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A B S T R A C T

While capturing the transcriptomic state of a cell is a comparably simple
effort with modern sequencing techniques, mapping protein interactomes and
complexomes in a sample-specific manner is currently not feasible on a large
scale. To understand crucial biological processes, however, knowledge on the
physical interplay between proteins can be more interesting than just their mere
expression. In this thesis, we present and demonstrate four software tools that
unlock the cellular wiring in a condition-specific manner and promise a deeper
understanding of what happens upon cell fate transitions.

PPIXpress allows to exploit the abundance of existing expression data to
generate specific interactomes, which can even consider alternative splicing
events when protein isoforms can be related to the presence of causative protein
domain interactions of an underlying model. As an addition to this work, we
developed the convenient differential analysis tool PPICompare to determine
rewiring events and their causes within the inferred interaction networks
between grouped samples.

Furthermore, we present a new implementation of the combinatorial protein
complex prediction algorithm DACO that features a significantly reduced
runtime. This improvement facilitates an application of the method for a large
number of samples and the resulting sample-specific complexes can ultimately
be assessed quantitatively with our novel differential protein complex analysis
tool CompleXChange.
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Z U S A M M E N FA S S U N G

Das Transkriptom einer Zelle ist mit modernen Sequenzierungstechniken ver-
gleichsweise einfach zu erfassen. Die Ermittlung von Proteininteraktionen und
-komplexen wiederum ist in großem Maßstab derzeit nicht möglich. Um wichti-
ge biologische Prozesse zu verstehen, kann das Zusammenspiel von Proteinen
jedoch erheblich interessanter sein als deren reine Expression. In dieser Arbeit
stellen wir vier Software-Tools vor, die es ermöglichen solche Interaktionen
zustandsbezogen zu betrachten und damit ein tieferes Verständnis darüber
versprechen, was in der Zelle bei Veränderungen passiert.

PPIXpress ermöglicht es vorhandene Expressionsdaten zu nutzen, um die
aktiven Interaktionen in einem biologischen Kontext zu ermitteln. Wenn Pro-
teinvarianten mit Interaktionen von Proteindomänen in Verbindung gebracht
werden können, kann hierbei sogar alternatives Spleißen berücksichtigen wer-
den. Als Ergänzung dazu haben wir das komfortable Differenzialanalyse-Tool
PPICompare entwickelt, welches Veränderungen des Interaktoms und deren
Ursachen zwischen gruppierten Proben bestimmen kann.

Darüber hinaus stellen wir eine neue Implementierung des Proteinkomplex-
Vorhersagealgorithmus DACO vor, die eine deutlich reduzierte Laufzeit auf-
weist. Diese Verbesserung ermöglicht die Anwendung der Methode auf eine
große Anzahl von Proben. Die damit bestimmten probenspezifischen Komplexe
können schließlich mit unserem neuartigen Differenzialanalyse-Tool CompleX-
Change quantitativ bewertet werden.
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1
I N T R O D U C T I O N

1.1 motivation

Life is a complex matter. It begins with a single cell that, in a seemingly endless
succession of iterations that appear rather chaotic, grows and divides into
clusters of cells. A healthy human being comprises between 1012 and 1016 cells
of around 200 cell types with distinct phenotypes at the end of this development,
which required a complex interplay of factors in time and space [1, 2]. Both
the blueprints for all possible utilities an organism might want to make use
of during its lifetime and the complete regulatory information that controls
this endeavor are encoded as a sequence of four letters in a double-strand of
deoxyribonucleic acid (DNA). Although individual cells differ dramatically in
morphology and function, this sequence is the same in almost all cells of an
organism [2].

Despite the crucial role of the genomic DNA in storing this information, the
differences in morphological and physiological complexity, often quantified
as the number of possible gene expression patterns, is barely reflected in the
size of the genomes or the number of protein-coding genes when different
organisms are compared [3, 4]. Whereas the nematode Caenorhabditis elegans has
around 19, 000-20, 000 protein-coding genes, the fruitfly Drosophila melanogaster
possesses more cell types and tissues with only around 14, 000 genes. More so,
this is not even three times the number of genes found in the single-celled yeast
Saccharomyces cerevisiae (⇠ 6, 000 protein-coding genes) [5]. Still, depending on
its exact type and life cycle stage, every single cell in a multicellular organism
has certain base requirements of proteins that should be expressed and also
requires the ability to dynamically adapt to other factors, such as environmental
stimuli or physiological needs. Given this discrepancy in expected genome
sizes, how can cells in higher eukaryotes govern their potentially large number
of very diverse states?

Organisms that are more complex generally possess more regulatory proteins
and regulatory sequence regions in their DNA in relation to their genome size
[4]. Furthermore, through evolution they acquired and developed additional
mechanisms that allow for further means of altering the expression of individual
genes in various ways, such as expanding the proteome by being able to
distinguish between different isoforms of a protein [6, 7], adjustment of the
three-dimensional conformation of the DNA [8, 9] or expanding the encoding
of regulatory information by posttranslational modifications of histones [10]
or DNA [11]. But the true achievement that ultimately enables the drastic
gain in controllable states is the interplay between all those layers and players.
Distinct mechanisms of combinatorial control enable cells of higher eukaryotes
to leverage their repertoire of machinery in a way that allows for the exponential
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2 introduction

growth of its regulatory capabilities. A better understanding of this regulatory
interplay is crucial to be able to understand developmental processes but also
irregularities that cause diseases [3, 4, 8]. For this reason, a paradigm shift is
required to move our focus from the classical view of genes and proteins as the
units of biological functionality to the collaboration of relevant entities, e.g. the
context-specific relationships among the regulatory proteins, instead [8, 12–15].

While several mechanisms are important for the regulation of the specific
protein abundance, which is decisive for the phenotype, transcriptional control
is the earliest and likely the paramount step in the relevant cascade [2, 3,
16]. Multiprotein complexes comprising transcription factors (TFs), which are
DNA-binding regulatory proteins, have emerged as a foundation of signal
integration in eukaryotic transcriptional regulation [8, 13, 14]. Their potentially
tremendous information content renders them valuable targets of research. First
of all, the TFs included in such a complex can indicate cooperative interplay
of the regulators, which ideally translates to a much more specific selection
of genes that are likely targeted by the complex. Second, further regulatory
proteins that are recruited by a TF complex can aid in clarifying the regulatory
effect that is exerted by the assembly in a certain context [8, 13, 14, 17].

Since the experimental determination of protein complexomes is tedious and
error-prone, TF complexes are an ideal system to be studied by computational
methods. Although the prediction of protein complexes from data on protein-
protein interactions is considered a well-established problem, integral standard
tools that we have in the areas of individual molecules, such as differential
analysis pipelines in particular, are not available for the study of protein
interactomes and their assemblies. This thesis aims at closing this gap by
presenting software tools that cover these quintessential research questions.

1.2 overview and objectives of this thesis

In my master thesis (awarded and published by Springer in their BestMasters
series [18]) and in the condensed manuscript ”Identifying transcription factor
complexes and their roles” [17] that emerged from the thesis, we followed the
idea that by predicting protein complexes that involve TFs, one would be able to
gather regulatory information from the knowledge of the exact assemblies that
would allow to construct gene regulatory networks at a new level of dealing
with TF combinatorics. The results in yeast encouraged us to pursue the topic
and work towards an application to human data, where the combinatorial
interplay should be even more pronounced. This is not simply a repetition
of the same basic workflow. Processing higher eukaryotes correctly is a task
that requires more effort and care than for S. cerevisiae, for example. Besides
the obvious overall increase in scale, new tasks had to be addressed and new
opportunities became apparent.

Figure 1.1 presents an overview of all projects covered in this thesis in their
respective biological context.

In the case of multicellular organisms, the prediction of protein complexes
from protein-protein interaction data requires knowledge on which interactions
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red arrows point to the output of the tools. The folded protein structure was generated from
Protein Data Bank (PDB) [19] entry 6Q9O (version 1.1) [20] using the NGL viewer [21].
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are active in a specific cellular context. Although a wealth of experimental
data on protein interactions is stored in public databases, the aggregated
knowledge therein is not representative for particular living cells. Usually, a
contextualization step is conducted on the basis of gene expression data to
detect the potentially engaged interactions as those where both partners are
expressed in the sample of interest. Building on the idea that interactions
between protein domains facilitate protein interactions and under the premise
that current sequencing techniques are by default able to yield expression data
at transcript resolution, we went a step further than existing approaches and
devised a method that employs data integration to make use of this increase in
resolution. The resulting tool PPIXpress is thus able to infer protein interactomes
that consider the effects of protein isoforms on individual interactions.

With the availability of such specific interactomes, the opportunity became
apparent to use the novel information on isoforms in a differential analysis
methodology. PPICompare, our application towards this general task, imple-
ments a classical differential analysis approach to study the rewiring of isoform-
specific networks between groups, and additionally captures what drives these
changes, e.g. the deregulation of one or both of the interaction partners which
can be caused by either switching the protein-coding gene on/off, or, on the
other hand, by switching between two isoforms of the corresponding gene.

Concurrent to all other projects, our complex prediction algorithm DACO was
reimplemented in Java. The focus of the new software design concentrated on
substantially increasing its performance and scalability to enable the processing
of many samples in appropriate time.

Ultimately, all efforts in the thesis culminate in the idea to analyze the com-
plexomes derived from contextualized protein interactomes in a quantitative
way. The differential protein complex analysis software CompleXChange is
therefore the final part of a complete pipeline from isoform-specific interac-
tomes inferred on the basis of transcript expression data to differential protein
complexes. Hence the title of the thesis became ”From condition-specific inter-
actions towards the differential complexome of proteins”.

All tools that I developed during my time as a doctoral candidate at the Center
for Bioinformatics were constructed on the basis of a shared framework of
classes in Java that I updated steadily. The complete codebase of this framework,
including the analyses conducted using Java, is openly accessible in my GitHub
repository at https://github.com/edeltoaster/jdaco_dev and all software
is distributed under the open-source licence GNU General Public License 3

(GPLv3)1.

1 https://www.gnu.org/licenses/gpl-3.0.txt

https://github.com/edeltoaster/jdaco_dev
https://www.gnu.org/licenses/gpl-3.0.txt
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1.2.1 First author publications included in this thesis

Will, T. and Helms, V., “PPIXpress: construction of condition-specific protein
interaction networks based on transcript expression”, Bioinformatics, vol. 32,
no. 4, pp. 571, Feb. 2016.

Abstract: Protein-protein interaction networks are an important component
of modern systems biology. Yet, comparatively few efforts have been made
to tailor their topology to the actual cellular condition being studied. Here,
we present a network construction method that exploits expression data at
the transcript-level and thus reveals alterations in protein connectivity not
only caused by differential gene expression but also by alternative splicing.
We achieved this by establishing a direct correspondence between individual
protein interactions and underlying domain interactions in a complete but
condition-unspecific protein interaction network. This knowledge was then
used to infer the condition-specific presence of interactions from the dominant
protein isoforms. When we compared contextualized interaction networks of
matched normal and tumor samples in breast cancer, our transcript-based con-
struction identified more significant alterations that affected proteins associated
with cancerogenesis than a method that only uses gene expression data. The
approach is provided as the user-friendly tool PPIXpress which is available at
https://sourceforge.net/projects/ppixpress/.

Will, T. and Helms, V., “Rewiring of the inferred protein interactome dur-
ing blood development studied with the tool PPICompare”, BMC Systems
Biology, vol. 11, no. 1, p. 44, Apr. 2017.

Abstract: Differential analysis of cellular conditions is a key approach to-
wards understanding the consequences and driving causes behind biological
processes such as developmental transitions or diseases. The progress of whole-
genome expression profiling enabled to conveniently capture the state of a cell’s
transcriptome and to detect the characteristic features that distinguish cells in
specific conditions. In contrast, mapping the physical protein interactome for
many samples is experimentally infeasible at the moment. For the understand-
ing of the whole system, however, it is equally important how the interactions
of proteins are rewired between cellular states. To overcome this deficiency, we
recently showed how condition-specific protein interaction networks that even
consider alternative splicing can be inferred from transcript expression data.
Here, we present the differential network analysis tool PPICompare that was
specifically designed for isoform-sensitive protein interaction networks. Besides
detecting significant rewiring events between the interactomes of grouped
samples, PPICompare infers which alterations to the transcriptome caused
each rewiring event and what is the minimal set of alterations necessary to
explain all between-group changes. When applied to the development of blood
cells, we verified that a reasonable amount of rewiring events were reported
by the tool and found that differential gene expression was the major deter-
minant of cellular adjustments to the interactome. Alternative splicing events
were consistently necessary in each developmental step to explain all signifi-
cant alterations and were especially important for rewiring in the context of

https://sourceforge.net/projects/ppixpress/
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transcriptional control. Applying PPICompare enabled us to investigate the
dynamics of the human protein interactome during developmental transitions.
A platform-independent implementation of the tool PPICompare is available at
https://sourceforge.net/projects/ppicompare/.

Will, T. and Helms, V., “Differential analysis of combinatorial protein com-
plexes with CompleXChange”, BMC Bioinformatics, vol. 20, no. 1, p. 300, Jun.
2019.

Abstract: Although a considerable number of proteins operate as multiprotein
complexes and not on their own, organism-wide studies so far are only able to
quantify individual proteins or protein-coding genes in a condition-specific man-
ner for a sizeable number of samples, but not their assemblies. Consequently,
there exist large amounts of transcriptomic data and an increasing amount of
data on proteome abundance, but quantitative knowledge on complexomes is
missing. This deficiency impedes the applicability of the powerful tool of differ-
ential analysis in the realm of macromolecular complexes. Here, we present a
pipeline for differential analysis of protein complexes based on predicted or
manually assigned complexes and inferred complex abundances, which can
be easily applied on a whole-genome scale. We observed for simulated data
that results obtained by our complex abundance estimation algorithm were in
better agreement with the ground truth and physicochemically more reasonable
compared to previous efforts that used linear programming while running in
a fraction of the time. The practical usability of the method was assessed in
the context of transcription factor complexes in human monocyte and lym-
phoblastoid samples. We demonstrated that our new method is robust against
false-positive detection and reports deregulated complexomes that can only be
partially explained by differential analysis of individual protein-coding genes.
Furthermore we showed that deregulated complexes identified by the tool
potentially harbor significant yet unused information content. CompleXChange
allows to analyze deregulation of the protein complexome on a whole-genome
scale by integrating a plethora of input data that is already available. A platform-
independent Java binary, a user guide with example data and the source code
are freely available at https://sourceforge.net/projects/complexchange/.

1.2.2 Coauthor publications during doctoral studies

Nazarieh, M., Wiese, A., Will, T., Hamed, M., Helms, V., “Identification of key
player genes in gene regulatory networks”, BMC System Biology, vol. 10, no.
1, p. 88, Sep. 2016.

Abstract: Identifying the gene regulatory networks governing the workings
and identity of cells is one of the main challenges in understanding processes
such as cellular differentiation, reprogramming or cancerogenesis. One particu-
lar challenge is to identify the main drivers and master regulatory genes that
control such cell fate transitions. In this work, we reformulate this problem as
the optimization problems of computing a Minimum Dominating Set and a Min-
imum Connected Dominating Set for directed graphs. Both MDS and MCDS are
applied to the well-studied gene regulatory networks of the model organisms E.

https://sourceforge.net/projects/ppicompare/
https://sourceforge.net/projects/complexchange/
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coli and S. cerevisiae and to a pluripotency network for mouse embryonic stem
cells. The results show that MCDS can capture most of the known key player
genes identified so far in the model organisms. Moreover, this method suggests
an additional small set of transcription factors as novel key players for governing
the cell-specific gene regulatory network which can also be investigated with
regard to diseases. To this aim, we investigated the ability of MCDS to define
key drivers in breast cancer. The method identified many known drug targets as
members of the MDS and MCDS. This paper proposes a new method to identify
key player genes in gene regulatory networks. The Java implementation of the
heuristic algorithm explained in this paper is available as a Cytoscape plugin
at http://apps.cytoscape.org/apps/mcds. The SageMath programs for solv-
ing integer linear programming formulations used in the paper are available
at https://github.com/maryamNazarieh/KeyRegulatoryGenes and as supple-
mentary material.

My contribution: I improved the original implementation of the heuristic
MCDS approach developed by Maryam Nazarieh and implemented the Cy-
toscape plugin. The complete code of the plugin is available in my GitHub
repository at https://github.com/edeltoaster/cyto-MCDS.

Zhang, X., Gibhardt, C.S., Will, T., Stanisz, H., Körbel, C., Cappello, S., Dudek,
J., Mitkovski, M., Laschke, M.W., Simmen, T., Schön, M.P., Helms, V., Niemeyer,
B.A., Rehling, P., Vultur, A., Bogeski, I., “Redox signals at the ER-mitochondria
interface control melanoma progression”, EMBO Journal, vol. 38, no. 1, p.
e100871, Aug. 2019.

Abstract: Reactive oxygen species (ROS) are emerging as important regu-
lators of cancer growth and metastatic spread. However, how cells integrate
redox signals to affect cancer progression is not fully understood. Mitochon-
dria are cellular redox hubs, which are highly regulated by interactions with
neighboring organelles. Here, we investigated how ROS at the endoplasmic
reticulum (ER)-mitochondria interface are generated and translated to affect
melanoma outcome. We show that TMX1 and TMX3 oxidoreductases, which
promote ER-mitochondria communication, are upregulated in melanoma cells
and patient samples. TMX knockdown altered mitochondrial organization, en-
hanced bioenergetics, and elevated mitochondrial- and NOX4-derived ROS. The
TMX-knockdown-induced oxidative stress suppressed melanoma proliferation,
migration, and xenograft tumor growth by inhibiting NFAT1. Furthermore, we
identified NFAT1-positive and NFAT1-negative melanoma subgroups, wherein
NFAT1 expression correlates with melanoma stage and metastatic potential.
Integrative bioinformatics revealed that genes coding for mitochondrial- and
redox-related proteins are under NFAT1 control and indicated that TMX1,
TMX3, and NFAT1 are associated with poor disease outcome. Our study un-
ravels a novel redox-controlled ER-mitochondria-NFAT1 signaling loop that
regulates melanoma pathobiology and provides biomarkers indicative of ag-
gressive disease.

My contribution: The study contains several computational analyses that
were conducted to support the experimental work in the Bogeski group. All

http://apps.cytoscape.org/apps/mcds
https://github.com/maryamNazarieh/KeyRegulatoryGenes
https://github.com/edeltoaster/cyto-MCDS
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computational contributions in the paper were designed, evaluated and re-
ported by me. Using clinical records, gene expression and mutation data of
melanoma patients in TCGA [22], we found that high expression of NFAT1,
TMX1 or TMX3 negatively affected patient survival. Special care was taken
regarding mutations of BRAF, which are apparent in every second melanoma
patient [23, 24]. Furthermore, we performed a targeted enrichment analysis of
differential gene expression results from two independent NFAT1 knockdown-
studies [25, 26] to assess the role of NFAT1 as a regulator of redox processes
and specific hallmarks of cancer. All evaluation code is available in my GitHub
repository at https://github.com/edeltoaster/TMX_NFAT_paper.

Nazarieh, M., Hamed, M., Spaniol, C., Will, T., Helms, V., ”TFmiR2: Construct-
ing and analyzing disease-, tissue- and process-specific transcription factor
and microRNA co-regulatory networks”, Bioinformatics, 2019.

Abstract: TFmiR2 is a freely available web server for constructing and ana-
lyzing integrated TF and miRNA coregulatory networks for human and mouse.
TFmiR2 generates tissue- and biological process-specific networks for the set of
deregulated genes and miRNAs provided by the user. Furthermore, the service
can now identify key driver genes and miRNAs in the constructed networks by
utilizing the graph theoretical concept of a MCDS. These putative key players as
well as the newly implemented 4-node TF-miRNA motifs yield novel insights
that may assist in developing new therapeutic approaches.

My contribution: I mainly generated the data that enables to adapt the net-
works in a tissue-specific manner. For human input data, the expression data
by GTEx [27] was consulted to define which genes are likely abundant in the
condition of interest and for use cases in mouse, data by ENCODE [28] was
used. A smaller contribution by me was, for example, the main figure of the
manuscript.

1.3 outline

Chapter 2 provides an introduction of biological and computational fundamen-
tals relevant to all projects of this thesis.

Each project chapter begins with a “Prerequisites" section that covers the
special background that is only of relevance in that particular project and ends
with an “Addendum”, in which, when appropriate, I added some retrospective
commentary on the work, gave an outlook on the potential future of the project
or mentioned new developments in the research field and how that matters to
the chapter. In between those parts, the transcript of the projects follows the
classical scientific documentation structure of “Introduction”, “Materials and
Methods”, “Results and Discussion” and “Conclusion”.

The order of the projects in the thesis was chosen such that all dependen-
cies between projects are covered in prior chapters. Since it is an important
basis for all later projects, Chapter 3 starts with PPIXpress, our approach to
construct protein-protein interaction networks that are tailored by using tran-
script expression data and the application of this contextualization method to

https://github.com/edeltoaster/TMX_NFAT_paper
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breast cancer data. Chapter 4 describes the tool PPICompare that builds upon
the output of PPIXpress and enables differential analysis of protein-protein
interaction networks whereby it also detects transcriptomic alterations that
cause the rewiring events. The associated case study discusses modifications
of the interactome during blood development. Chapter 5 introduces JDACO, a
Java implementation of our domain-aware cohesiveness optimization algorithm
DACO. This is the most technical chapter and explains how some small imple-
mentational details tremendously improve the execution speed of the algorithm
and thus enable to scale the combinatorial protein complex prediction into
high-throughput capability. This advancement was crucial for the applicability
of CompleXChange, our solution to differential analysis of protein complexes,
which is addressed in Chapter 6. Here, we show that CompleXChange outper-
forms the only comparable approach and report the differential complexome of
two human monocyte subtypes.

At last, Chapter 7 ends the main text of the thesis with a conclusion of the
research conducted during my studies and an outlook on the future of the
projects.





2
B A C K G R O U N D

This chapter serves to communicate the foundation for the projects of this
thesis. Section 2.1 covers the biological background knowledge and summarizes
relevant computational methods and databases. Section 2.2 then focuses on the
theoretical and computational prerequisites for the subsequent chapters.

2.1 biology, experiments and processing

The biological introduction hereafter will provide an overview of the major
biological processes and entities as they are shown in Figure 1.1. It should be
noted that the content was selected to offer a focused view on what is relevant
for the projects, of course, and the thesis certainly does not claim to provide a
complete coverage of the topics. Notably, the regulatory pathways in the overall
flow of information from DNA to proteins are intentionally simplified and
mechanisms that are not directly relevant were left out.

Protein-coding genes are transcribed and processed into specific transcripts.
These subjects of gene expression are covered in Section 2.1.1. Section 2.1.2 then
proceeds with the translation of the transcripts into active proteins. The direct
interactions of two or more proteins are treated in Section 2.1.3. At last, the
special protein family of transcription factors and their role in complexes are
the topics of Section 2.1.4.

2.1.1 On genes and transcripts

The information about the genome of an organism is stored in coiled double-
strands of deoxyribonucleic acid (DNA). The genomic DNA both defines the
blueprint of each cell’s molecular machinery but also harbors regulatory sites
that control the timed construction of this toolset. Each strand of DNA is a
long sequence of the four nucleotides adenine, cytosine, guanine and thymine
that are covalently bound to deoxyribose and a phosphate group. Cytosine
and guanine as well as adenine and thymine can form nucleotide pairs via
noncovalent hydrogen bonds and thus enable the characteristic double-helix
structure of two complementary antiparallel strands of DNA in the nucleus,
mitochondria and chloroplasts of eukaryotic cells [2, 29]. The genome of an
organism is organized in one or several chromosomes that store the genetic
material wrapped around histone proteins in a tightly packed and highly
condensed state called chromatin [30].

Since the deciphering of the human genome sequence by the Human Genome
Project [31] and Celera Genomics [32] in the early 2000s, the Genome Reference
Consortium (GRC) aims to provide the best possible single consensus repre-
sentation of the human genome [33]. Although this single reference sequence
serves the community well and is tremendously helpful in guiding and thus

11
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accelerating the assembly of newly built human genomes, individual genome
sequences can deviate significantly from the reference genome in regions of
the genome with high genomic diversity. For this reason, alternative solutions
that incorporate a broad distribution of idiosyncrasies across populations are
discussed theoretically [34]. At the time of writing, the most current version
of the human genome was GRCh38.p13 (patch 13 from March 1st, 2019)1. The
expression data of breast cancer patients used in Chapter 3 were still mapped
based on human genome assembly GRCh37 (also called hg19 in UCSC (Uni-
versity of California, Santa Cruz) releases) and thus on an earlier genomic
coordinate-reference than the later projects that are all based on the newer
major version GRCh38. Since only major versions have compatible coordinate
frames, it is crucial to be aware of the exact reference that was used when
heterogeneous data sources or data from different datasets are integrated.

Genes are defined segments of the genome which store construction plans
that can be assembled into functional biochemical products by the process of
gene expression. For protein-coding genes, the first step of gene expression
requires the transcription of the protein-coding gene from the corresponding
stretch of the DNA into messenger RNA (mRNA), a single-stranded transcript
of ribonucleic acid (RNA). After further processing steps (see below) and
exporting the mature mRNA from the nucleus to the cytoplasm (in eukaryotes),
this transcript is then translated into an amino acid chain by the ribosome and
finally folds into a mature protein [2, 35].

Around 35, 000 to 40, 000 human genes that are read out this way are known
to date. Of these genes, 20, 000 to 21, 000 are estimated to code for proteins and
equally many or slightly less, depending on the exact definitions and sources,
encode non-coding genes [28, 36, 37]. The latter define functional non-coding
RNAs that include, for example, transfer RNAs and ribosomal RNAs, which
are important constituents of elementary cellular processes, but also long non-
coding RNAs and a whole pool of small non-coding RNAs, such as microRNAs
or small interfering RNAs [28, 38, 39]. In this thesis, we are only interested in
the protein-coding portion of the genome.

Figure 2.1 shows the structure of a typical eukaryotic gene and its regulatory
control mechanisms. The transcriptional start site (TSS) delineates the starting
point of transcription, the dynamic readout of the genetic information that
leads to specific cellular states. The TSS position is not defined by a distinct
sequence motif but rather by functional motifs in the surrounding region. For
phenotype-specific genes, the TATA-box motif (TATA), which is situated about
30bp upstream (in opposing direction to the transcription) of the TSS, is the
most notable transcription initiating motif. TATA defines the binding site of the
TATA-binding protein which serves the targeted alignment of the transcription
preinitiation complex at the TSS. This multiprotein complex comprises the
complete protein machinery that is necessary to facilitate transcription [40, 41].
On transcription initialization, the DNA double-strand is opened by complex
members and the whole assembly moves in downstream direction (5 0 ! 3 0).
In this transcriptional elongation phase, RNA polymerase II builds a single

1 https://www.ncbi.nlm.nih.gov/grc/human
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Figure 2.1: Eukaryotic gene structure. The transcriptional start site (TSS) defines where the
transcription from 5 0 ! 3 0 direction (defined orientation of the sugar backbone chain of the
strand that is read) is started. Regulatory sites that control the rate of gene expression are
usually positioned directly at the promoter (core elements), right next to the promoter (proximal
elements) and more distant to the gene (distal elements, often accumulated in enhancer regions)
[41]. Such binding sites for transcription factors are generally clustered into regulatory modules.
Genes can be partitioned into untranslated regions (UTRs), which are not translated but serve
regulatory purposes, exons (green boxes), which may later be translated into proteins, and
introns, which are spliced out during mRNA processing as shown in Figure 2.2 [42]. Adapted
and expanded from [14].

strand of RNA that is exactly complementary to the DNA stretch that is read
out by synthesizing the respective pre-mRNA of the gene, with a replacement
of thymine by uracile. [2, 40].

The general machinery of transcription is omnipresent in all cells and avail-
able for all promoters. By itself, these proteins alone are neither sufficient to
yield physiologically relevant levels of gene products, nor are they able to
facilitate a state-specific control of the expression of each gene. The regulatory
information about when a particular gene should be expressed by the cell is
encoded by non-random sequence motifs that define binding sites for transcrip-
tion factor (TF) proteins. TFs are DNA-binding proteins that, when bound in
spatial vicinity to the promoter, have the ability to modulate the strength and
speed of initialization and elongation of transcription and can thus heavily
influence the rate of transcription [4, 14]. Transcription factor binding sites
(TFBSs) are therefore often found near the promoter. However, distal regulatory
elements can be far away from the gene in terms of the genomic distance, but
can still contribute to the modulation of the target gene by inducing spatial
proximity through DNA looping. TFBSs are often clustered together in cis-
regulatory modules, sequence regions with a typical length of 100 to 1000bp in
which a high density of binding sites is found. Such functional modules are
responsible for the signal integration in the cell in the sense that they translate
the inputs of many TFs in interplay, but also of cofactors that they recruit to
the DNA. This yields an overall signal that a gene should exert [14]. More on
TFs and complexes of TFs will follow in Section 2.1.4. There are also other
important means of context-dependent transcriptional regulation in the cell, like
the packaging of the chromatin in general or specific epigenetic mechanisms,
which in this regulatory step include posttranslational modifications of the
DNA or histone tails [10, 43]. Since they play no important roles in the projects
primarily discussed in this thesis, these factors are not introduced in detail.
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Figure 2.2: From gene to protein variants. Genes are segments of the DNA that are partitioned
into intros and exons. After the transcription to pre-mRNA, the single-stranded RNA can be
processed into various mature mRNAs that differ in their exon composition. Their translation
can thus yield a diverse set of protein isoforms although they were defined by the very same
gene.

Most genes consist of exon regions that code for protein sequences as well
as of non-coding regions called introns (see Figures 2.1 and 2.2). As the first
intermediate product of transcription, the pre-mRNA of a gene comprises all
its introns and exons. In the next step, this RNA is processed to the mature
mRNA by splicing out the introns and conducting other modifications that are
not of further interest here, such as the polyadenylation of the 3 0-ends of genes,
or RNA editing. Figure 2.2 shows this posttranscriptional process in the overall
context of transcription and translation.

Astonishingly, eukaryotes are able to synthesize alternative versions of tran-
scripts from the full-length gene by changing the composition of exons that
are included in the mRNA and, subsequently, are able to generate various
protein isoforms from the very same definition of the gene [2, 42]. In human,
90-95% of multi-exon genes are subject to such alternative splicing (AS) events
[42, 44]. The choice of the transcript composition, and therefore the protein
isoforms that are translated, has considerable impact on the protein interactome
[7, 45–47], important implications in development [48–50] and, when something
goes wrong, adverse effects on health [51–54].

However, not all transcripts that are transcribed will become viable protein
products. Control mechanisms of the cell in that regard are, for example, the
modulation of the cellular localization of the product, targeted degradation by
microRNA-associated processes, or surveillance mechanisms such as nonsense-
mediated mRNA decay and non-stop decay [2, 42].

Measuring the expression of genes and transcripts

Whereas the genome defines the repertoire of the cell in terms of which protein-
coding genes or variants thereof it could possibly produce, gene expression
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profiling tells us which genes or transcripts are currently expressed in a cellular
sample and in which amounts. This snapshot of expressed mRNA is called the
transcriptome.

The history of methods to determine which genes are expressed in a sample
goes back to the 1970s when mRNA was separated by gel electrophoresis, trans-
ferred to a membrane and finally visualized using labeled probes by Northern
blotting [55]. The appearance of reverse transcription and the polymerase chain
reaction paved the way for new methods in the beginning of the 1990s. By
reverse transcription of mRNA into complementary DNA (cDNA), the cDNA
corresponding to transcripts could be utilized as a template for the exponen-
tial amplification using polymerase chain reaction. The amount of specific
transcripts could then be measured by adding labeled sequence-specific DNA
probes, for example [56].

In the mid 90s, the multiplexity of expression profiling, e.g. the ability to
measure the expression of many genes or transcripts with the same experiment,
increased significantly with the introduction and widespread adoption of new
techniques which for the first time allowed to assess the abundances of hun-
dreds and even thousands of target mRNAs in parallel. Besides serial analysis
of gene expression [57], whereby the occurrences of sufficiently descriptive
sequence tags are recognized, DNA-microarrays, or short microarrays, have
been the most prominent experimental approach for gene expression profiling
for quite a time and are still frequently used today [58]. In microarray analyses,
the mRNA is reverse transcribed to cDNA whereby the nucleotides that are
incorporated are labeled with a fluorescent dye. The labeled cDNA is then
placed on the array to enable the hybridization to a defined set of comple-
mentary probes of nucleotide oligomers that were attached to the array by
the manufacturer. The abundance of a particular cDNA in the probe can then
be measured optically by its fluorescence intensity. By using dyes of different
colors, classically red and green, it is even possible to gather differential infor-
mation on two states in one experiment by cohybridization of the distinctly
labeled samples to the same microarray [58].

The latest leap took place when next-generation sequencing (NGS) appeared
and gained momentum in the mid 2000s. Previously, there were established
lower throughput protocols such as Sanger sequencing [59], which worked by
introducing labeled dideoxynucleotides that terminated the chain extension
of DNA because the hydroxyl group at the 3 0 position is absent. Due to the
significantly increased speed and cost effectiveness that NGS methods achieved
by their individual highly parallel implementations of base determination,
they gradually replaced earlier methods when the new NGS machines became
commercially available [60, 61]. The first setup that was released to the market
was the 454 technology by Roche Applied Sciences [62], followed by SOLiD [63]
and Illumina (formerly Solexa) [64]. While millions of reads are determined
per NGS run, a downside of the new methods were the rather short read
lengths. Newer approaches negate this handycap [60] and, more recently, even
applications of NGS with tiny amounts of input material, e.g. as obtained in
single cells, became feasible [65].
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Figure 2.3: RNA-sequencing in a nutshell. Suitable sequence libraries of cDNA fragments
with adaptors are constructed from the isolated (m)RNA and their sequences are subsequently
determined as read data by applying next-generation sequencing techniques. The reads are
finally mapped to either a reference genome or a collection of reference gene or transcript
sequences to obtain counts that can be associated with corresponding genes or transcripts,
respectively.

RNA-sequencing (RNA-seq) [66] utilizes NGS and is currently the best
practice to determine transcriptomes because it alleviates shortcomings of mi-
croarrays by allowing quantification with much higher sensitivity and dynamic
range. Furthermore, unlike any method that uses hybridization of the cDNA,
RNA-seq is not limited to a defined set of complementary probes of interest
but can be conducted without any prior knowledge on the exact transcript
sequences that should be measured. Thus, RNA-seq is also able to report novel
splice variants and mutations in the sequence [67].

Figure 2.3 sketches the basic approach of RNA-seq. After the (m)RNA of the
sample is isolated, sequencing libraries of fragmented cDNA with machine-
specific adaptors are constructed that, among other parameters, differ in terms
of the transcript enrichment that is performed. Depending on the focus of the
experiment, classes of RNA can be enriched or depleted deliberately. If one is
only interested in protein-coding transcripts, the original RNA can be enriched
with mRNA by filtering for polyadenylated tails, for example. If microRNAs
are the target of choice, filtering by size is conducted [67]. NGS is then used to
generate reads of the thus prepared fragments. The protocols allow to sequence
transcripts either from one direction, yielding single-end reads, or from both
sides, which corresponds to paired-end reads. The latter is advantageous for
tasks like the detection of unknown splice variants and generally leads to a
more robust alignment, especially in genomic regions that are harder to map
[67].
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To associate NGS reads with the expression of a particular transcript, classi-
cally all reads are mapped to an appropriate reference genome of the organism
[68]. Then, reference transcript annotation data can be employed to relate
mapped reads to actual transcripts and to count the occurrences of mapping
events per transcript. Those counts can then be used to quantify the abundances
of each transcript, whereas gene abundances are derived by summarization of
the counts of all associated transcripts. Popular sources for reference transcrip-
tomes, which are often not limited to protein-coding genes but can in principle
also cover other functional RNAs, are Ensembl [69], RefSeq [70] or GENCODE
[71]. The choice of the annotation data influences the result to a certain degree
[72] and, as mentioned earlier in the discussion on the number of human genes
and transcripts, one should be aware that we certainly still lack a complete
coverage of the transcriptome [37]. A general obstacle when reads are aligned
to the DNA sequence is that their mapping is often ambiguous in the sense that
reads may often be aligned to more than one transcript. Sophisticated quan-
tification tools such as RSEM [73] model this uncertainty of the read mapping
statistically and resolve it by, for example, employing expectation maximization
to adjust the numerical values accordingly. A newer generation of RNA-seq
quantification methods, kallisto [74] and Salmon [75], follow a significantly
faster approach by using pseudoalignments. Instead of aligning the reads to
the complete genome, which is usually the most time-consuming step in a
quantification pipeline, the reads are directly mapped to the defined transcript
sequences from reference annotations. They also sometimes allow for bootstrap-
ping of the expectation maximization approach mentioned previously and thus
even the technical variance in the optimization procedure that untangles the
uncertainty of read mapping can be assessed [74].

Depending on the intended usage, the raw read counts are often converted
into better suitable expression measures to normalize the values within samples
with respect to, for example, large differences in the amount of reads generated
by sequencing runs and other technical variances. One approach would be to
divide the counts per transcript by the number of mapped reads. Because longer
transcripts are more likely to produce more reads, the value is additionally
corrected by the length of the annotated region of interest. This measurement
unit is known as reads per kilobase (of exon) per million mapped reads (RPKM)
[66]. The equivalent for paired-end read data is called fragments per kilobase
(of exon) per million mapped reads (FPKM) [76]. A disadvantage of RPKM and
FPKM is that the expression values of especially lowly expressed transcripts are
often highly influenced by a small share of transcripts that account for a large
fraction of the mapped reads. Thus, the RPKM/FPKM values of a transcript
may differ significantly between samples even if the transcript had the same
frequency in the samples’ respective pools of RNA. By making each expression
value dependent on the values of all other transcripts, the unit transcripts
per million (TPM) represents a more robust alternative to gauge the relative
expression in a sample [77, 78]. It can be derived by rescaling the values with
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respect to the total expression units in the measurement. Given the FPKMs of
all transcripts, the TPM of a transcript i is then

TPMi =
FPKMiP

8 transcripts j

FPKMj

⇤ 106

whereby a scaling factor is added to relax numerical problems.

A prime application of expression data is to investigate the changes in
the transcriptome between two cellular states by differential expression (DE)
analysis. To allow for such a statistical assessment of sufficient power with
regard to expected sample sizes, it is generally worthwhile or even necessary
to model the problem appropriately based on assumptions of the distributions
of relevant entities. Basic knowledge on such statistics will be introduced in
Section 2.2.1. If reads are considered to be independently sampled from a fixed
set of genes in RNA-seq, read counts can be modelled by a Poisson distribution.
The Poisson distribution, however, only has a single parameter that determines
its mean and variance. Since the variance is generally larger than the mean
expression values, the related negative binomial distribution is often used
instead. This distribution has the appealing property that mean and variance
can be related by a dispersion factor which is then approximated instead of
both individual parameters [79, 80]. Estimating both mean and variance reliably
for each gene would require much larger sample sizes.

Although plenty of well-established solutions are already available, there
is still much new work done on the topic of DE methodology [81, 82]. As an
example, sleuth [83] is a recent DE tool that is able to make use of the faster
nature of pseudoalignments and bootstrapping capabilities of modern quantifi-
cation tools to additionally introduce technical variance of the quantification
confidence into the assessment.

Popular public datasets on expression data

All my method development efforts used RNA-seq data that was available to
the public. When it comes to gene expression data in general, and RNA-seq
data in particular, there are plenty of services that provide experimental data
in preprocessed or raw formats.

Public storage services that allow the upload or download of RNA-seq results
are, for example, hosted by the National Center for Biotechnology Information
(NCBI) which allows to store and gather expression data at the NCBI Gene
Expression Omnibus [84] and hosts another database for NGS-based data with
the NCBI Sequence Read Archive [85]. Another popular service in that regard is
ArrayExpress [86], which is operated by the European Bioinformatics Institute.
We gathered the datasets that we utilized in the evaluation and application of
CompleXChange [87] from such storage services (see also Chapter 6).

Other important sources of public RNA-seq data that I frequently used in
my work were the efforts by huge consortia. There, mostly a clearly defined
main topic is considered for which many different experimental measurements
besides expression profiling were conducted by the laboratories involved. The
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ENCyclopedia Of DNA Elements (ENCODE) project [28] is historically the
follow-up to the Human Genome Project and focused on the deciphering of
regulatory elements in the DNA and their effect on the transcriptome. The
Cancer Genome Atlas (TCGA) [88] is a recently discontinued and very popular
knowledgebase with a plethora of data on many cancer types. BLUEPRINT
[89] is a European project focused on hematopoietic cells. Furthermore, the
Genotype-Tissue Expression (GTEx) project [27] provides gene expression data
for ten thousands of samples, often even together with the genotype of the
donor.

TCGA expression data from breast cancer patients was used in the evaluation
of PPIXpress [90] (see also Chapter 3) and various data on melanoma, namely
expression, mutation and survival data, were useful in one of our collaborative
projects [91]. The broad data on blood cell types from BLUEPRINT allowed us
to study developmental transitions in PPICompare [92] (see also Chapter 4).
While I did not publish a project that used human data by ENCODE, I regularly
benefited from the huge dataset, e.g. in my attempt to define TF complexes
that are important in pluripotency that I briefly describe in Section 6.6.3. Also,
human GTEx and ENCODE mouse data were used to define tissue-specific
expression in TFmiR2 [93].

2.1.2 On proteins

Besides DNA and RNA, proteins are the most important biological molecules.
Alongside many other capabilities of proteins, they can act as enzymes and
thus catalyze biochemical reactions, they give the cell its structure, manage its
energy storage, or enable signal transduction and the integration of such signals
for regulatory purposes. Prime examples of tasks from the previous paragraphs
that are completed by proteins are the transcription of DNA, the regulation
of this process and all further processing steps towards mature mRNA. The
entirety of proteins in a cell during a certain condition is called the proteome
[2].

Proteins are synthesized by translation of mRNA into a chain of amino acids
(AAs) that subsequently folds into a specific three-dimensional structure and
may also contain disordered portions. In this fundamental biochemical process
that takes place at the ribosomes, the four different nucleotides given in an
mRNA template are read out in triplets and converted into the 20 natural AA
residues according to rules that are known as the genetic code [2].

