2+ for T cell function and in adaptive immunity has been
already excessively and excellently reviewed by many groups [9–13], we focus more on
the possibly altered channels and receptors during aging. These are expressed and play an
essential role in T cells from human and mice. Although the signaling machinery in T cells
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is exceptionally complicated and many steps remain to be clarified, age-related changes
in Ca2+ entry may be a critical cause of cell-mediated immune response decline with
aging. This review reports findings on cellular mechanisms linked to Ca2+ homeostasis
focusing on channels and their relevance in pathophysiological processes, mainly in T cells
during aging.

2. Altered T Cell Function during Aging

One significant hallmark in immune system aging is the thymic involution with age,
resulting in a steady decline of naïve T cells (TN) numbers [14–17] with restricted T cell
receptor (TCR) repertoires [18–20], ending in disrupted T cell homeostasis. The lack of
naïve T cells and increasing memory T cells (TM) accumulation contribute to a higher risk
of severe infections in the elderly [21]. Interestingly, the naïve CD8+ T cell compartment
is much more affected than the CD4+ T cells, including higher contraction rates [17–19].
However, a quantitative decrease of TN cells alone might not account for the functional
differences in effector (TE) and TM cell responses. Different models are discussed in this
context, such as distinctive phenotype between adult and elderly naïve CD8+ T cells with
altered survival, developmental pathways, and responses to infection [22–24]. On the
other hand, an increased adaptation to environmental changes during aging has been
observed [25] consistent with loss of stem-like features lead to reduced plasticity [24,26]
and accumulation of virtual-memory T cells without former antigen stimulation [27,28].

TCR antigen-binding triggers intracellular Ca2+ mobilization and is required for
plethora of cellular processes and may account for reduced effector responses by aged
T cells. Activation of TCR includes a firmly defined sequence of events, and numerous
age-related deficits are described in T cell signaling pathways after its activation. Just re-
cently, microRNA (miR-181a) expression emerged as a crucial regulator of controlling TCR
activation thresholds in peripheral T cell response [29]. In naïve CD4+ T cells from elderly
organisms, lower miR-181a expression leads to reduced extracellular regulated kinase
(ERK) upon TCR activation [30], as well as in naïve CD8+ T cells [31]. The deletion of
miR-181a in peripheral T cells in a mouse model causes defective viral response through
impaired generation of CD8+ effector T cells [32]. Additionally, activation-induced upregu-
lation of miR-21 shifts the transcriptome towards effector T cells and away from memory T
cell differentiation [33].

Unfavorable alterations of T cells subpopulations result in a decreased CD4+/CD8+

ratio and the accumulation of senescent and terminally differentiated T cells (reviewed
in [34,35]). The inversion of the CD4+/CD8+ ratio is associated with altered immune
function, chronic viral infection, and chronic inflammation [36–38]. Besides the ratio, the
CD4+ and CD8+ T cell subsets are affected differently by aging [39]. The aged naïve CD4+

T cells differentiate poorly to T-helper-cell-1 (Th1) and T-helper-cell-2 (Th2) effector subsets,
but the ability to generate T-helper-cell-17 (Th17) is intact, reflected by their increased
numbers during aging [40]. Moreover, the elderly have increased Th1/Th2 ratio [41],
and data from murine studies supports a shift from a Th1-like to a Th2-like cytokine
response [42]. Simultaneously, the subset of regulatory T cells (Tregs) increases compared
to adult individuals [43]. The accumulation of functional Tregs contributes to the frequent
reactivations of chronic infections often observed in aging. The aged-dependent decrease of
Th17/Treg ratio after stimulation accompanying altered cytokine expression may contribute
to the imbalance between pro-and anti-inflammatory immune responses [44].

Furthermore, in vitro stimulated T cells from humans and mice show altered cytokine
secretion. However, the published results are ambiguous and inconsistent for many in-
vestigated cytokines, like interferon-gamma (IFN-γ) and interleukin-2 (IL-2) [40,41,45–52].
All the studies highlight the importance of used stimuli for cytokine induction and the
resulting impact on immune responses. Additionally, one must consider T cell responsive-
ness’s altered kinetics with age as a possible cause impacting proliferation, upregulation
of activation markers, and cytokine secretion [53]. Naïve CD4+ T cells from elderly mice
secrete less than 50% IL-2 compared to adult cells, leading to decreased expression of
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CD25 (IL-2 receptor α), and show reduced proliferation and incomplete differentiation
to effector cells [50,54]. The age-related reduction in IL-2 production by CD4+ T cells is
not fully explained either by alterations of the actual structure of TCRs or by changes in
the TCR-CD3 complex [55,56]. The defects in effector generation associated with aging
are reversible by adding IL-2 but no other related gamma chain (γc)-receptor binding
cytokines [50]. Already in 1985, the first experiments implicate a Ca2+ influx as an essential
component for IL-2 function [57]. Nowadays, there is no doubt about the regulation of
IL-2 and IL-2 receptor (IL2-R) mediated signaling through the nuclear factor of activated T
cell (NFAT)/calcineurin pathway controlled by Ca2+ influx upon TCR and costimulatory
signals [58,59].

