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Abstract: Controlled delivery of gene transfer vectors is a powerful strategy to enhance the temporal
and spatial presentation of therapeutic agents in a defined target. Hydrogels are adapted biomaterials
for gene delivery capable of acting as a localized depot of genes while maintaining the long term local
availability of DNA vectors at a specific location. Supramolecular hydrogels based on cyclodextrins
(CDs) have attracted considerable attention as potential biomaterials in a broad range of drug
delivery applications. Their unique characteristics of thixotropicity and low cytotoxicity due to their
production under mild conditions make them potential candidates to form injectable delivery systems.
This work aims to provide an overview of the use of CD-based polypseudorotaxane hydrogels as
controlled gene delivery systems for different applications in regenerative medicine.

Keywords: supramolecular hydrogels; cyclodextrin-based polypseudorotaxane hydrogels; controlled
gene delivery; nonviral vectors; viral vectors; gene transfer

1. Introduction

1.1. Cyclodextrins

Cyclodextrins (CDs) represent a group of cyclic oligosaccharides consisting of a relatively
hydrophobic cavity and a hydrophilic external face obtained from enzymatic transformation of starch
with a torus-like molecular shape [1]. CDs are classified as α-, β, or γ-CDs, depending on the number
of D(+)-glucose units linked by α-1,4-linkages, being of 6, 7, and 8, respectively [2] (Figure 1). Moreover,
the presence of 2-, 3-, and 6-hydroxyl groups on the ring makes CDs versatile platforms for structural
modifications to improve their natural properties in different applications [3]. In addition, CDs are
generally considered as safe (GRAS) substances by the Food and Drug Administration (FDA) [1].

CDs have the ability to thread along certain polymer regions (main-chain complexes) or lateral
chains (side-chain complexes), leading to the formation of supramolecular assembled structures. These
supramolecular structures are normally referred to as polypseudorotaxane when CDs can reversibly
travel along the polymer backbone or lateral chains. Conversely, when both ends of the polymer chains
in polypseudorotaxanes are covalently capped with bulky molecules, CDs are entrapped and cannot
be de-threaded from the assembly, giving so-called polyrotaxanes [4,5].
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2012 (Chem3D Pro 13; PerkinElmer Informatics). 
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Figure 1. Structure of cyclodextrins. Two-dimensional sequences of α-CDs (CID: 444913) (A),
β-CDs (CID: 444041) (B), and γ-CDs (CID: 5287407) (C) were obtained from PubChem Compound.
Three-dimensional (3D) structures of the different compounds were drawn with ChemBioOffice 2012
(Chem3D Pro 13; PerkinElmer Informatics).

1.2. CD-Based Polypseudorotaxane Hydrogels

Supramolecular hydrogels represent a type of biomaterial consisting of a solid three-dimensional
network formed via noncovalent bonds, such as a hydrogen bond, hydrophobic interaction, and
cation–π and π–π interactions [6].

CD-based polypseudorotaxanes generally consist of polymers, such as poly(ethylene oxide) (PEO)
or poly(ethylene glycol) (PEG) [7], poly(propylene oxide) (PPO) [8], or copolymers having blocks of
PEO and/or PPO, alone as PEO-PPO-PEO (Pluronics) [9–11], or combined with other blocks, such as
poly[(R)-3-hydroxybutyrate] [12] or poly(caprolactone) (PCL) [13–15].

Supramolecular hydrogels based on polypseudorotaxanes have already been reported as potential
candidates for different tissue engineering applications due to their thixotropic nature and excellent
biocompatibility, showing vast potential as injectable hydrogel carriers that may be administered via
non-invasive implantation [16]. Likewise, the mild conditions in the absence of organic solvents under
which polypseudorotaxane gels are formed allow for the incorporation of a variety of biomolecules,
also encompassing hydrophobic molecules that benefit from the presence of free CDs or micelle-like
structures for drug hosting [1,16,17].

2. Gene Transfer Vectors: Basic Concepts

2.1. Nonviral Vectors

Gene transfer via nonviral vectors (transfection) is based on the incorporation of DNA, either
naked but mostly complexed with cationic polymers or with cationic lipids (in polyplexes and
lipoplexes) into a target population [18]. As a result of this complexation, DNA cargo may be
protected against degradation by nucleases and serum components by creating a less negative
surface charge [19]. Still, and unlike viral counterparts that have evolved to overcome cellular and
immune defense mechanisms, nonviral carriers exhibit reduced transfection efficiencies as they are
precluded by numerous extra- and intracellular obstacles [18]. Therefore, the obtaining of an efficient
nonviral-mediated transfer might need repeated administration to achieve satisfactory gene therapeutic
effects, due to their short retention time or low therapeutic efficacy in target tissues [15]. However, the
main advantage of these types of vectors is their biosafety as they avoid the risk of acquiring replication
competence and of insertional mutagenesis commonly associated with viral vectors. Likewise, its
potential for large scale production at relatively low expense makes these vectors attractive tools for
gene therapy [20].

