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Abstract 

Cancer represents the second leading cause of death worldwide, and its incidence and mortality 

are growing. In search for new anti-tumor drugs addressing innovative targets, natural products 

represent powerful tools in (I) compound-centric, phenotypic and (II) target-centric drug 

discovery approaches. 

This study addresses both strategies, aiming to identify novel therapeutic approaches for solid 

tumors. 

(I) Compounds from various bacterial sources were characterized, elucidating their effects on 

different hallmarks of cancer in tumor cells and macrophages as key players of the tumor 

microenvironment. 

The compound thioholgamide A stood out for its potent activities against various hallmarks of 

cancer in tumor cells. Anti-proliferative actions were further confirmed in vivo. These anti-

tumor effects were accompanied by a modulation of cell metabolism, i.e., the inhibition of 

oxidative phosphorylation. Furthermore, the metabolic modulation caused repolarization of 

tumor-promoting human macrophages into a tumor-antagonizing phenotype. 

(II) The RNA binding protein IMP2 has been suggested to promote tumorigenesis and tumor 

progression in several tumor entities. This study revealed a correlation between IMP2 

overexpression and tumor progression and poor prognosis in pancreatic cancer. IMP2 was 

further characterized as a promising anti-cancer target in vitro and in vivo in colorectal cancer, 

and potential inhibitors of IMP2 demonstrated their anti-proliferative activity in vivo.  
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Zusammenfassung 

Weltweit ist Krebs die zweithäufigste Todesursache und seine Inzidenz und Sterblichkeit sind 

steigend. In der Wirkstoffentwicklung stellen Naturstoffe vielversprechende Werkzeuge, für 

(I) naturstofffokussierte, phänotypische und (II) targetfokussierte Strategien dar. 

Diese Arbeit adressiert beide Strategien mit dem Ziel der Identifizierung innovativer Targets in 

der Tumortherapie. 

(I) Die Effekte verschiedener bakterieller Naturstoffe wurden in Tumorzellen und 

Makrophagen als entscheidende Akteure der Tumormikroumgebung charakterisiert. 

Thioholgamide A stach dabei durch seine potenten Effekte gegen verschiedene Krebsmerkmale 

hervor. Seine antiproliferativen Eigenschaften wurden in vivo bestätigt. Diese 

Antitumorwirkungen wurden von einer Hemmung der oxidativen Phosphorylierung begleitet. 

Darüber hinaus bewirkte diese Modulation des Zellmetabolismus eine Repolarisation 

tumorfördernder Makrophagen in einen tumorantagonisierenden Phänotyp. 

(II) Mehrere Studien weisen auf eine Rolle des RNA-bindenden Proteins IMP2 in der 

Tumorentstehung und dessen Progression in unterschiedlichen Tumorentitäten hin. Diese 

Arbeit konnte eine Korrelation zwischen einer IMP2 Überexpression und einer verstärkten 

Tumorprogression und schlechten Prognose für Pankreaskarzinompatienten aufzeigen. IMP2 

wurde ferner als vielversprechendes Target in vitro und in vivo gegen Kolonkarzinome 

charakterisiert und potenzielle IMP2 Inhibitoren demonstrierten antiproliferative Aktivitäten 

in vivo.   
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1 Introduction 

1.1 Cancer drug discovery 

Cancer represents the second leading cause of death worldwide, and its incidence and mortality 

are growing (Bray et al., 2018; Roth et al., 2018)  (Figure 1). In terms of incidence and 

mortality, lung, breast, prostate, and gastrointestinal cancers rank the lists in varying orders, 

depending on the observed population (Figure 2). Comparing data from 1970-1977 and 2007-

2013, the overall five-year cancer survival rates for all cancers increased from 50.3% to 67% 

in the USA (Jemal et al., 2017). However, certain tumor entities lack effective therapy options, 

and many current therapeutic agents fail, e.g., due to the development of resistances or severe 

side effects, indicating the need for new druggable targets. 

 

Figure 1. Causes of death worldwide in 2017. 

Data from the Global Burden of Disease Study (Roth et al., 2018) was visualized by 

OurWorldinData.org. 
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Figure 2. Tumor incidence and mortality in 2018. 

Data obtained from the GLOBOCAN 2018 study (Bray et al., 2018) was visualized by Global Cancer 

Observatory (https://gco.iarc.fr) and demonstrate (A, C) tumor incidence and (B, D) mortality, (A, B) 

worldwide, and for (C, D) Western Europe. 

 

1.1.1 Drug discovery strategies 

Current drug discovery includes molecular and empirical strategies. The hypothesis-driven, 

molecular approaches rely on target-centric screenings. In these screenings, compound libraries 

are screened against a target known to be important for the disease to identify hit compounds 

that interact with this target. Contrastingly, empirical approaches also referred to as phenotypic 

screenings, evaluate specific phenotypes and cellular outcomes relevant for a given disease. In 

this approach, the compounds serve as a starting point for the investigation evaluating their 

phenotypic effects in the given disease. The molecular mechanisms and targets involved in 

these effects are determined at a later point (Swinney and Anthony, 2011). 

Swinney and Anthony analyzed new molecular entities approved by the FDA between 1999 

and 2008 and found that molecules derived from phenotypic screenings mainly provided new 

first-in-class drugs, while target-based approaches made a greater contribution to best-in-class 

drugs (Swinney, 2013). This analysis was revised in 2014 by Eder at al. and revealed an 

A 

C 

B 

D 
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increased contribution of target-based approaches to new first-in-class drugs, highlighting new 

achievements in high-throughput technologies and target-based assays (Eder et al., 2014). 

1.1.2 Natural products in cancer drug discovery 

Natural products represent promising tools for both drug discovery strategies. Searching for 

new anti-tumor drugs addressing innovative targets, natural products contribute to target-based 

screening libraries and have proven to be powerful tools in phenotypic approaches due to their 

inherent structures. The widely used natural product-derived chemotherapeutics doxorubicin 

and taxanes are just two prominent examples.  

Between 01/1981 and 09/2019, 247 new chemical entities have been approved as anti-cancer 

drugs (Figure 3). Only 11.7% of these drugs were totally synthetic (Filho, 2018; Newman and 

Cragg, 2020). Although only a few natural products become clinically relevant drugs in their 

own right, their structures frequently serve as scaffolds for further drug design, leading to more 

efficacious analogues (Figure 3).  

Historically, mainly plant-derived natural products contributed to the structural diversity of new 

drugs (Baker et al., 2007). However, in the past decades, bacteria have become a promising 

source for innovative bioactive compounds (Landwehr et al., 2016). Due to growth and 

upscaling possibilities, they became practical producers of secondary metabolites for drug 

development. Myxobacteria and Actinobacteria (including Streptomyces species) are the top 

resources of pharmaceutically important compounds, and it is expected that they still hide much 

potential (Ahmed et al., 2020; Weissman and Müller, 2010).  
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Figure 3. Origin of anti-cancer drugs between 1981 and 2019. 

Anti-cancer drugs approved between 01/1981 and 09/2019 (Newman and Cragg, 2020). B (biological 

macromolecule), N (unaltered natural product), NB (botanical drug, defined mixture), ND (natural 

product derivative), S (synthetic drug), S* (synthetic drug, natural product pharmacophore), V (vaccine), 

/NM (mimic of natural product). (A) Classification of all 247 drugs approved between 1981 and 2019. 

(B) Annual survey.  
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1.2 Hallmarks of cancer 

Cancer research of the last decades revealed a complex picture of the disease. In the year 2000, 

Douglas Hanahan and Robert A. Weinberg first described the six “hallmarks of cancer”, aiming 

a simplification of the multiple mechanisms leading to the transformation of healthy cells into 

malignant cells (Hanahan and Weinberg, 2000). They defined six crucial alterations in cell 

physiology and suggested them to cover the majority of cancer genotype manifestations 

dictating malignancy: (I) self-sufficiency in growth signals, (II) evasion of growth suppressors, 

(III) evasion of programmed cell death, (IV) limitless replicative potential, (V) induced 

angiogenesis, and (VI) activation of tissue invasion and metastasis. The authors stated that in 

different tumors, oncogene- and tumor suppressor gene-mutations responsible for the 

acquisition of these hallmarks could occur at various times during tumor progression. But in 

the end, these hallmark traits would be shared by all types of tumors.  

In 2011, these six hallmarks were revised and complemented with two additional hallmarks. 

These draw attention to changes in energy metabolism, supporting continued tumor growth and 

the active evasion of malignant cells from the recognition and subsequent elimination by 

immune cells (Hanahan and Weinberg, 2011). Additionally, two consequential characteristics, 

which facilitate the acquisition of hallmark traits, were defined. The so-called “enabling 

characteristics” comprise genetic instability and mutations, as well as tumor-promoting 

inflammation. The latter case highlights the dichotomous role of immune cells, which can exert 

either tumor-suppressive or supporting actions (Fouad and Aanei, 2017). The first- and second-

generation hallmarks of cancer, as well as the enabling characteristics, are summarized in 

Figure 4. 
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Figure 4. Hallmarks of cancer. Adapted from (Hanahan and Weinberg, 2011). 

 

1.3 Tumor metabolism  

The metabolic reprogramming of malignant cells has become an accepted hallmark of cancer 

(Hanahan and Weinberg, 2011). It has been demonstrated that many cancer cells undergo a 

phenomenon termed “Warburg effect”. The Warburg effect describes the phenomenon of 

proliferating cells, including cancer cells, using aerobic glycolysis to fulfill their energy 

demand, while normal differentiated cells rely mainly on mitochondrial oxidative 

phosphorylation (OXPHOS) (Vander Heiden and DeBerardinis, 2017; Vander Heiden et al., 

2009).  

Most differentiated cells metabolize glucose to carbon dioxide by oxidation of glycolytic 

pyruvate in the mitochondrial tricarboxylic acid (TCA) cycle when oxygen is present. This 

process produces reducing equivalents (NADH and FADH2), which drive OXPHOS as the most 

efficient ATP production pathway. Hypoxic conditions force these cells into anaerobic 

glycolysis, producing large quantities of lactate. The phenomenon of aerobic glycolysis 
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involves the property of proliferating cells to metabolize glucose and secrete the carbon as 

lactate even when oxygen is present, although the ATP production is much lower compared to 

OXPHOS (Figure 5) (Vander Heiden and DeBerardinis, 2017; Vander Heiden et al., 2009). 

 

 

Figure 5. Metabolic pathways in differentiated tissue, proliferative tissue, and tumors (Vander Heiden 

et al., 2009). 

 

While it was first suggested that the Warburg effect is a result of impaired mitochondria and 

aerobic respiration, it meanwhile turned out that tumor cells display metabolic plasticity, which 

allows to switch between metabolic pathways (McGuirk et al., 2020). 

This metabolic plasticity enables tumor cells to tailor their high energy demands to changing 

environmental conditions during cancer progression. During the growth phase, proliferating 

tumor cells have a high need for rapid ATP production and sources of carbon, nitrogen, and 

hydrogen, inducing the Warburg effect. As the tumor mass grows, cells experience nutrient 

deprivation, and hypoxia. Hypoxia, hypoxia-inducible factor 1 (HIF-1), and reactive oxygen 

species (ROS) further promote anaerobic glycolytic metabolism (Courtnay et al., 2015; 

Rabinovitch et al., 2017). Mature tumors create gradients of extracellular metabolites and 
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develop a metabolically diverse microenvironment comprised of stromal and immune cells, 

which can concur the metabolic coupling of cancer cells (Chang et al., 2015).  

Metabolic plasticity demonstrated to play a pivotal role in epithelial-mesenchymal transition 

(EMT) and metastasis, where metabolic flexibility of tumor cells appears to be advantageous 

facing different metabolic microenvironments at distinct metastatic niches (Elia et al., 2018; 

Simões et al., 2015). Moreover, circulating cancer cells demonstrated an enhanced OXPHOS 

activity (Lebleu et al., 2014). Similarly, tumors displaying higher metabolic heterogeneity also 

acquire an increased likelihood to develop resistances against therapeutic drugs (Desbats et al., 

2020; Matassa et al., 2016). 

As a consequence, therapies, combining chemotherapeutic drugs with metabolic modulators to 

create a metabolic vulnerability are an emerging therapeutic strategy, which is currently under 

investigation (Ashton et al., 2018; Desbats et al., 2020; Li et al., 2004; McGuirk et al., 2020).  

 

1.4 The tumor microenvironment 

First regarded as an agglomeration of malignant cells, tumors have been recognized as complex 

tissues composed of malignant cells and a variety of other cell types, creating the tumor 

microenvironment (TME). The TME changes its composition during cancer progression and 

demonstrated to play a critical role in the evolution of malignancy (Roma-Rodrigues et al., 

2019). 

Among the cellular compartment, the TME consists of fibroblasts, endothelial, innate, and 

adaptive immune cells (Chen and Song, 2019; Hinshaw and Shevde, 2019; Maishi and Hida, 

2017). Recruited immune cells can form up to 50% of the solid tumor mass (Solinas et al., 

2009).  

The extracellular matrix of the TME is moreover characterized by low oxygen availability due 

to rapid tumor proliferation and abnormalities in the structure of surrounding blood vessels 

(Gilkes et al., 2014). 

Supported by the hypoxic environment, tumor cells hijack TME-cells by secreting various 

cytokines, chemokines, and other molecules. For instance, cancer-derived extracellular 

metabolites orchestrate an immunocompromised microenvironment by inducing an anti-

inflammatory phenotype of macrophages, which promotes tumor growth and interference with 

the maturation of tumor-toxic T cells (Carmona-Fontaine et al., 2017; Chang et al., 2015). 
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The ability to co-opt and reprogram neighboring cells demonstrated to support the acquisition 

of hallmarks of cancer traits. By forcing, e.g., tumor proliferation, invasion, migration, and 

resistances, the TME plays a detrimental role in tumor progression and thereby also 

substantially influences the efficacy of anti-cancer therapies (Cassetta and Pollard, 2018; 

Roma-Rodrigues et al., 2019). 

 

1.5 Macrophages 

Macrophages are innate immune cells that can be found in all tissues, taking various roles in 

development, homeostasis, and tissue repair (Gordon et al., 2014; Murray and Wynn, 2011). It 

has been shown that most adult tissue-resident macrophages are not derived from bone marrow 

progenitors, as previously thought, but instead originate from different embryonic sources (yolk 

sac, fetal liver) and differentiate into tissue-specific macrophages according to their origin 

(Epelman et al., 2014; Perdiguero and Geissmann, 2016). The contribution of monocyte-

derived macrophages to tissue-resident macrophages is still under discussion (Hume et al., 

2019). 

1.5.1 Macrophage polarization 

Macrophages exert a broad range of different physiological functions due to their high 

plasticity. This plasticity allows the body to tailor their response according to diverse 

environmental stimuli and adopt multiple phenotypes. Since the stimuli are manifold and 

temporal, macrophages do not only respond with different functional phenotypes but can also 

switch between those (Ginhoux et al., 2016). Macrophage phenotypes are characterized by a 

variety of surface and intracellular receptors, multiple signal transduction pathways, and 

adaptable arrays of gene expression (Biswas et al., 2012; Mantovani et al., 2013; Xue et al., 

2014). This remarkable transcriptional repertoire is described by the macrophage polarization 

spectrum with its two extreme ends of M1 and M2 polarization states (Figure 6).  
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Figure 6. Macrophage polarization and function. Adapted from (Solinas et al., 2009). 

 

The M1/M2 nomenclature is inspired by the TH1/TH2 T helper cell response. Therefore, M1 

macrophages, also termed “classically activated macrophages”, are typically induced by 

inflammatory stimuli, such as bacterial lipopolysaccharide (LPS), in concert with the TH1 

cytokine interferon-γ (IFN-γ). This inflammatory phenotype promotes host defense effector 

responses and tumoricidal properties by producing pro-inflammatory cytokines (TNFα, IL1α, 

IL1β, IL6, IL12, IL23), and cyclooxygenase 2, and low levels of IL10. Moreover, the 

production of ROS is involved in the effective anti-microbial and anti-tumoral activity of M1 

macrophages. The communication with the adaptive immune system is enhanced by 

upregulation of MHC II and co-stimulatory CD40, CD80, and CD86, and increased production 

of chemoattractants, such as chemokine (C-X-C motif) ligand 9 (CXCL9), CXCL10, CXCL11, 

CC chemokine ligand 2 (CCL2), CCL3, and CCL5 (Biswas et al., 2012; Ginhoux et al., 2016; 

Murray et al., 2014; Shapouri-Moghaddam et al., 2018; Sica and Mantovani, 2012; Takeya and 

Komohara, 2016). 

In contrast, M2 macrophages, or “alternatively activated macrophages” can be found in the 

resolution phase of inflammations and injured tissues. Their polarization is induced via anti-

inflammatory cytokines, such as interleukin 4 (IL4), IL10, and IL13. The anti-inflammatory 
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phenotype is characterized by a decreased ability to produce pro-inflammatory cytokines, while 

IL10 and TGFβ production are increased. Functionally, M2 macrophages are linked to tissue 

homeostasis, including tissue remodeling and repair, but also tumor progression. Facilitated by 

an enhanced expression of scavenger receptors, such as CD204 and CD163, M2 macrophages 

exert potent phagocytosis capacity. In a cellular process, named efferocytosis, they play a 

pivotal role in the engulfment and removal of dead cells from tissue (Elliott et al., 2017). M2 

macrophages take part in TH2 responses, clearance of parasites, and display regulatory functions 

in resolving and chronic inflammation (Biswas et al., 2012; Ginhoux et al., 2016; Murray et al., 

2014; Shapouri-Moghaddam et al., 2018; Sica and Mantovani, 2012; Takeya and Komohara, 

2016). 

However, these two distinct extremes of M1 and M2 polarizations represent a simplification of 

macrophage phenotypes that can be found in vivo in homeostatic and pathological situations 

(e.g., cancer), where macrophages do not show a clear M1/M2 phenotype (Azizi et al., 2018; 

Helm et al., 2014). 

1.5.2 Tumor-associated macrophages 

Tumor-associated macrophages (TAM) are key players in the TME linking cancer progression 

and inflammation. Being the major population of immune cells in the TME, their origin is still 

under discussion (Cassetta and Pollard, 2018). Signals originating from malignant cells and 

other cells of the TME, such as apoptotic cells, influence TAM function and phenotype 

(Mantovani et al., 2017; Weigert et al., 2016). 

 

 

Figure 7. TAM polarization and their role in tumor progression (Mantovani et al., 2017). 
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Within and across tumors, the TAM compartment is characterized by high dynamics and 

heterogeneity. Recent findings suggest a mixed phenotype of TAMs depending on their 

localization in the TME and tumor stage, displaying characteristics of both M1 and M2 

macrophages (Azizi et al., 2018; Chevrier et al., 2017; Chung et al., 2017; Cuccarese et al., 

2017; Lavin et al., 2017; Müller et al., 2017). This supports the idea that in the initiation stage, 

TAMs may have pro-inflammatory functions, which can fight malignant cells but can also 

promote cancer-related inflammation and tumorigenesis. At later stages stimuli from the TME 

and apoptotic cells educate macrophages and induce an M2-like phenotype. In established 

tumors, TAMs upregulate anti-inflammatory cytokines (IL4, IL10, and TGFβ) and tumor-

promoting factors such as vascular endothelial growth factor (VEGF) or matrix 

metalloproteinases (MMPs). Thereby TAMs support immunosuppression in the TME and 

influence various aspects of tumor progression, e.g., tumor growth, invasion, metastasis, or neo-

angiogenesis (Biswas et al., 2012; DeNardo and Ruffell, 2019; Shapouri-Moghaddam et al., 

2018).  