The influence of aging is not only limited to T cell subtype distribution and cytokine
production of CD4+ T cells but also the cytotoxicity of CD8+ T cells is changed. In a study
by Fagnoni and colleagues, the CD3-mediated cytotoxicity of freshly isolated T cells from
healthy aged donors against P815 target cells exhibited higher values than their younger
counterparts [60]. This correlates with higher amounts of CD8+CD28− cells in elderly
humans [60,61]. However, in the context of disease, the elderly human with COVID-
19 show reduced overall CD8+ T cell numbers and granzyme A expression by CD8+ T
cells. In effector memory (TEM) and TE cells, perforin’s expression decreases with age in
those patients [62]. Furthermore, in vitro stimulated
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impaired cytoskeleton signaling, LAT (linker of activated T cells) and ZAP-70 (Zeta-chain-
associated protein kinase 70) recruitment, and CD3-zeta assembly with the cytoskeleton to
the induction of NFAT [52,63]. Additionally, CD4+ T cells from aged TCR transgenic mice
do not form immunological synapses (IS) with antigen-presenting cells (APC) as efficiently
as in adult mice, with a reduction in the recruitment of signaling molecules in the elderly
compared to adult CD4+ T cells [64,65].

Changes in Ca2+ influx in aged T cells are also reported [66,67]; however, the influ-
ence of aging after TCR activation and the underlying molecular players are still under
investigation. Following T cell activation in mice, several groups reported a decline in the
Ca2+ levels with age [68,69]. Comparing T cells from mice of any age, naïve T cells are
much more likely than memory T cells to respond with an increase in [Ca2+]i in response
to lectin, anti-CD3 plus anti-CD28, or Ca2+ ionophores [70,71]. These studies suggest
that naïve and memory T cells differ fundamentally in their ability to increase [Ca2+]i
following receptor-dependent or receptor-independent stimulation. Changes in basal Ca2+

levels reported by several studies are conflicting. The resting level of free Ca2+ is lower
or unaffected in human aged T cells [72,73] but higher in T lymphocytes obtained from
elderly mice [74].

Many of the dysregulations described above are highly dependent or regulated by Ca2+

itself; however, the underlying molecular mechanisms are not well characterized and still
under investigation. Altered Ca2+ fluctuations have already been associated with numer-
ous age-related diseases, such as neurodegenerative [75], muscle-related diseases [76,77],
autoimmune and inflammatory disorders [78,79]. Ca2+ responses are regulated negatively
and positively by several mechanisms involving channels, pumps, and sensors (reviewed
in [80]). Here we review the impact of possibly altered Ca2+-permeable channels expressed
in T cells and their contribution to the altered processes observed during aging.
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3. Orai/STIM

In many immunocytes, the main mechanism for Ca2+ entry is through SOCE (store-
operated Ca2+ entry) [81] and involves the activation of CRAC (Ca2+-release activated Ca2+)
channels. Genome-wide RNAi screens and linkage analysis in human patients with defects
in SOCE identified two fundamental players of SOCE via ICRAC [82]: Stromal interaction
molecules (STIM1), as the ER Ca2+ sensor [83,84] and the CRAC channel [85–87] itself. In ad-
dition to the identification and characterization of the Orai and STIM homologs [88–90], the
research of the last 15 years has revealed numerous splice variants [91–93] that contribute
to the diversity of the resulting Ca2+ signals.

SOCE pathway is important for the immunocytes and essential for numerous cellu-
lar processes, including sufficient T cell activation, development, differentiation, gene
expression, the formation of the immunological synapse, and cytotoxicity (reviewed
in [10,13,58,94–96]). For efficient development of an immune response, T cells require
long-lasting Ca2+ influx through CRAC channels, and the formation of a stable IS with
the antigen-presenting cell (APC) [97,98]. Orai1 and STIM1 translocate to IS accompanied
by Ca2+ influx through CRAC channels [97,99,100]. Besides, mRNA expression for STIM1
and Orai homologs is upregulated. The generated distinctive Ca2+ patterns determined by
the heterogeneous composition of channels and activators [101–103] allow not only their
modulation but the transmission of extracellularly generated signals intracellularly.

The magnitude and duration of changes in [Ca2+]i are crucial determinants for T cell
activation and other immune system responses. Prolonged elevations of [Ca2+]i are vital
for activating transcription factors that initiate many changes in gene expression which
drives T cell proliferation, cytokine, and chemokine production. The work in deficient
mouse models gives an insight into the variety of processes mediated and determined
by SOCE. Profound defects in key T cells cytokines such as IL-2, IL-4, IL-10, IFN-γ and
TNF-α and apoptosis genes are found in CD4+ and CD8+ T cells from Orai1, STIM1, and
STIM1/2-deficient mice [104–106]. Complete inhibition of SOCE in CD8+ T cells from
STIM1/2-deficient mice impairs lytic granule exocytosis and elimination of tumor cells
and virus-infected cells [107,108]. Additionally, CD8+ T cells and NK cells show Ca2+

dependent cytotoxicity with an optimum for cancer cell elimination at rather low free
[Ca2+] concentrations. Downregulation of ORAI1 in cytotoxic T lymphocytes (CTLs) leads
to decreased Ca2+ signals but increased efficiency to eliminate cancer cells [109]. It seems
like delineation of the accurate STIM/Orai ratio could be a feature of the killing efficiency
of CD8+ T cells by determining the Ca2+ killing optimum.

