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Abstrakt

Im Zentrum dieser Dissertation steht die Untersuchung kompakter Quantengruppen und
ihrer Darstellungskategorien sowie die Weiterentwicklung des Diagrammkalküls, der für
Berechnungen in diesen Strukturen benutzt wird.

Ein effektives Werkzeug für die Untersuchung jener Darstellungskategorien sind so genann-
te Partitionskategorien. Eine der Hauptaufgaben ist hier die Lösung von Klassifikationsproble-
men. Im Falle der ursprünglichen Definition von Banica und Speicher wurde die Klassifikation
von Raum und Weber vollständig erreicht. Nichtsdestotrotz werden heute viele Verallgemei-
nerungen von Partitionskategorien eingeführt, untersucht, klassifiziert – oder warten noch
auf ihre Entdeckung. Diese Doktorarbeit trägt zu diesem Gebiet auf folgende Weise bei.

(a) Wir klassifizieren global gefärbte Kategorien zweifarbiger Partitionen.
(b) Wir führen Partitionen mir extra Singletons und deren Kategorien ein. Wir konstruieren

einen Funktor, der diese neuen Kategorien mit zweifarbigen Partitionskategorien in
Beziehung setzt. Dieser Funktor erlaubt es uns insbesondere Klassifikationsresultate
von einer Struktur auf die andere zu übertragen.

(c) Wir untersuchen lineare Partitionskategorien, bei denen man auch Linearkombina-
tionen bilden darf. Wir zeigen erste echte (so genannte non-easy) Beispiele solcher
linearen Partitionskategorien auf; zuvor waren keine solchen bekannt. Diese Beispiele
wurden mit Hilfe von Computerexperimenten entdeckt. Wir interpretieren diese dann
als Bilder klassischer easy Partitionskategorien unter bestimmten Funktoren.

Das Studium von Partitionskategorien ist von Quantengruppen her motiviert, wie bereits
erwähnt. Die wesentliche Anwendung ist die Konstruktion von Beispielen – jede Partitions-
kategorie induziert eine kompakte Matrixquantengruppe. Insofern liefern Erkenntnisse über
die Struktur der Partitionskategorien auch Einblicke in die Struktur der entsprechenden
Quantengruppen. Der Versuch letztere genauer zu beschreiben kann mitunter die Definition
interessanter Konstruktionen von Quantengruppen nach sich ziehen. In dieser Dissertation
leisten wir dazu folgende Beiträge.

(d) Wir untersuchen Tensorkomplexifizierungen von Quantengruppen und interpretieren
insbesondere die Ergebnisse von (a).

(e) Wir untersuchen freie Komplexizifizierungen von Quantengruppen.
(f) Wir definieren das Verkleben und das Entkleben für Quantengruppen, das die Tensor-

und die freie Komplexifizierung verallgemeinert. Im Zuge dessen interpretieren wir
auch die Resultate aus (b).

(g) Wir definieren neue Produktkonstruktionen für kompakte Matrixquantengruppen,
die das duale freie Produkt und das Tensorprodukt interpolieren. Dadurch können
wir auch einige Kategorien von (b) interpretieren.

(h) Wir studieren homogene kompakte Matrixquantengruppen, deren Fundamentaldar-
stellung reduzibel ist. Dadurch geben wir insbesondere eine Interpretation für die
Objekte aus (c) an.

(i) Schließlich wenden wir uns noch antikommutativen Verdrehungen der orthogonalen
Gruppe zu, um die restlichen in (c) gefundenen Kategorien zu erklären.

Die Doktorarbeit basiert auf den Veröffentlichungen [Gro18, GW20, GW19a, GW19b] des
Autors.
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Abstract

The main topic of this thesis is the investigation of compact matrix quantum groups and their
representation categories and the further development of a diagrammatic calculus used for
computations in those structures.

An efficient tool for studying representation categories of quantum groups are so-called
categories of partitions. The main goal here is to solve classification problems. In the case of the
original Banica–Speicher categories of partitions, this was solved a few years ago by Raum
and Weber. Nevertheless, many generalizations of categories of partitions are being introduced,
studied, classified or still waiting to be discovered. This thesis contributes to this area by the
following achievements:

(a) We classify globally colourized categories of two-coloured partitions.
(b) We introduce categories of partitions with extra singletons. We construct a functor

linking this structure with categories of two-coloured partitions. In particular, this
functor allows to transfer classification results from one structure to the other.

(c) We study linear categories of partitions, where linear combinations of partitions are
allowed. We bring first proper (non-easy) examples of these linear categories as no
examples were known before this project. These were obtained by performing some
computer experiments. We interpret these categories as images of classical (easy)
categories of partitions by some functors.

As we mentioned above, the motivation for studying categories of partitions is to study
quantum groups. The main application is to construct examples – every category of partitions
induces a compact matrix quantum group. Nevertheless, understanding the structure of
partition categories also gives us insight into the structure of the corresponding quantum
groups. Trying to describe the associated quantum groups may motivate the definition of some
interesting quantum group constructions. In this thesis, we do the following:

(d) We study the tensor complexification of quantum groups. In particular, we interpret
the result of (a).

(e) We study the free complexification of quantum groups.
(f) We introduce certain gluing and ungluing procedures generalizing the tensor and free

complexification. In particular, we interpret the result of (b).
(g) We introduce new product constructions for compact matrix quantum groups that

interpolate the dual free and tensor product. Those also interpret some results of (b).
(h) We study homogeneous compact matrix quantum groups with reducible fundamental

representation. In particular, we interpret many results of (c).
(i) We study certain anticommutative twists of the orthogonal group. This interprets the

rest of the categories obtained in (c).

The thesis is built on the author’s publications [Gro18, GW20, GW19a, GW19b].
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Introduction

In the following paragraphs, we would like to introduce the reader to the contents of this thesis,
which constitutes a mixture of algebra, combinatorics and functional analysis.

First of all, we briefly summarize the main mathematical structures studied in the thesis.
That is, compact quantum groups and categories of partitions. Using the latter to study the
former is the main motive of this thesis.

Then we report on the main results of the thesis. Those include: obtaining new classification
results for coloured categories of partitions, investigating linear categories of partitions and
bringing the first examples of those structures, and introducing new product constructions
for compact matrix quantum groups.

We conclude this introduction by some comments on how the thesis is structured.

Quantum groups

Quantum groups are a natural generalization of the concept of a group in non-commutative
geometry. We will mainly be interested in compact quantum groups that are conveniently
described using C*-algebras.

Given a compact topological space X, we can introduce the algebra C(X) of complex-valued
continuous functions over X. Conversely, by Gelfand duality, it holds that any commutative
unital C*-algebra is of this form. So, commutative unital C*-algebras can be seen as an
equivalent description of compact topological spaces. The basic idea of non-commutative
geometry is that non-commutative C*-algebras should then be interpreted as some non-commu-
tative topology.

Now, we can generalize the concept of a group. A compact group is a compact space G
with a continuous multiplication map m:G ×G→ G. We can dualize this map to the associated
algebra C(G) as a comultiplication ∆:C(G)→ C(G×G) = C(G)⊗C(G) putting ∆(f )(x,y) := f (xy).
Any non-commutative C*-algebra A with such a comultiplication map ∆:A→ A⊗A (satisfying
some additional axioms) is then called a compact quantum group. Compact groups then can
be considered as a special case of compact quantum groups.

The history of quantum groups may be traced back to the work of Hopf [Hop41] in
1941, who noticed that the cohomology ring of a compact group G has a homomorphism
H ∗(G)→H ∗(G)⊗H ∗(G). An algebraic structure today known as a Hopf algebra was defined by
Pierre Cartier in [Car56]. Michio Jimbo [Jim85] and Vladimir Drinfeld [Dri88] initiated a rapid
development in the area of quantum groups introducing certain Hopf algebras by deforming
semisimple Lie groups. It was also Drinfeld, who suggested the term quantum group for those
deformations. Finally, in the work of Stanisław Woronowicz [Wor87, Wor98] the definition of
compact quantum groups was introduced in terms of C*-algebras as we indicated above.

There are many applications and connections of quantum groups to many areas of math-
ematics. Quantum groups are also seen as a promising tool for describing symmetries in
modern physics – this also gave them their name. Let us mention a few applications focusing
mainly on compact matrix quantum groups presented in this thesis. First of all, compact
quantum groups are closely connected to the theory of operator algebras. The C*-algebras
and von Neumann algebras associated to compact quantum groups are interesting objects on
their own and can be studied within the operator algebra theory. Secondly, there are some
applications of compact quantum groups to free probability theory. In particular, one can
generalize de Finetti theorems by considering quantum symmetries of random variables. See
~Web16� for an overview of those results. As for the connections to physics, let us mention two
recent results constituting a very exciting connection between compact quantum groups and
the theory of quantum information theory. First, the construction of highly entangled subspaces
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using the representation theory of quantum groups [BC18]. Second, the connection between
non-local games and quantum automorphism groups of graphs [LMR20].

Categories of partitions
Categories of partitions are used to model the intertwiner spaces of (quantum) group representa-
tions. Given a group G (or a quantum group in general) and two representations ϕ:G→GLn
and ψ:G→GLm, we define the space of intertwiners

Mor(ϕ,ψ) := {T ∈L (Cn,Cm) | Tϕ(g) = ψ(g)T ∀g ∈ G}.

As an example, take the general linear group GLN and denote by ϕ its fundamental
representation acting on V := C

N , that is, the identity map ϕ := id:GLN →GLN . For any k ∈N0,
the symmetric group Sk acts on V ⊗k = V ⊗ · · · ⊗V by permuting the factors. For π ∈ Sk , denote
by Tπ:V ⊗k→ V ⊗k the corresponding linear map x1 ⊗ x2 ⊗ · · · ⊗ xk 7→ xπ−1(1) ⊗ xπ−1(2) ⊗ · · · ⊗ xπ−1(k).
The famous Schur–Weyl duality then says that

Mor(ϕ⊗k ,ϕ⊗k) = span{Tπ | π ∈ Sk} ' CSk .

Such permutations π ∈ Sk have a nice diagrammatic representation as pairings. We draw
two parallel lines of k points and draw edges between those two lines in a way such that the i-th
point of the first line is connected with the j-th point of the second line if and only if j = π(i).
We give an example of two permutations on five points together with the corresponding
diagrammatic representations:

π =
(1 2 3 4 5

2 4 1 3 5

)
= , σ =

(1 2 3 4 5
2 1 3 5 4

)
= .

We can express the group operations on Sk in terms of these diagrams. Composition of
two permutations σ ◦π is computed as a vertical concatenation. The group inverse is given by
flipping the diagram with respect to the horizontal axis. Considering the above given examples,
we have

σπ = = , π−1 = .

The diagram representing a given partition π ∈ Sk can be interpreted also in terms of the
map Tπ as follows. Each vertex in the graph symbolises one copy of the vector space V . Each
line symbolises an identity map V → V . Finally, the diagram as a whole just shows, how to
combine those identity maps to obtain a map V ⊗k→ V ⊗k .

Suppose that the vector space V is equipped with a bilinear symmetric form T :V ⊗V →C.
For simplicity, consider the standard one T (ei ⊗ ej ) = δij . Its adjoint is a symmetric tensor
T :C→ V ⊗V mapping α 7→ α

∑
i ei ⊗ ei . Now, we can associate linear maps to any diagram

describing a pairing of k points on one line and l points on a second line. Again we associate
the identity V → V to the vertical line , then we associate the map T to the pairing of two
upper points and the tensor ξ =

∑
i ei ⊗ ei to the pairing of two lower points . Then any

pairing p with k upper and l lower points is associated a map Tp:V ⊗k→ V ⊗l . For example,

p =

is associated a map Tp:V ⊗4→ V ⊗4 mapping

Tp(x1 ⊗ x2 ⊗ x3 ⊗ x4) = T (x1,x3)x4 ⊗ x2 ⊗ ξ .

By the result of Brauer [Bra37], this extends the Schur–Weyl duality to the case of the
orthogonal group: Again, denote by ϕ:ON → GLN the fundamental representation of ON .
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Denote by PairN (k, l) the set of all pairings of k points in the upper line and l points in the
lower line. Then

Mor(ϕ⊗k ,ϕ⊗l) = span{Tp | p ∈ PairN (k, l)}.

To extend the structure even more, instead of considering the category of all pairings, we can
consider the category of all partitions. That is, the k upper and l lower points are not partitioned
into pairs but into arbitrary non-empty disjoint subsets. For such a category, we can again
define an appropriate functor p 7→ Tp. The image of such a functor is then a category of linear
maps. The key result for our work is the generalization of so-called Tannaka–Krein duality
formulated by Woronowicz [Wor88].

Theorem (Woronowicz–Tannaka–Krein). Let C(k, l) ⊆L ((CN )⊗k , (CN )⊗l) be a rigid monoidal
∗-category. Then there is a unique orthogonal compact matrix quantum group G with funda-
mental representation u such that Mor(u⊗k ,u⊗l) = C(k, l).

Banica and Speicher noticed in [BS09] that using this result, we can establish the following
correspondence:

Categories of
partitions

[BS09]
−→ Categories of

intertwiners
[Wor88]
←→ Compact matrix

quantum groups

An important questions in the field of compact quantum groups is to look for examples.
The above considerations give us a tool how to construct a lot of them. Finding instances of
categories of partitions, we immediately obtain instances of compact matrix quantum groups.
However, not every quantum group can be described by a category of partitions. Therefore,
another important task is to generalize the concept of partition categories and to construct
examples of quantum groups in this more general framework.

This programme started with the work of Banica and Speicher [BS09] describing this corre-
spondence and bringing first examples. This was followed by a series of articles culminating in
the complete classification of Banica–Speicher partition categories by Raum and Weber [RW16].
The study of generalizations of partition categories started by introducing coloured partitions
by Freslon, Tarrago, and Weber [Fre17, TW17], for which partial classification results are also
available. Contributing to this programme constitutes one of the main goals of this thesis.

Main results

The author’s original results are presented in Sections 4.5, 4.6, 6.2.3, 6.4 and the whole
chapters 5, 7, 8. The text of those parts is based on the articles [Gro18, GW20, GW19a, GW19b].
Let us here briefly summarize the results.

As we already mentioned, the classification of categories of partitions in the sense of the
original definition of Banica and Speicher is already done [RW16]. So, we need to study some
generalizations of categories of partitions in order to find new examples of quantum groups.
We focused on two approaches – (1) colouring of the partitioned points building on preliminary
work by [TW17, TW18, Fre17, Fre19] and (2) introducing linear combinations of partitions.

Nevertheless, let us stress here that this thesis does not merely bring new examples of
quantum groups. Obtaining classification results for partition categories provides us deep
understanding of the structure of representation categories and quantum groups themselves.
It motivates us to define new quantum group constructions interpreting these classification
results. These findings can be then formulated for any compact matrix quantum groups
without the need of referring to partitions.

Global colourization and tensor complexification

Let us start with coloured partitions. There are several possibilities to define a colouring of
the partitioned points. One of them is to choose two colours dual to each other. As ordinary
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non-coloured partitions correspond to orthogonal quantum groups G ⊆ O+
N , partitions with

two colours dual to each other allow us to describe unitary quantum groups G ⊆ U+
N . This

approach was already studied before and there are some classification results. In particular,
the classification of non-crossing two-coloured partitions was obtained by Tarrago and Weber
in [TW18]. In Section 4.5, we obtain another classification result, namely the classification of
all globally colourized categories. In Section 6.2.3, we interpret the results within the theory
of compact quantum groups relating it to tensor complexifications H ×̃ Ẑk .

Theorem (4.5.10). Every globally colourized category C is determined by a number k(C )
and a non-coloured category of partitions not containing the singleton partition. The full
classification of globally colourized categories is summarized in Table 4.1 (p. 70).

Theorem (6.2.4, 6.2.7). Let C be a globally colourized category of partitions, denote k := k(C ).
Denote H ⊆O+

N the quantum group corresponding to the non-coloured category of partitions
〈C , 〉. Then C corresponds to the quantum group H ×̃ Ẑk ⊆U+

N . In the case k = 0, we replace
Ẑk by Ẑ. Conversely, given an orthogonal quantum group H ⊆ O+

N corresponding to some
category of partitions, then any quantum group of the formH ×̃Ẑk , k ∈N0 is a unitary quantum
group corresponding to some globally colourized category of partitions.

In Section 8.2, we generalize the above result studying tensor complexifications without
reference to partitions. We define the notion of globally colourized quantum groups (Def. 8.2.9)
and degree of reflection of a quantum group (Def. 8.2.4). The following two theorems generalize
the theorem above. The first one aims at characterizing the global colourization in terms
of the tensor complexification construction H ×̃ Ẑk , while the second analyses the tensor
complexification in terms of relations, representation categories, and topological generation.

Theorem (8.2.11). Consider G ⊆ U+(F) with FF̄ = c1N , c ∈ R. Then G is globally colourized
with zero degree of reflection if and only if G =H ×̃ Ẑ, where H = G∩O+(F).

Theorem (8.2.13). Consider a compact matrix quantum group G = (C(G),v), k ∈N0. Denote
by z the generator of C∗(Zk) and by u := vz the fundamental representation of G ×̃ Ẑk . We have
the following characterizations of G ×̃ Ẑk .

(1) The ideal IG×̃Ẑk
of algebraic relations in C(G ×̃ Ẑk) is the Zk-homogeneous part of the

ideal IG corresponding to G.
(2) The representation category of G ×̃ Ẑk looks as follows

Mor(u⊗w1 ,u⊗w2 ) =
{

Mor(v⊗w1 ,v⊗w2 ) if c(w2)− c(w1) is a multiple of k,
{0} otherwise.

(3) The quantum group G ×̃ Ẑk is topologically generated by G and Ẑk .

Alternating colourization and free complexification

In Section 8.2.6, we study representation categories of the free complexification H ∗̃ Ẑk .
To interpret the result in terms of partitions, we introduce the category AltC generated by
alternating coloured partitions.

First, we characterize the relations and representation categories of free complexifications.

Theorem (8.2.24). Let H be a compact matrix quantum group with degree of reflection k , 1.
Then all H ∗̃ Ẑl coincide for all l ∈ N0 \ {1}. The ideal IH ∗̃Ẑl

is generated by the alternating
polynomials in IH . The representation category of H ∗̃ Ẑl is a (wide) subcategory of the
representation category of H generated by Mor(1,v⊗( )j ), j ∈ Z. This also holds if k = 1 and
l = 0.

Then we show the converse – that any quantum group given by alternating relations is
a free complexification.
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Theorem (8.2.29). ConsiderG ⊆U+(F) with FF̄ = c1N . ThenG is alternating and invariant with
respect to the colour inversion if and only if it is of the form G =H ∗̃ Ẑ, where H = G∩O+(F).

Finally, we reformulate the results for partitions.

Proposition (6.2.8). Let C ⊆P be a category of partitions and denote by H ⊆ O+
N the corre-

sponding easy quantum group. Then H ∗̃ Ẑ is a unitary easy quantum group corresponding to
the category AltC .

(1) If ↑ <C , then H ∗̃ Ẑk = G ∗̃ Ẑ for all k ∈N and it corresponds to the category AltC .
(2) If ↑ ∈C , then H ∗̃ Ẑk corresponds to the category 〈AltC , ⊗k〉.

Extra singletons and the gluing procedure

In Section 4.6, we introduce another possibility of colouring of partitions, which we call
partitions with extra singletons. Categories of partitions with extra singletons are designed to
describe quantum groups G ⊆ O+

N ∗̂ Ẑ2. This interpretation is presented in Section 6.4. The
main result regarding those categories is that their classification is essentially equivalent to
the above mentioned two-coloured partition categories. This correspondence also reveals the
quantum group interpretation.

Theorem (4.6.8). There is a functor F providing a one-to-one correspondence:

Categories of partitions with extra
singletons having an even length

C ⊆Peven

F←→
Categories of two-coloured

partitions C̃ ⊆P that are invariant
with respect to the colour inversion

Theorem (6.4.13). Let C be a category of partitions with extra singletons containing only
partitions of even length and G ⊆ON ∗̂ Ẑ2 the associated quantum group. Let C̃ := F(C ) be the
corresponding two-coloured category and G̃ ⊆U+

N the associated quantum group. Then G̃ is
the so-called glued version of G.

The glued version can be defined for arbitrary quantum group G ⊆ O+
N ∗̂ Ẑ2 or even for

quantum groups G ⊆U+(F) ∗̂ Ẑk . However, the above theorems suggest that in some cases, we
could be able also to reverse this process by defining an ungluing procedure. We study this
problem in Section 8.4 with the following result

Theorem (8.4.13). There is a one-to-one correspondence provided by gluing and canonical
Z2-ungluing.

Quantum groups G ⊆O+(F) ∗ Ẑ2
with degree of reflection two

←→
Quantum groups G̃ ⊆U+(F)

that are invariant with respect
to the colour inversion

These considerations motivated us to define new Z2-extensions H ×k Ẑ2 as Z2-ungluings
of the tensor complexification H × Ẑk in Section 6.4.5. In Section 8.3, we generalize this
construction defining new products denoted by G ××H , G ×× H , G ×2k H . An important result is
showing that the relations defining those quantum groups really define something new that
lies strictly between the dual free product and the tensor product.

Theorem (8.3.2). Consider quantum groups G,H . Then the products G ××H , G ×× H , G ×2k H
are indeed well-defined quantum groups. We have the following inclusions

G ∗H ⊇ G ××H ⊇
⊇ G ×× H ⊇ G ×0 H ⊇ G ×2k G ⊇ G ×2l H ⊇ G ×2 H = G ×H,

where we assume k, l ∈N such that l divides k. The last three inclusions are strict if and only if
the degree of reflection of both G and H is different from one.
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Linear categories of partitions

Categories of partitions as defined by Banica and Speicher are associated with compact
matrix quantum groups G such that SN ⊆ G ⊆ O+

N . As we already mentioned, not all such
quantum groups are described by categories of partitions. If we want to describe the remaining
ones by some partition categories, we have to work not only with partitions, but also with
their linear combinations. Categories that do not require working with linear combinations
are called easy, whereas those where linear combinations are needed are called non-easy.

Basically nothing was known about linear categories of partitions before the start of this
PhD project. So, our first goal was to construct some non-easy examples. In order to do so, we
implemented an algorithm that takes a given linear combination of partitions and computes
the category it generates. Then we can look whether this category can also be described just
by partitions – then it is easy and we already know this category – or whether we need linear
combinations. This algorithm always computes just an approximation of the whole category, so
it may happen that this test is false positive. However, we obtain at least a list of candidates for
new linear categories of partitions. The algorithm is described in Section 5.2, which is followed
by Section 5.3 with concrete applications of it and a list of many new candidates for non-easy
categories (see also Table 5.1 on page 79).

Our second goal is naturally to interpret the new linear categories of partitions, that
is, to find the corresponding quantum groups. Besides finding the quantum groups, the
interpretation also serves as a proof that the categories we found are really new and non-
easy. Secondly, it allows us to understand the structure of the categories. Applying similar
constructions, we can discover even more new non-easy categories. In contrast with the original
papers [GW20, GW19a], we decided to separate these considerations. In Section 5.4, we analyse
the new categories as such and prove that they are indeed new. In Chapter 7, we give the
quantum group interpretation.

To be more concrete, let us summarize the most important results regarding linear cate-
gories of partitions. We introduce some linear maps V(N,±) and P(N ) acting on partitions such
that given a categoryK , it might happen that V(N,±)K or 〈P(N )K 〉 are non-easy althoughK is
easy. Such categories constitute one class of our non-easy examples.

Theorem (7.1.9). Let G be a quantum group with SN ⊆ G ⊆ B#+
N corresponding to a category

of partitionsK . Then the category V(N,±)K corresponds to the quantum group V(N,±)GV
∗

(N,±),
where V(N,±) is a certain coisometry.

Theorem (7.1.12). LetK be a category of partitions. Denote by H the quantum group corre-
sponding to the category V(N,±)K . Then we can construct the quantum group corresponding to
the following categories:

〈P(N )K 〉N corresponds to U ∗(N,±)(H ∗ Ẑ2)U(N,±),
〈P(N )K , 〉N corresponds to U ∗(N,±)(H × Ẑ2)U(N,±),
〈P(N )K ,↑〉N corresponds to U ∗(N,±)(H ×E)U(N,±),

where E = (C,1) is the trivial (quantum) group and U(N,±) is some unitary.

As a different example, let us mention some anticommutative twists of the orthogonal
group.

Theorem (5.4.6, 5.4.8, 7.4.11, 7.4.13). The following two categories are both non-easy, but
isomorphic to the category of all pairings. They correspond to some 2-cocycle twists of the
orthogonal group ON .

〈 − 2 〉N , 〈 − 2
N

( + ) +
4
N

)〉N
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Introduction

Structure and notation

The thesis is divided into three parts – preliminaries, partition categories, and results on
quantum groups. The preliminary part contains all the essential foundations of C*-algebras,
quantum groups and monoidal categories. The aim is to make the thesis self-contained
and provide a clear summary of the essential results. We recommend some reading in the
introductory text of the corresponding chapters.

The second part of the thesis is on purpose written without any reference to quantum
groups. We believe that this viewpoint can make this area interesting also for researchers from
different fields of mathematics such as category theory or combinatorics. This part contains
two chapters – Chapter 4 about categories of partitions without the linear structure, which is
essentially pure combinatorics, and Chapter 5 on linear categories of partitions.

The last part applies the results on partition categories to the theory of quantum groups.
Chapter 6 describes the basic correspondence between partitions and quantum groups and
focuses on easy quantum groups. Chapter 7 then analyses the non-easy categories of partitions
from the quantum group perspective. Lastly, Chapter 8 generalizes some of the previous
results eliminating the usage of categories of partitions completely.

The thesis is concluded by Chapter 9, where we discuss some open problems and potential
directions for further research.

Finally, let us have some remarks on the notation. All new terms that are being defined
are highlighted with boldface. Most of them are listed in the index at the end of the thesis.
The preliminary definitions are usually contained in text, while original and not commonly
known definitions are usually mentioned in numbered paragraphs. Mathematical notation
may also be introduced either in the text or in numbered paragraphs. For an easier orientation,
we provide a thorough list of the notation on page xii. The bibliography is contained at the
end of the thesis. For an easier orientation within the references, we divide them into primary
sources, i.e. original research articles, and secondary sources such as textbooks, monographs
or surveys. While primary sources are cited using normal brackets (such as [Gro18]), the
secondary sources are cited using double brackets (such as ~Tim08�).
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Part I

Preliminaries

In the preliminary part, we give a brief introduction to the theory of compact quantum groups
and summarize all the necessary results from the theory of C*-algebras, quantum groups
and monoidal categories. We assume that the reader has a basic knowledge of algebra and
functional analysis.
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Chapter 1

C*-algebras
The underlying structure for quantum groups are not groups, but algebras. The idea is
that we work with analogues of algebras of certain functions defined on groups. Compact
quantum groups are conveniently described using C*-algebras representing the algebras of
continuous functions. This chapter summarizes all the necessary elements of the theory of
C*-algebras. In particular, we review the so-called Gelfand duality, which plays a big role from
the philosophical perspective showing that our approach makes sense, and the construction
of universal C*-algebras, which plays a big role from the practical perspective since this will be
our tool to construct compact quantum groups. The main references for this chapter are the
books ~Mur90, Bla06, Tak79� and short summaries provided in ~Tim08, Web17�.

1.1 Basic definitions around C*-algebras
In this section, we summarize the basic definitions regarding normed algebras. In particular,
we introduce the notion of a C*-algebra.

A vector space A together with a bilinear map A×A→ A called and denoted as multiplica-
tion (a,b) 7→ ab is called an algebra. In this work, we will always assume that the multiplication
is associative, so A is also a ring.

A number of properties of algebras are defined in a natural way. If the multiplication
has a neutral element, it is called the unit and denoted by 1 or 1A. A subset B ⊆ A is called
a subalgebra if it is an algebra with respect to the same operations. A subalgebra invariant with
respect to left/right/both multiplication(s) with elements of A is called a left/right/two-sided
ideal. A two-sided ideal will be called just ideal.

An involution on an algebra A is an antilinear mapping ∗:A→ A satisfying

(a∗)∗ = a, (ab)∗ = b∗a∗ for all a ∈ A.

An algebra with involution is called an involutive algebra or a ∗-algebra. Similarly we define
∗-subalgebra and ∗-ideal.

The space of bounded operators on some Hilbert space H will be denoted by B (H).
The composition of operators defines a multiplication on this vector space and Hermitian
conjugation defines there an involution. Thus, it is a ∗-algebra.

We adopt many notions from bounded operators to general ∗-algebras. An element a∗ is
called the adjoint to a. An element a is called

• self-adjoint if a∗ = a,
• normal if aa∗ = a∗a,
• projection if a∗ = a = a2,
• isometry if a∗a = 1,
• unitary if a∗a = aa∗ = 1.

For algebras A, B, a map ϕ:A→ B preserving the algebraic structure is called a homomor-
phism. If it is bijective, it is called an isomorphism. If A and B are ∗-algebras and ϕ preserves
the involution, it is called a ∗-homomorphism.

A (∗-)representation of a (∗-)algebra is a (∗-)homomorphism π:A→B (H). It is faithful if
it is injective. It is called irreducible if H does not contain any non-trivial invariant subspace
with respect to operators in π(A). A vector x ∈H is called cyclic vector of π if the set π(A)x is
dense in H . Two representations πj :A→B (Hj ) for j = 1,2 are (unitarily) equivalent if there
is a (unitary) bijection U ∈B (H1,H2) such that π2(a)U =Uπ1(a) for all a ∈ A.
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1.2 Basic results on C*-algebras

An algebra A equipped with a norm ‖·‖ is called a normed algebra if the norm is submul-
tiplicative, i.e.

‖ab‖ ≤ ‖a‖‖b‖ for all a,b ∈ A.

A normed algebra A with a unit 1A is called a unital normed algebra if ‖1A‖ = 1. A complete
(unital) normed algebra is called a (unital) Banach algebra.

A (unital) Banach ∗-algebra A is a (unital) Banach algebra equipped with an involution ∗
satisfying ‖a∗‖ = ‖a‖ for all a ∈ A. A C*-algebra is a Banach ∗-algebra satisfying

‖aa∗‖ = ‖a‖2 for all a ∈ A. (1.1)

Any norm or seminorm satisfying the condition (1.1) is called a C*-norm or C*-seminorm.

1.1.1 Theorem. Let A be a Banach algebra and B a C*-algebra. Then every ∗-homomorphism
ϕ:A→ B is norm-decreasing, i.e. ‖ϕ(a)‖ ≤ ‖a‖.

As a simple corollary, we have that every ∗-homomorphism of C*-algebras is continuous
and every ∗-isomorphism of C*-algebras is an isometry.

An element of a C*-algebra a ∈ A is called positive if it is of the form a = b∗b for some
b ∈ A.

A linear functional f on a ∗-algebra A is called positive if f (a∗a) ≥ 0 for all a ∈ A. If A is
a Banach ∗-algebra and a positive functional f on A satisfies ‖f ‖ = 1, then it is called a state
on A. A state is called faithful if f (a∗a) , 0 for every a , 0.

1.2 Basic results on C*-algebras
In this section, we summarize the fundamental results of operator algebras that we are going
to use in this thesis. Namely the Gelfand duality, the GNS construction, and the double
commutant theorem.

1.2.1 Algebra of continuous functions

Let us now turn to the special case of abelian C*-algebras. A canonical example here is the
algebra of continuous functions C(X) defined on some compact topological space X together
with the supremum norm. Or, more generally, the algebra C0(X) of continuous functions
vanishing at infinity over a locally compact space X.

One of the very important results of mathematical analysis is the Stone–Weierstrass
theorem, which can be formulated as follows.

Let A be an algebra of functions f :X→C for some set X. We say that A separates points
in X if, for all x ∈ X, there are two functions f ,g ∈ A such that f (x) , g(x). We say that A
vanishes nowhere on X if, for all x ∈ X, there is a function f ∈ A such that f (x) , 0.

1.2.1 Theorem (Stone–Weierstrass). Let X be a compact Hausdorff space. Consider a ∗-sub-
algebra A ⊆ C(X). If A separates points of X and vanishes nowhere in X, then A is dense
in C(X).

A second important fact is so-called Gelfand duality, which says that all abelian C*-algebras
are isomorphic to algebras of continuous functions.

Let A be an abelian algebra. A character on A is a non-zero homomorphism τ :A→ C. We
denote by Ω(A) the set of characters on A. We consider the relative weak* topology on Ω(A).

1.2.2 Theorem. If A is an abelian Banach algebra, then Ω(A) is a locally compact Hausdorff
space. If, in addition, A is unital, then Ω(A) is compact.

For any a ∈ A, we can define a function â:Ω(A)→C mapping τ 7→ τ(a). The function â is
called the Gelfand transform of a. It holds that â is continuous and vanishes at infinity. The
map ϕ:A→ C0(Ω(A)) mapping a 7→ â is called the Gelfand representation.
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1. C*-algebras

1.2.3 Theorem (Gelfand duality). Let A be an abelian Banach algebra such that Ω(A) is
non-empty. Then the Gelfand representation is a norm-decreasing homomorphism. If A is a C*-
algebra, then the Gelfand representation is an isometric ∗-isomorphism. That is, every abelian
C*-algebra A is isomorphic to the algebra of continuous functions C(X), where X = Ω(A).
1.2.4 Theorem. Let X, Y be compact Hausdorff spaces. Then there is a bijection between
continuous maps Φ:X→ Y and unital ∗-homomorphisms Φ̂:C(Y )→ C(X) defined as Φ̂(f ) =
f ◦Φ. The homomorphism Φ̂ is injective, resp. surjective if and only if Φ is surjective, resp.
injective.

To summarize, Gelfand duality states that there are the following mutual correspondences:

Compact topological
spaces X

A=C(X)
←→ Commutative

C*-algebras A

Injective/surjective
continuous maps Φ:X→ Y

Φ̂(f )=f ◦Φ
←→

Surjective/injective
unital ∗-homomorphisms

Φ̂:C(Y )→ C(X)

1.2.2 GNS construction
This section describes a way how to construct representation of C*-algebras formulated by
Gelfand, Naimark, and Segal.
1.2.5 Theorem (GNS construction). Let A be a unital Banach ∗-algebra and f a positive
functional on A. Then there exists a Hilbert space H and a representation π:A→B (H) with
a cyclic vector x0 such that for all a ∈ A we have f (a) = 〈x0,π(a)x0〉. Any other representation π′

satisfying this property is unitarily equivalent to π.
If f is a faithful state, then we have ‖π(a)x0‖ = 〈x0,π(a)∗π(a)x0〉 = f (a∗a) , 0 for every a , 0,

so the GNS representation is faithful.
A general GNS representation need not be faithful. However, for C*-algebras, there is

always a faithful representation. Denote by πf :A→B (Hf ) the GNS-representation correspond-
ing to functional f on A. We can compute the direct sum of all representations π :=

⊕
f ≥0πf ,

which maps A→B (H), where H =
⊕

f ≥0Hf . This representation is called universal. It can
be shown that it is faithful.
1.2.6 Theorem (Gelfand–Naimark). Every C*-algebra has a faithful representation. In partic-
ular, its universal representation is faithful.

This theorem provides an alternative concrete definition of C*-algebras. A C*-algebra is
a norm-closed ∗-subalgebra A ⊆B (H) for some Hilbert space H . The definition provided in
Section 1.1 can be seen as an abstract axiomatization of this operator-algebraic concept.

1.2.3 Double commutant theorem
In this section, we will formulate the finite-dimensional version of so-called double commutant
theorem. The general infinite-dimensional version of the theorem constitutes the basis of the
theory of so-called von Neumann algebras. Nevertheless, we will not use those in our thesis
and the finite-dimensional version will be sufficient for our purposes.

Let A ⊆Mn(C) be a set of matrices (or, more generally, a set of bounded operator on some
Hilbert space). We define the commutant of A to be the set

A′ := {S ∈Mn(C) | T S = ST for all T ∈ A}.

It is easy to see that A′ is actually an algebra. If A is closed with respect to the involution,
then A′ is a ∗-algebra. Finally, it is worth noticing that

B ⊆ A ⇒ A′ ⊆ B′ .

Now, let us formulate the theorem:
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1.3 Constructing C*-algebras

1.2.7 Theorem (double commutant theorem). Let A ⊆Mn(C) be a ∗-algebra of matrices contain-
ing the identity matrix. Then A′′ = A.

As a consequence, taking ∗-algebras A,B ⊆Mn(C) containing the identity, we can formulate
the above observation as an equivalence:

B ⊆ A ⇔ A′ ⊆ B′ .

1.3 Constructing C*-algebras
We discuss several ways of constructing C*-algebras.

1.3.1 Quotients
Let A be a (∗-)algebra and I ⊆ A a (∗-)ideal. Then we can define the quotient (∗-)algebra A/I .
1.3.1 Theorem. Let I be a closed ideal in a normed algebra A. Then the quotient A/I is
a normed algebra with respect to the norm

‖a‖ = inf
b∈I
‖a− b‖ .

If A is a Banach algebra or a C*-algebra, then A/I is a Banach algebra resp. C*-algebra.

1.3.2 Direct sums
Let {Ai}i∈Ω be a set of Banach algebras. We define the direct sum of the Banach algebras {Ai} as
the direct sum of Banach spaces⊕

i∈Ω

Ai :=
{

(ai)i∈Ω | ai ∈ Ai , ‖(ai)‖∞ := sup
i∈Ω
‖ai‖ <∞

}
together with pointwise multiplication and involution (aλ)(bλ) = (aλbλ), (aλ)∗ = (a∗λ).

It is clear that if the system {Aλ} consists of C*-algebras, then their direct sum is also
a C*-algebra.

1.3.3 Tensor products
Now, let us have a look on a tensor product of C*-algebras. Here, the situation is a bit
complicated since there are more possibilities how to define a C*-norm on the tensor product.

Let A1,A2 be ∗-algebras. The algebraic tensor product of A1 and A2 will be denoted by
A1 �A2. It is defined as the algebraic tensor product of the vector spaces A1 and A2 together
with multiplication and involution given as

(a1 ⊗ a2)(b1 ⊗ b2) = (a1b1 ⊗ a2b2), (a1 ⊗ a2)∗ = a∗1 ⊗ a∗2.

Given two ∗-homomorphisms ϕ1:A1 → B1 and ϕ2:A2 → B2, we can define their tensor
product ϕ1 ⊗ ϕ2:A1 � A2 → B1 � B2 simply by (ϕ1 ⊗ ϕ2)(a1 ⊗ a2) = ϕ1(a1) ⊗ ϕ2(a2). If the
homomorphisms are injective, then also their tensor product is injective.

In particular, for any two C*-algebras A1 and A2, we can consider their (faithful) represen-
tation πi :Ai →B (Hi) and construct a (faithful) representation π1 ⊗π2 of the algebraic tensor
product A1 �A2.

Consequently, there exists at least one C*-norm on the algebraic tensor product A1�A2
defined as ‖x‖ = ‖(π1 ⊗π2)(x)‖, where π1 and π2 are some faithful representation of A1 and A2.
We define the minimal norm also known as the spatial norm by

‖x‖min := sup{‖(π1 ⊗π2)(x)‖ | πi :Ai →B (Hi) a representation}.

The completion of A�B with respect to this norm is called the minimal tensor product and
denoted by A⊗min B. Actually, it indeed holds that this C*-norm is the minimal one on A1 �A2;
therefore, it is equal to ‖(π1 ⊗π2)(x)‖ for any pair of faithful representations.
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1. C*-algebras

1.3.2 Proposition. Let A1, A2, B1, and B2 be C*-algebras. Let ϕ1:A1 → B1 and ϕ2:A2 → B2
be homomorphisms. Then ϕ1 ⊗ϕ2:A1 �A2→ B1 �B2 can be extended to a homomorphism
A1 ⊗min A2→ B1 ⊗min B2.

For a general C*-norm γ on A1 �A2, we denote by A1 ⊗γ A2 the completion of A1 �A2 with
respect to this norm.

1.3.3 Theorem. Let A1 and A2 be C*-algebras, γ a C*-seminorm on A1 �A2. Then

γ(a1 ⊗ a2) ≤ ‖a1‖‖a2‖ .

We define the maximal norm on A1 �A2 as

‖x‖max := sup{γ(a1 ⊗ a2) | γ a C*-norm on A1 �A2}.

This indeed defines a C*-norm thanks to the preceding theorem as ‖a1 ⊗ a2‖max ≤ ‖a1‖‖a2‖ <∞.
Again, we denote the completion of the algebraic tensor product by A⊗max B and call it the
maximal tensor product.

A C*-algebra A is called nuclear if, for every C*-algebra B, there is a unique C*-norm on
A�B. If A is nuclear, we write just A⊗B := A⊗min B = A⊗max B for the completion with respect
to the unique C*-norm.

One particular example is the algebra of matrices Mn(C), which is nuclear and it holds that
for any C*-algebra A we have

Mn(C)⊗A =Mn(C)�A 'Mn(A),

where Mn(A) is the algebra of matrices with entries in A.

1.3.4 Theorem (Takesaki). Every abelian C*-algebra is nuclear.

In particular, we have that

C(X)⊗C(Y ) ' C(X ×Y ) (1.2)

for any compact spaces X,Y .

1.3.4 Universal C*-algebras

The idea behind the construction of universal C*-algebras is that we want to define a C*-algebra
by a set of generators and relations. For many algebraic structures, this is the most basic and
also very simple construction. For instance, constructing universal ∗-algebras, we need to first
construct a free ∗-algebra and then quotient out the desired relations. That is, take a quotient by
a ∗-ideal generated by those relations.

To be more precise, let E = {xi}i∈Ω be a set of symbols. The ∗-algebra C〈xi ,x∗i 〉i∈Ω of non-
commutative polynomials in variables xi and x∗i together with involution defined as (xi)∗ = x∗i
is called the free ∗-algebra generated by E = {xi}.

Let R = {pj}j∈Λ ⊆ C〈xi ,x∗i 〉 be a set of polynomials and let I be the ideal generated by this
set. Then we define the universal ∗-algebra generated by E and R, i.e. by generators xi and
relations pj(xi ,x∗i ) = 0, as the quotient

∗-(E | R) = ∗-
(
xi | pj(xi ,x∗i ) = 0

)
:= C〈xi ,x∗i 〉/I . (1.3)

Universal ∗-algebras have by definition the following universal property. Let B be a ∗-algebra
generated by some elements {x̃i}i∈Ω ⊆ B and suppose that those elements satisfy all the relations

14



1.3 Constructing C*-algebras

in R, so p(x̃i , x̃∗i ) = 0 in B. Then there exists a surjective ∗-homomorphism ϕ:A→ B mapping
xi 7→ x̃i .

For C*-algebras, the situation is a bit more complicated since we do not only have the
algebraic structure, but also the analytic structure – the C*-norm. We first need to construct
the corresponding universal ∗-algebra A0, then find an appropriate C*-norm here and finally
construct a completion A of the algebra A0 with respect to this form. To preserve also the
universal property, the C*-norm should be the maximal one.

Consider a ∗-algebra A0. For every a ∈ A0, let us define

‖a‖ := sup{‖π(a)‖ | π is a representation of A0} = sup{‖a‖γ | γ is a C*-seminorm on A0}.

Suppose that ‖a‖ <∞ for all a ∈ A. Then ‖·‖ is a C*-seminorm on A0. Thus, it induces a C*-norm
on the quotient algebra A0/I , where I is the ideal of A generated by a ∈ A such that ‖a‖ = 0.
Then the completion of A0/I with respect to the C*-norm is called the enveloping C*-algebra
of A0 and denoted by C∗(A0).

By definition, the enveloping algebra has the following universal property. Denote by q
the natural map A0→ C∗(A0). Let ϕ be a ∗-homomorphism A0→ B, where B is a C*-algebra.
Then there exists a unique ∗-homomorphism ψ:C∗(A0)→ B, such that ϕ = ψ ◦ q.

An example of such a construction is the maximal tensor product: A⊗max B = C∗(A�B).
Let E = {xi}i∈Ω be a set of symbols, R = {pj}j∈Λ ⊆ C〈xi ,x∗i 〉 set of relations, I ⊆ C〈xi ,x∗i 〉 the

∗-ideal generated by R. Denote by A0 := C〈xi ,x∗i 〉/I = ∗-(E | R) the universal ∗-algebra generated
by E and R. Then we define the universal C*-algebra generated by E and R, i.e. by generators xi
and relations pj(xi ,x∗i ) = 0, as the enveloping algebra

C∗(E | R) = C∗
(
xi | pj(xi ,x∗i ) = 0

)
:= C∗(A0) (1.4)

if this enveloping algebra exists.
Now, two problems may occur in the last step constructing the C*-envelope. First of all, the

seminorm we construct may not be a norm. As we said, this then requires to quotient out all
the elements a ∈ A0 with ‖a‖ = 0. This should, however, not be seen as an actual problem, but
rather as a natural consequence of enriching the algebraic structure. For instance, the relation
xx∗ = 0 does not imply x = 0 for ∗-algebras, but it obviously must imply x = 0 for C*-algebras
as ‖x‖2 = ‖xx∗‖ = 0. Second problem, which may occur, is that the norm is not bounded. That
is, ‖a‖ =∞ for some a ∈ A0, so we again do not obtain a proper C*-norm. This is, in contrast,
an actual problem. Some relations simply cannot be realized within C*-algebras. A classical
example is the relation xy − yx = 1, which has no faithful representation by bounded operators.

We can make the construction of universal C*-algebras even more general. Instead of
relations of the form pj(xi ,x∗i ) = 0, we can consider the following ones∥∥∥pj(xi ,x∗i )∥∥∥ ≤ ηj .
So, consider R = {(pj ,ηj )}j∈Λ, where pj ∈ A and ηj ∈ R+. A ∗-homomorphism π:A → B (H),
where H is some Hilbert space is called a representation of the pair (E | R) if all the relations∥∥∥π(pj(xi ,x∗i ))

∥∥∥ ≤ ηj are satisfied. Again, we can define

‖a‖ := sup{‖π(a)‖ | π is a representation of (E | R)}

for all a ∈ A. Let I be the ideal generated by all a ∈ A such that ‖a‖ = 0. If we have ‖a‖ <∞
for all a ∈ A, then we can define the universal C*-algebra generated by E and R again using
equation (1.4).
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1.3.5 Free product

An important application of the universal C*-algebra construction is the so called free product.
Let A, B be C*-algebras. The free product A ∗B is a universal algebra generated by A and B
with no other relations. So, we take E = {xa}a∈A ∪ {yb}b∈B as the generators and define

A ∗B := C∗(xa, yb; a ∈ A,b ∈ B | xa1
xa2

= xa1a2
, yb1

yb2
= yb1b2

).

If A and B are unital, we define the unital free product A ∗
C
B by identifying the unities

A ∗
C
B := C∗(xa, yb; a ∈ A,b ∈ B | xa1

xa2
= xa1a2

, yb1
yb2

= yb1b2
, x1 = y1).

In general, if D is a C*-algebra embedded into both A and B via some ∗-homomorphisms
ϕ:D→ A, ψ:D→ B, we can define the amalgamated free product as

A ∗D B := C∗(xa, yb; a ∈ A,b ∈ B | xa1
xa2

= xa1a2
, yb1

yb2
= yb1b2

, xϕ(d) = yψ(d)).

Note that the maximal tensor product can also be constructed in a similar way. We have

A⊗max B = C∗(xa, yb; a ∈ A,b ∈ B | xa1
xa2

= xa1a2
, yb1

yb2
= yb1b2

, xayb = ybxa).

We can also define the free product of ∗-algebras, which has basically the same definition
except that we use universal ∗-algebras instead of universal C*-algebras. The free product of
C*-algebras can be then understood as the C*-envelope of the algebraic free product. There
is also a notion of a reduced free product. The idea is that having C*-algebras A1, A2 equipped
with faithful states ϕ1,ϕ2, we are able to construct a free product (A,ϕ) = (A1,ϕ1) ∗ (A2,ϕ2),
where A is a C*-algebra being a completion of the algebraic free product A1 ∗A2 with respect
to some alternative C*-norm that allow to extend ϕ1 and ϕ2 to a faithful state ϕ on A. This
construction is very important especially for the theory of free probability. See ~Dyk16� for
more details.

1.3.6 C*-algebras associated to discrete groups

Now we present an important class of algebras and C*-algebras, namely the group (C*-)algebras.
Let Γ be a discrete group. A ∗-algebra of finite formal linear combinations of elements

in Γ together with the multiplication being a linear extension of the group multiplication and
the involution defined by taking the group inverse is called the group algebra and denoted
by CΓ. One can view this algebra as the universal ∗-algebra generated by some elements ug ,
g ∈ Γ together with relations u∗gug = ugu∗g = 1 and uguh = ugh.

An alternative approach to define this algebra is to take the set of all finitely supported
functions f :Γ→C and define their product by convolution

(f1 ∗ f2)(g) :=
∑
h∈Γ

f1(h)f2(h−1g), f ∗(g) := f (g−1).

Indeed, such an algebra is obviously generated by the delta functions ug(h) = δg,h being one
only if h = g and zero otherwise. The convolution then satisfies ug ∗uh = ugh and the involution
u∗g = ug−1 .

The full group C*-algebra C∗(Γ) is then defined as the C*-envelope of CΓ. That is,

C∗(Γ) := C∗(ug , g ∈ Γ | u∗gug = ugu
∗
g = 1, uguh = ugh).

Consider now the Hilbert space l2(Γ) with orthonormal basis {δg }g∈Γ. There is a left regular
representation λ of the group Γ acting on l2(Γ) again simply by group multiplication or
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1.3 Constructing C*-algebras

convolution λgδh := δgh. The reduced group C*-algebra C∗r(Γ) is then defined as the closed
linear span of the maps λg ∈B (l2(Γ)).

Equivalently, C∗r(Γ) is the completion of CΓ with respect to the C*-norm defined as

‖x‖r := sup
‖y‖2

=1

∥∥∥xy∥∥∥
2
,

where ‖·‖2 is the l2-norm.
Note that there are indeed examples of discrete groups, where the full and the reduced

C*-algebras do not coincide. For instance, every discrete group containing a free subgroup on
two generators has this property. This question is closely connected to the notion of amenability.

A group Γ is amenable if there exists a state µ on l∞(Γ) (the C*-algebra of bounded
functions on Γ) that is invariant under the left translation action. That is, µ(sf ) = µ(f ) for all
s ∈ Γ and f ∈ l∞(Γ). There are very many equivalent statements characterizing the amenability.
Let us mention two of them. A discrete group Γ is amenable if and only if the full and the
reduced group C*-algebras coincide C∗(Γ) = C∗r(Γ). This holds if and only if C∗r(Γ) is nuclear.
For more information, see ~BO08�.
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Chapter 2
Compact quantum groups
In this chapter, we provide a brief introduction to the theory of compact quantum groups. We
focus mainly on compact matrix quantum groups. We try to explain the most basic facts in
detail; however, more advanced theorems are presented without a proof.

The mathematical structure that is often used to describe quantum groups is the so-called
Hopf algebra. The term quantum group was first used by Drinfeld to name some particular
examples of Hopf algebras, which he constructed as deformations of some Lie groups. Although
the notion of a quantum group is nowadays widely used among mathematicians, it still does not
have any universal definition. In this thesis, we will work with the notion of compact quantum
groups. Compact quantum groups, in contrast with plain quantum groups, have a commonly
accepted clear definition within the framework of C*-algebras. They form a straightforward
generalization of compact groups sharing many important properties with them regarding
the representation theory or the Haar integration.

Although it is clear, what is a compact quantum group, there are still many different
approaches, how to describe this structure. For this thesis, the oldest approach of compact
matrix quantum groups developed by Woronowicz in [Wor87] will be the central one (we
formulate the definition in Sect. 2.1.2). As the name suggest, compact matrix quantum
groups generalize compact matrix groups. Later, Woronowicz came up with a straightforward
generalization of this concept [Wor98] – the compact quantum groups as we mentioned above
(Definition in Sect. 2.1.1). However, in the meantime also several other approaches were
developed by other authors. In particular, Dijkhuizen and Koornwinder [DK94] showed that
compact (matrix) quantum groups can be equivalently described using Hopf algebras instead
of C*-algebras (we will formulate this correspondence in Sect. 2.3.1). Another approach is to
generalize discrete groups instead of compact groups as those structures are supposed to be
dual to each other through the Pontryagin duality. This started with the work [PW90] and was
further developed in [ER94, VDa96] (we formulate basics of this duality in Sect. 2.4). Finally,
a further generalization, which is possible, but very hard to formulate, are locally compact
quantum groups, whose foundation were set in [KV00] (we will not touch those in the thesis
at all).

Let us mention some literature that serve as a reference for this section as well as a recom-
mendation for a reader who is not familiar with the concept of compact quantum groups. In
the first place, we we would like to mention the lecture notes ~Web17, Fre19�, whose aim is
the same as ours – introducing compact quantum groups and their connection with partition
categories. Compact quantum groups from the perspective of representation categories is
also the topic of the monograph ~NT13�. Compact quantum groups from slightly broader
perspective are presented in the textbook ~Tim08�. Finally, we also refer to another survey
on compact quantum groups ~MVD98�.

2.1 Definitions and examples
There are several different approaches of how to define (compact) quantum groups. We present
them in this section. The way, how the different definitions relate to each other, is explained
in the subsequent text. For our work, the second approach of compact matrix quantum groups
will play the key role.

2.1.1 Compact quantum groups
As described in Section 1.2.1, there is a one-to-one correspondence between compact topological
spaces X and commutative C*-algebras consisting of continuous functions over those spaces.
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2.1 Definitions and examples

In this sense, we can understand non-commutative C*-algebras as a description of some
non-commutative topological spaces. Such a non-commutative algebra would again play the role
of the algebra of continuous functions over this non-commutative space.

An important property of topological spaces are their symmetries described by groups.
In order to describe symmetries of a non-commutative topology, we need to generalize the
concept of a group.

A compact quantum group is a pair G = (A,∆), where A is a C*-algebra and ∆ is a unital
∗-homomorphism mapping A→ A⊗min A called comultiplication, which is coassociative, i.e.

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆,

and satisfies the so called cancellation property, i.e. the spaces

∆(A)(1⊗A) = span{∆(a)(1⊗ b) | a,b ∈ A},
∆(A)(A⊗ 1) = span{∆(a)(b⊗ 1) | a,b ∈ A}

are both dense in A⊗min A.
Such a definition was first introduced by Woronowicz in [Wor98].
Compact quantum groups indeed generalize compact groups since, as we are going to

show in Proposition 2.1.2, there is a one-to-one correspondence between groups and quantum
groups with underlying commutative C*-algebras. Here, by a compact group we mean a group
with Hausdorff topology such that the multiplication and taking inverses are continuous maps.
To prove this correspondence, we first need the following lemma.

2.1.1 Lemma. A compact semigroup with the cancellation property is a group.

Proof. Consider a compact semigroup G and an element h ∈ G. Let H be the closed subsemi-
group generated by h. Since it is generated by just one element, it is abelian. Considering two
ideals I1 and I2 of H , their intersection must be non-empty since I1 ∩ I2 ⊇ I1I2 , ∅. Thus, since
G is compact, the intersection of all ideals of H must be non-empty. Let us denote it by I , ∅.
Consider an element i ∈ I . Since I is an ideal, we have iI ⊆ I . Since it is the minimal one, we
have an equality. Therefore, there must exist an element e ∈ I such that ie = i. Now, we can
multiply this equality by any element g ∈ G from the right and then cancel i from the left to
obtain eg = g for every g ∈ G. Afterwards, we can do the same from the left with some g ′ ∈ G
to see that g ′e = g ′ for every g ′ ∈ G. Thus, e is the group identity of G. This also proves that
h = he ∈ I (actually I =H) and since I is the minimal ideal of H , we have hI = I . In particular,
there exists an element k ∈ I such that hk = e, which is the inverse of h.

Since G is compact, the continuity of the multiplication already implies the continuity of
taking inversions. Indeed, consider the map G×G→ G×G mapping (g,h) 7→ (g,gh) which is
continuous and bijective. From compactness, it follows that also the inverse (g,h) 7→ (g,g−1h)
is continuous, so the assignment g 7→ g−1 must also be continuous. �

2.1.2 Proposition. For every compact group G, we can define a unital ∗-homomorphism
∆:C(G)→ C(G)⊗C(G) ' C(G ×G) as

∆(f )(x,y) = f (xy) for all f ∈ C(G) and x,y ∈ G. (2.1)

Then (C(G),∆) forms a quantum group. Conversely, for every quantum group (A,∆), where
A is commutative, there is a group G such that A ' C(G) and ∆ is given by equation (2.1).

Proof. Consider a group G and let us prove that ∆ is a comultiplication. The fact that ∆ is a uni-
tal ∗-homomorphism is easily checked directly. Alternatively, it follows from Theorem 1.2.4
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2. Compact quantum groups

since ∆ acts as a pullback by the group multiplication ∆ = m̂. The coassociativity follows from
the associativity of the group multiplication: Denote ∆(f ) =:

∑
n gn ⊗ hn. Then

((∆⊗ id) ◦∆)(f )(x,y,z) =
∑
n

(∆(gn)⊗ hn)(x,y,z) =
∑
n

gn(xy)hn(z) = ∆(f )(xy,z) = f (xyz)

Similarly, we can show that ((id⊗∆) ◦∆)(f )(x,y,z) = f (xyz).
To show that the space ∆(C(G))(1⊗C(G)) is dense in C(G)⊗C(G) ' C(G ×G), we use the

Stone–Weierstrass theorem (Thm. 1.2.1). We can easily see that it is a ∗-subalgebra and it
contains the constant function, so it is nowhere vanishing. It consists of linear combinations of
functions of the form (x,y) 7→ f (xy)g(y). The fact that it separates points in G ×G follows from
the fact that C(G)�C(G) consisting of functions (z,y) 7→ f (z)g(y) is also dense in C(G×G) and
that since G is a group, we have (x1y1, y1) , (x2y2, y2) if and only if (x1, y1) , (x2, y2).

Similarly, we can show that ∆(C(G))(C(G)⊗ 1) is dense in C(G)⊗C(G).
Now, consider a quantum group (A,∆) with commutative A. According to Gelfand theorem

(Thm. 1.2.3), there is a compact topological space G, such that A = C(G). According to
Theorem 1.2.4, the comultiplication ∆:C(G)→ C(G)⊗C(G) ' C(G×G) defines a continuous
map m:G ×G→ G satisfying ∆(f )(x,y) = f (m(x,y)). Using this theorem we can also see that
the map m defines an associative multiplication, i.e. m(m(x,y), z) =m(x,m(y,z)) if and only if

∆(f )(m(x,y), z) = f (m(m(x,y), z)) = f (m(x,m(y,z))) = ∆(f )(x,m(y,z)),

which is, as we indicated in the beginning of the proof, equivalent to the coassociativity
condition.

Thus, G is a compact semigroup such that A = C(G) with multiplication satisfying equa-
tion (2.1). Now, it suffices to prove that G is a group.

We are going to prove that it has the cancellation property, i.e., for all x1,x2, y ∈ G, we
have that x1y = x2y implies x1 = x2 and yx1 = yx2 implies x1 = x2. Let us prove the first one,
the second is proven similarly. It is equivalent to the statement that the map (x,y) 7→ (xy,y)
is injective. According to Theorem 1.2.4, this is equivalent to the statement that the map
C(G ×G)→ C(G ×G) defined as

f 7→ f ′ , f ′(x,y) = f (xy,y)

is surjective. This is true thanks to the quantum group cancellation property stating that
∆(A)(1⊗A), which consists of linear combinations of functions of the form g(xy)h(y), g,h ∈ C(G),
is dense in C(G ×G). �

In the spirit of what was mentioned in the beginning of this section, we should interpret A
as the space of continuous functions over some possibly non-commutative topological space G.
Therefore, we denote C(G) := A even in the case when A is not commutative.

A (C*-)algebra equipped with a comultiplication ∆ is called cocommutative if ∆ = τ ◦∆,
where τ is a homomorphism swapping the tensor factors. It is easy to see that a group G is
abelian (commutative) if and only if C(G) is cocommutative. In the field of quantum groups,
the term commutativity usually refers to the underlying algebra. Stating that some (quantum)
group is or is not commutative might hence be a bit confusing. Therefore, we will avoid using
the term commutativity when referring to (quantum) groups. We will say that a quantum
group is a group if C(G) is commutative. We will say that a (quantum) group is abelian if C(G)
is cocommutative.

2.1.2 Compact matrix quantum groups
An important class of groups are matrix groups, i.e. subgroups of the group of all invertible
matrices GLN for some N . A quantum counterpart was defined by Woronowicz in [Wor87]
even before the general definition of compact quantum groups.
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2.1 Definitions and examples

Let A be a C*-algebra, uij ∈ A for i, j ∈ {1, . . . ,N } for some N ∈N. Denote u := (uij )
N
i,j=1 ∈

Mn(A). The pair (A,u) is called a compact matrix quantum group (abbreviated CMQG) if

(1) the elements uij , i, j = 1, . . . ,N , generate A,
(2) the matrices u and ut are invertible,
(3) the assignment

uij 7→
n∑
k=1

uik ⊗ukj

extends to a ∗-homomorphism ∆:A→ A⊗min A called the comultiplication.

The matrix u is called the fundamental representation of the CMQG.
Note that we should prove that the pair (A,∆) is indeed a quantum group. This will be

proven as Theorem 2.2.6.
Note also that compact matrix groups can indeed be treated as a special case of compact

matrix quantum groups. Let G ⊆GLN be a compact matrix group. Take A := C(G) the algebra
of continuous functions over G and define uij to be the functions assigning each matrix g ∈ G
its (i, j)-th element uij(g) = gij . Using Stone–Weierstrass theorem (Thm. 1.2.1) one can easily
show that uij generate A. The matrix u (and hence ut) is invertible since u−1(g) = u(g−1). Finally,
the map ∆ coincides with the comultiplication on G as a quantum group since

∆(uij )(g,h) = uij(gh) =
∑
k

gikhkj =
∑
k

uik(g)ukj(h) =

∑
k

uik ⊗ukj

 (g,h).

2.1.3 Examples. One of the most important examples are the quantum generalizations of the
orthogonal and unitary group. The orthogonal group can be described as

ON = {B ∈MN (C) | Bij = B̄ij ,BB
t = BtB = 1}.

So, it can be treated also as a compact matrix quantum group (C(ON ),u), where C(ON ) can be
described as a universal C*-algebra

C(ON ) = C∗(uij , i, j = 1, . . . ,N | uij = u∗ij ,uu
t = utu = 1,uijukl = ukluij ).

Such an algebra can be quantized by dropping the commutativity relation. This was done
by Wang in [Wan95a] and the result O+

N = (C(O+
N ),u) with

C(O+
N ) := C∗(uij , i, j = 1, . . . ,N | uij = u∗ij ,uu

t = utu = 1)

is called the free orthogonal quantum group.
In the same article, Wang also defined the free unitary quantum group

C(U+
N ) := C∗(uij , i, j = 1, . . . ,N | u, ut unitary).

Here, by u being unitary, we mean the condition uu∗ = u∗u = 1, where u∗ = (u∗ji).
Finally, let us mention the quantization of the symmetric group SN . This group can be

also treated as a matrix group, where each permutation is represented by a permutation matrix
consisting of zeros and ones such that in each row and column there is precisely one entry equal
to one and the rest are zeros. In [Wan98] Wang defined the free symmetric quantum group as
a compact matrix quantum group S+

N with

C(S+
N ) = C∗(uij , i, j = 1, . . . ,N | u2

ij = uij = u∗ij ,
∑
k

uik =
∑
k

ukj = 1),

while

C(SN ) = C∗(uij , i, j = 1, . . . ,N | u2
ij = uij = u∗ij ,

∑
k

uik =
∑
k

ukj = 1, uijukl = ukluij ).
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2. Compact quantum groups

2.1.3 Hopf algebras
The last approach to quantum groups presented in this thesis is more algebraic. In order to
describe compact quantum groups, we may use the theory of Hopf algebras. Hopf algebras
were first formally defined by Cartier in [Car56] under the name hyperalgebras. The precise
connection with compact quantum groups will be described in Section 2.3.1.