In line with these tumor-promoting functions, a correlation between an increased presence of 

M2-like TAMs and poor prognosis has been found in various tumor entities (Pathria et al., 

2019). 

1.5.3 Macrophage energy metabolism 

Different macrophage phenotypes have distinct metabolic profiles. Inflammatory macrophages 

display a Warburg metabolism, including a shift from OXPHOS towards glycolysis. LPS and 

IFNγ activate the transcription factor nuclear factor-kappa B (NF- kB), which induces the 

expression of HIF1 (Rius et al., 2008), which is involved in glycolysis promotion (Courtnay et 

al., 2015). Furthermore, M1 macrophages possess an impaired TCA circle, which has been 

implicated in their anti-microbial functions, since accumulated citrate can be used for the 

production of itaconic acid as a metabolite with direct anti-microbial activity (Saha et al., 2017). 

M2 macrophages showed to mainly rely on OXPHOS for energy production. To fuel the TCA 

cycle, IL4-polarized macrophages rely on fatty acid oxidation (FAO) and glutamine 

metabolism (Geeraerts et al., 2017; Saha et al., 2017). The inhibition of mitochondrial 

respiration in M1 macrophages demonstrated to prevent repolarization to an M2 stage (Van den 

Bossche et al., 2016). However, the inhibition of glycolysis in IL4-polarized macrophages using 

2-deoxyglucose diminished the expression of M2-associated genes, indicating that glycolysis 

is not just pro-inflammatory but also crucial for IL4 induced phenotypes (Van den Bossche et 

al., 2017). 
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Reflecting different polarization stages of TAMs and their ability to adapt to their environment, 

their metabolic profile is very dynamic (Netea-Maier et al., 2018; Vitale et al., 2019). TAMs 

generated in vitro by culturing monocyte-derived macrophages in pancreas adenocarcinoma-

conditioned medium (Penny et al., 2016), and TAMs from MMTV-PyMT mice incubated with 

patient-derived breast tumor extract (Liu et al., 2017) exhibit a pronounced glycolytic signature 

and promote tumor metastasis. On the other hand, hypoxic TAMs showed a shift towards 

oxidative metabolism. They decreased glucose intake resulting in excessive angiogenic 

response via DNA damage inducible transcript 4 (REDD1) upregulation and subsequent 

mechanistic target of rapamycin complex 1 (mTORC1) inhibition (Wenes et al., 2016). 

1.5.4 Targeting of tumor-associated macrophages 

Due to their role in tumor progression to malignancy, TAMs have become an interesting target 

in tumor therapy. Different targeting strategies are currently under investigation aiming to 

modulate TAM function to induce anti-tumoral activities, synergize with other anti-cancer 

therapies, or block resistances to conventional therapies (Cassetta and Pollard, 2018; Kumar et 

al., 2020; Mantovani et al., 2017; Roma-Rodrigues et al., 2019). 

Current targeting strategies involve the inhibition of TAM recruitment, TAM depletion from 

the TME, and TAM reprogramming.  

Since TAM recruitment to the tumor is mediated by the CCL2-CCR2 axis, different approaches 

were investigated to block this axis and thereby reduce TAM accumulation in tumors. However, 

clinical trials showed disappointing results, including increased CCL2 serum levels and 

rebound effects after the withdrawal of anti-CCL2 treatment (Bonapace et al., 2014; Lim et al., 

2016). Moreover, antibodies and small molecules targeting colony-stimulating factor 1 receptor 

(CSF1R) signaling, which controls macrophage differentiation, and encapsulated 

bisphosphonates were employed for a selective macrophage depletion (Mantovani et al., 2017).  

The natural compound Ecteinascidin ET-743 (trabectedin, Yondelis®) has been initially 

approved as an anti-proliferative agent in cancer therapy (Carter and Keam, 2007). In further 

studies, the compound demonstrated selective cytotoxicity towards monocytes and 

macrophages. This depletion is facilitated by activation of caspase 8 through a TNF-related 

apoptosis-inducing ligand (TRAIL) receptor-dependent mechanism. Selectivity for monocytes 

is caused by differential TRAIL receptor expression (Germano et al., 2013). Interestingly, 

TRAIL receptors are upregulated by anti-inflammatory agents and TAMs express functional 

TRAIL receptors, while this is not the case in tissue-resident macrophages (Liguori et al., 2016), 

making these receptors interesting TME-targeting candidates. 
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Besides strategies that focus on a reduced TAM burden in the TME, the repolarization of tumor-

supporting to tumor-suppressing macrophages represents a promising strategy. Targeting the 

inherent plasticity provides the opportunity to rebalance the TME and thereby opening new 

therapeutic options also in combination therapy with checkpoint inhibitors. Current strategies 

involve anti‑CD40, anti-CD47, and anti-MARCO antibodies, toll‑like receptor agonists, 

metallic nanoparticles, PI3Kγ, and histone deacetylase inhibitors (Cassetta and Pollard, 2018; 

Kumar et al., 2020). 

 

1.6 The insulin-like growth factor 2 mRNA binding protein 2 

(IMP2) 

Insulin-like growth factor (IGF2) mRNA binding proteins (IGF2BPs/IMPs/VICKZs) are 

members of the group of RNA binding proteins (RBPs) (Degrauwe et al., 2016), which play a 

pivotal role in diverse physiological functions and are involved in mRNA maturation, stability, 

localization, and translation of mRNA targets (Mohibi et al., 2019).  

IMPs are highly conserved RBPs, and three mammalian IMP paralogs have been identified 

(IMP1-3). The IMP family shares structural similarity, comprising two RNA recognition motifs 

(RRM) in the N-terminal region and four hnRNP K homology (KH) domains in their C-terminal 

region (Degrauwe et al., 2016; Nielsen et al., 1999). 

IMPs are oncofetal proteins, and their physiological expression occurs primarily during fetal 

development and tissue maturation. In most adult tissues, IMPs are eighter absent or expressed 

at low levels (Czepukojc et al., 2019; Dai et al., 2011; Degrauwe et al., 2016). However, re- 

and over-expression have been associated with malignant transformations (Degrauwe et al., 

2016).  

p62 represents a shortened splice variant of IMP2 (lacking exon 10) but harbors the identical 

RNA-binding domains. p62 was initially identified as a 62 kDa autoantigen from an 

hepatocellular carcinoma (HCC) patient and was found to be overexpressed in HCC tissues 

(Kessler et al., 2015a; Lu et al., 2001; Zhang et al., 1999). Its expression was further shown to 

correlate with IGF2 expression in HCC, which is involved in the IGF pathway, as one common 

oncogenic signaling pathway disturbed in many cancers (Kessler et al., 2016, 2013). 

IMP2 showed to bind thousands of different transcripts in a PAR-CLIP approach (Hafner et al., 

2010), and several genes encoding mitochondrial components (Cao et al., 2018; Dai et al., 
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2015). Having multiple targets, IMP2 correlates with a broad range of (patho)-physiological 

functions in embryonic development, muscle cell motility, and lipid metabolism (Boudoukha 

et al., 2010; Laggai et al., 2014; Liu et al., 2019). 

In a pathophysiological context, IMP2 is associated with insulin resistance (Christiansen et al., 

2009) and its overexpression has been correlated to poor patient outcome in human HCC, 

esophageal adenocarcinoma, breast, gallbladder, and colorectal cancer (Barghash et al., 2015, 

2016; Kessler et al., 2013, 2015b, 2017; Liu et al., 2013; Ye et al., 2016). Moreover, IMP2 

enhances different hallmarks of cancer, i.e., genomic instability, cancer cell proliferation and 

migration, and maintenance of cancer stemness (Degrauwe et al., 2016; Kessler et al., 2015a; 

Xing et al., 2019). IMP2 overexpression further induces an aggressive HCC phenotype, linked 

to inflammatory and oxidant actions (Kessler et al., 2015a). Therefore, IMP2 is suggested to 

play a distinct role in cancer progression and responsiveness to chemotherapy (Kessler et al., 

2013, 2017).  

Hepatic IMP2 transgenic mice displayed steatosis and improved glucose tolerance, associated 

with an induction of fatty acid elongation (Laggai et al., 2014; Tybl et al., 2011). Moreover, 

these mice demonstrated a more pronounced manifestation of fibrosis on methionine-choline-

deficient (MCD) diet, which models non-alcoholic fatty liver disease (NAFLD), one of the main 

HCC risk factors (Czepukojc et al., 2019; Simon et al., 2014). They also show a higher tumor 

incidence associated with increased inflammation after diethylnitrosamine (DEN) treatment 

(Kessler et al., 2015a). 

By its role in the regulation of cell metabolism, IMP2 exerts further functions implicated in 

cancer development and progression. Janiszewska and colleagues described a role of IMP2 in 

OXPHOS regulation in glioblastoma spheres by binding several mRNAs encoding 

mitochondrial respiratory chain complex subunits I and IV. The depletion of IMP2 decreased 

the oxygen consumption rate and complex I and complex IV activity in glioblastoma spheres 

and resulted in impaired clonogenicity as a mean of cancer stemness (Janiszewska et al., 2012). 

Moreover, IMP2 stabilizes GLUT1 and HK2 mRNA in colorectal cancer and GLUT1 in 

pancreatic ductal adenocarcinoma and thereby increases glycolysis (Huang et al., 2019; Shen 

et al., 2020). 
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1.7 Objectives 

This work aimed to identify and validate new targets for cancer therapy by pursuing two 

different strategies: 

(I) The first part of this study focuses on the characterization of newly identified natural 

compounds from different sources. This phenotypic approach addresses the identification 

of innovative anti-tumor strategies, targeting not only tumor cells but also shaping the 

tumor microenvironment by affecting tumor-associated macrophages. 

(II) The second part of this study focuses on the in vitro and in vivo target validation of IMP2 

as a novel anti-cancer target in colon cancer and the in vivo validation of potential 

inhibitors. 
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2 Materials and methods 

2.1 Cell culture  

2.1.1 Cultivation of cell lines 

Tumor cell lines were cultured in RMPI-1640 (A549, HeLa, Huh7, PLC/PRF5, Sk-Mel5) or 

DMEM (HCT116, CCSW, MCF7, RIL175, SW620) medium, supplemented with 10% FCS, 

100 U/mL penicillin, 100 mg/mL streptomycin, and 2 mM glutamine, if not indicated 

otherwise. Media and supplement were purchased from Sigma-Aldrich (#R0883, #D6546, 

#F7524, #P433, #G7513). Cells were maintained at 37 °C in a humidified atmosphere of 5% 

CO2. Subculturing was performed according to the ATCC recommendations: Cells were 

washed with PBS buffer (2.7 mM KCl, 1.8 mM KH2PO4, 137 mM NaCl, and 10 mM Na2HPO4 

in distilled water; adjusted pH 7.4, autoclaved) and detached with trypsin-EDTA (Sigma-

Aldrich #T3924). The reaction was stopped with culture medium, the cell suspensions were 

centrifuged for 5 min at 250 x g and resuspended in full growth media. Cell suspensions were 

used for cell seeding and further passaging.  

2.1.2 Cell freezing and thawing 

After splitting, cell suspensions were centrifuged for 5 minutes at 250 x g and resuspended in 

FCS supplemented with 10% DMSO (Sigma-Aldrich). Cells were aliquoted into cryovials, 

frozen at -80 °C, and transferred to a liquid nitrogen tank for storage.  

To thaw cells, vials were warmed up quickly in a 37 °C water bath. Cell suspensions were 

transferred into growth media and centrifuged for 5 min at 250 x g. Cells were resuspended in 

full growth media and cultured as described above. 

2.1.3 3D cell culture 

For spheroid formation, 3,000 HCT116 cells were seeded into low attachment U-bottom plates 

(Band #781900) or into 96 well plates, that had been coated with 50 µl 1.5% agar (Biozym 

#840004). Plates were centrifuged for 3 min at 200 x g. 3-day old spheroids were used for 

further experiments.  

2.1.4 Stably EGFP-expressing Huh7 

To generate stably EGFP-expressing Huh7 cells, cells were transfected with the empty 

backbone mEGFP-C1 plasmid (Addgene plasmid #54759) using lipofectamine 3,000 (Thermo 

Fisher Scientific #L3000008) according to the manufacturer's protocol (2.5 µg plasmid for 3 x 
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105 cells). 48 h after transfection medium was changed, and the selection antibiotic geneticin 

(Thermo Fisher Scientific #11811023) was added in a concentration of 1 mg/ml for further 

cultivation. Cells were used for xenograft injections after at least 3 sub-culturing steps, and 

stable EGFP expression was controlled by flow cytometry. Culturing without geneticin up to 

3 days did not change EGFP expression. 

2.1.5 Cultivation of resistant cells 

Doxorubicin -resistant cells, generated as described previously (Schultheiss et al., 2017), were 

cultured permanently in RPMI-1640 medium containing 2 µM doxorubicin (Alfa Aesar #J-

64000). For experiments, cells were seeded in medium without doxorubicin.  

2.1.6 Differentiation of Huh7 

For differentiation, 3,000 Huh7 cells were seeded into 96 well plates in RPMI-1640 full growth 

medium. The next day, medium was changed to RPMI-1640 supplemented with 2% human 

serum (PAN biotech #P40-2701) instead of FCS (El-Shamy et al., 2015). Medium was changed 

twice a week, for 3 weeks. 

2.1.7 Isolation and cultivation of primary human endothelial cells 

Primary human umbilical vein endothelial cells (HUVECs) were isolated and cultured by Theo 

Ranßweiler as described previously (Astanina et al., 2015). Umbilical cords were provided by 

the Klinikum Saarbrücken (Saarbrücken, Germany; ethics committee permission no. 131/08). 

For all experimental procedures HUVECs were used in passage three. Cells were detached by 

trypsin-EDTA and seeded at a density of 10,000 cells per well in 96 well plates. 

HUVEC medium: Endothelial Cell Growth Medium (# C-22010, PromoCell, Heidelberg, Ger-

many) with supplement mix (# C-39215, PromoCell), penicillin 100 U/ml, streptomycin 100 

mg/ml, kanamycin 50 mg/ml, and 10% FCS. 

2.1.8 Isolation and cultivation of human monocyte-derived macrophages 

Buffy coats were obtained from healthy donors (Blood Donation Center, Saarbruecken, 

Germany), authorized by the local ethics committee (Saarland, Germany; ethics committee 

permission no. 173/18). Peripheral blood mononuclear cells (PBMC) were isolated by density 

gradient centrifugation using Lymphocyte Separation Medium 1077 (PromoCell #C-44010) in 

Leucosep tubes (Greiner #227290). CD14 positive cells were selected from PBMCs by positive 

selection using CD14 magnetic beads (Miltenyi #130-050-201). Sorted monocytes were seeded 

at a density of 5 x 105 cells/ml and differentiated in full growth RPMI-1640 media 
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supplemented with 20 ng/ml recombinant human macrophage colony‐stimulating factor (M-

CSF, Miltenyi #130-096-492) for 6 days.  

2.1.9 Polarization of human monocyte-derived macrophages 

To polarize human monocyte-derived macrophages (HMDMs) in vitro, the differentiation 

media was supplemented with 20 ng/ml recombinant IFNγ (Miltenyi #130-096-484) and 

100 ng/ml LPS (Ultrapure LPS from E. coli K12 #tlrl-peklps) for M1 polarization; either 

20 ng/ml IL4 (Miltenyi #130-093-921) or IL10 (Miltenyi #130-093-948) for M2 polarization; 

or left without further supplementation for M0 macrophages. TAM-like macrophages were 

generated with tumor conditioned media (TCM) supplemented with 20 ng/ml M-CSF. For TCM 

production, 20 ml media were incubated with a confluent cell layer of A549 cells in a T75 cell 

culture flask for 48 h, following sterile filtration to remove cell debris. In all experiments 

comparing macrophage subsets, cells were differentiated and polarized from monocytes 

obtained from the same donor. 

2.1.10 Differentiation and polarization of THP-1-derived macrophages 

Cells of the human monocyte cell line THP-1 were grown in RPMI-1640 medium fully 

supplemented as described above. For differentiation, 50,000 cells per well were cultured in 96 

well plates in the presence of 30 ng/ml phorbol 12-myristate 13-acetate (PMA, Calbiochem 

#524400) for 48 hours. For polarization, PMA-differentiated cells were stimulated as described 

in section 2.1.9. 

2.1.11 Macrophage tumor cell co-culture 

HMDMs were isolated and differentiated as described above in cell culture flasks. On day 5, 

differentiated macrophages were harvested by accutase solution (Sigma-Aldrich #A6964) and 

stained with cell tracker deep red (Thermo Fisher Scientific #C34565) using 500 nM dye 

dissolved in RPMI‐1640 for 30 min at culturing conditions. HeLa cells were harvested by 

trypsin digestion and stained with 5 µM cell tracker violet BMQC (Thermo Fisher Scientific 

#C10094) for 30 min. Stained cells were washed twice with PBS and resuspended in RPMI-

1640. HeLa cells and macrophages were co-cultured in a 1:1 ratio (2.5 × 105 cells each, seeded 

into six‐well plates) for 24 h before experiments were performed. 
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2.2 Bacterial culture 

2.2.1 Transformation 

TOP10 chemically competent E.coli (Invitrogen #C4040-03) were mixed with 100 ng plasmid 

solution and incubated on ice for 20 min. Bacteria were heat-shocked for 40 sec at 42 °C, and 

incubated on ice for further 2 min. Bacteria were resuspended in 900 µl prewarmed LBamp 

medium (Roth #X968.1; autoclaved and supplemented with 100 µg/ml ampicillin, Sigma 

#A0166) and incubated at 37°C and 250 rpm for 1.5 h. Afterwards, 100-500 µl suspension was 

plated on LBamp plates (1.5% agar in LBamp medium) and incubated overnight.  

2.2.2 Plasmid isolation 

Single colonies were picked from agar plates for the preparation of liquid overnight cultures. 

Plasmids were isolated from overnight cultures using the High Pure Plasmid Isolation Kit 

(Roche #11754777001) according to manufacturer`s protocol. 

 

2.3 Endotoxin measurements 

Thioholgamide A and auratryptanon were tested for the absence of endotoxins using the 

Endozyme II assay kit (Biomérieux #890030) according to manufacturer`s instructions. 

 

2.4 Cell viability measurements 

2.4.1 MTT assay 

For viability assays based on MTT reduction, cells were seeded in appropriate numbers to reach 

confluency the next day. They were treated with the compounds in increasing concentrations 

for 48 h. The stock solutions were prepared in DMSO, and solvent controls were tested 

concurrently. The viability of adherent cells was determined by replacing the supernatants with 

0.5 mg/ml MTT (3-(4,5-dimethylthiazole-2-yl)-2,5 diphenyltetrazolium bromide, Sigma-

Aldrich #M5655) solution in respective culture media. After incubation, cells were lysed in 

DMSO, and the absorbance was measured at 560 nm using a microplate reader (GloMax™). 