One of the T cells’ best studied Ca2+-dependent mechanism is the NFAT (nuclear
factor of activated T cells)/calcineurin pathway [110]. The NFAT-driven gene expression
is highly dependent on sustained Ca2+-influx. The activation of calmodulin-dependent
enzyme calcineurin by the rise in [Ca2+]i levels leads to NFAT dephosphorylation followed
by nucleus translocation. A decrease in [Ca2+]i levels leads to the export of NFAT from the
nucleus [111]. Undoubtedly, the relevance of SOCE highlights the fact that lymphocytes
with defective SOCE are unable to mount an immune response, and patients with such
defects develop SCID. Studies of Orai1 in SCID patients have further confirmed that CRAC
channels are the primary pathway for Ca2+ entry in naïve T cells. An Arg91Trp mutation
in Orai1, as a pore-forming subunit of CRAC channels, is responsible for abolishing Ca2+

influx in T cells from these SCID patients [112]. Meanwhile, numerous other mutations in
STIM and ORAI were identified, leading to distinctive phenotypes in patients (reviewed
in [113]). Unexpectedly, immunodeficient patients with loss-of-function or null mutations
in ORAI1 or STIM1 that abolish TCR-mediated Ca2+ influx in T cells have normal CD4+

and CD8+ T cell numbers with a normal TCR Vß repertoire [114,115]. These data indicate
that CRAC channels do not play a significant role in the thymic development and selection
of T cells. The functional defect is not limited to T cells and affects SOCE in B cells
and fibroblasts [116]. Homozygous mice lacking STIM1, STIM2, or Orai1 are embryonic
lethal or die soon after birth [104,105]. STIM1-deficient T cells completely lack SOCE,
ICRAC, and Ca2+-dependent cytokine expression [105], but the STIM2-deficient naïve T cells
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show normal SOCE and cytokine production. T cells from Orai1-null mice also display
an evident impairment in all three functions [104,105]. Moreover, Orai1/Orai2-deficient
mice are protected from autoimmunity and alloimmunity in graft-versus-host disease.
The deletion of Orai1/Orai2 in T cells abolishes SOCE leading to augmented T cell function
and altered proliferation and cytokine production. Surprisingly, Orai2−/− T cells exhibit
increased SOCE without improving T cell function in vivo and in vitro [117]. Additionally,
Orai2 shapes the Ca2+ signaling profile in human Tregs after thapsigargin or TCR- induced
SOCE. The enhanced Ca2+ signals, compared to the conventional CD4+ T cells, correlate
with the lower expression of Orai2 in these cells [118].

Despite the substantial literature on SOCE associated with T cell function, the changes
in Ca2+ homeostasis components and age-related changes in Ca2+ entry are less well
understood. We recently linked the aging-related reduction in Ca2+ signals to reductions of
the primary critical players in the Ca2+ signaling pathway [66]. The reduced expression of
STIM and Orai mRNA and proteins leads to reduced Ca2+ entry. The upregulation of the
plasma membrane Ca2+ ATPases 4 (PMCA4) contributes to faster extrusion in CD8+ T cells
isolated from aged mice. Furthermore, these cells show a less efficient TCR-induced [Ca2+]i
mobilization and increased insensitivity to Ca2+ fluctuations during cytotoxic activity [66].

4. TRP Channels

Next to STIM and Orai, other Ca2+ and ion channels, including TRP channels, are
relevant for Ca2+ signaling. TRPV1 contributes to the TCR-induced Ca2+ entry in CD4+

T cells and is gated by phosphorylation depending on the lymphocyte-specific protein
tyrosine kinase (LCK) [119]. Complete deletion of Trpv1 using a mouse model showed
impaired TCR signaling resulting from reduced Ca2+ flux [119]. Furthermore, CD4+ T cells
presented defects in T cell activation and cytokine production [119], also confirmed by
using TRPV1 antagonists in T cells isolated from murine spleen [120]. However, additional
electrophysiological data is missing to underline that TRPV1 is activated downstream of
TCR. Besides, an inhibition of the TRPA1 channel can inhibit the TRPV1 activity, thereby
reducing the Ca2+ influx. This inhibition is caused by a direct heteromerization of the two
channels and such mutual modeling has also been described for other channels combination
such as Orai1 and Orai2 [117] or TRPM7 and TRPM6 [121,122].

TRPC3, 5 and 6 are involved in T cell Ca2+ signaling. The Ca2+ influx via TRPC3
modulates cell proliferation [123,124]. TRPC5 seems to be important in mediating Treg-
influenced inhibition of TE cells however the exact mechanism remains elusive [125].
The involvement of TRPC channels in T cells remains highly argumentative. More detailed
and sophisticated studies (not only during aging) are necessary to address these issues.

