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A B S T R A C T

Background: Clostridioides difficile is the major cause of infectious nosocomial diarrhoea in industrialized
nations. Data on the occurrence of C. difficile in Africa, ribotype (RT) distribution, antimicrobial
susceptibility patterns and potential zoonotic transmission are scarce.
Methods: 80 Zimbabwean C. difficile isolates from different sources (chicken [n = 30], soil [n = 21] and
humans [n = 29]) were investigated using ribotyping, toxin gene detection, resistance testing, multiple-
locus variable-number tandem repeat analysis (MLVA), and whole genome sequencing (WGS).
Results: Among chicken isolates, the most common RTs were RT103 (6/30), RT025 (5/30) and RT070 (4/
30). Within soil samples, RT025 and RT056 were most common (3/21 each). In contrast, the non-
toxigenic RT084 was most frequently found in human isolates (4/29). Toxin genes were detected in only
19/29 human isolates. Susceptibility testing showed no resistance against metronidazole and
vancomycin, and resistance against macrolides and rifampicin was scarce (3/80 and 2/80, respectively);
however, 26/80 isolates showed moxifloxacin resistance. MLVA and WGS of strains with identical RTs
stemming from different sources revealed clustering of RT025 and RT084 isolates from human und non-
human samples.
Conclusion: No “hypervirulent” strains were found. The detected clusters between human, chicken and
soil isolates indicate ongoing transmission between humans and environmental sources and might point
towards a zoonotic potential.
© 2020 The Author(s). Published by Elsevier Ltd on behalf of International Society for Infectious Diseases.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).
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Introduction

Clostridioides difficile (formerly Clostridium difficile) is a Gram-
positive, anaerobic, rod-shaped bacterium and the main cause of
nosocomial diarrhoea in industrialized nations, thus posing a
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considerable burden on the healthcare system. Its ability to form
spores facilitates its spread within the environment (e.g. in the
hospital setting) (Weber et al., 2013). Most strains obtained from
clinical infections produce two distinct toxins (toxin A and B,
encoded by tcdA and tcdB, respectively), while a third toxin, i.e. the
binary toxin, encoded by cdtAB, is associated with more virulent
isolates (Gerding et al., 2014). Non-toxigenic isolates can be
considered apathogenic and might hold a protective effect towards
colonization with toxigenic strains (Natarajan et al., 2013). The
carrier rate in the healthy human population ranges from 0% to 15%
according to studies that were, however, predominately conducted
in industrialized nations (Furuya-Kanamori et al., 2015), while
prevalence in infants may be even �80% (Matsuki et al., 2005). C.
difficile is ubiquitously found in nature and can be isolated from
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environmental sources (e.g. food, soil and water) and from a broad
variety of different animal species, including livestock (e.g. poultry,
swine, and cattle) (al Saif and Brazier, 1996; Moono et al., 2017;
Kotila et al., 2013; Hensgens et al., 2012). At the beginning of the 21st

century, human C. difficile epidemiology has been shaped by the
introduction of “hypervirulent” strains such as ribotype (RT) 027.
This “hypervirulent” strain emerged from North America and
spread to a number of other regions of the world, especially to South
America and Europe, during the last two decades (He et al., 2013). In
Europe, RT027 constitutes nowadays up to 19% of C. difficile isolates
obtained from infections (Davies et al., 2016). However, although
this RT has caused sporadic cases and outbreaks in other parts of the
world [e.g. East Asia and Australia (Richards et al., 2011; Cheng et al.,
2016)], RT027 has not yet been isolated in Africa.

It is important to note that the RT distribution differs
significantly between different continents: In East Asia, RT017 is
frequently detected, which is rarely found in other regions of the
world. In contrast, in North America, Europe, Australia and other
parts of Asia, RTs such as RT001, RT014 and RT027 are prevalent
strains (Davies et al., 2016; Knight et al., 2015; Collins et al., 2013;
Tickler et al., 2014; Davies et al., 2014).

In Africa, however, C. difficile infection (CDI) is a largely
neglected disease, and epidemiological data on the pathogen are
scarce (Becker et al., 2015). In African HIV patients, C. difficile was
suggested as a possible neglected pathogen (Seugendo et al., 2015),
and was discussed in African children to be of clinical relevance
(Plants-Paris et al., 2019). The most accurate molecular data
available to date originate from South Africa, where a high
prevalence of RT017 was noted (Samie et al., 2008; Kullin et al.,
2017, 2018).

