
Aus dem Bereich Systemische Neurowissenschaften und Neurotechnologie,
Theoretische Medizin und Biowissenschaften

der Medizinischen Fakultät der Universität des Saarlandes
Homburg/Saar

Efficient Acquisition and Denoising of Full–Range Event–Related
Potentials Following Transient Stimulation of the Auditory Pathway

Dissertation

zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

der medizinischen Fakultät
der Universität des Saarlandes

2019

vorgelegt von

Manuel Christoph Kohl, M.Sc.
geboren am 29. Mai 1989 in Saarbrücken





Datum der Promotion : 17. Juli 2020

Dekan : Prof. Dr. med. Michael D. Menger

Referenten : Prof. Dr. rer. nat. Dr. rer. med. habil. Daniel J. Strauss,

Prof. Dr. med. Karsten Schwerdtfeger





„To truly explore is to exhaust countless possibilities.
For an inch of progress, we’re willing to walk miles.”

– Lei Jun –





Dedicated to those who make a difference.





Zusammenfassung

Diese Arbeit steht im Zusammenhang mit aktuellen Entwicklungen auf dem Gebiet
der ereigniskorrelierten Potentiale (EKP) des humanen auditorischen Systems, insbeson-
dere der schnellen, entfaltungsbasierten EKP-Aufzeichnung sowie einzelantwortbasierten
Vorverarbeitungs–, Entrauschungs– und nachgelagerten Analysemethoden. Ziel ist die
Bereitstellung eines vollständigen Methodensatzes, der eine schnelle, zuverlässige Erfas-
sung der gesamten elektrophysiologischen Aktivität entlang der Hörbahn vom Hirn-
stamm bis zum Cortex ermöglicht, die als Folge transienter akustischer Stimulation auf-
tritt. Das vorliegende Manuskript gliedert sich in drei aufeinander aufbauende Unter-
suchungsbereiche :

Zunächst wird die generelle Machbarkeit der gleichzeitigen Aufzeichnung von Einzelant-
worten der auditorischen Hirnstammpotentiale zusammen mit mittelspäten und späten
EKP anhand von Referenzmessungen an 15 normalhörenden Probanden demonstriert.
Es werden hierzu geeignete Erfassungsparameter (Abtastrate, Bandpassfiltereinstellungen
und Interstimulusintervalle) ermittelt, gefolgt von einer Signalanalyse der resultieren-
den EKP im Hinblick auf deren dominante intrinsische Skalen, um auf dieser Grund-
lage die Eigenschaften einer optimalen Signaldarstellung mit maximal reduzierter An-
zahl an Abtastpunkten zu bestimmen, die durch nichtlineare Neuabtastung auf eine
logarithmische Zeitbasis realisiert wird. Hierbei wird ein Kompressionsverhältnis von
16.59 erzielt. Zeit–Skalen–Analysen der uniform und logarithmisch abgetasteten EKP–
Einzelantworten zeigen, dass bei der kompressiven Neuabtastung keine relevante Infor-
mation verloren geht, was durch eine vergleichende Auswertung der resultierenden, gemit-
telten Wellenformen zusätzlich gestützt wird – alle prominenten Wellen bleiben sichtbar
und sind hinsichtlich ihrer charakteristischen Latenzen und Amplituden von der Neuab-
tastung weitgehend unbeeinflusst. Die uniforme und logarithmische Signalrepräsenta-
tion werden hinsichtlich ihrer Anfälligkeit für die üblicherweise bei der EKP–Aufzeich-
nung auftretenden physiologischen und technischen Störquellen vergleichend untersucht.

Obwohl bereits eine Fülle von gut etablierten Ansätzen für die Entrauschung von EKP–
Einzelantwortdarstellungen zur Verbesserung der Signalqualität und/oder zur Reduktion
der benötigten Erfassungszeiten existiert, erfordern die wesentlich veränderten Störeigen-
schaften der vorliegenden, logarithmisch abgetasteten Einzelantwortdarstellungen im
Gegensatz zu ihrem uniformen Äquivalent eine Neubewertung der verfügbaren Me-
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thoden für diese Art von Daten. Darüber hinaus werden zwei neuartige, effiziente Ent-
rauschungsalgorithmen geboten, die auf der Koeffizientenmanipulation einer Sino-
gramm–Repräsentation bzw. einer analytischen, diskreten Wavelet–Zerlegung der Einzel-
antworten basieren und gemeinsam mit zwei etablierten Entrauschungsmethoden einer
vergleichenden Leistungsbewertung unterzogen werden. Um einen umfassenden Ver-
gleich zu ermöglichen, werden der im ersten Teil dieser Arbeit erhaltene EKP–Messdaten-
satz sowie synthetischen Daten eingesetzt, die mithilfe eines phänomenologischen EKP-
Modells bei verschiedenen Signal–Rausch–Abständen (SRA) erzeugt wurden, wobei die
individuellen Anstiege in mehreren Zielmetriken zur objektiven Bewertung der Perfor-
manz herangezogen werden. Die erhaltenen Ergebnisse deuten darauf hin, dass die
vorgeschlagenen Entrauschungsalgorithmen die etablierten Methoden sowohl in den
eingesetzten Zielmetriken als auch mit Blick auf die Laufzeiten deutlich übertreffen.

Weiterhin wird ein effizientes Reizsequenzoptimierungsverfahren für den Einsatz mit ent-
faltungsbasierten EKP–Aufzeichnungsmethoden vorgestellt, das eine konsistente Rausch-
unterdrückung innerhalb eines breiten Frequenzbands erreicht. Ein neuartiges Stimulus–
Präsentationsparadigma für die schnelle, verschachtelte Erfassung auditorischer Hirn-
stammpotentiale, mittlelspäter und später Antworten durch alternierende Darbietung
von optimierten, dichter Stimulussequenzen und nachgelagerter, langsamer Einzelstimu-
lation wird eingeführt und in 20 normalhörenden Probanden evaluiert. Entfaltete Se-
quenzantworten, die frühe und mittlere EKP enthalten, werden mit den nachfolgen-
den späten Antworten fusioniert, wobei eine Zeit–Frequenz-aufgelöste, gewichtete Mit-
telung unter Berücksichtigung von Regularität über Einzelantworten hinweg zum Einsatz
kommt. Diese erreicht einheitliche SRA der resultierenden EKP–Signale über alle un-
tersuchten Zeitskalen hinweg. Die erhaltenen, gemittelten EKP–Wellenformen weisen
Morphologien auf, die sowohl mit einschlägigen Literaturwerten als auch mit den im er-
sten Teil dieses Manuskripts erhaltenen Referenzaufnahmen konsistent sind, wobei alle
markanten Wellen deutlich in den Gesamtmittelwerten sichtbar sind. Das neuartige
Stimulationsparadigma verkürzt die Erfassungszeit um den Faktor 3.4 und vergrößert
gleichzeitig den erreichten SRA erheblich. Die Ergebnisse deuten darauf hin, dass die
vorgeschlagene verschachtelte Stimuluspräsentation und die nachgelagerte EKP–Verar-
beitungsmethodik zur schnellen, zuverlässigen Extraktion neuronaler Korrelate der
gesamten auditorischen Verarbeitung im Rahmen zukünftiger Studien geeignet sind.
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Abstract

This body of work relates to recent advances in the field of human auditory event–related
potentials (ERP), specifically the fast, deconvolution–based ERP acquisition as well as
single–response based preprocessing, denoising and subsequent analysis methods. Its
goal is the contribution of a cohesive set of methods facilitating the fast, reliable ac-
quisition of the whole electrophysiological response generated by the auditory pathway
from the brainstem to the cortex following transient acoustical stimulation. The present
manuscript is divided into three sequential areas of investigation :

First, the general feasibility of simultaneously acquiring auditory brainstem, middle–
latency and late ERP single responses is demonstrated using recordings from 15 nor-
mal hearing subjects. Favourable acquisition parameters (i.e., sampling rate, bandpass
filter settings and interstimulus intervals) are established, followed by signal analysis of
the resulting ERP in terms of their dominant intrinsic scales to determine the proper-
ties of an optimal signal representation with maximally reduced sample count by means
of nonlinear resampling on a logarithmic timebase. This way, a compression ratio of
16.59 is achieved. Time–scale analysis of the linear–time and logarithmic–time ERP sin-
gle responses is employed to demonstrate that no important information is lost during
compressive resampling, which is additionally supported by a comparative evaluation of
the resulting average waveforms – here, all prominent waves remain visible, with their
characteristic latencies and amplitudes remaining essentially unaffected by the resam-
pling process. The linear–time and resampled logarithmic–time signal representations
are comparatively investigated regarding their susceptibility to the types of physiological
and technical noise frequently contaminating ERP recordings.

While in principle there already exists a plethora of well–investigated approaches towards
the denoising of ERP single–response representations to improve signal quality and/or
reduce necessary aquisition times, the substantially altered noise characteristics of the ob-
tained, resampled logarithmic–time single response representations as opposed to their
linear–time equivalent necessitates a reevaluation of the available methods on this type
of data. Additionally, two novel, efficient denoising algorithms based on transform coef-
ficient manipulation in the sinogram domain and on an analytic, discrete wavelet filter-
bank are proposed and subjected to a comparative performance evaluation together with
two established denoising methods. To facilitate a thorough comparison, the real–world
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ERP dataset obtained in the first part of this work is employed alongside synthetic data
generated using a phenomenological ERP model evaluated at different signal–to–noise
ratios (SNR), with individual gains in multiple outcome metrics being used to objectively
assess algorithm performances. Results suggest the proposed denoising algorithms to sub-
stantially outperform the state–of–the–art methods in terms of the employed outcome
metrics as well as their respective processing times.

Furthermore, an efficient stimulus sequence optimization method for use with deconvo-
lution–based ERP acquisition methods is introduced, which achieves consistent noise
attenuation within a broad designated frequency range. A novel stimulus presentation
paradigm for the fast, interleaved acquisition of auditory brainstem, middle–latency and
late responses featuring alternating periods of optimized, high–rate deconvolution se-
quences and subsequent low–rate stimulation is proposed and investigated in 20 normal
hearing subjects. Deconvolved sequence responses containing early and middle–latency
ERP components are fused with subsequent late responses using a time–frequency re-
solved weighted averaging method based on cross–trial regularity, yielding a uniform
SNR of the full–range auditory ERP across investigated timescales. Obtained average
ERP waveforms exhibit morphologies consistent with both literature values and the ref-
erence recordings obtained in the first part of this manuscript, with all prominent waves
being visible in the grand average waveforms. The novel stimulation approach cuts ac-
quisition time by a factor of 3.4 while at the same time yielding a substantial gain in
the SNR of obtained ERP data. Results suggest the proposed interleaved stimulus pre-
sentation and associated postprocessing methodology to be suitable for the fast, reliable
extraction of full–range neural correlates of auditory processing in future studies.

Parts of the contents of the present dissertation manuscript have already been published
in Kohl and Strauss (2016), Kohl et al. (2019a) and Kohl et al. (2019b).

Keywords :

Human Auditory Event–Related Potentials (ERP), Auditory Full–Range Response
(AFRR), Nonlinear ERP Resampling, ERP Single Response Denoising, Fast Deconvo-
lution–Based ERP Acquisition
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1 Introduction

1.1 Background

1.1.1 The Human Auditory Pathway

The Auditory Pathway (AP) is a neural macrostructure of the human brain, which em-
anates from the inner hair cells of the cochlea, located within the inner ear, and terminates
with projections to the temporal regions of the cerebral cortex, i.e., the Auditory Cortex
(AC). It is responsible for mediating the sensory modality of hearing and is composed out
of several neural clusters (nuclei) interconnected by ascending and, albeit to a lesser ex-
tent, descending fibres (Møller, 2011). A schematic illustration of the various anatomic
structures constituting the auditory pathway and their respective interconnections is
given in Fig. 1.1.

Peripheral Level

Following an acoustical stimulation of the outer ear and its subsequent mechanical trans-
duction through the middle ear into the oval window of the cochlea, the approximately
3500 inner hair cells in the organ of Corti, which is located between the scala media and
the scala tympani, are selectively excited by the formation of a pressure wave traversing
the cochlea from the oval window to the round window (Schmidt et al., 2017). Due
to a gradual increase in longitudinal stiffness of the basilar membrane, which separates
the scala vestibuli from the other cochlear compartments, a frequency–resolved, selective
neural input to the afferent fibres of the 8th cranial nerve, the Auditory Nerve (AN), is
achieved, where single neurons are tuned to single frequencies. As a result of the cochlear
geometry and the mechanical properties of the basilar membrane, acoustical frequencies
audible to the average normal hearing human reside within the range of 20Hz − 20 kHz
(Møller, 2011).

The AN transmits the neural excitation patterns to the first processing stage along the
AP, the Cochlear Nuclei (CN) located within the rostral medulla (Celesia and Hickok,
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Figure 1.1: Illustration of slices through anatomic structures of the human auditory path-
way. Reproduced with slight modifications from (Stanishevskaya, 2016).
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1.1 Background

2015). Within an acoustical dynamic range of 20− 40 dB Sound Pressure Level (SPL),
the neural response rates of AN fibres corresponding to the characteristic frequencies
dominantly excited by the acoustic stimulus increase approximately proportional to the
stimulus intensity, bottoming out at subthreshold levels. By contrast, sound intensities
largely exceeding the above dynamic range will only lead to neglilible rate increases, but
result in the recruitment of fibres with neighbouring characteristic frequencies as their
respective thresholds are increasingly exceeded (Roederer, 2009).

Brainstem Level

As is the case with the AN, all subsequent processing stages of the ascending human AP
from the brainstem level onwards consequently realize a tonotopic organization, mostly
in the form of an internal spatial encoding with sharp, level–tolerant frequency tuning
curves of single neurons in case of the brainstem–level nuclei (McLaughlin et al., 2010).
Additionally, the dorsal and ventral CN spatially separate high and low frequency con-
tent even further by predominantly processing a disproportionally large amount of the
associated neural responses (Celesia and Hickok, 2015). The primary role of the CN in
auditory processing is thought to reside in an enhancement of spectral component sepa-
ration by means of a contrast–increasing, multilayered lateral inhibition structure (Kral
and Majernik, 1996).

The CN project to the Superior Olivary Complex (SOC), which is located within the
mid–pons. It consists of the medial and lateral superior olive as well as the trapezoid
body, the latter two being strongly interconnected (Moore, 1987). As is the case with
the CN, the lateral and medial superior olive largely separate processing of neural in-
formation corresponding to high and low frequency sound components (Biacabe et al.,
2001). Since the SOC nuclei are the first neural structure receiving fibres ascending from
the contralateral auditory path (Grothe, 2000), they play a key role in the perception of
binaural spatial cues, a vital prerequisite of directional hearing (i.e., sound source local-
ization and separation). The medial superior olive is assumed to be responsible for the
processing of interaural latency and phase differences present in lower–frequency sounds
(below 3−4 kHz), presumably using a temporal cross–correlation structure in the form of
bipolar coincidence neurons (Joris and Yin, 2007; Campbell and King, 2004), while the
lateral superior olive appears to be predominantly sensitive to interaural level differences
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present in higher frequency sounds, integrating them by means of inhibitory contralateral
projections (Rees and Palmer, 2010).

Many afferent fibres emanating from the CN and SOC join to provide input to the
Lateral Lemniscus (LL) (Glendenning et al., 1981), which is located within the pons–
midbrain junction and divided into a dorsal and a ventral substructure. With the dorsal
partition receiving input from both the ipsi– and contralateral auditory paths and the
ventral substructure exclusively receiving contralateral input, the LL further contributes
to the interlinkage of neurally encoded binaural auditory information, and projects to
the Inferior Colliculus (IC) (Møller, 2011).

Midbrain Level

The IC is the largest of all brainstem– and midbrain–level auditory nuclei and is located
within the caudal midbrain (Schmidt et al., 2017). Receiving input from lower–level nu-
clei of both the ipsi– and contralateral ascending paths, it represents the terminal point
of contact for the auditory brainstem, integrating information from all inferior nuclei as
the vast majority of their ascending fibres synapse in it. The IC is divided into a purely
auditory, central nucleus and a laterally surrounding, external subdivision composed of
auditory and somatosensory fibres (Celesia and Hickok, 2015). Given their distinct tono-
topic organization and rich interconnection of fibres from both ascending auditory paths
as well as the lateral interconnection of the left and right central nuclei (Binns et al.,
1992), the IC presumably plays an important role in frequency discrimination (Rees and
Palmer, 2010) as well as the perception of interaural time differences (Fitzpatrick et al.,
2002).

Being interlinked between the IC and the AC, the Medial Geniculate Nucleus (MGN)
constitutes the primary sensory relay mechanism of the AP. As one of the thalamic nuclei,
it is located within the rostral midbrain and comprises of a ventral, medial and dorsal
subdivision. The ventral MGN receives input from the brainstem– and midbrain–level
nuclei of the lemniscal pathway and projects directly to the primary AC, hence it forms
the main ascending information route of the AP. By contrast, the medial and dorsal
MGN receive and integrate multimodal sensory input and dominantly project to the
nonprimary AC areas (Bizley, 2017). The roles of the MGN besides sensory gating are
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ranging from sound recognition and sound source localization over emotional responses
to sounds to the direction of auditory attention (Rees, 2009).

Cortical Level

The AC of both cerebral hemispheres represent the terminal structures of the ascend-
ing human AP and are located on and around the superior temporal gyri (i.e., Heschl’s
gyri) within the fissura sylvii (Ramachandran, 2002). Being a part of the cerebral cor-
tex makes them the phylogenetically newest auditory structure in the mammalian brain
(Kaas, 2008). The AC are by far the largest and most complex neural systems participating
in the modality of hearing and can be coarsely subdivided into three tightly interlinked
regions based on their cytoarchitectonic and physiological properties as well as their dom-
inant directions of information flow (Scott et al., 2017) : Each primary AC constitutes
the respective core area and mainly receives input from the ventral (and, albeit to a much
lesser extent, the medial) MGN of the thalamus. It is surrounded by and strongly con-
nected with the belt region (secondary AC), which receives additional input from the
dorsal MGN and is itself laterally interconnected with the parabelt region (tertiary AC),
located dorsally on the superior temporal gyrus (Kaas and Hackett, 2000).

