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Abstract: Using additive manufacturing to generate a polymer–metal structure offers the potential
to achieve a complex customized polymer structure joined to a metal base of high stiffness and
strength. A tool to evaluate the generated interface during the process is of fundamental interest,
as the sequential deposition of the polymer as well as temperature gradients within the substrate lead
to local variations in adhesion depending on the local processing conditions. On preheated aluminum
substrates, 0.3 and 0.6 mm high traces of polylactic acid (PLA) were deposited. Based on differential
scanning calorimetry (DSC) and rheometry measurements, the substrate temperature was varied in
between 150 and 200 ◦C to identify an optimized manufacturing process. Decreasing the layer height
and increasing the substrate temperature promoted wetting and improved the adhesion interface
performance as measured in a single lap shear test (up to 7 MPa). Thermographic monitoring was
conducted at an angle of 25◦ with respect to the substrate surface and allowed a thermal evaluation
of the process at any position on the substrate. Based on the thermographic information acquired
during the first second after extrusion and the preset shape of the polymer trace, the resulting wetting
and shear strength were estimated.

Keywords: additive manufacturing; material extrusion; thermographic process monitoring;
polymer–metal hybrid structures; adhesion interface performance

1. Introduction

In recent years, additive manufacturing (AM) technologies have gained importance in product
development, prototyping and manufacturing for small series. These technologies offer huge potentials
not only technically, but also in terms of sustainable and customized solutions [1,2]. In the case of the
widespread material extrusion (ME), the material, usually a polymer, is fed through an extrusion nozzle
and dosed in a targeted way—cf. DIN EN ISO/ASTM 52900-2017. By rastering the extrusion head,
a 3 dimensional part is generated layer-by-layer. This process is often referred to as fused deposition
modeling® (FDM®) or fused filament fabrication (FFF). For many applications, the demands, including
functionality and costs, vary locally in a part or structure. Multi-material parts are taken into account
to address these demands by varying the material as well as the fabrication process (cf., e.g., [3]).
For example, our recent studies within the DFG-founded research program SPP1712 have shown that a
thermoplastic interlayer can improve the mechanical performance in the cyclic loading regime of a
hybrid-structure—a metal insert embedded in a carbon fiber-reinforced polymer (CFRP) laminate—
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(cf., e.g., [4]). However, the interfaces represent damage-critical areas in the multi-material compound
structure. Moreover, in the case of ME, the sequential deposition of the thermoplastic polymer onto a
metal substrate leads to local variations in adhesion depending on the local processing conditions.

Spoerk et al. [5,6] evaluated the adhesion interface performance of several extruded thermoplastics
onto different non-metallic substrates using an in-house built adhesion measurement device.
Increasing the printing bed temperature above the glass transition temperature, Tg, of the polymer
significantly increases the adhesion forces and prevents the part from detaching from the printing bed
during the build process.

From adhesive technology, the adhesion interface performance of hotmelts is known to be highly
sensitive to the local temperature management during the application of the adhesive. Due to the
high thermal conductivity of metal substrates, Habenicht et al. [7,8] suggests preheating the substrates
to the melting temperature, Tm, of the hotmelt prior to its application. Decreasing the viscosity of
the adhesive promotes wetting of the adherent, which is an indispensable precondition for structural
polymer–metal bonding.

By processing thermoplastics through injection molding, the bonding of the polymer to a metal
insert can be improved via local temperature management in the polymer metal contact region
(cf., e.g., [9–11]). Furthermore, the injection and holding pressure allows the formation of a forced
polymer–metal bonding via penetration of the polymer in the surface textures, which is often referred
to as polymer to metal direct adhesion (cf., e.g., [9,12]). However, in the case of the ME process with a
conventional setup, no pressure can be applied after the polymer has left the extrusion nozzle.

For the most common thermoplastics currently used in the ME process, Amancio-Filho et al. [13]
suggests substrate temperatures in between the extrusion, Te, and the crystallization temperature, Tc,
of the polymer to optimize the polymer–metal bonding. In their recent publications regarding the
Addjoining® process, Falck et al. [14,15] applied a primer by spreading, e.g., an acrylonitrile butadiene
styrene (ABS)-acetone solution onto the metal surface before the actual ME process is carried out.
An improvement in single lap shear strength was observed for an increased extruder head velocity,
primer thickness and decreased layer height [14]. Chueh et al. [16] generated, e.g., polylactic acid
(PLA)-steel joints by ME of the polymer on a preheated (180 ◦C) structured metal substrate with
undercuts. This resulted in a combination of a form-fit and an adhesive connection. Hertle et al. [17]
observed an increase in lap shear strength of ME joined polypropylene (PP)-aluminum samples by
increasing the substrate and extrusion temperature, respectively. The increased contact temperature
resulted in an improved filling of the microstructures of the electrochemically treated aluminum surface.
While Herlte et al. [17] observed a large influence of the substrate temperature, Ts, Falck et al. [14]
reported only a minor effect. This difference is attributed to the fact, that Falck et al. applied a
primer beforehand. Hence, during the ME process, the polymer is not deposited directly on the metal
surface. The significantly lower thermal conductivity of the primer reduces the effect of the substrate
temperature (cf., e.g., [8]).

An optimized local temperature management allows for an improvement of the adhesive (polymer
layer to substrate) and cohesive (layer to layer) properties [5–7,13–15,17–20]. Thermography is suitable
to evaluate the ME process in terms of local temperature distribution [18,19,21,22]. In contrast to
contact thermometers, the thermal radiation based temperature measurement method allows quickly
changing temperature distributions on the surface of objects with low thermal conductivity and heat
capacity to be accessed without contact [23]. For an accurate temperature determination, the local
emissivity must be taken into account [23,24].

