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3 Glossary 

The units, measurements and abbreviations of the unexplained scientific terms used in the 

current study are all listed in the glossary. The other abbreviations in the text are explained 

when used for first time. 

Units 

µl microlitre 

µM micromolar 

g gram 

G gravity 

h Hour 

kDa kilo dalton 

M molar 

min minute 

ml milliliter 

mM milli molar 

nM nano molar 

RPM rounds per minute 

s second 

pmol pico molar 

mW milli watt 

mA Milli ampere 

V volt 

 

Abbreviations  

AKT AKT Serine/Threonine Kinase 

Approx. approximately 

AP1 Activator Protein 1 

ATP Adenosine triphosphate  

BCC Basal Cell Carcinoma 

BiP Binding Immunoglobulin Protein 

CRAC Calcium Release-Activated Channels 

ER Endoplasmatisches Retikulum 

ERo1 ER oxidase 1 

ERK Extracellular signal-Regulated Kinase 

HIF1α Hypoxia-inducible factor 1α 

IP3R Inositol trisphosphate Receptor 

MAM Mitochondria-Associated Membrane 

MAPK Mitogen-Activated Protein Kinase 

MCU Mitochondrial Calcium Uniporter 

MITF Microphthalmia-associated Transcription Factor 

NFAT Nuclear Factor of Activated T-cells 



8 

 

NF-κB Nuclear Factor kappa-light-chain-enhancer of activated B cells 

NMSC Non-Melanoma Skin Cancer 

NO Nitric Oxide 

NOX NAD(P)H oxidase 

RNS Reactive Nitrogen Species 

OCR Oxygen Consumption Rate 

OMM Out Mitochondria Membrane 

ORAI ORAI Calcium Release-activated Calcium Channel Protein 

OXPHOS Oxidative Phosphorylation 

PDI Protein Disulfide Isomerase 

PGC1α Peroxisome proliferator-activated receptor γ Coactivator 1 alpha 

PI3K Phosphatidylinositide 3-kinase 

PM Plasma membrane 

PMA Phorbol 12-myristate 13-acetate 

PMCA Plasma Membrane Ca2+ ATPase 

ROS Reactive Oxygen Species 

PTEN Phosphatase and tensin homolog 

PTP Permeability Transition Pore 

SCC Squamous Cell Carcinoma 

SKCM TCGA Skin Cutaneous Melanoma 

SOCE Sarco/endoplasmic reticulum Ca2+-ATPase 

STIM Stromal Interaction Molecule 

TMX Thioredoxin related transmembrane protein 

Trx Thioredoxin 

TXNDC15 Thioredoxin Domain Containing 15 

UPR Unfolded Protein Response 

CaV Voltage gated Ca2+ channel 

XBP1s Splicing product of X-box Binding Protein 1 
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4 Summary 

4.1 Zusammenfassung 

Melanom ist die tödlichste Form von Hautkrebs und trat mit steigender Prävalenz in den 

vergangenen Jahrzehnten auf. Bei der Entstehung und dem Verlauf dieser Krebserkrankung 

spielen reaktive Sauerstoff Spezies (ROS), sowie die Dysregulation von Signalwegen eine 

wichtige Rolle. Außerdem führen die oxidative Stressantwort, sowie die Aktivierung von 

alternativen Signalwegen häufig zu Behandlungsesistenzen und einem erhöhten 

Metastasierungspotential, was Auswirkungen auf das Patientenüberleben hat. Zahlreiche 

wissenschaftliche Arbeiten konnten den Einfluss von oxidativem Stress auf verschiedene 

Signalwege in Schwarzem Hautkrebs nachweisen. Diese Signalwege können auf der anderen 

Seite wieder zu einer veränderten ROS Produktion oder antioxidativen Kapazität führen. 

Daher kann das bessere Verständnis der Interaktion von ROS und Redoxregulation von 

Signalwegen neue Einblicke in Behandlungsmöglichkeiten geben und diese verbessern. 

Die Mitochondrien sind wichtige Zellorganellen, in denen durch oxidative Phosphorylierung 

ATP, sowie als molekulares Nebenprodukt ROS produziert werden. Durch die Nähe zum ER 

(Endoplasmatisches Retikulum) spielen Mitochondrien auch eine bedeutende Rolle in der 

Regulation von intrazellulärem Calcium und dem Feintuning nachfolgender Signalkaskaden. 

Es deutet viel darauf hin, dass Anomalien in den Mitochondrien, die im Mittelpunkt von 

Biogenese, Redoxregulation und Kontrolle von Signalwegen stehen, zur Melanomentstehung 

beitragen. Zusätzlich beeinflussen die Reprogrammierung, sowie Positionierung der 

Mitochondrien das Zellüberleben, sowie die Resistenzbildung gegenüber Therapien bei Krebs, 

eingeschlossen dem Melanom.  

Daher haben wir in diesem Zusammenhang untersucht, wie die Veränderung von 

Kontaktstellen zwischen Mitochondrien und ER durch TMX1 und TMX3, den 

Oxidoreduktasen in der Mitochondrien assozierten ER Membran (MAM), die Funktion der 
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Mitochondrien, von Zellsignale und die Melanom-Pathologie beeinflussen. In dieser Arbeit 

konnte gezeigt werden, dass TMX1, TMX3 und der Calcium/Calciumneurin-regulierte 

Transkriptionsfaktor NFAT1 im Vergleich zu Melanozyten und Keratinozyten in Melanom 

Zelllinien und Patientenproben überexprimiert sind. Der Knockdown von TMX1 und TMX3 

führte durch einen Anstieg an mitochondiralen ROS, sowie einer erhöhten NAD(P)H Oxidase 

4 (NOX4) Aktivität, zu einem Anstieg von ROS im Zytosol. Dadurch wurde die 

Translokation von NFAT1 in den Zellkern durch die Oxidation der Phosphatase Calcineurin 

verhindert. Durch die Inhibition der NFAT1-Aktivierung und die daraus folgende geringere 

transkriptionale Aktivität, wurde die Expression von Zielgenen beeinflusst.  Die Inhibition 

von NFAT1 verursachte schließlich eine Hemmung der Melanomproliferation, der Migration 

in vitro und des Tumorwachstums in vivo.  

Zusammenfassend lässt sich sagen, dass Mitochondrien-ER-Kontaktstellen die Melanom-

Redox-Homöostase regulieren und den Signalweg von Calcineurin-NFAT1 beeinflussen. 

TMX und NFAT1 sind daher potenzielle Biomarker, die zur Melanomprogression beitragen. 
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4.2 Summary 

Melanoma is the deadliest skin cancer with an increasing incidence in the past decades. The 

reactive oxygen species (ROS) and dysregulation of signaling pathways play important roles 

in the formation and progression of melanoma. Furthermore, the oxidative stress response and 

activation of alternative signaling pathways were reported as determinants of drug resistance, 

survival and metastasis of melanoma. There is abundant scientific literature demonstrating 

that the oxidative stress can influence multiple signaling pathways in melanoma and in return, 

the changes of these signaling pathways often lead to an altered ROS production or 

antioxidant capacity. Hence, understanding of the interaction between ROS and the redox 

regulation of signaling pathways could provide beneficial insights for treatment.  

Mitochondria are organelles wherein the oxidative phosphorylation produces ATP as well as 

ROS as byproducts. Due to the proximity to the endoplasmic reticulum (ER), mitochondria 

also play a critical role in the regulation of intracellular calcium and the fine-tuning of the 

calcium-controlled signal cascades. Therefore, there are culminating evidences suggesting 

that mitochondria act as hubs of biogenesis, redox regulation and calcium signaling thereby 

controlling cellular function. Anomalies in mitochondrial function contribute to 

carcinogenesis of melanoma. Additionally, the reprogramming and positioning of 

mitochondria were shown as important factors in controlling cell survival and resistance 

against treatment in cancer including melanoma.  

We investigated how the disturbance of contact sites between mitochondria and ER through 

manipulation of thioredoxin related transmembrane protein 1 (TMX1) and thioredoxin related 

transmembrane protein 3 (TMX3), oxidoreductases localized in the mitochondria-associated 

ER membrane (MAM) affect the mitochondrial function, cell signaling and melanoma 

pathobiology. In the present study, TMX1, TMX3 and a calcium/calcineurin-regulated 

transcription factor Nuclear Factor of Activated T-cells 1 (NFAT1) demonstrated up-
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regulated expression in the melanoma cell lines and patient samples compared with healthy 

melanocytes and keratinocytes. The knockdown of TMX1 and TMX3 resulted in an elevated 

ROS via mitochondria and NAD(P)H oxidase 4 (NOX4) and NFAT1 inhibition via oxidation 

of the phosphatase calcineurin. The inhibition of NFAT1 led to a lower NFAT1 

transcriptional activity, which affected expression of the target genes. Inhibition of NFAT1 

eventually caused a suppression of melanoma proliferation, migration in vitro and tumor 

growth in vivo.   

In conclusion, our study suggests that mitochondria-ER contact sites regulate melanoma 

redox homeostasis and influence calcineurin-NFAT1 signaling pathway. TMX and NFAT1 

are thus potential biomarkers contributing to the progression of melanoma.  
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5 Introduction 

5.1 Skin and melanoma pathology 

5.1.1 The human skin 

The human skin is the largest organ of the integumentary system, which covers the surface of 

the body and serves as the first line of defense against various types of damage, harmful fluids, 

radiation and pathogens. As depicted in Graph 1, the skin consists of three different layers, 

namely the epidermis, dermis and subcutis.  

The epidermis is the outer layer of the skin. It consists of three major cell types (keratinocytes, 

melanocytes and Langerhans cells), each of which has a different function. Keratinocytes are 

the predominant cell type in the epidermis; they produce keratin. They are developed from the 

stratum basale and migrate upwards to the stratum corneum after maturation. Dead 

keratinocytes in the corneum are constantly replaced by the new ones. Keratinocytes mainly 

function as a barrier against pathogens such as bacteria, viruses, parasites, fungi, ultraviolent 

(UV) radiation and dehydration. Melanocytes originate from the neural crest. They are 

responsible for melanin production and the pigmentation of the skin via their association with 

keratinocytes. In addition to melanin, they are able to produce signaling molecules such as 

cytokines, melanocortin peptides, catecholamines, serotonin and nitric oxide (NO) (1). 

Langerhans cells are dendritic cells responsible for cutaneous adaptive immune responses; 

they can promote CD4 T cell differentiation in a variety of inflammatory contexts (2). 

The epidermis and dermis are connected by a complex layer called the dermo-epidermal 

junction, which contains the basement membrane. The dermis is located beneath the 

epidermis; it contains fibers composed of collagen and elastin proteins, as well as the gel-like 

extracellular matrix. The most important cells in the dermis are the fibroblasts, which produce 

collagen, elastin and other molecules. The sebaceous glands, sweat glands, hair follicles, some 

nerves and muscle cells are also embedded in the dermis. The bottom layer is the subcutis, 
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which is comprised of a collagen fiber network, adipocytes, blood and lymphatic vessels and 

nerves. The subcutis provides additional protection against external stresses such as 

mechanical force or coldness. With regard to the formation of melanoma, the epidermis and 

dermis, as the outer layers, are directly exposed to carcinogens. As a result, melanomas 

develop from the melanocytes in the basement layer. 

 

Graph 1: Anatomy of the Human Skin. (Adapted from the University of California San 

Francisco/Melanoma Surgery/Department of Surgery; the link is as follows: 

https://melanoma.surgery.ucsf.edu/conditions--procedures/melanoma.aspx) 

 

5.1.2 Types of skin cancer and melanomas 

Based on their origins, skin cancers are generally categorized as being either non-melanoma 

skin cancers (NMSCs) or melanomas. Non-melanoma skin cancers develop from the basal 

cells and squamous cells in the epidermis, while melanomas originate from melanocytes 

derived from the neural crest. Melanomas and NMSCs are the most common types of cancer 

https://melanoma.surgery.ucsf.edu/conditions--procedures/melanoma.aspx
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in the fair-skinned population (3-5). About 80% of all NMSC are basal cell carcinomas, while 

squamous cell carcinomas account for approximately 20%; the other types only present 

around 1% of the diagnosed population (6).  

There are four basic melanomas: superficial spreading melanomas, nodular melanomas, 

lentigo maligna melanomas and acral lentiginous melanomas. The common melanomas are 

generally cutaneous (7). The superficial spreading melanoma is the most common type, it 

tends to radial growth and covers the surface of skin. The thickness of superficial spreading 

melanomas is usually around 1 mm, but they can grow vertically and penetrate the skin. 

Nodular melanomas are characterized by rapid growth and invasiveness; they appear on the 

skin surface but can penetrate into the deeper layers very swiftly. Lentigo maligna melanomas 

are usually found in older populations as a result of long-term sun exposure, and the 

histological characteristic of it is the proliferation of atypical melanocytes at the dermo-

epidermal junction. They are less aggressive compared to the other types of melanoma 

because they usually remain on the skin surface. When such a melanoma becomes invasive, it 

is termed a lentigo maligna melanoma (8). Acral lentiginous melanomas are common among 

Africans and Asians; they mainly develop on the feet or hands or under the nails. There are 

also several other types of melanoma, including amelanotic, polypoid and desmoplastic, but 

these are rarer and present in less than 5% of all cases. The staging of all melanomas is 

usually based on the thickness of tumor, ulceration status, the status of regional lymph node 

metastasis and distant metastasis. Further staging is usually based on information obtained 

from molecular diagnosis and biopsy.  

5.1.3 Risk factors for carcinogenesis of NMSCs and melanomas 

With regard to the pathogenesis of NMSCs and melanomas, the risk of incidence depends on 

both the health status of the host and environmental factors. In terms of environmental factors, 

increased exposure to sunlight, namely photocarcinogenesis, is considered a major causal 
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factor for both types of skin cancer (5, 9-12). Chronic or intermittent sun exposure can lead to 

sunburn or skin lesions, which can develop into skin cancers (13, 14). Although the 

relationship between patterns of sun exposure and the formation of skin cancer is complicated 

(15, 16), it is generally agreed that UV irradiation from sunlight is the main risk factor. This 

conclusion has been drawn based on several different observations. Epidemiological studies 

have demonstrated that the incidence and mortality rates of NMSCs and melanomas are 

negatively correlated to geographic latitude of residence. Based on mouse experiments, skin 

cancer can be induced by UV irradiation. The UVB spectrum (280–320 nm) is particularly 

carcinogenic, while the contribution of UVA is less clear (17), and UVC rays are usually 

blocked by the ozone layer and the atmosphere. Furthermore, the deficiencies of UV-induced 

DNA damage repair increase susceptibility to skin cancer (18).  

Ultraviolet irradiation-induced DNA damage is the critical initiating event for both NMSCs 

and melanomas. Such damage produces cyclobutane pyrimidine dimers which cause further 

DNA lesions and mutations as a result of errors in nucleotide excision repair (17, 19). 

Eventually, such mutations can lead to the activation of oncogenes or the silencing of tumor-

suppressor genes and prompt a malignant transformation (20, 21). However, the driving 

mutations for NMSCs and melanomas differ. In the BCC, Patched and Smoothened in the 

Sonic hedgehog pathway are prevalent, while, in the SCC, the driver genes are TP53, 

epidermal growth factor receptor (EGFR), cyclin-dependent kinase 2A (CDKN2A), tyrosine 

kinase Fyn (FYN) and rat sarcoma (RAS) (22). A melanoma exhibits markedly basal 

mutation rates induced by UV irradiation, which are caused by the accumulation of cytidine to 

thymidine transitions (23, 24). Mutations of TP53 and CDKN2A have also been found to be 

inducible by UV in melanomas. Beyond DNA damage, UV irradiation can also cause sunburn, 

inflammation, immune suppression and ROS generation in the skin and elevate the risk of 

skin cancer (25). 
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From a host’s perspective, there are many factors that can contribute to the carcinogenesis of 

NMSC or melanoma, including genetic heritage, age and phenotype characteristics. It is 

estimated that 5 to 12% of the worldwide incidence of melanomas can be attributed to 

inherited germline mutations (26, 27). The inheritance of melanoma is often observed in 

populations with lower risk susceptibility genes, but 5 to 10% of melanomas occured in 

families prone to melanoma, which indicates that high penetrance susceptibility genes are also 

important (28, 29). The hereditary melanomas are linked to autosomal-dominant disorders; 

the associated genetic alterations include CDKN2A, CDK4 (cyclin-dependent kinase 4), the 

telomerase complex proteins telomerase reverse transcriptase (TERT), protection of telomeres 

1, BRCA1-associated protein-1 (BAP1), microphthalmia-associated transcription factor 

(MITF), TP53, phosphatase and tensin homolog (PTEN) and xeroderma pigmentosum (XPA) 

(27, 30-36). The prevalence of these mutations in hereditary melanomas varies, but, generally, 

the risk of melanoma incidence for bearers is higher when compared to that of common 

individuals. Clinical surveillance is thus suggested on different degrees for the mutation 

bearers.  

The phenotypic characteristics of a host, such as hair color, eye color, skin color and freckle 

density, are often investigated in cohort studies or meta-studies (37-40) for the purpose of 

evaluating melanoma risk. However, these factors are very interactive with environmental 

factors; for example, freckle density, red or blond hair, blue eyes and light skin are the 

phenotypes related to photosensitivity. This means that bearers have a greater sensitivity to 

UV irradiation, which is in turn associated with a higher risk of skin cancer (41, 42). The 

cause of these phenotypes is the amount and type of cutaneous melanin generated by the 

bearer (43, 44); thus, controlling genes such as melanocortin-1 receptor plays a critical role in 

the development of melanomas in the subpopulation bearing these phenotypes (45, 46). 
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Beyond the phenotypic characteristics, the nevi number is another important reference for the 

evaluation of melanoma risk. The melanocytic nevi are benign neoplasms or hematomas 

composed of melanocytes. They can be acquired over the course of an individual’s lifetime or 

may be congenital, meaning that they developed during embryogenesis. As a risk factor, 

melanocytic nevi are generally associated with sun exposure, subpopulations with certain 

phenotype characteristics and bearers’ genetic predispositions, so multiple approaches to 

categorization and parameters are applied in the studies regarding the evaluation of nevi and 

melanoma occurrence. According to case-control studies on patients and meta-studies on 

melanoma risk, melanocytic and atypical naevi are also very prominent risk factors, a finding 

that could be used for the prediction of malignant melanomas (47, 48). The total numbers of 

common naevi and clinically atypical naevi are often two important parameters for analysis 

(49), while a large number of acquired melanocytic nevi is often considered as representing a 

high risk for melanoma, as it may indicate a higher genetic tendency towards melanoma 

formation or high exposure to environmental agents. Acquired nevi on soles, palms and nail 

have been found to be less dangerous (49, 50). As atypical naevi are usually larger and have a 

more variegated appearance when compared with the common naevi, they may conceal an 

underlying dysplasia, which could lead to melanoma formation. Dysplastic melanocytic nevi 

and non-dysplastic nevi demonstrate different degrees of risk compared the familial or non-

familial melanoma (51-54). Populations with familial melanomas and more atypical naevi are 

at much higher risk, while the estimation for populations without familial history of 

melanoma is usually lower. 

In general, past studies on host-related risk factors have demonstrated a good degree of 

standardization, which led to variations in their results. The heterogeneity in the methods of 

determination used also affected the estimations of risk factors; thus, the assessment of these 

studies needs further effort in order to increase the accuracy for the prediction. The etiology 
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of melanoma is complex; thus, researchers are in agreement that environmental and host 

factors such as phenotype characteristics and naevi or dysplastic naevi counts are inter-related, 

which may have caused the inconsistencies in the previous studies. The genetic understanding 

of the formation of melanomas remains incomplete, but further exploration may provide 

important clues for explaining these risk factors. 

5.1.4 Epidemiology of melanoma 

Non-melanoma skin cancers represent 5.8% of cancers from all sites and cause 0.7% of 

cancer-related deaths; the global estimation for 2018 was approximately 1 million new cases 

and 65,000 deaths, with most of these cases being related to BCC and SCC; melanomas 

represent only 1.6% of all new cases but cause 0.6% of all deaths, which are around 60,000 

new cases in 2018 (55). Malignant melanomas represent only about 5% of skin cancer 

diagnoses but account for more than 90% deaths associated with cutaneous tumors (56). 

Cutaneous melanomas account for more than 90% deaths of all melanoma cases (7, 57) and 

are considered to be the most rapidly increasing cancer in the white population. Globally, the 

incidence of melanoma has been increasing alarmingly over the past decades; in particular, 

the incidence rate of cutaneous melanoma was greater than that of any other malignancy (58). 

From 1970 to 2000, the incidence rates of melanoma increased approximately threefold in the 

United States and central Europe (4, 59-61), accompanied by a low level increase in mortality 

rates.  

Because of the genetic backgrounds of various populations and differences in sun exposure 

correlated to distance from the equator, there is significant geographic variation in the 

incidences of NMSCs and melanomas globally. The highest rates for NMSCs and melanomas 

were reported in Australia and New Zealand (at 37 cases per 100,000 people), followed by 

Northern America and Western Europe; the lowest were in South-Central Asia (55, 62). A 

major explanation is the different genetic background of populations, as white populations 
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have the highest incidence rate, while Asian and African populations have significantly lower 

incidence rates; however, registration system and diagnosis criteria could also affect the 

validity of these statistics. In Europe, the melanoma incidence rate is less than 10~25 new 

cases per 100,000 inhabitants; Switzerland has the highest rates and Greece the lowest. 

According to some studies, there is also a gradient of NMSC and melanoma incidence and 

mortality from northern to southern and western to eastern Europe (61, 63), which has been 

suggested as correlating with the distribution of various ethnic groups and the level of 

development in these countries. In the United States of America, the incidence rate is 20~30 

per 100,000 inhabitants; in Australia, the incidence is 50~60 per 100,000 inhabitants, which is 

the highest incidence recorded. With regard to mortality, Australia and New Zealand have the 

highest global melanoma mortality rates of around 3.5 per 100,000, while the rates in North 

America and Europe are 1.7 per 100,000 and 1.5 per 100,000, respectively (64, 65).  

The age demographics of melanoma are quite particular when compared with other cancers. 

Melanomas affect more of the younger population between 20 to 40 years compared with the 

other cancers which are usually found in the older population up to 60 years. The median age 

of diagnosis for melanoma is around 57 years, but incidence rates start to increase from 30 

years of age; around 50% of melanoma cases involve patients under 55 years of age, while 

approximately 30% occur among patients younger than 45 years. Incidences in populations 

under the age of 15 years are rare, but early over-exposure to UV is correlated with incidence 

in later life. In addition, the types of melanoma diagnosed in populations of different ages also 

display certain trends: Tumors among younger populations are less thick, while, in older 

populations, tumors are more often found on body parts that have been subjected to chronic 

exposure to sunlight and often are acral lentiginous or lentigo maligna types (3, 66). Those 

age-cohort studies that have attempted to explain these trends in melanoma incidence are 
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usually population dependent. In addition, the models used are generally difficult to interpret 

and fully fit to the clinical data on both incidence and mortality (61).  

The differences in incidence rates of NMSCs and melanomas between the gender groups are 

age dependent, and the overall incidence rates for men are two times higher than for women, 

as are mortality rates. Generally, the incidence of melanoma is higher in female populations 

under the age of 50, but the incidence in men over 60 years increases sharply. The overall 

mortality rates are higher for men than for women due to the late presentation of the disease 

and poor diagnosis in older populations.  

In general, epidemiological studies on melanoma have indicated an increasing trend in terms 

of incidence rates whereas mortality rates remained steady. Treating melanomas and NMSCs 

may represent a severe burden for healthcare systems in areas of high incidence. Thus, while 

research on the molecular basis of melanomas is challenging, it has the potential to yield 

results that are both of scientific and practical.  

 

5.2 Calcium signaling in melanoma 

5.2.1 Calcium signaling in cancer 

The calcium ions are one of the most important second messenger molecules. They impact 

many aspects of physiological functions, including muscle contraction, neural signal 

transmission and immune cell activation. On the cellular level, Ca2+ ions are involved in the 

proliferation, migration, apoptosis gene transcription and control of signaling pathways (67). 

Because of this multi-faceted role played by calcium, the intracellular Ca2+ concentration is 

under stringent maintenance which limits the free cytosolic Ca2+ concentration to 

approximately 100 nM whereas the extracellular environment has a concentration of 

approximately 1-2 mM (68). Cytosolic Ca2+ is mainly controlled by three seperate 
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mechanisms. First, the compartments in the cytosol, such as ER and mitochondria, can take 

up and release Ca2+. Second, the channels and pumps on the plasma membrane, such as the 

calcium release-activated channels (CRAC) and plasma membrane Ca2+ ATPases (PMCA), 

can control the entry and extrusion of Ca2+. Finally, cellular proteins such as calmodulin, 

which have a broad variety of affinities, can chelate Ca2+. Thus, the universal mechanism for 

Ca2+ signaling is the entry of calcium via the plasma membrane or the release of calcium from 

intracellular stores. Entry through plasma membrane or release of calcium from stores leads to 

the elevation of the cytosolic Ca2+ level and Ca2+ binding to proteins, which could further 

activate downstream effectors such as transcription factors and enzymes and lead to 

physiological changes. In addition, dysfunctions in calcium signaling can cause many 

pathological states, including cancer. The changes observed in calcium signaling in cancer 

cells usually include increased stimulated Ca2+ influx, sustained Ca2+ oscillations, lower basal 

Ca2+ and up-regulated SOCE, all of which can alter cell proliferation, intercellular 

communication and cell migration and promote resistance to apoptosis and oxidative stress 

(69-71). The cause of such alterations is often the irregular expressions of key components in 

the calcium pathways (72), such as PMCA (73-75), STIM (Stromal Interaction Molecule) 

/ORAI (ORAI Calcium Release-activated Calcium Channel Protein) (76-78) or the transient 

receptor potential (TRP) channels (79, 80). There are also studies that have suggested that the 

deregulation of intracellular Ca2+ stores, mitochondria and ER is responsible for the evasion 

of apoptosis in cancer cells (81).  

5.2.2 The role of calcium signaling in melanoma pathogenesis 

While the involvement of abnormal calcium signaling in melanoma pathology is indisputable 

as well as for the other malignancies, the key molecular players that affect melanoma 

pathology and underlying mechanisms remain to be identified in the field of melanoma 

research. Within the healthy human epidermis, a steep Ca2+ gradient is maintained. The Ca2+ 
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level in the basal layer is relatively low, but it progressively increases towards the outer layer. 

The Ca2+ level is highest in the stratum granulosum and drops to a minimum in the stratum 

corneum. The Ca2+ gradient is determined by the Ca2+ uptake and release of keratinocytes. 

This Ca2+ gradient promotes the sequential differentiation of keratinocytes as they migrate 

from the bottom to the outer layer of the epidermis to form the impermeable barrier of the 

skin. Thus, calcium signaling plays an important role in cell adhesion, cell-to-cell 

communication and the intracellular signaling of keratinocytes. Since keratinocyte 

differentiation is crucial to the formation of an intact epidermal barrier, the disruption of the 

epidermal barrier is involved in the development of diseases, including BCC and SSC. In the 

epidermis, the keratinocytes work with the neighboring melanocytes to produce photo-

protective melanin from the unique organelle melanosome, which is found in melanocytes. 

Through their interactions with keratinocytes, the proliferation, adhesion and migration of 

melanocytes are controlled (82, 83).  

Melanomas derive from the melanocytes or their progenitor cells in the basal layer of the 

epidermis. The developments of melanomas reflect an interdependence between 

environmental and host factors; it is a result of causal mutation and the consequent 

dysregulation of signaling pathways. The Clark model of melanoma progression (depicted in 

Graph 2) describes the histological features that can be identified during the transformation of 

normal melanocytes into a malignant melanoma (84). On the molecular level, the concomitant 

multi-step mutations are critical contributors to this progression. In the first phase of the Clark 

model, the abnormal proliferation of melanocytes, which is caused by the exclusive somatic 

mutation of NRAS or BRAF, results in the activation of the ERK-MAPK pathway, leading to 

the formation of benign nevi. The growth of benign nevi is suppressed by the senescence 

which is controlled by the expression of INK4A. In the next phase, the melanoma cells 

acquire the mutation of CDKN2A, PTEN, P53 or MITF amplification (85, 86). The 
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deactivation of tumor-suppressor genes and increased expression of the oncogene lead to 

aberrant cell proliferation, DNA repair, susceptibility to cell death and the development of 

dysplastic nevi from benign nevi. Eventually, the alteration of the wingless-type mammary 

tumor virus integration-site family (WNT) pathway disrupts the association of E-cadherin and 

β-catenin. The loss of E-cadherin, the expression of N-cadherin and aberrant ɑVβ3 integrin 

further decrease the adhesion of melanoma cells, which leads to the metastasis of the 

melanoma (87). As a universal second messenger molecule, Ca2+ is involved in many of these 

signaling pathways. For example, the activation of mitogen-activated protein kinase (MAPK) 

and WNT can be triggered by a calcium influx (88, 89), and downstream extracellular signal-

regulated kinase (ERK) is also regulated by calcium (90). In addition, important downstream 

transcription factors such as microphthalmia-associated transcription factor (MITF), NF-κB 

and NFAT are also calcium dependent (91, 92).  
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Graph 2: Biologic Events and Molecular Changes in the Progression of Melanoma. 

(Adapted from Arlo J. Miller and Martin C. Mihm, N Engl J Med 2006; 355:51-65.) 

 

Along with its role, the basic questions concerning the involvement of Ca2+ signaling are as 

follows: 1) Are there any differences in Ca2+ signaling between melanocyte and melanoma 

cells? 2) How does Ca2+ signaling contribute to the progression of melanoma? 3) Which Ca2+ 

signaling pathways are involved? Many efforts have been made to answer these questions in 

recent decades. In the early 1980s, researchers found that the calcium chelator EGTA, and 

voltage-gated Ca2+ channels (CaV), can affect the proliferation and migration of melanoma 

cells and thus established the first link between Ca2+ signaling and melanoma (93). However, 

this did not exclude the possibility of the involvement of other channels (94). Allen and 

colleagues subsequently characterized the ion channels in four different human melanoma cell 

lines and concluded that the melanoma cell lines displayed different patterns of ion channel 

expression, including calcium channels such as CRAC and CaV (95). The transient receptor 

potential (TRP) channels, especially melastatin 1 (TRPM1), were found to be regulated by the 

transcription factor MITF in melanocytes and melanoma; TRPM1 has a lower expression in 

primary melanoma and was originally identified as a metastasis suppressor (96-99). The 

research on murine melanoma line B16 revealed that the expression of melastatin is inversely 

correlated to the metastatic potential of these melanoma cells (97, 98). The TRPM channels 

belong to a superfamily of up to 30 members that can transport Ca2+, Mg2+ and Na2+. In 

addition to TRPM1, several other family members have been identified as functional in 

keratinocytes, melanocytes and melanoma. TRPV1, TRPV3, TRPV4 and TRPA1 are 

involved in the control of keratinocyte differentiation, inflammation response and hair growth 

(100-102); the TRPA1 and TRPML3 channels have also been found to be functional in 

melanocytes and melanoma cells (103, 104). To date, TRPM1 is generally agreed as the 
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channel required for melanin synthesis in melanocytes and cancer marker for the melanoma 

progression (105).  

With regard to cytosolic Ca2+ homeostasis, the CRAC channels are the determinant factors. 

The STIM and ORAI isoforms are important regulators in both normal and tumor tissue (106, 

107). While there are multiple isoforms of both, namely STIM1, STIM2, ORAI1, ORAI2 and 

ORAI3, the expression of the isoforms determines the SOCE response in different cells (108), 

and the amplitude of SOCE is determined by the relative expression of STIM and ORAI in 

such contexts (109). The first report on SOCE from melanoma cells was based on the findings 

that sustained SOCE could activate the protein kinase B/Akt signaling pathways, thus control 

proliferation of B16 melanoma cells, providing apoptosis resistance (110). This study features 

the mitochondria as the critical buffering pool to SOCE for keeping the ORAI channels open 

and maintaining robust Ca2+ entry since the expression of STIM1/ORAI is on the same level 

in both non-malignant and malignant B16 cells. The STIM and ORAI isoforms were also 

investigated in primary human melanocytes (111); and the study found that STIM2 and 

ORAI1 are the predominant isoforms expressed, and that SOCE controls endothelin-1-

induced melanin production. This study also indicated that STIM and ORAI could potentially 

regulate the pigmentation of skin upon UV radiation; they thus play an important role in 

adaptive tanning, which is protective against skin lesions by UV irradiation. The same authors 

also examined the contribution of STIM and ORAI in human melanoma cells (112), finding 

that STIM2/ORAI-controlled SOCE is a critical factor in melanoma phenotype switching. 

The silencing of STIM2/ORAI1 could increase the MITF expression and proliferation of 

melanoma cells, but it reduces their potential for migration. Therefore, STIM2/ORAI1 could 

be pharmacologically targeted to limit the invasion and metastasis of melanoma. Further 

studies have found that SOCE regulates the proliferation and migration of melanoma via the 

Extracellular signal-Regulated Kinase (ERK) signaling pathway, which provides the link 
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between SOCE and MAPK signaling in melanomas (113). Other recent studies have 

identified different mechanisms with regard to SOCE and melanoma invasion. 

STIM1/ORAI1-mediated Ca2+ oscillations have been found to promote melanoma invasion by 

affecting invadopodium assembly and extracellular matrix (ECM) degradation (114). Finally, 

Soboloff and colleagues found that WNT5A controls protein kinase C-mediated 

phosphorylation and SOCE in invasive melanoma, which provides another clue as to the 

function of STIM/ORAI (115). Taken together, these studies highlight the heterogeneity of 

SOCE in melanoma, but they all provide important knowledge regarding melanoma 

proliferation and migration. 

In summary, with regard to the role of calcium signaling in melanocytes and melanoma, the 

findings of previous studies provide important evidence and make it possible to identify 

interesting implications. However, due to the dynamic nature of calcium signaling and its 

complexity, additional research is required to fully answer the questions concerning the 

mechanisms and their potential use in therapeutics. 

 

5.3 Redox signaling in melanoma 

5.3.1 Redox signaling in cancer 

The reactive oxygen species (ROS) are unstable and bio-reactive species containing oxygen, 

including superoxide anion (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH-). 