In contrast to the inner workings of the small, rather separated and less complex nu-
clei that are characteristic of auditory brainstem anatomy, the intricate connectome of
the thalamocortical auditory system and its manifold functional modalities, collectively
termed „auditory thalamocortical transformation” by Winer et al. (2005), are much less
well understood to date (Eggermont, 2010). Even more so than the preceding structures
of the AP, the AC plays a key role in the fusion of binaural auditory information (Pantev
et al., 1996) and also features a distinct tonotopy (Pantev et al., 1988), albeit more in
terms of musical pitch rather than the underlying acoustical frequencies represented by
the cochleotopy of the early brainstem–level nuclei. This cortical pitch representation is
a veritable example of neuroplasticity as it is subject to incremental, functional reorgani-
zation due to, e.g., cochlear damage or the continued pursuit of a musical skill (Pantev
et al., 1998).

Findings of Näätänen et al. (2001) suggest a broad variety of pertinent perceptual achieve-
ments (construction of a coherent auditory scene, recognition of familiar spectrotemporal
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patterns, detection of novel or deviant sounds and anticipation of future auditory events)
to be largely due to a primitive „sensory intelligence” and subsequent higher cognitive
processes well localized to the AC, which organize the auditory input and arguably per-
form some form of invariant extraction. Furthermore, the AC has been shown to play a
paramount role in both preattentive and attentive filtering of sounds by gating the impor-
tant ones to awareness based on their degree of dissimilarity with the preceding auditory
input (Jääskeläinen et al., 2004).

While it is well–accepted since the pioneering work of Hubel et al. (1959) that the neural
behaviour in the AC is strongly modulated by attention, the intricate interplay of preat-
tentive and attentive processes and their respective roles in, among others, the above–
mentioned perceptual achievements are only beginning to be unraveled. A notable con-
sensus is the subdivision of attentional processes into a conscious, task–dependent and
voluntary top–down variety and input–dependent, involuntary bottom–up or „pop–out”
attention largely based on the salience of the auditory input (Fritz et al., 2007). Top–
down attentional processes in particular are closely linked to the functions of the corti-
cofugal system, which is presented in the next subsection. Another well–backed work
hypothesis is the presence of two distinct neural representations of auditory processing
streams in the primate brain (Arnott et al., 2004), the first of them projecting from the
caudal part of the superior temporal gyrus to the parietal regions and primarily processing
spatial cues of the auditory scene. By contrast, the second stream is thought to emanate
from the anterior lateral AC belt and dominantly process information related to the pat-
terns or „objects” within the auditory scene (Rauschecker and Tian, 2000).

Being a subdivision of the richly interconnected sensory cortex, the AC also integrates
multimodal sensory information (predominantly from the visual modality) into the con-
struction of coherent auditory scenes especially when presented with incomplete or noisy
acoustical input (Sekiyama et al., 2003), which leads to, e.g., considerable improvements
in overall speech intelligibility for hearing–impaired listeners provided that they can see
the lip movements of the speaker. Albeit midbrain–level structures like the superior col-
liculus also contribute to multisensory integration (Stein et al., 2009), substantial visual
modulation of auditory perception, as demonstrable via the McGurk illusion, has been
shown to be accompanied by distinct neural correlates of the visual stimuli on the human
AC very early into auditory processing (Smith et al., 2013), hence auditory multisensory
integration is probably mostly dominated by processes on the cortical level.
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Descending Auditory Pathway

The descending auditory pathway or corticofugal auditory system forms multiple top–
down feedback paths capable of propagating cortical–level information back to preced-
ing processing stages of the ascending AP (Suga et al., 2011), with its most peripheral
effectors being the hair cells of the cochlea (Xiao and Suga, 2001). The many outputs of
the corticofugal system constitute one of the largest pathways in the human brain with
many auditory and non–auditory targets on the presynaptic cortical, thalamic, midbrain
and brainstem levels (Winer, 2005). The descending auditory efferents reach the CN, the
IC as well as the MGN (Winer and Lee, 2007). Consequently, pertinent experiments in-
volving macroscopic electrophysiological correlates of the associated neural activity (e.g.,
Woldorff and Hillyard, 1991; Müller et al., 2009) show a modulation of early auditory
processing by higher–level cortical processes such as selective attention.

The influence of corticofugal efferents on the perception of auditory input is exercised
by a continuous alteration of bottom–up auditory information processing, ranging from
subtle reshaping of response properties for single neurons along the central AP (entail-
ing among others a mechanism for dynamic gain control) to potentially substantial and
lasting reorganization of existing tonotopic and computational neural maps (Suga et al.,
2000).

1.1.2 Transient Auditory ERP

Event–Related Potentials (ERP) can be defined in a very general way as the totality of
measurable neural response patterns which reproducibly occur time–locked to a specific
stimulus1. ERP obtained from the human scalp EEG have played and continue to play
a paramount role in neuroscience research and clinical neurodiagnostics as large–scale
neural correlates of many sensory and cognitive processing modalities (Oken and Phillips,
2009).

1Note that the conceptual delimination between the evoked (exogeneously dependent, i.e., stimulus–driven)
and event–related (primarily influenced by endogeneous factors) parts of stimulus–locked neural activity
(Goodin, 2012) – while potentially very important in certain contexts – is omitted for the sake of termino-
logical simplicity within the scope of this work, as the presented signal processing methods solely consider
the ERP from an epiphenomenological viewpoint.
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Given that scalp EEG recordings, depending on the electrode geometries and positions,
effectively yield a spatially weighted integral over the infintesimal voltage elements due
to microscopic, subcutaneous current flows caused by the superposition of neural electric
dipoles (predominantly those of the apical dendrites of cortical pyramidal neurons), ERP
acquired from scalp EEG leads likewise enjoy an excellent temporal resolution, whereas
their spatial resolution is greatly reduced (Malmivuo and Plonsey, 1995). The former
property is a crucial prerequisite to properly relating these large–scale electrophysiological
responses to their respective neural generators in detail, particularly when considering
that, e.g., the earliest prominent wave of the auditory ERP to transient stimuli already
appears within one millisecond post–stimulus (Picton et al., 1974).

Since the pioneering demonstrational work of Dawson (1954), it is an established consen-
sus that the acquisition of transient ERP has to rely on repeated measurements in some
way to obtain meaningful results. This is primarily owed to the fact that the sought–
after prominent waves are generally orders of magnitudes smaller than the competing
background noise floor of oscillatory EEG activity, which typically resides in the range
between 10 – 100µV Root Mean Square (RMS) (Malmivuo and Plonsey, 1995). Hence,
the underlying rationale of ERP acquisition is the implicit assumption of a linear signal–
plus–noise superposition model, where the stimulus–locked ERP activity constitutes a
deterministic signal and the spontaneous oscillatory EEG – despite being substantially
larger in amplitude – merely forms an additive, stochastic fluctuation thereof (Dawson,
1951). Under this model assumption, the observational error should successively ap-
proach zero the higher the number of repeated measurements being averaged, as the
stochastic signal components will tend to cancel out on average (Taylor, 1997). Note
that this behaviour of course nicely extends to the generally nondeterministic physiolog-
ical artifacts (e.g., sporadic muscle activity) frequently contaminating the acquired ERP
signals.

Stimulus Waveforms

Many different stimulus waveforms have been proposed for the acquisition of transient
auditory ERP, ranging from short clicks and tonebursts (Hall, 2007) to the more recently
introduced chirp stimuli (e.g., Fobel and Dau, 2004; Cargnelutti et al., 2017), which,
by carefully compensating for the frequency–dependent stimulus travel time along the
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basilar membrane, are intended to achieve a more synchronized discharge of the cochlear
inner hair cells, thereby significantly improving the resulting average ERP waveform mor-
phology compared to the traditional click (Dau et al., 2000). Consequently, frequency–
specific chirp stimuli have been applied with good results in brainstem evoked response
audiometry (Bell et al., 2002; Corona-Strauss et al., 2012).

Signal Morphology and Neural Generators

Fig. 1.3 shows the signal morphology2 of the human transient auditory ERP as first
reported by Picton et al. (1974), which is characterized by a temporal succession of alter-
nating polarity fluctuations composed out of up to 16 prominent waves with character-
istic latencies, all of them occuring within less than one second post–stimulus. Specific
subsets of the prominent waves are terminologically aggregated into the early, middle–
latency and late auditory ERP based on their neural generators. The earliest waves
I – V I I , ranging from around 1 to 10ms, are associated with neural activity ascend-
ing from the AN via the brainstem–level nuclei of the AP up to the IC, thus collectively
being termed Auditory Brainstem Response (ABR) (Picton, 2010). At the brainstem
level, each prominent wave in the ERP corresponds to neural activity well localized to
a specific auditory nucleus : While waves I and I I can be attributed to the activity of
the distal and proximal ipsilateral AN, wave I I I originates mainly from the CN with
contributions from the ipsilateral SOC. Waves IV and V are compound potentials with
multiple ipsi- and contralateral sources such as the LL termination at the IC as well as
the direct pathways from the CN to the IC. Wave V is typically followed by a negative
peak arising from dendritic activity in the contralateral IC (Hall, 2007).

By contrast, for the Auditory Middle–Latency Response (AMLR) (ranging from
10− 50ms) and subsequent Auditory Late Response (ALR) (50− 300ms), the promi-
nent waves are much less well localized to specific neural structures as they arise from
large–scale thalamocortical projections and subsequent cortical activity (Di and Barth,
1992). Source topography analysis of the neural activity have revealed the AMLR com-
ponents from 30ms onwards (waves Na , Pa and Nb ) to be originating from sources

2Note that the displayed ERP average waveforms were recorded using a vertex–negative electrode montage,
a practice quite widespread in clinical applications. By contrast, all other displays of ERP data appearing
throughout this manuscript consistently feature a vertex–positive electrode montage.
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Figure 1.2: Auditory Brainstem–, Middle–Latency and Late Responses. Reproduced
with slight modifications from Picton et al. (1974).
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distributed medio–laterally along Heschl’s gyri, with the earlier waves being generated
in the postero–medial part (i.e., the primary AC) and the later waves forming within
the more lateral, secondary AC (Liégeois-Chauvel et al., 1994). Likewise, the forma-
tion of the most prominent part of the ALR, the N1–P2 complex, presumably involves
three dominant cerebral generators in the form of dipole sources, two of which are ori-
ented vertically on the supratemporal plane with the third being oriented laterally in the
magnopyramidal temporal field (Scherg et al., 1989).

Utility in Clinical Medicine and Neuroscience Research

The transient auditory ERP have many clinical applications in assessing functions of
the human AP. Contemporary medical uses include the objective estimation of hear-
ing thresholds, prominently applied in the auditory screening of, e.g., neonates, infants
or uncooperative patients (Glasscock et al., 1979), diagnosis of cochlear pathologies as
well as tumors of the 8th cranial nerve (Stockard and Rossiter, 1977), intraoperative mon-
itoring purposes and diagnosis of cerebral death (Burkard et al., 2006). The considerable
diagnostic value of transient auditory ERP is essentially due to the following beneficial
properties :

– Simple, well–established measurement setups, stimulation paradigms
and signal processing methods

– Reproducible neural correlates which usually generalize well across subjects
within homogeneous groups

– High sensitivity for exogeneous (i.e., stimulus characteristics)
and endogeneous factors (e.g., attention effects)

– High sensitivity for a broad variety of pathological conditions

One minor drawback of human auditory ERP resides in the fact that the AMLR and ALR
components in particular undergo gradual age–induced changes in their signal morphol-
ogy due to an alteration of the underlying source topology and associated dipole orien-
tations, with the majority of ERP patterns usually being established as of age six and
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several other components slowly maturing at rates between 10− 50% per year (Ponton
et al., 2002). While this behaviour aggravates the quantitative comparison of auditory
ERP acquired from groups with considerably different age distributions, the reported
intra–subject test–retest–repeatability of both the brainstem–level and thalamocortical
responses is remarkable even when employing more complex stimulus waveforms such
as speech fragments (Bidelman et al., 2018).

As already pointed out in Sect. 1.1.1, cortical auditory processing is strongly modulated
by attention. Consequently, transient ALR have been at the center of interest in as-
sessing these attentional mechanisms for decades since the pioneering demonstration of
Picton and Hillyard (1974). However, recent findings of Reichenbach et al. (2016) and
Forte et al. (2017) impressively demonstrate the feasibility of acquiring reliable subcor-
tical correlates of attentional processing all the way down to the fragile brainstem–level
components using running speech stimuli. This novel form of neural correlates will very
likely improve the overall understanding of processing stages along the AP in future re-
search as it enables additional quantitative insight into the role of corticofugal processing
in auditory attention.

An attentional effect of potentially huge clinical relevance is cortical inhibition, which
can be indirectly quantified by the amount of peak amplitude reduction in the N1–P2
complex of the subsequent ALR responses to paired stimulus presentations. A substantial
lack thereof has been proposed as an objective indicator of attention deficit disorders in
adult patients by Schubert et al. (2014). Moreso, reduced cortical inhibition correlates
with reduced performance in a speech intelligibility task (González–Trejo et al., 2013) as
well as a reduced ability to perform an auditory selective attention task in a simulated
driving environment (González–Trejo et al., 2015), additionally making it a possible pre-
dictor for driving performance in modern driving environments with increasing levels of
distraction due to the advent of in–car infotainment systems.

Another attentional longterm effect measurable in the cortical auditory ERP to repeti-
tive, subthreshold stimulus presentation is habituation (Prosser et al., 1981; Mariam et al.,
2009; Kern et al., 2010). It must be clearly distinguished from stimulus–specific adapta-
tion, which primarily occurs in the auditory thalamic nuclei (Anderson et al., 2009) and
leads to a significant amplitude reduction in the obtained ERP compared to the response
to the first few stimuli (Zhang et al., 2009). Despite several refinements of the available
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methodology for assessment of habituation using ALR single trials (e.g., Mariam et al.,
2012; Mortezapouraghdam et al., 2015), the quantification of stimulus habituation has
not yet seen noteworthy application in clinical diagnostics to the present date, most likely
due to the substantial acquisition times involved. Nevertheless, recent research indicates
dysfunctional long–term habituation of matched tone stimuli to be a potential objec-
tive measure for classification of the decompensation degree in sufferers of tonal tinnitus
aureum (Lehser et al., 2015) with a promising therapeutic approach involving spectral
notching of the individual patients’ tinnitus frequencies using commercially available
hearing aids (Haab et al., 2019).

The last application of transient auditory ERP to be presented in this overview3 lies with
the growing body of research on binaural interaction. Following the initial demonstra-
tions of binaural difference potentials in the transient–evoked human ABR by Levine
(1981) and subsequent investigations of analogous middle–latency and late binaural dif-
ference potentials (McPherson and Starr, 1993), this field has seen an increasing number
of scientific contributions during recent years (e.g., Henkin et al., 2015; Francart et al.,
2018). The substantial susceptibility of binaural brainstem–level (Riedel and Kollmeier,
2006) and subsequent cortical (Ungan et al., 2001) difference potentials with respect
to interaural timing and intensity differences makes them a valuable tool in quantifying
the degree of binaural interaction along the auditory pathway (ideally leading to the two
slightly deviating sounds being fused into a single percept), which is of paramount inter-
est in, e.g., evaluating and improving the fitting quality of the increasingly ubiquitous
hearing devices. Consequently, successful recent work investigating the impact of non-
linear frequency compression on binaural interaction in hearing aid users (Klauke et al.,
2015) as well as electrode paring in bilateral cochlear implantees (Hu et al., 2016) empha-
sizes the suitability of the employed measures. Building upon the work of Schebsdat et al.
(2018) on artifact reduction in ERP acquired from cochlea implant users and the fast ERP
acquisition methods developed in Kohl et al. (2019a), our upcoming research demon-
strates the benefits of carefully compensating the interaural delay in asymmetric hearing
treatments involving one cochlea implant and one hearing aid with respect to brainstem–
level binaural interaction (Schebsdat et al., 2019), which is additionally backed by recent
psychoacoustic investigations by Zirn et al. (2019).

3Please note that providing a more exhaustive list of contemporary and possible future applications for
auditory ERP in clinical neurodiagnostics and neuroscience research is beyond the scope of this work,
hence the inclined reader is refered to Picton (2010) for further reference within this regard.
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1.2 Motivation and Objectives of This Work

The foundational work of (Picton et al., 1974) effectively systematized the acquisition
of ABR, AMLR and ALR as separate components of the auditory ERP, with the subse-
quently established recording parameters such as Interstimulus Intervals (ISI), acquisition
time windows and bandpass filter settings favourable for each of these components (e.g.,
Hall, 2007) essentially being the result of careful, empirical optimization. As a conse-
quence, the vast majority of studies involving transient auditory ERP have adhered and
continue to adhere to these established acquisition methods and associated recording
parameters given that their normative character enables comparability of the obtained
signals across different studies, which is a very reasonable approach in and of itself.

However, sticking with the traditional recording „recipes”, if only for the sole reason of
them being tried and tested, is not without drawbacks, as a substantial amount of in-
formation potentially valuable in answering research questions is irrecoverably lost due
to the signal conditioning involved in obtaining either of the three ERP components.
Very much by contrast, Michelini et al. (1982) have demonstrated the general feasibil-
ity of simultaneously acquiring all auditory ERP components in a single measurement
by means of a parametric, progressive decimation to warp the obtained ERP signals on a
non–uniform timebase. Fig. 1.3 displays an example average ERP waveform obtained us-
ing this approach. Even more impressively, the employed methods barely stretched the
technological limits of mainstream computational hardware available back at the time.
An in–depth analysis of the waveform morphology exhibited by the obtained signals was
subsequently given in Arslan et al. (1984). Despite this substantial pioneering contribu-
tion to ERP recording methodology, simultaneous acquisition of transient ABR, AMLR
and ALR – henceforth referred to as Auditory Full–Range Response (AFRR) through-
out this manuscript – while potentially offering improvements in the understanding of
different auditory processing stages and their dynamic interaction, has not seen any note-
worthy application in neuroscience research to the present date. This is most likely due
to the unacceptably large recording times necessary to acquire all three auditory ERP
components at reasonable Signal–to–Noise Ratios (SNR) when employing the approach
of Michelini et al. (1982) as the proposed method has to rely on very low ISI to prevent
waveform disturbance due to overlap of subsequent single responses.
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Figure 1.3: Full–Range Auditory ERP. Reproduced with slight modifications from
Michelini et al. (1982).