Sepalla et al. [21] characterized the weld formation between two ABS layers by means of
thermographic process monitoring. The weld exhibits cooling rates of up to 100 K/s and stays above the
glass transition temperature, Tg, for approximately 1 s. Furthermore, based on temperature dependent
polymer dynamic processes (rheology), Sepalla et al. [19] correlated the local temperature management
with the mechanical interlayer strength (Mode III fracture). By increasing the effective weld time,
the bonding can be improved up to 70% of the bulk strength.
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Bartolai et al. [25] predicted the strength of ABS and PC samples produced by ME using a polymer
weld theory based on rheological and thermographic measurements.

This article aims to investigate the ability of thermographic process monitoring to estimate the
resulting structural and mechanical properties in the polymer–metal contact region. A tool to evaluate
the local structure at the interface during the process is of fundamental interest, as the sequential
deposition of the polymer, as well as temperature gradients within the substrate lead to time-dependent
local variations in wetting and adhesion depending on the local processing conditions. The process
parameters substrate temperature, Ts, and layer height, dPo, which were varied in this study, are often
adjusted depending on the use case and are expected to affect the adhesion interface performance
(cf., e.g., [8,14,17]).

A model system compromising of a technical polylactic acid (PLA) and aluminum 6082 was
examined. Based on the caloric and thermo-rheological properties of the polymer, which were obtained
by differential scanning calorimetry (DSC) and rheometry, a relevant range of process parameters in
terms of extrusion, Te, and substrate temperature, Ts, were chosen. The local temperature during
the deposition process was examined with infrared thermography. Optical microscopy was used to
evaluate the structure in the polymer–metal contact region in terms of wetting behavior via contact
angle measurement. Finally, the resulting mechanical performance was evaluated based on single lap
shear tests.

2. Materials and Methods

2.1. Materials and Sample Preparation

2.1.1. Aluminum Substrates

The aluminum substrates were received from the water jet cutting company RS-Evolution
(66793 Saarwellingen, Germany). The deburred substrates were prepared to measure 25 mm by
115 mm from a 2 mm thick sheet metal of EN AW-6082-T6. This medium strength aluminum alloy
has excellent corrosion resistance and is typically used for structural parts in, e.g., the transportation
sector [26]. The substrates were sandblasted with corundum (Al2O3) of the size F150, which is received
from Oberflächentechnik Seelmann (06847 Dessau-Roßlau, Germany). The particle size was about
82 µm and lay within the standardized range (45–106 µm)—cf. DIN EN 13887-2003. Sandblasting
was performed with a ST 800-J Auer Strahltechnik (68309 Mannheim, Germany) at a pressure of 6 bar,
a working distance of 10 cm and an angle of 90◦ to the surface.

2.1.2. Polylactic Acid (PLA)

PLA is one of the most extensively researched and used biobased and renewable polymers.
The aliphatic polyester can be made from annually renewable resources and has the potential to replace
conventional petrochemical-based polymers for many industrial applications [27]. The Biopolymer
Ingeo™ 3D870 (Nature Works, Minnetonka, MN, USA), purchased as a black colored filament, was used
as a polymer component.

The polymer was processed with a customized ME machine based on a desktop FFF platform
(Ender 3, Creality 3D Technology Co., Ltd., Shenzhen, China). The metal substrates were fixed on an
aluminum hot plate and were preheated to a temperature, Ts, ranging from 150 to 200 ◦C. The extruder
was equipped with a water-cooled heatsink, a volcano hotend and a brass nozzle with a diameter, wPo,
of 0.8 mm (all purchased from E3D Online, Oxfordshire, UK). The extruder temperature, Te, was set to
200 ◦C. The extruder and bed temperature were chosen based on the thermal and thermo-rheological
properties of the PLA. Figure 1 shows the temperature profile during the production of a single lap
joint (SLJ) specimen, in the case of a substrate temperature, Ts, of 200 ◦C. For the SLJ specimens, the
substrate temperature, Ts, was gradually decreased after each layer. Independent of Ts for the first
layer, the substrate temperature was decreased to 150 ◦C, 100 ◦C and 60 ◦C for the second, third and
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the remaining layers, respectively. During the deposition of the dPo = 0.3 mm high layers, the extruder
moved at a velocity, ve, of 10 mm/s. For the first layer, dPo was varied between 0.3 and 0.6 mm, while ve

stayed at 10 mm/s. For the mechanical test specimens, the extruded tracks were oriented parallel to the
loading direction.
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The extruder, Te, and substrate temperature, Ts, were controlled based on thermocouples placed
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interaction was of particular interest in this study, thermographic process monitoring is only discussed
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Figure 2. Schematic measurement setup of the three different thermographic measuring configurations
with respect to the angle of vision (Φ = 0◦, 25◦ and 90◦)—top (not to scale). Extract of emissivity
corrected thermograms for different angles of vision and substrate positions during the material
extrusion process (Te = 200 ◦C, Ts = 150 ◦C)—bottom.
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2.2. Methods

2.2.1. Thermography (Thermal Process Monitoring)

Thermography was performed in the spectral range between 7.5 and 14 µm with an InfraTec
(01217 Dresden, Germany) VarioCAM HD head equipped with a 30 mm objective and a close-Up
0.5 ×macro. Acquisition was realized with the Software IRBIS 3.0 at a frequency of 30 Hz. The maximal
spatial resolution and the noise equivalent temperature deviation (NETD) were given with 32 µm
and 0.05 K, respectively. The measuring uncertainty of the temperature was up to 1.5%. The working
distance was 9 cm and the measurement setup was according to Figure 2. Data processing was carried
out with MATLAB R2019a (MathWorks).