AAs consist of a common backbone which is used to connect the individual
units and additionally comprise variable side chains that are specific to each
AA. This diverse set of potential building blocks enables to include residues
that feature differing physicochemical properties with regard to their charge,
hydrophobicity, size and the functional groups that they include. The distribu-
tion of AAs therefore has strong implications for the structure of the protein.
Globular proteins that are soluble in water generally have hydrophilic AAs on
their surface and hydrophobic residues buried within their core. The membrane-
spanning portions of integral membrane proteins, on the other hand, are fairly
hydrophobic on the outside of the protein that is facing the lipid acyl chains
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of bilayer membranes. This manifold of possibilities is certainly a driver that
facilitates proteins to come in so many forms and functions to ultimately be the
cell’s jacks of all trades [94].

The AA sequence is considered the primary structure of proteins. By folding
of the protein in its natural condition, structural motifs such as ↵-helices or
�-sheets are formed, which are primarily stabilized by hydrogen bonds. These
folding patterns describe local substructures that are attributed to the secondary
structure of the protein. In an example on higher-order structures in Figure
2.4, the coil-like ↵-helices are shown magenta colored and the antiparallel
strands of �-sheets are highlighted in yellow. The ternary structure then con-
cerns the overall shape of the protein that follows from specific combinations
of secondary structures in the specific context. Important functional units of
several structurally conserved secondary structure elements therein are called
protein domains and are introduced in the next subsection. Finally, the qua-
ternary structure of a protein means the stable topology that is formed by the
permanent aggregation of two protein subunits that are encoded by distinct
amino acid chains [94]. Some proteins, however, completely or partially lack a
well-defined three-dimensional structure. This flexibility of disordered protein
regions can, for example, allow for a much broader spectrum of interaction
partners by dynamic adjustments of binding interfaces [95, 96].

Although the amino acid sequence of a protein is fixed after translation,
the cell still has a certain amount of control over each protein by covalent
modification of amino acid residues. This biochemical mechanism allows to
dynamically alter properties of amino acids to posttranslationally adapt the
activity or structure of a protein by, for example, phosphorylation of a specific
residue [2, 97].

In the regulation of gene expression, the posttranslational modification of
histone tails is a crucial control circuit. As mentioned earlier, histones are
important for the packaging of the DNA. When certain lysine residues in the
N-terminal tail of an histone are acetylated, the lysines’ positive charges are
neutralized which weakens the strength of the interaction with the negatively
charged DNA. This simple covalent switch is consequently able to directly
influence the packaging of the DNA [10].

On protein domains

Although proteins come in many sizes and in an elusive number of shapes, a
comparably small amount of regular folding patterns is constantly recurring
in very different proteins and across species. Especially functionally important
parts of proteins are often found as such evolutionary conserved modules.
These so-called protein domains are units of protein organization that describe
independently folding stable substructures of typically 40 to 350 amino acids
in length [2, 98]. Figure 2.4 shows an example of a domain that is part of two
different proteins from different organisms.

Small proteins with a particular function frequently contain exactly one
domain that facilitates this activity. In larger proteins several protein domains
may work together to achieve the intended task. Due to this very defined
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Figure 2.4: Example of a protein domain. The Pleckstrin homology domain or PH domain (Pfam
accession PF00169) is frequently found in proteins with signaling purposes and structurally
characterized by two perpendicular antiparallel �-sheets which are followed by an ↵-helix.
The length of the connecting loops in between is variable [104]. A fragment of the mouse
protein Dbs (PDB entry 1RJ2, version 1.2) is shown on the left side and the human FARP1
(PDB entry 4H6Y, version 1.3) is presented on the right side. Both structures exhibit the PH
domain (occurrences highlighted by turquoise rectangles), once in 1RJ2 and twice in 4H6Y.
PDB structures were visualized using [21] and colored by their secondary structures. ↵-helices
are shown in magenta color and �-sheets are shown in yellow.

functionality, it is not surprising that most evolutionary gene duplication and
recombination events cover DNA segments that approximately match protein
domains. Consequently, protein domains are also important building blocks in
protein evolution [98].

While this is not a generally applicable truth, protein domains also show
an overall tendency to align with exon boundaries [99]. Splicing out an exon
can therefore often control if a protein domain is included in the final protein
isoform or not. This premise motivated the fundamental idea behind the method
PPIXpress [90] (see also Chapter 3).

Although there is a clear consensus that protein domains are the basic struc-
tural and evolutionary building blocks of proteins, there are many ways to
exactly define and categorize domains as well as to judge their presence in
proteins. Interestingly, the classical approaches that originated in the 90s are
still the most important resources to date [100]. The methods can be broadly
classified into structure- and sequence-based approaches and by their level
of manual intervention: SCOP (Structural Classification Of Proteins) [101], for
example, is completely based on structural data and highly curated while the
equally established structure-based service CATH (standing for its internal clas-
sification system into Class, Architecture, Topology, Homology) [102] involves
a much higher degree of automation. In contrast, other popular approaches
like Pfam [103] solely apply sequence profiling and do not directly employ
structural knowledge in their models.

Basically all projects in this thesis at some point integrate data on protein
domains. The framework that is the basis for my work uses the Pfam annotation
in that regard, because it is well-established and the prevailing standard with
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respect to naming domain types in domain-domain interaction data [105–108].
It thus makes sense to internally label and describe domains solely on the basis
of their Pfam accession. More specifically, the Pfam-A database is used because
it is of high confidence and has permanent accessions.

Pfam-A domain entries are made from manually curated representative seed
protein sequences from which a multiple sequence alignment is created. This
initial alignment serves as the template to train a hidden Markov model that
is subsequently used to find hit candidates in, for example, UniProt [109].
Sequence regions that scored sufficiently well in this screening step according
to conservative family-specific detection thresholds are then added to the set of
relevant sequences from which the final alignment and the probabilistic model
are derived [103, 110].

With version 27.0, already 90% of human proteins included at least one
domain annotated by Pfam [111]. Pfam received its latest update to version
32.0 in Sept. 2018 and currently contains data on 17, 929 domain families with
corresponding multiple sequence alignments and hidden Markov models [112].

Measuring the abundance of proteins

Proteome-wide quantitative measurements of protein abundances are a much
more challenging experimental effort than the large-scale assessment of gene or
transcript expression. In proteomics, which stands for the analysis of proteomes,
a detection method requires a very high sensitivity because the input material
cannot be amplified such as DNA or RNA. Furthermore, amino acids have
much more diverse physicochemical properties compared to oligonucleotides
[113, 114]. Still, proteins are often the relevant biomolecules of interest and
not their corresponding mRNA. Thus in the best case, since a whole mesh
of dependencies in the regulatory sense but also degradation processes are
missed in between an mRNA and its final protein product, the protein itself
should be measured directly if possible. Furthermore, only proteomics allows
to determine facets such as the posttranslational modifications of proteins.

As in the case of early approaches to gene expression, the history of analytical
techniques to detect proteins also started in the 1970s with gel electrophoresis
and Western blotting [115, 116]. Specific proteins could then be selected by, for
example, specific antibodies.

A notable breakthrough in the field took place when mass spectrometry
(MS) became applicable in proteomics. The most notable technical advantages
towards this goal were certainly the development of proper protein ionization
techniques in the 80s and 90s that made proteins amendable to MS. Interestingly,
the advent of the genomic era and the implicated storage of known sequences
was also a necessity for the application in practice. Without such databases
it would not have been possible to match detected peptide fragments in MS
spectra to data of known protein sequences [117].

Because the general workflow is important for plenty of protein-centric
analyses, the procedure of a generic MS-based proteomics experiment will be
outlined briefly following the best practices according to popular overview
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articles [114, 117, 118]. After the extraction of the protein material from the
sample, a typical proteomics experiment starts with the digestion of the proteins
into short peptides. Depending on the exact purpose of the study, this pool
of peptides (or already the undigested full proteins) can be prefractionated or
enriched regarding attributes or features, e.g. by their mass, posttranslational
modifications, specific antibodies or interaction partners (see, for example,
affinity purification in the following Section 2.1.3). The remaining peptides
are then separated by one or more steps of liquid chromatography such that
they elude one by one from the columns. Each peptide is then ionized and
sprayed into the mass spectrometer and one or two MS measurements take
place. The latter protocol is called tandem MS or MS/MS. A mass spectrometer
measures the mass-to-charge ratio m

z
of peptide ions. In tandem MS, these ions

are additionally fragmented and all parts measured again by a second run of
MS. The overall m

z
values and measured patterns of fragments finally allow to

confidently identify the peptides that are found in a sample. On the basis of
widely available databases on protein sequences, peptides can then be related
to proteins.

Label-free absolute protein quantification is then possible by summarizing
the ion counts measured for each protein and subsequent scaling the values
on the basis of, for example, spiked-in reference peptides for which the con-
centration was known [118]. Label-based quantification techniques, like SILAC
(stable isotope labeling by amino acids in cell culture) [119], are alternative ap-
proaches that are more robust to technical variability and sample handling than
absolute quantification. Here, stable isotopes are used to distinguish between
two samples that are analyzed together whereby the origin of their peptide
ions can then be discerned due to their distinctive masses. By doing this, exact
abundance ratios can be determined for proteins [114].

Since measuring the complete transcriptome quantitatively is much simpler
than to measure the proteome of a sample, mRNA levels are commonly used
to approximate protein abundances in computational and systems biology.
While mRNA expression was found to certainly have a crucial role in the
majority of dynamics found for protein levels and the correlation between the
measures was often strong, the experimental insights so far also showed that
the transcriptome alone was not sufficient to explain all changes in protein
abundance [120–124]. Furthermore, the strength of the relation seems to be
highly dependent on the system and cell types investigated [125, 126].

Popular public datasets on protein abundance data

As just mentioned, due to the comparably high effort involved in the experi-
mental determination of sample-specific protein abundances, there is currently
much less data available on proteomes than on transcriptomes and sample sizes
of datasets are generally also considerably smaller.

Popular web services and consortia often only host the results of a single
study with one sample per tissue or cell type. The Human Proteome Map
[127], for example, provides the results on 30 healthy human tissues and cell
type samples evaluated using MS. The Human Protein Atlas [128] profiled
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the proteins found in 44 human cell types using protein-specific antibodies
whereby transcriptomics experiments were additionally conducted for most of
the samples. ProteomicsDB [129], on the other hand, is a service that stores the
results of 16, 857 MS-based proteomics experiments compiled from public data
and in-house experiments in a centralized but protein-centric way.

We used the proteomics data on two blood cell types provided by the Human
Proteome Map in our case study for PPICompare [92] (see also Chapter 4). The
protein abundance results of the database were utilized to calibrate a sound
and non-arbitrary transcript expression threshold for the protein interaction
network construction step in the pipeline.

2.1.3 On physical interactions between proteins

For a long time, biochemical research put its focus on studying individual
biomolecules in isolation rather than on their interplay. The fundamental func-
tional units in the cellular environment, however, are aggregates of proteins
that work together in an orchestrated fashion. Multiprotein complexes are
responsible for the vast majority of processes in the cell and their duties com-
prise tasks such as the realization of a manifold of biochemical modifications,
enabling cellular communication through signaling pathways or even providing
molecular motors (see also the previous Section 2.1.2 on proteins) [2]. Bruce
Alberts once even described the cell as “a factory that contains an elaborate
network of interlocking assembly lines, each of which is composed of a set of
large protein machines” [12].

A physical interaction between two proteins is termed protein-protein in-
teraction (PPI) and a binary complex of two proteins is called a dimer. If
more than two proteins assemble, we speak of (multiprotein) complexes or
oligomers. Complexes comprising identical proteins are commonly specified as
homodimers/-oligomers whereas complexes of distinct members are termed
heterodimers/-oligomers.

Furthermore, PPIs can be classified into obligate interactions, which is the
case if the interactors do not feature stable structures on their own in vivo, and
non-obligate interactions, if the interacting proteins are functional on their own.
The latter can be further divided into stable interactions that are permanent
and those interactions that are transient, which means they are able to assemble
and disassemble spontaneously in a dynamic and context-dependent manner
[130].

Binding interfaces of PPIs generally exhibit complementarity in both shape
and chemical properties. Overall, the fraction of hydrophobic residues on such
interfaces is smaller than in the protein core but larger than found for non-
interface surfaces. For hydrophilic residues the opposite trend can be observed
[130–132].

Owing to the crucial importance of PPIs and protein complexes in general,
the last years brought forth many large-scale studies that strove towards the
ultimate goal of acquiring complete knowledge on interactomes by mapping
the entirety of PPIs within an organism. The development of the necessary
experimental and computational tools in that regard started with the model
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organism yeast [133, 134] before the field progressed to the investigation of the
human interactome [135–138].

Based on these pioneering endeavors, the size of the human protein interac-
tome has been estimated to comprise somewhere between 150, 000 and around
650, 000 interactions [139, 140]. Although the amount of PPIs that could be cap-
tured by individual studies increased tremendously over the last decades, the
yield of each individual effort is still by far not in this approximated range [141].
When the results of such studies are merged, however, our state of knowledge
is approaching such orders of magnitude. The popular database BioGRID [142]
in the current release (version 3.5.179 of Dec. 2019), for example, lists 396, 398
non-redundant physical interactions for humans.

It should be noted that such collections only represent the total repertoire
of PPIs that could be found in a cell. Actual snapshots of the physical interac-
tome of proteins in various cellular states will differ wildly because the actual
interplay is highly dynamic in time [143, 144] and space [145]. The interac-
tion partners of an active PPI must be expressed together at the same time,
potentially even in the correct isoforms or featuring/missing specific posttrans-
lational modifications, they must be located in the same cellular compartment
in sufficient spatial proximity, and their binding topology must be devoid of
interference by, for example, other proteins competing for the binding interface
[146]. These issues will be of fundamental importance in Chapters 3 and 5 and
are therefore discussed in more detail there.

Measuring interactions between proteins

PPIs that facilitate either binary interactions between two proteins or those of
multiprotein complexes can be investigated at different levels and in various
ways. The perfect specification of a protein complex would comprise the com-
position of the complex, e.g. the identification of all its member proteins, the
stoichiometry of the constituents and the topology of the assembly.

The exact topology of protein complexes can only be determined in a direct
way by methods that procure spatial information, such as X-ray crystallography,
nuclear magnetic resonance or electron microscopy [147]. For large multiprotein
complexes such methods can involve years of work to analyze even subunits of
the structure [148] which are then connected by computational efforts [146, 149].
Stoichiometries and copy numbers of complex components can be obtained by
quantitative MS [138, 147].

However, in most cases only the composition of complexes is examined.
Which experimental techniques should be preferred for this task heavily de-
pends on the scale of the study that is envisaged, e.g. an unbiased sampling of
a whole proteome versus investigating only a clearly defined subset of proteins,
and the nature of the interactions that should be determined, e.g. binary PPIs
or complexes, stable or transient PPIs, PPIs dependent on posttranslational
modifications or other complex partners.

Yeast two-hybrid (Y2H), which can detect direct pairwise interactions be-
tween two proteins, and affinity purification coupled to mass spectrometry
(AP-MS), which finds stable copurifying protein complexes, are the most preva-
lent experimental approaches to measure protein interactions in the sense
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Figure 2.5: Measuring protein interactomes. Yeast two-hybrid (a) and affinity purification–mass
spectrometry (b) are two popular experimental techniques to determine protein interactions
between a certain bait protein (abbreviated as B) and a specific prey protein (abbreviated as P) or
a pool of target proteins of interest. In the illustration of the Y2H method in (a), BD represents
the binding domain and AD the activator domain of a transcription factor. Grey proteins in (b)
are proteins in the background that are not captured by affinity purification. The figures were
adapted from [150].

of protein complex composition and are therefore introduced briefly. For an
overview and comparison of less common techniques, please refer to other
sources, for example the comprehensive review by [150]. In the context of
protein interaction and protein complex detection, the reference protein of
interest that is used to “fish” for interaction partners is commonly called the
bait protein and interaction partners that are investigated as potential targets
are often referred to as the prey. We will also stick to this established notation
in the following. Figure 2.5 additionally supports all explanations graphically.

Y2H was initially developed around 30 years ago [151] and its capabilities
were steadily improved in quality and throughput [137, 150, 152]. The protocol
is based on a TF that is fragmented into its DNA-binding domain and its
transcriptional activation domain (see also Section 2.1.4 on the modularity of
TFs). Since the two domains are still able to activate the expression of a target
gene when they are in sufficient proximity to each other, it is possible to fuse
the binding domain to the bait protein and the activation domain to a prey
protein. If the constructed bait and prey fusion proteins directly interact, the
reporter gene is expressed in such a system (see also Figure 2.5a). In the classical
approach, the yeast GAL4 protein is separated into its two domains and LacZ
is used as a reporter gene to identify interactions by simple galactose selection
[151].

A Y2H setup is able to detect weak binding, is relatively simple with a low
cost, runs in vivo and scales extremely well from small efforts to the whole
proteome. Still, there are common problems that may lead to artifacts in the
data. Fusing proteins may introduce problems because the conformation of the
proteins or their binding interfaces may be altered compared to their native
states. More so, if a protein that itself includes an activation domain is fused to
the binding domain, the reporter gene might be activated without any physical
interaction at all. Also, the choice of the host, generally yeast, might influence
the results, both proteins need to access the nucleus in this approach and false
positives may be reported due to overexpression of the candidates. At last, the
indirect readout prevents to capture the dynamics of binding processes in time
or space [150, 152].
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A careful experimental protocol can still ensure results of relatively high
confidence [152]. Sophisticated Y2H implementations were recently used to
determine interactomes that even consider protein mutations [153] or the
differences induced by individual isoforms of proteins [7, 51].

With the emergence of MS as a technique to identify the protein composition
of biological samples (see also previous Section 2.1.2), the library-independent
detection of protein complexes became possible in a high-throughput manner
by employing affinity purification upstream of MS [150, 154]. In AP-MS, the
bait protein is immobilized on a solid support, such as a gel or magnetic beads,
and serves as a fixed anchor to capture prey proteins from a soluble phase.
Interaction partners can then be enriched by washing out proteins that are not
bound to the bait and the remaining putative complex members can finally be
characterized by a subsequent MS screening (see also Figure 2.5b). The fixation
of the bait can be achieved by either immunopurification/immunoprecipitation,
e.g. by employing specific antibodies that bind to the target, or by fusing a
standardized tag to the protein which accomplishes the immobilization [154].

When suitable antibodies are available, proteins can be used in their native
form while tags need to be fused and may therefore pose problems. Still,
utilizing tags can benefit the experimental designs in several ways. They can
allow to determine the interactomes of several bait proteins in one run or to
perform successive affinity purification steps on the basis of individual tags,
for example. The latter protocol is called tandem affinity purification and very
common to alleviate typical problems of AP-MS such as non-specific binding
events by copurification of random background proteins. Furthermore, AP-MS
barely detects weak PPIs, direct and indirect binding cannot be distinguished,
and the approach is, due to cell lysis and purification steps, also not able to
determine interactions with spatial or temporal resolution [150, 154].

Since AP-MS detects stable aggregations of proteins, it is predestined to
be employed for the experimental discovery of multiprotein complexes. To
ensure that only robustly copurified complexes are reported by the analysis,
usually several tandem AP-MS steps are conducted in which all members of
the complex candidate are used as baits individually. Computational methods
are then applied to assess if the number of observed copurification events is
statistically significant [155]. This workflow brought the community several
classical datasets on protein complexes [133, 134]. More recent proteomics
studies are even able to add stoichiometries and protein abundances to such
analyses [138].

Each experimental method to determine PPIs has its strengths and weak-
nesses. All methods will report a certain share of false positive interactions and,
at the same time, miss other interactions. The strict implementation of control
experiments is therefore a necessity to obtain reliable data. When possible,
studies are sometimes complemented by the results of additional experimental
approaches [150, 152].
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From interaction experiments to (weighted) interactome data

As introduced in the previous section, there are many approaches that yield
information on PPIs or protein assemblies in general. Yet, the scale, scope and
reliability of the results from individual studies are often vastly variable. Some
researchers tried to capture entire proteomes [137, 138], not necessarily using
the same experimental techniques, other projects only considered very concise
subsets of the proteome in isoform-resolution [51] or even considering the
effects of mutations [153].

Protein-protein interaction networks (PPINs) are an effort to collect and
integrate the heterogeneous knowledge on interactions that accumulated over
the years. Basically, they are static networks with proteins as the nodes and
the pairwise protein interactions that were derived from many independent
experiments as the edges. Representing and modeling the biological interplay
as such mathematical graphs allows to approach the data with the established
framework and algorithms of graph theory.

For experimental data from methods that inarguably measure direct physical
interactions of proteins, such as Y2H, the transformation of the results into the
notion of pairs and their integration into networks is straightforward because
bait and prey proteins clearly specify the interaction partners of the PPI. For
data from AP-MS, on the other hand, this step is less clear because several
proteins may be copurified together. Such one-to-many relationships of bait to
prey proteins need to be somehow interpreted as pairwise PPIs. Commonly,
this is done by either applying the spokes model, in which only the bait
protein is connected with the other proteins, or the matrix model, in which all
copurified proteins are thought to interact [156]. In an early study comparing
results in yeast, the spoke model, which minimized the amount of false positive
interactions, was shown to be three times more accurate than the matrix model,
which overestimates the number of real PPIs [157].

As briefly mentioned earlier, BioGRID [142] is one of the largest databases
integrating data on protein interaction experiments from the literature. In
its recent release for human, the currently almost 400, 000 PPIs were derived
from 30, 601 unique publications (version 3.5.179 of Dec. 2019). Overall, this
BioGRID release contains data on physical interactions between proteins, and
also genetic and chemical associations or posttranslational modifications of
proteins, from 71, 178 publications on all major model organism species. Other
popular databases of similar size are IntAct [158] (that merged with the resource
MINT [159] in the course of the MIntAct project) or the metadatabases iRefIndex
[160], mentha [161], HIPPIE [162], which specialized on integrating data on
human, or PrePPI [163] that also adds predicted interactions to the incorporated
curated data. Metadatabases merge the PPIs that are collected in several primary
databases by their own criteria. For a weekly update of mentha, for example,
only experimental data on direct interactions is considered and annotations
from curated databases are used to assign a reliability score (more on such
scores follows below). Although STRING [164] is also often mentioned in the
context of protein interactomes, it is, strictly speaking, a gene-gene interaction
network describing functional associations. This notion only happens to include
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physical interactions between the proteins coded from the genes among other
pairwise relations.

With the exception of HIPPIE, all data sources mentioned were either used in
a project of this thesis or were at some point part of the feature set of a software
tool that is described in this thesis.

A noteworthy remark at this point is that, as stated before, these interactome
maps, irrespectively of their reliability, should never be considered as accurate
representations of the interactions that are active in a living cell. The best
interpretation is that PPINs are a static scaffold of what could be seen somewhen
and somewhere in a cell given the combined results found for many state-, time-
and space-dependent specific protein interactome studies. Data integration,
especially by the utilization of gene expression profiling, is a common means
to put this unspecific knowledge on PPIs into a meaningful cellular context
[165–169]. Chapter 3 introduces our method PPIXpress [90] that even allows
to construct isoform-specific interactomes with expression data in transcript-
resolution.

Another issue of PPINs is the large number of false positive interactions and
the unclear amount of missing interactions. Indirect binding events, as reported
by experimental data from AP-MS for example, are often falsely interpreted as
direct physical interactions. Since all assays and protocols for the experimental
detection of PPIs have individual strengths and weaknesses, even the overlap
between the results of different studies that in principle assessed the same
proteomes is often surprisingly low [170–172]. Naturally, in an environment
such as the protein interactome, which is prone to a manifold of detection
errors and additionally suffers from incomplete experimental coverage, one
can never expect to deal with a perfect representation of the actual biological
processes. It therefore makes sense to devise a way of rating the confidence in a
PPIs and thus gauge the likeliness of an interaction.

Unweighted networks that only represent their pairwise relations qualita-
tively were declared a “dead end” in a popular review article on ecological
networks [173] (networks such as food chains, which depict a “who eats whom”-
relationships, for example). In a perfect world, measuring binding affinities
between all pairs of proteins would likely present an optimal way to add a
quantitative dimension to networks of protein interactions. Realistically, we
currently lack suitable experimental data on interaction strengths and an im-
provement of the situation is not in sight [174]. Databases such as MINT or
mentha instead compute heuristical evidence scores for each PPI by combining
the annotated data of experimental methods that detected its presence (see
[159] for details). The score associated with an interaction then depends on the
number of experiments that confirmed the existence of the PPI and also consid-
ers the reliability of the protocols that were used in the experimental detection.
Others, such as STRING or PrePPI, additionally integrate heterogeneous data
on, for example, mRNA coexpression, protein colocalization, various genomic
features, literature mining, or even structural assessment using matches to
template complexes. In most methods, each feature describes a certain subscore
which is computed independently. Subscores are then combined to a final
score by some mathematical definition or statistical approach and the resulting
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quantitative measure is usually scaled between 0 and 1. Still, although the range
suggests an interpretation of the scores as probabilities, the scoring systems are
often not particularly suitable for comparisons across databases [175].

PrePPI [176, 177] is a PPIN that is used in multiple projects in this thesis and
represents a metadatabase that also includes predicted interactions and an elab-
orate PPI weighting. In total, six public databases on experimentally-determined
protein interactions are integrated in PrePPI and expanded by predicted PPIs
based on structural data and non-structural evidence [176]. The structure-based
score is based on a selection of sufficiently representative structural neighbors
that are determined for all proteins taken into consideration. Non-structural
evidence that is integrated in the PrePPI model comprises the essentiality of
protein pairs (if both proteins are essential for the survival of the cell), coex-
pression of the associated protein-coding genes, the functional similarity of
the proteins regarding GO and MIPS and their evolutionary similarity. Protein
pairs that are located in different cellular compartments serve to construct a
negative reference set [176]. All individual evidence is finally integrated to a
measure of reliability by using a Bayesian approach and likelihood ratios as
introduced in [178].

For a new version of the database [163], the modeling was expanded by
several new features such as the existence of interactions among orthologs and
the coexpression of orthologs in model organisms, the increased likeliness of
interaction when a protein interacts with many structurally similar proteins
and finally introducing a protein-peptide interaction scoring to the predictive
step. In total, around 1.5 million high-confidence interactions (probability> 0.5)
are listed and rated in the human PPIN of this improved version of PrePPI.

On domain-domain interactions

The stable formation of a protein interaction can, on a more detailed level, often
be related to a distinct interaction between specific domains of the binding
partners [146]. Since we lack structural data on most proteins and the majority
of PPIs, our knowledge on protein domain annotations and domain-domain
interactions (DDIs) provides a universally applicable and well-suited alternative
that at least allows to model binding events between proteins to a certain extent
[146].

Applications of practical relevance are, for example, found in protein complex
prediction or in the analysis of PPINs in general [17, 90, 179–181]. In their role
as mediators of PPIs, DDIs are pivotal in our methods PPIXpress [90] (see
also Chapter 3) and (J)DACO [17] (see also Chapter 5). Interactions between
protein domains are therefore an important part of all research projects that are
presented in this thesis.

DDIs are usually identified on the basis of structurally resolved pairs of
interacting protein domains. The common principle is then to first find Pfam
domains in those experimentally determined three-dimensional conformations
and to assess if neighboring domains are sufficiently close to each other to
interact. This information is processed and provided for many domain types by
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Figure 2.6: Example of a DDI between a POU and a HMG-box domain. The example shows
the DNA-binding parts of OCT1 and SOX2 in PDB entry 1O4X (version 1.2) visualized using
[21]. The interaction interface is highlighted by the blue rectangle.

web services such as iPfam [108] and 3did [107]. Figure 2.6 shows an example
of a DDI found in 3did.

This structurally derived domain-level interactome is utilized in and ad-
ditionally enriched by computational approaches that predict DDIs between
domain families which are less well covered by structural data. Among the
many statistical methods that were employed in that regard, popular predic-
tion pipelines applied, for example, maximum likelihood estimation or linear
programming to rate the likeliness of DDIs given known PPIs [182–184]. Often,
additional data sources were integrated, such as data on domain fusion events
and functional annotations [185].

Structure-based and inferred data on DDIs were also collected in user-friendly
metadatabases. DOMINE [105] integrated two databases of PDB-derived DDIs
and 7 predicted data sources which were classified into high, medium and
low confidence interaction according to a simple scheme. Also, IDDI [106]
integrated data by three structure-based DDI sources and 20 computational
datasets. Here, a numerical scoring scheme was applied to gauge the reliability
of each putative interaction between domain types.

Unfortunately iPfam, IDDI and DOMINE are not only not updated anymore,
even their web services went offline during the time of my doctoral studies. For
this reason, their latest data was either already supplied with the initial release
of PPIXpress or included in later versions in the case of iPfam (see also the
Addendum Section 3.6.1 on software updates). 3did is still updated regularly
and comprises 13, 499 DDIs for 9, 185 domain families in its current release
(Pfam version 32.0, PDB version 2019_01).

From interaction networks to multiprotein complexes

As mentioned before, multiprotein complexes are the primary workforce of the
cell. The faithful experimental or computational determination of the entirety
of possible protein complexes, also called the complexome, is therefore an
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essential step towards the greater understanding of the interwoven processes
in biological systems.

Some experimental approaches, such as AP-MS, allow to gain insights on
which proteins aggregate in complexes. As in the case of PPIs, this knowl-
edge on determined protein complexes is also collected, processed and made
available as web services. Relevant manually curated databases in that regard
are CORUM [186], which covers 4274 mammalian protein complexes in its
most recent release CORUM 3.0, and CYC2008 for yeast [187], which comprises
408 heteromeric complexes in S. cerevisiae. A very different approach to the
problem was taken by the creators of hu.MAP [188]. Instead of aggregating the
final results from independent studies in their resource on human complexes,
the authors integrated over 9, 000 AP-MS experiments and evaluated the com-
bined data anew on the basis of this much broader experimental sampling and
modern machine-learning approaches.

We utilized such public datasets of human reference protein complexes in
our evaluation of rewired interactions in PPICompare [92] (see also Chapter 4)
and as an alternative input in the case study of CompleXChange [87] (see also
Chapter 6).

Since the direct experimental mapping of protein complexomes is error-prone
and tedious, the prediction of complexes by computational methods emerged
as an alternative way to improve our understanding of the interplay of proteins
and the modular organization of cells. The broad knowledge on the matter as
stored in PPINs thereby serves as the main source of information. Consequently,
even the information that was gained by experiments that only report pairwise
interactions but not their actual assemblies, such as Y2H, can aid in determining
the range of protein complexes as holistically as possible.

Computational methods for the prediction of protein complexes vary wildly
in their overall strategy. They may construct complexes in divisive (“top-down”)
or agglomerative (”bottom-up”) ways, may consider overlap of complexes
or assume that complex candidates are always disjoint, may take additional
biological data into account to infer who assembles with whom, and not all
methods may make use of weighted interactome data [189, 190].

What unites all approaches, however, is the utilization of the topological
information in PPINs because it is presumed that protein complexes represent
modular units in such networks that are densely connected [191, 192]. Protein
complex prediction methods are therefore algorithms that resemble the general
clustering problem on graphs (see also Section 4.1.1 on clustering data) in
a more specific context. It is therefore not very surprising that in the early
2000s the history of protein complex prediction began with the application of
a general mathematical clustering algorithm, namely Markov clustering, on
protein interaction data [193]. This clustering algorithm detects dense regions
in networks by simulating random walks. Shortly after, the first dedicated
approach to predict clusters of proteins from PPI data followed with MCODE
[194]. MCODE uses unweighted network data and is based on the edge clus-
tering coefficient, a measure of how tightly knit a neighborhood is [195]. A
plethora of approaches that took their take on the problem followed [189, 190].
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Yet in my view, general clustering approaches with non-overlapping results
are not ideal to find protein complexes. Rather than representing fixed stable
complexes, modules in PPINs often delineate regions in which submodules of
proteins assemble combinatorially. Therefore many member proteins may be
shared between biological complexes and a prediction method should account
for that possibility [144, 145].

ClusterONE (clustering with overlapping neighborhood expansion) is a
more recent complex prediction method that is able to consider overlapping
complexes and can make use of weighted interactome data [196]. Since its core
principle is a pillar on which the DACO algorithm was designed, we will go
a little bit more into the details here. Given a weighted protein interaction
network, ClusterONE conducts a local greedy optimization of a metric called
cohesiveness around a set of seed proteins. Seed proteins are either defined by
the user or automatically selected from all proteins in decreasing order of their
degree (number of neighbors) in the network if they have not been included
in a complex, yet. The cohesiveness f(V) of a set of proteins V quantifies
the potentially worthwhile property of complexes candidates to be densely
connected among each other but at the same time to be well-secluded from
non-members of the set:

f(V) =
win

win +wbound + p|V |

where win denotes the summarized weight of all internal interactions between
members of V and wbound is the weight of all interactions on the boundary
between members of V and the remaining network. With p > 0, p|V | serves
as a penalty term that additionally offsets the boundary weight to model
yet undiscovered interactions missing in the data. The cohesiveness f(V) is
optimized locally by starting from the individual seed proteins that are declared
as single protein clusters. In each iteration, it is tested if adding a protein that
is adjacent to a member of the complex or if removing a complex member on
the border of the current complex candidate leads to the largest increase in
cohesiveness. This most beneficial step is then conducted or the locally optimal
result returned if no further increase can be achieved. Complex candidates that
overlap more than a certain threshold according to an overlap score are then
merged in subsequent steps. Finally, complexes with less than three members
and complexes of insufficient density are filtered out before the candidates are
returned.

All approaches that were mentioned so far only take into account the struc-
ture of the interactome network. The integration and appropriate modeling of
additional data has also proven beneficial in the context of protein complex pre-
diction. Valuable contributions were made by including functional annotation
data [197, 198] or using literature mining of biomedical articles [199].

Still, crucial biological factors such as the actual expression of protein-coding
genes of interaction partners at the same time (temporal information) or struc-
tural limitations of binding interfaces (spatial information) are lacking when it
comes to the context-sensitive deciphering of the dynamic complexome and
only static PPINs are considered. While the temporal state of the interactome is
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commonly approximated by including gene expression profiles in the analyses
[200–203], considering structural data to account for binding site competition
and to enumerate combinatorial binding possibilities is also feasible, but only
possible for a small share of the proteome [145, 204, 205].

Modeling binding interfaces on the basis of DDIs (see previous subsection)
has proven to be a worthwhile practical alternative to the limited amount of
structural data [17, 179, 180, 206–208]. In such domain-domain interaction net-
work (DDIN) models, binding interfaces are approximated by protein domains
and DDIs are thought to facilitate PPIs. Binding site competition can then be de-
scribed if each domain is constrained to only support one DDI simultaneously.
In the context of protein complex prediction, DDINs were used to filter false
positive complex candidates that, when assessed with the model, did not allow
for a stable binding topology [179, 180], or to define connectivity in stochastic
simulations [206, 208].

With the development of the domain-aware cohesiveness optimization al-
gorithm DACO [17] we also added our share of contribution to the topic of
predicting combinatorial protein complexes that consider mutual exclusivity
of binding interfaces from data on DDIs. It is the main topic of Chapter 5
and introduced in detail in Section 5.3.1. By using contextualized input PPINs
constructed by our tool PPIXpress [90] (see also Chapter 3) and transcript
expression data, temporal information on the cellular state that even accounts
for alternative isoforms of the proteins can be incorporated in the complex
prediction by DACO.

2.1.4 On transcription factors and transcription factor complexes

TFs and TF complexes (TFCs) are crucial components of cellular control that
basically entail all biological topics that were covered before. As mentioned
earlier in Section 2.1.1, TFs are DNA-binding proteins that have the ability to
modulate the rate of transcription. Furthermore, they are highly modular pro-
teins with clearly defined functional domains and employ physical interactions
to perform their biological functions (see Figure 2.6 above).

Protein complexes that involve TFs are the determinants of eukaryotic life and
control all essential processes from the cell cycle in yeast [209] to mammalian
cell fate decisions [210–212]. Owing to their importance for cellular regulation
and their worthwhile information content, TFCs are the focus of all case studies
in this thesis that are related to protein complexes.

Most TFs comprise two essential parts: a DNA-binding domain, which
specifies which sites in the genome are targeted by the factor, and an effector
(or regulatory) domain, which may modulate transcription in many ways, e.g.
by directly affecting core processes of transcription, by mediating relevant PPIs,
or by facilitating the activity of the TF in a ligand-dependent manner (see
also principle of Y2H in Section 2.1.3). These functional modules are usually
conserved, in the case of DNA-binding domains often even structurally, and
the evolutionary shuffling of this universe of separable components yielded the
manifold of known TFs [16, 213, 214]. Given this high degree of modularity,
it is not surprising that TFs are more likely to be alternatively spliced than
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most genes and that there is a tendency towards splice events that encompass
complete protein domains [215].

TF families are commonly defined on the basis of their DNA-binding domains
since those are well-characterized for most TFs. Only 12 to 15 structural folds
describe the families of all DNA-binding domains in eukaryotes. The major TF
families of zinc finger, Homeodomain, basic helix-loop-helix or basic leucine
zipper proteins were already known in the 1980s [14, 214].

TFs generally bind the major groove of the DNA because the exposed hy-
drogen bonds therein allow for a specific detection of the sequence context.
The actual sequence specificity of TFBSs is then defined by a core motif of
only 6-12bp [2, 13]. Since a typical human gene contains compatible binding
sites for very many or even most TFs, individual regulatory proteins clearly
lack specificity. Furthermore, almost all binding sites predicted from motifs are
non-functional in most cellular contexts [216]. Only the defined cooperative
interplay of TFs as complexes and their environmental dependencies such
as cofactors or chromatin states are able to explain cellular control with the
necessary level of detail [8, 214]. The deciphering of gene regulation from TF
binding to gene expression remains a grand challenge of systems biology and
the computational prediction of relevant binding events and their effect on
target genes usually involves the integration of a broad assortment of experi-
mental data, such as data on histone modifications or chromatin accessibility,
that supplement the knowledge on binding motifs. A recent approach towards
that issue is, for example, TEPIC [217].

Binding motifs of TFs are studied experimentally by chromatin immuno-
precipitation with DNA-sequencing (ChIP-seq). In ChIP-seq, proteins that are
bound to the DNA are first crosslinked to the DNA and the DNA is subse-
quently sheared. In the following, the protein-DNA fragments are enriched for
fragments containing the target TF by using a suitable antibody and immuno-
precipitation (compare to affinity purification of AP-MS in Section 2.1.3). The
respective remaining DNA to which the target protein was crosslinked is then
released and sequenced to determine a representative collection of sequence
stretches that contain the binding regions of the TF of interest [218]. When
appropriate antibodies are used, the same protocol can be used to detect histone
modifications. Since binding regions determined by ChIP-seq are larger than
the relevant TFBS themselves, motif discovery algorithms such as DREME [219]
are finally applied to isolate the conserved core binding sequence motif within
all sequence patches that were determined from the fragments.

TF binding motifs are usually encoded as position-specific weight matrices in
which each of the four nucleotides has a score assigned at each motif position.
The binding strength or preference to bind can then be evaluated for an arbitrary
sequence segment by multiplication of the corresponding scores at each position
[214]. While alternative models exist, e.g. based on nucleotide pairs to model
position-dependence in the motif [220], they are far less common than the
straightforward mononucleotide weight matrices. Popular services that provide
TF motifs are, for example, JASPAR [221] and HOCOMOCO [220]. In its most
recent version 11, HOCOMOCO is a compilation of 680 human and 453 mouse
TF binding motifs that were derived by the integration and reanalysis of many
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experimental datasets. HOCOMOCO data of versions 9 to 11 were utilized in
various projects presented in this thesis.

A second major component of TFs is the effector or regulatory domain that
provides mechanisms to actively modulate specific phases of transcription.
Furthermore, effector domains may provide binding pockets for ligands, that
enable to sense and react to external stimuli by causing structural changes, or
may control nuclear trafficking of the protein as an alternative way of regulating
the biological activity of the TF [214].

To impact the expression of genes, TFs employ a diverse range of mecha-
nisms. Some are able to directly interact with RNA polymerase or the general
transcriptional machinery through PPIs that are facilitated by their effector
domain. In doing so, they can modulate the rate of the assembly of the tran-
scription initiation complex, improve the recruitment of important factors such
as RNA Polymerase II or affect the elongation phase of transcription. Since
all steps of this pathway can be adjusted independently, the contributions of
several TFs or TFCs that concern individual phases of transcription can act
synergistically. A TF that comprises a very similar binding domain but lacks
the effector function can act as a transcriptional repressor by simply blocking
other TFs or the transcription machinery sterically from binding to the target
region [14, 16, 214].

Another mode of action is the recruitment of additional regulatory proteins
that are called cofactors. Cofactors can cooperate in the regulation of expression
in various ways to activate (coactivators) or repress the transcription of target
genes (corepressors) although they do not have the capability to bind to the
DNA themselves. In functional complexes with TFs, different classes of cofactors
act as mediators of TF activity by contacting other important regulatory proteins,
allow for the remodeling of the chromatin to alter the accessibility of binding
sites or biochemically modify histones and other proteins [14, 16, 214].

TFs and their regulatory complexes can also operate from distal regulatory el-
ements and still influence the transcription of target genes by bending the DNA
into loops. The alteration of the three dimensional structure facilitates spatial
proximity between gene promoters and regulatory regions, e.g. enhancers, that
are far away in the sequence [8, 13, 14].

Typical modes of action are also presented graphically in Figure 2.7.

Cooperativity between transcription factors

The binding of individual TFs is sufficient to induce or repress the expression of
a target gene in prokaryotes. In higher organisms, however, the signal of single
factors is not specific enough to govern the expression of the larger number
of genes and the exponentially larger number of expression patterns [4, 216,
222]. The necessary level of regulatory detail found in higher eukaryotes is only
possible through the sophisticated integration of many regulatory inputs such
as the TFs that are bound to a regulatory region, the cofactors and ligands that
are present or also specific histone marks. Their cooperative interplay defines
the context-dependent regulatory outcome [8, 13].
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Figure 2.7: Examples of TFC function and their modes of action. TFCs can bind proximal (a)
or distal to the affected gene promoter (b) if the necessary binding site constraints are satisfied.
In both cases, they may also recruit accessory factors. Such multiprotein complexes can often
directly influence the rate of transcription (see arrows to the transcriptional start) or may adjust
other important control layers of eukaryotic gene regulation, such as the posttranslational state
of histones (see arrow to starred histone tail in (a)).