Even though this promising approach has neither found its way into contemporary ERP
recording methodology nor seen any notable refinements during recent years aside of
our own contributions (Kohl and Strauss, 2016; Kohl et al., 2019b), a recent surge of
research on alternative methods for the simultaneous acquisition of brainstem–level and
cortical ERP (e.g., Bidelmann, 2015; Slugocki et al., 2017) strongly emphasizes the gen-
eral desirability of the line of thought that motivated the work of Michelini et al. (1982)
to begin with. As will be analyzed in greater detail during the literature review of Sect.
2.5.1, the above–mentioned more recent approaches accurately reflect the need to sub-
stantially reduce the large acquisition times inherent to this endeavour, which is achieved
by means of interleaving very dense stimulation periods with longer pauses to more or less
simultaneously yield an auditory brainstem Frequency–Following Response (FFR) and
a cortical response. While being laudable efforts in principle, the proposed approaches
effectively sacrifice valuable information in exchange for their notably fast acquisition
speed, as the employed brainstem FFR lacks the temporal resolution necessary to relate
the resulting response to their respective neural generators in detail. By contrast, the work
of Holt and Özdamar (2014) demonstrated the feasibility of simultaneously recording
high–quality time–resolved ABR and AMLR components at high stimulation rates using
a deconvolution–based acquisition approach to separate the overlapping responses, which
in turn is incapable of obtaining a well–defined ALR due to the detrimental effects of in-
creased stimulus rates on their response amplitudes (Holt and Özdamar, 2016).
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The aspiration of the present dissertation resides in answering the following research ques-
tions raised during the process of reviewing the prior art by Michelini et al. (1982), Holt
and Özdamar (2014) and Holt and Özdamar (2016) :

(1) As the AFRR obviously spans three full timescales (10−3 − 100 s), a compact signal
representation for the obtained ERP single responses is desirable to facilitate memory–
efficient storage as well as fast, computationally inexpencive denoising. Hence, if
simultaneously acquired ABR, AMLR and ALR arguably are best displayed on a
non–uniform timebase, what is the optimum warping function ? Can sufficient em-
pirical support for its optimality be gathered and, more importantly, is it possible to
demonstrate that no relevant signal features are lost during the associated resampling
process ? How does the resampling of AFRR single responses affect their susceptibility
to the noise sources frequently contaminating ERP recordings compared to uniformly
sampled single responses ?

(2) Are the state–of–the–art ERP single response denoising methods suitable for use with
the resampled signal representation, and are there any more efficient ways to denoise
the obtained AFRR single responses ?

(3) How can the acquisition of AFRR single responses be realized in a more time–efficient
way by reducing the employed ISI, without at the same time introducing a loss of signal
quality in the obtained ERP ?

Sect. 2.3 addresses questions (1), with empirical support for the suitability of the in-
troduced resampling method being based on the analysis of a reference AFRR dataset
acquired from 15 normal hearing subjects in Sect. 2.1. Starting from a short review of
established methods for ERP single response denoising, two novel, efficient denoising ap-
proaches are subsequently proposed in Sect. 2.4, followed by a comparative performance
analysis in order to answer questions (2). To facilitate a thorough evaluation, the resam-
pled real–world ERP dataset gathered in Sect. 2.1 is employed alongside synthetic data
generated at different SNR using the AFRR model developed in Sect. 2.2. Concluding
this body of work, question (3) is addressed in Sect. 2.5 by introducing a novel inter-
leaved stimulus presentation paradigm inspired by Bidelmann (2015) and subsequent
deconvolution–based ERP processing methods centered around the work of Holt and
Özdamar (2014), which are successfully evaluated in 20 normal hearing subjects.
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2 Materials and Methods

2.1 Reference AFRR Acquisition

2.1.1 Preliminary Considerations

Answering the research questions raised in the previous section obviously necessitates
acquiring a reference dataset of transient–evoked full–range auditory ERP. The dataset
needs to comprise a number of samples large enough to facilitate statistical analyses in
order to be suitable as a base for the subsequent investigation and comparative evaluation
of the proposed signal processing methods. Hence, a first study was conducted to obtain
the necessary data. The ERP acquisition parameters applied in this study were chosen
based on the following considerations :

– The time window used to epoch the acquired ERP should be large enough to fully
encompass all three timescales of interest.

– The sampling rate and the spectral bandwidth of the obtained responses after filter-
ing should be suitable to reliably retain all relevant signal details across investigated
timescales. A beneficial side effect of using larger bandwidths resides in the minimiza-
tion of potential filtering artifacts (i.e., pre– and post–ringing) perturbing the wave-
form morphology of the acquired ERP (see Rousselet (2012) for a review).

– The employed ISI should reflect a reasonable compromise between acquisition speed
and the quality of the obtained cortical ERP components, which strongly benefit from
larger ISI (Davis et al., 1966).

2.1.2 Subjects

The study was conducted at Saarland University of Applied Sciences (Saarbrücken, Ger-
many), with 15 subjects (10 males, 5 females, ages ∅26 ± 3 years) being recruited from
the social environment of the author to participate in the reference AFRR recording.
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None of the subjects exhibited any known history of audiological or neurological dis-
orders. All of them were classified as normal hearing using puretone audiometry with
hearing thresholds consistently below 15 dB hearing level within the frequency range of
0.5−8 kHz (Gelfand, 2009). The subjects were informed about the experimental proce-
dure, which was designed in accordance with the Declaration of Helsinki and approved
by the institutional review board and the ethics comittee of the Ärztekammer des Saarlan-
des, and signed a consent form.

2.1.3 Stimulus Presentation and ERP Recording

Figure 2.1: Stimulus Presentation and ERP Acquisition Setup.

A schematic overview of the employed stimulus presentation and ERP acquisition setup
is given in Fig. 2.1. The broadband chirp stimulus optimized for eliciting the ABR in
humans as proposed by Fobel and Dau (2004) was used for stimulation (edge frequen-
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cies 0.1 − 10 kHz, 9.9ms duration). Stimuli were presented binaurally to the subjects
at 70 dB peak–to–peak equivalent SPL using a desktop computer connected to a USB
audio interface (Scarlett 2i4, Focusrite, UK) with its integrated headphone amplifier driv-
ing a pair of standard audiometry headphones (HDA–200, Sennheiser, Germany). The
chirp stimulus was calibrated according to IEC 60645–3 (International Electrotechni-
cal Commission, 2007) using an artificial ear and a sound level meter (No 4153 and
2250, Brüel & Kjaer, Denmark). Stimulus waveforms and corresponding acquisition
triggers were generated offline as 24 bit PCM wave files at 48 kHz sampling rate using
MATLABTM R2016a (The MathWorks, USA) and played back using multichannel audio
workstation software (Studio One 2, PreSonus, USA). The stimulus wavefiles comprised
a total amount of 103 stimuli to reliably acquire the ABR components at a reasonable
SNR (Hall, 2007), presented at an ISI of 1 s1 ±10% equally distributed jitter to obtain
the additional SNR advantage due to averaging as pointed out by Woldorff (1993), which
resulted in 16:50min overall acquisition time. Stimulus polarity was alternated for each
successive chirp to equally distribute potential electromagnetic influences from the head-
phones on the acquired ERP, eventually cancelling them out during averaging.

Subjects were instructed to sit on a lounger in a darkened, acoustically controlled envi-
ronment, relax with their eyes closed, but not fall asleep and avoid any movement dur-
ing ERP acquisition. The auditory ERP were recorded using four passive Ag/AgCl cup
electrodes placed on the left and right mastoids (A2/A1, active leads), the vertex (Cz, ref-
erence lead) and the forehead (ground) of the subjects. Electrode impedances were kept
below 5 kΩ. The raw auditory ERP leads and corresponding trigger signals were recorded
sample–synchronously without analog prefiltering at 19.2 kHz sampling rate using a sec-
ond desktop computer connected to a medical–grade biosignal amplifier with an external
trigger conditioner (g.USBamp and g.Trigbox, g.tec Medical Engineering, Austria).

1Note that this particular ISI value is the result of empirical optimization based on variational repeated mea-
surements in a single subject. As reported by Davis et al. (1966), ALR components benefit progressively
from ISI increases up to (obviously highly impractical) presentation rates as low as one 6th of Hz. Prelim-
inary tests involving rates well below 1Hz are consistent with this finding, with ALR morphology in the
obtained AFRR averages appearing progressively distorted. Attempts at mitigating this detrimental effect by
subsequently employing the Adjacent Response Removal (ADJAR) overlap correction method introduced
by Woldorff (1993) – and promoted by none less than Picton et al. (2000) as a part of their contemporary
recording standards for higher–rate ALR acquisition – notably proved unsuccessful, hence the ISI value of
1 s was established before conducting this study as a reasonable compromise.
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2.1.4 ERP Processing and Analysis

Signal conditioning, epoching and ERP analysis were carried out in MATLABTM . The
raw ERP signals were zero–phase filtered using a 4th order Butterworth Infinite Impulse
Response (IIR) bandpass filter with lower and upper 3 dB cutoff frequencies of 1Hz and
1 kHz to eliminate baseline wandering and high–frequency noise. In order to reliably
remove potential powerline interference and its harmonics from the signals, a set of 4th

order Butterworth IIR notch filters was employed, centered at all integer multiples of
50Hz within the pass band with 3 dB bandwidths of 5millioctaves.

By epoching the conditioned discrete–time ERP raw signals u ∈ ℓ 2 (R) using the acqui-
sition time window from 1ms – 1 s after each rising edge of the associated trigger signals
(compensating for the 9.9ms delay introduced by the chirp stimulus), a set
U = { um ∈ RN | m = 1 ..M , M ,N ∈ N} of ERP single responses was obtained
for each subject and electrode lead, respectively. This sampled single–response represen-
tation was first proposed by Jung et al. (1999), coining the term „ERP image” in the
context of data visualization. Note that it has also been interpreted as a „sweep matrix”
U ∈ RM×N containing the M single responses as row vectors, particularly within the
context of single–trial ERP denoising algorithms (e.g., Strauss et al., 2013). Hence, both
interpretations and notations are used as deemed appropriate throughout this manuscript
as they can be considered interchangeable.

In order to assess the obtained ERP and compare their waveform morphology to the
previous results of Michelini et al. (1982), average waveforms ua were calculated for
each single response set. Prior to averaging, single responses were rendered offset–free
by sample–wise subtraction of their respective arithmetic mean values ua . Responses
exceeding a bipolar amplitude threshold of 70µV were rejected as artifacts. To ensure a
high data quality of the grand average, single–subject average waveforms ua were visually
screened, with 4 of them being excluded from the grand average either due to exhibit-
ing no prominent waveform morphology or containing postauricular muscle responses
(O’Beirne and Patuzzi, 1999) exceeding 5µV zero–to–peak. Fig. 3.1 displays the result-
ing grand average waveform of the remaining 11 single–subject ERP averages.
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As a prerequisite to the subsequent AFRR model development and optimization of the
AFRR signal representation, a time–frequency analysis of the obtained single responses
was performed. Wavelet transforms in particular have been repeatedly employed for this
purpose with great success in multiple ERP studies (e.g., Samar et al., 1995; Demiralp
and Ademoglu, 2001; Quian Quiroga et al., 2001; Murali and Kulish, 2007; Wang et al.,
2007) due to numerous desirable properties. By applying the Continuous Wavelet Trans-
form (CWT)

WΨ{ f }(a, b ) = |a|−
1
2

�
f , ψ(a,b )

�
(2.1)

where ψ(a,b ) = Ψ(
·−b
a ) denotes a set of translated and dilated functions derived from a

normalized, admissible mother wavelet Ψ (Aldroubi and Benedetto, 1996), time–scale
representations of any signal f ∈ L2 can be obtained. In the case of the present sam-
pled, discrete–time single responses um ∈ RN , the above inner product conveniently
reduces to
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where B = {0 ..N − 1} denotes the set of N ∈ N discrete–time translations and
A ⊂RL+ denotes the uniquely sampled set of L ∈N continuous dilations used for analy-
sis. Given the dimensionless center frequency fc of Ψ, the sampling rate dependent dila-
tions a can be associated with pseudofrequencies fp = fc fs a−1 . This way, 200 analysis
pseudofrequencies were spaced logarithmically within the frequency range from 1Hz to
1 kHz. Likewise, the discrete–time translations b can be associated with temporal shifts
τ = b f −1s . This effectively yields a time–frequency representation of um . The complex
Morlet with a shape parameter of 2π as first introduced by Goupillaud et al. (1984) was
employed as mother wavelet Ψ, hence the obtained transform coefficients
WΨ{um} ∈ CL×N constitute analytic signals with maximum time–frequency resolution
(Gabor, 1946). Fig. 3.2 displays the real part of the grand average CWT coefficients
obtained from the AFRR dataset.
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2.2 Phenomenological AFRR Model

During the past decades, systems neuroscience has made significant progress at provid-
ing computational models of different parts of the auditory system (Meddis et al., 2010).
Out of these models, those concerned with the brainstem–level neural structures are ca-
pable of predicting the transient ABR signal morphology in great detail (e.g., Harte et al.,
2010; Verhulst et al., 2015). There have been similarly motivated attempts at providing
physiology–based models of the cortical auditory ERP (e.g., Kerr et al., 2008), with a mul-
titude of other available models operating on a rather coarse level of detail by considering
macroscopic dipole sources and their spatiotemporal interaction (e.g., Scherg and von
Cramon, 1986; Verkindt et al., 1995). To the knowledge of the author, there exists no
cohesive modeling framework for the electrophysiological responses of thewhole auditory
pathway to the present date. Since the development of such a multiscale model is well
beyond the scope of this work, a simple, phenomenological model based on the AFRR
dataset obtained in the previous section is proposed in the following for the subsequent
comparative evaluation of ERP single–response denoising methods.

As there currently does not seem to be an established consensus on whether the evoked or
the phase–reset hypothesis (or a mixture of both) holds in terms of ERP formation (Ye-
ung et al., 2004), the proposed model is based on the signal–plus–noise model established
by Dawson (1954). The system response of any sufficiently large ensemble of intercon-
nected, weakly nonlinear processes due to a transient excitation can be reasonably well
approximated by a Gaussian distribution due to the central limit theorem (Pólya, 1920).
Hence, the recorded AFRR electrode lead signals r (t ) due to excitation with a stimulus
train

s (t ) =
M∑
m=1

δ (t − ts [m]) (2.3)

comprising M ∈N stimulus onsets in the form of Dirac unit impulses are modeled by a
linear superposition of Gaussian functions representing the subsequent prominent waves
of the ERP as also proposed by Mohseni et al. (2007) and an additive, independent
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noise process n(t ) :

r (t ) = s (t ) ∗
�

W∑
w=1

ap [w] exp
�
t − τp [w]
σp [w]

��
+ gn n(t ) (2.4)

In Eqn. 2.4, ap ∈ RW denotes the peak amplitudes of the W ∈ N prominent waves,
τp ∈ RW+ denotes their respective latencies post–stimulus and σp ∈ RW+ their temporal
widths. gn ∈ R+ is a variable factor adjusting the gain of noise superimposed on the
deterministic Gaussian mixture.

To determine the respective parameters for the Gaussian functions from the reference
AFRR dataset acquired in the previous section, the prominent peaks were located in the
grand average real part of CWT coefficients as displayed in Fig. 3.2 using a gradient
method initialized with approximate values obtained by point & click. Tab. A.3 shows
the respective values for peak translation τp , pseudofrequency fp and amplitude up . The
temporal widths σp were calculated from the respective pseudofrequencies as

σp [·] = 1
4π fp [·]

(2.5)

The additive, stochastic noise process n(t ) was realized by means of spectral resynthesis
as proposed by Yeung et al. (2004). 28 available standard vertex–mastoid recordings of
ongoing EEG acquired at 19.2 kHz sampling rate without analog prefiltering in adult
subjects using the same setup and recording evironment as the reference AFRR acquisi-
tion study were averaged in the frequency domain. To generate a random noise signal of
arbitrary length as part of the model output, the averaged half–side magnitude spectrum
was first interpolated to the necessary sample count, multiplied with unit phasors drawn
from a random, circular uniform distribution and transformed into a time–domain sig-
nal via inverse Fast Fourier Transform (FFT). The approach of Yeung et al. (2004) has
been shown to retain the signal characteristics of ongoing EEG including deterministic
disturbances such as powerline interference to a high degree (making them virtually indis-
tinguishable from a real EEG recording), which is of paramount interest for the intended
purpose of the proposed model.
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To ensure the comparability of real–world and synthetic AFRR data, the model output
was conditioned using the same processing parameters as described in the previous sec-
tion, yielding bandlimited ERP images U ∈ RM×N with M = 103. The gain factor gn
was chosen as appropriate to realize any specified SNR in terms of the Frobemius norms
||U ||F of split ERP images containing only the deterministic and the stochastic part of
the epoched model output, respectively.

2.3 Optimization of AFRR Signal Representation

2.3.1 Preliminary Considerations

Michelini et al. (1982) have argued that simultaneously acquired ABR, AMLR and ALR
are probably best displayed on a nonuniform timebase, with several more or less pro-
gressive warpings being proposed to emphasize different temporal regions of the ERP.
However, no empirical support for their respective optimality was given apart from vi-
sual inspection. The measured latencies of prominent waves as reported by Picton et al.
(1974) (see Tab. A.1), time–frequency windowing values conventionally used in auditory
ERP acquisition (Hall (2007), see Fig. 2.2) and the time–frequency peak translations and
pseudofrequencies obtained in the previous section (see Tab. A.3) are visibly in support
of Michelini et al. (1982) as they all suggest a roughly proportional time dependence of
both the interpeak intervals and the corresponding pseudoperiods of the response.