A Hopf ∗-algebra is a unital ∗-algebra A equipped with the following maps.

(a) A unital ∗-homomorphism ∆:A→ A�A called the comultiplication satisfying the
coassociativity condition

(∆⊗ id) ◦∆ = (id⊗∆) ◦∆.

(b) A linear map ε:A→C called the counit satisfying

(ε⊗ id) ◦∆ = id = (id⊗ ε) ◦∆.

(c) A linear map S:A→ A called the antipode satisfying

m ◦ (S ⊗ id) ◦∆ = η ◦ ε =m ◦ (id⊗ S) ◦∆.

Here, we denote by m:A�A→ A the multiplication on A and by η:C→ A the embed-
ding λ 7→ λ · 1A. It actually automatically holds that ε is a ∗-homomorphism and S is an
antihomomorphism.

As the names of the operations suggest, they dualize the group multiplication, the group
identity, and the group inverse. To be more concrete, let G be a matrix group. Denote by
O(G) the ∗-algebra generated by the coordinate functions uij(g) = gij and the coordinates of
the matrix inverse u′ij(g) := [g−1]ij . Then O(G) is a Hopf ∗-algebra with respect to the following
operations.

(∆(f ))(x,y) = f (xy), that is, ∆(uij ) =
∑
k

uik ⊗ukj ,

ε(f ) = f (e), that is, ε(uij ) = δij ,

(S(f ))(x) = f (x−1), that is, S(uij ) = u′ij .

Let us stress that Hopf algebras are not the same thing as compact quantum groups. In
a sense they are more general. We are lacking the analytic structure here, so they are rather
generalizing any groups, not only the compact ones. But as we mentioned at the beginning
of this chapter, not even the term quantum group is used as a synonym for Hopf algebras.
Quantum groups are usually considered to be some special Hopf algebras that are in some
sense close to groups.

As we already mentioned, we are going to describe the connection between compact
quantum groups and Hopf algebras in Section 2.3.1. In particular, we are going to show how to
express the compactness in terms of Hopf algebras.

Regarding the comultiplication, let us also mention here the Sweedler notation, which is
very common especially in the literature on Hopf algebras. Considering a tensor product
of algebras or vector spaces, every element can be expressed as some linear combination
(possibly infinite in the case of C*-algebras) of elementary tensors. In particular, consider
a Hopf algebra A and an element a ∈ A. Then it might be useful to express the comultiplication
∆(a) ∈ A�A as a linear combination ∆(a) =

∑n
i=1 bi ⊗ ci , where bi , ci are some elements of A (we

already did this in the proof of Proposition 2.1.2). In order to simplify the notation, we write
just

∆(a) =:
∑
(a)

a(1) ⊗ a(2),
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2.2 Representation theory and fundamental properties

where the symbols a(1) and a(2) stand for the elements bi and ci as we just described. Note that
some authors even omit the summation sign. The coassociativity axiom then allows us also
to introduce this for repeated application of ∆ such as

(∆⊗ id)(∆(a)) = (id⊗∆)(∆(a)) =:
∑
(a)

a(1) ⊗ a(2) ⊗ a(3).

As an application, we can formulate the cocommutativity condition introduced at the
end of Section 2.1.1 for Hopf algebras. A Hopf algebra A is cocommutative if and only if∑

(x) x(1) ⊗ x(2) =
∑

(x) x(2) ⊗ x(1). The only place in this thesis, where we use the Sweedler notation
is Section 7.4.

2.2 Representation theory and fundamental properties
Compact groups are distinguished among groups by several fundamental properties they
satisfy. In particular, we mean the invariant Haar integration and the results regarding their
representation theory. Those properties are shared also by compact quantum groups as we
are going to describe in this section. All those properties were obtained by Woronowicz already
in the first articles [Wor87, Wor98], where he introduced compact matrix quantum groups,
resp. general compact quantum groups.

We would also like to mention the article ~MVD98�. Its character is rather expository
and does not contain many new results, but it was the first survey on the newly developed
topic of compact quantum groups, which brought more order to the theory and provided more
convenient proofs of some results.

2.2.1 Representations of quantum groups

In this section, we are going to define the concept of a representation for quantum groups.
For a classical compact group G, an n-dimensional representation is a continuous homo-

morphism ϕ:G→Mn(C). It can be represented by functions uij ∈ C(G) mapping elements
g ∈ G to the (i, j)-th entry of their representation matrices uij(g) = [ϕ(g)]ij . The homomorphism
property ϕ(gh) = ϕ(g)ϕ(h) can be written as

∆(uij )(g,h) = uij(gh) =
∑
k

ϕ(g)ikϕ(h)kj =
∑
k

uik(g)ukj(h) =

∑
k

uik ⊗ukj

 (g,h), (2.2)

where ∆ is the comultiplication on C(G). This motivates the following definition.
Let A be a unital ∗-algebra equipped with a unital ∗-homomorphism ∆:A→ A�A (for

example, a Hopf ∗-algebra). An n-dimensional corepresentation of A is a matrix u ∈Mn(A)
such that

∆(uij ) =
∑
k

uik ⊗ukj .

The same definition works for a unital C*-algebra with ∆:A → A ⊗min A. In particular, if
G = (A,∆) is a compact quantum group, we call u a representation of G. (Following the idea
that the quantum group G should be the dual object to C(G) = A.)

If a representation u has a matrix inverse, we call it a non-degenerate representation; if it
is unitary, we call it a unitary representation.

Let u ∈Mn(A) and v ∈Mm(A). We can consider the direct sum of matrices u ⊕ v ∈Mn+m(A),
the matrix tensor product (meaning the Kronecker product) u ⊗ v ∈Mnm(A) or the complex
conjugate ū = (u∗ij ) ∈ Mn(A). It is easy to check that if u and v are representations of some
compact quantum group (A,∆), then those operations define new representations of (A,∆).
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2. Compact quantum groups

Let u ∈ Mn(A) and v ∈ Mm(A) be representations of a compact quantum group (A,∆).
A linear map T :Cn→ C

m is called an intertwiner if T u = vT . The space of all such maps is
denoted by Mor(u,v). The representations u and v are called (unitarily) equivalent if there
exists an invertible (unitary) operator T intertwining those representations.

Any corepresentation u ∈Mn(A) indeed coacts on the space C
n in the following sense. For

any x ∈Cn performing the matrix multiplication, we get ux ∈Cn⊗A. So, u can be thought of as
a map C

n→C
n ⊗A or an element of u ∈Mn(C)⊗A. In general, a corepresentation on a vector

space V can be described by a map V → V ⊗A.
A subspace V ⊆C

n is called invariant if for all x ∈ V we have ux ∈ V ⊗A. Equivalently, we
can say that V is invariant if uP = P uP , where P is the projection C

n→ V . A representation
u ∈Mn(A) is called irreducible if the only invariant subspaces are 0 and C

n.
For a compact quantum group G, we denote by IrrG the set of classes of irreducible repre-

sentations of G up to equivalence. For α ∈ IrrG, we denote by uα some unitary representative
of the class α. We denote by nα the size of the representation, so uα ∈Mnα (C(G)).

2.2.2 Haar state

Another feature of compact groups that can be generalized to the quantum world is the so
called Haar integration. Let us first recall the classical case. For any locally compact group G,
there exists an (up to scalar multiplication) unique measure µ that is left-invariant, which
means that µ(tS) = µ(S) for any Borel set S ⊆ G and any element t ∈ G. Equivalently, we may
write this condition as ∫

G
f (st)dµ(s) =

∫
G
f (s)dµ(s)

for every f ∈ C(G) and every t ∈ G. If G is compact, we may express the integration with respect
to the Haar measure as a positive linear functional h:C(G)→ C mapping f 7→

∫
G
f dµ. The

left-invariance can be then expressed as

(h⊗ id)(∆(f ))(t) = h(f ),

that is,
(h⊗ id)(∆(f )) = h(f )1C(G).

In addition, compact groups are known to be unimodular, which means that the Haar measure
is also right-invariant.

This is generalized to compact quantum groups in the following theorem.

2.2.1 Theorem. For any compact quantum group G, there is a unique state h on C(G) such that

(h⊗ id)(∆(a)) = h(a)1C(G), (id⊗ h)(∆(a)) = h(a)1C(G)

for every a ∈ C(G). This state is called the Haar state on G.

2.2.3 Fundamental results of the representation theory

The following statements generalize the fundamental results from the representation theory
of compact groups.

2.2.2 Proposition (Schur’s lemma). Let u and v be (unitary) irreducible representations of some
quantum group. Then either u and v are (unitarily) equivalent and Mor(u,v) is one-dimensional
or Mor(u,v) = 0.

Proof. One can check that the kernel resp. image of any intertwiner T ∈Mor(u,v) are invariant
subspaces of u, resp. v. Hence, if u and v are irreducible, any non-zero intertwiner T is
invertible. Suppose now, we have a second intertwiner S ∈ Mor(u,v). Then det(S − λT ),
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2.2 Representation theory and fundamental properties

considered as a polynomial in λ, must have a zero at some λ0. Since S − λ0T is a singular
intertwiner, it must be zero, so S = λ0T . This proves that the dimension of Mor(u,v) is either
one or zero.

Finally, if u and v are unitary and Mor(u,v) 3 T , 0, then T ∗ ∈ Mor(v,u). So, T ∗T ∈
Mor(u,u) and T T ∗ ∈Mor(v,v) and by what was already proven, both must be multiples of the
identity. Therefore, T is unitary up to scaling. �

Schur’s lemma is actually valid for any group, not only for the compact ones. Also our
version is valid for any Hopf algebra, not only for compact quantum groups. The following
statements, however, already use the compactness.

2.2.3 Proposition. Every non-degenerate representation is equivalent to a unitary representa-
tion.

Proof. Let u ∈Mn(C(G)) be a non-degenerate representation of a compact quantum group G.
Denote by h the Haar state on G and define Qij := h([u∗u]ij ) =

∑
k h(u∗kiukj ). Since u is invertible,

we have that u∗u is positive definite and hence Q ∈Mn(C) is positive definite. Now, using the
left-invariance of the Haar state, we have

Qij =
∑
k

h(u∗kiukj ) =
∑
k

(h⊗ id)∆(u∗kiukj ) =
∑
k,l,m

h(u∗klukm)u∗liumj =
∑
l,m

Qlmu
∗
liumj = [u∗Qu]ij .

Finally, we can define v :=Q1/2uQ−1/2 an equivalent representation to u, which is unitary since
v∗v =Q−1/2u∗QuQ−1/2 = 1N . �

2.2.4 Theorem. Every representation of a compact quantum group is equivalent to a direct
sum of irreducible ones.

Proof. Let G be a compact quantum group and u ∈ Mn(C(G)) its representation. From
Proposition 2.2.3, we can assume that u is unitary. Suppose V ⊆ C

n is an invariant subspace
of u. Then we can choose an orthonormal basis for V and complete it to an orthonormal
basis for Cn. Let U be the corresponding unitary transformation matrix C

n→ C
n such that

U (V ) = C
m ⊆ C

n. Then since C
m is invariant subspace of v := UuU ∗, it must be of the block

form

v =
(
v11 v12
0 v22

)
.

But since v is unitary, we must have v12 = 0, so u = v11 ⊕ v22. Since one-dimensional representa-
tions are always irreducible, the statement follows by mathematical induction. �

Finally, we present the proof of the fact that compact matrix quantum groups are compact
quantum groups. This is based on the following lemma.

2.2.5 Lemma. ~MVD98� LetA be a unital C*-algebra and let ∆:A→ A⊗minA be a unital ∗-homo-
morphism. If A, as a Banach algebra, is generated by the matrix elements of non-degenerate
finite-dimensional corepresentations, then G = (A,∆) is a compact quantum group.

Proof. First, we prove the coassociativity. It is sufficient to prove it for the generators, for which
we have

((∆⊗ id) ◦∆)(uij ) =
∑
k,l

uik ⊗ukl ⊗ulj = ((id⊗∆) ◦∆)(uij ).

Now, let us prove that ∆(A)(1⊗A) is dense in A⊗min A. Take u a non-degenerate finite-
dimensional representation and denote v := u−1 its inverse (as a matrix). Then∑

j

∆(uij )(1⊗ vjl) =
∑
j,k

uik ⊗ukjvjl =
∑
k

uik ⊗ δkl = uil ⊗ 1 ∈ ∆(A)(1⊗A).
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2. Compact quantum groups

Now, consider a⊗ 1,b⊗ 1 ∈ ∆(A)(1⊗A). Denote

a⊗ 1 =:
∑
α

∆(a1,α)(1⊗ a2,α), b⊗ 1 =:
∑
β

∆(b1,β)(1⊗ b2,β).

Then,

ab⊗ 1 =
∑
α

∆(a1,α)(1⊗ a2,α)(b⊗ 1) =
∑
α

∆(a1,α)(b⊗ 1)(1⊗ a2,α) =

=
∑
α,β

∆(a1,α)∆(b1,β)(1⊗ b2,β)(1⊗ a1,α) =
∑
α,β

∆(a1,αb1,β)(1⊗ b2,βa1,α),

so ab⊗ 1 ∈ ∆(A)(1⊗A).
Denote by A0 the algebra generated by the matrix elements of non-degenerate finite-

dimensional representations, so Ā0 = A. We have proven that A0 � A = (A0 ⊗ 1)(1 ⊗ A) ⊆
∆(A)(1⊗A). Thus, A⊗min A = A0 �A = ∆(A)(1⊗A).

The second cancellation property is proven similarly. �

2.2.6 Theorem. Every compact matrix quantum group is a compact quantum group.

Proof. Let (A,u) be a CMQG. The fundamental representation u is obviously a representation.
As we already mentioned, any representation u = (uij ) induces a representation ū = (u∗ij ). Since
ut is invertible, it follows that ū = (ut)∗ is invertible. Since A is, as a C*-algebra, generated by
the elements uij , it follows that A, as a Banach algebra, is generated by the elements uij and u∗ij .
Thus the previous theorem applies. �

2.3 Further definitions and properties

2.3.1 Various algebras associated to quantum groups

In this section, we explain the link between compact quantum groups and Hopf algebras. Then
we define additional C*-algebras associated to a given compact quantum group.

Let G be a compact quantum group. We define PolG to be the span of matrix coefficients
of all representations of G. It is actually a unital ∗-algebra since, for any two representations u
and v, the element uijv∗kl is a matrix element of u ⊗ v̄. Moreover, the comultiplication on C(G)
restricts to PolG since ∆(uij ) =

∑
k uik ⊗ukj ⊆ PolG�PolG. In addition, we can define a counit

and an antipode by
ε(uij ) = δij , S(uij ) = (u−1)ij

to turn it into a Hopf ∗-algebra.

2.3.1 Proposition. The set {uαij | α ∈ IrrG; i, j = 1, . . . ,nα}, forms a vector space basis of PolG.

Proof. From Theorem 2.2.4 we have that every representation is a direct sum of irreducibles, so
it is a generating set. From the Schur’s lemma (Prop. 2.2.2), it follows that this set is linearly
independent. �

As we already mentioned, Hopf algebras provide an alternative way for describing quantum
groups. We make this idea more precise in the following. A Hopf ∗-algebra A is called compact
if it is spanned by the matrix entries of its finite-dimensional unitary corepresentations.

2.3.2 Theorem. PolG is a unique dense compact Hopf ∗-algebra in C(G). The Haar state is
faithful on PolG.

We leave this theorem without proof. See ~Tim08, Theorem 5.4.1�.
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2.3 Further definitions and properties

2.3.3 Theorem. Let A0 be a compact Hopf algebra. Then there exists a compact quantum
group G such that A0 = PolG.

Proof. We provide only parts of the proof. We are going to construct C(G) as the universal
C*-envelope of A0. So, first of all it is necessary to show that the universal envelope C∗(A0)
exists. This follows from the fact that the generators of A0 being matrix entries of unitary
matrices can have norm at most one. Indeed, let u be a corepresentation of A0, then unitarity
of u means in particular that

∑
k uiku

∗
ik = 1. Since all the summands are positive, it follows that

uiku
∗
ik ≤ 1 for every k and hence ‖uik‖2 =

∥∥∥uiku∗ik∥∥∥ ≤ 1 for any C*-seminorm ‖·‖ on A0.
Now, we can also extend the comultiplication of A0 to the C*-completion A := C∗(A0)

and obtain ∆:A→ A⊗min A. Then it follows from Lemma 2.2.5 that G = (A,∆u) is a compact
quantum group.

The most complicated part, which we are going to skip here, is to show that A0 has
a faithful ∗-representation on some Hilbert space and hence A0 is contained in A. See ~Tim08,
Theorem 5.4.3� or ~NT13, Theorem 1.6.7� for a complete proof.

Consequently, since every corepresentation of A0 is a representation of G, we also have
A0 ⊆ PolG. The fact that A0 = PolG then follows from the uniqueness in Theorem 2.3.2. �

For a compact matrix quantum group G, we can denote by O(G) the ∗-subalgebra of C(G)
generated by the matrix entries of the fundamental representation uij . By definition of
a compact matrix quantum group, we have that O(G) ⊆ PolG is dense in C(G). It is actually
easy to see that the operations from PolG restrict to O(G) and hence O(G) is a Hopf ∗-algebra.
From uniqueness in Theorem 2.3.2, it follows that O(G) = PolG.

Now, let G be an arbitrary compact quantum group. We denote by Cu(G) := C∗(PolG) the
C*-envelope of PolG and call it the full C*-algebra of G. As follows from the proof of Theo-
rem 2.3.3, this defines a compact quantum group (Cu(G),∆u) called the full version of G. Note
that by the universal property of the C*-envelope, the counit ε extends to a ∗-homomorphism
ε:Cu(G)→C.

Consider π the GNS representation of the C*-algebra C(G) with respect to the Haar state h
and denote by L2(G) the corresponding Hilbert space. Since h is faithful on PolG, we have that
π represents faithfully the ∗-algebra PolG onB (L2(G)).

We denote by Cr(G) := π(C(G)) ⊆ B (L2(G)) the image of C(G) by the GNS-representa-
tion associated to the Haar state. We can define a comultiplication on Cr(G) by ∆r(π(a)) :=
(π ⊗ π)(∆(a)). It has to be checked that this is a correct definition by showing ∆r(kerπ) ⊆
ker(π⊗π). One can also prove that hr(π(a)) := h(a) defines a faithful Haar state on Cr(G). The
C*-algebra Cr(G) is called the reduced C*-algebra of G and the quantum group (Cr(G),∆r) is
called the reduced version of G.

To summarize, we have the following algebras associated to a given quantum group
G = (C(G),∆).

Cu(G) C(G) Cr(G)

PolG

As a side remark, note that we can also define the algebra L∞(G) as the enveloping von
Neumann algebra of Cr(G).

Strictly speaking, the quantum group G, its full version, and its reduced version may be
different quantum groups. However, this viewpoint turns out not to be the right one. Note, for
example, that all those quantum groups have exactly the same representation theory since this
depends only on the dense Hopf ∗-algebra PolG. We should rather view the different versions
of G as different possibilities how to describe the same abstract object – the single compact
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2. Compact quantum groups

quantum group G. The various C*-algebras are then just various ways how to construct
a C*-completion of the Hopf ∗-algebra PolG.

This is analogical to the situation with discrete groups, where a single group Γ is associated
several different group C*-algebras. Following this analogy, we say that a compact quantum
group G is coamenable if the surjections in the diagram are isomorphisms, so Cu(G) = C(G) =
Cr(G). This holds, for example, for all compact groups, but not in general for compact quantum
groups. The analogy with discrete groups becomes even more fitting in Section 2.4, where
we interpret the algebras Cu(G) and Cr(G) as group C*-algebras of the discrete dual quantum
group Γ = Ĝ. Let us mention an alternative characterization of coamenability from [BMT01].

2.3.4 Theorem. A compact quantum group G is coamenable if and only if the Haar state h is
faithful on C(G) and the counit ε extends to a bounded functional on C(G). (Note that the
first condition holds automatically if G is in its reduced version and the second one holds
automatically if G is in its full version.)

It may seem that introducing compact quantum groups using the theory of C*-algebras is
an unnecessary complication since we can simply work with the associated Hopf ∗-algebras.
Although it is enough to use Hopf algebras for defining compact quantum groups, it may be
convenient to consider the C*-algebras to study them. Similarly as in the case of discrete groups,
where we certainly do not need C*-algebras to define them, but the associated C*-algebras
are useful to study discrete groups (e.g. their amenability). In addition, some may consider
the Hopf algebraic approach less satisfying since we must put into the definition the fact that
the algebra is spanned by the coefficients of the finite-dimensional unitary representations
(equivalently, the existence of the Haar state). In the C*-algebraic approach, one obtains these
results as properties (as in the classical case), which may seem more natural.

The situation gets a bit simpler in the matrix case, where we require the algebra to be
generated by the coefficients of the fundamental representation anyway. So, we can formulate
the following alternative definition: A compact matrix quantum group G is a pair (A,u), where
A is a Hopf ∗-algebra (usually denoted O(G) or PolG) and u is a unitarizable matrix with
coefficients in A such that

∆(uij ) =
∑
k

uik ⊗ukj , ε(uij ) = δij , S(uij ) = (u−1)ij .

However, we will stick to the C*-algebraic notation from Section 2.1.2 in our thesis.
Moreover, all compact quantum groups will appear in the full version (that is, we assume
C(G) = Cu(G)). Nevertheless, a reader that is not familiar with C*-algebras can think of PolG
instead of C(G) and obtain an analogous purely algebraic statement in most cases.

Finally, let us mention some references for the statements presented in this section. The
fact that every compact (matrix) quantum group induces a dense Hopf ∗-algebra was mentioned
already by Woronowicz in the original works [Wor87, Wor98]. The algebraic approach was
formulated in the paper [DK94], which also contains a detailed comparison of their approach
with other authors (in particular, with Woronowicz). The definition of the full and reduced
C*-algebras associated with quantum groups was first mentioned in [BS93].

2.3.2 Morphisms of quantum groups, quantum subgroups and quotients
As we just mentioned, given a compact quantum group G, the C*-algebras C(G), Cr(G), and
Cu(G) as well as the Hopf ∗-algebra PolG should be seen as equivalent descriptions of a single
quantum group G. In this spirit, we define the notion of isomorphism for compact quantum
groups. Closely connected are also the notions of quantum subgroup and quotient quantum group,
which we also define below. Those notions were originally introduced by Wang in [Wan95a].
In [Wan97], Wang remarked that those notions should be modified to respect the fact that
a single quantum group can be represented by different (non-isomorphic) algebras.
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2.3 Further definitions and properties

Let G and H be compact quantum groups. We say that they are isomorphic, denoted by
G 'H , if there is a ∗-isomorphism ϕ:PolG→ PolH (equivalently ϕ:Cu(G)→ Cu(H)) satisfying
(ϕ⊗ϕ)◦∆G = ∆H ◦ϕ. We say that H is an (embedded) quantum subgroup of G if there exists
a surjective ∗-homomorphism PolG→ PolH satisfying the same property.

For matrix groups, in contrast with abstract groups, it makes in addition also sense to
ask, whether they are equal, that is, represented by the same matrices. We can generalize this
notion also to the quantum group case.

Let G and H be compact matrix quantum groups with fundamental representations
u ∈ MN (C(G)) and v ∈ MM(C(H)). We consider them to be identical, denoted by G = H , if
N = M and the map uij 7→ vij extends to a ∗-isomorphism PolG → PolH . They are called
similar if N = M and there exists an invertible matrix T ∈MN (C) such that uij 7→ [T vT −1]ij
extends to a ∗-isomorphism. Then we write G = THT −1. The quantum group H is called
a quantum subgroup of G, denoted by H ⊆ G, if N =M and uij 7→ vij extends to a surjective
∗-homomorphism.

A related question is the following: Given a quantum group G, how to construct its
quantum subgroups? Following the duality principle and what was mentioned above, we need
to form some kind of a quotient of the corresponding algebra.

Let A be a Hopf ∗-algebra. A set I ⊆ A is called a coideal if

∆(I) ⊆ I �A+A� I and ε(I) = 0.

A coideal that is also a (∗-)ideal is called a (∗-)biideal. A Hopf (∗-)ideal is a (∗-)biideal that is
invariant under the antipode, that is, S(I) ⊆ I . For any Hopf ∗-algebra A and a Hopf ∗-ideal
I ⊆ A the quotient A/I becomes a Hopf ∗-algebra with respect to the operations induced from A.

It is easy to check that, given compact quantum groupsH ⊆ G, the corresponding surjection
ϕ:PolG→ PolH defines a Hopf ∗-ideal I = kerϕ and that PolH ' PolG/I . Conversely, given
a compact quantum group G, any Hopf ∗-ideal I ⊆ PolG defines a compact quantum subgroup
H ⊆ G such that PolH = PolG/I . Indeed, as we mentioned above, PolG/I is a Hopf ∗-algebra
and according to Theorem 2.3.3, it is enough to check that it is generated by its unitary
corepresentations. But we know that PolG is generated by the unitary corepresentations and
it is easy to see that any corepresentation of PolG serves also as a corepresentation of PolG/I .

Given a coideal I0 invariant under the antipode, then the ∗-ideal I = {ab,ba,a∗b,ba∗ | a ∈ I0,
b ∈ A} generated by I0 keeps the property of being a coideal and invariant under S. Hence I is
a Hopf ∗-ideal. Let G be a compact quantum group. By saying, let H be the quantum subgroup
of G given by relations R, we implicitly assume that the ∗-ideal I generated by R is a Hopf ∗-ideal
and then define H to be the subgroup of G given by I .

Alternatively, one can formulate those considerations also in terms of C*-algebras. Let G
be a compact quantum group. A Woronowicz C*-ideal of C(G) is a C*-ideal I ⊆ C(G) such that
∆(I) ⊆ ker(π⊗π), where π is the quotient map C(G)→ C(G)/I . Again, we have a one-to-one
correspondence between quantum subgroups H ⊆ G and Woronowicz C*-ideals I ⊆ C(G).

In the spirit of the duality between (quantum) groups and the associated algebras, we can
define also quotients of quantum groups. A compact quantum group H is said to be a quotient
quantum group of a compact quantum group G if PolH is a Hopf ∗-subalgebra of PolG.

2.3.3 Universal compact matrix quantum groups
Let G be a compact matrix quantum group and u ∈MN (C(G)) its fundamental representation.
Suppose that u is unitary. In contrast with the classical case, this does not imply that ū or ut are
unitary. Nevertheless, according to Proposition 2.2.3, they are unitarizable. This means that
there exists an invertible matrix F ∈MN (C) such that FūF−1 is unitary. Hence, G is a quantum
subgroup of the universal unitary quantum group U+(F) defined by the C*-algebra

C(U+(F)) := C∗(uij , i, j = 1, . . . ,N | u, FūF−1 unitary).
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2. Compact quantum groups

We also define the universal orthogonal quantum groups O+(F) for any F ∈MN (C) satis-
fying FF̄ = c1N , c ∈R through the C*-algebra

C(O+(F)) := C∗(uij , i, j = 1, . . . ,N | u = FūF−1 unitary).

We get the standard free unitary and orthogonal quantum groups U+
N and O+

N by choosing
F = 1N .

2.3.5 Remark. The condition FūF−1 being unitary can be written as

ū(F∗F)−1ut(F∗F) = 1N = ut(F∗F)ū(F∗F)−1.

So, the definition of U+(F) actually depends only on the matrix F∗F, not on the particular
choice of F.

2.3.6 Remark. In the case of O+
N , we have that ū = u, so the unitarity of u, that is, the relation

uu∗ = u∗u = 1N can be replaced by uut = utu = 1N . Similar thing can be done in the case of
O+(F). Using the relation u = FūF−1 we can see that the unitarity of u is equivalent to

u(F∗)−1utF∗ = (F∗)−1utF∗u = 1N , or, equivalently, uFtut(Ft)−1 = Ftut(Ft)−1u = 1N .

2.3.7 Remark. The reason why we require FF̄ = c1N for the definition ofO+(F) is that otherwise
we get some kind of degeneracy. Applying the equality u = FūF−1 recursively to itself, we
obtain u = FF̄u(FF̄)−1, which is an additional “unwanted” relation. Another viewpoint is that
we require the fundamental representation u to be irreducible. This can hold only if FF̄ = c1N
since, as we just computed, we have FF̄ ∈Mor(u,u). From the Schur’s lemma (Prop. 2.2.2), we
have that u is irreducible if and only if Mor(u,u) = {c1N }c∈C. The constant c must be real by its
definition since F̄ = cF−1, so c = FF̄ = F̄F = c̄.

The universal unitary quantum group was introduced by Van Daele and Wang [VDW96].
The definition of the universal orthogonal quantum group comes from [Ban96]. Note that
there have been several alternative definitions for the orthogonal case (see [VDW96, Wan98])
and also for the unitary case the notation may vary (some authors use the matrix Q = F∗F to
characterize the quantum groups as in the original paper [VDW96]).

A compact quantum group G is said to be of Kac type if the antipode on PolG satisfies S2 =
id. Recall that the antipode is defined by S(uij ) = [u−1]ij for any non-degenerate representation
u of G. In particular, taking the universal unitary quantum group U+(F) and denoting by u
its fundamental representation, we have

S(uij ) = u∗ji , S(u∗ij ) = [(F∗F)−1ut(F∗F)]ij .

So, it is of Kac type only if F∗F = 1N . That is, U+
N is the only Kac type quantum group

among all U+(F). In general, a compact matrix quantum group G with unitary fundamental
representation u is of Kac type if and only if G ⊆U+

N for some N .
There are several other conditions characterizing Kac type quantum groups, which we

will not discuss here. See for example ~NT13, Prop. 1.7.9�.

2.3.4 Compact matrix quantum groups determined by algebraic relations
For a fixed N ∈N, we denote by C〈xij ,x∗ij〉 = C〈xij ,x∗ij | i, j = 1, . . . ,N 〉 the free ∗-algebra gen-
erated by N 2 elements xij . To every compact matrix quantum group G with fundamental
representation u ∈MN (C(G)), we associate an ideal

IG := {f ∈C〈xij ,x∗ij〉 | f (uij ,u
∗
ij ) = 0}.

This ideal determines the compact quantum group since

PolG =O(G) = C〈xij ,x∗ij〉/I , Cu(G) = C∗(PolG).
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2.4 Discrete quantum groups

2.3.8 Lemma. Let G and H be compact matrix quantum groups. Then H ⊆ G if and only if
IG ⊆ IH .
Proof. Denote by u and v the fundamental representations of G and H , respectively. Suppose
H ⊆ G, so there is a surjective ∗-homomorphism ϕ:PolG→ PolH mapping uij 7→ vij . Denote
by q:C〈xij ,x∗ij〉 → PolG the surjective ∗-homomorphism xij 7→ uij . Then we have IG = kerq ⊆
ker(ϕ ◦ q) = IH .

For the converse, suppose IG ⊆ IH . This directly implies that uij 7→ vij extends to a ∗-homo-
morphism since all relations that hold in PolG must also hold in PolH . �

An extended version of this lemma will be provided in Section 3.4.5 as Proposition 3.4.15.

2.4 Discrete quantum groups
In this section, we introduce the notion of a discrete quantum group. The idea is to interpret
the C*-algebra C(G) associated to some compact quantum group G as a group C*-algebra
associated to some discrete quantum group Γ. This generalizes the so-called Pontryagin duality.
In the compact quantum group setting, this idea first appeared in [PW90]. The theory of
discrete quantum groups bypassing compact quantum groups was then developed in [ER94,
VDa96]. The most general framework, where the Pontryagin duality can be formulated are
locally compact quantum groups introduced in [KV00]. Compact quantum groups and discrete
quantum groups can be then considered as a special case of locally compact quantum groups.
The basics of the duality between compact and discrete quantum groups is sketched in the
lecture notes ~FSS17�.

Let Γ be a discrete group. The full group C*-algebra C∗(Γ) or the reduced group C*-algebra
C∗r(Γ) together with the comultiplication defined as

∆(ug ) = ug ⊗ug
is a compact quantum group. We will denote this quantum group by Γ̂ and call it the compact
dual of Γ. The group C*-algebras contain the dense Hopf ∗-algebra CΓ with counit and antipode
defined as

ε(ug ) = δg,e, S(ug ) = ug−1 = u∗g .

LetG be a compact quantum group. An element a ∈ C(G) is called group-like if ∆(a) = a⊗a.
Equivalently, it means that a defines a one-dimensional representation of G. This implies that
all group-likes are actually contained in PolG.
2.4.1 Lemma. All group-like elements of C(G) are unitary. Together they form a group.
Proof. As we just mentioned, a group-like a ∈ C(G) is a one-dimensional representation.
According to Proposition 2.2.3, it must be equivalent to a unitary representation. But since
a is one-dimensional, it must itself be unitary. Given two group-likes a,b ∈ C(G), we have
that ∆(ab) = ∆(a)∆(b) = ab ⊗ ab, so ab is also group-like. Alternatively, note that the algebra
multiplication here coincides with the representation tensor product, so ab = a⊗ b must be
a one-dimensional representation. The group inversion is given by the ∗-operation. Also in this
case, we already know that the complex conjugate of a representation is again a representation,
so a∗ must be group-like. �

2.4.2 Theorem. Let G be an abelian compact quantum group. Then all irreducible represen-
tations of G are one-dimensional. So, IrrG coincides with the group of group-like elements.
Let us denote it by Γ:

Γ := IrrG = {u ∈ C(G) | ∆(u) = u ⊗u}.
Then G = Γ̂. That is,

C∗(Γ) = Cu(G), C∗r(Γ) = Cr(G), CΓ = PolG.

We give a proof of this theorem in the following subsection.
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Taking an arbitrary compact quantum group G, we can formally define its discrete dual Ĝ
as a quantum group characterized by the algebras

C∗(Ĝ) := Cu(G), C∗r(Ĝ) := Cr(G), CĜ := PolG.

To be more precise, we define formally discrete quantum groups by exactly the same defi-
nition as compact quantum groups. What changes is the notation. The C*-algebra underlying
a discrete quantum group Γ is denoted by C∗(Γ) and interpreted as the group C*-algebra of Γ.
The associated Hopf ∗-algebra is denoted by CΓ. Considering a compact quantum group G,
we can interpret it as a discrete quantum group and call it the discrete dual of G denoted
by Ĝ. Conversely, taking a discrete quantum group Γ, we can consider it as a compact quantum
group and call it the compact dual of Γ denoted by Γ̂.

This idea generalizes the so-called Pontryagin duality. For every abelian locally compact
group G, we can construct its dual Ĝ as the group of all continuous homomorphisms G→ T ,
where T ⊆ C is the unit circle. This is again an abelian locally compact group. Repeating the
construction we arrive at the original group G.

Nevertheless, the duality formulated above in the quantum case is so far more or less just
an empty formal statement. We give the discrete duals more concrete meaning in the following
subsection. In its full generality, the Pontryagin duality can be formulated in the setting of
locally compact quantum groups.

2.4.1 Dual algebras
Let G be a compact quantum group and denote by Γ := Ĝ its discrete dual. We denote by C

Γ

the vector space dual of PolG. This is a ∗-algebra with respect to the following operations

ων :=ω ∗ ν := (ω⊗ ν) ◦∆, ω∗(a) := ω(S(a)∗),

where ω,ν ∈ C
Γ, a,b ∈ PolG. This algebra plays the role of the algebra of all functions

(sequences) Γ→C.
Given u ∈Mn(PolG) a (unitary) representation of G, that is, a corepresentation of PolG, we

define a (∗-)representation πu :CΓ→Mn(C) as [πu(ω)]ij =ω(uij ). It is indeed a (∗-)representation
since

[πu(ων)]ij = (ων)(uij ) = (ω⊗ ν)(∆(uij )) =
∑
k

ω(uik)ν(ukj ) = [πu(ω)πu(ν)]ij ,

[πu(ω∗)]ij =ω∗(uij ) = ω(uji) = [πu(ω)∗]ij .

In the second row, we used the fact that for unitary u, we have S(uij ) = u∗ji .

2.4.3 Lemma. Let G be a compact quantum group and u ∈Mn(C(G)) its representation. Then
the image of πu equals to the commutant of Mor(u,u). That is,

{πu(ω) |ω ∈CĜ} = {S ∈Mn(C) | T S = ST for all T ∈Mor(u,u)}.

Proof. To prove the inclusion ⊆, take an arbitrary ω ∈ CĜ and an arbitrary T ∈Mor(u,u). We
need to prove that πu(ω) commutes with T . This indeed holds since

[πu(ω)T ]ij =
∑
k

ω(uik)Tkj =
∑
k

Tikω(ukj ) = [Tπu(ω)]ij .

To prove the converse, we can use the double commutant theorem (Thm. 1.2.7). It is
enough to prove that (πu(CĜ))′ ⊆Mor(u,u). Taking any T commuting with [πu(ω)]ij , we can

use the same computation as above to show that
∑
kω(uik)Tkj =

∑
k Tikω(ukj ) for every ω ∈CĜ.

But since it holds for every ω, we must have uT = T u, so T ∈Mor(u,u). �

32



2.4 Discrete quantum groups

Since {uαij} with α ∈ IrrG form a vector space basis, we have that any ω ∈CΓ is determined
by the numbers ω(uαij ) = [πuα (ω)]ij . Consequently, we have

C
Γ '

∏
α∈IrrG

Mnα (C),

where the isomorphism is provided by
∏
α∈IrrGπuα .

Replacing the direct product by the algebraic direct sum, we obtain an algebra denoted
by c00(Γ) corresponding to finitely supported sequences on Γ. Taking the c0 direct sum or
l∞ direct sum, we can define also the algebras c0(Γ) or l∞(Γ).

The algebra c00(Γ) is actually a Hopf ∗-algebra with respect to the following operations

(∆̂(ω))(a⊗ b) = ω(ab), ε̂(ω) = ω(1), Ŝω =ω ◦ S.
where ω,ν ∈ c00(Γ), a,b ∈ PolG. Note that these operations can actually be defined also on C

Γ,
but the comultiplication would map C

Γ→C
Γ×Γ := (PolG�PolG)∗ ⊇C

Γ �CΓ with the inclusion
being strict whenever PolG is infinite-dimensional.

The multiplication on PolG is transformed into the comultiplication on c00(Γ) and the
comultiplication on PolG is transformed into the multiplication on c00(Γ). In particular, c00(Γ) is
commutative, resp. cocommutative if and only if PolG is cocommutative, resp. commutative.

Now, we give the proof of Theorem 2.4.2.

Proof of Theorem 2.4.2. Since G is abelian, we have that C
Ĝ must be commutative. Con-

sequently nα = 1 for every α ∈ IrrG. Finally, from Proposition 2.3.1, we know that PolG =
span{uα | α ∈ IrrG} = CΓ. �

2.4.2 Representations, corepresentations, finitely generated groups
Let Γ be a discrete quantum group and G := Γ̂ its compact dual. A corepresentation of Γ is
a representation ofG, that is, a matrix u with entries in CΓ ⊆ C∗(Γ) such that ∆(uij ) =

∑
k uik⊗ukj .

If the algebra CΓ (or C∗(Γ)) is generated by the matrix entries of some representation u, that is,
if (C∗(Γ),u) is a compact matrix quantum group, we say that Γ is finitely generated.
2.4.4 Proposition. Let Γ be a finitely generated discrete group and denote by g1, . . . , gn its
generators. Then (C∗(Γ),u), where u = diag(ug1

, . . . ,ugn ) is a compact matrix quantum group.
Conversely, let G = (C(G),u) be a compact matrix quantum group such that u is diagonal and
unitary. Denote by Γ the group of all group-like elements in C(G). Then G = Γ̂.
Proof. Let Γ = 〈g1, . . . , gn〉 be a discrete group. Since gi generate all g ∈ G, we surely have
that the unitaries ugi ∈ CΓ ⊆ C∗(Γ) generate all the ug , g ∈ G, which by definition generate
the whole algebras CΓ and C∗(Γ). The matrix u is obviously a corepresentation of Γ since we
have ∆(ugi ) = ugi ⊗ugi by definition of the comultiplication on Γ. In addition, it is unitary and
therefore also invertible.

The converse already follows from Theorem 2.4.2 since any compact matrix quantum group
with diagonal fundamental representation is obviously abelian. But we can also give a direct
proof: Denote by Γ the group of unitaries in C(G) generated by the elements uii . Its elements
are all representations of G and linearly span the whole PolG, so from Proposition 2.3.1, we
must have that Γ = IrrG contains all the irreducibles and, in particular, all the group-likes.
Consequently, we have that PolG = CΓ and hence G = Γ̂. �

2.4.5 Example. We will often work with the cyclic groups Γ = Zk or Γ = Z. They are generated
by a single element g satisfying gk = e in the case of Zk or by a single element g with no relation
in the case of Z. Hence, the associated group C*-algebras can be written as

C∗(Zk) = C∗(z | zk = 1, zz∗ = z∗z = 1), C∗(Z) = C∗(z | zz∗ = z∗z = 1).

This defines compact matrix quantum groups Ẑk = (C∗(Zk), (z)) and Ẑ = (C∗(Z), (z)), where the
fundamental representation is a 1× 1 matrix with a single entry z.
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2. Compact quantum groups

Note that since the cyclic groups are abelian, the associated group algebras are commutative
and hence the compact duals are also groups. Therefore, this also serves as the most simple
example of the classical Pontryagin duality. We have that Ẑ = T , where T =U1 ⊆C is the unit
circle (indeed, we may define an isomorphism C∗(Z)→ C(T ) mapping zk 7→ fk with fk(t) = tk ,
whose inverse is given by the Fourier series decomposition). For finite cyclic groups, we have
Ẑk = Zk (the isomorphism C∗(Zk)→ C(Zk) given by a similar formula).

Let G = (C(G),u) be a compact matrix quantum group with the fundamental representa-
tion u being unitary. Let Γ̂ be the quantum subgroup of G given by the relation uij = 0 for
all i , j. We call Γ̂ the diagonal subgroup of G. It is a compact matrix quantum group with
diagonal unitary fundamental representation and hence it is a dual of a finitely generated
group Γ. We call this group the dual diagonal subgroup of G.

2.4.6 Example. If G is a compact matrix group, then the above construction defines a diagonal
subgroup Γ̂ ⊆ G of all matrices in G that are diagonal. In this case, Γ̂ is also a group. The dual
diagonal subgroup Γ is then the Pontryagin dual of Γ̂. For example, the diagonal subgroup Γ̂ of
the orthogonal group ON consists of all diagonal orthogonal matrices. Those are exactly all
diagonal matrices with ±1 on the diagonal – that is ZN

2 . Its Pontryagin dual Γ is isomorphic to Γ̂
and hence also equals to Z

N
2 . For the unitary group UN , we get the subgroup of all diagonal

unitary matrices, that is matrices with complex units on the diagonal: Γ̂ = T
N ⊆ UN . Its

Pontryagin dual is then Γ = Z
N .

2.4.7 Example. Recall the definition of the free orthogonal quantum group O+
N = (C(O+

N ),u)
with

C(O+
N ) = C∗(uij | uij = u∗ij , uu

t = utu = 1).

Then the diagonal subgroup Γ̂ = (C∗(Γ), ũ) is determined by

C∗(Γ) = C∗(gi | gi = g∗i , g
2
i = 1) = C∗(Z∗N2 ),

so Γ = Z2 ∗ · · · ∗Z2 = Z
∗N
2 . Similarly, for the free unitary quantum group U+

N , we easily see that
the associated dual diagonal subgroup is the N -fold free product Z∗N .

Finally, let us just mention that it is possible to define also a representation of a given discrete
quantum group Γ on some Hilbert space H . It is defined as an element U ∈ l∞(Γ) ⊗̄B (H)
satisfying some property analogous to Eq. (2.2). Here, ⊗̄ denotes the von-Neumann-algebraic
tensor product. Such a representation then induces a representation of the algebra CΓ. We will
not use this notion in our thesis.

2.5 Quantum group constructions
In this section, we present some constructions that allow us to produce new quantum groups
from old ones. In particular, we are going to generalize the group direct product to the
quantum case, then we are going to present a related construction of glued products and finally
we generalize the construction of an intersection of two matrix groups and a matrix group
generated by two given ones.

2.5.1 Direct and free product of groups
Let us first recall some product constructions for groups. Let G and H be groups. Then we
can construct their direct product

G ×H = {(g,h) | g ∈ G,h ∈H}

with group operation (g1,h1)(g2,h2) = (g1g2,h1h2). We can then identify the group G with
a subgroup {(g,eH )}g∈G ⊆ G ×H and similarly H ' (eG,H) ⊆ G ×H . Then we can say that the

34



2.5 Quantum group constructions

elements of G commute with the elements of H in G ×H in the sense that gh = (g,e)(e,h) =
(g,h) = (e,h)(g,e) = hg. In addition, the groups G and H can also be obtained as quotient groups
of G ×H .

If G and H are compact matrix groups with fundamental representations u and v, then
G×H is also a compact group that can be represented by the direct sum u⊕v. For the associated
C*-algebra of continuous functions, we have C(G ×H) = C(G)⊗C(H) as this holds for any
compact spaces (see Eq. (1.2)). We can also have a look on the comultiplication on C(G×H).
Take f1 ∈ C(G) and f2 ∈ C(H) and take (g1,h1), (g2,h2) ∈ G ×H , then

∆G×H (f1 ⊗ f2)((g1,h1), (g2,h2)) = (f1 ⊗ f2)((g1g2), (h1h2))

= f1(g1g2)f2(h1h2) = ∆G(f1)(g1, g2)∆H (f2)(h1,h2),

so ∆G×H (f1 ⊗ f2) = ∆G(f1)∆H (f2).
Nevertheless, the direct product is defined for any pair of groups, not only the compact

ones. In particular, if Γ1 and Γ2 are discrete groups, then Γ1 × Γ2 defines a discrete group.
For the associated group algebras, we obviously have C(Γ1 × Γ2) = CΓ1 � CΓ2 and hence
C∗(Γ1 × Γ2) = C∗(Γ1)⊗max C

∗(Γ2).
Finally, let us mention the group free product. Let Γ1 and Γ2 be discrete groups. The

definition of the free product Γ1 ∗Γ2 is similar to free product of C*-algebras. Formally, it is
a set of reduced words over Γ1 tΓ2, that is, words where elements of Γ1 and Γ2 alternate and the
group identity never appears. If Γ1 is presented by generators g1, . . . , gm and Γ2 by generators
h1, . . . ,hn, then Γ1 ∗ Γ2 is presented by g1, . . . , gm,h1, . . . ,hn and the union of the corresponding
relations. The group algebra of a group free product is simply the free product of algebras
C∗(Γ1 ∗ Γ2) = C∗(Γ1) ∗

C
C∗(Γ2). The free product of two non-trivial groups is never finite nor

compact.

2.5.2 Direct products of compact quantum groups
In this section, we present the constructions of Wang [Wan95a, Wan95b], who defined the tensor
product and the dual free product of compact quantum groups. There are two viewpoints
on those constructions – either from the compact quantum group perspective or the discrete
quantum group perspective. From the compact quantum group viewpoint, both constructions
generalize the direct product of compact groups.

Let G and H be compact quantum groups. We define their tensor product G×H to be the
quantum group with underlying C*-algebra C(G×H) := C(G)⊗maxC(H) and comultiplication
defined as

∆G×H (a⊗ b) = ∆G(a)∆H (b) for all a ∈ C(G), b ∈ C(H). (2.3)

Formally, we should rather write ∆G×H (ιG(a)⊗ ιH (b)) = (ιG ⊗ ιG)(∆G(a)) (ιH ⊗ ιH )(∆H (b)), where
ιG:C(G)→ C(G)⊗max C(H) and ιH :C(H)→ C(G)⊗max C(H) are the canonical inclusions.

2.5.1 Theorem. The above mentioned construction indeed defines a compact quantum group
G ×H .

From the considerations in Section 2.5.1 it is now clear that taking two compact groups
G and H , their quantum group tensor product coincides with the group direct product.

Considering an element a⊗ b ∈ C(G)⊗max C(H), we will usually omit the sign ⊗. One way
to view this is to consider C(G)⊗max C(H) as a quotient of C(G) ∗

C
C(H) with respect to the

relations ab = ba for a ∈ C(G) and b ∈ C(H). The other viewpoint is to consider C(G) and C(H)
as subalgebras of C(G)⊗max C(H). This also shows that G and H can be considered as quotient
quantum groups of G ×H . In addition, we also have that C(G) and C(H) are quotients of
C(G)⊗max C(H), so G and H are quantum subgroups of G ×H .

If G and H are compact matrix quantum groups, we can define the structure of a compact
matrix quantum group on G ×H .
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2. Compact quantum groups

2.5.2 Proposition. Let G = (C(G),u) and H = (C(H),v) be compact matrix quantum groups.
Then

G ×H = (C(G)⊗max C(H),u ⊕ v)

is also a compact matrix quantum group. It is a matrix realization of the tensor product of G
and H as defined above.

Proof. It is straightforward to see that (C(G⊗maxH),u⊕v) is indeed a compact matrix quantum
group. Now let us denote by ∆G×H the comultiplication on the tensor product of G and H
defined by Eq. (2.3). The only remaining point is to show that ∆G×H coincides with the matrix
comultiplication defined by u ⊕ v. This is also clear. �

Now, we may want to generalize this construction by modifying the C*-algebra multipli-
cation, but keeping the comultiplication (that plays here the role of the group multiplication).
In particular, if we are dealing with free compact quantum groups, we may want to liberate
the C*-algebra multiplication. So, we define the following.

Let G and H be compact quantum groups. We define their dual free product G ∗̂H to be
the quantum group with underlying C*-algebra C(G ∗̂H) := C(G) ∗

C
C(H) and comultiplication

the unique unital ∗-homomorphism satisfying

∆G∗̂H (a) = ∆G(a), ∆G∗̂H (b) = ∆H (b) for all a ∈ C(G), b ∈ C(H). (2.4)

Again, formally, we mean ∆G∗̂H (ιG(a)) = (ιG ⊗ ιG)(∆G(a)), ∆G∗̂H (ιH (b)) = (ιH ⊗ ιH )(∆H (b)), where
ιG and ιH are the canonical inclusions into C(G) ∗

C
C(H).

2.5.3 Theorem. The above mentioned construction indeed defines a compact quantum group
G ∗̂H .

2.5.4 Proposition. Let G = (C(G),u) and H = (C(H),v) be compact matrix quantum groups.
Then

G ∗̂H = (C(G) ∗
C
C(H),u ⊕ v)

is also a compact matrix quantum group. It is a matrix realization of the dual free product of G
and H as defined above.

Proof. Same as Proposition 2.5.2. �

For a pair of compact matrix quantum groups G and H , considering the tensor product
G×H or the dual free product G ∗̂H , we will always mean those particular matrix constructions
presented in Propositions 2.5.2, 2.5.4.

Let us now present the discrete quantum group viewpoint on those constructions.
Let Γ1 and Γ2 be discrete quantum groups and denote by G1 = Γ̂1 and G2 = Γ̂2 their compact

duals. We define their direct product to be the discrete quantum group Γ1×Γ2 := �G1 ×G2. That
is, the discrete quantum group with underlying group C*-algebraC∗(Γ1×Γ2) = C∗(Γ1)⊗maxC

∗(Γ2)
and comultiplication given by Eq. (2.3).

We define the free product Γ1 ∗ Γ2 := �G1 ∗̂G2. That is, the discrete quantum group with
underlying group C*-algebra C∗(Γ1 ∗ Γ2) = C∗(Γ1) ∗

C
C∗(Γ2) and comultiplication given by

Eq. (2.4).
In case when Γ1 and Γ2 are discrete groups, the above defined direct and free product

exactly corresponds to the classical construction for groups.
This also explains the name dual free product. Since we are freeing the algebra multipli-

cation, not the comultiplication, the quantum group G ∗̂H has nothing to do with the group
free product G ∗H . It is rather the dual of a free product construction as we just explained. In
the literature (in particular, in the original work of Wang [Wan95a]), the dual free product is
often called just the free product referring to the free product of the C*-algebras.

Finally, let us mention, how the irreducible representations of free and tensor products
look like.
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2.5.5 Theorem. Let G and H be compact quantum groups. Let {uα}α∈IrrG and {vβ}β∈IrrH be
complete sets of irreducible representation of G and H . Denote by ιG and ιH the embeddings
of C(G) and C(H) into C(G ∗̂H), respectively, and denote wαij := ιG(uαij ) and wβij := ιH (vβij ). Then
a complete set of irreducible representations of G ∗̂H is formed by the trivial representation
together with

wγ1 ⊗wγ2 ⊗ · · · ⊗wγn ,

where γi ∈ IrrG∪IrrH are non-trivial representations such that the sets IrrG and IrrH alternate,
so if γi ∈ IrrG, then γi+1 ∈ IrrH and vice versa.

The similarity with the definition of the group free product is no coincidence. If G = Γ̂1 and
H = Γ̂2 for some discrete groups Γ1, Γ2. Then IrrG = Γ1 and IrrH = Γ2 and Irr(G ∗̂H) = Γ1 ∗ Γ2.

2.5.6 Theorem. Let G and H be compact quantum groups. Let {uα}α∈IrrG and {vβ}β∈IrrH be
complete sets of irreducible representation of G and H . Denote by ιG and ιH the embeddings
of C(G) and C(H) into C(G×H), respectively, and denote wαij := ιG(uαij ) and wβij := ιH (vβij ). Then
a complete set of irreducible representations of G ×H is formed by wα ⊗wβ with α ∈ IrrG,
β ∈ IrrH .

Let us finish with a well known result about stability of coamenability under the tensor
product. (Unfortunately, we did not find a reference, see [Cra17] for a more general result.)

2.5.7 Proposition. Let G and H be compact quantum groups. Then G and H are coamenable if
and only if G ×H is coamenable.

Proof. We use the characterization of coamenability from Theorem 2.3.4. The right-left
implication is trivial since C(G),C(H) ⊆ C(G ×H). For the left-right implication, take A :=
C(G)⊗min C(H). The minimal tensor product can alternatively also be used to describe G×H
as it surely contains the dense subalgebra Pol(G ×H) = PolG�PolH . If εG, εH are counits on G
and H , we can extend εG ⊗ εH to A by Proposition 1.3.2. Similarly, the Haar state h on A can be
expressed as h = hG ⊗ hH [Wan95b, Proposition 2.7]. If both hA and hB are faithful states, then
also hA ⊗ hB is a faithful state by [Avi82, Appendix]. �

2.5.3 Glued products
In this section, we present a less standard product construction, which is defined only for matrix
quantum groups. It was formally defined in [TW17] to interpret some coloured categories of
partitions in terms of compact matrix quantum groups. It will play a crucial role also in this
thesis.

Let G = (C(G),u) and H = (C(H),v) be compact matrix quantum groups. We define the
glued tensor product

G ×̃H := (C(G ×̃H),u ⊗ v),

where C(G ×̃H) is the C*-subalgebra of C(G)⊗max C(H) generated by uijvkl – the elements of
the tensor product u ⊗ v.

Similarly, we define the glued free product

G ∗̃H := (C(G ∗̃H),u ⊗ v),

where C(G ∗̃H) is the C*-subalgebra of C(G) ∗
C
C(H) generated by uijvkl .

The glued versions of the tensor and free products G ×̃H and G ∗̃H are by definition
quotient quantum groups of the standard constructions G ×H and G ∗̂H . Often it happens
that the elements uijvkl already generate the whole C*-algebra, so actually G ×̃H ' G ×H or
G ∗̃H 'H ∗̂H . Even in this case, however, we should not put the equality sign here. Although
the quantum groups can have the same underlying C*-algebra and hence be isomorphic, they
are never identical as compact matrix quantum groups since their fundamental representations
are always different – u ⊕ v in the standard case and u ⊗ v in the glued case.
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2.5.8 Example. Let us have a look on how the definition of glued tensor product looks like for
groups. Let G and H be two matrix groups, then we have

G ×̃H = {A⊗B | A ∈ G,B ∈H},

where ⊗ denotes the Kronecker product.
As a concrete example, consider the symmetric group SN represented by the permutation

matrices and consider the cyclic group of order two Ẑ2 = Z2 represented by a single complex
number ±1. Then SN ×̃Z2 consists of N ×N permutation matrices multiplied by a global sign.
Thus, SN ×̃Z2 is actually isomorphic to SN ×Z2. Nevertheless, by SN ×Z2 we mean a different
matrix realization. The ordinary product SN ×Z2 consists of (N + 1)× (N + 1) matrices with
block diagonal structure, where one block is formed by an N ×N permutation matrix and the
second block is the single number ±1.

In general, take any cyclic group Ẑk = Zk with k ∈N represented by the k-th roots of unity.
Then for any matrix group G, we have

G ×̃Zk = {e2πij/kA | j = 0, . . . , k − 1; A ∈ G}.

We can do the same for the whole unit disk Ẑ = T ⊆C

G ×̃T = {zA | z ∈ T ; A ∈ G}.

Given a compact matrix quantum group G, we call G ×̃ Ẑ the tensor complexification
of G, G ×̃ Ẑk is the tensor k-complexification, G ∗̃ Ẑ is the free complexification and G ∗̃ Ẑk is
the free k-complexification of G. The free complexification was studied already by Banica
in [Ban99a, Ban08].

2.5.4 Intersection of compact matrix quantum groups

Given two groups H1, H2 embedded into a larger one, we can compute their intersection
H1 ∩H2, which is again a group. In particular, we can take compact matrix groups H1, H2
represented by matrices of the same size and ask, what is their intersectionH1∩H2 – the largest
subgroup of both. This concept can be generalized to the case of compact matrix quantum
groups.

Let H1 and H2 be compact matrix quantum groups with fundamental representations v1
and v2 of the same size. We denote by H1 ∩H2 the intersection of H1 and H2 defined as the
largest quantum subgroup of both H1 and H2. That is H1 ∩H2 =: G = (C(G),u) is defined by
the fact that

(1) G ⊆H1,H2, so the size of u coincides with the size of v1 and v2 and there are surjective
∗-homomorphisms ϕk :C(Hk)→ C(G) mapping [vk]ij 7→ uij for k = 1,2.

(2) For every compact quantum group G̃ such that G ⊆ G̃ ⊆H1,H2, we have G = G̃.

The quantum group H1 ∩H2 is unique and always exists as follows from the following
proposition.

2.5.9 Proposition. Let H1 and H2 be compact matrix quantum groups with fundamental
representations of the same size. Then the intersection H1 ∩ H2 is defined by the ideal
IH1∩H2

= IH1
+ IH2

. Conversely, the ideal IH1
+ IH2

always defines a compact matrix quantum
group – namely the intersection H1 ∩H2.

We will prove this proposition as a part of Proposition 3.4.17, see Remark 3.4.18.
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2.5.5 Topological generation

Given two compact matrix groups represented by matrices of the same size H1,H2 ⊆ GLN ,
we may ask, what compact matrix group they generate. That is, find the smallest compact
subgroup 〈H1,H2〉 ⊆GLN containing both H1 and H2. We may ask the same question also for
compact matrix quantum groups. The idea goes back to [Chi15, BCV17].

Let H1 and H2 be compact matrix quantum groups with fundamental representations v1
and v2 of the same size. We define G := 〈H1,H2〉 to be the smallest compact matrix quantum
group containing H1 and H2. We say that G is topologically generated by H1 and H2. That is
G = (C(G),u) is a quantum group satisfying the following.

(1) H1,H2 ⊆ G, so the size of u coincides with the size of v1 and v2 and there are surjective
∗-homomorphisms ϕk :C(G)→ C(Hk) mapping uij 7→ [vk]ij for k = 1,2.

(2) For every compact quantum group G̃ such that H1,H2 ⊆ G̃ ⊆ G, we have G = G̃.

Note that already in the case of groups it may happen that for two compact matrix groups
H1, H2, the group they generate 〈H1,H2〉 is not compact. We can fix this issue assuming that the
compact groups are unitary H1,H2 ⊆UN . Then surely 〈H1,H2〉 ⊆UN and hence it is compact.

Thus, also for compact matrix quantum groups H1 and H2, the quantum group 〈H1,H2〉
may not exist unless we assume H1,H2 ⊆ U+(F) for some common F ∈ GLN (this can be
formulated as an equivalence, see Proposition 3.4.19). Nevertheless, if the quantum group
〈H1,H2〉 exists, then it is unique. One way to see this is that if two quantum groups G1 and
G2 both contain H1 and H2, then also G1 ∩G2 contains both H1 and H2. Alternatively, it also
follows from the following characterization.

2.5.10 Proposition. Let H1 and H2 be compact matrix quantum groups with fundamental
representations of the same size. If the quantum group 〈H1,H2〉 exists, then it corresponds to
the ideal I〈H1,H2〉 = IH1

∩ IH2
. Conversely, suppose H1,H2 ⊆ U+(F). Then IG := IH1

∩ IH2
defines

a compact matrix quantum group G = 〈H1,H2〉.
Proof. Let us start with the first part. We know that H1,H2 ⊆ 〈H1,H2〉, so, according to
Lemma 2.3.8, we have that I〈H1,H2〉 ⊆ IH1

, IH2
and hence I〈H1,H2〉 ⊆ IH1

∩ IH2
. Denote IG := IH1

∩ IH2
.

Since H1 and H2 are quantum subgroups of 〈H1,H2〉, we have that IHk /I〈H1,H2〉 are Hopf ∗-ideals.
Consequently, also IG/I〈H1,H2〉 is a Hopf ∗-ideal, so IG defines a compact quantum group G such
that H1,H2 ⊆ G ⊆ 〈H1,H2〉. So, G = 〈H1,H2〉.

For the converse, suppose that H1,H2 ⊆ U+(F) and denote IG := IH1
∩ IH2

. Then again
IHk /IU+(F) are Hopf ∗-ideals, so IG/IU+(F) is also a Hopf ∗-ideal and hence IG defines a compact
matrix quantum group G. Obviously G ⊆ H1,H2 and also for any other G̃ ⊆ H1,H2, we have
G̃ ⊆ G. �
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Chapter 3

Monoidal categories and Tannaka–Krein duality
In this chapter, we bring some definitions for the abstract algebraic structure that provides the
connection between set partitions and compact quantum groups. The structure is a monoidal
category and the connection is via Tannaka–Krein duality.

Let us stress that the category theory occurs in this work not because of any obsession of the
author with formulating everything in terms of categories. Quite the contrary, the categories
appear here since it is the most fitting algebraic structure for our purpose. We will try to
formulate everything as simple and concrete as possible avoiding unnecessary abstractions
typical for the theory of categories.

Since our use of the abstract category theory will be very restricted, we believe that the short
summary provided in the following sections is enough for everybody without any background
in category theory to understand the concept of partition categories and Tannaka–Krein duality.
Nevertheless, if this thesis was a textbook, the crucial last section 3.4 would probably be shifted
somewhere to the back to Chapter 8 or so. Readers not familiar with monoidal categories and
Tannaka–Krein duality are advised to read Section 3.4 very briefly for the first time and get
back to the proofs later since the rest of the thesis will provide a concrete illustration of the
abstract concepts presented in Section 3.4.

As a general reference for the category theory, we mention the classical book ~McL98�.
The main subject of our study are the categories of representations of quantum groups. Those
categories are described in the monography ~NT13�. Their study begun by the work of
Woronowicz in [Wor88], who used the W*-categories defined in [GLR85] to study representa-
tions of quantum groups. Although it is not a proper reference, we would like to acknowledge
the helpfulness of the project nLab.1

3.1 General introduction to category theory
Categories constitute a natural generalization of the classical algebraic structures, such as
a group or an algebra, to the case where the multiplication is not defined for every pair of
elements. As a motivating example, take a topological space X and consider the set π(X)
of homotopy classes of all paths in X. This set looks almost like a group – if we define the
multiplication as concatenation of paths then we can find (sort of) a unit and an inverse for
every element. The only problem is that two paths can be concatenated only if one starts in
the same point as the other ends.