Three different measuring configurations with respect to the viewing angle, Φ, which is defined as
the angle between the substrate surface and the optical axis, can be distinguished. The resulting polymer
surface temperature is termed as TIR, Φ=0◦ , TIR, Φ=25◦ and TIR, Φ=90◦ . Each of those configurations has
its advantages and disadvantages. On the one hand, measuring TIR, Φ=0◦ allows the determination of
temperature distributions in the vertical (x–z) plane. To eliminate shadowing generated by the metal
substrate, the polymer must be extruded right at the front edge of the substrate. Hence, the generation
of a two dimensional polymer–metal bond, i.e., the SLJ specimen, cannot be monitored. On the other
hand, measuring TIR, Φ=90◦ allows the determination of temperature distributions in the horizontal
(x–y) plane. However, with the IR-camera in use, only ex-situ measurements were possible, as the
extruder blocks the view during the extrusion process. In order to monitor the material extrusion at
any position on the substrate surface, it was intended to determine the polymer surface temperature
by measuring at a viewing angle, Φ, of 25◦.

The thermal radiation based temperature measurement method was used to access quickly
changing temperature distributions on the surface of the polymer, which possesses a low thermal
conductivity (cf. Table 1). The local spectral radiance of a black body, Lλ,S(T(x, y)), depends on the
local temperature, T(x,y), and the wavelength, λ, with applicable first and second radiation constant,
c1L and c2, according to Plank’s law (cf. Equation (1)). For a real body, the spectral radiance, Lλ(λ, T,θ),
is reduced, due to the angular (θ), wavelength (λ) and temperature (T) dependent emissivity, ε. For the
thermographic temperature measurement with a broadband detector, the radiance detected, LD,
can be approximated according to Equation (2) within the relevant spectral range between λ1 = 7.5
and λ2 = 14 µm. It mainly depends on the polymer temperature, TPo, and the temperature of the
surrounding, TSur, if the emissivity of the polymer, ελ(TPo,θ), was measured and averaged in the
considered conditions.

Lλ,S(T(x, y)) =
c1L

λ5 ·

(
exp

[
c2

λ·T(x, y)

]
− 1

)−1

(1)

∫
LD(λ, TPo, Tsur,θ) = ελ(TPo,θ)·

∫ λ2

λ1

LS(λ, TPo) dλ+ (1− ελ(TPo,θ))·
∫ λ2

λ1

LS(λ, Tsur) dλ (2)

2.2.2. Differential Scanning Calorimetry (Caloric Properties)

DSC was performed with a TA Instruments (New Castle, DE, USA) Q100. The measuring cell
was nitrogen-purged (20 ml/min). About 4 mg of extruded PLA were placed in an aluminum crucible,
vapor-plated with gold. The same type of crucible was taken as reference.

DSC was used to access the glass transition, crystallization and melting events. Heating and
cooling was realized at a rate of 10 K/min to 230 ◦C with a subsequent isothermal homogenization
for 10 min. This rate was similar to the cooling rate of the metal substrates after the joining process
(cf. Figure 1).
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2.2.3. Rheometry (Thermo-Rheological Properties)

Rheometry was performed with a TA Instrument (New Castle, DE, USA) Ar2000ex using the
plate–plate configuration. A 1 mm thick PLA disc with a diameter of 25 mm was generated by ME
and was placed in between the plates of the rheometer. After preheating to 200 ◦C, the PLA disc
was carefully compressed by the rheometer plates to prevent squeezing out the polymer. Using the
method of deformation-controlled oscillation rheology, the deformation amplitude was set to 5%.
After equalization for 2 min at the set measurement temperature, which ranged from 200 to 120 ◦C,
oscillation sweeps were carried out in the range fromω = 2π·10 toω = 2π·0.01 Hz.

Rheometry was used to access the thermo-rheological properties of the polymer, which are crucial
for wetting, cohesive properties [28–30] and adhesion interface performance [7].

Table 1. Overview of selected thermal and mechanical properties of the materials used. The surface
roughness of the aluminum substrates is measured with a Mahr MarTalk profilometer. Values marked
with a “*” correspond to a different type of PLA.

Property Al EN AW-6082-T6 PLA Ingeo™ 3D870

Thermal Expansion Coefficient α (10−6/K) 23.1 [26] 85–185 * [31]
Thermal Conductivity k (W/m·K) 172 [26] 0.1–0.2 * [27]

Heat Capacity cp (kJ/kg·K) 0.9 [26] 1.6–2.1 * [27]
Density ρ (g/cm3) 2.71 [26] 1.07–1.25 * [27]

Melting Temperature Tm (◦C) 575–650 [26] 175.2 ± 0.8
Glass Transition Temperature Tg (◦C) 60.5 ± 0.3

Elastic Modulus E (GPa) 70 [26] 2.9 [32]
Tensile Strength σm (MPa) 340 [26] 40 [32]

Surface Roughness
-Blank

-Sandblasted (FEPA 150)
Ra, Rz (µm) 0.18 ± 0.02, 1.5 ± 0.1

1.9 ± 0.5, 15 ± 4

2.2.4. Light Microscopy (Wetting Behavior)

Brightfield microscopy was performed with a Leica (35578 Wetzlar, Germany) DM6000 Multifocus.
To assess the wetting behavior, single tracks of the polymer were extruded on the preheated substrates.
After cooling, a perpendicular cut (Steuers Discotom 6, cutting speed 0.1 mm/s) through those contact
angle measurement (CAM) specimens was examined by light microscopy. In those brightfield images,
the contact angle between the polymer and the metal part was measured with the software Image Access
Premium (Imagic Bildverarbeitung AG, Glattbrugg, Switzerland) to evaluate the wetting behavior.