One way how biology implements this ingenious cellular control circuit is the
cooperative binding of several TFs in cis-regulatory regions. The implications
are best explained with an example. In Figure 2.7a, for example, the TFBSs
of the green and the red TF (respective binding sites marked by the same
color) need to satisfy certain distance requirements to allow the binding of
the complex that is shown. The target genes can therefore be specified very
precisely compared to the regulation by individual factors. Also, all TFs and
cofactors of the specific regulatory assembly need to be present to induce
the intended regulatory effect (implementation of AND-logic) and the final
outcome depends on the final protein assembly. This operating principle allows
for an amazing degree of context-specific regulation. Since many TFs are able
to recruit various cofactors with opposite effects, it is possible to inverse the
regulatory signal that is exerted by changing the availability of cofactors, for
example [8, 13, 14]. Thus the knowledge on such assemblies is very informative:
if we know about the exact protein composition of such a complex, we can
potentially infer its function.

However, there are more layers that define the relevant context. As mentioned
earlier, TFs and their cofactors can be able to adapt the structure of the chro-
matin and to modify its constituents (see also Figure 2.7a). Besides cofactors
that set or reset biochemical marks of histone tails, proteins can be recruited
that methylate the cytosines in DNA. While this targeted methylation of DNA
positions impedes the binding capability of many TFs, the affinity of reader
proteins of methylation marks, such as MeCP2 or proteins of the MBD family,
is increased [11]. Thus, another layer of dependency is added to the regulatory
interplay. Similar mechanisms of readers and writers are described for histone
marks [223].
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2.2 computational tools and services

All computational topics that are needed for the projects of this thesis but were
not addressed previously are introduced hereafter.

2.2.1 On statistical hypothesis testing

Besides the development and formulation of hypotheses, a primary task of sci-
ence is to verify or falsify untested hypotheses by appropriate experiments and
subsequent statistical evaluation. The latter is usually conducted by defining a
null hypothesis H0, which is the commonly accepted belief considered to be
true, and an alternative hypothesis H1 that may explain a new theory. If there is
sufficient evidence against H0, which mostly means to show that its realization
is very unlikely according to a threshold probability, H0 is rejected in favor
of H1 [224]. Statistical hypothesis testing thus works like a legal trial: in dubio
pro reo. We default to the drop of allegations if there is no strong competing
evidence otherwise.

The common framework for statistical hypothesis testing is a hybrid merging
the concept of the p-value introduced by Fisher [225] and the concept by
Neyman and Pearson whereby a null and an alternative hypothesis are selected
based on an admissible significance level ↵ [226]. The null hypothesis is then
rejected if the p-value p < ↵. Despite longstanding criticism of mixing the
Fisherian- and frequentist approach as well as applying arbitrary significance
thresholds, this hybrid approach and the significance level ↵ = 0.05 are the
omnipresent standard in the literature [227].

Formally this means there is a parameter space ⇥ which can be partitioned
into two disjoint subsets ⇥0 and ⇥1 and the data or sample drawn from a
distribution that involves parameter ✓ either satisfies H0 : ✓ 2 ⇥0 or H1 : ✓ 2 ⇥1.
In practice, decisions and p-values are derived from the distribution of a test
statistic T that is applied to the data. Test statistics are functions that transform
the not necessarily numeric input data into scalars and thus enable the sampling
of the data. The distribution of the resulting random variables under such a
function T is then used to define a critical region for which H0 is rejected. How
a suitable T and the critical region are selected depends on what is tested by the
hypothesis and the distributional pattern that is assumed for or encountered
in the data. Figure 2.8 visualizes this basic principle on the example of a
one-sided test, which means it is tested if a sample or population is larger or
smaller than expected. Accordingly, a two-sided test assumes equality of the
populations in H0 and has critical regions in both tails of the distribution. Then,
the inequality of populations can be tested. The p-value is the probability under
H0 of observing a value of the test statistic that is at least as extreme than what
was observed and can aid to rate the value of a test statistic quantitatively [224].

In the following subsections I will first introduce some popular statistical
tests that have been used in this thesis and then cover the problem of testing
many independent statistical hypotheses simultaneously.
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Figure 2.8: Example of a one-sided hypothesis test. We reject the null hypothesis H0 if the
value x of the test statistic is within the critical region defined by significance level ↵.

name assumptions on data distribution origin

Wilcoxon rank-sum test none [229, 230]
Student’s t-test populations have normal distributions with equal variances [231]
Welch’s t-test populations have normal distributions [232]

Wilcoxon signed-rank test none [229]
Paired t-test differences between populations have normal distributions [231]

Table 2.1: Popular two-sample tests. Unpaired tests are shown in the upper part, the two tests
below are intended to check paired samples of data. The Wilcoxon rank-sum test is also known
as the Mann-Whitney U test or Wilcoxon-Mann-Whitney test.

Common statistical tests and their applicability

An essential class of statistical tests concerns the comparison of two populations
(such tests are also called two-sample tests) regarding their measures of central
tendency, e.g. if their distributions share the same mean or median. A manifold
of such tests are readily available in statistical software packages.

Because their application may require certain assumptions it is very important
to correctly differentiate the exact use-cases of individual test, though. Some
tests expect a certain distribution of the data points, for example. Such test
are called parametric tests. Additionally, there are special tests for paired data,
which means the tests examine if there is a difference between the related pairs
rather than a shift in tendencies between populations [228]. Table 2.1 gives a
brief overview on tests that have been used in the projects discussed in this
thesis.

Furthermore, it can often be of interest to gauge the statistical likeliness
of a single event (these are called one-sample tests) given a certain discrete
distribution model for which we have the parameters.
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For the outcome of independent binary events that occur with probability
p, the binomial distribution describes the probability to have k successes after
repeating the experiment n times:

Pb(k|n,p) =
✓
n

k

◆
pk(1- p)n-k.

For statistical tests we often want to pose the slightly different question of how
likely it was to observe at least k successes after n repetitions. This can be
obtained by simple summarization of the event probabilities:

P(X > k|n,p) = 1-
k-1X

i=0

Pb(i|n,p).

We used the binomial distribution to model and assess rewiring probabilities
of protein interactomes in PPICompare [92] (see also Chapter 4), for example.
The multinomial distribution describes the issue for the case of more than two
classes.

Another discrete distribution that is omnipresent in computational biology is
the hypergeometric distribution. Suppose an urn with N marbles of which K

have a certain feature, e.g. a specific color. Then the hypergeometric distribution
defines the probability to gather k marbles with this feature in n draws without
replacement [224]. The popular application of the distribution in enrichment
analyses is introduced in Section 2.2.3.

Permutation testing

In the evaluation of computational predictions and hypotheses a common
issue is to ascertain if a result is actually significant. Or, more precisely in
the language of statistics, how likely it was to achieve a result at least that
good by chance. In practice such questions can often not be quantified us-
ing pre-implemented tests and distributions. Permutation testing (also called
randomization testing or exact testing) can aid in such situations. Instead of
assuming a distribution, it constructs the sample distribution of the test statistic
under the null hypothesis by resampling of the data or shuffling outcome
values between observations. If the null hypothesis is true, the distribution of
the test statistic for the randomized data should not differ from that of the real
data.

Given a test statistic T(x), which can be the mean difference between popu-
lations but also a very specific quality metric for the evaluation at hand, and
N datapoints that can be randomized somehow (for example regarding their
labeling), a p-value can be computed by permutation testing as

pperm = P(T > t) =
1

N!

N!X

j=1

I(Tj > t)

whereby t is the observed test statistic, the Tj are the test statistics of the
permutated data and I(x) is the indicator function that returns 1 if x is true and
0 otherwise. For practical considerations one mostly samples only a part of the
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permutation space. Then N! becomes the number of randomization iterations
conducted [224].

Permutation sampling is, for example, used in the GSEA method [233] (see
also Section 2.2.3) or in our analyses of deregulated protein complexes [87] (see
also Chapter 6).

The multiple testing problem

As introduced previously in Section 2.2.1, significance level ↵ describes the
likelihood of observations to be true under the null hypothesis H0. With the
common rejection threshold ↵ = 0.05 an event that has a very low probability
given H0 may still lead to the false rejection of a true null hypothesis. This is
called the type 1 error [224].

Imagine 20 hypotheses are tested simultaneously with significance threshold
↵ = 0.05. Then the probability to find at least one significant hit by chance can
be calculated as

P(at least one sign. hit) = 1- P(no sign. hit)

= 1- (1- 0.05)20 ⇡ 64%.

Even with only 20 separate tests, which is a miniscule order of magnitude
compared to, for example, testing all genes of an organism for differential
expression, we are already likely to falsely reject at least one null hypothesis.
We may thus observe “discoveries” that are just coincidences.

A simple and conservative way to account for that consists of adjusting the
rejection threshold based on the number of simultaneous tests. For m hypoth-
esis tests H0i vs H1i (with i 2 {1, . . . ,m}) and the p-values of corresponding
statistical tests p1, . . . ,pm, the Bonferroni method only rejects H0i if pi <

↵

m

[234]. This is an adjustment of the familywise error because it ensures that the
probability of at least one false positive rejection is equal to at most ↵ [235].

Since this multiple hypothesis testing correction is very stringent, often a
more reasonable approach is to control the false discovery rate (FDR) instead
which is defined as the expected number of false rejections divided by the total
number of rejections. A popular approach that was frequently used in this
thesis is the Benjamini-Hochberg method for FDR adjustment: given a fixed
significance level ↵, the p-values p1, . . . ,pm of all m hypothesis tests are sorted
and the largest k is determined that satisfies 8k 2 {1, . . . ,m} : pk 6 ↵ k

m
. Then

all null hypothesis H0i are rejected for which i 6 k [236].

2.2.2 Annotation of genes, proteins and pathways

Since the advent of modern whole-genome high-throughput experiments, life
science researchers are confronted with results of sizes that are hardly compre-
hensible by just manual investigation. This entailed the necessity of computa-
tionally accessible resources that catalog the current knowledge on biological
entities in a way that best assists the analysis, description and interpretation of
such large datasets. The most popular databases for systematically annotating
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genes, proteins and their interplay in pathways with useful information will be
introduced briefly together with the powerful concept of enrichment analysis
that makes use of these descriptions to highlight biological tendencies in any
experimental outcome.

The Gene Ontology

The Gene Ontology (GO) annotation system originated from the three model
organism databases FlyBase [237], Mouse Genome Informatics [238] and the
Saccharomyces Genome Database [239] that aimed to produce a common
vocabulary to depict the roles of genes and gene products for any organism.
Such a vocabulary would not only help to describe biological entities clearly but
should also simplify to infer information from orthologs. The resulting ontology
system is structured as a directed acyclic graph which specifies a hierarchical
organization of annotation terms that are connected by predefined relationships
such as “is a”, “is part of”, “regulates” and others. Three distinct categories
were set as the roots of GO tree structures to describe certain attributes of genes
or gene products:

• biological process: the biological objective to which the gene or gene
product contributes,

• molecular function: the biochemical activity of a gene’s product,

• cellular compartment: the localization in the cell where the gene product
is active.

Descending from those most general annotation terms each child-term then
becomes more and more specific with each level further down in the hierarchy
[240]. Due to this structure, each term also implies an association with all its
more general parent terms. This entails the attractive property that each gene or
gene product can be simply labeled with those annotation terms that match the
specificity of the respective evidence best. Figure 2.9 shows a small portion of
the GO around the biological process term “histone H3 acetylation” (identifier
GO:0043966). The hierarchy guides us that each protein that works in “histone
H3 acetylation” is also one that matches the broader description terms “histone
acetylation” or even “histone modification” in general. Roles for more exact
terms, though, like a participation in the process of ”histone H3-K27 acetylation”
cannot be inferred from the ontology since that would require more specific
evidence.

The complete ontology comprised around 45, 000 GO terms in the release
of Sept. 2018 [242]. Condensed versions with a smaller representative subset
of the annotation data like GO SLIM are also available. Recently the idea of
GO-Causal Activity Modeling was introduced to expand the GO by a more ex-
pressive standard. In the future, literature-based subject-relation-object triplets
describing the semantics of existing GO annotations should be combined into
larger models that, for example, may represent whole pathways [242].

While GO data is very popular in enrichment analyses (see Section 2.2.3),
and allows to infer similarity measures between genes and proteins [243] or
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Figure 2.9: Example of the GO structure around the biological process term “histone H3
acetylation”. Black arrows depict “is a”-relationships and the blue arrow denotes a “is part
of”-relationship. The figure was adapted from a graphical representation that was generated
using the QuickGO web service [241].

can aid to correct batch effects [244], its usage is not devoid of any pitfalls. Like
all large-scale efforts regarding biological data, GO annotations are incomplete
and suffer from study bias which can especially effect whole-genome analyses
such as enrichment calculations for differential gene expression results [245].
Furthermore, the ontology itself lacks a heterogeneous level of detail which is
problematic when measuring semantic similarity between genes or proteins
using the GO [246].

Special application “Hallmarks of cancer”: In the early 2000s the famous
cancer researchers Douglas Hanahan and Robert A. Weinberg attempted to
organize common traits of cancer biology into a system of hallmarks [247, 248].

In their initial paper they proposed six hallmarks as the general alterations
found in cancerous cells: self-sufficiency in growth signals, insensitivity to
anti-growth signals, evading apoptosis, limitless replicative potential, sustained
angiogenesis, and tissue invasion and metastasis [247]. While they anticipated
a simplification of the systematic understanding of this disease class in the
coming years of research, Weinberg himself admitted that the matter became
even more complex [249]. In their update paper on cancer hallmarks they
added two more hallmarks, reprogramming energy metabolism and evading
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immune response, and introduced two traits that are understood to enable
cancer: genome instability and mutation, and tumor-promoting inflammation
[248].

While individual hallmark choices in their model or its translational benefit
in clinics have drawn some criticism, their concept of “Hallmarks of cancer” still
serves as the blueprint for our current understanding of cancer in the literature
[250]. Both individual papers were cited more than 30, 000 times according to
Google Scholar in April 2019.

The GO presents an excellent framework to actually compile all relevant
genes or proteins belonging to a hallmark in an automatized way. Suzuki et
al. manually curated sets of GO identifiers that should properly cover each
individual cancer hallmark [251]. With such a mapping of GO term collections
to hallmarks and the property of the GO hierarchy that specific terms also
imply more general terms, one can easily retrieve and compile lists of all genes
or proteins associated with each cancer hallmark using the web services of
QuickGO [241] or AmiGO [252], for example. We did exactly this and used
the notion of cancer hallmarks in our manuscript on PPIXpress [90] (see also
Chapter 3) and in our collaboration paper on the roles of NFAT1 and TMX1/3
in melanoma [91].

Annotation of pathways

Similar to what is done to annotate genes and proteins there are resources
that collect all genes and proteins associated with biological pathways in a
granularity that even covers their participation in certain steps of the processes
as directed edges in reaction graphs. Two popular pathway databases that have
also been used in my projects are introduced in the following.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a huge knowl-
edgebase effort that dates back to 1995 as part of the Human Genome Program
of Japan [253]. The web service aims to enable a systematic view on the current
information we have on the biochemical networks of genes, proteins and other
biomolecules in interplay for many organisms. KEGG is divided into the three
databases KEGG PATHWAY, KEGG GENE and KEGG LIGAND. While KEGG
GENE and LIGAND store the collected annotational knowledge on genes and
ligands as we know it from other resources, KEGG PATHWAY introduced
the new feature of genes and gene sets which are linked here into networks
describing pathways [253]. Starting out from most known metabolic pathways
and many regulatory pathways in 1999 [254], KEGG PATHWAY for human
comprised 7, 838 pathways covering 20, 109 proteins in the most recent release
(Release 90.0, April 2019) [255].

The Reactome Pathway Database is, compared to KEGG, a newer curated
pathway service that is available under an open-source license (data as well as
framework) and has a stronger focus on biochemical reactions [256]. In Reac-
tome, for example, even posttranslational modifications of proteins are covered
and described if necessary. Furthermore, Reactome’s graphical representation
features a global view on all reactions covered in an organism while allowing
to zoom into individual pathways seamlessly whereas pathways in KEGG are
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separated entities that need to be displayed individually. In the current version
2, 255 pathways in human are listed which involve 10, 825 proteins in 12, 416
reactions (March 2019 release) [257].

Pathway data were used extensively in our manuscript on PPICompare [92]
to map protein interactions to pathway edges, see also Chapter 4, but also
in most other projects to specify enrichment of genes participating in certain
pathways.

2.2.3 On enrichment analyses

Enrichment analyses are a very common first computational step in the analysis
and interpretation of large gene and protein sets of interest such as those
obtained from differential expression analyses or hits from proteomics. The
approaches deal with the question if certain categories of genes or proteins, like
those that belong to a certain GO term or pathway, are statistically enriched in
the hits or up-/downregulated compared to the total population of genes or
proteins. Categories that could be tested may equally be the genomic position,
coregulation, coexpression or any other attribute that can be determined for
the biological molecules assessed. This information can then help to dissect
the results, offer guidance for further investigation and serve to understand
the biology involved [258]. Similar computational approaches are also found in
metabolomics [259].

Popular web services for enrichment analyses of gene and proteins sets that
were employed in the projects spanning my thesis are DAVID [260], PANTHER
[261] and the locally developed Genetrail2 [262].

The two classical methods for enrichment analysis in bioinformatics will be
introduced in the following.

Overrepresentation analysis

Overrepresentation analysis in this context deals with the question if a defined
subset of genes or proteins is enriched in some annotation category compared
to the total set.

A classical statistical formulation can be directly derived from this problem
statement. For simplicity I will follow the original notion of the approach in
[263] and just refer to genes and gene sets as well as categories of genes instead
of more exact descriptions that could be covered such as annotation terms,
pathways or anything more specific.

Given that M of the total population of N genes belong to a category C, the
probability that genes in C also appear x times by chance in a subset of K genes
drawn from the population is described by the probability density function
PH(x,N,M,K) of the hypergeometric distribution:

Ph(x|N,M,K) =

�
M

x

��
N-M

K-x

�
�
N

K

� .
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Subsequently, the p-value pC for a one-sided test for overrepresentation of
category C can be determined as

pC = 1-
xX

i=0

Ph(i,N,M,K).

Because usually many categories are tested, multiple hypothesis correction
should be applied afterwards.

Other statistical models like the binomial distribution (equal to the hypergeo-
metric distribution for large N), Fisher’s exact test or the �2 test are also used
in practice to simplify the computational effort [264].

Gene Set Enrichment Analysis

The original implementation of Gene Set Enrichment Analysis (GSEA) [233]
aims at determining if genes associated with a biological pathway have a statis-
tically relevant tendency to rather appear towards the up- or downregulated
spectrum of differential expression results. I will stick to this notion for the
explanation of the method, but, of course, other biological entities and cat-
egories can be tested as well using this framework and arbitrary relevance
measurements can be used.

Contrary to overrepresentation analyses that only need a list of genes of
interest devoid of any numerical rating, the input of GSEA is the total universe
of genes assessed together with their associated deregulation scores. GSEA
ranks all genes by their score in a list we will call L and computes a running-
sum for each set of genes S representing the members of a biological pathway.
This is done by iterating over the gene list L in sorted order whereas the score of
each gene g 2 S is added to the sum while the score of a g /2 S is subtracted. The
enrichment score ES(S) is then defined as the maximum deviation from zero
during the summarization process and corresponds to a weighted Kolmogorov-
Smirnov statistic [233]. Figure 2.10 visualizes this running-sum approach.

For randomly distributed gene sets S, ES(S) will likely be rather small
compared to sets that are overrepresented at the top or bottom of the ranked list
L. An empirical p-value can then be gathered by estimating a null distribution
ESNULL(S) on the data by permutating the phenotype labels and counting how
often the enrichment scores determined for the set S and randomized data were
equal to or exceeded ES(S) [233]. Other permutation approaches are equally
possible in this framework depending on the exact application at hand [87, 265,
266].

Edge Set Enrichment Analysis (ESEA) uses the principle of GSEA to infer
significantly deregulated pathways from differential correlation between genes
that share edges in pathways [266]. We also used the core ideas of GSEA in
CompleXChange to detect seed proteins that are enriched within deregulated
protein complexes [87], see also Chapter 6.
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genes sorted by a suitable 
deregulation score, e.g., fold-change

gene set S enriched at top or bottom?

maximum deviation from zero provides 
enrichment score ES(S) of gene set S
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Figure 2.10: The idea behind the GSEA approach. To estimate the significance of the distribution
of members of a gene set S in a list of genes L, an enrichment score ES(S) is computed by
summarization and its likeliness by chance assessed by permutation testing. Figure adapted
from [233].
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C O N S T R U C T I O N O F C O N D I T I O N - S P E C I F I C P R O T E I N
I N T E R A C T I O N N E T W O R K S W I T H T R A N S C R I P T
R E S O L U T I O N

This chapter introduces an approach to construct protein-protein interaction
networks that are tailored using transcript expression data and the application
of this contextualization method to breast cancer data. Sections 3.2 to 3.5 were
adapted and expanded from Will, T. and Helms, V., “PPIXpress: construction of
condition-specific protein interaction networks based on transcript expression”,
Bioinformatics, 2016 [90]. I initiated this project and the study, designed and
implemented the software, performed data analysis, conceived the figures and
wrote the original manuscript. Volkhard Helms aided in designing the study,
interpreting the data as well as editing of the manuscript. Supplementary
materials that are published were omitted here, please refer to the online
materials https://doi.org/10.1093/bioinformatics/btv620. The approach
is provided as the tool PPIXpress which is available at https://sourceforge.
net/projects/ppixpress/.

3.1 prerequisites

3.1.1 On retrieving data

Besides the actual data integration methodology introduced in Section 3.3.1, a
major challenge of this project was the amount of data that should be retrieved
on the fly. The two essential approaches that were used in PPIXpress are
introduced briefly in the following subsections.

Direct HTTP(S) / FTP downloads

Hypertext Transfer Protocol (HTTP) [267] and File Transfer Protocol (FTP)
[268] are omnipresent protocols to transfer data over networks. Both protocols
have individual strengths and weaknesses that originate from their intended
purposes. FTP, the older protocol, can be understood as a protocol on the file
level that even allows listing and browsing directories on the remote server.
Until an actual file transfer is established, quite a number of client-server
communication steps - each one taking its share of time - can be needed by
design. HTTP, the protocol of modern web browsing, is faster in that sense,
but provides a steady overhead of partially unnecessary meta-data in each
transmission that is used by HTTP clients to interpret and treat the data stream
appropriately in terms of encoding and content type, for example.

As a very simply example use case of HTTP downloads in PPIXpress, imagine
that the user input consists of a reference protein interaction network with pro-
teins given as UniProt accessions and expression data annotated with Ensembl
identifiers. To then be able to retrieve all relevant annotation data from the
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correct Ensembl database, PPIXpress at first needs to infer the organism from
the protein identifiers. This is achieved by querying at least one of the protein
accessions in UniProt using a programmatically accessible and well-parsable
version of the site and retrieving a few lines of text. Here, information on the
human NANOG protein can be enquired, for example:

https://www.uniprot.org/uniprot/Q9H9S0.txt

Note that the service that is called here uses HTTPS (Hypertext Transfer Protocol
Secure), an extension of HTTP that encrypts each connection, and not HTTP.
During the life cycle of PPIXpress the adoption of HTTPS as the default protocol
of websites increased tremendously due to pressure of the major web browsers
[269, 270]. UniProt’s switch to secured connections was included in PPIXpress
version 1.20 by adapting the corresponding calls. Since a simple FTP call looks
the same to the end user on this high level of abstraction, its exemplification is
omitted here.

A more interesting additional example involves the usage of HTTP-GET,
which is a simple way to request a resource from a web server that is generated
based on parameters specified by the call. When PPIXpress detects HGNC
identifiers (HUGO Gene Nomenclature Committee) in protein interaction data,
all gene names are converted into proper UniProt protein accessions on the
basis of the most-current curated naming data downloaded by a customized
request to the HGNC web service [271]:

https://www.genenames.org/cgi-bin/download/custom?col=gd_app_sym&col=md_

prot_id&status=Approved&format=text&limit=0

Here https://www.genenames.org/cgi-bin/download/custom is called and the remain-
ing part of the address, separated by the question mark, specifies parameter
pairs that the server uses and - dynamically or statically, depending on the
exact implementation - answers to in the desired way. The individual pairs are
separated by ’&’ and provided in the format parameter name = parameter value.
Here, the two col parameters request that columns for HGNC gene symbols
(col=gd_app_sym) and UniProt accessions (col=md_prot_id) are returned. The
output is restricted to approved genes only (status=Approved) and the complete
list of results (limit=0) is returned in a textual format (format=text).

Besides UniProt and the HGNC web service, 3did, iRefIndex and mentha
data are retrieved using HTTP. IntAct data is retrieved using FTP.

(My)SQL queries

MySQL is a relational database management system distributed by Oracle
that implements the Structured Query Language (SQL) standard [272]. Rela-
tional databases are structured in tables of rows and columns whereby entries
in distinct tables can be related to each other and tables can be merged by
join operations [273]. Queries in SQL are used to retrieve data from MySQL
databases.

A large part of the data that is integrated in PPIXpress is retrieved from
Ensembl using MySQL. In release 95, the Ensembl Core database on human
data in the GRCh38 reference assembly, homo_sapiens_core_95_38, contains 74
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interconnected tables. Figure 3.1 shows a subset of the tables that are relevant
for PPIXpress.

PPIXpress needs to be able to associate all transcripts of an organism with
Pfam domain annotations, for example. To obtain this information it is necessary
to join the 4 data tables transcript, translation, protein_feature and analysis while
restricting analyses to Pfam annotations. The following SQL query lists all Pfam
domains found in each protein coded by a transcript:

SELECT transcript.stable_id, protein_feature.hit_name, protein_feature.hit
_start, protein_feature.hit_end

FROM transcript, translation, protein_feature, analysis
WHERE transcript.canonical_translation_id = translation.translation_id AND

translation.translation_id = protein_feature.translation_id
AND protein_feature.analysis_id = analysis.analysis_id AND analysis.logic_

name = ’Pfam’

Start and end positions are included to enable multiplicity of domain family
occurrences.

MySQL is also used to query the UCSC Genome Browser database [274]
to allow a conversion of UCSC transcript identifiers to Ensembl transcripts.
This is necessary when loading transcript expression data by TCGA [88] into
PPIXpress.

3.2 introduction

Protein-protein interaction networks (PPINs) are an important pillar of data
integration in computational biology and have been used in a large number of
studies and approaches. Generally, such networks are collections of physical
interactions between pairs of proteins compiled from different experiments
[275].

Full PPINs provide a convenient overview of the interactome of an organism.
Yet, they do not reflect the true wiring exhibited by the cell in a specific
state, because an interaction can only be realized if both partners are available.
Pruning the full network to the set of proteins whose genes are expressed in
the same condition has proven to be a straightforward solution for this. This
allowed investigating the interaction landscape across tissues [165–167] as well
as the origin of tissue-specific diseases [168]. Furthermore, it improved the
prediction of disease genes [169].

An estimated 95% of human multi-exon genes undergo alternative splicing
(AS) [44] and the specific isoform of a protein was shown to have a considerable
impact on its ability to bind interaction partners [45–47]. Thanks to the ability
of quantifying individual transcripts nowadays, it thus appears worthwhile to
also increase the granularity of condition-specific networks to this resolution.

Domain-domain interaction networks (DDIN) depict interactions between
individual protein domains and provide a convenient framework to relate
interaction sites with sequence information. In contrast to models based on
atomistic structural data, DDINs allow for universal applicability [17, 179, 180].
So far, the only methodical effort regarding the effect of AS on interaction
networks is found in the Cytoscape 2.x plugin DomainGraph. When linked to
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Figure 3.1: Subset of the Fundamental Tables group in the Ensembl Core database (release 95)
and their relations among each other. Figure adapted from https://www.ensembl.org/info/
docs/api/core/diagrams/Core.svg.

https://www.ensembl.org/info/docs/api/core/diagrams/Core.svg
https://www.ensembl.org/info/docs/api/core/diagrams/Core.svg
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the AS analysis tool AltAnalyze, DomainGraph can highlight protein domains
in DDINs that are affected by differential exon usage [181]. However, this tool
is intended for visual exploration. While the user can manually estimate the
implications of respective changes as PPIN and DDIN are visualized together,
the tool does not allow to automatically infer conclusions for the PPIN on a
whole-proteome scale.

With PPIXpress, we aim here at providing a simple standalone solution for
the automatic construction of condition-specific protein interaction networks
based on domain information and transcript expression. In addition to this core
functionality, the tool is able to retrieve current protein interaction data, to add
functional association scores from the STRING database [164] to unweighted
networks, and it can output the underlying condition-specific DDIN for each
sample. It allows the usage of compressed input files in the gzip-format and is
well-suited for batch-processing.

3.3 materials and methods

3.3.1 PPIXpress

The input data for PPIXpress consists of a reference PPIN with condition-
unspecific interactions and at least one sample of transcript- or gene-level ex-
pression data. From that, the tool constructs the condition-specific subnetworks
for each transcriptome. Thus each network only comprises those interactions
from the reference that are considered active in the sample.

Networks can be provided in the simple input format (either interacting
UniProt, HGNC or Ensembl gene pairs line-by-line, optionally with a weight)
or can alternatively be retrieved from IntAct [158] for a certain organism.
The current version supports expression data in the following formats: Cuf-
flinks FPKM files [76], GENCODE or comparable Ensembl-annotated GTF
files [276], TCGA RNASeq data or textfiles with expression-levels per line
as commonly exported by popular R-based tools. All other data sources that
are used internally are automatically retrieved in their most current versions.
Furthermore, the user may optionally change the expression threshold (abso-
lute or percentile-based) that is applied, limit the analysis to the gene-level,
or inquire specific versions of retrieved data. PPIXpress is freely available at
https://sourceforge.net/projects/ppixpress/. A user guide and example
data are provided together with a precompiled executable and the complete
source code.

The basic principle of PPIXpress is outlined in Figure 3.2 and will be ex-
plained in the following paragraphs. Details regarding the annotation with
domain data and datasets are covered in Section 3.3.2.

Relating protein and domain interactions

In the initial mapping stage, a one-to-at-least-one relationship between inter-
actions in the given PPIN and the corresponding DDIN is established such
that all PPIs found in the reference PPIN should be supported by at least one

https://sourceforge.net/projects/ppixpress/
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specific
expression

(input)

complete PPIN (input) specific PPIN (output)

specific DDIN (optional output),
proteins represented by most abundant isoform

complete DDIN,
proteins represented by principal isoform

I. mapping II. contextualization
Figure 3.2: The PPIXpress approach can be divided into two stages. Initially, complete PPIN
and DDIN are related to each other, whereby artificial domains (here shown in green) may
be introduced to ensure a complete connectivity on the domain-level. This correspondence is
then used to filter sample-specific domain-domain interactions (DDI) derived from transcript
expression data and to map these back to the supported protein-protein interactions (PPI). The
details are covered in the main text. Proteins without any expressed transcripts, as well as
domains that are not found in the most abundant transcript are shown translucent. In this
example, a method that only uses gene expression data would miss the disappearance of the
protein interaction shown as a red dashed horizontal line in the top right picture.

underlying DDI. In this step, PPIXpress considers the longest isoform of each
protein as its representative in the DDIN, because large-scale experimental
analyses and most databases usually declare it as the principal variant [277,
278]. Hence, the annotated domain compositions of the longest isoforms are
used to construct a network on the domain-level that is then related to the
reference PPIN. According to a dataset of feasible interactions between domain
types (see Section 3.3.2), edges between interacting domains of distinct proteins
are established in the DDIN if the protein pair is also connected in the PPIN.
Thereby, it is noted which DDI or which DDIs support each individual inter-
action between proteins in the network because different DDIs may ratify the
same PPI on this level.

If a protein interaction cannot be assigned to any domain interaction at
this stage, we add artificial domains to the affected proteins. Those domains
are utilized to also establish links in the DDIN between those interaction
partners in the reference PPIN whose binding cannot be explained otherwise
by available domain interaction data. Introduction of such artificial domains
allows our approach to sustain a complete correspondence between the two
network-layers. Adding fictitious protein domains to overcome the sparsity of
domain-level data was introduced before to improve the performance of protein
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complex prediction approaches that make use of such data [17, 180]. While [180]
introduced this idea in a non-deterministic way, PPIXpress uses a deterministic
approach as described in [17]. These non-physical domains are thought to
be present in every transcript coding for the protein and thus implement the
behavior of gene-based methods where domain-level annotation fails to explain
the protein-level outcome. This way, the methodology guarantees a seamless
and safe transition to the performance of the gene-level approach whenever
available data coverage on DDIs cannot explain the macroscopic observation.

Condition-specific construction

After the sample-independent mapping step, the expression data is incorpo-
rated to contextualize the network. Initially, all transcripts above a user-defined
threshold are determined for the specific expression sample. From those, only
the most abundant transcript of each protein is chosen to build a sample-specific
DDIN, whereas all others are neglected. Based on this specific DDIN derived
from the expression data and the previously determined mapping of DDIs to
PPIs, a specific PPIN is constructed that only contains interactions that are sup-
ported by domain-level evidence. Here, it is not important if an individual PPI
is backed by one or several DDIs; the existence of a single support is sufficient.

Viewed differently, PPIXpress used with transcript data first prunes the
reference PPIN in a node-specific manner such as the established methods that
are based on gene expression, but additionally trims the network in an edge-
specific way guided by the domain data. The resulting network is therefore
always a subnetwork of one obtained from a construction method based one
gene expression. Figure 3.2 shows an example for this (red dashed interaction).
These additionally considered ’edgetic’ changes, as they are called in recent
literature, are increasingly thought to be of crucial importance for phenotypic
traits [153, 279, 280]. If PPIXpress is switched to the gene-level mode all genes
with expressed transcripts (or all above the threshold if only gene expression
data is given) are taken into account. The longest coding transcript, the same
reference as in the initial mapping, is selected as the representative of the
protein. Thus the gene-level behavior is replicated while the specific DDINs are
also reported.

Although data and methodology would in principle allow to process the
contribution of a weighted ensemble of transcripts at this stage, we decided
to introduce the strong assumption to discard all but the most abundant tran-
scripts per protein. On the one hand, there is increasing biological evidence
that generally only one dominant transcript per gene acts as the main con-
tributor in a cellular condition [281–283]. On the other hand, quantifying the
distribution would require several additional parameters that may render the
model unnecessarily complex and consequently the tool less appealing to the
user. The discretization thus equally satisfies biological as well as practical
considerations.
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3.3.2 Datasets and protocols in PPIXpress

Protein interaction networks

Self-interactions between proteins are not considered by PPIXpress because they
interfere with classical types of network analysis such as complex prediction or
disease gene prioritization. Furthermore, if the input PPIN is annotated with
one of the non-UniProt accessions, they are converted using the HGNC web
service or Biomart [284], depending on the identifiers at hand.

Domain annotations

Internally, the tool queries UniProt [285] to infer the organism that is dealt
with from the network data. With this knowledge, all required annotation data
is retrieved from the appropriate and most recent Ensembl database [286] by
MySQL queries. The data comprise the relations between proteins, transcripts
and genes, but also the assignment of resulting protein domains to transcripts.
Only transcripts that can be directly associated to Swiss-Prot proteins are
considered.

PPIXpress uses domain annotations derived from the manually curated Pfam-
A database [287]. Pfam domains in Ensembl are detected for each transcript
individually using InterProScan [288] and are automatically updated with every
new release. As Pfam-A domains are non-overlapping and have predetermined
family-specific detection thresholds that are used by InterProScan to filter for
matches, neither additional parameters nor any postprocessing are needed
within PPIXpress for this step [110]. Moreover, queries and internal data struc-
tures are designed to reflect the repeated occurrence of the same domain type
within a protein in the optionally returned sample-specific DDINs.

Domain interaction data

To provide a comprehensive knowledgebase of physical interactions between
protein domain types with PPIXpress, we precompiled high-confidence do-
main interaction data from DOMINE [105] and IDDI [106]. Both are inte-
grated databases that assign reliability estimations to their available datasets.
In DOMINE (version 2.0) interactions were classified into disjoint categories
according to their estimated confidence. In IDDI (release May 2011) numerical
confidence values were assigned to each interaction. As those primary resources
appear not to be updated anymore, we additionally integrated automatic re-
trieval of current data from the 3did [107] and iPfam [108] databases whose
interaction data is exclusively inferred and automatically updated from the
RCSB Protein Data Bank [19].

By default, PPIXpress uses a high-confidence subset of DOMINE and IDDI
(see definition of PREHC in Section 3.3.3) expanded by the most recent 3did/iPfam
data. Interactions between domains of the same type are taken into account if
they are annotated.
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3.3.3 Datasets and protocols in evaluation

Protein interaction networks

Data of experimentally determined physical interactions between proteins
in human (H. sapiens, taxon 9606), mouse (M. musculus, taxon 10090), fruit
fly (D. melanogaster, taxon 7227), and yeast (S.cerevisiae S288c, taxon 559292)
were retrieved from IntAct (release 189) [158] using PPIXpress. For human we
additionally compiled a second PPIN from physical interactions between human
proteins in BioGRID (release 3.3.124) [289]. Here, a conversion to UniProt
accessions was carried out using mapping data from HGNC [290] that was
downloaded on May 5., 2015.

Expression data

For the case study, transcript expression data for breast cancer (BRCA) was
retrieved from TCGA [291] as level 3 Illumina HiSeq-RNASeq V2 data based
on RSEM quantification [73] and filtered to the portion of 112 matched nor-
mal/tumor samples (last updated Jan. 14., 2015).

Since it is a common threshold across popular RNA-seq quantification meth-
ods [167, 168, 292], by default all transcripts (or genes if only gene expression
data is given) with an abundance value above 1.0 are considered as expressed
in PPIXpress. For the case study we also used this standard threshold.

Domain annotations

For all conducted analyses we used data from Ensembl release 79.

Domain interaction data

To evaluate the potential influence of the DDI dataset on the results, we com-
piled different subsets of data from the aforementioned sources (see Section
3.3.2): PREHC only contained those interactions from DOMINE that were in-
ferred from structure or within the category of highest-confidence predictions
and those interactions from IDDI whose confidence values exceed a threshold
associated with an accuracy of 90% in the benchmarks of their original publi-
cation. PREVHC is a subset of PREHC that was restricted to the experimentally
known interactions in DOMINE and the portion of IDDI that achieved the
highest accuracy of 98% in [106]. 3did/iPfam contains the retrieved data from
these two structure-based databases and ALL-DDI denotes the merged dataset
PREHC [ 3did/iPfam. All conducted analyses were based on data from iPfam
version 1.0 and 3did version 2015_02. Table 3.1 outlines the respective sizes of
the four DDI datasets used.

Whole-genome rewiring of protein interaction networks

For all 112 cases in TCGA with matched BRCA data from both normal and
tumor tissue from the same patient, we constructed condition-specific pro-
tein interaction networks for both states and counted the changes in every
comparison across all matched samples. To keep track of the changes within
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ALL-DDI PREHC 3did/iPfam PREVHC

domain types 7, 449 6, 193 5, 920 4, 354
domain interactions 30, 551 26, 377 10, 953 6, 285

Table 3.1: Amount of domain-domain interaction data in the different datasets used.

the interactome we marked each interaction that was only observable in the
network of the disease sample as positive count and those that appeared only in
the network of the healthy sample as negative. Figure 3.3 illustrates the overall
approach for the network construction and comparison. For the evaluation the
networks were constructed with PPIXpress using different methodologies and
data. All steps were assessed for all settings individually. To obtain comparable
abundance thresholds for protein precursors in all methods, a gene was consid-
ered to be abundant if at least one of its transcripts was abundant in a given
dataset.

Besides noting the changes across all samples, a rewiring probability Prew per
interaction was individually computed for each matched sample pair and then
averaged over all samples. Prew was approximated as the number of rewiring
events (interactions added + interactions removed between samples) divided
by the number of interactions in normal or tumor, whichever was smaller.
Since such differential networks summarized over all matched samples will
inevitably contain many changes that occur only in few patients, we added a
filtering step. On the basis of Prew a one-tailed binomial test was applied to
check how likely it was to observe a certain number of rewiring events of an
individual interaction over all samples by chance. P-values were adjusted using
Benjamini-Hochberg [236] and only the interactions with adjusted p-values
below 0.05 were retained.

Randomized implementation of PPIXpress

To assess the assumption that only the most abundant transcript of each protein
contributes to the specific DDIN (see Section 3.3.1), we modified PPIXpress
to randomly select any of the transcripts above the expression threshold for
each protein instead. For this randomized implementation we repeated the
evaluation of the case study 100 times. As the construction method was applied
to 112 * 2 samples (all matched pairs) per iteration during that process and
the variance among the results was quite low, we think 100 iterations were
sufficient for this comparison. Since the ALL-DDI dataset was used with the
randomized method it is referred to as RANDOM(ALL-DDI) in the following
tables.

“Hallmarks of cancer” data and analysis

We associated proteins with 10 currently established hallmarks of cancer on
the basis of a handcrafted list of relevant GO terms by [251]. We retrieved
all proteins in human with such an annotation using QuickGO [241] on May
5., 2015. Associations inferred from automatic annotation (GO evidence IEA)
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Figure 3.3: For all matched BRCA samples from TCGA we built protein interaction networks
using different methodologies. d1 to d112 denote changes in topology between normal and tumor
interaction network in each matched pair. These differences were determined in every single
patient and summed up in a differential network shown at the bottom. Here, the interaction
between proteins A and B, for example, disappeared for all three shown matched sample pairs.
Thus the edge between A and B is annotated with -3 in the differential network shown at the
bottom.
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size of network fraction of contributing proteins / fraction of matched PPIs
organism data source proteins / interactions avg. degree ALL-DDI PREHC 3did/iPfam PREVHC

human BioGRID 15, 086 / 156, 271 10.4 0.517 / 0.264 0.506 / 0.256 0.364 / 0.099 0.334 / 0.093
human IntAct 13, 665 / 81, 460 6.0 0.437 / 0.246 0.428 / 0.241 0.287 / 0.103 0.259 / 0.097
mouse IntAct 7, 149 / 15, 742 2.2 0.264 / 0.173 0.259 / 0.169 0.144 / 0.068 0.135 / 0.068

fruit fly IntAct 10, 178 / 38, 592 3.8 0.102 / 0.039 0.099 / 0.037 0.051 / 0.014 0.041 / 0.012
yeast IntAct 5, 993 / 76, 003 12.7 0.530 / 0.186 0.513 / 0.181 0.272 / 0.038 0.230 / 0.036

Table 3.2: The annotation coverage of DDINs for different reference PPINs and different DDI
datasets.

were discarded as those are often inferred from protein interactions. A protein
interaction was associated with a hallmark term if at least one of its involved
proteins was part of the corresponding set of hallmark proteins.