They were considered as the byproducts from aerobic metabolism from mitochondria in the 

cells. These molecules have different physical and chemical properties that allow them to 

react with various biological targets, including lipids, DNA and proteins. Thus, ROS were 

considered as the damaging factors in cells (116). However, in recent decades, it has become 

apparent that ROS molecules can also serve as signals for regulating physiological and 
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pathological processes (117-119). The cysteine residues in the proteins exist in the form of 

thiolate anion, which is susceptible to oxidation; thus, the reversible oxidation of the thiol 

group serves as a biological function “switch” and a signal transduction mechanism (120-122).  

In cancer cells, the constitutive activation of signaling pathways related to proliferation leads 

to higher levels of bio-synthesis and energy metabolism. As a consequent of abnormal 

metabolic activity, cancer cells usually generate more ROS from mitochondria, ER or the 

NADPH oxidases (123, 124), which leads to a markedly higher intracellular ROS level 

compared to that of normal cells (70). Therefore, it was proposed that an elevated ROS level 

causes DNA damage and genomic instability, which could lead to tumorigenesis. In addition, 

it was found that, in some cancer cells, the ROS are essential for proliferation, migration and 

survival. The widely accepted explanation of it is that the important signaling pathways in 

these cell can be activated by ROS molecules (125-128). Furthermore, to control their redox 

balance, cancers prompt a higher antioxidant activity (129, 130), which could be targeted for 

therapeutic purposes (131, 132). Thus, there are many drugs that are designed to affect the 

redox homeostasis or ROS-regulated signaling pathways to either eliminate cancer cells or 

sensitize them to other therapeutic measures. The main methods used to achieve such ends 

include 1) artificially inducing the generation of ROS, 2) depleting intracellular antioxidant 

pools such as GSH and NADPH, 3) inhibiting critical enzymes such as SOD, thioredoxin, 

NADPH oxidases and 4) manipulating ROS-related signaling pathways.  

5.3.2 Redox signaling in melanocytes and melanoma 

Due to the complexity of their functions, ROS also play distinct roles in various aspects of 

melanoma development, including 1) melanomagenesis, 2) melanoma progression and 

metastasis and 3) therapeutic resistance.  

Upon UV exposure, melanocytes produce melanin through a series of chemical reactions 

based on the precursor L-tyrosine. The end products are either eumelanin or phaeomelanin, 
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which determine skin and eye color. The biosynthesis of phaeomelanin requires glutathione; 

thus, UV-induced production of phaeomelanin may compete with the antioxidant system for 

GSH and cause oxidative stress. Furthermore, under normal physiological condition, melanin 

protects the skin from UV and oxidative stress (133), but, in the presence of iron, 

phaeomelanin and the intermediate product S-cystainyldopa can also serve as prooxidants in 

melanoma cells. The oxidized melanin can react with O2 to form H2O2 and other radicals; 

therefore, the synthesis of melanin can produce ROS and disturb homeostasis, and this likely 

contributes to oxidative stress-induced genome instability and the malignant transformation. 

Another source of ROS in melanocytes is UV-radiation-induced inflammation; phagocytic 

cells can produce both ROS and reactive nitrogen species (RNS) from the respiratory burst, 

and phagocytes can invade the tissue and release H2O2. Despite its potential to cause 

inflammation and DNA damage, UV radiation can result in an impaired antioxidant defense. 

According to some studies, UV radiation suppresses the enzymatic activity of catalase, 

glutathione reductase and SOD in skin cells (134-136). It has been reported that UVA 

radiation upregulates the expression of thioredoxin-interacting protein which inhibits the 

scavenging activity of thioredoxin and promotes melanoma intravasation (137). Thus, by 

weakening antioxidants, UV radiation can also cause an elevation of intracellular ROS level. 

To eliminate the detrimental effect of UV exposure and the bio-synthesis of melanin, cells 

require a more active antioxidant system; however, this, in turn, could also enhance cell’s  

resistance to apoptosis and lead to a high stress tolerance, which could cause neoplastic 

transformation (138, 139). To eliminate the elevated ROS, cells of melanocytic origin have a 

higher antioxidant capacity when compared with keratinocytes (140). In primary melanomas, 

the expression of SOD and catalase is higher than in the normal skin and nevi (141, 142), 

which contributes to the resistance against internal oxidative stress. The third source of ROS 

involved in melanoma formation is related to the abnormal mitochondrial metabolic activity; 

in a fraction of melanoma cells, the oxidative phosphorylation (OXPHOS) is upregulated. 
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High level of mitochondrial respiration leads to excessive ROS generation, while drug 

resistance is also increased (143).  

With regard to the progression of melanoma, ROS mainly serve as the signaling molecules 

influencing the major pathways for the regulation of proliferation, metastasis, angiogenesis, 

immune escape, microenvironment manipulation and stress resistance (140, 144). The 

constitutively activated MAPK signaling in melanomas via mutated BRAF is a key modulator 

of melanoma initiation and progression; furthermore, it can regulate ROS production and 

coordinate with P53 to suppress apoptosis (145). The downstream serine/threonine kinase Akt 

activated via MAKP signaling can decrease the activity of phosphatase and tensin homolog 

(PTEN), which results in the attenuation of the antioxidant network in a melanoma (146). 

Furthermore, it has been found that Akt can induce the expression of NOX4 in a melanoma 

and that the produced ROS contribute to metastasis (147).  

As mentioned previously, the NF-κB signaling pathway is critical for cell survival and 

apoptosis control. In melanoma, anomalous NF-κB signaling has been found to be related to 

the intracellular H2O2, and the recruitment of co-activator AP-1 is correlated to the 

intracellular O2
-. Together the activation of this pathway contributes to increased apoptosis 

resistance in melanomas (148). In addition, ROS generated by NAD(P)H oxidase (NOX) can 

also activate the NF-κB to enhance the proliferation of melanomas (149). The chemokines 

produced by the activation of NF-κB can also lead to the autonomous growth and invasion of 

melanoma cells by autocrine and paracrine signals. AP-1 regulates the expression of matrix 

metalloproteinases (MMPs) 1 and 2 (150, 151); thus, together, the activation of NF-κB and 

AP-1 by ROS could contribute to melanoma progression by enhancing the potential for 

migration and invasion of melanomas.  

Since ROS generation is higher in melanoma cells and they utilize an upregulated antioxidant 

system to control the redox balance, common strategies for targeted therapy are to induce 
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additional ROS generation or to inhibit the antioxidants with drugs. Buthionine sulfoximine 

(BSO), disulfiram (DSF) and 2-methoxyestradiol (2-ME2) were used in preclinical models to 

inhibit the endogenous antioxidants in melanoma (152-155). Both BSO and DSF have been 

used to manipulate the GSH pool, while DSF can also generate O2
- and induce apoptosis. 2-

ME2
 was tested in a mouse model for inhibiting SOD activity (156). It was found to have a 

strong anti-angiogenic effect, which leads to the inhibition of tumor growth in melanomas 

(157). In a study on metabolic activity in melanoma subpopulations, it was found that 

blocking mitochondrial respiration and inducing mitochondrial oxidative stress can overcome 

the drug resistance of melanoma cells (143, 158). Chemotherapy, radiotherapy and 

immunotherapy, while not directly intended to disturb the redox state of cells, as well as 

therapy-induced apoptosis and other effects also promote ROS generation (159, 160). 

 

5.4 Mitochondria in melanoma: Liaison between metabolism and signaling 

5.4.1 Mitochondria as the hub of calcium and redox signaling 

Mitochondria have become a focal point in biomedical research field in recent decades due to 

their critical role in both signaling and metabolism. Mitochondrial abnormalities are found to 

be involved in numerous pathologies, including cardiovascular disorders, neurodegenerative 

disorders, diabetes and cancer (161). These findings emphasize the importance of the precise 

regulation of mitochondrial calcium and ROS.  

As the main bioenergetic organelles, mitochondria produce ATP through the OXPHOS of the 

substrate, which is essentially a process of electron transfer via the respiratory electron 

transfer chain complexes to O2. This electron transfer is also coupled to the export of protons, 

which drive ATP synthesis from complex V. However, the electron transfer is not completely 

efficient. Electrons may escape from the transporters and react with nearby O2 which leads to 
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generation of ROS molecules (162, 163). Ca2+ plays an important role in OXPHOS by 

activating key enzymes such as isocitrate dehydrogenase, pyruvate dehydrogenase and 

ketoglutarate dehydrogenase (164, 165). Therefore, Ca2+ is taken up through the 

mitochondrial calcium uniporter (MCU) at the expense of mitochondrial membrane potential 

(166). As a consequence, mitochondrial ATP production and ROS generation are connected 

to mitochondrial calcium uptake; mitochondrial calcium uptake simulates respiratory activity 

and ROS production, but the ROS in turn regulate MCU activity by oxidizing the active 

cysteine residues in the MCU complex and its regulators (167). Such Ca2+-induced ROS 

generation is dependent on respiratory activity. Complexes I and III have been found to be the 

major sources of ROS, and the primary ROS molecules are very often H2O2 and O2
- (168-

170). Mitochondrial Ca2+-sensitive K+ has been identified to be another crosstalk pathway for 

Ca2+ and ROS; calcium-induced K+ influx to mitochondrial matrix can lead to alkalinization 

and ROS generation (171). Intrinsically, ROS can also regulate the activity of mitochondrial 

enzymes such as succinate dehydrogenase, ɑ-ketoglutarate to dehydrogenase and aconitase to 

limit the respiration rate, perhaps as a feedback mechanism (172). In addition, Ca2+ also 

induces NO generation, which can inhibit ETC complexes and produce ROS (173, 174). 

Since mitochondrial calcium uptake can buffer the Ca2+ increase in the surrounding cytosol, 

the mitochondria are crucial players in the feedback and shaping of global Ca2+ signals (175, 

176). Hence, the mitochondrial redox status is also influenced by global Ca2+ signaling. The 

mitochondria are very dynamic organelles whose structure, distribution and mobilization can 

be adjusted in response to energy requirements or signaling transduction (177). Thus, in a 

large background, the rearrangement of mitochondria could facilitate crosstalk between 

mitochondrial Ca2+/ROS and inter-organelle communication (178-182).  

The other function of mitochondria is sensing intracellular stress and inducing the apoptosis. 

Mitochondrial calcium overload can trigger the opening of permeability transition pores 



33 

 

(PTPs) on the out mitochondrial membrane (OMM) to initiate apoptosis. While the critical 

thiol oxidation of the PTPs serves as another sensing mechanism, the opening of PTPs could 

increase mitochondrial ROS production through the respiratory chain complexes (183, 184). 

Therefore, the inter-dependence between mitochondrial Ca2+ and ROS could be important for 

the regulation of stress-induced apoptosis. 

5.4.2 The mitochondrial function in melanoma 

As mentioned previously, the mitochondria integrate metabolic activities, Ca2+ signaling and 

redox signaling to regulate various aspects of physiological function in both healthy and 

cancerous cells. When it comes to melanoma research, mitochondria are studied in terms of 

the role they play in abnormal metabolic activity and their involvement in those signaling 

pathways that promote aggressive behavior in the hope of developing therapeutic strategies.  

The metabolic shift between glycolysis and respiration depends on the availability of 

substrates and oxygen in normal cells. The shift of metabolic activity towards glycolysis in 

cancer cells under normoxia was termed Warburg effect, which is a hallmark of cancer (185). 

Studies focused on cell viability and intracellular ATP levels have suggested that melanocytes 

are more sensitive to the inhibition of mitochondrial respiration, while, in contrast, melanoma 

cells are more sensitive to the inhibition of glycolysis (186, 187). Further analyses of the 

metabolites of melanocytes and melanoma cells also indicate that glycolysis is more active in 

melanoma cells (188), although mitochondrial respiration occurs even under hypoxia. 

However, in some cell lines or in certain subpopulations of melanoma, mitochondrial 

respiration is upregulated, which suggests the existence of a switching mechanism that allows 

melanoma cells to adapt to the microenvironment (189).  

The heterogeneity of melanoma metabolism is likely caused by the complexity of the driver 

signaling pathways during carcinogenesis and progression, which result in metabolic 

reprogramming to suffice the need for energy of cancer cells (190). The predominant 



34 

 

oncogenic mutation in melanoma, BRAF V600E, causes constant activation of the MAPK 

pathway through the BRAF-MEK-ERK axis. It has been reported that the inhibition of BRAF 

also causes downregulation of glycolytic enzymes and glucose transporters (186, 191), which 

correlates with the results obtained from studies on inhibition of ERK activation, suppression 

of downstream transcription factor hypoxia-inducible factor 1α (HIF1α) and v-Myc avian 

myelocytomatosis viral oncogene homolog (MYC) (191). Furthermore, a recent study found 

that the inhibition of BRAF can force melanoma cells to switch to mitochondrial respiration 

and that BRAF suppresses PGC1α via the downregulation of MITF (192, 193). This evidence 

suggests that the BRAF mutation can suppress OXPHOS and enhance glycolysis, both are 

possibly important for the malignant transformation of melanocytes, as the BRAF mutation 

occurs during the early stages of melanoma. However, mitochondrial respiration has been 

reported to be elevated in metastatic melanoma cells (194, 195) and in subpopulations of 

melanoma cells with characteristics such as slow-cycling and/or drug resistant (158, 189). 

Thus, plausible predictions are that elevated glycolysis is the metabolic feature of malignant 

transformation and it supports rapid proliferation in primary melanoma but that high-level 

mitochondrial respiration benefits the progression and survival of melanoma.   

 

5.5 ER-mitochondria contacts in melanoma 

The ER is the largest membrane-bound organelle, and is involved in various cellular functions, 

including protein synthesis and Ca2+ storage. Through electron microscopy, it was discovered 

that ER can form contact sites with organelles including mitochondria, Golgi complexes, 

peroxisomes, endosomes, lysosomes, lipid droplets and plasma membranes (196, 197). 

Among all of these contact sites, the ER-to-mitochondria contact sites are the most important 

and well characterized (198). They are defined as the regions where the membranes of two 

organelles are closely tethered by membrane proteins without any fusion or direct connection 
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(199, 200). The ER membrane at the contact sites is named the mitochondrial-associated ER 

membrane (MAM), which has been found to be a specialized membrane domain. The tethered 

network has a very dynamic structure that responds to different stimuli (201, 202). The length 

of ER-to-mitochondrial contacts has been measured at 10~30 nM (198). This proximity 

facilitates crosstalk between ER and mitochondrial functions, the majority of which is still not 

fully understood. To date, several main functions of the contact sites have been well 

characterized: inter-organelle lipid exchange; the regulation of mitochondrial biogenesis, 

mitochondrial dynamics and inheritance; coordinating Ca2+ transfer; and mediating stress 

response (203, 204). These functions are intertwined and form an integrated communication 

system between two organelles.  

The role played by the ER-to-mitochondria contact sites and MAM in cancer and in 

melanomas in particular has not been fully investigated, although there is evidence that 

indicates their importance. For example, the MAM can function as a specialized “docking site” 

for signaling molecules to facilitate the regulation of nearby components from critical signal 

pathways. The promyelocytic leukemia protein (PML) located in the MAM could modulate 

the IP3R-Akt signaling pathway to control apoptosis (205) and determine cancer cell fate 

(206). The PTEN can also regulate the Inositol trisphosphate receptor-AKT Serine/Threonine 

Kinase (IP3R-Akt) signaling pathway after being recruited to the MAM. IP3R activation is an 

important event in determining ER Ca2+ release, which, as mentioned previously, initiates the 

SOCE response and ER-to-mitochondria calcium transfer. Thus, these studies imply that the 

ER-to-mitochondria contact sites could be the hotspots for controlling IP3R and Ca2+ 

signaling event, which governs many aspects of melanoma cellular function. Furthermore, the 

upstream activator of Akt, the target of rapamycin complex 2 (mTOR2), has been found to be 

recruited to the MAM by the stimulation of growth factor (207). mTOR is a crucial sensor for 

nutrient availability and metabolism control. Its activation in cancer cells leads to a 



36 

 

dependence on mitochondrial bioenergetics (208). Based on these studies, another clue could 

be the ER to mitochondria contact sites are possibly the fundamental structure for the 

“metabolism switching” in melanoma cells.   

Another important role of ER-to-mitochondria contact sites concerns the mediation of stress 

response. ER stress is a complex signaling event triggered by the accumulation of unfolded 

proteins or the dramatic disruption of the ER homeostasis. During the ER stress response, the 

ER morphology changes, and the contact sites are strengthened to adapt to the stress; 

mitochondria have been found to relocate towards the perinuclear ER, perhaps to provide the 

ATP for the response (209). If the stress is severe enough to cause cell death, apoptosis will 

be activated to eliminate the cells. There are studies that have demonstrated that, during this 

phase, the docking proteins can prompt apoptosis by inducing ER-to-mitochondria Ca2+ 

transfer, which leads to mitochondrial calcium overload (210, 211). Melanoma cells are 

extremely resistant to therapies due to the suppression of apoptosis, particularly at advanced 

stages (212, 213). By overexpression of suppressive genes, activating survival pathways or 

inactivation of pro-apoptosis pathways, they acquired the resistance (214). Therefore, some 

drugs that target BRAF-mutated melanoma cells are intended to induce apoptosis via ER 

stress (215) or to exploit the possibility of increasing apoptosis to overcome drug resistance 

(216-218). However, in this context, the influence of contact sites has rarely been investigated, 

thus there still remain many possibilities to investigate in terms of the manipulating of contact 

sites to sensitize melanoma cells for these drugs.   

 

5.6 The TMXs emerged from a genomic-wide screen for NFAT activation 

In 2013, Sonia Sharma et al. published a work on a genome-wide siRNA screen for NFAT1 

activation (219), in which the authors attempted to identify novel regulators of STIM and 

ORAI channels. They used thapsigargin to maximally activate the SOCE in Hela cells and 
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recorded the translocation of GFP-tagged NFAT1 as a readout. Among all the hits, the authors 

identified septins, which reorganize the plasma membrane domains and thus facilitate STIM1-

ORAI1 communication, as novel coordinators of SOCE. It. Notably, a set of thioredoxin-

related transmembrane protein TMX1, TMX3 and Thioredoxin Domain Containing 15 

(TXNDC15) showed relatively high level of inhibition of NFAT1 activation after siRNA-

guided knockdown in Hela cells, which indicates their possible involvement in the cytosolic 

Ca2+ handling.    

5.6.1 Thioredoxin-related transmembrane protein: What is known  

To date, four members of the TMX family have been identified. All of them possess a 

thioredoxin (Trx)-like domain with an active site sequence containing conserved cysteine 

residues, an N-terminal signal peptide and a transmembrane domain; thus, they are 

categorized as members of the thioredoxin (Trx) superfamily. The cellular localization of 

TMX proteins is distinct, but most characterizations have indicated that TMX1 (220), TMX2 

(221), TMX3 (222) and TMX4 (223) are predominantly expressed in the ER, partially on the 

related membrane structures. The first ER residing Trx to be identified was the protein 

disulfide isomerase (PDI), so the TMX proteins are also referred to as the members of the PDI 

family due to their similarity in structure and function. The typical PDI proteins contain four 

domains, a, b, b’ and a’, which are homologous to the cytosolic thioredoxin. The catalytic 

domains a and a’ contain tetrapeptide C-X-X-C active site sequences for disulfide bond 

exchange reactions, while the b domain is responsible for the interaction between enzyme and 

substrate proteins. The catalytic site in PDI is capable of both oxidation and reduction; thus, it 

can oxidize the substrate to reduce the active cysteine residues. In turn, the catalytic site can 

be oxidized by ER oxidase 1 (Ero1), and the electrons are ultimately transferred to molecular 

oxygen, which leads to the generation of H2O2 (224, 225).  
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Functional studies on TMX proteins are relatively scarce, and these proteins’ interaction 

partners and substrate proteins are largely unknown. TMX1 has been identified as a 

transforming growth factor-β-responsive gene in the human adenocarcinoma cell line; when 

expressed in HEK293 cells, it suppresses brefeldin A-induced apoptosis, which leads to the 

conclusion that it may help to relieve ER stress through reversible oxidation of the active site 

(220, 226). Later, it was found that TMX1 is enriched in the MAM (227) and that it controls 

the reprogramming of the metabolism by modulating the ER-mitochondrial Ca2+ flux (228). 

Notably, from the result in the study mentioned above, TMX3 is also partially localized to the 

MAM, which indicates a possible role in regulating MAM homeostasis. However, the early 

study only revealed that TMX3 has an active site motif as C-G-H-C, which might be a 

substrate for Ero1 or an unidentified oxidase, but, intriguingly, during the unfolded protein 

response, TMX3 expression is not upregulated (222). Based on the literature, TMX1 and 

TMX3 share several features of particular interest: First, they share the same active site motif 

involved in disulfide bond formation and may be involved in ER oxidative stress regulation; 

second, they are all localized in the MAM, which is important for mitochondrial function 

modulation; and, third, their involvement in cytosolic Ca2+ has never been reported or studied.  

5.6.2 NFAT signaling in melanoma 

The nuclear factor of activated T cells (NFAT) has been identified in nuclear extracts from 

activated T-cells, which binds to the interleukin-2 promoter (229, 230). It contains a cytosolic 

component which is regulated by phosphorylation via phosphatase calcineurin and nuclear 

GSK3 kinases, a nuclear co-activator activator protein 1 (AP1) and several other partners that 

are regulated by the RAS-MAPK signaling pathways (depicted in Graph 3). Originally, the 

NFAT1 was found to regulate T cell activation and differentiation, but it was later found to 

also be important in dendritic cells, B cells and megakaryocytes. In total, five family members 

have been identified thus far, but only four of them are regulated by cytosolic Ca2+ signaling, 
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which is the canonical pathway that has been extensively investigated and hence used 

frequently for screens. The primordial family member, NFAT5, is only activated by osmotic 

pressure stress. The members of the NFAT family play a crucial role in the development of 

many tissues, including skin (231), and the dysregulations of them are often involved in the 

development of cancer (232). The mutation of NFAT proteins is rare and not associated with 

cancer, but their overexpression and hyperactivity are involved in cancer progression and 

metastasis in lymphoma, breast cancer, prostate cancer, pancreatic cancer, T-cell acute 

lymphoblastic leukaemia (T-ALL), endometrial cancer and melanoma (233). This overview 

of previous studies indicates that the NFAT proteins can influence cell proliferation, 

migration and angiogenesis, as well as the immune response of cancer cells. 

 

Graph 3: The Ca2+-NFAT Signaling Pathway. (Adapted from Martin R. Müller and Anjana 

Rao, Nat Rev Immunol 2010;10:645-656.) 

 

The regulation of NFAT proteins is a very complicated network that includes Ca2+ signaling, 

phosphatases and kinases, various co-activators and an import and export system of the 

nucleus; thus, the mechanisms in the skin and melanomas are varied and not fully understood. 
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It has been suggested that the UV irradiation-induced calcium influx in the skin tissue can 

activate NFAT and contribute to the proliferation of keratinocytes (234, 235), but it also 

causes upregulation of COX-2, which is a proinflammatory, anti-apoptotic and pro-

carcinogenic factor (236). In contrast, further studies have found that Notch 1 and NFAT 

pathways together control the growth and differentiation of keratinocytes and that the loss of 

Notch 1 can lead to lower-level NFAT signaling, which may cause keratinocyte tumor 

development (235, 237). The use of immunosuppressant cyclosporine A (CsA), which inhibits 

the phosphorylation of NFAT by calcineurin for organ transplants in patients, has been found 

to increase the risk of cancers by suppression of the immune system. (238).  

The studies conducted over the past decade have indicated that NFAT signaling is involved in 

the proliferation, metastasis and apoptosis resistance of melanoma. Flockhart and colleagues 

found that, in metastatic melanomas, oncogenic BRAF V600E can activate NFAT2 and 

NFAT4, which leads to the expression of COX-2 and a poor prognosis (239). This work 

provided the first evidence that the NFAT signaling pathway is involved in major mutation 

events; however, this conclusion was based on a comparison between primary melanocytes 

and three BRAF mutation-positive cell lines, which meant that other melanoma cases were 

not considered. A later study found that permanently activated NFAT2 inhibits apoptosis in 

melanoma (240). More recent studies have found that NFAT1 promotes tumor growth and 

metastasis by increasing interleukin-8 and MMP3 expression; in addition, the expression of 

NFAT1 has been found to be inversely correlated with MITF expression in melanomas, which 

suggests that NFAT1 can promote melanoma dedifferentiation and immune escape (241, 242). 

Notably, as an alternative co-activator of NFAT proteins, FOXP3 expression is also related to 

the proliferation, apoptosis and modifying of the tumor environment in melanomas, which 

might be attributed to the NFAT pathway; however, due to the different models used in these 

studies, a more comprehensive overview is required (243-245). Finally, the inhibitor of 
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calcineurin CsA can also inhibit proliferation and induce apoptosis in melanoma cells (246, 

247), but, due to the complexity of the signaling pathways in which calcineurin is involved, it 

is not clear if NFAT proteins are also responsible in this case.  

 

5.7 Research focus and questions for the investigation 

As mentioned previously, the mitochondria are dynamic organelles that integrate Ca2+ 

signaling, redox regulation and bioenergetics to control important functions such as 

proliferation, migration and apoptosis in both normal and cancerous cells. As the 

communicative junction, the ER-mitochondria contact site is crucial for the integrated signal 

transduction, but a comprehensive understanding of the underlying mechanism in the context 

of melanoma pathogenesis and therapeutics is required. Previous studies on TMX1 and 

TMX3 have indicated their localization in the contact site and roles in controlling of cell 

metabolism in melanoma; however, the single cell-based model leaves many questions 

unanswered. Furthermore, TMX1 and TMX3 have been found to be the regulators of the 

NFAT1 signaling pathway, which plays important roles in many aspects of melanomas, but 

the mechanism behind this link was yet to be revealed.  
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6 Materials and Methods 

6.1 Materials 

6.1.1 Chemicals 

The chemicals, fluorescent dyes and other reagents used for this study are listed below. The 

chemicals for general use in the laboratory were purchased from Sigma-Aldrich (Darmstadt, 

Germany) if not included in the list. 

Table 1: Chemicals 

Chemical Supplier Catalog-/Order-

Number 

2-Mercaptoethanol Sigma M6250 

Antimycin A Sigma A8674 

Acrylamide-Bisacrylamide Sigma A2792 

Accutase Sigma A6964 

Agarose  Sigma A9539 

Bovine Serum Albumin Sigma A2153 

Ammonium chloride (NH4Cl) Sigma A9434 

Ammonium persulfate Sigma A3678 

1,2-Bis(2-Aminophenoxy)ethane-

N,N,N′,N′-tetraacetic acid (BAPTA) 

Sigma A4926 

Calcium chloride solution (CaCl2) Sigma 21115 

CellMask™ Green  ThermoFisher  C37608 

Chloroform (99 %) Sigma C2432 

Protease Inhibitor Cocktail Roche 05892970001 

Diethylpyrocarbonate (DEPC) Sigma D5758 

Dimethylsulfoxide (DMSO) Sigma D2650 

DTT Sigma D9779 

Ethanol Sigma 48075 

Ethylenediaminetetraacetic acid  Sigma E9884 

EGTA Sigma E4378 

FCCP Sigma C2920 

Fetal bovine serum Invitrogen/Gibco 10500064 

Fura-2 AM Invitrogen F1221 

FuGENE® HD Promega E2312 

GKT137831 Cayman Chemical 17764 

Glucose Merck 108337 

Glycine Applichem A1067 

Glycogen Sigma G1767 

H2O2 (10M) Sigma H1009 

HEPES  Sigma H7523 

Insulin solution (human) Sigma I9278 

Ionomycin Sigma I9657 

Isopropanol Sigma W292907 

M2 medium Sigma M7167 
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Magnesium chloride solution (MgCl2) Sigma M1028 

Methanol Sigma 322415 

MitoTracker™ Deep Red FM ThermoFisher  M22426 

MitoTEMPO Biomol Cay16621 

N-Acetyl-L-cysteine Sigma A9165 

N,N,N',N'-Tetramethylethylendiamin 

(TEMED) 

Sigma T9281 

NP-40 Sigma 73485 

Oligomycin A Sigma 75351 

PEG-catalase Sigma C4963 

Poly-L-ornithine hydrobromide Sigma P3655 

Potassium bicarbonate (KHCO3) Sigma 12602 

Potassium chloride (KCl) Sigma P9333 

Puromycin VWR 540222-25 

Rotenone Sigma R8875 

Sodium chloride (NaCl) Sigma S7653 

Sodium dodecyl sulphate (SDS) Sigma L3771 

Streptavidin Peroxidase Calbiochem 189733 

Thapsigargin (Tg) Invitrogen™ T7458 

Trizma® hydrochloride Sigma T5941 

Trizma® base Sigma T1503 

Triton™ X-100 Sigma X100 

TRIzol® Reagent Invitrogen™ 15596026 

TWEEN® 20 Sigma 93773 

 

6.1.2 Solutions and Culture Media 

The solutions, buffers and media in the following list were used for assays or cell culture 

according to the manufacturer’s instructions.  

Table 2: Solutions and Culture Media 

Item Supplier Catalog-/Order-

Number 

Dulbecco’s Phosphate Buffered 

Saline (DPBS) 

Invitrogen/Gibco 14190094 

L15 Leibovitz liquid medium Merck/Biochrom F 1315 

MCDB 153 basal medium Merck/Biochrom F 8105 

RPMI 1640 L-Glutamine+ Medium Invitrogen/Gibco 21875-034 

MEM-Medium + L-Glutamine Invitrogen/Gibco 31095-029 

Dulbecco's Modified Eagle Medium Invitrogen/Gibco 11965-084 

Opti-MEM™ Invitrogen/Gibco 31985070 

Ringer's buffer Home-made - 
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6.1.3 Solutions and buffer recipes 

The recipes for the home-made solutions are provided below. Unless indicated otherwise, 

these standard recipes were used for all experiments including calcium imaging and live-cell 

imaging. 

Table 3: Recipes for home-made solutions 

Solution Composition 

Ringer’s solution (0mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 

EGTA 1mM 

Ringer’s solution (0.25mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 

EGTA 1mM 

CaCl2 0.25mM  

Ringer’s solution (0.5mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 

EGTA 1mM 

CaCl2 0.5mM 

Ringer’s solution (1mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 

EGTA 1mM 

CaCl2 1mM 

Ringer’s solution (2mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 

EGTA 1mM 

CaCl2 2mM 

Ringer’s solution (10mM Ca2+) NaCl 145mM 

KCl   4mM 

Glucose 10mM 

MgCl2 2mM 

HEPES pH 7.4 10mM 
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EGTA 1mM 

CaCl2 10mM 

2% TU medium  

 

MCDB153 (80% of total volume) 

Leibovitz-15 Medium (20% of total volume) 

2% FCS 

1,68mM CaCl2 (1,68mM) 

2.5ng/ml Insulin 

TGH lysis buffer (100mL) 1% Triton X-100 (10mL of 10% stock) 

10% Glycerol (20mL of 50% stock) 

5M NaCL 1ml 50mM 

1M HEPES 5ml 50mM 

200mM EGTA 0.5ml 1mM 

1% sodium deoxycholate (10ml of 1% stock) 

dH2O 53.5ml 

  

 

6.1.4 Primers for PCR 

The primers used for qPCR experiments are listed below (From 5’ to 3’). 

Table 4: Primers for PCR 

Transcript Forward Reverse 

TMX1 AGTCCTGGTGCTGTTGCTTT TTCTCCCCATTCAGCAAAAC 

TMX3 TTGCTATGGATGGCTTCCTC TGGGACTGTCAATTCATCCA 

NFAT1 AAACTCGGCTCCAGAATCCA TGGACTCTGGGATGTGAACT 

NFAT2 GCTATGCATCCTCCAACGTC AGTTGGACTCGTAGGAGGAG 

NFAT3 ACACAGCCCTATCTTCAGGA ATCTTGCCTGTGATACGGTG 

NFAT4 ACCCTTTACCTGGAGCAAAC CTTGCAGTAGCGACTGTCTT 

NFAT5 CGTGTGTGTGGCTTCTATGT TGCCTCTCAATCAGAGAGAG 

XBP1 CACCTGAGCCCCGAGGAG TTAGTTCATTAATGGCTTCCAGC 

TBP CGGAGAGTTCTGGGATTGT GGTTCGTGGCTCTCTTATC 

 

6.1.5 siRNA and shRNA 

The siRNA and shRNA were used for the knockdown of target gene expression, the 

sequences are provided in Table 5. The scrambled control siRNA was purchased from the 

same supplier accordingly. For shRNA experiments, the pLKO.1 empty vector was used as 

the control. The design, synthesis, sequencing and quality check were all done by the 

manufacturers.  

Table 5: siRNA and shRNA 
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Item Sequence Supplier Catalog

/Order 

Number 

siTMX1 5’-GAGAAGAUCUUGAGGUUA A dTdT-3’ MicroSynth 481616 

siTMX3 5’-GGAGUUCGAGGUUAUCCAA dTdT-3’ MicroSynth 2920934 

siNFAT1 5’-CUGAUGAGCGGAUCCUUA A dTdT-3’ Sigma SASI_H

s01_001

95473 

shTMX1_1 5’-

CCGGCGTGCCAAGCAATAAGATTTACTCGAGT

AAATCTTATTGCTTGGCACGTTTTTTG-3’ 

 

Sigma TRCN0

0001502

91 

shTMX1_2 5’-

CCGGGCTGAAAGTAAAGAAGGAACACTCGAG

TGTTCCTTCTTTACTTTCAGCTTTTTG-3’ 

Sigma TRCN0

0003385

83 

    

 

6.1.6 Primary Antibodies 

The primary antibodies used for western blot analyses and immunohistochemistry are listed 

below. 

Table 6: Primary Antibodies 

Target Supplier Catalog-/Order-Number 

TMX1 Abcam Ab37876 

TMX3 Provided by Prof. Lars Ellgaard 

(Copenhagen, Denmark) 

/ 

GAPDH Cell Signaling Technology #2118L 

BiP and PDI Provided by Prof. Dr. Richard 

Zimmermann (Homburg, Germany) 

/ 

NFAT1 Cell Signaling Technology #5861S 

 

6.1.7 Assay kits 

Commercially available kits were used for specific assays and procedure. Any supplementary 

components were made following manufacturer’s recommendations. 