2.2.5. Tensile Tester (Mechanical Performance)

Tensile tests were carried out with an Instron 8500 equipped with a 100 kN loadcell and a
self-made tempering cell to ensure reproducible test conditions by means of thermal stability at 23 ◦C.
The adhesion interface performance in PLA-aluminum assemblies was evaluated based on ISO 19095
(Type B, without specimen retainer). Deviating from the standard, the joint area was increased from
5 mm × 10 mm to 10 mm × 20 mm, to reduce edge effects and improve handling. Furthermore,
the length of the aluminum lap was increased to 115 mm to allow an in-situ ultrasonic (SH-waves)
monitoring of the joint failure (not included in this article). The sample dimensions are shown in
Figure 3. The tensile tests were driven displacement controlled with 2 mm/min cross-head speed.
The tensile single-lap-shear strength, τSLJ = FB/AJ, was calculated based on the breaking load, FB,
and the joint area, AJ. Tensile tests were carried out within 5 h after sample production to reduce
aging effects.
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3. Results and Discussion

3.1. Material Properties

Table 1 gives a summary of the relevant properties of the used aluminum 6082-T6 substrates and
PLA Ingeo™ 3D870. The properties of the technical polymer component depend on the additives
included, as well as on the degree of polymerization. The mechanical performance of the additively
produced structure depends on a variety of process and post-processing parameters.

The caloric and thermo-rheological properties of the polymer are highly relevant to conceive the
fundamentals of the process-structure-properties relationship. Figure 4 depicts the heat flow as a
function of temperature as obtained by DSC.
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Figure 4. Parallel shifted heat flows of the first and second heating (hc) and cooling (cc) cycles
with marked temperatures for Tg: glass transition, Tpc: post crystallization, Tα→α’: crystalline phase
transition, Tm: melting and Tc: crystallization. The heating and cooling rate was 10 K/min for each cycle.

The temperature ranges for the glass transition, Tg = 60.5 ◦C, post-crystallization, Tpc = 95.1 ◦C,
melting, Tm = 175.2 ◦C and crystallization, Tc = 114.1 ◦C (cf. Figure 4), as obtained in the first DSC
cycle, are compliant with data from datasheet [32] and literature (cf., e.g., [27,33]).

The temperature and shear rate-dependent viscosity was determined by rheology. According to
the Cox-Merz rule,

∣∣∣η∗(ω)∣∣∣ = η
( .
γ = ω

)
, which applies to PLA [34], the steady shear viscosity is plotted

as a function of temperature for three different shear rates in Figure 5. With increasing temperature
and shear rate, the viscosity decreased. The absolute values are comparable with those reported by
Benwood et al. [35]. At about 140 ◦C, there was a distinctive change in viscosity, which can be related
to crystallization processes. This is in good agreement with the caloric-determined temperature range
for the crystallization (cf. Figure 4). This range started at about 120 ◦C, but depended on the cooling
rate. Within the rheometer, the undefined cooling rate was considerably below 10 K/min; therefore,
the crystallization processes could also occur at 140 ◦C. Above 140 ◦C, shear thinning becomes more
pronounced with increasing shear rate. This “Carreau fluid” behavior (cf., e.g., [36]) was also observed
by Benwood et al. [35].

For the application of hotmelts, Habenicht et al. [8] reports characteristic processing viscosities in
the range of 20 and 104 Pa·s depending on the type of adhesive and the use case. In particular,
he suggests preheating of the metal substrates above the melting temperature of the hotmelt
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(Tm,PLA = 176 ◦C). The typical processing range in terms of viscosity for extrusion is 103–104 Pa·s
(cf., e.g., [36]). Increasing the temperature decreases the viscosity and promotes wetting; however,
this also amplifies thermal degradation (cf., e.g., [37]).
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For the ME process, the extrusion temperature, Te, was set to a nominal value of 200 ◦C.
This temperature is within the suggested range of the filament supplier (190–230 ◦C). The resulting
viscosity fell within the lower portion of the typical range for extrusion (cf. Figure 5). The substrate
temperature, Ts, varied between 150 and 200 ◦C. The former corresponds to the upper viscosity limit
suggested for processing of hot melts and extrusion (cf. Figure 5). The latter is equal to Te.

3.2. Thermal Process Characterization by Means of Thermography

First, the stability of the material extrusion process by means of temperature of the extruded
polymer was investigated. The polymer was extruded at different rates and temperatures for 5 s.
Thermography (Φ = 0◦, Figure 2) was used to measure the temperature of the polymer right below
the extrusion nozzle. According to Figure 6, for the highest observed extrusion rate (24 mm3/s), the
apparent surface temperature of the extruded polymer, TIR, Φ=0◦, app, significantly decreased within the
first few seconds. Additionally, the extrusion rate of 12 mm3/s led to a slight decrease in TIR, Φ=0◦, app

over time. For the volumetric extrusion rates of 2.4 and 4.8 mm3/s, TIR, Φ=0◦, app did not decrease over
time. Hence, those extrusion rates were considered as thermally stable (note: a deviation of the internal
polymer temperature was not taken into account). The thermally stable extrusion rates correspond to
the used processing with an extruder head velocity of ve = 10 mm/s and a layer height of dPo = 0.3 mm
and dPo = 0.6 mm, respectively.