Enrichment analysis

Enrichment analysis was performed using DAVID 6.7 [260]. We specifically
checked for enriched KEGG pathways [293] and GO biological processes [294],
set the proteins included in the respective input network as the background
and kept the default settings of DAVID otherwise.

3.4 results and discussion

3.4.1 Coverage of DDI datasets in practice

We first examined how many protein interactions are typically supported by at
least one non-artificial domain interaction in the mapping stage of PPIXpress
(interaction coverage) and how many proteins have domain annotations that
contribute to that (protein coverage). We did this across various reference PPINs
of several organisms and on the basis of different high-confidence DDI datasets
as described in Section 3.3.3.

The results are shown in Table 3.2. In all cases, a larger dataset allowed
to relate a larger part of the reference protein interactions to known domain
interactions. PREHC, for example, contained around 2.4 times as many DDIs
as 3did/iPfam (compare respective columns in Table 3.1) and could relate
2.3-4.8 times more PPIs to DDIs depending on the reference network examined
(compare PREHC and 3did/iPfam in Table 3.2). The addition of recent structural
data from 3did/iPfam to the precompiled integrated dataset only led to a small
improvement in interaction coverage (for all networks consistently below 1%,
compare ALL-DDI and PREHC in Table 3.2). The human interactomes had
the best coverage of interactions for all DDI data examined. However, even
in the best case, still only about half of the proteins and roughly a fourth
of the interactions could be associated with supporting domain information
at all. Since the density of the PPINs was very heterogeneous (avg. degrees
ranged from 2.2 to 12.7, see Table 3.2), the ratio of proteome and interactome
coverage is not meaningful across networks. Interestingly, the coverage of
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proteins associated with hallmarks of cancer was higher than those of non-
hallmark proteins (Tables S1/S2).

Whereas this analysis suggests that the partial coverage of domain annotation
may reduce the value of the proposed approach, it emphasizes the importance
of a flexible approach that is able to integrate both well and poorly annotated
proteins seamlessly. What are the reasons for that tenuous coverage? While the
vast majority of proteins in human and yeast are annotated with at least one
Pfam domain [111], even in our largest dataset only 7, 449 of the 14, 831 domain
types in Pfam 27.0 [287] have known domain interactions. Aside from the fact
that some domain types may not be meant to facilitate protein interactions
anyhow, experimental coverage of domain interactions is still sparse and not
expected to near completion in the near future [105, 295]. Even if data on
actual interactions was more comprehensive, respective binding interfaces have
to be related to conserved protein building blocks of any kind to make the
data universally applicable. However, interactions can also be mediated by
disordered regions between domains [95] which are difficult to account for by a
general annotation scheme as Pfam and are underrepresented there [111]. This
is, for example, the case for the pluripotency transcription factor Oct4 [296].

3.4.2 Rewiring of protein interactions in breast cancer

Since deregulation of splicing factors and accompanying alterations in protein
products are known to contribute to tumorigenesis [52–54], transcript-based
network construction may benefit an analysis in that context. Thus we present as
a case study a comparison of the changes in the interactome between matched
healthy and tumor samples from 112 breast cancer patients as explained in
Section 3.3.3 that we conducted with different network construction approaches.

In cancer, changes in the interaction network can be expected to include pro-
teins that are associated with certain hallmarks of cancer and that are frequently
found in biological processes and pathways related to cancerogenesis. Based
on this assumption we assessed whether the transcript-based methodology of
PPIXpress was advantageous to the established gene-based network adjustment
and to what extent selecting particular DDI datasets influenced the results.

Moreover, we examined the effect of our decision to exclusively rely on the
domain annotation of the most abundant transcript above the threshold for
each protein (see Section 3.3.1). To evaluate this, we randomized the transcript
selection in PPIXpress as explained in Section 3.3.3. On average only 1.55± 0.038
transcripts were expressed per protein of the BioGRID network in each sample
and 1.58 ± 0.040 in IntAct. Unsurprisingly, the number of discrete domain
assemblies among those expressed transcripts was even smaller (Tables S3/S4)
and they mostly resembled the domain composition of the longest-coding
transcript (Tables S5/S6), since the principal domain composition often remains
consistent among different isoforms [297].

An overview of the network sizes during the construction phase and some
statistics are provided in Supplementary Tables S7-S9. Using either gene- or
transcript-based filtering of the input PPIN, the normal to tumor conversion
was accompanied with a net loss of around 130-150 proteins and 900-1, 200
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interactions, depending on the reference PPIN (compare respective rows in
Tables S7/S8). In line with expectations, the networks constructed by the gene-
based approach were always the largest ones and had on average around 20

proteins and 800 interactions more than networks built from transcript data
using the ALL-DDI dataset, for example. Furthermore, the sizes of networks
built using transcript-based approaches slightly decreased with the amount
of DDI data involved (compare columns in Tables S7/S8 and see Table S9 for
a statistical evaluation). Networks constructed with transcript resolution and
the largest dataset ALL-DDI possessed on average around 10 proteins and
450 interactions less than those built using the smallest dataset PREVHC. Both
observations can be accounted for by the subnetwork property of our transcript-
based construction that we explained in Section 3.3.1. Since the sizes of the
constructed networks were similar to results by [168] who considered 12, 669
protein-coding genes to be expressed in healthy breast tissue, we deem our
expression threshold to be suitable. Independently of DDI data considered, all
transcript-based methods detected more rewiring events across the individual
matched sample pairs and overall a higher number of significant changes
in interactions compared to the gene-based approach (see first two rows per
network in Table 3.3 and respective rows in Tables S7/S8). In the case of the
ALL-DDI dataset, including transcript data into PPIXpress allowed to detect
357 additional significant rewiring events in BioGRID and 120 additional events
in the IntAct network (compare respective columns in Table 3.3).

Hallmarks of cancer

We first checked how many of the significantly rewired interactions per con-
struction method affected proteins that can be related to hallmarks of cancer (see
Section 3.3.3 for definition). Table 3.3 shows aggregated results for this analysis.
Details for the individual hallmark terms are given in Supplementary Tables
S10/S11. A statistical assessment of the differences between the methods on the
basis of Wilcoxon signed-rank test is made in Supplementary Tables S12/S13.
Overall, a construction based on transcript expression was, independently of
the reference PPIN and DDI dataset used, able to find a significantly larger
number of differential interactions that could be associated with hallmarks of
cancer than the gene-level approach (p < 0.001 in all cases, see first column in
Table S12). For example, of the statistically relevant rewiring events revealed by
the transcript-based construction on the basis of the ALL-DDI dataset 315 more
interactions indeed affected at least one protein associated with any hallmark
term compared to the interactions detected by gene expression and 103 more
in IntAct, respectively (compare third row per network in Table 3.3 and Tables
S10/S11). The fraction of such interactions among all differential interactions
was not significantly higher (see first column in Table S13). Thus only the
amount but not the density of relevant information was higher compared to
a gene-based construction. With few exceptions this also held for individual
hallmark terms (see fifth row per network in Table 3.3 for mean values and
Tables S10/S11 for details). Regarding the absolute number of interactions
affecting certain protein sets, only in ’Genome Instability and Mutation’ and
’Avoiding Immune Destruction’ in IntAct some of the transcript-based runs
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GENE ALL-DDI PREVHC RANDOM(ALL-DDI)

BioGRID
Prew 0.067± 0.016 0.069± 0.017 0.068± 0.017 0.078± 0.017

sign. rewired interactions 9, 754 10, 111 10, 022 8, 661± 55

part. in any hallmark term 7, 028 7, 343 7, 273 6, 265± 42

fraction in any hallmark term 0.721 0.726 0.726 0.723± 0.002
avg. part. per hallmark term 1, 749 1, 841 1, 820 1, 529± 15

avg. fraction per hallmark term 0.179 0.182 0.182 0.177± 0.001

IntAct
Prew 0.077± 0.019 0.079± 0.020 0.078± 0.019 0.086± 0.018

sign. rewired interactions 5, 184 5, 304 5, 280 4, 783± 25

part. in any hallmark term 3, 484 3, 587 3, 571 3, 168± 25

fraction in any hallmark term 0.672 0.676 0.676 0.662± 0.002
avg. part. per hallmark term 808 835 834 704± 9

avg. fraction per hallmark term 0.156 0.157 0.158 0.147± 0.001

Table 3.3: Results for the rewiring analysis of the breast cancer vs. normal interaction networks
in terms of rewired interactions that affect proteins associated with hallmarks of cancer as defined
by [251]. The rewiring of an interaction was defined as significant according to the statistical
protocol described in Section 3.3.3. An interaction was said to participate in a hallmark term if
one of its associated proteins belonged to the corresponding set of hallmark proteins. The rows
labelled “fraction” depict the relative proportion of hallmark-associated interactions among all
detected interactions. Comprehensive results for the individual hallmark terms and all DDI
datasets are provided in Supplementary Table S10 for the BioGRID network and in Table S11
for IntAct, respectively.

performed slightly worse than the gene-based method (see respective rows
in Table S11). The runs based on the highest-confidence DDI dataset PREVHC
never reported fewer interactions in any term category, though.

When the transcript per protein was randomized as explained in Section
3.3.3, the transcript-based analysis gave worse results than the gene-based and
all non-randomized transcript-based approaches (Tables S10-S13). In particular,
significantly less hallmark-relevant interactions were detected (p < 0.001 in all
cases, last row in Table S12). The difference in relevant fractions per hallmark
term was not significant, though (see last row Table S13). Interestingly, it
still found more interactions related to ’Enabling Replicative Immortality’ in
both reference networks than the gene-based methodology (see respective
row in Tables S10/S11). As this was the only example in all analyses where
the randomized method was superior to the gene-based one, we examined
in what regard the proteins in that set differed from all others, and how
the gene-based method could lose that much predictive power there. There
was no noteworthy difference in the coverage of the interactions among this
subset of proteins but an increase in protein coverage compared to all other
hallmark sets with 82% in BioGRID (avg. hallmark proteins: 68%, details in
Table S1) and 76% in IntAct (avg. hallmark proteins: 63%, details in Table S2).
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GENE / ALL-DDI GENE / PREVHC GENE / RANDOM(ALL-DDI)

BioGRID
common rew. interactions 9, 665 9, 716 8, 308± 7

exclusive rew. interactions 89 / 446 38 / 306 1, 445± 7 / 352± 54

affected proteins 117 / 424 58 / 326 1, 401± 5 / 344± 47

KEGG PWC 1.0 / 1 ⇤ 10-17 1.0 / 5 ⇤ 10-15 (2± 1) ⇤ 10-10 / (1± 8) ⇤ 10-7

enriched terms (KEGG) 2 / 34 1 / 19 16± 1 / 18± 5

highest enrichment (KEGG) 0.0013 / 2 ⇤ 10-17 0.0037 / 9 ⇤ 10-16 (2± 0.1) ⇤ 10-9 / (1± 8) ⇤ 10-10

enriched terms (GO BP) 6 / 116 0 / 87 108± 4 / 97± 15

highest enrichment (GO BP) 7 ⇤ 10-5 / 4 ⇤ 10-16 1.0 / 6 ⇤ 10-16 (3± 1) ⇤ 10-12 / (5± 0.4) ⇤ 10-12

IntAct
common rew. interactions 5, 118 5, 155 4, 653± 16

exclusive rew. interactions 66 / 186 29 / 125 531± 16 / 130± 17

affected proteins 87 / 213 46 / 145 571± 8 / 150± 17

KEGG PWC 1.0 / 9 ⇤ 10-11 1.0 / 4 ⇤ 10-6 (9± 9) ⇤ 10-6 / 0.12± 0.32
enriched terms (KEGG) 0 / 15 0 / 11 21± 1 / 7± 4

highest enrichment (KEGG) 1.0 / 4 ⇤ 10-13 1.0 / 4 ⇤ 10-8 (4± 5) ⇤ 10-13 / (3± 0.1) ⇤ 10-6

enriched terms (GO BP) 0 / 35 1 / 20 26± 2 / 13± 8

highest enrichment (GO BP) 1.0 / 3 ⇤ 10-6 0.0367 / 3 ⇤ 10-5 (6± 0.1) ⇤ 10-12 / (4± 8) ⇤ 10-4

Table 3.4: Shown are significantly rewired interactions that were exclusively found either by
the gene- or transcript-based methods and the proteins that are affected by them. In all but
the first lines per network, left values denote the outcome regarding interactions and proteins
exclusively found in the gene-based approach and right values the same for the transcript-
based construction. Affected proteins are proteins linked to significantly rewired interactions.
Enrichment was determined according to Section 3.3.3 and defined as p < 0.05 (Bonferroni-
adjusted). KEGG PWC abbreviates the enrichment of KEGG pathway ’hsa05200:Pathways in
cancer’ and GO BP abbreviates the GO category ’biological process’. Comprehensive results for
all DDI datasets are provided in Supplementary Table S14 for the BioGRID network and in
Table S15 for IntAct, respectively.

Thus comparatively many proteins had at least one annotated domain that
contributed to the DDI/PPI mapping, but the majority of the networks was
still covered by artificial domains. Furthermore, the proteins associated with
’Enabling Replicative Immortality’ had the most variable domain compositions
among the expressed transcripts per protein in both BioGRID (8% more than
any other protein subset, see Table S3) and IntAct (6% more than any other
protein subset, see Table S4). Intriguingly, they also had the smallest fraction of
expressed transcripts per protein that had the same domain composition as the
principal protein isoform (2.5-3.4% smaller than any other protein subset, see
Tables S5/S6). Consequently, the proteins in ’Enabling Replicative Immortality’
had the largest divergence from the principal domain composition among all
protein subsets that we examined and thus behaved most different compared
to the gene-based construction.
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Enrichment of exclusively found interactions

Next we examined for all transcript-based variants one-by-one if significant
changes were missed compared to a gene-based construction and which alter-
ations were found in addition. To quantify the relevance of rewiring events
exclusively reported by either method, enrichment analysis was performed on
the affected proteins (see Section 3.3.3). An outline of the results is presented in
Table 3.4, details are listed in Supplementary Tables S14/S15.

Generally, the results originating from gene- and transcript-based construc-
tion methods diverged more strongly the more DDI data was incorporated (see
first rows in Tables S14/S15). While a larger DDI dataset enabled transcript-
based approaches to detect more interactions that were not considered by the
gene-based adjustment, also more interactions that were detected by the gene-
based approach were not detected (see second row per network in Table 3.4 and
respective rows in Tables S14/S15). In all cases, the exclusively found significant
changes revealed by network construction based on transcripts featured many
more enriched pathways and GO processes and also a much higher enrichment
of individual terms compared to the portion of interactions that were only
found by the gene-based approach. KEGG term ’hsa05200:Pathways in cancer’,
for example, was not enriched in the exclusive results of the gene-based ap-
proach but strongly in those of the transcript-based method, independent of the
DDI dataset used (adjusted p < 10-5 in all cases, see fourth row per network
in Table 3.4 and respective rows in Tables S14/S15). It is worth pointing out
that the identified enriched terms are closely linked to carcinogenetic processes
suggesting that the rewired interactions are not simply random alterations
overall (Tables S16/S17). The most prevalent changes exclusively found by the
transcript-based method using the largest DDI dataset, for example, were found
across 66 matched samples in both networks. Four of the five exclusively found
rewiring events across both networks that occurred 66 times were related to
the loss of an interaction of FLT1 (P17948, ’Vascular endothelial growth factor
receptor 1’), a tyrosine-protein kinase that acts as a cell-surface receptor for
several cancer-relevant signaling cascades [285].

When the transcripts used to construct the specific DDIN were randomized,
the positive impact of the transcript-level data vanished in comparison to the
established gene-based methodology (see last column in Table 3.4).

3.5 conclusion

PPIXpress exploits domain interaction data to adapt protein interaction net-
works to specific cellular conditions at transcript-level detail. For the example of
protein interactions in breast cancer we showed how this increase in granularity
positively affected the performance of the network construction compared to a
method that only makes use of gene expression data. A platform-independent
and dependency- as well as installation-free implementation is provided that
only requires little manual effort by the user.
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3.6 addendum

3.6.1 Updates of PPIXpress

As of the end of 2019, around three years past the initial release of PPIXpress,
22 updated versions of the software were made available. The graphical user
interface of PPIXpress 1.20 is shown in Figure 3.4. This chapter describes the
feature set of version 1.01 that already included several helpful suggestions
made by reviewers of the original manuscript. Their remarks on the software
included adding the possibility to set expression thresholds according to per-
centiles, automatic retrieval of 3did and iPfam interaction data to be on par
with current knowledge in that regard, or the option to input protein interaction
networks using Ensembl or HGNC gene identifiers. Later updates then added
support for direct usage of transcript- and gene-level quantification outputs by
the popular tools RSEM [73] and kallisto [74], as well as expanded automatic
retrieval of interaction data by including the databases IRefIndex [298] and
mentha [161]. These sources are especially valuable in practice since they are
updated regularly (mentha even weekly) by integrating the most current data of
many established databases. Since the service is discontinued, the latest public
data of iPfam [108] is now included in each release of PPIXpress. Furthermore,
UniProt accessions can be automatically updated to their current primary acces-
sion1. This is important because input data may not be using the most recent
identifiers of a protein.

With version 1.12 we added the retrieval of Ensembl biotype definitions
for each individual transcript to account for mRNA surveillance mechanisms.
Because they will not yield viable protein products [2], proteins represented
by transcripts that are tagged with biotypes ”nonsense-mediated decay” or
”non-stop decay” are by default withdrawn from calculations and thus not
included in the constructed network.

As a suitable basis for follow-up tools, such as PPICompare (see Chapter 4)
and CompleXChange (see Chapter 6), the abundance of the most abundant
transcript (or the sum of all expressed transcripts coding for the protein)
is reported in the output of PPIXpress since version 1.15. Optionally, these
abundance values can be normalized by transcript lengths (since version 1.18).

3.6.2 On reweighting interactions rather than applying discrete cutoffs

PPIXpress uses a discrete cutoff to discern proteins that are expressed from
those that are not and only chooses the most abundant one out of all transcripts
coding for a protein as its representative in terms of domain composition. A
more natural approach would probably be to integrate the numerical values
that we have on the abundances of each isoform (or more correctly the corre-
sponding transcript, depending on the exact input data) to realize a continuous
approach which weights each contribution in a biologically sound way. We
decided against such a weighting for two reasons that were briefly discussed
in Section 3.3.1. First of all, the most relevant protein isoform seems to be
dominant anyhow in real biological samples [281–283]. Mixing this with minor

1 See https://www.uniprot.org/help/accession_numbers.

https://www.uniprot.org/help/accession_numbers
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Figure 3.4: The graphical user interface of PPIXpress 1.20.
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contributions could consequently dilute an actually pertinent biological signal.
Second, given that the abundance of each individual isoform would also have
an effect on their binding probabilities, the importance of each transcript’s
contribution to the domain composition would likely be best described statisti-
cally by some adjusted Boltzmann distribution which may require additional
parameters that should be tuned [299]. Since there is no adequate data on
something like that and the straightforward approach that we implemented is
actually well compatible with biological observations, we decided against such
a more complicated methodology in the original version of the software and
manuscript.

Still, PPIXpress includes a function that actually uses the information on all
transcripts and infers a reweighted sample-specific network. This function is
not documented in the user guide and only accessible from the code base by the
function constructAssociatedWeightedNetworksFromTranscriptAbundance() in the
class framework.NetworkBuilder. The approach is simple and devoid of additional
parameters that would require tuning: for each protein all expressed isoforms
(or corresponding transcripts) contribute to a weighted domain composition
rather than just taking the domain composition of the most abundant isoform.
Domains are thus not only present or not, instead they have an empirical
probability associated which we call the domain prefactor. For each domain
found in the isoforms of a certain protein it is computed as

P
abundances of all isoforms of the protein containing the domainP

abundances of all isoforms of the protein
.

The domain prefactors of two interacting domains can then be multiplied to
obtain the factor for reweighting the according interaction of the PPIN. If more
than one DDI of the sample-specific data can support the reference PPI, the
one with the largest weight and therefore the most likely option is chosen to
annotate the output protein interaction. Figure 3.5 clarifies the idea with an
example. Here, the interaction of A and B could be supported either by the
DDI of the green and orange domains or between the red and purple domains.

As a final note, the notion of a weighted domain composition is only a
statistically averaged representation of this ensemble and not linked to any
biological entity. The latter would be indeed the case for the default behavior
of using the domain composition of the most abundant isoform.

3.6.3 Updates regarding related research

The first experimental study on a larger scale on isoform-specific protein
interactions [7] was published shortly after the PPIXpress manuscript was
accepted. For the paper [7], the interactomes of 366 protein isoforms encoded
by 161 genes were profiled and assessed against a library of 13, 000 genes which
the group established in earlier work [137]. The results showed that the inclusion
of isoforms in the search for protein interaction partners led to a remarkable 3.2-
fold increase in the number of interactions, less than a third of all interactions
found in the screening were exerted by reference isoforms. Strikingly, different
isoforms of the same protein could even have completely different interaction
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Figure 3.5: Example for the simple interactome reweighting implementation in PPIXpress.
Here, a protein A has three expressed isoforms in a sample which all comprise a different set of
domains (marked by different colors) and have individual abundances. Isoform A’ is found 2
times, A” is found 3 times and A”’ is found 5 times. From this information a weighted domain
composition is calculated that is then used to determine prefactors for reweighting the original
weight annotations of the input reference PPIN.
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partners. In such cases, there was a strong tendency towards differences within
disordered regions of the isoforms rather than changes of conserved sequence
regions like domains, though. The loss of annotated protein domains, like those
used by PPIXpress, could indeed often explain the directed loss of specific
interactions which supports the core idea behind PPIXpress. A similar behavior
was observed for the loss of short linear motifs in sequence regions which
accumulated such otherwise relatively unspecific motifs.

On the basis of this first experimental dataset [7], it was later additionally
shown by another group that mapping domain interactions in the fashion
of PPIXpress allows for a reasonable approximation of the isoform-specific
interactome [207].

3.6.4 Outlook

PPIXpress in its current design solely uses information on Pfam domains to
infer changes to the protein interactome from transcripts or protein isoforms
expressed in a sample. As we already discussed broadly in Section 3.4.1, using
the established methodology and wealth of data on Pfam domain families
as well as their interaction preferences was a conceptually safe decision that,
however, still left room for improvement in terms of relating as much of
the input protein interactome to domain interactions as possible. While this
coverage is dependent on the protein interactome assessed, see Table 3.2 but also
the more recent data in Table 5.1, by their very nature Pfam domain annotations
inherently lack coverage of less conserved or even disordered regions of the
proteome [111]. Extending PPIXpress to include another type of sequence-based
descriptive motif could improve this coverage considerably. First of all, this
motif type needs to be known to facilitate protein interactions and there should
be a valuable amount of data available, and second, it should at best be rather
complementary to Pfam in the sense that it is less likely to be biased towards
rather conserved sequence regions.

Given these requirements and the recent indication of their relevance in
interaction rewiring by splicing [7], short linear motifs, which are contiguous
amino acid modules in proteins that can be specified and identified comparably
simple by using regular expressions [300–302], should be very promising
candidates for such an extension. There are plenty of rich resources on short
motifs like especially the ELM (eukaryotic linear motif) database [303] but
also other databases [304–306] and more general approaches working on short
peptides exist [307]. As intended, they often cover less conserved or even
disordered regions [308] and may thus enable PPIXpress to get a grasp on
interactions mediated by such regions as they are often of importance in crucial
cellular control mechanisms [45, 95, 96, 296]. Because linear motifs are very short
they are, unlike Pfam motifs, innately prone to false positive predictions [300].
Since the input PPIN serves as the template for potential motif interactions
that are allowed by the PPIXpress methodology, which means we already filter
knowledge-based for valid protein pairs, then the chance of false information
should be decreased considerably. This needs to be assessed and confirmed,
though.
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Apart from the rewiring due to changes in the transcriptome, the edge-specific
adaption of the interactome is also a hot topic in the context of mutations [153,
279, 280]. Because PPIXpress’ essential merit is to relate the change in genomic
regions to individual protein interactions, it appears obvious to then transfer
and apply this core idea to the mapping of mutations and interactions. Classical
tools like SIFT [309] or PolyPhen2 [310] aim to predict if a mutation affects the
general function of a protein, so they only present a node-centric view of the
issue rather than an outcome specific for individual interactions. Only newer
tools that rely on structural data, like dSysMap [311] and StructMAn [312], are
currently inferring effects on specific protein interactions. This is a gap that
could be filled by the data integration approach of PPIXpress.

My then student and now office colleague Andreas Denger applied the
PPIXpress model in his bachelor thesis “The effects of genetic mutations on
protein interaction networks” to study if interaction-specific effects of non-
synonymous single nucleotide polymorphisms can be predicted via relating
protein domains with individual protein interactions. Hereby he used the
mapping scheme of PPIXpress (see Figure 3.2) to decide which domains are
relevant for protein interactions. Then, the change in amino acid properties
(physicochemically, BLOSUM100 score [313]) as well as SIFT and PolyPhen2
predictions were used to declare a mutation as deleterious or neutral for the
interaction(s) affected. He could use a dataset by Sahni et al. [153] that was
relatively recent at that time to test if this method would be beneficial and found
that the added information could indeed increase the accuracy of predicting
alterations to individual interactions. When PolyPhen2 predictions alone were
used to decide if a mutation has an effect on the protein affected, for example,
the percentage of successfully classified edge deletions increased by 23% when
the information on the specific edge by the mapping of PPIxpress was added
compared to just applying the alterations to all interactions of the affected
protein.





4
R E W I R I N G O F T H E P R O T E I N I N T E R A C T O M E D U R I N G
B L O O D D E V E L O P M E N T

This chapter describes the tool PPICompare that enables differential analy-
sis of protein-protein interaction networks in a way that also describes tran-
scriptomic alterations causing rewiring events. We used the tool to analyze
developmental transitions in hematopoiesis. Sections 4.2 to 4.5 were adapted
and expanded from Will, T. and Helms, V., “Rewiring of the inferred pro-
tein interactome during blood development studied with the tool PPICom-
pare”, BMC Systems Biology, 2017 [92]. I initiated this project and the study,
designed and implemented the software, performed data analysis, conceived
the figures and wrote the original manuscript. Volkhard Helms aided in de-
signing the study, interpreting the data as well as editing of the manuscript.
Supplementary materials that are published were omitted here, please re-
fer to the online materials https://doi.org/10.1186/s12918-017-0400-x. A
platform-independent implementation of the tool PPICompare is available at
https://sourceforge.net/projects/ppicompare/.

4.1 prerequisites

4.1.1 On clustering data

Clustering or cluster analysis is the task to group together samples of data
points so that samples within the same group are more similar to each other
in terms of a certain distance function than to samples in other groups. The
term and first applications date back to the 1930s with origins in anthropology
[314] and psychology [315, 316]. Since no labeling of the samples is needed in
clustering, the procedure belongs to the class of unsupervised learning methods.
For an example of a supervised method, see Section 6.1.2 on the classification
of data.

There are diverse approaches to clustering data that, due to their very differ-
ent views on the matter, basically solve alternative definitions of the problem
[317]. Classical types of methods are, for example, based on centroids where
clusters are modelled by central points to which its members are nearest, like in
the popular k-means algorithm [318, 319]. Clustering can be done distribution-
based where statistical distributions define the likeliness of a cluster assignment
[320] or density-based where tools such as DBSCAN [321] connect dense re-
gions of the data into clusters. Furthermore, there are graph-based approaches,
like spectral clustering [322], in which the samples are modelled as the vertices
of a graph whose edges describe the distances between samples and graph the-
ory is used to assign clusters. Hierarchical clustering approaches are probably
the most popular class of methods. Since we applied such a clustering in the
following project, I will go into more detail with this concept.
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On hierarchical clustering

Hierarchical clustering (HC) is a very flexible framework for clustering data that
can be adjusted to the task at hand by plugging in diverse functions: a distance
function (also called metric) d(a,b) that depicts how (dis)similar two samples
a and b are and a linkage criterion L(A,B) that uses d(a,b) to determine a
linkage distance between two sets A and B of samples.

Compared to other clustering approaches, HC is very appealing due to
its flexibility of distance and linkage functions, its conceptual simplicity and
because it captures modularity in the data well, e. g. it reports subclusters in
clusters and not only clusters that are disjoint. The latter feature can also be
seen as a disadvantage because a minimal amount of manual inspection and
interpretation is required because various cluster assignments are reported
rather than a single automatically derived partitioning of the data that tells the
user where an individual cluster starts and ends [320, 323]. The output of HC
is called a dendrogram and depicts the hierarchy of groupings as a tree. See
Figure 4.4 for a real-world example of a dendrogram derived by such a method.

HC can be performed using two very distinct strategies. Clustering can be
conducted “bottom-up" by successively merging pairs of clusters whereby each
element is initiated as its own cluster when starting (agglomerative), or “top-
down” by placing all elements in one cluster and performing successive splits
(divisive). Divisive clustering is usually only applied when one is interested in a
small number of clusters in huge datasets, agglomerative clustering is generally
the more common approach [320]. Pairwise distances d(a,b) for all samples are
either already the input for the approaches or are precomputed once. Merging
and splitting are then decided on the basis of the distance between clusters
L(A,B). In agglomerative clustering the most similar cluster pair is merged
in each step until only one cluster is left, whereas divisive clustering works
reversely and thus always splits the most distant candidate pair.

Table 4.1 lists commonly used metrics applied in HC. In principle every
distance function on the feature vector of the data can be used for clustering
provided that it complies with the type of data in the description of the fea-
tures. This is important in this respect because descriptors are not limited to
numerical data. Furthermore, it should be noted that different functions can
have different requirements regarding their preprocessing. There may be a need
for normalization of the data, for example [323].

The three classical linkage criteria are shown in Table 4.2. There are more
sophisticated choices, like Ward’s method which tries to minimize the within-
cluster variance in each merging step [324], and while all linkage functions have
specific strengths and weaknesses depending on the structure of the data they
are applied to, the elementary functions listed here are still the most relevant
ones in practice [323].

In our project we used the UPGMA (unweighted pair group method with
arithmetic mean) approach [327] with either the Correlation or the Hamming
distance as the distance function, depending on the type of input data (continu-
ous numeric / Boolean).
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name definition

Euclidean distance (L2-norm) deuc(a,b) =

s
nP
i

(ai - bi)2

Manhattan distance (L1-norm) dman(a,b) =
nP
i

|ai - bi|

Correlation distance dcor(a,b) = 1- ⇢(a,b)

Hamming distance dham(a,b) = |{i 2 {1, . . . ,n}|ai 6= bi}|

Table 4.1: Popular metrics used in HC. The upper three functions are defined for numerical
data while the Hamming distance as shown here is intended to be applied to Boolean vectors.
The Pearson correlation coefficient ⇢ is applied in the Correlation distance. Notably, there are
various ways to define distance functions based on correlation. Often metrics are additionally
normalized by the number of features n.

name definition

minimum / single linkage [325] Lmin(A,B) = min
a2A,b2B

d(a,b)

maximum / complete linkage [326] Lmax(A,B) = max
a2A,b2B

d(a,b)

average linkage (also called UPGMA) [327] Lavg(A,B) = 1

|A||B|

P
a2A,b2B

d(a,b)

Table 4.2: Popular linkage criteria in HC. Every valid distance function d(a,b) can be used to
compare the linkage between two clusters A and B.

4.1.2 On set-cover problems

Given a finite set of elements X and a collection F of subsets of X such that
8x 2 X, 9f 2 F : x 2 f, the set-cover problem is to find a minimum-size subset of
F such that the union equals X [328]. The hitting-set problem is an equivalent
reformulation of the set-cover problem in which a bipartite graph represents
the subsets F as vertices on the left, all elements of X as vertices on the right
and edges depict the memberships of elements in subsets. The objective is then
to find the smallest subset of left-vertices such that all right-vertices are covered
[329]. Figure 4.1 exemplifies an instance of the problem in the two formulations.

Optionally a weight w : F! R+ can be introduced on the subsets F to define
a weighted set-cover problem. Then the goal is to find the minimum cost subset
of F that suffices to cover X [330].

Finding the optimal set-cover is one of Karp’s 21 classical NP-complete
problems [329]. While there is thus no algorithm that yields the optimal solution
in polynomial time, greedy algorithms can provide good approximations for
such tasks in polynomial time [328, 330]. Typically set-cover problems are
solved using integer linear programming, a special class of linear programming
(see Chapter 6.1.1), or by applying a fast heuristic approach.
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Figure 4.1: Set-cover problem example. The subsets f 2 F are differentiated by their coloring in
the set-cover formulation (a) while they are represented by the vertices on the left side in the
hitting-set formulation (b).

The classical greedy methods for set-cover problems will be introduced
briefly here because they are quite straightforward and the weighted version is
implemented in our software PPICompare. Both methods consecutively select
one subset from F in each iteration until the union of selected subsets satisfies
the set-cover criterion. The algorithm for unweighted problems repeatedly
chooses the f 2 F that adds the largest number of yet uncovered members of X
until all elements are covered [328]. For weighted set-cover problems, in each
selection step the f 2 F is chosen that minimizes the cost w(f)

s
of adding an

element to the cover instead whereby s here denotes the number of elements
that are appended to the cover by the selection of f [331].

4.2 introduction

Generally, every apparatus is better specified by the connection of its parts than
by the sole list of parts. In the same way, the state of a cell is better described by
the cooperative action of its active molecular machinery than by a simple list of
its genome-encoded building blocks. Consequently, decades of research have
gone into detecting physical interactions between proteins. Aggregating all this
effort into comprehensive protein-protein interaction networks (PPINs) that
represent the known protein interactome of an organism has been an important
achievement [150, 275].

However, a static representation of the full interactome does not reflect its
wiring in different tissues, cell types, diseases or any other arbitrary cellular
state. Experimental data on protein-protein interactions (PPIs) in particular
contexts is very limited and it is unclear whether its amount will increase
substantially in the near future [150, 332]. Previous experimental studies typ-
ically focused on very specific issues, such as the perturbation of individual
interactions by disease mutations [153, 279] or posttranslational modifications
[333], and covered only small subsets of the proteome. The general lack of
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context-sensitive interactome data is commonly overcome by computational
methods that integrate condition-specific gene expression data with the known
PPIN of that organism so that at least the influence of that factor is considered
on a genome-wide scale. A straightforward approach is to filter the PPIs to the
protein-coding genes that are expressed in a certain condition. This strategy
was applied before in the contexts of tissues and cell types [165–167, 334] and
of diseases [168, 169, 335].

The aforementioned limitation concerning condition-specific experimental ev-
idence on PPIs as well as its solution of integrating additional data equally apply
to the study of alterations in molecular networks [336, 337]. Most biologically-
motivated differential network methods, regardless whether they depict physi-
cal interactions between proteins or another kind of pairwise relation, utilize
a data-type dependent correlation measure to assess rewiring [266, 338–340].
Other methods put a stronger focus on the topology of the networks [341] or
additionally make use of heterogeneous ontology information [342]. Concep-
tionally, correlation of gene expression is a reasonable measure of pairwise
association in the context of biological interactions between genes or corre-
sponding proteins. In the very case of protein interactions, however, the notion
does neither unveil which transcriptomic alteration caused a rewiring nor pro-
vide sufficient information to assess the implications of alternative splicing (AS)
events. Although AS has a substantial effect on the wiring of the interactome [7,
45, 46, 51], it is not yet accounted for by any current computational approach.
Appropriate consideration would require the integration of expression data
with transcript resolution and a general model that is able to relate protein
isoforms to specific interactome phenotypes.

We recently introduced PPIXpress [90] (see also Chapter 3), a PPIN contextu-
alization method that enables users to account for the effect of AS events on
the interactome based on transcript-level expression data. Using knowledge on
the viable interactions between protein domains and the domain composition
of protein isoforms, the method first relates each protein interaction in the full
PPIN to an underlying domain interaction. Then it uses this correspondence
to infer the condition-specific presence of PPIs given the protein isoforms indi-
cated by the expression data. Non-transcriptomic effects on protein interactions
are not covered by this approach. As an extension of this work, we propose here
the differential PPIN tool PPICompare that compares the inferred interactomes
between samples of two groups and tracks the cause of each alteration. The
tool determines statistically significant between-group rewiring events and
annotates each rewiring process with the underlying cause (one or both cor-
responding genes missing, or interacting domains missing due to differential
transcript usage). Also, PPICompare constructs a small set of the most relevant
alterations to the transcriptome that explain all systematic differences in the
networks. A first application of the novel software is presented on the example
of hematopoiesis [343] using data generated by the BLUEPRINT epigenome
project [89, 344, 345]. To our best knowledge this work represents the first
study of rewiring processes of the protein interactome during development
with similar scope and granularity.
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4.3 materials and methods

4.3.1 PPICompare

PPICompare is currently designed to be used as an extension to our tool
PPIXpress for constructing condition-specific protein interaction networks [90]
but can also be applied to suitable input data generated in alternative ways. As
basis for the subsequent analysis, contextualized PPINs are constructed with
PPIXpress for each transcript expression sample. This is explained in detail in
the subsection “Constructing blood cell interactomes” below.

Given two groups of condition-specific PPINs built from the same reference
PPIN, PPICompare detects all interactions that are significantly rewired between
samples of the groups. In [90] we presented the underlying principle of the
statistical model and applied it to the special type of matched datasets in a
case study on breast cancer. Here, we extended the methodology to arbitrary
groups of networks and provide a stand-alone software tool for this type of
analysis. In particular, it reports descriptive statistics of the actual reasons for
each rewiring event and determines a small set of the most relevant alterations
to the transcriptome that explain all systematic differences in the networks. All
output is written to files in the format of node- and edge-attribute tables that
can be imported into other tools like, for example, Cytoscape [346]. A platform-
independent Java 8 implementation of PPICompare that is able to efficiently
utilize current multi-core CPUs is freely available at https://sourceforge.net/
projects/ppicompare/. A user guide and example data are provided together
with a precompiled executable and the complete source code.

For both practical as well as biological reasons discussed in [90], PPIXpress
only adjusts the presence of interactions according to the expression data but
does not alter their weight annotations. Consequently, a differential analysis
of the derived networks is done based on discretized information. While dis-
cretization always implies a loss of information, it also simplifies the state space
of the problem considerably and it can deflate noisy data. Advantages and
disadvantages of using discretized expression data are discussed in [347], for
example.

Figure 4.2 outlines the individual steps in the workflow of PPICompare. The
details of panels A) to C) are described in the following three paragraphs.

A) Examining the interactome differences between all inter-group pairs of samples

In the first stage of the differential analysis (Figure 4.2A), each sample in the
first group is compared to each sample in the second group in terms of their
PPIs. Ideally, a group of samples stands here for a representative distribution
of interactomes for a condition under study. For every pairwise comparison i a
differential network �i monitors whether a particular interaction (u, v) between
proteins u and v is only found in one of the two groups. PPICompare considers
the first group as the reference system and the second group is compared to
it. An interaction (u, v) that is exclusively found in the sample of the second
group is thus noted as �i(u, v) = +1. Likewise, an interaction (u, v) lost in the
second group is noted as �i(u, v) = -1. All N individual pairwise observations

https://sourceforge.net/projects/ppicompare/
https://sourceforge.net/projects/ppicompare/
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Figure 4.2: Workflow of PPICompare. A) Examine the interactome differences between all
inter-group pairs of samples. B) Assess the significance of and the reasons for each rewiring
event. C) Discern a small set of likely changes in the transcriptome that explain the rewiring.
Details are described in the main text.

are weighted equally and summed up to obtain a global differential network
� whereby each edge (interaction) is annotated with the signed number of
changes affecting it in the inter-group comparisons: �(u, v) =

P
N

i
�i(u, v). As a

result of this, rewiring events with opposing observations, where both addition
and removal events were detected for the same interaction, are downweighted
in a natural way. The unchanged portion of the interactome does not appear at
all in the differential network. Potentially emerging null-sum annotated edges
in the cumulative network � are removed after the summarization.

Besides tracking the amount of rewiring per edge, PPICompare quantifies
the fraction of interactions that are changed in each pairwise comparison i

by a rewiring probability Prewi
. We defined Prewi

as the number of rewired
interactions normalized by the size of the union of interactions in both samples.
This is basically the Jaccard distance [348] of the edge set. Thus Prewi

= 1-
|ai\bi|
|ai[bi|

, where ai and bi are the respective sets of interactions in the samples
compared in comparison i. In the matched comparison scheme of [90] we used
the number of interactions of the smaller one of both PPINs as a stringent
normalization factor. Taking here the union of the corresponding interaction
sets for normalization in the Jaccard distance allows application of the method
to more variable non-matched data, because a value in [0, 1] is ensured. Note
that all pairwise comparisons are independent from each other. The final inter-
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group rewiring probability Prew is then obtained as the average of all individual
pairwise probabilities Prewi

: Prew = 1

N

P
N

i
Prewi

.

B) Assessing the significance of and the reasons for each rewiring event

Prew can be interpreted as the probability of each interaction to be rewired.
A one-tailed binomial test is then used to assess the statistical significance
of candidate rewiring events (u, v) in the differential network � against this
background (Figure 4.2B). For each candidate (u, v) 2 � and a given Prew,
PPICompare computes the likeliness of observing at least the annotated number
of rewiring events |�(u, v)| over all N pairwise comparisons by chance:

p(u,v) = 1-

|�(u,v)|-1X

i=0

✓
N

i

◆
(Prew)

i(1- Prew)
N-i.

The p-values are subsequently adjusted using the Benjamini-Hochberg pro-
cedure [236]. Only rewiring events below a user-defined false discovery rate
(FDR) threshold are processed further and reported. Although a significance
filter based on sufficient deviation from the background rewiring could be con-
sidered as naïve and very conservative, it represents a straightforward statistical
model that ensures only reliable results are reported to the user.