Table 7: Commercially Available Kits  

Item Supplier Catalog-/Order-

Number 

Amaxa Nucleofector™ Kits for Human 

Melanocytes (NHEM-neo) 

LONZA VPD-1003 
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Amaxa P2 Primary Cell 4D-Nucleofector® LONZA V4XP-2024 

Amaxa SF Cell Line 4D-Nucleofector® LONZA V4XC-2024 

Calcineurin cellular activity assay kit ENZO BML-AK816-0001 

CellTiter-Blue® Promega G8081 

Complete Proteinase-Inhibitor cocktail Roche 05892791001 

HTS Transwell®-24 well permeable support Corning® 3422 

HTS Transwell®-96 well permeable support Corning® 3374 

Human IL-8/CXCL8 DuoSet ELISA R&D systems DY208 

HiSpeed Plasmid Maxi Kit Qiagen 12662 

Pierce™ BCA Protein Assay Kit ThermoFisher 23225 

QuantiTect SYBR Green kit Qiagen 204145 

Superscript II Reverse Transkriptase Kit Invitrogen 18064-014 

 

6.1.8 Peripherals 

The peripheral items used for the experiments are listed below. 

Table 8: Peripheral materials 

Item Supplier Catalog-/Order-

number 

Baysilon-Paste high viscosity GE Bayer Silicones 700514 

Coverslip (25mm) ORSATec / Kindler 02R1215-D 

Immersol 518F fluoresence free, 23° C Zeiss 444960-0000-000 

Immersol 518F fluorescence free, 37° C Zeiss 44970-9010-000 

nitrocellulose membrane GE Healthcare 10600003 

 

6.1.9 Devices 

The devices used in the experiments are listed below; small devices for general laboratory use 

are not listed. 

Table 9: Devices  

Item Supplier Function 

4D-Nucleofector™ System LONZA Transfection of siRNA 

Nucleofector™ 2b Device LONZA Transfection of siRNA 

Centrifuge 5415C Eppendorf Centrifugation 

Infinite M200 Pro Tecan Plate reader 

Nucleic Acid Electrophoresis Systems BIO RAD Electrophoresis 

Cell Observer Z1 Zeiss Live cell imaging 

Evolve® 512 EMCCD Camera PHOTOMETRICS Live cell imaging 

Olympus IX70 Olympus Calcium imaging 

Polychrom V Till Photonics Calcium imaging 

CCD Camera Imago Till Photonics Calcium imaging 
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CLARIOstar® BMG LABTECH Plate reader 

BioPhotometer Eppendorf Spectrophotometer 

 

6.1.10  Microscopes 

6.1.10.1 Zeiss Cell Observer Z1 

The live cell imaging experiments performed for the current study were either done on an 

automatic Zeiss cell observer Z1 or a similar semi-automatic Zeiss cell observer D1 system 

including a Colibri LED light source, an incubation chamber with gas and temperature control 

units, fast acquisition cameras and a special trigger unit (used to achieve high frame rate 

imaging). The setup is as shown in the photo below. 

 

Graph 4: Zeiss Cell Observer Z1 imaging setup. A: Computer B: Cell Observer Z1 C: 

Evolve®512 Delta EMCCD Camera D: Atmosphere control E: Temperature control F: Power 

supply unit 

 

6.1.10.1.1 LED sets 

The LEDs are installed in a Colibri system. They provide light sources with fixed wavelength 

for the excitation of different fluorescent proteins or dyes. The excitation wavelengths of LED 

sets and beam combiners are listed below.  

Table 10: LED Sets on the Zeiss Colibri 2 System  
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LED (wavelength) Beam Combiner 

400nM Beam Combiner 425nm+Beam Combiner 490nm 

420nM Beam Combiner 425nm+Beam Combiner 490nm 

490nM Beam Combiner 565nm+Beam Combiner 490nm 

505nM Beam Combiner 565nm+Beam Combiner 490nm 

555nM Beam Combiner 565nm+Beam Combiner 490nm 

 

6.1.10.1.2 Emission Filters and Dichroic Mirror Sets 

The emission signals from the fluorescent proteins passed through a dichroic system and are 

filtered by the emission filter sets before being detected by the sensor of camera. The filter 

and dichroic mirror system are built on an automatic or semi-automatic revolver which can be 

controlled by a computer. The emission filter and matched dichroic mirrors are listed below.  

Table 11: Emission Filters and Dichroic Mirror Sets  

Dichroic Mirror Emission Filter 

FT 509nm 528nm/40 

FT 505nm 525nm/50 

FT 520nm  542nm/27 

BS 458nm 483nm/32 

FT 573nm 630nm/92 

 

6.1.10.1.3 Objectives 

Different objectives were used to visualize cellular signals. These objectives are listed below. 

Table 12: Objectives on the Zeiss Cell Observer  

Manufacturer Type Magnification Numerical 

Aperture 
Serial number 

Zeiss Fluar  2.5× 0.12 420120-9900 

Zeiss Fluar 10× 0.5 420140-9900 

Zeiss Fluar 20× 0.75 420150-9900 

Zeiss Fluar 40× 1.3 420260-9900 

Zeiss Fluar 100× 1.45 421190-9900 

Zeiss Plan-NEOFluar 40× 0.75 420360-9900 
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6.1.10.1.4 Cameras 

To achieve proper time resolution for live cell imaging, fast acquisition cameras were used for 

the experiments. The specifications of cameras are listed below. 

Table 13: Cameras for Live Cell Imaging  

Manufacturer Type Sensor Array Size Pixel Size 

Zeiss Axiocam 702 mono IMX174 Exmor 

Pregius 

1928×1200 5.86× µm 

Photometrics® Evolve® 512 Delta E2V CCD97 512×512 162 µm 

 

6.1.10.2 Olympus IX70 Setup 

The Olypmus IX70 imaging setup was used for the ratiometric calcium imaging experiments; 

the components of full system are listed below. 

Table 14: Olympus IX70 Components 

Components Function 

Olympus IX70 microscope Imaging 

Computer Data processing 

Polychrome V Monochromator Excitation light source 

CCD-Camera T.I.L.L. Imago Recording 

20× Objective Visualization 

Filter sets Customized for Fura-2 spectrum 

 

6.1.11  Cell Lines 

All melanoma cell lines labeled with “WM” and “Lu” are a gift from Prof. Dr. Meenhard 

Herlyn (The Wistar Institute, Philadelphia, USA); additional melanoma cell lines were 

purchased from German Collection of Microorganisms and Cell Cultures GmbH and 

American Type Culture Collection. The primary human melanocytes were a gift from Dr. 

Hedwig Stanisz-Bogeski (Dermatology, Göttingen).  
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Experiments on human cell lines or primary cells were approved by the local ethics 

committees. Culture medium, the origin and genetic information of all used cell lines are 

provided below.  

Table 15: Panel of Cell Lines Used for the Current Study 

Cell line BRAF N-RAS PTEN Culture Medium 

WM3734 V600E WT WT TU+2% FCS 

Mel Juso WT Q61K WT RPMI 1640+10% FCS 

WM164 V600E WT WT TU+2% FCS 

WM983B V600E WT WT TU+2% FCS 

1205Lu  V600E WT Hem Del TU+2% FCS 

WM9 V600E WT Hem Del TU+2% FCS 

WM3918 WT WT N/A TU+2% FCS 

SK Mel 5 V600E WT WT RPMI 1640+10% FCS 

451Lu C2 V600E WT WT TU+2% FCS 

WM1366 WT Q61L WT TU+2% FCS 

HaCat WT WT WT DMEM+10% FCS 

Melanocyte WT WT WT M2 medium+1% Pen/Strep 

HeLa - - - DMEM+10% FCS+1% Pen/Strep 

 

*Sequencing analyses of the Wistar melanoma cell lines were performed in the K. Nathanson 

laboratory, University of Pennsylvania, Philadelphia, USA. All melanoma cell lines have been 

fingerprinted for their uniqueness to exclude cross-contamination. (WT, wild type; Hem Del, 

hemizygous deletion). The mycoplasma contaminant tests were done with a commercially 

available kit.   

 

6.1.12  Genetically Encoded Protein Sensors 

Genetically encoded protein sensors are used for monitoring of cell signaling and activities of 

specific molecules in a quantitative and real-time manner in different intracellular 

compartments. Compared with broadly used fluorescent dyes, the protein sensors offer the 

opportunities for more precise monitor of the cellular physiological activities. In the current 

study, the protein sensors were applied to measure calcium, ROS and ATP concentration in 

compartments including cytosol, ER and mitochondria. The information for the labeled 

reporters and protein sensors is provided below. 
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Table 16: Genetically Encoded Protein Sensors 

Item Feature Targeted Compartment Function 

NFAT1-GFP  GFP reporter Cytosol NFAT1 activation 

HyPer3 Ratiometric Cytosol H2O2 concentration 

Mito HyPer Ratiometric Mitochondria H2O2 concentration 

SypHer Ratiometric Cytosol pH  

Mito SypHer Ratiometric Mitochondria pH 

4mt D3cpV FRET Mitochondria Ca2+ concentration 

4mt TNXL FRET Mitochondria Ca2+ concentration 

MAM HyPer 

ER HyPer 

Ratiometric 

Ratiometric 

MAM 

ER 

H2O2 concentration 

H2O2 concentration 

CaNAR2 cyto FRET Cytosol Calcineurin activity 

 

6.2 Methods 

6.2.1 Cell culture 

All cell lines used in this study were cultured with corresponding media supplemented with 

fetal bovine serum and were maintained in a standard incubator with a temperature control at 

37°C, supplied with 5% CO2. Specific culture conditions for the major cell lines used in this 

study are as follows. 

WM3734 

The WM3734 cell line was established on site at the Wistar Institute, Philadelphia, PA USA 

(M. Herlyn Laboratory) as previously published (248). The cells were isolated from a brain 

metastasis of human melanoma in a female patient. The cells were maintained in 2% TU 

medium and split twice a week. 

Mel Juso 

The Mel Juso cells originate from a human primary melanoma tumor, purchased from 

German Collection of Microorganisms and Cell Cultures GmbH. The cells were cultured in 

RPMI 1640 medium with 10% FCS and were split twice a week.  

Melanocytes  
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Human melanocytes were used for comparisons to the melanoma cells in expression analysis. 

The melanocytes were isolated from neonatal foreskins obtained after circumcision from 

different donors and were cultured according to established protocols.  

*The melanocytes were provided by Dr. Hedwig Stanisz-Bogeski (Dermatology, 

Universitätsmedizin Göttingen, Göttingen).  

 

6.2.2 RT-PCR 

6.2.2.1 RNA isolation 

The TRIzolTM reagent from Invitrogen was used to isolate total RNA from the cells and tissue 

sample in the present study. Briefly, cells were detached by incubation with accutase, they 

were centrifuged at 1500 rpm for 3 minutes. The pellet was then suspended by pipetting the 

TRIzolTM reagent. The samples were then stored at -20°C if not used immediately. The 

isolation proceeded by the sequential precipitation of total RNA using different solutions, 

following manufacturer’s instructions. The yield of isolated total RNA was measured by 

reading the absorbance with a spectrophotometer; the RNA concentration was calculated 

using the formula: A260 (absorbance at 260nm) ×dilution×40 = μg RNA/mL. 

6.2.2.2 Reverse transcription 

Generally, 800 ng of total isolated RNA was reverse-transcribed to cDNA using 

SuperScriptTM II reverse transcriptase following manufacturer’s instruction; the link of the 

instruction is as follows:  

https://assets.thermofisher.com/TFS-Assets/LSG/manuals/superscriptII_pps.pdf. 

6.2.2.3 RT-qPCR 

A volume of 0.5 µL cDNA was used for q-PCR experiment using the SYBR Green Kit 

(Qiagen #204145) and Bio-Rad CFX96™ Real-Time System. The TATA box binding protein 
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(TBP) was set as the housekeeping gene. Analyses were performed using the 2-CT method. 

The qPCR experiments in the current study were run on either the Biorad® Light Cycler or 

Agilent technologies® stratagene mx3000p*. 

*The transfection, treatment of cells, sample collection and data analysis were performed by 

Xin Zhang, the RT-PCR experiments were performed by the laboratory technicians Andrea 

Paluschkiwitz (Universitätsmedizin Göttingen, Göttingen) and Sandra Janku (University of 

Saarland, Homburg-Saar). 

 

6.2.3 Western blotting 

To analyze the knockdown efficiency of the siRNA/shRNA or the expression of target 

proteins across a panel of melanoma cell lines and melanocytes, the western blot analyses 

were applied. The general experimental procedure is described below. 

Generally, 2×106 cells were harvested using accutase or trypsin, the cell pellets were stored at 

-80°C before use. The tumor samples from mouse xenografts were fixed and embedded in 

paraffin, or frozen instantly on site using liquid nitrogen. The determination of the protein 

concentration was performed using the Bradford or BCA protein assay, 25µg protein were 

loaded on 10% SDS-polyacrylamide gel for the electrophoresis. After the electrophoresis, the 

samples were transferred onto a nitrocellulose membrane and blocked in 5% BSA. The blots 

were incubated with specific primary antibodies overnight and then incubated with 

fluorescent secondary antibodies in dark, at room temperature for hours. The blots were 

scanned with a BioRad imaging system.   

*The transfection, treatment of cells and tumor sample collection were performed by Xin 

Zhang, the running of gel and blotting were performed by technicians. 
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6.2.4 RNA oligonucleotide mediated gene silencing 

To study the physiological function of the TMX proteins and NFAT1, the RNA interference 

technique was used to knockdown the expression of the target proteins.  

For the transient knockdown, the small interference RNA (siRNA) was introduced by 

electroporation-mediated transfection with a 2b or 4D Nucleofector machine from LONZA. 

The cells were suspended with a mixture of siRNA and salt free solution provided by the 

supplier, and were electroporated with optimized programs.  

Briefly, two million cells were harvested by trypsinization and centrifuged at 1000 RPM for 3 

min; the supernatants were discarded. The cells were suspended with 4µL of 20pmol siRNA 

in 100µL transfection solution and were loaded into cuvettes. Pre-optimized programs were 

used for the electroporation according to cell types. The programs defined the type, number 

and voltage of the electroporation to be executed. After the electroporation, cells were 

immediately transferred into pre-warmed growth medium, they were seeded and kept in the 

incubator until measurement started. The programs used for electroporation are listed as 

follows.  

Table 17: Programs Used for the Transfection by Electroporation  

System Program Cell Line 

4D-Nucleofector™ System CA137 WM3734 

Nucleofector™ 2b Device A24 WM3734 

Nucleofector™ 2b Device A24 Mel Juso 

 

For the stable knockdown of TMX1, the Sigma MISSION® shRNA was transduced into 

WM3734 and 1205Lu melanoma cells with a lentiviral vector pLKO.1, the control cells were 

transduced only with scrambled pLKO.1 vector. All procedures followed the RNAi 

Consortium (TRC) Broad Institute, the detailed protocol can be found following the link 

below: https://www.broadinstitute.org/rnai-consortium/rnai-consortium-shrna-library. 

https://www.broadinstitute.org/rnai-consortium/rnai-consortium-shrna-library
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The workflow for the generation of stable TMX1 and TMX3 knockdown cell lines was as 

follows: 

Day 1: Seed 4 million recently thawed HEK293T cells in 10ml antibiotic-free medium in 

10cm tissue culture dishes for packaging.  

Day 2: Transfect the HEK293T cells with lentivirus plasmids of control, shRNA against 

TMX1 and TMX3 by lipofection. The composition of the mixture for transfection is as 

follows: 1) Packaging plasmid psPAX2 9µg; 2) Envelope plasmid PMD2.G 0.9µg; 3) empty 

vectors pLKO.1 or shRNA 9µg; 4) Opti-MEM to a total volume 225µL. The transfection 

reagent mixture is as follows: 1) lipofectamine 54µL; Opti-MEM 90µL. 

Day 3: 18 hours after transfection, remove the medium and add fresh high-serum medium. 

Day 4: 24 hours later, collect the medium with virus and add fresh medium.   

Day 5: 24 hours after first collection, collect the medium with virus and discard packing cells. 

The virus was stored in -80°C before use.  

Day 6: Seed the target cells at 50%~60% confluence. 

Day 7: Infection of cell lines with virus and 8µg/mL polybrene in complete medium, and 

incubate for 16 hours.  

Day 8: Discard supernatant from dish and wash 3 times with PBS, then add fresh medium.  

Day 9: After 24 hours, discard the supernatant and replace with medium plus 2µg/mL 

puromycin. Wait for the selection for 72 hours.  

Day 12: Refresh the medium and wait for the recovery of cells. 

*The establishment of TMX1 and TMX3 stable knockdown cell lines were performed by Xin 

Zhang, and the cell lines were shared to collaborators for subsequent experiments including 
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western blot analysis of cell signaling pathways, Matrigel invasion assay, mitochondrial 

respiration capacity analysis, electron microscopy analysis, determination of mitochondrial 

volume and surface by confocal microscopy, mouse model based work.  

 

6.2.5 NFAT1 translocation assay 

To monitor the activation of transcription factor NFAT1, a microscopy-based NFAT1 

translocation assay was performed using GFP tagged NFAT1. Melanoma cells were seeded 

onto glass coverslips at a density of 200,000 cells per well (6-well plate) and left for adhesion 

overnight. The next day, the cells were transfected with a NFAT1-GFP construct using 

FuGENE® HD solution, 1µg plasmid plus 4µL FuGENE solution and 100µL Opti-MEM for 

each well in 2ml growth medium. Six hours later, the medium was refreshed. Twenty-four 

hours after the transfection, the cells were loaded in 0.25mM Ca2+ or 1mM Ca2+ Ringer’s 

buffer and were stimulated with thapsigargin (1µM). The translocation of NFAT1 was then 

recorded by live cell imaging at 37°C. The increase in fluorescence intensity in the nucleus 

was calculated by an Axiovision software using marked regions of interest, and the results 

were normalized by calculating the ratio of Fn/F0 fluorescence intensity (ratio of fluorescence 

signal intensity number from frame N divided by the fluorescence signal intensity number 

from the first frame) 

 

6.2.6 Cell viability assay 

To analyze the viability of melanoma cells, the CellTiter-Blue® Cell Viability Assay was used 

following the manufacturer’s protocol. The assay is developed on the conversion of resazurin 

into its fluorescent form by viable cells. Since nonviable cells or metabolically interfered cells 

lose the capacity to reduce the resazurin, emitted fluorescence signals can be used as a 
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reference of cell viability. Thus the assay provides a simple and reliable method to measure 

the viability of the cells. The details of the procedure are as follows.  

The collected cells were suspended in full medium, and 10µL of the suspension was loaded 

into a counting cassette. The cell number was determined either with a Moxi™ Z Mini 

Automated Cell Counter or a Life Technologies® Countess II FL Cell Counter. The cells 

were seeded at a density of 5,000 cells/well (96-well palte), or 10,000 cells/well (48-well plate) 

in 200µL or 400 µL growth medium respectively. Generally, 6 hours after the seeding, the 

cells were treated with activators/inhibitors for the specified time duration. After the treatment 

or the incubation time, 20µL (96-well plate) or 40µL (48-well plate) CellTiter-Blue were 

added per well and incubated with the cells for 3 hours. After the incubation, the plates were 

shaken for 20 seconds and the fluorescence signals emitted at the wavelength of 590nm (but 

excited at a wavelength of 560nm) were measured by a TECAN M200 plate-reader. The 

background signal from the wells filled only with medium and CellTiter-blue was subtracted 

from the measured wells, and the fluorescence intensity in arbitrary units was used to 

determine cell viability.  

 

6.2.7 Cell migration assay  

The migration assay was performed using a HTS transwell® permeable support (Corning®, 

Kennebunk ME, USA) with 8-um pore size inserts. Cells were seeded at 50,000cells per well 

(96-well plate) or 100,000 per well (24-well plate) in FBS-free medium containing 50ng/mL 

Wnt5a recombinant protein and were made to migrate towards a lower compartment 

containing preconditioned medium supplemented with 10% FBS. After 48 h, cells that 

migrated across the membrane were detached by digestion with accutase and suspended in 

PBS with 5% FCS, then counted using a Moxi Z Mini cell counter (ORFLO technologies, 

Ketchum, USA) or Life Technologies® Countess II FL Cell Counter. 
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6.2.8 Calcium measurement 

6.2.8.1 Fura-2 AM based cellular calcium measurement 

Measurements with the ratiometric calcium binding dye Fura-2 AM were performed for the 

quantification of cellular calcium concentrations. Melanoma cells were seeded at a density of 

200,000 cells per well onto coverslips in 6-well plates and were incubated overnight for 

adhesion. The cells were stained with 1µM Fura-2 AM in growth medium for 30 min at room 

temperature in the dark. The measurements were performed in Ringer’s buffer (pH 7.4) 

containing 155mM NaCl, 2mM MgCl2, 10mM glucose, 5mM HEPES and different 

concentrations of CaCl2 or 0mM CaCl2 plus 1mM EGTA and 3mM MgCl2. The cells were 

loaded with calcium free Ringer’s buffer for the measurement of basal calcium levels, then 

the cells were perfused with 1µM of the SERCA (sarco/endoplasmic reticulum Ca2+-ATPase) 

inhibitor thapsigargin (Tg) which triggers a strong and irreversible depletion of ER Ca2+, 

leading the activation of SOCE. After the intracellular calcium level returned to resting level, 

the extracellular calcium concentration was increased by perfusion of the cells with Ringer’s 

buffer containing 0.25mM or 1mM Ca2+ to record the Ca2+ influx through the plasma 

membrane channels. Time-lapse ratio-metric images were recorded with an Olympus IX70 

microscope at a pace of one frame per 5 seconds. The results were analyzed with the 

TILLVISION software (FEI Munich, GmbH). 

6.2.8.2 Compartmental calcium measurement 

To measure the calcium dynamics in different cell compartments, the genetically encoded 

protein sensors were introduced into the cells by transfection using FuGENE® HD solution. 

Generally, the plasmids were transfected 24 hours before the imaging experiment. The live 

cell imaging experiments were performed on the Zeiss Cell Observer using Zeiss Axiovision 

or ZEN software. The measurements were performed using Ringer’s buffer (pH 7.4) 

containing 155mM NaCl, 2mM MgCl2, 10mM glucose, 5mM HEPES and different 
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concentrations of Ca2+. Thapsigargin was used for depleting the ER store, and the 

extracellular calcium concentration was altered by perfusion or adding Ringer’s buffer with 

various Ca2+ concentrations. The results were analyzed with the Zeiss software. For different 

sensors, the formulas described below were used for the calculation of the ratio representing 

the relative calcium concentration.  

FRET donor Ratio= [(fretgv-bgfret) - cfdon*(dongv-bgdon) - cfacc*(accgv-bgacc)]/ (Donorgv-bgdonor) 

Ratio Fn to F0= (Intensityn-bgn)/ (Intensity0-bg0) 

Ratio CH1 to CH2= (Channel1-Channelbg)/ (Channel2-Channelbg) 

(*Regarding the subscripts in formula: gv=given; bg=background; don=donor; acc= 

acceptor; n= frame n; 0= frame 0; CH1=channel 1; CH2=channel 2; CF=correction factor.) 

 

6.2.9  Intracellular H2O2 measurement 

The concentration of H2O2 in different cellular compartments such as ER and mitochondria 

were measured using the protein sensor HyPer3, ER HyPer and mito-HyPer respectively. The 

protein sensors were introduced into cells by transfection using FuGENE® HD solution as 

described before. The live cell imaging was performed on the Zeiss Cell Observer. The LEDs 

with excitation wavelengths of 420nm and 505nm were used and the emission signals were 

collected through the YFP filter with a passing wavelength of 542nm±14. The cells were 

loaded with the Ringer’s buffer (pH 7.4) containing 155mM NaCl, 2mM MgCl2, 10mM 

glucose, 5mM HEPES and 0.25mM CaCl2, and were pre-incubated for 5min before imaging. 

On average, at least 3 different fields were recorded for each coverslip. To measure the signal 

of the fully reduced HyPer probes and subtract it as the background signal, cells were 

incubated with 100µM N-acetylcysteine (NAC), 1mM DTT or 100nM Mito TEMPO for 
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25min. Results were analyzed using Zeiss Axiovision or ZEN software and are presented as 

ratio values of the emission or the relative percentage numbers of the control group. 

 

6.2.10  Intracellular pH measurement 

To monitor the pH of the cellular compartments as a control for the HyPer probes, the pH 

sensitive mutant SypHer probes were used for experiments in parallel. The transfection and 

measurement of the SypHer probes were done following the same procedure as with HyPer 

probes mentioned above. The results were analyzed with the same software accordingly and 

presented as the ratio of emissions from excitation wavelengths of 505nm and 420nm.  

 

6.2.11  Mitochondrial ATP concentration measurement 

The mitochondria targeted FRET protein sensor ATeam1.03 was used to measure the basal 

mitochondrial ATP concentration. Briefly, cells were seeded on the glass coverslips following 

the same procedure for imaging experiments. The ATeam1.03 plasmid was transfected using 

FuGENE® HD solution 24 hours prior to the measurements. Cells were loaded with Ringer’s 

buffer containing 0.25mM Ca2+ and were imaged at 37 °C with the excitation wavelengths of 

420nm and 505nm; and emission wavelengths of 483±16 nm and 542±14 nm. To measure the 

minimum level of ATP and subtract the signal from the ATP generated from other sources 

than mitochondrial respiration, 4µM oligomycin was used to fully block the ATP generation 

from the ATP synthase. Results were analyzed with Axiovision software and are presented as 

FRET donor ratio.  
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6.2.12  Calcineurin activity assays 

6.2.12.1 Dynamic measurement of calcineurin activity 

The dynamic phosphorylation activity of cytosolic calcineurin upon activation by calcium 

entry was measured with the FRET protein sensor CaNAR2-cyto. Melanoma cells were 

seeded onto glass coverslips and were incubated 4 to 6 hours for adhesion. The plasmid was 

transfected using FuGENE® HD solution 48 hours prior to the measurements. Cells were 

loaded with Ca2+ free Ringer’s buffer at the beginning of measurements, the Ca2+ influx and 

subsequent activation of calcineurin was induced by adding 1µM thapsigargin, 1µM 

ionomycin and Ringer’s buffer containing 2mM Ca2+ to elevate the final extracellular Ca2+ 

concentration to 1mM. The FRET signal was collected through an emission filter with a 

wavelength of 542±14nm. The FRET/CFP ratio was calculated using the Axiovision software 

and is presented as the relative phosphatase activity of calcineurin. 

6.2.12.2 Enzymatic end point measurement of calcineurin activity 

A commercially available kit for cellular calcineurin activity (BML-AK816-0001, Enzo Life 

Sciences, USA) was purchased and used for the end point measurement of calcineurin 

phosphatase activity in melanoma cells. Melanoma cells were transfected with the siRNA, 

and 2x106 cells were seeded in a T25 cell culture flask. By 48 h, the cells were washed with 

cold TBS for 3 times and were incubated with 0.5mL accutase for detachment. The cells were 

suspended, and the cell number in suspension was determined with a Moxi mini cell counter. 

Then the cells were wash once with a TBS solution and were centrifuged at 1500rpm for 5min. 

The supernatant was discarded and the pellet was lysed with the lysis buffer, then stored at -

80°C before further measurement. For the measurement of phosphatase activity, the lysate 

was thawed on ice and desalted by gel filtration with a desalting column filled with activated 

resin. The desalted extracts were pipetted into microplates and were incubated with the 

substrate or the substrate plus inhibitors and EGTA as the negative control for 30min. The 
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samples were then incubated with 100μL BIOMOL® GREEN reagent for 30min in the dark. 

Next, the OD620nm of the mixture was measured with a TECAN M200 pro microplate reader. 

In principle, the free phosphates will react with the green reagent, the signal emitted by the 

end product can be detected as a reference to phosphatase activity. Data were presented as the 

raw OD620nm values from plate reading. 

 

6.2.13  Interleukin-8 secretion measurement 

Interleukin-8 (IL-8) secretion from melanoma cells was measured with the enzyme-linked 

immunosorbent assay (ELISA). The CXCL8/IL-8 DuoSet kit (R&D system) was purchased 

and used for the quantification of the IL-8 in the supernatant of culture medium according to 

manufacturer’s instruction.  

Briefly, the WM3734 cells were transfected with the siRNA against TMX1 or TMX3 by 

electroporation and were seeded into a 6-well plate at a density of 0.75x106 cells per well. 

After 48 hours, the cells were treated either with 10µg/mL human insulin, 100nM 

thapsigargin alone or 100nM thapsigargin and 100nM phorbol 12-myristate 13-acetate (PMA) 

together in 0.5mL medium for 12 hours. Then the medium was collected from the plates and 

was centrifuged at 1500 RPM for 5min. After centrifugation, the supernatant was collected 

and stored at −80 °C. For preparation of coated plates, the Falcon clear bottom 96-well plate 

was coated with 100µL of the capture antibody at a concentration of 4µg/mL overnight. 

Before using, the plates were blocked with 1% BSA in PBS for 1 hour. Then, 100µL of the 

supernatants were added to the wells and were incubated with a capture antibody for 2 hours. 

Next, the detection antibody was added after intensive washing. After 2 h incubation, the 

streptavidin-horseradish peroxidase and substrate solution containing hydrogen peroxide and 

tetramethylbenzidine (TMB) were added for the revelation. The absorbance of end products 

was measured with a ClarioStar® plate reader at 450nm, the absorbance at 570nm was 
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measured as a correction. All procedures were performed at room temperature. Between 

blocking, antibody incubations and substrate addition the wells were washed intensively with 

0.05% Tween®20 in PBS.  

 

6.2.14  Electron microscopy analysis of MAM parameters 

A monolayer of cells was fixed in 2% paraformaldehyde and 2% glutaraldehyde in 100mM 

sodium cocadylate buffer (pH 7.4) for 20 minutes. Then the cells were collected with scrapper 

as pellets. The pellets were fixed in osmium tetroxide 1% for the secondary fixation. The 

samples were washed and dehydrated, stained in 1% uranyl acetate. After the staining, the 

samples were treated with propylene oxide, and were then infused with embedding media 

(Embed 812); blocks were kept at 60 °C for hardening at least 48 h. The samples were then 

imaged using a digital camera mounted on a Philips 410 TEM, the images were processed 

with the “Mega View III” software. 

For the melanoma cell line 1205Lu, the distance between mitochondria and ER, and the 

length of ER mitochondria contact sits (MAM length) were measured and shown in 

nanometer units. Mitochondrial proximity to the plasma membrane was quantified by 

measuring the distance between the closest mitochondria to the plasma membrane. 

*The electron microscopy analyses were performed by Nasser Tahbaz and Lucas Mina, 

together with Prof. Dr. Thomas Simmen (Department of Cell Biology, University of Alberta, 

Canada).  

 

6.2.15  In vivo studies 

The mouse experiments received permission from the local governmental animal care 

committee (Landesamt für Verbraucherschutz des Saarlandes), and were performed in consent 
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to the German legislation on protection of animals and the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals. The 8 weeks old male athymic nude NOD.Cg-

Prkdcscid Il2rgtm1WjI/SzJ (NSG) mice were purchased from Charles River Laboratories, 

Sulzfeld, Germany. For the experiment, mice were divided randomly to 3 groups (7 mice per 

group) for inoculation: (A) shRNA control (control), (B) shTMX1_1 (TMX1 kds 1), and (C) 

shTMX1_2 (TMX1 kds 2). Mice were maintained in ventilated cages under specific 

pathogen-free conditions with temperature and humidity control, light time per day was set to 

12h. All mice were maintained at the animal care facility of the Institute for Clinical and 

Experimental Surgery at Saarland University during experiment. Free access to tap water and 

standard pellet food were provided to all mice. The health status of mice was monitored by 

technician daily. Mice were each inoculated s.c. with 100,000 WM3734 cells suspended in a 

mixture of equal Matrigel (BD Matrigel™ Basement Membrane Matrix) and growth media. 

Tumor size was measured every 2-3 days by a single veterinarian who was blinded to the 

experimental groups, using a caliper. Tumor volumes were calculated using the formula: 

𝑉 =
𝜋 × 𝐿 ×𝑊2

6
 

Tumor samples with diameters larger than 15 mm before sacrifice were fixed and embedded 

in paraffin or frozen instantly after collection using liquid nitrogen. Immunoblots with tumor 

lysates were performed using 25 µg of total protein. 

*The mouse experiments were performed by Xin Zhang, Dr. Adina Vultur, Dr. Christina 

Körbel, in collaboration with Prof. Dr. Matthias W Laschke and Prof. Dr. Michael D Menger 

(Institute for Clinical and Experimental Surgery, Saarland University, Homburg-Saar). The 

tumor samples were used for subsequent experiments to examine expression and cell 

signaling.  
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6.2.16  Experimental data analysis and statistics 

The data obtained from all experiments were analyzed using TILL Vision, Zeiss Axiovision, 

Zeiss Zen, Biorad Quantity One, ImageJ with plugins and Microsoft Excel. The values are 

presented as mean ± SEM if not mentioned otherwise. The unpaired two-sided Student’s t test 

was used for data with normal distribution, the P-values are stated in the figure legends (* 

P<0.05, ** P<0.01, *** P<0.005). 
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7 Results 

7.1 The expression analysis of TMXs and NFAT1 in human melanoma 

The pathogenesis of melanoma is a multiple-stage malignant transformation of the 

proliferative benign melanocytes to the invasive and metastatic melanoma cells. The 

acquisition of malignant competence is frequently caused by mutations, amplifications or 

deletions of certain precursor genes. Thus, genetic heterogeneity is one prominent 

characteristic of melanoma and hence there are only few biomarkers for this aggressive 

disease. In the current study, we investigated the role of TMX oxidoreductases and NFAT 

transcription factors in the human melanoma and addressed questions regarding if they are 

regulators of melanoma pathobiology and their potential connections with melanoma 

aggressive behavior.  