In order to estimate the emissivity of the polymer, the first two seconds of the extrusion process
were taken into account. Here, TIR, Φ=0◦, app increased with increasing extrusion rate. For the lower
extrusion rates (2.4–12 mm3/s), TIR, Φ=0◦, app was reduced at the beginning of extrusion, due to cooling
of the polymer at the tip of the extrusion nozzle. For the same reason, the highest observed values
of TIR, Φ=0◦,app were lower for the two lowest extrusion rates (2.4 and 4.8 mm3/s). The maximum in
TIR, Φ=0◦, app was comparable (± 0.5 K, dashed line in Figure 6) for the two highest extrusion rates
(12 and 24 mm3/s). Thus, this temperature was assumed to be equal to the set temperature of the
extruder (Te = 200 ◦C). An estimation for the emissivity was obtained by solving Equation (2) for

ελ(TPo,θ), where
∫

LD(λ, TPo, Tsur,θ) was the radiance detected by the camera,
∫ λ2

λ1
LS(λ, TPo) dλ and∫ λ2

λ1
LS(λ, Tsur) dλ were calculated based on Equation (1) for TPo = 200 ◦C and Tsur = 20 ◦C. Hereafter,
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for the thermographic determination of the polymer surface temperature, TIR, the emissivity of the
polymer was set to 0.78 and considered independent of its temperature and the observation angle.
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Figure 6. Apparent surface temperature, TIR, Φ=0◦, app, of the PLA right below the extrusion nozzle for
different extrusion rates, determined by thermography based on an assumed emissivity of 1.

Furthermore, the surface temperature of the substrate, TIR,Φ=90◦,s, was compared to the surface
temperature of the hot plate, TIR,Φ=90◦,hp, which was controlled by a thermocouple (Ts). For this
purpose, the metal parts were covered with polyimide tape and the temperature distribution was
determined by means of thermography (Φ = 90◦, Figure 2). To account for local detachments between
metal and tape, the maximum observed temperature within a measuring area of at least 1 cm2

× 1 cm2

was used for the comparison. According to Figure 7, the temperature difference, TIR,Φ=90◦,hp −

TIR,Φ=90◦,s, increased with increasing set temperature and reached up to 6 K due to convective and
radiative heat transfer. Moreover, temperature gradients within the substrates lead to variations of up
to 5 K.
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Figure 7. Thermographic determined difference in surface temperature between the hot plate
(TIR,Φ=90◦,hp) and the substrates (TIR,Φ=90◦,s) mounted on the hot plate (cf. Figure 2).

Hence, even substrates with simple geometry and high thermal conductivity show deviations
from the set temperature as well as local variations in temperature. Therefore, monitoring of the
local temperature during the sequential deposition of the polymer by ME is essential to evaluate the
adhesion interface performance. This becomes even more relevant if the substrates exhibit an increased
geometric complexity and a lower thermal conductivity.

Cooling Behavior of the Polymer During the ME Joining Process

The local polymer surface temperature, TIR(x,t), was computed as an average of three values
right in the middle of the projected polymer track as displayed in the thermogram (cf. Figure 2).
The TIR(t) signal was smoothed with a zero-phase moving average of 10 in order to reduce noise.
This was especially essential before computing the cooling rate,

.
Tc = −

∂T
∂t . As indicated in Figure 8,

the measuring configuration (cf. Figure 2), by means of the viewing angle (Φ = 0◦ vs. Φ = 25◦) and
position (substrate A vs. substrate B), had no significant influence on the observed polymer cooling
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behavior. Measuring TIR, Φ=25◦ allows the ME process to be monitored at any position on the substrate
surface hereafter.
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Figure 9. Polymer surface temperature, TIR, Φ=25°, as well as the corresponding cooling rate, �̇�𝑐,𝐼𝑅,𝛷=25°, 

as a function of time during the extrusion of dPo = 0.3 mm (a) and dPo = 0.6 mm (b) high layers on 

Ts = 150 °C, 180 °C and 200 °C hot aluminum substrates. The temperature was determined by 

thermography based on an emissivity of 0.78 and the set-up presented in Figure 2. 

Figure 8. Polymer surface temperature, TIR, as a function of time during the extrusion of 0.6 mm high
traces on Ts = 150 ◦C hot aluminum substrates for different viewing angles, Φ, and positions on the hot
plate. The temperature was determined by thermography based on an emissivity of 0.78 and the set-up
presented in Figure 6.

Figure 9 shows the timely change in TIR, Φ=25◦ for a substrate temperature, Ts, of 150, 180 and
200 ◦C for the two layer heights, dPo = 0.3 and dPo = 0.6 mm. In the moment of extrusion, the polymer
was hottest and showed a temperature of about 200 ◦C, which conformed with the set extrusion
temperature, Te. Within the next few seconds, the polymer cooled until it reached a plateau. The cooling
was more pronounced and faster for lower substrate temperatures, Ts. Furthermore, with decreasing
layer height, dPo, the cooling rate increased significantly. The observed plateau temperatures, TIR,plat,
were about 5–10 K below the set values for Ts.
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as a function of time during the extrusion of dPo = 0.3 mm (a) and dPo = 0.6 mm (b) high layers on 

Ts = 150 °C, 180 °C and 200 °C hot aluminum substrates. The temperature was determined by 
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Figure 9. Polymer surface temperature, TIR, Φ=25◦ , as well as the corresponding cooling rate,
.
Tc,IR, Φ=25◦ ,

as a function of time during the extrusion of dPo = 0.3 mm (a) and dPo = 0.6 mm (b) high layers
on Ts = 150 ◦C, 180 ◦C and 200 ◦C hot aluminum substrates. The temperature was determined by
thermography based on an emissivity of 0.78 and the set-up presented in Figure 2.