IC50 values were calculated by non-linear regression using OriginPro®. 
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2.4.2 APH assay 

The viability of HCT116 cells forming tumor spheroids was analyzed in an acid phosphatase 

(APH) assay, measuring phosphatase activity. 3-day old spheroids (generated on agar-coated 

96 well plates) were treated for 48 h with the compounds or vehicle control before the 

supernatant was replaced by 100 µl assay buffer (0.1 M sodium acetate (pH 5.2), 0.1% (V/V) 

Triton X-100 in H2O), supplemented freshly with 4 mg/ml p-nitrophenyl phosphate (final pH 

4.8, Thermo Fisher Scientific # 34045). Spheroids were incubated for 1.5 h at 37°C before 10 µl 

1 M NaOH were added, and absorption was measured at 405 nm on a microplate reader 

(GloMax™).  

2.4.3 Time-dependent cell death measurement 

For the time-dependent analysis of cell death, cells were analyzed in an IncuCyte® S3 System 

(Sartorius). The day after seeding, supernatant was replaced by the respective media containing 

IncuCyte® Cytotox Red (Sartorius #4632) and Caspase-3/7 Green (Sartorius #4440) reagents 

according to the manufacturer's instructions. Cells were treated with different concentrations of 

the respective compounds, or DMSO vehicle control, and cell confluency as well as apoptotic 

and necrotic events were monitored for 3 days. Apoptotic and cytotoxic IC50 values were 

calculated based on Cytotox Red or Caspase-3/7 Green positive cells by non-linear regression 

using OriginPro®. 

 

2.5  In vitro proliferation measurements 

2.5.1 2D proliferation measurement - Automated microscopy 

For the kinetic, automated microscopy-based proliferation analysis, cells were seeded to reach 

10% confluency the next day. Cells were treated with increasing concentrations of compounds 

or vehicle control, and their proliferation was observed in an IncuCyte® S3 system. Proliferation 

was quantified by the IncuCyte basic analyzer software based on cell confluency. Proliferation 

inhibitory IC50 values were calculated by non-linear regression using OriginPro®.  

2.5.2 2D proliferation measurement - ECIS 

For the kinetic, impedance-based proliferation analysis, the electric cell-substrate impedance 

sensing (ECIS®) system was used. The day before seeding, the arrays were preincubated with 

the respective cell culture medium at 37°C. 8,000 A549 cells were seeded into 96-well ECIS 

arrays (96W10E+, with 10 electrodes per well) and impedance measurements (every 15 min 
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for 100 h, 16,000 Hz) was started immediately after cell seeding. 5 h after seeding, cells were 

treated with the respective compounds or vehicle control. Impedance was normalized to 7 h 

after seeding.  

2.5.3 3D proliferation measurement 

The growth of HCT116 spheroids was monitored in an IncuCyte® S3 system. 3-day old 

spheroids, generated in U-bottom plated as described above, were treated with the respective 

compound or vehicle control, and the spheroid area was determined over 6 days. Spheroids 

were analyzed using the IncuCyte spheroid analyzer software. 

 

2.6 Migration measurements 

Migration was analyzed in an IncuCyte® S3 system by seeding 80,000 HCT116 cells per well 

in an ImageLock 96 well plate to reach 90-100% confluency next day. Scratches were 

conducted using the Woundmaker® tool (IncuCyte Migration Kit). Afterwards, cells were 

washed twice with media containing 2% FCS, which was also used for further cultivation. Cells 

were treated with compounds or vehicle control, and the migration was monitored for 48 h. The 

cell covered wound area was analyzed and quantified using the IncuCyte migration software. 

 

2.7 Seahorse measurements 

The cellular glycolysis stress and mito stress tests were performed using an Agilent Seahorse® 

96XF device and respective kits. The assays were performed as recommended in the 

manufacturer's protocol (#103020-400, #103015-100). In brief, the cells were seeded and pre-

treated with thioA if indicated. The medium was replaced by Seahorse medium one hour prior 

to measuring. For the glycolysis stress test, 20,000 RIl175 cells were seeded and treated with 

10 mM glucose, 1 µM oligomycin, and 50 mM 2-desoxyglucose. Macrophages were analyzed 

using the mito stress test. Macrophages were differentiated for 6 days, and 120,000 cells were 

seeded per well. Macrophages were polarized for 24 h prior to measurements and treated with 

either 1 µM oligomycin or 1 µM thioA, 2 µM carbonyl cyanide-p-trifluoromethoxy-

phenylhydrazone (FCPP), and 0.5 µM rotenon/antimycin A. The data were analyzed by the 

Seahorse Wave Software (Agilent Technologies).  

After Seahorse measurements, cells were stained with Hoechst dye, and fluorescence intensity 

was analyzed in a plate reader to ensure an equal cell distribution also after different treatment 
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steps. Since no significant changes were observed upon different treatments, ORC and ECAR 

values were analyzed without further normalization. Seahorse measurements in RIL175 tumor 

cells were performed by Siow Wei Xiong (Pharmaceutical Biology, Ludwig Maximilian 

University of Munich). 

 

2.8 ROS measurement 

To detect reactive oxygen species in the supernatant of tumor cells, the homovanillic acid 

(HVA) oxidation assay was performed. Cells were seeded into 96 cell plates to reach 90-100% 

confluency the next day. Cells were treated with the compounds or vehicle control for the 

indicated time periods. Cells were washed with PBS, 150 µl 1x HVA assay buffer in PBS were 

added (10x HVA assay buffer: horseradish peroxidase (HRP, Sigma # P8250) 40 unit/ml, HVA 

(Sigma #H1252) 1 mM in PBS), and cells were incubated for 1 h at 37 °C. Afterwards, 100 µl 

supernatant were transferred into a white 96 well plate, and 15 µl stop solution (0.1 M glycine, 

25 mM EDTA, 0.1 M NaOH, pH 12 in H2O bidest.) were added per well. Plates were covered 

from light and fluorescence was measured at 312 nm excitation and 420 nm emission in a 

Spectramax Plate reader. Fluorescence readings were normalized to the protein amount per 

well.  

 

2.9 Determination of protein concentrations 

Protein concentrations were determined using the Pierce BCA protein assay kit (Thermo Fisher 

Scientific #23225) according to the manufacturer’s instructions. 

 

2.10 RNA isolation, reverse transcription, and quantitative 

PCR  

Total RNA was isolated using the High Pure RNA Isolation Kit (Roche #11828665001). 

Concentration of isolated RNA was quantified by NanoDrop™ (Thermo Fisher Scientific), and 

RNA with an A260/A280 ratio higher than 1.8 was used for further experiments. Equal amounts 

of RNA were transcribed using the High Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher Scientific #4368813) in the presence of an RNase inhibitor (Invitrogen #10777-019) 

according to the manufacturer's instructions. cDNA was analyzed by qPCR using a 
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5xHotFirePol EvaGreen qPCR Mix (Solis BioDyne #08-24-00020) and the primers listed in 

Table 1. The PCR was performed in a CFX96 touch™ Real-Time PCR detection system 

(BioRad). Data were normalized to the housekeeping gene RNA18S (macrophages) or ACTB 

(tumor cells).  

 

Table 1. Primer sequences used for qPCR. 

Gene 
Accession 

number 
Primer forward sequence Primer reverse sequence 

ACTB NM_001101.5 TGCGTGACATTAAGGAGAAG GTCAGGCAGCTCGTAGCTCT 

AFT4 NM_001675.4 CAACTGCCCTGTTCCCGATT GAAGGCATCCTCCTTGCTGTT 

CHOP NM_0011950

53.1 

GGAACCTGAGGAGAGAGTGT

TC 

CTGCCATCTCTGCAGTTGGA 

IL10 NM_000572 CAACAGAAGCTTCCATTCCA AGCAGTTAGGAAGCCCCAAG 

MMP9 NM_004994.3 CTTTGAGTCCGGTGGACGAT TCGCCAGTACTTCCCATCCT 

TNF NM_000594.4 CTCCACCCATGTGCTCCTCA CTCTGGCAGGGGCTCTTGAT 

IP10 NM_001565.4 GAGCCTACAGCAGAGGAACC AAGGCAGCAAATCAGAATCG 

RNA18S NR_003286.4 AGGTCTGTGATGCCCTTAGA GAATGGGGTTCAACGGGTTA 

 

2.11 Fluorescence microscopy 

Cells were seeded on µ-Slide 8 Well for 24 h and treated as indicated. The cells were rinsed 

with PBS and incubated with MitoTracker™ Green FM (100 nM, Thermo Fisher Scientific 

#M7514) for 30 min. The nuclei were stained by Hoechst 33342 (2.5 µg/ml) for 30 min. The 

slides were mounted with mounting buffer prior to the insertion of the coverslip. All images 

were observed by fluorescence microscopy (Leica SP8 Inverted Scanning Confocal 

Microscope). Fluorescence microscopy was performed by Siow Wei Xiong (Pharmaceutical 

Biology, Ludwig Maximilian University of Munich). 

 

2.12 Western blot 

Cells were harvested and lysed in RIPA lysis buffer containing a protease inhibitor mix (Roche 

#4693159001). Lysates were centrifuged at 10,000 x g for 10 min and 4 °C. Protein amounts 

were assessed by Bradford assay, and an equal amount of protein was separated by SDS-PAGE 

and transferred to nitrocellulose membranes (Hybond-ECLTM, Amersham Bioscience). 5% 

BSA in PBS with 0.1% Tween 20 were used as a blocking buffer for 1 h, and membranes were 
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incubated with anti-PARP (1:1,000, Cell Signaling #9542), anti-caspase 3 (1:1,000, Santa Cruz 

#sc-7148), or anti-active caspase 3 (1:1,000, Sigma Aldrich #C8487), OPA1 (1:1,000, Cell 

Signaling #80471) or DRP1 (1:1,000, Cell Signaling #8570) primary antibodies at 4°C 

overnight. Secondary antibodies were incubated accordingly and subsequently conjugated with 

horseradish peroxidase and freshly prepared ECL solution, which contained 2.5 mM luminol. 

Conjugated proteins were detected by the ChemiDoc™ Touch Imaging System (Bio-Rad) and 

quantified by ImageLab software. For quantification, protein amount was normalized to total 

protein loading, detected by 2,2,2-trichloroethanol activation as described previously (Chopra 

et al., 2019; Gürtler et al., 2013). Western blot was performed by Siow Wei Xiong 

(Pharmaceutical Biology, Ludwig Maximilian University of Munich). 

 

2.13 Mitochondrial mass 

Cells were treated as indicated for 24 h and incubated with Mito-TrackerTMGreen FM (100 nM, 

Thermo Fisher Scientific #M7514) for 30 min. Cells were harvested and mean fluorescence 

intensity of Mito-TrackerTM staining was analyzed by flow cytometry (Canto II, Beckton 

Dickinson, Heidelberg, Germany). The number of 30,000 events was collected for each sample. 

The analysis of mitochondrial mass was performed by Siow Wei Xiong (Pharmaceutical 

Biology, Ludwig Maximilian University of Munich). 

 

2.14 Flow cytometry measurements 

2.14.1 Macrophage surface marker expression 

HMDMs were isolated, differentiated, and polarized as described above for 24 h. Polarized 

cells were treated with 50 nM thioholgamide A for 7 h. Cells were detached using accutase 

solution (Sigma-Aldrich #A6964), washed, and resuspended in FACS wash (PBS, 2.5% FCS, 

0.1% sodium azide). Cells were blocked in human Fc Block (BD, #564220) for 15 min, and 

stained for 30 min on ice with anti-CD14-APC (BD #555399), anti-CD163-PE-CF594 (BD 

#562670), anti-CD80-BB515 (BD #565008), and anti-HLA-DR-PerCP-CY5.5 (BD #560652) 

antibodies. After washing, stained cells were resuspended in 1% paraformaldehyde in PBS prior 

to flow cytometric analysis on a BD LSRFortessa. Data were analyzed using BD FACSDiva 

software (BD Biosciences). Median fluorescence intensity of singlet cells was used to quantify 

surface marker expression.  
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Isotype controls: APC mouse IgG2a, κ (BD #555576), PE-CF594 mouse IgG1 κ (BD #562292), 

BB515 mouse IgG1 κ (BD #564416), PerCP-Cy5.5 mouse IgG2a, κ (BD #550927). 

2.14.2 Macrophage phagocytosis assay 

HMDMs were isolated, differentiated, and polarized as described above for 24 h. Polarized 

cells were treated with 1 µM thioholgamide A for 30 min. After incubation for 15 min with 

fluorescent latex beads (50 beads/cell, Fluoresbrite carboxylated YG microspheres, 1.75 µm, 

Polyscience #17687), macrophages were washed four times with cold PBS and detached from 

plates using PBS containing 5 mM EDTA. Cells were resuspended in FACS wash and 10,000 

singlet cells were examined on a BD LSRFortessa using BD FACSDiva software (BD 

Biosciences).  

2.14.3 Yeast and nanoparticle uptake 

Stained yeast loaded with nanoparticles and plain nanoparticles were provided by Ruth Kiefer 

as described in Kiefer et al. (Kiefer et al., 2019). In brief, S. cerevisiae (BY4742) were stained 

with 2.5 μM carboxyfluorescein diacetate succinimidyl ester (CFSE; Life Technology # 

C34554) for 30 min at 37°C. CFSE‐stained yeast cells were washed twice with PBS and 

opsonized using 25% human serum for 30 min at 37°C. Rhodamine-labeled PLGA 

nanoparticles (NP) were used plain or were complexed with CFSE‐stained yeast for 1 h at 20 °C 

following centrifugation to remove residual free NPs.  

For uptake studies, plain or complexed NPs were added to the tumor cell/macrophage co-culture 

at culturing conditions for 0.5 or 4 h. Yeast cells were added at an MOI of 5 (multiplicity of 

infection), and plain NPs in the corresponding amount that was loaded to yeast (which equals 

38 µg). Plates were centrifuged at 200 x g for 3 min to ensure that yeast and co-culture were in 

close contact. After incubation, supernatants were collected, and cells were harvested using 

PBS containing 5 mM EDTA. Supernatants combined with harvested cells were centrifuged at 

500 x g for 5 min, resuspended in 1% formaldehyde in PBS, and 10,000 singlet cells were 

examined via flow cytometry on a BD LSRFortessa using BD FACSDiva software (BD 

Biosciences).  
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2.15 Macrophage morphology analysis 

HMDMs were isolated, differentiated, and polarized as described above for 24 h. Polarized 

cells were treated with 50 nM thioholgamide A for 7 h. Cells were imaged at the beginning and 

at the end of treatment in an IncuCyte® S3 system. Afterward, cells were analyzed for their 

morphology with the IncuCyte Cell-by-Cell analysis software and grouped in a round and 

elongated phenotype based on their eccentricity. 

 

2.16 In vivo experiments 

2.16.1 Zebrafish husbandry and viability monitoring 

AB wild-type zebrafish embryos were used for experiments. Zebrafish husbandry and all 

experiments were performed in accordance with the European Union Directive on the 

protection of animals used for scientific purpose (Directive 2010/63/EU) and the German 

Animal Welfare Act (§11 Abs. 1 TierSchG) and maintained using standard methods 

(Westerfield, 2000). Adult zebrafish were kept in the automated aquatic ecosystem (PENTAIR, 

Apopka, UK) and monitored regularly: temperature (27 ± 0.5°C); pH (7.0 ± 0.1); conductivity 

(800 ± 50 µS); light-dark cycle (14 h-10 h). Fish were fed twice a day with dry small granulate 

food and freshly hatched live Artemia Cysts once a day. Embryos were euthanized not later 

than 5 days post fertilization (dpf). 

The effects of thioholgamide A on zebrafish embryo development and viability was assessed 

in 24 hours post fertilization (hpf) embryos. 48 hpf embryos were used for the toxicity 

assessment of IMP2 inhibitors. Embryos were treated with the compounds or vehicle control in 

the fish water. Eye, heart, and body axis formation, heartbeat, and pigmentation were observed 

microscopically during 3 days of treatment.  

2.16.2 Zebrafish xenograft model and in vivo proliferation measurement 

During experiments, embryos were kept at 28°C in 0.3 x Danieau’s solution (17 mM NaCl, 

2 mM KCl, 1.5 mM HEPES, 1.8 mM Ca(NO3)2, 0.12 mM MgSO4). At 48 hpf, embryos were 

dechorionized manually, anesthetized using 168 µg/ml tricaine (Sigma-Aldrich #A5040), and 

tumor cell suspension was injected into the yolk sac using a FemtoJet microinjector 

(Eppendorf). After injection, single embryos were placed into 96 well plates. On the next day, 

embryos were sorted for tumor formation and monitored with a Leica M205 FCA fluorescence 
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stereomicroscope. Tumor growth was determined by imaging 3 days post-injection (dpi). The 

growth rate was calculated as follows: (tumor area 3 dpi – tumor area 1 dpi) / tumor area 1 dpi.  

For the Huh7 xenograft model, followed by thioholgamide A treatment, 2 x 106 stably EGFP-

expressing cells were suspended in 1 µl 0.1% BSA/PBS, and approximately 1 nl was injected 

per embryo. Embryos were incubated with 0.3 x Danieau’s solution containing solvent control 

or 5 µM thioholgamide A after injection. 

For the HCT116 xenograft model, parental and IMP2 knockout cells were used. Prior to 

injection, tumor cells were stained with cell tracker orange (#C34551, Thermo Fisher 

Scientific) according to the manufacturer´s protocol. 2 x 106 cells were suspended in 1 µl 0.1% 

BSA/PBS. For analysis of compound-induced effects on tumor growth, tumor cells were 

suspended in 0.1% BSA/PBS containing the compounds in the indicated concentrations just 

prior to injection. 

 

2.17 Analysis of human gene omnibus (GEO) datasets 

Preprocessed and normalized data from the RNA microarray GEO datasets GSE28735 

(Schetter et al., 2012; Zhang et al., 2013a), GSE43288 (Crnogorac-Jurcevic et al., 2013), and 

GDS4329 (Sergeant et al., 2012) were analyzed. In GSE28735 differential gene expression was 

analyzed between PDAC and non-tumor tissues (n = 45 each). Pearson correlation was applied 

to detect possible co-expressions between genes of interest and other genes in the dataset 

(threshold: R2 ≥ 0.75 or ≤ -0.75, respectively). 

 

2.18 Tissue microarray and immunohistochemistry 

Formalin-fixed, paraffin-embedded pancreatic tissue samples and the corresponding clinical 

data were provided by the Biobank Graz under the permission of the ethics commission 

(Ethikkommission Medizinische Universität Graz, 12/2013, EK number 25-259 ex 12/13). A 

total of 200 patients (operated between 1991 and 2005) with a median age of 64 (range 31–81) 

years were retrospectively evaluated. The series included 184 ductal, 5 glandular, 3 intraductal 

papillary mucinous neoplasms (IPMN), and 2 endocrine tumors. For 25 patients survival data 

were missing. Immunohistochemical stainings against IMP2 were performed as previously 

described (Kessler et al., 2017) using the Dako Envision AEC Kit (#K4009, Dako, Germany) 

for antibody detection according to the manufacturer’s instructions. TMAs contained three 
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tissue spots per tumor. Stainings were evaluated for cytoplasmatic intensity by two 

independent, blinded investigators. Intensity was scored using the following scoring system: 

score 0 = no staining, score 1 = weak staining, score 2 = moderate staining, score 3 = strong 

staining. If the replicates of the same tumor differed in staining intensity median score was used 

for further analysis. The tissue microarray and immunohistochemistry were performed by Sonja 

Kessler (Pharmaceutical Biology, Saarland University), Philip Puchas and Johannes Haybaeck 

(Institute of Pathology, Medical University of Graz). 