 

7.1.1 The mRNA expression of TMXs is elevated in melanoma cells 

We initiated our study with the assessment of expression status of TMXs proteins in the 

melanoma cells. The expression of TMX1 and TMX3 was quantified on the mRNA level with 

qPCR across a panel of distinct human melanoma cell lines. As shown in the Figure 1A and 

1B, on the mRNA level, TMX1 and TMX3 are generally expressed in the melanocytes, 

keratinocytes and melanoma cells. The expression of TMX1 and TMX3 in melanoma cells is 

heterogeneous at the first glance. However, compared with the normal melanocytes and 

keratinocytes, in around 70% of the melanoma cell lines analyzed, the expression of TMX1 is 

significantly up-regulated while 6 out of 10 cell lines have a higher expression of TMX3, 

which indicates for a general upregulation of these genes in melanoma cell lines. 



68 

 

 

Figure 1: mRNA expression of TMX1 and TMX3 in melanoma cell lines. (A) The mRNA 

expression of TMX1 quantified by the qPCR in a panel of melanocytes from two donors, 

keratinocyte and 11 melanoma cell lines. (B) The mRNA expression of TMX3 quantified by 

qPCR cross a panel of melanocytes from two donors, keratinocyte and 10 melanoma cell lines. 

(The data were normalized to the expression of TATA box bind protein and presented as 

mean±SEM of 3 independent experiments. The significance test was performed between 

individual melanoma cell lines and the two melanocyte cell lines.) 

 

7.1.2 The mRNA expression of NFAT1 is elevated in melanoma cells 

To analyze the expression of NFAT in melanoma, we first quantified the mRNA expression 

of all five NFAT isoforms in two cell lines with qPCR. The results in the Figure 2A suggest 

that the NFAT1 is the predominant isoform among all family members in our cell lines. Then 

we selected a panel of 10 melanoma cell lines and quantified the mRNA level of NFAT1 to 

establish a general view of its expression. Interestingly, in 9 out of 10 cell lines the NFAT1 is 

expressed on an astonishingly higher level when compared with the melanocytes and 

keratinocyte, in which NFAT1 is nearly undetectable (Figure 2B). This finding indicates a 

strong functional relevance of NFAT1 in cultured melanoma cells.  
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Figure 2: mRNA expression of NFAT in melanoma cell lines. (A) The mRNA expression 

of all NFAT isoforms quantified by the qPCR in two melanoma cell lines. (The data were 

normalized to the expression of TATA box bind protein and presented as mean of 3 

independent experiments.) (B) The mRNA expression of NFAT1 quantified by the qPCR in a 

panel of melanocytes from two donors, keratinocyte and 10 melanoma cell lines. (The data 

were normalized to the expression of TATA box bind protein and presented as mean±SEM of 

3 independent experiments. The significance test was performed between individual 

melanoma cell lines and the two melanocytes.) 

 

The higher mRNA expression of TMX and NFAT1 in melanoma cells indicates that the 

abundance of these proteins might also be elevated in melanoma. Therefore, the Western Blot 

analyses were performed with the lysates from 10 melanoma cell lines and melanocytes from 

two different donors. As shown in our publication (Panel 1C)(249), though the protein 

expression does not fully match the mRNA expression pattern shown in Figures 1 and 2, the 

WB clearly shows that TMX1 as well as NFAT1 protein are significantly higher in the 

melanoma cell lines compared with the melanocytes. Regarding the expression of NFAT1, it 

is not detected in the melanocytes while the expression in 9 out of 10 melanoma cell lines are 

relatively high. Interestingly, the WM1366 melanoma cell line, which originates from a 

vertical growth phase melanoma and has slower proliferation rate and low migration potential 

does not express NFAT1 at all. These results indicated that the expression of TMX1 and 
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NFAT1 mRNA and proteins are relatively high in the melanoma cell lines, their expression is 

relevant in the cultured cell lines.  

 

7.2 NFAT1 function is impaired by silencing of TMXs 

7.2.1 NFAT1 translocation is inhibited by silencing of TMXs 

In a previous study it was suggested that there is functional interaction between NFAT1 and 

TMX1, TMX3 in Hela cells. To explore how TMX1 and TMX3 could regulate NFAT1, we 

used a more detailed method based on the time-lapse fluorescent microscopy and GFP-tagged 

NFAT1 construct, in which the nuclear translocation of NFAT1 induced by stimulus can be 

tracked and assessed. First, we tested if the NFAT1 can be activated following a physiological 

stimulus such as insulin in the melanoma cells. Based on the expression analysis of TMXs 

and NFAT1, the WM3734 cells which have a high TMX1 and NFAT1 expression were used 

as the primary cell line. The Mel Juso cell line which has a high TMX1 expression but only 

moderate NFAT1 expression was used as a secondary cell line. By investigating these two 

cell lines, we also aimed to understand the impact of BRAF mutation in this context since the 

WM3734 is a BRAF V600E line and the Mel Juso is a BRAF wild type line. 

 As shown in Figure 3, the translocation of tagged NFAT1 can be induced by the addition of 

50 μg/ml human insulin in the ringer buffer with 0.25mM Ca2+. After the stimulation, the 

nuclear signaling of NFAT1-GFP was strongly elevated (quantified by Fn/F0, upper panel). 

This indicates that the induction of NFAT1 in melanoma cells is relevant to physiological 

stimulations. 
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Figure 3: Nuclear import of NFAT1 in melanoma cell. The NFAT1 translocation following 

50μg/ml human insulin stimulation was recorded with time-lapse fluorescent microscopy for 

900s in the WM3734 melanoma cells. (Upper panel: Quantification; Lower panel: 

representative images for the changes over the time course) 

 

Next, we used small interference RNA (siRNA) to silence the TMX1 and TMX3 on both cell 

lines for 48 hours, and then analyzed the NFAT1 translocation induced by Tg. As shown in 

Figure 4, the silencing of TMX1 and TMX3 inhibits the NFAT1 translocation in the WM3734 

and Mel Juso cells (Figure 4B and E) around 25%~40% (Figure 4C and F) which confirms 

that the TMX1 and TMX3 can inhibit the activation of NFAT1 in the melanoma cell lines 

regardless of their BRAF mutation status. To further confirm the validity of this signaling axis, 

the assay was performed on two additional melanoma cell lines (Figure 4J-M). The results 

show a consistent inhibition of NFAT1 translocation caused by silencing of TMX proteins, 

which indicates the mechanism under this signaling axis may be universal in melanoma cell 

lines. To test this, we overexpressed the NFAT1-GFP in the WM1366 cells, which do not 

have endogenous NFAT1 and performed the same assay. Nonetheless, the results show a 

similar pattern (Figure 4N-O). To summarize, these results show that NFAT1 is ready for 

activation in melanoma cells generally, and the activation is expression-independent.   
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Figure 4: NFAT1 translocation is inhibited following TMX silencing in melanoma cell 

lines. (A) and (D): Representative images from the recorded NFAT1 translocation movie on 

the TMX1 and TMX3 silenced WM3734 and Mel Juso cells. (B), (E), (J), (L), (N): Fold 

change of NFAT1 translocation from the live cell imaging experiment on a time course. (C), 

(F), (K), (M), (O): Quantification of the end point from the NFAT1 translocation experiment. 

Data were collected from 3 independent experiments and presented as mean±SEM. (The 

analyzed cell number N: WM3734, control=142, TMX1 kd=116, TMX3 kd=148; Mel Juso, 

control=75, TMX1 kd=47, TMX3 kd=67; WM938B, control=16, TMX1 kd=12, TMX3 

kd=27; WM164, control=46, TMX1 kd=56, TMX3 kd=44; WM1366, control=53, TMX1 

kd=49, TMX3 kd=63.) 

 

7.2.2 NFAT1 transcriptional activity is reduced by silencing of TMXs 

The inhibition of nuclear translocation of NFAT1 can lead to decreased transcriptional 

activity and a lower expression of downstream target genes. To check if the inhibition of 

NFAT1 translocation influenced the transcriptional activity of NFAT1, the production of 

interleukin-8 (IL-8) which was reported as a target gene of NFAT1 (242) was assessed by 

enzyme-linked immunosorbent assay (ELISA) assay. The WM3734 cells were transfected 

with siRNA against TMX1 and TMX3, after 48 hours the cells were incubated with either 

10μg/ml insulin, 100nM Tg or 100nM Tg and 100nM PMA together for 12 hours to induce 

the secretion of IL-8. As the end point, the growth medium was collected for the measurement 

of the IL-8 secreted from cells.  
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Figure 5: IL-8 secretion from melanoma cells is decreased following TMX silencing. The 

interleukin-8 secreted by TMX-silenced cells following different stimulation was measured 

with ELISA assay. The data are normalized as percentage of the control group and presented 

as mean±SEM of 4 independent experiments. 

 

As shown in Figure 5, the basal IL-8 production is inhibited by silencing of TMX1/TMX3 by 

up to 30~40% upon the stimulation with pre-conditioned medium which is supposed to 

contain growth factors secreted from the melanoma cells. Following stimulation with human 

insulin the IL-8 secretion is also inhibited by around 20%~30%. With more robust 

stimulations such as Tg and Phorbol 12-myristate 13-acetate (PMA), an activator of protein 

kinase C, the IL-8 production is even inhibited up to 20%~50%. These data confirm that the 

transcriptional activity of NFAT1 could be reduced by the knockdown of TMX proteins on 

both constitutional level or upon various stimulations. Based on these results, we conclude 

that the oxidoreductases TMX1 and TMX3 can regulate NFAT1 in melanoma cells as well as 

reported in Hela cells. The silencing of TMX1 and TMX3 thereby inhibit the activation of 

NFAT1 and impair the expression of downstream genes. 

 

7.3 Silencing of TMXs does not affect SOCE 

The activation of NFAT1 is canonically driven by the elevation of cytosolic Ca2+ following 

the signal transmission from plasma membrane. Therefore, we investigated if the silencing of 

TMX1/TMX3 affected the dynamics of cytosolic Ca2+ using live cell calcium imaging. The 

TMX1/TMX3 silenced cells were loaded with Fura 2, placed into a Ca2+ free ringer buffer 

and measured to assess the cytosolic Ca2+ resting levels. The cells were then treated with Tg 

to induce the depletion of the ER Ca2+ stores. A few minutes later, the cells were perfused 

with ringer buffer containing 1 mM Ca2+ for quantifying Ca2+ influx via the ORAI channels 

on the plasma membrane. At the end, the cells were perfused with Ca2+ free ringer buffer 
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again to monitor the clearance of cytosolic calcium. To our surprise, the results (Figure 6A) 

show that in WM3734 cells, the basal cytosolic Ca2+ level, the depletion of ER as well as the 

calcium influx via SOCE are not dramatically affected by the knockdown of TMX proteins 

(Figure 6B). These results indicate that the impairment of NFAT1 function caused by 

silencing of TMX1/TMX3 is not due to alterations in SOCE, which remains functional and 

intact.  

 

Figure 6: Cytosolic calcium measurement on WM3734 cells following TMX silencing. 

The cytosolic calcium was measured with ratiometric dye Fura-2 and live cell imaging on 

TMX-silenced WM3734 cells. Data are presented as mean±SEM. (The analyzed cell number 

N: control=30, TMX1 kd=49, TMX3 kd=52) 

 

7.4 Silencing of TMXs increases cellular ROS production 

The Ca2+ measurements imply that TMX1/TMX3 silencing-induced impairment of NFAT1 

function is through an alternative mechanism other than the disturbance of cellular Ca2+ 

dynamics. TMX oxidoreductases are involved in oxidative folding of proteins in the ER and 

their localizations are also confirmed in the related membrane network such as MAM. As 

mentioned before, such tethered membrane network is involved in the regulation of 

homeostasis of the organelles on both sides, accordingly it is plausible that these 

oxidoreductases could play a role in the regulation of ER-Mitochondria cross-talk and thus 

influence redox homeostasis. Hence, we next investigated if the silencing of TMX1/TMX3 
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affected the intracellular redox state with the genetically encoded protein sensor HyPer. First, 

we measured the cytosolic H2O2 level with HyPer3 probe in the TMX1/TMX3 silenced cells. 

As shown in Figure 7A, the transient knockdown of TMX1/TMX3 results in a significant 

increase of HyPer3 signal on both WM3734 and Mel Juso cells. After the measurement, the 

cells were incubated with 100µM N-acetylcysteine (NAC) to fully reduce the probe and set 

the ratio number to the background level for the calibration of the relative increase of signals. 

The quantification of HyPer signals shows that the cytosolic signal level is increased by more 

than 2 folds in the WM3734 cells, and around 20%~60% in the Mel Juso cells (Figure 7B and 

C). The signal of HyPer3 probes can also be affected by the pH of the compartment due to a 

structural imperfection, so we measured the cytosolic pH with the pH reporter SypHer probe 

which is a mutant of HyPer with critical cysteine replacement. The results show that there is 

no apparent change of cytosolic pH in both cell lines (Figure 7D and E). We also performed 

the same assay on the NFAT1-negative WM1366 cells (Figure 7F) to see if the induction of 

ROS is cell line-dependent, the result indicates that the induction caused by knockdown of 

TMX proteins is common in the melanoma cell lines. All together, these results show that the 

increase of cytosolic H2O2 level is caused by the knockdown of TMX proteins and the BRAF 

or NFAT1 expression is not relevant. Thus, we conclude that the knockdown of TMX 

proteins increases cellular ROS production in melanoma cells regardless of their BRAF 

mutation status and NFAT abundance.  
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Figure 7: Cytosolic H2O2 concentration was elevated by TMX silencing. (A) 

Representative images from the HyPer3 measurement on the TMX-silenced WM3734 cells 

and Mel Juso cells. (B, C and F) The quantification of the HyPer3 ratio values. Data are 

presented as mean±SEM of at least 3 independent experiments. (The analyzed cell number N: 

WM3734, control=168, TMX1 kd=209, TMX3 kd=192; Mel Juso, control=297, TMX1 

kd=343, TMX3 kd=440; WM1366, control=144, TMX1 kd=170.) (D, E and G) The 

quantification of the SypHer ratio values. Data are presented as mean±SEM of 3 independent 

experiments. (The analyzed cell number N: WM3734, control=142, TMX1 kd=153, TMX3 

kd=164; Mel Juso, control=72, TMX1 kd=95, TMX3 kd=101; WM1366, control=134, TMX1 

kd=136.) 
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7.5 Silencing of TMXs inhibits NFAT1 activation via the oxidative 

modulation 

7.5.1 The NFAT1 translocation is redox dependent 

The signaling cascade of NFAT1 activation consists many proteins which can be regulated via 

reduction and oxidation reportedly. Based on our data, it is possible that the inhibition of 

NFAT1 activation by silencing of TMX1/TMX3 is caused by the elevation of cellular H2O2. 

Therefore, we tested the effect of H2O2 on the NFAT1 activity by exposing the cells to 

different concentrations of extracellular H2O2. As shown in Figure 8A, extracellular H2O2 

inhibits NFAT1 translocation in a dose-dependent manner in WM3734 melanoma cells. The 

evaluation of dose effect curve pointed an IC50 value at an extracellular concentration of 

approximately 13.2µM (Figure 8B). These results indicate that the NFAT1 translocation is a 

redox-dependent event and thus the elevation of cytosolic ROS can lead to its inhibition. 

 

Figure 8: The NFAT1 translocation is inhibited by extracellular H2O2 in a dose-

dependent manner. (A)The NFAT1 translocation is inhibited by pre-incubation with various 

concentrations of extracellular H2O2 to the WM3734 cells. Data are presented as mean of at 

least 4 cells from one experiment. (B) The quantification of the NFAT1 nuclear import by the 

end point and determination of IC50.   
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7.5.2 The inhibition of NFAT1 activation induced by silencing of TMX1 

can be reversed by antioxidants 

The thiol group of protein cysteine residues is very often a target for functional regulation via 

oxidation. The reductases in the cytosol reverse the oxidation using reducing resources in the 

cells such as glutathione and/or NADPH. Furthermore, the cells also have a well-balanced 

enzyme system for the degradation of ROS. The superoxide dismutase (SOD), peroxidases 

and catalases can catalyze the degradation of harmful ROS molecules and prevent oxidative 

damage. Thus, to test if the inhibition of NFAT1 caused by the silencing of TMX1/TMX3 can 

be reversed and prevented by antioxidants and ROS scavengers, the NFAT1 translocation 

assay was performed on the TMX1-silenced cells incubated with or without NAC (antioxidant 

and reducing reagent), PEG-catalase (ROS scavenger) and Dithiothreitol (DTT, reducing 

reagent). As shown in Figure 9A and B, NAC can partially rescue the inhibition of NFAT1 

translocation induced by the silencing of TMX1 in both cell lines. Moreover, DTT and 

catalase can also reverse the NFAT1 inhibition in TMX-silenced WM3734 cells (Figure 9C), 

while NAC alone does not affect the NFAT1 translocation. The result from Mel Juso cells 

shows a similar trend though the statistics are insignificant because of the low sample 

numbers (Figure 9D). Based on these results, we conclude that the inhibition of NFAT1 

caused by the silencing of TMX1 and TMX3 is mediated by the elevation of cellular ROS. 
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Figure 9: The inhibition of NFAT1 activation induced by TMX1 silencing can be 

reversed by antioxidants. (A) and (B) The NFAT1 translocation on TMX1-silenced 

WM3734 and Mel Juso cells, the cells were incubated with 100µM NAC for 48 hours prior to 

the assay and recorded with live cell imaging. Data are presented as mean of 3 independent 

experiments. (The analyzed cell number N: WM3734, control=73, TMX1 kd=57, TMX1 

kd+NAC=63; Mel Juso, control=63, TMX1 kd=47, TMX kd+NAC=39.) (C) and (D) The 

Quantification of the end point from NFAT1 translocation assay on TMX1-silenced WM3734 

cells and Mel Juso cells pre-incubated with 100µM NAC (48h), 50U/mL PEG-catalase (48h), 

1mM DTT (20min). Data are presented as mean±SEM of 3 independent experiments (+NAC) 

and (+catalase), 1 experiment (+DTT). (The analyzed cell number N: WM3734, control=73, 

control+NAC=19, TMX1 kd=57, TMX1 kd+NAC=63, TMX1 kd+catalase=58, TMX1 

kd+DTT=22; Mel Juso, control=63, TMX1 kd=47, TMX kd+NAC=39, TMX1 

kd+catalase=99.) 
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7.5.3 Calcineurin is a redox-sensitive element of NFAT1 signaling pathway 

7.5.3.1 Calcineurin activity is inhibited by silencing of TMXs 

Several elements of the NFAT1 signaling pathway can be redox regulated. In principle, the 

ORAI channels on the plasma membrane consist of cysteine residues, which are prone to 

oxidation; the methionine oxidation of calmodulin could also be involved as well as the 

phosphatase calcineurin, which contains a reactive cysteine in its catalytic core and multiple 

cysteine residues around the catalytic site. Calcineurin dephosphorylates NFAT1 to initiate 

the nuclear transportation of NFAT1, thus it plays a critical role in the signaling cascade. 

Therefore, first we explored if calcineurin was the target for the oxidative modulation induced 

by the silencing of TMX1/TMX3 with a genetically encoded sensor CaNAR2-cyto. This 

protein sensor contains a sequence with dephosphorylation sites similar to the NFAT proteins 

and is therefore a mimic of natural target of calcineurin. Upon the dephosphorylation the 

configuration of this sensor changes, which leads to the decrease of distance between the 

CFP/YFP pair resulting an enhancement of FRET signal. The changes of FRET signal ratio 

indirectly report the phosphatase activity of calcineurin. As shown in Figure 10A, the 

silencing of TMX1/TMX3 leads to suppressed calcineurin activity, which is activated by Tg-

induced calcium influx. The quantification of the basal levels and post-activation levels of 

calcineurin activity show that the silencing of TMX1/TMX3 decreases the basal as well as the 

induced calcineurin activity significantly in comparison with the control group (Figure 10B 

and C). To test if the inhibition is indeed due to oxidative modification, the cells were 

incubated with NAC after the siRNA transfection. The results in Figure 10 D and E show that 

indeed NAC restores the inhibited calcineurin activity in TMX-silenced WM3734 cells. The 

basal calcineurin activity at resting level (Figure 10D) as well as the maximum activity upon 

activation (Figure 10E) is restored to nearly the same level compared with control group. 
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According to these results, we conclude that the inhibition of NFAT1 nuclear import is caused 

by the inhibition of calcineurin activity. 

 

Figure 10: The phosphatase activity of calcineurin is inhibited by TMX silencing. (A) 

The cytosolic calcineurin activity of TMX-silenced melanoma cells was measured with 

CaNAR2-cyto protein sensor upon 1µM Tg+1µM Ionomycin induced calcium influx in 

Ringer’s buffer with 1mM free Ca2+ and shown as curves on a time course. Data are presented 

as mean of 3 independent experiments. (The analyzed cell number N: control=49, TMX1 

kd=48, TMX3 kd=63.) (B) The quantification of the basal calcineurin activity in WM3734 

cells at resting state. (C) The quantification of the maximum calcineurin activity induced by 

Tg+Ionomycin, the ratio values from basal activity are subtracted from the maximum ratio 

value. (D) and (E) The quantification of basal and maximum calcineurin activity measured on 

the TMX1-silenced WM3734 cells with/without 100µM NAC pre-incubation for 48 hours. 

Data are presented as mean±SEM of 2 independent experiments. (The analyzed cell number 

N: control=15, TMX1 kd=24, TMX1 kd+NAC=19.) 
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7.5.3.2 Calcineurin activity could be inhibited by H2O2  

To further test the redox sensitivity of calcineurin, we exposed melanoma cells to various 

concentration of H2O2 for 5 min before the stimulation with Tg in Ringer’s buffer with 1mM 

free Ca2+. We again used CaNAR2-cyto sensor to determine calcineurin activity. As shown in 

Figure 11A, the calcineurin activity shows a H2O2 concentration dependence in the time-lapse 

assay. The normalized results show that the maximum calcineurin activity is inhibited by the 

extracellular H2O2 in a dose-dependent manner (Figure 11B). In all, these data indicate that 

calcineurin activity depends on the intracellular redox state; thus, the TMX silencing induced 

excessive ROS is responsible for the inhibition of NFAT1 nuclear import. 

 

Figure 11: Calcineurin activity is inhibited by H2O2 in melanoma. (A) Mel Juso cells were 

pre-incubated with different concentration of extracellular H2O2 in Ringer’s buffer containing 

1mM free Ca2+ for 5min, then cells were stimulated with Tg and the cytosolic calcineurin was 

measured with CarNAR2-cyto sensor. Data is normalized according the basal calcineurin 

activity and presented as the mean of at least 20 cells. (B) The quantification of maximum 

calcineurin activity. Data is presented as mean±SEM of at least 20 cells from 1 experiment. 
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7.6 Mitochondria are major source for ROS generation following TMX 

silencing 

7.6.1 Silencing of TMXs does not induce ER stress 

Based on our results from cytosolic ROS measurements, the elevated cellular H2O2 levels in 

melanoma cells indicate that the redox balance is disturbed by silencing of TMX1 or TMX3. 

However, the source of this ROS production remains elusive so far. The TMX1 and TMX3 

are anchored within the ER membrane with the active site hanging in the ER lumen. It is 

possible that the knockdown of TMX1/TMX3 might disturb the oxidative folding of proteins 

and lead to the ER stress, which may consequently induce oxidative stress in the cytosol in 

extreme cases. To test this theory, we investigated if the silencing of TMX induced ER stress 

in melanoma cell lines by measuring ER stress markers such as XBP1 splicing products, Bip 

and disulfide isomerase protein expression (PDI). The splicing product of X-box binding 

protein 1 (XBP1) was quantified by qPCR, and the protein expression of protein disulfide 

isomerase and binding immunoglobulin protein (BiP) were assessed with WB. As shown in 

Figure 12A, compared with the positive control group which was treated with thapsigargin for 

4 hours, the XBP1s mRNA level is not increased in TMX1/TMX3 silenced melanoma cells. 

Furthermore, the Figure 12B shows that the PDI and BiP expression are also not elevated 

following TMX1/TMX3 silencing (Figure 12B). These findings indicate that silencing of the 

TMX proteins, despite their important role in oxidative folding, does not lead to significant 

accumulation of unfolded proteins and unfolded protein response (UPR) in the ER.  
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Figure 12: TMX silencing does not trigger ER stress in melanoma cells. (A) The splicing 

product of XBP1 was quantified by qPCR from samples collected 48 hours after the siRNA 

transfection, the positive control was treated with 1µM Tg for 4 hours to induce the ER stress. 

Data are presented as mean of 2 independent experiments. (B) The expression of PDI and BiP 

proteins was quantified by Western Blot from the lysates collected 48 hours after the siRNA 

transfection, the GAPDH was used as the loading control. The blots are representative images 

of two independent experiments.  

 

7.6.2 Silencing of TMX1 does not affect ER redox homeostasis 

To further check if the ER redox homeostasis was disturbed by the silencing of TMX, we 

measured ER H2O2 levels with the genetically encoded protein sensor ER HyPer in TMX1-

silenced WM3734 and Mel Juso cells. The cells were transfected with the siRNA against 

TMX1 and scrambled control; and the plasmids of ER HyPer were transfected 24 hours prior 

to the measurement. Forty-eight hours after the siRNA transfection, the cells were placed into 

a Ringer’s buffer with 0.25mM Ca2+ and imaged. As shown in Figure 13 (A and B), the 

silencing of TMX1 increases the ER H2O2 level moderately in both cell lines. However, this 

result needs to be interpreted with particular care. The ER lumen is a highly oxidizing 

compartment due to its function in oxidative folding of proteins. Hence, the majority of the 

HyPer probes within the ER lumen are at least partially oxidized (Figure 13C). Nonetheless, 

the probes can still detect H2O2 increase when applied externally (Figure 13D). These data 
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suggest that the ER lumen is very likely not the main source of ROS following the silencing 

of TMX1/TMX3, though the contribution can’t be fully excluded.  

 

Figure 13: The ER lumen is not a major source of H2O2 in melanoma cells following 

TMX1 silencing. (A) and (B) The quantification of results from ER HyPer experiment on the 

TMX1-silenced WM3734 cells and Mel Juso cells 48 hours after the siRNA transfection. 

Data are presented as mean±SEM of 3 independent experiments. (The analyzed cell number 

N: WM3734, Control=169, TMX1 kd=179; Mel Juso, Control=211, TMX1 kd=249.) (C) and 

(D) DTT and H2O2 titration of ER HyPer probes on native WM3734 cells. Data are presented 

as mean±SEM of 4 cells from 1 experiment.  
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which might induce generation of ROS. We next measured H2O2 levels in mitochondria with 

the genetically encoded protein sensor mito-HyPer2 in WM3734 and Mel Juso cells. As seen, 

the silencing of TMX1/TMX3 results in a significant increase of HyPer signal ratio (Figure 

14A) in both cell lines. The quantification of the HyPer probe ratio shows that silencing of 

TMX1 and TMX3 induced dramatic H2O2 generation on the WM3734 and Mel Juso cells 

(Figure 14B and C). Using a mito-SypHer sensor we monitored the mitochondrial pH under 

the same conditions described above. Our results show the silencing of TMX1/TMX3 does 

not cause overt changes of mitochondrial pH (Figure 14D and E). 

 

Figure 14: TMX silencing induces significant increase of mitochondrial ROS. (A) 

Representative images of mito-HyPer2 measurements on TMX-silenced WM3734 and Mel 

Juso cells. (B) Quantification of mito-HyPer2 ratio on the WM3734 cells 48 hours after the 

siRNA transfection. Data are presented as mean±SEM of at least 3 independent experiments. 

(The analyzed cell number N: control=546, TMX1 kd=510, TMX3 kd=621.) (C) 

Quantification of mito-HyPer2 ratio on the Mel Juso cells 48 hours after the siRNA 

transfection. Data are presented as mean±SEM of at least 3 independent experiments. (The 

analyzed cell number N: control=416, TMX1 kd=418, TMX3 kd=442.) (D) Quantification of 
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mito-SyPer ratio on the WM3734 cells 48 hours after the siRNA transfection. Data are 

presented as mean±SEM of 3 independent experiments. (The analyzed cell number N: 

control=87, TMX1 kd=85, TMX3 kd=105.) (D) Quantification of mito-SyPer ratio on the Mel 

Juso cells 48 hours after the siRNA transfection. Data are presented as mean±SEM of 3 

independent experiments. (The analyzed cell number N: control=74, TMX1 kd=73, TMX3 

kd=83.) 

 

7.6.4 Elevated mitochondrial ROS is caused by altered mitochondrial 

metabolism 

7.6.4.1 Mitochondrial calcium level is increased by TMX1 silencing 

The mitochondrial ROS generation is coupled to the mitochondrial oxidative phosphorylation 

and respiration activity. The irregular mitochondrial ROS generation is frequently caused by 

either the electron leakage from the disrupted of electron transfer chain (ETC) or a hyper-

activation of oxidative phosphorylation which produces ROS molecules as a “by-product” 

(162, 250). The accumulation of mitochondrial Ca2+ ([Ca2+]mito) can drive the activation of the 

mitochondrial metabolic machinery and enhance the ATP synthesis. Hence, because of the 

dependence of ATP synthesis on [Ca2+]mito, the [Ca2+]mito is a good indicator for mitochondrial 

metabolic activity. Accordingly, we measured mitochondrial calcium dynamics with a 

genetically encoded Ca2+ sensor 4mt-D3cpV in WM3734 cells with stable TMX1 knockdown. 

As shown in Figure 15A, the silencing of TMX1 leads to an increase in resting [Ca2+]mito as 

well as in SOCE-induced  [Ca2+]mito influx. The quantification data in (Figure 15B) shows the 

basal [Ca2+]mito is increased slightly by the silencing while the uptake is increased 

significantly compared with the control (Figure 15C). However, due to the low Kd of 4mt-

D3cpV, the sensor could be saturated and will no longer answer to the elevation of Ca2+ upon 

a dramatic change. To address this issue, we used alternative genetically encoded protein 

sensor 4mt-TNXL, which has a higher Kd  and performed the same measurements as with 

4mt-D3cpV. As shown in Figure 15D, the [Ca2+]mito dynamics show a similar pattern, thus 
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confirm that the [Ca2+]mito levels are increased by of TMX1 silencing. Furthermore, the 

quantification data show the basal [Ca2+]mito is increased significantly (Figure 15E) as well as 

mitochondrial  Ca2+ uptake (Figure 15F).  

 

Figure 15: Mitochondrial calcium uptake is increased following TMX1 silencing. (A) The 

mitochondrial Ca2+ uptake was measured with genetically encoded protein sensor 4mt-D3cpV 

on WM3734 cells with a stable expression of shRNA against TMX1. Data are presented as 

mean of 3 experiments on a time course. (B) Quantification of the basal mitochondrial Ca2+ 

level from data in (A). Data are presented as mean±SEM. (The analyzed cell number N: 

control=62, TMX1 kd=45.) (C) Quantification of the mitochondrial Ca2+ uptake (basal-

plateau) from data in (A). Data are presented as mean±SEM. (The analyzed cell number N: 

control=62, TMX1 kd=45.) (D) The mitochondrial Ca2+ uptake was measured with 

genetically encoded protein sensor 4mt-TNXL on WM3734 cells with a stable expression of 

shRNA against TMX1. Data are presented as mean of 1 experiment on a time course. (E) 

Quantification of the basal mitochondrial Ca2+ level from data in (D). Data are presented as 

mean±SEM. (The analyzed cell number N: control=94, TMX1 kd=83.) (F) Quantification of 

Time (s)

[C
a

]
 (

F
R

E
T

 C
F

P
/Y

F
P

)
2

+

m
it

o

Tg

0 50 100 150

0.4

0.5

0.6

0.7

Control
TMX1 kds

Ca  free
2+

0.25 mM Ca
2+

WM3734

A

D cpV3

C

0.10

0.12

0.14

0.16

U
p

ta
k

e
 [

C
a

]
 (

F
R

E
T

 C
F

P
/Y

F
P

)
2

+

m
it

o


**

Control

TM
X1 kds

WM3734

B

0.40

0.45

0.50

0.55

B
a
s
a

l 
[C

a
]

 (
F

R
E

T
 C

F
P

/Y
F

P
)

2
+

m
it

o

**

Control

TM
X1 kds

WM3734

D

Time (s)

[C
a

]
 (

F
R

E
T

 C
F

P
/Y

F
P

)
2

+

m
it

o

0

4

5

6

8

100 200 25050 150

Control

TMX1 kds

Ca  free2+
1 mM Ca

2+

WM3734

7
Tg

TNXL

E

4.0

4.4

4.8

5.2

B
a
s
a
l 

[C
a

]
 (

R
a
ti

o
 F

R
E

T
/C

F
P

)
2+

m
it

o

**

Control

TM
X1 kds

WM3734

F

 

1.0

1.5

2.0

3.5

U
p

ta
k
e

 [
C

a
]

 (
R

a
ti

o
 F

R
E

T
/C

F
P

)
2

+

m
it

o


**

Control

TM
X1 kds

2.5

3.0

WM3734



90 

 

the mitochondrial Ca2+ uptake (basal-plateau) from data in (D). Data are presented as 

mean±SEM. (The analyzed cell number N: control=94, TMX1 kd=83.) 

 

Next, we used a more detailed protocol, which separates the calcium transfer from ER and 

from PM into mitochondria. The cells were transiently transfected with siRNA against TMX1 

and D3cpV sensor as before. Forty-eight hours later the cells were imaged in Ringer’s buffer 

with 0 mM Ca+ for a few seconds. Thereafter, the ER Ca2+ store depletion was triggered with 

Tg, in order to monitor calcium transfer from ER to mitochondria. To evaluate the PM-

mitochondria Ca2+ transfer the extracellular Ca+ was elevated to 1 mM. As shown in Figure 

16A-C, the ER-mito transfer is decreased albeit the PM-mitochondria Ca2+ transfer is 

increased by silencing of TMX1-silenced cells. Thus, our data suggest that the increased 

calcium transfer from the plasma membrane is largely responsible for the increased [Ca2+]mito  

following TMX1 silencing, and the transfer from ER is restrained. Taking the difference 

between the extracellular compartment and the ER into account, the overall effect of TMX1 

silencing should lead to an elevated mitochondrial calcium dynamic. These results also hint 

that mitochondrial metabolism should be enhanced in due by the elevation of mitochondrial 

calcium level.  