According to the difference in TIR,plat between dPo = 0.3 and dPo = 0.6 mm the temperature
gradient within the polymer was about 2 to 3 K per 0.3 mm (cf. Table 2). Considering Ts = 150 ◦C
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and dPo = 0.3 mm, a reduction of the substrate surface temperature of about 3 K (cf. Figure 7) and a
temperature gradient of 2 K per 0.3 mm in the polymer results in a polymer surface temperature of
145 ◦C, which is comparable to the thermographic determined polymer surface temperature (TIR,plat

= 143.8 ± 0.7 ◦C—cf. Table 2). Hence, the assumption of a temperature independent emissivity was
appropriate for the investigated temperature range.

Table 2. Average values for the thermographic determined extrusion, TIR,e, and plateau, TIR,plat,

temperature as well as the maximum cooling rate,
.
Tc,IR,max, for different substrate temperatures

(Ts = 200, 180, 150 ◦C) and layer heights (dPo = 0.3, 0.6 mm).

Process Parameters TIR, e (◦C) TIR, plat (◦C)
.
Tc,IR,max(K/s)

Ts = 200 ◦C
dPo = 0.3 mm
dPo = 0.6 mm

206.1 ± 0.8
205.6 ± 1.3

193.0 ± 2.2
189.6 ± 2.1

13.0 ± 2.7
8.9 ± 0.9

Ts = 180 ◦C
dPo = 0.3 mm
dPo = 0.6 mm

203.3 ± 0.8
204.1 ± 0.6

175.5 ± 2.4
172.1 ± 0.6

38.8 ± 5.2
19.3 ± 1.6

Ts = 150 ◦C
dPo = 0.3 mm
dPo = 0.6 mm

200.0 ± 0.4
202.1 ± 0.4

143.8 ± 0.7
141.8 ± 1.4

74.5 ± 7.4
39.1 ± 2.5

Table 2 gives an overview of average values for the thermographic determined extrusion, TIR,e,
and plateau temperature, TIR,plat, as well as for the maximum cooling rate,

.
Tc,IR,max.

The observed extrusion temperature, TIR, e, increased with increasing substrate temperature, Ts.
This can be explained by a radiative and convective heating of the tip of the extrusion nozzle by the hot
substrate. Decreasing the layer height, dPo, led to a slight increase in TIR, Plat and a significant increase
in

.
Tc,IR,max. The latter also increased significantly with decreasing substrate temperature, Ts.

3.3. Wetting Behavior

Wetting is a necessary condition for adhesion [7]. In thermodynamic equilibrium, the wetting
angle, ϕ, results from the interfacial tensions between polymer and substrate, γPS, polymer and
atmosphere, σPA, and substrate and atmosphere, σSA, according to Young’s equation (cf. Equation (3)).

cos(ϕ) =
σSA − γPS

σPA
(3)

In general, clean metallic and oxidic surfaces possess a high surface tension, σSA, and are wetted
properly by liquids with a low surface tension like polymers—σPA [38]. However, Equation (3) does
not account for differences between the advancing and receding angle, as well as for kinetically ruled
process. In thermal equilibrium, liquids with an elevated viscosity, like polymer melts, wet the substrate
gradually. The contact angle continuously decreases until it reaches equilibrium. Depending on the
viscosity of the polymer melt, this process can take some 10 min (cf. e.g., [39]). In this study, the
extruded polymer melt wetted the substrate while it cooled and, in the case of Ts = 150 ◦C, began to
crystallize (cf. Figures 4 and 5). Hence, the polymer underwent a rapid and distinctive change
in viscosity. The resulting contact angle highly depended on the timely change in viscosity and
corresponds to a frozen non-equilibrium state. Thus, a frozen state of the contact angle was achieved,
which depends on the thermal history—namely the time at elevated temperature and cooling rate
(cf. Figure 1). Therefore, the determined contact angles are only suited for a comparative assessment for
the given setup and processing. The process parameters layer height, dPo, and width, wPo, determine
the initial shape of the polymer trace. By assuming a cylinder segment geometry (cf. Figure 10),
the initial contact angle, ϕcs,i, can be calculated according to Equation (4).
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cos(ϕcs,i) =
r−dPo

r =
(

wPo
2 )

2
−dPo

2

(
wPo

2 )
2
+dPo2

With r = (
wPo

2 )
2
+dPo

2

2dPo

(4)
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Figure 10. Schematic cross section of the polymer trace in the form of a cylinder segment.

Cross sections of the polymer metal contact region, as observed by light microscopy, are shown
in Figure 11. The morphology of the polymer track was characterized by measures in contact angle,
layer height and layer width.
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Figure 11. Brightfield light microscopic images for contact angle measurement for dPo = 0.6 mm (a,c,e)
and dPo = 0.3 mm (b,d,f) high traces deposited on a substrate with a temperature of Ts = 150 ◦C (a,b),
Ts = 180 ◦C (c,d) and Ts = 200 ◦C (e,f).
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According to Figure 12, the contact angle decreased with increasing thermographic measured
plateau temperature, TIR, plat. This is in conjunction with the temperature reaction of the viscosity
(cf. Figure 5) and the general suggestions for the applications of hotmelts (cf. e.g., [7]).
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Figure 12. Contact angle as measured in light microscopic images (cf. Figure 11) as a function of
plateau temperature, TIR, plat, for dPo = 0.3 mm and dPo = 0.6 mm high traces.