TRPM2 is another channel expressed by different cell types of the peripheral immune
system, including lymphocytes [126] and monocytes [127], which is involved in immune
cells function. It is stimulated by oxidative stress and specifically activated by intracellular
ADP-Ribose. Second messenger molecules like cyclic ADP-ribose (cADPR) and nicotinic
acid adenine dinucleotide phosphate (NAADP) can activate and regulate the Ca2+ influx
through TRPM2 channels in lymphocytes [128,129]. TCR engagement causes a sustained
cADPR increase and an antagonist of cADPR inhibits T cell activation and proliferation in
response to T cell stimulation [129]. However, it needs to be considered that this effect can
also be explained by the effect of cADPR on RyRs. Trpm2−/− T cells exhibit reduced prolif-
eration and proinflammatory cytokine secretion [130]. More evidence for the role of TRPM2
in inflammation can be found after induced inflammation by H2O2 or lipopolysaccharide
(LPS). TRPM2 activation promotes immune responses through cytokines production like
CXCL8, IL-6, IL-10 and TNF-alpha in monocytes [127,131]. The incubation of monocytes
with LPS resulted in TRPM2 mRNA and protein upregulation and ADP-ribose-induced
membrane currents [127]. By Trpm2-deficient mice, it was shown that TRPM2 minimizes
excessive inflammation by dampening the inflammatory response through cellular depo-
larization and following reduction of ROS production in phagocytes [132]. The exposition
to endotoxins demonstrated augmented inflammatory response and decreased survival
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compared to wild type mice. There is also good evidence that TRPM2 plays an essential
role in ROS-coupled diseases since H2O2-mediated TRPM2 activation is a potential mecha-
nism for pathogenic processes characterized by an increased oxidative microenvironment,
including inflammation. Interestingly, its role in aging of immune cells has hardly been
explored, although ROS plays a central role in aging theory (reviewed in [133]) and one
could imagine TRPM2 physiological or pathophysiological role during age-associated
inflammatory responses. The existing Trpm2-knock out mouse studies already provide
initial information and coherences about this channel’s role in the development and course
of the inflammatory processes because an exacerbating inflammation and age-related up-
regulation of pro-inflammatory cytokines were not observed in Trpm2-deficient mice at
least in the brain [134]. However, more sophisticated studies are required to examine its
role in immune cells in the aging context.

TRPM4 is involved in a diversity of physiological processes, including T cells [135],
mast cells [136], and dendritic cells [137] activity. It has a profound impact on Ca2+ signaling
because Na+ entry depolarizes the plasma membrane to reduce the driving force for
calcium entry during SOCE. The Ca2+ induced TRPM4 activation serves as a negative
feedback mechanism to prevent toxic Ca2+ overload and fine tunes T cell responses [135,
138]. Small interfering RNA-mediated knockdown of Trpm4 amplified Ca2+ entry, NFAT
translocation, and IL-2 production in mouse Th2 cells, but it had the opposite effect
in Th1 cells [139]. The reasons for the differences are the diverse TRPM4 expression
levels as well as different Ca2+ clearance dynamics in subtypes, leading to reduced TCR-
mediated Ca2+ influx in Th2 cells [139] and the high sensitivity to FAS-dependent apoptosis
in Th1 cells [140]. The deletion of Trpm4 gene impaired antigen- and stem cell factor-
induced migration of bone marrow derived mast cells (BMMCs) [136] and chemokine-
dependent migration of dendritic cells [137]. In a sepsis model, the ablation of Trpm4
gene decreased phagocytic function and pro-inflammatory cytokine production leading to
increased mouse mortality [141]. In BMMC’s, Ca2+ influx via CRAC channels decreases
critically after TRPM4 channels depolarize the membrane following adenosine- and FcεRI-
stimulation. Accordingly, activated Trpm4−/− BMMCs have amplified degranulation and
release excessive amounts of histamine, leukotrienes, and tumor necrosis factor [142].
Furthermore, TRPM4 channel activation is an efficient mechanism for limiting exaggerated
antigen-induced mast cell activation that triggers inflammatory and allergic reactions [143].