A category is a triple C = (ObjC, {Mor(a,b)}a,b∈ObjC , ·), where

(a) ObjC is a set,2 whose elements are called objects,
(b) Mor(a,b) for a,b ∈ObjC are sets, whose elements are called morphisms,
(c) for every triple a,b,c ∈ObjC, there is an operation ·:Mor(b,c)×Mor(a,b)→Mor(a,c).

Those must satisfy that for every object a ∈ObjC there is an identity morphism ida ∈Mor(a,a)
such that ida · T = T and S · ida = S for every T ∈ Mor(b,a) and every S ∈ Mor(a,c), where
b,c ∈ObjC.

In the example above, the topological space X considered as a set of objects and, for any
two points x,y ∈ X, the set of homotopy classes of paths between x and y as a set of morphisms

1 See ncatlab.org.
2 Usually, the collections of objects and morphisms are not required to be sets, but generally any classes. A cate-

gory, where those classes are indeed sets is then called a small category. Here, we will work with small categories only
and call them simply categories.
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3.1 General introduction to category theory

between x and y give rise to a category. This category is, in addition, a groupoid since it
satisfies the “group property” that every morphism ϕ ∈Mor(x,y) has its inverse, that is, a path
ϕ−1 ∈Mor(y,x) such that ϕ ·ϕ−1 = idy and ϕ−1 ·ϕ = idx. It is the so-called fundamental groupoid
of X.

In our case, the following example will be more important. Note that the set of all square
matrices MN (C) over C forms an algebra. If we want to define an algebraic structure that
describes not only square matrices but any matrices, we have to give up the condition that
every pair of elements is composable. We are looking for a category that generalises algebras –
an algebroid.

A linear category or an algebroid is a category C, where the sets of morphisms Mor(a,b)
form a vector space for every a,b ∈ObjC.

Consider the set of natural numbers including zero N0 as a set of objects and, for any
n,m ∈ N0, the vector space of all complex m × n matrices as a space of morphisms from n
to m. Then we can define the composition of morphisms via the matrix multiplication. Such
a category is called the category of all matrices over C and denoted by Mat.

Morphisms are called morphisms simply because the objects of a given category can often
be identified with instances of some algebraic structure and then the morphisms are indeed
homomorphisms between them. For example, in the category of complex matrices, we can
identify any object n ∈N0 with the complex vector space C

n. Then the morphisms from n to m
(i.e. the m×n matrices) indeed play the role of linear maps (i.e. vector space homomorphisms)
from C

n to C
m. We will denote those morphism spaces Mat(n,m).

Note that instead of considering the category of matrices Mat, where the objects play
the role of Cn vector spaces, we could consider the category of all finite-dimensional vector
spaces Vectfin. Here, the objects would be all vector spaces and the morphisms would be
linear maps between those vector spaces. Note however that in this case the class of objects is
not a set any more. Nevertheless, it is one of the fundamental results of linear algebra that
finite-dimensional vector spaces are determined by their dimension. In terms of the category
theory, we can say that the categories Mat and Vectfin are equivalent.

The above example also illustrates one confusing aspect of the common notation. Some-
times the name of the category refers to its morphism spaces (such as the category of matrices)
and sometimes it refers to the set of objects (such as the category of vector spaces). In corre-
spondence with this distinction, we sometimes identify the category with its set of objects
(we write V ∈ Vectfin for a finite-dimensional vector space V ) or with its set of morphisms.
However, let us stress that, regardless of the notation, the most important data in a given
category are always the morphisms, not the objects. (As we just mentioned, the categories
Mat and Vectfin are considered to be equivalent although the associated classes of objects are
completely different.)

As in the case of any other algebraic structure, we need to define the notion of a homo-
morphism. Let C1 and C2 be categories. A functor F:C1→ C2 is a collection of maps

(a) F:ObjC1→ObjC2,
(b) F:Mor(a,b)→Mor(F(a),F(b)) for all a,b ∈ObjC1

such that
F(ST ) = F(S)F(T ), F(ida) = idF(a) (3.1)

for every T ∈ Mor(a,b), S ∈ Mor(b,c), a,b,c ∈ ObjC1. Note that condition (3.1) is a kind of
a homomorphism property for the morphisms. So, a functor is a morphism of morphisms. In the
case of linear categories, we assume functors to be linear maps.

A functor is called

• faithful if it is injective on morphisms,
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3. Monoidal categories and Tannaka–Krein duality

• embedding if it is injective on both objects and morphisms,
• full if it is surjective on morphisms,
• fully faithful if it is bijective on morphisms,
• isomorphism if it is bijective on both objects and morphisms.

For a given category C, its subcategory is a category D with ObjD ⊆ ObjC, MorD(a,b) ⊆
MorC(a,b), idDa = idCa for a,b ∈D and composition given by restriction. This induces a functor
embedding D→ C. We say that D is a full subcategory if the embedding is full. Equivalently,
this means that D is given by restricting to a subset of objects ObjD ⊆ObjC and then taking
MorD(a,b) = MorC(a,b) for all a,b ∈ ObjD. In contrast, D is called a wide subcategory if
ObjD = ObjC, but MorD(a,b) ⊆MorC(a,b).

As an example, notice that Mat can be embedded into Vectfin. Conversely, by choosing
some vector space basis for each finite-dimensional vector space, we may construct a faithful
functor Vectfin→Mat.

3.2 Monoidal ∗-categories
Let us now continue with the example of the category of matrices. Within this category,
we can actually define additional operations to the composition. First, given two matrices
A ∈Mat(n1,m1), B ∈Mat(n2,m2) we can compute their tensor product, which is a matrix A⊗B ∈
Mat(n1n2,m1m2).

A monoidal category is a category C equipped with the following additional operations
called and denoted usually as a tensor product

(a) ⊗:ObjC ×ObjC→ObjC,
(b) ⊗:Mor(a1,b1)×Mor(a2,b2)→Mor(a1 ⊗ a2,b1 ⊗ b2) for all a1, a2,b1,b2 ∈ObjC

such that

(1) the operations form a bifunctor, that is, (R ⊗ T )(S ⊗U ) = RS ⊗ TU for appropriate
morphisms R,S,T ,U ,

(2) all the operations are associative,1

(3) there is an identity object ∅ ∈ ObjC such that ∅ ⊗ a = a⊗ ∅ = a for every object a and
id∅ ⊗ T = T ⊗ id∅ = T for every morphism T .2

Thus, the tensor product defines the structure of a monoid on the set of objects ObjC,
hence the name. In the case of linear categories, we assume the tensor product of morphisms
to be bilinear.

A functor F:C→D between two monoidal categories is called monoidal if it preserves the
monoidal structure. That is, F(a⊗ b) = F(a)⊗F(b) and F(T ⊗ S) = F(T )⊗F(S).

Before we move to the second operation, let us introduce a new category FinHilb of finite-
dimensional Hilbert spaces. Its objects are all finite-dimensional Hilbert spaces. To assure
that it indeed is a set, we assume that those are realized as Cn. So, objects of FinHilb are pairs
(Cn,〈·, ·〉), where n ∈N0 and 〈·, ·〉 is some inner product on C

n (possibly non-standard). The
set of morphisms between H,K ∈ FinHilb is again the linear spaceL (H,K) of all linear maps
H → K .3

1 Here, we again do not bring the definition in its full generality. Usually, a weaker condition of associativity “up
to an isomorphism” is assumed. Monoidal categories, where the operations ⊗ are strictly associative are then called
strict. All monoidal categories in this thesis will be strict.

2 Also these equalities may hold only up to some isomorphism in non-strict categories.
3 In the infinite-dimensional case, bounded operators must be considered. This choice of morphism spaces does

not seem to fit into the categorical philosophy since general linear maps do not preserve the inner product and hence
are not the proper morphisms. However, considering isometries only would be rather inconvenient (for example, the
morphism space C

n → C
m for n > m would be always empty), so it is better in our case to consider indeed all linear

maps and encode the Hilbert space structure of the objects into the ∗-structure of morphisms as described below.
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3.3 Representation categories

The inner product induces a new operation on the morphism spaces. For any linear map
A ∈ FinHilb(H,K), we can compute its adjoint A∗ ∈ FinHilb(K,H).

An involutive category is a category C equipped with a map ∗:Mor(a,b)→Mor(b,a) for
every a,b ∈ObjC called the involution, which is

(1) involutive, i.e. T ∗∗ = T ,
(2) contravariant, i.e. (ST )∗ = T ∗S∗.

A ∗-category is an involutive linear category over C (or any field with involution), where
the involution is an antilinear map. A functor between two involutive categories is called
unitary if it preserves the involution. In the case of monoidal involutive categories, we also
require (T ⊗ S)∗ = T ∗ ⊗ S∗ for every pair of morphisms T , S.

Thus, FinHilb is a monoidal ∗-category. We can make also Mat to be a monoidal ∗-category
introducing the involution as the Hermitian conjugation (i.e. taking adjoint with respect to
the standard inner product).

Let C be a monoidal involutive category and take an object a ∈ObjC. We say that ā ∈ObjC
is a dual object to a if there exist duality morphisms R ∈Mor(1, ā⊗ a) and R̄ ∈Mor(1, a⊗ ā)
such that

(R̄∗ ⊗ ida)(ida ⊗R) = ida, (R∗ ⊗ idā)(idā ⊗ R̄) = idā.

It holds that dual objects are determined uniquely up to an isomorphism. If every object in
C has a dual, then we call C a rigid category.

3.3 Representation categories
In this section, we bring another example of a monoidal ∗-category. Consider a compact
quantum group G. (In particular, one can have some group in mind.) We define RepG to be the
category of unitary representations of G as follows. The set of objects is the set of all unitary
representations of G denoted by RepG as well. For a representation u ∈ RepG, denote by n(u) its
size (i.e. u ∈Mn(u)(C(G))). The set of morphisms between representations u and v is the set of
all linear operators intertwining u and v. Recall that given two representations u,v ∈ RepG,
we define the space of intertwiners

Mor(u,v) := {T :Cn(u)→C
n(v) | T u = vT },

which now plays the role of the morphism space between u and v in RepG.
The fact that this indeed defines a monoidal ∗-category results from the following six

simple statements about quantum group representations. Suppose u, u′, v, v′, w ∈ RepG.

(1) The identity matrix 1n(u) ∈Mor(u,u).
(2) If T1 ∈Mor(u,v) and T2 ∈Mor(v,w), then T2T1 ∈Mor(u,w).
(3) If T ∈Mor(u,v), then T ∗ ∈Mor(v,u).
(4) If T1 ∈Mor(u,u′) and T2 ∈Mor(v,v′), then T1 ⊗ T2 ∈Mor(u ⊗u′ ,v ⊗ v′).
(5) It holds that (u ⊗ v)⊗w = u ⊗ (v ⊗w).
(6) The trivial representation 1 ∈ RepG satisfies n(1) = 1 and 1⊗u = u ⊗ 1 = u.

The fact that the morphisms are realized as linear operators, i.e. Mor(u,v) ⊆Mat(n(u),n(v))
means that the function n defines a unitary faithful functor RepG→Mat, so called fibre functor.
Such categories are sometimes called concrete. Note also that the category RepG is, in addition,
closed under taking subrepresentations and direct sums of representations. This can also be
axiomatized within the category theory.

The representation categories of groups and quantum groups were studied by many
researchers. The history starts with the work of Tannaka [Tan39] and Krein [Kre49], who
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3. Monoidal categories and Tannaka–Krein duality

showed how to reconstruct compact groups from their representation categories and how to
characterize such categories. Today, the result is known as the Tannaka–Krein duality. Later
many researchers such as Cartier (who defined Hopf algebras for this purpose [Car56]), Saaerda
Rivano, or Deligne studied similar duality for algebraic groups introducing so-called Tannakian
categories. See ~EGNO15� for more information about tensor categories and Tannaka–Krein du-
ality in this more algebraic context. The crucial result for our thesis is the work of Woronowicz
[Wor88], who generalized the Tannaka–Krein duality for compact quantum groups.

There are many different formulations of the Tannaka–Krein duality for compact quantum
groups. In the original paper [Wor88], Woronowicz had compact matrix quantum groups
in mind and he used the category RepG with some distinguished element playing the role of
the fundamental representation. In the appendix of [Wan97], Wang remarks that a similar
formulation and the same proof works also for general compact quantum groups. Below, we
give a formulation from ~NT13�, which is more abstract and uses more categorical language.
For the matrix case, we will show in Section 3.4 that it may be more convenient to use a bit
different category, which is smaller and easier to work with.

3.3.1 Theorem (Woronowicz–Tannaka–Krein for CQGs). Let C be a rigid monoidal ∗-category
with finite direct sums and subobjects, F:C→ FinHilb a unitary fibre functor. Then there exists
a unique up to isomorphism compact quantum group G and a unitary monoidal equivalence
E:C→ RepG such that F is naturally unitarily monoidally isomorphic to the composition of
the canonical fibre functor RepG→ FinHilb with E.

This may sound a bit complicated; however, the main idea is quite simple. We already
know that we can associate the monoidal ∗-category RepG to any compact quantum group G.
The Tannaka–Krein duality claims the converse: given a monoidal ∗-category (with some
additional axioms), we can interpret it as a representation category of some compact quantum
group G and reconstruct G from these data.

We will not explain this formulation of the theorem any further nor give a proof of it. In
the following section, we reformulate Tannaka–Krein duality to the special setting of compact
matrix quantum groups and give a proof there.

Before we move to the next section, let us mention a few additional remarks.

3.3.2 Proposition. Let G be a compact quantum group and H its quotient. Then RepH is a full
subcategory of RepG. More concretely, RepH consists of all representations u ∈ RepG such that
uij ∈ PolH ⊆ PolG.

Proof. The proof of this statement becomes clear if we understand, what it precisely means.
First, recall that by H being a quotient of G, we mean that PolH is a Hopf ∗-subalgebra of PolG.
Now, if u is a representation of G and it has entries in PolH , it must also be a representation
ofH . Conversely, any representation ofH is also a representation of G. Finally, the definition of
the morphism spaces Mor(u,v) for u,v ∈ RepH is the same also for G, so the morphism spaces
in RepH and RepG coincide. This is precisely what a full subcategory means – restricting the
set of objects while keeping the morphisms spaces. �

3.3.3 Corollary. Let H be a quotient quantum group of G. Then IrrH ⊆ IrrG. More precisely,

IrrH = {α ∈ IrrG | [uα]ij ∈ PolH ∀i, j} ⊆ IrrG.

Proof. In Proposition 3.3.2, we showed that the representations of H are just a subset of
representations of G and that the morphism spaces remain the same. In particular, the notion
of irreducibility does not change. �

Finally, we mention another algebraic structure linked to the set of all representations.

3.3.4 Definition. Let G be a compact quantum group. Let R be the set of all equivalence classes
of finite-dimensional representations of G. The operation of direct sum ⊕ and tensor product ⊗
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3.4 Tannaka–Krein for compact matrix quantum groups

of representations is well defined also for the equivalence classes. We call (R,⊕,⊗) the fusion
semiring of G.

As we already mentioned, the concept of direct sums can be formalized also in the theory
of monoidal categories. In that case, the structure of the fusion semiring is already contained
in RepG as the underlying set (semiring) of objects. This algebraic structure allows to formalize
one of the basic questions of the representation theory, namely characterizing the fusion rules.
That is, given two irreducible representations u and v, how does their tensor product u ⊗ v
decompose into irreducibles?

3.4 Tannaka–Krein for compact matrix quantum groups
In this section, we reformulate the Woronowicz–Tannaka–Krein duality focusing more on the
concrete matrix realization of the quantum groups. Instead of working with the whole category
RepG of all representations, it is enough, in the matrix case, to use the category FundRepG of
representations that can be constructed from the fundamental representation just by taking
tensor products and complex conjugations. This approach is more convenient for practical
computations. Also the proof of the duality is more accessible in this case since it does not
require any advanced category theory.

This approach was essentially used from the beginning to produce examples of compact
quantum groups. Already in the work [Wor88], Woronowicz constructed the quantum deforma-
tion of SU2 by specifying the associated category generated by the fundamental representation.
An extensive use of such an approach began with the discovery of easy quantum groups in
[BS09]. However, researchers started to formalize this approach more concretely only recently.
We refer to the works [Fre17, Mal18] and the surveys ~Ban19, Fre19�. Nevertheless, the defi-
nitions and notation are still not completely fixed, so a lot of the notation and formulations
in this section are the invention of the author although the statements are well-known to the
experts.

3.4.1 Two-coloured representation categories

In this section, we formalize the monoidal ∗-categories that will appear in the matrix version of
the Tannaka–Krein duality.

Let G = (C(G),u) be a compact matrix quantum group and denote by N the size of the
fundamental representation u ∈ MN (C(G)). Suppose that u is unitary, so we can consider
G ⊆U+(F) for some F ∈GLN . Denote u := u and u := FūF−1.

We define O := { , } a set consisting of a white and a black point. The letter O stands for
object since those points will serve as objects in some category. Denote by O ∗ the free monoid
over the alphabet O and by O k the set of all words of length k. We denote by ∅ ∈ O the empty
word. For any word w ∈ O ∗, we denote by |w| its length. We define a homomorphism w 7→ w̄
by ¯ = , ¯ = called the colour inversion. We denote by w? the reflection of a word, that is,
reading it backwards. We define an involution on O ∗ by reversing the word and inverting
the colours w∗ := w̄? . For example, ( )∗ = . For any word w ∈ O ∗, we denote by u⊗w the
corresponding tensor product of representations u and u . For example, taking w = , we
have u⊗w = u ⊗u ⊗u .

For a pair of words w1,w2 ∈ O ∗, denote

FundRepG(w1,w2) := Mor(u⊗w1 ,u⊗w2 ) = {T : (CN )⊗|w1 |→ (CN )⊗|w2 | | T u⊗w1 = u⊗w2T }. (3.2)

Such a collection of vector spaces forms a rigid monoidal ∗-category in the following sense.

3.4.1 Definition. Consider a natural number N ∈N. A two-coloured representation category
is a rigid monoidal ∗-category C with O ∗ being the monoid of objects (tensor product of objects
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3. Monoidal categories and Tannaka–Krein duality

obtained via the monoid operation, dual objects by involution) and morphisms realized as
linear maps

C(w1,w2) ⊆L ((CN )⊗|w1 |, (CN )⊗|w2 |).

Equivalently, without referring to the categorical definitions, we can say that a two coloured
representation category is a collection of subspaces C(w1,w2) ⊆L ((CN )⊗|w1 |, (CN )⊗|w2 |) satisfying
the following five axioms

(1) For T ∈C(w1,w2), T ′ ∈C(w′1,w
′
2), we have T ⊗ T ′ ∈C(w1w

′
1,w2w

′
2).

(2) For T ∈C(w1,w2), S ∈C(w2,w3), we have ST ∈C(w1,w3).
(3) For T ∈C(w1,w2), we have T ∗ ∈C(w2,w1).
(4) For every word w ∈ O ∗, we have 1⊗|w|N ∈C(w,w).
(5) There exist vectors ξ ∈C(∅, ) and ξ ∈C(∅, ) such that

(ξ∗ ⊗ 1N )(1N ⊗ ξ ) = 1N , (ξ∗ ⊗ 1N )(1N ⊗ ξ ) = 1N . (3.3)

3.4.2 Remark. The axiom (5) says that the objects and are dual to each other. This already
implies that every object w ∈ O ∗ has a dual w∗. Indeed, taking any w = c1 · · ·ck ∈ O ∗, we can
construct

ξw := ξc1
· (1N ⊗ ξc2

⊗ 1N ) · · · (1⊗(k−1)
N ⊗ ξck ⊗ 1⊗(k−1)

N ) ∈C(∅,ww∗),

where ξ := ξ , ξ := ξ . Then we can check that the conjugation equations

(ξ∗w ⊗ 1N )(1N ⊗ ξw∗ ) = 1N , (ξ∗w∗ ⊗ 1N )(1N ⊗ ξw) = 1N

hold and hence w and w∗ are indeed dual to each other.

3.4.3 Remark (Frobenius reciprocity). The rigidity of a category induces isomorphisms between
certain morphism spaces. We define a map Rrot:C(w1,w2a) → C(w1ā,w2) for a ∈ { , } by
T 7→ (1⊗|w2 |

N ⊗ ξ∗a)(T ⊗ 1N ). We call this map the right rotation. This map is invertible with
Rrot−1:C(w1a,w2)→ C(w1,w2ā) defined as T 7→ (T ⊗ 1N )(1⊗|w1 |

N ⊗ ξa). Similarly, we can define
the left rotation Lrot:C(aw1,w2)→C(w1, āw2).

Consequently, this means that the spaces C(w1,w2) are already determined by the spaces
C(∅,w) since

C(w1,w2) = Rrot|w1 |C(∅,w2w
∗
1) = Lrot−|w1 |C(∅,w∗1w2).

The spaces FundRepG(∅,w) = Mor(1,u⊗w) = {ξ ∈ (CN )⊗|w| | u⊗wξ = ξ} are sometimes denoted by
Fix(u⊗w) and its elements are called the fixed points of u⊗w.

Note that the words left and right do not refer to the direction of the rotation, but to the
place, where the rotation acts (it moves either the left-most letter or the right-most letter). In
particular, the inverse of the left rotation is not the right rotation and vice versa.

3.4.4 Proposition. For any compact matrix quantum group G, FundRepG is a two-coloured
representation category.

Proof. The axioms (1)–(4) are obvious. For the duality morphisms, we can write explicit
formulae

[ξ ]ij = Fji , [ξ ]ij = [F̄−1]ji . (3.4)

We indeed have ξ ∈ FundRepG(∅, ) since the relation (u ⊗ u )ξ = ξ says nothing else
but uu∗ = 1N . Similarly, we have ξ ∈ FundRepG(∅, ) since the relation (u ⊗u )ξ = ξ is
equivalent to u u ∗ = 1N . Checking the conjugation equations (3.3) is also straightforward. �
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3.4 Tannaka–Krein for compact matrix quantum groups

3.4.5 Remark. The category FundRepG already contains all the information of the whole
category RepG. Actually, RepG can be reconstructed from FundRepG by a certain completion
procedure, so-called Karoubi envelope, adding direct sums of representations, subrepresenta-
tions and equivalent representations. In particular, note the following facts.

Every irreducible representation of G is contained in u⊗w for some w. Indeed, let I
be the set of all irreducible representations of G that are subrepresentations of u⊗w for any
w ∈ O ∗. Since the matrix entries of all the representations generate O(G) = PolG and since
every representation is a direct sum of irreducibles, we know that the matrix entries of the
irreducibles in I generate PolG. From Proposition 2.3.1 we then have I = IrrG.

Given some u⊗w, all its subrepresentations are in one-to-one correspondence with pro-
jections in Mor(u⊗w,u⊗w) = FundRep(w,w). This follows directly from the definition of a sub-
representation. In particular, the irreducible subrepresentations correspond to the minimal
projections. Given two irreducibles u⊗w1P1 and u⊗w2P2, they are equivalent if and only if
P2FundRepG(w1,w2)P1 , {0}.

3.4.2 The duality theorem for CMQGs

The following formulation of Woronowicz–Tannaka–Krein duality basically coincides with
[Fre17], where it is formulated without a proof. A similar statement, however only in the
orthogonal case (that is, with objects indexed by natural numbers instead of words), was
formulated and proven also in [Mal18]. We follow here the idea of proof from [Mal18]. The
orthogonal version of the statement is presented in Section 3.4.3. Another, even more simplified
version, is proven in ~Fre19�.

3.4.6 Theorem (Woronowicz–Tannaka–Krein for CMQGs). Let C be a two-coloured repre-
sentation category. Then there exists a unique compact matrix quantum group G such that
FundRepG = C. It is determined by the ideal

IG = span

[T x⊗w1 − x⊗w2T ]j i

∣∣∣∣∣∣∣ T ∈C(w1,w2); w1,w2 ∈ O ∗;
i1, . . . , i|w1 |, j1, . . . , j|w2 | = 1, . . . ,N

 ⊆C〈xij ,x∗ij〉.

In order to give a sense to the formula for IG and to prepare the proof of Theorem 3.4.6, we
need to specify the matrix F, so that the matrix u is well defined. We fix the duality morphisms
satisfying Eqs. (3.3) and define F according to Eqs. (3.4). Note that the duality morphisms are
not defined uniquely by Eqs. (3.3). Part of the “uniqueness” statement is that the resulting
quantum group does not depend on the particular choice of F.

3.4.7 Lemma. With the notation of Thm. 3.4.6, IG/IU+(F) is a Hopf ∗-ideal.

Proof. We denote by v the fundamental representation of U+(F), so

I := IG/IU+(F) = span{[T v⊗w1 − v⊗w2T ]j i | T ∈C(w1,w2)}.

(I is an ideal): Take any T ∈C(w1,w2), i = (i1, . . . , ik), j = (j1, . . . , jl), so [T v⊗w1 −v⊗w2T ]j i ∈ I . Then
taking any vamn with m,n = 1, . . . ,N and a ∈ O , we have

[T v⊗w1 − v⊗w2T ]j iv
a
mn = [T ′v⊗w

′
1 − v⊗w′2T ′]j ′ i ′ ∈ I,

where T ′ := T ⊗ 1N ∈ C(w′1,w
′
2) denoting w′1 = w1a, w′2 = w2a, i ′ = (i ,m), j ′ = (j ,n). So, I is

a right-ideal; similarly, we prove that it is also a left ideal.
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3. Monoidal categories and Tannaka–Krein duality

(I is an coideal): Again, take arbitrary T ∈C(w1,w2), w1 = (c1, . . . , ck), w2 = (d1, . . . ,dl), i , j . Then

∆([T v⊗w1 − v⊗w2T ]j i ) =
∑
m

Tjm∆(vc1
m1i1

) · · ·∆(vckmk ik
)−

∑
n

Tni∆(vd1
j1n1

) · · ·∆(vdljlnl )

=
∑
ms

Tjm(vc1
m1s1 · · ·v

ck
mksk )⊗ (vc1

s1i1
· · ·vcksk ik )−

∑
nt

Tni (v
d1
j1t1
· · ·vdljl tl )⊗ (vd1

t1n1
· · ·vdltlnl )

=
∑
s

[T v⊗w1 − v⊗w2T ]j s ⊗ (vc1
s1i1
· · ·vcksk ik ) +

∑
t

(vd1
j1t1
· · ·vdljl tl )⊗ [T v⊗w1 − v⊗w2T ]ti

∈ I �PolU+(F) + PolU+(F)� I.

(S(I) ⊆ I): This time we define T ′ as a rotation of T

T ′ := Lrot−l Rrot−k T = (ξ∗w∗2 ⊗ 1⊗kN )(1⊗lN ⊗ T ⊗ 1⊗kN )(1⊗lN ⊗ ξw1
) ∈C(w∗2,w

∗
1).

Using Equations (3.4), we can compute that T ′ = (F̄−1)⊗w
∗
1T ′′F̄⊗w

∗
2 , where [T ′′](a1,...,ak ),(b1,...,bl ) =

T(bl ,...,b1),(ak ,...,a1), F = F, F = F̄−1. Since T ′ ∈C(w∗2,w
∗
1), we have

I 3 [(F̄−1)⊗w
∗
1T ′′F̄⊗w

∗
2v⊗w

∗
2 − v⊗w∗1 (F̄−1)⊗w

∗
1T ′′F̄⊗w

∗
2 ]i j

for every i , j . Since we have already proven that I is an ideal, we can multiply the above matrix
by F̄⊗w

∗
1 from left and by (F̄−1)⊗w

∗
2 from right to obtain

I 3 [T ′′F̄⊗w
∗
2v⊗w

∗
2 (F̄−1)⊗w

∗
2 − F̄⊗w∗1v⊗w∗1 (F̄−1)⊗w

∗
1T ′′](ik ,...,i1),(jl ,...,j1)

= [T ′′ v̄⊗w̃2 − v̄⊗w̃1T ′′](ik ,...,i1),(jl ,...,j1) =
∑
n

Tni (v
dl
nl jl

)∗ · · · (vd1
n1j1

)∗ −
∑
m

Tjm(vckikmk
)∗ · · · (vc1

i1m1
)∗

= −S[T v⊗w1 − v⊗w2T ]j i .

(I ∗ ⊆ I): Take any T ∈C(w1,w2), i = (i1, . . . , ik), j = (j1, . . . , jl), so [T v⊗w1 − v⊗w2T ]j i ∈ I . Then also
T ∗ ∈C(w2,w1) and hence [v⊗w1T ∗ − T ∗v⊗w2 ]i j ∈ I , so

I 3 S[v⊗w1T ∗ − T ∗v⊗w2 ]i j = ([T v⊗w1 − v⊗w2T ]j i )
∗. �

We are now ready to prove Woronowicz–Tannaka–Krein duality for compact matrix
quantum groups.

Proof of Theorem 3.4.6. As we have proven in Lemma 3.4.7, IG/IU+(F) is a Hopf ∗-ideal, so IG
indeed defines a compact quantum group G ⊆U+(F) with

PolG = C〈xij ,x∗ij〉/IG = PolU+(F)/(IG/IU+(F)).

As we already mentioned, this definition may depend on the duality morphisms we pick to
determine the matrix F, which defines the representation x and gives sense to the symbols
x⊗w. So, let ξ̃ , ξ̃ be alternative solutions of the conjugation equations (3.3) and let F̃ be the
alternative matrix and G̃ the alternative resulting quantum group. Then we have

(ξ̃∗ ⊗ 1N )(1N ⊗ ξ ) = FF̃−1 ∈ FundRepG( , ) = Mor(u ,u ).

This means that u = F̃F−1u FF̃−1 = F̃ūF̃−1 and hence G ⊆ G̃. From symmetry, we have G = G̃.
It remains to prove that we indeed have FundRepG = C (from construction, we can actually

easily see that FundRepG ⊇C) and that G is a unique quantum group with this property, that
is, if FundRepG̃ = C for some quantum group G̃ ⊆ U+(F), then surely G = G̃ (again, from
construction, we obviously have G ⊇ G̃).
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We need some preparation. We are going to use the double commutant theorem, so let
us define the following finite-dimensional objects.

An := {f ∈C〈xij ,x∗ij〉 | degf ≤ n} ⊆ C〈xij ,x∗ij〉 (considering degxij = degx∗ij = 1),

In := IG ∩An = {f ∈ IG | degf ≤ n} = span{[T x⊗w1 − xT ⊗w2 ] | |w1|, |w2| ≤ n},
Vw := (CN )⊗k , w ∈ O k ,
Vn :=

⊕
w∈O k
k≤n

Vw,

Bn :=
⊕

w1,w2∈O ∗
|w1 |,|w2 |≤n

C(w1,w2) ⊆L (Vn),

Un :=
⊕
w∈O k
k≤n

u⊗w ∈L (Vn)⊗C(G).

Now, the equality FundRepG = C is equivalent to saying Mor(Un,Un) = Bn for every n. By
the double commutant theorem (Thm. 1.2.7), this equality can be equivalently expressed by
applying the commutant to both sides. By Lemma 2.4.3, we can express the left-hand side as

Mor(Un,Un)′ = {πUn(ω) |ω ∈ (PolG)∗} = {πUn(ω) |ω ∈ (An/In)∗}, (3.5)

where, in the second equality, we used the fact that taking ω ∈ (PolG)∗, the result πUn(ω) is a
matrix with entriesω([u⊗w]j i ), which only depends on howω acts on the subspace An/In ⊆ PolG.

On the right hand side, we have the commutant

B′n = {S ∈L (Vn) | T S = ST for all T ∈ Bn}.
For operators S ∈L (Vn), let us denote by Sw2w1

j i their matrix entries. Then we can write the
condition above as

Sw2w1
j i = 0 if w1 , w2, (3.6)∑

k

Tj kS
w1w1
ki =

∑
k

Sw2w2
j k Tki for all T ∈C(w1,w2) with |w1|, |w2| ≤ n. (3.7)

For every S ∈L (Vn), let us denote by ωS ∈ A∗n the functional mapping [x⊗w]j i 7→ Swwj i . Then
we claim that

In = {f ∈ An |ωS(f ) = 0 for all S ∈ B′n}.
This is indeed true since the defining relations [T x⊗w1 − x⊗w2T ]j i exactly map to Relation (3.7)
after applying ωS .

Now, let us analyse the commutant from Eq. (3.5). We have

(An/In)∗ = {ω ∈ A∗n |ω(f ) = 0 for all f ∈ In} = {ωS | S ∈ B′n},
so the functionals ωS are well-defined also on An/In. Moreover, we have [πUn(ωS )]w1w2

j i =
δw1w2

ωS([u⊗w1 ]j i ) = Sw1w2
j i , so πUn(ωS ) = S. This proves the desired equality Mor(Un,Un)′ = B′n.

So, let us move to the uniqueness. We need to prove that the ideal determining the quantum
group is already uniquely determined by the associated category. So, suppose there is some
other G̃ = (C(G̃), ũ) with FundRepG̃ = C. Denote, as above, Ũn :=

⊕
|w|≤n ũ

⊗w and Ĩn = IG̃ ∩An.
The equality FundRepG̃ = C can then be equivalently described as

{πŨn(ω) |ω ∈ (An/ Ĩn)∗} = B′n.
We need to prove that Ĩn = In. The space Ĩn is equivalently described by the set of functionals

vanishing on Ĩn
(An/ Ĩn)∗ = {ω ∈ A∗n |ω(f ) = 0 for all f ∈ Ĩn}.

Those functionals are determined by their coordinates ω([x⊗w]j i ) = ω([ũ⊗w]j i ) = πŨn(ω). Thus,
(An/ Ĩn)∗ is determined by the algebra B′n, which is determined by the category C. �
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3. Monoidal categories and Tannaka–Krein duality

3.4.8 Remark. The standard Tannaka–Krein duality formulated as Theorem 3.3.1 for the whole
representation category RepG associates a quantum group up to isomorphism. In contrast, the
category FundRepG used in the formulation of Theorem 3.4.6 determines also the fundamental
representation. So, two quantum groups G1 and G2 have the same representation category
FundRepG1

= FundRepG2
if and only if they are identical according to the definition formulated

in Section 2.3.2.

3.4.3 Orthogonal version

In this section, we focus on more specialized version of the duality, where we assume that
G ⊆O+(F) for some F. This allows to simplify even more the set of objects of the associated
category. In the unitary version, we needed to consider words over an alphabet with two
elements O = { , } that stand for the representation u and u . Now, we have u = u , so one
letter is enough. Words over an alphabet with one letter are nothing else but natural numbers.

3.4.9 Definition. Consider a natural numberN ∈N. A non-coloured representation category
is a collection of spaces

C(k, l) ⊆L ((CN )⊗k , (CN )⊗l)

with k, l ∈N0 such that

(1) For T ∈C(k, l), T ′ ∈C(k′ , l ′), we have T ⊗ T ′ ∈C(k + k′ , l + l ′).
(2) For T ∈C(k, l), S ∈C(l,m), we have ST ∈C(k,m).
(3) For T ∈C(k, l), we have T ∗ ∈C(l,k).
(4) For every k ∈N0, we have 1⊗kN ∈C(k,k).
(5) There exists a vector ξ ∈C(0,2) such that (ξ∗ ⊗ 1N )(1N ⊗ ξ ) = c1N , c ∈R.

It is a rigid monoidal ∗-category, where the monoid of objects are the natural numbers N0
and every object is self-dual.

3.4.10 Proposition. Let G be a compact matrix quantum group. We have G ⊆ O+(F) for
some F ∈GLN such that FF̄ = c1N if and only if FundRep(w1,w2) = FundRep(w′1,w

′
2) whenever

|w1| = |w′1| and |w2| = |w′2|.
Proof. The inclusion G ⊆ O+(F) is equivalent to saying that u = u , which is equivalent to
saying that 1N ∈Mor(u ,u ) = FundRep( , ). So, if FundRep(w1,w2) = FundRep(w′1,w

′
2) whenever

|w1| = |w′1| and |w2| = |w′2|, then in particular 1N ∈ Mor(u,u) = Mor(u ,u ), which proves the
right-left implication.

Now consider G ⊆O+(F), so 1N ∈ FundRep( , ). This implies that 1⊗kN ∈ FundRep(w,w′) for
every w,w′ ∈ O k . So, FundRep(w′1,w

′
2) = 1⊗|w2 |

N FundRep(w1,w2)1⊗|w2 |
N = FundRep(w1,w2). �

For G ⊆O+(F), we can denote

FundRep(k, l) := FundRep( k , l) = Mor(u⊗k ,u⊗l).

This gives FundRep the structure of a non-coloured representation category. In particular, we
have ξ := ξ ∈ FundRep(0,2), satisfying (ξ∗ ⊗ 1N )(1N ⊗ ξ ) = FF̄ = c1N .

3.4.11 Corollary (Non-coloured Tannaka–Krein for CMQGs). Let C be a non-coloured repre-
sentation category. Then there exists a unique compact matrix quantum group G = (C(G),u) ⊆
O+(F) with Fji = [ξ ]ij (hence FF̄ = c1N ) such that FundRepG = C, that is, Mor(u⊗k ,u⊗l) =
C(k, l).

Proof. This follows directly from Theorem 3.4.6. We can make C a two-coloured representation
category by setting C(w1,w2) := C(|w1|, |w2|) for every w1,w2 ∈ O ∗. �
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3.4.4 Generators of a representation category
Quantum groups are usually characterized not by the whole ideal IG, but only by certain
relations that generate the ideal. We would like to formulate such a notion also for the
representation categories.

For any collection of sets C(w1,w2) of linear maps (CN )⊗|w1 | → (CN )⊗|w2 | satisfying the
axiom (5) of two-coloured representation categories, we denote by 〈C〉 the smallest category
containing C. We say that C generates this category.
3.4.12 Proposition. Let G ⊆ U+(F) be a compact matrix quantum group. Suppose that the
associated category FundRepG is generated by C. Then IG ⊆C〈xij ,x∗ij〉 is an ideal generated by

{[T x⊗w1 − x⊗w2T ]j i | T ∈ C(w1,w2)},

so
C(G) = C∗(uij | [T u⊗w1 ]j i = [u⊗w2T ]j i ; T ∈ C(w1,w2)).

Proof. Denote by I the ideal generated by C as formulated above. Obviously, we have I ⊆ IG.
To prove the opposite inclusion, it is enough to prove that

C(w1,w2) := {T : (CN )⊗|w1 |→ (CN )⊗|w2 | | T x⊗w1 − x⊗w2T ∈ I}

form a category. Then, since obviously C ⊆C and hence FundRepG ⊆C, we must have IG ⊆ I .
So, denote A := C〈xij ,x∗ij〉/I and by vij denote the images of xij by the natural homomor-

phism. Take T1 ∈C(w1,w2), T2 ∈C(w2,w3). Then

T2T1v
⊗w1 = T2v

⊗w2T1 = v⊗w3T2T1,

so T2T1 ∈C(w1,w3). For tensor product and involution, the proof is similar. �

3.4.13 Corollary. Let G ⊆ U+(F) be a compact matrix quantum group. Then the associated
ideal IG is generated by the relations u⊗wξ = ξ for ξ ∈ FundRep(∅,w), w ∈ O ∗.
Proof. By Frobenius reciprocity (Remark 3.4.3), any two-coloured representation category C

is generated by the spaces C(∅,w), w ∈ O ∗. Then we apply Proposition 3.4.12. �

Let us also formulate a non-coloured version of the proposition.
3.4.14 Proposition. Let G ⊆ O+(F) be a compact matrix quantum group. Suppose that the
associated category FundRepG is generated by C. Then IG ⊆C〈xij ,x∗ij〉 is an ideal generated by
the relation xij = xij and

{[T x⊗k − x⊗lT ]j i | T ∈ C(k, l)},
so

C(G) = C∗(uij | u = FūF−1, [T u⊗k]j i = [u⊗lT ]j i ; T ∈ C(k, l)).

3.4.5 Quantum subgroups, intersections, topological generation
In this section, we link the notions of quantum subgroup, intersection of quantum groups
and quantum group topological generation with the corresponding representation categories.
In Chapter 2, we linked these notions with the associated ideal IG. However, in the case of
intersection, we skipped the proof, which we provide now.
3.4.15 Proposition. Suppose G,H are compact matrix quantum groups with unitary funda-
mental representations. The following are equivalent.

(1) H ⊆ G,
(2) IH ⊇ IG,
(3) FundRepH (w1,w2) ⊇ FundRepG(w1,w2) for all w1,w2 ∈ O ∗.

Proof. The equivalence (1) ⇔ (2) was proven as Lemma 2.3.8. The equivalence (2) ⇔ (3)
follows from the Tannaka–Krein duality (Thm. 3.4.6). �
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3.4.16 Remark. In Proposition 3.3.2, we showed that, if K is a quotient quantum group of G,
then RepK is a full subcategory of RepG. So, Proposition 3.4.15 might sound confusing as
subcategories should rather correspond to quotient groups.

The explanation lies in the fact that we are not only working with a different category,
but we are using also a different notion of a subcategory. For K a quotient of G, RepK is a full
subcategory of RepG. That is, considering all possible representations of G, we choose just some
of them and we keep all the intertwiners. In contrast, if H is a quantum subgroup of G, then
FundRepH is a wide subcategory of FundRepG. We are not picking a subset of representations
here. The set of objects remains always the same – it is the monoid O ∗ representing tensor
products of the fundamental representation and its dual. In contrast, we are restricting the sets
of morphisms here.

In Chapter 8, we are going to enrich the monoid of objects a bit. Then it will also be
interesting to study the full subcategories and those will indeed correspond to quotient
quantum groups, see Proposition 8.2.3.

3.4.17 Proposition. Suppose G, H1, and H2 are compact matrix quantum groups with unitary
fundamental representations of the same size. The following are equivalent.

(1) G =H1 ∩H2,
(2) IG = IH1

+ IH2
,

(3) FundRepG is generated by FundRepH1
∪ FundRepH2

.

Proof. The equivalence (2)⇔ (3) follows from Proposition 3.4.12: The equality IG = IH1
+ IH2

is
equivalent to saying the IG is the ideal generated by IH1

∪ IH2
. So, if FundRepG is generated by

FundRepH1
∪ FundRepH2

, we have indeed (2) directly by Proposition 3.4.12. For the converse,
suppose that IG = IH1

+ IH2
. Let C be the category generated by FundRepH1

∪ FundRepH2
. Then

by Proposition 3.4.12, C corresponds to a quantum group G̃ with IG̃ = IH1
+ IH2

= IG, so G̃ = G.
Now, we prove (1)⇒ (3). Denote by G̃ the compact matrix quantum group corresponding

to the category FundRepG̃ := 〈FundRepH1
,FundRepH2

〉. From Proposition 3.4.15, we know
that G̃ ⊆ H1,H2. We also know that G ⊆ H1,H2, so from Proposition 3.4.15, we have that
FundRepHk ⊆ FundRepG for k = 1,2 and hence FundRepG̃ ⊆ FundRepG. This, however, means
that G ⊆ G̃ and hence G = G̃ by the definition of H1 ∩H2.

The converse (3)⇒ (1) is proven similarly. We surely have G ⊆H1,H2 and, in addition, G is
obviously the largest possible with this property, so G =H1 ∩H2. �

3.4.18 Remark. As a consequence of this proposition, we have that the intersection is defined
uniquely. In Section 2.5.4, we promised to prove a similar statement without the assumption on
the fundamental representations v1 and v2 of H1 and H2 being unitary (see Prop. 2.5.9). From
Proposition 2.2.3, we know that they can be unitarized. So, suppose T1v1T

−1
1 and T2v2T

−1
2 are

unitary. Then we can study the representation category corresponding to the unitary quantum
group G := T1(H1 ∩H2)T −1

1 , which is given by

FundRepG = 〈FundRepT1H1T
−1
1
,T1T

−1
2 FundRepT2H2T

−1
2
T2T

−1
1 〉,

so IG = T1(IH1
+ IH2

)T −1
1 and consequently IH1∩H2

= IH1
+ IH2

.

3.4.19 Proposition. Suppose G, H1, and H2 are compact matrix quantum groups with unitary
fundamental representations of the same size. The following are equivalent.

(1) G = 〈H1,H2〉,
(2) IG = IH1

∩ IH2
,

(3) FundRepG(w1,w2) = FundRepH1
(w1,w2)∩ FundRepH2

(w1,w2) for all w1,w2 ∈ O ∗.

In particular, 〈H1,H2〉 exists if and only if there is a matrix F such that H1,H2 ⊆U+(F).
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3.4 Tannaka–Krein for compact matrix quantum groups

Proof. The equivalence (1)⇔ (2) was proven in Proposition 2.5.10. The equivalence (2)⇔ (3)
follows from the Tannaka–Krein duality (Thm. 3.4.6).

The collection of spaces FundRepH1
(k, l)∩FundRepH2

(k, l) defines a compact matrix quantum
group if and only if it is a two-coloured representation category. All axioms are automatically
satisfied except for (5) – the existence of duals. We have (5) if and only if FundRepH1

and
FundRepH2

contain common duality morphisms ξ , ξ . This is equivalent to saying H1,H2 ⊆
U+(F), where Fji = [ξ ]ij . �
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Part II

Partitions

This part is basically independent of the rest of the thesis. We do not refer at all to the theory
of quantum groups here. However, the motivation for the problems comes from the theory
of compact matrix quantum groups and will be described in Part III. For the readers who are
interested in applications of categories of partitions to quantum groups, it may be convenient
to read every chapter or section of this part parallel to the corresponding text in Part III.

Categories of partitions in the context of compact quantum groups were defined by Banica
and Speicher in [BS09]. Afterwards, a lot of effort was made to classify those structures.
The classification was successfully completed in [RW16]. At the same time, the structure of
quantum groups corresponding to categories of partitions (so called easy quantum groups)
were also studied. The results of this theory were summarized in the survey ~Web17�.

Although much work has been already done in the theory of categories of partitions,
the research in this area is surely not exhausted. In particular, categories of partitions in
the sense of the original definition of Banica and Speicher are far away from describing all
quantum groups. Thus, a wide range of possibilities to generalize the concept of categories
of partitions opens up to be able to describe more quantum groups. In this part, we describe
several possibilities of generalizing categories of partitions, where the author contributed also
by his research.

In order to simplify the orientation in the results, we summarize all the sections of Part II
and Part III in the following table. In the first column, we list sections of Part II, in the second
column, we state the corresponding section of Part III that analyses the associated quantum
groups. In the third column, we briefly describe the content and in the last column we list
the main references the sections are based on. The numbers of sections that are mainly based
on the author’s results are highlighted in italics.

Section in
Part II

Section in
Part III

Content References

4.1–4.2, 5.1 6.1
Introduction and basic results for

the non-coloured case
[BS09, . . . ]

4.3 6.3 Coloured partitions in general [Fre19, GW19b]

4.4–4.5 6.2 Two-coloured partitions [TW18, TW17, Gro18]

4.6 6.4 Partitions with extra singletons [GW19b]

5.2–5.3 —
Computer experiments with linear

categories
[GW19a]

5.4 7.1, 7.3, 7.4 Interpreting non-easy categories [GW20, GW19a]

— 7.2 Link between linear and
extra-singleton categories

[GW19b]
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Chapter 4
Categories of partitions
This chapter is essentially pure combinatorics. We study categories of partitions as defined
by Banica and Speicher and their coloured generalizations. We focus in this chapter on clas-
sification problems of those categories. The complete classification is already available for
the original categories of partitions, but still an open problem for the categories of coloured
partitions. The basic underlying elements of those structures are set partitions, that is, com-
binatorial objects. The classification problems are, therefore, very much of a combinatorial
nature.

Let us now summarize the structure and main results of this chapter. Section 4.1 introduces
the concept of categories of partitions as it was defined by Banica and Speicher in [BS09]. In
Section 4.2, we summarize the classification of categories of partitions and we give an overview
of the basic classification techniques. Regarding these classical categories of partitions, we
refer to the survey ~Web17�, where the classification result as well as the link to the theory of
quantum groups is explained. Section 4.3 introduces the concept of colouring for partitions
in general. In Section 4.4, we study the particular example of two-coloured partitions that were
defined in [TW18, Fre17]. We also summarize the classification result of [TW18]. After this,
two sections with the author’s original results follow.

In Section 4.5, the classification of globally colourized categories of partitions is presented.
Globally colourized categories form a special class of two-coloured categories containing
a specific partition that allows to do colour permutations. We solve the classification problem
by showing that every globally colourized category is characterized by its degree of reflection
and by a non-coloured category.

Theorem (4.5.10). Every globally colourized category C is determined by a number k(C )
and a non-coloured category of partitions not containing the singleton partition. The full
classification of globally colourized categories is summarized in Table 4.1.

In Section 6.4, we introduce another generalization of categories of partitions, namely
categories of partitions with extra singletons. The motivation for such a definition will be
explained in Part III. Here, we attack the classification problem by showing that it is essentially
equivalent to classification of two-coloured categories. Moreover, the functor appearing in
the theorem will play an important role later when we interpret the categories.

Theorem (4.6.8). There is a functor providing a one-to-one correspondence between categories
of partitions with extra singletons of even length and categories of two-coloured partitions that
are invariant with respect to the colour inversion.

4.1 Categories of non-coloured partitions
This section introduces the categories of partitions as defined in [BS09].

4.1.1 Definition of categories of partitions
Consider k, l ∈N0; by a partition of k upper and l lower points we mean a partition of the
set {1, . . . , k} t {1, . . . , l} ≈ {1, . . . , k + l}. That is, a decomposition of the set of k + l points into
non-empty disjoint subsets called blocks. The first k points are called upper and the last l
points are called lower. The set of all partitions on k upper and l lower points is denoted
by P (k, l). The number |p| := k + l for p ∈P (k, l) is called the length of p.

We illustrate partitions graphically by putting k points in one row and l points in another
row below and connecting by lines those points that are grouped in one block. All lines are
drawn between those two rows.
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4.1 Categories of non-coloured partitions

Below, we give an example of two partitions p ∈ P (3,4) and q ∈ P (4,4) including their
graphical representation. The first set of points is decomposed into three blocks, whereas the
second one splits into four blocks. In addition, the first one is an example of a non-crossing
partition, i.e. a partition that can be drawn in a way that lines connecting different blocks do
not intersect (following the rule that all lines are between the two rows of points). In contrast,
the second partition has one crossing.

p = q = (4.1)

In our graphical notation, if two or more strings cross each other, we never assume they are
connected. On the other hand, if three strings meet at one point (typically like this ), we
of course assume they are connected. Thus, a partition on two upper and two lower points
where all points are in a single block is denoted like this , whereas the diagram stands for
a partition consisting of two blocks.

We define the following operations on the set of all partitions. Every operation is illustrated
on an example using the partitions (4.1).

For p ∈P (k, l), q ∈P (k′ , l ′), we define their tensor product p⊗q ∈P (k+k′ , l+l ′) by putting
their graphical representations side by side.

⊗ =

For p ∈ P (k, l), q ∈ P (l,m), we define their composition qp ∈ P (k,m) by putting the
graphical representation of q below p. We interpret the upper row of p with k points as the
upper row of qp and the lower row of q with m points as the lower row of qp. The potential
extra cycles occurring in the middle should be deleted.

· = =

For p ∈P (k, l), we define its involution p∗ ∈P (l,k) by reversing its graphical representa-
tion with respect to the horizontal axis.( )∗

=

The above defined operations give partitions the structure of a rigid monoidal involutive
category (see Sect. 3.2) in the following sense. The set of objects here is the set of natural
numbers N0, on which the tensor product acts as addition. Partitions p ∈ P (k, l) are then
morphisms between k and l. For every k ∈N we have the identity morphism

idk = ⊗k = . . .︸︷︷︸
k×

∈P (k,k).

The empty partition o ∈ P (0,0) is then the identity associated to the object 0. Every object
k ∈N0 is dual to itself. This follows from the fact that, for every k ∈N0, we have the partition
r = . . . . . . ∈P (0,2k) satisfying

(r∗ ⊗ idk)(idk ⊗ r) = . . . . . .. . . = . . . = idk

We will call this category the category of all partitions and denote it by P (the same as
we denote the set of all partitions).
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4. Categories of partitions

A collection of sets C (k, l) ⊆P (k, l), k, l ∈N0 containing the identity partition ∈C (1,1)
and the pair partition ∈ C (0,2) that is closed under the category operations defined above
will be called a category of partitions. That is, a category of partitions is any rigid wide
subcategory C ⊆P (recall the definition from the end of Sect. 3.1). Note that all the duality
morphisms . . . . . . are generated by the pair partition and hence are always contained
in any category of partitions.

For any partition p, its blocks of size one are called singletons. In particular, a partition
consisting of a single point is called a singleton. For clarity, we denote it by an arrow ↑ ∈P (0,1),
↓ ∈P (1,0).

4.1.2 Frobenius reciprocity and partitions on one line

In this section, we define additional operations on the categories of partitions that can be
performed thanks to the presence of the duality morphism. The main purpose is to show that
given a category of partitions C , the sets of partitions with lower points only C (0, k) already
determine the whole category. This will simplify some proofs in the future in two ways: First,
if we need to prove something for all partitions p ∈ C , it is usually enough to prove it for
partitions with lower points only. Secondly, we will define some new operations on partitions
that will allow us to formulate an alternative definition of a category of partitions, which works
with partitions on one line. If we then need to prove that some set is a category, it will often be
easier to work with those one-line operations than with the standard ones.

Similar statements (also known as the Frobenius reciprocity) are actually true for any rigid
monoidal category – we already formulated it for representation categories in Remark 3.4.3
and we will mention it in subsequent sections also for coloured generalizations of categories of
partitions. In particular, the idea of rotating partitions was already mentioned in [BS09] and
used extensively in the classification programme. Nevertheless, some of the definitions and
statements were first formulated in [Gro18, GW19a] (in particular the alternative definition
of a category of partitions).

For p ∈ P (k, l), k > 0, its left rotation is a partition Lrotp ∈ P (k − 1, l + 1) obtained by
moving the leftmost point of the upper row to the beginning of the lower row. Similarly, for
p ∈ P (k, l), l > 0, we can define its right rotation Rrotp ∈ P (k + 1, l − 1) by moving the last
point of the lower row to the end of the upper row. Both operations are obviously invertible.

For p ∈ P (k, l), we define its vertical reflection p? ∈ P (k, l) by vertically reflecting its
graphical representation. Note that p? differs from p∗, which was defined as the horizontal
reflection.

Borrowing again the partition p from Eq. (4.1), we can illustrate those definitions on this
example

Lrot
( )

= Lrot−1

( )
=

Rrot
( )

= Rrot−1

( )
=( )?

=

4.1.1 Lemma. [Web13, RW14] Let C be a category of partitions. Then it is closed under
rotations (left and right including inverses) and vertical reflection.

Proof. For all the rotations, the proof is similar. For p ∈P (k, l) we have

Lrotp = ( ⊗ p)( ⊗ ⊗k−1), Rrot−1p = (p⊗ )( ⊗k−1 ⊗ ), if k > 0,

Lrot−1p = ( ⊗ ⊗l−1)( ⊗ p), Rrotp = ( ⊗l−1 ⊗ )(p⊗ ), if l > 0.
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4.1 Categories of non-coloured partitions

Finally, we have
p? = Lrotl Rrotk p∗. �

Since any category of partitions C is closed under rotations, it means that it is completely
described by the collection of spaces C (k) := C (0, k) of partitions with lower points only. To
provide an equivalent definition of a category of partitions using only partitions with lower
points, we can define the following operations on P (k).

For p ∈ P (k) = P (0, k), we define its rotation Rp ∈ P (k) as the partition obtained by
shifting the last point to the front. We can write it using left and right rotation as Rp =
(Lrot◦Rrot)p.

For p ∈P (k), by reflection of p, we mean its vertical reflection p? ∈P (k).
Let p ∈ P (k), k > 2 and let i ∈ {1, . . . , k}. By contraction of p on the i-th point, we mean

Πip := R−i+1Π1R
i−1p, where Π1q = ( ⊗ ⊗k−2)q. We essentially take the i-th and the (i + 1)-st

point, connect the corresponding blocks, and then remove the two points.
Again, we illustrate those constructions on examples. Taking p and q from Eq. (4.1), we

can define their rotated versions

p′ := Lrot3p = , q′ := Lrot4 q = . (4.2)

Now, we illustrate the operations on q′:

R( ) = ,

Π6( ) = = .

4.1.2 Proposition. [Gro18, GW19a] For any category of partitions C , the collection of sets
C (k) = C (0, k), k ∈N0 is closed under tensor products, rotations, reflections, and contractions.
Conversely, for any collection of sets of partitions with lower pointsC (k) ⊆P (0, k) that contains
∈ C (0,2) and is closed under tensor products, rotations, reflections, and contractions, the

sets
C (k, l) := {Rrotk p | p ∈C (0, k + l)} = {Lrot−k p | p ∈C (k + l)}

form a category of partitions.

Proof. The first part of the proposition follows from the fact that all the four operations for
partitions on one line are composed of category operations from Section 4.1.1.

The converse statement is proved by the following:

Lrot−k p⊗Rrotk
′
q = Lrot−k Rrotk

′
(p⊗ q),

(Rrotk p)∗ = Rrotl p? ,

(Rrotl q)(Rrotk p) = RrotkΠm+1Πm+2 · · ·Πm+l(q⊗ p),

where we assume that p ∈P (k + l) and q ∈P (k′ + l ′) for the first row and q ∈P (l +m) for the
last row. �

The partitions with lower points only can be conveniently represented not only graphically
but also using words. We can assign a letter to each block of a given partition p ∈P (k). Then p
is represented by a word a1a2 · · ·ak , where ai is the letter representing the block of the point i.

As an example, we mention the word representation of partitions p′ and q′ from Eq. (4.2):

p′ = = aabbccb, q′ = = abcdcdbb.
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4. Categories of partitions

4.2 Classification of categories of partitions
In this section, we summarize the known classification results for categories of partitions and
present the basic classification tools. Those results and similar ideas are then used also in the
coloured case.

4.2.1 Full classification summary

The categories of partitions were studied in [BS09, BCS10, Web13, RW14, RW15] and their
full classification was completed in [RW16].

The classification is summarized in the following table. It is divided into four cases. The
non-crossing categories consisting of non-crossing partitions, the group categories contain-
ing the crossing partition , the half-liberated categories containing the half-liberating
partition , but not the crossing partition, and the rest.

Non-crossing 〈〉, 〈 〉, 〈 ,↑⊗↑〉, 〈↑⊗ ↑〉, 〈 〉, 〈↑〉, 〈↑, 〉
Group 〈 〉, 〈 ,↑〉, 〈 ,↑⊗↑〉

〈 , 〉, 〈 , ,↑〉, 〈 , ,↑⊗↑〉 (∗)
Half-liberated 〈 〉, 〈 ↑⊗ ↑〉

〈 , 〉, 〈 , ,hs〉, s ≥ 3 (∗)
The rest 〈πs〉, s ≥ 2, 〈πl | l ∈N〉, AEZ∞2

Here, we denote by hs, s ∈N0 (here s ≥ 3) the partition of length 2s consisting of two blocks,
where the first block connects all odd points and the second block connects all even points. We
can represent this partition by the word (ab)s = ababab · · ·ab︸           ︷︷           ︸

s×

.

By πs, we denote the partition represented by the following word of length 4s

πs = a1a2 · · ·asas · · ·a2a1a1a2 · · ·asas · · ·a2a1.

Finally, consider the infinite free product Z∗∞2 and denote its generators by ai , i ∈N. Then
the elements of Z∗∞2 are words over the alphabet {ai}i∈N and therefore stand for partitions.
It can be shown that if a normal subgroup AEZ∗∞2 is so called sS∞-invariant, i.e. invariant
with respect to the homomorphisms of the form ai 7→ aϕ(i), where ϕ:N→N is any map that
coincides with the identity outside of a finite set, then the corresponding partitions form
a category. Such categories are called group-theoretical. This is indicated in the last entry of
the summary.

The group categories and half-liberated categories in the rows marked by asterisk (∗) are
special instances of group-theoretical categories. Except for this fact, all the categories in the
summary are pairwise distinct.

In the following, we summarize the basic classification techniques.

4.2.2 Important partitions for classification

We already mentioned two important partitions contained in every category – the identity
partition and the pair partition . The latter allowed us to perform the rotation operation.
There are some other distinguished partitions, whose presence in the category allows us to
formulate some invariance principles. Such considerations play a key role in the classification
of categories of partitions.

The ideas presented here were, of course, used through the whole classification programme.
Nevertheless, it is hard to give some reference since the ideas were never formulated as explicit
statements in the case of non-coloured partitions. The formulation we use here mostly coincides
with [TW18], where it was formulated for categories of two-coloured partitions.
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4.2 Classification of categories of partitions

4.2.1 Lemma. Let C be a category of partitions.

(1) If ∈C , then C is closed under connecting neighbouring blocks.
(2) If ↑⊗↑ ∈C , then C is closed under disconnecting an arbitrary point from a block.
(3) If ∈ C , then ↑ ⊗ ↑ ∈ C , so (2) applies. In addition, C is closed under shifting

singletons.
(4) If ∈C , then C is closed under permutations of points.
(5) If ∈C , then C is closed under permutations of points on even positions and odd

positions separately.

Proof. The proofs for all the cases are basically the same. So, let us illustrate the proof of the
lemma on the item (1).

Consider the partition q = . Choose two neighbouring points, say the second and the
third one in the bottom row. Now, we want to unite their blocks, i.e. to construct the partition
q′ = .

The assumption ∈ C implies that ∈ C by rotation. Since also ∈ C , we have
p := ⊗ ⊗ ∈C . One can easily check that q′ = pq. �

4.2.2 Lemma. Let C be a category of partitions

(1) The category C contains a partition with a block of size one if and only if C contains
↑⊗↑.

(2) The category C contains a partition with a block of size greater than two if and only if
C contains .

(3) The category C contains a partition of odd length if and only if ↑ ∈C .

Proof. Suppose p ∈C contains a singleton. Without loss of generality we can assume that p
is of the form p = ↑⊗ p′, where p′ ∈P (k − 1) (otherwise use rotations). We have(

⊗ ( )⊗(k−1)/2
)
p = ↑ if k is odd,(

⊗ ⊗ ( )⊗(k−2)/2
)
p = ↑⊗↑ if k is even.

The second statement is a bit complicated. Take some p ∈ C containing a block of size
greater than two. By rotation, we can assume that p has lower points only and that the first
point is incident with the mentioned block. Then we do contractions in the middle of p⊗ p?
until we contract some point incident with the mentioned block. The resulting partition q then
again has a block with size greater than two (the size must be even, so at least four actually)
and the first and the last point of q are incident to this block. Finally, we can construct
by contracting Rq⊗ (Rq)? . See [TW18, Lemma 2.1] for more details on the proof.

The last statement is the easiest one. Just take a partition p ∈P (0, k) for k odd and contract
until we get the singleton ↑. �

4.2.3 Sketch of proof for non-crossing and group categories

To illustrate the work with categories of partitions, let us sketch the proof of the classification
for the simplest cases [Web13] – the non-crossing case and the group case. Note however, that
the rest of the classification is much harder to obtain.

First, it is easy to see the following.

4.2.3 Proposition. The set of non-crossing partitions NC ⊆P forms a category.

It is also easy to check that the intersection of any two categories of partitions is again
a category of partitions. In particular, we can construct the category CNC :=C ∩NC for any
given C .

61



4. Categories of partitions

4.2.4 Proposition. Let C be a group category. Then C = 〈CNC , 〉.

Proof. Every element p ∈C can be transformed by permuting points to a non-crossing partition
pNC ∈ CNC ⊆ C (using the crossing partition , see Lemma 4.2.1). Reversing this process, we
can obtain back the original partition p, so p ∈ 〈CNC , 〉. �

As a consequence, the classification of group categories can be obtained from the classifica-
tion of non-crossing categories simply by adding the crossing partition to them. We only
have to check, whether the group categories are mutually different. In the end, we find out that
seven non-crossing categories induce six group categories since 〈 , 〉 = 〈↑⊗ ↑, 〉.