More recently, the zoonotic potential of C. difficile was
acknowledged (Hensgens et al., 2012), and several possible
zoonotic RTs, such as RT078, were identified from both human
and animal sources (Goorhuis et al., 2008a,b; Alvarez-Perez et al.,
2013; Schneeberg et al., 2013). In subsequent studies, a broad
variety of livestock including pigs (Alvarez-Perez et al., 2013),
bovines (Magistrali et al., 2015), and poultry (Harvey et al., 2011)
such as pigeons (Abdel-Glil et al., 2018), chicken (Razmyar et al.,
2017), quails (Zamani et al., 2019), ducks and swallows (Bandelj
et al., 2014) were found to be colonized with C. difficile. Common
RTs being frequently encountered in human disease and poultry
are RT001 (Abdel-Glil et al., 2018; Indra et al., 2009), RT002
(Hussain et al., 2016), RT014 (Hussain et al., 2016), RT027
(Varshney et al., 2014), RT039 (Abdel-Glil et al., 2018), and
RT078 (Varshney et al., 2014; Weese et al., 2010), supporting a
potential role of poultry in zoonotic C. difficile transmission.

In this study, we determined the molecular subtypes and
antibiotic susceptibilities of 80 C. difficile isolates from human,
poultry (chicken), and soil samples that mainly stemmed from two
studies conducted in Zimbabwe (Simango and Mwakurudza, 2008;
Simango and Uladi, 2014) to elucidate their epidemiology and
zoonotic potential.

Materials and methods

Study populations and sample collection

Overall, 80 C. difficile isolates were included in the study: 30
isolates stemmed mainly from chicken faeces and 21 isolates from
soil samples, which were mainly collected from different market
places in the capital city of Harare in North Central Zimbabwe in
2005 (Simango and Mwakurudza, 2008), and 29 human isolates
stemming from 29 outpatients who were treated at several
healthcare facilities in Harare in 2008. Among these 29 isolates 23
toxigenic strains were reported (Simango and Uladi, 2014).
Laboratory testing

Isolates were cultured and identified as described previously
(Simango and Mwakurudza, 2008), using standard biochemical
and morphological identification methods (culture morphology
and latex agglutination) in Zimbabwe as described previously
(Simango and Mwakurudza, 2008; Simango and Uladi, 2014). For
further characterization, strains were sent to the German National
Reference Center (NRZ) for C. difficile. Anaerobic culture, ribotyp-
ing, toxin gene detection, and antibiotic susceptibility testing (AST)
was carried out as described previously (Berger et al., 2018, 2019a).
Anaerobic culture was done on a selective agar (CLO-Agar,
bioMérieux; Marcy L'Étoile, France). Ribotyping and toxin gene
detection were performed in accordance with harmonized
protocols (ECDIS-net), and AST was done by epsilometry for
metronidazole, vancomycin and moxifloxacin, and by disk diffu-
sion for clarithromycin and rifampicin.

To determine the epidemiological relationship among samples,
all isolates displaying the same RT were subtyped using multiple-
locus variable-number tandem repeat analysis (MLVA) as de-
scribed before (Berger et al., 2019a; Färber et al., 2017). Clonality
was defined as �2 repeat differences and relatedness as �10
differences (Berger et al., 2019a; Färber et al., 2017). Since the study
focused in part on zoonotic transmission, whole genome
sequencing (WGS) was applied on samples that clustered in MLVA
and included human and non-human samples in the same cluster.
Moreover, two unclassified strains with the binary toxin gene were
whole genome sequenced. Allelic profiles for subsequent core
genome MLST (cgMLST) analysis were extracted from the sequence
data as described previously (Illumina Inc., San Diego, USA) (Bletz
et al., 2018; Berger et al., 2019b) with one modification. We used
the SKESA assembler (Souvorov et al., 2018) for de novo assembly
with default parameters. Isolates differing in �6 alleles were
considered to cluster.

Results

In total, 80 isolates were investigated that originated from 30
chicken samples, 21 soil samples, and 29 human specimens
(Table 1). Overall, a high diversity of RTs with a total of 35 different
RTs was observed, including 15 yet unclassified RTs which did not
match with the available RT profiles in the institutional database of
the German NRZ for C. difficile.

The RT distribution displayed a partial source specificity: In
chicken isolates, RT103 [6/30, (20%)], RT025 [5/30 (17%)] and RT070
[4/30, (13%)] were the most common RTs, while RT025 and RT056
were most prevalent in soil samples [3/21 each (14%) Table 1]. In
human samples, RT084 was most frequently detected with 4/29
(14%), followed by RT002, RT012, RT046, and RT056 [2/29, (7%),
each, Table 1]. Classical “hypervirulent” RTs such as RT027 or
RT078 were absent in this strain set. However, the binary toxin
gene cdtAB was detected in two strains, representing yet
unclassified RTs corresponding to the multilocus sequence types
(ST) 122 and ST664, respectively.