 

Figure 16: The PM to mitochondria calcium transfer is increased following TMX1 

silencing. (A) The mitochondrial Ca2+ uptake was measured with genetically encoded protein 
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sensor 4mt-D3cpV on WM3734 cells 48 hours after the siRNA transfection. Data are 

presented as mean of 3 independent experiments on a time course. (B) Quantification of the 

ER-mito calcium transfer from data in (A). (The analyzed cell number N: Control=124, 

TMX1 kd=109.) (C) Quantification of the PM-mito calcium transfer from data in (A). (The 

analyzed cell number N: Control=124, TMX1 kd=109.) 

 

7.6.4.2 Mitochondrial ATP is elevated by TMX1 silencing 

To test our speculations on the role of TMX1 on mitochondrial metabolic activity, we 

measured mitochondrial ATP in the stable knockdown cell lines with a genetically encoded 

mitochondria targeted ATeam1.03 protein sensor. The results shown in Figure 17A confirm 

that the mitochondrial ATP level is higher in the TMX1-silenced cell lines. The quantification 

data in Figure 17B depicts a significant increase in the resting mitochondrial ATP in both 

TMX1-downregulated melanoma lines. 

 

Figure 17: The basal mitochondrial ATP level is increased following TMX1 silencing. (A) 

The representative images from mito-ATeam1.03 measurements in WM3734 cells stably 

expressing shRNA against TMX1. Bars represent 10µm. (B) Quantification of basal 

mitochondrial ATP data, all data were normalized to the Control and shown in percentage. 

Data are presented as mean±SEM of 3 independent experiments. (The analyzed cell number 

N: Control=481, TMX1 kds 1=583, TMX1 kds 2=419.) 
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Additionally, to confirm the mitochondrial metabolism is altered by the silencing of TMX1, 

the oxygen consumption rate (OCR) of TMX1-silenced WM3734 cells was examined with a 

Seahorse XF96 extracellular Flux Analyzer by our collaborators in the Biochemistry 

department. As shown in their results (Panel EV5G, H, I)(249), the TMX1-silenced WM3734 

cells show a higher basal OCR as well as maximal OCR compared with the control. Although 

from the quantification data, one of the clones does not show a significant increase of basal 

and maximal respiration (TMX1 knockdown stable 1, TMX1 kds1), the overall trend shows a 

strong increase of OCR which confirms that the capacity of oxidative phosphorylation is 

increased following silencing of TMX1. 

Summarized, our data shows that the silencing of TMX1 can alter the mitochondrial 

metabolism via an increase of the mitochondrial calcium uptake, which further boosts the 

capacity of mitochondrial respiration. The higher mitochondrial respiration produces more 

ATP and increases the rate of ROS generation. 

 

7.6.5 TMX1 silencing alters mitochondrial morphology  

The altered mitochondrial Ca2+ levels could be caused by several factors including the up-

regulation of mitochondrial calcium uniporter (MCU) or other channels, but the proximity of 

mitochondria to the calcium stores and channels also plays an important role. Since the 

calcium data show a strong increase of PM to mitochondria calcium transfer while the ER to 

mitochondria calcium transfer is reduced, the positioning of mitochondria and communication 

between mitochondria and ER in this case may be critical for the outcome. The similar 

observations were reported before, that during T cell activation, the cell polarization causes 

re-organization of the mitochondrial network to facilitate mitochondrial calcium uptake (251), 

and the sustained absorption of calcium by mitochondria can extend the calcium influx via 

plasma membrane and activation of T cells. In these observations, the structural changes are 
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initiative and critical for the following response in calcium signaling. To examine if the 

silencing of TMX1 caused any structural and morphological alterations of mitochondria, the 

mitochondrial morphology in the TMX1-silenced stable melanoma cell lines was examined 

with 3D confocal fluorescent microscopy by our collaborator Dr. Miso Mitkovski. As shown 

in Panel 5(G, H)(249), the silencing of TMX1 leads to a significant increase of mitochondrial 

total volume and surface, alterations that could lead to a higher exposure of mitochondria to 

the surrounding environment. Thus, the area of mitochondria exposed to the plasma 

membrane might be affected by the knockdown of TMX1. Further examination of the 

mitochondrial content in the vicinity of the plasma membrane with ImageJ software showed 

Panel 5(I, J)(249) that the area occupied by peripheral mitochondria is increased more than 

two folds in the TMX1 silenced cells. These data suggest the knockdown of TMX1 may lead 

to re-organization of mitochondria network and alteration of mitochondria morphology. 

Based on the analysis of mitochondrial calcium uptake and morphology, it is postulated that 

the alteration of MAM structure might be responsible for the re-organization of mitochondria 

upon TMX1 knockdown. Therefore, the MAM structure and the mitochondrial positioning in 

the stable knockdown cells were investigated by our collaborators in Canada using electron 

microscopy. The quantified data show that the distance between mitochondria and PM is 

reduced by nearly 40% (Figure 18B), while the distance between mitochondria and ER is 

increased by nearly 25% (Figure 18C) in the TMX1-silenced melanoma cells. And the MAM 

length is shortened by nearly 30% (Figure 18D). These data suggest the knockdown of TMX1 

shortens MAM length and causes a positioning shift of mitochondria network from ER 

adjacent area to the plasma membrane peripheral in melanoma cells (Figure 18A). Based on 

these findings, we conclude that the disturbance of MAMs and the mitochondrial re-

positioning caused by the knockdown of TMX1 enhance the exposure of mitochondria to PM, 

ultimately lead to a higher exposure of mitochondria to calcium hotspots near the PM. 
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Consequently, the plasma membrane-derived mitochondrial Ca2+ uptake is increased upon 

SOCE activation.   

 

Figure 18: Mitochondrial repositioning towards the plasma membrane in melanoma 

cells following TMX1 silencing. (A) Representative images of the electron microscopy from 

TMX1-silenced 1205Lu cells. (B) Quantification of the distance between mitochondria and 

plasm membrane. Data are presented as mean±SEM. (The analyzed cell number N: 

Control=100, TMX1 kds=100.) (C) Quantification of the distance between mitochondria and 

ER. Data are presented as mean±SEM. (The analyzed cell number N: Control=60, TMX1 

kds=60.) (D) Quantification of MAM length. Data are presented as mean±SEM. (The 

analyzed cell number N: Control=60, TMX1 kds=60.) 

*The establishment of TMX1 stable knockdown cell line is done by Xin Zhang. The electron 

microscopy experimental data were generated by Nasser Tahbaz, Lucas Mina and Prof. Dr. 

Thomas Simmen, data processing was done by Xin Zhang. 
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silencing of TMX1 and TMX3. As shown in Figure 19A, although some of the protein 

sensors are retained in part of the whole mitochondria to ER network, the expression of this 

sensor is seemingly in a cross section of ER and mitochondria. The quantifications from 
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Figure 19B show that indeed the silencing of TMX1 or TMX3 induces a relatively significant 

increase of H2O2 in MAM domain.   

 

Figure 19: Mitochondrial repositioning disturbed redox homeostasis in MAM. (A) 

Representative image of the MAM-HyPer protein sensor in WM3734 cells. (B) Quantification 

of the H2O2 level in MAM upon transient silencing of TMX1 and TMX3. Data are presented 

as mean±SEM of 2 independent experiments. (The analyzed cell number N: Control=17, 

TMX1 kd=15, TMX3 kd=10.) 

 

In summary, our data on mitochondrial function and morphology suggest that the silencing of 

TMX1 can alter the mitochondrial morphology and positioning which lead to an increase of 

mitochondrial calcium uptake, higher metabolic activity and ultimately the elevated 

mitochondrial ROS production. The disturbance also caused a disruption of MAM redox 

homeostasis directly, leading to higher level of H2O2 accordingly. Our findings highlight 

TMX oxidoreductases as important elements in regulating the MAM stability and 

mitochondrial architecture.  

 

7.7 NOX4 is an alternative source of ROS 

The NADPH oxidase (NOX) family enzymes are a set of oxidases that generate superoxide 

via oxidation of NADPH. There is growing evidence that NOX enzymes together with the 
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mitochondria are major intracellular sources of ROS. The NOX4 has been suggested to be a 

membrane bound protein localized in PM, mitochondria and ER (252-255). Accordingly, we 

asked if NOX4 played a role in the ROS induction by upon TMX1 silencing. For this purpose, 

we measured cellular H2O2 concentration in TMX1-silenced cells with additional NOX4 

knockdown or treatments with the NOX4 inhibitor GKT137831. Our results show that both 

silencing of NOX4 or suppression of its activity lead to reduction in ROS levels in TMX1-

silenced cells (Figure 20A-B). Importantly, the knockdown or the inhibition of NOX4 causes 

only a minor change of cellular pH in WM3734 cells (Figure 20C).  

 

Figure 20: The NOX4 is an alternative source of excessive cellular ROS. (A) 

Representative ratiometric images of HyPer3 measurement on the WM3734 cells transfected 

with TMX1 siRNA, both TMX1 siRNA and NOX4 siRNA or treated with the NOX4 

inhibitor GKT137831 (140nM) for 48 hours. Bars represent 10µM. (B) The quantification of 

the HyPer3 data. Data are presented as mean±SEM of 3 independent experiments. (The 

analyzed cell number N: Control=837, TMX1 kd=888, TMX1 kd+NOX4 kd=793, 

TMX1+GKT=844.) (C) The quantification of the SypHer data as pH control for HyPer3. Data 

are presented as mean±SEM of 3 independent experiments. (The analyzed cell number N: 

Control=265, TMX1 kd=233, TMX1 kd+NOX4 kd=187, TMX1+GKT=194.) 

 

In sum, we conclude that the elevation of cytosolic ROS in the TMX1/TMX3-silenced cells is 

caused by the increased ROS production both from mitochondria and NOX4, though the 

proportion of the contributions between them remain undetermined.   
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7.8 TMX-ROS-NFAT1 signaling axis controls melanoma behavior 

7.8.1 TMX-ROS-NFAT1 axis promotes melanoma proliferation  

The TMX1 was reported as a suppressor of melanoma previously but notably only in a single 

cell line based study (228). The role of NFAT1 in melanoma was mostly yet to be revealed. 

Since the known literature never investigated these two elements in an integrative way on 

melanoma pathology, we next proceeded to investigate the impact of TMX-ROS-NFAT1 axis 

on melanoma pathology. Our data indicated that TMX1 and NFAT1 might have a close 

association with melanoma progression; hence we first started with examining the 

proliferation of melanoma cells upon suppression of TMX1/3 and NFAT1.  

As shown in Figure 21A, the silencing of TMX1/TMX3 significantly inhibits the proliferation 

of WM3734 and Mel Juso cells (19% and 21% for TMX1; 29% and 39% for TMX3) around 

at 48 hours after the siRNA transfection while the inhibition on the WM1366 cells (non-

NFAT1 expression line) is less pronounced (10% for TMX1; 8% for TMX3). To test if 

oxidative stress controls these effects on cell proliferation, the cells were treated with 

antioxidants. NAC and the mitochondria targeted antioxidant mTEMPO were used on the 

TMX1-silenced WM3734 cells. Figure 21C shows that both antioxidants can reverse the 

TMX1-silencing induced inhibition of proliferation, but NAC has a stronger potency. The 

three cell lines used for our experiment have different BRAF (mutation), NRAS (mutation) 

and NFAT1 (expression) status, so the data hint for a more general mechanism among 

melanoma cells. Based on these results, we conclude that the TMX-NFAT1 axis controls 

proliferation of melanoma cells regardless of their mutation status. Notably, NFAT1 

expression affects the potency of TMX knockdown induced inhibition of proliferation, the 

inhibition of its activation also causes additional suppression of melanoma proliferation.  

The siRNA mediated silencing usually provides only a very limited time window to examine 

the role of a certain protein. In order to examine the long-term effects of TMX silencing, we 
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measured proliferation in melanoma cells with stable TMX1 downregulation. As shown in 

Figure 21B, the proliferation of two cell lines with stable knockdown of TMX1 is also 

suppressed by 30%~40%, a finding that confirms that silencing of TMX proteins causes 

inhibition of melanoma cell proliferation in 2D culture in both short and long periods.  

 

Figure 21: Proliferation of melanoma cells is inhibited following TMX silencing. (A) The 

proliferation was measured by cell titer blue assay on WM3734, Mel Juso and WM1366 cells 

48 hours after transfection of siRNA against TMX1 and TMX3. Data are normalized to the 

percentage of control and presented as mean±SEM of at least 4 independent experiments. (B) 

The proliferation was measured by cell titer blue on WM3734 cells and 1205Lu cells stably 

expressing shRNA against TMX1. Data are normalized to the percentage of control and 

presented as mean±SEM of 3 independent experiments. (C) The NAC and mTEMPO were 

used to rescue the proliferation inhibition induced by TMX1 kd on WM3734 cells. After the 

siRNA transfection, the antioxidants were added and incubated with the cells for 48 hours, the 

proliferation was assessed with cell titer blue assay. Data are normalized to the percentage of 

control and presented as mean±SEM of 3 independent experiments. 
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Next, we tested if silencing of NFAT1 could induce similar effects on melanoma cell 

proliferation. Our data show that silencing of NFAT1 mediated by siRNA significantly 

inhibits the proliferation of both WM3734 and MelJuso melanoma cell lines (Figure 22A). To 

further test the role of NFAT1, we treated the cells with various concentrations of 

dipyridamole, a drug that disrupts NFAT1-calcineurin interaction. Our results show an 

inhibition of melanoma cell proliferation in a dose-dependent manner during a period of 72 

hours by disrupting NFAT1 docking to calcineurin (Figure 22B). In all, these data suggest 

that TMX1/TMX3 and NFAT1 promote melanoma cell proliferation, and suppression of these 

proteins has a negative effect on the proliferation of melanoma cells in 2D culture. 

 

Figure 22: The proliferation of melanoma cells is inhibited by suppression of NFAT. (A) 

The proliferation was measured with cell titer blue assay on WM3734 cells and Mel Juso cells 

24 hours after the transfection with siRNA against NFAT1. Data are normalized to the 

percentage of control and presented as mean±SEM of 3 independent experiments. (B) The 

proliferation was measured with cell titer blue assay on WM3734 cells and Mel Juso cells 72 

hours after treatment with various concentration of Dipyridamole. Data are normalized to the 

percentage of control and presented as mean±SEM of 3 independent experiments. 

 

7.8.2 TMX-ROS-NFAT1 axis promotes melanoma migration 

Cellular invasiveness is the important parameter correlated with progression of cancers (256). 

We thus investigated if TMX-ROS-NFAT1 axis played a role in the migration of melanoma 
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cells. Figure 23A shows that silencing of TMX1/TMX3 inhibits migration of WM3734 cells 

by up to 35% and 50%, respectively. But this effect was not observed in the NFAT1-negative 

WM1366 cells, which indicates that NFAT1 may be more critical in the regulation of 

migration. Moreover, the inhibition of melanoma cell migration is reversed by NAC and 

mTEMPO suggesting involvement of redox regulation (Figure 23B). Furthermore, Inhibition 

of NFAT1-calcineurin interaction or calcineurin activity by dipyridamole or Cyclosporine A 

also suppresses the migration of WM3737 and 1205Lu cells significantly (Figure 23C). As 

depicted, the Dipyridamol treatment reduces WM3734 and 1205Lu cell migration by around 

25% and 45%; Cyclosporine A inhibits the migration by nearly 40% in WM3734 cells and 30% 

in 1205Lu cells. The invasion measurements also show that stable knockdown of TMX1 may 

inhibit the invasion of WM3734 cells into Matrigel (Panel 6H) (249). Taken together, our data 

suggest that the TMX1, TMX3 and NFAT1 promote melanoma cell migration and invasion 

via redox-regulated mechanisms.  
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Figure 23: The migration of melanoma cells is inhibited following TMX silencing or 

suppression of NFAT, calcineurin. (A) The migrations of TMX-silenced WM3734 and 

WM1366 cells were assessed with transwell migration assay 48 hours after the siRNA 

transfection. Data are normalized to the percentage of control and presented as mean±SEM of 

3 independent experiments. (B) The effect of NAC (100µM) and mitochondria targeted 

antioxidant mTEMPO (100nM) on migration of TMX1-silenced WM3734 was assessed with 

transwell migration assay 48 hours after the siRNA transfection and antioxidant treatment. 

Data are normalized to the percentage of control and presented as mean±SEM of 3 

independent experiments. (C) The migration of melanoma cells treated with NFAT inhibitor 

(Dipyridamol, 40µM) and calcineurin inhibitor (CsA, 2µM) for 48 hours was assessed with 

transwell migration assay. Data are normalized to the percentage of control and presented as 

mean±SEM of 3 independent experiments.  
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7.8.3 TMX1 silencing does not affect BRAF-inhibitor sensitivity in 

melanoma 

The oncogenic BRAF mutation and downstream hyperactive MAPK signaling pathway are 

proved to be prevalent in melanoma (257, 258). The combination of BRAF and/or MEK 

inhibitors is thus often used for treating melanoma. Thus, we tested if the knockdown of TMX 

proteins had any impact on the BRAF and MAPK signaling and cell drug sensitivity. To this 

end, we quantified the proliferation of two WM3734 cell clones stably expressing shRNA 

against TMX1 following treatment with BRAF- (Vemurafenib) and/or MEK inhibitor 

(Trametinib). As shown in Figure 24A and B, at the clinically relevant concentrations, the 

drugs elicit the same proliferation inhibition in knockdown cells compared with control cells, 

in other words, the silencing of TMX1 does not seemingly increase any advantages over these 

two inhibitors. Hence, we conclude the effects induced by knockdown of TMX proteins are 

very likely BRAF/MEK independent, and that the TMX-ROS-NFAT axis controls melanoma 

cells regardless of their BRAF/NRAS mutational status. 

 

Figure 24: TMX1 silencing does not affect BRAF and MEK resistance of melanoma cells. 

(A) The proliferation was measured with celltiter blue assay on WM3734 cells with stable 

knockdown of TMX1 48 hours after the treatment with different concentrations Vemurafenib. 

Data are normalized to the percentage of control and presented as mean±SEM of 3 

independent experiments. (B) The proliferation was measured with celltiter blue assay on 

WM3734 cells with stable knockdown of TMX1 48 hours after the treatment with different 
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concentrations of Trametinib. Data are normalized to the percentage of control and presented 

as mean±SEM of 3 independent experiments. 

 

7.8.4 TMX1 silencing affects melanoma tumor growth in vivo 

Our in vitro data strongly support that TMX1, TMX3 and NFAT1 control melanoma 

proliferation and migration. But regarding the in vivo environment such as solid tumor, there 

are many factors which can lead to a different result. We thus subcutaneously injected 

WM3734 cells stably expressing shRNA against TMX1 into the immunosuppressed NOD-

SCID-IL2-c-null (NSG) mice. As shown in figure 25, in the first 19 days after the inoculation 

the tumor growth was significantly slower in the mice with TMX1-silenced cells resulting in a 

significantly smaller tumor volume compared with the control (Figure 25A, B). Surprisingly, 

by the end of the experiment at 45 days, the tumor volume of TMX1-silenced cells was no 

longer inhibited (Figure 25C and D), and the rebound of tumor growth from both clones was 

apparent. These data indicate that silencing of TMX1 suppresses melanoma growth both in 

vitro and in vivo, but also implies that melanoma cells could adapt in an in vivo setting 

through re-wiring of signaling pathways or activating other alternative mechanisms. To 

address the possible adaptive mechanisms, the western blotting was performed with the tumor 

lysates collected at the end of mouse experiment. The results exclude the possibility that the 

rebound of tumor growth is caused by the recovery of TMX1 protein expression by showing a 

still suppressed level of TMX1 in tumors (Panel EV5 D)(249), while one of the clue points to 

that the re-wiring of AKT signaling pathway is a potential mechanism of adaptation (Panel 

EV5 E). The tuning of signaling pathways in cancer cells is frequently observed and very 

complicated, so any concrete conclusion on this topic needs a further and thorough dissection 

via bioinformatics, large scale proteomics study, which are out of the main aims of this study 

because of limited time and resources. 
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Figure 25: Melanoma tumor growth is affected following TMX1 silencing. (A) The tumor 

volume monitored from 0~20 days after the inoculation with TMX1-silenced WM3734 cell 

on immune deficient mice. (B) Quantification of tumor volume data at day 20th. Data are 

presented as mean±SEM of 7 mice for each group. (C) The tumor volume monitored from 

0~45 days after the inoculation with TMX1-silenced WM3734 cell on immune deficient mice. 

(D) Quantification of tumor volume data at day 45th. Data are presented as mean±SEM of 7 

mice for each group. 

*The establishment of TMX1 stable knockdown cell line is done by Xin Zhang. The xenograft 

experiment, sample collection and stats collection were done by a joint effort of Xin Zhang, 

Dr. Adina Vultur, Dr. Christina Körbel. Data analysis and presentation were done by Xin 

Zhang.   

C

 

0

400

600

800

12 36

Time (day)

0

4824

200

T
u

m
o

r 
V

o
lu

m
e
 (

m
m

)
3

B

0

60

120

T
u

m
o

r 
V

o
lu

m
e
 (

m
m

)
3

Control

TM
X1 

 1
kds

TM
X1 

 2
kds

**
**

90

30

Day 20

D

0

600

1000

T
u
m

o
r 

V
o

lu
m

e
 (

m
m

)
3

Control

TM
X1 kd

 1
s

TM
X1 kd

 2
s

n.s.

n.s.

800

200

Day 45

400

0

40

60

100

0

20

80

Control
TMX1  1kds
TMX1  2kds

T
u

m
o

r 
V

o
lu

m
e

 (
m

m
)3

3 6 9 12 15 18 21

Time (day)

**

**

**

**

**

**

**

**

**

**

A



105 

 

8 Discussion 

8.1 The TMX proteins and NFAT1 are upregulated in melanoma and 

correlate with melanoma progression 

As presented in the results section, our analyses on the expression of TMX1, TMX3 and 

NFAT1 suggest their general upregulation in melanoma cell lines. These results also show 

that NFAT1 is the predominant NFAT isoform and indicated the existence of NFA1 positive 

and NFAT1 negative melanoma cell lines. Accordingly, our data are in line with previous 

studies, which suggest important role for NFAT in cancer (232, 233).  

To further examine the expression of TMX1 and NFAT1 in a clinical perspective, the 

immunohistochemistry staining (IHC) of healthy skin and melanoma patient biopsies were 

performed by our collaborators in the dermatology department. As indicated from their result 

(Panel 1D)(249), in a primary nodular melanoma sample, the healthy melanocytes only 

express a relatively low level of TMX1 while the melanoma cells express TMX1 proteins on a 

much higher level. In the healthy tissue including the basal layer and epidermal keratinocytes, 

the expression of NFAT1 protein is not detectable while the expression in the melanoma cells 

is significantly higher. The staining from the second case also showed a similar pattern of the 

expression which confirmed that the TMX1 and NFAT1 are expressed on a higher level in the 

melanoma patient-derived cells (Panel EV1C). 

Along with the progression of cancer, the up-regulation of proteins could be activated 

temporarily to facilitate the proliferation of the tumor or provide survival advantages such as 

immune escape, resistance to apoptosis or a pro-aggressive phenotype switch. This up-

regulation could also be constant to keep signaling pathways hyper active in the tumor cells 

and thus circumvent environmental stress factors. Therefore, it is important to examine if the 

expression of TMX1 and NFAT1 correlate with the progression i.e. aggressiveness of 

melanoma. For this purpose, the immunohistochemistry staining was performed also on a set 
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of tumor samples collected from the patients in various stages of melanoma progression. 

These samples included tumors with thickness less than 2 mm, aggressive tumors (thickness 

more than 4mm) and metastatic melanoma. To make comparison, the protein abundance in 

healthy skin, benign naevus and melanoma in situ were also examined.  As shown from these 

results (Panel 1E)(249), the abundance of TMX1 is at the lowest level in the healthy 

epidermis and melanocytic naevus (P1~P2); the in situ tumor samples show only a moderate 

expression (P3~P4). However, the expression increases with the growing thickness of the 

melanoma tumor (P5~P10). The tumors with a thickness more than 4 mm clearly show the 

highest expression of TMX1. Over all the metastasis (P11~P13) show the highest expression 

among all patient samples.  

On the other hand, the abundance of NFAT1 is nearly not detectable from either the healthy 

epidermis, naevus or the in situ melanoma (P1~P4). In 2 out of 3 tumors with a thickness 

more than 2 mm, the NFAT1 expression was not detected (P5~P6), but in the 3rd case only 

moderate NFAT1 levels were detected (P7). However, in the more advanced cases with 

thickness more than 4mm and especially in the distant metastases, the abundance of NFAT1 

becomes very prominent (P8~P13). Hence, based on the analysis of these 13 patient samples, 

we conclude, that the TMX1 and NFAT1 expression correlate with the development and 

invasiveness of the tumor. 

Furthermore, an additional IHC set of patient samples based on melanoma staging also 

confirmed high expression of TMX1 in the aggressive melanomas including superficial 

melanoma, nodular melanoma, sentinel lymph node metastasis and balloon cell melanoma 

(Panel EV1D)(249). The results from patient samples show a frequent and significant increase 

of TMX1, TMX3 and NFAT1 expression in melanomas, which have a strong correlation with 

disease stage. These results emphasize the clinical importance of TMXs, NFAT proteins and 

the underlying mechanisms in human melanoma. 
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8.2 The TMXs regulate NFAT1 activation via ROS, not Ca2+ 

Based on the report from Sharma and colleagues (219), we learned that silencing of TMX 

proteins inhibits NFAT1 nuclear translocation; an indication for a functional link between 

ER-mitochondria contact sites, gene transcription and disease progression. Since depletion of 

the ER Ca2+ store is involved in SOCE, which is necessary in activating calmodulin-

calciuneurin-NFAT1 signaling cascade, we initially hypothesized that the TMX proteins can 

affect NFAT1 translocation through their influence on cytosolic calcium transients; a 

hypothesis that asks for experimental testing.    

Our data confirmed that the TMX proteins can regulate NFAT1 activation in melanoma cells. 

The knockdown of TMX1 and TMX3 inhibits NFAT1 translocation and the expression of 

downstream effectors such as IL-8 in melanoma cell lines. In the study by Sharma et al., the 

changes in cytosolic Ca2+ were identified as a driving factor for the regulation of NFAT1 

activation by septins, which prompted us to hypothesize that TMX1 and TMX3 can alter 

SOCE, probably by influencing STIM activation or ER-PM junctions i.e. STIM-ORAI 

coupling mechanism. It has been reported that the ER-PM junctions and ER homeostasis can 

affect STIM activation and STIM/ORAI coupling to control SOCE (260, 261). Nonetheless, 

the localization of TMX proteins is in the MAMs, which suggests that the TMX proteins 

might regulate SOCE by altering the mitochondrial calcium uptake (262, 263). However, to 

our surprise, our results did not show significant changes in SOCE after knockdown of TMX1 

and TMX3, a finding that ruled out the possibility of calcium being the major factor at play. 

This led us to examine other elements than cytosolic Ca2+ in regulating the NFAT1 

translocation.  

It has been reported that calcineurin has cysteine residues both in and around its catalytic 

center, which is a Fe–Zn pair (264). Calcineurin can thus be regulated by the oxidation of 

either the iron cluster at the active center or the cysteine residues near the pocket, which might 
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be important for the conformational stability of the catalytic site. Previous studies have shown 

that O2
- and H2O2 can deactivate the calcineurin in T-cells and other cells (265-267). In 

addition, the superoxide dismutase as well as the reducing reagent DTT and the thioredoxin 

enzyme can reverse/protect the H2O2-induced deactivation of calcineurin (268, 269). 

Furthermore the calmodulin-binding domain of calcineurin contains methionine residue, 

which is also sensitive to oxidation and can thus affect the binding and activation of 

calcineurin (270). Based on these literatures, we suspected that ROS might be responsible for 

the inhibition of NFAT1 activation in TMX silenced melanoma cells. Thus, we first examined 

the cellular H2O2 levels and found that the knockdown of TMX1 or TMX3 resulted in a 

higher H2O2 concentration. The ROS molecules can play different functional roles depending 

on their concentration. In the lower range (from nanomolar to a few micromolar), H2O2 serves 

as a signaling molecule (271); however, if the concentration is high enough to cause oxidative 

damage to biological molecules in the cells, ROS are toxic and can lead to cell death and 

malignant transformation (272). 

Thus, through a series of NFAT1 translocation assays combined with manipulations of 

extracellular H2O2 concentration we found that, in melanoma cells, NFAT1 activation was 

redox-regulated. Our data suggest that even in the micromolar range, H2O2 inhibits NFAT1 

activity; additionally, the NFAT1 inhibition caused by knockdown of TMX proteins could be 

reversed by antioxidants and reducing agents. These data indicate that TMX1 and TMX3 

might have a protective role by reducing cellular oxidative stress in melanoma cells. To 

understand the molecular mechanism of TMX knockdown induced NFAT1 inhibition, we 

examined the influence of TMX1 and TMX3 knockdown on calcineurin activity in melanoma 

cells. We found that its activity was suppressed upon knockdown of TMX proteins. In 

summary, our study suggests the knockdown of TMX proteins leads to a higher ROS levels in 
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melanoma cells, which are responsible for the inhibition of NFAT1 translocation via 

inhibition of calcineurin.  

 

8.3 The TMXs influence mitochondrial ROS production 

Based on the known functions of TMX proteins, the possible sources of ROS upon their 

silencing might be as follows: 1) ER lumen, due to disturbances in the redox homeostasis i.e. 

ER stress; 2) ER-based NADPH oxidases such as NOX4; 3) Mitochondria, through the ER-

mitochondria contact sites, the TMX proteins may influence the ROS generation in these 

organelles (273-275). However, our data indicate that the knockdown of TMX1 does not 

induce neither the expression of typical ER stress markers, nor higher level of ROS in ER. 

These findings suggest that the role of TMX proteins in ER stress is probably context-

dependent; and other oxidoreductases in the ER might be up-regulated to compensate for the 

loss of TMX proteins. Nonetheless, based on these negative results from investigation on ER, 

we started to investigate on the other targets.  

The NADPH oxidase 4 is involved in ER stress-related oxidative stress (276). And it has also 

been reported that TMX3 is an interaction partner of NOX4 (277). Thus, it is intriguing to 

identify whether NOX4 is relevant to the elevated ROS generation induced by the knockdown 

of TMX proteins. Our H2O2 measurements in melanoma cells upon TMX1 and NOX4 

silencing indicate a certain contribution of NOX4 but also suggest that ROS are generated by 

additional sources. Concerning the importance of NOX4 in melanoma (278, 279), further 

investigation in this direction will be interesting.  

Based on these findings we tested the mitochondrial parameters and found that the 

mitochondrial H2O2 levels were dramatically increased after the knockdown of TMX proteins. 

The mitochondria are the major source of ROS in the cells, considering the special 
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localization of TMX proteins, these data are not surprising to us. As mentioned previously, 

mitochondrial ROS production is closely coupled to the respiration and metabolism activities, 

and the measurements in these two parameters also in turn should confirm that the 

mitochondria are energized to produce higher level of ROS. These data thus led to questions 

concerning the mechanism through which TMX proteins regulate mitochondrial ROS 

production and metabolism.  

 

8.4 The ER-mitochondria contact sites shape mitochondrial dynamics 

Mitochondrial metabolism, Ca2+ and redox signaling are intrinsically integrated into a 

complex system for the regulation of cellular functions. Since the TMX proteins are localized 

in the MAM, their absence might cause consequences for both the structure and the function 

of ER-mitochondria contact sites, thus has a profound impact on the mitochondrial function.  

Our first clue, the elevated mitochondrial ROS, indicates that the mitochondrial metabolism is 

affected by the knockdown of TMX proteins. Thus, we next investigated mitochondrial 

calcium uptake in TMX silenced cells. Our data indicates that mitochondrial calcium uptake 

is increased in both the stable TMX1 knockdown cells and cells with transient silencing of 

TMX1 following activation of SOCE. The two major sources of calcium i.e. the ER and the 

cytosol, contributed in different ways: The ER-to-mitochondria calcium transfer was 

decreased, whereas the PM (cytosol)-to-mitochondria calcium transfer was increased 

significantly. Further measurements of cellular oxygen consumption and mitochondrial ATP 

production supported our findings and confirmed that increased calcium uptake led to higher 

respiratory activity. Thus, we investigated the mitochondrial morphology and the 

mitochondria positioning to the PM with confocal and electron microscopy in melanoma cells. 

The data indicates that the total volume and surface area of mitochondria are increased in 

melanoma cells with stable knockdown of TMX1. Moreover, the mitochondria are re-



111 

 

positioned to the PM proximity, which may lead to greater exposure of mitochondria to PM-

related events.   

The mitochondria and the ER are two major endomembrane systems in eukaryotic cells, and 

they form an extended reticular network. The ER-mitochondria contact sites, as mentioned 

previously, mediate signaling, lipid exchange and calcium handling to regulate many 

mitochondrial functions, including metabolic activity, replication and apoptosis (280, 281). 

Recent studies have revealed that the mitochondria can form contacts with other organelles, 

such as the PM, lipid droplets, vacuoles, lysosomes and peroxisomes (282). These studies lead 

to a broader understanding of the roles of mitochondria in cellular functions, and also suggest 

that the interactions of organelles via the contact sites may have profound influences on 

mitochondrial behavior (283). In such a context, the exact architecture of the contact sites are 

very important determining factors (284). Endoplasmic reticulum-mitochondria contact sites 

have been reported to be 10~30 nm wide (198) and are tethered by specialized membrane 

proteins in mammalian cells. Moreover, approximately 10 % of the PMs in cells are in contact 

and are anchored to mitochondria. The disruption of these anchors can redistribute the 

mitochondria away from the PM (285, 286).  

In previous studies, either the ER-mitochondria or PM-mitochondria contact sites were 

investigated alone. And their impact to the relative distance between organelles, 

mitochondrial division and distribution were clarified mostly in a yeast model (285, 287, 288). 