 

2.19 Statistical analysis 

The data are expressed as mean ± SEM (standard error of the mean) of at least 3 independent 

experiments performed in replicates, if not indicated otherwise. Statistical differences between 

two groups were calculated using a two-tailed Student’s t-test; one-way Analysis of Variance 

(ANOVA) analysis followed by Tukey’s or Bonferroni’s analysis was used for statistical 

comparison of more than two groups. Differential expression analysis was based on the 

Kolmogorov–Smirnov test. Pearson correlation was applied to detect correlations between 

genes of interest. All tests are two-sided, and differences were considered statistically 

significant when p-values were less than 0.05. Calculations were performed using the 

OriginPro® 2020 software. 
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3 Part I: Characterization of natural compounds 

targeting tumor cells and shaping the tumor 

microenvironment  
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3.1 Chapter 1. Thioholgamide A, a new anti-proliferative anti-

tumor agent, modulates macrophage polarization and 

metabolism 
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3.1.1 Introduction 

The recently described natural product thioholgamide A (thioA) belongs to the family of 

ribosomally synthesized and post-translationally modified peptides (RiPPs), a group of 

compounds that feature a high structural diversity and that achieve a variety of biological 

activities (Zhang et al., 2018). ThioA was identified as a product of Streptomyces sp. MUSC 

136T by genome mining and has been reported to exhibit cytotoxic activities (Kjaerulff et al., 

2017).  

Increasing evidence indicates that the tumor microenvironment (TME) contributes to the 

acquisition of hallmarks of cancer traits. These comprise, e.g., sustaining proliferative 

signaling, evading growth suppressors, resisting cell death, enabling metastasis, reprogramming 

of energy metabolism, and evading immune destruction (Hanahan and Weinberg, 2011). The 

TME can also substantially influences the efficacy of anti-cancer therapies (Roma-Rodrigues 

et al., 2019). Innate immune cells are highly represented in the TME, with tumor-associated 

macrophages (TAMs) being the major population (Cassetta and Pollard, 2018). Signals 

originating from malignant cells and cells of the TME influence the function and phenotype of 

TAMs. On one end of the multifaceted spectrum of macrophage plasticity, M1 macrophages 

exhibit a tumor-suppressing response and are usually found in the early phase of tumor 

formation. During tumor progression, the macrophage population is predominantly skewed 

towards an M2-like phenotype. This polarization state orchestrates cancer-related 

inflammation, supports angiogenesis, extracellular matrix remodeling, and tumor cell 

proliferation. Thereby macrophages promote tumor growth and metastasis (Mantovani et al., 

2017; Ostuni et al., 2015). A correlation between an increased presence of M2-like TAMs and 

poor prognosis has been found in various tumor entities, highlighting TAMs as an interesting 

target in tumor therapy (Pathria et al., 2019).  

In this work, the effects of thioA on different hallmarks of cancer were evaluated in 2D and 3D 

in vitro models and a zebrafish embryo in vivo model. Moreover, its influence on macrophage 

phenotypes was investigated. 
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3.1.2 Results 

3.1.2.1 Thioholgamide A impairs tumor cell viability and proliferation 

The natural product thioA has been shown to reduce tumor cell viability in a set of different 

tumor cell lines upon a 5-day treatment (Kjaerulff et al., 2017). We confirmed reduced viability 

in cancer cell lines from the most abundant and most deadly tumor entities, i.e., breast, liver, 

colon, and lung (Bray et al., 2018). Tumor cell viability was determined after 48 h treatment by 

MTT assay, leading to IC50 values in the nano- to low micromolar range (Table 2, Figure 8 A). 

In a 3D-spheroid model, thioA attenuated cell viability as determined by the activity of acid 

phosphatases) APH (Figure 8 B).  

 

Figure 8. ThioA-induced effects on tumor cell viability.  

(A) A set of tumor cells was treated with increasing concentrations of the compound, and cell viability 

was determined after 48 h treatment in an MTT assay.  

(B) 3-day old HCT116 spheroids were treated with thioA for 48 h, followed by an APH assay to assess 

viability. Vehicle control-treated cells were used for data normalization; n=3 (triplicates). 

 

Table 2. Metabolic viability assay-based IC50 values of thioA. 

IC50 values of thioA against a panel of tumor cell lines measured in the MTT assay after 48 h treatment. 

cell line IC50 

HCT116 176 nM 

Huh7 141 nM 

MCF7 480 nM 

A549 1.16 µM 

RIL175 157 nM 
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Since MTT-based assays make use of the metabolic activity as an indirect parameter of cell 

viability, we further assessed the fractions of cells exhibiting actual markers of cell death in a 

comprehensive time-dependent live-cell microscopic analysis. We used combined staining for 

active caspase 3/7 as an indicator of apoptosis and membrane permeability as an indicator of 

necrosis (Figure 9 A-F). Interestingly, in comparison to the low IC50 values from MTT 

measurements, only rather high thioA concentrations and long treatment times provoked the 

appearance of apoptotic and necrotic markers (for comparison of IC50 values see Table 3). Still, 

apoptosis was induced in concentrations comparable to other apoptosis inducers, such as 

staurosporine (Figure 10). When comparing IC50 values, caspase 3/7 activity- and membrane 

permeability-based values were several-fold higher than the MTT-based values.   

Since thioA induced cell death only at high concentrations, we tested a potential anti-

proliferative effect by monitoring cell confluency during treatment using automated 

microscopy. Notably, the anti-proliferative activity of thioA resulted in the by far lowest IC50 

values (Figure 9 G-I, Table 3). MCF7 cells, devoid of caspase 3 (Jänicke et al., 1998), showed 

a reduced proliferation but no detectable induction of cell death in thioA concentrations up to 

1 µM. 

Due to the discrepancy between the cytotoxicity expected based on MTT results and that 

ultimately confirmed by apoptotic and necrotic events as well as the fact that the MTT assay is 

a metabolic assay, we suggested an influence of thioA treatment on metabolism. 
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Figure 9. Live cell microscopy-based analysis of thioA-induced cell death and anti-proliferative 

activity. Continued. 
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Figure 9 continued.  

(A-C) HCT116, Huh7, and MCF7 cells were stained for caspase 3/7 activity and (D-F) cell membrane 

permeability and monitored in an IncuCyte® S3 system during thioA or vehicle control treatment over 

88 h.  

(G-I) Cell confluency was monitored in parallel. Cell confluency was normalized to time point 0 h.  

(A-F) Fluorescent signals from apoptotic and dead cells were normalized to cell confluency. Statistical 

analysis was performed for the last acquired time point using one-way ANOVA followed by 

Bonferroni’s post-hoc analysis; n=3 (quadruplicates). 

 

Table 3. Apoptosis-, necrosis-, and proliferation-based IC50 values of thioA. 

IC50 values [nM] ± SEM of thioA against HCT116, Huh7, and MCF7 tumor cell lines based on caspase 

3/7 activity, membrane permeability, and cell confluency measured by automated microscopy; 

calculated for 48 h treatment. 

cell line caspase 3/7 activity 
membrane 

permeability 
proliferation 

HCT116 412.7 ± 27.5 840.8 ± 163.6 90.8 ± 5.5 

Huh7 197.2 ± 44.8 578.8 ± 55.8 52.1 ± 5.7 

MCF7 n.d. n.d. 489.9 ± 9.3 

n.d. (not detectable, in concentrations up to 1 µM thioA) 

 

Figure 10. Live cell microscopy-based analysis of staurosporine-induced cell death. 

Live cell microscopy-based analysis of staurosporine-induced cell death. HCT116 and Huh7 cells were 

stained for (A, C) caspase 3/7 activity and (B, D) cell membrane permeability, and monitored in an 

IncuCyte® S3 system during STU (staurosporine) or vehicle control treatment over 88 h. Fluorescent 

signals from apoptotic and dead cells were normalized to cell confluency; n=3 (triplicates). 
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3.1.2.2 Thioholgamide A inhibits oxidative phosphorylation and affects mitochondrial mass 

and morphology 

The Warburg effect represents a well-known metabolic hallmark of cancer cells, i.e., their 

dependency on glycolysis rather than on oxidative phosphorylation to sustain proliferation, 

even in the presence of enough oxygen supply. We, therefore, analyzed the bioenergetic profile 

of thioA treated tumor cells using a seahorse glycolytic stress test. Pretreatment with thioA 

resulted in reduced responsiveness towards the ATP synthase inhibitor oligomycin (Figure 

11 A), but no significant change in the ECAR ratio upon glucose addition as compared to the 

DMSO control. Hence, we suggested that there is no change in glucose uptake capacity but a 

shutdown of oxidative phosphorylation (OXPHOS) in a dose-dependent manner (Figure 11 B). 

These actions occurred already in concentrations that do not induce cell death and could not be 

amplified by the ATP synthase inhibitor oligomycin. Since Takase et al., identified the ATP 

synthase as a target of the RiPP prethioviramide (Takase et al., 2019), we hypothesized that 

thioA shares this mode of action. Therefore, we replaced oligomycin injection by thioA. Indeed, 

thioA injection resulted in similar profile curves (Figure 11 C) and reduced the oxygen 

consumption rate (OCR) within the first 20 min of treatment (Figure 11 D). The inhibition of 

oxygen consumption was comparable to the effect induced by the ATP synthase inhibitor 

oligomycin, indicating that thioA inhibits mitochondrial function Analysis of mitochondrial 

structure by Mitotracker Green staining further demonstrated a morphological change in the 

mitochondrial network (Figure 11 E), indicating a mitochondrial impairment. Along this line, 

analysis of mitochondrial mass revealed a similar phenotype of thioA and oligomycin. At low 

concentrations, mitochondrial mass was not significantly changed, yet was increased in higher 

concentrations. The latter is most likely a compensatory mechanism to account for 

dysfunctional mitochondria (Figure 11 F). Additionally, western blot analysis of prominent 

mitochondrial fission regulators OPA1 and DRP1 showed alterations in their cleavage, 

indicating deregulation in mitochondrial fusion-fission-dynamics (Figure 11 G-K). 
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Figure 11. ThioA effects on tumor cell metabolism and mitochondria.  

(A-D) Extracellular acidification rate (ECAR) and Oxygen consumption rate (OCR) were measured in 

RIL175 cells in a glycolysis stress test using a Seahorse 96XF instrument. (A, B) Cells were either pre-

treated for 24 h with 10 nM, 100 nM, (C, D) or 1 µM thioA, or the injection of the ATP synthase 

inhibitor oligomycin (1 µM) was replaced by an injection of 1 µM thioA. Continued. 
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Figure 11 continued.  

(E) The mitochondrial morphology of RIL175 cells treated for 24 h with thioA was visualized by 

Mitotracker Green (mitochondria) and Hoechst (nuclei) co-staining followed by confocal live cell 

imaging. Microscopy revealed a diffuse staining.  

(F) Mitochondrial mass of RIL175 cells was analyzed via flow cytometry after 24 h treatment with 

vehicle control, thioA or oligomycin (oligo), respectively.  

(G-K) Expression of the mitochondrial fission markers OPA1 and DRP1 were analyzed by 

immunoblotting in RIL175 cells after 24 h thioA treatment. ThioA increased the (H-J) S/L OPA1 ratio 

and (K) DRP1 levels. One representative western blot is shown, including a loading control for total 

protein. Vehicle control-treated cells were used for data normalization.  

Statistical analysis was performed using one-way ANOVA and Dunnett post-test; p < 0.05 (*), p < 0.01 

(**), p < 0.001 (***); n=3 (triplicates), n=2 for DRP1 quantification. Data were generated by Siow Wei 

Xiong (Pharmaceutical Biology, Ludwig Maximilian University of Munich). 

 

3.1.2.3 ThioA induces ISR-associated ATF4 and CHOP 

Takase et al. observed an activated integrated stress response (ISR) via the GCN2-ATF4 

pathway upon treatment with prethioviridamide and suggested that this process induced cell 

death (Takase et al., 2019). They further demonstrated that the higher sensitivity to 

prethioviridamide of E1A-3Y1 cells compared to 3Y1 cells was accompanied by increased 

basal mRNA levels of the ISR-mediators GCN2 and eIF2. In E1A-3Y1 cells, prethioviridamide 

further showed an increased ISR-induction compared to the less sensitive 3Y1 cells, as 

demonstrated by elevated levels of the ISR-effector ATF4.  

In order to investigate whether the ISR is also induced upon treatment with thioA, we assessed 

mRNA expression of the ISR effectors ATF4 and CHOP (Pakos-zebrucka et al., 2016) after 

treatment of HCT116, Huh7, and MCF7 cells in toxic concentrations of thioA (Figure 12 A, 

B). There was a significant induction of both mRNAs in all three cell lines suggesting that 

thioA, as prethioviridamide, induces ISR.  

 

Figure 12. ThioA induces ISR-associated genes. 

Continued. 
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Figure 12 continued. 

Tumor cells were treated for 8 h with 1 µM thioA. Gene expression of (A) ATF4 and (B) CHOP was 

measured after treatment by qPCR. Expression values were normalized to β-actin as a housekeeping 

gene following normalization to vehicle control-treated HCT116 cells using the ΔΔCt method. 

Statistical analysis was performed using one-way ANOVA followed by Tukey´s post-hoc analysis. n=3 

(triplicates). 

 

3.1.2.4 Thioholgamide A inhibits tumor cell proliferation in vitro, in tumor spheroids, and in 

vivo 

Our data suggested that attenuated viability in cancer cells upon thioA treatment is due to its 

actions on tumor cell metabolism (Figure 11) and proliferation (Figure 9) while only to a lower 

extent on the induction of cell death. To investigate the in vitro anti-proliferative activity more 

extensively, we made use of a 3D tumor spheroid model. ThioA reduced the growth of 

spheroids accompanied by a loosened spheroid structure and a detachment of outer cells from 

the spheroid core (Figure 13), which was not observed for the control treatment with the 

apoptosis inducer staurosporine (Figure 14).  

 

Figure 13. ThioA inhibits proliferation in 3D cell culture.  

3-day old HCT116 tumor spheroids were treated with thioA, and the spheroid area was analyzed by 

automated microscopy (right panel). Treatment with thioA led to a disrupted spheroid structure, as seen 

by a detachment of cells from the core (arrows, left panel), causing an initial spheroid area increase. 

Spheroids are shown in representative pictures at the starting point and the time points 2 days and 6 days 

after treatment (left panel). Statistical analysis was performed for the last acquired time point using one-

way ANOVA followed by Bonferroni’s post-hoc analysis; n=2 (quadruplicates). 
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Figure 14. Staurosporine-induced effects on proliferation in 3D cell culture. 

3-day old HCT116 tumor spheroids were treated with 20 µM staurosporine or vehicle control, and the 

spheroid area was analyzed by automated microscopy (right panel). Spheroids are shown in 

representative pictures at the starting point and the time points 2 days and 6 days after treatment (left 

panel); n=2 (quadruplicates). 

 

As a next step, we used a xenograft zebrafish embryo model to further study the anti-

proliferative effects of thioA in vivo. The zebrafish (Danio rerio) represents a favorable 

alternative model for tumor xenograft experiments in accordance with the 3R rules. In addition 

to immunosuppressed mouse models, it offers advantages, such as the straightforward 

monitoring of tumor growth in living embryos or the easy application of comparatively small 

amounts of drugs (Kirchberger et al., 2017). In this model, thioA treatment of the tumor cell-

injected embryos resulted in significant inhibition of tumor growth (Figure 15). ThioA showed 

no toxic effects on zebrafish embryos in concentrations up to 10 µM for 72 h, and up to 20 µM 

for 48 h, as assessed by the observation of eye, heart, and body axis formation, heartbeat, and 

pigmentation (Figure 16).  

 

Figure 15. ThioA inhibits proliferation in vivo.  

Stably EGFP-expressing Huh7 cells were injected into the yolk sac of zebrafish embryos 48 hpf (hours 

post fertilization), followed by treatment with 5 µM thioA or vehicle control in the fish water. Tumor 

growth was monitored 3 dpi (days post-injection) (left panel) via fluorescence imaging, and the tumor 

area was determined using ImageJ (right panel). Continued.  
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Figure 15 continued.  

Representative pictures are shown. The plot includes individual values and the median line ± 1.5 SEM. 

Statistical analysis was performed using a two-tailed student’s t-test. 

 

 

Figure 16. ThioA effects on zebrafish embryo development and viability. 

Embryos at 24 hpf were treated with thioA or vehicle control in the fish water. Eye, heart, and body axis 

formation, heartbeat, and pigmentation were observed during 72 h treatment. Representative pictures 

are shown. 
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We further evaluated the toxicity of thioA towards non-tumorigenic human cells using two 

different in vitro models. Both, primary human umbilical vein endothelial cells (HUVECs) and 

human serum-differentiated Huh7.5 cells that feature a cell phenotype exhibiting a metabolism 

similar to normal cells (El-Shamy et al., 2015), demonstrated to be less affected by thioA 

compared to tumor cells (Figure 17). For instance, at 5 µM thioA, which is several-fold higher 

than the tumor IC50 values, over 40% were still alive in primary human endothelial cells. 

 

 

Figure 17. ThioA-induced effects on normal cell viability. 

(A) HUVECs and (B) human serum-differentiated (HS) Huh7.5 cells were treated with increasing 

concentrations of the compound, and cell viability was determined after 48 h treatment in an MTT assay. 

Vehicle control-treated cells were used for data normalization. Statistical analysis was performed for 

the respective concentrations using one-way ANOVA followed by Bonferroni’s post-hoc analysis; n=3 

(quadruplicates). 
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3.1.2.5 Thioholgamide A inhibits tumor cell migration 

In order to test whether thioA affects other hallmarks of cancer, we evaluated the metastatic 

capacity of tumor cells as modeled by cell migration in a scratch wound assay. Even the very 

low dose of 10 nM thioA, which showed neither an effect on cell viability nor on proliferation, 

significantly reduced cell migration of serum-starved tumor cells (Figure 18). 

 

Figure 18. ThioA inhibits cancer cell migration in a scratch wound assay.  

HCT116 cells were treated with thioA, and wound closure was analyzed in an IncuCyte® S3 system 

over 48 h (right panel). Representative pictures are shown (left panel). Statistical analysis was performed 

for the last acquired time point using one-way ANOVA followed by Bonferroni’s post-hoc analysis; 

n=3 (quadruplicates). 
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3.1.2.6 Thioholgamide A inhibits OXPHOS-dependent ATP production in macrophages 

Our data showed effective anti-tumor actions of thioA by affecting tumor cell metabolism. With 

the importance of macrophages in tumor progression, we analyzed the effects of thioA on the 

bioenergetic profile of in vitro differentiated and polarized human monocyte-derived 

macrophages (HMDMs). We investigated five different polarization states of macrophages. 