2.2. Viral Vectors

Viral gene transfer (transduction) is based on the natural cellular entry pathways of viruses
from which they are derived [20]. The most common viruses manipulated for gene transfer purposes
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include herpes simplex virus (HSV) [21,22], adenoviruses [23,24], retro- and lentiviruses [25–27], and
adeno-associated virus (AAV) [28–30]. While gene transfer via viral vectors is highly efficient, the
existence of patient-associated factors and physiological barriers (high immunogenicity, inhibition of
transduction in the presence of specific anticoagulants) may hinder the effective delivery, processing,
and expression of transgenes in the target cells [31–33].

3. Controlled Delivery of Gene Transfer Vectors via CD Hydrogels

3.1. Principles of Controlled Gene Delivery

The controlled delivery of gene transfer vectors represents a powerful tool to address the issues
associated with the use of gene transfer vectors in clinical settings (i.e., reduced efficiency, rapid
degradation, physiological barriers, and/or vector- and patient-specific- immune responses) [33].
In addition, sustained gene expression has been reported to be more effective compared with the
administration of recombinant molecules [34], providing high levels of therapeutic genes to target
various physiological mechanisms, such as angiogenesis [35] or chondrogenesis [11], to durably
enhance the repair of injured tissues and organs [36]. Hereof, the prolonged presence of the gene
transfer vectors in the cellular microenvironment may improve the efficacy of the therapeutic cargo
by providing a long term, sustained at a specific place treatment while minimizing the exposition of
non-target tissues [15,34,37].

Among a variety of biomaterials, hydrogels have been reported as potential tools for gene delivery,
affording both protection of the gene transfer vectors against extracellular degradation and premature
aggregation and controlled supply of the therapeutic molecules at the target place.

3.2. Controlled Delivery of Gene Transfer Vectors via Supramolecular-Based CD Hydrogels

While polypseudorotaxane hydrogels have been extensively studied for drug delivery
approaches [1,4], their application in gene delivery approaches has been less explored. In this regard,
most applications using CDs for gene therapy purposes focused on the use of polyrotaxanes based on
CD-containing cationic polymers acting as carriers of plasmid DNA.

Gene delivery from polypseudorotaxanes hydrogels has been chiefly associated with the shedding
of CDs from the linear polymer backbone, being the de-threading rate proportional to the volume of
the dissolution medium [38]. Therefore, when injected into the body, polypseudorotaxane hydrogels
might gradually dilute upon contact with physiological fluids leading to CD fall-off and the released
genes being absorbed by surrounding cells through endocytosis [38].

Here, we will explore the use of polypseudorotaxane hydrogels as controlled delivery systems
for gene transfer vectors and their potential application in tissue engineering and regenerative
medicine approaches.

3.2.1. Controlled Delivery of Nonviral Vectors

Supramolecular hydrogels based on block copolymer composed of poly(L-lysine) (PLL) segments
for complexation of plasmid DNA encoding for the green fluorescent protein (GFP) and Pluronic® F68
(PF68-PLL) to form inclusion complexes α-CD were produced [9] (Table 1). Both gelation time and
mechanical strength could be modulated by tuning the amounts of F-68-PLL and α-CD. Likewise, the
systems released DNA complexes for 3 days allowing for sustained transgene expression in a fibroblast
cell line with reduced cytotoxicity.
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Table 1. Controlled delivery of nonviral vectors via supramolecular-based CD hydrogels.

Polymers/CDs Vectors Outcomes Approaches Targets References

PF68-PLL/α-CD pDNA-GFP Sustained pDNA delivery for 80 h;
transfection efficiency ~14% mouse fibroblast cells 3T3 n.s. [9]

MPEG-PCL-PDMAEMA/α-CD pDNA-luc

Sustained release of pDNA up to 6
days; transfection efficiency

comparable to freshly prepared
PEI polyplexes

COS-7 cells n.s. [13]

PEG-α-CD-cross-linked PVDT pDNA-luc Efficient reverse gene transfection of
cells cultured on the gel surface COS-7 cells n.s. [39]