Based on our data, it is plausible to speculate that, together, these two elements determine the 

apposition of mitochondria relative to the ER and the PM. Under normal conditions, in the 

presence of TMX proteins, the ER-mitochondria contact sites are intact and the ER-to-

mitochondria calcium transfer is sufficient for normal cell function meaning that the 

mitochondrial ROS generation is under control and thus, the NFAT1 signaling pathway is 

active. However, if the ER-mitochondria contact sites are disrupted by the loss of TMX 
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proteins, the mitochondria will become more closely associated with the PM and more 

distanced from the ER. This will lead to increased mitochondrial calcium levels, which will 

further promote mitochondrial respiration and contribute to excessive ROS generation. The 

elevated ROS can then cause NFAT1 inhibition, thus resulting in a negative impact on 

melanoma cell biology. Our model is in agreement with a previous study that demonstrates 

that cancer cells are vulnerable to the inhibition of ER-mito calcium transfer (289) and recent 

findings concerning the protective role played by TMX1 during oxidative stress (290). Based 

on these evidences, at this point of the study, we conclude that the TMX-ROS-NFAT1 axis 

plays an important role in melanoma cell pathobiology. 

 

8.5 TMXs and NFAT1 promote aggressive melanoma phenotypes 

From the expression analysis, we had already learned that the TMX proteins and NFAT1 were 

upregulated in human melanomas and that their upregulations were relevant to the 

progression of the disease. Thus, we examined the proliferation and migration of melanoma 

cells upon the silencing of TMX proteins and NFAT1. Our data reveal that the knockdown of 

TMX1/3 or NFAT1 leads to inhibition of both proliferation, migration and invasion of 

melanoma cells in vitro. Notably, the pharmaceutical inhibition of calcineurin and NFAT1 

elicits similar effects. Furthermore, the TMX1 knockdown suppresses the growth of tumors in 

a xenograft mouse model although the tumor cells can adapt by activating AKT and probably 

also re-wiring other pathways. These data indicate that the attrition of TMX proteins and 

NFAT1 has a negative impact on melanoma cells; a finding which confirmed our hypothesis 

regarding the role of mitochondrial contact sites on melanoma pathology.  

Yet the results so far indicate that TMX1, TMX3 and NFAT1 play important roles in 

melanoma cell pathobiology. To explore the connection in human patients and prognosis of 

melanomas, the integrative bioinformatics analysis was performed by our collaborators, 
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Thorsten Will and Prof. Dr. Volkhard Helms. By analyzing the Cancer Genome Atlas (TCGA: 

https://cancergenome.nih.gov/) database and focusing on the correlation between the mRNA 

expression levels of TMX1, TMX3 and NFAT1 and the survival of patients with cutaneous 

melanoma, their analysis indicates that the high expression of any of the three target genes, 

TMX1, TMX3 and NFAT1, correlates with a significantly decreased survival expectancy 

compared with patients with low expression (Panel 7A)(249). The further analysis shows that 

the high expression of TMX1, TMX3 and NFAT1 also has a negative impact individually on 

the survival probability of the melanoma patients (Panel EV5J, K, L).  

To further identify the impact of TMX proteins and NFAT1 on survival of melanoma patients 

with different BRAF mutation status, the correlation between the expression of TMX1, 

TMX3, NFAT1 and BRAF status in a cohort of 97 melanoma patients, which consisted of 49 

WT and 48 BRAF V600E melanomas were analyzed. The results (Panel 7B)(249) show that 

the expression of TMX1/TMX3 is not correlated to the mutational status of BRAF, while the 

expression of NFAT1 is significantly increased in patients with BRAF V600E mutation. In 

patients with BRAF V600E mutation, the high expression of NFAT1 does not affect survival 

probability (Panel 7D). However, the high expression of NFAT1 significantly reduces the 

survival probability of patients with BRAF WT status (Panel 7C).  These data suggest that the 

TMX-ROS-NFAT1 signaling axis has a more prominent effect in BRAF WT patients, a 

finding that might be considered in choosing the therapeutic approaches for melanoma 

patients.  

Based on the melanoma patient data and the bioinformatics analysis, it is plausible to 

conclude that the high expression of TMX and NFAT1 are correlated to an aggressive 

melanoma phenotype and enhanced melanoma progression; and the experimental data shows 

their strong impact on intracellular redox regulation and mitochondrial bioenergetics. Given 

that the influence of this signaling axis is mediated by the regulation of NFAT1, the target 

https://cancergenome.nih.gov/
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genes of NFAT1 in melanoma cells are of particular interest. To further identify them, two 

independent published studies, which evaluated the transcriptome of melanoma cells 

following knockdown of NFAT1 using different approaches (242, 259) were analyzed. It was 

identified that there were 59 upregulated genes and 56 downregulated genes after NFAT1 

knockdown in melanoma cells (List of individual genes published as Table S5)(249).  

To address the functional relevance of these genes, the associated annotation data by the Gene 

Ontology Consortium (www.geneontology.org) were used for further investigation. The fold-

enrichment of genes with different term annotations defined by their background indicates 

that NFAT1 controls two major groups of genes in melanoma cells, “Mitochondrion-localized” 

and “Redox-related” (Panel 7F)(249). Furthermore, the fold-enrichment calculations of the 

transcriptomic data were categorized by the “Hallmarks of cancer”, and the results show that 

most of the genes under NFAT1 control can be assigned to the hallmark “Deregulating 

Cellular Energetics”.  In addition, the data show that the hallmarks such as cell death 

resistance, inflammation, evading growth suppressors and immune destruction, proliferation 

and invasion are also regulated by NFAT1 (Panel 7G).  

These analyses confirm our experimental findings and suggest that NFAT1 can influence the 

cellular redox state by regulating mitochondrial function, thus supporting melanoma cell 

aggressive phenotype and ultimately lead to lower survival expectancy of melanoma patients. 

Thus, we conclude that TMX proteins and NFAT1 are pro-tumorigenic and their expression 

promotes melanoma progression.    

 

http://www.geneontology.org/
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8.6 The TMX-NFAT1 axis regulates mitochondrial function and redox 

homeostasis in melanomas 

In our model, the TMX proteins determine the integrity of ER- mitochondria contact sites and 

thus control NFAT1 activity by modulating the intracellular ROS level. Previous studies have 

suggested that mitochondrial Ca2+, mitochondrial respiration and ROS generation can regulate 

NFAT activation in different models. In neuron cells, mitochondrial calcium uptake can 

prolong the activation of PM channels to sustain the calcium influx, which is important for 

NFAT1 activation (291). The low levels of ROS produced by the mitochondrial respiratory 

chain during sustained SOCE can also activate NFAT in T-cells and embryo cells (292-294). 

Based on our findings and the literature, we were able to implement the redox regulation of 

NFAT1 in our model. Here, we suggest that, in healthy cells, intact ER-mitochondria contact 

sites can provide normal calcium transfer to the mitochondria so mitochondrial ROS 

generation is in control, the normal NFAT1 function is unaffected and can be activated readily. 

As a protective feedback loop, the excessive ROS generated by abnormal metabolism activity 

can inhibit NFAT1 activity, which will lead to reduced mitochondrial activity and lower ROS 

production. In melanoma cells, the high expression of TMX proteins enhances the stability of 

the ER-mitochondria contact sites, while the high expression of NFAT1 increases the 

mitochondrial capacity to provide more energy to support cancer progression. Simultaneously, 

the upregulated antioxidant system manages redox balance to prevent negative effects (Graph 

5, left). However, the knockdown of TMX1 protein level will disrupt the integrity of ER-

mitochondria contact sites, thus causes an over-exposure of mitochondria to PM and calcium 

influx via channels on it. This will lead to increased mitochondrial Ca2+ uptake and excessive 

ROS generation, in turn, the ROS can deactivate NFAT1 signaling by inhibiting Calcineurin 

and cast negative effect on proliferation and migration of melanoma cells (Graph 5, right). 
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Graph 5: Theoretical Model of the TMX-ROS-NFAT1 Signal Axis in Melanomas. 

*This conceptual figure is modified from our publication “Redox signals at ER-mitochondria 

interface control melanoma progression”, Zhang et al, EMBO J. 2019 Aug 1;38(15): 

e100871.  

 

8.7 ER-mitochondria contact sites and the TMX-ROS-NFAT1 axis in the 

perspective of melanoma therapeutics 

As noted in the above discussion of our model, our study suggests that the TMX-NFAT1 

signaling axis, which contributes to the progression of human melanoma, is tuned by redox 

signals generated at the ER-mitochondria interface. These findings illustrate the importance of 

the ER-mitochondria contact sites and TMX-ROS-NFAT1 in melanoma pathology. Thus, it is 

important to discuss the possible implications of these findings from a clinical perspective.  

The research on ER-mitochondria contact sites is still an emerging field regarding cancer 

biology despite the several recent discoveries. ER-mitochondria communication governs 

many important cellular functions, including calcium transfer, lipid traffic, mitochondrial 
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plasticity, apoptosis, autophagy and inflammation (273, 295). Hence, any aberration on its 

part is associated with pathological conditions including cancer, Alzheimer’s (296), obesity 

and diabetes (297). However, as a functional platform, the structural support provided by the 

contact sites for the morphology and distribution of mitochondria in cancers, including 

melanoma, has not been explored thoroughly, perhaps due to the difficulties in targeting it for 

therapeutic purposes. Nonetheless, our work suggests that, by manipulating the ER-

mitochondria contact sites, downstream mitochondrial ROS generation can be elevated and 

causes inhibition of transcription factors such as NFAT1. This can ultimately lead to the 

suppression of aggressive melanoma, which might be of clinical interests.  

As mentioned previously, the ROS molecules are involved in the formation, metastasis and 

drug-resistance of melanoma. Abnormal intracellular sources of ROS in melanoma might be 

aberrant melanosomes, irregular metabolic activity and NADPH oxidases. In cancer cells, it is 

very commonly that the antioxidant system is upregulated to cope with the increased ROS 

levels (131). Mitochondria as a major endogenous source of ROS have been linked to cancers 

including melanoma for a quite long time; previous studies have explored their implications 

for therapeutics (298, 299). Recently, a series of studies have identified mitochondrial 

metabolism as an important mechanism for the drug resistance of melanoma (143, 189, 192) 

and have also highlighted targeting mitochondrial oxidative stress as a potential strategy for 

addressing drug resistance (158, 300). Our study is in agreement with these findings, and 

suggests that, in melanoma cells, the mitochondrial ROS can be induced to inhibit critical 

phosphatases, which could further deactivate downstream pathways such as NFAT1 signaling. 

Since the expression of the TMX proteins are not correlated to BRAF status in melanoma, 

their knockdown will trigger general ROS responses which may induce detrimental effects in 

melanomas regardless of their BRAF status. Additionally, as a responding factor, NFAT1 
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displays a prominent effect in the patients with BRAF WT phenotype and could thus be 

targeted for treatment in the sub-population of melanomas.  

Studies concerning the role of calcineurin/NFAT1 in melanoma are scarce, although most 

have noted that NFAT1 expression is related to melanoma growth and metastasis (242, 301). 

Calcineurin has been frequently discussed in the context of Ca2+ signaling (302, 303); its 

inhibition has been reported to have multiple effects on human melanoma (247). It is 

interesting to note that the expression of calcineurin is also correlated with the malignancy of 

melanoma and mitochondrial activity in the study conducted by Juhasz and colleagues. 

Although the inhibition of calcineurin by CsA was found to have different effects on the 

migration of melanoma cell lines, which can perhaps be attributed to different NFAT levels. 

Notably, a study on fruit flies stated that calcineurin played a critical role in maintaining 

metabolic homeostasis, mitochondrial morphology and activity, although, as the downstream 

effector, NFAT was not in the focus of this research (304). It is likely that calcineurin affects 

mitochondrial activity through NFAT1 signaling, but a detailed dissection of 

calcineurin/NFAT1 signaling network will be required to understand the various effects 

induced by the inhibition of the NFAT1 activation. Overall, our findings emphasize the 

potential of targeting redox-based processes in melanomas and indicate that 

calcineurin/NFAT1 may be crucial for the regulation of mitochondrial activity. To this end, 

additional studies are needed to explore the opportunities for targeted therapeutics against 

melanoma.         

 

8.8 Conclusion 

Melanoma is a cancer caused by various genetic as well as environmental factors. The 

heterogeneity of melanoma is a reflection of aberrations in signaling pathways caused by 

mutations, which lead to a reprogrammed metabolic activity, abnormal proliferation and 
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migration. In this study, we explored the importance of ER-mitochondria contact sites in the 

pathology of melanoma and dissected a novel redox-driven ER-mitochondria-NFAT1 

signaling axis that integrates mitochondrial calcium transfer, bioenergetics and cellular redox 

homeostasis and contributes to melanoma progression. Our work suggests that ER-

mitochondria contact sites can shape calcium and redox signaling in favor of tumor 

progression, whereas their alterations can in turn limit melanoma proliferation and migration. 

Accordingly, TMX1, TMX3 and NFAT1 are potential melanoma progression biomarkers as 

well as candidates for therapeutic targeting.  

  



120 

 

9 References 

(1) Tsatmali, M., Ancans, J., and Thody, A.J. (2002) Melanocyte function and its control 

by melanocortin peptides. The journal of histochemistry and cytochemistry : official journal 

of the Histochemistry Society. 50, 125-133 

(2) Igyarto, B.Z., and Kaplan, D.H. (2013) Antigen presentation by Langerhans cells. 

Current opinion in immunology. 25, 115-119 

(3) Diepgen, T.L., and Mahler, V. (2002) The epidemiology of skin cancer. The British 

journal of dermatology. 146 Suppl 61, 1-6 

(4) Leiter, U., Eigentler, T., and Garbe, C. (2014) Epidemiology of skin cancer. Advances 

in experimental medicine and biology. 810, 120-140 

(5) Leiter, U., and Garbe, C. (2008) Epidemiology of melanoma and nonmelanoma skin 

cancer--the role of sunlight. Advances in experimental medicine and biology. 624, 89-103 

(6) Eisemann, N., Waldmann, A., Geller, A.C., Weinstock, M.A., Volkmer, B., Greinert, 

R., Breitbart, E.W., and Katalinic, A. (2014) Non-melanoma skin cancer incidence and impact 

of skin cancer screening on incidence. The Journal of investigative dermatology. 134, 43-50 

(7) Garbe, C., Peris, K., Hauschild, A., Saiag, P., Middleton, M., Bastholt, L., Grob, J.J., 

Malvehy, J., Newton-Bishop, J., Stratigos, A.J., Pehamberger, H., Eggermont, A.M., 

European Dermatology, F., European Association of, D.-O., European Organisation for, R., 

and Treatment of, C. (2016) Diagnosis and treatment of melanoma. European consensus-

based interdisciplinary guideline - Update 2016. European journal of cancer. 63, 201-217 

(8) Clark, W.H., Jr., From, L., Bernardino, E.A., and Mihm, M.C. (1969) The histogenesis 

and biologic behavior of primary human malignant melanomas of the skin. Cancer research. 

29, 705-727 

(9) Armstrong, B.K., and Kricker, A. (2001) The epidemiology of UV induced skin 

cancer. Journal of photochemistry and photobiology. B, Biology. 63, 8-18 

(10) Armstrong, B.K., and Cust, A.E. (2017) Sun exposure and skin cancer, and the puzzle 

of cutaneous melanoma: A perspective on Fears et al. Mathematical models of age and 

ultraviolet effects on the incidence of skin cancer among whites in the United States. 

American Journal of Epidemiology 1977; 105: 420-427. Cancer epidemiology. 48, 147-156 

(11) Rivers, J.K. (2004) Is there more than one road to melanoma? Lancet. 363, 728-730 

(12) (1991) National Institutes of Health summary of the Consensus Development 

Conference on Sunlight, Ultraviolet Radiation, and the Skin. Bethesda, Maryland, May 8-10, 

1989. Consensus Development Panel. Journal of the American Academy of Dermatology. 24, 

608-612 

(13) Osterlind, A., Tucker, M.A., Stone, B.J., and Jensen, O.M. (1988) The Danish case-

control study of cutaneous malignant melanoma. II. Importance of UV-light exposure. 

International journal of cancer. 42, 319-324 

(14) Green, A., Siskind, V., Bain, C., and Alexander, J. (1985) Sunburn and malignant 

melanoma. British journal of cancer. 51, 393-397 



121 

 

(15) Dubin, N., Pasternack, B.S., and Moseson, M. (1990) Simultaneous assessment of risk 

factors for malignant melanoma and non-melanoma skin lesions, with emphasis on sun 

exposure and related variables. International journal of epidemiology. 19, 811-819 

(16) Holman, C.D., Armstrong, B.K., and Heenan, P.J. (1986) Relationship of cutaneous 

malignant melanoma to individual sunlight-exposure habits. Journal of the National Cancer 

Institute. 76, 403-414 

(17) von Thaler, A.K., Kamenisch, Y., and Berneburg, M. (2010) The role of ultraviolet 

radiation in melanomagenesis. Experimental dermatology. 19, 81-88 

(18) Nishisgori, C. (2015) Current concept of photocarcinogenesis. Photochemical & 

photobiological sciences : Official journal of the European Photochemistry Association and 

the European Society for Photobiology. 14, 1713-1721 

(19) Curtin, J.A., Fridlyand, J., Kageshita, T., Patel, H.N., Busam, K.J., Kutzner, H., Cho, 

K.H., Aiba, S., Brocker, E.B., LeBoit, P.E., Pinkel, D., and Bastian, B.C. (2005) Distinct sets 

of genetic alterations in melanoma. The New England journal of medicine. 353, 2135-2147 

(20) Demierre, M.F., and Sondak, V.K. (2005) Cutaneous melanoma: pathogenesis and 

rationale for chemoprevention. Critical reviews in oncology/hematology. 53, 225-239 

(21) Melnikova, V.O., and Ananthaswamy, H.N. (2005) Cellular and molecular events 

leading to the development of skin cancer. Mutation research. 571, 91-106 

(22) Martens, M.C., Seebode, C., Lehmann, J., and Emmert, S. (2018) Photocarcinogenesis 

and Skin Cancer Prevention Strategies: An Update. Anticancer research. 38, 1153-1158 

(23) Berger, M.F., Hodis, E., Heffernan, T.P., Deribe, Y.L., Lawrence, M.S., Protopopov, 

A., Ivanova, E., Watson, I.R., Nickerson, E., Ghosh, P., Zhang, H., Zeid, R., Ren, X., 

Cibulskis, K., Sivachenko, A.Y., Wagle, N., Sucker, A., Sougnez, C., Onofrio, R., Ambrogio, 

L., Auclair, D., Fennell, T., Carter, S.L., Drier, Y., Stojanov, P., Singer, M.A., Voet, D., Jing, 

R., Saksena, G., Barretina, J., Ramos, A.H., Pugh, T.J., Stransky, N., Parkin, M., Winckler, 

W., Mahan, S., Ardlie, K., Baldwin, J., Wargo, J., Schadendorf, D., Meyerson, M., Gabriel, 

S.B., Golub, T.R., Wagner, S.N., Lander, E.S., Getz, G., Chin, L., and Garraway, L.A. (2012) 

Melanoma genome sequencing reveals frequent PREX2 mutations. Nature. 485, 502-506 

(24) Pleasance, E.D., Cheetham, R.K., Stephens, P.J., McBride, D.J., Humphray, S.J., 

Greenman, C.D., Varela, I., Lin, M.L., Ordonez, G.R., Bignell, G.R., Ye, K., Alipaz, J., Bauer, 

M.J., Beare, D., Butler, A., Carter, R.J., Chen, L., Cox, A.J., Edkins, S., Kokko-Gonzales, P.I., 

Gormley, N.A., Grocock, R.J., Haudenschild, C.D., Hims, M.M., James, T., Jia, M., 

Kingsbury, Z., Leroy, C., Marshall, J., Menzies, A., Mudie, L.J., Ning, Z., Royce, T., Schulz-

Trieglaff, O.B., Spiridou, A., Stebbings, L.A., Szajkowski, L., Teague, J., Williamson, D., 

Chin, L., Ross, M.T., Campbell, P.J., Bentley, D.R., Futreal, P.A., and Stratton, M.R. (2010) 

A comprehensive catalogue of somatic mutations from a human cancer genome. Nature. 463, 

191-196 

(25) Garibyan, L., and Fisher, D.E. (2010) How sunlight causes melanoma. Current 

oncology reports. 12, 319-326 

(26) Goldstein, A.M. (2004) Familial melanoma, pancreatic cancer and germline CDKN2A 

mutations. Human mutation. 23, 630 

(27) Ransohoff, K.J., Jaju, P.D., Tang, J.Y., Carbone, M., Leachman, S., and Sarin, K.Y. 

(2016) Familial skin cancer syndromes: Increased melanoma risk. Journal of the American 

Academy of Dermatology. 74, 423-434; quiz 435-426 



122 

 

(28) Bishop, J.N., Harland, M., Randerson-Moor, J., and Bishop, D.T. (2007) Management 

of familial melanoma. The Lancet. Oncology. 8, 46-54 

(29) de Snoo, F.A., Kroon, M.W., Bergman, W., ter Huurne, J.A., Houwing-Duistermaat, 

J.J., van Mourik, L., Snels, D.G., Breuning, M.H., Willemze, R., Frants, R.R., and Gruis, N.A. 

(2007) From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in 

sporadic atypical nevus patients. Journal of the American Academy of Dermatology. 56, 748-

752 

(30) Aoude, L.G., Pritchard, A.L., Robles-Espinoza, C.D., Wadt, K., Harland, M., Choi, J., 

Gartside, M., Quesada, V., Johansson, P., Palmer, J.M., Ramsay, A.J., Zhang, X., Jones, K., 

Symmons, J., Holland, E.A., Schmid, H., Bonazzi, V., Woods, S., Dutton-Regester, K., Stark, 

M.S., Snowden, H., van Doorn, R., Montgomery, G.W., Martin, N.G., Keane, T.M., Lopez-

Otin, C., Gerdes, A.M., Olsson, H., Ingvar, C., Borg, A., Gruis, N.A., Trent, J.M., Jonsson, G., 

Bishop, D.T., Mann, G.J., Newton-Bishop, J.A., Brown, K.M., Adams, D.J., and Hayward, 

N.K. (2015) Nonsense mutations in the shelterin complex genes ACD and TERF2IP in 

familial melanoma. Journal of the National Cancer Institute. 107,  

(31) Zuo, L., Weger, J., Yang, Q., Goldstein, A.M., Tucker, M.A., Walker, G.J., Hayward, 

N., and Dracopoli, N.C. (1996) Germline mutations in the p16INK4a binding domain of 

CDK4 in familial melanoma. Nature genetics. 12, 97-99 

(32) Robles-Espinoza, C.D., Harland, M., Ramsay, A.J., Aoude, L.G., Quesada, V., Ding, 

Z., Pooley, K.A., Pritchard, A.L., Tiffen, J.C., Petljak, M., Palmer, J.M., Symmons, J., 

Johansson, P., Stark, M.S., Gartside, M.G., Snowden, H., Montgomery, G.W., Martin, N.G., 

Liu, J.Z., Choi, J., Makowski, M., Brown, K.M., Dunning, A.M., Keane, T.M., Lopez-Otin, 

C., Gruis, N.A., Hayward, N.K., Bishop, D.T., Newton-Bishop, J.A., and Adams, D.J. (2014) 

POT1 loss-of-function variants predispose to familial melanoma. Nature genetics. 46, 478-

481 

(33) Horn, S., Figl, A., Rachakonda, P.S., Fischer, C., Sucker, A., Gast, A., Kadel, S., Moll, 

I., Nagore, E., Hemminki, K., Schadendorf, D., and Kumar, R. (2013) TERT promoter 

mutations in familial and sporadic melanoma. Science. 339, 959-961 

(34) Testa, J.R., Cheung, M., Pei, J., Below, J.E., Tan, Y., Sementino, E., Cox, N.J., Dogan, 

A.U., Pass, H.I., Trusa, S., Hesdorffer, M., Nasu, M., Powers, A., Rivera, Z., Comertpay, S., 

Tanji, M., Gaudino, G., Yang, H., and Carbone, M. (2011) Germline BAP1 mutations 

predispose to malignant mesothelioma. Nature genetics. 43, 1022-1025 

(35) Yokoyama, S., Woods, S.L., Boyle, G.M., Aoude, L.G., MacGregor, S., Zismann, V., 

Gartside, M., Cust, A.E., Haq, R., Harland, M., Taylor, J.C., Duffy, D.L., Holohan, K., 

Dutton-Regester, K., Palmer, J.M., Bonazzi, V., Stark, M.S., Symmons, J., Law, M.H., 

Schmidt, C., Lanagan, C., O'Connor, L., Holland, E.A., Schmid, H., Maskiell, J.A., Jetann, J., 

Ferguson, M., Jenkins, M.A., Kefford, R.F., Giles, G.G., Armstrong, B.K., Aitken, J.F., 

Hopper, J.L., Whiteman, D.C., Pharoah, P.D., Easton, D.F., Dunning, A.M., Newton-Bishop, 

J.A., Montgomery, G.W., Martin, N.G., Mann, G.J., Bishop, D.T., Tsao, H., Trent, J.M., 

Fisher, D.E., Hayward, N.K., and Brown, K.M. (2011) A novel recurrent mutation in MITF 

predisposes to familial and sporadic melanoma. Nature. 480, 99-103 

(36) Tang, J., and Chu, G. (2002) Xeroderma pigmentosum complementation group E and 

UV-damaged DNA-binding protein. DNA repair. 1, 601-616 

(37) Gandini, S., Sera, F., Cattaruzza, M.S., Pasquini, P., Zanetti, R., Masini, C., Boyle, P., 

and Melchi, C.F. (2005) Meta-analysis of risk factors for cutaneous melanoma: III. Family 

history, actinic damage and phenotypic factors. European journal of cancer. 41, 2040-2059 



123 

 

(38) Ford, D., Bliss, J.M., Swerdlow, A.J., Armstrong, B.K., Franceschi, S., Green, A., 

Holly, E.A., Mack, T., MacKie, R.M., Osterlind, A., and et al. (1995) Risk of cutaneous 

melanoma associated with a family history of the disease. The International Melanoma 

Analysis Group (IMAGE). International journal of cancer. 62, 377-381 

(39) Elwood, J.M., Whitehead, S.M., Davison, J., Stewart, M., and Galt, M. (1990) 

Malignant melanoma in England: risks associated with naevi, freckles, social class, hair 

colour, and sunburn. International journal of epidemiology. 19, 801-810 

(40) Lock-Andersen, J., Drzewiecki, K.T., and Wulf, H.C. (1999) Eye and hair colour, skin 

type and constitutive skin pigmentation as risk factors for basal cell carcinoma and cutaneous 

malignant melanoma. A Danish case-control study. Acta dermato-venereologica. 79, 74-80 

(41) Dubin, N., Moseson, M., and Pasternack, B.S. (1986) Epidemiology of malignant 

melanoma: pigmentary traits, ultraviolet radiation, and the identification of high-risk 

populations. Recent results in cancer research. Fortschritte der Krebsforschung. Progres 

dans les recherches sur le cancer. 102, 56-75 

(42) Landi, M.T., Baccarelli, A., Calista, D., Pesatori, A., Fears, T., Tucker, M.A., and 

Landi, G. (2001) Combined risk factors for melanoma in a Mediterranean population. British 

journal of cancer. 85, 1304-1310 

(43) Prota, G. (2000) Melanins, melanogenesis and melanocytes: looking at their functional 

significance from the chemist's viewpoint. Pigment cell research. 13, 283-293 

(44) Zanetti, R., Prota, G., Napolitano, A., Martinez, C., Sancho-Garnier, H., Osterlind, A., 

Sacerdote, C., and Rosso, S. (2001) Development of an integrated method of skin phenotype 

measurement using the melanins. Melanoma research. 11, 551-557 

(45) Rees, J.L. (2003) Genetics of hair and skin color. Annual review of genetics. 37, 67-90 

(46) Mitra, D., Luo, X., Morgan, A., Wang, J., Hoang, M.P., Lo, J., Guerrero, C.R., 

Lennerz, J.K., Mihm, M.C., Wargo, J.A., Robinson, K.C., Devi, S.P., Vanover, J.C., D'Orazio, 

J.A., McMahon, M., Bosenberg, M.W., Haigis, K.M., Haber, D.A., Wang, Y., and Fisher, D.E. 

(2012) An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red 

hair/fair skin background. Nature. 491, 449-453 

(47) Green, A., MacLennan, R., and Siskind, V. (1985) Common acquired naevi and the 

risk of malignant melanoma. International journal of cancer. 35, 297-300 

(48) Holly, E.A., Kelly, J.W., Shpall, S.N., and Chiu, S.H. (1987) Number of melanocytic 

nevi as a major risk factor for malignant melanoma. Journal of the American Academy of 

Dermatology. 17, 459-468 

(49) Rokuhara, S., Saida, T., Oguchi, M., Matsumoto, K., Murase, S., and Oguchi, S. (2004) 

Number of acquired melanocytic nevi in patients with melanoma and control subjects in Japan: 

Nevus count is a significant risk factor for nonacral melanoma but not for acral melanoma. 

Journal of the American Academy of Dermatology. 50, 695-700 

(50) Bauer, J., and Garbe, C. (2003) Acquired melanocytic nevi as risk factor for melanoma 

development. A comprehensive review of epidemiological data. Pigment cell research. 16, 

297-306 

(51) Swerdlow, A.J., English, J., MacKie, R.M., O'Doherty, C.J., Hunter, J.A., and Clark, J. 

(1984) Benign naevi associated with high risk of melanoma. Lancet. 2, 168 



124 

 

(52) Greene, M.H., Clark, W.H., Jr., Tucker, M.A., Kraemer, K.H., Elder, D.E., and Fraser, 

M.C. (1985) High risk of malignant melanoma in melanoma-prone families with dysplastic 

nevi. Annals of internal medicine. 102, 458-465 

(53) Swerdlow, A.J., and Green, A. (1987) Melanocytic naevi and melanoma: an 

epidemiological perspective. The British journal of dermatology. 117, 137-146 

(54) Vredenborg, A., Bohringer, S., Boonk, S.E., Gruis, N.A., Out-Luijting, C., Kukutsch, 

N.A., and Bergman, W. (2014) Acquired melanocytic nevi in childhood and familial 

melanoma. JAMA dermatology. 150, 35-40 

(55) Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018) 

Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide 

for 36 cancers in 185 countries. CA: a cancer journal for clinicians.  

(56) Schadendorf, D., van Akkooi, A.C.J., Berking, C., Griewank, K.G., Gutzmer, R., 

Hauschild, A., Stang, A., Roesch, A., and Ugurel, S. (2018) Melanoma. Lancet. 392, 971-984 

(57) Chang, A.E., Karnell, L.H., and Menck, H.R. (1998) The National Cancer Data Base 

report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past 

decade. The American College of Surgeons Commission on Cancer and the American Cancer 

Society. Cancer. 83, 1664-1678 

(58) Coleman, M.P., Esteve, J., Damiecki, P., Arslan, A., and Renard, H. (1993) Trends in 

cancer incidence and mortality. IARC scientific publications. 1-806 

(59) Garbe, C., and Leiter, U. (2009) Melanoma epidemiology and trends. Clinics in 

dermatology. 27, 3-9 

(60) Karim-Kos, H.E., de Vries, E., Soerjomataram, I., Lemmens, V., Siesling, S., and 

Coebergh, J.W. (2008) Recent trends of cancer in Europe: a combined approach of incidence, 

survival and mortality for 17 cancer sites since the 1990s. European journal of cancer. 44, 

1345-1389 

(61) de Vries, E., Bray, F.I., Coebergh, J.W., and Parkin, D.M. (2003) Changing 

epidemiology of malignant cutaneous melanoma in Europe 1953-1997: rising trends in 

incidence and mortality but recent stabilizations in western Europe and decreases in 

Scandinavia. International journal of cancer. 107, 119-126 

(62) Ali, Z., Yousaf, N., and Larkin, J. (2013) Melanoma epidemiology, biology and 

prognosis. EJC supplements : EJC : official journal of EORTC, European Organization for 

Research and Treatment of Cancer ... [et al.]. 11, 81-91 

(63) Barbaric, J., Sekerija, M., Agius, D., Coza, D., Dimitrova, N., Demetriou, A., Safaei 

Diba, C., Eser, S., Gavric, Z., Primic-Zakelj, M., Zivkovic, S., Zvolsky, M., Bray, F., 

Coebergh, J.W., and Znaor, A. (2016) Disparities in melanoma incidence and mortality in 

South-Eastern Europe: Increasing incidence and divergent mortality patterns. Is progress 

around the corner? European journal of cancer. 55, 47-55 

(64) Forsea, A.M., Del Marmol, V., de Vries, E., Bailey, E.E., and Geller, A.C. (2012) 

Melanoma incidence and mortality in Europe: new estimates, persistent disparities. The 

British journal of dermatology. 167, 1124-1130 

(65) Dimitriou, F., Krattinger, R., Ramelyte, E., Barysch, M.J., Micaletto, S., Dummer, R., 

and Goldinger, S.M. (2018) The World of Melanoma: Epidemiologic, Genetic, and Anatomic 

Differences of Melanoma Across the Globe. Current oncology reports. 20, 87 



125 

 

(66) van der Spek-Keijser, L.M., van der Rhee, H.J., Toth, G., Van Westering, R., Bruijn, 

J.A., and Coebergh, J.W. (1997) Site, histological type, and thickness of primary cutaneous 

malignant melanoma in western Netherlands since 1980. The British journal of dermatology. 

136, 565-571 

(67) Berridge, M.J., and Irvine, R.F. (1984) Inositol trisphosphate, a novel second 

messenger in cellular signal transduction. Nature. 312, 315-321 

(68) Raffaello, A., Mammucari, C., Gherardi, G., and Rizzuto, R. (2016) Calcium at the 

Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and 

Lysosomes. Trends in biochemical sciences. 41, 1035-1049 

(69) Stewart, T.A., Yapa, K.T., and Monteith, G.R. (2015) Altered calcium signaling in 

cancer cells. Biochimica et biophysica acta. 1848, 2502-2511 

(70) Hanahan, D., and Weinberg, R.A. (2011) Hallmarks of cancer: the next generation. 