A strikingly high number of toxigenic isolates was found in
chicken and soil samples [26/30, (87%) and 20/21, (95%)
respectively], while only 19/29 (65%) human samples were positive
for tcdA and/or tcdB.

MLVA was carried out for all RTs, which were represented by a
least two isolates encountered more than once, showing varying
degrees of relatedness (17 RTs, data not shown). Of these, eight RTs
(isolates) did not show any clustering. In the remaining nine RTs, a
total of ten clusters could be detected. In four cases, isolates obtained
from chicken and soil samples clustered, in two cases each, either
only human or only chicken samples clustered together. The
remaining two clusters included human- and non-human-derived



Table 1
List of detected ribotypes (RTs) of the 80 isolates investigated. Isolates clustering in
MLVA: C: chicken, S: soil, H: human. Each letter symbolises one isolate (e.g. in
RT025, a total of 8 samples were tested: 5 chicken, 3 soil and 1 human specimen;
two clusters were found: one cluster with two samples both from chicken and one
cluster with four samples, two from chicken, one from soil and one human). None:
no samples clustered, n.a. not applicable since the RT was detected only once.
“Unclassified RTs” did not match with RTs of our database (17 isolates). Eleven of
these were different RTs. Four isolates had of two different banding patterns [RT (A)
and RT (B)].

RT Chicken
(n = 30)

Soil
(n = 21)

Human
(n = 29)

Isolates in a
MLVA cluster

Number of strains carrying toxin genes tcdA and tcdB
RT001 1 1 1 CS
RT002 – – 2 None
RT005 – – 1 n.a.
RT012 – – 2 HH
RT014 2 2 1 CS
RT017a – – 1 n.a.
RT020 – 1 1 None
RT025 5 3 1 CC; CSH
RT046 – – 2 None
RT053 1 1 – None
RT056 – 3 2 None
RT070 4 1 – CCS
RT103 6 – 1 CCCCC
RT120 2 1 – None
RT031 1 0 0 n.a.
RT207 2 1 – CS
RT220 1 – – n.a.
RT228 1 1 1 None
Unclassified RTs 1 4b 2b n.a.
Unclassified RT (A) – 1 1 None

Strains carrying no toxin genes
RT031 1 – – n.a.
RT084 2 – 4 CHHHH
Unclassified RTs 1 1 4 n.a.
Unclassified RT (B) – – 2 HH

a RT017 isolates frequently harbour mutations in cdtA, and might not be
identified correctly by certain PCR-based diagnostic methods, and toxin A is
normally not expressed (Du et al., 2014).

b Additional two cdtAB positive isolates in the soil and human sample set

Figure 1. Minimum-spanning tree of 17 C. difficile isolates from different origins.
Each node represents a unique cgMLST allele profile and named with the sample ID.
The numbers on connecting lines display the number of differing alleles between
the genotypes (line length not to scale). The different nodes are colored by the
sample's origin and closely related genotypes (�6 different cgMLST alleles) are
shaded with grey.
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isolates: one RT025 cluster comprised isolates originating from
human, chicken and soils samples (Supplementary Figure 1), and the
RT084 cluster included a couple of samples stemming from human
and chicken samples (Supplementary Figure 2).

WGS and subsequent cgMLST was applied in RT025 and RT084
isolates since human and non-human samples clustered in MLVA
(Figure 1 and Supplementary Figures 1 and 2). The results of WGS
(Figure 1) and MLVA (Table 1 and Supplementary Figures 1 and 2)
were similar but not completely congruent in two out of three
clusters. Using WGS (ENA accession number: PRJEB36842), one
isolate did not cluster in contrast to MLVA (RT025; isolate 35C,
Figure 1), while in the other cluster, one sample was additionally
related in WGS (RT084; isolate 26C, Figure 1).

Resistance against drugs used for therapy of CDI in Europe and
North America such as vancomycin and metronidazole was not
detected in any sample (Table 2). However, resistance towards
moxifloxacin was high in chicken, soil, and human samples [11/30
(37%), 9/21 (43%) and 6/29 (21%), respectively]. Rifampicin and
clarithromycin resistances were occasionally detected in human-
and chicken-derived isolates (<10%), but not in soil isolates.
Detailed resistance patterns of individual isolates are displayed in
Supplementary Table 1.