Now, let us sketch the proof of the classification in the non-crossing case.
One can check that for the smallest category we have

〈〉 =NC2 := {p ∈NC | all blocks of p are of size two}.

Suppose we have a category C containing a partition with a block of size one, but not
a partition with a block of size larger than two. This is equivalent to stating ↑ ⊗ ↑ ∈ C and

<C . Then either C is equal to

〈↑〉 = {p ∈NC | all blocks of p are of size ≤ 2}

or C contains only partitions of even length. We can check that

〈↑⊗ ↑〉 =
{
p ∈NC

∣∣∣∣ |p| is even; all blocks of p are of size ≤ 2;
every block of size 2 has an even number of points between its legs

}
.

The number of points between two given is counted with respect to the cyclical order. That
is, the points in the upper row are ordered from right to left, then the leftmost point in the
lower row follows and the rest of the lower points ordered from left to right. Since p has even
length, it does not matter from which side we count.

One can also check that a partition p ∈ 〈↑〉 \ 〈↑ ⊗ ↑〉 of even length, that is, a partition
containing a block connecting two odd points or two even points, must generate . So, the
last possibility is that C is equal to

〈 〉 = {p ∈NC | |p| is even; all blocks of p are of size ≤ 2}.

In the case when ∈C , but ↑⊗↑ <C , the situation is simple, since

〈 〉 = {p ∈NC | all blocks of p are of even size}.

Any larger category would contain ↑⊗↑.
Finally suppose ↑ ⊗ ↑ ∈ C and ∈ C . In this case, the category is closed under

connecting neighbouring blocks and removing points from blocks, so it is irrelevant, which
point is in which block. The only relevant thing is the number of points in the partition. Since
the category contains the pair partitions of length two, it is closed under adding or subtracting
an even number of points. Thus there are only two possibilities

〈 ,↑⊗↑〉 = {p ∈NC | |p| is even},
〈 ,↑〉 =NC.
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4.3 Coloured partitions

4.3 Coloured partitions
In this section, we introduce in general the concept of colouring partitions. As a reference,
see [Fre19, GW19b].

Let O be a set with involution x 7→ x̄. We denote by O ∗ the monoid of words over O and
by O k the set of all words of length k ∈N0. The involution is extended as a homomorphism
w 7→ w̄ to the whole O ∗. We call it the colour inversion. We denote by w∗ the word w̄ read
backwards.

An O -coloured partition on k upper and l lower points is a triple (p,w1,w2), where p ∈
P (k, l), w1 ∈ O k , w2 ∈ O l . We denote P O (w1,w2) := {(p,w1,w2) | p ∈P (k, l)} the set of all parti-
tions with upper colour pattern w1 and lower colour pattern w2. The set of all O -coloured par-
titions with k upper and l lower points will be denoted by P O (k, l) :=

⋃
w1∈O k ,w2∈O l P

O (w1,w2).
We denote by P O the set of all O -coloured partitions.

We define the category operations induced by category operations of ordinary partitions.
That is,

• tensor product (p,w1,w2)⊗ (q,w3,w4) = (p⊗ q,w1w3,w2w4),
• composition (q,w2,w3) · (p,w1,w2) = (qp,w1,w3),
• involution (p,w1,w2)∗ = (p∗,w2,w1).

This gives P O the structure of a monoidal involutive category (see Sect. 3.2) with O ∗ being
the monoid of objects and P O (w1,w2) the morphism spaces. Let us stress that the composition
is defined only if the colour patterns match (not just the number of points). We denote by
∅ ∈ O ∗ the empty word, which also plays the role of the identity object of the monoidal category.

Until now, we did not use the involution on the set O , this comes only in the following defi-
nition. A category of O -coloured partitions is a collection of subsets C (w1,w2) ⊆P O (w1,w2)
closed under the category operations and containing the identity partitions ( ,x,x) and pair
partitions ( ,x, x̄) for every x ∈ O . In other words, C is any rigid wide subcategory of P O such
that the duality of objects is given by the involution w 7→ w∗ on O ∗.

Again, any O -coloured category is also closed under left and right rotations

Lrot(p,xw1,w2) = (Lrotp,w1, x̄w2), Rrot(p,w1,w2x) = (Rrotp,w1x̄,w2).

and (verticolour) reflections (p,w1,w2)? = (p? ,w∗1,w
∗
2). For O -coloured partitions with lower

points only, we define in addition the rotation R(p,∅,wx) = (Rp,∅,xw) and contraction, which
is defined in a similar manner, but only if the two points that are contracted have colours dual
to each other. That is, Π1(p,∅,xx̄w) = (Π1p,∅,w).

Again, a category C ⊆P O is completely described by the collection of sets C (k) := C (0, k).
Conversely, such a collection of sets defines a category if and only if it is closed under tensor
products, contractions, rotations and reflections. (See Prop. 4.1.2.)

4.4 Two colours dual to each other
Now, we introduce two-coloured categories as defined in [TW18, Fre17]. In this case, the full
classification is still an open problem. However, there has been a rapid development regarding
this question in the recent time. The results known so far are available in [TW18, Gro18,
MW19a, MW19b, MW19c, MW20]. After formulating basic definitions, we mention some
tools for solving classification problems developed in [TW18] and we summarize classification
results obtained in [TW18]. In the following section (Sect. 4.5), the author’s contribution to
the classification programme will be presented.
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4. Categories of partitions

4.4.1 Definition

By a two-coloured partition, we mean an O -coloured partition, where O = { , } with ¯ = ,
¯ = . We also use the term category of two-coloured partitions for a category of O -coloured
partitions. Sometimes, we also say two-coloured unitary partitions to avoid confusion with
partitions on two self-dual colours.

So, a two-coloured partition is a partition, where, in addition, we assign to each point a
white or black colour. Again, we will represent such objects pictorially. Below, we show an
example of a possible colouring of the partitions in Equation (4.1).

p = ∈P ( , ) ⊆P (3,4) q = ∈P ( , ) ⊆P (4,4) (4.3)

Recall that also in the coloured case, we have left and right rotations, but in contrast with
the non-coloured case we must change the colour of a point when moving it from one row to
the other. For example, taking p from (4.3), we have

Rrotp = .

We also have the verticolour reflections, which is a vertical reflection composed with reversing
all colours.

4.4.2 Important two-coloured partitions for classification

In this section, we formulate analogues of Lemmata 4.2.1, 4.2.2 and then introduce some
additional notation. Another important partitions and corresponding invariant principles
that are specific for the two-coloured framework will be discussed in Sections 4.4.3–4.4.4.

4.4.1 Lemma. Let C be a category of two-coloured partitions.

(1) If ∈C , then C is closed under connecting neighbouring blocks.
(2) If ∈C , then C is closed under connecting neighbouring blocks if they meet at

two points with inverse colours.
(3) If ⊗ ∈C , then C is closed under disconnecting an arbitrary point from a block.
(4) If ∈ C , then ⊗ ∈ C , so (b) applies. In addition, C is closed under shifting

singletons.
(5) If ∈C , then C is closed under permutations of points (carrying their colour).

Proof. The proof is similar as in Lemma 4.2.1. One subtlety worth mentioning is the difference
between item (1) and (2). The possible rotations of contain only and , but
not and . In contrast, the possible rotations of contain all , , , . Using
composition, we can generate also and from the last two. This also proves the implication

∈C ⇒ ∈C . �

4.4.2 Lemma. Let C be a category of partitions.

(1) The category C contains a partition with a block of size one if and only if C contains
⊗ .

(2) The category C contains a partition with a block of size greater than two if and only if
C contains .

Proof. As in Lemma 4.2.2. �

64



4.4 Two colours dual to each other

As a consequence, the categories of partitions behave quite differently depending on
whether those mentioned partitions are elements or not. For that reason, we define the
following four cases for categories of partitions.

• C is in caseO , if ⊗ <C and <C ,
• C is in case B, if ⊗ ∈C and <C ,
• C is in caseH, if ⊗ <C and ∈C ,
• C is in case S , if ⊗ ∈C and ∈C .

The letters O, B, H, and S stand for orthogonal, bistochastic, hyperoctahedral, and
symmetric group, which are groups corresponding to particular instances of those categories,
see Chapter 6.

4.4.3 Relation to non-coloured categories

In this section, we study a functor Ψ:P →P forgetting the colour patterns [TW18]. Taking its
preimage allows us to embed non-coloured categories into the framework of the two-coloured
ones.

4.4.3 Lemma. Let C be a category of two-coloured partitions containing the unicoloured pair
partition ∈C . Then C is closed under changing colours arbitrarily. That is, if p ∈C , then
p′ ∈C , where p′ is obtained from p by making an arbitrary choice for the colours of the points
(keeping all blocks the same).

Proof. The category C contains if and only if it contains and . Changing the colour
pattern of a given partition p ∈C can be made by composing it with appropriate tensor product
of , , , and . �

This means that if a category contains the unicoloured pair, then the colouring of its
elements is irrelevant. Hence, such a category can be identified with a category of non-coloured
partitions in the following way.

4.4.4 Definition. Let Ψ:P →P be the map given by forgetting the colours of a two-coloured
partition. For C ⊆P , denote Ψ−1(C ) ⊆P its preimage under Ψ.

4.4.5 Proposition.

(1) Let C ⊆P be a category of non-coloured partitions. Then Ψ−1(C ) ⊆P is a category
of two-coloured partitions containing the unicoloured pair partitions and .

(2) Let C ⊆ P be a category of two-coloured partitions containing the unicoloured
pair partition (or equivalently ). Then Ψ(C ) ⊆P is a category of non-coloured
partitions and Ψ−1(Ψ(C )) =C .

Hence, there is a one-to-one correspondence between categories of non-coloured partitions
and categories of two-coloured partitions containing .

In the following we will often not distinguish between categories of non-coloured partitions
and categories of two-coloured partitions containing . In particular, a (two-coloured)
category will be called non-coloured if it contains .

4.4.4 Global colourization and degree of reflection

The tensor product ⊗ possesses a similar, but weaker property. The following again
comes from [TW18].

4.4.6 Lemma. Let C be a category of partitions such that ⊗ ∈C . Then the sets C (k) are
closed under permutation of colours. That is, if p ∈ C (k), then p′ ∈ C (k), where p′ is obtained
from p by changing colours in such a way that the number of white points (and black points)
in p′ is the same as in p.
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Proof. Having ⊗ ∈C implies having also ⊗ ∈C and ⊗ ∈C . Using one of those two
partitions tensored with appropriate choice of and allows us to transpose colours of two
neighbouring points. This generates arbitrary permutations of points. �

So, if ⊗ ∈ C , the only thing that matters (for partitions with lower points only) is the
number of white and black points. The actual distribution of colours in a partition is irrelevant.
If we want to formulate this also for partitions that have both upper and lower points, we must
remember that by rotation, the colour changes.
4.4.7 Definition. A category of two-coloured partitions is called globally colourized if it
contains ⊗ . Otherwise, we call the category locally colourized.
4.4.8 Definition. For a word w ∈ O ∗, we denote by c(w) the number of white points in w minus
the number of black points in w. For a partition p ∈P (w1,w2), we denote c(p) := c(w2)− c(w1).

As an example, consider the partition p = from Eq. (4.3). For its upper colour pattern,

we have c( ) = 1−2 = −1, its lower colour pattern has c( ) = 1−3 = −2. Thus, for the whole
partition, c(p) = −2− (−1) = −1. Equivalently, we can have a look on the one-line version of p,
which is p′ := Lrot3p = , where we see straight away c(p′) = c( ) = −1 = c(p).
4.4.9 Definition. For a category C , we define k(C ) to be the minimum of all numbers c(p)
such that c(p) > 0 and p ∈ C if such a partition exists in C . Otherwise we set k(C ) := 0. The
parameter k(C ) is called the degree of reflection of C .
4.4.10 Lemma. For the map c:P →Z, the following holds true.

(1) c(p⊗ q) = c(p) + c(q),
(2) c(pq) = c(p) + c(q),
(3) c(p∗) = c(p?) = −c(p),
(4) c(Lrotp) = c(Rrotp) = c(p).

If p has lower points only, then also
(5) c(Πip) = c(p),
(6) c(Rp) = c(p).

Here, we suppose that the assumptions for the composition in (2) and contraction in (5) are
satisfied.
Proof. Follows directly from the definition of the operations. See [TW18, Lemma 2.6]. �

4.4.11 Lemma. Let C be a category of partitions. For every p ∈ P , the number c(p) is
a multiple of k(C ).
Proof. From Lemma 4.4.10, it follows that the set {c(p) | p ∈ C } is a subgroup of Z. Hence, it
must be equal to kZ for some k ∈N0. But obviously k = k(C ) since it is indeed the minimal
positive c(p). �

4.4.5 Classification of non-crossing two-coloured partitions
Now, let us mention the classification theorems of [TW18]. We denote bk = . . . ∈P (0, k)
the so-called block partition consisting of a single block of size k.
4.4.12 Theorem. Let C ⊆ NC be a globally colourized category of non-crossing partitions.
Then it coincides with one of the following categories.

Oglob(k) = 〈 ⊗k/2, ⊗ 〉 for k ∈ 2N0

Hglob(k) = 〈bk , , ⊗ 〉 for k ∈ 2N0

Sglob(k) = 〈 ⊗k , , ⊗ , ⊗ 〉 for k ∈N0

Bglob(k) = 〈 ⊗k , ⊗ , ⊗ 〉 for k ∈ 2N0

B′glob(k) = 〈 ⊗k , , ⊗ , ⊗ 〉 for k ∈N0

66



4.5 Classification of globally colourized categories

4.4.13 Theorem. Let C ⊆ NC be a locally colourized category of non-crossing partitions.
Then it coincides with one of the following categories.

Oloc = 〈〉
H′loc = 〈 〉

Hloc(k,d) = 〈bk ,bd ⊗ b?d , , , ⊗ 〉 for k,d ∈N0 \ {1,2}, d | k
Sloc(k,d) = 〈 ⊗k , ⊗d ⊗d , , ⊗ 〉 for k,d ∈N0 \ {1}, d | k
Bloc(k,d) = 〈 ⊗k , ⊗ , ⊗d ⊗d 〉 for k,d ∈N0, d | k
B′loc(k,d,0) = 〈 ⊗k , , ⊗ , ⊗d ⊗d , 〉 for k ∈N0 \ {1}, d | k
B′loc(k,d,d/2) = 〈 ⊗k , ⊗r ⊗r , ⊗ , ⊗d ⊗d , 〉

for k ∈N0 \ {1}, d ∈ 2N \ {2}, d | k, r = d/2

4.5 Classification of globally colourized categories
In this section we present some of the author’s original results – the classification of globally
colourized categories. The section essentially coincides with [Gro18, Sect. 3].

As we described in Section 4.4.4, for partitions in globally colourized categories, the only
relevant things are the (non-coloured) partition structure and the number c(p). The actual
distribution of the colours is not important. The classification result says a similar thing for the
whole categories – the only relevant data are some non-coloured category and the degree of
reflection k(C ).

We obtain the classification result in two steps. In Section 4.5.1, we study categories C
with k(C ) = 0. Those behave exactly the same way as non-coloured categories – indeed,
taking p,q ∈ C , we can always compose them as if they were non-coloured if we do necessary
colour permutations beforehand. This will lead to a one-to-one correspondence between
some non-coloured categories and categories with degree of reflection zero. A category C
with an arbitrary degree of reflection induces a category C0 with degree of reflection zero. In
Section 4.5.2, we show how to reconstruct C from C0.

4.5.1 Categories with zero degree of reflection
4.5.1 Lemma. Let C be a category of partitions.

(1) If k(C ) = 0, then all partitions in C have even length.
(2) Let ∈C . Then all partitions in C have even length if and only if <C .

Proof. The first part is obvious: If a partition p ∈ C has odd length then it cannot have the
same amount of white and black points, so c(p) , 0 and hence k(C ) , 0.

The second part essentially follows from Lemma 4.2.2 as the assumption of (2) means
that C is a non-coloured category. Take p ∈ C (k) with k odd. Since the colouring of p does
not matter, we can perform contractions (and necessary colour changes) on p until we get the
singleton . �

4.5.2 Definition. Let C be a category of partitions. Denote C0 := {p ∈C | c(p) = 0}.
4.5.3 Lemma. Let C be a category of partitions. Then C0 is a category of partitions with
k(C0) = 0.

Proof. Using Lemma 4.4.10, we see that the category operations applied on partitions with
c(p) = 0 again produce partitions with c(p) = 0. Thus, the subset C0 ⊆ C is closed under the
category operations. Moreover, c( ) = c( ) = c( ) = c( ) = 0, so all of them belong to C0.

The fact that k(C0) = 0 follows directly from the definition of C0. �

Recall the definition of the map Ψ:P →P from Definition 4.4.4.
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4.5.4 Lemma. Let C be a globally colourized category with k(C ) = 0 (or equivalently C = C0).
Then

(1) Ψ(C ) is a category of non-coloured partitions.
(2) In terms of two-coloured partitions, it corresponds to the non-coloured category

Ψ−1(Ψ(C )) = 〈C , 〉.

(3) Moreover, C = 〈C , 〉0.

Proof. To prove the first statement, we have to show that Ψ(C ) contains pair partitions and
it is closed under the category operations. We have that ∈ C , so ∈Ψ(C ). For p,q ∈ C we
have that Ψ(p)⊗Ψ(q) = Ψ(p⊗ q). We also have that Ψ(p)? = Ψ(p?). Finally, for any p ∈ C (k)
and any i ∈ {1, . . . , k}, we can shift colours in p in a way that the i-th and (i + 1)-st point have
different colours. Then Πi(Ψ(p)) = Ψ(Πip).

The second statement is obvious. Surely both C ⊆Ψ−1(Ψ(C )) and ∈Ψ−1(Ψ(C )), so
we have the inclusion ⊇. For the other one, we use Proposition 4.4.5 to see that Ψ−1(Ψ(C )) ⊆
Ψ−1(Ψ(〈C , 〉)) = 〈C , 〉.

In the third statement, the inclusion ⊆ is obvious. For the opposite inclusion, take
p ∈ 〈C , 〉0. This means that we are taking an arbitrary element of 〈C , 〉 such that c(p) = 0.
Applying Ψ on the equality in (2), we get Ψ(C ) = Ψ(〈C , 〉). This means that there is p′ ∈C
such that Ψ(p′) = Ψ(p). Since we have c(p′) = c(p) = 0 and since C is globally colourized, we
can shift colours in p′ to obtain p ∈C . �

4.5.5 Lemma. Let C̃ ⊆P be a category of non-coloured partitions such that ↑ <C . Denote by
C̄ := Ψ−1(C̃ ) ⊆P the corresponding category in terms of two-coloured partitions.

(1) It holds that C̃ = Ψ(C̄0) or, equivalently, C̄ = 〈C̄0, 〉.
(2) If C̃ = 〈p1, . . . ,pn〉 for some p1, . . . ,pn ∈ P , then C̄0 = 〈p′1, . . . ,p′n, ⊗ 〉, where p′i is

a colouring of pi with c(p′i) = 0 for every i ∈ {1, . . . ,n}.

Proof. The inclusion C̃ ⊇Ψ(C̄0) is obvious. For the opposite, take p ∈ C̃ . Since ↑ < C , p must
have even length. Thus, it has a colouring p′ such that c(p′) = 0, so p′ ∈ C̄0 and hence p ∈Ψ(C̄0).
The equivalent description of this equality follows from Lemma 4.5.4.

For the second statement, the existence of appropriate p′1, . . . ,p
′
n again follows from the fact

that ↑ < C , so all the partitions p1, . . . ,pn have even length. Then it is easy to see that all the
generators p′1, . . . ,p

′
n and ⊗ are elements of C̄0. Finally, take arbitrary p ∈ C̄0. Then

Ψ(p) ∈Ψ(C̄0) = C̃ = 〈p1, . . . ,pn〉 ⊆Ψ(〈p′1, . . . ,p′n, ⊗ 〉),

where we used that 〈p′1, . . . ,p′n, ⊗ 〉 satisfies the assumptions of Lemma 4.5.4, so its image
under Ψ is a category containing p1, . . . ,pn. So, there is p′ ∈ 〈p′1, . . . ,p′n, ⊗ 〉 such that
Ψ(p) = Ψ(p′). Since c(p) = c(p′) = 0 and since the category 〈p′1, . . . ,p′n, ⊗ 〉 is globally
colourized, it must contain also p. �

4.5.6 Proposition. There is a bijection between globally colourized categories C with k(C ) = 0
and non-coloured categories C̄ with < C̄ given by C 7→ 〈C , 〉 with inverse C̄ 7→ C̄0.

Proof. Denote by Φ1 the mentioned map and by Φ2 the alleged inverse. Lemma 4.5.4 says that
Φ2Φ1 is the identity and Lemma 4.5.5 says that Φ1Φ2 is the identity. �

4.5.2 Categories with non-zero degrees of reflection
4.5.7 Lemma. Let C be a globally colourized category.

(1) If ⊗ <C , then <C .
(2) If <C , then all partitions have even length.
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Proof. The first part follows from the fact that ⊗ is a contraction of .
Now, consider p ∈C (k) with k odd. Then take

p′ := R(p⊗ )⊗ p? = p p?

Since there is the same amount of black and white points in p′, we can use Lemma 4.4.6 to
permute colours in such a way that we can contract the partition to . �

Recall the definition of C0 from Def. 4.5.2.

4.5.8 Lemma. Let C be a globally colourized category, denote k := k(C ).

(1) If ⊗ ∈C , then C = 〈C0,
⊗k〉.

(2) If C contains only partitions of even length (in particular, if <C or ⊗ <C ),
then k is even and C = 〈C0,

⊗k〉.

Proof. We begin with the statement of (2). Suppose that every partition p ∈C has even length.
Since k(C ) = k, there is a partition p ∈ C such that c(p) = k. We can repeatedly perform
contractions on p until we get p′ containing only k white points. Since every partition is of
even length, we have that k is even.

Now, let us prove the inclusion ⊇ in (2). Again, take p ∈ C such that c(p) = k. Using
Lemma 4.4.6 we can permute colours in ⊗k/2 ⊗ p ∈ C in such a way that the first k points
are white. Then we can perform contractions on the rest of the points and obtain ⊗k/2 ∈C .
Note that this also implies that ⊗nk , ⊗nk ∈C for any n ∈N.

Now, we prove the inclusion ⊇ in (1). Again, take p ∈ C such that c(p) = k. Perform
contractions until we get p′ consisting of k white points only. Now, according to Lemma 4.4.2,
we can disconnect all points in p′ using ⊗ to obtain ⊗k ∈C . Again, this already implies that
⊗nk , ⊗nk ∈C for any n ∈N.

The proof of the inclusion ⊆ is the same in both cases. Denote either qk := ⊗k , q−k := ⊗k

in case (1) or qk := ⊗k/2, q−k := ⊗k/2 in case (2). We have already proven that qnk ∈ C for
all n ∈ Z. Take an arbitrary p ∈ C . From Lemma 4.4.11, we see that c(p) is a multiple of k,
so q−c(p) ∈ C and hence p′ := p⊗ q−c(p) ∈ C . Since c(p′) = 0, we have p′ ∈ C0. Finally, p can be
obtained by repeated contraction of p⊗ q−c(p) ⊗ qc(p) = p′ ⊗ qc(p) ∈ 〈C0,qk〉. �

4.5.9 Lemma. Let C1,C2 be non-coloured categories such that <C1,C2. Suppose one of the
following is true

(a) ⊗ ∈C1,C2 and 〈(C1)0,
⊗k1〉 = 〈(C2)0,

⊗k2〉 for some k1, k2 ∈N0 or
(b) 〈(C1)0,

⊗k1/2〉 = 〈(C2)0,
⊗k2/2〉 for k1, k2 ∈ 2N0.

Then k := k1 = k2 and

(1) C1 =C2 if k is even,
(2) 〈C1, 〉 = 〈C2, 〉 if k is odd.

Proof. Suppose 〈(C1)0,qk1
〉 = 〈(C2)0,qk2

〉, where qj denotes ⊗j in case (a) or ⊗j in case (b).
Then k1 = k2 follows from the fact that k(〈C0,qj〉) = j. If k is even, we can use Lemma 4.5.4 to
obtain

C1 = 〈(C1)0, 〉 = 〈(C1)0,qk1
, 〉 = 〈(C2)0,qk2

, 〉 = 〈(C2)0, 〉 =C2.

In the second and fourth equality, we used the fact that (a) ⊗k/2 ∈ C for every category C
and k ∈ 2N0, so, in particular, ⊗ki /2 ∈ 〈(Ci)0, 〉; (b) ↑⊗k ∈ C for every category C containing
↑⊗↑ and k ∈ 2N0, so, in particular, ⊗ki ∈ 〈(Ci)0, 〉.

If k is odd, we have

〈C1, 〉 = 〈(C1)0, , 〉 = 〈(C1)0,
⊗k1 , 〉 = 〈(C2)0,

⊗k2 , 〉 = 〈(C2)0, , 〉 = 〈C2, 〉. �
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4.5.3 The classification theorem

4.5.10 Theorem. [Gro18, Theorem 3.1] Every globally colourized category C is determined
by the number k(C ) and a non-coloured category of partitions not containing the singleton.
Therefore, the right column of Table 4.1 forms a complete classification of globally colourized
categories. All of them are pairwise inequivalent except for the rows denoted by asterisk (∗),
which are special instances of the last family parametrized by normal subgroups A of Z∗∞2 .

〈〉 −→ Oglob(k) = 〈 ⊗k/2, ⊗ 〉, k ∈ 2N0

〈 〉 −→Hglob(k) = 〈 ⊗k/2, , ⊗ 〉, k ∈ 2N0

〈 ,↑⊗↑〉 −→ Sglob(k) = 〈 ⊗k , , ⊗ , ⊗ 〉, k ∈N0

〈↑⊗ ↑〉 −→ Bglob(k) = 〈 ⊗k , ⊗ , ⊗ 〉, k ∈ 2N0

〈 〉 −→ B′glob(k) = 〈 ⊗k , , ⊗ 〉, k ∈N0

〈 〉 −→ Ogrp,glob(k) = 〈 ⊗k/2, , ⊗ 〉, k ∈ 2N0

〈 , 〉 −→Hgrp,glob(k) = 〈 ⊗k/2, , , ⊗ 〉, k ∈ 2N0 (∗)
〈 ,↑⊗↑, 〉 −→ Sgrp,glob(k) = 〈 ⊗k , , ⊗ , , ⊗ 〉, k ∈N0

〈↑⊗ ↑, 〉 −→ Bgrp,glob(k) = 〈 ⊗k , ⊗ , , ⊗ 〉, k ∈N0

〈 〉 −→ Ohl,glob(k) = 〈 ⊗k/2, , ⊗ 〉, k ∈ 2N0

〈 , 〉 −→Hhl,glob(k,0) = 〈 ⊗k/2, , , ⊗ 〉, k ∈ 2N0 (∗)
〈 , ,hs〉 −→Hhl,glob(k,s) = 〈 ⊗k/2,h0

s , , , ⊗ 〉, k ∈ 2N0, s ≥ 3 (∗)
〈↑⊗ ↑, 〉 −→ Bhl,glob(k) = 〈 ⊗k , ⊗ , , ⊗ 〉, k ∈ 2N0

〈πs〉 −→Hπ(k,s) = 〈 ⊗k/2,π0
s , ⊗ 〉, k ∈ 2N0, s ≥ 2

〈πl | l ∈N〉 −→Hπ(k,∞) = 〈 ⊗k/2,π0
l , ⊗ | l ∈N〉, k ∈ 2N0

AEZ∗∞2 sS∞inv., ↑⊗↑ < A −→HA(k) = 〈 ⊗k/2,A0, ⊗ 〉, k ∈ 2N0

Table 4.1 Complete classification of globally colourized categories

Before proving the theorem, let us comment on Table 4.1. Most of its notation is explained
in Sections 4.2 and 4.4.2.

The first column of the table lists all categories of non-coloured partitions that do not
contain the singleton ↑. The summary of the full classification is provided in Section 4.2.

Note that there are two instances of group-theoretical categories that contain ↑⊗ ↑ and
hence they have to be treated separately. Namely, it is 〈 ,↑, 〉 (which should not be
considered at all since it contains the singleton) and 〈 ,↑⊗↑, 〉.

Besides that, we also treat separately those group-theoretical categories that contain the
crossing partition or the half-liberating partition . The corresponding rows are denoted
by asterisk (∗).

The right column lists the corresponding globally colourized categories. We use the
following notation. By h0

s we denote a coloured counterpart of hs for which c(h0
s ) = 0. Thanks

to the global colourization, it does not matter which particular colourization we choose. For
definiteness, we can say, for example, that the colours in h0

s alternate beginning with white.
In the same way we define π0

s . For A a sS∞-invariant normal subgroup of Z∗∞2 , we denote by A0
the category of partitions arising from the non-coloured category of partitions corresponding
to A in the sense of Definition 4.5.2.

Note that the first five rows describe the classification of globally colourized categories
of non-crossing partitions, the following four lines classify the globally colourized group
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categories, i.e. those containing the crossing partition (both already obtained in [TW18], see
Theorem 4.4.12), and the following four rows classify all globally colourized half-liberated
categories of partitions, i.e. those containing the half-liberating partition , but not the
crossing partition .

Proof of Theorem 4.5.10. Proposition 4.5.6 tells us how to obtain all globally colourized cate-
gories with k = 0 from non-coloured ones (containing partitions of even length). Lemma 4.5.8
tells us how to obtain all globally colourized categories from those with k = 0.

The left column of Table 4.1 contains all non-coloured categories of partitions of even
length. All of them are pairwise distinct (except for the ones denoted by asterisk being special
instances of the last one). In the right column, we construct the corresponding globally
colourized categories. For k = 0, the generators of the category are given by Lemma 4.5.5. For
k , 0, we just have to add the partition ⊗k/2 or ⊗k according to Lemma 4.5.8.

To prove that all categories we have constructed are pairwise distinct, we use Lemma 4.5.9.
According to this lemma, distinct non-coloured categories C1 ,C2 can lead to equal globally
colourized categories only in the case ↑⊗↑ ∈C1,C2 if 〈C1, 〉 = 〈C2, 〉. The only pairs (C1,C2)
of non-coloured categories containing ↑⊗ ↑ and satisfying 〈C1,↑〉 = 〈C2,↑〉 are (〈↑⊗ ↑〉,〈 〉)
and (〈↑⊗↑, 〉,〈↑⊗↑, 〉). For the corresponding globally colourized categories we may easily
see that indeed Bglob(k) = B′glob(k) and Bgrp,glob(k) = Bhl,glob(k) for k odd. �

4.5.11 Remark. The set of generators for the categories is, of course, not unique. We used the
partition ⊗k for the cases ⊗ ∈C and the partition ⊗k/2 for the rest. Nevertheless, as we
see from Lemma 4.5.8, we could have used ⊗k/2 for all cases when C consists of partitions of
even length and ⊗k for the rest. In addition, we could reformulate Lemmata 4.5.8 and 4.5.9
and use the white block partition bk = . . . in all cases when ∈C .

4.5.12 Remark. The results in the non-crossing case indeed match with Theorem 4.4.12 taken
from [TW18]. The only difference is that, for the hyperoctahedral categories, the generator bk is
used instead of ⊗k/2 in Theorem 4.4.12.

4.6 Partitions with extra singletons
In this section, we study partitions with extra singletons as they were defined in [GW19b]. The
motivation for the definition will be explained in Part III of the thesis. The main goal of this
section is to present the classification obtained in [GW19b]. We do not solve the classification
problem explicitly. Instead, we show that it is essentially equivalent to classification of two-
coloured categories of partitions. This correspondence is based on some functor F, which will
play an important role also later in the thesis.

4.6.1 Definition of partitions with extra singletons

Consider the set O = { , } with the trivial involution 7→ , 7→ . A partition with extra
singletons is an O -coloured partition p, where all points of the colour are singletons. Any
set C of partitions with extra singletons that is closed under the category operations and
contains the partitions , , , and ⊗ is called a category of partitions with extra singletons.
The category of all partitions with extra singletons is denoted by P . The points with colour
are called extra singletons. The smallest category of partitions with extra singletons containing
given p1, . . . ,pn ∈P is denoted by 〈p1, . . . ,pn〉 .

A typical example of partition with extra singletons looks as follows

p = . (4.4)
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Note that we have now two kinds of singletons. We still have the “ordinary” singletons –
i.e. blocks of the colour containing a single point – and the extra singletons depicted by the
triangle .

Although the identity morphism and the duality morphism ⊗ look a bit differently in
this case, the rotations and one-line operations work in the same manner as with any other
coloured partitions.

In the following text, we attack the classification problem for categories of partitions
with extra singletons. We are not going to solve it explicitly. Instead, we will show that
the classification problem is equivalent to classification of two-coloured unitary partitions
introduced in Section 4.4. However, we need to treat some special cases first.

4.6.2 Full subcategory of non-coloured partitions

This section is analogical to Section 4.4.3. We are going to describe the connection between
non-coloured categories and categories with extra singletons.

The set of all ordinary partitions P can be viewed as a subset of P . Moreover, P is a
full subcategory of P given by restricting to objects with no extra singletons. In this sense,
every category of partitions with extra singletons C induces a full subcategory of one-coloured
partitions:

C := {p ∈C | p does not contain any extra singleton}.

4.6.1 Lemma. Let C be a category of partitions with extra singletons.

(1) If ∈C , then C = 〈C , 〉 .
(2) If <C , ↑⊗ <C , but ∈C , then C = 〈C , 〉 .

Proof. Suppose ∈C and take any p ∈C . Then since ∈C , we can remove all extra singletons
in p by composition and obtain some q ∈ C . The partition p can be obtained by reversing
this process, i.e. taking q ∈ C and tensoring it with extra singletons , which proves that C is
generated by C and .

Similarly for the second case. The conditions <C and ↑⊗ <C are equivalent to assuming
that any partition p ∈C contains an even number of extra singletons. This allows to reconstruct
any partition p ∈ C from some non-coloured version q ∈ C using (using composition with
partitions of the form · · · · · · we can move any extra singleton to any position). �

4.6.3 Partitions of odd length

We show that the case of partitions of odd length can be reduced to the case of partitions of
even length.

4.6.2 Lemma. Let C be a category of partitions with extra singletons. Suppose C contains
a partition of odd length. Then ∈C or ↑ ∈C .

Proof. Suppose p ∈ C has odd length k > 1. Without loss of generality, suppose that p has
lower points only, i.e. p ∈ C (k). Then because of the odd length of p, there must be two
neighbouring points in p (alternatively the first and the last point) of the same colour, so they
can be contracted. By induction, we can contract any partition of odd length to a partition of
length one, i.e. a singleton or an extra singleton. �

For the case ∈C , recall Lemma 4.6.1 saying that the category C is determined by the one-
coloured category C . Thus, the classification of such categories reduces to the one-coloured
case.

The case when the singleton ↑ is contained in the category can be transformed to the case
when it is not.
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4.6 Partitions with extra singletons

4.6.3 Lemma. Let C be a category of partitions with extra singletons such that ↑ ∈ C . Then
C = 〈C̃ ,↑〉 , where

C̃ = {p ∈C | |p| is even}.

Proof. The inclusion ⊇ is obvious. For the converse, consider p ∈ C with odd length. Then
we have p⊗↑ ∈ C̃ , so p ∈ 〈p⊗↑,↑〉 ⊆ 〈C̃ ,↑〉 . �

4.6.4 From extra-singleton categories to two-coloured categories

This section contains the main result regarding categories of partitions with extra singletons.
We construct a functor that links the extra-singleton categories with categories of two-coloured
partitions.

4.6.4 Definition. We define a functor F:P →P as follows.

• Consider an object in P , that is, a word w ∈ O ∗. Then F(w) is obtained by colouring
all the points in w with alternating white and black colour starting with white and
then deleting all extra singletons. In particular, two neighbouring points in F(w) have
the same colour if and only if the corresponding points in w are separated by an odd
number of .

• Consider a partition p ∈P (w1,w2). Then F(p) is a two-coloured partition with upper
colour pattern F(w1) and lower colour pattern F(w2) with the same block structure
as p (ignoring the extra singletons).

4.6.5 Example. As a typical example, take the partition from Equation (4.4). We map it as
follows

7→ .

That is, we colour the odd points (i.e. first, third and fifth on both rows) with white colour
and the even points (the second and fourth on both rows) with black. Then we erase all the
triangles. Further examples are the following

7→ , ⊗ 7→ , 7→ , 7→ ⊗ .

Note, in particular, that we have F( ⊗p) = F(p), where the bar denotes the colour inversion
↔ . Note also that the image of a partition p ∈P is invariant with respect to adding a pair

of consecutive extra singletons to p and adding arbitrary amount of extra singletons to the
end of the upper or lower row. Conversely, for any p̃ ∈P , its preimages differ only by such
changes. In particular, any word w ∈ O and any partition p̃ ∈ P have a unique shortest
preimage.

4.6.6 Proposition. The map F satisfies:

(1) F(w1 ⊗w2) = F(w1)⊗F(w2) or F(w1 ⊗w2) = F(w1)⊗F(w2).
(2) For p,q of even length, we have F(p⊗ q) = F(p)⊗F(q) or F(p⊗ q) = F(p)⊗F(q).
(3) If p and q are composable, then F(p) and F(q) are composable and F(qp) = F(q)F(p),
(4) F(p∗) = F(p)∗.

Thus, F is a unitary functor (by (3) and (4)), but not a monoidal functor (by (1) and (2)).

Proof. The proof is straightforward. Note that in (1) we apply the colour inversion if and only
if the length of w1 is odd. In (2) we use the fact that, for p ∈P (k, l) of even length, we have
that either both k and l are even and we do not have to apply the colour inversion for F(q) or
both k and l are odd and then we apply the colour inversion for both the upper and the lower
row of F(q). �
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4. Categories of partitions

4.6.7 Definition. We denote by Peven the set of all partitions with extra singletons having
even length. From now on we will consider F to be defined only on Peven. In particular, given
a category C̃ ⊆P , we denote by F−1(C̃ ) its preimage inside Peven.

4.6.8 Theorem. [GW19b, Theorem 4.10] The map F defines a one-to-one correspondence

Categories of partitions with extra
singletons having an even length

C ⊆Peven

F←→
Categories of two-coloured

partitions C̃ ⊆P that are invariant
with respect to colour inversions

To be more precise, the following holds.

(1) Let C be a category of partitions with extra singletons of even length. Then F(C )
is a category of two-coloured partitions, which is invariant with respect to colour
inversions.

(2) Let C̃ be a category of two-coloured partitions invariant with respect to colour
inversions. Then F−1(C̃ ) is a category of partitions with extra singletons of even
length.

It holds that F−1(F(C )) =C and F(F−1(C̃ )) = C̃ .

Proof. Consider a category C ⊆Peven. As mentioned in Example 4.6.5, we have that F( ⊗ p)
is the colour inversion of F(p), so F(C ) is indeed closed under colour inversions. From
Proposition 4.6.6, it directly follows that F(C ) is closed under involution. It is also closed
under tensor products since we have that either F(p)⊗F(q) = F(p⊗q) or F(p)⊗F(q) = F(p⊗ ⊗q).
To check that F(C ) is closed under compositions, it is enough to prove that, for any composable
pair p̃, q̃ ∈ F(C ), there exist p,q ∈ C composable such that p̃ = F(p) and q̃ = F(q). It suffices
to take p with the shortest possible lower row (with no extra singletons at the end and
neighbouring extra singletons anywhere) and q with the shortest possible upper row.

The part (2) is proven similarly.
The equality F(F−1(C̃ )) = C̃ is surely satisfied since it holds for any map F.
Since ⊗ ∈ C for any category C , we have that any category is closed under adding or

removing pairs of neighbouring extra singletons. Since also ∈ C , we can also add arbitrary
amount of extra singletons to the end of the lower and the upper row. Consequently, any
category C contains with any element p ∈C the whole preimage F−1(F(p)). Therefore, we also
have F−1(F(C )) =C . This also proves that the described relationship is indeed a one-to-one
correspondence. �

4.6.9 Proposition. Let S ⊆P be a set of partitions with extra singletons. Then F(〈S〉 ) = 〈F(S)〉.
Proof. The assertion follows from Theorem 4.6.8, namely from the fact that both F and F−1

map a category to a category. We surely have the inclusion ⊇ since obviously F(S) ⊆ F(〈S〉 )
and F(〈S〉 ) is a category, so it must contain the category generated by F(S). For the converse
inclusion, we surely have S ⊆ F−1(〈F(S)〉). Since we have a category on the right-hand side, it
must contain 〈S〉 and then we just apply F to both sides. �

4.6.5 An application to the theory of two-coloured partitions

This correspondence not only brings classification results for categories of partitions with extra
singletons, but also conversely it brings new insight to the theory of two-coloured unitary
partitions. In this section, we will define a new construction of a two-coloured category AltC
induced by some non-coloured category C .

Recall the forgetful functor Ψ:P →P acting on two-coloured partitions by forgetting
the colour patterns from Definition 4.4.4.
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4.6 Partitions with extra singletons

4.6.10 Lemma. Let C ⊆P be a category of partitions such that ↑ <C . Then

F(〈C , 〉 ) = Ψ−1(C ).

Proof. The left-hand side equals to 〈F(C ), 〉 by Proposition 4.6.9. The image F(C ) contains
some colourization of partitions in C . Thanks to the partition , the category 〈F(C ), 〉 actually
contains all the colourizations of all partitions in C and therefore equals to Ψ−1(C ). Note that
F(C ) is defined only if C contains only partitions of even length, which is equivalent to the
assumption ↑ <C . �

4.6.11 Definition. We say that a two-coloured partition p ∈P has an alternating colouring
if the colour pattern of both upper and lower points alternates (between white and black),
the colour of the first points of both rows coincide, and the colour of the last point of both
rows coincide (consequently, p is of even length). For a two-coloured category C ⊆P , we
denote by AltC the category generated by elements of C that have an alternating colouring.
For an ordinary category C ⊆ P , we denote AltC := AltΨ−1(C ) the category generated by
alternating coloured partitions in C .

4.6.12 Lemma. Let C ⊆P be a category such that ↑ <C . Then

F(〈C 〉 ) = AltC .

Proof. Follows directly from the definition of F and Alt. �

4.6.13 Remark. The operation Alt for two-coloured categories in general corresponds to the
operation C 7→ 〈C 〉 for categories with extra singletons. More precisely, we have AltC =
F〈(F−1(C )) 〉 .

4.6.14 Lemma. Let C ⊆P be a category of partitions with ↑ <C . Then < 〈C 〉 .

Proof. Let us define the set C̄ of all partitions with extra singletons p ∈P such that (1) if we
remove all extra singletons from p then it is an element of C , (2) between every pair of points
incident to a common block, there is an even number of extra singletons. We prove that C̄ is
a category. This is clear if we consider the operations on one line. Indeed, one can easily see
that C̄ is closed under tensor product, contractions, rotations and reflections. Since C ⊆ C̄ , we
must have 〈C 〉 ⊆ C̄ . Obviously, < C̄ . �

4.6.15 Proposition. Let C ⊆P be a category of partitions with ↑ <C . Then AltC is a locally
colourized category of partitions. In addition, we have that Ψ(AltC ) = C , so distinct non-
coloured categories C induce distinct two-coloured categories AltC .

Proof. The fact that AltC is locally colourized is a consequence of the preceding lemma. The
second statement is obvious: Since ↑ < C , all partitions p ∈ C have even length. Hence, all
p ∈ C can be coloured alternating yielding p̃ ∈ AltC . Forgetting the colouring by Ψ get us
back to the original category C . �

We can put this section into the context of the classification of globally-colourized categories
from Section 4.5. Taking a categoryC ⊆P with ↑ <C , we can construct the following sequence
of mutually distinct two-coloured categories

AltC (C0 ⊆Ck := 〈C0,
⊗k/2〉 ⊆C1 = Ψ−1(C ),

where k ∈ 2N0. If ↑⊗↑ ∈C , we can replace ⊗k/2 by ⊗k and take k ∈N0.
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4. Categories of partitions

Finally, we can restrict ourselves to non-crossing categories and compare this result with
the classification from [TW18], which was summarized in Section 4.4.5.

Alt〈〉 = 〈〉 = Oloc

Alt〈 〉 = 〈 〉 =H′loc

Alt〈 ,↑⊗↑〉 = 〈 , ⊗ 〉 = Sloc(0,0)

Alt〈↑⊗ ↑〉 = 〈 ⊗ 〉 = Bloc(0,0)

Alt〈 〉 = 〈 〉 = B′loc(0,0,0)

4.6.6 Concrete classification results
In this section, we use Theorem 4.6.8 to transfer the available classification results for unitary
two-coloured partitions to the case of categories of partitions with extra singletons. We focus
mainly on the globally-colourized case classified in Section 4.5.

Recall that a category of two-coloured partitions C ∈P is globally-colourized if ⊗ ∈
C or, equivalently, ⊗ ∈C . This holds if and only if the category F−1(C ) ⊆P contains the
partition (see Example 4.6.5). Given a two-coloured category of partitions C ⊆P , recall
also the definition of the subcategory C0 containing partitions p ∈C (w1,w2) with zero colour
sum, that is, c(p) := c(w2)− c(w1) = 0.

4.6.16 Lemma. Let C ⊆P be a category of partitions. Then

(Ψ−1(C ))0 = 〈AltC , ⊗ 〉.

Proof. The category AltC contains some particular zero-sum colourings of partitions in C .
Adding the globally-colourizing partition ⊗ we have that 〈AltC , ⊗ 〉 contains all the
zero-sum colourings and hence the category coincides with (Ψ−1(C ))0. �

4.6.17 Definition. Let C ⊆ P be a category of partitions such that ↑ < C . We define the
following categories of partitions with extra singletons.

C0 := 〈C , 〉 , C2k := 〈C , ( )⊗k〉

for any k ∈N. If ↑⊗↑ ∈C , then we also define

Ck := 〈C , , (↑⊗ )⊗k〉 .

Note that if ↑⊗↑ ∈C , then 〈C , ( )⊗k〉 = 〈C , , (↑⊗ )⊗2k〉 , so the two above mentioned
definitions of C2k coincide. This can be proven by applying the functor F from Definition 4.6.4.
Thanks to Proposition 4.6.9, we can write the two-coloured version of the equality as

〈 ⊗ , ⊗ , ⊗2k〉 = 〈 ⊗ , ⊗ , ⊗k〉,

which then follows from Lemma 4.5.8.

4.6.18 Lemma. Let C ⊆P be a category of partitions such that ↑ <C . Then

Ψ−1(C )0 = F(C0 ), 〈Ψ−1(C )0,
⊗k〉 = F(C2k), 〈Ψ−1(C )0,

⊗k〉 = F(Ck ),

where k ∈N and the last equality makes sense only if ↑⊗↑ ∈C .

Proof. The proof is similar in all three cases using Proposition 4.6.9 and Lemma 4.6.16. Take,
for example, the middle one. We have

F(C2k) = 〈F(C ),F(( )⊗k)〉 = 〈AltC , ⊗k〉 = 〈Ψ−1(C )0,
⊗k〉. �
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4.6 Partitions with extra singletons

Non-crossing: 〈 , ( )⊗k/2〉, 〈 , , ( )⊗k/2〉, 〈↑⊗ ↑, , (↑⊗ )⊗k〉, k ∈ 2N0
〈 , , (↑⊗ )⊗k〉, 〈 ,↑⊗↑, , (↑⊗ )⊗k〉, k ∈N0

∈C : 〈 , , ( )⊗k/2〉, k ∈ 2N0
〈 ,↑⊗↑, , (↑⊗ )⊗k〉, 〈 , ,↑⊗↑, , (↑⊗ )⊗k〉, k ∈N0
〈 , , , ( )⊗k/2〉, k ∈ 2N0 (∗)

∈C : 〈 , , ( )⊗k/2〉, 〈 ,↑⊗↑, , (↑⊗ )⊗k〉, k ∈ 2N0
〈 , , , ( )⊗k/2〉, k ∈ 2N0 (∗)
〈 , ,hs, , ( )⊗k/2〉, k ∈ 2N0, s ≥ 3 (∗)

The rest: 〈πs, , ( )⊗k/2〉, s ≥ 2, 〈πl , , ( )⊗k/2 | l ∈N〉, k ∈ 2N0
〈A, , ( )⊗k/2〉, ↑⊗↑ < AEZ∞2 , k ∈ 2N0

Table 4.2 Classification of categories with extra singletons containing . Categories
in the rows marked by the asterisk (∗) are special cases of the group-theoretical

categories.

4.6.19 Theorem. [GW19b, Theorem 6.1] Every category of partitions with extra singletons
containing only partitions of even length is of the form Ck , where C ⊆P is some category
of partitions such that ↑ <C and k ∈N0 is even unless ↑⊗↑ ∈C . Distinct pairs (C , k) define
distinct categories Ck with the exception that

〈↑⊗ ↑, , (↑⊗ )⊗k〉 = 〈 , , (↑⊗ )⊗k〉
〈 ,↑⊗↑, , (↑⊗ )⊗k〉 = 〈 ,↑⊗↑, , (↑⊗ )⊗k〉

for all k odd.

Proof. As already mentioned, we just apply Theorem 4.6.8 to the classification from Section 4.5.
The statement is then just reformulation of Theorem 4.5.10. Using Lemma 4.6.18, we find
the preimage of the categories mentioned in Lemmata 4.5.8, 4.5.9 by the functor F (all of
the categories are invariant with respect to the colour inversion). The mutual inequality is
discussed in the proof of Theorem 4.5.10. �

So, if we want to obtain a list of all categories with partitions with extra singletons, we just
need to take the classification of all categories of partitions C and construct the categories Ck .
We already did similar work in the unitary two-coloured case – the classification is summarized
in Table 4.1 (p. 70). Now, we can just copy the result applying the functor F on all categories in
Table 4.1. The result is listed in Table 4.2.

Let us also mention the case when the category with extra singletons C contains also
partitions of odd length. Recall from Subsection 4.6.3 that this can happen only if ↑ ∈ C
or ∈ C . In the latter case, the classification is equivalent to the classification of ordinary
categories.

4.6.20 Proposition. Let C be a category of partitions with extra singletons such that ↑ ∈ C ,
<C , and ∈C . Then C is one of the following categories

〈↑, 〉 , 〈 ,↑, 〉 , 〈↑, , 〉 , 〈 ,↑, , 〉 .

Proof. According to Lemma 4.6.3, we have that C = 〈C̃ ,↑〉 , where C̃ is some category of
partitions with extra singletons with elements of even length. Thus, we get all possible
categories C by adding the singleton ↑ to the categories listed in Table 4.2. We find out that
there are only the above mentioned four distinct instances. �

We can do the same thing with the classification of non-crossing two-coloured categories
that was obtained in [TW18] and summarized in Section 4.4.5. We mention only the locally
colourized categories since the globally colourized ones were handled above.
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4. Categories of partitions

〈〉 , 〈 〉 , 〈 ,↑〉 , 〈↑〉 ,
〈bk ,bd ⊗ b

∗
d , , 〉 k,d ∈N0 \ {1,2}, d | k

〈(↑⊗ )⊗k , (↑⊗ )⊗d ⊗ ⊗ ( ⊗↓)⊗d , ,↑⊗↑〉 k,d ∈N0 \ {1}, d | k
〈(↑⊗ )⊗k , (↑⊗ )⊗d ⊗ ⊗ ( ⊗↓)⊗d ,↑⊗↑〉 k,d ∈N0, d | k
〈(↑⊗ )⊗k , (↑⊗ )⊗d ⊗ ⊗ ( ⊗↓)⊗d , 〉 k,d ∈N0 \ {1}, d | k
〈(↑⊗ )⊗k , (↑⊗ )⊗d ⊗ ⊗ ( ⊗↓)⊗d ,

(↑⊗ )d/2+1 ⊗ ⊗ ⊗ ( ⊗↓)⊗d/2−1〉 k ∈N0 \ {1}, d ∈ 2N0 \ {0,2}, d | k

Table 4.3 Classification of non-crossing categories with extra singletons that do not
contain

4.6.21 Proposition. Let C ⊆P be a category of non-crossing partitions with extra singletons
such that <C . Then C equals to one of the categories in Table 4.3.

In the table, we denote

bk := . . . ∈P (0,2k)

the partition consisting of a block of length k and k extra singletons.

Proof. The classification of locally colourized non-crossing two-coloured categories is summa-
rized in Theorem 4.4.13. All of the categories are invariant with respect to the colour inversion.
According to Theorem 4.6.8, we obtain all non-crossing categories of partitions with extra
singletons of even length by applying F−1 to this classification. Categories containing the
extra singleton contain also the partition , so they are not listed. Categories containing
the singleton ↑ are obtained by adding the singleton to the categories with partitions of even
length. �

Finally, let us review the recent development in the classification programme of two-
coloured categories and its relationship with categories with extra singletons. In [MW19a,
MW19b], Mang and Weber classified all categories of two-coloured partitions with neutral
pairings, that is, all categories C̃ ⊆P with 〈〉 ⊆ C̃ ⊆ 〈 〉. Applying the functor F to these
results, we get classification of all categories of partitions with extra singletons C ⊆P with
〈〉 ⊆ C ⊆ 〈 〉 . Classification of all non-hyperoctahedral two-coloured categories (that is,
⊗ ∈ C̃ or < C̃ ) is a work in progress. Preliminary results are available in [MW19c,

MW20], which provides another rich source for categories of partitions with extra singletons.
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Chapter 5

Linear categories of partitions

In this chapter, we study linear categories of partitions, which are obtained by adding the
linear structure to the categories of partitions and modifying the composition rule by some
scalar factor. The linear categories are actually much more appropriate structures to describe
representation categories of quantum groups. Besides that, they are interesting examples of
monoidal ∗-categories as such and are studied within the category theory even in cases when
they do not correspond to any quantum group [Del07, CO11, CH17].

The reason why we were studying the categories without the linear structure in the
previous chapter is that they are much easier to work with. Their classification is essentially
a combinatorial problem, which makes it easier to solve. In contrast, there was basically
nothing known about non-easy linear categories of partitions when we started the PhD project.
A linear category of partitions is called non-easy whenever working with non-trivial linear
combinations of partitions is essential to describe it – it is not induced by any ordinary category
of partitions in the sense of the previous chapter.

The main result of this chapter is twofold. As no examples of non-easy categories were
known before, the first goal was to obtain such examples. This was done using some computer
experiments.1 We describe the idea in Section 5.2 and provide the concrete computations in
Section 5.3. Secondly, we study the categories by theoretical means and prove that they are
indeed new and non-easy. This is done in Section 5.4.

Paragraph
w/ candid.

Generator as a full linear
combination

Section where
it is studied

Systematical
description

5.3.2 δ2 − δ( + + ) + 2 5.4.1, 5.4.5 P(δ)

5.3.2
(
−2(1 + δ)∓ (2 + δ)

√
δ+ 1

)
−

(1±
√
δ+ 1)( + + ) +

5.4.6 V(δ,±)

5.3.5 δ3 − 2δ2( + + . . .)+
4δ( + + . . .)− 16

5.4.2 T(δ)

5.3.5

δ3(δ+ 1) −
δ2(δ+ 1±

√
δ+ 1)( + + . . .)+

δ(δ+ 2± 2
√
δ+ 1)( + + . . .)+

(δ2 − 4δ − 8∓ 8
√
δ+ 1)

5.4.6 V(δ,±)

5.3.6 δ2 − 2δ( + ) + 4 5.4.3 D
5.3.6 − 2 5.4.4 J

5.3.9 − 1
δ ( + + + )+

1
δ2 ( + )

5.4.5 P(δ)

— − 2 − 2 −
2 + 4

5.4.4 J

— − 1
δ − 1

δ + 1
δ2 7.2.5 U−1

(δ,±)

—
(
− 1
N

)⊗k
, k ∈N \ {1} 7.2.5 U−1

(δ,±)

Table 5.1 Summary of all generators of non-easy linear categories of partitions studied
in this thesis

1 This is also the main part of the thesis that profited of the integration in the collaborative research centre SFB-
TRR 195 Symbolic Tools in Mathematics and their Application.
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5. Linear categories of partitions

To summarize the results of Section 5.3 and give an overview of Section 5.4, we list
in Table 5.1 all the linear combinations of partitions appearing in this thesis that generate
non-easy categories. In the first column, we give a reference to the corresponding paragraph
in Section 5.3, where the linear combination was discovered. In the second column, we
explicitly write down the linear combination of partitions. In the third column, we refer to
the corresponding section, where the linear combination was studied. We interpret those
linear combinations usually as images of some mappings and we give this interpretation in the
last column. Note that the expressions in the second and the last column may not be equal;
however, they generate the same category.

The study of the generators inspired us to define additional linear combinations that were
not discovered by our experiments (since they are too big). We list also those at the end of
the table.

Note that Table 5.1 does not yet provide an exhaustive summary of all non-easy categories
we found. We list here only the generators. Those generators can be further combined with
other partitions to define additional non-easy categories. A list of all non-easy categories
together with the associated quantum groups appearing in this thesis will be provided in
Table 7.1 on page 125.

5.1 Definition of linear categories of partitions
We fix a complex number δ ∈ C and define Partδ(k, l) = spanP (k, l) to be the vector space of
formal linear combinations of partitions with k upper and l lower points. Let us stress that
we do not assume any relations between the partitions, so P (k, l) is a basis of Partδ(k, l).

Recall the definition of the category operations (tensor product, composition and invo-
lution) from Section 4.1.1. For two partitions p ∈ P (k, l), q ∈ P (l,m), we denote by rl(p,q)
the number of remaining loops that emerge when putting q below p in order to compute the
composition qp. Those are the connected components of the diagram that are not connected
to any of the upper or the lower points. We modify the definition of composition on Partδ by
adding a multiplicative factor δ for each such deleted loop. Thus, in total, we have the factor
δrl(p,q). An example follows:

· = = δ2

We extend the composition as well as the tensor product linearly to the whole vector
space. We extend the involution antilinearly. This gives Partδ the structure of a monoidal
∗-category. Any collection of vector subspaces K (k, l) ⊆ Partδ(k, l) containing the identity
partition ∈ K (1,1) and the pair partition ∈ K (0,2) that is closed under the category
operations is called a linear category of partitions.

Similarly as in the case of partitions, by p ∈ Partδ or p ∈K , we mean that p is element
of one of the spaces Partδ(k, l) orK (k, l), respectively. For given p1, . . . ,pn ∈ Partδ, we denote
by 〈p1, . . . ,pn〉δ the smallest linear category of partitions containing p1, . . . ,pn. Any element in
〈p1, . . . ,pn〉δ can be obtained from the generators p1, . . . ,pn, the identity partition , and the pair
partition by performing a finite amount of category operations and linear combinations.

Instead of having different categories for different parameters δ, we can consider “all
of them at once”. That is, define a category Part, where the morphism spaces Part(k, l) are
modules over the polynomial ring R := C[δ].

We can also extend linearly or antilinearly the additional operations that were defined in
Section 4.1.2 such as rotations, reflections and contractions. Also here we denote Partδ(k) :=
Partδ(0, k).
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5.2 Algorithmic search for linear categories of partitions

Let us now link the linear categories of partitions with the categories without the linear
structure that were studied in Chapter 4.

5.1.1 Proposition. Let C ⊆P be a category of partitions. PutK (k, l) := spanC (k, l) for every
k, l ∈N0. ThenK ⊆ Partδ is a linear category of partitions for every δ ∈C. Conversely, suppose
thatK ⊆ Partδ, δ , 0 is a linear category of partitions such thatK (k, l) = spanC (k, l) for some
collection of sets C (k, l) ⊆P (k, l). Then C is a category of partitions.

Proof. The proof is straightforward. The spacesK (k, l) are closed under the category operations
if and only if the bases of the spaces C (k, l) are. The category operations onK and C coincide
up to scalar factor δ, hence the equivalence (for δ , 0). �

Such a linear categoryK linearly generated by some ordinary category C is called easy
and we writeK = spanC as a shorthand forK (k, l) = spanC (k, l). If this is not the case, then
K is called non-easy.

5.1.2 Remark. Consider partitions p1, . . . ,pn ∈P , δ , 0. Then 〈p1, . . . ,pn〉δ = span〈p1, . . . ,pn〉. In
particular, such a category is always easy. This again follows directly from the fact that the
category operations on linear categories and ordinary categories coincide up to a scalar factor.

We will use special notation for some easy linear categories of partitions. For example,
we denote Pairδ := 〈 〉δ the linear category of all pairings. We denote NCPartδ := spanNC =
〈 ,↑〉δ the linear category of all non-crossing partitions.

5.2 Algorithmic search for linear categories of partitions
Since we wanted to find some first examples of non-easy linear categories of partitions – and it
was not a priori clear how to construct them –, we decided to choose an algorithmic approach
to reach this goal. The following text, i.e. Sections 5.2 and 5.3, is based on the article [GW19a].

The idea of using a computer to find examples of non-easy categories is very simple.
Consider a linear combination of partitions p ∈ Partδ(k, l) and try to generate the whole
categoryK := 〈p〉δ by iterating the category operations on the set { , ,p}. Unfortunately, there
is no theoretical result that would assure that, after performing a given amount of category
operations on the generators, we get all elements ofK (i, j) for some i, j ∈N0. Thus, we cannot
directly use the computer to prove non-easiness of a category. However, we are able to prove
easiness of a category and hence, excluding the easy cases, we obtain at least candidates for
the non-easy categories. The precise way, how we use this to look for non-easy categories is
described in Section 5.3.

We describe the algorithm in the following sections. In Section 5.2.1, we list some addi-
tional simple observations that will simplify the search. In Section 5.2.2, we describe some
preprocessing, that is, some preparatory computations we have to perform on our computer
before we can run the algorithm. In Section 5.2.3, we discuss the actual procedures we have to
program in the computer and, in Section 5.2.4, we summarize the whole algorithm. Finally,
in Section 5.2.5, we discuss the limits of the algorithm.

5.2.1 Observations on how to detect non-easy categories
We formulate a series of additional simple observations that should simplify the search for
non-easy categories.

First of all, when looking for examples of non-easy categories, it makes sense to look just
for the categories generated by one element.

5.2.1 Observation. Let p1, . . . ,pn ∈ Partδ(k, l). If 〈p1, . . . ,pn〉δ is non-easy, then at least one of the
categories 〈p1〉δ, . . . ,〈pn〉δ is non-easy.

Proof. If all the categories 〈pi〉δ are easy, then 〈p1, . . . ,pn〉δ is generated by partitions, which,
according to Remark 5.1.2, implies that it is easy. �
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5. Linear categories of partitions

The following observation describes how to prove easiness of the category 〈p〉δ.
5.2.2 Observation. Consider p ∈ Partδ(k, l) and express it in the basis of partitions as p =

∑
i αipi ,

where αi ∈ C are non-zero numbers and pi ∈P (k, l) are mutually different partitions. Then
the category 〈p〉δ is easy if and only if it contains all the partitions pi .

Proof. Left-right implication follows from uniqueness of coordinates with respect to a given
basis. Right-left multiplication follows from Remark 5.1.2. �

The following result further reduces the computational complexity. In particular, it allows
to avoid using the antilinear operation of reflection.

5.2.3 Observation. Let S be a set of linear combinations of partitions on one line which is
closed under the operation of reflection and contains the pair partition . Then any element
of 〈S〉 can be obtained by performing a finite amount of tensor products, contractions and
rotations and taking linear combinations. It is automatically closed under reflections.

Proof. We have
(p⊗ q)? = q? ⊗ p? ,

(Πp)? = (R−2 ◦Π ◦R2)p? ,

(Rp)? = R−1p? .