Cell. 144, 646-674 

(71) Monteith, G.R., Prevarskaya, N., and Roberts-Thomson, S.J. (2017) The calcium-

cancer signalling nexus. Nature reviews. Cancer. 17, 367-380 

(72) Prevarskaya, N., Skryma, R., and Shuba, Y. (2011) Calcium in tumour metastasis: new 

roles for known actors. Nature reviews. Cancer. 11, 609-618 

(73) Aung, C.S., Ye, W., Plowman, G., Peters, A.A., Monteith, G.R., and Roberts-

Thomson, S.J. (2009) Plasma membrane calcium ATPase 4 and the remodeling of calcium 

homeostasis in human colon cancer cells. Carcinogenesis. 30, 1962-1969 

(74) VanHouten, J., Sullivan, C., Bazinet, C., Ryoo, T., Camp, R., Rimm, D.L., Chung, G., 

and Wysolmerski, J. (2010) PMCA2 regulates apoptosis during mammary gland involution 

and predicts outcome in breast cancer. Proceedings of the National Academy of Sciences of 

the United States of America. 107, 11405-11410 

(75) Deliot, N., and Constantin, B. (2015) Plasma membrane calcium channels in cancer: 

Alterations and consequences for cell proliferation and migration. Biochimica et biophysica 

acta. 1848, 2512-2522 

(76) Flourakis, M., Lehen'kyi, V., Beck, B., Raphael, M., Vandenberghe, M., Abeele, F.V., 

Roudbaraki, M., Lepage, G., Mauroy, B., Romanin, C., Shuba, Y., Skryma, R., and 

Prevarskaya, N. (2010) Orai1 contributes to the establishment of an apoptosis-resistant 

phenotype in prostate cancer cells. Cell death & disease. 1, e75 

(77) McAndrew, D., Grice, D.M., Peters, A.A., Davis, F.M., Stewart, T., Rice, M., Smart, 

C.E., Brown, M.A., Kenny, P.A., Roberts-Thomson, S.J., and Monteith, G.R. (2011) ORAI1-

mediated calcium influx in lactation and in breast cancer. Molecular cancer therapeutics. 10, 

448-460 

(78) Monteith, G.R. (2014) Prostate cancer cells alter the nature of their calcium influx to 

promote growth and acquire apoptotic resistance. Cancer cell. 26, 1-2 

(79) Tsavaler, L., Shapero, M.H., Morkowski, S., and Laus, R. (2001) Trp-p8, a novel 

prostate-specific gene, is up-regulated in prostate cancer and other malignancies and shares 

high homology with transient receptor potential calcium channel proteins. Cancer research. 

61, 3760-3769 

(80) Lehen'kyi, V., and Prevarskaya, N. (2011) Oncogenic TRP channels. Advances in 

experimental medicine and biology. 704, 929-945 



126 

 

(81) Giorgi, C., Ito, K., Lin, H.K., Santangelo, C., Wieckowski, M.R., Lebiedzinska, M., 

Bononi, A., Bonora, M., Duszynski, J., Bernardi, R., Rizzuto, R., Tacchetti, C., Pinton, P., 

and Pandolfi, P.P. (2010) PML regulates apoptosis at endoplasmic reticulum by modulating 

calcium release. Science. 330, 1247-1251 

(82) Hirobe, T. (2005) Role of keratinocyte-derived factors involved in regulating the 

proliferation and differentiation of mammalian epidermal melanocytes. Pigment cell research. 

18, 2-12 

(83) Gordon, P.R., Mansur, C.P., and Gilchrest, B.A. (1989) Regulation of human 

melanocyte growth, dendricity, and melanization by keratinocyte derived factors. The Journal 

of investigative dermatology. 92, 565-572 

(84) Clark, W.H., Jr., Elder, D.E., Guerry, D.t., Epstein, M.N., Greene, M.H., and Van 

Horn, M. (1984) A study of tumor progression: the precursor lesions of superficial spreading 

and nodular melanoma. Human pathology. 15, 1147-1165 

(85) Garraway, L.A., Widlund, H.R., Rubin, M.A., Getz, G., Berger, A.J., Ramaswamy, S., 

Beroukhim, R., Milner, D.A., Granter, S.R., Du, J., Lee, C., Wagner, S.N., Li, C., Golub, T.R., 

Rimm, D.L., Meyerson, M.L., Fisher, D.E., and Sellers, W.R. (2005) Integrative genomic 

analyses identify MITF as a lineage survival oncogene amplified in malignant melanoma. 

Nature. 436, 117-122 

(86) Levy, C., Khaled, M., and Fisher, D.E. (2006) MITF: master regulator of melanocyte 

development and melanoma oncogene. Trends in molecular medicine. 12, 406-414 

(87) Miller, A.J., and Mihm, M.C., Jr. (2006) Melanoma. The New England journal of 

medicine. 355, 51-65 

(88) Rosen, L.B., Ginty, D.D., Weber, M.J., and Greenberg, M.E. (1994) Membrane 

depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. 

Neuron. 12, 1207-1221 

(89) James, R.G., Conrad, W.H., and Moon, R.T. (2008) Beta-catenin-independent Wnt 

pathways: signals, core proteins, and effectors. Methods in molecular biology. 468, 131-144 

(90) Chuderland, D., and Seger, R. (2008) Calcium regulates ERK signaling by modulating 

its protein-protein interactions. Communicative & integrative biology. 1, 4-5 

(91) Soboloff, J., Gligorijevic, B., and Zaidi, M.R. (2018) STIM1 (c)AMPs up 

melanogenesis. The EMBO journal. 37,  

(92) Hogan, P.G., Chen, L., Nardone, J., and Rao, A. (2003) Transcriptional regulation by 

calcium, calcineurin, and NFAT. Genes & development. 17, 2205-2232 

(93) Parsons, P.G., Musk, P., Goss, P.D., and Leah, J. (1983) Effects of calcium depletion 

on human cells in vitro and the anomalous behavior of the human melanoma cell line MM170. 

Cancer research. 43, 2081-2087 

(94) Bogeski, I., Al-Ansary, D., Qu, B., Niemeyer, B.A., Hoth, M., and Peinelt, C. (2010) 

Pharmacology of ORAI channels as a tool to understand their physiological functions. Expert 

review of clinical pharmacology. 3, 291-303 

(95) Allen, D.H., Lepple-Wienhues, A., and Cahalan, M.D. (1997) Ion channel phenotype 

of melanoma cell lines. The Journal of membrane biology. 155, 27-34 



127 

 

(96) Oancea, E., Vriens, J., Brauchi, S., Jun, J., Splawski, I., and Clapham, D.E. (2009) 

TRPM1 forms ion channels associated with melanin content in melanocytes. Science 

signaling. 2, ra21 

(97) Duncan, L.M., Deeds, J., Hunter, J., Shao, J., Holmgren, L.M., Woolf, E.A., Tepper, 

R.I., and Shyjan, A.W. (1998) Down-regulation of the novel gene melastatin correlates with 

potential for melanoma metastasis. Cancer research. 58, 1515-1520 

(98) Duncan, L.M., Deeds, J., Cronin, F.E., Donovan, M., Sober, A.J., Kauffman, M., and 

McCarthy, J.J. (2001) Melastatin expression and prognosis in cutaneous malignant melanoma. 

Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 

19, 568-576 

(99) Zhiqi, S., Soltani, M.H., Bhat, K.M., Sangha, N., Fang, D., Hunter, J.J., and Setaluri, 

V. (2004) Human melastatin 1 (TRPM1) is regulated by MITF and produces multiple 

polypeptide isoforms in melanocytes and melanoma. Melanoma research. 14, 509-516 

(100) Biro, T., Toth, B.I., Marincsak, R., Dobrosi, N., Geczy, T., and Paus, R. (2007) TRP 

channels as novel players in the pathogenesis and therapy of itch. Biochimica et biophysica 

acta. 1772, 1004-1021 

(101) Atoyan, R., Shander, D., and Botchkareva, N.V. (2009) Non-neuronal expression of 

transient receptor potential type A1 (TRPA1) in human skin. The Journal of investigative 

dermatology. 129, 2312-2315 

(102) Feng, J., Yang, P., Mack, M.R., Dryn, D., Luo, J., Gong, X., Liu, S., Oetjen, L.K., 

Zholos, A.V., Mei, Z., Yin, S., Kim, B.S., and Hu, H. (2017) Sensory TRP channels 

contribute differentially to skin inflammation and persistent itch. Nature communications. 8, 

980 

(103) Yang, P., Feng, J., Luo, J., Madison, M., and Hu, H. (2017) A Critical Role for TRP 

Channels in the Skin. in Neurobiology of TRP Channels (nd, and Emir, T.L.R., ed.)^eds.), pp. 

95-111, Boca Raton (FL) 

(104) Ho, J.C., and Lee, C.H. (2015) TRP channels in skin: from physiological implications 

to clinical significances. Biophysics. 11, 17-24 

(105) Guo, H., Carlson, J.A., and Slominski, A. (2012) Role of TRPM in melanocytes and 

melanoma. Experimental dermatology. 21, 650-654 

(106) Hoth, M. (2016) CRAC channels, calcium, and cancer in light of the driver and 

passenger concept. Biochimica et biophysica acta. 1863, 1408-1417 

(107) Parekh, A.B. (2010) Store-operated CRAC channels: function in health and disease. 

Nature reviews. Drug discovery. 9, 399-410 

(108) Hoth, M., and Niemeyer, B.A. (2013) The neglected CRAC proteins: Orai2, Orai3, 

and STIM2. Current topics in membranes. 71, 237-271 

(109) Hoover, P.J., and Lewis, R.S. (2011) Stoichiometric requirements for trapping and 

gating of Ca2+ release-activated Ca2+ (CRAC) channels by stromal interaction molecule 1 

(STIM1). Proceedings of the National Academy of Sciences of the United States of America. 

108, 13299-13304 

(110) Feldman, B., Fedida-Metula, S., Nita, J., Sekler, I., and Fishman, D. (2010) Coupling 

of mitochondria to store-operated Ca(2+)-signaling sustains constitutive activation of protein 

kinase B/Akt and augments survival of malignant melanoma cells. Cell calcium. 47, 525-537 



128 

 

(111) Stanisz, H., Stark, A., Kilch, T., Schwarz, E.C., Muller, C.S., Peinelt, C., Hoth, M., 

Niemeyer, B.A., Vogt, T., and Bogeski, I. (2012) ORAI1 Ca(2+) channels control endothelin-

1-induced mitogenesis and melanogenesis in primary human melanocytes. The Journal of 

investigative dermatology. 132, 1443-1451 

(112) Stanisz, H., Saul, S., Muller, C.S., Kappl, R., Niemeyer, B.A., Vogt, T., Hoth, M., 

Roesch, A., and Bogeski, I. (2014) Inverse regulation of melanoma growth and migration by 

Orai1/STIM2-dependent calcium entry. Pigment cell & melanoma research. 27, 442-453 

(113) Umemura, M., Baljinnyam, E., Feske, S., De Lorenzo, M.S., Xie, L.H., Feng, X., Oda, 

K., Makino, A., Fujita, T., Yokoyama, U., Iwatsubo, M., Chen, S., Goydos, J.S., Ishikawa, Y., 

and Iwatsubo, K. (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation 

and cell migration. PloS one. 9, e89292 

(114) Sun, J., Lu, F., He, H., Shen, J., Messina, J., Mathew, R., Wang, D., Sarnaik, A.A., 

Chang, W.C., Kim, M., Cheng, H., and Yang, S. (2014) STIM1- and Orai1-mediated Ca(2+) 

oscillation orchestrates invadopodium formation and melanoma invasion. The Journal of cell 

biology. 207, 535-548 

(115) Hooper, R., Zhang, X., Webster, M., Go, C., Kedra, J., Marchbank, K., Gill, D.L., 

Weeraratna, A.T., Trebak, M., and Soboloff, J. (2015) Novel Protein Kinase C-Mediated 

Control of Orai1 Function in Invasive Melanoma. Molecular and cellular biology. 35, 2790-

2798 

(116) Cross, C.E., Halliwell, B., Borish, E.T., Pryor, W.A., Ames, B.N., Saul, R.L., McCord, 

J.M., and Harman, D. (1987) Oxygen radicals and human disease. Annals of internal medicine. 

107, 526-545 

(117) Finkel, T. (2011) Signal transduction by reactive oxygen species. The Journal of cell 

biology. 194, 7-15 

(118) (1985) Metal chelation therapy, oxygen radicals, and human disease. Lancet. 1, 143-

145 

(119) Schieber, M., and Chandel, N.S. (2014) ROS function in redox signaling and oxidative 

stress. Current biology : CB. 24, R453-462 

(120) Rhee, S.G. (2006) Cell signaling. H2O2, a necessary evil for cell signaling. Science. 

312, 1882-1883 

(121) Forman, H.J., Fukuto, J.M., and Torres, M. (2004) Redox signaling: thiol chemistry 

defines which reactive oxygen and nitrogen species can act as second messengers. American 

journal of physiology. Cell physiology. 287, C246-256 

(122) Paulsen, C.E., and Carroll, K.S. (2013) Cysteine-mediated redox signaling: chemistry, 

biology, and tools for discovery. Chemical reviews. 113, 4633-4679 

(123) Cairns, R.A., Harris, I.S., and Mak, T.W. (2011) Regulation of cancer cell metabolism. 

Nature reviews. Cancer. 11, 85-95 

(124) Szatrowski, T.P., and Nathan, C.F. (1991) Production of large amounts of hydrogen 

peroxide by human tumor cells. Cancer research. 51, 794-798 

(125) Weinberg, F., Hamanaka, R., Wheaton, W.W., Weinberg, S., Joseph, J., Lopez, M., 

Kalyanaraman, B., Mutlu, G.M., Budinger, G.R., and Chandel, N.S. (2010) Mitochondrial 

metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proceedings 

of the National Academy of Sciences of the United States of America. 107, 8788-8793 



129 

 

(126) Sullivan, L.B., Martinez-Garcia, E., Nguyen, H., Mullen, A.R., Dufour, E., Sudarshan, 

S., Licht, J.D., Deberardinis, R.J., and Chandel, N.S. (2013) The proto-oncometabolite 

fumarate binds glutathione to amplify ROS-dependent signaling. Molecular cell. 51, 236-248 

(127) Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, 

H., Nakada, K., Honma, Y., and Hayashi, J. (2008) ROS-generating mitochondrial DNA 

mutations can regulate tumor cell metastasis. Science. 320, 661-664 

(128) Ben-Neriah, Y., and Karin, M. (2011) Inflammation meets cancer, with NF-kappaB as 

the matchmaker. Nature immunology. 12, 715-723 

(129) Sporn, M.B., and Liby, K.T. (2012) NRF2 and cancer: the good, the bad and the 

importance of context. Nature reviews. Cancer. 12, 564-571 

(130) Rojo de la Vega, M., Chapman, E., and Zhang, D.D. (2018) NRF2 and the Hallmarks 

of Cancer. Cancer cell. 34, 21-43 

(131) Gorrini, C., Harris, I.S., and Mak, T.W. (2013) Modulation of oxidative stress as an 

anticancer strategy. Nature reviews. Drug discovery. 12, 931-947 

(132) Trachootham, D., Zhou, Y., Zhang, H., Demizu, Y., Chen, Z., Pelicano, H., Chiao, P.J., 

Achanta, G., Arlinghaus, R.B., Liu, J., and Huang, P. (2006) Selective killing of 

oncogenically transformed cells through a ROS-mediated mechanism by beta-phenylethyl 

isothiocyanate. Cancer cell. 10, 241-252 

(133) Bustamante, J., Bredeston, L., Malanga, G., and Mordoh, J. (1993) Role of melanin as 

a scavenger of active oxygen species. Pigment cell research. 6, 348-353 

(134) Sander, C.S., Chang, H., Salzmann, S., Muller, C.S., Ekanayake-Mudiyanselage, S., 

Elsner, P., and Thiele, J.J. (2002) Photoaging is associated with protein oxidation in human 

skin in vivo. The Journal of investigative dermatology. 118, 618-625 

(135) Fuchs, J., Huflejt, M.E., Rothfuss, L.M., Wilson, D.S., Carcamo, G., and Packer, L. 

(1989) Impairment of enzymic and nonenzymic antioxidants in skin by UVB irradiation. The 

Journal of investigative dermatology. 93, 769-773 

(136) Poswig, A., Wenk, J., Brenneisen, P., Wlaschek, M., Hommel, C., Quel, G., Faisst, K., 

Dissemond, J., Briviba, K., Krieg, T., and Scharffetter-Kochanek, K. (1999) Adaptive 

antioxidant response of manganese-superoxide dismutase following repetitive UVA 

irradiation. The Journal of investigative dermatology. 112, 13-18 

(137) Cheng, G.C., Schulze, P.C., Lee, R.T., Sylvan, J., Zetter, B.R., and Huang, H. (2004) 

Oxidative stress and thioredoxin-interacting protein promote intravasation of melanoma cells. 

Experimental cell research. 300, 297-307 

(138) Lehtola, K., Laurikainen, L., Leino, L., Ahotupa, M., and Punnonen, K. (1995) 

Antioxidant enzymes are elevated in dimethylbenz[a]anthracene-induced neoplastic murine 

keratinocytes containing an active rasHa oncogene. Journal of cancer research and clinical 

oncology. 121, 402-406 

(139) Vural, P., Canbaz, M., and Selcuki, D. (1999) Plasma antioxidant defense in actinic 

keratosis and basal cell carcinoma. Journal of the European Academy of Dermatology and 

Venereology : JEADV. 13, 96-101 

(140) Wittgen, H.G., and van Kempen, L.C. (2007) Reactive oxygen species in melanoma 

and its therapeutic implications. Melanoma research. 17, 400-409 



130 

 

(141) Picardo, M., Grammatico, P., Roccella, F., Roccella, M., Grandinetti, M., Del Porto, 

G., and Passi, S. (1996) Imbalance in the antioxidant pool in melanoma cells and normal 

melanocytes from patients with melanoma. The Journal of investigative dermatology. 107, 

322-326 

(142) Schadendorf, D., Zuberbier, T., Diehl, S., Schadendorf, C., and Czarnetzki, B.M. 

(1995) Serum manganese superoxide dismutase is a new tumour marker for malignant 

melanoma. Melanoma research. 5, 351-353 

(143) Roesch, A., Vultur, A., Bogeski, I., Wang, H., Zimmermann, K.M., Speicher, D., 

Korbel, C., Laschke, M.W., Gimotty, P.A., Philipp, S.E., Krause, E., Patzold, S., Villanueva, 

J., Krepler, C., Fukunaga-Kalabis, M., Hoth, M., Bastian, B.C., Vogt, T., and Herlyn, M. 

(2013) Overcoming intrinsic multidrug resistance in melanoma by blocking the mitochondrial 

respiratory chain of slow-cycling JARID1B(high) cells. Cancer cell. 23, 811-825 

(144) Joosse, A., De Vries, E., van Eijck, C.H., Eggermont, A.M., Nijsten, T., and Coebergh, 

J.W. (2010) Reactive oxygen species and melanoma: an explanation for gender differences in 

survival? Pigment cell & melanoma research. 23, 352-364 

(145) Verhaegen, M., Bauer, J.A., Martin de la Vega, C., Wang, G., Wolter, K.G., Brenner, 

J.C., Nikolovska-Coleska, Z., Bengtson, A., Nair, R., Elder, J.T., Van Brocklin, M., Carey, 

T.E., Bradford, C.R., Wang, S., and Soengas, M.S. (2006) A novel BH3 mimetic reveals a 

mitogen-activated protein kinase-dependent mechanism of melanoma cell death controlled by 

p53 and reactive oxygen species. Cancer research. 66, 11348-11359 

(146) Stahl, J.M., Sharma, A., Cheung, M., Zimmerman, M., Cheng, J.Q., Bosenberg, M.W., 

Kester, M., Sandirasegarane, L., and Robertson, G.P. (2004) Deregulated Akt3 activity 

promotes development of malignant melanoma. Cancer research. 64, 7002-7010 

(147) Govindarajan, B., Sligh, J.E., Vincent, B.J., Li, M., Canter, J.A., Nickoloff, B.J., 

Rodenburg, R.J., Smeitink, J.A., Oberley, L., Zhang, Y., Slingerland, J., Arnold, R.S., 

Lambeth, J.D., Cohen, C., Hilenski, L., Griendling, K., Martinez-Diez, M., Cuezva, J.M., and 

Arbiser, J.L. (2007) Overexpression of Akt converts radial growth melanoma to vertical 

growth melanoma. The Journal of clinical investigation. 117, 719-729 

(148) Meyskens, F.L., Jr., McNulty, S.E., Buckmeier, J.A., Tohidian, N.B., Spillane, T.J., 

Kahlon, R.S., and Gonzalez, R.I. (2001) Aberrant redox regulation in human metastatic 

melanoma cells compared to normal melanocytes. Free radical biology & medicine. 31, 799-

808 

(149) Brar, S.S., Kennedy, T.P., Whorton, A.R., Sturrock, A.B., Huecksteadt, T.P., Ghio, 

A.J., and Hoidal, J.R. (2001) Reactive oxygen species from NAD(P)H:quinone 

oxidoreductase constitutively activate NF-kappaB in malignant melanoma cells. American 

journal of physiology. Cell physiology. 280, C659-676 

(150) Bergman, M.R., Cheng, S., Honbo, N., Piacentini, L., Karliner, J.S., and Lovett, D.H. 

(2003) A functional activating protein 1 (AP-1) site regulates matrix metalloproteinase 2 

(MMP-2) transcription by cardiac cells through interactions with JunB-Fra1 and JunB-FosB 

heterodimers. The Biochemical journal. 369, 485-496 

(151) Kim, M.H., Cho, H.S., Jung, M., Hong, M.H., Lee, S.K., Shin, B.A., Ahn, B.W., and 

Jung, Y.D. (2005) Extracellular signal-regulated kinase and AP-1 pathways are involved in 

reactive oxygen species-induced urokinase plasminogen activator receptor expression in 

human gastric cancer cells. International journal of oncology. 26, 1669-1674 



131 

 

(152) Cen, D., Gonzalez, R.I., Buckmeier, J.A., Kahlon, R.S., Tohidian, N.B., and Meyskens, 

F.L., Jr. (2002) Disulfiram induces apoptosis in human melanoma cells: a redox-related 

process. Molecular cancer therapeutics. 1, 197-204 

(153) Cen, D., Brayton, D., Shahandeh, B., Meyskens, F.L., Jr., and Farmer, P.J. (2004) 

Disulfiram facilitates intracellular Cu uptake and induces apoptosis in human melanoma cells. 

Journal of medicinal chemistry. 47, 6914-6920 

(154) Massaro, R.R., Faiao-Flores, F., Rebecca, V.W., Sandri, S., Alves-Fernandes, D.K., 

Pennacchi, P.C., Smalley, K.S.M., and Maria-Engler, S.S. (2017) Inhibition of proliferation 

and invasion in 2D and 3D models by 2-methoxyestradiol in human melanoma cells. 

Pharmacological research. 119, 242-250 

(155) Revesz, L., Edgren, M.R., and Wainson, A.A. (1994) Selective toxicity of buthionine 

sulfoximine (BSO) to melanoma cells in vitro and in vivo. International journal of radiation 

oncology, biology, physics. 29, 403-406 

(156) Huang, P., Feng, L., Oldham, E.A., Keating, M.J., and Plunkett, W. (2000) Superoxide 

dismutase as a target for the selective killing of cancer cells. Nature. 407, 390-395 

(157) Dobos, J., Timar, J., Bocsi, J., Burian, Z., Nagy, K., Barna, G., Petak, I., and Ladanyi, 

A. (2004) In vitro and in vivo antitumor effect of 2-methoxyestradiol on human melanoma. 

International journal of cancer. 112, 771-776 

(158) Cierlitza, M., Chauvistre, H., Bogeski, I., Zhang, X., Hauschild, A., Herlyn, M., 

Schadendorf, D., Vogt, T., and Roesch, A. (2015) Mitochondrial oxidative stress as a novel 

therapeutic target to overcome intrinsic drug resistance in melanoma cell subpopulations. 

Experimental dermatology. 24, 155-157 

(159) Fruehauf, J.P., and Meyskens, F.L., Jr. (2007) Reactive oxygen species: a breath of life 

or death? Clinical cancer research : an official journal of the American Association for 

Cancer Research. 13, 789-794 

(160) Fruehauf, J.P., and Trapp, V. (2008) Reactive oxygen species: an Achilles' heel of 

melanoma? Expert review of anticancer therapy. 8, 1751-1757 

(161) Feissner, R.F., Skalska, J., Gaum, W.E., and Sheu, S.S. (2009) Crosstalk signaling 

between mitochondrial Ca2+ and ROS. Frontiers in bioscience. 14, 1197-1218 

(162) Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., and Sheu, S.S. (2004) 

Calcium, ATP, and ROS: a mitochondrial love-hate triangle. American journal of physiology. 

Cell physiology. 287, C817-833 

(163) Brookes, P.S., Levonen, A.L., Shiva, S., Sarti, P., and Darley-Usmar, V.M. (2002) 

Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free 

radical biology & medicine. 33, 755-764 

(164) Denton, R.M. (2009) Regulation of mitochondrial dehydrogenases by calcium ions. 

Biochimica et biophysica acta. 1787, 1309-1316 

(165) Griffiths, E.J., and Rutter, G.A. (2009) Mitochondrial calcium as a key regulator of 

mitochondrial ATP production in mammalian cells. Biochimica et biophysica acta. 1787, 

1324-1333 

(166) Baughman, J.M., Perocchi, F., Girgis, H.S., Plovanich, M., Belcher-Timme, C.A., 

Sancak, Y., Bao, X.R., Strittmatter, L., Goldberger, O., Bogorad, R.L., Koteliansky, V., and 



132 

 

Mootha, V.K. (2011) Integrative genomics identifies MCU as an essential component of the 

mitochondrial calcium uniporter. Nature. 476, 341-345 

(167) J, O.U., Ryu, S.Y., Jhun, B.S., Hurst, S., and Sheu, S.S. (2014) Mitochondrial ion 

channels/transporters as sensors and regulators of cellular redox signaling. Antioxidants & 

redox signaling. 21, 987-1006 

(168) Viola, H.M., Arthur, P.G., and Hool, L.C. (2007) Transient exposure to hydrogen 

peroxide causes an increase in mitochondria-derived superoxide as a result of sustained 

alteration in L-type Ca2+ channel function in the absence of apoptosis in ventricular 

myocytes. Circulation research. 100, 1036-1044 

(169) Liu, S.S. (1999) Cooperation of a "reactive oxygen cycle" with the Q cycle and the 

proton cycle in the respiratory chain--superoxide generating and cycling mechanisms in 

mitochondria. Journal of bioenergetics and biomembranes. 31, 367-376 

(170) Han, D., Antunes, F., Canali, R., Rettori, D., and Cadenas, E. (2003) Voltage-

dependent anion channels control the release of the superoxide anion from mitochondria to 

cytosol. The Journal of biological chemistry. 278, 5557-5563 

(171) Heinen, A., Camara, A.K., Aldakkak, M., Rhodes, S.S., Riess, M.L., and Stowe, D.F. 

(2007) Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS 

production while maintaining membrane potential. American journal of physiology. Cell 

physiology. 292, C148-156 

(172) Nulton-Persson, A.C., and Szweda, L.I. (2001) Modulation of mitochondrial function 

by hydrogen peroxide. The Journal of biological chemistry. 276, 23357-23361 

(173) Cleeter, M.W., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., and Schapira, A.H. 

(1994) Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the 

mitochondrial respiratory chain, by nitric oxide. Implications for neurodegenerative diseases. 

FEBS letters. 345, 50-54 

(174) Jekabsone, A., Ivanoviene, L., Brown, G.C., and Borutaite, V. (2003) Nitric oxide and 

calcium together inactivate mitochondrial complex I and induce cytochrome c release. 

Journal of molecular and cellular cardiology. 35, 803-809 

(175) Herrington, J., Park, Y.B., Babcock, D.F., and Hille, B. (1996) Dominant role of 

mitochondria in clearance of large Ca2+ loads from rat adrenal chromaffin cells. Neuron. 16, 

219-228 

(176) Boitier, E., Rea, R., and Duchen, M.R. (1999) Mitochondria exert a negative feedback 

on the propagation of intracellular Ca2+ waves in rat cortical astrocytes. The Journal of cell 

biology. 145, 795-808 

(177) Bereiter-Hahn, J., and Voth, M. (1994) Dynamics of mitochondria in living cells: 

shape changes, dislocations, fusion, and fission of mitochondria. Microscopy research and 

technique. 27, 198-219 

(178) Brookes, P.S., and Darley-Usmar, V.M. (2004) Role of calcium and superoxide 

dismutase in sensitizing mitochondria to peroxynitrite-induced permeability transition. 

American journal of physiology. Heart and circulatory physiology. 286, H39-46 

(179) Rooney, T.A., Renard, D.C., Sass, E.J., and Thomas, A.P. (1991) Oscillatory cytosolic 

calcium waves independent of stimulated inositol 1,4,5-trisphosphate formation in 

hepatocytes. The Journal of biological chemistry. 266, 12272-12282 



133 

 

(180) Suzuki, Y.J., and Ford, G.D. (1992) Superoxide stimulates IP3-induced Ca2+ release 

from vascular smooth muscle sarcoplasmic reticulum. The American journal of physiology. 

262, H114-116 

(181) Kaplan, P., Babusikova, E., Lehotsky, J., and Dobrota, D. (2003) Free radical-induced 

protein modification and inhibition of Ca2+-ATPase of cardiac sarcoplasmic reticulum. 

Molecular and cellular biochemistry. 248, 41-47 

(182) Goldhaber, J.I. (1996) Free radicals enhance Na+/Ca2+ exchange in ventricular 

myocytes. The American journal of physiology. 271, H823-833 

(183) Kowaltowski, A.J., Castilho, R.F., and Vercesi, A.E. (2001) Mitochondrial 

permeability transition and oxidative stress. FEBS letters. 495, 12-15 

(184) Daiber, A. (2010) Redox signaling (cross-talk) from and to mitochondria involves 

mitochondrial pores and reactive oxygen species. Biochimica et biophysica acta. 1797, 897-

906 

(185) Vander Heiden, M.G., Cantley, L.C., and Thompson, C.B. (2009) Understanding the 

Warburg effect: the metabolic requirements of cell proliferation. Science. 324, 1029-1033 

(186) Hall, A., Meyle, K.D., Lange, M.K., Klima, M., Sanderhoff, M., Dahl, C., Abildgaard, 

C., Thorup, K., Moghimi, S.M., Jensen, P.B., Bartek, J., Guldberg, P., and Christensen, C. 

(2013) Dysfunctional oxidative phosphorylation makes malignant melanoma cells addicted to 

glycolysis driven by the (V600E)BRAF oncogene. Oncotarget. 4, 584-599 

(187) Abildgaard, C., Dahl, C., Basse, A.L., Ma, T., and Guldberg, P. (2014) Bioenergetic 

modulation with dichloroacetate reduces the growth of melanoma cells and potentiates their 

response to BRAFV600E inhibition. Journal of translational medicine. 12, 247 

(188) Scott, D.A., Richardson, A.D., Filipp, F.V., Knutzen, C.A., Chiang, G.G., Ronai, Z.A., 

Osterman, A.L., and Smith, J.W. (2011) Comparative metabolic flux profiling of melanoma 

cell lines: beyond the Warburg effect. The Journal of biological chemistry. 286, 42626-42634 

(189) Vazquez, F., Lim, J.H., Chim, H., Bhalla, K., Girnun, G., Pierce, K., Clish, C.B., 

Granter, S.R., Widlund, H.R., Spiegelman, B.M., and Puigserver, P. (2013) PGC1alpha 

expression defines a subset of human melanoma tumors with increased mitochondrial 

capacity and resistance to oxidative stress. Cancer cell. 23, 287-301 

(190) Abildgaard, C., and Guldberg, P. (2015) Molecular drivers of cellular metabolic 

reprogramming in melanoma. Trends in molecular medicine. 21, 164-171 

(191) Parmenter, T.J., Kleinschmidt, M., Kinross, K.M., Bond, S.T., Li, J., Kaadige, M.R., 

Rao, A., Sheppard, K.E., Hugo, W., Pupo, G.M., Pearson, R.B., McGee, S.L., Long, G.V., 

Scolyer, R.A., Rizos, H., Lo, R.S., Cullinane, C., Ayer, D.E., Ribas, A., Johnstone, R.W., 

Hicks, R.J., and McArthur, G.A. (2014) Response of BRAF-mutant melanoma to BRAF 

inhibition is mediated by a network of transcriptional regulators of glycolysis. Cancer 

discovery. 4, 423-433 

(192) Haq, R., Shoag, J., Andreu-Perez, P., Yokoyama, S., Edelman, H., Rowe, G.C., 

Frederick, D.T., Hurley, A.D., Nellore, A., Kung, A.L., Wargo, J.A., Song, J.S., Fisher, D.E., 

Arany, Z., and Widlund, H.R. (2013) Oncogenic BRAF regulates oxidative metabolism via 

PGC1alpha and MITF. Cancer cell. 23, 302-315 



134 

 

(193) Haq, R., Fisher, D.E., and Widlund, H.R. (2014) Molecular pathways: BRAF induces 

bioenergetic adaptation by attenuating oxidative phosphorylation. Clinical cancer research : 

an official journal of the American Association for Cancer Research. 20, 2257-2263 

(194) Barbi de Moura, M., Vincent, G., Fayewicz, S.L., Bateman, N.W., Hood, B.L., Sun, 

M., Suhan, J., Duensing, S., Yin, Y., Sander, C., Kirkwood, J.M., Becker, D., Conrads, T.P., 

Van Houten, B., and Moschos, S.J. (2012) Mitochondrial respiration--an important 

therapeutic target in melanoma. PloS one. 7, e40690 

(195) Ho, J., de Moura, M.B., Lin, Y., Vincent, G., Thorne, S., Duncan, L.M., Hui-Min, L., 

Kirkwood, J.M., Becker, D., Van Houten, B., and Moschos, S.J. (2012) Importance of 

glycolysis and oxidative phosphorylation in advanced melanoma. Molecular cancer. 11, 76 

(196) Elbaz, Y., and Schuldiner, M. (2011) Staying in touch: the molecular era of organelle 

contact sites. Trends in biochemical sciences. 36, 616-623 

(197) Friedman, J.R., and Voeltz, G.K. (2011) The ER in 3D: a multifunctional dynamic 

membrane network. Trends in cell biology. 21, 709-717 

(198) Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., 

Mannella, C.A., and Hajnoczky, G. (2006) Structural and functional features and significance 

of the physical linkage between ER and mitochondria. The Journal of cell biology. 174, 915-

921 

(199) Ruby, J.R., Dyer, R.F., and Skalko, R.G. (1969) Continuities between mitochondria 

and endoplasmic reticulum in the mammalian ovary. Zeitschrift fur Zellforschung und 

mikroskopische Anatomie. 97, 30-37 

(200) Vance, J.E. (1990) Phospholipid synthesis in a membrane fraction associated with 

mitochondria. The Journal of biological chemistry. 265, 7248-7256 

(201) Friedman, J.R., Webster, B.M., Mastronarde, D.N., Verhey, K.J., and Voeltz, G.K. 