Since version 1.05, PPIXpress can optionally report the major isoform that
was associated with each individual protein during the construction of the
condition-specific interaction network. As a consequence, PPICompare can use
the output of PPIXpress to exactly reproduce and annotate which change or
which changes in the transcriptome altered an interaction between samples of
the two groups. Since each interaction depends on the presence as well as the
compatibility of both interacting proteins, the two essential causes of rewiring
events are either a major shift in the abundance of at least one interaction partner
between groups (differential expression, DE), or a switch of the major isoform
of at least one of the proteins that alters the domain composition in a way that
affects the interactome (alternative splicing, AS). Whereas alterations to both
proteins are in principle not necessary to explain changes to an interaction, even
redundant pairs of causes are explicitly monitored by PPICompare because
they could point to a different mode of regulation, such as the purposeful
coexpression of complex partners. PPICompare determines and reports the
individual distributions of all causal reasons for each significantly rewired
interaction.

C) Discerning a small set of likely changes in the transcriptome that explain the
rewiring

To identify the events that caused the systematic rewiring of the PPINs between
the groups under study, it is reasonable to look for a set of transcriptomic
changes that is both very likely given the data and of small cardinality.

The association of causes and affected interactions can be thought of as a
bipartite graph, where one class of nodes are the significantly rewired interac-
tions and the second class are individual causal reasons (change in expression
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or splice form of a single protein). In such a graph, the alterations point to
the interactions they affect (see Figure 4.2C). Here, we tracked how often a
transcriptomic cause i is relevant for each rewiring event. Thus, we know
the number of pairwise comparisons pwi in which the alteration happened
and the number of significantly rewired interactions rwi that were affected
by it. Since the importance of a rewiring reason i should be related to its
frequency across all comparisons and rewired interactions, we score each one
with si = pwi⇥ rwi. Determining then a small set of those reasons that explain
all rewiring events and consists of preferably important members is a weighted
set-cover problem [330].

As this problem is classically defined as a minimization problem, we con-
verted the scores si into weights wi by setting wi = smax - si, where smax =
max(si) + 1. The addition of one prevents the possibility of numerical equality
and subsequent loss of information in the ratio that is then optimized. To effi-
ciently solve this weighted set-cover problem for large instances, PPICompare
implements a greedy algorithm with provable performance guarantees [331].
The algorithm repeatedly selects the rewiring reason i with the minimum ratio
of wi divided by the number of rewiring events that it additionally explains.
This is done until all significant rewiring events are covered. The resulting
solution set is part of the standard output of PPICompare.

Note that the notion of a reduced set refers here to the relevance in the
interaction networks only. At a higher level, some crucial alteration which
is not necessarily of transcriptomic origin and is simply not reflected in the
differential interactome may, of course, reside upstream in the hierarchy of
causal regulatory effects and thus be of more importance.

4.3.2 Constructing blood cell interactomes

Specific PPINs for samples of 11 hematopoietic cell types were constructed
on the basis of transcript expression data from the 7th data release (Sept.
2015) of the BLUEPRINT epigenome project [89, 344, 345]. From the provided
preprocessed data of the consortium we considered all samples of blood stem
cells and precursors derived from cord blood and all samples of common
mature cell types derived from venous blood that had at least 3 samples
for this tissue of origin. The downloaded data included RNA-seq data on
hematopoetic stem cells (HSCs, 6 samples), multipotent progenitors (MPPs, 3
samples), common myeloid progenitors (CMPs, 3 samples), common lymphoid
progenitors (CLPs, 5 samples), megakaryocyte erythrocyte progenitors (MEPs,
4 samples), granulocyte monocyte progenitors (GMPs, 3 samples), erythroblasts
(EBs, 7 samples), and megakaryocytes (MKs, 5 samples). Regarding common
mature cell types that met those criteria we obtained data for neutrophils
(Ns, 10 samples), monocytes (Ms, 5 samples), and naïve CD4 T cells (CD4s, 8
samples).

For consistency, we followed the strategy used in [89] from which we took our
input data and of others who investigated blood cell types during development
[349–351]. Thus, we based our analyses on the ontological relationships defined
by the classical dichotomy model of hematopoiesis [343, 352]. Although recent
insights based on data from single-cell sequencing challenge this established
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Figure 4.3: Hierarchy of hematopoietic differentiation stages used as basis for our study. For
reasons discussed in the main text, we only considered classical ontological relationships for all
analyses (solid lines) and did not include more recent models and their accompanying novel
entities. Lymphomyeloid-restricted progenitors (LMPPs, first proposed by [356]) are shown as
an example for emerging relationships that are not covered by our data (dotted lines). In this
model, MPP, CMP, MEP and GMP are developmental branching points and will be investigated
in detail later.

model of hematopoiesis, the model characterized by the BLUEPRINT data was
not analyzed with respect to protein interactions so far and there appears to
be no clear consensus on a revised model yet [353–357]. Figure 4.3 shows a
schematic representation of the developmental relationships among the cell
types we examined.

The preprocessed RNA-seq data of the 7th BLUEPRINT release was quan-
tified with RSEM [73]. For better comparability between samples [358, 359],
PPIXpress uses transcripts per million (TPM) as the relevant expression measure
for RSEM output files. For all transcript expression samples we built protein in-
teraction networks with PPIXpress (version 1.08) for a range of TPM thresholds
from 0.0 TPM to 1.0 TPM in steps of 0.01. This means that only proteins with
an associated transcript that was expressed above this cutoff were considered
in the respective network contextualizations. Using PPIXpress, we retrieved
the full protein interaction network for human (taxon 9606) from mentha [161]
(data of 18. Jan. 2016). Outdated UniProt accession numbers (release 2015_12)
[285] were updated automatically by PPIXpress. The resulting human reference
protein interaction network contained information on 221, 158 physical inter-
actions between 17, 292 proteins. Furthermore, PPIXpress retrieved annotation
data from Ensembl (release 83) [360] and domain interaction data from 3did
(release July 2015) [107] and iPfam (version 1.0) [108] for the mapping of protein
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interactions to domain interactions. With this data, 49.1% of the proteins in the
reference PPIN were annotated with at least one domain that contributed to
the PPI association. 20.3% of the PPIs were covered by domain interactions and
thus may be potentially altered by AS events that our model can capture. Note
that this partial coverage is in an expected range for domain annotations and
domain-domain interaction data [90]. Interations that are mediated by disor-
dered regions between such conserved domains are currently not considered by
PPIXpress because they hardly comply with universally applicable annotation
schemes. These practical limitations certainly confine the ability of the pipeline
to detect the contribution of AS on the in-vivo rewiring of the proteome in its
entirety. See [90] for more details concerning the methodology.

To establish a good TPM threshold, we utilized additional independent data
on proteome abundance from the Human Proteome Map (HPM) [127] on
individual hematopoietic cell types. We used their mass-spectrometry data on
the abundance of proteins mapped to HGNC protein-coding genes [290] and
considered each protein as present if its corresponding abundance value was
larger than zero.

4.3.3 Datasets and protocols in evaluation

Participation in complexes, annotational homogeneity, and betweenness of interactions

To determine whether an interaction within a known complex is rewired, we
downloaded the data on human protein complexes from CORUM (release Feb.
2012) [361] and checked whether interacting protein pairs belong to a known
complex.

Furthermore, we annotated all interactions in our reference PPIN with the
semantic similarity of the interactors concerning the three GO ontologies bio-
logical process (BP), molecular function (MF), and cellular compartment (CC)
[294]. Semantic similarities were obtained using GOSemSim (version 1.28.2)
[362] with default options and annotation data from org.Hs.eg.db (version 3.2.3)
[363]. Also, we determined the betweenness of the interactions, which is the
normalized sum of the fraction of all-pairs shortest paths that include this
interaction. Betweenness values were computed with NetworkX (version 1.10)
[364] on the basis of the reference PPIN.

Association and enrichment of rewiring events within pathways

We mapped deregulated interactions to the biological pathways they might
affect. A related approach based on the coexpression between adjacent genes in
pathways was proposed by [266] and termed Edge Set Enrichment Analysis
(ESEA).

We retrieved preprocessed KEGG [365] and Reactome [366] pathway data as
undirected graphs from the ESEA R package (version 1.0) [266] and converted
the HGNC gene names to UniProt accessions using mapping data from the
HGNC web service (accessed on March 26th, 2016) [290]. We followed the ex-
ample of [266] and only considered pathways with at least 15 and at most 1, 000
connections in the original pathway data. The remaining pathway-annotated
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links were then related to the exact interactions in our reference interactome
data. 3, 394 PPIs (1.5% of our reference PPIN) among 1, 624 proteins (9.4% of
our reference PPIN) could be exactly mapped to 106 KEGG pathways. 7, 318
PPIs (3.3% of our reference PPIN) among 2, 617 proteins (15.1% of our reference
PPIN) corresponded to 495 Reactome pathways. Enrichment of pathways was
calculated on the basis of a hypergeometric test as is often done for gene sets
[367]. P-values were subsequently adjusted for KEGG and Reactome pathways
independently using the Benjamini-Hochberg procedure [236]. Since PPICom-
pare only distinguishes between rewiring events that are statistically significant
and those that are not, the GSEA-based approach [233] of ESEA to identify
pathway enrichment is not applicable for our task.

Unspecific enrichment analysis of deregulated proteins using DAVID

Unspecific protein-set enrichment analysis was conducted with the DAVID
web service (version 6.7) [260] using default settings. We set all proteins in the
reference PPIN as the background for the analysis. The reported significances of
term enrichments refer to the p-values adjusted using the Benjamini-Hochberg
correction [236].

Proteins relevant to hematopoiesis and their regulatory targets

As proteins relevant to blood development, we considered all human proteins
annotated with GO term GO:0030097 (“hemopoiesis”) using QuickGO [241] on
May 30th, 2016. In our reference PPIN this was the case for 480 proteins. We
refer to these as “hematopoiesis proteins” in the remaining text. Additionally,
we downloaded literature-curated annotations of experimentally validated
gene regulatory relationships in human from the TRRUST database (version
12/08/2014) [368]. Due to the importance of distal regulatory interactions in
eukaryotic development [13] and the confidence of the data, we preferred this
database to more extensive data derived from proximal binding sites in gene
promoters. The regulatory network contained data on 727 transcription factors
(TFs) and 7, 906 interactions between proteins in the reference interactome.
Among these TFs were 101 hematopoiesis proteins. Combining both data
sources, 1, 274 proteins were either hematopoiesis proteins or proteins directly
regulated by a hematopoietic TF.

Enrichment of a query regarding a specific protein set defined by this data
was then determined using a hypergeometric test. As protein sets we analysed
the combined set of hematopoiesis proteins and targets of hematopoietic TFs,
the set of hematopoiesis proteins, and its subset of hematopoietic TFs.

Furthermore, we determined enrichment of targets associated with TFs
covered by our regulatory data. Since the sets of targets of each TF were tested
individually, the p-values for each TF were subsequently adjusted using the
Benjamini-Hochberg procedure [236].
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4.4 results and discussion

Using PPIXpress and transcript expression data from BLUEPRINT we con-
structed the protein interactomes of 59 samples representing 11 different types
of blood cells for different expression thresholds (see Methods section). To
ensure that the biological analyses regarding developmental transitions were
based on a single expression discretization parameter that best reflects the
actual protein concentrations in the cell, we used mass spectrometry-based
proteome abundance data from HPM [127] for guidance (see Supplementary
Results S1.1). All further analyses presented were performed on the protein
interaction networks constructed with the HPM-derived threshold of 0.31 TPM.
Furthermore, we checked by a subsampling approach how robust the rewiring
detection methodology was if only a small number of samples was available for
comparison (see Supplementary Results S1.2). Apparently, groups with at least
3 samples provide meaningful results. As there is no computational pipeline
with comparable features and scope, we did not contrast PPICompare with
other tools.

4.4.1 The rewiring of the blood interactome during development

For a biological interpretation of the derived protein interaction networks,
we compared all cell types that are adjacent in developmental progression
according to the classical model of hematopoiesis as depicted in Figure 4.3.
PPICompare (version 1.0) was applied to the corresponding PPINs generated
with HPM-optimal threshold and the default FDR of 0.05. Table 4.3 summarizes
the differences in the interactome sizes detected at developmental transitions.

Developmental branching points associated with lineage commitment are most distinct
in terms of quantitative rewiring

Without a tool such as PPICompare, the average net difference in the number of
interactions between proteins �ni ! nj (third column) is the only differential
measure that can be analyzed. On its own, it provides little information on how
many and no information on which interactions actually emerged or vanished
during a conversion from i to j. For two of the four developmental branching
points that were considered in our model of blood development (see Figure
4.3), the net difference even had a different sign depending on the direction
of the transition in the branch. Interestingly, this was exactly the case when a
bifurcation is passed that determines a lineage choice, namely, when descendant
cells of MPPs either evolve toward the erythro-myeloid (MPP!CMP) or toward
the lymphoid lineage (MPP!CLP) and, later in the developmental tree, when
descendants of MEPs belong either to the erythroid (MEP!EB) or to the
myeloid lineage (MEP!MK).

As a consequence of the high variance among the network sizes of most
cell types, the standard deviation �(�ni ! nj) was larger than its mean
change for most developmental steps. We analyzed whether this within-group
variance is an artifact from the network discretization. Yet, the interactome
sizes showed a similar variability when all transcripts with non-zero expression
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protein interaction networks PPICompare results
transition interactome sizes ni ! nj �ni ! nj Prew obss/obsall rew+/rew- rew+ - rew-

HSC!MPP 101, 235± 30, 315! 111, 556± 10, 069 10, 321± 31, 944 0.372 15/18 (0.83) 311/123 188 (0.32�)
MPP!CMP 111, 556± 10, 069! 117, 254± 3, 176 5, 698± 10, 558 0.278 9/9 (1.00) 856/423 433 (0.50�)
MPP!CLP 111, 556± 10, 069! 79, 383± 31, 849 -32, 173± 33, 402 0.455 15/15 (1.00) 1/705 -704 (0.94�)
CMP!MEP 117, 254± 3, 176! 117, 768± 8, 692 513± 9, 254 0.261 8/12 (0.67) 3, 955/2, 532 1, 423 (0.10�)
CMP!GMP 117, 254± 3, 176! 121, 051± 6, 427 3, 796± 7, 169 0.256 6/9 (0.67) 8, 468/5, 556 2, 912 (0.12�)

MEP!EB 117, 768± 8, 692! 111, 326± 28, 549 -6, 441± 29, 842 0.348 20/28 (0.71) 3, 021/4, 146 -1, 125 (0.18�)
MEP!MK 117, 768± 8, 692! 132, 598± 8, 456 14, 831± 12, 126 0.293 12/20 (0.60) 10, 574/3, 848 6, 726 (0.67�)
GMP!N 121, 051± 6, 427! 67, 007± 9, 203 -54, 044± 11, 225 0.585 24/30 (0.80) 3, 895/41, 599 -37, 704 (1.46�)
GMP!M 121, 051± 6, 427! 113, 534± 2, 762 -7, 517± 6, 995 0.337 10/15 (0.67) 15, 763/21, 407 -5, 644 (0.27�)

CLP!CD4 79, 383± 31, 849! 120, 282± 19, 498 40, 898± 37, 343 0.512 30/40 (0.75) 17, 181/1, 919 15, 262 (0.69�)

Table 4.3: Quantitative changes of blood interactomes during developmental transitions. The
net change in number of interactions �ni ! nj is reported as the mean difference between
all samples per cell type and its standard deviation. obss is the minimum number of rewired
observations out of all pairwise comparisons obsall that were necessary for a rewiring event to
be called significant in PPICompare applied to that transition. For increased comparability,
the fraction as a floating-point number is given in brackets. The number of rewiring events
deemed significant by PPICompare is depicted as rew+ for emerging interactions and rew- for
vanishing interactions. In addition to the net change among significant rewiring events, its
absolute deviation to �ni ! nj in terms of standard deviations �(�ni ! nj) is shown in
brackets.

(equivalent to a TPM threshold of 0.0) were presumed abundant for each cell
type instead of the stricter threshold used in the analyses (see Supplementary
Table S1). Furthermore, hierarchical clustering of the original expression data
was not able to distinguish the progenitor cell types properly (see Figure
4.4A). Thus, the high variability seems inherent to the data. Besides, clustering
on the basis of the inferred interactomes had problems to properly separate
some other cell types (see Figure 4.4B) which were also grouped suboptimally
when clustered by discretized expression data (see Supplementary Figure S1).
Heterogeneity is common in this context because cell populations that were
separated by specific surface markers often still contain hidden diversity in
the form of subpopulations. Sample variability, but also the dilution of it, is
therefore a general issue for averaged snapshots made in bulk measurements of
such samples [369, 370]. A high degree of transcriptomic heterogeneity within
grouped cell types of the hematopoietic system is well-described for early
developmental stages [354, 355, 357, 371] and also for various terminal cell
types [372–374].

PPICompare reports a reasonable amount of rewiring events

With PPICompare we identified for all developmental steps the statistically
significant subsets of emerging (rew+) and vanishing (rew-) interactions. From
this, the net change rew+ - rew- was computed. The direction of this net change
of detected interactions was always the same as that of the observable mean net
difference although this must not necessarily be the case. With the exception
of the transition CMP!MEP, the absolute change according to rew+ - rew-
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Figure 4.4: Hierarchical clustering of hematopoiesis cell types. Results of average linkage
clustering (UPGMA) applied to all samples based on A) the correlation of the transcript
expression data (vector of expression values for transcripts associated with a UniProt accession
in Ensembl 83) and B) the normalized Hamming distance between inferred protein interactomes
(Boolean vector of abundance concerning all significantly rewired interactions). Cell types are
additionally distinguished by colored labels.
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was always smaller than �ni ! nj. Considering that the tool requires relevant
rewiring events to occur sufficiently more often than expected from the rewiring
background, it is not surprising that it provided smaller absolute estimates. Still,
the deviation of the PPIXpress estimate from the mean net rewired interactions
was within 0.5� for most transitions and well below 1.5� for all transitions
we examined. Furthermore, Prew and �(�ni ! nj) were positively correlated
(Pearson corr. coeff. 0.82). The statistical criterion used to filter out the significant
portion of the differential interactome ensures to withdraw all rewiring events
of questionable relevance. If one aims at also uncovering slight alterations,
PPICompare is best applied to grouped samples that deviate as little as possible
between groups.

Adding to that, the magnitude of the absolute net change hides the actual
amount of rewiring. In the developmental transition GMP!M, for example, the
37, 170 rewired interactions (17% of the complete interactome known in human)
considered significant by PPICompare only entailed an absolute net change of
5, 644 interactions. As a side note, neither obss/obsall and Prew (Pearson corr.
coeff. 0.3) nor obss/obsall and obsall (Pearson corr. coeff. -0.15) were correlated
and PPICompare determined a wide range of significance thresholds from
60% of all observations up to all comparisons for individual transitions. This
shows that the statistical model adapted to the individual set of between-group
rewired interactions independent of the rewiring probability and the number
of samples.

Unfortunately there is neither a gold-standard nor a representative set of
qualitative statements for comparison. For the non-terminal developmental
stages in human bone marrow (all but the lower 3 rows) the very first tran-
sition HSC!MPP was reported to be mostly driven by the deregulation of
non-protein-coding transcripts, whereas protein-coding transcripts were more
important in later stages [89]. Furthermore, quantitative proteome and tran-
scriptome analyses of mouse HSC and MPP populations likewise showed that
protein abundance and transcript levels were correlated positively and few
proteins were differentially expressed (47 of 4, 037 assessed proteins) [375]. If
those findings are transferred to the interactome, fewer changes should be
expected in the transition at the apex of the hierarchy than in later transitions.
This was indeed the case for the results of PPICompare but less so for the mean
net difference.

4.4.2 A causal view on the rewiring of the blood interactome during develop-
ment

Next we examined which changes to the transcriptome caused interactions to
emerge or vanish when direct developmental descendants were compared. For
each significantly rewired interaction, PPICompare automatically tracks how
often transcriptomic alterations of the interactors occur during the pairwise
comparison between groups. The causal deregulation events that are covered
by the method can be classified either as differential expression of one of
the two genes coding for the interaction partners (DE), alternative splicing of
one partner (AS), or corresponding transcriptomic changes to both partners
(DE/DE, DE/AS and AS/AS). We analyzed in two different ways how these



4.4 results and discussion 89

type cause proportional [%] cause exclusive [%] absolute loss [%] relative loss [%]

DE 84.73 69.14 15.59 18.40
AS 1.03 0.53 0.49 48.06

DE/DE 13.81 4.67 9.14 66.19
DE/AS 0.41 0.06 0.36 85.81
AS/AS 0.02 0.00 0.01 87.23
mixed 0.00 25.60 / /

Table 4.4: Distribution of the transcriptomic alterations that entailed significant rewiring
events. Shown is the impact of conceivable types of expression changes on interaction partners
regarding all individual rewiring events per transition. The six types of expression changes
were weighted by their proportional contribution to each event during the pairwise comparison
step (cause proportional) or as the sole contributing cause (cause exclusive). In the latter case,
rewiring events that had more than one explanatory transcriptomic cause in a transition were
annotated as “mixed”. Additionally, the amount of causal relevance lost due to this stricter
notion is given as in absolute and relative terms.

modes of PPI-regulation contributed to the differential interactome during
hematopoiesis. First, since more than one type of transcriptomic alteration may
have been detected, we weighted the contribution of each type proportionally
to its occurrence in each rewired interaction (cause proportional). Secondly, we
only allowed a single type per rewired interaction and else classified its causing
type as ”mixed” (cause exclusive). Table 4.4 lists aggregated results over all
state transitions. Figure 4.5 provides details for individual transitions.

Differential gene expression of a single protein is the prevalent cause of rewiring for
developmentally sequential adjacent blood cell types

Overall and for both types of analyses, most statistically significant changes to
the interactome during hematopoiesis were driven by differential expression
of a single protein, followed by differential expression of both partners, and
by AS of a single one. The combinations of differential expression and AS of
one partner each and AS of both interacting proteins were only relevant in
few cases (see Supplementary Table S2). Imbalance concerning the direction
of changes for individual modes of deregulation (see upper panels of Figure
4.5) was mostly caused by the considerable share of individual transitions to
all rewiring events. More than half of the “mixed” events describing emerging
interactions can be attributed to the strongly net positive change of the transition
CLP!CD4. An even larger fraction of the vanishing “mixed" events and more
than three quarters of the vanishing DE/DE events stem from GMP!N (see
Supplementary Table S2). Rewiring events solely driven by AS ocurred more
frequently in emerging interactions. This directional bias was independent of
the net change of all contributing transitions (see Supplementary Table S2). We
noted no preference of rewiring events driven by AS of one interaction partner
towards either early or late developmental stages (see lower panels of Figure
4.5).
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Figure 4.5: Distribution of the transcriptomic alterations that entailed significant rewiring
events. Shown is the impact of the considered types of expression changes on interaction
partners regarding all individual rewiring events per transition. The types were weighted by
their proportional contribution to each event during the pairwise comparison step (left plots) or
as the sole contributing cause (right plots). In the latter case, rewiring events that had more
than one explanatory transcriptomic cause in a transition were annotated as “mixed”. The
types of causes were either normalized by the direction of the rewiring events (upper plots)
or by their contributions to individual transitions (lower plots). In the top plots, “+” (blue)
means emerging interactions and “-” (green) means vanishing interactions. The lower three
developmental transitions are those towards terminally differentiated cell types found in blood.
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This general order of importance that we observed for the different modes of
deregulation, in particular DE being more prevalent than AS, seems plausible.
We already mentioned possibly confounding factors such as the incomplete
coverage of the interactome with domain annotation data that PPIXpress uses
to detect AS events of influence (only about half of the proteins and a fifth
of the interactions in the reference interactome are covered, see Section 4.3.2).
Despite of this missing information, regulation of gene expression is generally
considered to be the main determinant of cellular specificity [281, 297] whereas
splicing is more relevant between individuals [283]. The contribution of AS,
however, certainly depends on the developmental system under study and is
likely to be higher in the human brain [6, 51], for example.

Alternative splicing is necessary to explain many significant rewiring events in hematopoiesis

Although the contribution of AS seems minor in comparison to differential
gene expression (below 1% in exclusive causes), 871 rewiring events across all
developmental transitions considered here could only be fully explained by
including AS (see AS, DE/AS and AS/AS in Supplementary Table S2). These
cases would have been missed by methods that only rely on gene expression.
Rewiring events that were exclusively regulated by AS across all comparisons
in a transition were enriched (adj.p < 0.05) in pathway annotations concerned
with the post-elongation processing of mRNA (affecting genes associated with
splicing and polyadenylation), the cell cycle (G2-M checkpoint and control of the
pre-replication complex by the activator of S phase kinase DBF4), transcription
initiation, the transport of mRNA, as well as the regulation of phagocytosis
(see Supplementary Table S3 for details on interactions, databases and pathway
terms). Our approach to determine interaction-centric enrichment of pathway
annotations is outlined in the Methods section.

For example, we found that three genes which code for components of the
spliceosome complex (PRPF4B, SNRNP70, SRSF3) switched their major iso-
form to a variant that undergoes nonsense-mediated decay (NMD) at specific
points during blood development and therefore did not produce functional
protein products anymore. This regulatory mechanism has been described for
several splicing factors such as SRSF3 (Serine/arginine-rich splicing factor 3)
[376, 377], which we found to be turned off during the transitions GMP!N
and CLP!CD4. We found that this was also the case for SNRNP70 (U1 small
nuclear ribonucleoprotein 70 kDa) in the transition CMP!GMP. The protein
was then activated again in the GMP!M transition but not in the branching
to neutrophils (where SRSF3 was also deactivated). In [297], spliced protein
isoforms detectable in mass spectrometry were also enriched with nuclear
ribonucleoproteins. Furthermore, PRPF4B (Serine/threonine-protein kinase
PRP4 homolog) switched to an active isoform in GMP!M. Since PPIXpress
(version 1.08) only uses domain annotations of protein-coding transcripts, pro-
tein interactions that were associated with a domain interaction were correctly
predicted to vanish if the corresponding transcript was classified to undergo
NMD. Supplementary Table S4 provides a detailed listing of rewiring events
associated with known protein complexes across all stages of hematopoiesis.
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Different types of alterations can cause the same rewiring event

When we required each rewiring event to be consistently deregulated in the
same way in all between-group comparisons for the respective transition, the
contributions of most alteration types decreased severely by up to 87% com-
pared to their proportional contribution. The reason for this is that they mostly
occurred together with other transcriptomic changes (see last two columns
of Table 4.4). To associate rewiring events with modes of deregulation in a
definitive manner, we will use this strict interpretation of regulatory changes
in the remaining text. Still, considering that individuals can show a varying
composition of major protein isoforms in the same cell type [283], it is plausible
that different alterations to the transcriptome may drive the same net change to
their interactomes.

With the exception of the transition GMP!N, events caused by a mixture
of alteration types were more prevalent in transitions with higher Prew (see
lower right distribution in Figure 4.5, Pearson corr. coeff. 0.90 when GMP!N
was left out). The relative loss in that regard was largest for what we will call
“co-deregulatory” types of regulation in the following (rewiring events caused
by DE/DE, DE/AS and AS/AS events, see last two columns of Table 4.4).
This raises the question if simultaneous deregulation of interaction partners
is actually a meaningful mode of control or if the observations where this
was noted were the result of concealed individual deregulation events across
different intermediate stages of development.

Simultaneous deregulation of interaction partners shows tendency towards rewiring
within functional modules

Protein interaction networks are thought to be organized in a modular fashion.
Several studies, mainly concerned with highly connected (hub) proteins in
yeast, showed that there are two basic types of such proteins in interaction
networks. Hub proteins either operate intramodular and are coregulated with
their interaction partners to work together on the same task as a cohesive unit,
or they act as intermodular connectors of different functional modules and
are expressed independently of their neighbors [144, 145, 378, 379]. Whereas
those essential implications of the modular structure also apply to the human
interactome, the complexity there is beyond dichotomous classification [379].
Yet, interaction partners that are specifically regulated together should more
likely belong to the same functional module in the PPIN. Therefore they should
also be more likely involved in the same protein complexes, work in the
same biological process, have similar function, and be colocalized [144, 145].
Furthermore, the betweenness, a measure from graph theory to delineate
modules, should be lower for intramodular interactions than for intermodular
interactions [380, 381].

We compared rewired interactions caused by deregulation of only one inter-
action partner with those where the expression of both interaction partners was
altered and to those with mixed causes in this respect. To test their tendency to
reside in functional modules, we considered the involvement of the affected
interaction partners in known CORUM protein complexes [361]. Also, we ana-
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lyzed the similarity of their interaction partners regarding all GO ontologies
(biological process, molecular function and cellular compartment) [294], and
the betweenness of the affected interaction in the reference PPIN. The results
are visualized in Supplementary Figure S2.

We found that rewiring events caused by simultaneous deregulation af-
fected indeed more often known protein complexes (fraction of interactions
associated with reference complexes increased from 3.8% to 5.3%) and had
significantly lower betweenness (median betweenness decreased by 14%, two-
sided Wilcoxon rank-sum test p < 10-30). Also, co-deregulated interaction
partners were more likely to work on similar processes (median GO biol. pro-
cess similarity increased by 2%, two-sided Wilcoxon rank-sum test p < 0.03)
and had comparable similarities of GO molecular functions and GO cellular
compartments. Taken together, these soft factors support the interpretation that
co-deregulated partners in the PPIN are more likely part of the same functional
module.

Interestingly, rewiring events caused by DE/DE and DE/AS were predom-
inantly (relative and absolute) found in transitions towards the terminal de-
velopmental stages (see lower right panel of Figure 4.5 and Supplementary
Table S2). Among those, vanishing interactions during the progression of GMPs
to Ns and Ms were highly enriched with annotations concerning cell cycle
progression (see Supplementary Table S5). More specifically, interactions dis-
appeared that are important for the G2-M checkpoint and for the activation
of the pre-replication complex. For the transition CLP!CD4, this was not the
case for any mode of regulation. Since T cells are proliferating [382] and Ns
and Ms are cell types that are generally non-proliferating [383, 384], some of
these alterations of protein interactions are likely associated with cell cycle exit.

Furthermore, GMP!N was of special interest in that regard, because it
showed by far the highest amount of co-deregulation (4, 786 rewiring events
caused by DE/DE, DE/AS or AS/AS, see Supplementary Table S2) and also
the largest overall amount of rewiring as indicated by Prew (see Table 4.3).
When analyzed in detail, the transition to terminal neutrophils is a stepwise
process with five intermediate stages that are, unfortunately, not resolved by
the BLUEPRINT data. Within those finer-grained steps, proliferation, in fact
modulated by the expression of cell-cycle proteins, steeply decreases during
an early stage and is completely absent after the very next [383]. Whereas this
regulatory process is thus not completely synchronous, the net effect is still
correctly described by our analysis.

Besides the deactivation of the cell cycle, a surprisingly large number of co-
deregulated changes to the interactome were associated with the depletion of
interactions of other coherent molecular machineries, namely RNA polymerase
III (Pol III) and tRNA processing (see Supplementary Table S5) as well as
mitochondrial ribosomes (see also Supplementary Table S4). This latter finding
matches the fact that mitochondria are very rare in Ns and not used for energy
metabolism [385, 386]. In contrast to this, the (partial) depletion of Pol III has,
to our best knowledge, not been explicity described in the literature. Pol III
is responsible for entirely different functions in immune cells. Its inhibition
restrains phagocytosis and cytokine secretion in macrophages due to its role
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in tRNA production [387], but it can also act as a sensor to detect foreign
DNA [388]. However, its inhibition does not alter the response of Ns in that
regard [389]. Owing to the short lifespan of Ns, it may simply be an economical
decision of budgeting cellular resources.

Small set of likely transcriptomic alterations

PPICompare provides an optimization approach that suggests a small set of
likely changes in the transcriptome that explain all significant rewiring events.
In every transition each of these alterations to a single protein yielded between
6.6 and 17.4 rewiring events on average (average of 11.4 over all transitions).
The number of all proteins affected by any significant rewiring event was on
average 5.3 times larger than the number of proteins in the respective small set
of changes (see Supplementary Table S6). From now on, we will refer to this
smaller set of proteins as the “reduced set” of proteins affected by rewiring.

The optimization approach tends to select hub proteins in the differential
network (see Figure 4.6 (left) for an example and Supplementary Figure S3
(upper half) for complete results). This is not very surprising given that the
score si increases if such a protein was transcriptionally deregulated. Also,
it is biologically reasonable because an appropriately deregulated protein
will cause rewiring around itself. Interestingly, selected proteins were not
necessarily highly connected proteins in the reference interactome whereas
those rewired proteins that were not in the reduced set tended to have above
average degrees in the complete network (see Figure 4.6 (right) for an example
and Supplementary Figure S3 (lower half) for the complete results). The latter
observation likely increased their chance of acting as interaction partner of a
deregulated protein and thus be part of the differential network.

Figure 4.7 outlines the contributions of the two elementary modes of transcrip-
tomic alterations per protein, DE and AS, to the individual sets and altogether.
Also in the reduced set, most of the deregulation events were driven by DE. Yet,
the overall proportion of AS was about twice as large as in the comparisons
shown previously (in each transition at least 1.3%). Also, the fraction of AS was
larger among emerging interactions. The usage of alternative protein isoforms
was equally important in all transitions we analyzed.

Important alternative splicing events are found in proteins broadly associated with
transcriptional control

To assess the functional scope of alternative transcript usage, we submitted the
set of all 134 proteins which underwent AS in the sets of most relevant events
in any transition to enrichment analysis using the DAVID web service [260]
(see Methods section).

DAVID characterized the gene set to be preferentially located in the nu-
cleus (e.g., “nucleoplasm” 2.6 fold enriched), and preferentially concerned with
the organization and regulation of chromatin (e.g., “chromatin organization”
3.7 fold enriched and “chromatin modification” 3.2 fold enriched) and with
transcriptional regulation (e.g., “DNA binding” 1.9 fold enriched and “transcrip-
tional regulation” 1.9 fold enriched). The family of Basic-Leucine zipper TFs
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Figure 4.6: Cumulative degree distributions of rewired proteins. Cumulative degree distribu-
tions of the rewired proteins of the transition HSC!MPP in the corresponding differential
network (left) and the distributions of the rewired proteins in the reference protein interaction
network (right). The rewired proteins are additionally split up into those in the reduced set and
the remaining ones, ”all proteins” depicts all proteins in the reference network.

Figure 4.7: Distributions of alteration types for the minimum amount of explanatory reasons
for rewiring events. Shown is the contribution of the two elementary types of conceivable protein
alterations in PPICompare, DE and AS, to the solutions of the optimization regarding the
small sets of likely changes that explain all rewiring. The contributions are normalized by their
direction (left plot) or by their proportion in individual transitions (right plot). In the left plot,

“+” (blue) means emerging interactions and “-” (green) means vanishing interactions.
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seemed to be especially relevant (e.g., “Basic-leucine zipper (bZIP) transcription
factor” 9.8 fold enriched, but not significant after adjustment). Further enriched
clusters involved post-translational regulatory mechanisms like ubiquitination
and related processes (e.g., “Ubl conjugation pathway" 3.8 fold enriched). A
detailed listing of all results is provided in Supplementary Table S7.

The accumulation of such terms in the altered interaction partners points to
the combinatorial and synergistic control of transcription, which is of central
importance in all critical developmental circuits in eukaryotes [8, 13, 211, 212].
This specificity is of special interest because individual interactions between
different TFs or TFs and cofactors seem to be deliberately switched in a targeted
way by AS although both factors are expressed in the cell.

Interactions between proteins in the reduced set are likely connectors of functional
modules

Co-deregulation of proteins in the small set of changes could hint at important
coregulated processes. We started to inspect this possibility by evaluating
significantly rewired interactions among proteins of the reduced set in the same
fashion as for the general case of simultaneous deregulation. The results are
also visualized in Supplementary Figure S2.

Interactions altered by those events are associated with more reference protein
complexes than the network average but with fewer than the co-deregulated
events. They did not differ from co-deregulation events concerning the simi-
larity of processes and colocalization. Whereas the functional similarity was
only slightly increased (median GO functional similarity increased by 6%, two-
sided Wilcoxon rank-sum test p < 0.02), there was a striking increase in the
betweenness values compared to simultaneous deregulation (median between-
ness increased by 31%, two-sided Wilcoxon rank-sum test p < 10-78). The
betweenness values were even significantly higher than those of rewiring events
for which consistently only one protein was deregulated (median betweenness
increased by 13%, two-sided Wilcoxon rank-sum test p < 10-69). This speaks
against a possible intramodular role of such interactions in the interactome, but
rather hints at a function as intermodular connectors between functional mod-
ules. Such connections are very important in signaling, for example, and their
dysregulation can be crucial [390]. In fact, the interactions between proteins
in the reduced set were enriched in signaling pathways for all developmental
transitions (see Supplementary Table S8). The apoptosis-relevant interaction of
Bcl-2 (BCL2) with the Bcl-2 modifying factor (BMF) [391], for example, emerges
in the transition HSC!MPP and is an interaction between proteins of the
reduced set (first tab Supplementary Table S8).

Complementing this, we used the respective sets of emerging and vanishing
interactions individually to determine direction-consistent connected compo-
nents (CCs) among the reduced protein sets in each transition. The results are
listed in Supplementary Table S9. Although there existed very large CCs among
those interactions (including up to 2, 005 proteins in GMP!N, for example),
even the large CCs contained comparably few (at most 27) and rather small
known CORUM complexes (the largest complex overlapping a CC contained 5
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proteins). Within functional modules, one would rather expect that deregulated
CCs would preferentially coincide with complexes, though.

The reduced set of affected proteins is representative to blood development

In our study, significant rewiring events can be expected to affect proteins
that are related to hematopoiesis. We examined this hypothesis by testing how
likely it was to sample at least a certain amount of proteins deemed relevant in
this context from the reference PPIN by chance. The importance of proteins in
that regard was classified according to protein sets that we compiled from GO
annotation data and regulatory data from TRRUST [368] (see Methods section
for details).

We first checked for overrepresentation of hematopoiesis proteins and the
regulatory targets of hematopoietic TFs. The latter ones were included to also
account for proteins that are not obviously associated with hematopoiesis, but
that are equally probable to be deregulated due to their direct dependency on
regulators of blood development. The set of all proteins affected by rewiring
events was highly enriched for those proteins across all transitions (for all
transitions p < 10-5, see left half of first sheet in Supplementary Table S10).
Except for the transition MPP!CMP, the reduced set of deregulated proteins
always contained in all other transitions significantly more of those relevant
proteins than expected by chance (for all other transitions p < 0.022, see right
half of first sheet in Supplementary Table S10).

Similar results were obtained for the set of hematopoiesis proteins without
the targets (see second sheet in Supplementary Table S10 for details).

Known hematopoietic transcription factors are among the drivers of rewiring events

Then, we investigated if known hematopoietic TFs were rewired more often
than expected by chance and if targets of certain TFs were overrepresented in
the two protein sets determined (see Methods section for details).

Whereas the complete set of proteins involved in rewiring events was highly
enriched in hematopoietic TFs (for all transitions p < 3 ⇤ 10-4), this was mostly
not the case for the reduced set of proteins (see third sheet in Supplementary
Table S10). Examples of such rewiring events are discussed below.

Likewise, we found an enrichment of TF targets in the complete set for
all transitions. In all but one case this even included known hematopoiesis
regulators (see left half of fourth sheet in Supplementary Table S9). Again,
enrichment was only reported in four transitions for the reduced protein sets
(see right half of fourth sheet in Supplementary Table S10). Thus, while the
optimization procedure can help to effectively decrease the number of proteins
of interest, depending on the task at hand the reduction may come along with
a loss of information.

TFs for which targets were overrepresented in different developmental tran-
sitions are listed in Supplementary Table S10. We omitted a discussion on
potentially enriched hematopoiesis regulators therein since we believe that
much more data should be integrated to appropriately account for important
details. The regulatory data that we used is confident but comparably sparse
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and only considering direct regulatory targets is an oversimplification in that
regard. Also, combinatorial regulation should be considered in the context
of hematopoiesis [212] and the chromatin state of each cellular condition is
relevant [349, 350].

4.4.3 Consequences of rewiring during blood development

At last, we took a brief look into which interactions were changed. The output
files of PPICompare are formatted as node- and edge-attribute tables to enable
seamless support of network visualization tools such as Cytoscape. Figure 4.8
shows an illustration of the resulting differential network for the transition
HSC!MPP whereby the dense central region is enlarged. Remarkably, this
highly connected part of the network is characterized by changes to the inter-
atome between different TFs and between TFs and cofactors. Such assemblies
of transcriptional regulators indeed often have a pivotal role in the context of
developmental control [8, 13, 211, 212]. Thus, we will focus our attention on this
subset of proteins and discuss some of the rewiring events involving proteins
considered most relevant by the internal optimization of PPICompare (blue
nodes in the visualization).

The TF Fos-related antigen 1 (FOSL1) is a prime example for alternative tran-
script usage. Upon transition from HSCs to MPPs, its most abundant transcript
was switched from ENST00000448083 to ENST00000312562 in every between-
group comparison. This shift resulted in the inclusion of a basic-leucine zipper
domain (PF00170) which is needed for any dimerization of the protein and
thus enabled formation of several new interactions to other regulatory proteins.
Among those were coactivator proteins such as the (histone) acetyltransferases
p300 (EP300) and CREB-binding protein (CREBBP) which are both important
integrators of regulatory signals in the hematopietic and other developmental
systems [392]. Since such proteins are ubiquitously expressed in all cells, a
sole analysis of differential expression would not have been able to detect a
difference in that regard between HSCs and MPPs. Interactions of FOSL1 with
other TFs that were viable after splicing involved c-Jun (JUN), Jun-D (JUND),
c-Maf (MAF) or Activating Transcription Factor 4 (ATF4). Together with factors
from the Fos-family, these are exchangeable constituents of the TF complex
AP-1 and as such control processes including proliferation, differentiation and
apoptosis [393, 394]. Further emerging interactions to TFs included binding to
DNA damage-inducible transcript 3 (DDIT3), that is involved in response to
cellular stress, and c-Myc (MYC). Besides its general implication in processes
such as cell division, apoptosis, cellular growth, angiogenesis and differen-
tiation, c-Myc is specifically concerned with the balance of self-renewal and
differentiation of HSCs [395].