Discussion

Data regarding the prevalence and molecular epidemiology of
C. difficile in Africa are scarce, and its impact on local healthcare
systems remains unclear. Some studies, however, point toward a
possible significance in HIV-positive patients (Seugendo et al.,
2015; Onwueme et al., 2011). In one study conducted in Kenya, a
high rate of toxigenic C. difficile (92%) was noted in stools received
from diarrheal patients with HIV (Oyaro et al., 2018). In Zimbabwe,
the clinical significance of this pathogen has not been consistently
acknowledged (CDDEP, 2017), although in 9% of diarrheal out-
patients, toxigenic C. difficile could be identified in one study
(Simango and Uladi, 2014).

The emergence and spread of “hypervirulent” RTs such as RT027
and RT078 altered the epidemiological C. difficile world map, and
this change was particularly evident for North America and Europe,
leading to a higher burden of C. difficile disease in humans in those
regions (Cairns et al., 2017). An active surveillance including
monitoring of these more virulent RT is therefore crucial in order to
take countermeasures (e.g. antibiotic stewardship, implementa-
tion of hygiene measures) when the respective RT is introduced.
Therefore, the assessment of the RT composition is also important
for identification of regions that can be considered vulnerable.

In this study, a large RT diversity was observed among human
isolates. Interestingly, a comparably high rate of non-toxigenic
isolates was noted within the human-derived isolate set [10/29
(34%)]. Human RTs reported to be highly prevalent in other world
regions such as RT001, RT002, RT014, or RT017 were only rarely
found [in total 5/29 (17%)]. Importantly, no “hypervirulent” RTs
such as RT027 and RT078 were present. However, in one human-
derived isolate, the binary toxin gene could be detected, which is
commonly found in isolates of these “hypervirulent” RTs, and is
considered to be associated with a more severe course of clinical
disease (Gerding et al., 2014).

These findings are largely in line with those of other studies
conducted thus far in African patients (Supplementary Table 2),
with the exception of South Africa. In samples from South African
patients with diarrhoea, the rate of non-toxigenic C. difficile was
below 10% in two studies (Samie et al., 2008; Kullin et al., 2018).
Additionally, in South Africa, RT017 is by far the most common RT
found in humans. Within an outpatient setting, RT017 and RT001
made up 50% and 16% of all isolates, respectively (Samie et al.,
2008). In South African tuberculosis hospitals, RT017 was even
found in 96% and 64% of all RTs, respectively (Kullin et al., 2017,
2018). Zimbabwe and South Africa share a common border.
Therefore, it might be speculated that the exchange of C. difficile
reservoirs (e.g. through trade and migration) might influence and



Table 2
Detected resistance rates among all three sample sets (chicken, soil and humans).

Sample set Metronidazole Vancomycin Moxifloxacin Clarithromycin Rifampicin

Chicken 0/30 0/30 11/30 1/30 0/30
Soil 0/21 0/21 9/21 0/21 0/21
Human 0/29 0/29 6/29 2/29 2/29
All 0/80 0/80 26/80 3/80 2/80

F.K. Berger et al. / International Journal of Infectious Diseases 96 (2020) 82–87 85
shape the local epidemiology. However, our findings do not
support this hypothesis, as the RT compositions differ largely
between our study and the data from South Africa. RT017 was
found only once in our strain set, and only few RTs observed in the
study presented here were also detected in the aforementioned
South African studies (RT001, RT002, RT014, and RT046, respec-
tively) (Samie et al., 2008; Kullin et al., 2017, 2018).

For most parts of Africa, molecular data on C. difficile are scarce.
In an Algerian study, eleven isolates were tested of which four were
non-toxigenic RT084 (Djebbar et al., 2018). According to an
investigation from Côte d’Ivoire (Becker et al., 2015) only 2/6
isolates could be assigned to a certain RT (RT199 and RT390,
respectively). Of note, all of the reported Côte d’Ivoire isolates were
non-toxigenic (Becker et al., 2015). A study from Ghana identified
only three toxigenic isolates within a total of fifteen isolates
(Janssen et al., 2016). An investigation conducted in Tanzania
reported three RT038 (non-toxigenic), two RT045 (toxigenic), and
two unknown toxigenic RTs (Seugendo et al., 2015). Of note, a high
incidence for RT084 and a comparatively high proportion of non-
toxigenic strains were also noticed in our study, supporting the
hypothesis raised by Natarajan and colleagues that colonization
with non-toxigenic strains might be protective against toxigenic
isolates (Natarajan et al., 2013), which might also account for the
lack of “hypervirulent” RTs in our strain collection.