Macrophages were generated by either polarizing them in the presence of the M2 cytokines IL4 

(M2(IL4)) or IL10 (M2(IL10)) or in the presence of tumor-cell conditioned medium (TAM-

like). As a comparison, M0 and classically activated M1 macrophages (LPS/IFNγ) were 

investigated. 

On a basal level, M2(IL10) and TAM-like macrophages showed the lowest OCR in Seahorse 

measurements, while M2(IL4) macrophages had the highest consumption of oxygen (Figure 

19 A, E). A similar pattern was observed for the subsets in terms of spare respiratory capacity 

(SRC, Figure 19 G), considered as an indicator of how efficiently cells can adapt to changing 

energy demands (Divakaruni et al., 2014). The extracellular acidification rate as an indirect 

measurement of glycolysis revealed the highest basal levels in M1 and M2(IL4) macrophages 

(Figure 19 C, F). ThioA injection reduced OXPHOS-dependent ATP production (Figure 

19 B). In comparison to oligomycin, this effect was achieved more slowly, leading to higher 

minimal OCR values after injection (Figure 19 H). Due to donor-specific differences in the 

bioenergetic profile of in vitro polarized macrophage subsets, individual graphs are shown in 

Figure 20. 
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Figure 19. ThioA affects the metabolism of in vitro differentiated and polarized macrophages.  

HMDMs were polarized into M0, M1, M2(IL4), M2(IL10), and TAM-like macrophages for 24 h. OCR 

and ECAR were measured in a mito stress test using a Seahorse 96XF instrument. Either (A, C) 1 µM 

oligomycin was injected to shut down OXPHOS-dependent ATP production, or (B, D) 1 µM thioA was 

injected instead. (E) Basal OCR, (F) ECAR, and (G) SRC were analyzed for the different macrophage 

subsets in the oligomycin injected setup. (H) Minimal OCR values at the measurement point 5 (47 min) 

after respective oligomycin or thioA injection were normalized to the non-mitochondrial respiration 

(last time point after rotenone/antimycin injection). Statistical analysis was performed using one-way 

ANOVA followed by Tukey´s post-hoc analysis; n=3 (quadruplicates). 
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Figure 20. Donor-specific differences in metabolism of in vitro differentiated and polarized HMDMs. 

Continued. 
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Figure 20 continued. HMDMs were polarized into M0, M1, M2(IL4), M2(IL10), and TAM-like 

macrophages for 24 h. OCR and ECAR were measured in a mito stress test using a Seahorse 96XF 

instrument. 1 µM oligomycin was injected to shut down OXPHOS-dependent ATP production or 1 µM 

thioA was injected instead. Values are shown for three individual donors. n=3 (quadruplicates). 

 

3.1.2.7 Thioholgamide A alters the macrophage phenotype 

Macrophage phenotypes are linked to their metabolic features. Due to the distinct impact of 

thioA on macrophage metabolism, we hypothesized an effect on macrophage polarization. In 

order to determine sub-toxic thioA concentrations for polarized HMDMs, we stained the cells 

for caspase 3/7 activity and membrane permeability and monitored their viability over 3 days 

(Figure 21).  

We chose the concentration of 50 nM for further experiments as it showed no toxic effects in 

all polarization states during the first 16 h treatment. Potential alterations in the macrophage 

phenotype were assessed regarding morphology, expression of marker genes, surface markers, 

as well as phagocytosis. 

Macrophage polarization is characterized by distinct morphological features, as seen by a high 

proportion of elongated cells in M2 macrophages, and predominantly round cells in M1 

macrophages. After thioA treatment, M2(IL10) macrophages showed a more M1-like 

morphology as they comprised a higher proportion of round cells (Figure 22 A, B). 

Since morphological changes suggested that thioA treatment in sub-toxic concentrations 

skewed anti-inflammatory macrophages towards a less pronounced M2 phenotype, we analyzed 

gene expression of polarization markers. We found that thioA caused a reduction in the 

expression of the anti-inflammatory gene IL10 in M2-macrophages, while the pro-

inflammatory gene IP10 was induced in M2(IL4) macrophages. The expression of TNF and 

MMP9 showed no significant alterations (Figure 22 C).  

Flow cytometry analyses revealed that the M2-associated surface marker CD163 was 

significantly downregulated in M2(IL10) macrophages by thioA. The expression of the M1 

markers CD80 and HLA-DR remained unchanged (Figure 22 D).  

For the evaluation of macrophage functional activity, the efficiency of phagocytosis was 

analyzed after thioA treatment by flow cytometry. In this setup, M0 and M2(IL10) macrophages 

exhibited the highest phagocytic capacity. ThioA decreased phagocytosis in M0, M2(IL4), and 

TAM-like macrophages (Figure 22 E). 
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Figure 21. Assessment of toxic concentrations of 

thioA in HMDMs. 

(A) HMDMs were polarized in vitro into M0, 

M1, M2(IL4), M2(IL10), and TAM-like 

macrophages for 24 h. Polarized macrophages 

were stained for caspase 3/7 activity and cell 

membrane permeability and analyzed in an 

IncuCyte® S3 system during thioA or vehicle 

control treatment for 68 h.  

(B) M0 macrophages were treated with 1 µM 

staurosporine or vehicle control. Fluorescent 

signals from apoptotic and permeable cells were 

normalized to cell confluency; n=3 

(quadruplicates). 
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Figure 22. ThioA reduces M2 polarization markers.  

(A) HMDMs were differentiated and polarized in vitro into M0, M1, M2(IL4), M2(IL10), and TAM-

like macrophages for 24 h, followed by 50 nM thioA treatment. Cells were imaged at the beginning and 

at the end of 7 h treatment using automated microscopy. Cells were grouped based on their eccentricity 

in an elongated or round phenotype by the IncuCyte cell by cell analysis software; n=3 (quadruplicates). 

(B) Representative pictures of M1 and M2(IL10) macrophages are shown.  

(C) Macrophages polarized for 21 h were treated with 50 nM thioA for 7h. Gene expression of IL10, 

MMP9, TNF, and IP10 were measured after treatment by qPCR. Expression values were normalized to 

18S as a housekeeping gene, followed by normalization to vehicle control-treated cells of the respective 

polarization state; n=3 (triplicates).  

(D) Surface marker expression of M1-associated CD80 and HLA-DR, and M2-associated CD14 and 

CD163 was analyzed by flow cytometry after a 7 h treatment of macrophages polarized for 21 h. 

Expression values were normalized to vehicle control-treated cells of the respective polarization state; 

n=2 (duplicates).  

(E) Macrophages polarized for 24 h were treated with thioA (1 µM) for 30 min, followed by incubation 

with fluorescent latex beads for 15 min. The proportion of macrophages that engulfed beads was 

quantified by flow cytometry. Bead-positive macrophages were normalized to M0 cells of the respective 

donor; n=3 (duplicates).  

Statistical analysis was performed using one-way ANOVA followed by Tukey´s post-hoc analysis. 
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3.1.3 Discussion 

The group of RiPPs has attracted increased attention in recent years due to the description of a 

range of biological activities against bacteria, fungi, and cancer cells. Following the initial 

observation of apoptosis induction by thioviramide in 3Y1 cancer cells (Hayakawa et al., 2006), 

further anti-cancer actions were described for the thioviridamide-like compounds 

prethioviridamide (Takase et al., 2019) and thioalbamide (Frattaruolo et al., 2019) in vitro. We 

are the first to provide a comprehensive biological profile of the thioviridamide-like RiPP 

thioA, using 2D- and 3D-cell culture models. To the best of our knowledge, this is the first 

study describing in vivo anti-tumor activities of a RiPP group member. Most importantly, this 

study addresses the critical role of thioA on the tumor microenvironment by investigating its 

effects on the polarization of macrophages as crucial players in the tumor microenvironment. 

Using time-resolving automated microscopy approaches, we identified thioA as a potent anti-

proliferative agent with IC50 values in the low nanomolar range. The anti-proliferative activity 

was confirmed in an in vivo zebrafish embryo model. The xenotransplantation of human cancer 

cells into zebrafish embryos extends the scope of early pre-clinical drug testing and offers new 

opportunities, such as real-time visualization of tumor growth and investigation of new 

compounds, from which only minor amounts are available (Veinotte et al., 2014; Yan et al., 

2019). In this in vivo model, thioA effectively inhibited tumor growth without showing toxic 

effects on the embryo. The low toxic activity of thioA was further confirmed in human non-

tumorigenic cells. 

Treatment with concentrations even lower than those inhibiting proliferation resulted in reduced 

cell migration as another important hallmark of cancer. Another well-known hallmark of cancer 

is a metabolic reprogramming associated with increased glycolysis to sustain proliferation even 

in the presence of enough oxygen supply (Vander Heiden and DeBerardinis, 2017; Vander 

Heiden et al., 2009). Even though many cancers preferentially use glycolysis for energy 

production, the inhibition of OXPHOS, the suggested mechanism of action for thioA, could 

serve as an attractive anti-cancer target. In fact, different cancer subsets (Tan et al., 2019) and 

chemoresistant tumor cells (Matassa et al., 2016) showed an increased OXPHOS dependency. 

To investigate the anti-cancer potential of other OXPHOS inhibitors, they are currently under 

study in vitro and in vivo (Ashton et al., 2018). 

While thioA acts in nanomolar concentrations on different hallmarks of cancer, distinctly higher 

concentrations are required to actually induce cell death in cancer cells. Takase et al. identified 
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the ATP synthase as a target of the derivative prethioviramide, causing the initiation of the ISR 

(Takase et al., 2019). The ISR functions primarily as a pro-survival response setting cells in a 

resting state to handle stress situations, such as amino acid deprivation or ER stress. If 

homeostasis cannot be restored, apoptotic pathways are finally entered (Pakos-zebrucka et al., 

2016).  

Our data show that thioA affected mitochondrial morphology and reduced the OCR of treated 

cells in a dose-dependent fashion to a similar extent as the ATP synthase inhibitor oligomycin. 

Moreover, a toxic thioA concentration caused an induction on mRNA level of the ISR-

associated transcription factor ATF4 and its downstream target CHOP, which is an important 

pro-apoptotic mediator (Quirós et al., 2017). This finding suggests the ATP synthase as a shared 

target for the derivatives prethioviramide (Takase et al., 2019) and thioA. The subsequent ISR 

initiation would explain the mainly anti-proliferative action of thioA, as cells first enter a resting 

state before they undergo apoptosis. Interestingly, Takase et al. (2019) did not investigate 

whether prethioviramide in fact induced cell death but reported effects on cell viability in a 

metabolic assay similar to the MTT assay we employed. 

In addition to the challenges in the development of potent anti-cancer therapies driven by the 

complexity of malignant cells themselves, the TME actively contributes to their efficiency. The 

TME is composed of tissue-resident and a large proportion of recruited immune cells, with 

macrophages playing a central regulatory role (DeNardo and Ruffell, 2019). The beneficial 

effect of anti-cancer agents targeting both tumor cells and macrophages has been shown for the 

natural compound trabectedin. The compound originally isolated from Ecteinascidia turbinata 

was initially approved as an anti-proliferative drug for the treatment of advanced soft tissue 

sarcoma (Carter and Keam, 2007). The drug later demonstrated to reduce the number of tumor-

infiltrating macrophages (Germano et al., 2013). This supplementary property substantially 

contributes to the activity of this clinically useful anti-cancer agent. Besides TAM depletion 

and inhibition of recruitment, a reprogramming of TAMs represents a promising approach [6]. 

Shifting TAM polarization from a tumor-supporting (M2) towards an actively tumor-rejecting 

(M1) phenotype would rebalance the TME and effectively support anti-tumor strategies. In this 

context, we focused the biological profiling of thioA not only on tumor cells but also 

investigated its effect on the polarization, viability, and activity of different macrophage 

subsets. The paradigm of a rather clear cut between M2 macrophages supporting cancer and 

M1 macrophages antagonizing cancer has been challenged by recent sequencing studies of 

immune cells from the TME, and TAMs exhibited some characteristics of both M1 and M2 
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polarization depending on localization and tumor stage (Azizi et al., 2018; Müller et al., 2017). 

In fact, TAM-like macrophages displayed an intermediate phenotype regarding, e.g., 

morphology and phagocytosis in our study. 

As demonstrated in tumor cells, thioA inhibited OXPHOS-dependent ATP production also in 

macrophages. The link between macrophage metabolism and their phenotypes has become a 

highly studied focus of research in recent years. It has been shown that inflammatory M1 

macrophages have an enhanced glycolytic metabolism to fulfill their energy demands, while 

anti-inflammatory macrophages mainly rely on OXPHOS (Van den Bossche et al., 2017; Vitale 

et al., 2019). Our bioenergetic data of in vitro polarized HMDMs revealed an overall quiescent 

profile for M0, M2(IL10), and TAM-like macrophages, as indicated by low basal OCR and 

ECAR values. M1, as well as M2(IL4) macrophages, showed higher metabolic activities, even 

though macrophages from different donors responded to varying degrees to the respective 

polarization stimuli. The slower OCR reduction caused by thioA compared to oligomycin might 

be caused by a lower cell penetration or target binding affinity. 

Macrophage subtypes also differed in their SRC, which is defined as the difference between the 

basal and the maximal respiration. As many cells operate at a basal level that only requires a 

part of their total metabolic capacity, the SRC provides information on how the cell can deal 

with changing energy demands and withstand periods of stress (Divakaruni et al., 2014). The 

low SRC of M2(IL10) and TAM-like macrophages implies an increased sensitivity of these 

cells towards an OXPHOS inhibition. The fact that these cells also show just a small degree of 

subsequent glycolysis increase after thioA or oligomycin injection leads to the conclusion that 

M2(IL10) and TAM-like macrophages might have a specific reaction in response to the 

inhibition of OXPHOS. 

To test the implications of thioA-mediated modulation of macrophage metabolism on 

polarization state, we used a thioA concentration that mainly inhibited tumor cell proliferation 

without showing distinct cytotoxic activities against either tumor cells or macrophages during 

the observed treatment periods. Overall, this low concentration of 50 nM, thioA weakened the 

extent of M2 polarization. ThioA reduced the anti-inflammatory polarization marker IL10 (Zeni 

et al., 2007; Zhao et al., 2015) on gene expression level in M2 macrophages and increased the 

pro-inflammatory IP10 (Cao et al., 2017) in M2(IL4) and TAM-like macrophages. The 

expression of the M2-associated surface marker CD163 (Yang et al., 2019; Ye et al., 2019) was 

also reduced after treatment in M2(IL10) macrophages. Moreover, morphology was skewed 
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towards an M1-like phenotype during treatment, which has also been described after 

oligomycin treatment of mouse macrophages (Chen et al., 2018). 

Tumors are often referred to as “wounds that never heal”. In this context, apoptotic cells inside 

the tumor can polarize macrophages into an M2 status, which in turn try to maintain tissue 

homeostasis by engulfing cell debris, promoting tissue repair, and resolving inflammatory 

reactions (Dehne et al., 2017; Murray and Wynn, 2011; Weigert et al., 2016). Hence, this 

phenotype comprises a high efficiency in the phagocytosis of apoptotic cells (Rey-Giraud et al., 

2012; Schaper et al., 2016; Xu et al., 2006), while inflammatory and microbicidal M1 

macrophages excrete a preferential engulfment of bacteria (Krysko et al., 2011; Varin et al., 

2010). In this study, M2 macrophages exhibited a higher phagocytic activity compared to M1 

macrophages, which was reduced after thioA treatment in all phenotypes. The inhibition of 

phagocytosis after OXPHOS inhibition was described before for neutrophils (Li et al., 2019).  

In conclusion, thioA exhibits an interesting biological profile for new tumor therapeutic 

strategies. As a metabolic regulator, it can play a pivotal role in orchestrating different 

hallmarks of cancer in cancer cells and macrophages. In combination with its low toxicity in 

non-tumorigenic cells and in vivo, thioA represents an interesting candidate for further 

preclinical testing. 
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3.2 Chapter 2. Anti-tumor activity of thioholgamide A 

derivatives 
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3.2.1 Introduction  

Due to its peptide structure, the natural compound thioA offers many possibilities of structural 

modifications. The group of Andriy Luzhetskyy (Pharmaceutical Biotechnology, Saarland 

University) conducted thioA derivatization in Streptomyces hosts (unpublished data). Their 

approaches provided many thioA derivatives, of which two derivatives were tested in this study 

for their biological activity. Figure 23 demonstrates the structural changes of the derivatives 

thioA2 and thioA3 in comparison to thioA. 

 

Figure 23. Structures of the thioA derivatives thioA2 and thioA3. 
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3.2.2 Results 

The two thioA derivatives thioA2 and thioA3 were tested for their biological activity in human 

cancer cell lines. Measuring the metabolic activity of treated cells by an MTT assay, structural 

changes resulted in a decreased activity (Figure 24, IC50 values in Table 4) compared to thioA. 

The more substantial structural changes in thioA2 caused the lowest activity in HCT116 and 

Huh7.5 cells (Figure 24 A, B). Moreover, its activity was abolished entirely in A549 cells up 

to 20 µM (Figure 24 C). Structural modifications did not affect the activity in the 3D HCT116 

spheroid model (Figure 24 D). 

 

Figure 24. Effects of thioA and its derivatives on tumor cell viability. 

(A-C) A set of tumor cell lines was treated with increasing concentrations of thioA and its derivatives 

thioA2, and thioA3. Cell viability was determined after 48 h treatment in an MTT assay.  

(D) 3-day old HCT116 spheroids were treated with thioA, thioA2, or thioA3 for 48 h, followed by an 

APH assay to assess viability.  

Vehicle control-treated cells were used for data normalization; n=3 (triplicates). 

 

Table 4. MTT-based IC50 [µM] values of thioA and its derivatives. 

Activity against a panel of tumor cell lines was measured in an MTT assay after 48 h treatment. 

cell line thioA thioA2 thioA3 

Huh7.5 0.141 1.243 0.961 

HCT116 0.176 1.698 1.206 

A549 1.158 > 20 1.514 
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The selectivity of anti-cancer agents towards degenerated cells is of utmost importance in 

preclinical drug development. Therefore, we employed a model of differentiated Huh7.5 cells 

to test the selectivity of thioA and its derivatives. Long-time culturing of hepatocellular 

carcinoma Huh7.5 cells in media supplemented with 2% human serum differentiates the 

hepatoma cells into a more normal hepatocyte-like phenotype (El-Shamy et al., 2015). 

Differentiated cells were described to display alterations in morphology from a spindle-shaped 

to a cobble-stone phenotype, which is associated with a switch from unrestrained growth to 

contact inhibition and induction of hepatocyte-specific genes. We monitored cell morphology 

microscopically during differentiation and observed the typical cobble-stone shape after 

3 weeks cultivation (Figure 25 A). ThioA demonstrated a significant selectivity for 

undifferentiated tumor cells (Figure 25 B). This selectivity towards undifferentiated cells was 

even more pronounced in thioA2-treated cells (Figure 25 C). ThioA3 showed no preferential 

activity against undifferentiated cancer cells (Figure 25 D). 