Hence, any set S remains closed under reflections after applying arbitrary amount of tensor
product, contractions, and rotations. �

Finally, the following proposition will be useful to reduce the amount of generators p we
have to consider. Recall that by R:Partδ(k)→ Partδ(k) we denote the linear operator of rotation
on one line.

5.2.4 Proposition. Consider p,q ∈ Partδ(k) and let f be a polynomial of degree less than k.
Then 〈f (R)p+ q〉 = 〈g(R)p+ q̃〉, where g(x) = gcd(f (x),xk − 1) and q̃ ∈ Partδ(k).

Proof. Consider f (x) as an element of the algebra A := C[x]/I , where I is the ideal generated
by xk − 1. Since Rk = I , the evaluation h(R) for h ∈ A does not depend on the particular
representative.

There certainly exists f̃ ∈ A such that f = f̃ g and f̃ is coprime to xk − 1 (just take f̃ (x) =
(f (x) + j(xk −1))/g(x) for appropriate j ∈N). Then f̃ , as an element of A, is not a divisor of zero
and hence, since A is finite-dimensional, it is invertible. Therefore, there exists h ∈ A such that
hf = hf̃ g = g and we have that 〈f (R)p+ q〉 ⊇ 〈h(R)(f (R)p+ q)〉 = 〈g(R)p+ q̃〉, where q̃ := h(R)q.

The opposite inclusion is easy 〈g(R)p+ q̃〉 ⊇ 〈f̃ (R)(g(R)p+ q̃)〉 = 〈f (R)p+ q〉. �

5.2.2 Preprocessing

First, we need to compute the matrices of the operations of tensor product, contraction
and rotation as linear maps. Note that the number of partitions of l points is given by
Bell numbers Bl (see Table 5.2). So, the dimension of Partδ(l) is Bl . Thus, we can identify
Partδ(l) 'C

Bl identifying the partitions p ∈P (l) with the standard basis in C
Bl . Actually, it is

more convenient not to specify the value of δ and consider rather Part(l) ' RBl for R := C[δ].
The tensor product ⊗:Part(k)× Part(l)→ Part(k + l) of partitions can be viewed as a linear

map
tens:RBkBl → RBk+l .

Similarly, we can define the matrices corresponding to contraction and rotation

contr:RBl → RBl−2 , rot:RBl → RBl .

We fix a length bound l0 ∈N0 and compute all those matrices for l ≤ l0 (resp. k + l ≤ l0 in
the case of the tensor product).
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5.2 Algorithmic search for linear categories of partitions

5.2.3 Adding procedures
We define modules Kl ⊆ RBl for l ≤ l0 that are going to approximate the spacesK (l) of some
categoryK ⊆ Part. To fill the modules, we define the following procedures.

The procedure AddParts takes a set S ∈ RBl representing a set of linear combinations of
partitions fromK (l) and adds it to the module Kl . In addition, it adds all the rotations of the
partitions to Kl and all their contractions to the corresponding Kl−2i . Thus, we end up with
an approximation of K , which contains the set S and is closed under taking rotations and
contractions.

1 procedure AddParts(l ∈ {1, . . . , l0},S ⊆ RBl )
2 if l ≥ 2 then AddParts(l − 2,contr(S))
3 Kl := Kl + S
4 for j ∈ {1, . . . , l − 1} do
5 S := rot(S)
6 if l ≥ 2 then AddParts(l − 2,contr(S))
7 Kl := Kl + S

The procedure AddTensors takes all pairs x ∈ Kk and y ∈ Kl such that k + l ≤ l0 and
computes the vector corresponding to the partition tensor product tens(x⊗y). Note that we can
assume k ≤ l since we have q⊗ p = Rl(p⊗ q) for p ∈ Part(k) and q ∈ Part(l). To add the results to
the category approximation, we use the procedure AddParts, so we add also all the rotations
and contractions of the tensor products.

1 procedure AddTensors

2 for k ∈ {1, . . . ,bl0/2c} do
3 for l ∈ {k, . . . , l0 − k} do
4 AddParts(k + l, tens(Kk ⊗Kl))

5.2.4 The algorithm determining candidates for non-easy categories
Suppose we have generators p1, . . . ,pn ∈ Part(li), li ≤ l0. Then we can compute an approximation
ofK := 〈p1, . . . ,pn〉 by performing the following algorithm.

(1) AddParts(2, ); AddParts(li , {pi ,p?i }) for every i = 1, . . . ,n.
(2) Repeat AddTensors until this procedure leaves all the modules Kl unchanged.

At this stage, our category approximation is closed under contractions, rotations, reflections,
and tensor products whose result has length lower or equal to the length bound l0. (Note that
the closedness with respect to reflections follows from Observation 5.2.3.)

Now we can use Observation 5.2.2 to see, whether there is a chance forK to be non-easy.
If all the non-trivial summands of all the generators p1, . . . ,pn are contained inK , then it is
surely easy. Otherwise, it may be non-easy.

As follows from Observation 5.2.1, we should first look for singly-generated categories.
This way, we obtain a list of linear combinations of partitions that (maybe) generate non-easy
categories. Afterwards, we can try to combine those generators or add some partitions as
generators and test the easiness of categories generated by more elements.

In order to be able to really search through all possible generators and not just pick some
randomly, we may add some extra variables a1, . . . , am to the ring R. Then we can start with
a generator p depending on a1, . . . , am as parameters. The precise strategy for the practical
computations will be more clear in Section 5.3.

l 1 2 3 4 5 6 7 8 9 10 11 12
Bl 1 2 5 15 52 203 877 4 140 21 147 115 975 678 570 4 213 597

Table 5.2 Bell numbers
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5. Linear categories of partitions

5.2.5 Limits of the algorithm

The fact that the category approximation is closed under the category operations in the above
sense, however, does not mean that our approximation is faithful. It may happen that, in order
to obtain a partition on l points for l ≤ l0, we need to compute an intermediate result with
length greater than the length bound l0 first.

If we need a more reliable approximation, we need to increase the length bound l0. We
should always choose l0 to be at least 2l1 since otherwise we cannot even compute p⊗p and the
results will be completely unreliable.

The value of the length bound l0 has, of course, its limits. The Bell numbers Bl grow
exponentially with l, so the module dimensions become huge very quickly. In Table 5.2, we list
the Bell numbers for some small l. We see that the maximal value of l0, which can be achieved
for a usual computer, is about l0 = 10. In Section 5.3, we will discuss results for generators of
length l1 ≤ 4, which is pretty much close to the maximum that can be achieved without further
assumptions.

5.3 Concrete computations
In this section, we are going to present concretely how our algorithm is applied. The algorithm
was implemented in Singular [DGPS18]. We also used Maple1 [Map17] for solving systems of
polynomial equations. As a result of these computations we obtain a list of linear categories of
partitions that are candidates for non-easy categories. The actual non-easiness will be proven
in Section 5.4.

In all computations that follow, we use the length bound l0 := 8.
Let us also comment on some restrictions on the parameter δ we are going to make here.

One should not bother too much about those restrictions. It is not that our computation would
not work for all δ ∈C. It is rather that we are going to throw away some candidates that are
not so interesting for us. If we then want to make the statement of the form “the following
are all possible candidates”, we have to restrict the δ to keep this true. The reason why we are
ignoring some solutions is that we are interested mainly in applications to compact quantum
groups and this means that we focus on solutions that work for (almost) all δ ∈N. To preserve
peace of mind, the reader may assume for the whole computation that δ ∈ (4,∞) and then no
complications will appear.

Nevertheless, the reader that is interested in the presented solutions as examples of abstract
monoidal categories may want to go through the whole computation again and analyse the
cases that we skipped here. In addition, we should mention that we skipped also some solutions
that work for δ = 4 and hence may be relevant also for the theory of compact quantum groups.

5.3.1 Generator of length one and two

The space Part(1) is one-dimensional being the span of the singleton partition. Therefore, any
category generated by an element of length one is easy.

Similarly for the length two. We have Part(2) = span{ , }. Since is in any category by
definition, we again have that any category generated by an element of length two is easy.

5.3.2 Generator of length three

For l = 3, we have the following partitions

P (3) = { , , , , }.

1 Maple is a trademark of Waterloo Maple Inc.
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5.3 Concrete computations

So, a general element p ∈ Partδ(3) can be expressed as follows

p = a + b1 + b2 + b3 + c ,

where a,b1,b2,b3, c ∈ C. Now, our goal is to exclude such values of those parameters, for which
K := 〈p〉δ is easy.

5.3.1 Lemma. A linear categoryK = 〈p〉δ with p ∈ Partδ(3) is easy if and only if ↑ ∈K . Hence,
K is non-easy if and only ifK (1) is empty.

Proof. If ↑ ∈K , then all the partitions , , , and are inK . If p contains also
as a summand, then also ∈K . So, we have eitherK = 〈↑〉δ orK = 〈 ,↑〉δ. In both cases
K is easy. Conversely, ifK is easy, then it must contain at least one of the partitions in P (3).
Each of them generate the singleton. �

Running AddParts(p) (over the ring C[δ,a,b1,b2,b3, c]), we get immediately that K (1)
contains the following elements

(a+ b1 + b2 + δb3 + δc)↑, (a+ b1 + δb2 + b3 + δc)↑, (a+ δb1 + b2 + b3 + δc)↑.

IfK is non-easy, thenK (1) must be empty, which leads to equations

a+ b1 + b2 + δb3 + δc = 0

a+ b1 + δb2 + b3 + δc = 0

a+ δb1 + b2 + b3 + δc = 0.

By subtracting the equations one from each other, we get bi(1− δ) = bj(1− δ) for i, j = 1,2,3.
Suppose δ , 1, then non-easiness implies that b := b1 = b2 = b3. Substituting this to one of the
equations, we get an additional condition

a+ (2 + δ)b+ δc = 0.

So, we can put a := −(2 + δ)b − δc. Now, we can run our algorithm again over C[δ,b,c]. After
one iteration of AddTensors, we get thatK contains

(δ − 1)(δ − 2)(δc+ 2b)(δc2 + 2bc − b2)↑.

Thus, excluding the case δ = 1,2, the category can be non-easy only if

b = −cδ/2 or b = (1±
√
δ+ 1)c.

For c = 0, we have also b = 0, so the category is easy. For c , 0, we can normalize p dividing
by c.

5.3.2 Candidates. Assuming δ ∈C \ {0,1,2}, the following are the only candidates on non-easy
linear categories of partitions that are generated by a single element p ∈ Partδ(3):

〈δ2 − δ( + + ) + 2 〉δ,〈(
−2(1 + δ)− (2 + δ)

√
δ+ 1

)
− (1 +

√
δ+ 1)( + + ) +

〉
δ
,〈(

−2(1 + δ) + (2 + δ)
√
δ+ 1

)
− (1−

√
δ+ 1)( + + ) +

〉
δ
.

Note that we could have derived the equations providing the conditions for non-easiness
even without our algorithm. Indeed, the linear ones can be written as ΠRip = 0 for i = 1,2 and
the quadratic one as

Π2Π3(p⊗ p) = (p⊗ p) = 0.

The algorithm was useful first for providing the idea to solve such equations and secondly for
checking (although not proving) that the categories remain non-easy even after more iterations
of the tensor product.
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5. Linear categories of partitions

5.3.3 Generator of length four, case of no singletons

A generator p ∈ Partδ(4) can be parametrized as follows

p = a1 + a2 + b1 + b2 + b3 + b4 +

c1 + c2 + c3 + c4 + d1 + d2 + e .

We omit the non-crossing pair partitions and since they are contained in every
category.

Again, we want to exclude those parameters for which K := 〈p〉δ is easy. Here, the
situation is a bit more complicated because we do not have a criterion for easiness analogous to
Lemma 5.3.1. So, we divide the situation in different cases. In this section, we assume ↑⊗↑ <K .
We subdivide our computation even further:

Case 1. Generator not being rotationally symmetric.

First, let us briefly discuss the case, when p is not rotationally symmetric. This means that

0 , (R− 1)p =: p̃ = b̃1 + b̃2 + b̃3 + b̃4 +

c̃1 + c̃2 + c̃3 + c̃4 + d( − ),

where we denote b̃1 = b4 − b1, b̃2 = b1 − b2 and so on, so

b̃1 + b̃2 + b̃3 + b̃4 = 0,

c̃1 + c̃2 + c̃3 + c̃4 = 0.

Denote by β:Partδ(2)→C the linear functional giving the coefficient of ↑⊗↑ for a given
linear combination q ∈ Partδ(2), i.e. mapping α +β ↑⊗↑ 7→ β. Since ↑⊗↑ < 〈p̃〉δ, we have four
linear equations of the form β(Π(Ri p̃)) = 0, which read

b̃1 + b̃4 + δc̃1 + c̃2 + c̃4 = 0,

b̃2 + b̃1 + δc̃2 + c̃3 + c̃1 = 0,

b̃3 + b̃2 + δc̃3 + c̃4 + c̃2 = 0,

b̃4 + b̃3 + δc̃4 + c̃1 + c̃3 = 0.

Together with the equations above, this leads to

c̃3 = −c̃1, c̃4 = −c̃2, b̃2 = −b̃1 − δc̃2, b̃3 = b̃1 + δ(c̃1 + c̃2), b̃4 = −b̃1 − δc̃1.

We can write p̃ = f (R) + q̃, where f (x) = c̃1 + c̃2x + c̃3x
2 + c̃4x

3. According to Proposi-
tion 5.2.4, we can assume that f is a divisor of x4 − 1. Thanks to the first two equations above,
we see that f (1) = 0 and f (−1) = 0, so f (x) is a multiple of x2 − 1. For f (x) , 0 (that is, either
f (x) = x2−1 or f (x) = (x2−1)(x± i)), running one iteration of AddTensors shows that assuming
δ , 2,4 we have ↑⊗↑ ∈ 〈p̃〉δ, which is a contradiction.

In the case f (x) = 0, we have

p̃ = b̃( − + − ) + d̃( − ).

One iteration of AddTensors yields b̃ = (−2±
√

4− δ)d̃. Note that the involution acts on p by
exchanging b̃ 7→ − ¯̃b and d̃ 7→ − ¯̃d. Thus, both b̃ and d̃ must be real up to scaling by a complex
number. This can be achieved only for δ ≤ 4.
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5.3.3 Proposition. Consider δ ∈ C \ (−∞,4]. Let p ∈ Partδ(4) such that ↑ ⊗ ↑ < K := 〈p〉δ is
non-easy. Then p is rotationally symmetric.

Proof. Follows from the considerations above. �

To conclude, Case 1 is not relevant assuming δ is a large natural number.

Case 2. Rotationally symmetric generator.

Now, suppose p is of the form

p = a1 + a2 + b( + + + )+

c( + + + ) + d( + ) + e .

Recall the notation β:Partδ(2)→C for the linear functional giving the coefficient of ↑⊗↑.
As ↑ ⊗ ↑ < K , we must have β(q) = 0 for all q ∈ K (2). So, our idea for computing concrete
coefficients providing a candidate for a non-easy category is to solve the following equations.

β(Πp) = 0 (5.1)

β
(

(p⊗ p)
)

= 0 (5.2)

β
(

(p⊗ p⊗ p)
)

= 0 (5.3)

β
(

(p⊗ p⊗ p⊗ p)
)

= 0 (5.4)

β
(

(p⊗ p⊗ p⊗ p⊗ p)
)

= 0 (5.5)

5.3.4 Remarks.

(a) All the equations are homogeneous. (Their solution is obviously invariant with respect
to scaling.)

(b) The first equation containing one copy of p is linear, the second one is quadratic and
so on.

(c) The rotational symmetry reduces the number of variables and equations. Note for
example that there is essentially just one way how to construct a tensor product of
two copies of p and then contract it to size two. Similarly for three copies of p. For
four copies, there are two additional ways, but it turns out that the corresponding
equations already follow from (5.1)–(5.4).

(d) The reflection acts on p by complex conjugating all the parameters. If it turns out that
the system of equations has discrete solutions only (up to scaling), then the assumption
of non-easiness implies that all the coefficients are up to scaling real. (Otherwise p
and p? are linearly independent, so p + αp? ∈ 〈p〉 would be a one-parameter set of
solutions.)

We were not able to solve those equations in full generality. So, let us focus on some special
cases.

Case 2a. a2 = 0, i.e. p is non-crossing.

In this case, unless b = c = d = e = 0, we have that ↑ ⊗ ↑ < 〈p〉δ already implies that 〈p〉δ is
non-easy. Since we have only five variables, four homogeneous equations (5.1)–(5.4) are
already enough to obtain a list of discrete solutions (up to scaling). Using Maple, we found
the following eight solutions:

a1 = 1, b = 0, c = 0, d = 0, e = 0, (5.6)

a1 = δ3, b = −2δ2, c = 4δ, d = 4δ, e = −16, (5.7)

87



5. Linear categories of partitions

a1 = δ(δ+1)(δ+2∓2
√
δ+ 1), b = δ(−δ−1±

√
δ+ 1), c = δ, d = δ, e = δ−2∓2

√
δ+ 1, (5.8)

a1 = 2δ2(2±
√

4− δ), b = −δ2, c = 2δ, d = ∓δ
√

4− δ, e = 2(−2±
√

4− δ), (5.9)

a1 = 2δ3(3∓ 2
√

3− δ), b = δ2(−2δ ±
√

3− δ), c = δ(4δ − 3),

d = δ(δ ± 2(δ − 1)
√

3− δ), e = ±2(3δ − 2)
√

3− δ+ 7δ − 6.
(5.10)

There are also some additional solutions for δ = −1, 3, 4, (3 ±
√

5)/2, which we will not
mention here. The first solution of the list above is the easy one. The following two lines – (5.7)
and (5.8) – are interesting for us. Their non-easiness will be proven as Proposition 5.4.5 and
Proposition 5.4.34, respectively. Solutions (5.9) and (5.10) are real only for δ ≤ 4, resp. δ ≤ 3, so
we will ignore them here.

We can summarize the results in the following proposition.

5.3.5 Candidates. Consider δ ∈C\(−∞,4]. Let p ∈ Partδ(4) be non-crossing such thatK := 〈p〉δ
is non-easy and ↑⊗↑ <K . ThenK is equal to one of the following three categories

〈δ3 − 2δ2( + + . . .) + 4δ( + + . . .)− 16 〉δ,

〈δ3(δ+ 1) − δ2(δ+ 1±
√
δ+ 1)( + + . . .)+

δ(δ+ 2± 2
√
δ+ 1)( + + . . .) + (δ2 − 4δ − 8∓ 8

√
δ+ 1) 〉δ.

Note that the two categories on the second line can be easy only for δ ∈ [−1,∞) since
otherwise the generator does not have real coefficients.

Case 2b. c = 0 , a2.

We again use Maple to obtain the solutions. One of the solutions is a very complicated one that
can be expressed in terms of roots of some polynomial equation of degree nine. We will not
study it further. Then we have a solution of the form

a1 = 0, a2 = δ2, b = 0, d = −2δ, e = 4. (5.11)

Finally, there is a solution where a1 and a2 are arbitrary and b = d = e = 0. This solution is
somehow obvious – the category 〈a1 + a2 〉δ can never contain ↑⊗↑ since all blocks of
both and have even size. This, however, says nothing about its non-easiness, so
let us use our algorithm to investigate the category.

For simplicity, we can divide the generator by a2 (for a2 = 0 is the category obviously easy),
that is, consider p := + a . After one iteration of AddTensors, we see that 〈p〉δ may
be non-easy only if a = −2.

5.3.6 Candidates. We have two new candidates for non-easy categories

〈δ2 − 2δ( + ) + 4 〉δ, and 〈 − 2 〉δ.

The non-easiness of both is proven by Proposition 5.4.6 and 5.4.8, respectively. Moreover,
we will prove that both are actually isomorphic to the category of all pairings Pairδ = 〈 〉δ.

5.3.4 Generator of length four, case with singletons

In this subsection, we assume ↑⊗↑ ∈K , so we can assume p is of the form

p = a1 + a2 + b1 + b2 + b3 + b4 + d1 + d2 . (5.12)

We do not include and rotations of in the linear combination since those are
generated by ↑⊗↑.
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5.3.7 Proposition. Consider δ ∈C \ {0,2}. Let p be of the form (5.12). SupposeK := 〈↑⊗ ↑,p〉δ
is non-easy and <K . Then p is rotationally symmetric.
Proof. Assume

0 , (R− 1)p =: p̃ = b̃1 + b̃2 + b̃3 − (b̃1 + b̃2 + b̃3) + d( − ).

We will prove that 〈p̃,↑ ⊗ ↑〉δ = 〈 , 〉δ (which contains all partitions on four points
except for ). This already implies that 〈p,↑ ⊗ ↑〉δ either equals to 〈 , 〉δ or to
〈 , , 〉δ, so it is easy.

After one iteration of AddTensor on 〈↑ ⊗ ↑, p̃〉δ, we see that ∈ 〈↑ ⊗ ↑, p̃〉δ assuming
δ , 2. Hence, we can set d = 0 and repeat the algorithm for 〈p̃, 〉δ. After one iteration of
AddTensor, we generate assuming δ , 0. �

Case 1. Assuming <K .
Take

p = a1 + a2 + b( + + + ) + d( + ). (5.13)

Running one iteration of AddTensor on 〈↑⊗↑,p〉δ, we compute a1 = −bδ, a2 = −b−dδ. Further
iterations of AddTensor suggest that this category indeed does not contain and is indeed
non-easy for any b,d ∈C.

We can write p = a1p1 + a2p2, where (assuming δ , 0)

p1 = − 1
δ

( + + + ) +
1
δ2 ( + ), (5.14)

p2 = + + . (5.15)

In Propositions 5.4.24 and 5.4.28, we will show that the categories 〈p1〉δ, 〈p2〉δ and 〈p1,p2〉δ are
indeed noneasy (note that p1 essentially coincides with P(δ) and p2 essentially coincides
with P(δ) , where P(δ) will be defined in Def. 5.4.11).
5.3.8 Remark. It actually holds that 〈p〉δ = 〈p1,p2〉δ for any non-trivial linear combination
p = a1p1 + a2p2. For most choices of a1, a2, this can be computed with our algorithm. However,
choosing

p = 2δp1 + (2− δ)p2 = 2δ + (2− δ) − 2( + + + ) + + ,

the category 〈p〉δ appears to be new. That is, even if we iterate AddTensor until the modules
become stable, we do not obtain p1 and p2. As we mentioned at the beginning of this remark,
in reality, the p1 and p2 are elements of the category. We can compute it “by hand” (preferably,
again with the help of computer), if we do the computation described by the following graph.

Here the vertices stand for copies of the generator p – each vertex has degree four as p is
a linear combination of partitions of four points – and the edges describe contractions (free
edges connected just to one vertex are the outputs). One can check that it is indeed possible
to perform this computation using the category operations. The key point is that this graph
is planar.

So, if we do such a computation, the result is

(2δ5 −18δ4 + 48δ3 −48δ2 + 96δ−64)δp1 − (δ6 −11δ5 + 50δ4 −144δ3 + 304δ2 −320δ+ 64)p2 + . . . ,

where the dots stand for some partitions that are already generated by ↑⊗↑. For δ , 0,2,3,4,
this is a different linear combination than we started with, so we can indeed generate p1 and p2.
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5. Linear categories of partitions

Case 2b. Assuming ∈K
In this case, we are interested in categories of the formK := 〈 ,p〉δ, where

p = a1 + a2 + b( + + + ).

Using our algorithm, it can be again proven that non-easiness implies a1 = −bδ. So, our
candidates are quantum groups of the form 〈a1p1 + a2p2, 〉δ = 〈a1p1 + a2 , 〉δ,
where p1 and p2 are given by Eqs. (5.14), (5.15) (this time, we can also ignore the summands

, in the formulae (5.14), (5.15)).
Again, our algorithm shows, that actually 〈a1p1 + a2 , 〉δ = 〈p1, , 〉 for

most choices of a1, a2. From Remark 5.3.8, it actually follows that we have this for all a1, a2 , 0
if we assume δ , 0,2,3,4.

Finally, let us mention that we can, in addition, construct the non-easy categories of the
form 〈↑,p〉. Again, see Proposition 5.4.28.

5.3.9 Candidates. Consider the following candidates for non-easy categories.

〈p1,↑⊗↑〉δ 〈p1,p2,↑⊗↑〉δ (5.16)

〈p1, 〉δ 〈p1, , 〉δ (5.17)

〈p1,↑〉δ 〈p1,↑, 〉δ (5.18)

Here, p1,p2 are given by Eqs. (5.14), (5.15). Assuming δ , 0,2,3,4, those on lines (5.16), (5.17)
are the only non-easy categories containing ↑⊗↑ generated by a single element of Partδ(4).

5.4 Direct proofs of non-easiness
In this section, we provide proofs of non-easiness of the categories discovered by computer
experiments as described in the previous section. The section is based on results obtained
in [GW19a, GW20]. However, we formulate them in more detail than in [GW19a] and bring
them from a different perspective not refering to the quantum group picture in contrast with
[GW20].

We formulate this section not only to really prove the statements, but also to show different
kinds of proof techniques connected with non-easy quantum groups and to show interesting
isomorphisms between different linear categories of partitions.

5.4.1 General contractions

In this section, we present a proof that was not published in any article. The reason is that
it works only for one specific category, whose non-easiness is possible to proof also by other
means (see Sect. 5.4.5). Nevertheless, we consider the proof technique to be quite interesting,
so we decided to include it here.

The basic idea of proof is the following. Suppose p is rotationally symmetric. If p ∈ Partδ(l)
generates p′ ∈ Partδ(l ′), this means that p′ was made from p by a series of tensor products,
contractions and rotations. We can simplify this process a bit. First, we produce a k-fold
tensor product p⊗k and then perform some more general contractions. Namely, we can express
p′ = qp⊗k , where q ∈ Pairδ(l ′k, l) is some pairing. In fact, we can generate in such a way any
element of 〈p, 〉δ.
5.4.1 Proposition. The category

〈δ2 − δ( + + ) + 2 〉δ

is non-easy for every δ ∈C.
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Proof. Denote p := δ2 − δ( + + ) + 2 ,K := 〈p〉δ. We showed in Lemma 5.3.1
that K is non-easy if and only if ↑ < 〈p〉δ. If we had ↑ ∈K , it would mean that by a series
of tensor products, contractions and rotations, we can produce a non-zero multiple of ↑
from p. Thanks to p being rotationally invariant, this would imply that there exists k ∈N and
q′ ∈ Pairδ(3k − 1,0) such that ( ⊗ q′)p⊗k = α↑ for some α , 0. Consequently, ( ⊗ q)p = α↑ for
q := q′( ⊗ ⊗ p⊗(k−1)) ∈ Partδ(2,0).

Hence, it is enough to prove that qp = 0 for every q ∈ Partδ(2,0). In Section 5.3.2, we
checked that ( ⊗ )p = Π2p = 0. It is straightforward to check that also ( ⊗↓⊗↓)p = 0. �

Actually, this also proves non-easiness of the category 〈p, 〉δ.
We could formulate a more general statement such as: Let p ∈ Partδ(l) be rotational

symmetric with l odd. Suppose ( ⊗ q)p = 0 for every q ∈ Partδ(l − 1,0). Then 〈p〉δ and 〈p, 〉δ
are non-easy categories.

This might sound like a promising way of constructing new non-easy categories. We only
have to solve some system of linear equations. For dimension reasons, we actually surely
will have a plenty of solutions. However, it might happen that all the discovered non-easy
categories are actually equal to the above mentioned one. This is at least the case for l = 5.

5.4.2 Isomorphism by conjugation
In this section, we assume δ , 0.

5.4.2 Definition. We define the linear combination τ(δ) := − 2
δ ∈ Partδ(1,1). For any p ∈

Partδ(k, l), we set T(δ)p := τ⊗l(δ)pτ
⊗k
(δ) .

It holds that τ(δ) · τ(δ) = and τ∗(δ) = τ(δ). In operator language, we would say that τ(δ) is
a self-adjoint unitary. Consequently, conjugation by τ(δ) defines a category isomorphism.

5.4.3 Proposition. T(δ) is a monoidal ∗-isomorphism Partδ→ Partδ.

Proof. The fact that T(δ) is a monoidal unitary functor follows from the above mentioned
properties of τ(δ). Finally, we also have T 2

(δ) = id, which proves that it is an isomorphism. �

5.4.4 Remark. If ↑⊗ ↑ ∈K ⊆ Partδ, then T(δ)K =K . Indeed, ↑⊗ ↑ ∈K implies τ(δ) ∈K and
hence T(δ)K ⊆K . From the isomorphism property, we have the equality. This implication
cannot be reversed. For example, we have T(δ) = , so T(δ)〈 〉δ = 〈 〉δ although ↑⊗↑ < 〈 〉δ.

As a non-trivial example, we can compute that

T(δ) = − 2
δ

( + + + )

+
4
δ2 ( + + + + + )− 16

δ3 .

5.4.5 Proposition. [GW20, Example 7.6] The category 〈T(δ) 〉δ is non-easy. In particular,
〈T(δ) 〉δ , 〈 〉δ.
Proof. The inequality follows simply from the fact that T(δ) < 〈 〉δ. If the category
〈T(δ) 〉δ was easy, then it would contain and be strictly larger than 〈 〉δ, which
would contradict T(δ) being a category isomorphism. �

5.4.3 The disjoining isomorphism
The following proposition was mentioned as [GW19a, Proposition 4.5]. However, we gave
only a sketch of proof there. Here, we explain it more in detail.

5.4.6 Proposition. The categoryK := 〈 − 2
δ ( + ) + 4

δ2 〉δ is isomorphic to 〈 〉δ for every
δ , 0. Consequently, it is a non-easy category.

Proof. We give an explicit formula for the isomorphism D:Pairδ→K acting on any p ∈ Pairδ
as follows. Every pair block that has between its legs an odd number of points is replaced by
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5. Linear categories of partitions

〈pair〉 − 2
δ 〈singletons〉. (We use cyclical order of points in the partition. Since all pair partitions

have even number of points, it does not matter from which side we count.) For example,

7→ − 2
δ

( + ) +
4
δ2 ,

7→ − 2
δ

( + ) +
4
δ2 ,

7→ − 2
δ

− 2
δ

+
4
δ2 .

Now, we only have to prove that it indeed is a monoidal ∗-isomorphism.
The proof becomes more clear if we formulate it for partitions with lower points only. In

order to check that D is indeed a monoidal unitary functor, we have to prove that it commutes
with the one-line operations. This is clear for the tensor product, rotation, and reflection.
Now, let us prove that for any p ∈ Pairδ(k), we have D(Π1p) = Π1(Dp). We can assume that p is
a partition, not a linear combination. If p = ⊗ q, then the statement is clear, so assume that
the first two points of p belong to different blocks. We call a pair block even if it has an even
number of points between its legs, otherwise it is odd.

If the blocks corresponding to the first two points of p are even, then by contracting them,
we get an even block. The mapping D acts on even blocks as the identity, so it clearly commutes
with the contraction. When contracting an even block with an odd block, we get an odd block.
Odd blocks are mapped to − 2

δ↑⊗↑ = Lrotτ(δ) by D. When contracting Lrotτ(δ) with a normal
block , we get Lrotτ(δ), so everything is fine also in this case. Finally if both the blocks are
odd, then by contracting them, we get an even block. Also when contracting Lrotτ(δ) with
another copy of Lrotτ(δ), we get simply .

Finally, non-easiness of the category follows directly from the explicit description of its
elements: if the category was easy, then it would be equal to 〈 , , , 〉δ = 〈 ,↑⊗↑〉δ, which
is surely larger and hence non-isomorphic with 〈 〉δ. �

5.4.7 Remark. At first sight, it might appear a bit confusing that we prove the non-easiness of
a category by showing that it is isomorphic to an easy category. But note that the easiness and
non-easiness are by no means some fundamental abstract characterizations of the categories. It
just says whether we chose a convenient or an inconvenient way how do describe them. The
whole point of Section 5.4 is to express non-easy categories in terms of the easy ones. That is,
to find a convenient description of categories that were defined inconveniently using linear
combinations of partitions.

5.4.4 The joining isomorphism

Also the following proposition was mentioned as [GW19a, Proposition 4.5]. We again explain
the proof more in detail here.

5.4.8 Proposition. The category K := 〈2 − 〉δ is isomorphic to 〈 〉δ for every δ ∈ C.
Consequently, it is a non-easy category.

Proof. We give an explicit formula for the isomorphism Pairδ→K acting on a pair partition p
as follows. Every crossing in p is replaced by −〈crossing〉+ 2〈a single block〉 (by a single block
we mean, that the two blocks that were crossing are united). To be more precise, let a1, . . . ,ak
be the set of blocks of p and denote by Xp the set of pairs {ai ,aj} that cross each other. Then we
define

J p := (−1)|Xp |
∑
Ξ⊆Xp

(−2)|Ξ|pΞ,

where pΞ is created from p by unifying the pairs of blocks in Ξ.
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For example, we map

7→ − + 2 ,

7→ − 2 − 2 + 4 .

The second example in word representation reads

J abcacb = p − 2p{{a,b}} − 2p{{a,c}} + 4p{{a,b},{a,c}} = abcacb− 2aacaca− 2abaaab+ 4aaaaaa.

Now, we only have to prove that it indeed is a monoidal ∗-isomorphism. We will do this
working with partitions on one line. It is clear that the mapping commutes with the tensor
product, rotation and reflection. We need to prove this for contraction.

Take a pair partition p on k + 2 points. If p = ⊗ q, then it is easy to see that indeed
Π1(J p) = J (Π1p) = J q. Now, suppose that the first two points of p belong to different blocks.
Denote the first block by letter a and the second block by letter b, so the word representation
of p is p = abx1x2 · · ·xk . Denote q := Π1p and its word representation q = x̃1x̃2 · · · x̃k , where
x̃i = xi if xi , a,b and x̃i = c if xi = a or xi = b. Then it holds that

Xq =
{
{x,y} ∈ Xp

∣∣∣ a,b < {x,y}}∪{
{c,x}

∣∣∣ {a,x} ∈ Xp and {b,x} < Xp
}
∪{

{c,x}
∣∣∣ {a,x} < Xp and {b,x} ∈ Xp

}
.

Denote by π the embedding Xq→ Xp. We will prove that Π1(J p) = J (Π1p) = J q.
It is easy to see that

J q = (−1)|Xq |Π1

 ∑
Ξ⊆π(Xq)⊆Xp

(−2)|Ξ|pΞ

 .
In case when {a,b} < Xp, we have |Xq | = |Xp |, so we can exchange this in the formula above. In
case when {a,b} ∈ Xp, we have Π1pΞ = Π1pΞ∪{a,b}, so

J q = (−1)|Xp |Π1

 ∑
Ξ⊆π(Xq)⊆Xp

(−2)|Ξ|pΞ +
∑

Ξ⊆π(Xq)⊆Xp

(−2)|Ξ|+1pΞ∪{a,b}

 .
It suffices to prove that the rest of the sum is zero. Choose a block x of p such that {a,x} ∈ Xp

and {b,x} ∈ Xp. Then

Π1

(
p{{a,x}} + p{{b,x}} − 2p{{a,x},{b,x}}

)
= 0.

Consequently, for any Ξ ⊆ Xp,

Π1

(
(−2)|Ξ∪{{a,x}}|pΞ∪{{a,x}} + (−2)|Ξ∪{{b,x}}|pΞ∪{{b,x}} + (−2)|Ξ∪{{a,x},{b,x}}|pΞ∪{{a,x},{b,x}}

)
= 0.

The missing part of the sum above is a sum of such terms, so this proves the statement.
Finally, the non-easiness of the category again follows directly from the explicit description

of its elements: if the category was easy, then it would be equal to 〈 , 〉δ, which is larger and
hence non-isomorphic with 〈 〉δ. �

5.4.9 Remark. We can apply this isomorphism also on subcategories of Pairδ. The only easy
subcategories are the following two. The category of all non-crossing pairings 〈〉δ, where the
isomorphism acts as the identity since there is no crossing, and the category 〈 〉δ that is
mapped onto the following non-easy category

〈 − 2 − 2 − 2 + 4 〉δ.

This leads to an additional new non-easy category that was not discovered by our computer
experiments since it is generated by a partition of six points.
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5. Linear categories of partitions

5.4.5 Projective morphism
In this section, we assume that δ , 0. The text is based on [GW20].
5.4.10 Definition. We define π(δ) := − 1

δ ∈ Partδ(1,1).
It satisfies π(δ) · π(δ) = π(δ) and π∗(δ) = π(δ). In operator language, π(δ) is an orthogonal

projection. This allows us to define the following
5.4.11 Definition. For any p ∈ Partδ(k, l) we denote P(δ)p := π⊗l(δ)pπ

⊗k
(δ). We denote

PartRedδ(k, l) := P(δ)Partδ(k, l) = {π⊗l(δ)pπ
⊗k
(δ) | p ∈ Partδ(k, l)}.

5.4.12 Proposition. The collection of vector spaces PartRedδ(k, l) is closed under the category
operations. It forms a monoidal ∗-category with identity morphism π⊗k(δ) ∈ PartRedδ(k,k) and

duality morphisms Lrotkπ⊗k(δ) ∈ PartRed(0,2k).
Proof. Straightforward, see also the proof of Proposition 5.4.16. �

5.4.13 Example. As an example, let us compute the action of P(δ) on small block partitions:

P(δ)↑ = 0,

P(δ) = − 1
δ
↑⊗↑ = Lrotπ(δ),

P(δ) = − 1
δ

( + + ) +
2
δ2 ,

P(δ) = − 1
δ

( + + + )+

+
1
δ2 ( + + + + + )− 3

δ3 .

5.4.14 Definition. Any collection of spacesK (k, l) ⊆ PartRed(k, l) containing π(δ) and Lrotπ(δ)
that is closed under the category operations will be called a reduced linear category of
partitions. For given p1, . . . ,pn ∈ Partδ, we denote by 〈p1, . . . ,pn〉δ-red the smallest reduced
category containing those generators.
5.4.15 Remarks.

(a) Although we have PartRedδ(k, l) ⊆ Partδ(k, l) as vector spaces, PartRedδ is not a sub-
category of Partδ as it has different identity morphisms. That is, the embedding
PartRedδ→ Partδ is not a functor.

(b) Likewise, the mapping P(δ):Partδ → PartRedδ is not a functor. Indeed, note that we
have P(δ)↑ = 0, so

P(δ)↓ · P(δ)↑ = 0 , δ = P(δ)(↓ · ↑).
(c) The operator P(δ) acts by cutting legs from blocks. In particular, for any p ∈ Partδ, we

have that P(δ)p = p + q, where q is a linear combination of partitions containing at least
one singleton.

(d) For any linear combination p of partitions containing a singleton, we have P(δ)p = 0.
This follows from the fact that π(δ)↑ = 0.

5.4.16 Proposition. LetK be a linear category of partitions such that ↑⊗↑ ∈K . Then P(δ)K
is a reduced category.
Proof. Since ∈K , we have π(δ) = P(δ) ∈ P(δ)K and similarly for its rotations.

Thanks to the projective property of π(δ), we have π⊗l(δ)p = p and pπ⊗k(δ) = p for p ∈ P(δ)K (k, l),
which can be used to prove closedness under the category operations. For example, taking
any p ∈ P(δ)K (k, l) and q ∈ P(δ)K (l,m), we have qp ∈K (k,m) since P(δ)K ⊆K and hence also

qp = π⊗m(δ) qpπ
⊗k
(δ) = P(δ)(qp) ∈ P(δ)K (k,m). �
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5.4 Direct proofs of non-easiness

5.4.17 Remark. For every reduced categoryK ⊆ PartRedδ, we have ↑⊗↑ ∈ 〈K 〉δ. Indeed, ↑⊗↑
is a rotation of , which is a linear combination of and π(δ).

5.4.18 Lemma. Let p1, . . . ,pn ∈ PartRedδ. Then

〈〈p1, . . . ,pn〉δ-red〉δ = 〈p1, . . . ,pn,↑⊗↑〉δ.

Proof. On the left-hand side, there is a linear category containing p1, . . . ,pn, and ↑⊗↑, which im-
plies the inclusion ⊇. The category on the right hand side contains p1, . . . ,pn, and rotations of π(δ)
and it is, of course, closed under the category operations. So, 〈p1, . . . ,pn〉δ-red ⊆ 〈p1, . . . ,pn,↑⊗↑〉δ,
which implies the opposite inclusion ⊆. �

We have proven that P(δ)K is a reduced category for any linear category of partitionsK
containing ↑⊗↑. Now, we prove that all reduced categories are of this form.

5.4.19 Proposition. LetK be a reduced category. Then

K = P(δ)〈K 〉 = P(δ)〈K , 〉δ = P(δ)〈K ,↑〉δ.

Proof. Denote by K the set of all p′ ∈ Partδ such that p′ was made by adding singletons to some
p ∈K . To be more precise, we can formulate this condition recursively: for any p ∈ K , it holds
that either p ∈K or there is q ∈ K such that p is some rotation of q⊗↑ (including the possibility
that q is a multiple of the empty partition, so p = α↑ ∈ K and p = α↓ ∈ K).

Now, let us prove that the collection of spaces spanK(k, l) is a linear category of partitions
(we will denote it just by spanK in the following text). The identity partition is a linear
combination of π(δ) ∈K ⊆ K and ∈ K , so it is contained in spanK . Similarly the pair partitions
are also contained in spanK . It is clear that K is closed under tensor product and involution, so
let us prove it for the composition. Take arbitrary composable p′ ,q′ ∈ K , which were made from
p,q ∈K by adding singletons. If the added singletons in the lower row of p′ do not exactly
match the singletons in the upper row of q′, we have q′p′ = 0 since π(δ)↑ = 0. Otherwise it is
easy to see that q′p′ can be made from qp by adding singletons and multiplying by some power
of δ, so q′p′ ∈ spanK .

This implies that

K ⊆ 〈K 〉δ ⊆ 〈K , 〉δ ⊆ 〈K ,↑〉δ ⊆ spanK.

Now, since P(δ)p = 0 for any p containing a singleton, we have P(δ)K = P(δ)K = K . So,
applying P(δ) on the chain of containments above, we have

K ⊆ P(δ)〈K 〉δ ⊆ P(δ)〈K , 〉δ ⊆ P(δ)〈K ,↑〉δ ⊆K ,

which implies the statement of the proposition. �

5.4.20 Corollary. For any p1, . . . ,pn ∈ P(δ)Partδ, we have

〈p1, . . . ,pn〉δ-red = P(δ)〈p1, . . . ,pn,↑⊗↑〉δ.

Proof. Combining Proposition 5.4.19 and Lemma 5.4.18, we have

〈p1, . . . ,pn〉δ-red = P(δ)〈〈p1, . . . ,pn〉δ-red〉δ = P(δ)〈p1, . . . ,pn,↑⊗↑〉δ. �
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5.4.21 Proposition. LetK be a reduced category. Then the following categories are mutually
different

〈K 〉δ ( 〈K , 〉δ ( 〈K ,↑〉δ.
Proof. We are able to explicitly describe the categories in terms of the reduced categoryK .

First of all, it is easy to see that the last category 〈K ,↑〉δ coincides with spanK , where K is
defined as in the proof of Proposition 5.4.19.

We can define K ′ ⊆ K by choosing only those elements, where we added just an even
number of singletons. With similar argumentation, we can show that spanK ′ is a category and
hence that spanK ′ = 〈K , 〉δ. Obviously ↑ < spanK ′, so we have just proven strictness of
the second inclusion.

Finally, we define K ′′ inductively as follows: K ′′(k, l) contains all elements ofK (k, l) and
appropriate rotations of p⊗↑⊗ q⊗↑ with p ∈K (0,m), q ∈K (0, k + l −m− 2). Again, we can
prove that spanK ′′ is a category equal to 〈K 〉δ, which surely does not contain . �

This was for the preparation, now let us go for the concrete categories. Recall from
Section 4.2.3 the following categories.

NCPartδ := 〈 ,↑〉δ = 〈 〉δ = span{all non-crossing partitions},
NCPart′δ := 〈 ,↑⊗↑〉δ = span{all non-crossing partitions of even length}.

5.4.22 Lemma. It holds that
P(δ)NCPartδ = 〈P(δ) 〉δ-red.

Proof. It is easy to check that NCPartδ = 〈 〉δ = 〈P(δ) ,↑〉δ (see also Example 5.4.13). From
Lemma 5.4.18, we have 〈〈P(δ) 〉δ-red〉δ = 〈P(δ) ,↑⊗↑〉δ. Adding the singleton to the category
on both sides, we have

NCPartδ = 〈P(δ) ,↑〉δ = 〈〈P(δ) 〉δ-red,↑〉δ.

Finally, we use Proposition 5.4.19 to derive

P(δ)NCPartδ = P(δ)〈〈P(δ) 〉δ-red,↑〉δ = 〈P(δ) 〉δ-red. �

5.4.23 Lemma. Suppose δ , 3. It holds that

P(δ)NCPart
′
δ = 〈P(δ) 〉δ-red.

Proof. In this case, the inclusion ⊇ follows from Proposition 5.4.16. For the converse, it is
enough to show that Pδp ∈ 〈P(δ) 〉δ-red for every non-crossing partition p of even length. We
will show it in four steps.

Step 1. P(δ)bk ∈ 〈P(δ) 〉δ-red for all k even.

Here bk ∈P (0, k) is the block partition, that is, a partition where all points are contained
in one block. We will show the statement by induction. It holds for k = 2 by the definition of
reduced categories and for k = 4 since P(δ)b4 is the generator. Now, consider k > 4 and suppose
P(δ)bi ∈ P(δ)〈 〉δ-red for all i < k even. We compute that

(π⊗(k−4) ⊗P(δ) ⊗π⊗2)(π⊗(k−3) ⊗P(δ) )P(δ)bk−2 =

= (π⊗(k−4) ⊗P(δ) ⊗π⊗2)(P(δ)bk −
1
δ
P(δ)bk−3 ⊗P(δ) ) =

=
(
1− 3

δ

)
P(δ)bk +

1
δ2

(
P(δ)bk−2 ⊗P(δ) +R−2(P(δ)bk−2 ⊗P(δ) )

+P(δ)bk−4 ⊗P(δ)b4

)
− 1
δ3P(δ)bk−4 ⊗P(δ) ⊗P(δ) .

All the terms except for P(δ)bk are surely elements of the category 〈P(δ) 〉δ-red, so P(δ)bk must
be as well. The idea of the computation is maybe more clear using the pictorial representation
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5.4 Direct proofs of non-easiness

for partitions. Using the definition P(δ)p = π⊗l(δ)pπ
⊗k
(δ) for p ∈ Partδ(k, l) and the projective property

π(δ)π(δ) = π(δ), we can express the left hand side in the following form

π π π π π

π π π π π π π

π π π π π π π

. . . = P


π

π π
. . .

 .
We obtain the result on the right-hand side simply by substituting π = − 1

δ .
Step 2. P(δ)bk ⊗P(δ)bl ∈ 〈P(δ) 〉δ-red for any k, l ≥ 2 such that k + l is even.

This can be seen inductively from the following

(π⊗k ⊗P(δ) ⊗π⊗l)(P(δ)bk+1 ⊗P(δ)bl+1) = P(δ)bk+l −
1
δ

(P(δ)bk ⊗P(δ)bl).

Pictorially,

π π
. . .
π π π π

. . .
π π

π π
. . .
π π

. . .
π π

= P
(

. . . . . .ππ
)

= P
(

. . . . . . − 1
δ

. . . . . .
)
.

Step 3. (P(δ)bk)∗ ⊗ ⊗P(δ)bk ∈ 〈P(δ) 〉δ-red for any k ∈N (including the odd ones).
For k = 1 we have P(δ)bk = 0. Considering k ≥ 2, the assertion follows from

(π⊗ (P(δ)bk)
∗ ⊗P(δ)bk)((P(δ)bk)

∗ ⊗P(δ)bk ⊗π) =
((

1− 1
δ

)k−1

−
(−1
δ

)k−1)
(P(δ)bk)

∗ ⊗ ⊗P(δ)bk .

Pictorially,
π π π π π. . .

. . .
π π π π π. . .

. . .
π π π π π

= P
( . . .

. . .
π π π. . .

. . .

)
=

((
1− 1

δ

)k−1

−
(−1
δ

)k−1)
P . . .

. . . .

Step 4. P(δ)p ∈ 〈P(δ) 〉δ-red for every non-crossing partition p of even length.
Without loss of generality, we can assume that p has lower points only since reduced

categories are closed under rotations. Now, denote by l1, . . . , ln the sizes of the blocks in p
ordered in such a way that first come all even numbers and then all odd numbers. Since p is of
even length, we have that

∑
li is even, so there is an even number of odd numbers in the tuple (li).

We can construct P(δ)p ∈ P(δ)〈P(δ) 〉δ-red by computing P(δ)bl1 ⊗ · · · ⊗ P(δ)bln ∈ 〈P(δ) 〉δ-red
and then using compositions with (P(δ)bk)∗ ⊗π⊗P(δ)bk = P(δ)

. . .
. . . ∈ 〈P(δ) 〉δ-red to

move the blocks to their positions. �

5.4.24 Proposition. The categories
〈P(δ) 〉 = 〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ = NCPartδ

( ( (

〈P(δ) 〉 = 〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ
are mutually distinct and, except for the top right one, are all non-easy.
Proof. Thanks to Lemmata 5.4.22 and 5.4.23, we can replace P(δ) and P(δ) byK1 :=
P(δ)〈 〉δ andK2 := P(δ)〈 〉δ, respectively. SurelyK1 ,K2 sinceK2 contains no partition
of odd length. From Proposition 5.4.19, it follows that we have P(δ)K =K1 for categoriesK
in the first line, whereas P(δ)K =K2 for categoriesK from the second line. Consequently, no
category from the first line can be equal to any category from the second line. The strictness
of the horizontal inclusions follows from Proposition 5.4.21. Finally, if the first or the second
category from the first line was easy, then it would contain the singleton ↑ and hence be equal
to the last one. Also if the last category of the second row was easy, then it would be equal to
NCPartδ. If one of the first two categories was easy then surely adding the singleton would
preserve the easiness and hence the last one would be easy. �
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5. Linear categories of partitions

5.4.25 Lemma. We have the following equalities.

(1) 〈P(δ) 〉δ-red = P(δ)〈 ,↑⊗↑〉δ = P(δ)〈 ,↑〉δ.
(2) 〈P(δ) 〉δ-red = P(δ)〈 ,↑⊗↑〉δ.
(3) 〈P(δ) ,P(δ) 〉δ-red = P(δ)〈 , 〉δ = P(δ)Partδ = PartRedδ.
(4) 〈P(δ) ,P(δ) 〉δ-red = P(δ)〈 , ,↑⊗↑〉δ.

These four reduced categories are mutually distinct.

Proof. In all cases, the inclusion ⊆ is obvious. Below, we explain the inclusions ⊇. The proof
below also explicitly describes elements of the reduced categories, from which it follows that
they are indeed mutually distinct.

In case (1), denote K := 〈 ,↑〉δ. We need to prove that P(δ)p ∈ 〈P(δ) 〉δ for every p ∈K .
Since K is easy, it is enough to prove this for partitions p, which linearly generate K . In
addition, we have P(δ)p = 0 whenever p contains a singleton. Thus, it is enough to consider
partitions p not containing singletons. Those are exactly all pairings, i.e. partitions p ∈ 〈 〉.
Without loss of generality, we can assume that p has lower points only, so p ∈ Pairδ(k). Such
a pairing p was made from some non-crossing pairing (such as ⊗k/2) by permuting its points.
The reduced category 〈P(δ) 〉δ-red contains P(δ)

⊗k/2 = π⊗k/2(δ) . By induction, it is enough to
prove that if P(δ)p

′ ∈ 〈P(δ) 〉δ-red, then P(δ)p ∈ 〈P(δ) 〉δ-red, where p,p′ ∈ Pairδ(k) such that p
was made from p′ by transposing neighbouring points. This transposition can be realized
as p = qp′, where q = . . . . . . . The proof is finished by observing that π⊗kqπ⊗k = π⊗kq, so
P(δ)p = π⊗kqp′ = π⊗kqπ⊗kp′ = (P(δ)q)(P(δ)p

′). Let us illustrate this pictorially:

(P(δ)q)(P(δ)p
′) =

p′

· · · · · ·
π π π π π π
· · · · · ·

π π π π π π

=

p′

· · · · · ·
π π π π π π

= P(δ)(qp
′) = P(δ)p

The proof in all the remaining cases is similar. The key part is to determine the set of all
partitions that are elements of the easy category on the right-hand side and do not contain
singletons. In case (2), the category 〈 ,↑⊗↑〉 contains all partitions with blocks of size one
and two such that both legs of all blocks of size two are either on even position or on odd
position [Web13, Prop. 3.5]. So, excluding partitions with singletons, we get exactly elements of
〈 〉. Those can be obtained applying permutations that map even points to even points on the
non-crossing pairings. For the induction, we then may use the transposition . . . . . . . In
both cases (1) and (2), it is maybe worth mentioning that the corresponding reduced category is
actually isomorphic to 〈 〉δ−1 and 〈 〉δ−1, respectively; the isomorphism is provided by V(δ,±)
defined in the following section.

For case (3), we need to prove that P(δ)p ∈ 〈P(δ) ,P(δ) 〉δ for any partition p not con-
taining a singleton. This is again a permutation p = qp′, where q ∈ Pairδ(k,k) and p′ ∈ Partδ(k)
is non-crossing partition not containing a singleton. From Lemma 5.4.22, we know that
P(δ)p

′ ∈ 〈P(δ) 〉δ ⊆ 〈P(δ) ,P(δ) 〉δ and from item (1), we have that P(δ)q ∈ 〈P(δ) 〉δ-red ⊆
〈P(δ) ,P(δ) 〉δ-red. Finally, again P(δ)p = P(δ)qP(δ)p.

Case (4) is basically the same as case (3) except that we work with partitions of even size
and we need to use Lemma 5.4.23. �

5.4.26 Lemma. We have the following inclusions.

〈 ,↑⊗↑〉δ = 〈 , 〉δ ( 〈 ,↑〉δ

( = =

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ
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5.4 Direct proofs of non-easiness

Proof. The first row is known from classification of the easy categories, see Section 4.2. In
the second row, we can replace P(δ) by 〈P(δ) 〉δ-red thanks to Lemma 5.4.25. The inclusions
then follow from Proposition 5.4.21. The vertical equalities are then easy to see if we write

P(δ) = − 1
δ
− 1
δ

+
1
δ2 . �

5.4.27 Lemma. We have the following inclusions.

〈 ,↑⊗↑〉δ = 〈 , 〉δ ( 〈 ,↑〉δ
( = =

〈 ,↑⊗↑〉δ ( 〈 , 〉δ ( 〈 ,↑〉δ

( ( (

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ

Proof. The first two rows are again known from classification of easy categories, see Section 4.2
and also [Web13]. The last row follows again from Lemma 5.4.25 and Proposition 5.4.21. Now
we explain the strictness of the vertical inclusions between the second and the last row. For
the second and third column, we simply apply P(δ). We get 〈P(δ) 〉δ-red for the second row, but
〈P(δ) 〉δ-red for the third row, which proves the inequality.

As for the first column, we can see that ( ⊗π(δ)⊗π(δ)) ∈ 〈 ,↑⊗↑〉δ. We prove that this
element cannot be contained in 〈P(δ) ,↑⊗ ↑〉δ. If it was there, then it would be contained
also in 〈P(δ) ,↑〉δ. Composing with ↓ ⊗ ⊗ from left and with ⊗ ⊗ ↑ from right, we get
P(δ) ∈ 〈P(δ) ,↑〉δ and hence P(δ) ∈ 〈P(δ) 〉δ-red ( 〈P(δ) 〉δ-red, which is a contradiction. �

Let us summarize all the non-easy categories we obtained above.

5.4.28 Proposition. The categories

〈P(δ) ,P(δ) ,↑⊗↑〉δ ( 〈P(δ) ,P(δ) , 〉δ ( 〈P(δ) ,P(δ) ,↑〉δ = Partδ

( ( (

〈P(δ) ,P(δ) ,↑⊗↑〉δ ( 〈P(δ) ,P(δ) , 〉δ ( 〈P(δ) ,P(δ) ,↑〉δ

( ( (

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ

( ( (

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ

are mutually distinct and, except for the top right one, are all non-easy. They are also distinct
from the categories of Proposition 5.4.24.

Proof. Follows directly from all the results above. �

5.4.6 Category coisometry

In this section, we assume δ > 0, δ , 1.

5.4.29 Definition. We define υ(δ−1,±) := − 1
δ−1

(
1± 1√

δ

)
∈ Partδ−1(1,1).1 For every p ∈P (k, l), we

define B(δ)p ∈ Partδ−1(k, l) the linear combination that was made from p by replacing every block
of k points by 〈block〉+ (−1)k〈singletons〉. We extend this definition linearly to define a map
B(δ):Partδ→ Partδ−1. Finally, for every p ∈ Partδ(k, l), we define V(δ,±)p := υ⊗l(δ−1,±)(B(δ)p)υ⊗k(δ−1,±).

1 As a remark on consistency with the previous text, where we denoted the special partitions by small Greek
letters, let us note that here υ is supposed to be the Greek letter upsilon, not the Latin v.
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5. Linear categories of partitions

5.4.30 Example. As an example, let us mention how V(δ,±) acts on the smallest block partitions.

V(δ,±)↑ = 0,

V(δ,±) = ,

V(δ,±) = − 1
δ − 1

(
1± 1
√
δ

)
( + + ) +

1
(δ − 1)2

(
2± δ+ 1
√
δ

)
,

V(δ,±) = − 1
δ − 1

(
1± 1
√
δ

)
( + + + )+

+
1

(δ − 1)2

(
δ+ 1
δ
± 2
√
δ

)
( + + +

+ + + ) +
1

(δ − 1)3

(
δ2 − 6δ − 5

δ
∓ 8
√
δ

)
.

5.4.31 Remarks.

(a) We have B(δ)↑ = 0. Consequently, B(δ)p = 0 = V(δ,±)p for every p ∈ P containing
a singleton.

(b) As a consequence of the preceding point and Remark 5.4.15.c, V(δ,±) = V(δ,±) ◦P(δ).
(c) The mapping V(δ,±):Partδ→ Partδ−1 is not a functor. The same counterexample as in

the case of P(δ) works here (see Remark 5.4.15.b).
(d) The operator V(δ,±) acts by cutting legs from blocks. In particular, for any p ∈ Partδ,

we have that V(δ,±)p = p + q, where q is a linear combination of partitions containing at
least one singleton (cf. Remark 5.4.15.c).

(e) Consequently, V(δ,±) acts injectively on partitions with no singletons. For the same
reason, it also acts injectively on PartRedδ = P(δ)Partδ.

(f) V(δ,±) acts blockwise on partitions p ∈P . That is, we may map all the blocks constituting
a given partition p ∈ P an then “assemble” the image of p from the images of the
blocks. More formally, we could say that V(δ) commutes with tensor products and
arbitrary permutations of points. It follows from the fact that B(δ) acts blockwise by
definition and conjugating by a given partition is also a blockwise operation.

(g) We have υ(δ−1,±)↑ = ∓ 1√
δ
↑. So, if bk ∈P (k) is a partition consisting of a single block, we

have

V(δ,±)bk = υ⊗k(bk + (−1)k↑⊗k) = υ⊗kbk +
(
±1
√
δ

)k
↑⊗k .

5.4.32 Proposition. The mapping V(δ,±) acts on PartRedδ as a faithful monoidal unitary functor.
Proof. The injectivity of V(δ,±) was mentioned in Remark 5.4.31.e. It remains to prove the
functorial property. We will work with partitions with lower points only. So, we need to prove
that V(δ,±) commutes with tensor product, contractions, rotations and reflections. The only
non-trivial part are the contractions, the other operations follow from the fact that V(δ,±) acts
blockwise as mentioned in Remark 5.4.31.f.

Since V(δ,±) acts blockwise, it is enough to prove it for blocks. Denote by bk ∈ P (k) the
partition consisting of a single block. Then we have to prove that

Π1V(δ,±)P(δ)bk = V(δ,±)Π1P(δ)bk and Πk−1V(δ,±)P(δ)(bk ⊗ bl) = V(δ,±)Πk−1P(δ)(bk ⊗ bl).
To do that, first note that (υ(δ−1,±) ⊗υ(δ−1,±)) = − 1

δ↓⊗↓. So, assuming k > 2, we have1

Π1V(δ,±)bk =
((
− 1
δ
↓⊗↓

)
⊗υ⊗(k−2)

)
(bk + (−1)k↑⊗k)

=
(
1− 1

δ

)
υ⊗(k−2)(bk−2 + (−1)k↑⊗(k−2)) = V(δ,±)Π1P(δ)bk .

1 Pay attention to the fact that the computations take place mostly in Partδ−1, not Partδ!
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5.4 Direct proofs of non-easiness

For k = 2, this equality holds as well since Π1V(δ,±) = Π1 = δ = V(δ,±)Π1P(δ) . Now, assuming
k, l > 1, we have

Πk−1V(δ,±)(bk ⊗ bl)

=
(
υ⊗(k−1) ⊗

(
− 1
δ
↓⊗↓

)
⊗υ⊗(l−1)

)
(bk ⊗ bl + (−1)k↑⊗k ⊗ bl + (−1)lbk ⊗↑

⊗l + (−1)k+l↑⊗(k+l))

= υ⊗(k+l−2)

(
bk+l−2 −

1
δ
bk−1 ⊗ bl−1 +

(−1)k

δ
↑⊗(k−1) ⊗ bl−1+

+
(−1)l

δ
bk−1 ⊗↑

⊗(l−1) +
(
1− 1

δ

)
(−1)k+l↑⊗(k+l−2)

)
= V(δ,±)

(
bk+l−2 −

1
δ

(bk−1 ⊗ bl−1)
)

= V(δ,±)Πk−1P(δ)(bk ⊗ bl).

For k = 1 or l = 1 both sides are obviously equal to zero. �

5.4.33 Remark. Consequently, V(δ,±) defines an isomorphism between any reduced category
of partitions K ⊆ PartRedδ and its image V(δ,±)K ⊆ Partδ−1. So, also for any ordinary linear
category of partitionsK ⊆ Partδ, we have an isomorphism between P(δ)K and V(δ,±)K .

5.4.34 Proposition. The categories

〈V(δ,±) 〉δ−1, 〈V(δ,±) 〉δ−1

are both non-easy.

Proof. From Proposition 5.4.32, it follows that the above mentioned categories are isomorphic
to 〈P(δ) 〉δ-red and 〈P(δ) 〉δ-red, respectively. If they were easy, they would contain all the
summands of V(δ,±) , resp. V(δ,±) (Observation 5.2.2) and hence be equal to NCPartδ−1,
resp. NCPart′δ−1,. This cannot happen since

dim〈V(δ,±) 〉δ−1(0,3) = dim〈P(δ) 〉δ-red(0,3) < dimNCPartδ(0,3) = dimNCPartδ−1(0,3),

dim〈V(δ,±) 〉δ−1(0,4) = dim〈P(δ) 〉δ-red(0,4) < dimNCPart′δ(0,4) = dimNCPart′δ−1(0,4).

�
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Part III

Quantum groups

This part is about applications of partitions on quantum groups. Categories of partitions were
introduced in [BS09] in order to model the representation theory of compact matrix quantum
groups. We study categories of partitions in this thesis with the same motivation. We describe
briefly the link between partition categories and representation categories of quantum groups
in the beginning of Chapter 6.

The main goal of Part III is to apply the results we obtained in Part II to the theory of
quantum groups.

In Chapter 4, we classified globally colourized categories of partitions, we introduced parti-
tions with extra singletons, we defined a functor F linking them with two-coloured partitions,
and we used this functor to obtain classification results. We interpret all those outcomes in
Chapter 6. Globally colourized categories precisely correspond to tensor complexifications
of easy quantum groups, the functor F corresponds to some gluing procedure and hence clas-
sification results for partitions with extra singletons can be interpreted as some ungluings of
unitary easy quantum groups. In particular, this leads to definition of new Z2-extensions of
quantum groups.