MPEG-PCL-PEI/α-CD
MPEG-PCL-PEIFA/α-CD

pDNA-GFP
pDNA-Nur77

Sustained release of pDNA for 7 days;
transfection efficiency of 63% at

optimal weight ratio of 1.5; significant
inhibition of therapeutic resistant

tumor growth with high expression
of Bcl-2 proteins

Higher efficiency when combining the
chemotherapeutic agent paclitaxel and

the targeting ability of FA

HEK293 cells, tumor model
(BALB/c nude mice) tumor [15,40]

MPEG-PLLD-Arg/α-CD pMMP-9

Controlled release for 6 days;
transfection efficiency up to 72%;

sustained tumor growth inhibition
after 21 days with good

biocompatibility

HNE-1 cells, nude mice
bearing HNE-1 tumors tumor [37]

Abbreviations: CD: cyclodextrin; Pluronic® F68; PLL: poly(L-lysine); α-CD: alpha-CD; MPEG-PCL-PDMAEM:. methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone)-b-
poly[2-(dimethylamino)ethyl methacrylate]; PEG: poly-ethylene glycol; β-CD: beta-CD; PVDT: poly-2-vinyl-4,6-diamino-1,3,5-triazine; PEI: poly(ethylene imine);
PLLD-Arginine-functionalized PLL dendron; pDNA: plasmid DNA; GFP: green fluorescent protein; luc: luciferase; Nur 77: Bcl-2 (B-cell lymphoma 2) conversion Nur77
gene; FA: folic acid; MMP-9: matrix metalloproteinase 9; HNE-1: human nasopharyngeal carcinoma HNE-1 cells; n.s.: not specified.
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Li et al. prepared triblock copolymers of methoxy-poly(ethylene glycol)-b-poly(ε-caprolactone)-b-
poly[2-(dimethylamino)ethyl methacrylate] (MPEG-PCL-PDMAEMA) with well-defined cationic
block lengths to condense pDNA in polyplexes. Of note, MPEG imparted stability to the pDNA
polyplexes and also served as an anchoring segment when the pDNA polyplexes were encapsulated in
α-CD-based supramolecular polypseudorotaxane hydrogels. In addition, the systems released pDNA
in a sustained way for up to 6 days, leading to transfection levels comparable to those achieved with
freshly prepared poly(ethylene imine) (PEI) polyplexes [13].

Supramolecular based CD hydrogels have also been manipulated as scaffolds for matrix-mediated
gene transfection. By these lines, hydrogen bonding strengthened hydrogels were prepared by radical
copolymerization of PEG methacrylated β-CD (PEG-β-CD) and 2-vinyl-4,6- diamino-1,3,5-triazine
(VDT) monomer [39]. Immobilization of plasmid DNA onto the surface of hydrogels was achieved by
hydrogen bonding between the base pairs and diaminotriazine, resulting in an efficient reverse gene
transfection of the luciferase gene in a kidney cell line (COS-7) cultured on the gel surface.

CD-based polypseudorotaxane hydrogels have also been described as potential candidates to
design injectable hydrogels for cancer therapy by providing a long term, sustained at tumor sites
treatment while minimizing the exposition of non-target tissues [15,37].

Injectable supramolecular hydrogel systems were formed by complexations between α-CD and
cationic MPEG-PCL-PEI copolymer. The resulting hydrogels were capable of forming polyplexes with
reporter plasmid DNA and of providing a sustained release of pDNA in the form of polyplexes for up
to 7 days. Of note, the incorporation of the antipoptotic Bcl-2 conversion gene in the systems resulted
in an effective inhibition of tumor growth after 7 days in vivo when injecting into a solid tumor of
nude mice [15]. More recently, the same authors involved a similar system incorporating a folic acid
targeted group (MPEG-PCL-PEI-FA/α-CD) to co-deliver the chemotherapeutic paclitaxel and the
antipoptotic Bcl-2 conversion gene in a tumor of mice [40]. Rapid solidification of the systems was
noted after administration via peritumoral injection. Likewise, a significant prevention of the in vivo
growth of therapeutic-resistant H460/Bcl-2 tumor was observed as a consequence of the sustained
release of supramolecular hydrogel and targeting ability mediated by FA ligand.

A similar tendency was observed upon encapsulation of an MMP-9 shRNA plasmid (pMMP-9)
into α-CD and PEGylated arginine-functionalized PLL dendron hydrogels [37].

3.2.2. Controlled Delivery of Viral Vectors

While less explored than their nonviral vector counterparts, most of the attempts to design
controlled delivery systems of viral vectors focused on the design of microcapsules of biodegradable
polymers for the sustained release of the vector at the target place, and polymer conjugates that provide
stealth, cell-targeted shells to the viral vectors [41–43]. In this regard, although viral gene transfer is
highly efficient, its outcome can still be precluded by some barriers, such as high immunogenicity and
inhibition of transduction in the presence of specific anticoagulants [31–33].