However, there is a large variation within each group. One reason may be found in the difference
in time at an elevated temperature between the substrates A, B and C, which was up to 140 s and
affected the gradual wetting (cf e.g., [39]). Additionally, the measured contact angles were always
lower for the thinner layers. This observation is in conjunction with the preset shape of the polymer
trace, which depends on the layer height, dPo, (cf. Equation (4) and Figure 10). Considering TIR, Plat as
well as the preset contact angle, ϕcs,i, (cf. Equation (4)) allowed a superior estimation of the resulting
contact angle, as shown in Figure 13.
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Figure 13. Contact angle as a function of thermographic determined plateau temperature, TIR, plat, and
the preset contact angle, ϕcs,i, (cf. Equation (4)).

The plateau temperature, TIR, plat, which shows a clear correlation with the substrate temperature,
Ts, took up to 6 s to be reached (cf. Figure 9). However, during the ME process of an actual part it is
usually not possible to monitor any point for such a long time with the current setup, as the extruder
and substrate move, so the point of interest leaves either the field of view or the focus plane. Hence,
it was attempted to correlate the plateau temperature, TIR,plat, with the thermographic information
right after the extrusion. In order to define such a parameter, which strongly depends on TIR,plat and is
nearly independent of dPo, the cooling rate was considered in more detail.

The cooling process, TIR(t), can be approximated by an exponential law that has already been
observed in early times as a result of the so called “Newton’s law of cooling“, which is best for
conductive and convective, but not for radiative, heat transfer (cf. e.g., [40]). However, using this
exponential decay function allowed an analytical estimation on how the cooling rate changes with time
for different layer heights, dPo, and substrate temperatures, Ts. Based on the assumption of uniform
temperature distribution within the cross-sectional area of the polymer trace, semi-infinite length of the
polymer trace and constant heat transfer coefficients, Bellehumeur et al. [41] give an analytical solution
to describe the timely change in temperature of the deposited polymer. The model was adapted to
the given geometry of the polymer trace (cf. Figure 10) and extended by distinguishing between heat
transfer polymer–air and polymer–metal (cf. Equation (5)).
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TIR(t) = TIR,plat. +
(
TIR,e − TIR,plat.

)
· exp

(
−

t
τc

)
With 1

τc
= ve

√
1+4α·β−1

2α

Where α =
kPo

ρPo·cp,Po·ve
and β =

hMe·PMe+hAir·PAir
ρPo·cp,Po·Acs·ve

(5)

The time constant, τc, depends on thermal conductivity, kPo = 0.15 W/m·K, heat capacity,
cp,Po = 2000 J/kg·K, density, ρPo = 1.24 g/cm3, of the polymer, heat transfer coefficient, h, extruder head
velocity, ve, and the ratio of volume to surface area where the heat transfer takes place.

The heat transfer was a combination of a heat transfer polymer–air, hAir, and a polymer–metal,
hMe, acting in parallel at the perimeters PAir and PMe, respectively. For the polymer trace, approximated
as a semi-infinite cylinder segment (cf. Figure 10), the cross-sectional area, Acs, and the perimeters,
PAir and PMe, can be calculated according to Equation (6).

Acs = r2
·ϕcs,i −

wPo·(r− dPo)

2
, PAir = 2r·ϕcs,i and PMe = wPo (6)

A good approximation of the experimental data was achieved with hAir = 30 W/m2
·K and

hMe = 870 W/m2
·K for both layer heights (cf. Figure 14). Voids at the polymer–metal interface, as

reported by Hertle et al. [17], reduce the heat transfer coefficient polymer–metal, hMe, and, ultimately,
the thermographic measured maximum cooling rate,

.
Tc,IR,max, and plateau temperature, TIR,plat,

of the polymer. For the analytical description, the polymer–metal interface was considered as
homogeneous. The heat transfer coefficient hMe was a combination of a heat transfer polymer–metal
and a polymer–voids–metal. Thermographic monitoring did not reveal local differences in cooling
behavior that would indicate the presence of large pores at the interface or within a polymer trace.
This observation is supported by the cross sections of the polymer metal contact region, which revealed
no large voids (cf. Figure 11).
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Figure 14. Analytical approximation according to Equation (5) of the experimental temperature profiles,
TIR(t), for dPo = 0.3 mm (a) and dPo = 0.6 mm (b) high traces. For the analytical calculation, the average
values of TIR,e and TIR,plat (cf. Table 2) were used.

Neglecting temperature dependence of material and heat transfer properties and, hence, of the
time constant, τc, the cooling rate at a fixed time, tn, is proportional to the difference between initial,
TIR,e, and plateau temperature, TIR,plat., (cf. Equation (7)).

.
T =

(
TIR,e − TIR,plat.

)
· exp

(
−

t
τc

)
·

(
−

1
τc

)
⇔ TIR,e − TIR,plat. = −τc· exp

(
t
τc

)
·

.
T

t=tn
⇒ TIR,e − TIR,plat. ∝

.
T(t = tn)

(7)



Materials 2020, 13, 3371 15 of 19

For the given processing conditions in terms of layer height, dPo, and substrate temperature, Ts,
a comparable cooling rate,

.
Tc, for different layer heights could be found at about 0.5–1 s after extrusion

(cf. marked range in Figure 15).
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3.4. Adhesion Interface Performance

The used single-lap configuration allowed a realizable sample preparation, as well as good
accessibility for non-destructive testing and condition monitoring (not included in this article).
The eccentric load path within the joint led to a rotation during loading and caused, among others,
additional peel stresses (cf. e.g., [7]). Due to the different stiffness of the Al and the PLA part, the stress
distribution in the bond line was asymmetric. Therefore, the determined single-lap-shear strength is
rather suited for a comparative assessment than for a quantitative determination of the shear strength
of the polymer–metal interface.