The selective cation permeable channel TRPM7 with protein serine/threonine kinase
activity [144–146] has been implicated in numerous physiological functions, including cell
survival, proliferation, apoptosis as well as migration, and immune cell function (reviewed
in [147–153]). TRPM7 is essential for T cell development since Trpm7 knock out mice have
reduced numbers of T cells due to halting of thymocytes development at the double nega-
tive CD4−CD8− stage and resulted in altered chemokine and cytokine expression [154].
Moreover, the T cell specific Trpm7 deletion in vivo resulted in reduced expression of
essential growth factors and progressive loss of medullary thymic epithelial cells [154],
which regulate T cell development through their function as APC. The impact on prolifer-
ation efficiency depends mainly on the type of activation stimuli [155,156]. The channel
itself seems to regulate T cell homeostasis by mediating Fas-depending T cell apoptosis
through caspase activation [157]. TRPM7 can activate SOCE by phosphorylation of CRAC
components leading to reduced SOCE in the absence of TRPM7 [158] and is implicated in
receptor-induced Ca2+ release [159]. The positive regulation of SOCE requires the chan-
nel kinase activity but not the channel domain itself. The inactivation of TRPM7 kinase
activity by introducing the K1646R mutation shows reduced SOCE [155] but normal T cell
development except for a reduction in Th17 cell development [156]. The fact that the Treg
cells were not affected in this context was very thrilling since both originate from the same
precursor cells, and their differentiation requires the involvement of the TGF-β (transform-
ing growth factor ß) [160–163]. Overall, Th17 cells up-regulate inflammation, while Treg
cells have an immunosuppressive function [164,165]. Altered balance of Th17/Treg may
play a critical role in the pathogenesis of autoimmune and chronic inflammatory diseases
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(reviewed in [166]). To ensure an effective immune response, the inflammatory response
must be tightly regulated to avoid damage and destruction. However, a characteristic
feature of aging and aging-related disease is “inflamm-aging”, associated with immune
imbalance and cytokine dysregulation (reviewed in [167–170]). Several studies already
reported a reciprocal connection between pro-inflammatory Th17 and anti-inflammatory
Treg cells [162,171] during aging [44,172]. The balance between Th17/Treg and their gen-
eration and maintenance are influenced by many factors including TCR and cytokine
signaling [166]. The study of Romagnani and colleagues [156] implicated a distinctive
defect of small mothers against decapentaplegic family member 2 (SMAD2) signaling in
T cells and highlight the role of TRPM7 kinase inhibition in immune homeostasis and in
graft-versus-host disease. Although current studies are missing, the existing data provides
an excellent foundation to study the involvement of TRPM7 not only in the context of
inflammation but also in aging.

5. Potassium Channels

After TCR activation in immune cells, subsequent opening of calcium-activated and
voltage gated K+ channels (KV1.3, KCa3.1) mediate K+ influx and hyperpolarization, pro-
viding an electrochemical gradient critical for sustained Ca2+ influx (reviewed in [173–175]).
In T cells of human and mice several K+ channels have been reported and their expression
depends on activation and differentiation status. Naïve human and mouse CD4+ and
CD8+ T cells, as well as activated central memory T cells (TCM) predominantly express
KV1.3 [176–181]. Furthermore, T cells from human and mice, upregulate the calcium-
activated channel KCa3.1 following T cell activation to maximize Ca2+ influx and prolifera-
tion during the re-activation of TN and TCM [177,178,182]. Additionally, the sensitivity to
selective blockers of KCa3.1 and KV1.3 differ in TN versus TM because of the different ex-
pression levels of these channels [176–178,180,183–185]. However, mouse TEM up-regulate
KCa3.1 instead of KV1.3, like shown in humans and rats. Although in KCa3.1-deficient mice
the CD4+ T cell differentiation was not affected but Ca2+ influx and cytokine production
in Th1 and Th2 cells were impaired in contrast to Treg and Th17 cells [182]. The results
from the KCa3.1−/− mice underlie the role of KCa3.1 function in the activation of CD4
subtypes [182].

Although the T cell homeostasis in humans and mice fundamentally differs [186], it is
beyond question that these processes require stable and balanced calcium homeostasis [10].
A block of both KV1.3 and KCa3.1 abolishes Ca2+ oscillations, impacting T cell prolifera-
tion [187]. Overall, the pharmacological inhibition of K+ channels reduces Ca2+ influx and
decreases cytokine expression profile [182,188,189]. The discovery of immunomodulatory
actions [190] by inhibiting KV1.3 channels pave the way for intensive investigations on a
therapeutic application in immune-mediated disorders [177,180,191]. Besides, the differ-
entiation of CD8+ T cells into effector cells with cytotoxic ability requires KV1.3 channels.
KV1.3 channels gather specifically at the IS between cytotoxic and target cells to modulate
the killing process mediated by cytotoxic T lymphocytes [192,193].

Changes in the prevalence of distinct T cell subsets have already been studied ex-
tensively [17,62,66,194], however very little is known on functional alterations affecting
activation and the underlying molecular mechanisms (not only) in aging. The influence
of T cell activation by Ca2+ influx regulated by KV1.3 and IKCa1 potassium channels may
alter T cell function during aging [195]. The use of specific inhibitors of KV1.3 and IKCa1,
namely margatoxin (MGTX) and triarylmethane-34 (TRAM), reveals a different pattern
of Ca2+ influx kinetics dependent on age and T cell subset. High Ca2+ influx observed
in CD8+, and Th1 T cells decreased during aging. Surprisingly, the Ca2+ influx in Th2 is
similar in all investigated age groups. MGTX inhibitory effect is even more pronounced
in Th2 cells, whereas in Th1, the TRAM inhibition remains more potent. Ca2+ influx of
CD8+ T cells is inhibited to a similar extent by both applied inhibitors in the two adult
groups and does not affect in the elderly. KV1.3 and IKCa1 channel dysfunction, as essential
regulators of Ca2+ influx kinetics, is associated with altered function and contribute to age-
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related changes of T cells [195]. Basically, any ion signaling dysregulation can have severe
effects on immune function, leading to (age-related) diseases. During necrosis in the tumor
microenvironment, exposure of T cells to high K+ concentrations inhibits TE cell function.
The excessive extracellular potassium concentration ([K+]e) leads to increased [K+]i block-
ing the TCR/Akt/mTOR pathway via phosphatase [196]. The consequence is the inhibition
of transcription of genes mediating T cells’ activation response to antigen presentation.