Lymphoid enhancer-binding factor 1 (LEF1) is another protein that changed
its expression state in each single comparison and possesses regulatory capa-
bilities in developmental processes beyond the lymphoid lineage [396]. The
PPICompare results help in explaining how LEF1-binding may affect its tar-
geted sequence regions mechanistically in MPPs compared to HSCs. Facilitated
by the detected differential recruitment of various histone modifying proteins
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Figure 4.8: HSC!MPP rewiring events in Cytoscape. We visualized the differential network of
the transition HSC!MPP in Cytoscape 3.3 [346] using the default output files of PPICompare.
The nodes depict all proteins affected by significant rewiring events. All proteins (internally
UniProt accessions) are displayed with their associated gene’s name. Proteins that belong to the
“small set of likely changes” are colored blue. The size of nodes increases with their importance
score as described in the Methods section. Furthermore, protein nodes with a rectangular shape
were solely deregulated by AS (here: FOSL1). Green edges depict emerging interactions and
red edges the vanishing ones. The edge thickness indicates how often the event was observed
throughout the pairwise comparisons (here either in 15 or in 18 of 18 comparisons). Here, only
the largest connected component of the differential network is shown (lower left).
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(EP300, HDAC1, SETD8), it could act as the DNA-binding factor for chromatin
remodeling events in MPPs, for example. Also, LEF1 may form complexes with
�-catenin (CTNNB1), T-Cell Factor 4 (TCF7L2), and other proteins (HINT1,
RUVBL1) implicated in Wnt/�-catenin signaling, a crucial developmental path-
way [397–399]. It may also bind to c-Myb (MYB), a TF controlling regulation
of hematopoietic progenitors [400]. Moreover, its abundance in MPPs enabled
interactions with the Bcl-2 associated X protein (BAX), which also binds to the
important apoptosis regulator Bcl-2 (BCL2). The expression of the latter was
upregulated here when hematopoietic progenitor cells become more commited.
As correctly determined by PPICompare, Bcl-2 has plenty of new interaction
partners in MPPs and thereby ensures a balance of complexes with pro- and
antiapoptotic influence (besides BAX: BCL2L1, BAK1, both not visible in figure)
[401].

Another upregulated protein deemed important by us was the adaptor
protein Sin3b (SIN3B) which facilitates the association of other proteins to
epigenetic silencers (REST, HCDA2). Although it apparently did not exert
this function in HSCs, it provided c-Myc (MYC) with this capability after the
progression to a progenitor cell and furthermore enabled a repressive function
of the important hematopoietic TF Helios (IKZF2) of the Ikaros-family [402].

Besides those examples for transcriptional control in HSC!MPP, Supple-
mentary Table S11 lists all pathways that are affected by rewiring events. We
grouped the events into changes to interactions that were shared between tran-
sitions or those exclusive to a certain transition at a developmental branching
point.

4.5 conclusion

Combining PPIXpress and PPICompare enabled us to investigate the dynam-
ics of cause and consequence within the human protein interactome during
developmental branching and progression to the extent that this is reflected
by transcript expression data. In principle, one can easily detect alterations to
any pathway or changes to functional protein complexes, like those concerned
with transcriptional regulation. Furthermore, the provided software can aid in
suggesting promising targets for the development of new PPI inhibitors, an
emerging class of molecules in drug discovery [403, 404]. Beside the general
genome-wide trends studied here, the presented pipeline is equally powerful
to address very specific questions about rewiring of protein interactions.

4.6 addendum

4.6.1 Retrospective

Although it is often inevitable, I have the personal opinion that the usage of
arbitrary cutoffs in analyses as well as in tools is utterly unsatisfying. Contrary
to that I chose a discretized approach as the basis of PPICompare with its merits
and perils. Discretization often simplifies the usage and interpretation of data,
in the best case it diminishes technical as well as biological noise when applied
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well. But, of course, discretizing any input data always comes with a loss of
detail [347].

A PPICompare tool without a discretized view on the interactions would
have been entirely possible. Around the timespan of the project I already had a
version of PPIXpress available that would have allowed me to create weighted
sample-specific interactomes (see Section 3.6.2). Depending on the exact input
data those networks would enable to associate a weight or probability with
each interaction in each sample. A weighted interactome could then be assessed
by employing standard statistical tests comparing distributions of numerical
values by grouped samples (see Section 2.2.1). Furthermore, ”transcriptomic
reasons for rewiring”, as I called them, could have been inferred by integrating
results of common differential expression analysis workflows of which there
are plenty to chose from [405]. The basis for a continuous data version of
PPICompare would thus already have been set.

Still, PPICompare uses the discretized model that we also employed in the
study of PPIXpress (see Section 3.4.2). By simplifying the data, each sample
in PPICompare is characterized by a set of protein interactions and protein
isoforms coded by the respective representative transcripts that are present.
There is no grading of any kind associated with the interactions and there
is no ensemble of transcripts that are linked to each protein, just one single
transcript. All notions and relations are thus intuitive and unambiguous. This
direct relatedness of interactome and transcriptome ultimately enables the
straightforward inference of transcriptomic drivers causing each rewiring event
and thus allows for a very clear analysis of causality in network dynamics. The
non-discretized ensemble view in the continuous variant outlined above would
lack this direct correspondence. In fact, as long as changes in interactome and
transcriptome are evaluated independently, disregarding the exact statistical
approach at hand, there is no guarantee that each rewiring event is backed by
an event of differential transcription of any kind.

This conceptual simplicity should benefit the potential target audience,
namely experimentalists wanting to get the most out of the data they al-
ready produced. PPICompare was, for example, applied in [406] to assess the
differential interactome between ICAM1-positive and -negative neutrophils in
the context of experimental autoimmune encephalomyelitis, which is a model
system to study multiple sclerosis.





5
S C A L I N G U P D O M A I N - AWA R E C O H E S I V E N E S S
O P T I M I Z AT I O N

This chapter describes JDACO, the multithreaded Java implementation of the
domain-aware cohesiveness optimization algorithm DACO [17] that I originally
prototyped in Python. Alongside some technical details, a comparison of the
performance of both implementations is made in a benchmark study. All code
files and binaries for each version of (J)DACO are available for download at
https://sourceforge.net/projects/dacoalgorithm/.

5.1 prerequisites

5.1.1 Python vs. Java: data structures and parallelization

Python and Java are exceptionally popular general-purpose programming lan-
guages (March 2019, see for example: TIOBE index1 or PYPL2). Both languages
are independent of operating systems and hardware because they are either run
in an interpreter (Python) or compiled to bytecode, an intermediate representa-
tion of special instruction sets which is interpreted and executed in a runtime
environment (Java). Because it abolishes the need to satisfy any dependencies
or tedious compilation and installation procedures, this is a very appealing
property for developers and users because it simplifies the distribution and
usage of software implemented in such languages. Since the actual choice of
the interpreter can change internal details in some languages, Python in the
following always refers to CPython, the open-source reference implementation
of Python and also the most widespread Python environment.

Without going into the details, although the languages are very different in
terms of programming paradigms and internals, Python as well as Java are
reasonable choices for the implementation of any kind of software, including
scientific algorithms. Still, sometimes one tool is the better option for a certain
task at hand. With the development of PPIXpress, the data retrieval as done
by DACO could be completely outsourced because a more powerful, much
faster and more convenient software tool was available that solves the task of
constructing input networks for the algorithm. With the omission of this consid-
erable part of the necessary functionality, the focus of the new implementation
could be completely shifted towards the algorithmic effort. In that regard, Java
is without doubts the favourable choice of the two languages. I will justify this
reasoning on the important benefits that are gained in terms of data structure
flexibility and parallelization capabilities.

1 https://www.tiobe.com/tiobe-index/
2 http://pypl.github.io
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Built-in data structures

In common modern programming languages “the batteries are already in-
cluded”, as one says. This means that usually a selection of important standard
data structures are readily available in highly optimized implementations with-
out the need of installing or packaging additional libraries. A high level of
convenience by minimization of additional dependencies is a desirable situ-
ation especially when less versed users may be part of the target audience.
Python and Java both have well-laced standard libraries that enable a manifold
of duties with comparably few lines of code. But in terms of data structures,
Java has a clear edge because it allows a very specific adjustment of the ex-
act implementations. I will illustrate my point on the example of list data
structures.

All Python lists are implemented as a dynamic array3, which is a managed
abstraction of an array that resizes itself as more elements are added. The
same data structure can be used with Java’s ArrayList implementation. Also,
a similar but synchronized and thus concurrency capable variant is offered
with Vector. Furthermore, Java also allows to use a double-linked list with the
LinkedList class4. Here, no resizing is necessary when an unknown amount of
elements is added to the list during execution. Additionally, Java has traditional
unmanaged arrays for “primitive types”, which are elementary data types
such as Booleans, bytes, chars, as well as typical ranges of integer and floating
point numbers. Such classical arrays have much less internal programmatic
overhead when iterating and accessing elements but require manual memory
management by the developer.

While different list implementations all allow to somehow store, retrieve
and iterate over elements, their individual performance characteristics may
vary significantly. The broad choice of implementations offered in Java can
allow to select the most suitable data structure for a specific scenario. The same
examples can be made for other elementary storage concepts such as sets and
dictionaries.

In addition to that, Java already offers special data structures for multi-
threaded software. Using such data structures is not per se beneficial when
many threads are utilized, but they are generally worthwhile when their con-
tent is modified and shared between threads. A general principle to enable
concurrent usage of a standard data structure is by locking or synchronizing the
access, e.g. when a thread t wants to modify components of the data structure,
all other threads need to wait until t is finished if they want to use any of
the thus stored data. Consequently, the threads will finish their assigned labor
slower than without the limitation of access. With sophisticated data structures
circumventing the need for such a global locking mechanism such pitfalls
can be minimized. A Java HashMap is an implementation of a dictionary that
allows for very fast read-, write- and membership-queries (on average O(1),

3 list implementation of Python 3.8: https://github.com/python/cpython/blob/3.8/Objects/
listobject.c

4 list implementations of Java 8: https://docs.oracle.com/javase/8/docs/api/java/util/List.
html

https://github.com/python/cpython/blob/3.8/Objects/listobject.c
https://github.com/python/cpython/blob/3.8/Objects/listobject.c
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
https://docs.oracle.com/javase/8/docs/api/java/util/List.html
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Figure 5.1: Standard and concurrent HashMap implementations. Segmentation of the internal
data structure allows to only lock those parts of the hashtable that are modified. Here, the
classical textbook versions of such data structures are shown. In Java 8, linked lists have been
replaced by binary search trees as the key-value pair storage data structures.

given a well-spreading hash function on the keys and that the hashtable has
a reasonable size) by maintaining an internal hashtable. To add a key-value
pair, to retrieve the value of a key or to check the presence of a key in the
dictionary, a hashcode is computed for the key object and used to assign the
key to a certain bucket of the hashtable. Then only a short linked list (or a small
binary search tree in recent Java 8 implementations5) needs to be modified
or iterated to perform the operation [328]. If a compute thread adds a key,
the whole hashtable is locked and all other threads that may want to access
the data need to wait. The concurrent implementation ConcurrentHashMap6

circumvents this performance issue by partitioning the hashtable into segments
which can be blocked individually. Forced idling times for other threads are
thus far less likely in practice. Figure 5.1 illustrates the core buildup of the two
data structures and highlights how they differ in terms of synchronization for
multithreaded usage.

Parallelization capabilities

The revolution of microelectronics that made our modern age of information
possible started rapidly. As postulated by Moore in 1965, the number of transis-
tors per chip doubled every two years for quite some time [407]. Thus, every
new generation of silicon chips became more powerful and cheaper at the
same time in an exponential pace. After decades of successfully shrinking
chip structures and thus increasing circuit densities critical physical limits
were finally hit in the early 2000s. Power usage and heat constraints set hard
boundaries on the operating frequencies and thus also on the processing speed
of conventional semiconductor technology. Still, manufacturers managed to

5 Java 8 source code: http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/
classes/java/util/HashMap.java

6 Java 8 source code: http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/
classes/java/util/concurrent/ConcurrentHashMap.java

http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/HashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/HashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/concurrent/ConcurrentHashMap.java
http://hg.openjdk.java.net/jdk8/jdk8/jdk/file/tip/src/share/classes/java/util/concurrent/ConcurrentHashMap.java
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hold Moores’s predicted rate of advancement by developing chips with many
power-efficient cores instead of fast single-core architectures [408]. From the
2010s on the exponential growth of processing power could ultimately not be
met anymore. More so, due to quantum effects in the nanometer scale, the end
of the unprecedented progress made with silicon transistors is inevitable in the
near future [409].

For developers this means that parallel programming is a necessity to fully
utilize modern hardware and to maximize scalability. To achieve this, runtime-
critical algorithm segments obviously need to allow a partitioning into simul-
taneously solvable subproblems. But even if that is the case the programming
language used can still obstruct an optimal result.

In principle, both Python and Java can make use of many-core processors.
In practice, Python suffers from a design decision that is called the global
interpreter lock. The lock ensures that only one thread can execute bytecode
at once in a Python interpreter which simplifies the memory management of
objects and allows the convenient usage of C libraries that are not necessarily
thread-safe. Without this safety measure, simultaneous access and manipula-
tion of shared data may lead to inconsistent data. This design decision was
made early in the development of the language and over time many compo-
nents depended on the global lock eventually making it unchangeable [410].
If the tasks are completely independent, one can work around it by spawning
multiple interpreters and processes that communicate through inter-process
communication. This solution, however, comes with a high computational and
memory overhead.

As already teased above, Java, on the other hand, has powerful features
aiding the efficient programming of multithreaded software. First of all, Java
threads can communicate with each other with low overhead in the same
virtual machine. Second, modern Java comprises convenience features that
allow for a very productive approach towards parallelization like parallel
stream operations7 or the transformation of recursive algorithms into parallel
implementations by a Fork/Join framework8. The latter was not used in JDACO
in favor of a custom algorithm-specific thread pool which, adding to the
previous section on data structures, Java made possible by also including
a plethora of thread-safe data structures which were an important corner point
for the improved implementation of the DACO algorithm. A thread pool is
basically a group of worker threads of fixed size, typically the number of cores
the user wants to utilize, that execute jobs from a work queue one after another
whereby the threads are reused as often as necessary.

5.2 introduction

Modern life science progressed into an age of high-throughput whole-genome
analyses. Determining the complete transcriptomes [22, 283, 291, 411] or pro-
teomes [127–129] in a sample-specific manner has become a fairly standard task

7 https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
8 https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
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nowadays. As a consequence, an enormous amount of data in that regard is
publicly available.

However, when it comes to the many-faceted interplay of proteins in interac-
tions and complexes, we are not on this level yet. On a whole-organism scale,
protein interactions as well as complexes are still treated as static entities that
are contextualized by data integration efforts to infer specific interactomes [165,
168, 332] or specific complexomes [87, 124, 201]. While this was predominantly
realized using gene expression data in former efforts, we recently showed with
our tool PPIXpress [90] (see also Chapter 3) how transcript-level expression
data can be utilized to construct protein interactomes that even account for
alternative splicing in an input sample.

Classical computational methods that delineate protein complexes in binary
protein-protein interaction networks (PPINs) typically aim at finding densely
connected regions in such networks [193, 194, 196]. Such approaches are concep-
tionally very appealing since they resemble mathematical clustering and work
well to detect all types of large self-contained protein complexes. Apart from
those, the highly interconnected subgraphs that are reported by such methods
are more likely functional modules comprising overlapping protein complexes
that transiently interact with each other dynamically in time and space. Without
additional data and modeling, protein complex prediction methods that only
rely on PPINs are, even if the member proteins are expressed together at the
same time and in the same cellular compartment, not able to distinguish if the
involved protein interaction sites are mutually exclusive and the competition
for those binding sites may thus encode a combinatorial manifold of potential
complexes rather than one actual complex [143, 145, 146, 191].

Cases of mutual exclusive binding site competition in PPINs can be marked
on the basis of spatial clashes found in structurally resolved parts of the interac-
tome. With this additional information, all simultaneously viable subnetworks
within predetermined dense regions in PPINs can be enumerated and feasible
complexes then be identified by a subsequent prediction step [204]. Due to the
exponential grow of the number of subnetworks that need to be processed,
the computational cost of this approach is very high. Protein domains and the
interactions between them were shown to present a practical alternative to the
comparably sparse coverage of structural knowledge on interactomes. Then,
proteins are dissected into their conserved domains and known domain-domain
interactions (DDIs) can serve as the scaffold that explain protein interactions
mechanistically. If each individual protein domain is only allowed to support
one interaction, binding constraints can be inferred from this domain-domain
interaction network (DDIN) model [17, 179, 180, 206–208]. Such DDIN-based
approaches were used to filter predicted complexes to those subsets of members
that are devoid of conflicting binding site utilization without enumerating all
possibilities [179, 180], or the domains were used to define connectivity in
stochastic simulations [206, 208].

With our domain-aware cohesiveness optimization algorithm DACO we filled
the gap of a comparably fast complex prediction tool that also unravels the
combinatorial diversity of complexes within dense regions of the interactome
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by combining the DDI model with local cluster optimization and branching
[17].

Since we are now able to make use of the current wealth of RNA-seq data
to contextualize the interactome input data for such a prediction with PPIX-
press and therefore all data retrieval could be outsourced nicely, an improved
implementation of DACO with a refined feature set and improved runtime
appeared a worthwhile endeavor. We here present JDACO, the modern Java
implementation of the original DACO Python prototype implementation, and
show how it performs in comparison to its predecessor.

5.3 materials and methods

5.3.1 Domain-aware cohesiveness optimization

DACO fuses local greedy optimization of the cohesiveness as introduced by
ClusterONE [196] (see also Section 2.1.3 for an introduction to the method) with
the idea of modeling mutual exclusivity of interactions by also considering the
connectivity among individual protein domains and constraining each domain
to support at most one active interaction [179, 180]. Requiring connectedness on
the finer-grained level of domains and this constraint, that serves to approximate
the occupancy of shared binding sites, introduce a ruleset for branching into
equally probable states during the optimization which ultimately enables a
combinatorial enumeration of complex candidates.

Like ClusterONE, DACO uses a PPIN and a set of seed proteins as the main
input. Additionally it uses the information of a DDIN that corresponds to the
given protein interactome in the sense that each interaction on the protein level
is backed by a domain interaction (see also Chapter 3, especially Figure 3.2). In
the original Python implementation the DACO implementation took care of
the retrieval and construction of a matching DDIN. For JDACO, the matching
domain-based interactome is a mandatory user input that can be constructed
with PPIXpress, for example. Figure 5.2 graphically outlines the information
content that is provided by the two related interactome networks and aids to
introduce some definitions.

The weighted PPIN is used to calculate the cohesiveness f(V) of selected
proteins V according to

f(V) =
win(V)

win(V) +wbound(V)
.

Here, win(V) is the sum of all inner interactions, namely all protein interactions
that are among the putative complex members V (marked green in Figure 5.2a),
and wbound(V) is the overall weight of interactions on the boundary between
members and adjacent proteins that are not part of the candidate (shown red
in Figure 5.2a). For simplicity and because modern protein interactomes, like
PrePPI [163], are already densely populated, we omitted the penalty term that is
found in the cohesiveness calculations of ClusterONE. Notably, only the weights
of interactions on the protein-level and the protein set V to be evaluated are
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Figure 5.2: The information represented in the two DACO network layers. A weighted PPIN
(a) and its corresponding DDIN (b) are shown whereby the proteins that are part of a complex
candidate consisting of proteins V = {B, C, D} are marked in green. Protein names are omitted
in the representation of the DDIN to make room for domain labeling. All inner interactions,
protein interactions between members of the complex candidate or active DDIs between domains
of such members, are also drawn in green in both networks. In the PPIN specifically, boundary
interactions between complex members and other proteins are colored red because they define
the boundary weights relevant for the cohesiveness calculations and are the potentially beneficial
incident proteins that are not yet members of the complex. In the DDIN, domains that are
occupied by active interactions are marked in red while the domains C2 and D2, the only unused
domains in the complex candidate and therefore relevant to facilitate further expansion of the
complex, as well as their respective potentially relevant domain interactions are highlighted
in blue. Such model-compliant possibilities for expansion of the complex define the incident
proteins, which are E and F here in the example. Also, proteins C and D are boundary proteins
which are defined as those proteins that only have one domain occupied. Because a removal of
such a protein does not disrupt the spanning-tree underlying the complex on the level of domain
interactions they are the only valid options to shrink the complex in the next step.

relevant in the cohesiveness calculations whereas no knowledge of any kind on
the domain-level is utilized for this task. By combining the holistic information
of many weighted interactions it is expected that unreliable individual values
are averaged out reasonably when ranking complex candidates [196].

Just as the PPIN serves as the base for the optimization metric, the DDIN
acts as the main determinant of which further protein connections are valid in
the model and thus permissible expansions of the current complex candidate.
Following previous approaches [179, 180], the DACO method requires that a
protein complex that fulfills the model assumptions is connected by a spanning-
tree of active domain interactions in the DDIN (green interactions in Figure
5.2b). Since each protein domain is limited to enable only one interaction, a
complex candidate can only be expanded by including proteins which possess
at least one domain interaction connected to an unoccupied domain of a current
complex member (blue interactions in Figure 5.2b). Such potential candidates
for enlarging the complex are called incident proteins (see also Figure 5.2b).
Likewise, only those proteins in V which have only one domain engaged are
suitable candidates to reduce the size of the complex. These are called boundary
proteins in the following explanations of the algorithm (see also Figure 5.2b). In
our example in Figure 5.2b, protein B does not comply with this definition, for
example. Its removal from complex candidate V would disconnect proteins C
and D on the domain-level and thus violate the model assumptions by breaking
the loop invariant of connectedness.
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Contrary to ClusterONE, DACO starts the iterative search for protein com-
plexes from pairs of proteins interacting with high confidence rather than
clusters of single proteins. In practice this means that starting states for the
algorithm are determined from all interactions of seed proteins with their direct
neighbors that have a weight exceeding a threshold value Ppb. We decided on
that strategy because interactome data is quite noisy [170] and, because the least
amount of network data and weights are integrated at this point, this very first
step of the expansion process is most prone to even negligible perturbations.
Then, although several almost equally well-rated alternative branches may exist
at this starting point, one would invariably bias the whole optimization towards
one single local minimum. Broadening the ensemble of starting points, on the
other hand, assists to better grasp the combinatorial manifold of complexes
and ensures that no reasonable complex is lost.

At each step, the current state of the protein complex candidate V and its
utilized domain interactions DV are used to determine incident and boundary
proteins on the domain-level (recall Figure 5.2b). All options to modify V to
V 0 by the addition of an incident protein or by the removal of a boundary
protein are then evaluated in terms of the resulting cohesiveness f(V 0) and the
choice that maximizes the measure is selected. If neither adding nor removing
a protein can further increase the cohesiveness compared to f(V), V is already
locally optimal and thus returned. If the removal of a protein leads to the
highest cohesiveness, the current state is adapted by removing this protein from
V and by deactivating the distinct domain interaction that was mediated by its
single occupied domain. Then the next iteration of the algorithm is conducted
for the modified state. Most of the times during the execution, a protein p will
be added to the complex candidate. Naturally, V 0 is then becoming V [ {p} and,
additionally, any expansion requires added connectivity on the domain-level
in our model. Due to the definition of incident proteins there is then at least
one domain interaction that is qualified to accomplish this. If we only need to
consider one possibility, this exact domain interaction is stored as active in DV 0 ,
rendering the newly interacting domains unusable in subsequent iterations,
and we continue to iterate. Often, however, more than one domain interaction
may serve as the spanning-edges to include p and the option selected will
affect the occupancy of domains (see Figure 5.3) and thus heavily influence
subsequent steps. Because the metric optimized is identical for all choices, the
algorithm then simply evaluates all possibilities. This case is also exemplified in
Figure 5.3. For practical considerations a maximal search depth parameter that
concludes the calculations with a certain complex size is obligatory in DACO.
In the project presented hereafter in Chapter 6, we showed that 5 proteins are a
sufficient size limit for DACO when human transcription factor complexes are
predicted, for example (see last part of Section 6.4.1).

Pseudocode that includes some of the optimization details for the procedure
in each DACO iteration (see Algorithm 5.1) and the management of the search-
tree exploration (see Algorithm 5.2) are presented after a short overview on
implementation enhancements that already improved the runtime tremendously
(as shown in my Master thesis [18]).



5.3 materials and methods 111

A1 C1 E2C2
E1

C
E

A

B FD0.9

0.8
0.80.9

0.1

0.4

0.3

0.5

0.6

B2
B1 D2D1 F1

A1 C1 E2C2
E1

C
E

A

B FD0.9

0.8
0.80.9

0.1

0.4

0.3

0.5

0.6

B2
B1 D2D1 F1

A1 C1 E2C2
E1

C
E

A

B FD0.9

0.8
0.80.9

0.1

0.4

0.3

0.5

0.6

B2
B1 D2D1 F1

0
0 00
0

0
0
0
0 0

0 00
0

0
0
0
0…0

0 00
0

0
0
0
0

state queue

two choices to add E

C2/E1 D2/E2

evaluate all  
possibilities

with 
C2/E1

with 
D2/E2remove and  

evaluate state

Figure 5.3: Branching in DACO exemplified. All states that are left to be investigated are
organized in a queue that is processed one by one. In the current step, merging protein E into the
complex candidate is the most beneficial choice in terms of the cohesiveness. Since two domain
interactions, C2/E1 as well as D2/E2, are suited to guarantee connectivity in this example, both
realizations of the resulting candidate complex are appended to the queue of pending states and
evaluated independently. The exploration of the search space is done in a breadth-first manner.
This branching and the processing of all options are important because the exact domain choices
predetermine the capability for expansion of the protein complex in later steps. Here, for example,
selecting C2/E1 still allows to include protein F in a further step whereby selecting D2/E2 does
not allow for further additions.
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Algorithmic optimization in the original DACO implementation

When total outer weights are precomputed for each protein in the network,
the naïve computation of the cohesiveness f(V) requires a computational effort
that is quadratic in the size of the complex candidate, thus O(|V |2). With a
little bit of bookkeeping it is not necessary to compute it from scratch in each
iteration of the algorithm, though. As before, win(V) and wbound(V) are the
internal and boundary weights of V . Those have already been computed in
a previous step. Now win

p additionally denotes the summarized weight of all
interactions connecting protein p with members of V . In the same fashion,
wbound

p denotes the total weight of interactions between p and proteins that
are not members of V . For the case of an addition V 0 = V [ {p}, the inner
weight win(V [ {p}) = win(V) +win

p and the boundary weight wbound(V [ {p}) =
wbound(V)-win

p +wbound
p can be defined from the old weights and the changes

induced by the inner and outer weight contributions of the new protein p.
Determining win

p and wbound
p is only a linear effort in each step. Analogously

this can be applied for the removal of a protein p. Then the inner weight is
win(V 0 = V \ {p}) = win(V) -win

p and the boundary weight is wbound(V 0 =
V \ {p}) = wbound(V) +win

p -wbound
p . Updated cohesiveness values can thus

be simply derived by saving and recalling the previous inner and boundary
weights as well as monitoring the changes induced by adding/removing p.
Please refer to the Supplementary Section 1.2 of the original DACO publication
[17] for full cohesiveness equations of such a stepwise cohesiveness calculation.
This optimized implementation of the cohesiveness calculation was omitted in
the pseudocode algorithm for sake of a better readability.

The most expensive outcome of each DACO iteration is the branching of the
algorithm into many different realizations on the domain-level (see Algorithm
5.1, line 33). Often proteins include the very same domain family annotation
multiple times. Then, every domain of the same type is connected to the very
same domain(s) in each incident protein. For the algorithm, however, only one
realization of each combination of protein types is relevant for a neighboring
protein pair because they will all have the same connections to the outside
and therefore the consequences in subsequent steps will be identical. To avoid
unnecessary branching, DACO only considers one variant for such cases when
domain interaction choices are determined.

Also, even though the cohesiveness of the resulting complex candidate is
always the same when the branching into the specific domain interaction choices
is performed, the respective spanning-tree that connects the members differs.
Whereas the domain interactome itself does not have any qualitative rating of
its interactions that could be exploited at this point, current integrative protein
interaction data [161, 162, 164, 177] are often weighted in a range that can be
interpreted as probabilities (see also the respective part of Section 2.1.3). Thus
an overall likeliness of the tree connecting all members of V can be assigned by
multiplying the corresponding protein interaction weights associated with the
domain interactions that are active in the state (see Algorithm 5.1, line 27 and
34). This probability can then serve as a pruning criterion that filters unlikely
realizations at an early stage (see Algorithm 5.1, line 35).
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Another technique that was used to minimize the calculation time was to
include memoization and thus to avoid visiting the same states and their
outcomes more than once. In the DACO prototype this was implemented
by storing the actively selected domain interactions DV of each state that
was processed (see Algorithm 5.2, line 13). If this exact state is then detected
another time, the processing of this subtree of the search is simply skipped (see
Algorithm 5.2, line 7).

5.3.2 Functional alterations made to original algorithm and its implementation

When growing starting pairs for the cohesiveness optimization only the pairs
above the pair-building threshold Ppb are taken into account. In the original
implementation two pairs per seed protein were always included even if they
did not pass this threshold.

Also, we added a user-adjustable complex probability threshold parameter
Pc into the algorithm instead of applying the fixed cutoff of 0.5 (compare
Algorithm 5.1, line 35). When Pc is not explicitly specified by the user, it is
automatically set to (Ppb)

max_depth-1. This means that we basically want a
spanning-tree on the domain-level that is on average at least as likely as the
starting interactions that are selected.

Furthermore, resulting complexes that include no seed proteins are removed
in the final postprocessing. Although this rarely happens in practice it cannot
be ruled out due to the removal step.

Adaption made to Python prototype

The original Python implementation of DACO retrieved all annotational data
that the tool needed to construct the input networks protein by protein from
UniProt [109]. While it was capable to do so by itself, the construction of
the input data by PPIXpress is much faster, more robust and generally more
convenient. More so, PPIXpress allows to contextualize the input data in a
sample-specific manner. Therefore we completely removed the data retrieval
part in the adapted Python DACO and added new code for DDIN/PPIN
format input as given by PPIXpress. The core algorithm was then adjusted
as described above. The old as well as this new adapted implementation of
the DACO prototype are available at https://sourceforge.net/projects/

dacoalgorithm/.

5.3.3 Optimized software design, new technologies and features

The JDACO implementation was completely rewritten from scratch in Java
8 with the goals of exploiting multithreaded computations for the benefit of
improved scalability as well as following a clear modular design that separates
the data retrieval functionality for an optimal usage together with PPIXpress.

In the original DACO implementation a single loop basically controls the
complete algorithm (see Algorithm 5.2). The loop manages the one-by-one
evaluation of all states encountered by executing the step-function (see Al-
gorithm 5.1) and also decides what is done with its output, e.g. it takes care

https://sourceforge.net/projects/dacoalgorithm/
https://sourceforge.net/projects/dacoalgorithm/
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Algorithm 5.1 Domain-aware cohesiveness optimization step function:
step(V , DV , P) with current proteins V , active domain interactions DV and
current probability P

determine Vinc and Vbound from the DDIN and DV

max f(V)
action terminate

5: for 8p 2 Vinc do
V 0 = V [ {p}
if f(V 0) > max then

max f(V 0)
action add p

10: end if
end for
for 8p 2 Vbound do
V 0  V \ {p}

if f(V 0) > max then
15: max f(V 0)

action remove p

end if
end for

20: if action = terminate then
return complex candidate V

else if action = remove p then
V 0  V \ {p}

25: determine domain interaction d 2 DV that connected p to V 0 in DDIN
DV 0  DV \ {d}

P 0  P/ (weight of d’s equivalent interaction in PPIN)
return compute job with parameters (V 0, DV 0 , P 0)

30: else if action = add p then
V 0  V [ {p}
l empty list
for 8d 2 DDIN so that DV [ d connects V 0 in the DDIN do
P 0  P⇤ (weight of d’s equivalent interaction in PPIN)

35: if P 0 > 0.5 then
append compute job with parameters (V 0, DV [ d, P 0) to l

end if
end for

40: if |l| = 0 then
return complex candidate V

end if
return list of compute jobs l

end if
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Algorithm 5.2 GrowthManager(starting_pairs, max_depth) with starting pair
states starting_pairs and complex size limit max_depth

results r empty set
memoized states m empty set
state or compute job queue q initialize with starting_pairs

5: while |q| > 0 do
state description (V , DV , P) q.pop()
if DV 2 m then

continue
else if |V | = max_depth then

10: r.add(V)
else

result j step(V , DV , P)
m.add(DV )
if result j is a set then

15: r.add(j)
else if result j is a list of compute jobs then

extend queue q by jobs in result j
else if result j is a single compute job then
q.append(j)

20: end if
end if

end while
return results r

of complex candidates returned or new branches that need to be considered.
JDACO follows a more decentralized software design to embrace the indepen-
dence of worker threads and thus to increase the potential efficiency of parallel
operations. Figure 5.4 outlines how the individual parts of the algorithm are
working together. The new architecture, some relevant technical details as well
as novel features are introduced in the following.

Starting calculations in JDACO

For reasons discussed earlier, the DACO algorithm starts its iterative optimiza-
tion of candidate complexes from starting pairs rather than single seed proteins.
Pairs are constructed from the user-defined seed proteins and their adjacent
interaction partners for which the confidence in the interaction exceeds a given
weight threshold. In the new implementation we added the optional function to
set and determine a percentile of the distribution of all the interaction weights
as the respective cutoff.

The default behavior of JDACO follows the previous DACO implementation
and runs all distinct starting pair states determined for each seed protein one
after another in independent search processes analogously to the procedure
described in Algorithm 5.2. This approach has the practical advantage that
users can follow the progress of the calculations in the sense that there is a
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Figure 5.4: Algorithmic responsibilities in JDACO. Black arrows in the overview depict the
default processes that are performed by the specific part of the algorithm whereas red arrows are
only active when early termination is enforced. Please refer to the main text for a comprehensive
introduction.

direct feedback of the currently processed seed protein, its number of starting
states (but only those that have not been encountered before), the protein
complexes that were predicted from those starting states and also how many
seed proteins are left. Organizing the compute jobs in such a manner poses
no disadvantages in singlethreaded operation. For optimal utilization of many
threads, on the other hand, it is beneficial to gather all starting pairs in the work
queue independent of the seed protein they stem from. In JDACO the user can
enable a ”high-performance mode” which does exactly that and sacrifices the
output on the progress for a better utilization of the hardware.

Worker management and responsibilities

At the core, the basic procedure of DACO as explained in Section 5.3.1 was
retained. All designated starting states are initially put into a queue that
is processed and also filled during the execution of the DACO algorithm.
Since all statements here refer to an actual implementation rather than an
explanation of the algorithmic core principle and because the overall processing
is a different one, I will also use the term compute job queue here. This queue is
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part of a custom thread pool executor implementation in JDACO which allows
to process the queued jobs, the algorithmic states that are not yet evaluated,
in a multithreaded manner. Since the LinkedBlockingQueue implementation that
was used follows the first in - first out (FIFO) principle and because most of
the evaluations will lead to an extension of the complex candidate and should
have comparable execution times, the search tree is approximately traversed in
a breadth-first manner.

In contrast to the old implementation in which the function controlling the
state queue basically governed the scheduling of the calculations but also
the management of the results, the thread pool’s area of responsibilities in
JDACO is condensed to utilizing its worker threads to full extent. By enabling
encapsulated access to the queue in this custom implementation, the worker
threads cannot only carry out state evaluations (see Algorithm 5.1) concurrently,
but, at the same time, they are empowered to extend the compute job queue
themselves on the fly if branching occurred and they are directly reporting final
candidate complexes to the result set. Thus not only the algorithmic evaluation
but also the subsequent management overhead was shifted into the range of
tasks that is run in parallel.

When a worker processes a job that yields new branches that need to be
evaluated and thus wants to append the jobs to the compute job queue, the
custom scheduler ensures to only accept jobs that have not been in the queue
before. It does that by maintaining a set data structure derived from Concur-
rentHashMap. This enables concurrent modification of the set with minimal
waiting times and a fast membership check given the hashing is done in a good
way. Analogously to the memoization approach of the old implementation, the
active domain interactions are used to define each algorithm state and therefore
are able to ensure the uniqueness of computations. Each domain interaction
in JDACO is stored as a data structure holding an ordered string pair (sl, sr).
Because collisions, unequal objects that are mapped to the same bin in such
hashing data structures, penalize the runtime of such set-membership checks,
the implementation aims to nicely spread the elements stored by employing
a hashcode computation that is hand-tuned according to best practices [328].
In this case the hashcode is computed as p ⇤ h(sl) + h(sr)) where p is a prime
number and h(x) means the hashcode of x.

Another case for which the high degree of control over the internal data
structures in Java was exploited beneficially by tailoring them to the task at hand
was the storage of performance relevant data accessed by the worker threads. As
an example, the mapping of proteins to their domains and the mapping between
domains, so basically the DDIs, are stored as simple arrays in the maps rather
than as managed data structures like an ArrayList, the dynamic equivalent
which uses an array internally. Because the network object is initialized once
and never changed again, convenience and abstraction features of the storage
data structure are irrelevant. Therefore one rather benefits from the constant
factor that is gained in terms of iteration and data retrieval speed simply
because the inherent internal overhead, e.g. by general memory allocation
and access management as well as sizing checks, is considerably smaller for a
bare-bones array.
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Default handling of complex candidates and early termination

If the algorithm terminates, the executing worker thread itself will directly
report the resulting complex candidate to the result set which is internally
stored as a ConcurrentHashMap used as a set. Using a concurrent data structure
for this task allows the workers to simultaneously report candidate complexes
in a way that minimizes potential waiting times by locking and should thus
serve best for the overall performance.

At last, JDACO allows to optionally specify a runtime limit for each starting
pair state (or all starting pair states in high-performance mode). This feature
was made possible by the new concurrent design. When enabled, a timer is
started with the algorithm execution and when the specified duration has
passed, all busy calculation threads and workers are stopped, the timeout
is reported to the user, and intermediate results are collected from workers
and job queue and finally transferred to the result set (see also Figure 5.4). In
practice this means a higher max_depth setting can be used for a run and the
overall time can still be kept within a manageable time even when individual
pathological cases are appearing in the course of the execution.

5.3.4 Evaluation data and methodology

Interactomes and seed proteins

All input networks, protein-protein and domain-domain interaction networks,
were constructed using PPIXpress (version 1.20) [90]. We used the option to
construct sample-unspecific networks which means the complete networks
were used and there was no contextualization step that tailored the networks
according to an expression data input. Furthermore, UniProt accessions were
updated automatically by the tool. In the process, data from Ensembl (release
94) [69], 3did (release July 2018) [107] and UniProt (release 2018_10) [109] were
retrieved and utilized by PPIXpress.

For yeast, we used the same data as in the original DACO publication [17].
The yeast PrePPI network [177] was taken as the input interactome and the
148 transcription factors of the Yeast Promoter Atlas [412] were used as seed
proteins. Please refer to [17] for details on this data.

For benchmarks on human data we used the latest version of the human
PrePPI network as in the publication on CompleXChange [163] (see also Chapter
6) and additionally retrieved a current release of the mentha PPIN (version
of 26.11.2018) [161] with PPIXpress. For both human protein interactomes we
used the full set of 678 transcription factors in HOCOMOCO (version 11) [220]
as seed proteins.

Relevant sizes of the respective input datasets contrasted are shown in Table
5.1.

Benchmark setup

To benchmark and compare the two implementations we used the JDACO
1.03 binary (in high-performance mode) and the adapted DACO prototype
version 1.02 with caching enabled. Both implementations in respective versions
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PrePPI (yeast) mentha (human) PrePPI (human)

proteins (with domain annotations [%]) 6, 191 (61.7) 19, 215 (51.4) 18, 449 (70.9)
protein interactions (with associated domains [%]) 232, 554 (20.9) 337, 525 (17.8) 1, 527, 283 (37.7)

domain interactions 299, 364 641, 075 10, 665, 429

Table 5.1: Sizes of the three DACO implementation benchmark datasets.

PrePPI (yeast) mentha (human) PrePPI (human)

starting-pair threshold Ppb 0.75 0.454 0.988
complex probability cutoff Pc 0.5 0.019 0.952

max_depth 10 6 5

Table 5.2: Parameters used for each benchmark dataset. The parameter set applied to the yeast
data was taken from the original DACO publication [17]. For the human datasets, starting-pair
thresholds Ppb were set to the upper 10% (or 90th percentile) of the corresponding network data
weights using the percentile function. The respective domain spanning-tree probability cutoffs
Pc were set automatically by JDACO according to (Ppb)

max_depth-1 and max_depth parameters
were set to yield a computational effort of comparable order of magnitude across the benchmark
inputs.

are made available on the SourceForge page of the DACO project: https://
sourceforge.net/projects/dacoalgorithm/. The applications were ran with
Oracle’s Java Runtime Environment 8.192 and Python 2.7.15 as supplied by
Ubuntu Server 18.04.2 on a server with two Intel Xeon Gold 6138 processors (2
GHz, together they have 40 cores/80 threads by simultaneous multithreading
which is a technique to increase the utilization of processor architectures by
allowing the parallel execution of multiple independent threads in a physical
core).

We applied JDACO with the same core parameters as in the original DACO
publication [17] to the yeast data. For the input data on human, we used the
new percentile function with the 90th percentile (upper 10%) of all interaction
weights in respective PPINs as a guidance to determine a weight threshold Ppb
for the construction of seed pairs. Maximal search depth parameters max_depth
were set to result in runtimes of comparable scale for all inputs and complex
probability cutoffs Pc were set automatically by JDACO. Table 5.2 lists all
parameters in detail.

All computations were run 5 times to ensure appropriate sampling of run-
times.