 

Figure 25. Selectivity of thioA and its derivatives towards proliferating non-differentiated tumor cells.  

Huh7.5 cells were differentiated in media supplemented with 2% human serum (HS) for 3 weeks.  

(A) Cell morphology was monitored microscopically 24 h, 1 week, and 3 weeks after medium change. 

(B-D) Differentiated and non-differentiated cells were treated with increasing concentrations of (B) 

thioA and its derivatives (C) thioA2, and (D) thioA3. Cell viability was determined after 48 h treatment 

in an MTT assay.  

Vehicle control-treated cells were used for data normalization; n=3 (triplicates). 
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Also in non-tumorigenic HUVEC, thioA and its derivatives demonstrated only a moderate 

activity, while thioA2 reduced cell viability to the lowest extent (Figure 26). 

 

Figure 26. Effects of thioA and its derivatives on HUVEC viability. 

HUVECs were treated with increasing concentrations of thioA, thioA2, or thioA3 respectively, and cell 

viability was determined after 48 h treatment in an MTT assay. Vehicle control-treated cells were used 

for data normalization; n=3 (quadruplicates). 
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3.2.3 Discussion 

The natural compound thioholgamide A exhibits a striking biological profile against different 

hallmarks of cancer (see part I, chapter 1). We hypothesized that structural modifications could 

improve its pharmacokinetics and increase its efficiency, e.g., by a stronger target binding or 

better cell penetration. However, none of the two tested derivatives demonstrated a superior 

activity compared to thioA. 

In her master thesis, Julia Wildfeuer produced further diverse thioA derivatives, introducing 

structural changes in two “tail” positions Val2, Met3, and the ring position Ala10. None of the 

derivatives exceeded the activity of the mother compound in MTT assays. The introduction of 

the polar amino acid asparagine at position 2 and 3 (Val2Asn, Met3Asn) demolished activity. 

The ring position 10 was even more sensitive for structural changes, as the introduction of 

glycine, tyrosine and histidine (Ala10Gly, Ala10Thr, Ala10His) reduced activity significantly. 

These findings are in line with the hypothesis that the tail of thioA is needed for cell membrane 

penetration, while the ring exerts the interaction with the target.   

The derivatives tested in this study, possessed structural changes in the position 12 (histidine) 

in the thioA ring. They showed a comparable activity in Huh7 and HCT116 cells, while thioA2 

lost its activity in A549 and non-tumorigenic cells. This interesting finding in combination with 

the activity studies of Julia Wildfeuer should be addressed in future studies.  

Moreover, a high target specificity could reduce potential adverse off-target effects of the 

compound. Nonetheless, the evaluation of such parameters would require the final target 

identification of thioA. This result would be needed to confirm the direct inhibition of the ATP 

synthase by thioA and to answer the question if this inhibition is the direct link to all aspects of 

the subsequent biological profile of the compound or if thioA might have more than one target. 
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3.3 Chapter 3. Anti-tumor profiling of new natural compounds 
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Auratryptanon 

3.3.1 Introduction 

Myxobacteria belong to the group of Gram-negative eubacteria (Reichenbach, 1999), and are 

among the top producers of new and unique natural products. Due to their rich secondary 

metabolism, myxobacteria serve as an attractive source for lead structures in drug discovery. 

More than 100 core structures and even more derivatives, exhibiting unusual modes of action, 

have been described (Weissman and Müller, 2010). 

Natural products from myxobacteria demonstrated to target cellular structures that are rarely 

targeted by secondary metabolites from other producers. For instance, several compounds 

showed to inhibit electron transport, interact with the cytoskeleton, or inhibit vacuolar ATPases 

(V-ATPases) in mammalian cells (Huss and Wieczorek, 2009; Kingston, 2009; Reichenbach, 

2001; Sasse et al., 1999; Weissman and Müller, 2010).  

The natural product auratryptanon was found in the extract of Stigmatella aurantiaca Sga32 

during a screening for novel anti-infectives. The tryptophan-based compound demonstrated to 

be highly active against several Gram-negative strains, e.g., Staphylococcus aureus, 

Streptococcus pneumoniae, Staphylococcus spp., and Micrococcus luteus (unpublished data). 

Its structure is demonstrated in Figure 27. 

In this study, we aimed to characterize the biological activity of auratryptanon in cancer cells 

and macrophages as important players in the TME.  

 

Figure 27. Structure of auratryptanon.
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3.3.2 Results 

Auratryptanon was first tested for its effects on the viability of human cancer cell lines (Figure 

28 A, B) via MTT assays and showed IC50 values in the nano to low micromolar range (Table 

5). Also in a 3D model, auratryptanon reduced the viability of HCT116 cells growing in 

spheroids (Figure 28 C). 

In comparison to the widely used chemotherapeutic agent doxorubicin, auratryptanon 

demonstrated a more potent activity in Huh7 cells. Moreover, auratryptanon efficiently reduced 

the viability of doxorubicin-resistant Huh7 cells (Figure 28 D). 

Interestingly, the activity of auratryptanon was abolished completely in Huh7.5 cells that were 

differentiated for 3 weeks in human serum. These cells feature a growth arrest and a more 

normal phenotype and metabolism (Figure 28 E, see also 3.3.2).  

 

Table 5. MTT-based IC50 [µM] values of auratryptanon. 

Activity against a panel of tumor cell lines was measured in an MTT assay after 48 h treatment. 

cell line IC50 

Huh7.5 1.18 

HCT116 3.35 

A549 1.53 

MCF7 1.51 

SkMel5 0.58 

SW620 1.08 

HeLa 1.72 

CCSW 1.85 
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Figure 28. Effects of auratryptanon on tumor cell viability in different in vitro models. 

A set of tumor cell lines was treated with increasing concentrations of auratryptanon or vehicle control. 

(A, B) Cell viability was determined after 48 h treatment in an MTT assay (A: n=3 (quadruplicates);     

B: n=2 (sextuplicates)).  

(C) 3-day old HCT116 spheroids were treated with auratryptanon or vehicle control for 48 h, followed 

by an APH assay to assess viability; n=3 (quadruplicates).  

(D) Huh7 wildtype (wt) and doxorubicin-resistant Huh7 (resi) cells were treated with increasing 

concentrations of auratryptanon or doxorubicin, and cell viability was determined after 48 h treatment 

in an MTT assay. Statistical analysis compared auratryptanon treatment vs. doxorubicin treatment in 

wildtype and resistant cells, respectively; n=3 (triplicates).  

(E) Huh7.5 cells were differentiated in media supplemented with 2% human serum (HS) for 3 weeks. 

Differentiated and non-differentiated cells were treated with increasing concentrations of auratryptanon. 

Cell viability was determined after 48 h treatment in an MTT assay. Statistical analysis compared cell 

viability at the individual concentrations; n=3 (quadruplicates). 

Statistical analysis was performed using one-way ANOVA followed by Bonferroni’s post-hoc analysis, 

p < 0.001 (***). 
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As auratryptanon lost its activity in growth-arrested Huh7.5 cells, we hypothesized that it might 

have anti-proliferative actions. Hence, we tested the effects of auratryptanon on tumor cell 

proliferation using different 2D and 3D models (Figure 29). Concentrations similar to their 

MTT-based IC50s inhibited the proliferation of A549 (Figure 29 A) and HCT116 cells (Figure 

29 B) as assessed by automated microscopy and electric cell impedance sensing. Moreover, the 

concentration of 20 µM auratryptanon, which resulted in 50% reduced viability of tumor 

spheroids, caused a growth arrest of 3D HCT116 tumor spheroids (Figure 29 C). 

 

Figure 29. Effects of auratryptanon on tumor cell proliferation. 

Cell proliferation was measured kinetically in different tumor cell lines treated with increasing 

concentrations of auratryptanon or vehicle control.  

(A) Proliferation of treated A549 cells was measured using the electric cell-substrate impedance sensing 

(ECIS®) system. Cells were treated 5 h after seeding, and impedance was normalized to the value at 7 h 

after seeding; n=3 (quadruplicates).  

(B) HCT116 cell proliferation was monitored in an IncuCyte® S3 system after auratryptanon or vehicle 

control treatment. Cell confluency was normalized to time point 0 h; n=2 (quadruplicates).  

(C) 3-day old HCT116 tumor spheroids were treated with auratryptanon or vehicle control, and the 

spheroid area was analyzed by automated microscopy in an IncuCyte® S3 system; n=2 (quadruplicates).  

Statistical analysis was performed for the indicated time points using one-way ANOVA followed by 

Bonferroni’s post-hoc analysis, * p < 0.05, ** p < 0.01 ***, p < 0.001. 
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In order to test whether auratryptanon affects other hallmarks of cancer, we evaluated the 

metastatic capacity of tumor cells as modeled by cell migration in a scratch wound assay. 

Auratryptanon showed no effects on the migration of HCT116 cells up to 2.5 µM treatment 

(Figure 30). 

 

Figure 30. Effects of auratryptanon on tumor cell migration. 

HCT116 cells were treated with thioA, and wound closure was analyzed in an IncuCyte® S3 system 

over 48 h. Statistical analysis was performed for the last acquired time point using one-way ANOVA 

followed by Bonferroni’s post-hoc analysis; n=3 (quadruplicates). 
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Moreover, we measured the production of reactive oxygen species (ROS) in auratryptanon 

treated tumor cells. As assessed by HVA assay, treatment of 2.5 µM auratryptanon provoked 

an increased ROS production in A549 and Huh7.5 cells (Figure 31).  

 

 

Figure 31. Effects of auratryptanon on ROS production of tumor cells. 

A549 (left panel) and Huh7.5 (right panel) cells were treated with different concentrations of 

auratryptanon or vehicle control for the indicated time points. ROS production was assessed by HVA 

assays. Statistical analysis was performed for the indicated time points using one-way ANOVA followed 

by Bonferroni’s post-hoc analysis, comparing auratryptanon-treated to control-treated cells, * p < 0.05, 

** p < 0.01 ***, p < 0.001; n=3 (triplicates). 
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To test if auratryptanon exhibits selective effects on different macrophage subtypes, we 

differentiated and polarized HMDMs in vitro into M0, M1, M2(IL4), M2(IL10), and TAM-like 

macrophages and treated them for 48 h with the compound. Cell viability was assessed by MTT 

assays and demonstrated M1 macrophages to be the significantly most sensitive subtype 

towards the compound (p-values: 0.1 µM: n.s., 0.5 µM n.s.; 1 µM: n.s.; 2.5 µM: M1 to M2(IL4) 

p=0.0312, to M2(IL10) p=0.0015, to TAM-like p=2.255 x 10-6; TAM-like to M0 p=0.0019; 

5 µM: M1 to M2(IL4) p=0.0241, to M2(IL10) p=9.052 x 10-7, to TAM-like p<10-10; TAM-like 

to M0 p=5.812 x 10-7, to M2(IL4) p=8.451 x 10-4; M0 to M2(IL10) p=0.0029). TAM-like 

macrophages were the least sensitive cells and showed 85% viability after 5 µM treatment for 

48 h (Figure 32). 

 

Figure 32. Effects of auratryptanon on the viability of different macrophage subsets. 

HMDMs were differentiated and polarized in vitro into M0, M1, M2(IL4), M2(IL10), and TAM-like 

macrophages for 24 h. Polarized macrophages were treated with increasing concentrations of 

auratryptanon or vehicle control. Cell viability was determined after 48 h treatment in an MTT assay. 

Vehicle control-treated cells of the respective polarization status were used for data normalization. 

Statistical analysis was performed using one-way ANOVA followed by Tukey’s post-hoc analysis; n=4 

(triplicates).  
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3.3.3 Discussion 

The newly identified bacterial natural product auratryptanon demonstrated a potent biological 

activity against human tumor cells from different tumor entities, which was superior to 

doxorubicin in Huh7 cells. The viability-reducing effect was not associated with a strong anti-

proliferative activity, as only concentrations similar to the MTT-based IC50 values inhibited cell 

growth in 2D and 3D models.  

The balance of intracellular ROS and antioxidants plays a pivotal role in the homeostasis of 

healthy cells, and elevated levels of ROS have been linked to cancer initiation and resistance to 

cancer therapy. During cancer development increased ROS production leads to DNA damage, 

genomic instability, and modified gene expression. However, pushing the ROS production 

beyond a breaking point leads to the activation of different cell death pathways and thereby 

offers a therapeutic strategy against tumor cells (Dharmaraja, 2017; Doering et al., 2012; 

Galadari et al., 2017).  

Considering mitochondria as major ROS producers, the disruption of mitochondrial 

homeostasis can lead to increased ROS levels (Yang et al., 2016). In our study, auratryptanon 

showed an induction of hydrogen peroxide levels. As most ROS are converted to cell-permeable 

hydrogen peroxide (Weinberg et al., 2019), measuring hydrogen peroxide in an HVA assay 

provides an indirect measurement of the overall ROS status (Tarpey et al., 2004).  

Deciphering the origin of auratryptanon-induced ROS levels was not part of this study. Other 

myxobacteria-derived compounds inhibited different parts of the mitochondrial respiratory 

chain complex (Weissman and Müller, 2010). Since the blockage of electron transport allows 

the electrons to react with oxygen to produce the ROS superoxide (Sabharwal and Schumacker, 

2014), one could suggest a similar action for auratryptanon.  

One prominent target of other natural products produced by myxobacteria is the eukaryotic 

cytoskeleton. Several compounds stabilize or destabilize actin, even though the compounds 

belong to distinctly different classes of metabolites (Weissman and Müller, 2010), as shown for 

e.g. chivosazoles (Diestel et al., 2009) and chondramide A (Schmauder et al., 2010). Since 

tumor cell migration, as an important hallmark of cancer, relies on the dynamic assembly and 

disassembly of actin filaments, we also tested the effects of auratryptanon on cell migration. 

However, even concentrations clearly above the MTT-based IC50 showed no effect on tumor 

cell migration. 
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Summarizing the effects of auratryptanon on tumor cells, auratryptanon exhibited an interesting 

profile mainly affecting tumor cell viability associated with increased ROS levels. Furthermore, 

the weak activity in differentiated Huh7.5 could be an indicator for a low toxicity against 

healthy cells.  

We further aimed to investigate the effects of auratryptanon on macrophages as an essential 

component of the TME. Hence, we assessed the viability of different in vitro differentiated and 

polarized macrophage subsets after auratryptanon treatment. Auratryptanon exhibited the most 

potent effects against M1 macrophages, while TAM-like macrophages were barely affected.  

In the context of the TME in a solid tumor, anti-inflammatory M2 macrophages exhibit tumor-

promoting functions, while inflammatory M1 macrophages possess the ability to fight 

malignant cells. Therefore, the depletion of M1 macrophage by a tumor-toxic compound could 

lead to the accumulation of M2-like TAMs in the TME. Since apoptotic cells promote tumor-

supporting functions of M2 macrophages (Weigert et al., 2016), this phenotype might be further 

enhanced in the remaining macrophages, causing an overall poor prognosis for the patients.   

Therefore, considering auratryptanon for further preclinical studies, an in-depth analysis of its 

effects on tumor-associated macrophages needs to be performed to prevent an overestimation 

of its anti-cancer effects by solely focusing on tumor cells.  
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Perquinolines 

3.3.4 Introduction 

Perquinolines (Figure 33) belong to the group of bacterial tetrahydroisoquinolines and were 

identified in Streptomyces sp. IB2014/016-6 (Rebets et al., 2019). Isoquinoline structures are 

widely found in natural products, and plant-derived compounds of the benzisoquinoline 

alkaloid family, such as morphine or noscapine, exhibit a broad range of biological activities of 

high therapeutically importance (Kittakoop et al., 2014; Qiu et al., 2014; Weber and Opatz, 

2019).  

 

 

Figure 33. Structure of perquinolines A–C (1–3), ecteinascidin ET-743, and noscapine.  

Tetrahydroisoquinoline rings are highlighted in red (Rebets et al., 2019). 

 

Non-plant-derived tetrahydroisoquinolines are less common. However, group members, such 

as saframycins A, produced by Streptomyces lavendulae and ecteinsacidins, isolated from the 

sea squirt species Ecteinascidia turbinata, attracted attention due to potent anti-tumor activities 

(Aune et al., 2002; Xing et al., 2004).  

Ecteinascidin ET-743, also named trabectedin (Yondelis®), has been approved by the Food and 

Drug Administration (FDA) and the European Medicines Agency (EMA) as an anti-

proliferative agent in cancer therapy (Carter and Keam, 2007). The drug further demonstrated 
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selective cytotoxicity towards monocytes and macrophages and, as a consequence, reduced 

numbers of tumor-infiltrating macrophages. This additional action on immune cells of the 

tumor microenvironment demonstrated to contribute substantially to its anti-cancer activity 

(Germano et al., 2013).  

In this study, we characterized four different perquinolines in their effects on the viability of 

human cancer cells, macrophages, and monocytes.  



Part I: Characterization of natural compounds targeting tumor cells and shaping the 

tumor microenvironment       81 

 

 

 

3.3.5 Results 

The three derivatives of the perquinoline group were first tested for their effects on the viability 

of human cancer cell lines via MTT assay (Figure 34). The derivatives perquinoline A and B 

demonstrated a moderate activity, especially against Huh7 cells (Figure 34 A, B,  for IC50 

values see Table 6). Perquinoline C demonstrated a very low activity in all three tested cell 

lines and reduced the viability to 50-60% after treatment with 200 µM (Figure 34 C).  

 

Figure 34. Effects of perquinolines on tumor cell viability. 

A set of tumor cell lines was treated with increasing concentrations of perquinolines or vehicle control. 

Cell viability was determined after 48 h treatment in an MTT assay. Vehicle control-treated cells were 

used for data normalization; n=3 (quadruplicates). 

 

Table 6. MTT-based IC50 [µM] values of perquinolines. 

Activity against a panel of tumor cell lines was measured in an MTT assay after 48 h treatment. 

cell line A B C 

A549 130.37 125.91 n.d. 

Huh7.5 78.41 82.68 n.d. 

MCF7 n.d. n.d. n.d. 

n.d. (not detectable in concentrations up to 200 µM perquinolines) 
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Since the structurally related compound trabectedin selectively kills cells from the myeloid 

lineage, we hypothesized a similar activity for the perquinolines. However, all perquinoline 

derivatives showed no effects on the viability of differentiated and polarized macrophages 

derived from the monocyte cell line THP-1 (Figure 35), after 48 h treatment in concentrations 

up to 20 µM.  

MTT assay and cell counting of undifferentiated THP-1 cells suggested no effect on monocyte 

viability and proliferation (data not shown, n=1). 

 

Figure 35. Effects of perquinolines on the viability of different macrophage subsets. 

THP-1 cells were PMA-differentiated and polarized into M1, M2(IL4), and M2(IL10) macrophages for 

24 h. Polarized macrophages were treated with increasing concentrations of perquinolines. Cell viability 

was determined after 48 h treatment in an MTT assay. Vehicle control-treated cells of the respective 

polarization status were used for data normalization; n=1 (quadruplicates).
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3.3.6 Discussion 

Perquinolines showed no prominent biological activity in human cancer cell lines, 

macrophages, and monocytes in the employed assays. However, due to their prominent core 

structure, the compounds could serve as interesting hits looking for other targets via library 

screenings.  
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Bakailomycins 

3.3.7 Introduction 

Organisms found in poorly studied ecosystems represent a promising source of new natural 

products serving as advantageous drugs or drug lead structures. The group of baikalomycins is 

produced by Streptomyces sp. IB201691-2A strain, which was found in the Lake Baikal 

endemic gastropod Benedictia baicalensis (Voitsekhovskaia et al., 2020).  