In Chapter 5, we presented first examples of non-easy linear categories of partitions. Those
linear categories were studied in Section 5.4 using certain mappings acting on partitions. In
Chapter 7, we interpret those mappings, which allows us to describe the quantum groups
corresponding to the new non-easy categories. Additional non-easy categories are also defined
in Chapter 7.

Finally, Chapter 8 has a slightly different character than then chapters before. We generalize
some statements obtained in the previous chapters without the need to refer to partitions. For
example, we study the representation categories of tensor and free complexifications. We study
the gluing procedure and reverse it to obtain some ungluing procedure. The notion of degree of
reflection defined originally in [TW18] for categories of two-coloured partitions is generalized
to a notion for arbitrary compact matrix quantum groups. The Z2-extensions are generalized
to product constructions for arbitrary pairs of compact matrix quantum groups.
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Chapter 6

Partition quantum groups and easy examples
In this chapter, we describe the connection between categories of partitions and quantum
groups. This connection was established in [BS09], where the first examples of categories of
partitions appeared. Those examples were connected with quantum groups that were already
known. However, subsequent research in the theory of categories of partitions led to the
discovery of new categories of partitions corresponding to new quantum groups that were
not known before.

In the beginning of this chapter, we explain the connection between partitions and quantum
groups. The main results of this chapter are then the interpretation of the coloured categories
and classification results obtained in Chapter 4.

In Section 6.2.3, we interpret the globally-colourized categories of partitions. We show
that those exactly correspond to tensor complexifications of orthogonal easy quantum groups
(that is, quantum groups corresponding to non-coloured categories).

Theorem (6.2.4, 6.2.7). Let C be a globally colourized category of partitions, denote k := k(C ).
Denote H ⊆O+

N the quantum group corresponding to the non-coloured category of partitions
〈C , 〉. Then C corresponds to the quantum group H ×̃ Ẑk ⊆U+

N . In the case k = 0, we replace
Ẑk by Ẑ. Conversely, any quantum group of the form H ×̃ Ẑk , where H is an orthogonal easy
quantum group and k ∈N0, is a unitary easy quantum group corresponding to a globally
colourized category.

In Section 6.4, we interpret categories of partitions with extra singletons. The main
result here is interpreting the functor F from Definition 4.6.4 and consequently the resulting
classification from Theorem 4.6.8. We can formulate the result as follows.

Theorem (6.4.13). Let C be a category of partitions with extra singletons containing only
partitions of even length and G ⊆ ON ∗̂ Ẑ2 the associated quantum group. Let C̃ be the
corresponding two-coloured category and G̃ ⊆U+

N the associated quantum group. Then G̃ is
the so-called glued version of G.

Non-easy linear categories of partitions that were obtained in Chapter 5 will be treated
separately in Chapter 7.

6.1 Non-coloured case and orthogonal CMQGs
In this section, we present the idea of [BS09] to use categories of partitions to describe
representation categories of certain quantum groups. In contrast with [BS09], we use linear
categories of partitions to describe this correspondence. Nevertheless, then we are going to
focus on the easy categories.

6.1.1 Defining a functor PartN →Mat

Consider a partition p ∈ P (k, l) and an integer N ∈ N. We define the linear map T
(N )
p :

(CN )⊗k→ (CN )⊗l by its entries [T (N )
p ]j i := δp(i , j ), so

T
(N )
p (ei1 ⊗ · · · ⊗ eik ) :=

N∑
j1,...,jl=1

δp(i , j )(ej1 ⊗ · · · ⊗ ejl ), (6.1)

where we denote i = (i1, . . . , ik) and j = (j1, . . . , jl) and the symbol δp(i , j ) is defined as “blockwise
Kronecker delta”. That is, assign the k points in the upper row of p the numbers i1, . . . , ik (from
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6.1 Non-coloured case and orthogonal CMQGs

left to right) and the l points in the lower row j1, . . . , jl (again from left to right). Then δp(i , j ) = 1
if the points belonging to the same block are assigned the same numbers. Otherwise δp(i , j ) = 0.

To bring an example, recall the partitions p and q from Equation (4.1).

p = q =

In this case, we have

[T (N )
p ]j i = δi1j1j4δi2i3δj2j3 , [T (N )

q ]j i = δi1j2δi2j1δi3j3j4 .

We extend the definition of the map p 7→ T
(N )
p linearly to the vector spaces PartN (k, l).

Usually, we will suppress the upper index (N ) as the dimension N should be clear from the
context.

6.1.1 Theorem. [BS09] The map p 7→ Tp defines a monoidal unitary functor PartN →Mat. That
is, we have

(1) Tp⊗q = Tp ⊗ Tq,
(2) Tqp = TqTp
(3) Tp∗ = T ∗p .

As a consequence, p 7→ Tp does not define a functor P →Mat unless N = 1. For the category
of partitions P without the linear structure, the functorial property (2) holds only up to a
scalar factor: Tqp =N rl(p,q)TqTp.

Proof. For the tensor product, take p ∈ P (k, l), q ∈ P (k′ , l ′). Then one can easily see that
δp⊗q(i i ′ , j j ′) = δp(i , j )δq(i ′ , j ′). The involution is also simple since we immediately see that
δp∗(j , i ) = δp(i , j ).

The composition is a bit more complicated. Take p ∈P (k, l), q ∈P (l,m) and denote by r
their composition qp as partitions, that is, without the scalar factor. So, their composition as
elements of PartN is given by qp =N rl(p,q)r. Now, we are interested in the sum

∑
n δp(i ,n)δq(n, j ).

For each point α ∈ {1, . . . , l} of the lower row of p or the upper row of q that is connected to
some point in upper row of p or lower row of q, the summation over nα disappears because of
the deltas. We are left with δr(i ,k) and summation over nα with α belonging to the remaining
loops. The summation over each remaining loop gives the factor N . The procedure is probably
better to understand from the following illustration.

∑
n

n1 n2 n3 n4

j1 j2 j3 j4

i1 i2 i3

n1 n2 n3 n4

=
∑
n

i1 i2 i3

n1 n2 n3 n4

j1 j2 j3 j4

=

i1 i2 i3

j1 j2 j3 j4

N∑
n1,n4=1

n1 n4 =N 2

i1 i2 i3

j1 j2 j3 j4

�

6.1.2 Remark. The functor p 7→ Tp is not injective. Indeed, consider, for example, N = 2. Then
we have

δ = 1 = δ + δ + δ − 2δ ,

so
T = T + T + T − 2T .

The non-injectivity will not play a role in this thesis. Nevertheless, it is a problem that was
already studied by many researchers since it may become important in some situations. So, let
us mention some results results proving the injectivity in special situations. Already in [BS09,
Thm. 1.10], it is proven that {Tp | p ∈P (k, l)} are linearly independent for k + l ≤N . A slightly
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6. Partition quantum groups and easy examples

generalized result is that the set {Tp | p ∈P (k, l); #{blocks of p} ≤ N } is linearly independent.
This was proven as [GW20, Prop. 3.3] using the results from [Maa18]. Already in [BS09,
Theorem 3.8], it was also mentioned that the intertwiners corresponding to non-crossing
partitions are linearly independent for N ≥ 4 (the authors refer to [Ban99b]; however, the result
is contained essentially already in [Tut93]). For non-crossing pairings, the same can be proven
for N ≥ 2 (follows from [BC10]). See [Jun19] for more detailed discussion.

6.1.3 Corollary. LetK ⊆ PartN be a linear category of partitions. SupposeK is generated by
a set K . Let C be the image ofK under the functor p 7→ Tp, that is

C(k, l) = {Tp | p ∈K (k, l)} ⊆L ((CN )⊗k , (CN )⊗l).

Then C is a non-coloured representation category with duality morphism ξ = T . It is
generated by C = {Tp | p ∈ K} ∪ ξ .

Proof. Follows directly from p 7→ Tp being a functor. Note that every category of partitions
contains the pair partition by definition. In the case of representation categories, we have
to list it as a generator explicitly. �

Considering a linear combination of partitions with lower points only p ∈ PartN (0, k), the
associated map Tp:C→ (CN )⊗k can be identified with a vector in (CN )⊗k . We will sometimes
denote this vector by ξp. In particular, we will often use vectors

ξ =
N∑
i=1

ei ⊗ ei ∈CN ⊗CN ,

ξ↑ =
N∑
i=1

ei ∈CN .

6.1.2 Using Tannaka–Krein duality

As we just showed in Corollary 6.1.3, the image of a linear category of partitions by the functor
p 7→ Tp is a non-coloured representation category. Hence, we can use it as an input for the
Tannaka–Krein duality (the orthogonal version formulated as Corollary 3.4.11).

6.1.4 Lemma. We have {Tp | p ∈ PartN (k, l)} = FundRepSN (k, l).

Proof. Denote by C the image of PartN under the functor p 7→ Tp. We mentioned in Section 4.2.3
that the category of all partitions is generated by , , and ↑. Instead of , we may use

= Rrot2 . Therefore, C is generated by T , T , T , T↑. Let G be the quantum group
corresponding to C. According to Proposition 3.4.14, we have

C(G) = C∗(uij | uij = u∗ij ,u
⊗2T = T ,u⊗2T = T u⊗2,u⊗2T = T u⊗2,uT↑ = T↑).

Now we only need to check that C(G) = C(SN ), so C = FundRepSN . The relation u⊗2T = T u⊗2

implies that C(G) is commutative, so G is a matrix group. The relation corresponding to
says that the matrices are orthogonal, says that they consist of zeros and ones and ↑ says that
there is exactly one one per each row (see Table 6.1). Those are exactly the defining properties
of permutation matrices representing the symmetric group SN . �

This lemma can be interpreted as a generalization of the Schur–Weyl duality for partition
categories (or partition algebras). The result was first formulated in [HR05]. As we can see,
proving the result at this point was quite simple thanks to all the theory developed until now,
in particular, the concrete formulation of the Tannaka–Krein duality from Corollary 3.4.11.
Moreover, we did not only proved the duality, we rather derived the form of the associated
group. It was explicitly constructed translating the partitions generating the category into
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6.1 Non-coloured case and orthogonal CMQGs

some relations. And we can do it not only for the category of all partitions, but for any (linear)
category of partitions. This is the main idea of the whole theory we are trying to describe in
this thesis. Another classical result illustrating this approach is the Brauer’s duality associating
the orthogonal group to the category of all pairings as we mentioned in the introduction of
the thesis. Additional examples are listed in Table 6.2, which still forms just a tiny part of
possible applications this approach has.

Now, we formulate the considerations above into a proposition. Let us stress that within
the whole Chapters 6 and 7, we will only consider quantum groups of Kac type (see Sect. 2.3.3).
In particular, a compact matrix quantum group G with N ×N fundamental representation will
be called orthogonal if G ⊆O+

N . In addition, we say that G is homogeneous if SN ⊆ G.

6.1.5 Proposition. For every linear category of partitions K ⊆ PartN there exists a unique
orthogonal compact matrix quantum group G = (C(G),u) such that

FundRepG(k, l) = Mor(u⊗k ,u⊗l) = {Tp | p ∈K (k, l)}. (6.2)

Such a quantum group G is automatically homogeneous. Conversely, for every orthogonal
homogeneous compact matrix quantum group G there exists a (not unique) linear category
of partitionsK ⊆ PartN such that (6.2) holds.

Proof. The first part follows from the non-coloured version of Tannaka–Krein duality (Corol-
lary 3.4.11) applied to the image ofK by the functor p 7→ Tp. The associated quantum group is
indeed orthogonal in the sense of the above mentioned definition as Tannaka–Krein gives us
G ⊆O+(F) with Fji = [ξ ]ij = [T ]ij = δij .

For the converse, take a compact quantum group G with SN ⊆ G ⊆ O+
N . According to

Proposition 3.4.15, we have FundRepSN ⊇ FundRepG ⊇ FundRepO+
N

. Hence, we can take an
inverse image of those inclusions under the functor p 7→ Tp and obtain a collection of spaces
K (k, l) such that PartN ⊇ K . K must be closed under the category operations since it is
a preimage of a category. It also certainly contains and since T ,T ∈ FundRepO+

N
⊆ FundRepG.

Hence,K is a linear category of partitions. �

6.1.6 Remark. The reason why the linear category of partitions associated to a given quantum
group is not unique is that the functor p 7→ Tp is not injective. For the sake of uniqueness, we
could say that we will always work with the maximal category, that is, with the preimage of the
functor as we did in the proof of Proposition 6.1.5. However, this would be very inconvenient
since for many quantum groups there will be much better choice such as some easy category.

Compact matrix quantum groups corresponding to an easy category of partitions are called
orthogonal easy quantum groups. In other words, G is an orthogonal easy quantum group if
there exists a category of partitions C ⊆P such that Mor(u⊗k ,u⊗l) = spanC (k, l). This is the
original definition of easy quantum groups from [BS09]. Generalizations of partitions using
colours allow to use an easy description also for larger classes of quantum groups. We will use
the term easy quantum group without the adjective orthogonal for any quantum group, whose
representation category can be described by some category of partitions without the need of
using linear combinations of partitions.

6.1.7 Proposition. Let K be a linear category of partitions generated by a set K . Then the
associated quantum group is given by G = (C(G),u), where

C(G) = C∗(uij | uij = u∗ij , u orthogonal, Tpu
⊗k = u⊗lTp ∀p ∈ K),

where the numbers k and l always denote the number of upper and lower points of p.

Proof. Follows from Corollary 6.1.3 and Proposition 3.4.14. �
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6. Partition quantum groups and easy examples

So, to summarize, we have a functor p 7→ Tp. The linear map Tp can be interpreted as
an intertwiner in a quantum group, where it also plays the role of an algebraic relation (as
in Table 6.1). A category of partitions then defines a unique quantum group thanks to the
Tannaka–Krein duality using precisely those relations. Again, in a more concise way:

lin. comb. of partitions p ∈ PartN (k, l)

7→ intertwiner Tp: (CN )⊗k→ (CN )⊗l

7→ relation Tpu
⊗k = u⊗lTp

lin. category of partitions K ⊆ PartN (k, l)

7→ representation category FundRepG(k, l) = {Tp | p ∈K (k, l)}
7→ quantum group G = (C(G),u); C(G) = C∗(uij | Tpu⊗k = u⊗lTp; p ∈K (k, l))

6.1.3 Examples

In Table 6.1, we list relations implied by certain important partitions. Then, in Table 6.2,
we list all possible categories of partitions that can be generated from those partitions and
name the corresponding quantum groups. One should consider this as the definition of the
corresponding quantum groups (at least in the cases that were not defined before). To give an
idea of the meaning of those quantum groups, we describe their classical counterparts. Recall
Remark 3.4.8 stating that the category defines the compact matrix quantum group including its
fundamental representation, so including the matrix structure, not only as an abstract object.
Hence, we must determine also every group of Table 6.2 as a matrix group.

The orthogonal group ON is simply the group of all orthogonal matrices. The symmetric
group SN will always be represented by permutation matrices. By S ′N = SN ×̃Z2, we denote the
modified symmetric group consisting of permutation matrices with a global sign (recall Ex-
ample 2.5.8). In contrast, HN is the hyperoctahedral group represented by signed permutation
matrices, that is, every entry has an independent sign. We can write this group also in terms
of a wreath product as HN = Z2 o SN . By BN we denote the bistochastic group consisting of
bistochastic matrices, that is, orthogonal matrices whose rows and columns sum up to one. The
modified bistochastic group B′N = BN ×̃Z2 has again an additional global sign.

In the middle column of Table 6.2, we have the free quantum counterparts of the groups
on the left hand side. Those correspond to the non-crossing categories. Recall that we have
one non-crossing category more in comparison with the group categories. Consequently, we
have two different modifications of the free bistochastic quantum group. In the last column,
the half-liberated quantum groups are listed. Those are characterized by the half-liberated
commutativity of the form abc = cba for a,b,c ∈ {uij} (cf. Table 6.1).

The quantum groups corresponding to six of the non-crossing categories were studied
already in [BS09]. The missing category was discovered in [Web13]. In [Rau12, Web13], the
modifications of the free symmetric and bistochastic quantum groups were interpreted. (Those
Z2 factors are actually an interesting phenomenon that will be studied also in this thesis – in

∼ ↑⊗↑ ∼ ↓⊗↓ s :=
∑
k uik =

∑
k ukj ∀i, j; s2 = 1

(implies ↑⊗↑) uijs = suij ∀i, j
↑ ∼ ↓ (implies ↑⊗↑)

∑
k uik = 1 =

∑
k ukj(= s) ∀i, j

∼ uut = 1N = utu (assumed by default)
uikujk = 0 = ukiukj ∀i, j,k, i , j
uijukl = ukluij ∀i, j,k, l
uijuklumn = umnukluij ∀i, j,k, l,m,n

Table 6.1 Relations corresponding to certain partitions
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6.2 Two-coloured case and unitary CMQGs

Groups Free QGs Half-liberated QGs
〈 〉N ON 〈〉N O+

N 〈 〉N O∗N
〈 , 〉N HN 〈 〉N H+

N 〈 , 〉N H ∗N
〈↑⊗ ↑, 〉N 〈↑⊗ ↑〉N B#+

N ' BN ∗ Ẑ2

= 〈 , 〉N B′N = BN ×̃ Ẑ2 〈 〉N B′+N = BN ×̃ Ẑ2
〈↑, 〉N BN 'ON−1 〈↑〉N B+

N 'O+
N−1

〈 ,↑⊗↑, 〉N S ′N = SN ×̃ Ẑ2 〈 ,↑⊗↑〉N S ′+N = SN ×̃ Ẑ2
〈 ,↑, 〉N SN 〈 ,↑〉N S+

N

Table 6.2 Quantum groups corresponding to certain easy categories

Section 7.1 using linear categories of ordinary partitions and in Section 6.4 using partitions
with extra singletons that were introduced precisely for this purpose.) The half-liberated
quantum groups were studied in [BCS10].

6.2 Two-coloured case and unitary CMQGs
Two-coloured partitions are used to describe a larger class of quantum groups – instead of
restricting to the orthogonal ones G ⊆O+

N , we are able to describe unitary quantum groups
G ⊆ U+

N . In the first two subsections of this section, we briefly present this correspondence.
However, the main point of this section is to present the results of [Gro18] interpreting the
globally-colourized categories of two-coloured partitions, which were classified in Section 4.5.

For an interpretation of categories of two-coloured partitions, we use the same map p 7→ Tp.
What changes is that we have different sets of objects. Categories of two-coloured partitions
with O ∗ being the monoid of objects are mapped to two-coloured representation categories with
the same monoid of objects. This makes the assignment p 7→ Tp again a functor. Actually, in the
spirit of Section 3.4, using two-coloured partitions may seem more natural than non-coloured
partitions.

6.2.1 Tannaka–Krein with two colours
Recall again that we focus on Kac type quantum groups in this chapter. In particular, we say
that G is a unitary quantum group if G ⊆U+

N .
In Chapter 5, we added the linear structure to the category of all partitions and defined the

category PartN . Similarly, we can add the linear structure to the category of all two-coloured
partitions and define PartN . Then, we can formulate the following proposition.

6.2.1 Proposition. For every linear category of two-coloured partitionsK ⊆ PartN , there exists
a unique compact matrix quantum group G = (C(G),u) ⊆U+

N such that

FundRepG(w1,w2) = Mor(u⊗w1 ,u⊗w2 ) = {Tp | p ∈K (w1,w2)}. (6.3)

Such a quantum group G is automatically homogeneous. Conversely, for every unitary
homogeneous compact matrix quantum group G, there exists a (not unique) linear category
of two-coloured partitionsK ⊆ PartN such that (6.3) holds.

Proof. Same as in the case of Proposition 6.1.5. Again, follows from the Tannaka–Krein duality
(Theorem 3.4.6). �

Since we are going to study only the easy case for two-coloured partitions, let us reformulate
the last proposition for ordinary categories.

6.2.2 Proposition. For every category of two-coloured partitions C ⊆P and for every N ∈N,
there exists a unique compact matrix quantum group G = (C(G),u) ⊆U+

N such that

FundRepG(w1,w2) = Mor(u⊗w1 ,u⊗w2 ) = span{Tp | p ∈C (w1,w2)}. (6.4)

Proof. Follows directly from Proposition 6.2.1 if we setK (k, l) := spanC (k, l). �
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∼ ⊗ ∼ ⊗ z :=
∑
k uik =

∑
k ukj ∀i, j; zz∗ = z∗z = 1

(implies ⊗ ) uijz = zuij ∀i, j
⊗k (implies ⊗ ) zk = 1 ∀i, j
∼ ∼ ∼ uu∗ = ūut = utū = u∗u = 1N (assumed by default)

∼ ∼ u = ū⇔ uut = utu = 1N
⊗ ∼ ∼ uiju

∗
kl = u∗ijukl ∀i, j,k, l⇔ w :=

∑
k u

2
ik =

∑
k u

2
kj ∀i, j;

⊗ ∼ ⊗ ww∗ = w∗w = 1
⊗k ui1j1 · · ·uikjk = u∗i1j1 · · ·u

∗
ikjk
∀i1, . . . , ik , j1, . . . , jk

Table 6.3 Relations corresponding to certain two-coloured partitions

Any quantum group G associated to a two-coloured category of partitions C ⊆ P is
called a unitary easy quantum group [TW17].

6.2.2 Relations associated to two-coloured partitions

Given a two-coloured partition p ∈ P (w1,w2), we assign to it the same intertwiner Tp con-
sidered as a linear map (CN )⊗k → (CN )⊗l independently of w1,w2; however, its interpretation
differs depending on the colour patterns w1,w2. Consequently, also the relation induced by
the partition Tpu⊗w1 = u⊗w2Tp depends on the colour pattern. In Table 6.3, we list the relations
corresponding to the most important two-coloured partitions.

Since we will be interested in interpreting the classification of globally colourized categories
of partitions in the following text, we should list in Table 6.3 the relations corresponding to the
generators ⊗k and ⊗k (recall Theorem 4.5.10). However, instead of the latter partition, we
decided to include ⊗k as the corresponding relation is much simpler. The following lemma
says that the relations are equivalent.

6.2.3 Lemma. Let C ⊆P (k, l) be a category of two-coloured partitions. Then ⊗k ∈C if and
only if ⊗k ∈C .

Proof. First of all, note that ⊗k is a rotated version of nested pairings . . . . . . . Now,
one can easily check by induction that . . . . . . is contained in any category (it is, after
all, the duality morphism corresponding to k). Obviously, also ⊗k is in any category. Finally
note that both ⊗k and ⊗k imply global colourization ( ⊗ is obtained by contraction from
⊗k ⊗ ⊗k ; similarly, ⊗ is obtained from ⊗k ⊗ ⊗k). Hence, we have the following series of

equivalences

⊗k ∈C ⇔ ⊗k ⊗ . . . . . . ∈C
glob. col.
⇔ ⊗k ⊗ . . . . . . ∈C ⇔ . . . . . . ∈C . �

6.2.3 Interpretation of globally-colourized categories

In this section, we present the results of [Gro18] supplementing the classification of globally-
colourized categories of partitions with the quantum group interpretation.

The following theorem was actually already implicitly contained in [TW17] for the case
of non-crossing and group categories. In [Gro18], we applied the same technique of proof on
all of the globally colourized categories.

Recall the definition of the glued tensor product and tensor complexification from Sec-
tion 2.5.3.

6.2.4 Theorem. Let C be a globally colourized category of partitions, denote k := k(C ). Denote
by H ⊆ O+

N the quantum group corresponding to the non-coloured category of partitions
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〈C , 〉. Then C corresponds to the quantum group H ×̃ Ẑk ⊆U+
N . In the case k = 0, we replace

Ẑk by Ẑ.

Proof. We will divide the proof into two cases: Case (a) ∈ C and case (b) < C .
According to Lemma 4.5.8, we have C = 〈C0,

⊗k〉 in case (a) and C = 〈C0,
⊗k/2〉 in case (b).

Since large parts of the proof will be identical for both cases, let us denote C = 〈C0,qk〉, where
qk is either ⊗k or ⊗k/2. Denote by G the quantum group associated to the category C .

Denote by Rqk the relation corresponding to qk and byR(u) all the relations associated to
the category C0. Note that the unicoloured pair = u1 corresponds to the relation making the
matrix u orthogonal. So, we have

C(G) = C∗(uij |R(u), Rqk (u), u and ut unitary),

C(H) = C∗(vij |R(v), Rqk (v), v = v̄, vvt = vtv = 1N ),

C(H)⊗max C
∗(Zk) = C∗

(
vij , z

∣∣∣∣∣ R(v), Rqk (v), v = v̄, vvt = vtv = 1N ,
vijz = zvij , zz∗ = z∗z = 1, zk = 1

)
,

C(H ×̃ Ẑk) ⊆ C(H)⊗max C
∗(Zk) generated by u′ij := vijz.

To show that G is identical with H ×̃ Ẑk , we have to prove that there exists a ∗-isomorphism
α:C(G)→ C(H ×̃ Ẑk) mapping uij 7→ u′ij . We will show it in two steps. First, we show that this
assignment extends to a surjective ∗-homomorphism α. Secondly, we find a ∗-homomorphism
β:C(H)⊗max C

∗(Zk)→Mt(C(G)) such that β ◦α = ι, where t = 1 in case (a) and t = 2 in case (b)
and ι:C(G)→Mt(C(G)) is the embedding x 7→ x · 1t. This will prove the injectivity of α.

Mt(C(G)) C(H)⊗max C
∗(Zk)

C(G) C(H ×̃ Ẑk)

ι

β

⊆

α

Step 1. There is a surjective ∗-homomorphism α:C(G)→ C(H ×̃ Ẑk) mapping uij 7→ u′ij .

We show that the elements u′ij ∈ C(H ×̃ Ẑk) ⊆ C(H)⊗maxC
∗(Zk) satisfy the relations of uij

in C(G).
Indeed, the unitarity is clear since u′u′∗ = vzz∗v∗ = vv∗ = 1 and similarly for u∗u and for ut.
Moreover, all elements p ∈C0 satisfy c(p) = 0, so they have the same amount of white and

black points. Thus, in the relationsR(u), there is the same amount of conjugated u∗ij as not
conjugated uij . If we put vz instead of u, there is the same amount of z and z∗ in every relation.
So, since z and z∗ commute with everything, they all cancel out. Therefore, the relations
R(vz) =R(v) are also satisfied in C(H)⊗max C

∗(Zk).
Similarly for the case Rqk . We know that c(qk) = k and since zk = 1, it follows that Rqk (vz) =

Rqk (v), which is satisfied in C(H)⊗max C
∗(Zk).

Finally, from the universal property of C(G), we know that there is a ∗-homomorphism
α:C(G)→ C(H ×̃Ẑk) mapping uij 7→ u′ij . SinceC(H ×̃Ẑk) is generated by u′ij , the homomorphism
must be surjective.

Step 2a. Suppose ∈C . Define in C(G)

z′ :=
∑
l

uil =
∑
l

ulj , v′ij := uijz
′∗.

There is a ∗-homomorphism β:C(H)⊗max C
∗(Zk)→ C(G) mapping vij 7→ v′ij , z 7→ z′ satisfying

β ◦α = id.
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We will again show that v′ij and z′ in C(G) satisfy the relations of vij and z in C(H)⊗max
C∗(Zk). Then the existence of β will follow from the universal property of C(H)⊗max C

∗(Zk).
First of all note that ∈C implies that ⊗ ∈C , so we indeed have that

∑
l uil =

∑
l ulj

for any i, j and that z is unitary. Since we are in case (a), we have ⊗k ∈C , which corresponds to
the relation z′k = 1 (see Table 6.3).

The relation for ∼ means that uijz′ = z′uij , which implies that

v′ijz
′ = uijz

′∗z′ = uij = z′uijz
′∗ = z′v′ij .

The relation for ⊗ ∼ ⊗ implies that

uijz
′∗ =

∑
l

uiju
∗
kl =

∑
l

u∗ijukl = u∗ijz
′ ,

from which we deduce that
v′ij = uijz

′∗ = u∗ijz
′ = z′u∗ij = v′∗ij .

The orthogonality of v′ follows simply from the equality v′v′∗ = uu∗ and v′∗v′ = u∗u, which
follows from the fact that u commutes with z′. Similarly, all relations R(v′) are satisfied
since they are equivalent toR(u) thanks to the fact that u commutes with z′ and hence all
occurrences of z′ cancel with z′∗. Finally, if k , 0, we can use the relation z′k = 1 to show that
the relation R ⊗k (v′) is equivalent to R ⊗k (u).

Step 2b. Suppose <C . Denote w :=
∑
l u

2
il =

∑
l u

2
lj ∈ C(G). Define in M2(C(G))

z′ :=
(0 w

1 0

)
, v′ij :=

( 0 uij
u∗ij 0

)
.

There is a ∗-homomorphism β:C(H)⊗maxC
∗(Zk)→M2(C(G)) mapping vij 7→ v′ij , z 7→ z′ satisfy-

ing β ◦α = ι.

Again, we will prove that v′ij and z′ satisfy the appropriate relations and the statement
will follow from the universal property of the algebra C(H)⊗max C

∗(Zk).
The fact that

∑
l u

2
il =

∑
l u

2
lj for every i, j corresponds to the relation of ∼ ⊗ . We

also have that ww∗ = w∗w = 1 (again, see Table 6.3). Finally,

u∗ijw =
∑
l

u∗iju
2
il =

∑
l

uiju
∗
iluil = uij

and similarly wu∗ij = uij . And using the relation for ⊗k/2 ∼ ⊗k/2 we prove that

wk/2 =
∑
l1

uil1uil1 · · ·
∑
lk/2

uilk/2uilk/2 =
∑
l1

uil1u
∗
il1
· · ·

∑
lk/2

uilk/2u
∗
ilk/2

= 1.

One can now easily check the validity of all the relations. In particular, we have that

v′ijz
′ = z′v′ij = uij

(1 0
0 1

)
,

so v′ij = uijz′∗12. Therefore, for the relationsR(v) we can apply the same argument as in the
case (a). �
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6.2 Two-coloured case and unitary CMQGs

In the last theorem, we constructed precisely all quantum groups of the formH ×̃Ẑk , where
either

(1) H ⊆O+
N corresponds to a category C̃ such that ↑ < C̃ and k is even or

(2) H ⊆O+
N corresponds to a category C̃ such that ↑ ∈ C̃ and k is odd.

Indeed, consider a globally colourized categoryC . If k := k(C ) is odd, thenC must contain
a partition of odd length. According to Lemmata 4.5.7 and 4.5.8, we have that ⊗k ∈ C and
hence ∈ C̄ := 〈C , 〉. On the other hand, if k is even, then C does not contain any partition
of odd length and hence < C̄ .

Conversely, let C̃ be any category of non-coloured partitions corresponding to an orthog-
onal quantum group H ⊆ O+

n and denote C̄ := Ψ−1(C̃ ) the corresponding category in terms
of two-coloured partitions. If ↑ ∈ C̃ , then we can construct C := 〈C̄0,

⊗k〉 for k odd and prove
by the same arguments as in Lemma 4.5.5 that C̄ = 〈C , 〉. Thus, Theorem 6.2.4 implies that
H ×̃ Ẑk is a unitary easy quantum group corresponding to the category C . If ↑ < C̃ , then we
can similarly construct C := 〈C̄0,

⊗k/2〉 for k even and use Theorem 6.2.4 to see that H ×̃ Ẑk is
the quantum group corresponding to C .

Now, we would like to characterize the product H ×̃Zk for an arbitrary orthogonal easy
quantum group H and an arbitrary number k ∈N0.

There are only four non-coloured categories of partitions containing the singleton. Namely
the following:

〈↑, 〉 quantum group S+
N ,

〈↑〉 quantum group B+
N ,

〈↑, , 〉 (quantum) group SN ,
〈↑, 〉 (quantum) group BN .

Note that they can be formed by adding the singleton to the following categories:

〈↑⊗ ↑, 〉 quantum group S ′+N = S+
N ×̃ Ẑ2,

〈 〉 quantum group B′+N = B+
N ×̃ Ẑ2,

〈↑⊗ ↑, , 〉 (quantum) group S ′N = SN ×̃ Ẑ2,
〈↑⊗ ↑, 〉 (quantum) group B′N = BN ×̃ Ẑ2.

Their k-tensor complexifications for k even are described by the following proposition.

6.2.5 Proposition. For any k ∈ 2N0 we have the following

S+
N ×̃ Ẑk = (S+

N ×̃ Ẑ2) ×̃ Ẑk (category Sglob(k)),
B+
N ×̃ Ẑk = (B+

N ×̃Z2) ×̃ Ẑk (category B′glob(k)),
SN ×̃ Ẑk = (SN ×̃ Ẑ2) ×̃ Ẑk (category Sgrp,glob(k)),
BN ×̃ Ẑk = (BN ×̃ Ẑ2) ×̃ Ẑk (category Bgrp,glob(k)).

Proof. From Theorem 6.2.4, it follows that, for each row, the quantum group on the right hand
side corresponds to the category in parentheses. Repeating the proof of Theorem 6.2.4 for
the quantum group on the left hand side proves the equality. In particular, note that all the
categories are in case (a) and actually the only thing we have to check is that v′ij ∈ C(G) satisfies
the relation corresponding to the singleton

∑
l v
′
il =

∑
l v
′
lj = 1 for any i, j. This follows from the

fact that ∑
l

v′il =
∑
l

uilz
′∗ = z′z′∗ = 1

and similarly for the other relation. �
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6. Partition quantum groups and easy examples

6.2.6 Proposition. Let H be an orthogonal easy quantum group corresponding to a category C
such that ↑ <C and let k be odd. Then H ×̃Zk =H ×̃Z2k .

Proof. Denote the fundamental representation of H by v, the generator of C∗(Z2k) by z, and the
generator of C∗(Zk) by z′. Then we can denote the fundamental representation of C(H ×̃ Ẑ2k)
by uij := vijz and the fundamental representation of C(H ×̃ Ẑk) by u′ij := vijz′. We have to find
an isomorphism C(H ×̃ Ẑ2k)→ C(H ×̃ Ẑk) mapping uij 7→ u′ij .

Let us define a homomorphism α:C(H) ⊗ C∗(Z2k) → C(H) ⊗ C∗(Zk) by α(vij ) = vij and
α(z) = z′. The existence of such a homomorphism follows from the universal property of
C(H)⊗C∗(Z2k) since we have z′2k = 1.

We would like to define a homomorphism β:C(H)⊗C∗(Zk)→ C(H)⊗C∗(Z2k) by β(vij ) =
vijz

∗k and β(z′) = zk+1. Obviously, β(z′) satisfies the relation of z′ since β(z′)k = z(k+1)k = 1. Since
↑ <C , we know that C contains only partitions with even length, so all the relations of C(H)
contain monomials in vij of even length. Thus, β(vij ) satisfy the relations of vij since all
the z∗k cancel out. Therefore, such a homomorphism β exists from a universal property of
C(H)⊗C∗(Zk).

Now since we have

α(uij ) = α(vijz) = vijz
′ = u′ij ,

β(u′ij ) = β(vijz
′) = vijz

∗kzk+1 = vijz = uij ,

it follows that α restricted to C(H ×̃Z2k) is a surjective homomorphism onto C(H ×̃Zk) mapping
uij 7→ u′ij , it has an inverse provided by the map β, and hence it is the desired isomorphism. �

6.2.7 Corollary. Any quantum group of the form H ×̃ Ẑk , where H is an orthogonal easy
quantum group and k ∈N0, is a unitary easy quantum group corresponding to a globally
colourized category.

Proof. Denote C̄ the category corresponding to the orthogonal quantum group H in terms
of two-coloured partitions. If < C̄ and k is even, then, as we already mentioned, H ×̃ Ẑk is
a unitary easy quantum group corresponding to the category 〈C̄0,

⊗k/2〉. If k is odd, then,
according to Proposition 6.2.6, H ×̃ Ẑk =H ×̃ Ẑ2k , so it reduces to the previous case and H ×̃ Ẑk

corresponds to the category 〈C̄0,u2k〉.
If ∈ C̄ and k is odd, then again we already mentioned that H ×̃ Ẑk is a unitary easy

quantum group corresponding to the category 〈C̄0,
⊗k〉. If k is even, then, according to

Proposition 6.2.5, H ×̃ Ẑk = (H ×̃ Ẑ2) ×̃ Ẑk , where H ×̃ Ẑ2 is an orthogonal easy quantum group
corresponding to a category that does not contain the singleton, so the situation reduces
to the first case. In fact, we again have that H ×̃ Ẑk corresponds to the category 〈C̄0,

⊗k〉 =
〈C̄0,

⊗k/2〉. �

6.2.4 Interpretation of the alternating colouring

Consider a non-coloured category of partitionsC ⊆P . In Section 4.6.5, we brought a definition
of a two-coloured category AltC ⊆P generated by alternating colourized partitions in C .
Below, we bring a quantum group interpretation of those categories. We are able to provide
a complete proof of the proposition only in Chapter 8. Nevertheless, we are stating it here
since it logically belongs to this chapter.

6.2.8 Proposition. Let C ⊆ P be a category of partitions and denote by G ⊆ O+
N the corre-

sponding easy quantum group. Then G ∗̃ Ẑ is a unitary easy quantum group corresponding to
the category AltC .

(1) If ↑ <C , then G ∗̃ Ẑk = G ∗̃ Ẑ for all k ∈N and it corresponds to the category AltC .
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6.3 Coloured partitions in general

(2) If ↑ ∈C , then G ∗̃ Ẑk corresponds to the category 〈AltC , ⊗k〉.

This proposition will follow as a consequence of Proposition 8.2.31, which is formulated in
terms of linear categories of partitions. Note that C contains some partition of odd length if
and only if it contains the singleton ↑. See also Proposition 6.4.15 providing a proof in a special
case (part (1) for k = 2).

6.3 Coloured partitions in general
The idea of using coloured partitions for describing the representation categories of quantum
groups is the following. Consider a set of colours O . Then, to every x ∈ O , we associate
a representation ux of some quantum group G. We should also define an involution x 7→ x̄ on O ,
which translates to taking a dual representation ux̄. Then a word w = x1 · · ·xk ∈ O k translates
to taking the corresponding k-fold tensor product ux1 ⊗ · · · ⊗uxk . Applying then the mapping
p 7→ Tp to some O -coloured category of partitions, we obtain an O -coloured representation
category (see also Section 8.1.1). Now it may not be clear, how to assign a quantum group to
such a structure.

Consider p ∈ P O . We say that two colours of O are independent in p if no block of p
contains both of these colours.

For simplicity, consider two self-dual colours O = { , } and fix two natural numbers
N ,N ∈N. Then any category C ⊆P O containing only partitions where the two colours are
independent can be assigned a quantum group G = (C(G),u), where SN × SN ⊆ G ⊆O+

N ∗̂O+
N .

The colour corresponds to some representation u and the colour corresponds to some
representation u . Thus, the words w over O correspond to tensor products u⊗w. A partition
p ∈ C (w1,w2), where w1 = a1 · · ·ak and w2 = b1 · · ·bl then corresponds to a map Tp:CNa1 ⊗ · · · ⊗
C
Nak →C

Nb1 ⊗ · · · ⊗CNal given again by Equation (6.1) (where the summation for each jn goes
from 1 to Nan ). Then, we can construct a quantum group G = (C(G),u), where u = u ⊕u and

C(G) = C∗(uij ,uij | u = ū , u = ū , Tpu
⊗w1 = u⊗w2Tp ∀p ∈C (w1,w2)).

To assure that such a quantum group indeed exists, we again use the Tannaka–Krein
theorem for quantum groups. Let us denote N := N +N . Using the canonical projections
C
N → C

N , CN → C
N and the corresponding embeddings, we can interpret the maps Tp as

a mapping (CN )⊗k→ (CN )⊗l and hence as intertwiners for u = ū.
We have G = O+

N ∗̂O+
N for C consisting of all non-crossing pair partitions with and

being independent. Likewise, G = SN × SN for C consisting of all partitions with and
independent.

In the special case N := N = N , we can consider really all partitions over O without
assuming that the colours are independent. This allows us to somehow amalgamate the two
factors. The resulting quantum group G will then sit between SN ⊆ G ⊆ON ∗̂ON , where SN is
taken as a subgroup of SN × SN by identifying the two factors. This is the approach originally
formulated by Freslon in [Fre17]. Non-crossing categories on two self-dual colours were
classified in [Fre19].

6.4 Extra-singleton case and Z2-extensions
In this section, we closely follow our article [GW19b]. The goal is to describe quantum groupsG,
whose fundamental representation u decomposes as a direct sum v ⊕ r of an N -dimensional
representation v ∈ MN ((C(G)) and a one-dimensional representation r ∈ C(G). In order to
do so, we consider a two-letter alphabet O = { , }, where the triangle corresponds to the
representation r and the line corresponds to the representation v. Since the representation r
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6. Partition quantum groups and easy examples

is one-dimensional, one can see that the block structure of the colour is irrelevant, because
it does not affect the corresponding map Tp at all. Consequently, the appropriate structure
for describing such quantum groups are categories of partitions with extra singletons, which we
introduced in Section 4.6. The motivation for this work is to answer the following question.

6.4.1 Question. Given a quantum group H , are there any quantum groups G with

H ∗̂ Ẑ2 ) G )H × Ẑ2?

6.4.1 The corresponding quantum groups

Let us summarize here the meaning of categories of partitions with extra singletons by
applying the general considerations mentioned in Section 6.3. A category of partitions with
extra singletons, being a coloured category with independent colours, corresponds to some
quantum group G with SN × SN ′ ⊆ G ⊆ O+

N ∗̂O+
N ′ . As we mentioned above, we will always

assume N ′ = 1, so actually we have

SN ×E ⊆ G ⊆O+
N ∗̂ Ẑ2,

where E = (C,1) is the trivial (compact matrix quantum) group. So, G is a matrix quantum
group with matrix of size (N + 1)× (N + 1) having a block structure with one block of size N
and second block of size one. We will usually denote the fundamental representation of G by

u = v ⊕ r =
(
v 0
0 r

)
.

The colour then corresponds to v and the extra singleton correspond to r, that is, we have
u = v and u = r.

As usual, we are going to define the quantum group G associated to a category C using
the relations Tpu⊗w1 = u⊗w2Tp. First, we have to describe the Tp maps. In our case, they
can be defined as follows. Consider a partition with extra singletons p ∈ P . Denote by k′

resp. l ′ the number of upper resp. lower points of the colour (i.e. not being extra singletons).
Then we define Tp: (CN )⊗k

′ → (CN )⊗l
′
by Equation (6.1) ignoring all the extra singletons in p.

The extra singletons become important when we interpret the partition p as an intertwiner
Tpu

⊗w1 = u⊗w2Tp, where w1 and w2 are the upper and the lower colour pattern of p, respectively.

6.4.2 Example. Given a partition , it is associated a map T :CN → C
N , which coincides

with the map associated to the identity partition . It is the identity C
N → C

N . However, the
interpretation of those partitions are different. While the identity partition gives us just the
trivial relation

v = vT = T v = v,

the relation associated to the partition reads

vr = v ⊗ r = T (v ⊗ r) = (r ⊗ v)T = r ⊗ v = rv.

See Example 6.4.9 for another instance of a Tp map and a relation associated to a partition
with extra singletons.

Now a quantum group G = (C(G),v ⊕ r) corresponding to a given category of partitions
with extra singletons C ⊆P can be defined by

C(G) = C∗(vij , r | vij = v∗ij , r = r∗, Tpu
⊗w1 = u⊗w2Tp ∀p ∈C (w1,w2)),

where u = v and u = r.
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6.4 Extra-singleton case and Z2-extensions

As we mentioned in Proposition 6.1.7, we do not have to consider the relations correspond-
ing to all the partitions in C , but only to some generating set of C . So, suppose C = 〈C〉 , then
we have

C(G) = C∗
(
vij , r

∣∣∣∣ v = v̄, vvt = vtv = 1N , r = r∗, r2 = 1
Tpu

⊗w1 = u⊗w2Tp ∀p ∈ C(w1,w2)

)
.

Note that the orthogonality relations vvt = vtv = 1 and r2 = 1 correspond to the partitions
and ⊗ , which are contained in any category by definition, but they are usually not explicitly
listed as generators.

6.4.2 Relations associated to partitions with extra singletons
We give a few examples of partitions with extra singletons and the corresponding quantum
group relations in Table 6.4. Recall that we must assume that all the generators vij and r are
self-adjoint – this does not follow from any partition relation.

The first two partitions correspond to orthogonality of u and r and are by definition present
in all categories with extra singletons. The following partitions allow us to construct the most
basic instances of extra-singleton categories and the corresponding quantum groups.

vvt = 1 (assumed by default)
⊗ r2 = 1 (assumed by default)

r = 1
vijr = rvij
vijvklr = rvijvkl

Table 6.4 Relations corresponding to certain partitions with extra singletons

6.4.3 Proposition. Let C ⊆P be an ordinary category of partitions corresponding to a quan-
tum group H ⊆O+

N . Then

(1) 〈C 〉 corresponds to H ∗̂ Ẑ2,
(2) 〈C , 〉 corresponds to H × Ẑ2,
(3) 〈C , 〉 corresponds to H ×E,

where E = (C,1) is the trivial (quantum) group.

Proof. We just need to look at the relations implied by the generators of the categories and
find out which quantum subgroup G ⊆O+

N ∗̂ Ẑ2 they determine. In the first case, we only have
partitions without extra singletons, so in the corresponding relations only the elements vij
appear (not the subrepresentation r). In particular, those relations correspond to the subgroup
H ⊆O+

N , so, taken as generators of a category with extra singletons, they define the subgroup
H ∗̂ Ẑ2 ⊆ O+

N ∗̂ Ẑ2. Indeed, since we do not add any new relations on r, the r remains free
from vij and keeps representing the factor Ẑ2.

In the second case, we have, in addition, the generator , which corresponds to the
relation vijr = rvij . Thus, the category corresponds to the quantum subgroup of H ∗̂ Ẑ2 given
by this relation. The relation is simply commutativity of the factors C(H) and C∗(Z2), so the
corresponding quantum group is the tensor product H × Ẑ2.

Finally, the last instance corresponds to the subgroup of H ∗̂ Ẑ2 with respect to the relation
r = 1. This relation corresponds to taking just the trivial subgroup of Ẑ2. �

The example corresponding to some weaker kind of commutativity gives us already
an answer to Question 6.4.1. Recall the classification result from Section 4.6.6. Considering
any category of partitions C ⊆P such that ↑ <C , we have that

〈C 〉 (C0 (Ck (Cl (C2 = 〈C , 〉 .

Here, we assume that 2 < k, l ∈N are even unless ↑⊗↑ ∈C and that k divides l.
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6. Partition quantum groups and easy examples

We can supplement the list in Proposition 6.4.3 with the following definitions.

(4) The quantum group corresponding to C0 = 〈C , 〉 is denoted by H ×× Ẑ2,
(5) The quantum group corresponding to Ck is denoted by H ×k Ẑ2,

Then we can say that for any easy quantum group H , whose category of partitions does not
contain the singleton ↑, we have

H ∗̂ Ẑ2 )H ×× Ẑ2 )H ×k Ẑ2 )H ×l Ẑ2 )H × Ẑ2.

We get back to those Z2-extensions in Section 6.4.5. A more general definition of those
products is provided in Section 8.3.

6.4.3 Induced one-coloured categories

In the preceding subsection, we studied the most simple constructions of how to get an extra-
singleton category from an ordinary category and what are the corresponding quantum groups.
Here, we are going the opposite direction and study non-coloured categories induced by the
extra-singleton categories.

Recall from Section 4.6.2 the full subcategory C ⊆C defined for every extra-singleton
category C .

6.4.4 Lemma. Let C be a category of partitions with extra singletons corresponding to
a quantum group G = (C(G),v ⊕ r). Then the one-coloured category C corresponds to the
quantum group H = (A,v), where A ⊆ C(G) is the subalgebra generated by {vij}Ni,j=1.

Proof. H is clearly a compact quantum group. Following the definition of a CMQG from
Sect. 2.1.2, we see that (1) A is generated by vij by definition, (2) if a block diagonal matrix has
an inverse, then the blocks must also be invertible, (3) the comultiplication is given simply
by restriction to A. Directly from the construction of G, we have that the intertwiner spaces
Mor(v⊗k ,v⊗l) are precisely given by partitions in C . �

Secondly, given a category of partitions with extra singletons C , we can somehow ignore
the extra singletons. Let us define the following

C =1 := (C̄ ) ,

where C̄ = 〈C , 〉 . Obviously, we have C ⊆C =1.

6.4.5 Lemma. Let C be a category of partitions with extra singletons corresponding to
a quantum group G = (C(G),v ⊕ r). Then the one-coloured category C =1 corresponds to the
quantum group H̃ = (A, ṽ), where A is the quotient of C(G) by the relation r = 1 and ṽij are the
images of vij under the natural homomorphism.

Proof. The partition corresponds to the relation r = 1, so C̄ is the category corresponding to
the quantum subgroup Ḡ ⊆ G defined by imposing the relation r = 1. That is, Ḡ = (A, ṽ ⊕ 1).
Using the preceding lemma, we get that C =1 corresponds to the quantum group H̃ . �

6.4.6 Remark. Recall Lemma 4.6.1. Thanks to Proposition 6.4.3, we can complement it with
the quantum group picture. Let C be a category of partitions with extra singletons. Denote
by G the quantum group corresponding to C , and by H the quantum group corresponding
to C . Then we have the following.

(1) If ∈C , then C = 〈C , 〉 and G =H ×E.
(2) If <C , ↑⊗ <C , but ∈C , then C = 〈C , 〉 and G =H × Ẑ2.
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6.4.7 Proposition. Let C be a category of partitions with extra singletons. Denote by G the
quantum group corresponding to C , by H the quantum group corresponding to C and by
H̃ the quantum group corresponding to C =1. Then

H̃ ×E ⊆ G ⊆H ∗̂ Ẑ2.

Proof. According to Lemma 6.4.4 and Proposition 6.4.3, the quantum groupH ∗̂Ẑ2 corresponds
to the category 〈C 〉 . According to Lemma 6.4.5 and Proposition 6.4.3, the quantum group
H ×E corresponds to the category 〈C =1, 〉 = 〈C , 〉 . We indeed have

〈C , 〉 ⊇C ⊇ 〈C 〉 . �

Note that the quantum groups H̃ and H may be different. That is, given a quantum group
G ⊆ O+

N ∗̂ Ẑ2, we do not always have H × E ⊆ G ⊆ H ∗̂ Ẑ2 for some H ⊆ O+
N . We present an

example in the following paragraph.

6.4.8 Example. Consider the category C := 〈 〉 . It holds that C = 〈↑ ⊗ ↑〉. Indeed, one can
easily see that ↑⊗ ↑ is generated by (compose ( ⊗ ) · ( ⊗ )), which proves the inclusion ⊇.
Conversely, one can see that all partitions in C have blocks of size at most two and we can
also prove that < C (otherwise we would have ∈ C and hence ∈ C , which is not
the case according to the classification in Proposition 4.6.21). Hence, we have the inclusion ⊆.
Similarly, one can prove that C =1 = 〈↑〉.

The category 〈↑⊗ ↑〉 corresponds to the quantum group B#+
N , which is a subgroup of O+

N
given by the relation s :=

∑
k vik =

∑
k vkj for all i, j = 1, . . . ,N (see Table 6.2). The category 〈↑〉

corresponds to the quantum group B+
N , which is a quantum subgroup of B#+

N given by s = 1.
According to Proposition 6.4.7 we have that C corresponds to a quantum group G with

B+
N ×E ⊆ G ⊆ B#+

N ∗̂ Ẑ2.

More concretely, as a subgroup of B#+
N ∗̂ Ẑ2, it is given by the relation r = s arising from the

partition .
In fact, G is isomorphic to B#+

N (just take the ∗-isomorphism C(G) → C(B#+
N ) mapping

vij 7→ vij and r 7→ s). Nevertheless, B+
N is the maximal compact matrix quantum group H that

can be embedded in G in the form H ×E ⊆ G (that is, having a surjective ∗-homomorphism
C(G)→ C(H) mapping r 7→ 1).

For those considerations, note the important distinction between two quantum groups
being isomorphic (existence of a C*-algebra isomorphism that preserves the comultiplication)
and being identical as matrix quantum groups (the fundamental representations must coincide
as well; in particular, they must have the same size).

6.4.4 The gluing functor

Recall the definition of the functor F:P →P from Section 4.6.4. In principle, the functor
was mapping 7→ and 7→ . The partition structure does not change under F (if we ignore
the extra singletons). Consequently, the maps Tp and TF(p) for a given p ∈ P (w1,w2) are
exactly the same maps (CN )⊗k

′ → (CN )⊗l
′
, where k′ and l ′ are the lengths of the words F(w1)

and F(w2). The only thing that changes is the interpretation of those maps. The map Tp
is considered as an intertwiner in Mor(u⊗w1 ,u⊗w2 ) with u = v and u = r for some quantum
group G = (C(G),v ⊕ r) ⊆O+

N ∗̂ Ẑ2. In contrast, the map TF(p) is interpreted as an intertwiner in
Mor(ṽ⊗F(w1), ṽ⊗F(w2)), where ṽ◦ = ṽ and ṽ• = ¯̃v, for some quantum group G̃ = (C(G̃), ṽ) ⊆U+

N .
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6. Partition quantum groups and easy examples

6.4.9 Example. As an example, let us take the partition p = . We associate to it a map

Tp:CN ⊗CN ⊗CN →C
N ⊗CN ⊗CN by Equation (6.1) ignoring the extra singletons. That is, we

have

Tp(ei1 ⊗ ei2 ⊗ ei3 ) = δi2i3 ei2 ⊗ ei2 ⊗
N∑
k=1

ek .

As we just mentioned, it coincides with the Tp map associated to the partition and hence
also with the map associated to F(p) = . The meaning of the partition p is the relation

Tp(v ⊗ v ⊗ r ⊗ r ⊗ v) = (r ⊗ v ⊗ v ⊗ r ⊗ v)Tp,

which can also be written as

δi1i2

N∑
l=1

vlj1vi1j2r
2vi1j3 = δj2j3

N∑
k=1

rvi1j2vi2j2rvi3k .

The meaning of the partition F(p) is the relation

Tp(ṽ ⊗ ¯̃v ⊗ ṽ) = ( ¯̃v ⊗ ṽ ⊗ ṽ)Tp,

which can also be written as

δi1i2

N∑
l=1

vlj1v
∗
i1j2
vi1j3 = δj2j3

N∑
k=1

v∗i1j2vi2j2vi3k .

We can say that the functor F changes the corresponding relations by mapping vijr 7→ ṽij and
rvij 7→ ṽ∗ij . See also Theorem 6.4.13.

6.4.10 Definition. Consider a quantum group G ⊆O+
N ∗̂ Ẑ2 with fundamental representation

v⊕r. Denote ṽij := vijr and let A be the C*-subalgebra of C(G) generated by ṽij . Then G̃ := (A,u)
is called the glued version of G.

6.4.11 Remark. It is easy to check that the comultiplication on G satisfies ∆(ṽij ) =
∑
k ṽik ⊗ ṽkj ,

so its restriction provides a comultiplication on G̃. Thus, G̃ is a compact matrix quantum group.
It is a quantum quotient of G.

6.4.12 Remark. The definition generalizes the glued product construction from Sect. 2.5.3. It
is easy to see that G ∗̃ Ẑ2 is the glued version of G ∗̂ Ẑ2 and G ×̃ Ẑ2 is the glued version of G× Ẑ2.

Now we present the main result of Section 6.4 interpreting the classification of partitions
with extra singletons. We show that the functor F from Definition 4.6.4 corresponds to the
gluing procedure defined above.

6.4.13 Theorem. Consider a category C ⊆ Peven. Denote by G = (C(G),v ⊕ r) the quantum
group corresponding to C and by G̃ = (C(G̃), ṽ) the quantum group corresponding to the
category C̃ := F(C ). Then there is an injective ∗-homomorphism ι:C(G̃)→ C(G) mapping
ṽij 7→ vijr. In other words, G̃ is the glued version of G.

Proof. To prove the existence of a ∗-homomorphism ι:C(G̃)→ C(G) mapping ṽij 7→ vijr, we
need to show that the elements ṽ′ij := vijr ∈ C(G) satisfy all the relations of the generators
ṽij ∈ C(G̃). We observed this already in the beginning of this subsection. Indeed, all relations in
C(G̃) are of the form Tp̃ṽ

⊗w̃1 = ṽ⊗w̃2Tp̃ for some p̃ ∈ C̃ (w̃1, w̃2). Take any preimage p ∈ C (w1,w2),
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6.4 Extra-singleton case and Z2-extensions

p ∈ F−1(p̃). We already showed that Tp = Tp̃. One can also check that ṽ′⊗w̃1 = u⊗w1 and
ṽ′⊗w̃2 = u⊗w2 (as usual, we take u = v ⊕ r). So, we have

Tp̃ṽ
′⊗w̃1 = Tpu

⊗w1 = u⊗w2Tp = ṽ′⊗w̃2Tp̃.

To prove the injectivity, we are going to use a similar trick as in the proof of Theorem 6.2.4.
We will show that there is a ∗-homomorphism β:C(G)→M2(C(G̃)) mapping

r 7→ r ′ :=
(0 1

1 0

)
, vij 7→ v′ij :=

( 0 ṽij
ṽ∗ij 0

)
.

If we prove that such a homomorphism exists, then it is easy to check that

(β ◦ ι)ṽij = ṽ′′ij :=
(
ṽij 0
0 ṽ∗ij

)
,

so β ◦ ι is obviously injective, which implies the injectivity of ι.
The proof of existence of such a homomorphism β is similar to the proof of existence of ι.

We have to prove that the elements r ′ and v′ij satisfy the same relations as the generators r
and vij . Again, we have that all the relations for r and vij are of the form Tpu

⊗w1 = u⊗w2Tp for
p ∈ C (w1,w2). Since we assume C ⊆Peven, we have that p is of even length. Without loss of
generality, we can assume that both w1 and w2 have even length (otherwise, consider p⊗ ,
which induces obviously an equivalent relation). Any monomial in v′ij and r ′ of even length
can be expressed in terms of ṽ′′ij and ṽ′′∗ij . Indeed, notice that v′ijr

′ = ṽ′′ij , so r ′v′ij = (v′ijr
′)∗ = ṽ′′∗ij

and v′ijv
′
kl = v′ijr

′r ′v′kl = ṽ′′ij ṽ
′′∗
kl . Consequently, one can see that u′⊗w1 = ṽ′′⊗F(w1) and also u′⊗w2 =

ṽ′′⊗F(w2) (denoting u′ = v′ ⊕ r ′). Thus, using also the equality Tp = TF(p) = TF(p), we have

Tpu
′⊗w1 = Tpṽ

′′⊗F(w1)
ij = ṽ′′⊗F(w2)

ij Tp = u′⊗w2Tp. �

6.4.14 Example. In [Ban97], it was proven that U+
N =O+

N ∗̃ Ẑ. In [TW17, Proposition 6.20], it
was proven that we can actually exchange Z for Z2, so we have U+

N = O+
N ∗̃ Ẑ2. The latter is

a simple consequence of Theorem 6.4.13. Indeed, the quantum group O+
N ∗̂Z2 corresponds

to the smallest category with extra singletons C := 〈〉 . The quantum group U+
N corresponds

to the smallest two-coloured category C̃ := 〈〉 , which is the image of C under F. So, U+
N is

a glued version of O+
N ∗̂ Ẑ2.

Note that the theorem above agrees with the spirit of Proposition 3.3.2 (see also the
discussion in Remark 3.4.16) that full subcategories correspond to quotient quantum groups
since by restricting to a smaller underlying algebra, we are taking away some representations.

Finally, recall the definition of AltC ⊆P for a given C ⊆P from Section 4.6.5. As an
application of Theorem 6.4.13, we can prove a special case of Proposition 6.2.8 interpreting the
category AltC .

6.4.15 Proposition. Let C ⊆P be a category of partitions with ↑ <C and denote by H ⊆O+
N

the corresponding quantum group. Then AltC corresponds to H ∗̃ Ẑ2.

Proof. From Proposition 6.4.3, it follows that 〈C 〉 corresponds to the quantum group H ∗̂ Ẑ2.
From Lemma 4.6.12, it follows that AltC is its image under F. By Theorem 6.4.13 this implies
that it corresponds to the glued version of H ∗̂ Ẑ2, which is H ∗̃ Ẑ2. �

We will study glued and tensor complexifications more detail in detail in Chapter 8, where
the full version of Proposition 6.2.8 will be proven.
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6. Partition quantum groups and easy examples

6.4.5 Summary of the new Z2-extensions

In this section, we are going to look more in detail on some quantum groups coming out from
the classification of categories of partitions with extra singletons. First of all, let us again
formally define the quantum groups H ×× Ẑ2 and H ×k Ẑ2 that we mentioned in Section 6.4.2.
We generalize those products for arbitrary pairs of quantum groups in Section 8.3.

6.4.16 Definition. Consider a compact matrix quantum group H = (C(H),v) ⊆ O+
N . Denote

by r the generator of Z2. We define the product H ×× Ẑ2 =H ×0 Ẑ2 to be the quantum subgroup
of H ∗ Ẑ2 given by the relations

vijvklr = rvijvkl , (6.5)

that is, the relations corresponding to the partition . We define quantum groups G×2k Ẑ2,
k ∈N by imposing additional relations

vi1j1rvi2j2r · · ·vikjk r = rvi1j1rvi2j2 · · · rvikjk , (6.6)

which correspond to the partition ( )⊗k .

6.4.17 Definition. Consider a compact matrix quantum group H = (C(H),v) ⊆ O+
N . Denote

by r the generator of Z2. Assume H has a one-dimensional representation s (typically, we
consider s =

∑
k vik). We define the product H s ∗̂k Ẑ2 given by the relation (sr)k = 1 (if s =

∑
k vik ,

then it corresponds to the partition (↑⊗ )⊗k). We also define the product H s×k Ẑ2 combining
the relation (sr)k = 1 with Relations (6.5).

6.4.18 Remark. Since all the relations mentioned here are intertwiner relations, that is, they
are of the form T u⊗w = u⊗wT , they must surely define compact matrix quantum groups even
if H does not correspond to any category of partitions.

6.4.19 Proposition. Let H ⊆O+
N be a compact matrix quantum group with a one-dimensional

representation s. Then

H ∗ Ẑ2 ⊇H s ∗̂k Ẑ2 ⊇H s×k Ẑ2 ⊇H × Ẑ2 for any k ∈N,

H s ∗̂k Ẑ2 ⊇H s ∗̂l Ẑ2 if l divides k,

H s×k Ẑ2 ⊇H s×l Ẑ2 if l divides k.

Proof. Straightforward from the definition of the products. �

6.4.20 Proposition. Consider H ⊆ O+
N with a representation s =

∑
k vik . Then H s×2k Ẑ2 =

H ×2k Ẑ2.

Proof. We need to prove that the set of relations (
∑
k vik)

2 = 1, (sr)2k = 1, and Relations (6.5) is

equivalent to the relation
(∑

k vij
)2

= 1 together with Relations (6.6). We can do this in terms
of partition calculus. That is, we need to prove the following

〈↑⊗ ↑, , (↑⊗ )⊗2k〉 = 〈↑⊗ ↑, ( )⊗k〉 .

This is equivalent to the two-coloured version of the equality obtained by applying the functor F
form Def. 4.6.4:

〈 ⊗ , ⊗ , ⊗2k〉 = 〈 ⊗ , ⊗ , ⊗k〉.