An appropriate framework to quantify the degree of signal self–similarity across timescales
hinted at by the above observation is given by the Mellin Transform (MT) (Butzer and
Jansche, 1997) :

M{ f }(p) =
∫
R+

f (t ) t p−1 d t , p ∈C (2.6)

Being closely related to the Laplace Transform (LT), which expands a time–domain signal
using dampened harmonic oscillations of different frequencies as basis functions, the MT
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Figure 2.2: Conventional time–frequency windowing of auditory ERP components ac-
cording to Hall (2007)

decomposes it into dampened oscillations with instantaneous frequencies temporally in-
creasing (or decreasing) at different rates. The MT, particularly its various discrete–time
implementations, have seen numerous successful applications in analyzing signals con-
taining modes with rising or falling frequencies as they are remarkably robust to stationary
noise (e.g., Bertrand et al., 1990; Zwicke and Kiss, 1983). By substituting p = −i s + 1

2 ,
s ∈R+, the Scale Transform (ST) can be derived, whose transform magnitude enjoys the
property of invariance with respect to temporal scaling of f (De Sena and Rocchesso,
2007; Cohen, 1993) much in the same way that the Fourier Transform (FT) magnitude
is invariant with respect to temporal shifts. Hence, the single–subject AFRR averages ua
obtained in Sect. 2.1 were analyzed in terms of their intrinsic scales by applying the ST.
As the Parseval theorem holds for the scale transform coefficients S{ua}(s ), a sparse dis-
tribution of coefficient energy across few scales is linked to a high degree of self–similarity
across timescales within the corresponding time–domain AFRR averages. This property
in turn is a necessary prerequisite for a compact, information–preserving signal represen-
tation on a progressively decimated timebase as proposed by Michelini et al. (1982). Fig.
3.3 shows the obtained grand average ST coefficient magnitudes.
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Another key aspect to be examined within this context is the degree of signal synchro-
nization across single responses, as it is directly linked to the prominence of ERP com-
ponents over the competing noisefloor of oscillatory EEG activity. Multiple amplitude–
independent, time–frequency resolved measures to quantify this synchronization degree
have been proposed independently by different research groups (e.g., Tallon-Baudry et al.,
1996; Corona-Strauss et al., 2009; Klimesch et al., 2014), all of them essentially being
varieties of circular resultant vector length (Fisher, 1993) in the complex–valued coeffi-
cient domain of a suitable transform. Here, the Wavelet Phase Stability (WPS) (Low and
Strauss, 2011)

Γφ( fp ,τ) =
1
M

����� M∑
m=1

exp
�
i φm( fp ,τ)
������ (2.7)

is employed, where φm( fp ,τ) = arg (WΨ{um} ( fp ,τ) ) denotes the time–frequency re-
solved instantaneous phases of the single–response CWT coefficients obtained in Sect.
2.1. Note that Γφ assumes values from the bounded range [0, 1] where 1 corresponds to
perfect phase synchronization across single responses, effectively indicating which areas
of the time–frequency plane carry the information of event–related signal components
and which can be considered redundant based on their lack of such. Fig. 3.4 shows the
grand average of WPS calculated separately for all ERP images.

2.3.2 Nonuniform Resampling

Results of the preliminary investigations (see Sect. 3.2) strongly suggest a logarithmic
timebase to be the most adequate for a compact representation of the AFRR. Hence, a
suitable resampling operator is proposed in the following. Note that the interpeak in-
tervals and pseudoperiods of successive prominent waves in the AFRR being roughly
proportional to their time of appearance will result in an almost equidistant distribu-
tion of peaks with uniform sample resolution after data transformation. The resampling
of an AFRR single response um ∈ RN sampled at the fixed rate Fs can be realized by
first introducing a variable sampling rate fs ∈ RN+ logarithmically decreasing over time.
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Considering the linear timebase

t [n] = tl + (n − 1) tu − tlN − 1 , n = 1 ..N (2.8)

of the uniformly sampled single response with N ∈ N sampling points equidistantly
spaced within the time window [tl , tu ] ⊂ R+ , the time–dependent, logarithmically de-
creasing 3 dB cutoff frequency

fc [n] = exp
�
log ( fu )− (n − 1) log ( fu )− log ( fl )N − 1

�
, n = 1 ..N (2.9)

of a bandlimiting lowpass filter is defined. In Eqn. 2.9, the range [ fl , fu ] ⊂R+ denotes
the frequency window, with its edges temporally coinciding to the end and the beginning
of the response time window, respectively. The minimum sample count necessary to
represent the progressively bandlimited, resampled response is then given by

N ′ =
�

2
Fs

N∑
n=1

fc [n]
�

(2.10)

due to the Nyquist theorem. Using this critically reduced sample count, the logarithmi-
cally spaced timebase

t ′ [n] = exp
�
log (tl ) + (n − 1) log (tu )− log (tl )N ′ − 1

�
, n = 1 ..N ′ (2.11)

is defined for the resampled response. By assembling a matrix containing N ′ normalized
Gaussian windows as row vectors, with their respective temporal shifts and 3 dB cutoff

41



2 Materials and Methods

frequencies given by the successive values of t ′ and fc
′, the resampling operator

R [n, ·] =
p
2π fc

′ [n]
Fs

exp
�−2 �π fc

′ [n]
�
t [·]− t ′[n]��2� , n = 1 ..N ′ (2.12)

is obtained, where

fc
′ [n] = fu − (n − 1) fu − fl

N ′ − 1 , n = 1 ..N ′ (2.13)

denotes the time–dependent cutoff frequency on the logarithmic timebase. Applying
the operator R : RN → RN ′ to resample an AFRR single response um then reduces to
calculating the matrix product

um
′ =
�
R · �um>��> (2.14)

Note that in contrast to the critical exponential resampling investigated by De Sena and
Rocchesso (2007), the presented resampling operator is of course inherently lossy in na-
ture as it effectively reduces the dimensionality of the input data. Using the time window
[10−3, 1] s and frequency window [1, 103]Hz at a sampling rate of Fs = 19.2 kHz, the
compression ratio exhibited by the operator amounts to N /N ′ = 16.59. Hence, it is
necessary to demonstrate that this substantial dimensionality reduction – while being
the very reason for the endeavour in the first place – does not lead to a loss of relevant
information in the case of AFRR single responses.

To facilitate this demonstration, the CWT of the resampled single responses um ′ was
calculated for the reference AFRR dataset obtained in Sect. 3.1 according to Eqn. 2.2.
While the translations b can still be associated with temporal translations τ by virtue of
Eqn. 2.11 in this case, dilations a cannot be related anymore to specific constant pseud-
ofrequencies fp due to the progressively increasing sampling intervals. Fig. 3.5 displays
the real part of the grand average CWT coefficients obtained in this way and Fig. 3.6
shows the associated WPS according to Eqn. 2.7. Note that the CWT coefficients of the

42



2.3 Optimization of AFRR Signal Representation

resampled single responses can also be interpreted as a sparse subset of a chirplet trans-
form (Mann and Haykin, 1991) of the linear–time responses as the employed transform
atoms correspond to tilted time–scale atoms in the uniformly sampled time domain.

2.3.3 Noise Characteristics

It has previously been shown by Özdamar and Delgado (1996) that the RMS value uRMS
of the Residual Noise (RN) present within an ERP waveform after repeated averaging of
ERP single responses closely satisfies the power law

uRMS (m)∝ 1p
m

(2.15)

where m ∈ N denotes the number of averaged responses. Note that this particular re-
lationship only holds necessarily for a white noise under the signal–plus–noise model
assumption (Dawson, 1954), with other types of additive noise featuring deviating spec-
tral compositions potentially yielding different rates of decay. For example, as has been
pointed out by Woldorff (1993), the amount of jitter in the employed ISI is linked to a
significant, albeit frequency–specific SNR advantage, hence additionally influencing this
decay rate.

To empirically quantify the above relationship, facilitating an objective comparison of
the uniformly sampled and resampled response representations regarding potential SNR
benefits of the latter, a 1/n α model was fitted to the RMS progressions of cumulative
averages by least–squares regression. The averages were obtained by epoching 103 „single
responses” from an ongoing noise signal using ISI of 1 s±10% equally distributed jitter
(see Sect. 2.1.3). By repeating this process 25 times, averaged progressions of RMS
values estimating the RN as a function of trial count were obtained. This process was
conducted for the uniformly sampled and resampled response representations, with the
random EEG noise signals being generated using the spectral resynthesis method and
bandlimited as described in Sect. 2.2 to ensure signal properties close to physiological
conditions. Additionally, the RMS decay profiles were calculated and regressed for both
representations using a stationary 50Hz sine as the ongoing noise signal to investigate the

43



2 Materials and Methods

behaviour of both representations with respect to the powerline interferences commonly
contaminating ERP recordings. Figs. 3.7 and 3.8 show the resulting RMS progressions
and their associated regression statistics for both types of noise, respectively.

As the logarithmic resampling operator involves a progressive averaging of samples in the
linear time domain due to the employed Gaussian lowpass filter, the resulting resampled
responses will necessarily exhibit a temporal decrease in RN. While the effect of this skew
will most likely be limited by the fact that EEG activity closely follows an inverse power
law with less energy being allotted to the critical higher frequencies, a substantial tempo-
ral skew in the effective SNR profile remains very likely as the amplitudes of prominent
waves in the auditory ERP follow the opposite temporal relationship. Note that this
undesirable departure from SNR uniformity across timescales will be subsequently alle-
viated in Sect. 2.5. To quantify the degree of temporal skew in RN for the resampling
method in question, the sample–wise standard deviations across single responses were in-
vestigated in the 25 ERP images and their resampled counterparts for the synthetic EEG
noise, as they have previously been shown to be a suitable estimate for the RN (Riedel
et al., 2001). Hence, least squares regressions of a 1/t α model were performed on the ob-
tained standard deviation profiles, yielding their respective temporal rates of decay. Fig.
3.9 shows the time–dependent RN profiles and their associated regression statistics.

2.4 Denoising of AFRR Single Responses

2.4.1 Preliminary Considerations

During the past decade, various approaches to improve the signal quality of single–
response ERP images have emerged independently2. The merit of applying such methods
is essentially twofold, as the primary effect of SNR reduction in a single–response rep-
resentation will under certain circumstances also lead to a reduced amount of responses
necessary to achieve an acceptable average waveform, hence lessening acquisition times.
This second potential benefit can obviously not be obtained by algorithms which per-
fectly preserve the average waveform of the unfiltered ERP image (i.e., linear operators
on a per–sample basis such as partial averaging or Unidirectional Gaussian Means (UGM)
filters). These methods definitely have their place in elevating the average waveform mor-

44



2.4 Denoising of AFRR Single Responses

phology and its potential gradual changes across the experiment (e.g., during habituation
(Prosser et al., 1981)) over the competing noise floor within the ERP image representa-
tion – in fact, they can be safely considered as the most „honest” approaches towards two–
dimensional ERP denoising for this very property given the lack of information about
the underlying response. However, this comes at the price of substantial averaging blur,
potentially obscuring very localized events of interest within the responses. Hence, the
focus of this investigation shall reside on nonlinear operators due to the second potential
benefit outlined above.

In principle, nonlinear two–dimensional ERP denoising can draw from a rich body of
work on algorithms originating from the field of computer vision. For example, Mustaffa
et al. (2010) have successfully applied Nonlinear Diffusion (NLD) filtering for the pur-
pose in question. Another well–established algorithm involving the constrained mini-
mization of the Total Variation (TV) norm (Rudin et al., 1992) has later been shown
to be outperformed by contemporary wavelet–based methods (Figueiredo et al., 2006),
hence it will not be investigated here. The Nonlocal Means (NLM) algorithm (Buades
et al., 2005), which enjoys broad popularity, has been applied with very good results to
ERP image denoising by Strauss et al. (2013) and Schubert et al. (2014), significantly
outperforming the above–mentioned NLD approach. Despite its good performance, the
underlying rationale is partially questionable due to possible nonlocal contributions of
signal components originating from different neural generators (this can be alleviated
in principle by restricting them to a suitably narrow search window with the obvious
downside being decreased filter performance). A different, promising framework for the
purpose in question is given by the wavelet–based denoising approaches due to numerous
desirable properties outlined in Aldroubi and Benedetto (1996). Consequently, Quian
Quiroga and Garcia (2003) and Ahmadi and Quian Quiroga (2013) proposed variations
of wavelet thresholding to denoise ERP single responses. However, their approach suf-
fers from a considerable drawback by design : since it relies on the critically sampled
Discrete Wavelet Transform (DWT) (Mallat, 1989) for its low computational complex-
ity, the inherent lack of shift invariance effectively prevents any meaningful integration
of transform coefficients corresponding to localized signal components in adjacent single

2Note that the established one–dimensional ERP denoising methods operating on the acquired lead signals
prior to epoching such as Kalman filtering (e.g., Mohseni et al., 2007) are not investigated within the scope
of this work for the sake of brevity, given that two–dimensional denoising approaches enjoy a far greater
potential by virtue of integrating signal information both temporally and from adjacent responses.
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responses into the coefficient thresholding rule and additionally renders the implemen-
tation particularly prone to jitter. In an attempt to alleviate these shortcomings, we
proposed an alternative algorithm based on an overcomplete analytic wavelet filterbank
(Kohl et al., 2019b) which showed significantly increased performance over the UGM fil-
ter in a quantitative comparison using real–world ERP recordings. However, preliminary
investigations with the present resampled single response representations did not reveal
a comparable benefit, emphasizing the necessity to reevaluate the available approaches
regarding their suitability for this type of data.

A commonality of many successful denoising algorithms is the projection of signals into
a transform domain using a suitable linear operator and subsequent modification of the
transform coefficients instead of directly working with the original time–domain signals.
The filtered signals are then obtained by applying the inverse of the employed transform
operator to the modified coefficients, with the transform pair preferably enjoying the
perfect reconstruction property. One of the most recognized examples of such a denois-
ing scheme is probably given by the work of Donoho (1995) on wavelet shrinkage. A
suitable choice of transform pair effectively concentrates the energy of the sought–after
signal components within few coefficients in the transform domain, leaving the remain-
ing coefficients to predominantly encode noise by virtue of the Parseval theorem. Within
this framework, the process of shrinking the energy of coefficients most likely represent-
ing unwanted signal components – either determined by the properties of the employed
transform (e.g., Kohl and Strauss, 2016) or a suitable measure derived from the coef-
ficients themselves (e.g., Aldroubi and Benedetto, 1996; Kohl et al., 2019b) – has an ad-
ditional potential advantage as it reduces the likelihood of filtering artifacts compared to
additive filtering approaches such as UGM or NLM, selectively removing signal energy
as opposed to achieving noise suppression by weighted recombination of different signal
components.

Preceding development of the two novel denoising approaches outlined in the following
sections, several linear transforms were investigated regarding their capability of separa-
ting signal and noise in the transform domain using the resampled AFRR single–responses
in question. While orthogonal expansions using Laguerre polynomials (Mandyam and
Ahmed, 1996) and Bessel functions of the first kind (Cree and Bones, 1993) as bases,
having been successfully employed for a variety of signal compression applications, no-
tably failed to produce a sparse coefficient distribution of the ERP signal components,
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the desired behaviour is displayed to a remarkable degree by the Radon Transform (RT)
(e.g., Fig. 3.10), putting it at the center of the first presented denoising algorithm (Sect.
2.4.2). Given the successful track record of wavelet–based denoising methods, the second
proposed algorithm (Sect. 2.4.3) is based on an overcomplete, perfectly reconstructing
discrete wavelet filterbank. Note that calculating the FFT of the resampled single re-
sponses yields their discrete MT as proposed by De Sena and Rocchesso (2007) in a
computationally efficient way. However, judging by preliminary experiments, this signal
representation – while being a straightforward approach following the reasoning of Sect.
2.3.1 – turned out to provide no significant benefit over the above wavelet representation
for the intended application despite its considerably sparse coefficient distribution.

2.4.2 Denoising Using the Radon Transform

The RT of a compactly supported, two–dimensional distribution f (x , y ) ∈ L1(R2) con-
stitutes a set of line integrals or „projections” of f along all straight lines or „beams” with
radial distances r ∈R from origin and projection angles ϕ ∈ [−π2 , π2 [ :

R{ f }(r ,ϕ) =
∫
R
f (r cosϕ+ τ sinϕ, r sinϕ− τ cosϕ) d τ (2.16)

This set of projections, collectively termed the „sinogram” of f , can be used to reconstruct
the underlying distribution f by virtue of the Fourier slice theorem (Radon, 1917). In
practice, i.e., considering discrete distributions F ∈ RM×N , the inverse RT is usually
numerically approximated either by filtered backprojection (e.g., using the ideal, ban-
dlimited Ram–Lak filter) or by iterative reconstruction methods (Kak et al., 2002).

In the discrete sinogram S ∈ RP×P obtained by applying the RT on an ERP image
U ∈RM×N , where P = dpM 2 +N 2 e denotes its diagonal dimensions, large magnitudes
of single projections S [·, p], p = 1 ..P correspond to signal components with a high
degree of similarity across the ERP image under the respective projection angles

ϕ[p] = −π
2
+ (p − 1) π

P − 1 (2.17)
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thus accumulating in the associated directional sums. By contrast, signal components
which exhibit large amounts of amplitude fluctuation under the projection angle will tend
to cancel out on average. As the energy of projections under flat angles |ϕ| ≈ 0 (with
ϕ = 0 denoting vertical direction) directly corresponds to signal components strongly
time–locked to the stimulus (i.e., the ERP), the projections under angles ϕ close to ±π2
will predominantly represent the noisy signal components both due to the transform’s
inherent directionality and the Parseval theorem. Hence, to attenuate the noisy signal
components within the ERP image, the individual projections of S need to be reweighted
accordingly using a normalized weight vectorw ′ prior to obtaining the filtered ERP image
by filtered backprojection of S ′ :

S ′ [·, p] = S [·, p] w ′ [p] (2.18)

The weight vector w was calculated according to Eqn. 2.19 in order to both penalize
reduced signal energy of the individual projections (i.e., instability across the ERP image
under the projection angle) and to progressively suppress the contribution of projections
with increasing absolute angle |ϕ| (i.e., attenuating noisy signal components). This is
achieved by multiplying the angular energy distribution eϕ [p] = ||S [·, p]||22 of the dis-
crete sinogram with a suitable angular support term. To preserve overall signal energy,
the weight vector was normalized according to Eqn. 2.20.

w[p] = eϕ [p] cos (ϕ[p] )
2 (2.19)

w ′ [p] = w[p]
||eϕ [·]||22
||w[·]||22

(2.20)

Fig. 3.10 shows the sinogram S for a single ERP image and 3.11 displays the angular
energy distributions eϕ and corresponding normalized weights w ′ for the resampled ref-
erence AFRR ERP images. Throughout this manuscript, the algorithm outlined above
will be referred to by the term Sinogram Domain Reweighting (SDR). Note that Beylkin
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(1987) have independently proposed a method quite similar in nature within the con-
text of geosignal analysis, which is based on their implementation of a discrete RT. In
principle, the above algorithm is not restricted to the intended application at all. For
example, by replacing w ′ with a normalized von Mises distribution dvM (µ,κ) (Fisher,
1993), a versatile, global isotropic denoising operator applicable under arbitrary angles
µ ∈ [−π2 , π2 ] with adjustable filter strength κ ∈ [0, +∞[ can be trivially obtained.

2.4.3 Denoising Using Analytic Wavelet Filterbanks

The second proposed ERP image denoising algorithm was based on the Rational Ana-
lytic Discrete Wavelet Transform (RANDWT) and its inverse as introduced by Bayram
(2013), which features a flexible time–frequency covering with arbitrary redundancy
hence approximate shift invariance, thereby circumvening the major drawback of DWT–
based approaches (e.g., Ahmadi and Quian Quiroga, 2013; Quian Quiroga and Garcia,
2003). This particular choice of transform was further motivated by its analytic time–
scale atoms, enabling split processing of time–frequency resolved instantaneous ampli-
tudes and phases, as well as its computationally efficient implementation as an iterated
filterbank which enjoys the perfect reconstruction property.