Baikalomycins A-C were found by an activity-guided screening and belong to the family of 

aquayamycin-type angucyclines. The strain also contains large quantities of rabelomycin (Liu 

et al., 1970) and 5-hydroxy-rabelomycin, known shunt products in angucyclines biosynthesis. 

Structures are shown in Figure 36 (Voitsekhovskaia et al., 2020). 

 

Figure 36. Structures of angucycline aglycons rabelomycin, 5-hydroxy-rabelomycin, and aquayamycin-

type baikalomycins A-C (Voitsekhovskaia et al., 2020). 

 

Angucyclines, characterized by a tetracyclic benz[a]anthracene core, are a class of compounds 

produced by Streptomyces sp., exhibiting a broad spectrum of biological activities such as anti-

cancer and anti-bacterial activities in vitro (Kharel et al., 2012). In addition to the cytotoxic 

activities, other family members of the angucycline group have been reported to, e.g., inhibit 

the inducible nitric oxide synthase (iNOS) activity (Alvi et al., 2000), xanthin oxidase 
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(Kirschning et al., 2000), and to induce the peroxisome proliferator-activated receptor PPAR-γ 

(Potterat et al., 2007).  

In this study, we aimed to characterize the baikalomycins A-C as well as rabelomycin and 5-

hydroxy-rabelomycin in their biological activity against cancer cells.  
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3.3.8 Results 

The baikalomycins A-C, rabelomycin, and 5-hydroxy-rabelomycin were tested for their effects 

on the viability of a set of human cancer cell lines via MTT assay. Baikalomycin A and B 

showed a moderate to no activity depending on the cell line. In comparison, baikalomycin C, 

rabelomycin, and 5-hydroxy-rabelomycin exerted a more potent activity with IC50 values in the 

low micromolar range in all four tested cell lines (Figure 37 A; for IC50 values, see Table 7). 

As the overall lowest IC50 values were obtained in A549 cells, this cell line was chosen to 

analyze potential anti-proliferative actions in an electric cell impedance-based assay. Anti-

proliferative effects correlated with cytotoxic activities observed in A549 cells: Baikalomycins 

A-C showed no effects on proliferation, while rabelomycin and, to a greater extent, 5-hydroxy-

rabelomycin reduced cell proliferation in sub-toxic concentrations (cell viability > 80% after 

48 h treatment) (Figure 37 B). 

 

Table 7. MTT-based IC50 [µM] values of baikalomycins. 

Activity against a panel of tumor cell lines was measured in an MTT assay after 48 h treatment. 

cell line baikalo. A  baikalo. B baikalo. C rabelomycin 
5-hydroxy-

rabelomycin 

A549 58.51 ± 5.15 46.26 ± 0.52 42.43 ± 3.71 9.78 ± 0.49 9.11 ± 0.59 

Huh7.5 n.d. n.d. 7.62 ± 0.47 7.21 ± 0.70 11.91 ± 2.94 

MCF7 53.19 ± 3.36 n.d. 13.35 ± 1.33 21.94 ± 1.59 27.39 ± 2.17 

SW620 n.d. n.d. 3.87 ± 0.69 7.82 ± 0.40 13.43 ± 0.72 

n.d. (not detectable in concentrations up to 20 µM baikalomycins) 
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Figure 37. Effects of baikalomycins on tumor cell viability and proliferation. 

(Column A) A set of tumor cell lines was treated with increasing concentrations of compounds or 

vehicle control. Cell viability was determined after 48 h treatment in an MTT assay.  

(Column B) Proliferation of treated A549 cells was measured using the electric cell-substrate 

impedance sensing (ECIS®) system. Cells were treated 5 h after seeding and impedance was normalized 

to the value at 7 h after seeding. Statistical analysis was performed for the indicated time points using 

one-way ANOVA followed by Bonferroni’s post-hoc analysis, comparing compound-treated to vehicle 

control-treated cells, ** p < 0.01 ***, p < 0.001; n=3 (quadruplicates). 
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3.3.9 Discussion 

Baikalomycins A-C demonstrated a varying degree of moderate anti-cancer activities, with 

baikalomycin C being the most active derivative. None of the new compounds exceeded the 

viability-reducing and anti-proliferative effects of the commonly-found simple family member 

rabelomycin (Kharel et al., 2010).  

To the best of our knowledge, we are the first to describe anti-proliferative effects for 

rabelomycin, in concentrations distinctly below IC50 values, which we found after 48 h 

treatment in an MTT assay. The fact that cell line-dependent IC50 values for rabelomycin vary 

in the literature between 1.52 µM and 9.91 µM (Bao et al., 2018; Zhang et al., 2012) 

demonstrates the need for a detailed description of methods and treatment times during the 

assessment of biological activities of newly described compounds.  

Despite their structural and biological diversity, none of the angucycline family members have 

been developed into clinically applicable drugs so far, due to toxicity or solubility problems 

(Kharel et al., 2012). We did not observe any solubility issues in concentrations up to 20 µM.  

Even though the baikalomycins are not characterized by strong anti-tumor properties, they are 

interesting candidates for further direct target identifications and target binding studies in other 

contexts since some angucyclines characterized by poor anti-tumoral and anti-bacterial 

activities exhibit potent enzyme inhibition (Kharel et al., 2012). 
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3.4 Chapter 4. Macrophage targeting by nanoparticles loaded 

into yeast 
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3.4.1 Introduction 

In cancer drug development, the delivery of biologically active compounds to specific cells and 

tissues remains one major challenge. The systematic administration provides access to most of 

the tissues, reaching not only the tumor itself but also metastatic sites. This strategy provides 

an effective drug route that is nevertheless restricted for chemotherapeutic agents targeting 

pathways specifically found in malignant cells. To overcome off-target cytotoxicity, but also 

issues such as low drug bioavailability and uptake efficiency of chemotherapeutic agents, 

nanomedicines were developed. Nanomedicines are characterized as therapeutics composed of 

or formulated in carrier materials smaller than 100 nm. Nanoparticles proved to alter 

pharmacokinetics of drugs but also showed to accumulate in tumors through the enhanced 

permeation and retention (EPR) effect (Murthy, 2007; Wong et al., 2015).  

The targeting of myeloid cells using nanomedicine reveals an attractive approach since, e.g., 

macrophages and dendritic cells represent logical targets due to their phagocytic capacity 

(Amoozgar and Goldberg, 2015; Torres Andón and Alonso, 2015). In this context, yeast cells 

have demonstrated to be an effective delivery vehicle for different contents such as DNA, 

mRNA, proteins, and vaccines to phagocytic cells (Seif et al., 2016, 2017; Stubbs et al., 2001; 

Walch-Rückheim et al., 2016; Walch et al., 2011). 

In this study, we aimed to demonstrate a macrophage-specific targeting, employing the baker’s 

yeast Saccharomyces cervisiae as a nano-in-micro delivery system for poly(lactic‐co‐glycolic 

acid) (PLGA) nanoparticles (NPs).  

Ruth Kiefer (Molecular and cell biology, Saarland University) successfully loaded chitosan-

coated rhodamine-labeled PLGA NPs to Saccharomyces cerevisiae BY4742 yeast cells. This 

loading included the binding of NPs to the cell wall as well as their internalization. The 

complexation under hypotonic (5 mM NaCl) conditions resulted in a higher loading efficiency 

compared to isotonic (154 mM NaCl) conditions. Interestingly, the complexation of NPs with 

yeast under hypotonic conditions revealed the highest percentage of NP-positive cells, when 

M1 and M2 polarized THP-derived macrophages were incubated with either free or complexed 

(isotonic/hypotonic) NPs (Kiefer et al., 2019). 
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3.4.2 Results 

In order to assess the specific targeting of phagocytic cells by NPs complexed with yeast cells, 

we used a co-culture model consisting of fluorescently labeled HeLa tumor cells and HMDMs. 

The co-culture was incubated for 0.5 h or 4 h with NPs either as free NP or as NP/yeast 

complexes, followed by flow cytometric analysis.  

A small fraction of analyzed cells (4.2% ± 2.1 SD) was double-positive for both the macrophage 

and tumor cell staining. These cells were excluded from further analysis, as we suggested that 

this occurred from the uptake of tumor cell debris by macrophages during co-culture. 

After 4 h incubation, macrophages and tumor cells showed both a shift in the rhodamine channel 

when incubated with free NPs. Incubation with the yeast-complexed NPs revealed a clear bias 

of NP uptake towards macrophages already after 30 min incubation (Figure 38). 
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Figure 38. NP uptake in HeLa /HMDM co-culture.  

Uptake of rhodamine‐labeled nanoparticles (NPs) by co-cultured HeLa cells (cell tracker violet-stained) 

and human monocyte-derived macrophages (MΦ, cell tracker deep red-stained) was analyzed by flow 

cytometry.  

(A) All events were plotted in an FSC-A vs. SSC-A scatter plot. 

(B) Singlet cells were selected in an FSC-A vs. FSC-H scatter plot. 

(C) Cells double positive for cell tracker deep red and violet were excluded from further analysis.  

(D) The cell tracker deep red-positive (MΦ) and deep red-negative (HeLa) cell populations were 

analyzed for their uptake of rhodamine-labeled NPs, as indicated by increased signals in the rhodamine 

channel. 

(E) Representative contour plots for the timepoints 0, 0.5, and 4 h are shown. Co-cultures were incubated 

with either plain hypotonic NPs or opsonized NP‐loaded yeast (CFSE-stained). 
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The signal quantification manifested that free NPs were taken up to equal extents in HeLa cells 

and macrophages after 4 h (Figure 39 A), while the complexation of NPs to yeast specifically 

targeted macrophages already after 0.5 h incubation (Figure 39 B). Moreover, complexation 

increased rhodamine-positive macrophages from 34% to 91% after 4 h, indicating a more 

efficient NP delivery.  

The uptake of free NPs in isotonic vs. hypotonic solution into macrophages showed no 

differences (Figure 39 C). Comparing NPs complexed under isotonic vs. hypotonic conditions, 

macrophages incubated with hypotonic NP/yeast complexes revealed a significantly higher 

fraction of rhodamine-positive cells after 0.5 h (40% vs. 76%). This effect was abolished after 

4 h incubation (Figure 39 D). This observation could not be explained by a reduced yeast 

uptake, as 95-99% of macrophages were CFSE-positive already after 0.5 h, indicating a fast 

and efficient yeast uptake by macrophages (Figure 39 E).  
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Figure 39. Quantification of NP uptake in HeLa/HMDM co-culture.  

Uptake of rhodamine‐labeled nanoparticles (NPs) by co-cultured HeLa cells (cell tracker violet-stained) 

and human monocyte-derived macrophages (MΦ, cell tracker deep red-stained) was analyzed by flow 

cytometry.  

(A, B) Quantitative analysis comparing the uptake of (A) plain hypotonic NPs and (B) hypotonic NP/ 

yeast complexes in HeLa cells and macrophages.  

(C, D) Quantitative analysis comparing uptake of isotonic and hypotonic NPs in macrophages, either 

(C) as plain NPs or (D) as NP/yeast complexes.  

(E) Quantitative analysis of yeast (CFSE-stained) uptake in macrophages comparing yeast complexed 

under isotonic and hypotonic conditions.  

Data are presented as mean values ± SEM of two independent experiments performed in cells from two 

different donors, measured in duplicates. Statistical analysis was performed by one‐way ANOVA 

followed by Tukey´s post-hoc analysis p < 0.001 (***). 
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3.4.3 Discussion 

In our study, the baker´s yeast Saccharomyces cerevisiae demonstrated to be an attractive 

vehicle to deliver NPs effectively and selectively to macrophages. The administration of NPs 

inside the nano-in-micro particle not only specifically targeted the NPs to phagocytic cells, but 

also delivered higher amounts of NPs compared to NPs alone. As the complexation of yeast 

with NPs under isotonic conditions resulted in a lower binding capacity (Kiefer et al., 2019), it 

is not surprising that those complexes led to a lower NP delivery to macrophages.  

Our study underlines the advantages of yeast cells as a delivery vehicle for NPs. Beyond the 

cell-specific targeting, the complexation of NPs to Saccharomyces cerevisiae offers the 

possibility of cargo protection and further modifications of the cell surface. Besides local 

injection, NP-complexed yeast could be administered via the oral route, since yeast cells 

showed to protect its cargo from degradation by proteases and acid pH during stomach passage 

and demonstrated to be viable in the intestine for up to one week (Kenngott et al., 2016). 

Moreover, surface-modified yeast was taken up by M cells of the Peyer's patches in the 

gastrointestinal mucosa (Kenngott et al., 2016), where they could be engulfed by macrophages, 

which can be found beneath the surface of the Peyer's patches. 

Considering the achievements already earned by using NPs for immunotherapy (Irvine and 

Dane, 2020; Kumar et al., 2020), the combination with yeast cells for cell-specific targeting to 

phagocytic cells might lead to substantial progress in different therapeutic approaches.  
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IMP2 as potential target in cancer therapy  
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4.1 Chapter 1. The insulin-like growth factor 2 mRNA binding 

protein IMP2/IGF2BP2 is overexpressed and correlates with 

poor survival in pancreatic cancer 
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4.1.1 Introduction 

Pancreatic adenocarcinoma is the seventh leading cause of cancer-related deaths worldwide 

(Rawla et al., 2019). Prognosis is poor and 5-year survival is only 9%. Most of the patients have 

advanced stage tumors at the time of diagnosis making tumor resection impossible. Insulin-like 

growth factor 2 (IGF2) mRNA binding proteins (IGF2BPs/IMPs) have been described to be 

oncogenic in several types of cancer including pancreatic cancer (Barghash et al., 2015, 2016; 

Bell et al., 2013; Dai et al., 2017; Janiszewska et al., 2012; Kessler et al., 2015a). The IMP 

family member IMP3 has originally been identified in pancreatic cancer tissues (Müeller-

Pillasch et al., 1997) and studied in this cancer type in more detail compared to the other two 

IMPs (Morimatsu et al., 2013; Schaeffer et al., 2010; Wachter et al., 2011; Zhao et al., 2007). 

In lung cancer IMP1 has been reported to increase Kras signaling (Rosenfeld et al., 2019), 

which is frequently altered in pancreatic cancer tissue. Recently, IMP2 has been reported to be 

the most abundant of the three members of the IMP family in most cancer types including 

pancreatic ductal adenocarcinoma (PDAC) (Dai et al., 2017). However, beside gene expression 

in pancreatic cancer samples of the TCGA data set little is known about its role in pancreatic 

cancer progression and its prognostic relevance. A well-known precursor of PDAC is 

Pancreatic Intraepithelial Neoplasia (PanIN). PanIN lesions progress from intraepithelial to 

invasive PDAC. Early detection of PanINs would help to interfere with PanIN progression to 

PDAC. IMP2 has been shown to promote carcinogenesis in the liver and to worsen chronic 

liver disease as a risk factor for liver cancer development (Kessler et al., 2015a; Simon et al., 

2014). This study shows for the first time that IMP2 expression is linked to progression and 

poor survival in pancreatic cancer. 
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4.1.2 Results and discussion 

4.1.2.1 IMP2 is overexpressed in precursor lesions, PDAC and linked to lower rate of survival  

In order to study the expression of IMP2 in pancreatic cancer, publicly available datasets were 

investigated. Dai et al. recently showed that IMP2 is overexpressed in PDAC tissues of the 

publicly available TCGA cohort compared to normal tissues (Dai et al., 2017). In concordance, 

we observed IMP2 overexpression in tumor tissues compared to normal tissues from a dataset 

containing matched normal and tumor samples (Figure 40 A). Survival analysis revealed that 

high IMP2 expression is linked to lower survival rate (Figure 40 B). Interestingly, IMP2 was 

overexpressed in PanIN lesions, which bear a high risk to develop into pancreatic cancer 

(Figure 40 C). In contrast to IMP2, IMP3 was shown to be highly specific for pancreatic tumor 

tissue and negative in premalignant tissues (Yantiss et al., 2005). However, since biomarkers 

for early detection are needed to detect progression from PanIN towards PDAC, IMP2 might 

fulfill this need.  

 

Figure 40. IMP2 is overexpressed in PanINs and PDAC and leads to lower rate of survival. 

(A) Expression levels of IMP2 in human PDAC cohort as compared with matched normal pancreatic 

tissue (GEO ID: GSE28735; p = 1.188 × 10−7; n = 45).  

Continued. 
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Figure 40 continued. 

(B) Kaplan-Meier estimated cumulative survival of PDAC patients with strong or low IMP2 expression 

(GEO ID: GSE28735; p = 8.754 × 10−4; low IMP2 expression in tumor tissue < 6, n = 35; strong IMP2 

expression > 6, n = 7). Continued. 

(C) IMP2 expression levels ± SEM in human PDAC and PanIN lesions (GEO ID: GSE43288). 

 

Strict correlation analysis (threshold R2 > 0.75) revealed 22 genes highly positively and 9 genes 

highly negatively correlating with IMP2 (Table 8). Besides genes involved in the inhibition of 

apoptosis (Bcl-XL), especially factors involved in ubiquitination were strongly correlated with 

IMP2 expression: SMURF1 and FBXO45. Moreover, protein kinase C (PKC) signaling 

pathway was distinctly affected: DXS1179E encoding PKC iota, PKC substrate PLEK2, and 

inositol triphosphate receptor IP3R3. Negatively correlated genes are involved in apoptosis 

regulation and DNA repair (APO-J and CAF) as well as epigenetic regulation (AAM-B). 

Interestingly, IMP2 negatively correlated with KIAA0922, which antagonizes Wnt signaling, a 

pathway which has been described to be essential for pancreatic carcinogenesis (Sano et al., 

2016; Zhang et al., 2013b). 
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Table 8. Genes correlating with IMP2 expression. 

Table shows correlation coefficients for highly positively and negatively correlating genes (threshold 

R2 > 0.75 or R2 < -0.75, respectively). Correlation analysis was performed by Ahmad Barghash 

(Department of Computer Science, German Jordanian University). 