5.4 results and discussion

Since all measurements were repeated, the average speedup factor was derived
as the mean runtime of PDACO, termed Pavg, divided by mean runtime of
JDACO, abbreviated by Javg. Deviations of the speedup factor were based on
the extreme distances of the respective standard deviations Pstd and Jstd of the
replicated experiments. Thus the upper limit of the speedup factor was derived

https://sourceforge.net/projects/dacoalgorithm/
https://sourceforge.net/projects/dacoalgorithm/
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PrePPI (yeast) mentha (human) PrePPI (human)
method runtime [s] speedup factor runtime [s] speedup factor runtime [s] speedup factor

PDACO 31154.0± 215.7 / 5379.0± 35.0 / 31397.0± 571.7 /
JDACO (1 thr) 7652.4± 123.1 4.1 (4.0- 4.2) 952.4± 12.9 5.6 (5.5- 5.8) 1267.4± 16.4 24.8 (24.0- 25.6)
JDACO (2 thr) 3860.8± 23.2 8.1 (8.0- 8.2) 496.2± 7.7 10.8 (10.6- 11.1) 648.2± 5.3 48.4 (47.2- 49.7)
JDACO (4 thr) 2049.6± 8.8 15.2 (15.0- 15.4) 252.0± 1.9 21.3 (21.0- 21.6) 349.6± 3.7 89.8 (87.2- 92.4)
JDACO (8 thr) 1107.4± 10.0 28.1 (27.7- 28.6) 137.0± 1.4 39.3 (38.6- 39.9) 200.8± 3.2 156.4 (151.1- 161.8)
JDACO (16 thr) 632.4± 29.3 49.3 (46.8- 52.0) 74.4± 2.1 72.3 (69.9- 74.8) 124.6± 4.8 252.0 (238.3- 266.8)
JDACO (32 thr) 399.4± 23.0 78.0 (73.2- 83.3) 44.0± 0.9 122.2 (119.0- 125.6) 83.4± 5.5 376.5 (346.7- 410.4)
JDACO (64 thr) 305.0± 6.5 102.1 (99.3- 105.1) 34.0± 0.6 158.2 (154.3- 162.3) 62.8± 1.2 500.0 (481.9- 518.7)

Table 5.3: Benchmark results for PDACO and JDACO. Deviations of the speedup factor are
presented as the extreme distances of the respective standard deviations Pstd and Jstd of the
replicated experiments. The upper limit of the speedup factor is therefore shown as Pavg+Pstd

Javg-Jstd

and the lower limit as Pavg-Pstd
Javg+Jstd

.

by Pavg+Pstd
Javg-Jstd

and the lower limit given as Pavg-Pstd
Javg+Jstd

. The results of the runs are
listed in Table 5.3 and visualized in a log-log plot in Figure 5.5.

Independent of the exact test dataset or number of threads allowed to be used
by the implementation, JDACO determined protein complexes significantly
faster than PDACO in every single test case. Even without multithreading
PDACO took at least 4 times longer in our benchmark examples. In practically
relevant core counts for modern laptops and workstations, 4 to 16 threads, a
speedup of at least one and up to two orders of magnitude was measured. The
factor by which JDACO is sped up relative to its predecessor implementation
also seemed to relate to the size of the input data because the runtime advantage
was larger for more demanding datasets (see the respective number of domain
interactions in Table 5.1).

As can be seen in the relatively straight lines of the graphical depiction of the
speedup factor in Figure 5.5, the performance of JDACO also scales very well
with the amount of available cores until 32 threads. After that, although the
performance still increases, the slope shows a slight decline across all datasets.
Because the hardware setup that was used for all computations had only 40

physical cores this relative slowdown can likely be attributed to the loss of
efficiency by the utilization of virtual cores in simultaneous multithreading, i.e.
two threads sharing pipelines and caches within a single CPU core, rather than
actual physical units.

5.5 conclusion

The original Python prototype implementation of the DACO algorithm was able
to automatically retrieve the necessary annotation data to construct a DDIN and
relate it to the given input PPIN. Those interdependent networks were then used
to determine the manifold of combinatorial protein complexes around input
seed proteins. Splitting data preparation and complex prediction into PPIXpress
and JDACO has several practical advantages that allow approaching vast
new areas of application. Besides retrieving the necessary data for integration
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Figure 5.5: Speedup and scalability of JDACO compared to PDACO. The speedup factors
of calculations conducted using JDACO with a specific number of threads being utilized in
relation to those calculations done by PDACO are shown in a log-log plot. The speedup factor
was defined as the ratio of mean runtimes of the measurements made for the implementations
and the shaded regions around the averaged speedup factors depict the deviations as defined in
the main text.

much faster, PPIXpress allows to construct the input networks in a sample-
specific manner and unprecedented transcript resolution, or unspecific, as
before. JDACO, the new Java implementation of the DACO algorithm, offers
convenient new features and, more importantly, has a substantially better
performance than its Python predecessor. While DACO was absolutely sufficient
to determine general complexomes in an organism-wide way, the usage of
JDACO with PPIXpress effortlessly allows to scale up the granularity to sample-
dependent ensembles of protein complexes by harvesting from the wealth of
available transcriptome studies. A possible application would, for example, be
to outline differential complexomes with CompleXChange [87] (see also the
next Chapter 6).

5.6 addendum

5.6.1 Retrospective

Originating from my master thesis, the DACO algorithm and all concepts
around its application to find combinatorial protein complexes from seed
proteins are the chronologically oldest projects in this thesis. I put the idea of a
faster implementation into practice right after starting the core classes of the
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Java framework underlying all my software developmental efforts. Only after
that I started with the development of PPIXpress and the other tools.

Of course, implementations in other programming languages like C/C++
would have been possible and may have been even faster than the current
Java implementation JDACO. For example, I thought about the possibility
of speeding up the application even more by exploiting the general compute
capabilities of modern graphics cards (or graphics processing units (GPUs)). For
architectural reasons that I could not work out here, though, GPUs only work
optimal for data parallelism, thus when a large amount of data needs to be
processed in the very same way using the very same progression of instructions
on a fixed set of input data. Even simple flow-control instructions like if-
statements would enforce high performance penalties. More so, elementary
data structures, like dictionaries are extremely difficult to realize and topics of
research [413, 414]. Simple block based parallelism as in matrix computations,
e.g. just partitioning clear badges of compute jobs, is also not possible because
the search space of this optimization problem folds up at runtime.

5.6.2 Outlook

Contextualization by PPIXpress and the huge reduction of compute time by
JDACO render the investigation of dynamic complexomes practically feasible
even for large sample sizes. Besides the splicing machinery [415] or even the
Mediator complex [416] in general, potentially interesting study targets in the
area of gene regulation that are even less studied than transcription factor com-
plexes, could be complexes involving proteins that conduct posttranslational
modifications of histones and DNA [223] or RNA-binding protein complexes
[417], for example.

More generally, application to other types of complexes that also include
defined classes of proteins and are likely combinatorial within their modules
in nature are certainly worthwhile. Potentially interesting candidates could be
complexes relevant for signaling pathways or in cell-cycle control [191].



6
D I F F E R E N T I A L A N A LY S I S O F P R O T E I N C O M P L E X E S W I T H
C O M P L E X C H A N G E

This chapter is concerned with the estimation of protein complex abundances
and their differential analysis using the tool CompleXChange. Besides an
extensive assessment of its methodology, the results of a differential anal-
ysis concerning human monocyte subtypes are shown. Sections 6.2 to 6.5
were adapted and expanded from Will, T. and Helms, V., “Differential anal-
ysis of protein complexes with CompleXChange”, BMC Bioinformatics, 2019
[87]. I initiated this project and the study, designed and implemented the
software, performed data analysis, conceived the figures and wrote the orig-
inal manuscript. Volkhard Helms aided in designing the study, interpret-
ing the data as well as editing of the manuscript. Supplementary materials
that are published were omitted here, please refer to the online materials
https://doi.org/10.1186/s12859-019-2852-z. A platform-independent Java
binary, a user guide with example data and the source code are freely available
at https://sourceforge.net/projects/complexchange/.

6.1 prerequisites

6.1.1 Linear programming

Linear programming (LP) is an approach to optimize the outcome of a linear
objective function that is subject to a set of linear constraints and dates back
until the 1940s [418].

An instance of a LP task is called a linear program. In the so-called standard
form of linear programs, the problem is defined by n numbers c1, c2, . . . , cn 2 R

that define the objective function that should be maximized, as well as m

numbers b1,b2, . . . ,bm 2 R and mn numbers aij 2 R (with i 2 {1, . . . ,m},
j 2 {1, . . . ,n}) that shape the m + n constraints. Then LP determines those
x1, x2, . . . , xn 2 R that

maximize
nX

j=1

cjxj

subject to
nX

j=1

aijxj 6 bi, 8i : 1, . . .m

xj > 0, 8j : 1, . . . n.

Arbitrary linear programs, which do not necessarily include non-negativity
constraints (8xj > 0) and may use linear equality constraints or constraints
using greater-than-or-equal-to relations, can always be converted into standard
form [328].

123

https://doi.org/10.1186/s12859-019-2852-z
https://sourceforge.net/projects/complexchange/
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Figure 6.1: Example of the linear program outlined in Equation 6.1. Each constraint is shown
as a hyperplane (here in 2D: a line) that partitions the solution space and a direction which side
of the separating plane is allowed by the constraint. The feasible region that is delimited by the
constraints is shaded whereby the color gradient accentuates the increase of the objective value.
The green arrows and points depict a possible path of a simplex algorithm run that finally finds
the optimal solution with x = 2,y = 6.

More of the basic terminology on LP can be best clarified with the aid of an
example. Imagine the following optimization problem:

maximize x+ y

subject to 4x- y 6 8

2x+ y 6 10

5x- 2y > -2

x,y > 0.

(6.1)

Small linear programs of only two variables can often be illustrated nicely.
Figure 6.1 shows a visualization of the example stated in Equation 6.1. Here, the
constraints outline the feasible region in which every choice of x and y satisfies
all constraints. It can be shown that if the objective function has a maximum
value within the feasible region, then the optimal solution is an extreme point
on the boundary of the feasible region [328]. Thus to solve the optimization
task one only needs to consider such extreme points. Unfortunately, depending
on the problem size the number of points to be considered can still be very
large.

The very popular simplex method [419] uses this property and operates on
the vertices of the polytope defined by the feasible region which is termed the



6.1 prerequisites 125

data class classified positive classified negative

reference positive true positive (tp) false negative (fn)
reference negative false positive (fp) true negative (tn)

Table 6.1: Confusion matrix in binary classification. For simplicity, Boolean class descriptions
are assumed.

simplex. Starting on any vertex, the algorithm moves along the edges of the
simplex and iteratively optimizes the objective value by following the local
optimum, e. g. by proceeding to the most promising neighboring vertex. If no
further increase of the objective value is possible, a local optimum is found
and reported as the final result. This is possible because the feasible region is
convex and therefore a local optimum is also a global optimum [328]. Figure
6.1 shows the principle for our small example problem. The open-source solver
lpsolve [420] that we applied in the following project implements a revised
version of the simplex method.

Another successful class of methods are interior-point methods that, as the
name suggests, approach the optimal solution from the interior of the feasible
region [421].

6.1.2 Classification of data

Classification is the task of assigning a label or category to a sample which is
inferred from features of the sample and prior knowledge on training samples
for which the labels are known [320]. The first mathematical description of
an approach grouping a new sample into one of two classes was Fisher’s
linear discriminant analysis [422]. Since the samples of the training data are
necessarily labeled, classification belongs to the class of supervised learning
methods. For an example of a unsupervised learning approach, see Section
4.1.1 on the clustering of data.

A crucial step in the workflow of classification is the selection of an appropri-
ate machine learning model. The model in that sense is defined by the features
that are used to infer the predictions, the actual method that implements the
classification as well as its specific tuning parameters that need to be set [235].
Suitable performance measures are needed to decide on which features, classi-
fier and parameters are suited best for a task at hand and to conduct a final
assessment of the predictions. For simplicity, Boolean class descriptions are
assumed for the following explanations. Standard measures of classification
performance are based on the number of correctly classified samples (true posi-
tives and true negatives) and incorrectly classified ones (false positives and false
negatives). The definitions are clarified by the confusion matrix shown in Table
6.1. Based on the numbers of those four counts, common performance metrics
such as the accuracy, precision, recall (also called sensitivity) or specificity can
be calculated as given in Table 6.2 [423].

Especially when a classifier is trained and tested on the same dataset, every
well-adaptable machine learning method that can make use of a sufficient
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measure definition short description

accuracy tp+tn

tp+fn+fp+tn
overall correctness

precision tp

tp+fp
correctness of all cases labeled positive by the classifier

recall / sensitivity tp

tp+fn
effectiveness to identify positive labels

specificity tn

fp+tn
effectiveness to identify negative labels

Table 6.2: Common performance measures in binary classification. For simplicity, Boolean
class descriptions are assumed.

number of input features will show an overly optimistic prediction performance.
This effect is called overtraining. The only metric of practical importance,
however, is the generalization performance which quantifies the ability of a
model to classify independent data that it has not seen yet [235]. A simple and
widely used approach to assess the generalization performance of a classifier
is cross-validation (CV) . In CV the overall dataset is somehow partitioned
into two subsets of samples whereby the classifier is then trained on one
subset, the training set, and tested on the yet unseen subset, the test test. Often
several iterations of this general procedure are performed to randomize the
initial partitioning and reduce the variability of the results. Then the averaged
performance metrics are reported as more realistic estimates of the classifier’s
performance on unseen data [235, 320].

One implementation of this principle is k-fold CV. Here, the n samples of
data are partitioned into k subsets of roughly equal size. The classifier is then
trained and tested k times whereby each time another subset is held out in the
training phase and only taken for assessment. The mean performance of the
classifier over all k runs is then reported as the final result. The special case
when each sample is in its own subset is called leave-one-out CV [235, 320].
In stratified k-fold CV, the method that we used in the following project, the
partitioning of the data tries to maintain the distribution of the labels in all
subsets.

On classification with random forests

Random forests are a class of machine learning methods that are based on the
integration of an ensemble of decision trees. The core ideas and theoretical
foundations arose during the 90s and early 2000s [424, 425]. The principle and
its application in classification will be introduced briefly.

Decision trees are data structures that aid in guiding decision processes.
Starting from the root node of the decision tree, in each node an attribute of
the sample is queried that defines to which next node the walk is proceeded.
This strategy is repeated until a leaf of the tree is hit which then returns a
classification label [235]. Figure 6.2 shows an example of the principle for the
decision if taking an umbrella would be advised today given knowledge on
current weather conditions and a forecast.
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currently 
raining?

yes no

forecast

sunny rain

forecast

sunny rain

Figure 6.2: Example of a decision tree. Only if it is neither raining at the moment nor there is
a forecast of rain it is recommended to leave the umbrella at home.

Since especially decision trees that are grown very deep tend to overfit their
training data and aggregation of such “weak learners” is an efficient approach
to reclaim generalization performance [235], a random forest classifier uses
a collection of B such trees, the random forest. When learning the model, in
each iteration b one tree Tb is constructed and added to the forest. The basic
procedure for this is straightforward. Starting from the root node, a tree is
grown by recursively calling the following steps on each expanded node until
a termination criterion is achieved: randomly select k << m of all m features,
pick the best splitting feature among the selected ones according to some metric,
then split the node into two daughter nodes and recurse. Classification can
then be conducted by either having a majority vote of the trees in the forest
or by averaging their contributions [235]. Details are depending on the exact
implementation of the method and the parameter set that was used. The doc-
umentation of the scikit-learn library [426], which was used in the following
project, provides a good overview on the plethora of tunable parameters found
in a common random forest classifier implementation1. Among other possibili-
ties, the termination of the tree-building process can be made dependent on
the maximum depth allowed for the decision trees or the minimal number of
samples required to allow a split of the node, for example. The feature that is
suited best as a splitting criterion can be decided by various metrics like the
entropy, the gain of information, or the Gini impurity, a special measurement for
decision trees introduced in the CART method [427]. Furthermore, by default
each tree is built from a bootstrapped dataset that is generated by drawing
samples from the original training set with replacement. By “spicing up” the
training sets of the individual trees in this fashion a potential correlation of the
trees in the forest is minimized. Other important parameters are the number of
trees in the forest B and the number of features compared in each split k. Best
practices on ranges and heuristics suggesting good starting points for those
parameters are well established [428, 429].

1 https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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6.2 introduction

Cellular function is a team effort because proteins rarely perform their bio-
chemical tasks all alone. Instead, proteins frequently collide with other gene
products in the crowded environment of the cell, they may selectively bind to
other proteins driven by physical interactions, they may dynamically assemble
into complexes in a well-coordinated manner and accomplish their tasks coop-
eratively [12, 430]. Such multiprotein complexes may be either clearly defined
modules of interaction partners that represent permanently assembled molecu-
lar machines or combinatorial formations of transient interaction partners in a
dynamic interplay [144, 145, 201].

Whereas the experimental detection of protein complexes is generally speak-
ing a mature field, it is still time-consuming and subject to high false-discovery
rates. Quantitative profiling of the complete complexome in a condition-specific
way is currently not feasible in a high-throughput fashion [147, 155, 431, 432].
More so, direct quantitative measures are limited to a definite protein space
and only cover pairwise complexation [433–436].

Nowadays a plethora of data on gene expression and an increasing amount
of data on proteome abundances enable to also approach the dynamics of
the condition-specific complexome by computational methods. Guided by
static compilations of protein interactions, the correlation of gene expression
or protein abundance between putative interaction partners was used as a
proxy to study their collective behavior [124, 144, 437]. Besides, the topic was
examined by integrating expression data with known protein complexes [201]
and annotated pathways [438]. However, such simplified models lack a ruleset
addressing how proteins that are expressed in low amounts and that are shared
between different binding partners may limit complex formation. Approaches
dealing with such interdependencies and the limitedness of gene products
have been attempted by stochastic simulations with according computational
effort [206] and by linear optimization on fixed sets of reference complexes [15,
439]. The latter studies only considered a very limited complexome and took a
simplistic view at differential abundances across cellular states.

Whereas databases of experimentally detected protein complexes continue to
serve the community well, they are inherently incomplete - especially when it
comes to dynamic combinatorial complexes - and thus can only partially explain
all the relevant interplay [188, 440]. Proteins concerned with the regulation
of transcription and the chromatin state, for example, are highly interwoven
subsets of physically interacting proteins and form complexes in a time-, context-
and condition-specific manner. In particular transcription factor complexes are
master regulators of all levels of eukaryotic life ranging from the yeast cell
cycle [209] to key determinants of cellular fate in mammals [210–212]. We
showed with our combinatorial complex prediction algorithm DACO [17]
that by integrating connectivity constraints inferred from interactions between
protein domains, one is able to unravel the ensemble of biologically feasible
protein complexes even for challenging modules of the interactome. With our
more recent development PPIXpress [90] (see also Chapter 3) and transcript
expression data, the input data for DACO can be contextualized to a level of
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detail that even takes into account potential effects of alternative splicing when
inferring sample-specific interactomes.

Here, we present the differential analysis software CompleXChange as a
terminal step of a pipeline consisting of PPIXpress-contextualized and DACO-
derived protein complexes, or arbitrary alternative input protein complexomes.
The tool quantifies protein complexes, includes several statistical testing pro-
cedures, is open-source and can easily scale up to 10, 000s of interdependent
complexes on a standard computer.

6.3 materials and methods

CompleXChange facilitates differential analyses of the protein complexome. It
is intended to be used with input data on two groups of samples for which
protein complexes and protein abundances are predicted by the tools JDACO
[17] (version 1.0+) and PPIXpress [90] (version 1.15+). The software can also be
applied to suitable input data from alternative origin, of course. An alternative
workflow is provided below on the example of reference complexes taken
either from CORUM [361] or from hu.MAP [188]. A ready to use platform-
independent Java 8 binary, a user guide with example data and the source code
of the program are freely available for download at https://sourceforge.net/
projects/complexchange/https://sourceforge.net/projects/complexchange/. The
general workflow is outlined in Figure 6.3.

6.3.1 Approximating protein complex abundances

In the first computational step, CompleXChange infers complex abundances
from the input data, namely total protein abundances and protein complexes,
for each individual sample. To speed up the calculations, CompleXChange auto-
matically utilizes multicore systems in this step by exploiting the independence
of the samples.

Binding affinities between proteins are neglected as suitable data is lacking
currently and in the foreseeable future [174]. Instead, we assume that the
formation of complexes in a cellular sample is governed by two basic rules: the
total amount pi,tot of each protein i 2 P in the sample is fixed, see Equation
6.2, and the abundance cm of a complex m 2 C is limited by its least abundant
member protein, see Equation 6.3. Thus

8i 2 P : pi,tot =
X

m2C

pi,m + pi,res, (6.2)

8m 2 C : cm = min
i2Cm

pi,m (6.3)

where Cm denotes the set of proteins that make up complex m, pi,m is the
amount of protein i that is assigned to complex m, and pi,res is the residual
quantity of protein i that is unbound in the sense of the input proteome P and
complexome C. We do not consider the case that single proteins may occur

https://sourceforge.net/projects/complexchange/
https://sourceforge.net/projects/complexchange/
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as multiple copies in a protein complex because there are few data available
and the information is absent in the notion of complexomes derived from
interaction networks. The methodology can in principle be extended to cover
stoichiometries of the important class of homo-oligomeric protein complexes
if that information should become widely available at genomic scale in the
future. At the moment, our concept of neglecting such complexes leads to an
over-representation of the other complexes that these proteins are involved in.
Figure 6.3B visualizes an application of the algorithm to an artificial example
where “Iter: x.y” means iteration x and step y.

Step 0: Initial distribution of proteins

The algorithm starts by distributing equal portions of the total abundance of
each protein pi,tot to the complexes it is participating in. Thus 8i 2 P : pi,res =
0 and

8i 2 P,m 2 Pi : pi,m =
pi,tot

|Pi|
(6.4)

where Pi is the set of all complexes that include protein i. This step is only
executed once.

Step 1: Tracking surplus capacities

After the initial fill-up in Step 0 and subsequent redistribution steps in later
iterations, the limiting proteins in each complex are determined and all cm
are set according to Equation 6.3. Thereby, all complexes limited by a protein
i in this iteration are kept track of in Li. Residual capacities are subsequently
updated by the surplus protein amount, thus

8i 2 P : pi,res =
X

m2Pi

(pi,m - cm). (6.5)

The respective quantities per complex are then adjusted accordingly, 8i 2
P,m 2 Pi : pi,m = cm.

When its limiting proteins have zero residual capacity at this point, their
share in the complex will remain fixed in further iterations and thus the com-
plex is saturated. Saturated complexes and proteins solely found in saturated
complexes are therefore set aside and not considered in future iterations (see
change to red text color for complex annotations in Figure 6.3B).

Step 2: Detecting convergence

The sum of residual capacities
P

8i2P
pi,res after Step 1 is monotonically de-

creasing and the optimal state is found when no further meaningful decrease
is possible. The iterative optimization stops and the complex abundances cm
are returned when either �

P
8i2P

pi,res < ✏, the preset maximum number of
iterations is reached or all complexes are saturated. Details regarding default
termination parameters are given in Supplementary Section S1.1.
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Step 3: Redistributing residual capacities

To counteract optimization confinement (pathological examples can be artifi-
cially constructed where protein amount is swapped back and forth without
any meaningful improvement) and accelerate convergence, a logistic saturation
function that is decreasing rapidly with each iteration sets a distribution pref-
actor � 2 [0.99, . . . , 0.09) (see Supplementary Section S1.1 for details) by which
the residual amounts of limiting proteins ({i 2 P

�� |Li| > 0}) are preferentially
distributed to complexes they limit:

8{i 2 P
�� |Li| > 0},m 2 Li : pi,m = pi,m +

�pi,res

|Li|
(6.6)

with thus remaining capacitites 8{i 2 P
�� |Li| > 0} : pi,res = (1 - �)pi,res.

Finally, the complete residual capacities of all proteins are distributed equally
as 8i 2 P,m 2 Pi : pi,m = pi,m +

pi,res
|Pi|

and therefore 8i 2 P : pi,res = 0. From
here, the algorithm proceeds with Step 1 in a new iteration.

6.3.2 Detection of differential complexes

After annotating each complex detected by JDACO with an abundance value
per sample, we statistically evaluate the numerical difference of the abundance
of individual complexes between groups (see Figure 6.3C). To limit unneces-
sary testing, complexes that should undergo testing have to be detected in at
least a sizeable fraction of samples of either group (default: 0.75). The group-
specific distributions of each complex that passed this filtering step are then
subjected to two-sided statistical tests. Implemented statistical tests are the
Wilcoxon rank-sum test (default test; unpaired, non-parametric), Welch’s un-
equal variances t-test (unpaired, parametric), Wilcoxon signed-rank test (paired,
non-parametric), and the paired t-test (paired, parametric). Multiple testing
adjustment is subsequently performed using the Benjamini-Hochberg proce-
dure [236] and significantly deregulated complexes are reported. Additional
options that are implemented in the code but not discussed here are (a) to base
the differential analysis on subsets of complexes detected to help the detection
of alterations in robust core complexes, or (b) to solely use combinations of
user-specified seed proteins as the reference of interest. Please refer to the user
guide for details.

Furthermore, CompleXChange includes an optional analysis that determines
seed proteins that occur more often than expected by chance in up- or down-
regulated complexes. If this option is selected, a ranked list of protein complexes
is constructed by assigning a score to each evaluated complex. This score is set
as the negative logarithm of their raw p-value and the sign of their direction of
deregulation. In doing so, the task resembles the established approach Gene
Set Enrichment Analysis (GSEA) but is applied to proteins in scored protein
complexes in an analogous way. The implementation is done according to the
original GSEA paper [233] and the same FDR as in the differential analysis is
applied. By default 10, 000 iterations are made in the randomization step and
only seed proteins are considered that belong to at least 10 complexes.
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6.4 results and discussion

The results will be divided into three major parts. First, we introduce the
datasets that were used in our evaluation, then we assess the performance of
CompleXChange. Finally, we analyze the results of an application of CompleX-
Change to derive the differential transcription factor complexome of classical
and non-classical monocytes.

6.4.1 Datasets and processing of data

Preparing sample-specific transcript expression data

Raw RNA-seq data for 17 samples of classical monocytes (CMs) and for 17 sam-
ples of non-classical human monocytes (NCMs) [405] (16 sample pairs matched
by donor among them) were retrieved from the SRA (accession SRP082682)
[85]. A subset of 58 RNA-seq samples of finnish women among the human
lymphoblastoid cell line samples (LCLs) of the GEUVADIS data [411] was
downloaded from EBI ArrayExpress (accession E-GEUV-1) [86] analogously to
[83]. The raw sequencing data was quantified using kallisto 0.43.1 [74] and the
annotation data on human protein-coding transcripts of GENCODE release 27

(GRCh38.p10, Ensembl release 90). Kallisto was applied with bias-correction
enabled and default options otherwise. Fragment length estimates for the single-
end sequenced monocytes data were set according to the original publication
[405]. One hundred iterations of bootstrapping were carried out to account for
technical variation in a subsequent differential analysis using sleuth [83].

From interaction networks to transcription factor complexomes

From the weighted human protein-protein interaction network PrePPI [163,
177] we downloaded its most recent high-confidence release (defined by a
probability of interaction above 0.5) on 17. Jan. 2017. On the basis of this ref-
erence interactome we constructed sample-specific protein-protein interaction
networks as well as corresponding domain-domain interaction networks for all
quantified transcript expression samples with PPIXpress 1.18 [90]. For this, the
most recent updates were automatically retrieved from Ensembl (release 90)
[360], UniProt (release 2017_09) [441] and 3did (release Sept. 2017) [107]. The
reference network contained information on 18, 451 proteins and 1, 527, 335 in-
teractions. 70% of the proteins and 37% of the protein interactions were mapped
to domain interactions and thus can benefit from the transcript granularity
of the data and the methodology of PPIXpress that adapts the interactome in
an isoform-specific manner. The usefulness of this model based on conserved
domains was recently confirmed experimentally [7, 207]. All transcripts with
a non-zero TPM value were deemed expressed. Approximate protein abun-
dances were taken as the sum of TPM values for all expressed transcripts
coding for the protein. Notably, when assigning abundance values, PPIXpress
(since version 1.12) by default excludes transcripts with Ensembl biotype an-
notations ’nonsense-mediated decay’ or ’non-stop decay’. Although protein
abundances are still approximated by mRNA expression, the pipeline already
accounts for well-understood post-translational surveillance mechanisms and
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A B

Figure 6.4: Size distributions of input data. A) Number of mapped reads (left), size distributions
of sample-specific protein interaction networks (middle) and JDACO predicted complexomes
(right) for individual samples of the GEUVADIS lymphoblast cell line (LCL) data and classical
(CM), as well as non-classical monocytes (NCMs). B) Sizes of sample-specific monocyte
complexomes derived from the data of CORUM (left) and hu.MAP (right).

should thus provide more reasonable estimates than mere gene expression
data until equally rich genome-wide proteome abundance data are available in
appropriate sample sizes.

Finally, transcription factor (TF) complexes were predicted for each sample
with JDACO 1.0 [17] by employing the 601 TFs annotated in HOCOMOCO
v10 [442] as seed proteins in the respective protein and domain interactomes.
The seed pair threshold was set to 0.95 (PrePPI weights are probabilities),
the maximal complex size to 5 proteins (optimized tradeoff between allowed
complex size and runtime) and default parameters were used otherwise. The
thus derived complexome will serve as the default input for our analyses. Figure
6.4A visualizes the distributions of mapped reads (left) as well as interactome
(middle) and predicted complexome sizes (right) for the three groups of samples
used in the study.

To illustrate how CompleXChange can also be used in alternative workflows,
we downloaded the manually curated human protein complexome of 2916

complexes in CORUM (3.0) [361] and the precompiled dataset of 4526 hu.MAP
complexes [188] which was derived by data integration efforts. After filtering for
complexes with at least one TF, the 454 remaining CORUM transcription factor
complexes (TFCs) comprised complexes involving 159 TFs. The 277 remaining
hu.MAP TFCs covered 183 TFs. The thus derived TFCs of each data source
where then used as reference complexomes to construct sample-specific subsets
for which all member proteins have a non-zero protein abundance (as given
by PPIXpress, see above) in the particular monocyte samples considered here.
Figure 6.4B shows the respective complexome sizes for all monocytes samples.
When assessing the sizes of TFCs in the CORUM and hu.MAP data, the vast
majority of complexes was within the threshold of 5 proteins per TFC that we
used in our predictions (see Figure S1).
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6.4.2 Assessing the methodology

We first evaluated the performance of the algorithm that approximates protein
complex abundances implemented in CompleXChange. For this, we compared
the ComplexChange results to an approach where the problem was formulated
as a linear program [15, 439]. Simulated data with known ground truth was used
to benchmark the two methods. Furthermore, we checked if CompleXChange
was susceptible to reporting deregulated complexes erroneously and how it
behaved using limited data. To emulate rather complete complexomes, all
method evaluation was conducted using the extensive predicted complexomes
of each sample.

Comparing abundances computed by CompleXChange and linear programming

Using both the CompleXChange algorithm and an existing approach based
on linear programming (LP) we computed abundance values of predicted
protein complexes for all 92 samples on monocytes and lymphoblastoids. The
LP approach was implemented according to the equations in [439] using the
established open-source solver lpsolve (v5.5) [420]. Figure 6.5 visualizes the
correlation of complex abundance estimation results between both methods
(left), runtimes for each method (middle) and the fraction of complexes per
sample that were assigned with an abundance of zero by the LP-based approach
(right).

The predicted protein complex abundances were overall very similar to each
other with an average correlation of 0.90± 0.06 (Figure 6.5, left). Computing
the LP results took on average 2.8± 0.9 times longer (Figure 6.5, middle) than
using CompleXChange on identical input data (p < 10-16, two-sided Wilcoxon
signed-rank test paired by sample). Notably, the LP formulation resulted in
many zero solutions. On average, 85% ± 1% of all complexes in a sample
were assigned an abundance of zero (Figure 6.5, right) although all member
proteins in input complexes have non-zero abundance by definition. Whereas
the LP result is numerically optimal given its formulation and constraints,
non-sparse abundance results as returned by CompleXChange - even if they are
very small - appear biologically more reasonable solutions. Furthermore, zero-
inflated complex abundance distributions would require an adjusted statistical
treatment [443, 444].

Benchmarking complex abundance estimation on simulated data

As pointed out before, there exists so far no adequate experimental reference
data to test the complex abundance estimation against. In lieu of this, we
generated input data of known ground truth by randomized construction on
the basis of realistic complex compositions and expression values from our
prepared samples. The construction reverses the simple idea that a protein
which is exhaustively incorporated into complexes and has no unbound portion
(pi,res = 0) consequently sets the maximum abundance of all complexes it is
part of. For the construction of this synthetic dataset, the total abundance pi,tot
of each limiting protein is randomly drawn from sample data. To ensure that
such a sampling does not suffer from biological bias, we assessed if protein
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Figure 6.5: Comparison of complex abundance estimations by the iterative approximation
in CompleXChange (approx) and by linear programming (LP). Shown are the correlation of
their results (left), the necessary runtimes for each method (middle) and the fraction of zero
abundance complexes reported by the LP approach (right) per dataset as well as accumulated for
all data. Runtimes were calculated as the average of 3 repetitions for each method and sample.

abundances correlate with the number of complexes a protein participates in. In
the data on (N)CMs and LCLs this was clearly not the case (average correlation
-0.005± 0.003). The arbitrary association of proteins with abundance values
should therefore be unproblematic.

Distributing a respective share of all limiting proteins to the complexes in
which they take part can then be modeled in various ways (model parameter I).
All pi,m are determined by definition (see Equations 6.2-6.3) and only residual
capacities pi,res of non-limiting proteins remain to be set (model parameter
II). These in turn specify the pi,tot of the artificial input data. Model parame-
ter I, the distribution of limiting protein abundances among their associated
complexes, was realized using three independent modules: equal distribution
with modeled noise (abbreviated as eqd-[noise parameter]), sampled from an
empirical distribution (ed) from ComplexChange approximation results and
an assumption-free random distribution (rndd). Model parameter II is the
unbound ratio parameter that models the extent of residual capacities of non-
limiting proteins. The detailed construction schemes as well as our estimates on
reasonable noise parameter ranges are documented in Supplementary Section
S1.2.

To judge the relative performance of the CompleXChange approximation
algorithm we also applied the LP approach and two randomized modifications
of the CompleXChange algorithm to the artificial reference data. In the first
randomized variant of the algorithm, input abundance values of proteins were
shuffled before applying the abundance estimation method (abbreviated rnd
(in)), i.e. input protein abundances did not match the abundance of the proteins
associated in the ground truth. In the second variant, the complex abundance
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results derived from the correct input data were shuffled (abbreviated rnd (out)).
We tested 12 combinations of parameters over all 92 samples for 20 iterations
each for all methods (see Supplementary Section S1.2 for details on parameter
sets). To assess the smoothness of the CompleXChange approximation perfor-
mance, a broader set of 42 combinations including some intermediate values
was used for benchmarking. We compared the artificial data for which we knew
the ground truth with the results of the individual methods in terms of the
correlation of known/predicted complex abundances. The results are shown in
Figure 6.6 in dependency of the distribution parameter (left) and the unbound
ratio parameter (right). More detailed results for all individual parameter sets
are shown in Figure S5.

Both CompleXChange approximation and the LP approach performed far
better than the randomized methods whose results were generally not corre-
lated with the reference complex abundances (see Figure 6.6 and Figure S5
for details). The correlation of the CompleXChange results with the reference
was significantly higher than those from LP across all modeling parameter
sets (p < 10-14 for all parameter sets, see Table S1 and Figure S5 for details).
Interestingly, the performance of both methods was more strongly affected
by the unbound ratio (model parameter II) than by the modeling of the dis-
tribution of protein product (model parameter I). This is even more apparent
when a broader choice of modeling parameters is applied, as was done for the
CompleXChange abundance estimation (see Figure S6). Consequently, a good
coverage of the complexome sets the ruleset of interdependency and also limits
excess protein product. The typical complexome size in our study (see Figure
6.4, rightmost) was about a magnitude larger than, for example, that used in
the study describing the application of the LP-based approach to human [15]
(1, 338 human protein complexes taken into account).

Detection of false positives in negative control data

The subset of Finnish women in the GEUVADIS data that we prepared is
assumed to be rather homogeneous. Hence, random sampling of groups therein
was used before as a negative control in the assessment of differential expression
methods [83]. When we analogously applied the same testing approach to find
deregulated complexes in the GEUVADIS data, CompleXChange showed a
high robustness against false positive reports when group sizes were reasonably
balanced. For details, we refer to Supplementary Section S2.1.

Sample size dependency of results

We also checked by subsampling on a reference dataset (see [80, 83, 445]) how
CompleXChange behaved when only a small number of samples is available
for differential analysis. The results indicated that at least 10 samples per group
should be used, if possible. For details, see Supplementary Section S2.2.
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Figure 6.6: Correlation of constructed complex abundances and predictions by different estima-
tion methods depending on different modeling parameters. Results are shown in dependency of
the distribution parameter (left) and the unbound ratio parameter (right).

Differential transcription factor complexome of classical and non-classical mono-
cytes

Finally, we applied CompleXChange to detect deregulated TF complexes (TFCs)
between classical and non-classical monocytes whereby complexomes were
predicted for each sample with PPIXpress and JDACO. This cellular transition
was chosen because the expected differences should be comparably small
and the number of samples in the dataset appeared sufficient. We used non-
parametric testing, FDR 0.05 and default settings otherwise and enabled the
option to assess if seed proteins (here: transcription factors) are enriched in up-
or down-regulated complexes. CompleXChange reported 978 deregulated TFCs
and 35 enriched TFs therein. Figure 6.7 shows a volcano plot of the complexes
evaluated and the distributions of complexes involving the three most enriched
TFs.

Comparison to differential expression results

Differentially expressed genes were determined using the quantified RNA-seq
data (see Materials and Methods) and sleuth (v0.29.0) [83]. For this, transcript
expression was summarized to the gene-level using matching Ensembl 90 data
retrieved by biomaRt (v2.34.0) [446] and statistical significance was determined
based on q-values below 0.05 in likelihood ratio- and Wald-tests. As result,
316 genes were found to be differentially expressed, 77 of those were TFs (47
upregulated, 30 downregulated). In the following, these genes are termed DE
genes. We assume that the proteins encoded by them are deregulated as well.

We first studied to what extent DE genes overlapped with the 978 deregulated
complexes. On average, about a third (37%± 24%) of each reported deregulated
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Figure 6.7: Volcano plot of fold-changes in protein complex abundances. Significantly dereg-
ulated complexes between classical and non-classical monocytes are shown as blue points.
Complexes below the significance threshold are colored grey. Additionally, complexes that con-
tain one of the three most enriched TFs are shown in red (NR4A1), green (NR1H2) and yellow
color (RELA), respectively. Fold-changes were computed as the ratios of mean abundances of
respective complexes in the two groups. Complexes that exhibited border case fold-changes (zero
mean abundance in one of the groups) were set to ±15 and the respective datapoints marked as
triangles.

complex consisted of proteins whose genes were deregulated between the
two cell types. In 823 complexes (84.2% of all results) at least one protein-
coding gene was deregulated and in 32 cases (3.3%) all were differentially
expressed. These modes of action were also relevant in the 10 most deregulated
complexes as can be seen in Figure 6.8. The significantly altered abundance of
155 complexes (15.8%) could not be inferred by differential expression analysis
of protein-coding genes in isolation. Such events can be explained, on the one
hand, by the effects of mutual dependence among the complexes since they
share and compete for each protein product, and, on the other hand, by the
dynamics of the neighborhood in the protein interactome which affect the
cohesiveness measure in JDACO predictions (see [17]).

Next, we investigated the relationship between deregulated complexes and
deregulated protein-coding genes in reverse direction. Of all 87, 945 complexes
seen in any sample 54, 645 had at least one deregulated gene (62.1%). Among
those complexes only 1.5% were detected as being deregulated. When com-
plexes were filtered with CompleXChange to be present in at least 75% of either
group, of the 2, 522 complexes, 1, 841 had a deregulated member (73.0%). Only
44.7% of those complexes were found to be deregulated by CompleXChange.
We stored the 1, 841 complexes selected by DE for the analysis of information
content in the next subsection.
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At last, we compared the results in terms of TFs that were reported as
deregulated. Whereas most of the TFs that were found to be enriched in
deregulated complexes were also differentially expressed, 14 of the 35 (40%)
enriched TFs were not significantly deregulated on the gene-level. Significance
rankings between the two approaches cannot be compared, as can be seen
in Table S2. Most noteworthy, NR4A1 is the TF with highest enrichment in
CompleXChange, whereas in DE it is only the eighth TF when sorting by
q-value and the 22nd TF when sorting by fold-change. Nr4a1 is the master
regulator of non-classical monocytes in mice [447, 448]. In human, its ortholog
NR4A1 is assumed to have the same regulatory function [449, 450].

Furthermore, DE TFs and TFs reported to be enriched in deregulated com-
plexes were subjected to overrepresentation analyses using the web services
GeneTrail2 [262] and PANTHER [261] against the background of all 601 TFs
regarding five pathway annotation databases. Details concerning the analyses
and the complete results are provided in Supplementary Section S2.3. Whereas
the DE TFs showed only one rather unspecific enriched term in one database
(PANTHER pathway “CCKR signaling map” 3.54-fold enriched, see Tab S3), the
CompleXChange enriched TFs showed enrichment for all pathway annotation
databases. The enriched annotations contained, for example, Toll(-like) receptor
signaling (several terms across databases, see Tables S5, S7 and S8), TNF(-↵)
signaling (several terms across databases, see Tables S5 and S7), various specific
interleukin signaling pathways (e.g. WikiPathways “IL-1 signaling pathway",
13.71-fold enriched, see Table S7) as well as more general terms such as “Inflam-
mation mediated by chemokine and cytokine signaling pathway” (PANTHER
pathway, 9.95-fold enriched, see Table S8). This matches the specialization that
has been reported for these cell types [451–453].

Comparison to an alternative pipeline using CORUM and hu.MAP complexomes

For this comparison, we selected those protein complexes of CORUM and
hu.MAP containing at least one TF instead of using predicted complexomes as
the input. When we applied CompleXChange to the sample-specific subsets of
the CORUM and hu.MAP complexomes using the same parameters as with the
JDACO predictions, 77 CORUM complexes and 16 complexes of hu.MAP were
identified as deregulated between classical and non-classical monocytes. The
distribution of complex abundance changes appeared very one-sided in both
datasets, see Figure 6.9. Due to the very small number of complexes assessed
and due to the skewed distributions, the calculation of TFs enriched on the
upper/lower end of the deregulation range is not really meaningful. This can
be seen on the example of RREB1 that was found to be the only enriched TF
for the hu.MAP data.