A schematic representation of the proposed denoising algorithm is depicted in Fig. 2.3.
Given a sampled ERP image U ∈ RM×N containing the single responses as row vec-
tors, multiscale representations were derived by separate decomposition of each single
response into J ∈ N subbands with analytic detail coefficients U j , j = 1 .. J and one
real–valued approximation Ua using a RANDWT filterbank (Bayram, 2013). By choos-
ing sampling factors p/q = 7/9, r /s = 1/2 and Q-factor 3, a decomposition with a
moderate degree of redundancy (R = 2.25) was achieved using the maximum amount
of J = b�ln � 4srN ��/ �ln � rs ��c = 19 available subbands for the resampled AFRR single
responses.

The analytic coefficients of each subband ERP image were then split up into instanta-
neous amplitudes |U j | and complex phases e iφ j , which were separately processed prior
to recombination. A normalized, unidirectional Gaussian smoothing operator operating
along the single–response dimension with a standard deviation of σ = 5 was employed to
separately regularize the instantaneous amplitude and phase structures of each subband3.
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Approximation coefficients Ua were independently smoothed across responses using the
same operator. Finally, the inverse RANDWT was applied to the processed coefficients,
yielding the filtered ERP image U ′. The underlying motivation for performing an in-
dependent regularization of the coefficients’ amplitudes and phases is rather straightfor-
ward : As the event–related signal components are characterized by a substantial degree of
morphological regularity across responses, manifesting itself by magnified phase stabilities
in the transform domain (see, e.g., Corona-Strauss et al., 2009; Low and Strauss, 2011;
Klimesch et al., 2014), it takes a considerably higher amount of additive noise to distort
the instantaneous phases to the point of reliably destroying their characteristic structure
than to deform the time–domain amplitudes beyond recoverability. Consequently, an
amplitude–independent phase regularization preserves the characteristic temporal loca-
tions of the prominent waves to a higher degree than the simple expedient of smoothing
the time–domain signals across single–responses (e.g., by UGM filtering). Throughout
this manuscript, the algorithm outlined in this section will be referred to by the term
Split Wavelet Amplitude & Phase Smoothing (SWAPS).

Figure 2.3: Schematic illustration of the SWAPS denoising algorithm.

3Note that preliminary experiments employing the iterative, isotropic phase denoising algorithm introduced
by Villa et al. (2010) to regularize the instantaneous phase structures, while having been applied in Kohl
et al. (2019b) with good results using an identical RANDWT signal decomposition of uniformly sampled
ERP images, did not reveal any significant benefit over the faster, convolution–based Gaussian smoothing
on the present data, hence the approach was abandoned within the scope of this work.
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2.4.4 Comparative Performance Evaluation

Alongside the two proposed novel ERP image denoising algorithms, two of the estab-
lished methods were selected for comparative performance evaluation : The UGM filter
with a standard deviation of σ = 5 (to establish a baseline performance and to facilitate a
direct comparison with the SWAPS algorithm using the same value of σ) and the NLM
filter with a patch size of 10×10 (Strauss et al., 2013), which has been previously shown
to considerably outperform several alternative approaches outlined in Sect. 2.4.1.

All of the algorithms were separately used on the 15 resampled single–subject reference
AFRR ERP imagesU obtained in Sect. 2.1.4, yielding filtered ERP imagesU ′. Fig. 3.12
shows the grand average of unfiltered reference ERP images, Fig. 3.13 the corresponding
grand average waveform and Figs. 3.14 – 3.21 analogously show the grand average ERP
images and waveforms after filtering with the four algorithms in question. To further
investigate the dependence of algorithm performances on the SNR of the provided data
in detail, a set of 25 synthetic ERP images each was generated for every SNR ranging
from −18 dB to 12 dB in steps of 6 dB using the phenomenological AFRR model de-
veloped in Sect. 2.2 and processed analogously. Fig. 3.24 shows the grand average of
synthetic ERP images at an SNR of−6 dB and Fig. 3.25 the corresponding grand average
waveform, respectively.

In order to objectively quantify and compare the performance of the investigated algo-
rithms, four different outcome metrics were calculated for each pair of unfiltered and
filtered ERP images. The overall waveform reproducibility (i.e., robustness of average
signal morphology) was quantified by the Correlation Waveform Index (CWI), i.e., the
Pearson correlation (Upton and Cook, 2008)

ρ (u1 , u2 ) =
∑N

n=1 (u1 [n]− u1 ) (u2 [n]− u2 )Æ∑N
n=1 (u1 [n]− u1 )2

Æ∑N
n=1 (u2 [n]− u2 )2

(2.21)
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calculated between the separately obtained average waveforms of odd and even single re-
sponses (Bernarding et al., 2010) for each ERP image. Following the approach of Riedel
et al. (2001), the RN of unfiltered and filtered ERP images under the signal–plus noise
model (Dawson, 1954) was estimated by the sample–wise standard deviations across sin-
gle responses

σu [·] =
√√√∑Mm=1 (U [m, ·]− ua[·] )2

M − 1 (2.22)

which were further reduced into a single scalar value by means of the euclidian norm
RNe s t = ||σu [·] ||2 as proposed by Strauss et al. (2013). Since the underlying waveform
is known exactly for the synthetic AFRR in contrast to the real–world data, the similarity
between the average waveforms and the underlying waveform (i.e., the degree of struc-
ture preservation) was additionally quantified for the unfiltered and filtered synthetic ERP
images by means of their respective CWI. For every pair of unfiltered and filtered
ERP images, the individual gains in each outcome metric due to the filtering process
were calculated to facilitate objective comparison. Fig. 3.22 shows boxplots for the in-
dividual gains gCW I in waveform reproducibility and Fig. 3.23 for the individual gains
gRN in the residual noise estimate for the reference AFRR. Likewise, Figs. 3.26 and 3.27
show these gains for the synthetic AFRR in dependence of their respective SNR. Boxplots
of the individual gains gS IM in average waveform similarity to the underlying waveform
for the synthetic ERP data are given in Fig. 3.28. Lastly, the average execution times tE
exhibited by each of the investigated algorithms4, which obviously are quite interesting to
compare since they closely correlate with the involved computational costs, are displayed
in Fig. 3.29. Given the rather unambiguous results of this evaluation (see Sect. 3.3), an
additional analysis with regards to statistical significance and effect sizes was omitted for
the sake of brevity.

4Note that the four investigated algorithms were implemented in MATLABTM following established op-
timization practices (Altman, 2014) wherever possible. Execution times were measured on an available
desktop workstation featuring a Sandy Bridge Intel Core i7 quad–core processor with 3.4GHz fixed clock
speed and 16GB of RAM, running MATLABTM R2019a on Microsoft Windows 10.
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2.5 Fast Deconvolution–Based AFRR Acquisition

2.5.1 Preliminary Considerations

The results displayed in Sects. 3.1 and 3.2 confirm the general feasibility of simulta-
neously acquiring ABR, AMLR and ALR single responses to transient stimuli in one
measurement using high sampling rates as first proposed by Michelini et al. (1982) and
subsequently refined in Kohl and Strauss (2016). Despite the efforts outlined in the pre-
vious parts of this manuscript, reducing the computational load and memory demand
associated with processing these signals by introducing a suitable resampling method,
the rather large acquisition time still limits the applicability of the AFRR as a viable diag-
nostic tool. Currently, to obtain an acceptable SNR down to the fragile brainstem–level
activity, at least 103 single trials must be acquired, requiring acquisition times of 15min
per condition owing to the large ISI of around 1 s, which in turn are necessary to reliably
obtain cortical components. Therefore, AFRR acquisition remains potentially prone to
signal degradation due to, e.g., electrode drifting. Nevertheless, the approach promises to
improve the understanding of different processing stages along the auditory pathway and
their dynamic interaction. Within this context, one key advantage of single–response
AFRR recordings over the simple expedient of sequentially recording ABR, AMLR and
ALR to transient stimuli at their respective optimum rates, which yields average ERP
waveforms of good quality within smaller acquisition times (around 5min per condition),
resides in the fact that the obtained responses reflect the undisturbed propagation of neu-
ral activity along the entire auditory pathway following the solitary stimuli as close as
possible, which is of paramount interest if the influence of slow, cortical–level phenom-
ena such as inhibitional or habituational effects are to be studied together with earlier
auditory processing stages.

Some past and more recent efforts have successfully demonstrated simultaneous acquisi-
tion of parts Özdamar and Kraus (1983) or the full range Holt and Özdamar (2014) of au-
ditory ERP using considerably smaller ISI. Consequently, various alternative methods to
eventually reduce acquisition time by disentangling overlapping ERP obtained at higher
stimulation rates have been proposed by independent researchers. A notable early effort
is given by the work of Woldorff (1993) on iterative estimation and subtraction of the
overlap caused by adjacent responses (ADJAR), which has subsequently been advocated
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by Picton et al. (2000). The majority of contemporary efforts fall within the category of
deconvolution–based methods such as least squares deconvolution (Bardy et al., 2014a,b),
maximum length sequence deconvolution (Bohórquez and Özdamar, 2006; Peng et al.,
2017a), Wiener filter deconvolution (Wang et al., 2006) and Continuous Loop Averaging
Deconvolution (CLAD) (Özdamar et al., 2003; Delgado and Özdamar, 2004). Out of
these, the computationally efficient, FFT–based CLAD method has proven particularly
useful in simultaneously obtaining high–quality ABR and AMLR to transient stimuli at
high presentation rates, although the obtained ALR components suffer from substantial
rate–induced detriment (Holt and Özdamar, 2014, 2016). However, the loss of temporal
resolution across the duration of the experiment inherent to deconvolution approaches as
opposed to the prevalent single–trial based analysis poses a considerable drawback since
many state–of–the–art ERP denoising methods (see Sect. 2.4.1 for a review) rely on
single response representations in the form of ERP images (Jung et al., 1999). Further-
more, measures quantifying the robustness of signal morphology across recording chan-
nels (Giroldini et al., 2016) and (predominantly) across single responses, having been
repeatedly proposed by independent researchers under the designations phase–locking
factor (Tallon-Baudry et al., 1996), phase–locking index (Brockhaus-Dumke et al., 2008;
Klimesch et al., 2014) and phase (synchronization) stability (Corona-Strauss et al., 2009;
Low and Strauss, 2011), consistently outperformed amplitude average based measures on
a regular basis in the respective ERP studies, thus emphasizing the additional diagnostic
value of ERP single responses from a signal processing perspective.

In this part of the manuscript, a novel approach towards the fast acquisition of AFRR
single–trial recordings using an interleaved, deconvolution–based stimulus presentation
paradigm (Sect. 2.5.3) and associated signal processing methodology (Sect. 2.5.6) is in-
troduced. Additionally, an efficient method for designing optimized stimulus sequences
for ERP deconvolution based on Differential Evolution (DE) is proposed and evaluated
(Sect. 2.5.2). In order to assess the novel AFRR acquisition approach, chirp–evoked
auditory ERP (Fobel and Dau, 2004; Holt and Özdamar, 2014; Corona-Strauss et al.,
2009) were recorded from a group of 20 normal hearing subjects (Sect. 2.5.4, 2.5.5) and
processed using the novel method. The reference AFRR dataset obtained in Sect. 2.1
was employed to facilitate an objective comparison in terms of waveform morphology
and SNR advantage (Sect. 2.5.7). While the fast, interleaved acquisition method may
not obtain undisturbed auditory activity to solitary transient stimuli like the considerably
slower prior art recording paradigm (Sect. 2.1.3) does, the obtained results (Sect. 3.4)
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strongly suggest it to be a desirable alternative in obtaining quality full–range neural cor-
relates of auditory activity within reasonable time wherever this strict requirement can be
relaxed (e.g., in fast auditory screening and functional assessment applications).

2.5.2 Stimulus Sequence Optimization

Although brain dynamics can generally be considered highly nonlinear and time–variant,
the model implicitly underlying deconvolution approaches in ERP acquisition is the
linear superposition of single responses to subsequent stimulus presentations (Dawson,
1954; Kristensen et al., 2017), which has been shown to hold sufficiently for the brain-
stem and middle–latency components of the auditory ERP (Holt and Özdamar, 2014;
Holt, 2015; Bohórquez and Özdamar, 2008). As depicted in Fig. 2.4, the recorded
ERP activity rn(t ) due to stimulation with a stimulus onset train s (t ) is modeled as the
output r (t ) of a causal Linear Time–Invariant (LTI) system with a compactly supported
impulse response h(t ) (i.e., a Finite Impulse Response (FIR) filter) superimposed with
additive noise n(t ) comprising spontaneous EEG background activity, physiological and
technical artifacts.

Figure 2.4: Linear superposition ERP model. The measured event–related response rn(t )
of the auditory system to a train of transient stimulations s (t ) is composed
of the causal, linear, time–invariant system response of H superimposed with
an additive noise process n(t ).

Thus, the recorded ERP activity can be expressed as

rn(t ) = s (t ) ∗ h(t )︸ ︷︷ ︸
r (t )

+ n(t ), h ∈ L2(R). (2.23)
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In the case of Continuous Loop Deconvolution (CLD), and subsequently CLAD (Del-
gado and Özdamar, 2004), s (t ) represents the periodic extension of a finite–length stim-
ulus onset pattern and can thus be expressed as

s (t ) =
k∑

l =1
∆T

�
t −

l∑
m=1

tI S I [m]
�
, (2.24)

where tI S I ∈ T k and k ∈N. T ⊂R+ denotes the range of ISI with admissible jitter, tI S I
denotes the sequence of ISI employed between the k subsequent stimulus presentations
and ∆T (t ) denotes the Dirac comb with period T =

∑
tI S I [·]. Consequently, a noisy

estimate he (t ) of the underlying system response can be obtained by deconvolving the
recorded ERP activity with the stimulus onset train :

he (t ) = r (t ) ∗−1 s (t )︸ ︷︷ ︸
h(t )

+ n(t ) ∗−1 s (t )︸ ︷︷ ︸
nr (t )

(2.25)

Eqn. (2.25) shows that the application of the deconvolution operator ∗−1 s (t ) addition-
ally filters the noise superimposed on the recorded ERP activity, yielding a superposition
of the underlying system response and a noise residual nr (t ). It is straightforward to see
from the frequency domain5 equivalent

He ( f ) = H ( f ) +
N ( f )
S ( f )

(2.26)

of Eqn. (2.25) that the magnitude of the reciprocal transfer function S−1( f ) correspond-
ing to the stimulus onset train quantifies the spectral amplification of additive noise in-
troduced by the deconvolution operator (Özdamar and Bohórquez, 2006). Hence, using

5Note that strictly speaking, Eqn. 2.25 would have to be expressed in terms of the LT as s (t ) and r (t ) are
not L1 functions per definition. However, the frequency–domain interpretation can be employed without
loss of generality as any real–world excitation will be of finite duration.
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the ε–insensitive, quadratic error functional

E (tI S I ) =max
�

1
|S ( f )|2 − 1,0
�

(2.27)

it is possible to optimize stimulus onset sequences tI S I for noise attenuation in a desig-
nated frequency range of interest by solving the minimization problem

min
tI S I ∈T k

��������E �tI S I ���������2
L2(F )

(2.28)

where F ⊂ R+ denotes the range of frequencies considered for optimization. Note that
depending on the actual choice of k , T and F , this problem does not necessarily have
one unique solution. Due to the morphologic dependence of auditory ERP on the ISI
(e.g., Nelson et al., 1997), particularly at high presentation rates (Holt and Özdamar,
2016), the range T generally has to be chosen as narrow as possible to allow for the
applicability of a linear ERP activity superposition model at all. Meanwhile, the rangeF
is typically desired to be as large as possible to capture all relevant details of the auditory
ERP. As a result of these contradicting requirements, the error functional E becomes
highly convoluted. In practice, T is additionally quantized by the greatest common
divisor of the sampling rates used for stimulus presentation and ERP acquisition, further
aggravating the search for satisfactory solutions tI S I .

DE was introduced by Storn and Price (1997) as an iterative, global optimization meta-
heuristic over continuous spaces, which is based on vector populations of candidate solu-
tions, mutation and recombination. It has since been successfully applied to a broad range
of complex optimization problems in signal processing (e.g., Storn, 2007) and showed
exceptional performance in benchmarks involving both highly convoluted and quantized
functionals (Price et al., 2005), thereby representing a natural choice for the minimiza-
tion problem denoted in Eqn. (2.28). Consequently, Huang et al. (2014) proposed the
optimization of CLD stimulus sequences by DE, albeit using an additive functional com-
posed of the ISI Jitter Ratio (JR) and a Frequency–Domain Error (FDE) similar to Eqn.
(2.27). This is intrinsically suboptimal due to the mutual exclusiveness of minimal JR
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and FDE, effectively hampering any choice of optimization algorithm by design. Subse-
quently, a solution space contraction variant of DE had to be employed for minimization
to ensure convergence, involving a regularization factor to dynamically weight the con-
tribution of JR and FDE across iterations. By contrast, the classical DE / rand / 1 / bin
strategy as recommended by Price et al. (2005) was applied in this work with good re-
sults and fast convergence, minimizing the ε–insensitive FDE functional (2.27) over the
designated frequency rangeF subject to the solution space constraint tI S I ∈ T k to limit
the JR to an acceptable value, as denoted in Eqn. (2.28).