Positive correlation Negative correlation 

Gene 
Correlation 

coefficient R2 Gene 
Correlation 

coefficient R2 

ERO1-alpha 0.867 DMDL -0.833 

CD318 0.830 CAF -0.814 

ARVD12 0.825 SEPP1 -0.801 

BEN 0.818 AAM-B -0.796 

BCL-XL/S 0.793 ADAMTSL3 -0.779 

IP3R3 0.787 8B -0.774 

BM600-125KD 0.783 KIAA0922 -0.765 

PLEK2 0.781 SEB -0.761 

TM9SF4 0.776 GGTA1 -0.760 

DYT17 0.774 APO-J -0.753 

TMCC1 0.772 DCL2 -0.752 

DXS1179E 0.770   

HSNOV1 0.764   

SDC4 0.762   

TFGA 0.761   

SMURF1 0.761   

FAD104 0.760   

CT31 0.759   

FGD6 0.758   

FBXO45 0.750   

 

4.1.2.2 IMP2 is involved in metastasis  

Epithelial-mesenchymal transition (EMT) is important for tumor cells to gain migratory and 

invasive potential. In glioblastoma, IMP2 promotes EMT and migration via the IGF2/PI3K/Akt 

pathway (Mu et al., 2015). EMT can be induced in cell culture by treatment of cancer cells with 

TGF-β. In fact, TGF-β induced EMT was associated with increased IMP2 expression (Figure 

41 A).  

Metastases are a result of circulating tumor cells (CTC) that detach from the primary cancer 

and settle down in distant organs. In the publicly available dataset GDS4329 CTC, 

haematological cells, original tumour, and non-tumoural pancreatic control tissue were isolated 

from PDAC patients. CTC showed high IMP2 expression, significantly increased compared to 
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healthy pancreatic tissue as well as to haematological cells (Figure 41 B), suggesting a role for 

IMP2 in metastasis of pancreatic tumors.  

 

Figure 41. IMP2 is associated with metastasis. 

(A) IMP2 expression in Panc-1 cells after EMT induction by treatment with 5 ng/mL TGF beta for 48 h 

(GEO ID: GSE23952, data ± SD; n = 3).  

(B) IMP2 expression in tumor tissue and CTC compared to healthy tissue and heamatological cells of 

the same donor as controls (GEO ID: GDS4329, data ± SD). 

 

IMP2 protein expression is linked to the occurrence of metastasis in esophageal cancer 

(Barghash et al., 2016). IMP2 was further described to be involved in tumor growth and 

metastasis in non-small cell lung cancer (NSCLC) and to be targeted by the tumor suppressive 

microRNA miR-485-5p (Huang et al., 2018). Png and colleagues reported that IMP2 is secreted 

from metastatic cells and recruits endothelial cells during metastasis (Png et al., 2012) 

underlining the role of IMP2 in tumor progression. 

 

4.1.2.3 IMP2 protein is overexpressed in PDAC tissue compared to healthy tissue and 

associated with lower rate of one-year survival 

Since increased protein levels are crucial for the usage of IMP2 as a biomarker, tissue 

microarrays of a PDAC sample collection from 210 PDAC patients in total were analyzed by 

immunohistochemistry. IMP2 was significantly overexpressed in tumor tissue (p = 0.26 × 10−4; 

Figure 42 A). In healthy tissues IMP2 immunoreactivity was found in 91% of samples. (score 

0: 9%; score 1: 55%; score 2: 27%; score 3: 9%). All tumor tissues (n = 204) were positive for 

IMP2: score 1: 7.4%; score 2: 40%; score 2/3: 2.9%; score 3: 49.5%). Kaplan-Meier analysis 

showed no effect of IMP2 staining intensity on overall survival, but strong IMP2 expression 

(score3) was linked to lower rate of one-year survival (Figure 42 B). This is in accordance to 
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findings in several other malignancies, in which a subgroup of tumors with highest IMP2 

expression is linked to short survival (Barghash et al., 2015, 2016; He et al., 2018; Janiszewska 

et al., 2012; Kessler et al., 2013, 2017). In conclusion, IMP2 is frequently overexpressed in 

PDAC and significantly associated with poor prognosis. IMP2 seems to promote tumor 

progression of PDAC. Thus, it might be an interesting prognostic marker as well as a novel 

target for the treatment of PDAC. 

 

Figure 42. IMP2 protein is linked to poor one-year survival.  
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Figure 42 continued. 

(A) Tissue microarrays of PDAC sample collection from n = 210 PDAC patients (tumor tissue: n = 210 

healthy tissue: n = 11) were analyzed by immunohistochemistry. IMP2 was significantly overexpressed 

in tumor tissue (p = 0.26 × 10−4). In healthy tissues IMP2 immunoreactivity was found in 91% of samples 

(score 0: 9%; score 1: 55%; score 2: 27%; score 3: 9%). All tumor tissues (n = 204) were positive for 

IMP2 expression: score 1: 7.4%; score 2: 40%; score 2/3: 2.9%; score 3: 49.5%).  

(B) Kaplan-Meier analysis of one-year survival of patients with strong IMP2 staining (score 3) vs. low 

IMP2 staining in pancreatic tumor tissues. 

Data were generated by Sonja M Kessler (Pharmaceutical Biology, Saarland University), Philip Puchas 

and Johannes Haybaeck (Institute of Pathology, Medical University of Graz). 
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4.2 Chapter 2. IMP2 target validation and in vivo testing of 

IMP2 inhibitors  
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4.2.1 Introduction 

Insulin-like growth factor 2 (IGF2) mRNA binding proteins (IGF2BPs/IMPs/VICKZs) are 

oncofetal RBPs that are suggested to play a crucial role in carcinogenesis and tumor progression 

(see chapters 1.6 and 4.1).  

RBPs are emerging targets in cancer therapy due to their role in various physiological functions, 

but also in cancer initiation and progression. Different studies focus on the application of small 

molecules inhibiting RBP function by, e.g., the inhibition of RBP-RNA interactions, prevention 

of functional modifications of RBPs, or the inhibition of the enzymatic activity of RBPs towards 

the target mRNA (Mohibi et al., 2019).  

In this study, we validated IMP2 as a novel and attractive anti-cancer target due to its suggested 

role in carcinogenesis and tumor progression, using in vitro and in vivo approaches. 

Ali Abuhaliema (Pharmaceutical Biology, Saarland University) screened different (natural) 

compound libraries for IMP2 inhibitors via fluorescence polarization assays (Abuhaliema et al. 

2020, submitted). In this study, a selection of the hit compounds was further characterized in 

their anti-proliferative actions in a zebrafish xenograft in vivo model. 
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4.2.2 Results 

4.2.2.1 IMP2 knockout reduces tumor proliferation and migration in vitro 

To validate IMP2 as a potential anti-cancer target, its role in different hallmarks of cancer was 

evaluated by comparison of IMP2 knockout vs. parental colon cancer cells. Tarek Kröhler 

(Pharmaceutical Biology, Saarland University) performed a CRISPR/Cas9-mediated knockout 

of IMP2 and its splice variant p62 in HCT116 cells (Abuhaliema et al. 2020, submitted).  

The impact of IMP2 on tumor cell proliferation was tested in a comprehensive time-dependent 

live-cell microscopic analysis. By monitoring cell confluency of parental and knockout cells in 

conventional 2D cultures over 4.5 days, we observed a minor inhibition of proliferation by 

IMP2 knockout (Figure 43 A).  

Since previous studies demonstrated that IMP2 knockout affects proliferation of 2D cell 

cultures only to a minor extent (Kessler et al., 2013; Xing et al., 2019), and in vivo tumor 

phenotypes can be simulated more accurately by CRISPR phenotypes in 3D cell cultures (Han 

et al., 2020), we assessed the proliferation of parental and IMP2 knockout HCT116 cells also 

in a 3D spheroid model. Live-cell analysis revealed a strongly reduced proliferation in the 

absence of IMP2 (Figure 43 B, C). 

In order to assess the influence of IMP2 on another hallmark of cancer, we modeled the 

metastatic capacity of parental vs. knockout cells in a scratch wound assay. In this model, IMP2 

knockout significantly reduced cell migration (Figure 43 D, E). 
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Figure 43. In vitro IMP2 target validation on tumor cell proliferation and migration. 

IMP2 CRISPR knockout and parental HCT116 cells were monitored in an IncuCyte® S3 system. 

(A) Cell confluency of 2D cell cultures was analyzed by the IncuCyte basic analyzer and normalized to 

the time point 0 h (10% confluency); n=3 (quadruplicates). 

(B) After spheroid formation for 3 days, spheroid area growth was analyzed using the IncuCyte spheroid 

analyzer. Spheroid area was normalized to 3 day old spheroids (0 h); n=2 (quadruplicates). 

(C) Representative pictures are shown for the starting point (0 h), 2 days, and 6 days after measurement 

initiation. 

(D) Migratory activity was analyzed in a scratch wound assay. % wound density was analyzed by the 

IncuCyte migration analyzer and normalized to the time point of scratch performance (0 h); n=3 

(quadruplicates). 

(E) Representative pictures demonstrate the wound area in red at the starting point (0 h) and 48 h after 

wounding. 

Data are presented as mean values ± SEM. Statistical analysis was performed by a two-tailed student’s 

t-test. 
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4.2.2.2 IMP2 knockout reduces tumor growth in vivo 

Since IMP2 knockout strongly decreased 3D proliferation of HCT116 cells, we further 

evaluated its effects in a zebrafish embryo in vivo xenograft model. Indeed, the absence of IMP2 

resulted in a significantly diminished tumor growth after 3 days (Figure 44).  

 

Figure 44. In vivo IMP2 target validation on tumor cell proliferation. 

Fluorescence-labeled parental or IMP2 CRISPR knockout HCT116 cells were injected into the yolk sac 

of 2 dpf zebrafish embryos. 

(A) Embryos (brightfield) and tumor mass (fluorescent channel) were imaged at 1 dpi and 3 dpi. 

Representative, merged images are shown; scale bar = 1 mm. 

(B) Tumor areas were analyzed using ImageJ based on red fluorescent signals; scale bar = 0.5 mm. 

(C) Quantification of tumor growth is represented as individual values in a box blot. 

Statistical analysis was performed by a two-tailed student’s t-test. 
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4.2.2.3 Biological activity of IMP2 inhibitors in vivo 

Ali Abuhaliema (Pharmaceutical Biology, Saarland University) screened different compound 

libraries for IMP2 inhibitors using a fluorescence polarization assay. Hit compounds were 

tested for their biological activity and demonstrated a specificity for cells expressing high levels 

of IMP2 in a metabolic viability assay and an impedance-based proliferation assay (Abuhaliema 

et al. 2020, submitted).  

In order to assess the biological activity of the hit compounds in vivo, we selected 3 promising 

compounds based on their activity in HCT116 cells in vitro (low IC50 values, target specificity, 

low toxicity in differentiated Huh7 cells) for in vivo studies in zebrafish embryos. The 

compounds were synthesized by Ben Zoller (Department of Microbial Natural Products, 

Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)). 

To test their toxicity in zebrafish embryos, compounds 4, 6, and 9 (Figure 45) were first 

administered in the fish water of 2 dpf embryos. Embryos were observed microscopically for 

normal development, heartbeat, and pigmentation. The concentration of 30 µM resulted in a 

100% toxicity after 1 day treatment for all compounds (Table 9). Lower concentrations of 

compounds 4 and 9 showed no effects after 1 day treatment but affected embryo viability and 

development from day two on.  

 

Figure 45. Structures IC50 values of IMP2 inhibitors. 

Compounds (cmpd) inhibiting IMP2 were identified, and MTT-based IC50 values for HCT116 cells were 

calculated by Ali Abuhaliema (Pharmaceutical Biology, Saarland University). 
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Table 9. Toxicity of IMP2 inhibitors in zebrafish embryos. 

8-10 2 dpf embryos were treated with the respective treatment and observed microscopically 1, 2, and 3 

days after treatment. Table includes the percentage of dead embryos. 

 

cmpd 4 

 1 day treatment 2 days treatment 3 days treatment 

5 µM 0% 50% 75% 

10 µM 0% 100%  

30 µM 100%   

100 µM 100%   

300 µM 100%   

cmpd 6 

30 µM 100%   

100 µM 100%   

300 µM 100%   

cmpd 9 

5 µM 0% 12.5% hunched axis 12.5% hunched axis 

10 µM 0% 25% hunched axis 25% hunched axis 

30 µM 100%   

100 µM 100%   

300 µM 100%   

 

Since concentrations below the IC50 for HCT116 cells administered in the fish water led to a 

disturbed embryonal development, compounds were injected together with HCT116 tumor cells 

for the zebrafish embryo xenograft model.  

In this model, compounds 4 and 6 significantly inhibited tumor growth (Figure 46 A). Embryos 

showed no compound-induced toxicity after 3 days of treatment. Tumor-bearing and 

compound-injected embryos showed normal development, but compound 4 (50 µM) caused a 

somewhat hunched body axis in 22.7% of the embryos at 3 dpi (Figure 46 B). 

 

 



Part II: The RNA binding protein IGF2BP2/ IMP2 as potential target in cancer 

therapy                         112 

 

 

 

 

Figure 46. In vivo actions of IMP2 inhibitors in a xenograft zebrafish embryo model. 

Fluorescence-labeled HCT116 cells suspended in compounds (cmpd) 4, 6, 9 (20 µM and 50 µM) or 

solvent control containing PBS/BSA were injected into the yolk sac of 2 dpf zebrafish embryos. 

Embryos were imaged at 1 and 3 dpi, and tumor area was quantified based on red fluorescent signals 

using ImageJ.  

(A) Quantification is represented as individual growth values in a box plot.  

(B) Representative pictures of 50 µM or control-treated embryos are shown.  

Statistical analysis was performed using one-way ANOVA followed by Tukey´s post-hoc analysis. 
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4.2.3 Discussion 

RBPs have raised attention as potential drug targets in cancer treatment due to their important 

role in various physiological functions (Mohibi et al., 2019). In this context, the RBP HuR has 

been studied rather extensively, and small molecule inhibitors have been identified (Meisner et 

al., 2007; Nasti et al., 2017; Della Volpe et al., 2019). 

The RBP IMP2 has been suggested to promote tumorigenesis and tumor progression in several 

cancers. IMP2 amplification is a frequent event in many cancer entities, and its abundance 

exceeds that of the paralogues IMP1 and IMP3 (Dai et al., 2017).  

In our study, we validated IMP2 as a promising anti-cancer drug target in vitro and in vivo in 

colorectal cancer cells. CRISPR-mediated IMP2 knockout HCT116 cells revealed reduced 

proliferative and migratory capacities compared to their parental counterparts. These data are 

in line with findings, which describe a reduced colony proliferation of shRNA knockdown 

colon cancer cells (Ye et al., 2016). IMP2 overexpression resulted in increased tumor growth 

of pancreatic cancer cells in a mouse xenograft model (Xu et al., 2019). To the best of our 

knowledge, this study provides the first in vivo data underscoring the importance of IMP2 in a 

colon cancer xenograft model. 

These promising results were the basis for a compound screening for small molecules inhibiting 

IMP2 - target interactions, performed by Ali Abuhaliema (Pharmaceutical Biology, Saarland 

University). 

In vitro experiments of these hit compounds, performed by Ali Abuhaliema, revealed biological 

activity by inhibition of cell proliferation and target specificity by a reduced effect on IMP2 

knockout cells. In addition to target specificity, two out of three tested compounds, tested in 

this study, also reduced tumor growth in vivo in a zebrafish xenograft model.  

The exposure of zebrafish embryos to inhibitor-containing fish water caused severe toxicity, 

while administration via injection into the yolk sac was well tolerated. Zebrafish possess 69% 

human orthologues displaying 70% identity. However, functional domains, which often serve 

as drug binding targets, are more conserved (Langheinrich, 2003; Maurer and Quimby, 2015). 

In the case of human IGF2BP2, homologs have been identified in Danio rerio (Gaynes et al., 

2015). Three viable Igf2bp2 mutants, carrying a transgenic insertion at 3 different positions in 

the introns, have been obtained in large-scale mutagenesis of the zebrafish genome (Varshney 

et al., 2013). In wild-type embryos Igf2bp2 was expressed equally in 1, 3, and 5 dpf embryos, 
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and morpholino antisense oligonucleotide-mediated knockdown resulted in viable embryos, 

which showed a somewhat hunched body axis (O’Hare et al., 2016). An explanation of the 

discrepancy between compound-induced toxicity seen after external exposure and injection 

remains elusive. It is conceivable that IGF2BP2 also plays a role in zebrafish development, and 

the comparably higher total compound amount in the fish water results in embryonic toxicity. 

Another possible explanation might be that yolk sac-injected compounds act mainly locally in 

the yolk sac without large tissue distribution or are metabolized differently, leading to lower 

toxicity.  

In mouse models, IGF2BP2 total knockdown results in viable pups having a reduced body 

length and body weight, and a longer life than their littermates (Dai et al., 2015). On the other 

hand, Igf2bp2 null females show reduced fertility, and maternal deletion of Igf2bp2 in mouse 

embryos caused early embryonic developmental arrest in vitro at the 2-cell-stage and only 6% 

of embryos developed into the blastocyst-stage (Liu et al., 2019). 

BTYNB, a small molecule inhibitor, was identified to inhibit the interaction between IMP1 and 

its target c-Myc and thereby inhibiting tumor cell proliferation in ovarian cancer and melanoma 

cells (Mahapatra et al., 2017). To the best of our knowledge, ours is the first study to show 

active inhibitors of an IMP family member in vivo. 

Taken together, our data describe the RBP IMP2 as a novel druggable target for the treatment 

of gastrointestinal tumors. 
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5 Summary and conclusion 

This study pursued different strategies to identify novel therapeutic approaches for solid tumors. 

A phenotypic approach was conducted in the first part, integrating different hallmarks of cancer. 

Besides the tumor-centric evaluation of effects exerted by natural compounds, macrophage 

phenotypes were included since they represent critical players in the tumor microenvironment. 

In this approach, 12 newly identified natural compounds from 4 distinct classes of bacterial 

secondary metabolites were characterized.  

In conclusion, the metabolic modulator thioholgamide A exhibits an interesting biological 

profile orchestrating different hallmarks of cancer in cancer cells and macrophages. In 

combination with its low toxicity in non-tumorigenic cells and in vivo, thioholgamide A 

represents an interesting candidate for further preclinical testing. The first structural 

modifications of thioholgamide A in two derivatives did not lead to improved biological 

activity. The observed anti-tumor effects, in combination with macrophage repolarization 

initiated by the inhibition of oxidative phosphorylation, could serve as an attractive tumor 

therapeutic strategy.  

The characterization of natural products from other classes revealed moderate activities against 

tumor growth. In this evaluation, auratryptanon stood out because of its induction of reactive 

oxygen species production. In macrophages, auratryptanon showed the most substantial effects 

on M1 macrophage viability. In the context of the tumor microenvironment, their depletion 

could lead to further undesirable immunocompromising effects in the tumor tissue.  

In general, different strategies can be used to specifically target macrophages of the tumor 

microenvironment. In addition to the identification of macrophage-selective targets, the 

delivery of compounds into macrophages by taking advantage of their phagocytic activity 

represents a promising approach. In this study, we identified Saccharomyces cerevisiae as a 

macrophage-specific delivery vehicle for nanoparticles.  

In the second part of this study, the role of IMP2 in pancreatic ductal adenocarcinoma was 

investigated. High IMP2 expression demonstrated to correlate with cancer progression and poor 

survival, making it an interesting diagnostic and prognostic marker as well as a novel target for 

the treatment of pancreatic ductal adenocarcinoma. 
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In a target-centric approach, IMP2 was validated in vitro and in vivo as an anti-cancer target in 

another malignancy in the gastrointestinal system, i.e., colon cancer.  

Anti-proliferative activities of potential IMP2 inhibitors were moreover demonstrated in an 

in vivo xenograft zebrafish embryo model, revealing IMP2 as an interesting novel target for 

cancer therapy.  
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