The overlap between results of CompleXChange analyses using the predicted
JDACO complexes and complexomes of CORUM and hu.MAP was overall very
small (see Table 6.3). Interestingly, the result derived from the predicted sample-
specific complexomes was more similar to either result of the two complex
databases than the overlap of the two databases (first three rows, Table 6.3).
This also holds true when all TFCs are taken into account rather than only the
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Figure 6.8: Fold-changes of the top-10 deregulated transcription factor complexes and their
members. The 10 most deregulated TFCs are shown in order of significance on the x-axis,
the arrowtips on the y-axis depict their logarithmic fold-change. In addition, logarithmic fold-
changes of their member proteins are overlayed on the respective columns whereby proteins
coded by DE genes are colored red and those with non-DE genes associated are shown in green.
Fold-changes were computed as the ratios of mean abundances of respective complexes and
proteins in the two groups.
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Figure 6.9: Volcano plots of fold-changes in CORUM and hu.MAP protein complex abun-
dances. The results for CORUM complexes are shown in the left plot and the results on the
basis of hu.MAP complexes on the right. Significantly deregulated complexes between classical
and non-classical monocytes are depicted as blue points and complexes below the significance
threshold are colored grey. For the hu.MAP results, complexes that contain RREB1 are shown
in red. Fold-changes were computed as the ratios of mean abundances of respective complexes in
the two groups.

ones deemed significant by CompleXChange (last row, Table 6.3). This is not
very surprising since current experimentally-backed complexome libraries are
still considered to be quite incomplete [188, 440]. Especially when taking into
account the important interplay between complexes sharing proteins, input
data of predicted complexomes seem more appropriate in this specific issue.

Abundances of reported deregulated complexes are meaningful descriptors of cell type

To assess the information content of deregulated complexes in an unbiased way,
we tested their ability to act as descriptors in simple random forest models [454]
that were trained to classify the monocyte data into classical and non-classical
samples.

For each set of complexes (or TFs) tested we performed 100 iterations of
stratified 10-fold cross-validation (CV) to account for randomness in dataset
partitioning and tree building [454, 455]. The corresponding abundance values
of complexes or TFs were used as the features in a random forest classifier with
32 trees (sufficient according to [429]). The number of features considered in
each tree split was automatically set to the square root of the number of total
input features according to the heuristic established by [428]. Other parameters
were kept at the default setting as implemented in scikit-learn (v0.16) [426].
The performance for a set of complexes (or TFs) was then reported as the mean
accuracy over all cross-validation iterations. We considered the following cases:
(1) all complexes reported by CompleXChange applied to both predicted and
reference complexomes, (2) two stricter sets for which we pruned the result
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results sets compared exact matches average overlap reasonable overlap [%]

CORUM / JDACO 0 0.24± 0.12 32.5
hu.MAP / JDACO 0 0.17± 0.16 18.8

hu.MAP / CORUM 1 0.08± 0.24 6.3
hu.MAP (all) / CORUM (all) 5 0.12± 0.19 11.9

Table 6.3: Comparing deregulated complexes of JDACO, CORUM and hu.MAP. “hu.MAP
(all)” and “CORUM (all)” depict the sets of all TFCs in the respective datasets whereas all
other sets cover the reported deregulated complexes. Overlap between two protein complexes was
quantified using the overlap score ! [194], “average overlap” between two result sets means
the average of all best matches in terms of ! between the first (smaller) and second (larger) set
of reported deregulated protein complexes. The percentage of complexes in the first (smaller) set
with any reasonable match (! > 0.25, as in [17, 179, 196]) in the second (larger) set is termed

“reasonable overlap”.

for the predicted complexomes by demanding tighter q-values (q < 0.01 and
q < 0.001), (3) permutation tests where we sampled random complex sets as
well as for (4) DE complexes (complexes with at least one DE protein-coding
gene associated, see previous subsection), and (5) DE/all TFs (using protein
abundances). The results are summarized in Table 6.4.

The complexes reported by CompleXChange when applied to the predicted
complexomes showed monotonically increasing mean accuracy and decreasing
variance with increasing stringency and thus decreasing set size (from 978 to 31,
compare “sign. dereg. complexes” entries in Table 6.4). Whereas the significantly
deregulated complexes with highest stringency gave the best overall accuracy
of all feature sets tested, including DE TFs, most non-random feature sets
basically showed similar performance within their standard deviations. The
significantly deregulated complexes reported on the basis of the fixed protein
complex datasets gave the lowest classification performance of non-randomized
descriptors (compare non-randomized entries in Table 6.4). This strengthens
the assumption that predicted complexomes are favorable currently.

As a baseline comparison to the CompleXChange results for the predicted
complexomes of varying stringency, we evaluated how likely it is to get a
similar performance by chance. For this, we drew 10, 000 random complex sets
of equal size from either all 87, 945 predicted complexes seen in any sample
or the filtered set of 2, 522 complexes. In all tested scenarios, the accuracy of
the corresponding CompleXChange result set was very unlikely to be achieved
or exceeded by chance (all p 6 0.0003, see Table S9 for statistics, Table 6.4
for averages and Figure 6.10 for observed distributions). The hu.MAP-derived
deregulated complexes, on the other hand, were often even less predictive than
random complexes on average which again encourages to employ complex
prediction in this workflow (compare ”sign. dereg. hu.MAP complexes” and all
“random complexes" entries in Table 6.4).
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Figure 6.10: Comparison of CompleXChange results of varying stringency with randomly
selected deregulated complexes of equivalent size. Comparison of CompleXChange results of
varying stringency with randomly selected deregulated complexes of equivalent size in terms of
information content.

feature set set size CV accuracy [%]

sign. dereg. complexes (q < 0.05) 978 96.4± 1.5
random complexes 978 86.6± 2.2

random complexes (filtered) 978 94.2± 0.7
sign. dereg. complexes (q < 0.01) 429 96.6± 1.1

random complexes 429 84.3± 3.4
random complexes (filtered) 429 93.5± 1.2

sign. dereg. complexes (q < 0.001) 31 97.0± 0.4
random complexes 31 66.8± 9.9

random complexes (filtered) 31 88.4± 3.9
sign. dereg. CORUM complexes 77 93.6± 2.6
sign. dereg. hu.MAP complexes 16 85.5± 3.9

DE complexes 1841 96.3± 1.5
DE TFs 77 96.2± 1.4
all TFs 601 94.9± 2.0

Table 6.4: Cross-validation (CV) accuracies of feature sets examined. For the randomized
complexes CV accuracy is reported as the mean across all permutations and its standard
deviation. For all other evaluated sets CV accuracy depicts the mean and variance for the 100
iterations of CV.
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6.5 conclusion

The increasing wealth of transcriptomic data and recently introduced computa-
tional tools enable to infer protein interactomes and complexomes in specific
samples. With CompleXChange this information can be exploited to conduct
differential analyses of the dynamic protein complexome in a quantitative
manner. We showed for simulated data with known ground truth that its
inferred complex abundances were in better agreement with the artificial refer-
ence and made more sense biologically than the runtime-intense mathematical
optimization with linear programming. When tested in a realistic scenario,
CompleXChange featured a performance regarding robustness and limited
amounts of samples that is well-suitable for practical applications. Moreover,
reported complexes held significant information content on cellular identity
and partially orthogonal information to gene- and protein-centric analyses,
which are not covering the physical interplay found in a cell. Hence, analysis of
differential complexomes should become even more valuable in the future.

6.6 addendum

6.6.1 Retrospective

Most of my method development efforts, and CompleXChange in particular,
suffered from one major obstacle in their respective evaluation phases: how to
verify something for which, during the time of the project, was no (or even in
the foreseeable future will not be) experimental data available for reasonable
verification? Then one needs to fall back to what can be concisely termed
”biological sanity checks”2 and has to provide sufficient evidence that the
output of the approach is sound given the established knowledge on the matter
at hand. In such a case it helps to work on a well-understood issue and, at best,
independent and orthogonal data should be available that can be integrated
into an assessment scheme that supports the biological meaningfulness of the
results. I will exemplify that matter in the context of CompleXChange.

The GEUVADIS dataset was a very specific and good choice for the assess-
ment of the differential analysis regarding the method’s robustness against
false-positive hits. Because the results are unlikely to change considerably de-
pending on that, the exact choice of the dataset(s) should not matter for all other
tests of the approach as well as the comparisons to the LP-based alternative
method. But retrospectively, I often thought about reconsidering my selection
of the study data would I redo this project. The dataset on classical and non-
classical monocytes in human used here seemed very appealing for several
reasons at first glance. First, it had the right size, which means there were
enough samples to potentially achieve a reasonable statistical power without
making the evaluation computationally tedious. And second, it concerned a
very confined cellular transition, namely switching between two subtypes of the
same cell type. However, the detailed knowledge on the inner workings of this

2 I first heard the exact term “biological sanity check” in a talk by Jan Baumbach and acquired it
gratefully.
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transition was surprisingly sparse and there was no other data available for the
subtypes that could have enabled to formulate testable hypotheses to strengthen
the biological results derived by CompleXChange. A suitable alternative study
dataset would have been the huge collection of ENCODE data that was used
in the study that I will briefly address in Section 6.6.3. Using ENCODE’s data
often has the tremendous advantage of having plenty of additional genomic
data readily available. In the context of CompleXChange, one could have used
data on histone modifications of the samples to check if specific histone marks
in potential binding regions of deregulated TF complexes which recruited
corresponding histone modifying proteins to the region changed between the
comparison groups, for example.

Ultimately, we decided to prioritize on the method assessment rather than the
study. Integrating more data would have bloated the manuscript of the project
and would have led to a loss of focus compared to such a clearer “method
paper”.

6.6.2 Outlook

As already stated in Section 6.3.1, CompleXChange does not consider exact
stoichiometries when inferring complex abundances. It can clearly be argued
that this could be considered a major flaw of the approach. In our area of interest,
for example, homo-dimerization is described for many TF families [214, 456].
Although such homo-multimeric protein complexes are quite common, they
are currently not marked out as such within the tool and accounting for these
non-equal stoichiometries would certainly introduce shifts in the numerical
results.

Unfortunately, and similar to the situation for binding affinities between
individual proteins, there is only very limited data available on stoichiometries
that can be worked with on a system-wide scale. Most established complexome
database efforts lack this information completely, only the curated EMBL-
EBI Complex Portal [457] has at least some complexes annotated with exact
compositions.

Furthermore, while protein complex prediction methods that work on pro-
tein interaction networks are very helpful to fill the gaps in the incomplete
knowledge that we have on protein complexomes [188, 440], they are by way
of construction currently not able to detect any homo-multimerization or even
exact stoichiometries. Homo-dimerization would be represented by the self-
interaction of a protein in the protein interaction network. The notion of a
self-interaction is not usable by the majority of computational approaches that
aim at predicting protein complexes, though. The reason for this is that they
are based on identification of dense modules in interactome networks and have
no usage for this information. Thus, they are not able to uncover complexes in
which multiple copies of a protein exist.

Still, assuming the necessary input data should become available in the
future, either from curated knowledgebases or sophisticated predictions, the
model and algorithms in CompleXChange could be extended to also cover
stoichiometries in complexes.
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6.6.3 The thing that should not be: ”Finding regulatory protein complexes
defining pluripotency”

An overarching research goal during my dissertation was always the question
if one could reveal those TF complexes that are responsible, or at least impor-
tant, for the transition and/or maintenance of the pluripotent state in cells.
Pluripotency is the unique cellular capability to be able to differentiate into all
three germ layers. Realizing and mastering how and why reprogramming into
such a stem-cell-like state can be done, optimally in a safe and efficient way,
is a key for understanding processes governing development and disorders,
and even more so, may revolutionize regenerative medicine. At the very least,
the research concerning these topics will be simplified when new insights lead
to better approaches and improved protocols [211, 458]. While I hope to have
worked out a valid methodology to obtain good guesses for candidates in that
regard by conducting a differential complexome analysis between groups of
samples that are pluripotent and samples that are not, my endeavor towards
answering the issue did not reach a satisfying conclusion during my time.

A qualitative approach on pluripotency complexes

Early in 2015, right after PPIXpress and JDACO had their first productive ver-
sions, I performed my first attempt on such a study. I will roughly sketch out the
elementary data and steps here. Using the publicly available, already processed
and quantified transcript expression data on 5 H1 human embryonic stem
cell (hESCs) samples from ENCODE [28], data on 16 terminally differentiated
tissue samples from the Illumina Human BodyMap 2.0 (NCBI GEO accession
GSE30611) and the human protein interactome of PrePPI [177], I constructed
sample-specific interaction networks with PPIXpress using an expression value
cutoff of 1.0, e.g. only transcript with an expression value above the threshold
were considered abundant. Then, JDACO was used to predict complexes of
TFs for each of the discretized stem cell and tissue interactomes. The 405 TFs
annotated by the HOCOMOCO (version 9) motif knowledgebase [459] were
utilized for that. As in the main project described in this Chapter, we already
computed sample-specific complexomes from transcript expression data and
unspecific protein interactions using PPIXpress and JDACO way ahead of Com-
pleXChange. The important distinction here is that a fixed non-zero threshold
was used to tailor the networks. The resulting TF complexes therefore lack
a quantitative estimate and are just considered to be absent or abundant in
each sample. As a consequence, a differential analysis could only be conducted
qualitatively, say, for example, by applying Fisher’s exact test.

To receive very concise results that would be suitable for the presentation
at a conference I went an even more restricted route: instead of analyzing
the differential abundance of protein complexes between the two groups of
samples, the notion of the analysis was relaxed to only consider the change in TF
combinations found in complexes rather than their exact protein compositions.
364 of such TF combinations were predicted in all H1hESC samples and 9, 021
TF combinations found across all tissues samples. If one subtracted this union
of combinations reported in the terminally differentiated tissue samples from
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Figure 6.11: TF combinations involving classical master regulators of pluripotency. The blue
area depicts all TF combinations in which POU5F1 (OCT4) was involved, the complexes with
NANOG are shaded in green and the red background marks out all predicted TF complexes
that had SOX2 as a member. Further TFs that were part of relevant combinations are noted
textually. The numerical values below the schematic depictions of TFs binding to DNA mean
the numbers of target genes of such TF combinations that possess binding sites for all the
TFs obeying certain distance requirements. The exact number depends on the assumed type of
cooperative interaction as outlined in the white box in the middle of the figure. Please refer to
the main text for details. This graphic was originally used in several oral presentations on the
topic that I gave over the years.

the intersection of combinations that were seen in all stem cell samples, we
were left with only 43 TF combinations that are solely found in all stem cells
but never in any tissue sample.

Of these candidates, 9 contained one or several of the famous pluripotency
factors OCT4 (POU5F1), NANOG or SOX2. Figure 6.11 shows that often two of
the key factors occurred in the same complexes in our predictions, but never
all three together. We also integrated data on the DNA sequences around pro-
moters from the Eukaryotic Promoter Database [460], DNAse-seq data on H1

stem cells by ENCODE to select those promoters that are actually accessible
in stem cells and computed binding sites using the respective HOCOMOCO
motifs and the binding-site search tool FIMO [461]. TFs in complexes were then
said to bind to a stretch of promoter DNA if they had alleged binding sites in
direct adjacency along the sequence (pairwise distance within 0-10bp), if they
could be cooperative using a mediated interaction (pairwise distance of sites
within 10-50bp) or if they were colocalized (pairwise distance of sites within
-50-50bp, the negative constraint allows for motif overlap). All but one of the
9 TF combinations that included a pluripotency factor indeed had target genes
considering those very strict rulesets. We then used this knowledge on colo-
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Figure 6.12: Regulatory network among predicted TF combinations. To enable a very concise
presentation, only the regulatory interactions between the 12 TFs that were part of the 9 TF
combinations which were exclusively found in stem cells and involved a classical pluripotency
factor are shown. Red nodes depict exclusive TF combinations (NANOG is a special case because
it is the sole TF in at least one pluripotent exclusive complex), blue nodes are TF that are part
of a complex in this network (and not exclusive combinations themselves) and grey nodes are
TF that are not part of any complex in the network. Red arrows show a complex membership
and green arrows denote a directed regulatory interaction. The network was visualized using
Cytoscape [346].

calization of interacting TFs to build a gene regulatory network among the 12

TFs found in this restricted set of TF combinations, see Figure 6.12. Complexes
involving OCT4/SOX2 and NANOG showed an autoregulatory feed-forward
loop in this network, for example. Given that both the OCT4/SOX2 complex
and NANOG are needed for the activation of either OCT4 and SOX2, which is
a reasonable assumption given that the three TFs are colocalizing significantly
more often than by chance in such genomic regions of developmental relevance
[210, 211], the dependency corresponds to a coherent type 1 feed-forward loop
with AND-logic. Such a regulatory motif allows for a slow and thus robust
activation of the loop but also a fast deactivation [462]. This core network of TFs
and, more specifically in our case, TF complexes is thought to actively perpetu-
ate this stable pluripotent cell state but, at the same time, also actively prevents
a drift into alternative states which would lead to the inevitable expression of
lineage specific factors [3].

While I still think the project was a valuable proof-of-concept application
of the toolchain, there were flaws that I think rendered it unsuitable for a
manuscript. First of all, I think the overall amount of samples in the data was
too sparse and it is certainly arguable if the selected datasets were a good
choice. While of high quality, the BodyMap data only considered terminally
differentiated tissue samples, for example. In a differential analysis with such
a very specific question a much broader ensemble of cellular samples from
many different developmental stages would certainly suit the task better. When
one was interested in a broad selection of transcript expression data of healthy
human tissues and cell types at this time, the possibilities were fairly limited.
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ENCODE only had released data of its first phase by then and the data of
projects such as GTEx [283] (which anyhow only provides gene-quantified data
and no raw data to the public), were not available yet. The ENCODE transcript
expression data that was used was also not without its flaws. It originated
from different labs (California Institute of Technology and Cold Spring Harbor
Laboratory) that applied slightly different processing pipelines to the data. That
this may affect the study became apparent when I clustered the complete set
of ENCODE samples at that time in terms of their expression values. Notably,
with the exception of the obviously very distinctive H1hESCs samples, all other
samples clustered by lab and not by tissue. When the clustering was done on
the basis of the discretized interactome, the problem was less pronounced but
also not absent. This problem should be mostly curated by reprocessing of all
data, something I did for the next iteration. Furthermore, I was always very
critical about employing a discetized approach here, see also my respective
discussion on that matter in Section 4.6.1.

A quantitative approach on pluripotency complexes

With CompleXChange ready to go, we eventually started a new iteration to
tackle this question in 2017. Over time, the project was redefined and expe-
rienced significant changes until it has been finally concluded and abolished
around summer 2019. The cornerstones of the new take on the issue should
be employing a completely quantitative approach, to get rid of arbitrary but
critical cutoffs, and the usage of way more data, that should be representative
and processed identically this time. CompleXChange and its workflow satisfied
the first requirement with ease. Luckily, the data question also became much
simpler when ENCODE got way more data and a new portal to access its
treasures [463]. The new interface allowed the programmatic access of all data
and even incorporated additional new primary data sources, for example the
data of the NIH Roadmap project [464].

I used the portal to filter and retrieve the raw read data for all paired-
ended RNA-seq experiments that satisfied certain requirements. The data was
supposed to be compliant to ENCODE’s data quality standards, should be
derived from complete cells (no fractions of cells) that had not been treated
somehow, and their sequencing libraries should either had been created by a
polyA-enriched (thus protein-coding enriched) or from a total RNA protocol.
Suitable samples were then processed using kallisto and quantified to GEN-
CODE protein-coding transcripts, just like in the CompleXChange project. After
weeks of downloading and processing, a total of 442 transcript expression data
samples were gathered and processed. Separating all samples tagged as induced
pluripotent stem cells, H1 or H7 cell lines, the thus conceived dataset finally
consisted of 11 pluripotent samples that were compared to 431 non-pluripotent
samples of all developmental stages.

I then followed the same procedure that was described previously in Section
6.4.1 with slightly newer versions of PPIXpress and the necessary annotation
data. Sample-specific interactomes were constructed on the basis of the human
PrePPI data and PPIXpress whereby all transcripts with a non-zero expression
value were taken into account and TF complexes were predicted with JDACO
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and the TF data by HOCOMOCO (version 11 this time) [220]. CompleXChange
was then applied using its default options and with a new feature enabled that
filters protein complexes in advance if they included proteins of the allosome.
This obligatory filter is intended to correct for any sex-specific bias in the
grouped data.

The pipeline predicted 3, 023 TF complexes to be significantly deregulated
(1, 414 upregulated/1, 609 downregulated in pluripotent cells) when the pluripo-
tent samples and the broad set of non-pluripotent samples were compared
using Wilcoxon rank-sum test. OCT4 and SOX2 were among the 5 highest
enriched TFs in upregulated complexes whereas lineage-specific factors such
as RUNX2, SMAD3 or NR2F2 were in the list of the 5 highest enriched TFs in
complexes that were reported to be depleted in the pluripotent samples.

In earlier versions of this quantitative approach I also built gene regulatory
networks of deregulated TF complexes by integrating the data on binding
motifs, promoter sequences and chromatin accessibility as mentioned before.
But in this setting those networks had, depending on the exact parameters
used, in the range of half a million edges. Since such an order of magnitude
in network size was hardly helpful, I pondered on how this information could
be condensed in this context of core pluripotency regulators. A beneficial idea
was that such a self-sufficient regulatory network should at the core consist of
a strongly connected component, e.g. all pairs of nodes in the network can be
reached by traversing directed edges. I could thus prune my complex-derived
regulatory networks by selecting the largest strongly connected component.
Algorithms to find strongly connected components in directed graphs, such as a
classical depth-first algorithm by Robert Tarjan [465] that I implemented in my
framework, only consider the topology of the network and have no notion of an
edge or vertex type. In regulatory networks of TF complexes this is important,
though, because a complex can certainly only exist if all its constituents, here
the TFs, are still part of the network and can be removed completely if only
one part is missing. Thus the condensation process iteratively selects the largest
strongly connected component and removes nodes and edges of partially
complete complexes until convergence is achieved. While this procedure indeed
simplified the regulatory networks, they were still too large to nicely interpret
and work with easily.

Anyhow, a main point of the study was to make use of the plethora of
data generated by ENCODE. By integrating additional data sources, especially
ChIP-seq data on histone modifications, we wanted to achieve the long-term
goal of showing and validating regulatory effects in human that are exerted by
predicted TF complexes. In the pluripotency case, H3K27ac signals seemed to
be the most suitable candidate because they are the prime evidence of enhancer
activity in general and in the developmental context alike [43, 210, 466]. The
histone acetyltransferases EP300 and CREB-binding protein (CREBBP), both
transcriptional coactivators that are recruited by TF complexes, are currently
thought to be the main enzymes causing this specific histone acetylation at
enhancers [467]. In the differential complexome results we indeed found 20

upregulated complexes including EP300 and 12 upregulated complexes that
comprised CREBBP. These 32 complexes that included one of the cofactors
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were thus likely candidates that may be in charge of the activation and main-
tenance of the active state of pluripotency-specific enhancers. No deregulated
TF complexes that included both histone acetyltransferases were reported by
CompleXChange.

For the histone mark H3K27ac there was plenty of good data in ENCODE
with 7 pluripotent vs 164 non-pluripotent samples (pluripotent being induced
pluripotent cells and the cell lines H1, HUES6, HUES48, HUES64). Also, EN-
CODE had good ChIP-seq data on EP300 with a slightly smaller sample size of
2 pluripotent and 20 non-pluripotent samples. This dataset could be used as a
more specific fallback to check for EP300 recruitment in particular. The data
on CREBBP occurrences on the genome was not used due to its lower quality
and inconsistency. We downloaded the samples uniformly processed in the
popular Browser Extensible Data (BED) format, which is a convenient format
to store scores or other values for defined genomic segments. Additionally we
retrieved the enhancer region definitions of GeneHancer (version 4.4)[468]. We
also retrieved the sequences of all the reference enhancer regions and computed
binding sites for all TFs. These annotations served as a template to prune
the genome-wide ChIP-seq data to a defined subset of known enhancers on
which for every sample average scores were calculated when their peaks over-
lapped the reference regions. Since each sample then had the averaged scores
for exactly the same genomic intervals, all samples could then be averaged
within their group to finally obtain a mean score per defined enhancer for both
pluripotent and non-pluripotent samples. These steps were conducted for both
H3K27ac and EP300 ChIP-seq data individually.

For the evaluation, we first filtered for pluripotency enhancers by checking
for which enhancers the average signal was zero in non-pluripotent samples
and larger than zero in the pluripotent samples. In the H3K27ac data this was
the case for 656 enhancer regions, and in the EP300 data 4391 enhancers were
only bound in the pluripotent samples. Since these sets of enhancers are only
active/bound in pluripotent samples and we determined which complexes
were significantly upregulated there, we intended to assess if the upregulated
TF complexes that included one of the histone modifiers of relevance were some-
how outstanding regarding their average targeting of such regions or average
ChIP-seq data scores in binding sites compared to downregulated or random
TF complexes. Sadly that was only partially the case for the H3K27ac data
and EP300/CREBBP-containing complexes that were upregulated in pluripo-
tent samples and not at all the case for the EP300 data and the upregulated
complexes that recruited the protein. Binding of a complex was again made
dependent on the complete TF composition and only those binding events were
considered in which all TFs of the complex had binding motifs in the enhancer
sequence that in some way allowed for pairwise distances of -20-10bp between
all TF pairs.

There are many reasons why these analyses could have failed. First of all,
we determined TF binding from motifs rather than ChIP-seq data. With the
ENCODE data this would have been possible for a small set of TFs for which
we would then have experimentally verified binding events per sample rather
than just context-free motif occurrences. This is important in the sense that we
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did not include additional data to aid the selection of relevant sites, e.g. on
the openness and accessibility of the DNA (DNase-seq or ATAC-seq), which is
generally helpful to judge the in-vivo activity of an event [217]. In the context
of developmental processes and reprogramming this notion is blurred anyhow
since most enhancer regions are generally accessible, especially when they are
enriched in H3K27 acetylation [469], and special TFs that are called pioneer
factors can even bind to regions of condensed chromatin [470, 471]. Furthermore,
the assumptions that were tested were potentially too simplistic in terms of
their restricted biological field of view. Only the very limited complexome
of TF complexes that are upregulated in pluripotent cells was considered in
the evaluation, although for each sample around 7, 000-10, 000 TF complexes
were predicted. We basically have no idea if other complexes may somehow
prevent the recruitment of the tested complexes of interested to some of the
the pluripotency enhancers we determined, e.g. by blocking binding regions,
and thus would enable a finer grained view. More so, we did not take other
classes of multiprotein complexes into account, for example, complexes of
epigenetic reader and writer proteins [223] which may have a profound impact
on posttranslational modifications of histone tails.

Nevertheless, the previous experiences thought us many things that can be
built upon. Would I start over today with a third major iteration of finding key
complexes in the regulation of pluripotency, I would certainly try to simplify
the system being studied. To accomplish that, I would still rely on the vast
resource of RNA-seq and accompanied data by ENCODE. But in contrast to my
approaches before, I would ensure to turn every screw of the study design in a
way that minimizes the search space of the problem in prior. A major tweak in
that regard should be to only search for complexes of TFs for which we have
ChIP-seq data on binding events in various cell types rather than to use the
plethora of TFs for which we only have context-free probabilistic binding motif
data. Moreover, the TF binding regions to be assessed at all could be even more
refined by stringently employing differential analyses on the data. Such small
adjustments to the overall pipeline should already tremendously improve the
complexity of the result set and may thus be worth another try.
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C O N C L U S I O N A N D O U T L O O K

Overall, the thesis follows a clear common thread and all intended methodical
goals as outlined in Section 1.2 were ultimately met. Starting from the con-
textualization of protein interaction networks with PPIXpress, the differential
analysis of such networks with PPICompare and the prediction of multiprotein
complexes by JDACO, the theme of the thesis finally cumulates with the ap-
proach of CompleXChange, the differential complexome analysis which makes
use of most tools previously developed in the context of this thesis.

7.1 concluding remarks to all projects

The first method that we conceived in the course of this work was the tool
PPIXpress [90] (see also Chapter 3) that allows to construct sample-specific
protein-protein interaction networks (PPINs). In that function, it is the founda-
tion for all my follow-up projects and the resulting differential interactome and
differential complexome analysis pipelines.

PPINs are omnipresent in computational biology when it comes to the
integration of network data. Still, it is often neglected that their composition of
interactions is not a static entity but one that is, at the very least, dependent
on the proteins that are abundant in the cellular state of interest. PPIXpress
took this basic principle a step further and even considers the splicing state
of the proteins to adjust individual edges of the network according to the
composition of protein-coding transcripts that are expressed in the sample. This
clear mapping of protein isoforms to viable protein interactions was achieved
by dissecting all protein isoforms into the conserved protein domains that
they include and by introducing data on the interactions between domain
families. PPIXpress uses this domain-based interaction network of increased
detail to relate protein interactions to domain interactions and then simply
infers which protein interactions are actually supported in the sample from the
domain-compositions of the most abundant isoforms of each protein.

We showed the benefit of the method by comparing personalized interac-
tion networks of breast cancer patients from TCGA for which we constructed
PPINs using both gene-based contextualization and our PPIXpress approach.
Exploiting the transcript-level data enabled us to to detect a larger number of
differential interactions between healthy and tumor tissues and among those,
a significantly larger number of changes affected proteins that could be as-
sociated with cancerogenous processes. These positive effects and the overall
difference between gene- and transcript-based results positively correlated with
the amount of domain interaction data that was used during the construction.
Furthermore, the results became clearly worse than even the gene-based adjust-
ment when a random isoform was selected as the protein representative instead
of the most abundant one, which further supported the model assumptions.
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Eventually, when the first larger-scale data on isoform-sensitive interactomes
[7] became available shortly after the publication of PPIXpress, the added value
gained in the network contextualization by relating domain interactions to
protein interactions could also be confirmed on the experimental dataset [207].

PPIXpress received quite a number of updates and some new features since
its initial release. Besides necessary fixes regarding data that was retrieved,
most new versions added support to new file formats or new data sources.
But in addition to that, some new functionality was also added throughout
its lifetime so far. Major examples are the option to reweight interactions
instead of applying the discretized core approach that is described in the
original manuscript or the integration of transcript biotype annotations to take
further regulatory mechanisms into account that may affect the viability of the
protein in the context. While they have not been pursued further yet, there are
already elaborated ideas for the future of PPIXpress and its core principle of
relating protein and domain interactions. PPIXpress itself could be expanded
to also include data on short linear motifs and the interactions among them
instead of only relying on data of Pfam domain families that is limited to
highly conserved sequence segments. Besides the use-case of condition-specific
PPINs, an algorithmic scheme that can associate modification of a particular
sequence segment, or even a particular amino acid, with an influence on a
defined interaction provides additional opportunities. One potential application
that was already prototyped and tested by a student was the idea that such a
mapping can also aid to infer if genome mutations affected protein interactions,
for example.

Because we thought that the use case of identifying PPIN rewiring, as we
showed for the case of breast cancer in the evaluation of PPIXpress, is likely of
general interest, we heavily expanded the concept and designed PPICompare
[92] (see also Chapter 4) as a dedicated tool for differential analysis of protein
interactomes.

Since experimental characterization of proteomic rewiring events is currently
not feasible on a larger scale, inferred protein interactomes with transcript-
resolution likely present the best opportunity to somehow assess systematic
changes in the interactome. Given two groups of PPIN samples, at best con-
structed with PPIXpress, the essential task of PPICompare is to identify all
protein-protein interactions (PPIs) that are altered significantly often between
the groups. The method does that by determining a general probability of
rewiring across those samples which can then be used in a one-tailed binomial
test to check if individual interactions are more often affected by rewiring
events than expected by chance. Besides that, the tool monitors the transcrip-
tomic cause that led to each individual change in connectivity and can report
statistics on the matter. This relationship of causes and consequences, which
links the change in expression data with the differential protein interactions,
is then exploited to reveal a small set of alterations in the transcriptome that
can explain all rewiring we see between groups and is the most likely of such
sets given the data. PPICompare achieves that by relating rewiring events and
transcriptomic reasons together in a bipartite graph and by then solving a
weighted set-cover problem.
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To test our new approach we selected the RNA-seq data on blood develop-
ment produced by the BLUEPRINT project from which we constructed PPINs
for 11 different cell types using PPIXpress. PPICompare was then applied to
identify the changes made to the protein interactome during 10 developmental
transitions in hematopoiesis. Using this dataset of developmental transitions,
we not only evaluated what happened to the interactomes during such develop-
mental leaps but, for the very first time, we could also systematically analyze
the transcriptomic causes of each rewiring event and the biology behind that.
A good example in that regard is the finding that interactions, which were
exclusively deregulated by simultaneous up- or downregulation of both inter-
acting partners, were more likely to participate in known protein complexes,
had lower betweenness in the unpruned reference PPIN and were more likely
to work on the same biological processes compared to interactions caused by
regulatory modes in which only one protein was somehow deregulated or
spliced. While it seems only natural that simultaneous deregulation of inter-
action partners is likely a means to control functional modules of proteins or
stable multiprotein complexes, the study was able to deliver measurable facts
that strongly indicated that. The contribution of alternative splicing (AS) only
seemed to play a comparably minor role in our results in relation to other
modes of regulation. Still, 871 rewiring events in all developmental transitions
considered could only be fully explained by including AS and would have
been missed by methods that only rely on gene expression. Furthermore, we
found that the most important spliced proteins according to our optimization
algorithm were strongly enriched in annotation terms that imply key roles of
such isoform switches in the transcriptional regulation of cellular fate decisions.

In addition to the usage in fundamental research, a conceivable application
of the tool could also have direct medical relevance. Although PPIs were often
considered to be hardly feasible drug targets, the first PPI inhibitor medication
Venetoclax was recently approved by the U.S. Food and Drug Administration
[472] and others are currently facing clinical trials [403, 404]. We think that
PPICompare’s differential analysis on the network level could indeed be of great
interest in this context because it allows drug researchers to vastly condense
the relevant search space of potential target interactions in a very simple and
fast manner. Concerning the methodology of PPICompare, it can be argued
that the discretization that is applied to the PPINs in this model is certainly
a critical parameter of the process which, when chosen rashly, may heavily
affect the usability of the results. As broadly discussed in Section 4.6.1, this was
done for reasons of conceptual simplicity and ultimately enabled the very clear
and unambiguous relationship between interactomes and transcriptomes in
the model, which could also be considered a strength of PPICompare. Because
it works well for its envisaged tasks, there are no plans to alter the core
methodology in that regard or to add major new features to the software.

The concept of the relevance of transcription factor (TF) complexes in tran-
scriptional regulation and their prediction using the domain-aware cohesiveness
optimization algorithm DACO [17, 18] are the foundation from which the cen-
tral theme and ultimately all projects of direct relevance to my main research
emerged. When we were able to construct PPINs that were tailored towards
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a specific sample, a new range of opportunities unfolded because these net-
works would also make it possible to search for the sample-specific complexes
therein. While the DACO algorithm was up to the task in terms of the quality
of the inferred complexes and already had some algorithmic tricks in charge,
the runtime demands of the prototype implementation in Python may in fact
impede its large-scale application in practice. We thus conceived the new Java
implementation JDACO (see also Chapter 5) that is much faster than its prede-
cessor, was adjusted for convenient usage with input data by PPIXpress and
consequently was shed of its former data retrieval functionalities.

Besides switching to a faster programming language, the key consideration
to gain performance was to increase the efficiency of parallel operations. For
optimal utilization, the portion of non-parallel tasks was reduced heavily by
redistributing the responsibilities of all individual components of the algorithm
from a rather centralized organization to one in which each worker thread
is empowered to also handle its share of data management overhead. Also,
adjusted data structures were used on the interfaces between independent
threads to diminish potential bottlenecks by minimizing the expected waiting
times due to concurrent access of shared data. This internal redesign and its
fresh Java implementation led to substantial savings in the compute time for
practically relevant problem sizes.

Due to this effort, the prediction of complexes for even thousands of samples
became feasible in appropriate time. We could thus regard the subproblem of
being able to identify sample-specific complexomes as solved for our purposes.
Still, we never considered protein complexes prediction as an endpoint in itself,
but only as an important ingredient to be used in further data integration
efforts or downstream analyses, like in the last approach shown in the thesis.

Finally, with the abilities to infer sample-specific interactomes and sample-
specific protein complexes therein, the long-term objective of being able to
determine differential protein complexomes could be concluded with CompleX-
Change [87] (see also Chapter 6).

My early approaches to that question handled the issue in a discretized way.
By predicting protein interaction networks using a threshold on transcripts that
was larger than zero, sample-specific complexes therein could be acquired by
predicting the complexomes found in the contextualized interactomes. In this
workflow, each complex could be either abundant or not abundant in the sample.
When this discrete information is derived for groups of samples, Fisher’s exact
test could be utilized to allow a statistical assessment of differentially abundant
protein complexes, for example. Depending on the availability of data, even
more stringent and simpler solutions may be appropriate as we explained in
Section 6.6.3. Still, it would be more elegant to have a quantitative approach that
does not utilize such hard cutoffs. Although a large selection of quantitative
data on gene and transcript expression or, increasingly more common, protein
abundances are available, there are no quantitative measurements of protein
complex abundances available yet. CompleXChange solves this problem by
inferring abundance values from protein abundances (or rather gene expression
measurements that we can associate with a protein) and the complexes that are
present in a sample. The respective optimization algorithm works by iteratively
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distributing protein shares between complexes until convergence is attained.
Thereby, two axiomatic constraints are satisfied, namely that the overall amount
of each protein is fixed and that the abundance value assigned to a protein
complex is determined by its least abundant member protein. With quantified
complexes at hand, a numerical assessment of statistically relevant alterations
is then straightforward.

Since it was the basis of the tool, we at first ensured that the iterative abun-
dance estimation algorithm lived up to the task. For simulated data, our novel
approach was shown to be much faster and to report better complex abundance
approximations than the only comparable method based on linear program-
ming. More so, when CompleXChange was applied to real biological data in the
case of TF complexes in human monocyte subtypes and lymphoblastoids, we
could demonstrate that the differential analysis methodology is rather robust
concerning the detection of false-positive deregulation events. A comparison to
differential gene expression results substantiated our basic premise that meth-
ods that somehow incorporate the notion of the physical interplay between
proteins could potentially reveal information that cannot be gained by analyses
that examine genes or proteins in isolation. We thus think analyzing differential
complexomes, even if the latter are only inferred, has the capability to add
insight to many transcriptomics studies even though the same experimental
data constitutes the primary input.

The methodical foundation of CompleXChange is built on strong assump-
tions. Neither binding affinities between interacting proteins nor the exact
stoichiometries of complex members are considered by the current implementa-
tion although they would certainly have a considerable impact on the outcomes
of the abundance approximation step. However, if that information became
widely available, it would be possible to adapt the algorithm correspondingly.
As discussed in Section 6.6.2, it is just not very likely that the amount of relevant
data will increase considerably in the foreseeable future.

7.2 outlook

Besides some enhancements to the tools and methods that were proposed
previously or elaborated in depth in the corresponding Addenda, the huge
untapped potential of the toolset presented in this thesis is hidden in the
vastness of sequencing data that is already available. This is especially the case
when one has concise scientific targets in mind for which candidate protein
complexes or candidate protein interactions could now be detected easily by
ready to use differential analysis pipelines. Only considering the broad area of
gene regulation, protein complexes that are of combinatorial nature are found
in and may be differentially abundant in distinct cellular conditions in the
context of splicing, chromatin modifications or RNA-binding proteins.

One particular problem that has always been on our minds and did not
reach a satisfying conclusion was to basically use the knowledge on differential
complexomes to carve out the essence of pluripotency in terms of TF complexes.
I briefly outlined two very different approaches on that manner in Section 6.6.3.
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Adding to the point of data availability and the biological context of devel-
opmental processes, all methods that were presented in this thesis are able to
utilize and, depending on the research question at hand, could benefit con-
siderably from the usage of single-cell data. Although we never tested this
assumption, there should generally be a certain improvement in the resolution
of the data in practice because even in the most highly purified cell populations
a high degree of heterogeneity will be present. When classical bulk measure-
ments of samples are made, crucial details of individual cells are often blurred
in the mixture and may go unnoticed because they were averaged out. This
effect is especially pronounced in primed cells found in early developmental
stages and certainly already affected our study on hematopoiesis in Chapter
4 [65, 355]. The availability of more data on individual cells may thus allow
the revelation of otherwise concealed alterations and, what has not been men-
tioned yet, hugely increase the sample sizes of typical studies (with tradeoffs
in variance and accuracy of each sample). With the progress that is currently
made, being able to quantify even multiple different measurements in parallel
for the very same cell, say expression data together with several histone mark
annotations, may soon be a less extraordinary undertaking [473, 474].

Unfortunately, I did not even scratch on the surface of what I think could
be achieved by the concept of gene regulatory networks of TF complexes as
depicted in Figure 6.12. An essential motivation for the overall theme of my
thesis was the assumption that knowledge on TF complexes would entail
information on the logical wiring between TFs in the regulatory network
and would aid to apprehend the regulatory mechanism of the complex. The
functionality for many of these ideas is already part of the Java framework that
I designed and implemented during my time as a doctoral student.

Given that all DNA-binding factors are relevant for the binding event and
that all their binding sites must obey certain distance constraints to spatially
allow for a stable interaction with the DNA, the composition of TFs in a
complex candidate specifies very clearly where the candidate is able to bind.
More so, because all member proteins of the complex are needed for such
a specific regulatory targeting, the principle implements an AND-logic for
gene regulatory circuits. Because we can predict TF complexes and have quite
a diverse assortment of data on binding events and binding motifs, such
rules can be derived automatically using the software we introduced and may
certainly benefit the often handcrafted models used in Boolean network studies
or stochastic simulations of regulatory networks. Due to the introduction of
distinct node-types and the logical dependencies encoded, the topologies of
regulatory networks of TF complexes are likely differing from established
gene regulatory networks in the notion of TFs and their targets. It would be
interesting to investigate the network motifs that are commonly found in the
complexome-based networks, for example.

Furthermore, another benefit of TF complexes is that they can tell us about
the potential recruitment of cofactors to defined genomic regions. With our
current expertise on functional annotation of genes and proteins, as by the data
of the Gene Ontology for example, assigning clear regulatory effects to the
components of a complex became a rather simple task. How this information
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on the individual complex members, which could be very detailed functional
depictions or just coarse-grained annotations, should be integrated to best
categorize a TF complex is a topic that certainly needs further research.

In summary, there is already a plethora of uncharted territory and potential
applications left for exploration in terms of differential interactomes, complex-
omes, and the software developed during my dissertation projects in general.
Moreover, when the advent of single-cell techniques will soon be followed by a
broad availability of respective datasets in the near future, it will be possible to
eliminate a huge confounding factor in such analyses.
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