The parameters used for sequence optimization were chosen to obtain ABR and AMLR
components at an SNR comparable to that of ALR, which is a desirable prerequisite for
the subsequent signal processing (Sect. 2.5.6), particularly given the considerable tem-
poral skew in SNR due to logarithmic resampling as demonstrated in Sect. 2.3.3. Note
that it takes thousands of single responses to obtain reliable ABR averages, while ALR
typically take less than 100 responses for the same data quality (Hall, 2007). Hence, this
ratio is represented by the optimized sequence (see Fig. 3.31, top and Tab. A.2) compris-
ing k = 16 stimuli. The admissible ISI range was set to T = [25, 43]ms, resulting in a
mean presentation rate of R = 31.6Hz (Fig. 3.31, center) since previous work suggests
rates around and below 40Hz to be favorable in eliciting large amplitude AMLR com-
ponents in the deconvolved responses due to a resonance effect (Galambos et al., 1981;
Özdamar et al., 2007). A frequency rangeF = [20, 750]Hz corresponding to the main
signal energy of waves V to Nb was designated for sequence optimization. The lower
bound ofF seems reasonable as waves past Nb were shown to be very ineffeciently (if at
all) elicited by the CLD method at comparably high rates (Delgado and Özdamar, 2004).
By contrast, its rather low upper bound constitutes a tradeoff, as waves I to I I I will be
lost due to filtering, which is made up for by the strong and uniform gain in noise attenu-
ation unachievable by broader ranges. The optimized sequence was obtained by applying
104 iterations of theDE / rand / 1 / bin algorithm to the minimization problem denoted in
Eqn. 2.28 using a population of 103 candidate vectors, scaling factor bounds of 0.1 and
0.9, a crossover probability of 0.25 and the solution space constraint T = [25,45]ms.
The lower boundary ofT corresponds to the target presentation rate of 40Hz. Empirical
experiments have shown DE to reliably converge towards solutions with noise attenua-
tion (i.e., |S−1( f )| < 1) across F if the upper boundary of T is chosen to be at least
1.8 times the lower boundary. Hence, the value was set to 45ms. Consequently, the
obtained sequence exhibits consistent noise attenuation (Fig. 3.31, bottom).
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A major criterion for assessing ERP acquisition methods is the SNR of the resulting ERP,
with it being common in the context of deconvolution methods to quantify the SNR
advantage over conventional averaging by a suitable metric. Özdamar and Bohórquez
(2006) estimated the SNR advantage due to deconvolution using the Noise Amplification
Factor (NAF) cd e c , which was calculated using the ISI sequence. Peng et al. (2017b)
recently proposed an improved NAF metric gd e c under the well justified assumption of
an 1/ f α model with α ≈ 1 underlying the additive EEG noise rather than a white process,
which is well supported by previous findings of Ferree and Hwa (2003). In order to
objectively quantify the SNR advantage of the obtained sequence, 28 available standard
vertex–mastoid recordings of ongoing EEG acquired at 19.2 kHz in adult subjects were
analyzed. 200 single responses bandlimited to the frequency rangeF were epoched and
averaged for each single subject. Least–squares regressions of the 1/ f α noise model to the
individual average Power Spectral Densities (PSD) were performed to allow an accurate
estimation of gd e c (see Fig. 3.30 for an example). Additionally, the empirical NAF gem p
was calculated based on the RMS ratio of raw and deconvolved averages.

2.5.3 Interleaved Stimulus Presentation Paradigm

Bidelmann (2015) recently proposed the interleaved acquisition of the Auditory Brain-
stem FFR and the ALR in a single measurement. In order to separately elicit both the
FFR and ALR optimally, a stimulus presentation paradigm featuring alternating periods
of clustered presentation at high rates and single presentations at low rates was developed.
Slugocki et al. (2017) presented a similar method using short bursts of clicks as stimuli,
yielding both a brainstem FFR and a cortical response to the stimulus cluster, which were
separately analyzed. While providing simultaneous insight into auditory processing on
the brainstem and cortical levels with short acquisition times and good SNR, the lack of
temporal resolution inherent to the FFR–based approaches severely limits the possibilities
of relating the brainstem level activity to the respective generators in detail. Presacco et al.
(2010) evaluated a deconvolution method using bursts of clicks followed by long pauses
as stimuli, incorporating the 200ms post–stimulus EEG in the deconvolution process
to improve the quality of middle–latency and late ERP components. The disadvantages
of this approach reside in the lack of an analytical equation for the NAF (rendering it
impractical for efficient sequence design using optimization algorithms) and the lack of
temporal resolution across the experiment. Preliminary experiments of our own involv-
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ing repeated presentation of a sequence with logarithmically decreasing successive ISI and
conventional response averaging, while substantially increasing acquisition time, turned
out to yield progressively distorted responses with no distinct cortical components, which
could not be alleviated by subsequent application of the ADJAR algorithm (Woldorff,
1993) hence probably being largely due to detrimental rate effects.

Figure 2.5: Schematic illustration of the interleaved stimulus presentation paradigm. Red
stems : stimulus presentation times, blue lines : acquisition triggers, gray
areas : acquisition time windows.

Here, a novel stimulus presentation paradigm following the reasoning of Bidelmann
(2015) is introduced, interleaving high–rate and low–rate stimulation periods to allevi-
ate their respective drawbacks. As depicted in Fig. 2.5, the high–rate periods feature two
repetitions of the low–jitter CLD sequence optimized in Sect. 2.5.2 to elicit large ampli-
tude ABR and AMLR components. Each first repetition elicits the overlap of preceding
single responses necessary for the circular deconvolution of the succeeding sequence re-
sponse with the stimulus onset train. Hence, only the responses to every second sequence
presentation were acquired, separately deconvolved and arranged as an ERP image. This
approach simultaneously yields the ABR and AMLR components at the SNR advantage
of around 7 dB as determined in Sect. 2.5.2, while at the same time retaining the de-
sired resolution across the duration of the experiment as opposed to the deconvolution
of averaged responses to repeated stimulus sequence presentations (i.e., CLAD). How-
ever, as the CLD method has been previously shown to be rather ineffective at obtaining
ALR components when using high stimulation rates (Holt and Özdamar, 2016) with
the effective frequency range of the employed sequence being optimized accordingly, it
is necessary to subsequently acquire the ALR using a separate stimulus presentation de-
tached from the CLD sequence. Since a reduction of stimulation rate has been previously
reported to progressively benefit the amplitudes of obtained ALR components down to
1/6Hz (Davis et al., 1966), ISI of 2 s were employed between the high–rate periods of
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CLD sequence presentation and the single stimulus presentations to optimally elicit the
ALR. While Budd and Michie (1994) reported the ISI range around 100ms to be op-
timal in eliciting large–amplitude N1 waves, potential detrimental effects on the other
ALR components were not investigated, hence the large ISI were given preference in this
study to reliably obtain undisturbed ALR. A uniformly distributed jitter of ±10% was
added to the ISI to minimize the influence of habituational and refractory effects as well
as to obtain the additional SNR advantage during averaging pointed out by Woldorff
(1993). Acquisition triggers of different durations were associated with the alternating
stimulation periods for response segmentation during postprocessing.

2.5.4 Subjects

The study was carried out at Saarland University of Applied Sciences (Saarbrücken, Ger-
many). 20 subjects (11 males, 9 females, ages ∅33 ± 14 years) were recruited from the
social environment of the authors to participate in the evaluation of the novel AFRR ac-
quisition paradigm, none of which had a known history of audiological or neurological
conditions. All of them were classified as normal hearing using puretone audiometry,
with hearing thresholds below 15 dB hearing level within 0.5− 8 kHz (Gelfand, 2009).
Subjects were informed about the experimental procedures, which were designed in ac-
cordance with the Declaration of Helsinki and approved by the responsible authorities,
and signed a consent form.

2.5.5 Stimulus Presentation and ERP Recording

To ensure comparability of the obtained results, the setup described in Sect. 2.1.3 (see
Fig. 2.1) was reused for this study. The chirp stimulus optimized for eliciting the ABR in
humans, as proposed by Fobel and Dau (2004), was used for stimulation (edge frequen-
cies 0.1− 10 kHz, 9.9ms duration). Stimuli were presented binaurally to the subjects at
70 dB peak–to–peak equivalent sound pressure level using a USB audio interface (Scar-
lett 2i4, Focusrite, UK) and standard audiometry headphones (HDA–200, Sennheiser,
Germany). The chirp stimulus was calibrated according to IEC 60645–3 (International
Electrotechnical Commission, 2007). Stimulus waveforms and corresponding acquisi-
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tion triggers were generated offline at 48 kHz sampling rate using MATLABTM R2016a
and played back using multichannel audio workstation software (Studio One 2, PreSonus,
USA). Stimulus waveforms comprised 100 repetitions of the interleaved presentation
paradigm outlined in Sect. 2.5.3 for evaluation of the novel method. This amounts to
1700 net stimulus presentations and an overall acquisition time of 8:30min, resulting in
a relative speed improvement of 3.4 over the prior art reference AFRR recording featuring
103 stimuli presented at an ISI of 1 s ±10% equally distributed jitter (16:50min overall
acquisition time). Stimulus polarity was alternated for each successive chirp to equally
distribute electromagnetic influence from the headphones on the acquired ERP.

Subjects were instructed to sit on a lounger, relax with their eyes closed, but not fall asleep
and avoid any movement during ERP acquisition. The auditory ERP were recorded us-
ing four passive Ag/AgCl electrodes placed on the left and right mastoids (A2/A1, active
channels), the vertex (Cz, reference channel) and the forehead (ground) of the subjects.
Impedances were kept below 5 kΩ. The raw auditory ERP and corresponding trigger
signals were recorded without analog prefiltering at 19.2 kHz sampling rate using a med-
ical grade biosignal amplifier and trigger conditioner (g.USBamp and g.Trigbox, g.tec
Medical Engineering, Austria).

2.5.6 ERP Processing

ERP preprocessing and analysis were carried out in MATLABTM . ERP signals were zero–
phase filtered using 4th order Butterworth IIR bandpass and notch filters (5millioctaves
notch bandwidth, centered at all integer multiples of 50Hz withinF ) to eliminate base-
line wandering, high–frequency noise and powerline interference. Signals acquired for
evaluation of the novel paradigm were conditioned twice to account for the necessary
different bandpass filter settings (F = [20, 750]Hz for the CLD sequence responses,
F = [1, 750]Hz for the subsequent single AFRR to preserve low–frequency ALR com-
ponents). Reference AFRR recordings were bandlimited toF = [1, 750]Hz to facilitate
objective comparison.

Separate single–trial ERP images (Jung et al., 1999) were generated for the responses to
CLD sequence and subsequent single AFRR stimulus presentations (evaluation of the
novel paradigm) as well as for the reference AFRR recordings by epoching the condi-
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tioned signals according to the respective acquisition triggers, compensating the 9.9ms
delay introduced by the chirp stimulus. Responses exceeding a zero–to–peak amplitude
threshold of 40µV (CLD sequence responses) and 70µV (subsequent single AFRR
and reference AFRR) in any electrode channel were rejected as artifacts. The transient
ABR/AMLR to each CLD sequence presentation were recovered from the sequence re-
sponses by FFT–based circular deconvolution with the stimulus onset train. ERP images
containing more than 25% artifact trials, no prominent average waveform morphology
or postauricular muscle responses (O’Beirne and Patuzzi, 1999) exceeding 5µV zero–to–
peak were excluded from further analysis, leaving 15 (CLD ABR/AMLR and subsequent
single AFRR) and 10 (reference AFRR) single–subject datasets. CLD ABR/AMLR and
subsequent single AFRR ERP images were truncated to contain the greatest common
subset of 85 artifact–free single trials as a prerequisite for the fusion algorithm proposed
in the following paragraph. Reference AFRR ERP images were truncated separately to
encompass the same amount of 863 single trials. ERP images were resampled on a loga-
rithmic timebase with the range [10−3,5 ·10−1] s using the Gaussian resampling operator
(Sect. 2.3.2) with edge frequencies of 1.5 kHz and 10Hz.

The above preprocessing steps effectively yield two resampled responses to each repeti-
tion of the interleaved high–rate/low–rate paradigm, with the components of interest
(ABR/AMLR and ALR) being separately elicited close to optimally and roughly exhibit-
ing the same SNR. To obtain the full–range auditory evoked response to each repetition
of the paradigm, it is therefore necessary to fuse the signal content of both partial re-
sponses in a meaningful way. A straightforward approach to achieve this would be the
temporal concatenation of the first response up to a certain time point (e.g., 20ms) and
the second response from that point onwards. However, this will result in sharp dis-
continuities, which could be alleviated in principle either by smoothing or by temporal
crossfading (bearing the question how to choose the associated parameters optimally). To
circumvent this problem, an alternative fusion algorithm is proposed, which will always
produce smooth waveforms without the need to impose additional assumptions about the
transition as it solely relies on information present within the responses themselves. The
method is based on the reasoning that the event–related EEG activity constitutes a regular-
ity of specific signal parts localized in time and scale across adjacent trials, which is backed
quite well by previous findings involving measures quantifying the associated phase stabil-
ity (e.g., Corona-Strauss et al., 2009; Low and Strauss, 2011; Tallon-Baudry et al., 1996;
Klimesch et al., 2014). Hence, it makes sense to quantify the „event–relatedness” of all
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signal components by their cross–trial regularity and obtain weighted averages based on
this measure given its high correlation with the desired average waveform reproducibil-
ity. To achieve this, a multiresolution signal processing scheme based on the RANDWT
and its inverse as introduced by Bayram (2013) was employed. This particular choice of
transform pair was motivated by its flexible, constant–Q time–frequency covering with
adjustable redundancy, which is necessary for the obtained analytic transform coefficients
to be approximately shift invariant (i.e, largely unaffected by signal jitter) as well as ro-
bustly invertible after substantial manipulation. Furthermore, a computationally efficient
implementation is given in the form of an iterated filterbank with perfect reconstruction.
Starting from each ERP image U ∈RM×N containing M ∈N single trials as row vectors,
multiresolution representations of U were derived by decomposing the single trials into
J ∈ N subbands with analytic detail coefficients U j ∈ CM×N j , j = 1.. J and one real–
valued approximationUa ∈RM×Na using a RANDWT filterbank. By choosing sampling
factors p/q = 9/10, r /s = 1 and Q–factor 1.5, a decomposition with substantial redun-
dancy R = 10 was achieved using the maximum amount of J = bln � 4srN �/ ln � rs �c = 40
available subbands. The analytic coefficients of each subband ERP image U j were split
into amplitudes |U j | and phases φ j . Examining the cross–trial phase stability Γ (φ j ), ex-
emplarily shown for the resampled CLD ABR/AMLR and subsequent single AFRR ERP
images of a single subject in Fig. 3.32, it is obvious to see by comparing the time–scale
distributions that Γ indeed assumes its highest values around the temporal occurences of
either ABR/AMLR (Fig. 3.32, top) or ALR (Fig. 3.32, bottom) components in support
of the initial assumption.

Since the deviant key areas of Γ in both distributions indicate a rather clear separability
of ABR/AMLR and ALR components by cross–trial phase synchronization, the localized
phase stabilities Γσ (φ j ) across small, adjacent neighbourhoods of trials (i.e., restricted
by a Gaussian window with a standard deviation of σ = 5) is proposed as a suitable
weight factor to form a partition of unity for the recombination of subband detail coeffi-
cients U j :

U ′j [m, ·] =
U 1

j [m, ·] Γσ (φ1j ) [m, ·] +U 2
j [m, ·] Γσ (φ2j ) [m, ·]

Γσ (φ1j ) [m, ·] + Γσ (φ2j ) [m, ·] (2.29)
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2.5 Fast Deconvolution–Based AFRR Acquisition

In Eqn. (2.29), U 1
j and U 2

j denote the subband detail coefficients of CLD ABR/AMLR
and subsequent single AFRR ERP images, Γσ (φ1j ) and Γσ (φ2j ) the associated localized
phase stabilities and U ′j the recombined detail coefficients. Because the associated ap-
proximation coefficients U 1

a and U 2
a lack a cross–trial stability metric comparable to Γ

due to being real–valued, a simple linear transition

U ′a [m, ·] = (Na − ·) U 1
a [m, ·] + (· − 1) U 2

a [m, ·]
Na − 1

(2.30)

was performed in order to smoothly interpolate approximation coefficients from the CLD
ABR/AMLR to the subsequent single AFRR. Recombined approximation and detail coef-
ficients were normalized (the latter separately for each subband) to preserve overall signal
energy :

U ′′a [m, ·] =U ′a [m, ·] ||U
1
a [m, ·]||22 + ||U 2

a [m, ·]||22
||U ′a [m, ·]||22

(2.31)

U ′′j [m, ·] =U ′j [m, ·]
||U 1

j [m, ·]||22 + ||U 2
j [m, ·]||22

||U ′j [m, ·]||22
(2.32)

The fused single–trial AFRR ERP image U ′ was then obtained by applying an inverse
RANDWT filterbank to project the recombined, normalized coefficients U ′′j and U ′′a
back into time domain.
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2 Materials and Methods

2.5.7 Comparative Statistical Analysis

For each single–subject ERP image (i.e., CLD ABR/AMLR, subsequent single AFRR,
fused AFRR and reference AFRR), time–domain amplitude averages ua and the sample–
wise cross–trial standard deviations σu (Eqn. 2.22) were calculated, with all amplitude
averages being additionally detrended by subtracting least–squares fit 2nd order polynomi-
als to reliably eliminate potential slow drifts across investigated timescales. Likewise, the
grand average of ERP images, corresponding detrended amplitude averages and sample–
wise standard deviations were calculated based on the single–subject datasets. In order
to objectively compare the data quality of ERP obtained using the novel and prior art
acquisition approaches, an empirical SNR estimate under the signal–plus–noise model
(Dawson, 1951) given by

SN Re s t =
|| ua [·] ||2
||σu [·] ||2

(2.33)

was calculated for each single–subject ERP image, separately for the entire signal length
and temporally localized to the occurences of ABR ( [1,10]ms), AMLR ( [10,50]ms) and
ALR ( [50,300]ms) (Hall, 2007). Note that due to ua and σu both being normalized by
M , SN Re s t is independent of the number of trials present in the investigated ERP im-
age, hence its values are comparable between fused and reference AFRR. To quantify the
consistency of SNR improvement due to the proposed fusion of CLD ABR/AMLR with
subsequent single AFRR trials, individual SNR gains were calculated and the statistical
significance of SNR increase was evaluated using a one–sided Wilcoxon–Mann–Whitney
U–test. Likewise, SNR estimates calculated from the fused AFRR ERP images yielded
by the novel acquisition approach and ERP images obtained from the reference AFRR
recordings were assessed with a one–sided U–test to evaluate the significance of SNR im-
provement of the novel method over the prior art. Exact values of prominent wave peak
latencies tp and amplitudes up were derived semi–automatically from the single–subject
ERP average waveforms ua using a gradient method initialized with approximate values
obtained by point & click. Peak latencies and amplitudes of the fused AFRR and refer-
ence AFRR averages were analyzed for significant differences by means of a two–sided
U–test.

66



3 Results

3.1 Reference AFRR Acquisition

Fig. 3.1 shows the grand average ERP waveform of the 11 screened single–subject refer-
ence AFRR recordings. Gray areas denote the standard deviation across subjects within
the dataset. Fig. 3.2 displays the time–frequency resolved real part of grand average CWT
coefficients obtained from the reference AFRR single responses. Note that despite being
displayed using a logarithmic time axis to better reveal the signal morphology for the rea-
sons outlined in Sect. 2.3.1, the underlying signals are uniformly sampled at 19.2 kHz
sampling rate.