This can be proven using Lemma 4.5.8. �

Let us now summarize the Z2-extensions in connection with the functor F and the gluing
procedure in a form of a table.
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6.4 Extra-singleton case and Z2-extensions

two-coloured category C̃ AltC Ψ−1(C )0 〈Ψ−1(C )0,
⊗k〉 Ψ−1(C )

corresp. quantum group H ∗̃ Ẑ2 H ×̃ Ẑ H ×̃ Ẑ2k H =H ×̃ Ẑ2

the preimage F−1(C̃ ) 〈C 〉 〈C , 〉 〈C , ( )⊗k〉 〈C , 〉
corresp. quantum group H ∗ Ẑ2 H ×× Ẑ2 H ×2k Ẑ2 H × Ẑ2

Table 6.5 Categories of partitions corresponding to various glued products and their
“Z2-unglued” versions.

6.4.21 Proposition. Let C ⊆P be a category of partitions such that ↑ < C corresponding to
a quantum group H ⊆O+

N . Then Table 6.5 shows the quantum groups corresponding to the
various categories constructed from C . All the categories are mutually distinct (and hence also
the quantum groups for large enough N ).

Proof. First, let us check that the first row indeed maps to the third row under F−1. For the
first column it follows from Lemma 4.6.12. For the last column, it follows from Lemma 4.6.10.
For the rest, it follows from Lemma 4.6.18.

Now, let us check the quantum group picture. Let us start with the upper part of the table.
The first column was proven in Proposition 6.4.15. The rest follows from Theorem 6.2.4 (see
also the discussion after the theorem). For the lower part of the table, the first and last column
follow from Proposition 6.4.3 and the rest follows directly from the definitions of the products.

The categories in the last three columns are mutually unequal from Lemma 4.5.9. Thanks
to the obvious inclusions, it remains only to prove inequality between the first two columns. It
can be seen that 〈C 〉 contains only those partitions with extra singletons where we can find
a pairing of the extra singletons that does not cross the blocks of colour . Since does not
satisfy this property, we have 〈C 〉 ( 〈C , 〉 . �

6.4.22 Remark (Comparison with [Fre19]). Our classification problem is closely related to
the classification of partition categories with two self-dual colours, which was solved in the
non-crossing case by Freslon in [Fre19]. Let us state here explicitly the relation to our work.
Strictly speaking we are solving two different problems as Freslon looks for quantum groups G′

with SN ⊆ G′ ⊆O+
N ∗̂O+

N while we are looking for quantum groups G with SN ×E ⊆ G ⊆O+
N ∗̂Z2.

Nevertheless, any category of partitions with extra singletons can be also considered as a
category with two self-dual colours. Hence, the classification of non-crossing categories of
extra-singletons (summarized in Section 4.6.6) was already intrinsically contained in [Fre19] as
well as many quantum group relations discussed in this section. On the other hand, in our
work, we do not restrict to the non-crossing case and even here we state the results in much
more explicit way.

We can compare our Z2-extensions with [Fre19, Section 5]. The difference is that instead of
studying quantum subgroups of G ∗̂H determined by relations involving some one-dimensional
subrepresentation r of H , we set H := Ẑ2 and work with its one-dimensional fundamental
representation. As a particular example, note that the quantum group BO+#

N ⊆O+
N ∗B+#

N from
[Fre19, Definition 5.2] is essentially defined by Relations (6.5) if we interpret r as the one-
dimensional representation of B+#

N given by r =
∑
kwik (w being the fundamental representation

of B+#
N ).
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Chapter 7

Non-easy quantum groups

In this chapter, we interpret non-easy linear categories of partitions that were discovered by
computer experiments as described in Chapter 5. We call the associated quantum groups
non-easy quantum groups. More or less, we will follow Section 5.4 extending the results with
the quantum group interpretation.

We provide a summary of all the non-easy categories and their interpretation in Table 7.1
on the following page. In the first column of the table, we refer to the paragraph, where the
corresponding categories were proven to be non-easy. The category itself is then written in
the third column. We use some special notation to represent the generators. The expanded
form of those generators as linear combinations of partitions is summarized in Table 5.1 (p. 79).
In the second column of the table, we refer to a paragraph, where the interpretation of the
category is presented. The actual quantum group is then listed in the last column.

Let us now mention the main theorems of this chapter, on which the interpretation of the
non-easy categories is based on.

In Section 7.1, we study quantum groups, whose fundamental representation is irreducible.
We define a unitary matrix U(N,±), a coisometry V(N,±), and a projection P(N ), which allow to
study those quantum groups and the corresponding invariant subspaces. In particular, this
interprets the non-easy generators that were constructed using the mappings P(N,±) and V(N,±)
from Sections 5.4.5 and 5.4.6.

Theorem (7.1.9). Let G be a quantum group such that SN ⊆ G ⊆ B#+
N . This means that its

representation category is described by a linear category of partitionsK containing ↑⊗↑. Then
it holds that SN−1 ⊆ (SN )irr

± ⊆ Girr
± ⊆O+

N−1 and Girr
± := V(N,±)GV

∗
(N,±) corresponds to the category

V(N,±)K ⊆ PartN−1.

Theorem (7.1.12). LetK ⊆ PartRedN be a reduced category. Denote by H the quantum group
SN−1 ⊆H ⊆O+

N−1 corresponding to the category V(N,±)K ⊆ PartN−1. Then we can construct the
quantum group corresponding to the following categories:

〈K 〉N corresponds to U ∗(N,±)(H ∗̂ Ẑ2)U(N,±),
〈K , 〉N corresponds to U ∗(N,±)(H × Ẑ2)U(N,±),
〈K ,↑〉N corresponds to U ∗(N,±)(H ×E)U(N,±),

where E = (C,1) is the trivial (quantum) group.

As we already showed in Section 6.4, compact matrix quantum groups where the funda-
mental representation has a one-dimensional subrepresentation are conveniently described
by partitions with extra singletons. The considerations from Section 7.1 are generalized in
Section 7.2, where the link to extra-singleton categories is formulated. In particular, we define
a functor U(N,±) such that the following holds.

Theorem (7.2.9). It holds that
TU(N,±)p =U⊗l(N,±)TpU

∗⊗k
(N,±)

for any p ∈ PartN (w1,w2), w1 ∈ O k , w2 ∈ O l . Thus, considering a linear category of partitions
K ⊆ PartN containing ↑⊗↑ and the corresponding quantum group G, it holds that the linear
category with extra singletons U(N,±)K corresponds to the quantum group U(N,±)GU

∗
(N,±).

We also interpret the category isomorphisms described in Section 5.4. First of all, the
isomorphism T(N ) from Section 5.4.2 corresponds just to a quantum group similarity.

124



Paragraph
w/ categ.

Paragraph
w/ interp.

Category Quantum group

5.4.6 7.4.13 〈D 〉 Oσ
N

5.4.8 7.4.11 〈J 〉 O−1
N

5.4.9 7.4.11 〈J 〉 O∗−1
N

5.4.24 7.1.13 〈P(δ) ,↑⊗↑〉 U ∗(N,±)

(
(S+
N )irr
± ∗̂ Ẑ2

)
U(N,±)

5.4.24 7.1.13 〈P(δ) , 〉 U ∗(N,±)

(
(S+
N )irr
± × Ẑ2

)
U(N,±)

5.4.24 7.1.13 〈P(δ) ,↑⊗↑〉 U ∗(N,±)

(
((S+

N )irr
± ×̃ Ẑ2) ∗̂ Ẑ2

)
U(N,±)

5.4.24 7.1.13 〈P(δ) , 〉 U ∗(N,±)

(
((S+

N )irr
± ×̃ Ẑ2)× Ẑ2

)
U(N,±)

5.4.24 7.1.13 〈P(δ) ,↑〉 U ∗(N,±)

(
((S+

N )irr
± ×̃ Ẑ2)×E

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,P(δ) ,↑⊗↑〉 U ∗(N,±)

(
(SN )irr

± ∗̂ Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,P(δ) , 〉 U ∗(N,±)

(
(SN )irr

± × Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,P(δ) ,↑⊗↑〉 U ∗(N,±)

(
((SN )irr

± ×̃ Ẑ2) ∗̂ Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,P(δ) , 〉 U ∗(N,±)

(
((SN )irr

± ×̃ Ẑ2)× Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,P(δ) ,↑〉 U ∗(N,±)

(
((SN )irr

± ×̃ Ẑ2)×E
)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,↑⊗↑〉 U ∗(N,±)

(
ON−1 ∗̂ Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) , 〉 U ∗(N,±)

(
ON−1 × Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,↑〉 U ∗(N,±) (ON−1 ×E)U(N,±)

5.4.28 7.1.14 〈P(δ) ,↑⊗↑〉 U ∗(N,±)

(
O∗N−1 ∗̂ Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) , 〉 U ∗(N,±)

(
O∗N−1 × Ẑ2

)
U(N,±)

5.4.28 7.1.14 〈P(δ) ,↑〉 U ∗(N,±) (O∗N−1 ×E)U(N,±)

5.4.34 7.1.10 〈V(δ) 〉 (S+
N )irr
±

5.4.34 7.1.10 〈V(δ) 〉 (S+
N )irr
± ×̃ Ẑ2

7.2.10 7.2.10 〈U−1
(δ) 〉 U ∗(N,±)

(
O+
N ×× Ẑ2

)
U(N,±)

7.2.10 7.2.10 〈U−1
(δ) ( )⊗k〉 U ∗(N,±)

(
O+
N ×2k Ẑ2

)
U(N,±)

7.2.11 7.2.11 〈P(δ) ,U−1
(δ) 〉 U ∗(N,±)

(
O∗N ×× Ẑ2

)
U(N,±)

7.2.11 7.2.11 〈P(δ) ,U−1
(δ) ( )⊗k〉 U ∗(N,±)

(
O∗N ×2k Ẑ2

)
U(N,±)

7.2.11 7.2.11 〈P(δ) ,U−1
(δ) 〉 U ∗(N,±)

(
ON ×× Ẑ2

)
U(N,±)

7.2.11 7.2.11 〈P(δ) ,U−1
(δ) ( )⊗k〉 U ∗(N,±)

(
ON ×2k Ẑ2

)
U(N,±)

Table 7.1 Summary of all non-easy categories of partitions studied in this thesis and
the corresponding quantum group interpretation
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7. Non-easy quantum groups

Proposition (7.3.1). Let G = (C(G),u) be a homogeneous orthogonal quantum group corre-
sponding to a categoryK ⊆ PartN . Then G̃ := Tτ(N )

GT −1
τ(N )

is also homogeneous and orthogonal.

It corresponds to the category K̃ := T(N )K .

Secondly, the disjoining and joining isomorphisms from Sections 5.4.3 and 5.4.4 correspond
to some twisting. Given a quantum group G, we define some twist Gσ . In some special cases,
one can describe Gσ by twisting the associated categoryK . This is the case of the mentioned
isomorphisms. However, this might not be possible in general. Nevertheless, one can always
twist the functor p 7→ Tp.

Theorem (7.4.5). Let G be a quantum group group with HN ⊆ G ⊆O+
N corresponding to some

linear category of partitionsK . Then the representation category of Gσ is described by the
same partition categoryK if one uses the functor T σ instead of T . That is,

Mor(û⊗k , û⊗l) = {T σp | p ∈K (k, l)}.

Based on all these theorems, we formulate the propositions listed in the second column of
Table 7.1 that provide an interpretation of all the non-easy categories discovered in Chapter 5.

7.1 Quantum group subrepresentations
In this section we interpret constructions from Sections 5.4.5, 5.4.6. For easy quantum groups,
whose fundamental representation is reducible, we study the projection and coisometry onto
the (N − 1)-dimensional invariant subspace and link it with the operations P and V acting on
partitions. The section is based on the article [GW20].

7.1.1 Warm up example
Recall the bistochastic quantum group B+

N corresponding to the category 〈↑〉N . It is given by
relations turning its fundamental representation u = (uij )

N
i,j=1 into an orthogonal matrix, (that

is, u = ū, uut = utu = 1N ) together with the bistochastic relation uξ↑ = ξ↑, where ξ↑ ∈ CN is the
vector filled with entries all equal to one. Now, for any orthogonal matrix U ∈MN (C) mapping
Uξ↑ = αeN for some α ∈C, we have

UuU t =
(
v 0
0 1

)
= v ⊕ 1

with v ∈MN−1(C(B+
N )). In addition, v is orthogonal, so we have just proved the isomorphism

B+
N 'O+

N−1 that was first formulated in [Rau12].
Now, any quantum subgroup G ⊆ B+

N has the same invariant subspace – in particular SN
or S+

N . A natural question is then: To which quantum subgroup of O+
N−1 is S+

N isomorphic?
How to describe its intertwiner spaces? Surprisingly, this question is much harder for S+

N than
for B+

N and depends on the choice of the unitary U .
To make this more precise, let G = (C(G),u) be any CMQG with SN ⊆ G ⊆ B+

N . Then, as
the category of B+

N is generated by the singleton ↑, we have again uξ↑ = ξ↑. Hence, for any
orthogonal matrix U as above, we infer that G is isomorphic to some quantum group Girr with
SN−1 ⊆ Girr ⊆O+

N−1. Although G and Girr are isomorphic (as compact quantum groups), they
have different fundamental representations (so they are not identical compact matrix quantum
groups), so we have no information about the category FundRepGirr in general – and it may be
very different from FundRepG as in the example B+

N 'O+
N−1.

We can make the statement even more general and consider a CMQG SN ⊆ G ⊆ B#+
N , whose

fundamental representation decomposes as UuU ∗ = v ⊕ r, where r ∈ C(G) is a one-dimensional
representation of G. Then, the quantum group Girr determined by the subrepresentation v
might not be isomorphic to G itself, but essentially to some quotient G/Ẑ2.
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7.1 Quantum group subrepresentations

7.1.2 Quantum groups with reducible subrepresentation

The fundamental representation of SN decomposes into a direct sum of two irreducible
representations: the trivial representation acting on the invariant subspace spanned by the
vector ξ↑ =

∑N
i=1 ei and the standard representation, which acts faithfully on the orthogonal

complement of span{ξ↑}. Therefore, the fundamental representation of any quantum group
G ⊇ SN has at most those two invariant subspaces.

Recall that any compact matrix quantum group G with SN ⊆ G ⊆O+
N can be described by

some linear category of partitionsK .

7.1.1 Lemma. Let G be a compact matrix quantum group with SN ⊆ G ⊆O+
N corresponding to

a linear category of partitionsK . The fundamental representation of G is reducible if and only
if ↑⊗↑ ∈K , which holds if and only if G ⊆ B#+

N .

Proof. As mentioned above, the fundamental representation u of a quantum group G ⊇ SN is
reducible if and only if span{ξ↑} is an invariant subspace. The projection onto span{ξ↑} can
be written as 1

N T . Thus, u is reducible if and only if T ∈Mor(u,u), which holds if and only if
∈K , which holds if and only if ↑⊗↑ ∈K . (Recall that B#+

N is the easy quantum group, whose
category is generated by the partition ↑⊗↑.) �

Consider a quantum group G such that SN ⊆ G ⊆ B#+
N , so its fundamental representation u

has two invariant subspaces – span{ξ↑} and its orthogonal complement span{ξ↑}⊥. This means
that taking any linear map U :CN →C

N such that span{ξ↑}⊥ is mapped onto the space spanned
by the first N −1 basis vectors span{e1, . . . , eN−1} and ξ↑ is mapped onto (a multiple of) eN , we
get that UuU−1 = v ⊕ r, where v ∈MN−1(C(G)) and r ∈ C(G).

If, in addition, the matrix U is orthogonal, then UuU−1 is orthogonal, which means that
v is orthogonal and r is a self-adjoint unitary (i.e. r = r∗ and r2 = 1). In particular, both v and r
are unitary representations of G. To extract just the subrepresentation v, we can define an
(N − 1)×N matrix V by taking the first N − 1 rows of U . Then we have v = VuV ∗.

Note that in the condition Uξ↑ = αeN , the orthogonality implies α = ±
√
N . The condition

U (span{ξ↑}⊥) ⊆ span{e1, . . . , eN−1} is then satisfied automatically. Equivalently, we may require
that the last row of U equals to ±1√

N
ξ∗↑.

For the rest of this subsection, suppose that U ∈MN (C) is an orthogonal matrix such that
Uξ↑ = ±

√
NeN and V is the (N − 1)×N matrix obtained by taking the first N − 1 rows of U .

7.1.2 Lemma. V ∗ is an isometry and kerV = span{ξ↑}. That is, VV ∗ = 1N−1 and V ∗V = P(N ),
where P(N ) is the orthogonal projection onto span{ξ↑}⊥.

Proof. The matrix V can be expressed as V = EU , where E is the “standard” coisometry
C
N →C

N−1 mapping ei 7→ ei for i < N and eN 7→ 0. So, we have

VV ∗ = EUU ∗E∗ = EE∗ = 1N−1.

From this, it already follows that V ∗V is a projection. Its range is V ∗VC
N = V ∗CN−1, so it is

spanned by the rows of V and hence it is indeed the orthogonal complement of the last row
of U , which is a multiple of ξ↑. �

From the block structure UuU ∗ = v⊕ r, it follows that ∆(vij ) =
∑
k vik ⊗vkj , so we can define

the following.

7.1.3 Definition. Let G = (C(G),u), u = (uij )
N
i,j=1 be a compact matrix quantum group such that

SN ⊆ G ⊆ B#+
N . Then we denote VGV ∗ := (A,v), where v = VuV ∗ ∈ MN−1(C(G)) and A is the

C*-subalgebra of C(G) generated by {vij}N−1
i,j=1.

7.1.4 Lemma. Let G = (C(G),u), u = (uij )
N
i,j=1 be a compact matrix quantum group such that

SN ⊆ G ⊆ B#+
N and denote by v the fundamental representation of VGV ∗. Then its intertwiner
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7. Non-easy quantum groups

spaces are
Mor(v⊗k ,v⊗l) = {V ⊗lT V ∗⊗k | T ∈Mor(u⊗k ,u⊗l)}.

Proof. For the inclusion ⊇, take an arbitrary T ∈Mor(u⊗k ,u⊗l), so u⊗lT = T u⊗k . Now, we have

(V ⊗lu⊗lV ∗⊗l)(V ⊗lT V ∗⊗k) = V ⊗lu⊗lT V ∗⊗k = V ⊗lT u⊗kV ∗⊗k = (V ⊗lT V ∗⊗k)(V ⊗ku⊗kV ∗⊗k),

where we used that V ∗V is the projection onto the (N − 1)-dimensional invariant subspace,
so it commutes with u. For the inclusion ⊆, we can similarly prove that given an inter-
twiner T ∈ Mor(v⊗k ,v⊗l), we have that V ∗⊗lT V ⊗k ∈ Mor(u⊗k ,u⊗l) and we can express T =
V ⊗k(V ∗⊗kT V ⊗l)V ∗⊗l using that VV ∗ is the identity. �

So, considering G to be a quantum group corresponding to some linear category of
partitions K , we have that the intertwiners are given by Tp with p ∈ K . The intertwiners
of VGV ∗ are then of the form V ⊗lTpV

⊗k∗. In the following, we are going to find an explicit
linear combination of partitions q such that Tq = V ⊗lTpV ⊗k∗. In order to do so, we have to make
a special choice on the matrix V .

7.1.3 Quantum groups Girr
+ and Girr

− and associated partition categories

Now, we define such an orthogonal matrix U explicitly. Recall that we require the last row of U
to be ±1√

N
ξ∗↑. For the rest of the matrix U , we can choose arbitrary rows that complete the last

one to an orthonormal basis. Nevertheless, we choose a very specific symmetric form, where
the matrix elements Uij can be written as a combination aδij + b. The motivation will be clear
in the following text (compare also with Section 7.3).

7.1.5 Definition. Let us define two orthogonal matrices U(N,+),U(N,−) ∈MN (C) as follows

[U(N,±)]ij = δij −
1

N − 1

(
1± 1
√
N

)
,

[U(N,±)]iN = [U(N,±)]Nj = [U(N,±)]NN = ± 1
√
N

for i, j ∈ {1, . . . ,N − 1}. Let us also denote by V(N,±) the (N − 1)×N matrix formed by the first
N − 1 rows of U(N,±).

7.1.6 Definition. Let G = (C(G),u) be a compact matrix quantum group such that SN ⊆
G ⊆ B#+

N . We define the quantum groups Girr
+ and Girr

− by Girr
± := V(N,±)GV

∗
(N,±) in the sense of

Definition 7.1.3.

7.1.7 Remark. The quantum groups Girr
+ and Girr

− are by construction similar. We study the
similarity in Section 7.3, see Proposition 7.3.2.

Recall Definition 5.4.29 introducing the following notation

• υ(N−1,±) = − 1
N−1

(
1± 1√

N

)
∈ PartN−1(1,1),

• B(N ):PartN → PartN−1 acts blockwise (see Remark 5.4.31) sending bk 7→ bk + (−1)k↑⊗k ,
where bk is the block of k points,

• V(N,±):PartN → PartN−1 sends p 7→ υ⊗l(N−1,±)(B(N )p)υ⊗k(N−1,±) for p ∈ PartN (k, l).

Let us also denote by B(N ) the (N − 1)×N matrix with entries [B(N )]ij = δij − δNj .
7.1.8 Lemma. Consider N ∈N \ {1} and p ∈ PartN (k, l), k, l ∈N0. Then the following holds:

(1) V(N,±) = Tυ(N−1),±
B(N ),

(2) TB(N )p = B(N )pB
∗
(N ),

(3) TV(N,±)p = V ⊗l(N,±)TpV
∗⊗k

(N,±).
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7.1 Quantum group subrepresentations

Proof. To show item (1), note that the first N −1 columns of the product Tυ(N−1,±)
B(N ) is equal to

the matrix Tυ(N−1,±)
itself and those are exactly the first N −1 columns of V(N,±). All the entries of

the last column of the product are mutually equal and can be computed as

−
N−1∑
j=1

(
δij −

1
N − 1

(
1± 1
√
N

))
= −1 +

(
1± 1
√
N

)
= ± 1
√
N
,

which indeed exactly coincides with the last column of V(N,±).
It is enough to show item (2) for p being a partition. Since B(N ) acts blockwise, it is enough

to show it for block partitions, i.e. partitions bk ∈P (0, k) consisting of a single block. So take
any i1, . . . , ik ∈ {1, . . . ,N − 1}, then

[B⊗k(N )Tbk ]i1,...,ik =
N∑

j1,...,jk=1

(δi1j1 − δNj1 ) · · · (δikjk − δNjk )δj1,...,jk = δi1,...,ik + (−1)k = [TBbk ]i1,...,ik .

Finally, item (3) is proven by the following

V ⊗l(N,±)TpV
∗⊗k

(N,±) = T ⊗lυ(N−1,±)
B⊗l(N )TpB

∗⊗k
(N )T

∗⊗k
υ(N−1,±)

= Tυ⊗l(N−1,±)
TB(N )pTυ⊗l(N−1,±)

= TV(N,±)p. �

7.1.9 Theorem. [GW20, Theorems 4.8, 4.13] Let G be a quantum group such that SN ⊆ G ⊆ B#+
N .

This means that its representation category is described by a linear category of partitionsK
containing ↑ ⊗ ↑. Then it holds that SN−1 ⊆ (SN )irr

± ⊆ Girr
± ⊆ O+

N−1 and Girr
± corresponds to the

category V(N,±)K ⊆ PartN−1.

Proof. Denote by u the fundamental representation of G and by v the fundamental represen-
tation of Girr

± . It follows directly from Lemmata 7.1.4, 7.1.8(3) that

Mor(v⊗k ,v⊗l) = {V ⊗l(N,±)TpV
∗⊗k

(N,±) | p ∈K (k, l)} = {TV(N,±)p | p ∈K (k, l)} = {Tp | p ∈ V(N,±)K }.

So, Girr indeed corresponds to V(N,±)K . The fact that SN−1 ⊆ Girr
± ⊆O+

N−1 follows from the fact
that Girr

± corresponds to a partition category. In particular, surely V(N,±)K ⊆ V(N,±)PartN , so
(SN )irr

± ⊆ Girr
± . �

Note that the first part of Theorem 7.1.9 could be proven also directly, see [GW20, Theo-
rem 4.8].

As an application, we can interpret the non-easy categories from Proposition 5.4.34.

7.1.10 Proposition. [GW20, Proposition 6.3] Suppose N ≥ 4. It holds that

〈V(N,±) 〉N−1 corresponds to (S+
N ×̃ Ẑ2)irr

± = (S+
N )irr
± ×̃ Ẑ2,

〈V(N,±) 〉N−1 corresponds to (S+
N )irr
± .

Proof. Using Lemma 5.4.22 and Proposition 5.4.32, we derive

V(N,±)NCPartN = V(N,±)P(N )NCPartN = V(N,±)〈P(N ) 〉N -red = 〈V(N,±) 〉N−1,

so, according to Theorem 7.1.9, 〈V(N,±) 〉N−1 corresponds to (S+
N )irr
± .

Similarly, we deduce that 〈V(N,±) 〉N−1 corresponds to (S+
N ×̃Ẑ2)irr

± = V(N,±)(S
+
N ×̃Ẑ2)V ∗(N,±).

The quantum group S+
N ×̃ Ẑ2 is determined by the fundamental representation of the form

u′ = su, where u is the fundamental representation of S+
N , s generates C∗(Z2) and suij = uijs.

We see that V(N,±)u
′V ∗(N,±) = s(V(N,±)uV

∗
(N,±)) = sv, where v generates the quantum group (S+

N )irr
± ,

so indeed (S+
N ×̃ Ẑ2)irr

± = (S+
N )irr
± ×̃ Ẑ2. �
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7. Non-easy quantum groups

7.1.4 The subrepresentation within the N -dimensional setting

The last section interpreted the non-easy categories constructed using the map V(N,±) defined in
Sect. 5.4.6. Now, we would like to interpret the categories from Sect. 5.4.5 constructed using
the map P(N ). Recall that this map sends p 7→ π⊗l(N )pπ

⊗k
(N ) for p ∈ PartN (k, l). First of all, note the

following observation.

7.1.11 Lemma. Tπ(N )
equals to P(N ) – the orthogonal projection onto span{ξ↑}⊥.

Proof. We have that 1
N T = 1

N T↑T↓ = 1
N ξ↑ξ

∗
↑ is the orthogonal projection onto span{ξ↑}. Therefore,

Tπ(N )
= 1− 1

N T is the projection onto the orthogonal complement. �

In Section 5.4.6, we defined the concept of reduced categories. In particular, given a linear
category of partitionsK , then P(N )K defines a reduced category. SupposeK corresponds to
a quantum group G = (C(G),u). Then the meaning of the reduced category P(N )K is that it
describes the intertwiner spaces of a quantum group P(N )GP(N ) acting on the invariant subspace
P(N )C

N . This is actually not a compact matrix quantum group according to our definition
since its fundamental representation P(N )uP(N ) is not invertible. The answer to the question
how to describe this as a compact matrix quantum group was given in the previous text –
we constructed an isometry V(N,±):CN → C

N−1 mapping isomorphically P(N )C
N → C

N−1 and
worked with the compact matrix quantum group V(N,±)GV

∗
(N,±).

Now let us ask a different question. Given a reduced categoryK , we want to interpret
the categories

〈K 〉δ ( 〈K , 〉δ ( 〈K ,↑〉δ
constructed in Proposition 5.4.21.

7.1.12 Theorem. [GW20, Theorem 5.19] Let K ⊆ PartRedN be a reduced category. Denote
by H the quantum group SN−1 ⊆ H ⊆O+

N−1 corresponding to the category V(N,±)K ⊆ PartN−1.
Then we can construct the quantum group corresponding to the following categories:

〈K 〉N corresponds to U ∗(N,±)(H ∗̂ Ẑ2)U(N,±),
〈K , 〉N corresponds to U ∗(N,±)(H × Ẑ2)U(N,±),
〈K ,↑〉N corresponds to U ∗(N,±)(H ×E)U(N,±),

where E = (C,1) is the trivial (quantum) group.

Proof. In order to simplify the notation, denote U := U(N,±), V := V(N,±). Denote by G the
quantum group corresponding to 〈K 〉N and by (uij )

n
i,j=1 its fundamental representation.

As was shown in Remark 5.4.17, ↑ ⊗ ↑ ∈ 〈K 〉N , so UuU ∗ = v ⊕ r, where v = VuV ∗ ∈
MN−1(C(G)) and r =

∑
k uik ∈ C(G) such that r2 = 1. Using Proposition 5.4.19 and Remark

5.4.31.b, we derive V〈K 〉N = VP〈K 〉N = VK , so we see that v is the fundamental representa-
tion of H , i.e. H = Girr

± according to Theorem 7.1.9. To prove that G =U ∗(H ∗ Ẑ2)U , it remains
to show that there are no additional relations in C(G) apart from the relations for v and the
relations r = r∗, r2 = 1.

The relations in C(G) are precisely those corresponding to partitions in the category
〈K 〉N , which is generated byK (and the pair partition of course). So, the relations are the
orthogonality of u, which is equivalent to orthogonality of v and the relations r = r∗, r2 = 1, and
the relations implied by the partitions p ∈K . Taking any p ∈K , the relation Tpu⊗k = u⊗lTp is
equivalent to

U⊗lTpU
∗⊗k(v ⊕ r)⊗k =U⊗lTpu

⊗kU ∗⊗k =U⊗lu⊗lTpU
∗⊗k = (v ⊕ r)⊗lU⊗lTpU ∗⊗k .

Noticing that Tp = Tπ⊗kpπ⊗l = P ⊗kTpP ⊗l and that UP = EU , where E is the orthogonal projection
onto the firstN−1 basis vectors, we see that those relations only contain the subrepresentation v
and hence are equivalent to the relations in C(H).
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7.1 Quantum group subrepresentations

The partitions and ↑ correspond to additional relations ruij = uijr and r = 1, respectively.
From this, the rest of the theorem follows. �

One can interpret the meaning of the presented theorem also from the other side. Consider
a quantum group G corresponding to some category K . In Section 7.1.3, we described the
categories corresponding to Girr

± = V(N,±)GV
∗

(N,±) removing the one-dimensional subrepresen-
tation. Now the natural question is: how can we go back to the quantum group G and the
category K ? Can we somehow reconstruct G from Girr

± ? The most canonical way to extend
the quantum group Girr

± by some one-dimensional factor is to construct the products H ×E,
H × Ẑ2, and H ∗̂ Ẑ2. The associated categories are then given by Theorem 7.1.12.

In Section 6.4, we introduced some alternative Z2-extensions H ×× Ẑ2 and H ×2k Ẑ2 based
on partitions with extra singletons. The question whether we can reconstruct also those within
the setting of linear combinations of partitions is the motivation for Section 7.2.

Now, as an application for Theorem 7.1.12, let us interpret all the non-easy quantum
groups from Propositions 5.4.24 and 5.4.28.

7.1.13 Proposition. The categories from Proposition 5.4.24

〈P(N ) ,↑⊗↑〉N ( 〈P(N ) , 〉N ( NCN

( ( (

〈P(N ) ,↑⊗↑〉N ( 〈P(N ) , 〉N ( 〈P(N ) ,↑〉N

( ( (

〈↑⊗ ↑〉N ( 〈 〉N ( 〈↑〉N

correspond to quantum groups G :=U ∗(N,±)G
′U(N,±), where G′ equals to

(S+
N )irr
± ∗̂ Ẑ2 ) (S+

N )irr
± × Ẑ2 ) (S+

N )irr
± ×E

) ) )

((S+
N )irr
± ×̃ Ẑ2) ∗̂ Ẑ2 ) ((S+

N )irr
± ×̃ Ẑ2)× Ẑ2 ) ((S+

N )irr
± ×̃ Ẑ2)×E

) ) )

O+
N−1 ∗̂ Ẑ2 ) O+

N−1 × Ẑ2 ) O+
N−1 ×E

and E = (C, (1)) is the trivial quantum group.

Proof. To prove this proposition, we just use Theorem 7.1.12 for each row. Let us have
a look on the first row in more detail. Here, we takeK := P(N )NCPartN = 〈P(N ) 〉N -red (see
Lemma 5.4.22). According to Proposition 5.4.34, the linear category V(N,±)K = 〈V(N,±) 〉N−1
corresponds to the quantum group H := (S+

N )irr
± . From Theorem 7.1.12 it follows that the

quantum groups
〈K ,↑⊗↑〉N ( 〈K , 〉N ( 〈K ,↑〉N

indeed correspond to the quantum groups given by the first row of the second table. Now,
using Lemma 5.4.18 we see that 〈K ,↑ ⊗ ↑〉N = 〈P(N ) ,↑ ⊗ ↑〉N . Noticing that both
and ↑ generate ↑⊗↑, we can use Lemma 5.4.18 to prove also 〈K , 〉N = 〈P(N ) , 〉N
and 〈K ,↑〉N = 〈P(N ) ,↑〉N . Finally, it is easy to see that the latter category equals to the
linear category spanned by all non-crossing partitions NCPartN . Indeed, note that NCPartN
is generated by , which is clearly contained in 〈P(N ) ,↑〉N .

The second and third line can be proven by exactly the same argumentation as the first
one. For the second line, we use Lemma 5.4.23; for the third line, note that V(N,±) acts on pair
blocks as identity and singletons sends to zero, so V(N,±)〈↑〉N = 〈〉N−1. �

Note that the lower lines of the diagrams in Proposition 7.1.13 reveal the well-known
isomorphisms B+

N 'O+
N−1, B′+N 'ON−1× Ẑ2, and B#+

N 'ON−1 ∗ Ẑ2 discovered in [Rau12, Theorem
4.1] and [Web13, Proposition 5.2].
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7.1.14 Proposition. The categories form Proposition 5.4.28

〈P(δ) ,P(δ) ,↑⊗↑〉δ ( 〈P(δ) ,P(δ) , 〉δ ( 〈P(δ) ,P(δ) ,↑〉δ = Partδ

( ( (

〈P(δ) ,P(δ) ,↑⊗↑〉δ ( 〈P(δ) ,P(δ) , 〉δ ( 〈P(δ) ,P(δ) ,↑〉δ

( ( (

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ
( ( (

〈P(δ) ,↑⊗↑〉δ ( 〈P(δ) , 〉δ ( 〈P(δ) ,↑〉δ

correspond to quantum groups G :=U ∗(N,±)G
′U(N,±), where G′ equals to

(SN )irr
± ∗̂ Ẑ2 ) (SN )irr

± × Ẑ2 ) (SN )irr
± ×E

) ) )

((SN )irr
± ×̃ Ẑ2) ∗̂ Ẑ2 ) ((SN )irr

± ×̃ Ẑ2)× Ẑ2 ) ((SN )irr
± ×̃ Ẑ2)×E

) ) )

ON−1 ∗̂ Ẑ2 ) ON−1 × Ẑ2 ) ON−1 ×E

) ) )

O∗N−1 ∗̂ Ẑ2 ) O∗N−1 × Ẑ2 ) O∗N−1 ×E

and E = (C, (1)) is the trivial quantum group.

Proof. The proof is again the same. This time, we use Lemma 5.4.25 to find the image of the
categories under V(N,±). �

The category 〈P(N ) ,↑〉N and the corresponding quantum group was independently
discovered by Banica [Ban18].

7.2 Reducible CMQGs in terms of extra singletons
In Section 7.1, we interpreted many linear categories of partitions by decomposing the asso-
ciated fundamental representation as u = v ⊕ r (up to similarity given by the unitary U(N,±)).
To describe such quantum groups, it may be much more convenient to use the framework of
partitions with extra singletons – this was actually our original motivation to introduce extra-
singleton categories. Now we can ask how those categories are related. As an answer, we will
construct a functor U(N,±):PartN → PartN−1. Here, PartN is a slight modification of PartN and
PartN−1 is a linear category of formal linear combinations of partitions with extra singletons.

But we can also go the converse direction. For example, in Theorem 7.1.12, we described
the partition categories corresponding to the quantum groups U ∗(N,±)GU(N,±), where G is of

the form H ∗̂ Ẑ2, H × Ẑ2, or H ×E and SN−1 ⊆ S irr
N ⊆H ⊆O+

N−1. In Section 6.4.2, we introduced
additional products G = H ×× Ẑ2 and G = H ×k Ẑ2 satisfying H ∗̂ Ẑ2 ⊇ G ⊇ H × Ẑ2. Those are
described by certain categories of partitions with extra singletons. Now we can apply the
similarity U(N,±) and ask what linear categories of ordinary partitions describe the quantum
group U ∗(N,±)GU(N,±) in the case of those new products. We obtain those as preimages by the
functor U(N,±).

This section is based on [GW19b, Section 7].

7.2.1 Linear categories of partitions with extra singletons

Similarly as with ordinary partitions, we can introduce the linear structure also for partitions
with extra singletons. So, considerN ∈N and define PartN (k, l) := spanP (k, l) the vector space
of formal linear combinations of partitions with extra singletons. We modify the composition
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by introducing additional multiplicative factor N for each remaining loop of the colour . If two
extra singletons disappear by composition, no additional factor is added. An example:

· = =N

Again, we extend the tensor product and composition linearly and involution antilinearly
to the whole vector spaces.

7.2.2 Separating linear combinations of partitions
One can already notice that the categories PartN and PartN−1 cannot be related in a straight-
forward way since the sets of objects are different. Another issue to notice is the following:
As we remarked in Section 4.6.2, P can be considered as a full subcategory of P . In the
linear case, the same holds: PartN−1 is a full subcategory of PartN−1. An analogous statement
for ordinary partitions is not true: PartRedN is not a subcategory of PartN . To fix this, we need
to reconsider the set of objects on PartN .

Consider the alphabet O = { ,↑}. Put π↑ := 1
N , π := π(N ) = − 1

N and similarly define the
orthogonal projections P := Tπ , P ↑ := Tπ↑ . For w = a1 · · ·ak ∈ O k , we denote π⊗w := πa1 ⊗ · · · ⊗πak
and similarly P ⊗w := P a1 ⊗ · · · ⊗ P ak .

For any k ∈N0, the set of all π⊗w, w ∈ O k forms a complete set of mutually orthogonal
projections in the sense that

π⊗wπ⊗w = π⊗w, (π⊗w)∗ = π⊗w,

π⊗w1π⊗w2 = 0 for w1 , w2, |w1| = |w2|,∑
w∈O k

π⊗w = ⊗k .

Thus, any p ∈ PartN (k, l) can be uniquely decomposed as

p =
∑
w1∈O k

w2∈O l

pw1
w2 with pw1

w2 = π⊗w2pπ⊗w1 . (7.1)

We will say that p ∈ PartN (k, l) is separated if there is w1 ∈ O k and w2 ∈ O l such that p = pw1
w2 .

For example, for any p ∈ PartN (k, l), all summands pw1
w2 in the decomposition p =

∑
pw1
w2 are

separated.

7.2.1 Definition. Any collection of vector spacesK (w1,w2) ⊆ {pw1
w2 | p ∈ PartN (|w1| , |w2|)} closed

under the category operations and containing π(N ), Lrotπ(N ), , and ↑ ⊗ ↑ is called a linear
category of dotted partitions or a dotted category for short.

7.2.2 Remark. In the spirit of category theory, the composition of p ∈ K (w1,w2) and q ∈
K (w3,w4) should be allowed only if the objects match, that is, w2 = w3. Nevertheless, note that
if w2 , w3 then we have anyway qp = 0.

7.2.3 Proposition. There is the following one-to-one correspondence.

(1) LetK be a linear category of partitions containing ↑⊗↑. Then the collection of vector
spaces

K (w1,w2) := {p ∈K (|w1| , |w2|) | p = pw1
w2 } (7.2)

forms a linear category of dotted partitions.
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7. Non-easy quantum groups

(2) LetK be a linear category of dotted partitions. Then

K (k, l) =
⊕
w1∈O k

w2∈O l

K (w1,w2) (7.3)

define a linear category of partitions containing ↑⊗↑.

Proof. It is clear that ifK is closed under the category operations as an ordinary category, then
it must be closed under the category operations as a dotted category. Given that ↑⊗↑ ∈K , then
also , π(N ), Lrotπ(N ) ∈K . So,K is a dotted category. The converse direction (2) is also clear.

To prove that it is a one-to-one correspondence, we have to check that for any ordinary
categoryK containing ↑⊗↑, the morphism spaces are of the form (7.3). This is indeed true.
Since ↑⊗↑ ∈K , we have also π⊗w ∈K for any any word w. Hence also pw1

w2 = π⊗w2pπ⊗w1 ∈K
for any p ∈K (k, l). Therefore all the summands in the decomposition (7.1) of any p ∈K are
contained inK . �

7.2.4 Definition. We denote by PartN the category of all partitions PartN taken as a dotted
category.

7.2.3 Basis for separated partitions
Take a partition p ∈ P (k, l). Define a word w1 ∈ O k in such a way that on the i-th position
there is the letter ↑ if p has a singleton on the i-th position in the upper row. Otherwise, we
put the letter . Similarly we define the word w2 ∈ O l corresponding to the lower row of p.
Then we define ṗ := pw1

w2 . We depict the linear combination ṗ pictorially using the graphical
representation of p and replacing all the non-singleton blocks by dotted lines. The linear
combinations ṗ for any p ∈P are called dotted partitions.

For example, taking p := , we denote

ṗ := := (π ⊗π ⊗π↑) (π↑ ⊗π ⊗π ) = − 1
N

− 1
N

+
1
N 2 .

7.2.5 Lemma. The set {ṗ | p ∈ P (k, l)} forms a basis of the vector space PartN (k, l) for any
k, l ∈N0.

Proof. For a partition p ∈P , we have that ṗ = p+q, where q is a linear combination of partitions
having strictly more blocks than p. Consequently, if we order the dotted partition with respect
to the number of blocks, then the matrix of coefficients of ṗ with respect to the basis of standard
partitions is triangular with non-zero entries on the diagonal. �

Consequently, the category of all dotted partitions PartN is spanned by dotted partitions.

7.2.4 Introducing the functor PartN → PartN−1

As one can already see, the categories of dotted partitions are somehow similar to categories
of partitions with extra singletons. In this section, we are going to construct a functor mapping
one structure to the other. However, this functor is a bit more complicated than just “mapping
dotted blocks to normal blocks and singletons to extra singletons” as one might expect. In
Section 7.2.5, we are going to restrict ourselves to pair partitions, where the functor indeed
acts in this simple way.

Consider a linear category of partitions K such that ↑ ⊗ ↑ ∈ K , so it corresponds to
a quantum group G = (C(G),u), SN ⊆ G ⊆ B+#

N , where the fundamental representation is
reducible having a one-dimensional invariant subspace span{ξ↑}. In Section 7.1, we defined an
orthogonal matrix U(N,±) ∈MN (C) such that U(N,±)uU

∗
(N,±) has a block structure v ⊕ r separating

the two subrepresentations of u.
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We studied which quantum group is generated by the (N − 1)-dimensional subrepresen-
tation of u. This can be done in two ways: either we consider the projection P :CN → C

N

onto span{ξ↑}⊥ and study u = P uP or we first apply the map U(N,±) and then project onto the
subspace generated by the first N − 1 basis vectors and study v = V(N,±)uV

∗
(N,±), where V(N,±) is

the coisometry formed by the first N −1 rows of U(N,±). To summarize, we have the following
maps.

C
N span{ξ↑}⊥

C
N

C
N−1

U(N,±) '
V(N,±)

V(N,±)'

u u

v ⊕ r v

In Section 7.1, we studied representation categories of u, u and v using linear categories of
partitions. Categories of partitions with extra singletons allow us to study the representation
category of v ⊕ r. Now we are going to define and study the category isomorphism U(N,±) that
completes the following commutative diagram.

PartN PartRedN

PartN−1 PartN−1

U(N,±) emb.

full⊇

full
⊇

V(N,±)emb.

7.2.6 Remark. As indicated in the diagram above, PartRedN is a full subcategory of PartN .
Indeed, we have PartRedN (k, l) = Part ( k , l). The category operations are defined the same
way and the identity morphisms π⊗k(N ) for PartRedN coincide with the identity morphisms

corresponding to the objects k in PartN .

7.2.7 Definition. We define a functor U(N,±):PartN → PartN−1 as follows.

• On objects, U(N,±) acts as a word isomorphism mapping 7→ and ↑ 7→ .
• For morphisms, we describe the action on the basis of dotted partitions. Taking

a dotted partition ṗ ∈ PartN (w1,w2), the functor U(N,±) acts blockwise. All singletons ↑
are mapped to

√
N . Any dotted block is mapped using the map V(N,±), so

U(N,±)ḃl := V(N,±)ḃl = V(N,±)bl ,

where bl is a partition consisting of a single block of size l > 1.

7.2.8 Proposition. U(N,±) is indeed a faithful monoidal unitary functor. That is, we have

(1) U(N,±)p⊗U(N,±)q = U(N,±)(p⊗ q),
(2) U(N,±)q · U(N,±)p = U(N,±)(qp) if p and q are composable,
(3) (U(N,±)p)∗ = U(N,±)p

∗

for any p,q ∈ PartN .

Proof. Since U(N,±) acts blockwise, it is clear that it behaves well with respect to the tensor
product and involution. It is enough to show the functorial property (2) for dotted partitions.
Here, we have to check that it behaves well in the case of singletons and dotted blocks. For
singletons, it is easy to see it directly. For dotted blocks, it follows from V(N,±) being a functor
(Prop. 5.4.32). Also the faithfulness follows from V(N,±) being faithful. �
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Finally, we come to the main result of Section 7.2 – the interpretation of the functor U(N,±).
Recall Theorem 7.1.9 that gave a link between the coisometry V(N,±):CN → C

N−1 and the map-
ping V(N,±):PartN → PartN−1. (We can actually consider V(N,±) as a functor PartN → PartN−1.)
More precisely, the assignment G 7→ V(N,±)GV

∗
(N,±) can be described in terms of the linear

categories of partitions asK 7→ V(N,±)K . The following theorem extends this result. Instead
of the coisometry V(N,±), whose kernel is the one-dimensional invariant subspace, we take the
unitary U(N,±). Instead of the functor V(N,±), which sends all singletons to zero, we take the
faithful functor U(N,±).

7.2.9 Theorem. It holds that
TU(N,±)p =U⊗l(N,±)TpU

∗⊗k
(N,±)

for any p ∈ PartN (w1,w2), w1 ∈ O k , w2 ∈ O l . Thus, considering a linear category of partitions
K ⊆ PartN containing ↑⊗↑ and the corresponding quantum group G, it holds that the linear
category with extra singletons U(N,±)K corresponds to the quantum group U(N,±)GU

∗
(N,±).

Proof. Compare with Lemma 7.1.8, Theorem 7.1.9 and their proofs. Again, it is enough to
show the equality for block partitions. To be more precise, in this case we check it for the
singleton p = ↑ and for the dotted blocks ḃl ∈ PartN (∅, l).

For the singleton, we have

TU(N,±)↑ =
√
N T =

√
N eN =U(N,±)ξ↑ =U(N,±)T↑.

For the dotted blocks it follows directly from Lemma 7.1.8(3). �

7.2.5 Dotted pairings: new source of non-easy categories
In this subsection, we present the main application of Theorem 7.2.9. Let us focus on categories
K ⊆ 〈↑, 〉, where all blocks have size at most two. Since U(N,±) acts blockwise, its action is
described by the image of a dotted pairing and the singleton. We have

7→

↑ 7→
√
N

〈↑, 〉 ⊇K ⊇ 〈↑⊗↑〉 → 〈 , 〉 ⊇C ⊇ 〈〉
ON ×E ⊆ G ⊆O+

N ∗̂ Ẑ2 → BN ⊆ G̃ ⊆ B#+
N

Thanks to this simple action of U(N,±) it is easy to compute its inverse restricted to the
category of all pair partitions with extra singletons 〈 , 〉 . Namely, we map all pair blocks to
dotted blocks 7→ and all extra singletons to normalized ordinary singletons 7→ 1√

N
↑.

Since we have a partial classification of the extra singleton pair categories in the easy
case, this induces a large class of new examples of non-easy linear categories of partitions
corresponding to quantum groups BN ⊆ G ⊆ B#+

N . We can take the classification result [MW19a,
MW19b, MW19c, MW20], apply the functor F from Section 4.6.4, obtain categories with extra
singletons and apply the functor U to them.

As an example, we can compute

U−1
(N,±) =

1
N

= − 1
N 2 − 1

N 2 +
1
N 3 ,

U−1
(N,±)( )⊗k =

( 1
N

)⊗k
=

( 1
N

− 1
N 2

)⊗k
.

Moreover, we can apply U−1
(N,±) to the whole categories 〈 〉 and 〈( )⊗k〉 corresponding

to the quantum groups O+
N ×× Ẑ2 and O+

N ×2k Ẑ2. This way, we obtain non-easy categories
corresponding to new non-easy quantum groups that are isomorphic to the original ones (see
also Remark 5.4.7).
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7.2.10 Proposition. The following are non-easy and mutually distinct linear categories of
partitions including their interpretation〈

− 1
N

− 1
N

+
1
N 2

〉
N
↔ U ∗(N,±)O

+
N ×× Ẑ2U(N,±),〈(

− 1
N

)⊗k〉
N

↔ U ∗(N,±)O
+
N ×2k Ẑ2U(N,±), k ∈N \ {1}.

Proof. As we already mentioned, the generators actually equal to = N U−1
(N,±) , resp.

N k( )⊗k = N kU−1
(N,±)( )⊗k . Strict inclusions for the categories with extra singletons induce

corresponding inclusions in our case. In particular, this proves the mutual inequality of the
categories and their non-easiness. For the latter, note that the smallest easy category containing
any of those above must be 〈 〉N = 〈 〉N . �

It is easy to write down the relations corresponding to those categories. Recall the relations
for the partitions with extra singletons

↔ rvijvkl = vijvklr,

( )⊗k ↔ rvi1j1rvi2j2 · · · rvikjk = vi1j1rvi2j2r · · ·vikjk r,
where v ⊕ r is the fundamental representation of the quantum group. The quantum groups
corresponding to the categories from Proposition 7.2.10, i.e. defined by the dotted parti-
tions , resp. ( )⊗k are quantum subgroups of B#+

N = (C(B#+
N ),u) defined by precisely the

same relations if we interpret r as the one-dimensional subrepresentation r :=
∑
k uik =

∑
k ukj

and v := u = u − 1
N r.

7.2.11 Remark. Additional non-easy categories can be obtained by adding the linear combina-
tions = P(N ) or = P(N ) to any of the two categories from Proposition 7.2.10. The
interpretation is then obtained by replacing O+

N with O∗N or ON , respectively.

7.3 Quantum group similarity induced by τ
In this section, we interpret the isomorphism T(N ) defined in Section 5.4.2. Recall the definition
of the partition τ(N ) = − 2

N ∈ PartN (1,1).
7.3.1 Proposition. Let G = (C(G),u) be a homogeneous orthogonal quantum group correspond-
ing to a category K ⊆ PartN . Then G̃ := Tτ(N )

GT −1
τ(N )

is also homogeneous and orthogonal. It

corresponds to the category K̃ := T(N )K .
Proof. We assume that G is homogeneous and orthogonal, so SN ⊆ G ⊆O+

N . The matrix Tτ(N )
is

an intertwiner of SN , so SN ⊆ G̃. We mentioned in Sect. 5.4.2 that τ(N ) behaves as a self-adjoint
unitary, so τ∗(N ) = τ(N ) and τ(N )τ(N ) = . The same relations must hence hold also for Tτ(N )

, so, in
particular, it has to be orthogonal. Consequently, G̃ ⊆O+

N .
Let ũ = Tτ(N )

uT −1
τ(N )

= Tτ(N )
uTτ(N )

be the fundamental representation of G̃. One can easily see
that T ∈Mor(u⊗k ,u⊗l) if and only if T ⊗lτ(N )

T T ⊗lτ(N )
∈Mor(ũ⊗k , ũ⊗l). �

Moreover the orthogonal matrix Tτ(N )
provide the similarity between the quantum groups

Girr
+ and Girr

− introduced in Def. 7.1.6.
7.3.2 Proposition. Consider a compact matrix quantum group G such that SN ⊆ G ⊆ B#+

N . Then
Tτ(N−1)

Girr
± T

−1
τ(N−1)

= Girr
∓ , i.e. Girr

+ and Girr
− are similar.

Proof. First, we check that V(N,∓)V
∗

(N,±) = Tτ(N )
. Recall from Lemma 7.1.8(1) that V(N,±) =

Tυ(N−1,±)B(N ). Easy computation shows that B(N )B
∗
(N ) = T + . So, V(N,∓)V

∗
(N,±) = Tp with p =

υ(N−1,±)( + )υ(N−1,±), which indeed equals τ(N ). Finally, it is easy to see that this operator indeed
defines the similarity between Girr

+ and Girr
− since

V(N,∓)V
∗

(N,±)G
irr
± V(N,±)V

∗
(N,∓) = V(N,∓)V

∗
(N,±)V(N,±)GV

∗
(N,±)V(N,±)V

∗
(N,∓) = V(N,∓)GV

∗
(N,∓) = Girr

∓ . �
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7.4 Anticommutative twists
In this section, we interpret the category isomorphisms D and J described in Sections 5.4.3,
5.4.4. As a consequence, we are going to interpret the non-easy categories〈

− 2
N

( + ) +
4
N 2

〉
N

and 〈2 − 〉N .

As we showed in the above mentioned sections, these categories are both isomorphic to
the category of all pairings PairN . The idea is that instead of studying the image of these
categories under the standard functor p 7→ Tp, we study some alternative functors p 7→ T̃p = TDp,
resp. p 7→ T̃p = TJ p acting on pair partitions p ∈ PairN . Changing this functor also changes the
interpretation of the partitions in terms of relations. In particular, the crossing partition ,
which generates the whole category PairN , will no longer imply commutativity. We get some
deformed commutativity instead. More concretely, some minus signs will appear, so the
commutativity will partially change to anticommutativity.

This section basically coincides with [GW19a, Section 6].

7.4.1 2-cocycle deformations
We briefly describe a construction from [Doi93, Sch96, BY14].

Let A be a Hopf ∗-algebra. A unitary 2-cocycle on A is a convolution invertible linear map
σ :A⊗A→C satisfying∑

(x), (y)

σ (x(1), y(1))σ (x(2)y(2), z) =
∑

(y), (z)

σ (y(1), z(1))σ (x,y(2)z(2)),

σ−1(x,y) = σ (S(x)∗,S(y)∗),

and σ (x,1) = σ (1,x) = ε(x) for x,y,z ∈ A, where σ−1 denotes the convolution inverse of σ and
we use the Sweedler notation ∆(x) =

∑
(x) x(1) ⊗ x(2).

Let G be a compact quantum group and σ a 2-cocycle on the associated Hopf ∗-algebra
PolG. Then we can define its deformation Gσ , where PolGσ coincides with PolG as a coalgebra
(i.e. a vector space with comultiplication and a counit) and the ∗-algebra structure is defined
as follows

x̂ŷ =
∑

(x), (y)

σ (x(1), y(1))σ
−1(x(3), y(3)) �x(2)y(2), (7.4)

x̂∗ =
∑
(x)

σ (S(x(5))
∗,x∗(4))σ

−1(x∗(2),S(x(1))
∗)x̂∗(3), (7.5)

where x̂ denotes x ∈ PolG viewed as an element of PolGσ .
In particular, if G is a compact matrix quantum group with fundamental representation u,

then Gσ is again a compact matrix quantum group with fundamental representation û = (ûij )i,j .
It holds that the quantum groups G and Gσ have monoidally equivalent representation

categories [Sch96].
Consider compact quantum groups H ⊆ G, so there is a surjection q:PolG→ PolH . Then

a 2-cocycle σ on H induces a 2-cocycle σq := σ ◦ (q⊗ q) on G. We will construct 2-cocycles on
quantum groups induced by bicharacters on dual discrete quantum subgroups Γ̂ ⊆ G.

Let Γ be a group. A unitary bicharacter on Γ is a map ϕ:Γ× Γ→ T (here T denotes the
complex unit circle) satisfying

ϕ(xy,z) = ϕ(x,z)ϕ(y,z), ϕ(x,yz) = ϕ(x,y)ϕ(x,z).

In particular, we have ϕ(x,e) = ϕ(e,x) = 1. It is easy to see that any unitary bicharacter ϕ on
a discrete group Γ extends to a unitary 2-cocycle on CΓ = Pol Γ̂.
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7.4.2 Anticommutative twists
We now make a special choice for σ . Consider any σ ∈MN ({±1}). One can easily check that the
map (ti , tj ) 7→ σij , where t1, . . . , tN are generators of ZN

2 , uniquely extends to a bicharacter on Z
N
2 .

This induces a 2-cocycle on any quantum group G containing Ẑ
N
2 as a quantum subgroup.

So, suppose G is a compact matrix quantum group with fundamental representation
u ∈MN (PolG) and q:PolG→CZ

N
2 maps uij 7→ tiδij . Let us, for simplicity, restrict to the case

G ⊆O+
N .

For a multi-index i = (i1, . . . , ik), denote σi :=
∏

1≤m<n≤k σimin .

7.4.1 Lemma. Suppose, ū = u, i.e. u∗ij = uij . Then

û∗ij = σiiσjj ûij , (7.6)

ûi1j1 · · · ûikjk = σiσj �(ui1j1 · · ·uikjk ). (7.7)

Proof. Both formulae are obtained simply by using the defining formulae (7.4), (7.5). For the
second one, we need to apply induction on k. �

Recall the definition of the universal unitary and orthogonal quantum groups from
Section 2.3.3.

7.4.2 Proposition. Suppose G ⊆O+
N . Then Gσ ⊆O+(F) ⊆U+(F) =U+

N with Fij = δijσii .

Proof. All the relations are checked using Lemma 7.4.1. The relation ¯̂u = F−1ûF is just a matrix
version of Eq. (7.6). Checking the unitarity of û is also straightforward. As an example, let us
check the relation ûû∗ = 1N :∑

k

ûikû
∗
jk =

∑
k

σjjσkkûikûjk =
∑
k

σijσjj�uikujk = δij .

Finally, the fact that U+(F) = U+
N follows from F∗F = 1N . Indeed, F ¯̂uF−1 being unitary can

be written as F ¯̂uF−1(F∗)−1ûtF∗ = 1N and (F∗)−1ûtF∗F ¯̂uF−1 = 1N . These relations are obviously
equivalent to ¯̂uût = 1N = ût ¯̂u. �

Now we analyse the intertwiner spaces for the twisted quantum group Gσ . This will also
prove the equivalence of the representation categories for our special choice of the 2-cocycle.

7.4.3 Proposition. Consider G = (C(G),u) ⊆O+
N . Then

Mor(û⊗k , û⊗l) = {T σ | T ∈Mor(u⊗k ,u⊗l)}

with T σi j = Ti jσiσj .

Proof. If T ∈ Mor(u⊗k ,u⊗l), it means that T u⊗k = u⊗lT , which is certainly equivalent to
T û⊗k = û⊗lT . We can rewrite this in matrix entries as∑

m

Tim �(um1j1 · · ·umkjk ) =
∑
n

�(ui1n1
· · ·uilnl )Tnj .

Now, applying Lemma 7.4.1, we can rewrite this as∑
m

Tim
σmσj

ûm1j1 · · · ûmkjk =
∑
n

Tnj
σiσn

ûi1n1
· · · ûilnl .

Finally, using the fact that σi ,σj = ±1, we can see that this is equivalent to T σ û⊗k = û⊗lT σ . �

In connection with partition categories, we can interpret this result as follows. Consider
G := HN the hyperoctahedral group, which corresponds to the category EvenPartN := 〈 , 〉N
spanned by partitions with blocks of even length. It is the smallest homogeneous quantum
group having Ẑ

N
2 as a quantum subgroup. The matrix σ then defines an alternative functor

T σ :EvenPartN →Mat mapping p 7→ T σp with [T σp ]i j = [Tp]i jσiσj = δp(j , i )σiσj .
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7. Non-easy quantum groups

7.4.4 Lemma. The map T σ :EvenPartN →Mat is indeed a monoidal unitary functor.

Proof. Checking that T σ behaves well with respect to composition and involution is straightfor-
ward using the fact that p 7→ Tp is a monoidal unitary functor. Let us do it for the composition.

[T σq T
σ
p ]ac =

∑
b

[T σq ]ab [T σp ]bc =
∑
b

[T σq ]ab [T σp ]bcσaσbσbσc

= σaσc
∑
b

[T σq ]ab [T σp ]bc = [Tqp]acσaσc = [T σqp]ac

The tensor product is a bit more complicated. We need to check that

σacσbdδp⊗q(ac,bd) = σaσbσcσdδp(a,b)δq(c,d)

for any two partitions p ∈ P (k, l), q ∈ P (m,n) with blocks of even length. We know that
p 7→ Tp is a monoidal functor, so δp⊗q(ac,bd) = δp(a,b)δq(c,d). Take any a, b, c, d such that
δp⊗q(ac,bd) = 1. We need to show that σacσbd = σaσbσcσd . Equivalently, we need to show that

k∏
i=1

l∏
j=1

m∏
s=1

n∏
t=1

σaicsσbjdt = 1.

Recall that we assume that all blocks of p and q have even size. Consequently, one can check
that, for every block V of p and every blockW of q, there is an even amount of terms σaics or σbjdt
of the product with i ∈ V and s ∈W resp. j ∈ V and t ∈W . Since we assume δp⊗q(ac,bd) = 1,
the multiindices ab and cd are constant on the blocks. As a consequence, the product of those
terms always equals one. �

7.4.5 Corollary. Let G be a quantum group group with HN ⊆ G ⊆O+
N corresponding to some

linear category of partitionsK . Then the representation category of Gσ is described by the
same partition categoryK if one uses the functor T σ instead of T . That is,

Mor(û⊗k , û⊗l) = {T σp | p ∈K (k, l)}.

Proof. Follows directly from Proposition 7.4.3 and the definition of T σp . �

7.4.6 Proposition. For any p ∈ EvenPartN ∩NCPartN , we have T σp = Tp. In particular, twisting
by σ leads to a new quantum group only for categories with crossings.

Proof. It is enough to prove the statement for partitions. Then by linearity of T and T σ , it must
hold also for linear combinations.

So, let p be a non-crossing partition with blocks of even size. It is known that non-crossing
partitions are always of the form of some nested blocks. That is, up to rotation, we have
p = q⊗ b, where b is a partition consisting of a single block. Since both T and T σ are monoidal
functors, it is enough to check the statement for block partitions. So, let b2l ∈ P (0,2l) be
a partition with a single block of 2l points. Then indeed

[T σb2l
]i = δiσi = δiσ

2l
i1

= δi = [Tp]i . �

Crossing partitions correspond to some commutativity relations. The cocycle twist corre-
sponding to the matrix σ then puts some extra signs to the relations, which may make them
anticommutative. In particular, it may be interesting to study the relation corresponding to the
simple crossing , which then reads

σikσjl ûij ûkl = σkiσlj ûkl ûij . (7.8)
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7.4 Anticommutative twists

7.4.3 Examples

In the theory of quantum groups constructed by deforming classical groups, the deforma-
tions are usually parametrized by some number q. One speaks about q-deformations and
q-commutativity. The idea is that instead of removing the commutativity relation ab = ba, one
can replace it by something like ab = qba. We will not go too much into details here, for more
information, see e.g. ~KS97�. Let us just make the following definition of a q-deformation of
the orthogonal group ON at q = −1. In the compact quantum group context, that is, using the
language developed in this thesis, this definition can be found for example in [BBC07].

7.4.7 Definition. We define the quantum group O−1
N as a quantum subgroup of O+

N given by
the following relations:

uijuik = −uikuij , ujiuki = −ukiuji for i , j,

uijukl = ukluij for i , k, j , l.
(7.9)

7.4.8 Example. [BBC07, Theorem 4.3] If we choose

σij =
{−1 i < j,

+1 i ≥ j,

we get q-commutativity for q = −1.
Indeed, substituting into Eq. (7.8), we get exactly Relations (7.9).

7.4.9 Example. If we choose

σij =
{
σiσj i < j,
+1 i ≥ j with σi =

{
+1 i ≤ n,
−1 i > n

for some fixed n < N , we get some kind of graded commutativity. The commutativity rela-
tion (7.8) becomes

uijukl = σiσjσkσl ukluij .