6. CaV Channels, Voltage Gated Channels

T lymphocytes express, among others, the ß3, ß4, and α1 subunit of voltage gated
channels CaV1.1, 1.2, 1.3, 1.4, and CaV3.1 [197–201]. The increasing number of publications
conducted using mice models provided useful insights of CaV1 channels and subunits in
T cell biology and uncovered their role in the activation and survival of T cells [200–203].
Additionally, the plethora of newly discovered splice variants with altered gating charac-
teristics [199] and partly complete insensitivity to membrane polarization [204] may play
a critical role in shaping Cav-dependent Ca2+ signals [205]. Murine CD4+ and CD8+ T
cells with a conventional CaV1.4-deficiency showed impaired Ca2+ influx and decreased
ERK (extracellular-signal-regulated kinase) and NFAT activation response to TCR stimu-
lation [201]. Furthermore, CaV1.4-deficiency is associated with increased apoptosis and
a relative loss of naïve CD44lo T cells in vivo. Upon infection, the number of functional
Ag-specific T cells is reduced, shifting towards TM cells phenotype with upregulated activa-
tion markers [201], and failed to mount an effective antigen-specific CD8+ T cell response.
The lack of ß regulatory subunits in mice models resulted in compromised cytokine pro-
duction in CD4+ T cells and decreased expression of the CaV1.1 pore-forming units [199]
required for TCR-induced Ca2+ entry [198]. The lack of ß3 subunit in CD8 T cells leads to
reduced cell numbers due to spontaneous apoptosis mediated by high expression of the Fas
receptor [200]. Like the CD4+ T cells, the remaining CD8+ T cells showed activated memory
character and defects in TCR-induced Ca2+ signaling and proliferation. Moreover, the lack
of ß3 subunit in naïve CD8+ T cells resulted in compromised CaV1.4 protein expression,
suggesting that CaV1.4 and β3 may form a Ca2+ channel complex [200]. CaV1.2 and CaV1.3
may play a role in Th2 cell activation since their deletion impaired TCR-induced Ca2+ influx
and IL-4 production in vitro and prevented experimental asthma development [202,206].
Finally, the T-type channel CaV3.1-deficiency showed a protective role in EAE (Experimen-
tal Autoimmune Encephalomyelitis) mouse model due to reduced cytokine production of
granulocyte macrophage colony-stimulating factor (GM-CSF), IL-17A, IL-17F, and IL-21
in Th1 and Th17 cells [197]. Although the overall published data implicate CaV channels’
involvement in Ag-receptor signaling, it is still a pending question how CaV channels work
in T cells and in combination with other channels to shape a specific calcium signaling. Un-
fortunately, momentarily no data are available for CaV channels and function during aging
in the immune system. The main reason might be the difficulty to separate the involvement
of CaV in aged related defects in the interplay of channels, pumps, and receptors involved
in the choreography of Ca2+ signaling in immune cells.

7. Purinergic Receptors

The members of the P2X receptor family are widely expressed among human and mice
immune cells. Probably, the best-studied and characterized, not only in T cells, is the P2X7
receptor with an established role in inflammatory and immune responses [207,208]. At this
point, it is worthy of mentioning that besides the P2X5 receptor, all other family members
can facilitate extracellular adenosine triphosphate (ATP)-mediated Ca2+ entry [209,210].
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Upon TCR activation, the increase in mitochondrial activity requires an increase
in cytosolic Ca2+ concentration via CRAC channels to raise ATP secretion leading to
autocrine activation via P2X receptors. In turn, P2X receptor activation causes a Ca+2

influx, IL-2 production, and proliferation by the activation of NFAT along with an increased
expression of the P2RX7 gene [211,212]. ATP release via pannexin-1 hemichannels after
TCR activation placed ATP as a mediator in an autocrine feedback loop intensifying T
cell stimulation [213] and also helps to sustain P2 receptor signaling as well as NFAT
activation [214]. A successful T cell activation requires forming of a stable IS with the
antigen-presenting cell [215]. Pannexin-1 hemichannels, P2X1, and P2X4 receptors rapidly
translocate to the IS after TCR stimulation facilitating ATP release and autocrine feedback
mechanism, while P2X7 receptors remain uniformly distributed [216]. It implicates that P2X
receptor subtypes may fulfill different functions in different steps during T cell activation.
The colocalization with STIM1 and Orai1 enhances Ca2+ entry at the IS [216] which is
necessary during weak TCR stimulation and supportive in antigen scanning or for the
formation of Ca2+ microdomains.