While recombinant adeno-associated virus (rAAV) vectors are considered the safest vectors for
viral gene transfer, their translational use in patients might be impeded by the presence of neutralizing
antibodies against the AAV capsid proteins in the host [32], especially by those present in the synovial
fluid of patients with joint diseases [44]. Controlled delivery of rAAV vectors via polymeric biomaterials
has already shown to be a potent way to overcome these issues [33]. Additionally, syringeable
hydrogels that can be precisely placed in a specific site of the body using minimally invasive ways
and that transform into depots for sustained release of active substances avoiding their diffusion to
non-target places, have been largely pursued for different regenerative medicine approaches. Therefore,
we recently generated syringeable polypseudorotaxane gels to produce materials that can durably
deliver rAAV vectors for applications in cartilage regeneration [11] (Table 2). To achieve this goal,
dispersions of Pluronic® F68 (PF68) or Tetronic® 908 (T908) containing either hyaluronic acid (HA) or
chondroitin sulfate (CS) were prepared in PBS. α-CD was next added to form polypseudorotaxane gels.
Compared with free vectors, the gels allowed to promote higher levels of transgene expression. CS (or
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HA)/PF68/α-CD gels rapidly released rAAV vectors while CS (or HA)/T908/α-CD gels provided
sustained release, probably due to different interactions with the viral vectors. Incorporation of α-CD
into CS (or HA)/PF68 gels resulted in higher rAAV concentrations and sustained levels of transgene
expression in monolayer cultures of primary human bone marrow-derived mesenchymal stem cells
(hMSCs) over time. In addition, HA increased both bioactivity and cytocompatibility of the gels [11].

Table 2. Controlled delivery of viral vectors via supramolecular-based cyclodextrins (CD) hydrogels.

Polymers/CDs Vectors Outcomes Approaches Targets References

CS (or
HA)/PF68/α-CD

CS (or
HA)/T908/α-CD

rAAV-lacZ

Sustained release for
21 days; CS (or

HA)/PF68/α-CD
gels resulted in the

highest rAAV
concentrations and
sustained levels of

transgene expression
over time

hMSCs cartilage
repair [11]

Abbreviations: CD: cyclodextrin; CS: chondroitin sulfate; HA: hyaluronic acid; PF68: Pluronic® F68; T908: Tetronic®

908; α-CD: alpha-CD; hMSCs: human bone marrow-derived mesenchymal stem cells.

Likewise, to study the potential of the systems for cartilage regeneration approaches, hydrogels
were cultured for 21 days upon contact with hMSCs in a 3D aggregate culture model. Of note, no
deleterious effects from the hydrogels were noted on the chondrogenic potential of the cells exhibiting
no differences with those cells cultured in the absence of polyseudorotaxane systems (Figure 2A).
Noteworthy, controlled delivery of a reporter gene (rAAV-lacZ) via HA/PF68/α-CD hydrogels resulted
in the most effective gene transfer (Figure 2A). Similarly, superior chondrogenic differentiation was
noted by delivery of the chondrogenic factor SOX9 (rAAV-FLAG-hsox9) via these hydrogel systems
(Figure 2B). These systems might also be envisioned for the delivery of other morphogens capable of
stimulating MSC differentiation to another lineages, such as osteoblasts.Polymers 2018, 10, x FOR PEER REVIEW  7 of 10 
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rAAV-loaded hydrogels systems (Pluronic® F68 (PF68)/ chondroitin sulfate (CS)/alpha-cyclodextrins
(α-CD) or PF68/ hyaluronic acid (HA)/α-CD) for 21 days and monitored for chondrogenic
differentiation (A,B: Toluidine blue staining: magnification ×4, all representative data) and
β-galactosidase activity (A: β-gal immunounoreactivity: magnification ×20, all representative data).

4. Conclusions

Over the past decades, CD-based supramolecular hydrogels raised growing interest as
biomaterials for drug and gene delivery approaches. Because of their unique properties of
thixotropicity, biosafety, and easy modification, CD-based polypseudorotaxane hydrogels can be
used as promising injectable delivery systems for controlled gene delivery. Likewise, the dilution
process of these systems in contact with body fluids may be modulated by adjusting injection times or
changing the molecular weight of the polymeric backbone [38].

Different CD-based polypseudorotaxane hydrogels have been produced to design systems able to
provide a long term local availability of DNA vectors at a specific location and to stimulate several
physiological mechanisms able to enhance the repair of injured tissues.
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