In analogy to the thermographic estimation of the contact angle (cf. Figure 17), Figure 18 shows
the potential to estimate the single lap shear strength, τSLJ, based on

.
Tc,avg(0.5−1s) and ϕcs,i. Differences

between the monitoring of the CAM (isolated single tracks) and SLJ (adjoining tracks) specimens for
the same processing conditions in terms of Ts and dPo can be due to:

1. Different thermal boundary conditions exist due to the presence (SLJ) or absence (CAM) of a
neighboring polymer track.

2. The temperature measuring position on the polymer track might differ, as the boundaries of the
polymer track were hard to segment in the case of the SLJ experiment.
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.
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preset contact angle, ϕcs,i, (cf. Equation (4)). For the calculation of the adhesive failure proportion, af,
macroscopic adhesive (af: 100%), mixed (af: 50%) and cohesive (af: 0%) failure were taken into account.
Exemplary fracture surfaces are presented—right.

The single lap shear strength, τSLJ, increased with increasing substrate temperature, Ts, and
decreasing layer height, dPo (cf. Figure 18), which is in conjunction with e.g., [8,14,17]. Additionally,
the decrease in the average cooling rate,

.
Tc,avg(0.5−1s), and preset contact angle,ϕcs,i, also led to a change

in failure mode from adhesive to cohesive failure. For improved wetting conditions, the shear strength
of the PLA-Al interface exceeded the shear strength of the PLA-PLA interface. The variance in the
experimentally determined τSLJ can be due to a couple of reasons:

• The joint failure is very sensitive to local heterogeneities due to processing and substrate surface
condition (e.g., roughness, contaminations and pores).

• Differences in the coefficient of thermal expansion (cf. Table 1) lead to internal stresses during
cooling. Relaxation of the residual stresses, which can weaken or strengthen the bonding, is a
time dependent process and depends on the ambient conditions (temperature and humidity).

• Additional peel stresses at the edges of the bond during loading amplify the effects
mentioned above.

The single lap shear strength, τSLJ, did not exceed a level of about 7 MPa. As those high strength
samples exhibited a cohesive failure (cf. Figure 18), the interlaminar shear strength of the layer wise
extruded PLA was reached. The most likely explanation for such a low interlaminar shear strength
(in comparison to, e.g., [42]) is the molecular structure of the PLA generated by the ME process. Usually,
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after the deposition in a “standard” ME process, the polymer cools rapidly with some 10 K/s below its
crystallization, Tc, or even glass transition temperature, Tg, (cf. e.g., [19,21]). The consequence is a
mostly amorphous structure with an increased free volume and chain mobility (cf. Figure 4 heat cycle 1,
which measures the polymer properties after rapid cooling). In this study, due to the heated substrate,
the temperature of the polymer initially dropped to a plateau temperature, TIR, plat, which was above
its crystallization temperature, Tc, (cf. Figures 1, 4 and 9). Consequently, during the tempering and the
subsequent “slow” cooling with some 10 K/min, the polymer crystallized (cf. Figures 1 and 4 heat
cycle 2). This resulted in a structure with an increased crystallinity and a decreased free volume and
chain mobility. This led to a reduced interlaminar shear strength, as the next layer could adhere better
to a previous layer with an increased free volume and chain mobility (cf., e.g., [19]).

4. Conclusions

Material extrusion was used to deposit dPo = 0.3 mm and dPo = 0.6 mm high traces of PLA
on preheated aluminum substrates. Based on DSC and rheometry measurements, the substrate
temperature, Ts, was varied in between 150 and 200 ◦C. At those temperatures, the polymer viscosity
was typical for extrusion and lay in between 103 and 104 Pa·s. Thermographic monitoring at an angle
of 25◦ with respect to the substrate surface allowed a thermal evaluation of the ME process at any
position on the substrate. Decreasing the layer height, dPo, and increasing the substrate temperature,
Ts, promoted wetting and improved the adhesion interface performance as measured in a single lap
shear test. Due to thermal degradation, decreasing layer height instead of further increasing substrate
temperature is favorable.

An estimation of the resulting wetting and adhesion interface performance was realized by the
two parameters

.
Tc,avg(0.5−1s) and ϕcs,i.

•
.
Tc,avg(0.5−1s) accounted for the effect of substrate temperature, Ts. For the given processing
conditions in terms of layer height, dPo, and substrate temperature, Ts, the average cooling rate
within 0.5 and 1 s after extrusion,

.
Tc,avg(0.5−1s), could be used for the estimation instead of the

plateau temperature, TIR,plat. This facilitates the evaluation during the production of an actual
part, as it is difficult to monitor any point until TIR,plat is reached.

• A variation in layer height affected the preset shape of the polymer trace in terms of ϕcs,i and,
hence, wetting and adhesion.

For intended future work, a permanent implementation of this thermographic
monitoring/estimation approach with an improved setup—a lightweight IR-camera attached to
the extrusion head—offers well-defined positions for the temperature measurement. Furthermore,
extensive characterization of the failure mechanisms (condition monitoring) and aging behavior of
these multimaterial structures may be of interest.
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