Besides the autocrine signaling during T cell activation, paracrine effects have been
observed. Extracellular ATP, as a danger signaling molecule during inflammation and
injury, activates the innate immune system and mediates chronic pain through P2X7 recep-
tors [217,218]. However, the latest work showed the unsuspected but critical involvement
of P2X7 in generating resilient, long-lived central and tissue-resident memory CD8+ T
cells (CD62L+) supporting adaptive immune system memory [212]. The induction of
adenosine monophosphate (AMP)-activated protein kinase, metabolic reprogramming
and mitochondrial maintenance promotes TCM’s metabolic fitness while TEM generation is
much less affected [212]. On the other hand, P2X7 receptor inhibition supports CD4+ T cells’
differentiation into Tregs [219]. Furthermore, P2X7 and P2X4 receptors play an essential
role in non-conventional γδ T cell differentiation and cytokine production mediated by
amplification of TCR-mediated Ca2+ signaling [220,221]. Application of extracellular ATP
on P2RX7-deficient T cells prevents shedding of CD62L (L-selectin) [222]. Furthermore,
P2X7 receptor seems to be essential for ATP-induced shedding of CD23, CD27, and IL-6R
mediated by metalloproteases and converts the membrane proteins into soluble effec-
tor proteins [222–225]. Additionally, ATP concentration seems to determine T cells’ fate,
whether to keep them in a resting state, becomes activated, or undergo apoptosis [226].
In mature T cells, the P2X7 receptor is essential for the induction of apoptosis by ATP [227]
and nicotinamide adenine dinucleotide (NAD) [228]. One another fascinating paracrine
ATP-function is the influence of the P2X7 and X4 receptors on the migration or motility of
T cells [229]. In lymph nodes, ATP-release from activated T cells reduces bystander T cells’
motility to support scanning of resident dendritic cells for better antigen recognition.

Although the field of purinergic receptors now contains quite a lot of substantial
publications, the role of P2 receptors during immune system aging is still under investiga-
tion. Supportive data of a direct dysregulation on the receptors itself is missing. However,
the evidence supports that alterations in the purinergic signaling pathways occur during
aging. The survival of TE cells, their specific cytotoxic competence, activity, and necessary
transition into TM cells is a critical step of the recall immune response strongly affected
during aging. Additionally, there is evidence that changes in purinergic signaling pathways
mediated by nucleotides influence inflammatory processes [230,231].

Two important enzymes in purinergic signaling are the ectoenzymes ectonucleoside
triphosphate diphosphohydrolase-1 (NTPDase1, CD39) and ecto-5′-nucleotidase (CD73).
They are expressed on endothelial and immune cells and play a central role in inflamma-
tion [232–234] and tumor immunity [235–237]. Severe P2 receptor-mediated stimulation
of endothelium, lymphocytes, and monocytes might cause a pro-inflammatory environ-
ment [238]. The activation of the P2X7 receptor inhibits Tregs’ immunosuppressive po-
tential and induces their conversion to Th17 effector cells in vivo during inflammation
by increasing ATP levels via IL-6 [219,239,240]. The CD39/CD73 pathway counteracts
through the degradation of excessive ATP levels into adenosine, leading to a more anti-
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inflammatory environment [241]. Interestingly Fang and colleagues identified CD39 as a
cell surface marker for short-lived CD4+ effector T cells [242]. Furthermore, CD39 has been
reported on exhausted CD8+ T cells [243] and CD8+ TM cells are more prone to express
CD39 than CD4+ T cells [244]. In mice, they may function as an integral component of T
cells’ suppressive machinery, as Tregs express CD39 and CD73 [245] and impact Th17 cell
generation [246]. Increased induction of CD39 with age on human CD4+ T cells correlates
with increased apoptosis after antigen encounter [242] and reduced generation of long-lived
TM cells in vaccine response. In agreement with the in vitro observations, individuals with
CD39 polymorphisms [247] show higher efficiency to vaccination [242]. Still, the follicular
helper T (Tfh) cells and the survival as TM cells are compromised, leading to vaccination’s
inefficacy. Overall the increased CD39 expression with age resulting in reduced ATP con-
centration and preventing signaling through P2X receptors will lead to higher apoptosis
susceptibility and preferential generation of short-lived effector T cells [242].

Opposite to CD4+ T cells, isolated CD8+ T cells are overall relatively resistant to extra-
cellular ATP [228,248,249]. Mellouk and colleague recently investigated the ATP-sensitivity
of CD8+ T cells (TN, TCM/EM) isolated from secondary lymphoid organs during aging [250].
They identified a CD44hiCD45RBhi phenotype within the aged CD8+ T cell populations
with total resistance to apoptosis induced by ATP in contrast to CD4+ T of the same age.
Thus, their cytotoxic activity might be maintained even in inflammatory tissues where high
ATP concentration is a common phenomenon [251], and the CD44hiCD45RBlo phenotype
will probably undergo apoptosis. The level of P2X7 receptor expression is upregulated
on TCM/EM CD44hiCD45RBlo cells compared to TN, but low on CD44hiCD45RBhi T cells
and unaffected with aging. Furthermore, the P2X7RloCD44hiCD45RBhi phenotype with
aging is entirely resistant to ATP-mediated channel formation and Ca2+ influx. The data
suggest a minor role of the ATP/P2X7 receptor pathway in CD8+ T cell activation and
differentiation during secondary immune responses [250].