Figure 3.1: Grand average ERP waveform of reference AFRR recordings.
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3 Results

Figure 3.2: Real part of grand average reference AFRR CWT coefficients.

3.2 Optimization of AFRR Signal Representation

Fig. 3.3 displays the magnitudes of the grand average ST coefficients for the uniformly
sampled single–subject reference AFRR averages. Fig. 3.4 shows the grand average of
time–frequency resolved WPS obtained from the associated single–subject ERP images,
respectively. Figs. 3.5 and 3.6 display the time–scale resolved grand average CWT real
part and corresponding WPS for the single–response representations resampled on a log-
arithmic timebase as described in Sect. 2.3.2. The decay profiles of estimate RN for
the uniformly sampled and resampled single–response representations and their associ-
ated regression statistics are given in Fig. 3.7 (RN as a function of trial count for the
synthetic EEG noise), Fig. 3.8 (RN as a function of trial count for the stationary 50Hz
noise) and Fig. 3.9 (RN as a function of time post–stimulus for the synthetic EEG noise),
respectively.
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3.2 Optimization of AFRR Signal Representation

Figure 3.3: Magnitude of grand average AFRR ST coefficients.

Figure 3.4: Grand average of WPS for the uniformly sampled AFRR ERP images.
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3 Results

Figure 3.5: Real part of grand average resampled AFRR CWT coefficients.

Figure 3.6: Grand average of WPS for the resampled AFRR ERP images.
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3.2 Optimization of AFRR Signal Representation

Figure 3.7: Decay profiles and model regressions of RN as a function of trial count (syn-
thetic EEG noise).

Figure 3.8: Decay profiles and model regressions of RN as a function of trial count (sta-
tionary 50Hz noise).
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3 Results

Figure 3.9: Decay profiles and model regressions of RN over time post–stimulus (syn-
thetic EEG noise).

3.3 Denoising of AFRR Single Responses

Fig. 3.10 exemplarily shows the sinogram of a resampled single–subject ERP image. Fig.
3.11 displays the angular energy distributions eϕ (blue) and normalized weight vectors w ′
(red) for the resampled reference AFRR ERP images. Coloured areas denote the standard
deviation across subjects. Fig. 3.12 shows the grand average of unfiltered reference ERP
images, Fig. 3.13 the corresponding grand average waveform and Figs. 3.14 – 3.21 anal-
ogously show the grand average ERP images and waveforms after filtering with the four
algorithms in question. Likewise, Fig. 3.24 displays the grand average of synthetic ERP
images (SNR = −6 dB) and Fig. 3.25 the corresponding grand average ERP waveform.
Note that here, gray areas denote the standard deviation across single responses. Fig. 3.22
shows boxplots for individual gains gCW I in waveform reproducibility and Fig. 3.23 for
individual gains gRN in the residual noise estimate. Likewise, Figs. 3.26 and 3.27 show
these gains for the synthetic AFRR in dependence of their respective SNR. Boxplots of
individual gains gS IM in average waveform similarity to the underlying waveform for the
synthetic ERP data are given in Fig. 3.28. In all boxplots, circles denote the arithmetic
mean values. The average algorithm execution times tE are displayed in Fig. 3.29.
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3.3 Denoising of AFRR Single Responses

Figure 3.10: Example sinogram of resampled single–subject ERP image.

Figure 3.11: Angular energy distributions eϕ (blue) and normalized weight vectors w ′
(red) of resampled reference AFRR dataset.
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3 Results

Figure 3.12: Grand average ERP image of resampled reference AFRR dataset (unfiltered).

Figure 3.13: Grand average ERP waveform of resampled reference AFRR dataset (unfil-
tered).
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3.3 Denoising of AFRR Single Responses

Figure 3.14: Grand average ERP image of resampled reference AFRR dataset (UGM fil-
tered).

Figure 3.15: Grand average ERP waveform of resampled reference AFRR dataset (UGM
filtered).
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3 Results

Figure 3.16: Grand average ERP image of resampled reference AFRR dataset (NLM fil-
tered).

Figure 3.17: Grand average ERP waveform of resampled reference AFRR dataset (NLM
filtered).
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3.3 Denoising of AFRR Single Responses

Figure 3.18: Grand average ERP image of resampled reference AFRR dataset (SDR fil-
tered).

Figure 3.19: Grand average ERP waveform of resampled reference AFRR dataset (SDR
filtered).
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3 Results

Figure 3.20: Grand average ERP image of resampled reference AFRR dataset (SWAPS
filtered).

Figure 3.21: Grand average ERP waveform of resampled reference AFRR dataset
(SWAPS filtered).
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3.3 Denoising of AFRR Single Responses

Figure 3.22: Boxplots of individual gains gCW I in waveform reproducibility for the in-
vestigated ERP image filters (reference AFRR).

Figure 3.23: Boxplots of individual gains gRN in RN for the investigated ERP image
filters (reference AFRR).
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3 Results

Figure 3.24: Grand average ERP image of resampled synthetic AFRR dataset at −6 dB
SNR (unfiltered).

Figure 3.25: Grand average ERP waveform of resampled synthetic AFRR dataset at
−6 dB SNR (unfiltered).
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3.3 Denoising of AFRR Single Responses

Figure 3.26: Boxplots of individual gains gCW I in waveform reproducibility for the in-
vestigated ERP image filters (synthetic AFRR).

Figure 3.27: Boxplots of individual gains gRN in RN for the investigated ERP image
filters (synthetic AFRR).
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3 Results

Figure 3.28: Boxplots of individual gains gS IM in structural similarity for the investigated
ERP image filters (synthetic AFRR).

Figure 3.29: Average execution times of the investigated ERP image filters.

82



3.4 Fast Deconvolution–Based AFRR Acquisition

3.4 Fast Deconvolution–Based AFRR Acquisition

Fig. 3.31 shows the properties of the stimulus ISI sequence optimized for CLD. The
estimate SNR advantage due to deconvolution as proposed by Özdamar and Bohórquez
(2006) assumes a value of cd e c = 7.87 dB for the optimized sequence. Fig. 3.30 displays
an example single–subject NAF estimation and the associated regression statistics. Least
squares regressions of the 1/ f α noise model to the individual average PSD resulted in
α = ∅1.01± 0.27 in support of Peng et al. (2017b) and ge s t = ∅7.51± 0.12 dB. The em-
pirical NAF based on the RMS ratio of raw and deconvolved averages was calculated to be
gem p = ∅7.46 ± 0.52 dB. Hence, both theoretical and empirical results strongly suggest
a consistent SNR advantage of no less than 7 dB for the obtained CLD sequence.

A single–subject example of the cross–trial RANDWT phase stability Γ is given in Fig.
3.32 for the deconvolved CLD ABR/AMLR (Fig. 3.32, top) and subsequent single
AFRR (Fig. 3.32, bottom) ERP images, respectively. Fig. 3.33 shows the grand av-
erage of single–trial CLD ABR/AMLR, subsequent single AFRR, fused AFRR and refer-
ence AFRR ERP images obtained from A2 electrode recordings. Fig. 3.34 displays the
corresponding average amplitude waveforms (black lines) together with their respective
cross–trial standard deviations (gray areas). Separate averages of split datasets containing
the odd and even single trials (dark gray lines) were additionally included for qualitative
assessment of waveform reproducibility.

Boxplots of the employed SNR estimate (Eqn. 2.33) calculated separately for the four
temporal ranges (entire signal, ABR, AMLR and ALR) in each single–subject AFRR ERP
image (recordings at A2) are displayed in Fig. 3.35. Boxplots of individual gain in es-
timate SNR due to the proposed fusion of CLD ABR/AMLR with subsequent single
AFRR trials are given in Fig. 3.36. The p–values and effect sizes r corresponding to
the one–sided U–test for significant increase in individual SNR estimates between subse-
quent single AFRR and fused AFRR ERP images are given in Tab. A.4. Likewise, values
of p and r for the one–sided U–test between individual SNR estimates of fused AFRR
and reference AFRR ERP images are displayed in Tab. A.5. Fig. 3.37 shows boxplots of
the peak latencies tp and amplitudes up obtained from fused AFRR and reference AFRR
average waveforms (A2 recordings). In all given boxplots, arithmetic mean values are
additionally denoted by circles.
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3 Results

According to the conducted two–sided U–tests, no significant differences between peak
latencies of fused AFRR and reference AFRR average waveforms were found (p � 0.05).
Peak amplitudes exhibit significant differences for waves Na , Pa , N1 and P3. Hence, ad-
ditional one–sided U–tests were performed individually for each of the waves in question
(Tab. A.6). Note that effect sizes for wave P3 cannot be provided due to the small number
of 6 overall observations in the individual reference AFRR averages.
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Figure 3.30: Example single–subject NAF estimation. Blue line : PSD of the raw average,
black line : 1/ f α noise model regression, red line : PSD of the deconvolved
average.
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3.4 Fast Deconvolution–Based AFRR Acquisition

Figure 3.31: Properties of the stimulus ISI sequence optimized for CLD. From top to bot-
tom : Stimulus onset train, presentation rate histogram, reciprocal transfer
function (i.e., spectral noise amplification).
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3 Results

Figure 3.32: Example single–subject cross–trial RANDWT phase stability Γ . Top : CLD
ABR/AMLR ERP image, bottom : subsequent single AFRR ERP image.
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3.4 Fast Deconvolution–Based AFRR Acquisition

Figure 3.33: Grand average ERP images of recordings at A2. From top to bottom : CLD
ABR/AMLR, subsequent single AFRR, fused AFRR and reference AFRR.
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3 Results

Figure 3.34: Grand average ERP waveforms of recordings at A2. From top to bot-
tom : CLD ABR/AMLR, subsequent single AFRR, fused AFRR and ref-
erence AFRR. Black lines denote the average of all trials, dark gray lines the
separate averages of odd/even trials and gray areas the sample–wise cross–
trial standard deviation.
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3.4 Fast Deconvolution–Based AFRR Acquisition

Figure 3.35: Boxplots of individual SNR estimates calculated for A2 recordings of CLD
ABR/AMLR, subsequent single AFRR, fused AFRR and reference AFRR
ERP images.

Figure 3.36: Boxplots of individual SNR gains of fused AFRR over subsequent single
AFRR ERP images calculated separately for A2 and A1 recordings.
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3 Results

Figure 3.37: Boxplots of individual prominent wave peak latencies tp and amplitudes up
obtained from fused AFRR and reference AFRR average waveforms recorded
at A2.
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4 Discussion

4.1 Reference AFRR Acquisition

On a first note, the obtained single–subject and grand average AFRR waveforms (Fig. 3.1)
exhibit a distinct ERP waveform morphology. Amplitudes and latencies of the prominent
waves (encompassing V , N0, P0, Na , Pa , Nb , P1, N1, P2 and N2 with the notable
absence of the earliest ABR waves I – I I I , which is most likely due to their general
fragility and the potentially slightly too low value for the upper cutoff frequency of 1 kHz
used during signal conditioning) are very similar to the results reported by Michelini et al.
(1982) and appear to be well in accordance with the pertinent literature values Picton
et al. (1974) (see Tab. A.1). Comparing the average ERP waveforms to the real part
of grand average CWT coefficients (Fig. 3.2), the time–frequency resolved waveforms
appear to be considerably smoother than their time–domain counterparts due to the
high redundancy of the CWT signal representation. This desirable property enables the
robust determination of prominent waves’ peak translations τp and their corresponding
amplitudes up as well as their respective spectral emphasis fp , which notably facilitates
the additional detection of wave I I I (see Tab. A.3) despite its very small amplitude,
which plausibly explains its absence from the time–domain average waveforms.

4.2 Optimization of AFRR Signal Representation

Judging by the magnitudes of grand average ST coefficients obtained from the reference
AFRR average waveforms (Fig. 3.3), the time–domain signals indeed exhibit a substantial
degree of self–similarity across investigated timescales as the majority of energy within the
ST coefficient distribution is confined within a narrow interval around a single dominant
scale and its first integer multiple. Hence, the first necessary property for a successful
lossless resampling on a nonuniform timebase is exhibited by the signals as anticipated.

Further examining the grand average of WPS across single responses within the uniformly
sampled AFRR ERP images (Fig. 3.4), it is evident from the sharp discontinuity and
subsequent complete lack of phase syncronization within the lower right triangular part
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of the time–frequency plane that the underlying signals carry a temporally decreasing
amount of event–related frequency content, with the temporal decrease of spectral em-
phasis very closely following a 1/ f relationship as it appears as a straight line in the
double–logarithmic visualization. As a result, a logarithmic warping function can be
safely considered optimal for the underlying data, reproducibly resulting in a uniform
sampling resolution of the resampled signals across all investigated timescales, hence ar-
guably achieving the most compact, lossless AFRR signal representation possible. This
finding is further backed up by the time–scale resolved grand average CWT real parts
and WPS obtained from the actual resampled single response representations (Figs. 3.5
and 3.6), as they exhibit a very sparse distribution around two dominant, close to constant
dilations1 as expected, with all prominent signal features of their linear–time equivalents
being mapped into this representation. On another note, the bandpass frequency window
of [1, 103]Hz used to condition (and subsequently resample) the reference AFRR dataset
additionally proves to be close to the presumable optimum since the secondary diagonal
in Fig. 3.4 effectively separates the time–frequency plane into ERP signal components
and the lack thereof as aimed for. Note that the very high–frequent early ABR compo-
nents (i.e., waves I – I I I ) partly cross this diagonal in the time–frequency plane, which
may further explain their complete absence from the resampled signals (see, e.g., Fig.
3.13). However, the negative impact of this localized anomaly can be easily alleviated by
increasing the upper cutoff frequency accordingly at the minor expense of a diminished
compression ratio when using the resampling operator, which will most probably still re-
side within the same order of magnitude (factor 16.95 for the chosen parameters). Based
on the obtained results, a less aggressive cutoff frequency of around 2 – 3 kHz appears
reasonable and is recommended for further applications.

The obtained decay profiles of estimate RN as a function of trial count, evaluated for the
additive EEG noise signals (Fig. 3.7), are well in accordance with the theoretical predic-
tion of a 1/

p
n relationship (Özdamar and Delgado, 1996) with α assuming an average

regressed value of ≈ 0.5. However, for the stationary 50Hz noise (Fig. 3.8), the profile
enjoys a substantially faster decay rate of α ≈ 0.75, which can be safely ascribed to the
reduced Wiener entropy of the stationary sine as opposed to the broadband EEG noise,
allowing for a more effective attenuation due to averaging under the employed ISI jitter
(Woldorff, 1993). Furthermore, the resampled response representation shows a distinct

1Note that the coefficient profile of these dilations is closely related to the ST of the underlying, uniformly
sampled signals (Fig. 3.3) for reasons outlined by De Sena and Rocchesso (2007).
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4.3 Denoising of AFRR Single Responses

relative lead over its uniformly sampled counterpart of 38.3% (EEG noise) and 41.9%
(stationary 50Hz noise) on average, which is consistent across the whole duration of the
experiment, hinting at an equally high amount of noise suppression when using less than
half the number of single responses as for the uniformly sampled representation. This is
probably due to the beneficial effects of temporal Gaussian smoothing during resampling
as every form of weighted averaging (be it within time or across responses) will necessar-
ily result in a suppression of RN to some degree. Consequently, the time–resolved RN
profiles (Fig. 3.9) of the resampled signal representation consistently subside below their
uniformly sampled counterparts by about 2µV on average. While the uniform repre-
sentation exhibits a flat temporal RN profile, the resampled representation expectably
shows a coarse 1/t α trend under the progressive temporal averaging of the Gaussian fil-
ter, which is additionally modulated by the spectral composition of the additive EEG
noise : Note the 50Hz notch filter employed during signal conditioning corresponding
to a distinct dip at around 20ms with the dominant α– and β–band signal energy and
their gradual rolloff towards lower frequencies likewise being faithfully mapped into the
temporal regions corresponding to their dominant periods. This rather plausible find-
ing of a temporally resolved frequency–selectivity of the proposed resampling operator
strongly emphasizes the necessity to meticulously remove all stationary noise components
from the raw ERP data by notch filtering prior to epoching and resampling, as the resam-
pled response representation is obviously potentially prone to aggregation of temporally
localized artifacts in contrast to the uniformly sampled representation if signals are not
conditioned appropriately.

4.3 Denoising of AFRR Single Responses

On a first note, the example sinogram of a resampled single–subject AFRR ERP image
(Fig. 3.10) shows a remarkable degree of separation between the coefficients correspond-
ing to ERP components and additive noise. Note the large smooth, connected areas of
similar values around flat projection angles ϕ visibly corresponding to the time–domain
amplitude morphology (in fact, the central projection at ϕ = 0 is by definition iden-
tical to the average amplitude waveform). This necessarily leaves the coefficients under
steeper angles to encode the more irregular signal components both due to the transform’s
directionality and the Parseval theorem, which is supported by their considerably more
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disjoint structure. Consequently, the associated angular distributions eϕ (Fig. 3.11, blue)
exhibit two dominant areas of accumulating energy with remarkably low standard devia-
tion across the single–subject dataset, the central one of which can be safely considered as
predominantly representing the sought–after ERP components. The normalized weight
vectors w ′ (Fig. 3.11, red) attenuate the coefficient contributions around the orthogonal
incident angles |ϕ| ≈ π/4 as expected. Hence, a reliable reduction of additive noise is
anticipated for the SDR filter based on these findings.

It is already evident from visual comparison of the filtered ERP images and the associated
average waveforms (Figs. 3.14 – 3.21) to their unfiltered counterparts (Figs. 3.12 and
3.13) that each of the four investigated ERP image denoising algorithms considerably
reduces the amount of additive EEG noise. As anticipated above, this holds particularly
true for the SDR filter, which produces remarkably smooth results (Fig. 3.18) with the
by far lowest residual cross–trial standard deviations (Fig. 3.19) of all employed filters.
However, this presumable benefit is actually double–edged, as the SDR filter, due to being
based on the RT, effectively constitutes a global operator (which is not the case for the
other three contenders), putting it at a considerable disadvantage should the underlying
waveform morphology gradually undergo substantial changes across the duration of the
experiment as is the case with the nonstationary ERP traces encountered in, among others,
habituation assessment (e.g., Mariam et al., 2009). As this property is intrinsic to the
employed RT hence not alleviable, potential applications of the SDR filter must involve
a preliminary check on whether the criterion of a sufficiently stable ERP morphology
across trials is met at least approximately to avoid potential filtering artifacts and loss of
relevant information.