A remarkably large diversity in RTs was noticed within the
isolate set obtained from chicken, with numerous RTs being not
reported in any of the poultry studies. However, about 10% of the
chicken-derived isolates belonged to RT001 or RT014; two RTs that
are frequently encountered in CDI. Both RTs were also present in
other poultry studies conducted throughout the world (Supple-
mentary Table 3), indicating that these two RTs are particularly
suited to persist in poultry and humans.

The soil-derived C. difficile isolate also displayed a high RT
diversity, which showed concordance with the RT spectrum
observed in the chicken-derived isolate set. Additionally, between
chicken- and soil-derived C. difficile samples, a relevant clustering
in RTs was found. This might be attributed to the fact that the soil
samples were taken predominantly on the same locations as the
chicken samples (e.g. market places), and that soil contamination
might have occurred through chicken faeces.

The most interesting clustering, however, was observed for
RT025 and RT084 isolates, respectively. In both RTs, clustering
between human and chicken/soil samples could be detected, thus
indicating a possible epidemiological link, which might emphasise
a zoonotic transmission potential. This is especially astonishing
because the samples of the chicken faeces/soil and the humans
were collected with a time difference of three years (in 2005 and
2008, respectively), indicating a large genetic stability within those
RTs, a possible ongoing transmission, or a common source.
According to a public health survey conducted among 470
individuals in Zimbabwe, 299 (58%) reported to keep chicken
(CDDEP, 2017). Thus, poultry-associated C. difficile transmission is
likely to play a more prominent role in this setting.

No resistance towards antibiotics used for treatment of CDI
(metronidazole and vancomycin) was found within the samples.
Resistance against fluoroquinolones (moxifloxacin), however, was
frequently encountered (34% among all isolates). For Zimbabwe, no
official governmental monitoring of antimicrobial use is estab-
lished (CDDEP, 2017). However, other sources report that β-lactam
antibiotics (ceftriaxone, penicillin, and amoxicillin, respectively)
and ciprofloxacin are in primary use for inpatients, while in animal
treatment, tetracyclin and penicillin are frequently employed
(CDDEP, 2017). The aforementioned ciprofloxacin use might
explain the comparably high rate of moxifloxacin resistance,
which is on the same level as the moxifloxacin resistance levels
reported for C. difficile in Europe and the US with 37% and 38%,
respectively (Freeman et al., 2018; Tenover et al., 2012). The largest
C. difficile AST investigation conducted thus far in Africa (with a
representative amount of isolates, i.e. >50) was carried out in a
South African tuberculosis hospital and revealed no resistance
towards vancomycin, while intermediate resistance (defined as
MIC �2–32 mg/L) towards metronidazole was encountered in 4% of
isolates (Kullin et al., 2018). However, resistance towards moxi-
floxacin and macrolides was highly prevalent with 94% and 75% of
isolates, respectively (Kullin et al., 2018). Rifampicin resistance was
also very high in the respective study, and reached 99% (Kullin
et al., 2018). However, the resistance patterns determined in the
cited study are most likely highly influenced by the fact that the
investigated patients were treated for tuberculosis and some of the
substances with rather high resistance rates (i.e. moxifloxacin,
rifampicin, and macrolides) are frequently used for antimycobac-
terial therapy.

Our study shows some limitations. Only minimal clinical
data on humans was available and there was no information
about gastrointestinal co-infections and previous antibiotic
treatment. The number of isolates is limited, which is
however, a common denominator of most C. difficile studies
conducted across Africa. Furthermore, there is a relevant time
gap between the collection of the samples sets of three years
(2005 and 2008, respectively). Additionally, not all isolates
underwent cgMLST and therefore no comprehensive genotypic
resistance testing could be performed.

In conclusion, this study provides a number of new insights into
the epidemiology of C. difficile: (i) a large strain diversity was
evident in samples of humans, chicken and soil; (ii) the majority of
RTs found in this Zimbabwean sample set were so far only rarely
found in studies from other continents; (iii) a comparably high rate
of non-toxigenic strains was noticed, which is in line with studies
from other parts of Africa (except for South Africa); (iv) classical
“hypervirulent” strains such as RT027 and RT078 were completely
absent in this strain set. However, in two strains, binary toxin
encoding genes were detected; (v) except for moxifloxacin,
antimicrobial resistances were low; and (vi) the observed genetic
relatedness between some of the chicken, soil and human C.
difficile isolates support the proposed potential for zoonotic
transmission of this species.
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