8. Perspectives

Through increasing numbers of studies, it becomes more evident that ion signal trans-
duction changes appear to have a strong influence on the development of age-associated
diseases. Knowing the significant role of Ca2+ signaling for immune cells, a better under-
standing of ion channel and receptor biology is essential for the development of effective
and targeted treatment strategies. Especially the ongoing SARS-CoV-2 pandemic reminds
us how essential a functioning immune system is—the risk for severe illness with COVID-
19 increases with age. The remodeled immune system of the elderly, with less naïve T
cells, dysfunctional memory cells, and altered innate immune response, leads to greater
susceptibility to infectious disease. Moreover, vaccinations do not always seem to pro-
vide sufficient immunity for the elderly, with less immunogenicity and effectiveness in
the elderly than younger individuals [252]. Since immunological memory is the basis of
vaccination, it is essential to understand the different T cell subsets’ changes during aging.
T cells are extremely heterogeneous in terms of longevity, phenotype, distribution, and
function, and the changes brought about by aging increase this complexity even further.
Additionally, changes in the abundance and functionality of the Ca2+ and K+ channels may
contribute to altered Ca2+ homeostasis in T cell subsets during aging (Figure 1). Therefore,
more profound understanding of the dysregulation of ion channels contributing to the
altered ion signaling transduction in immune cells with age is indispensable. More detailed
and sophisticated studies are necessary to place channel and receptor dysfunction as a
possible hallmark of aging.
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Figure 1. Altered Ca2+ signaling in T cells during aging—impact of ion channel expression and 
function. Calcium signaling in T cells, mediated by several types of channels, pumps, and recep-
tors, is part of a crucial activation pathway, leading to proliferation, differentiation, and various 
effector functions. Antigen recognition through T cell receptors (TCRs) initiates the phosphoryla-
tion of multiple adaptor proteins. Activation of PLCγ1, followed by inositol triphosphate (IP3) 
production, induces Ca2+ release from ER calcium stores by binding to its receptor (IP3R). The de-
crease of [Ca2+]ER activates STIM, which translocates to the plasma membrane and causes store-
operated calcium entry (SOCE) through direct interactions with Orai channels. The increased cyto-
solic Ca2+ concentration leads to the activation of calcineurin, dephosphorylation and nuclear 
translocation of NFAT resulting in expression of IL2, CD25, Foxp3, and further components essen-
tial for T cell function. Other ion channels including (non-selective) TRPC and TRPM2/7, CaV chan-
nels (e.g., CaV3.1), and purinergic ionotropic receptors (e.g., P2X7) mediate Ca2+ influx during T 
cell activation. Additionally, ion channels like potassium channels (e.g., KV1.3, KCa3.1) or TRPM4 
indirectly regulate Ca2+ influx through de- or hyperpolarization of the plasma membrane. Besides 
alterations in TCR activation, also Ca2+ signaling changes during aging. STIM1 and STIM2 expres-
sion levels are reduced (↓). Orai channel expression is still under investigation but Orai2 mRNA 
expression is decreased (↓). In contrast, PMCA4 expression increases with age (↑) leading to 
higher Ca2+ extrusion. Inhibition of KV1.3 or KCa3.1 causes age- and subtype- dependent differences 
in Ca2+ influx patterns (↯). Possible changes in expression or function of other ion channels during 
aging are largely unknown (?). 
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Figure 1. Altered Ca2+ signaling in T cells during aging—impact of ion channel expression and function. Calcium signaling
in T cells, mediated by several types of channels, pumps, and receptors, is part of a crucial activation pathway, leading to
proliferation, differentiation, and various effector functions. Antigen recognition through T cell receptors (TCRs) initiates
the phosphorylation of multiple adaptor proteins. Activation of PLCγ1, followed by inositol triphosphate (IP3) production,
induces Ca2+ release from ER calcium stores by binding to its receptor (IP3R). The decrease of [Ca2+]ER activates STIM,
which translocates to the plasma membrane and causes store-operated calcium entry (SOCE) through direct interactions
with Orai channels. The increased cytosolic Ca2+ concentration leads to the activation of calcineurin, dephosphorylation
and nuclear translocation of NFAT resulting in expression of IL2, CD25, Foxp3, and further components essential for T cell
function. Other ion channels including (non-selective) TRPC and TRPM2/7, CaV channels (e.g., CaV3.1), and purinergic
ionotropic receptors (e.g., P2X7) mediate Ca2+ influx during T cell activation. Additionally, ion channels like potassium
channels (e.g., KV1.3, KCa3.1) or TRPM4 indirectly regulate Ca2+ influx through de- or hyperpolarization of the plasma
membrane. Besides alterations in TCR activation, also Ca2+ signaling changes during aging. STIM1 and STIM2 expression
levels are reduced (↓). Orai channel expression is still under investigation but Orai2 mRNA expression is decreased (↓).
In contrast, PMCA4 expression increases with age (↑) leading to higher Ca2+ extrusion. Inhibition of KV1.3 or KCa3.1 causes
age- and subtype- dependent differences in Ca2+ influx patterns (`). Possible changes in expression or function of other ion
channels during aging are largely unknown (?).
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