Further comparison of the objective outcome metrics provides a more detailed insight
into the respective filter performances. Judging by the individual gains gCW I in wave-
form reproducibility, all filters improve the resampled ERP images about the same amount
of≈ 0.1 for the real–world AFRR recordings (Fig. 3.22). The same holds for the synthetic
AFRR dataset (Fig. 3.26) at each investigated SNR, with a monotonous gain increase to-
wards lower values. This behaviour is expectable as there isn’t much to be improved with
respect to this measure at higher SNR values to begin with.
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4.3 Denoising of AFRR Single Responses

Considering the individual gains gRN in RN, which is arguably the most important met-
ric to be investigated within this context, both results for the real–world dataset (Fig.
3.23) and the synthetic AFRR (Fig. 3.27) indicate a clear advantage of the SDR filter over
its contenders. However, the synthetic data reveals this lead to be maximal at rather high
SNR values and to disproportionally decline towards the more realistic range of −12 dB
and less, where the other filters equal or exceed its performance. Note that the UGM fil-
ter conveniently provides a constant baseline performance of ≈ −10 dB for comparison
across all investigated SNR as its attenuation of additive noise is virtually independent
of the SNR given that the filter constitutes a linear operator. The NLM filter provides a
performance comparable to UGM with respect to this measure, albeit it excels slightly at
higher SNR values. By contrast, the rather simple SWAPS algorithm outperforms both
by about 2 – 5 dB on average within the more relevant lower SNR range. Note that this
finding interestingly appears reversed within the real–world data, where the NLM and
SWAPS filters lead by ≈ 3 dB and ≈ 1 dB over UGM, respectively.

Individual gains gS IM in similarity of the filtered average waveforms to the underlying
ERP as obtained from the synthetic dataset (Fig. 3.28) expectably show all investigated fil-
ters to exhibit close to no increase at the higher SNR for the same reasoning as mentioned
above regarding the gains in CWI. The UGM filter again provides a baseline value of 0 for
comparison as it perfectly preserves the average ERP morphology for reasons outlined in
Sect. 2.4.1. Notably, both the SDR and the SWAPS filter start to exhibit progressively
increasing benefits with respect to this outcome metric within the critical SNR range
below −6 dB, while the NLM filter exhibits the opposite behaviour (i.e., slightly, but
steadily departing from preservance of the underlying waveform).

Lastly, to put the above performances of each investigated filter into perspective, their
computational costs as quantified by the algorithm execution times (Fig. 3.29) remains
to be compared. Here, the UGM filter expectably outperforms all of the alternative ap-
proaches substantially given that it boils down to a single, FFT–accelerated convolution.
It is followed by the SWAPS algorithm with an approximately 35–fold computational
footprint, the SDR filter (factor 175) and the NLM filter (factor 500), which appears to
be rather inefficient in comparison. In the light of these figures, the SWAPS filter can
be safely considered the most promising of the compared algorithms for use with the
resampled single–response AFRR representation, as it follows a sound theoretical ratio-
nale, is reasonably fast, provides a consistent performance improvement over the baseline
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(i.e. UGM) and alternative approaches within the most relevant SNR range and – most
importantly – doesn’t suffer from the potential drawbacks of an underlying global oper-
ator as is the case with SDR. Hence, it can be potentially recommended for a broader
range of related a posteriori ERP denoising tasks, even if reliable ground truth regarding
the underlying ERP morphology may be lacking. However, it needs to be pointed out
that the implicit assumption of globally (SDR) or at least locally (SWAPS) stable, ver-
tical ERP traces is – intentionally – hardwired into both proposed methods, which is
one of the key reasons for their good performance on the present data as it fulfills this
assumption. It is worth noting that these tailored approaches will very likely fall short of
successfully denoising the later waves of the cortical ERP (i.e., from 300ms onwards) as
these potentials generally exhibit large inter–trial variability both in their respective peak
amplitudes and latencies due to being modulated by higher cognitive processes.

4.4 Fast Deconvolution–Based AFRR Acquisition

The properties of the obtained ISI sequence optimized for use with the CLD method by
means of DE (Fig. 3.31 and Tab. A.2) can be considered exceptional as it achieves
consistent noise attenuation of no less than 7 dB within a broad frequency range of
[20, 750]Hz while simultaneously exhibiting rather low JR compared to the prior art of
Özdamar and Bohórquez (2006), which involved time–consumingmanual optimization
of the individual ISI, yielding 0.82 dB of noise attenuation as the best result. While the
related work of Huang et al. (2014) arguably demonstrates the superior convergence be-
haviour of the employed solution–space contraction DE over DE / rand / 1 / bin (reaching
convergence within hundreds of iterations as opposed to≈ 104), this particular advantage
bears the question of practical relevance and may be at least partially attributable to the
substantially more narrow frequency ranges with bandwidths of 120Hz and less being
designated for optimization of the FDE within their work. Unfortunately, no objective
NAF metrics were provided by Huang et al. (2014) to further validate their results, ag-
gravating a comparative evaluation of both optimization approaches which was omitted
within the scope of the present work for this reason.

It is clearly visible from the grand average ERP images (Fig. 3.33) and their correspond-
ing average waveforms (Fig. 3.34) that the proposed novel ERP acquisition and pro-
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cessing methodology yields quality simultaneous recordings of the early, middle–latency
and late auditory ERP components. The visible prominent waves include V , N0, P0,
Na and Pa for the CLD ABR/AMLR and P0, Na , Pa , Nb , P1, N1 and P2 for the sub-
sequent single AFRR. Subsequent single AFRR recordings expectably exhibit large am-
plitude fluctuations, resembled by high amounts of cross–trial standard deviation, and
small net contributions to the average waveforms particularly within the temporal range
of the brainstem–level components, which is probably due to their generally rather low
SNR and the small number of 85 single responses being available for averaging. By con-
trast, the CLD ABR/AMLR responses exhibit visibly lower cross–trial standard deviations
and well–defined ABR and AMLR components with noteworthy amounts of late audi-
tory ERP components being absent from the averages as anticipated (Holt and Özdamar,
2014).

Further examination of the full–range auditory evoked responses obtained by the pro-
posed fusion of CLD ABR/ AMLR with subsequent single AFRR trials reveals the re-
sponses to encompass all prominent waves within the resulting average waveforms while
exhibiting lower and more uniform cross–trial standard deviations across all investigated
temporal ranges judging by direct visual comparison, as was aimed for when optimizing
the CLD sequence. These findings suggest a substantial increase in signal quality due
to single–trial fusion especially for the early and middle-latency components, supported
by the respective distributions of single–subject estimate SNR (Fig. 3.35, columns 2
and 3) and their individual gains (Fig. 3.36). Accordingly, the corresponding one–sided
U–tests (Tab. A.4) show that increases in estimate SNR are significant with large effect
sizes within the temporal ranges of ABR and AMLR (and subsequently for the entire
signal). No significant increase in SNR was observed for the ALR, owing to the above–
mentioned lack of noteworthy signal contribution from the CLD ABR/AMLR during
fusion within this temporal range. Comparing the grand average fused AFRR and refer-
ence AFRR, it is evident that the proposed acquisition approach outperforms the prior
art acquisition method not only by a substantial reduction of recording time (factor 3.4),
but also in terms of the magnified SNR and its notable increase in temporal uniformity
(Fig. 3.35, columns 3 and 4), supported by significant p–values of the respective one–
sided U–test (Tab. A.5) with large (ABR/AMLR) and moderate (ALR) effect sizes. The
latter finding is probably attributable to an addup of the expected SNR advantages due
to the optimized deconvolution sequence of around 7 dB and the averaging of obtained
responses with a larger ISI jitter compared to the reference recording (Woldorff, 1993).
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4 Discussion

The grand average waveform morphology of fused AFRR enjoys consistency with the
obtained reference AFRR averages across investigated timescales. Accordingly, all promi-
nent waves visible in the reference AFRR averages are also present in the fused AFRR
grand average waveforms, with the exception of waves N2 and P3. Waves I to I I I
are notably absent from both the fused and the reference AFRR waveforms as expected,
owing to the rather aggressive upper cutoff frequency resulting from the tradeoff made
during sequence optimization. Peak latencies and amplitudes of detected waves in the
fused AFRR averages (Fig. 3.37) are consistent with reference averages and literature
values (Picton et al., 1974; Hall, 2007). The detected peak latencies do not differ sig-
nificantly between fused and reference AFRR (p � 0.05), whereas amplitudes differ
significantly for waves Na , Pa , N1 and P3. However, the results of the corresponding
one–sided U–tests (Tab. A.6) revealed the latter differences to be consistently in favor
of the novel acquisition approach (significant, albeit with moderate effect size). Hence,
no adverse effects on peak latencies and amplitudes of prominent waves in the obtained
auditory ERP were discoverable during the comparative evaluation of the novel method
and the prior art acquisition approach.
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5 Conclusion and Future Work

The present work successfully subjected the motivation and reasoning underlying previ-
ous efforts by Michelini et al. (1982) towards the simultaneous acquisition of auditory
brainstem–, middle–latency and late ERP and their proposed representation on a non-
linear timebase to an in–depth investigation, particularly with regards to the optimal
warping function. Obtained results of AFRR signal analysis regarding their dominant
intrinsic scales and their time–frequency resolved cross–trial phase stability (effectively
determining the degree of stimulus–locking within signal components) strongly support
the optimality of a logarithmic warping to achieve a compact AFRR signal representation
without loss of important signal features. The lack of such detrimental information loss
was subsequently demonstrated for the proposed logarithmic resampling method adapted
to the temporally decreasing spectral bandwidth of the signals in question, which achieves
a substantial compression ratio of 16.95 while additionally exhibiting a distinct SNR ad-
vantage progressively increasing with time post–stimulus due to beneficial effects of the
employed Gaussian averaging.

In an attempt to systematically sound out the available room for further improvements
in its signal quality by means of denoising, the proposed resampled AFRR signal rep-
resentation was employed to compare two established (i.e., UGM and NLM) and two
newly proposed (SDR and SWAPS) two–dimensional ERP image denoising algorithms
on the basis of several objective quality metrics using a real–world reference dataset of
AFRR ERP images and synthetic data obtained from a phenomenological AFRR model
at different SNR. Both proposed denoising approaches substantially surpass the prior
art methods in the comparative performance evaluation both in terms of the employed
quality metrics and their respective computational costs. Future work on improving the
newly introduced SDR filter may involve its adaptation to a discrete RT transform pair,
e.g., employing the fast implementation proposed by Press (2006) and its exact, iterative
inverse to further reduce the involved computational cost.

Finally, a novel method for the fast acquisition of auditory full–range evoked potentials
(AFRR) using an interleaved, deconvolution–based ERP acquisition approach was intro-
duced and evaluated, which is accompanied by an efficient method for the automated
optimization of ISI sequences suitable for deconvolution, reliably maximizing the spec-
tral attenuation of additive noise within the deconvolved responses subject to a designated
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time–frequency constraint. As a sidenote, the proposed sequence optimization method
has already been successfully applied to the design of stimulus sequences suitable for the
fast, simultaneous acquisition of brainstem–level and subsequent binaural difference po-
tentials in bimodal cochlea implantees by the time of this writing (Schebsdat et al., 2019),
enabling the objective evaluation of such asymmetric hearing treatments with respect to
their binaural benefit. More general, the results obtained in the present work suggest the
proposed methodology to be a promising toolset for simultaneous acquisition of neural
correlates originating fom all subsequent processing stages along the AP. The interleaved
acquisition approach employs successive, alternating periods of high–rate CLD stimu-
lation and low–rate stimulation to separately elicit both the ABR/AMLR and ALR at
their respective optimum rates, fusing the resulting ERP single trials based on their time–
frequency resolved cross–trial regularity. It improves upon pure CLAD aquisition (Holt
and Özdamar, 2014), simultaneously yielding quality ABR, AMLR and ALR compo-
nents with additional resolution across the duration of the experiment. Furthermore,
it improves two–fold upon the similarly motivated interleaved acquisition approach of
Bidelmann (2015) by yielding temporally resolved ABR and AMLR components and by
introducing a distinct SNR advantage due to the preceding stimulus sequence optimiza-
tion, as both of these beneficial properties are not available from the brainstem FFR.
Lastly, the proposed method improves upon the prior art reference AFRR acquisition at
larger ISI, cutting acquisition time by a factor of 3.4 while at the same time exhibiting a
substantially improved, temporally uniform SNR of the obtained ERP.

Since all of the pertinent research questions initially raised in Sect. 1.2 could be answered
satisfactorily, the conjoint use of the proposed body of methods for AFRR acquisition,
denoising and analysis can be safely recommended for a variety of applications in neu-
roscience research. Potential use cases essentially fall into two categories : First, as the
involved necessary high trial counts of undisturbed ALR activity acquired at large ISI
meet the necessary preconditions of the first acquisition approach as employed for the
reference AFRR recording, future studies involving habituation assessment (which are
currently exclusively based on cortical responses) may benefit from the additional in-
formation provided by the AFRR at virtually no additional expense, arguably enabling
improved insight into preceding contributions of subcortical, precognitive processing to
the commonly investigated cortical activity. The same holds in principle for the analysis
of other cortical–level phenomena such as inhibition currently based on the ALR, which
may well be accompanied by thalamocortical and/or corticofugal processes potentially
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additionally visible within AFRR recordings. The second category of possible applica-
tions is more geared towards clinical auditory diagnostics. Since the fast, interleaved
deconvolution approach demonstrably yields quality full–range auditory activity within
reasonable acquisition times, it arguably constitutes a valuable tool for auditory screening
applications. To facilitate a potential adoption of this method in clinical settings, which
obviously requires its translation into medically certified hard– and software, a reference
implementation on an established medical–grade ERP acquisition system is currently un-
der development as a collaborative effort of the Systems Neuroscience & Neurotechnology
Unit and Pilot Blankenfelde GmbH.

Note that from a research viewpoint, the validity of the LTI signal–plus–noise ERP model
has been repeatedly – and rightfully – questioned despite its ubiquity. In particular, the
estimation of higher–order Volterra kernels, which naturally extend the concepts of im-
pulse response and convolution to nonlinear systems, have been successfully employed for
the quantification of nonlinear behaviour and signal self–interaction within the auditory
system both at the levels of the AN (Eggermont, 1993) and the cortical spectrotemporal
receptive fields (Klein et al., 2000). As the reliable identification of higher–order Volterra
kernels in the time domain has proven exceptionally difficult in the presence of additive
noise, most estimation methods evade to the FT domain to obtain more robust results.
Within the context of the logarithmic signal mapping and its beneficial properties in com-
pactly representing the AFRR, it remains to be investigated whether a suitable stimulus
sequence optimization minimizing the influence of additive noise within the ST domain
may allow for a robust estimation of the 2nd order Volterra kernel in addition to the 1st

order kernel given by the ERP waveform to capture the nonlinear behaviour exhibited
by the AP. A quantification of these quadratic AFRR components obviously is of sub-
stantial interest in further improving the understanding of binaural fusion, which by its
very nature constitutes the interacting proportion of auditory neural activity hence ar-
guably eludes a detailed quantification within a linear analysis framework. However, this
challenging endeavour shall be the subject of future work.

To conclude, all of the signal processing methods developed within the present work
(i.e., ISI sequence optimization by means of DE, stimulus waveform generation, ERP
preprocessing, nonlinear resampling, ERP image filters and single–trial fusion) are pub-
licly made available under the MIT license, split across multiple Git repositories hosted
at GitLab to facilitate adaption and verification by other researchers in future studies.
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A Appendix

Table A.1: Peak latencies tp of prominent waves for the ABR, AMLR and ALR as re-
ported by Picton et al. (1974).

ERP component prominent waves

tp [ms]

ABR
I I I I I I IV V V I

1.5 2.6 3.8 5.0 5.8 7.4

AMLR
N0 P0 Na Pa Nb

8.9 12 16 25 36

ALR
P1 N1 P2 N2

50 83 161 290

Table A.2: Successive ISI of the optimized CLD stimulus sequence.

stimulus # [1]

ISI [ms]

01 – 33.54 02 – 30.63 03 – 28.13 04 – 35.83

05 – 42.50 06 – 34.58 07 – 42.50 08 – 25.00

09 – 25.21 10 – 31.46 11 – 25.00 12 – 40.31

13 – 39.27 14 – 33.96 15 – 35.63 16 – 42.50
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Table A.3: Peak translations τp , pseudofrequencies fp and amplitudes up of prominent
waves as obtained from the grand average real part of CWT coefficients.

ERP component wave τp [ms] fp [Hz] up [µV]

ABR
I I I 2.67 499.5 0.17

IV 5.17 164.5 0.49

AMLR

N0 8.34 153.4 -0.55

P0 11.73 143.1 0.56

Na 17.62 64.4 -0.57

Pa 25.95 60.1 0.47

Nb 45.32 30.0 -0.36

ALR

P1 56.37 13.5 1.07

N1 95.38 12.6 -1.05

P2 170.90 7.2 0.92

N2 242.60 6.9 -0.71

P3 311.40 7.1 0.45
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Table A.4: p–values and effect sizes r of the one–sided U–test between SNR estimates
SN Re s t of individual subsequent single AFRR and fused AFRR ERP images
(recordings at A2 and A1).

Entire signal ABR AMLR ALR

A2
p 3.09 · 10−3 6.08 · 10−4 3.09 · 10−3 4.83 · 10−1
r 0.71 0.84 0.71 0.01

A1
p 5.06 · 10−3 9.33 · 10−4 1.13 · 10−2 5.00 · 10−1
r 0.66 0.80 0.59 0.00

Table A.5: p–values and effect sizes r of the one–sided U–test between SNR estimates
SN Re s t of individual fused AFRR and reference AFRR ERP images (record-
ings at A2 and A1).

Entire signal ABR AMLR ALR

A2
p 1.79 · 10−5 1.79 · 10−5 2.89 · 10−5 1.23 · 10−2
r 0.83 0.83 0.80 0.45

A1
p 1.13 · 10−4 1.79 · 10−5 7.24 · 10−5 3.16 · 10−2
r 0.74 0.83 0.76 0.37
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Table A.6: p–values and effect sizes r of the one–sided U–test between peak amplitudes
up of fused AFRR and reference AFRR ERP averages (recordings at A2 and
A1) for waves Na , Pa , N1 and P31.

Na Pa N1 P3

A2
p 2.15 · 10−2 1.55 · 10−3 2.45 · 10−2 4.35 · 10−3
r 0.40 0.60 0.39 −

A1
p 1.23 · 10−2 3.37 · 10−2 2.85 · 10−2 3.45 · 10−3
r 0.45 0.38 0.39 −

1Note that due to the small number of overall observations for waves P3, effect sizes r cannot be reported.
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