(2010) ER sliding dynamics and ER-mitochondrial contacts occur on acetylated microtubules. 

The Journal of cell biology. 190, 363-375 

(202) Knott, A.B., Perkins, G., Schwarzenbacher, R., and Bossy-Wetzel, E. (2008) 

Mitochondrial fragmentation in neurodegeneration. Nature reviews. Neuroscience. 9, 505-518 

(203) Rowland, A.A., and Voeltz, G.K. (2012) Endoplasmic reticulum-mitochondria 

contacts: function of the junction. Nature reviews. Molecular cell biology. 13, 607-625 

(204) van Vliet, A.R., Verfaillie, T., and Agostinis, P. (2014) New functions of mitochondria 

associated membranes in cellular signaling. Biochimica et biophysica acta. 1843, 2253-2262 

(205) Pinton, P., Giorgi, C., and Pandolfi, P.P. (2011) The role of PML in the control of 

apoptotic cell fate: a new key player at ER-mitochondria sites. Cell death and differentiation. 

18, 1450-1456 

(206) Giorgi, C., Wieckowski, M.R., Pandolfi, P.P., and Pinton, P. (2011) Mitochondria 

associated membranes (MAMs) as critical hubs for apoptosis. Communicative & integrative 

biology. 4, 334-335 

(207) Betz, C., Stracka, D., Prescianotto-Baschong, C., Frieden, M., Demaurex, N., and Hall, 

M.N. (2013) Feature Article: mTOR complex 2-Akt signaling at mitochondria-associated 

endoplasmic reticulum membranes (MAM) regulates mitochondrial physiology. Proceedings 

of the National Academy of Sciences of the United States of America. 110, 12526-12534 



135 

 

(208) Colombi, M., Molle, K.D., Benjamin, D., Rattenbacher-Kiser, K., Schaefer, C., Betz, 

C., Thiemeyer, A., Regenass, U., Hall, M.N., and Moroni, C. (2011) Genome-wide shRNA 

screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene. 30, 

1551-1565 

(209) Bravo, R., Vicencio, J.M., Parra, V., Troncoso, R., Munoz, J.P., Bui, M., Quiroga, C., 

Rodriguez, A.E., Verdejo, H.E., Ferreira, J., Iglewski, M., Chiong, M., Simmen, T., Zorzano, 

A., Hill, J.A., Rothermel, B.A., Szabadkai, G., and Lavandero, S. (2011) Increased ER-

mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early 

phases of ER stress. Journal of cell science. 124, 2143-2152 

(210) Sano, R., Annunziata, I., Patterson, A., Moshiach, S., Gomero, E., Opferman, J., Forte, 

M., and d'Azzo, A. (2009) GM1-ganglioside accumulation at the mitochondria-associated ER 

membranes links ER stress to Ca(2+)-dependent mitochondrial apoptosis. Molecular cell. 36, 

500-511 

(211) Chami, M., Oules, B., Szabadkai, G., Tacine, R., Rizzuto, R., and Paterlini-Brechot, P. 

(2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to 

mitochondria during ER stress. Molecular cell. 32, 641-651 

(212) Staunton, M.J., and Gaffney, E.F. (1995) Tumor type is a determinant of susceptibility 

to apoptosis. American journal of clinical pathology. 103, 300-307 

(213) Glinsky, G.V., Glinsky, V.V., Ivanova, A.B., and Hueser, C.J. (1997) Apoptosis and 

metastasis: increased apoptosis resistance of metastatic cancer cells is associated with the 

profound deficiency of apoptosis execution mechanisms. Cancer letters. 115, 185-193 

(214) Soengas, M.S., and Lowe, S.W. (2003) Apoptosis and melanoma chemoresistance. 

Oncogene. 22, 3138-3151 

(215) Beck, D., Niessner, H., Smalley, K.S., Flaherty, K., Paraiso, K.H., Busch, C., Sinnberg, 

T., Vasseur, S., Iovanna, J.L., Driessen, S., Stork, B., Wesselborg, S., Schaller, M., 

Biedermann, T., Bauer, J., Lasithiotakis, K., Weide, B., Eberle, J., Schittek, B., Schadendorf, 

D., Garbe, C., Kulms, D., and Meier, F. (2013) Vemurafenib potently induces endoplasmic 

reticulum stress-mediated apoptosis in BRAFV600E melanoma cells. Science signaling. 6, 

ra7 

(216) Ma, X.H., Piao, S.F., Dey, S., McAfee, Q., Karakousis, G., Villanueva, J., Hart, L.S., 

Levi, S., Hu, J., Zhang, G., Lazova, R., Klump, V., Pawelek, J.M., Xu, X., Xu, W., Schuchter, 

L.M., Davies, M.A., Herlyn, M., Winkler, J., Koumenis, C., and Amaravadi, R.K. (2014) 

Targeting ER stress-induced autophagy overcomes BRAF inhibitor resistance in melanoma. 

The Journal of clinical investigation. 124, 1406-1417 

(217) Cerezo, M., Lehraiki, A., Millet, A., Rouaud, F., Plaisant, M., Jaune, E., Botton, T., 

Ronco, C., Abbe, P., Amdouni, H., Passeron, T., Hofman, V., Mograbi, B., Dabert-Gay, A.S., 

Debayle, D., Alcor, D., Rabhi, N., Annicotte, J.S., Heliot, L., Gonzalez-Pisfil, M., Robert, C., 

Morera, S., Vigouroux, A., Gual, P., Ali, M.M.U., Bertolotto, C., Hofman, P., Ballotti, R., 

Benhida, R., and Rocchi, S. (2016) Compounds Triggering ER Stress Exert Anti-Melanoma 

Effects and Overcome BRAF Inhibitor Resistance. Cancer cell. 30, 183 

(218) Hill, D.S., Martin, S., Armstrong, J.L., Flockhart, R., Tonison, J.J., Simpson, D.G., 

Birch-Machin, M.A., Redfern, C.P., and Lovat, P.E. (2009) Combining the endoplasmic 

reticulum stress-inducing agents bortezomib and fenretinide as a novel therapeutic strategy for 

metastatic melanoma. Clinical cancer research : an official journal of the American 

Association for Cancer Research. 15, 1192-1198 



136 

 

(219) Sharma, S., Quintana, A., Findlay, G.M., Mettlen, M., Baust, B., Jain, M., Nilsson, R., 

Rao, A., and Hogan, P.G. (2013) An siRNA screen for NFAT activation identifies septins as 

coordinators of store-operated Ca2+ entry. Nature. 499, 238-242 

(220) Matsuo, Y., Akiyama, N., Nakamura, H., Yodoi, J., Noda, M., and Kizaka-Kondoh, S. 

(2001) Identification of a novel thioredoxin-related transmembrane protein. The Journal of 

biological chemistry. 276, 10032-10038 

(221) Meng, X., Zhang, C., Chen, J., Peng, S., Cao, Y., Ying, K., Xie, Y., and Mao, Y. 

(2003) Cloning and identification of a novel cDNA coding thioredoxin-related 

transmembrane protein 2. Biochemical genetics. 41, 99-106 

(222) Haugstetter, J., Blicher, T., and Ellgaard, L. (2005) Identification and characterization 

of a novel thioredoxin-related transmembrane protein of the endoplasmic reticulum. The 

Journal of biological chemistry. 280, 8371-8380 

(223) Roth, D., Lynes, E., Riemer, J., Hansen, H.G., Althaus, N., Simmen, T., and Ellgaard, 

L. (2009) A di-arginine motif contributes to the ER localization of the type I transmembrane 

ER oxidoreductase TMX4. The Biochemical journal. 425, 195-205 

(224) Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., 

Popko, B., Paules, R., Stojdl, D.F., Bell, J.C., Hettmann, T., Leiden, J.M., and Ron, D. (2003) 

An integrated stress response regulates amino acid metabolism and resistance to oxidative 

stress. Molecular cell. 11, 619-633 

(225) Haynes, C.M., Titus, E.A., and Cooper, A.A. (2004) Degradation of misfolded 

proteins prevents ER-derived oxidative stress and cell death. Molecular cell. 15, 767-776 

(226) Matsuo, Y., and Hirota, K. (2017) Transmembrane thioredoxin-related protein TMX1 

is reversibly oxidized in response to protein accumulation in the endoplasmic reticulum. 

FEBS open bio. 7, 1768-1777 

(227) Lynes, E.M., Bui, M., Yap, M.C., Benson, M.D., Schneider, B., Ellgaard, L., 

Berthiaume, L.G., and Simmen, T. (2012) Palmitoylated TMX and calnexin target to the 

mitochondria-associated membrane. The EMBO journal. 31, 457-470 

(228) Raturi, A., Gutierrez, T., Ortiz-Sandoval, C., Ruangkittisakul, A., Herrera-Cruz, M.S., 

Rockley, J.P., Gesson, K., Ourdev, D., Lou, P.H., Lucchinetti, E., Tahbaz, N., Zaugg, M., 

Baksh, S., Ballanyi, K., and Simmen, T. (2016) TMX1 determines cancer cell metabolism as 

a thiol-based modulator of ER-mitochondria Ca2+ flux. The Journal of cell biology. 214, 433-

444 

(229) Shaw, J.P., Utz, P.J., Durand, D.B., Toole, J.J., Emmel, E.A., and Crabtree, G.R. 

(2010) Identification of a putative regulator of early T cell activation genes. Science. 1988. 

241: 202-205. Journal of immunology. 185, 4972-4975 

(230) Rao, A., Luo, C., and Hogan, P.G. (1997) Transcription factors of the NFAT family: 

regulation and function. Annual review of immunology. 15, 707-747 

(231) Horsley, V., Aliprantis, A.O., Polak, L., Glimcher, L.H., and Fuchs, E. (2008) 

NFATc1 balances quiescence and proliferation of skin stem cells. Cell. 132, 299-310 

(232) Mancini, M., and Toker, A. (2009) NFAT proteins: emerging roles in cancer 

progression. Nature reviews. Cancer. 9, 810-820 

(233) Muller, M.R., and Rao, A. (2010) NFAT, immunity and cancer: a transcription factor 

comes of age. Nature reviews. Immunology. 10, 645-656 



137 

 

(234) Pena, J.A., Losi-Sasaki, J.L., and Gooch, J.L. (2010) Loss of calcineurin Aalpha alters 

keratinocyte survival and differentiation. The Journal of investigative dermatology. 130, 135-

140 

(235) Mammucari, C., Tommasi di Vignano, A., Sharov, A.A., Neilson, J., Havrda, M.C., 

Roop, D.R., Botchkarev, V.A., Crabtree, G.R., and Dotto, G.P. (2005) Integration of Notch 1 

and calcineurin/NFAT signaling pathways in keratinocyte growth and differentiation control. 

Developmental cell. 8, 665-676 

(236) Flockhart, R.J., Diffey, B.L., Farr, P.M., Lloyd, J., and Reynolds, N.J. (2008) NFAT 

regulates induction of COX-2 and apoptosis of keratinocytes in response to ultraviolet 

radiation exposure. FASEB journal : official publication of the Federation of American 

Societies for Experimental Biology. 22, 4218-4227 

(237) Nicolas, M., Wolfer, A., Raj, K., Kummer, J.A., Mill, P., van Noort, M., Hui, C.C., 

Clevers, H., Dotto, G.P., and Radtke, F. (2003) Notch1 functions as a tumor suppressor in 

mouse skin. Nature genetics. 33, 416-421 

(238) Sommerer, C., Hartschuh, W., Enk, A., Meuer, S., Zeier, M., and Giese, T. (2008) 

Pharmacodynamic immune monitoring of NFAT-regulated genes predicts skin cancer in 

elderly long-term renal transplant recipients. Clinical transplantation. 22, 549-554 

(239) Flockhart, R.J., Armstrong, J.L., Reynolds, N.J., and Lovat, P.E. (2009) NFAT 

signalling is a novel target of oncogenic BRAF in metastatic melanoma. British journal of 

cancer. 101, 1448-1455 

(240) Levin-Gromiko, U., Koshelev, V., Kushnir, P., Fedida-Metula, S., Voronov, E., and 

Fishman, D. (2014) Amplified lipid rafts of malignant cells constitute a target for inhibition of 

aberrantly active NFAT and melanoma tumor growth by the aminobisphosphonate zoledronic 

acid. Carcinogenesis. 35, 2555-2566 

(241) Perotti, V., Baldassari, P., Molla, A., Vegetti, C., Bersani, I., Maurichi, A., Santinami, 

M., Anichini, A., and Mortarini, R. (2016) NFATc2 is an intrinsic regulator of melanoma 

dedifferentiation. Oncogene. 35, 2862-2872 

(242) Shoshan, E., Braeuer, R.R., Kamiya, T., Mobley, A.K., Huang, L., Vasquez, M.E., 

Velazquez-Torres, G., Chakravarti, N., Ivan, C., Prieto, V., Villares, G.J., and Bar-Eli, M. 

(2016) NFAT1 Directly Regulates IL8 and MMP3 to Promote Melanoma Tumor Growth and 

Metastasis. Cancer research. 76, 3145-3155 

(243) Skarmoutsou, E., Bevelacqua, V., F, D.A., Russo, A., Spandidos, D.A., Scalisi, A., 

Malaponte, G., and Guarneri, C. (2018) FOXP3 expression is modulated by 

TGFbeta1/NOTCH1 pathway in human melanoma. International journal of molecular 

medicine. 42, 392-404 

(244) Tan, B., Anaka, M., Deb, S., Freyer, C., Ebert, L.M., Chueh, A.C., Al-Obaidi, S., 

Behren, A., Jayachandran, A., Cebon, J., Chen, W., and Mariadason, J.M. (2014) FOXP3 

over-expression inhibits melanoma tumorigenesis via effects on proliferation and apoptosis. 

Oncotarget. 5, 264-276 

(245) Franco-Molina, M.A., Miranda-Hernandez, D.F., Mendoza-Gamboa, E., Zapata-

Benavides, P., Coronado-Cerda, E.E., Sierra-Rivera, C.A., Saavedra-Alonso, S., Tamez-

Guerra, R.S., and Rodriguez-Padilla, C. (2016) Silencing of Foxp3 delays the growth of 

murine melanomas and modifies the tumor immunosuppressive environment. OncoTargets 

and therapy. 9, 243-253 



138 

 

(246) Ciechomska, I., Legat, M., Golab, J., Wesolowska, A., Kurzaj, Z., Mackiewicz, A., 

and Kaminska, B. (2005) Cyclosporine A and its non-immunosuppressive derivative NIM811 

induce apoptosis of malignant melanoma cells in in vitro and in vivo studies. International 

journal of cancer. 117, 59-67 

(247) Juhasz, T., Matta, C., Veress, G., Nagy, G., Szijgyarto, Z., Molnar, Z., Fodor, J., 

Zakany, R., and Gergely, P. (2009) Inhibition of calcineurin by cyclosporine A exerts 

multiple effects on human melanoma cell lines HT168 and WM35. International journal of 

oncology. 34, 995-1003 

(248) Fang, D., Nguyen, T.K., Leishear, K., Finko, R., Kulp, A.N., Hotz, S., Van Belle, P.A., 

Xu, X., Elder, D.E., and Herlyn, M. (2005) A tumorigenic subpopulation with stem cell 

properties in melanomas. Cancer research. 65, 9328-9337 

(249) Zhang, X., Gibhardt, C.S., Will, T., Stanisz, H., Korbel, C., Mitkovski, M., Stejerean, 

I., Cappello, S., Pacheu-Grau, D., Dudek, J., Tahbaz, N., Mina, L., Simmen, T., Laschke, 

M.W., Menger, M.D., Schon, M.P., Helms, V., Niemeyer, B.A., Rehling, P., Vultur, A., and 

Bogeski, I. (2019) Redox signals at the ER-mitochondria interface control melanoma 

progression. The EMBO journal. 38, e100871 

(250) Boveris, A., and Chance, B. (1973) The mitochondrial generation of hydrogen 

peroxide. General properties and effect of hyperbaric oxygen. The Biochemical journal. 134, 

707-716 

(251) Quintana, A., Schwindling, C., Wenning, A.S., Becherer, U., Rettig, J., Schwarz, E.C., 

and Hoth, M. (2007) T cell activation requires mitochondrial translocation to the 

immunological synapse. Proceedings of the National Academy of Sciences of the United 

States of America. 104, 14418-14423 

(252) Block, K., Gorin, Y., and Abboud, H.E. (2009) Subcellular localization of Nox4 and 

regulation in diabetes. Proceedings of the National Academy of Sciences of the United States 

of America. 106, 14385-14390 

(253) Van Buul, J.D., Fernandez-Borja, M., Anthony, E.C., and Hordijk, P.L. (2005) 

Expression and localization of NOX2 and NOX4 in primary human endothelial cells. 

Antioxidants & redox signaling. 7, 308-317 

(254) Bedard, K., and Krause, K.H. (2007) The NOX family of ROS-generating NADPH 

oxidases: physiology and pathophysiology. Physiological reviews. 87, 245-313 

(255) von Lohneysen, K., Noack, D., Wood, M.R., Friedman, J.S., and Knaus, U.G. (2010) 

Structural insights into Nox4 and Nox2: motifs involved in function and cellular localization. 

Molecular and cellular biology. 30, 961-975 

(256) Friedl, P., Locker, J., Sahai, E., and Segall, J.E. (2012) Classifying collective cancer 

cell invasion. Nature cell biology. 14, 777-783 

(257) Sumimoto, H., Imabayashi, F., Iwata, T., and Kawakami, Y. (2006) The BRAF-

MAPK signaling pathway is essential for cancer-immune evasion in human melanoma cells. 

The Journal of experimental medicine. 203, 1651-1656 

(258) Poulikakos, P.I., and Rosen, N. (2011) Mutant BRAF melanomas--dependence and 

resistance. Cancer cell. 19, 11-15 

(259) Aibar, S., Gonzalez-Blas, C.B., Moerman, T., Huynh-Thu, V.A., Imrichova, H., 

Hulselmans, G., Rambow, F., Marine, J.C., Geurts, P., Aerts, J., van den Oord, J., Atak, Z.K., 



139 

 

Wouters, J., and Aerts, S. (2017) SCENIC: single-cell regulatory network inference and 

clustering. Nature methods. 14, 1083-1086 

(260) Soboloff, J., Rothberg, B.S., Madesh, M., and Gill, D.L. (2012) STIM proteins: 

dynamic calcium signal transducers. Nature reviews. Molecular cell biology. 13, 549-565 

(261) Carrasco, S., and Meyer, T. (2011) STIM proteins and the endoplasmic reticulum-

plasma membrane junctions. Annual review of biochemistry. 80, 973-1000 

(262) Demaurex, N., Poburko, D., and Frieden, M. (2009) Regulation of plasma membrane 

calcium fluxes by mitochondria. Biochimica et biophysica acta. 1787, 1383-1394 

(263) Deak, A.T., Blass, S., Khan, M.J., Groschner, L.N., Waldeck-Weiermair, M., 

Hallstrom, S., Graier, W.F., and Malli, R. (2014) IP3-mediated STIM1 oligomerization 

requires intact mitochondrial Ca2+ uptake. Journal of cell science. 127, 2944-2955 

(264) Yu, L., Golbeck, J., Yao, J., and Rusnak, F. (1997) Spectroscopic and enzymatic 

characterization of the active site dinuclear metal center of calcineurin: implications for a 

mechanistic role. Biochemistry. 36, 10727-10734 

(265) Rhee, S.G., Bae, Y.S., Lee, S.R., and Kwon, J. (2000) Hydrogen peroxide: a key 

messenger that modulates protein phosphorylation through cysteine oxidation. Science's 

STKE : signal transduction knowledge environment. 2000, pe1 

(266) Reiter, T.A., Abraham, R.T., Choi, M., and Rusnak, F. (1999) Redox regulation of 

calcineurin in T-lymphocytes. Journal of biological inorganic chemistry : JBIC : a 

publication of the Society of Biological Inorganic Chemistry. 4, 632-644 

(267) Ghosh, M.C., Wang, X., Li, S., and Klee, C. (2003) Regulation of calcineurin by 

oxidative stress. Methods in enzymology. 366, 289-304 

(268) Wang, X., Culotta, V.C., and Klee, C.B. (1996) Superoxide dismutase protects 

calcineurin from inactivation. Nature. 383, 434-437 

(269) Bogumil, R., Namgaladze, D., Schaarschmidt, D., Schmachtel, T., Hellstern, S., 

Mutzel, R., and Ullrich, V. (2000) Inactivation of calcineurin by hydrogen peroxide and 

phenylarsine oxide. Evidence for a dithiol-disulfide equilibrium and implications for redox 

regulation. European journal of biochemistry. 267, 1407-1415 

(270) Carruthers, N.J., and Stemmer, P.M. (2008) Methionine oxidation in the calmodulin-

binding domain of calcineurin disrupts calmodulin binding and calcineurin activation. 

Biochemistry. 47, 3085-3095 

(271) Thannickal, V.J., and Fanburg, B.L. (2000) Reactive oxygen species in cell signaling. 

American journal of physiology. Lung cellular and molecular physiology. 279, L1005-1028 

(272) Ralph, S.J., Rodriguez-Enriquez, S., Neuzil, J., Saavedra, E., and Moreno-Sanchez, R. 

(2010) The causes of cancer revisited: "mitochondrial malignancy" and ROS-induced 

oncogenic transformation - why mitochondria are targets for cancer therapy. Molecular 

aspects of medicine. 31, 145-170 

(273) Senft, D., and Ronai, Z.A. (2015) UPR, autophagy, and mitochondria crosstalk 

underlies the ER stress response. Trends in biochemical sciences. 40, 141-148 

(274) Malhotra, J.D., and Kaufman, R.J. (2007) Endoplasmic reticulum stress and oxidative 

stress: a vicious cycle or a double-edged sword? Antioxidants & redox signaling. 9, 2277-

2293 



140 

 

(275) Appenzeller-Herzog, C., Banhegyi, G., Bogeski, I., Davies, K.J., Delaunay-Moisan, A., 

Forman, H.J., Gorlach, A., Kietzmann, T., Laurindo, F., Margittai, E., Meyer, A.J., Riemer, J., 

Rutzler, M., Simmen, T., Sitia, R., Toledano, M.B., and Touw, I.P. (2016) Transit of H2O2 

across the endoplasmic reticulum membrane is not sluggish. Free radical biology & medicine. 

94, 157-160 

(276) Li, G., Scull, C., Ozcan, L., and Tabas, I. (2010) NADPH oxidase links endoplasmic 

reticulum stress, oxidative stress, and PKR activation to induce apoptosis. The Journal of cell 

biology. 191, 1113-1125 

(277) Prior, K.K., Wittig, I., Leisegang, M.S., Groenendyk, J., Weissmann, N., Michalak, M., 

Jansen-Durr, P., Shah, A.M., and Brandes, R.P. (2016) The Endoplasmic Reticulum 

Chaperone Calnexin Is a NADPH Oxidase NOX4 Interacting Protein. The Journal of 

biological chemistry. 291, 7045-7059 

(278) Yamaura, M., Mitsushita, J., Furuta, S., Kiniwa, Y., Ashida, A., Goto, Y., Shang, 

W.H., Kubodera, M., Kato, M., Takata, M., Saida, T., and Kamata, T. (2009) NADPH 

oxidase 4 contributes to transformation phenotype of melanoma cells by regulating G2-M cell 

cycle progression. Cancer research. 69, 2647-2654 

(279) Meitzler, J.L., Makhlouf, H.R., Antony, S., Wu, Y., Butcher, D., Jiang, G., Juhasz, A., 

Lu, J., Dahan, I., Jansen-Durr, P., Pircher, H., Shah, A.M., Roy, K., and Doroshow, J.H. 

(2017) Decoding NADPH oxidase 4 expression in human tumors. Redox biology. 13, 182-195 

(280) Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., 

and Walter, P. (2009) An ER-mitochondria tethering complex revealed by a synthetic biology 

screen. Science. 325, 477-481 

(281) Friedman, J.R., Lackner, L.L., West, M., DiBenedetto, J.R., Nunnari, J., and Voeltz, 

G.K. (2011) ER tubules mark sites of mitochondrial division. Science. 334, 358-362 

(282) Eisenberg-Bord, M., Shai, N., Schuldiner, M., and Bohnert, M. (2016) A Tether Is a 

Tether Is a Tether: Tethering at Membrane Contact Sites. Developmental cell. 39, 395-409 

(283) Klecker, T., Bockler, S., and Westermann, B. (2014) Making connections: 

interorganelle contacts orchestrate mitochondrial behavior. Trends in cell biology. 24, 537-

545 

(284) Giacomello, M., and Pellegrini, L. (2016) The coming of age of the mitochondria-ER 

contact: a matter of thickness. Cell death and differentiation. 23, 1417-1427 

(285) Frieden, M., Arnaudeau, S., Castelbou, C., and Demaurex, N. (2005) 

Subplasmalemmal mitochondria modulate the activity of plasma membrane Ca2+-ATPases. 

The Journal of biological chemistry. 280, 43198-43208 

(286) Fowler, S.L., Akins, M., Zhou, H., Figeys, D., and Bennett, S.A. (2013) The liver 

connexin32 interactome is a novel plasma membrane-mitochondrial signaling nexus. Journal 

of proteome research. 12, 2597-2610 

(287) Filadi, R., Greotti, E., Turacchio, G., Luini, A., Pozzan, T., and Pizzo, P. (2015) 

Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling. Proceedings of 

the National Academy of Sciences of the United States of America. 112, E2174-2181 

(288) Lackner, L.L., Ping, H., Graef, M., Murley, A., and Nunnari, J. (2013) Endoplasmic 

reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance 



141 

 

of mitochondria. Proceedings of the National Academy of Sciences of the United States of 

America. 110, E458-467 

(289) Cardenas, C., Muller, M., McNeal, A., Lovy, A., Jana, F., Bustos, G., Urra, F., Smith, 

N., Molgo, J., Diehl, J.A., Ridky, T.W., and Foskett, J.K. (2016) Selective Vulnerability of 

Cancer Cells by Inhibition of Ca(2+) Transfer from Endoplasmic Reticulum to Mitochondria. 

Cell reports. 15, 219-220 

(290) Phan, V., Schmidt, J., Matyash, V., Malchow, S., Thanisch, M., Lorenz, C., Diepolder, 

I., Schulz, J.B., Stenzel, W., Roos, A., and Gess, B. (2018) Characterization of Naive and 

Vitamin C-Treated Mouse Schwann Cell Line MSC80: Induction of the Antioxidative 

Thioredoxin Related Transmembrane Protein 1. Journal of proteome research. 17, 2925-2936 

(291) Kim, M.S., and Usachev, Y.M. (2009) Mitochondrial Ca2+ cycling facilitates 

activation of the transcription factor NFAT in sensory neurons. The Journal of neuroscience : 

the official journal of the Society for Neuroscience. 29, 12101-12114 

(292) Chen, Y., Yuen, W.H., Fu, J., Huang, G., Melendez, A.J., Ibrahim, F.B., Lu, H., and 

Cao, X. (2007) The mitochondrial respiratory chain controls intracellular calcium signaling 

and NFAT activity essential for heart formation in Xenopus laevis. Molecular and cellular 

biology. 27, 6420-6432 

(293) Murphy, M.P., and Siegel, R.M. (2013) Mitochondrial ROS fire up T cell activation. 

Immunity. 38, 201-202 

(294) Sena, L.A., Li, S., Jairaman, A., Prakriya, M., Ezponda, T., Hildeman, D.A., Wang, 

C.R., Schumacker, P.T., Licht, J.D., Perlman, H., Bryce, P.J., and Chandel, N.S. (2013) 

Mitochondria are required for antigen-specific T cell activation through reactive oxygen 

species signaling. Immunity. 38, 225-236 

(295) Pinton, P., Giorgi, C., Siviero, R., Zecchini, E., and Rizzuto, R. (2008) Calcium and 

apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 27, 6407-

6418 

(296) Area-Gomez, E., and Schon, E.A. (2016) Mitochondria-associated ER membranes and 

Alzheimer disease. Current opinion in genetics & development. 38, 90-96 

(297) Tubbs, E., and Rieusset, J. (2017) Metabolic signaling functions of ER-mitochondria 

contact sites: role in metabolic diseases. Journal of molecular endocrinology. 58, R87-R106 

(298) Trachootham, D., Alexandre, J., and Huang, P. (2009) Targeting cancer cells by ROS-

mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug discovery. 8, 

579-591 

(299) Fulda, S., Galluzzi, L., and Kroemer, G. (2010) Targeting mitochondria for cancer 

therapy. Nature reviews. Drug discovery. 9, 447-464 

(300) Corazao-Rozas, P., Guerreschi, P., Jendoubi, M., Andre, F., Jonneaux, A., Scalbert, C., 

Garcon, G., Malet-Martino, M., Balayssac, S., Rocchi, S., Savina, A., Formstecher, P., 

Mortier, L., Kluza, J., and Marchetti, P. (2013) Mitochondrial oxidative stress is the Achille's 

heel of melanoma cells resistant to Braf-mutant inhibitor. Oncotarget. 4, 1986-1998 

(301) Braeuer, R.R., Zigler, M., Kamiya, T., Dobroff, A.S., Huang, L., Choi, W., McConkey, 

D.J., Shoshan, E., Mobley, A.K., Song, R., Raz, A., and Bar-Eli, M. (2012) Galectin-3 

contributes to melanoma growth and metastasis via regulation of NFAT1 and autotaxin. 

Cancer research. 72, 5757-5766 



142 

 

(302) Yang, Y., and Qian, Q. (2014) Wnt5a/Ca (2+) /calcineurin/nuclear factor of activated 

T signaling pathway as a potential marker of pediatric melanoma. Journal of cancer research 

and therapeutics. 10 Suppl, C83-88 

(303) Yang, Y., Guo, W., Ma, J., Xu, P., Zhang, W., Guo, S., Liu, L., Ma, J., Shi, Q., Jian, Z., 

Liu, L., Wang, G., Gao, T., Han, Z., and Li, C. (2018) Downregulated TRPV1 Expression 

Contributes to Melanoma Growth via the Calcineurin-ATF3-p53 Pathway. The Journal of 

investigative dermatology. 138, 2205-2215 

(304) Pfluger, P.T., Kabra, D.G., Aichler, M., Schriever, S.C., Pfuhlmann, K., Garcia, V.C., 

Lehti, M., Weber, J., Kutschke, M., Rozman, J., Elrod, J.W., Hevener, A.L., Feuchtinger, A., 

Hrabe de Angelis, M., Walch, A., Rollmann, S.M., Aronow, B.J., Muller, T.D., Perez-Tilve, 

D., Jastroch, M., De Luca, M., Molkentin, J.D., and Tschop, M.H. (2015) Calcineurin Links 

Mitochondrial Elongation with Energy Metabolism. Cell metabolism. 22, 838-850 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



143 

 

10 Register of Graphs, Tables and Figures 

Graphs 

Graph 1: Anatomy of the Human Skin (Adapted from official website: university of 

California San Franciso/Melanoma Surgery/Department of Surgery) 
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Figure 1: mRNA expression of TMX1 and TMX3 in melanoma cell lines. 

Figure 2: mRNA expression of NFAT in melanoma cell lines. 

Figure 3: Nuclear import of NFAT1 in melanoma cell. 

Figure 4: NFAT1 translocation is inhibited following TMX silencing in melanoma cell lines. 

Figure 5: IL-8 secretion from melanoma cells is decreased following TMX silencing. 

Figure 6: Cytosolic calcium measurement on WM3734 cells following TMX silencing. 

Figure 7: Cytosolic H2O2 concentration was elevated by TMX silencing. 

Figure 8: The NFAT1 translocation is inhibited by extracellular H2O2 in a dose-dependent 

manner. 
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Figure 9: The inhibition of NFAT1 activation induced by TMX1 silencing can be rescued by 

antioxidants. 

Figure 10: The phosphatase activity of calcineurin is inhibited by TMX silencing. 

Figure 11: The calcineurin activity could be inhibited by H2O2 in melanoma. 

Figure 12: The silencing of TMX does not trigger ER stress in melanoma cells. 

Figure 13: The ER lumen is not a major source of H2O2 in melanoma cells following TMX1 

silencing. 

Figure 14: TMX silencing induces significant increase of mitochondrial ROS. 

Figure 15: Mitochondrial calcium uptake is increased following TMX1 silencing. 

Figure 16: The PM to mitochondria calcium transfer is increased following TMX1 silencing. 

Figure 17: The basal mitochondrial ATP level is increased following TMX1 silencing. 

Figure 18: Mitochondrial repositioning towards the plasma membrane in melanoma cells 

following TMX1 silencing.  

Figure 19: Mitochondrial repositioning disturbed redox homeostasis in MAM. 

Figure 20: The NOX4 is an alternative source of excessive cellular ROS. 

Figure 21: The proliferation of melanoma cells is inhibited following TMX silencing. 

Figure 22: The proliferation of melanoma cells is inhibited by suppression of NFAT. 

Figure 23: The migration of melanoma cells is inhibited following TMX silencing or 
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Figure 24: TMX1 silencing does not affect BRAF and MEK resistance of melanoma cells. 

Figure 25: The melanoma tumor growth is affected following TMX silencing. 
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