7.4.4 Constructing a partition category isomorphism

In certain cases, it may happen that given a compact matrix quantum group G such that
O+
N ⊇ G ⊇ HN corresponding to some partition category K , the deformation also satisfies

O+
N ⊇ Gσ ⊇ HN and hence is again described by a linear category of partitions K̃ using the

standard functor p 7→ Tp rather than p 7→ T σp .
This happens in the case of the (−1)-deformations. Indeed, taking σ as in Example 7.4.8

and O+
N ⊇ G ⊇HN , we have

O+
N =O+σ

N ⊇ Gσ ⊇Hσ
N =HN .

It is easy to check the following

T σ = −T + 2T , T σ = T . (7.10)

As a consequence, we have that O−1
N is a quantum group determined by the category of all

pairings PairN = 〈 〉N using the functor p 7→ T σp or, equivalently, by the category 〈 − 2 〉N
(which is isomorphic to PairN by Prop. 5.4.8) using the standard functor p 7→ Tp.

To put it in a different way: O−1
N is a twist of ON . In order to describe its representation

category using partitions, we have to either twist the functor p 7→ Tp or to twist the partition
category itself.
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7. Non-easy quantum groups

7.4.10 Remark. In general, it is possible to show that there is an isomorphism of monoidal
∗-categories ϕ:EvenPartδ→ EvenPartδ mapping

7→ − + 2 , 7→ .

Taking δ =N ∈N, it holds that T σp = Tϕ(p) with σ as in Example 7.4.8.
However, most easy categories are stable under this isomorphism. The interesting examples

are the following ones.

7.4.11 Proposition. The following non-easy linear categories of partitions

〈 − 2 〉N , 〈 − 2 − 2 − 2 + 4 〉N

correspond to the quantum groups O−1
N = Oσ

N and O∗−1
N = O∗σN , respectively, where σ comes

from Example 7.4.8. That is, those are (−1)-deformations of the quantum groups ON and O∗N .

Proof. It follows from the fact that the categories are images of PairN = 〈 〉N , resp. 〈 〉N by
the above defined isomorphism ϕ. See Section 5.4.4. �

7.4.12 Remark. One could obtain many examples of non-easy two-coloured categories by
reformulating these results to the unitary case and applying them to the half-liberated two-
coloured categories recently obtained in [MW19a, MW19b].

Now, consider σ as in Example 7.4.9. Here, we can see that

O+
N ⊇Oσ

N ⊇On ×ON−n.

In particular, choosing n =N − 1, we have

O+
N ⊇Oσ

N ⊇On × Ẑ2 ' B′N .

7.4.13 Proposition. The non-easy category

K = 〈 − 2
N

( + ) +
4
N

)〉N

corresponds to the quantum group G =U ∗(N,±)O
σ
NU(N,±), where σ is defined as in Example 7.4.9

for n =N − 1 and U(N,±) is a unitary matrix defined in Def. 7.1.5.

Proof. It is straightforward to check that Tp =U ∗(N,±)T
σ U(N,±) for p = − 2

N ( + ) + 4
N ). �

Recall that we already showed in Proposition 5.4.6 that this category is isomorphic to the
category of pairings PairN = 〈 〉N .
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Chapter 8

From partition categories to general CMQGs
The aim of this chapter is to generalize notions introduced for categories of partitions or
easy quantum groups to general compact matrix quantum groups. Studying categories of
partitions brings not only examples of new quantum groups, but allows us to better understand
the structure of the representation categories and the quantum groups themselves. The
classification programme results in many new interesting constructions that can be generalized
also beyond the scope of categories of partitions and easy quantum groups.

As an example, recall the glued products that were defined in [TW17]. The motivation
for introducing them was to interpret some quantum groups resulting from classification
of categories of non-crossing two-coloured partitions. However, the construction works in
general for any compact matrix quantum groups. In a similar manner, we generalize here some
concepts that appeared in the previous chapters of this thesis in a way that we can leave out
the partitions.

We summarize the main results of this chapter below. The links with previous chapters are
illustrated in Table 8.1.

Definition and main results for
Concept partitions easy CMQGs general CMQGs

Degree of reflection 4.4.9 — 8.2.4, 8.2.6

Global colourization,
tensor complexification

4.4.7, 4.5.10 6.2.4 8.2.9, 8.2.11, 8.2.13

Alternating
colourization, free
complexification

4.6.11, 4.6.15 6.2.8 8.2.20, 8.2.24, 8.2.29

Interpolating products — 6.4.16 8.3.1, 8.3.2

Gluing and ungluing 4.6.4, 4.6.8 6.4.10, 6.4.13 8.2.1, 8.2.3, 8.4.11, 8.4.13

Table 8.1 Overview of the concepts introduced in the thesis that are generalized in
Chapter 8

We are going to study the concept of the degree of reflection defined for two-coloured
categories in Def. 4.4.9. We define it for arbitrary quantum group by the following equivalent
conditions.

Proposition (8.2.4, 8.2.6). Let G ⊆U+(F) be a compact matrix quantum group. The following
are equivalent.

(1) The quantum subgroup of G given by relations uij = 0, uii = ujj for i , j is Ẑk .
(2) We have {c(w2)− c(w1) | FundRepG(w1,w2) , {0}} = kZ.
(3) The number k is the largest such that IG is Zk-homogeneous.
(4) The number k is the largest such that G = G ×̃ Ẑk .

In items (3) and (4), we consider zero to be larger than every natural number (equivalently,
consider the order defined by “is a multiple of”). The number k is then called the degree of
reflection of the quantum group G.

We will study the representation categories of tensor complexifications generalizing
Theorem 6.2.4.

143



8. From partition categories to general CMQGs

Theorem (8.2.11). Consider G ⊆ U+(F) with FF̄ = c1N , c ∈ R. Then G is globally colourized
with zero degree of reflection if and only if G =H ×̃ Ẑ, where H = G∩O+(F).

Theorem (8.2.13). Consider a compact matrix quantum group G = (C(G),v), k ∈N0. Denote
by z the generator of C∗(Zk) and by u := vz the fundamental representation of G ×̃ Ẑk . We have
the following characterizations of G ×̃ Ẑk .

(1) The ideal IG×̃Ẑk
is the Zk-homogeneous part of IG. That is,

IG×̃Ẑk
= {f ∈ IG | fl ∈ IG for every l ∈Zk}.

(2) The representation category of G ×̃ Ẑk looks as follows:

Mor(u⊗w1 ,u⊗w2 ) =
{

Mor(v⊗w1 ,v⊗w2 ) if c(w2)− c(w1) is a multiple of k,
{0} otherwise.

(3) We have G ×̃ Ẑk = 〈G,E ×̃ Ẑk〉. (Here, E denotes the trivial group of the appropriate
size, so E ×̃ Ẑk is the quantum group Ẑk with the representation z⊕ · · · ⊕ z = z1N .)

We will also study free complexifications, whose representation categories were not yet
studied even in the partition formalism.

Theorem (8.2.24). Let H be a compact matrix quantum group with degree of reflection k , 1.
Then all H ∗̃ Ẑl coincide for all l ∈ N0 \ {1}. The ideal IH ∗̃Ẑl

is generated by the alternating
polynomials in IH . The representation category of H ∗̃ Ẑl is a (wide) subcategory of the
representation category of H generated by Mor(1,v⊗( )j ), j ∈N0. This also holds if k = 1 and
l = 0.

Theorem (8.2.29). ConsiderG ⊆U+(F) with FF̄ = c1N . ThenG is alternating and invariant with
respect to the colour inversion if and only if it is of the form G =H ∗̃ Ẑ, where H = G∩O+(F).

In Section 8.3, we are going to define new products denoted by G ××H , G ×× H , G ×k H
generalizing the quantum groups introduced in Definition 6.4.16. An important result is
showing that the relations defining those quantum groups really define something new that
lies strictly between the dual free product and the tensor product.

Theorem (8.3.2). Consider quantum groups G,H . Then the products from Definition 8.3.1
are indeed well-defined quantum groups. We have the following inclusions

G ∗̂H ⊇ G ××H ⊇
⊇ G ×× H ⊇ G ×0 H ⊇ G ×2k G ⊇ G ×2l H ⊇ G ×2 H = G ×H,

where we assume k, l ∈N such that l divides k. The last three inclusions are strict if and only if
the degree of reflection of both G and H is different from one.

Finally, in Section 8.4, we study the gluing procedure (Def. 6.4.10) and discuss how we can
reverse this process and define some ungluing procedure. In particular, we aim to generalize the
one-to-one correspondence from Theorem 4.6.8.

Theorem (8.4.13). There is a one-to-one correspondence between

(1) quantum groups G ⊆O+(F) ∗̂ Ẑ2 with degree of reflection two and
(2) quantum groups G̃ ⊆U+(F) that are invariant with respect to colour the inversion.

This correspondence is provided by gluing and canonical Z2-ungluing.

The results presented here will be a part of an article in preparation [Gro20a]. Some results
of [GW19b] are also included here. In the whole chapter, we assume that the quantum groups
appear in the full version (see Sect. 2.3.1). That is, we denote C(G) := Cu(G) for a compact
quantum group G.
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8.1 Coloured representation categories

8.1 Coloured representation categories
In this section, we look more in detail on coloured representation categories. First of all, let
us link the problem with what was already presented.

Recall the summary in the end of Section 6.1.2. We introduced the following:

Non-coloured
category of

partitions (Sect. 4.4)

Non-coloured
representation

category (Sect. 3.4.3)

Compact matrix
quantum group
G ⊆O+(F)

p 7→Tp

Sect. 6.1

Tannaka–Krein

Sect. 3.4.3

Note that if we start with a category of partitions, the quantum group at the end must actually
satisfy SN ⊆ G ⊆O+

N . For two-coloured structures, we have a similar correspondence

Two-coloured
category of

partitions (Sect. 4.1)

Two-coloured
representation

category (Sect. 3.4.1)

Compact matrix
quantum group
G ⊆U+(F)

p 7→Tp

Sect. 6.2

Tannaka–Krein

Sect. 3.4.2

Again, starting with a two-coloured category of partitions, we actually get a quantum group
satisfying SN ⊆ G ⊆U+

N .
In Section 4.3, we introduced partitions with arbitrary colouring. Those were interpreted

within the theory of quantum groups in Section 6.3. However, we skipped the middle step in
Section 6.3 – we did not give a proper definition of an O -coloured representation category. We
give this definition and formulate the corresponding Tannaka–Krein duality in Section 8.1.1
to complete the following diagram.

O -coloured category of
partitions (Sect. 4.3)

O -coloured
representation

category (Sect. 8.1.1)

Compact matrix
quantum group

G ⊆U+(F1) ∗̂ · · · ∗̂U+(Fn)p 7→Tp
Sect. 6.3

Sect. 8.1.1

In Section 8.1.2, we look in more detail on the Frobenius reciprocity mentioned in Re-
mark 3.4.3. In particular, we generalize the operations on partitions with lower points from
Section 4.1.2. Finally, in Section 8.1.3, we focus on a special case of coloured representation
categories describing quantum groups G ⊆U+(F) ∗̂ Ẑk .

8.1.1 O -coloured representation categories

In Section 3.4, we presented the Woronowicz–Tannaka–Krein duality formulated for compact
matrix quantum groups, which used the notion of two-coloured representation categories. Those
structures describe arbitrary compact matrix quantum groups G ⊆ U+(F) for arbitrary F. Since
any representation of a compact quantum group can be unitarized, we are literally able to
describe any compact matrix quantum group by this structure.

From this point of view, it may seem that it makes no sense to try to generalize the concept
of two-coloured representation categories. On the other hand, we have seen in Section 6.4
that it may be convenient for practical reasons to consider a different setting with a different
monoid of objects than O ∗.

Suppose, for example, that we are interested in quantum subgroups G ⊆U+(F1) ∗̂U+(F2).
Equivalently, those are quantum groups with fundamental representation of the form u = v1⊕v2
such that v := v1, v := F1v̄1F

−1
1 , v := v2, v := F2v̄2F

−1
2 are all unitary. This implies that also u

and u := (F1 ⊕ F2)ū(F1 ⊕ F2)−1 are unitary, so it is perfectly fine to describe such a quantum
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8. From partition categories to general CMQGs

group G by the associated two-coloured category FundRep(w1,w2) = Mor(u⊗w1 ,u⊗w2 ) with
w1,w2 ∈ O ∗. However, it might also be interesting to introduce the alphabet O := { , , , } and
study the intertwiners Mor(v⊗w1 ,v⊗w2 ) with w1,w2 ∈ O ∗. These two approaches are absolutely
equivalent, the latter might be, however, more convenient to work with.

8.1.1 Definition. Let O be a set with involution x 7→ x̄. Recall the notation of Section 4.3. Con-
sider a set of integersNx ∈N for every x ∈ O such thatNx̄ =Nx. An O -coloured representation
category is a rigid monoidal ∗-category C with O ∗ being the monoid of objects (tensor product
of objects is the monoid operation, dual objects are obtained by involution) and morphisms
realized as linear maps

C(x1 · · ·xk , y1 · · ·yl) ⊆L (CNx1 ⊗ · · · ⊗CNxk ,CNy1 ⊗ · · · ⊗CNyl ). (8.1)

Equivalently, without referring to the categorical definitions, we can say that an O -coloured
representation category is a collection of subspaces (8.1) satisfying the following five axioms

(1) For T ∈C(w1,w2), T ′ ∈C(w′1,w
′
2), we have T ⊗ T ′ ∈C(w1w

′
1,w2w

′
2).

(2) For T ∈C(w1,w2), S ∈C(w2,w3), we have ST ∈C(w1,w3).
(3) For T ∈C(w1,w2), we have T ∗ ∈C(w2,w1).
(4) For every word w = x1 · · ·xk ∈ O ∗, we have 1∑

iNxi
∈C(w,w).

(5) There exist vectors ξx ∈C(∅,xx̄) such that (ξ∗x ⊗ 1Nx )(1Nx ⊗ ξx̄) = 1Nx for every x ∈ O .

In order to formulate the correspondence with compact matrix quantum groups, one
should, in addition, divide the set of objects O into white and black points O = Ow ∪Ob such
that Ob = {x̄ | x ∈ Ow}. The union may not be disjoint as there may be self-dual elements in O .

Now, we formulate one direction of the correspondence between O -coloured representation
categories and compact matrix quantum groups.

8.1.2 Proposition. Let G be a compact matrix quantum group with a unitary fundamental
representation u that decomposes as a direct sum u =

⊕
x∈Ow

ux. Denote the dual unitary
representations ux̄ := FxūxF−1

x , so

u = FuF−1 =
⊕
x∈Ow

ux̄.

Put O := {x, x̄ | x ∈ Ow}. Then

FundRepOG (w1,w2) := Mor(u⊗w1 ,u⊗w2 )

forms an O -coloured representation category.

Proof. Same as Prop. 3.4.4. �

The converse direction, that is, Tannaka–Krein duality for O -coloured categories, can be
formulated as follows.

8.1.3 Proposition. Let O be a set with involution decomposed into white and black points
as indicated above O = Ow ∪Ob. Let C be an O -coloured representation category. Then there
exists a unique compact matrix quantum group G such that its fundamental representation
decomposes as u =

⊕
x∈Ow

ux and we have

FundRepOG (w1,w2) = Mor(u⊗w1 ,u⊗w2 ) = C(w1,w2).

Proof. Let us denote N :=
∑
x∈Ow

Nx, so we can write C
N =

⊕
x∈Ow

C
Nx . Denote by V x = V x̄ the

canonical isometries CNx → C
N respecting this decomposition. For a word w ∈ O ∗, we denote

by V ⊗w the corresponding tensor product of those isometries.
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8.1 Coloured representation categories

We can define a two-coloured representation category C̃ as follows. Let w̃ ∈ O k be a two-
coloured word. Denote by O w̃ the set of all words w ∈ O k such that the i-th letter of w is white
(i.e. belongs to Ow) if and only if the i-th letter of w̃ is white. Then define

C̃(w̃1, w̃2) := span{V ⊗w2T V ⊗w1 ∗ | w1 ∈ O w̃1 ,w2 ∈ O w̃2 ,T ∈C(w1,w2)}.

It is straightforward to check that C̃ is indeed a two-coloured category. Then we can use
the Woronowicz–Tannaka–Krein duality (Theorem 3.4.6) to construct the quantum group G.
Finally, projecting the morphism spaces of C̃ = FundRepG back to the subspaces CNx ⊆ C

N , we
get back the O -coloured category C, which proves that we indeed have C = FundRepOG . �

To illustrate the statements above, let us draw some concrete matrices. Suppose that
we have G ⊆ U+

N1
∗̂ · · · ∗̂ U+

Nn
. This means that the fundamental representation u is of the

block-diagonal form

u =
n⊕
i=1

ui =


u1

u2

. . .
un

 ,
where the blocks ui are of size Ni ×Ni . One way to describe this quantum group is using the
two-coloured representation category C̃ = FundRepG, where the objects are words w ∈ O . The
other way is to use the O -coloured representation category C = FundRepOG , where O = {x1, . . . ,xn}.
The letters, x1, . . . ,xn of course correspond to the blocks of u, so uxi = ui . Now, the categories
C and C̃ are related in the way described in the proof of Proposition 8.1.2. Namely, the
intertwiners from C̃ have a block structure with the blocks coming from C. For example, the
morphism space C̃( , ) = Mor(ū,u) is linearly spanned by the intertwiners

V xiT V xj ∗ =


i ···················

j
.....

T

 , where T ∈Mor(x̄j ,xi).

8.1.2 One-line operations for representation categories

We have already mentioned in Remark 3.4.3 that representation categories C are determined
just by the spaces C(∅,w) since the elements of C(w1,w2) can then be obtained by some rotations.
The same holds also for categories of partitions (and in general for any monoidal categories)
as we described in Section 4.1.2. Moreover, we defined in Section 4.1.2 some operations
for partitions on one-line that allow to formulate an alternative definition for a category of
partitions using only partitions on one line, that is, elements p ∈ P (0, k). In this section,
we do the same thing for representation categories. We formulate the results in the general
framework of O -coloured representation categories, but one can, of course, specialize also to
the two-coloured or non-coloured case as well.

Consider an O -coloured representation category C for some set of colours O . We use the
notation of the previous section. In particular, given a colour x ∈ O , we denote by Nx ∈N the
associated dimension, by ξx ∈ C(∅,xx̄) the associated duality morphisms and by Fx ∈MNx (C)
the matrix with entries Fxij = [ξx]ji . Recall also the definition of left and right rotations, which
we defined in Remark 3.4.3 for two-coloured representation categories. Their definition can be
reformulated for O -coloured categories in a straightforward way. Now, we define the following
operations on the sets C(∅,w).
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8. From partition categories to general CMQGs

• If ai+1 = āi , we define the contraction:

Πai
i :C(∅, a1 · · ·ak)→C(∅, a1 · · ·ai−1ai+2 · · ·ak),

Πai
i η := (1Na1 ⊗ · · · ⊗ 1Nai−1

⊗ ξ∗ai ⊗ 1Nai+2
⊗ · · · ⊗ 1Nak )η.

On elementary tensors, it acts as

Πai
i (η1 ⊗ · · · ⊗ ηk) = (ηti+1F

aiηi)η1 ⊗ · · · ⊗ ηi−1 ⊗ ηi+2 ⊗ · · · ⊗ ηk .

Pictorially,

Πai
i η =

η
· · ·

ξ∗ai
· · · .

• We define the rotation:

Rak :C(∅, a1 · · ·ak)→C(∅, aka1 · · ·ak−1), Rak := Lrot◦Rrot, so

Rakη = (1Na1 ⊗ · · · ⊗ 1Nak−1
⊗ ξ∗ak )(1Nak ⊗ η ⊗ 1Nak )ξak .

On elementary tensors, it acts as

Rak (η1 ⊗ · · · ⊗ ηk) = (Fak F̄akηk)⊗ η1 ⊗ · · · ⊗ ηk−1.

Pictorially,

Rakη = η
· · · ξ∗ak

ξak

.

For a word w′ = b1 · · ·bl , we define Rw
′
:C(∅,ww′)→C(∅,w′w) by Rw

′
:= Rb1 ◦· · ·◦Rbl . We

denote by R−w
′

its inverse.
• We define the reflection:

?:C(∅, a1 · · ·ak)→C(∅, ak · · ·a1)

η? := Rrot−k η∗ = (η∗ ⊗ 1Nak ⊗ · · · ⊗ 1Na1 )ξa1···ak .

On elementary tensors, it acts as

(η1 ⊗ · · · ⊗ ηk)? = (Fak η̄k)⊗ · · · ⊗ (Fa1 η̄1).

Pictorially,

Rη =
η∗
· · ·

· · · .

8.1.4 Proposition. For any O -coloured representation category C, the collection of sets C(0,w),
w ∈ O ∗ is closed under tensor products, contractions, rotations, inverse rotations, and reflections.
Conversely, for any collection of vector spaces C(w) ⊆C

Nw , Na1···ak :=
∑
iNai , that is closed under

tensor products, contractions, rotations, inverse rotations, and reflections and satisfies axiom (5)
of O -coloured representation categories, the sets

C(w1,w2) := {Rrotw
∗
1 ξ | ξ ∈C(w2w

∗
1)} = {Lrot−w

∗
1 p | p ∈C(w∗1w2)}

form an O -coloured representation category.

Proof. Same as with Proposition 4.1.2. �
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8.2 Representation categories of glued products

8.1.3 Zk-extended representation categories

Now, let us focus on the situation, when we have G ⊆U+(F) ∗̂ Ẑk for some k ∈N0 (considering
Zk = Z for k = 0). That is, the fundamental representation of G decomposes as u = v ⊕ z, where
v is N -dimensional and z is one-dimensional. We use the alphabet O = { , , , }, with u = v,
u = Fv̄F−1, u = z, u = z∗.

Note that if k , 0, we have z∗ = zk−1 = z⊗(k−1), so we actually do not need to consider the
representation z∗ and we could omit in our alphabet. This makes sense, in particular, for k = 2,
where z∗ = z, so in a sense we have = . This is what we did when we introduced categories of
partitions with extra singletons in Sections 4.6 and 6.4. In this chapter, we will choose a bit
different approach by imposing the relation = k−1.

8.1.5 Definition. We defineW0 to be the monoid with generators , , , satisfying the relations
= = ∅. We defineWk to be the quotient ofW0 with respect to the additional relation k = ∅

(which implies k = ∅). We define an involution w→ w̄ onWk as a homomorphism inverting the
colours. Another involution w 7→ w∗ inverts the colours and reverses the word. For any element
w ∈Wk we define [w] to be the number of squares in w (which is well-defined in contrast with
the overall length of w).

As an example, consider k = 3 and take the word w = as an element of W3. We then
have

w̄ = ,

w∗ = = ,

[w] = 3 = [w̄] = [w∗].

8.1.6 Definition. A Zk-extended representation category is a rigid monoidal ∗-category C

withWk being the monoid of objects (again, tensor product is the monoid operation, duality
maps w 7→ w̄) and morphisms realized as linear maps

C(w1,w2) ⊆L ((CN )⊗[w1], (CN )⊗[w2]).

8.1.7 Proposition. Consider a compact matrix quantum group G ⊆ U+(F) ∗̂ Ẑk . Denote its
fundamental representation u = v ⊕ z as above. Then

FundRepk-ext
G (w1,w2) := Mor(u⊗w1 ,u⊗w2 )

forms a Zk-extended representation category. Conversely, for any Zk-extended representation
category C, there exists a unique compact matrix quantum group G ⊆ U+(F) ∗̂ Ẑk for some F
such that C = FundRepk-ext

G .

Proof. The proposition is a special case of Props. 8.1.2, 8.1.3. The only thing to notice is that
the above definition of FundRepk-ext

G makes sense since given two words w,w′ ∈ O ∗ representing
the same element ofWk , we have u⊗w = u⊗w

′
. �

8.2 Representation categories of glued products
In this section, we study the gluing procedure – in particular the representation categories of
the glued products G ×̃ Ẑk and H ∗̃ Ẑk – and the degree of reflection.

8.2.1 Grading on algebras associated to quantum groups

The purpose of this subsection is to fix some notation regarding grading of algebras.
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8. From partition categories to general CMQGs

A Zk-grading of a ∗-algebra A is a decomposition of the algebra into a vector space direct
sum

A =
⊕
i∈Zk

Ai

such that the multiplication and involution of the algebra respect the operation on Zk , that is,

AiAj ⊆ Aij , A∗i ⊆ A−i .

An element of the i-th part a ∈ Ai is called Zk-homogeneous of degree i.
By definition, every element f ∈ A uniquely decomposes as f =

∑
i∈Zk

fi with fi ∈ Ai . We
call the elements fi the homogeneous components of f .

An ideal I ⊆ A is called Zk-homogeneous if it contains with every element f all its
homogeneous components fi . A quotient of the algebra with respect to a homogeneous ideal
inherits the grading.

There is a natural structure of a Zk-grading on the algebra C〈xij ,x∗ij〉 given by associating
degree one to the variables xij , and associating degree minus one to the variables x∗ij . In this
chapter, by a Zk-grading, we will always mean this particular grading.

Consider a compact matrix quantum group G. If the ideal IG is homogeneous, then
the ∗-algebra PolG inherits this grading. By definition, the entries uij of the fundamental
representation are then Zk-homogeneous of degree one. For any w ∈ O , the tensor product
u⊗w is Zk-homogeneous of degree c(w).

As we mentioned in Remark 3.4.5, any irreducible representation of G is a subrepresen-
tation of u⊗w for some w. So, the grading passes also to the fusion semiring of irreducible
representations (see Definition 3.3.4) in the following sense. For any α ∈ IrrG, there is dα ∈Zk

such that all the matrix entries of uα are Zk-homogeneous of degree dα. We will call dα the
degree of the irreducible uα.

The definition of a Zk-grading for C*-algebras is quite simple for k ∈N. In the case of
the group Z or other groups, it gets a bit complicated and we will not mention it here. Let
A be a C*-algebra. A Zk-grading on A is defined by a grading automorphism, that is, an
automorphism α:A→ A satisfying αk . Its spectrum consists of k-th roots of unity and the
corresponding eigenspaces can be identified with the homogeneous parts of A satisfying the
properties of the algebraic definition above.

If A is a Zk-graded ∗-algebra by the algebraic definition, we can define the grading
automorphism by setting α(x) = e2πij/kx for x ∈ Ak . The grading automorphism can be then
extended to the C*-envelope C∗(A) by the universal property. In particular, a grading on PolG
can be extended to C(G).

8.2.2 Gluing procedure

Recall the construction of a glued version associated to some quantum group G ⊆O+
N ∗̂ Ẑ2 from

Definition 6.4.10. The same definition can be actually formulated for any compact matrix
quantum group G ⊆U+(F) ∗̂ Ẑk .

8.2.1 Definition. Consider a quantum group G ⊆U+(F) ∗̂ Ẑk for some F ∈GLN , k ∈N0. Denote
by v⊕r the fundamental representation of G. Consider ṽij := vijr and let A be the C*-subalgebra
of C(G) generated by ṽij . Then G̃ := (A,u) is called the glued version of G.

Recall the definition of the Zk-extended category FundRepk-ext
G with the monoid of ob-

jectsWk from Section 8.1.3. We now aim to describe the representation category corresponding
to the glued version G̃. We do this by generalizing the functor F from Def. 4.6.4 (actually its
inverse) to the framework of two-coloured and Zk-extended representation categories and
reformulating Theorem 6.4.13 to this setting.
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8.2 Representation categories of glued products

8.2.2 Definition. Let us fix k ∈N0. Then for any word w ∈ O ∗ we associate its glued version
w̃ ∈Wk mapping 7→ , 7→ .

8.2.3 Proposition. Consider G ⊆U+(F) ∗̂ Ẑk with fundamental representation u = v ⊕ z. Let G̃
be the glued version of G. Then

FundRepG̃(w1,w2) = FundRepk-ext
G (w̃1, w̃2)

for every w1,w2 ∈ O ∗ and its glued versions w̃1, w̃2 ∈Wk . That is FundRepG̃ is a full subcategory
of FundRepk-ext

G given by considering the glued words only. The ideal associated to G̃ can be
described as

IG̃ = {f ∈C〈ṽij , ṽ∗ij〉 | f (vijz,z
∗v∗ij ) ∈ IG} ' IG ∩C〈vijz,z

∗v∗ij〉.

Proof. Denote by ṽ = vz the fundamental representation of G̃. Consider a word w and its glued
version w̃. Directly from the definitions of ṽ and w̃, we have ṽ⊗w = u⊗w̃. So,

FundRepG̃(w1,w2) = Mor(ṽ⊗w1 , ṽ⊗w2 ) = Mor(u⊗w̃1 ,u⊗w̃2 ) = FundRepk-ext
G (w̃1, w̃2).

For the ideal, we have

IG̃ = {f ∈C〈ṽij , ṽ∗ij〉 | 0 = f (ṽij , ṽ
∗
ij ) = f (vijz,z

∗v∗ij ) in C(G̃) ⊆ C(G)}
= {f ∈C〈ṽij , ṽ∗ij〉 | f (vijz,z

∗v∗ij ) ∈ IG}. �

8.2.3 Degree of reflection
In Definition 4.4.9, we defined the degree of reflection characterizing some partition categories.
Here, we associate a degree of reflection to arbitrary quantum groups and give several equiv-
alent formulations of this definition that do not refer to the representation category.

Recall from Section 2.4.2 that given a quantum group G = (C(G),u), we can construct
a quantum subgroup of G – so called diagonal subgroup – imposing the relation uij = 0 for all
i , j. If we, in addition, impose the relation uii = ujj for all i and j, we get a quantum group
corresponding to a C*-algebra generated by a single unitary. Therefore, it must be a dual of
some cyclic group.

8.2.4 Definition. Let G be a quantum group and denote by Γ̂ the quantum subgroup of G
given by uij = 0, uii = ujj for all i , j. The order of the cyclic group Γ is called the degree of
reflection of G. If the order is infinite, we set the degree of reflection to zero.

8.2.5 Lemma. Let G = (C(G),u) be a compact matrix quantum group, k ∈N0. The following
are equivalent.

(0) The number k divides the degree of reflection of G.
(1) The mapping uij 7→ δijz extends to a ∗-homomorphism ϕ:C(G)→ C∗(Ẑk).
(2) For any w ∈ O ∗, Mor(1,u⊗w) , {0} only if c(w) is a multiple of k.
(3) The ideal IG is Zk-homogeneous.
(4) We have G = G ×̃ Ẑk .

Proof. (0)⇔ (1): If k0 is the degree of reflection of G, then directly by the definition there is
a ∗-homomorphism ϕ:C(G)→ C∗(Ẑk0

). Such an homomorphism obviously exists also if k is
a divisor of k0. By definition, Zk0

is the largest cyclic group with this property, so k must be
a divisor of k0.

(1)⇒ (2): Take any ξ ∈Mor(1,u⊗w), so u⊗wξ = ξ. Applying the homomorphism ϕ, we get
zc(w)ξ = ξ. If ξ , 0, we must have zc(w) = 1, so c(w) is a multiple of k.

(2)⇒ (3): By Corollary 3.4.13, IG is generated by the relations u⊗wξ = ξ, ξ ∈Mor(1,u⊗w).
Since the entries of u⊗w are monomials of degree c(w), the relations u⊗wξ = ξ are Zc(w)-homo-
geneous (of degree zero). Consequently, they are also Zk-homogeneous and hence generate
a Zk-homogeneous ideal.
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(3)⇒ (4): We need to show that uij 7→ uijz extends to a ∗-isomorphism C(G)→ C(G ×̃ Ẑk).
To prove that it extends to a homomorphism, take any f ∈ IG. Suppose f is Zk-homogeneous
of degree l. Then, since uij and z commute, we have f (uijz) = f (uij )zl = 0. It is surjective
directly from definition. For injectivity, note that the projection to the first tensor component
C(G)⊗max C

∗(Zk)→ C(G) restricts to the inverse of α.
(4)⇒ (1): We define ϕ := (ε⊗ id)α, where ε is the counit of G and α is the ∗-homomorphism

C(G)→ C(G)⊗C∗(Ẑk). Then indeed ϕ(uij ) = ε(uij )z = δijz. �

As a consequence, we have four equivalent formulations of the degree of reflection.

8.2.6 Proposition. Let G be a compact matrix quantum group, k ∈ N0. The following are
equivalent.

(1) The number k is the degree of reflection of G.
(2) We have {c(w2)− c(w1) | FundRepG(w1,w2) , {0}} = kZ.
(3) The number k is the largest such that IG is Zk-homogeneous.
(4) The number k is the largest such that G = G ×̃ Ẑk .

In items (3) and (4), we consider zero to be larger than every natural number (equivalently,
consider the order defined by “is a multiple of”).

Proof. We just take the maximal k (in the above mentioned sense) satisfying the equivalent
conditions in Lemma 8.2.5. For (2) note that the set {c(w2)− c(w1) | FundRepG(w1,w2) , {0}} is
indeed a subgroup of Z. The fact that {c(w2)− c(w1)} is closed under addition follows from
FundRepG being closed under the tensor product. The fact that {c(w2)− c(w1)} is closed under
subtraction follows from FundRepG being closed under the involution. The statement (2) in
Lemma 8.2.5 can be formulated as {c(w2) − c(w1) | FundRepG(w1,w2) , {0}} ⊆ kZ. Taking the
maximal k, we gain the equality. �

8.2.7 Remark. The item (2) from the previous proposition corresponds to the partition-
categorical definition Def. 4.4.9. So, considering a unitary easy quantum groupG corresponding
to a category C ⊆P , we can say that the degree of reflection of G (by Def. 8.2.4) coincides
with the degree of reflection of C (by Def. 4.4.9).

8.2.8 Proposition. Consider G ⊆O+(F). Then one of the following is true.

(1) The degree of reflection of G is one and FundRepG(0, k) , {0} for some odd k ∈N0.
(2) The degree of reflection of G is two and FundRepG(k, l) = {0} for every k + l odd.

Proof. Recall from Proposition 3.4.10 that the intertwiner spaces FundRepG(w1,w2) depend
only on the length of the words w1 and w2 for G ⊆ O+(F). This allowed us to introduce the
notation FundRepG(k, l). Now the proposition follows from Proposition 8.2.6. First of all,
the degree of reflection must be a divisor of two (that is, either one or two) since we have
FundRepG(∅, ) = FundRepG(∅, ) 3 ξ , 0. Then G has degree of reflection one if and only
if FundRepG(∅,w) = FundRepG(0, |w|) , {0} for some word w with c(w) = 1. Such a word with
c(w) = 1 must be of odd length. �

8.2.4 Global colourization

We introduced the notion of a globally-colourized category of partitions in Definition 4.4.7.
Here, we reformulate the definition and some results for arbitrary compact matrix quantum
groups.

8.2.9 Definition. A compact matrix quantum group G = (C(G),u) is called globally colourized
if the following holds

uiju
∗
kl = u∗kluij . (8.2)
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Assuming G ⊆U+(F), this can be equivalently expressed using the entries of the unitary
representations u = u and u = FūF−1 as

uijukl = uijukl . (8.3)

The following proposition essentially reformulates Lemma 4.4.6 to the setting of repre-
sentation categories. Compare also with Proposition 3.4.10, which is related to Lemma 4.4.3
in a similar way.

8.2.10 Proposition. A compact matrix quantum group G = (C(G),u) is globally colourized
if and only if, for every w1, w2, w′1, w′2 ∈ O ∗ satisfying |w′1| = |w1|, |w′2| = |w2|, c(w′2) − c(w′1) =
c(w2)− c(w1), we have

Mor(u⊗w
′
1 ,u⊗w

′
2 ) = Mor(u⊗w1 ,u⊗w2 ).

Proof. The equality (8.3) can be also expressed as u ⊗ u = u ⊗ u , so it is equivalent to
saying that the identity is an intertwiner between u ⊗u and u ⊗u . From this, the right-left
implication follows directly.

For the left-right implication, from Frobenius reciprocity, it is enough to show the equality
for w1 = w′1 = ∅. It is easy to infer that if the identity is in Mor(u ⊗ u ,u ⊗ u ), we must also
have the identity in Mor(u ⊗u ,u ⊗u ) and hence also in Mor(u⊗w2 ,u⊗w

′
2 ), and Mor(u⊗w

′
2 ,u⊗w2 ),

which implies the desired equality. �

ConsiderH ⊆O+
N (F). It is easy to check that the tensor complexificationH ×̃Ẑk is a globally

colourized quantum group with degree of reflection k for every k ∈ N0. In the following
theorem, we prove the converse for k = 0.

8.2.11 Theorem. Consider G ⊆U+(F) with FF̄ = c1N , c ∈R. Then G is globally colourized with
zero degree of reflection if and only if G =H ×̃ Ẑ, where H = G∩O+(F).

Proof. We denote by u, v, z the fundamental representations of G, H , and Ẑk , respectively. The
quantum group H is the quantum subgroup of G defined by the relation v = v . As mentioned
above, the right-left implication is clear since vij commute with z, so

uijukl = vijzz
∗vkl = z∗vijvklz = uijukl .

Now, let us prove the left-right implication. First, we show that there is a surjective
∗-homomorphism

α:C(G)→ C(H ×̃ Ẑ) ⊆ C(H)⊗max C
∗(Z)

mapping uij 7→ u′ij := vijz. To show this, take any element f ∈ IG. Since IG is Z-homogeneous, we
can assume that f is also Z-homogeneous of some degree l. Then f (u′ij ) = f (vijz) = f (vij )zl = 0.
This proves the existence of such a homomorphism. Its surjectivity is obvious.

Now it remains to prove that α is injective and hence is a ∗-isomorphism. Denote by
ξ ∈Mor(1,u ⊗u ) ⊆ C

N ⊗CN the tensor with entries ξij = 1√
Tr(F∗F)

Fji , which is normalized so

that ξ∗ξ = 1. We construct a ∗-homomorphism

β:C(H)⊗max C
∗(Z)→M2(C(G))

mapping

z 7→ z′ :=
(0 y

1 0

)
, vij 7→ v′ij :=

( 0 uij
uij 0

)
, y := ξ∗(u ⊗u)ξ.

To prove the existence of such a homomorphism, we need the following.
Using the fact that ξξ∗ ∈Mor(u ⊗u ,u ⊗u ) = Mor(u ⊗u,u ⊗u) (the equality follows from

global colourization thanks to Proposition 8.2.10), we derive

yy∗ = ξ∗(u ⊗u)ξξ∗(u∗ ⊗u∗)ξ = ξ∗ξξ∗(uu∗ ⊗uu∗)ξ = 1

and similarly y∗y = 1. From this, we can also deduce z′z′∗ = z′∗z′ = 1.
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Using the fact that 1N ⊗ ξ∗ ∈Mor(u ⊗u ⊗u ,u ) = Mor(u ⊗u ⊗u ,u ), we derive

u y = (1N ⊗ ξ∗)(u ⊗u ⊗u )(1N ⊗ ξ) = u

and similarly yu = u . This allows us to see that v′ijz
′ = z′v′ij = uij 12.

Now, it only remains to show that all relations of the generators vij are satisfied by v′ij . For
this, note that IH is generated by the relations v = v and the ideal IG. For the first part, we use
the assumption FF̄ = c1N to derive

v′ := (12 ⊗F)
( 0 ū
ū 0

)
(12 ⊗F−1) =

( 0 FF̄uF̄−1F−1

FūF−1 0

)
=

( 0 u
u 0

)
= v′ .

For the second part, take any f ∈ IG. Assume it is Z-homogeneous of degree i. Then we have

f (v′ij ) = f (uijz
′∗) = f (uij )z

′−i = 0.

This concludes the proof of existence of β. Now, noticing that β ◦ α is the embedding
of C(G) into diagonal matrices over C(G), we see that α must be injective. �

8.2.12 Remark. We leave the situation for general degree of reflection k ∈N open. Modifying
the proof, it is actually easy to show that, for any globally colourized G with degree of
reflection k, we have

H ×̃ Ẑk ⊆ G ⊆H ×̃ Ẑ.

However, we were unable to prove the inclusionG ⊆H ×̃Ẑk . This problem is actually equivalent
to proving a stronger version of Proposition 8.2.10: Consider G globally colourized with degree
of reflection k. Taking w1,w2 ∈ O l , does it hold that Mor(1,u⊗w1 ) = Mor(1,u⊗w2 ) whenever
c(w1) ≡ c(w2) modulo k?

8.2.5 Tensor complexification
In this section, we will study the tensor complexification (recall Sect. 2.5.3) and its represen-
tation categories.

8.2.13 Theorem. Consider a compact matrix quantum group G = (C(G),v), k ∈N0. Denote
by z the generator of C∗(Zk) and by u := vz the fundamental representation of G ×̃ Ẑk . We have
the following characterizations of G ×̃ Ẑk .

(1) The ideal IG×̃Ẑk
is the Zk-homogeneous part of IG. That is,

IG×̃Ẑk
= {f ∈ IG | fl ∈ IG for every l ∈Zk}.

(2) The representation category of G ×̃ Ẑk looks as follows:

Mor(u⊗w1 ,u⊗w2 ) =
{

Mor(v⊗w1 ,v⊗w2 ) if c(w2)− c(w1) is a multiple of k,
{0} otherwise.

(3) We have G ×̃ Ẑk = 〈G,E ×̃ Ẑk〉. (Here, E denotes the trivial group of the appropriate
size, so E ×̃ Ẑk is the quantum group Ẑk with the representation z⊕ · · · ⊕ z = z1N .)

Proof. For (1), we can express

f (uij ,u
∗
ij ) = f (vijz,z

∗v∗ij ) =
∑
l∈Zk

fl(vijz,z
∗v∗ij ) =

∑
l∈Zk

fl(vij ,v
∗
ij )z

l ,

where f =
∑
l fl is the decomposition of into the homogeneous components fl of degree l. If

all fl ∈ IG, so fl(vij ,v∗ij ) = 0, we have f (vijz,z∗v∗ij ) = 0, so f ∈ IG×̃Ẑk
. Conversely, if there is some

l ∈Zk such that fl < IG, then f (vijz,z∗v∗ij ) , 0 and hence f < IG×̃Ẑk
.
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For (2), first we prove that Mor(1,u⊗w) = Mor(1,v⊗w) if c(w) ∈ kZ. Indeed, we have u⊗w =
(vz)⊗w = zc(w)v⊗w = v⊗w. Secondly, the fact that Mor(1,u⊗w) = {0} if c(w) < kZ follows from
Lemma 8.2.5.

We prove (3) using Proposition 3.4.19. The category corresponding to G ×̃ Ẑk (given by (2))
is indeed the intersection of the category FundRepG and the category FundRepE×̃Ẑk

, whose
morphism spaces are given by

Mor((z1N )⊗w1 , (z1N )⊗w2 ) =
{
C
N if c(w2)− c(w1) is a multiple of k,
{0} otherwise.

�

8.2.14 Remark. An alternative proof of the proposition above could go as follows. One can
easily see that the Zk-extended category associated to G × Ẑk looks as follows

FundRepk-ext
G×Ẑk

(w1,w2) =
{
FundRepG(w′1,w

′
2) if t(w2)− t(w1) is a multiple of k,

{0} otherwise,

where w′1,w
′
2 ∈ O ∗ are created from w1,w2 ∈ Wk mapping 7→ , 7→ , 7→ ∅, 7→ ∅ and

by t(w) we mean the number of white triangles minus the number of black triangles in w
(which is a well-defined element of Zk). The item (2) of the proposition then follows from
Proposition 8.2.3.

8.2.15 Remark. As a consequence of Theorem 8.2.13, we have that

(G ×̃ Ẑk) ×̃ Ẑl = G ×̃ Ẑlcm(k,l)

A direct proof of this statement was formulated already in [TW17, Proposition 8.2].

Already in Section 2.5.3, we mentioned that the glued tensor product is often isomorphic
to the standard one. We characterize this situation for products with Ẑk in Proposition 8.2.17.
Before formulating it, we prove a lemma.

8.2.16 Lemma. Let G ⊆U+(F) be a quantum group with degree of reflection k. Denote by v its
fundamental representation. Consider l ∈N0 and denote by z the generator of C∗(Zl). Then
zk ∈ C(G ×̃ Ẑl) for every l. Consequently, znk0 ∈ C(G ×̃ Ẑl) for every n ∈N0, where k0 := gcd(k, l).

Proof. From Proposition 8.2.6, we can find a vector ξ ∈Mor(1,v⊗w) with c(w) = k and ‖ξ‖ = 1.
Recall that C(G ×̃ Ẑl) is generated by the elements vijz and that vij commute with z, so

C(G ×̃ Ẑl) 3 ξ∗(vz)⊗wξ = ξ∗v⊗wξ zc(w) = zk .

Consequently, znk ∈ C(G ×̃ Ẑk) for every n and obviously {znk}n∈N0
= {znk0 }n∈N0

. �

8.2.17 Proposition. Let G ⊆U+(F) be a quantum group with degree of reflection k. Consider
a number l ∈N0. Then G ×̃Zl ' G ×Zl if and only if k is coprime with l.

Proof. Assume we have G ×̃ Ẑl ' G × Ẑl . Suppose d is a divisor of both k and l. Then we
must have also G ×̃ Ẑd ' G × Ẑd . But from Lemma 8.2.5, we have that G ×̃ Ẑd = G, which is
a contradiction unless d = 1.

For the converse, denote by v the fundamental representation of G and by z the generator
of C∗(Zl). It is enough to show that we have z ∈ C(G ×̃ Ẑl) ⊆ C(G)⊗max C

∗(Zl) since this already
implies the equality of the C*-algebras. This follows directly from Lemma 8.2.16. �

8.2.18 Remark. If l is not coprime with k, but l0 := l/ gcd(k, l) is coprime with k, we can use
Remark 8.2.15, Lemma 8.2.5, and Proposition 8.2.17 to obtain

G ×̃Zl = (G ×̃Zgcd(k,l)) ×̃Zl0 = G ×̃Zl0 ' G ×Zl0 .

Finally, we are going to characterize irreducible representations of the tensor complexifi-
cation. Recall Theorem 2.5.6 characterizing irreducibles of the standard tensor product.
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8.2.19 Proposition. Let G ⊆U+(F) be a quantum group with degree of reflection k. Consider ar-
bitrary l ∈N0. Then G ×̃ Ẑl has the following complete set of mutually inequivalent irreducible
representations

{uαzki+dα | α ∈ IrrG, i = 0, . . . , l0 − 1}, (8.4)

where l0 = l/ gcd(k, l) and z is the generator of C∗(Zk).

Proof. Since G has degree of reflection k, the ideal IG is Zk-homogeneous by Proposition 8.2.6.
This means that the algebra PolG is Zk-graded assigning vij degree one and v∗ij degree minus
one, where v is the fundamental representation of G. Consequently, the entries of any irre-
ducible representation uα , α ∈ IrrG are Zk-homogeneous of some degree dα (recall Sect. 8.2.1).

By Theorem 8.2.13, IG×̃Ẑl
is the Zl-homogeneous part of IG. Consequently, IG×̃Ẑl

is Zlcm(k,l)-
homogeneous and Pol(G ×̃ Ẑl) is Zlcm(k,l)-graded. However, this time the degree is computed
with respect to the variables uij := vijz.

The irreducible representation of the standard tensor product G × Ẑl are described by
Theorem 2.5.6. Namely, those are exactly all uαzn with α ∈ IrrG, n = 0, . . . , l − 1. Recall
from Corollary 3.3.3, that the irreducibles of G ×̃ Ẑl form a subset of irreducibles of G × Ẑl .
Hence, we need to determine all the pairs (α,n) such that uαzn is a matrix with entries in
C(G ×̃ Ẑl) ⊆ C(G × Ẑl).

We first prove that every irreducible of G ×̃ Ẑl is equivalent to one from Eq. (8.4). As
we just mentioned, it must be of the form uαzn for some α,n. Since it is a representation of
G ×̃ Ẑl , it must be a subrepresentation of u⊗w = v⊗wzc(w) for some w ∈ O ∗. Consequently, uα is
a subrepresentation of v⊗w, so dα ≡ c(w) modulo k. In addition, we must also have n ≡ c(w)
modulo l. As a consequence, n ≡ dα modulo k0 := gcd(k, l). Thus, we must have n = k0i + dα for
some i ∈Z. Obviously, {zk0i+dα }i∈Z = {zki+dα }l0i=1.

For the converse inclusion, we need to show that the entries of uαzki+dα are elements of
C(G ×̃ Ẑl) for every α,i. Since uα is an irreducible representation of G, it must be a subrepresen-
tation of v⊗w for some w ∈ O ∗. Consequently, uαzc(w) is a subrepresentation of u⊗w = v⊗wzc(w).
Hence, it is a representation of G ×̃ Ẑl . From Lemma 8.2.16, it follows that also uαzki+c(w)

is a representation of G ×̃ Ẑl . Since dα ≡ c(w) modulo k, this is equivalent to considering
representations uαuki+dα . �

8.2.6 Free complexification

The goal of this section is to characterize the representation categories of the free complexifica-
tions, that is, the quantum groups H ∗̃ Ẑl . For the free complexification, we do not have many
results yet even in the easy case. In [TW17], the two-coloured categories corresponding to free
complexifications of free orthogonal easy quantum groups are provided. For us, the motivating
result is Proposition 6.4.15 linking the free complexification by Z2 with the category AltC
generated by alternating coloured partitions. This proposition was proven with the help of
categories of partitions with extra singletons describing the dual free product with Z2 and the
functor F describing the gluing procedure. Also here, we will make use of the Zl-extended
representation categories describing the dual free product H ∗̂ Ẑl and then we will glue the
factors and apply Proposition 8.2.3 to find the corresponding representation category. An
interesting result is that the free complexification H ∗̃ Ẑl actually does not depend on the
number l unless the degree of reflection of H equals to one.

8.2.20 Definition. A monomial of even length of the form xi1j1x
∗
i2j2
xi3j3x

∗
i4j4
· · · ∈ C〈xij ,x∗ij〉, where

the variables with and without star alternate, is called alternating. A linear combination of
alternating monomials, where either all start with a non-star variable or all start with a star
variable, is called an alternating polynomial. A quantum group G is called alternating if IG
is generated by alternating polynomials.
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Considering a compact matrix quantum group G ⊆ U+(F) with unitary fundamental
representation u, recall the notation u := u, u := FūF−1. So, the relations of G can be
alternatively expressed by polynomials in variables uij , uij instead of uij and u∗ij . Since the
transformation between those two sets of variables is linear, the definition of an alternating
quantum group can be stated in unchanged form also using the alternative ideal.

8.2.21 Lemma. Let H be a compact matrix quantum group, k, l ∈N0 such that gcd(k, l) , 1
(using the convention gcd(0, k) = k). Then we have

H ∗̃ Ẑ = (H ×̃ Ẑk) ∗̃ Ẑl .

Proof. We denote by v, z, r, s the fundamental representations of H , Ẑ, Ẑk , and Ẑl , respectively.
We need to find a ∗-isomorphism C(H ∗̃ Ẑ)→ C((H ×̃ Ẑk) ∗̃ Ẑl) mapping vijz 7→ vijsr.

First, we see that there exists a ∗-homomorphism

α:C(H) ∗
C
C∗(Z)→ (C(H)⊗max C

∗(Zk)) ∗C C∗(Zl)

mapping
vij 7→ vij , z 7→ sr.

since sr is a unitary.
This ∗-homomorphism then restricts to a surjective ∗-homomorphism of the form we are

looking for. It remains to prove that it is injective. To prove this, we construct a ∗-homo-
morphism

β: (C(H)⊗max C
∗(Zk)) ∗C C∗(Zl)→Md

(
C(H) ∗

C
C∗(Z)

)
mapping

vij 7→


vij 0

. . .
0 vij

 , s 7→


1

1
. . .

1

 , r 7→


z∗

1
. . .

1
z

 ,
where d , 1 is some common divisor of k and l.

We can check that the images satisfy all the defining relations between the generators, so
such a homomorphism indeed exists. Now, we can see that β ◦α is injective, so α must be
injective. Thus, the restriction of α we are interested in is also injective. �

Now, we describe the representation category ofH ∗̃Ẑl for arbitraryH and l. As we indicated
in the beginning of this section, the strategy is to first describe the Zl-extended representation
category associated to the dual free product H ∗̂ Ẑl and then to obtain the representation
category of its glued version – the glued free product H ∗̃ Ẑl – using Proposition 8.2.3. Recall
the notation for Zl-extended categories from Section 8.1.3. Recall also the alternative definition
of O -coloured representation category from Section 8.1.2.

8.2.22 Proposition. Let H be a compact matrix quantum group and l ∈N. Then the Zl-ex-
tended category FundRepl-ext

H ∗̂Ẑl
is generated by the collection C(ι(w1), ι(w2)) := FundRepH (w1,w2),

where ι:O ∗ →Wl is the injective homomorphism mapping 7→ , 7→ . Moreover, we have
the following inductive description. If w ∈ Wk contains no triangles, i.e. w = ι(w′) for some
w′ ∈ O ∗, then

FundRepl-ext
H ∗̂Ẑl

(∅,w) = FundRepH (∅,w′).

Otherwise,

FundRepl-ext
H ∗̂Ẑl

(∅,w) =

Rw0 (ξ1 ⊗ · · · ⊗ ξl)

∣∣∣∣∣∣∣
w = w0 w1 · · · wl

ξi ∈ FundRepl-ext
H ∗̂Ẑl

(∅,wi), i = 1, . . . , l − 1

ξl ∈ FundRepl-ext
H ∗̂Ẑl

(∅,wlw0)

 .
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Proof. Let C be the Zl-extended category generated by C. Then the associated quantum
group G = (C(G),v ⊕ z) is a quantum subgroup of U+(F) ∗̂ Ẑl defined by the relations of H for v
and no relations for z (except for zz∗ = z∗z = 1 = zl). But this is exactly the free product H ∗̂ Ẑl .
Now, it remains to prove that C is given by the above described recursion.

The inclusion ⊇ follows from the fact that C has to be closed under the category operations.
To check the inclusion ⊆, it is enough to check that the right-hand side defines a category. That
is, we need to check that it is closed under tensor products, contractions, rotations, inverse
rotations, and reflections as defined in Sect. 8.1.2. Checking this is straightforward using
induction. Nevertheless it may become a bit lengthy to check all the details. We will do it here
for the rotation and tensor product.

So, denote the sets given by the inductive description by C̃. If we take words w without
triangles, that is, w = ι(w′), then the sets C̃(∅,w) = FundRepH (∅,w′) are closed under all the
operations since FundRepH is a category. To show closedness under rotations in general,
we do an induction on the length of the word w. So, consider an element ξ ∈ C̃(∅,w) with
w = w0 w1 · · · wl , so it is of the form ξ = Rw0 (ξ1 ⊗ · · · ⊗ ξl). First, suppose that wl is not empty
and denote by x its last letter. Then we directly have Rxξ = Rxw0 (ξ1 ⊗ · · · ⊗ ξl) ∈ C̃(∅,Rw).
For the case wl = ∅, note that R = id. So, we need to check that C̃(∅, w0 w1 · · · wl−1) 3 ξ =
(Rw0ξl)⊗ξ1⊗ · · ·⊗ξl−1. This is true thanks to the fact that Rw0ξl ∈ C̃(∅,w0) by induction. For the
inverse rotations, the proof goes exactly the same way.

Now, we can also prove closedness under the tensor product. Take ξ ∈ C̃(∅,w), η ∈ C̃(∅,w′).
We will do the induction on the length of w. Actually, we can assume that |w| ≥ |w′ | since we
can swap the factors by rotation: η ⊗ ξ = Rw

′
(ξ ⊗R−w′η). So, assume w = w0 w1 · · · wl , so ξ is

of the form ξ = Rw0 (ξ1 ⊗ · · · ⊗ ξl) ∈ C̃(∅,w0 w1 · · · wl). Then we have

ξl ∈ C̃(∅,wlw0) by assumption,

Rw0ξl ∈ C̃(∅,w0wl) by closedness under rotations,

Rw0ξl ⊗ η ∈ C̃(∅,w0wlw
′) by induction hypothesis,

ξ̃l = R−w0 (Rw0ξl ⊗ η) ∈ C̃(∅,wlw′w0) by closedness under inverse rotations,

ξ ⊗ η = Rw0 (ξ1 ⊗ . . .⊗ ξl−1 ⊗ ξ̃l) ∈ C̃(∅,w0 w1 · · · wlw′) by definition of C̃. �

8.2.23 Lemma. We can arrange the recursion of the above proposition in such a way that the
words w1, . . . ,wl−1 contain no triangles, so we have

FundRepl-ext
H ∗̂Ẑl

(∅,w) =

Rw0 (ξ1 ⊗ · · · ⊗ ξl)

∣∣∣∣∣∣∣
w = w0 w1 · · · wl

ξi ∈ FundRepH (∅,w′i), i = 1, . . . , l − 1
ξl ∈ FundRepl-ext

H ∗̂Ẑl
(∅,wlw0)

 .
Proof. We prove this by induction. Take an arbitrary word w ∈Wl and suppose that the above
description works for any shorter word. Now consider an element ξ ∈ FundRepl-ext

H ∗̂Ẑl
(∅,w), so

it is of the form ξ = Rw0 (ξ1 ⊗ · · · ⊗ ξl) corresponding to the decomposition w = w0 w1 · · · wl .
Suppose now that wi contains some triangles for some i ∈ {1, . . . , l − 1}. By induction hypothesis,
we can write ξi = Ra0 (η1 ⊗ · · · ⊗ ηl) corresponding to wi = a0 a1 · · · al , where a1, . . . , al−1 contain
no triangles, so ηi ∈ FundRepH (∅, a′i). But this means that we can write also

ξ = Rw0···wi−1a0 (η1 ⊗ · · · ⊗ ηl−1 ⊗ η̃l),
where

η̃l = R−a0 (Ra0ηl ⊗ ξi+1 ⊗ · · · ⊗ ξl ⊗R−w1ξ1 ⊗ · · · ⊗R−wi−1ξi−1)

∈ FundRepl-ext
H ∗̂Ẑl

(∅, al wi+1 · · · wlw0 w1 · · · wi−1 a0). �

In the following theorem, we describe the representation category of the free complex-
ification. In the formulation, we use the following notation. Given an element w ∈ O ∗ or
w ∈Wl , we use negative powers to indicate the colour inversion, that is, w−j = w̄j . For example,
( )−2 = ( )2 = .

158



8.2 Representation categories of glued products

8.2.24 Theorem. Let H be a compact matrix quantum group with degree of reflection k , 1.
Then all H ∗̃ Ẑl coincide for all l ∈ N0 \ {1}. The ideal IH ∗̃Ẑl

is generated by the alternating
polynomials in IH . The representation category FundRepH ∗̃Ẑl

is a (wide) subcategory of the
representation category FundRepH generated by the sets C(∅, ( )j ) := FundRepH (∅, ( )j ), j ∈Z.
This also holds if k = 1 and l = 0.
Proof. Let I ⊆C〈xij ,x∗ij〉 be the ideal generated by the alternating polynomials in IH . Denote
by uij = vijz the fundamental representation of H ∗̃ Ẑl . To prove that I ⊆ IH ∗̃Ẑl

, take any
alternating polynomial f ∈ IH . If all monomials in f start with a non-star variable, we have
f (vijz) = f (vij ) = 0; if all monomials start with a star variable, then f (vijz) = z∗f (vij )z = 0. In
both cases, we have proven that f ∈ IH ∗̃Ẑl

. The opposite inclusion I ⊇ IH ∗̃Ẑl
will follow from the

statement about representation categories as all the relations corresponding to the elements
of C are alternating.

Note that it is enough to prove the statement for k , 1 and l , 0. Indeed, for k , 1 and
l = 0, we have by Lemma 8.2.21 that H ∗̃ Ẑ =H ∗̃ Ẑk . For k = 1, l = 0 we use Lemma 8.2.21 to
express H ∗̃ Ẑ = (H ×̃ Ẑ2) ∗̃Zl . Since c(( )j ) = 0 ∈ 2Z for every j, we have FundRepH (∅, ( )j ) =
FundRepH×̃Ẑ2

(∅, ( )j ).
So, let C be the two-coloured representation category generated by C. We need to prove that

FundRepH ∗̃Ẑl
(∅,w) = C(∅,w) for every w ∈ O ∗. In order to do that, we will use Proposition 8.2.3,

whose statement can be, in this case, formulated as

FundRepH ∗̃Ẑl
(∅,w) = FundRepl-ext

H ∗̂Ẑl
(∅, w̃), (8.5)

where w̃ ∈Wl is the glued version of w ∈ O ∗.
Let us start with the easier inclusion ⊇. Since FundRepH ∗̃Ẑl

is a category, it is enough to
show that FundRepH ∗̃Ẑl

(∅,w) ⊇ C(∅,w) for every w = ( )j , j ∈ Z. Note that the glued version
of w is in this case w̃ = ( )j = ( )j . Combining Proposition 8.2.22 and Equation (8.5), we
have

C(∅, ( )j ) = FundRepH (∅, ( )j ) = FundRepH ∗̂Ẑk
(∅, ( )j ) = FundRepH ∗̃Ẑl

(∅, ( )j ).

We will prove the opposite inclusion ⊆ by induction on the length of w. Take some

ξ ∈ FundRepH ∗̃Ẑl
(∅,w) = FundRepl-ext

H ∗̂Ẑl
(∅, w̃).

Suppose ξ , 0. According to Lemma 8.2.23, we can assume that w̃ = w0 w1 · · · wl , where
w1, . . . ,wl−1 contain no triangles, and then ξ = Rw0 (ξ1 ⊗ · · · ⊗ ξl) with ξi ∈ FundRepH (∅,w′i) and
ξl ∈ FundRepH ∗̂Ẑl

(∅,wlw0). Since w̃ is the glued version of w, this means that in all the words
w1, . . . ,wl−1 the colours alternate (two consecutive white squares would necessarily have a white
triangle between them, two consecutive black squares would have = l−1 between them).
Moreover, since we assume ξi , 0, we must have c(w′i) ∈ kZ and, since k , 1, this means that
the wi ’s are of even length. So, wi = ( )ji , w′i = ( )ji .

Finally note that if we delete or from some word w, its glued version will be given by
deleting resp. . In particular, denote by ŵ the element w after deleting all the subwords
w′1, . . . ,w

′
l−1. Its glued version is then w0

lwl = w0wl . Using the induction hypothesis, this
finishes the proof as we have

ξ = Rw0 (ξ1 ⊗ · · · ⊗ ξl)
with

ξi ∈ FundRepH (∅,w′i) = FundRepH (∅, ( )ji ) = C(∅, ( )ji ) for i = 1, . . . , l − 1

Rw0ξl ∈ FundRepH ∗̂Ẑ2
(∅,w0wl) = FundRepH ∗̃Ẑ2

(∅, ŵ) = C(∅, ŵ). �

We may ask what happens if we iterate those free complexifications. The following
statement was again already formulated in [TW17]; however, without a proof. (Note that it
generalizes Lemma 8.2.21 dropping the assumption gcd(k, l) , 1.)
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8.2.25 Proposition. Let H be a compact matrix quantum group, k, l ∈N0 \ {1}. Then

(H ×̃ Ẑk) ∗̃ Ẑl = (H ∗̃ Ẑk) ∗̃ Ẑl =H ∗̃Z.

Proof. The second equality follows directly from Theorem 8.2.24 – we see that iterating the op-
eration on the categories for the second time cannot change it since FundRepH (∅, ( )j ) =
FundRepH ∗̃Ẑk

(∅, ( )j ). For the first equality, we use, in addition, Theorem 8.2.13. Since
c(( )j ) = 0, we have FundRepH×̃Ẑk

(∅, ( )j ) = FundRepH (∅, ( )j ). �

Again, we can ask in what situations does it happen that the glued free product H ∗̃ Ẑl is
isomorphic to the standard one. Obviously, the necessary condition is that H has degree of
reflection one sinceH ∗̃Ẑl 'H ∗̂Ẑl impliesH ×̃Ẑl 'H×Ẑl and here we can use Proposition 8.2.17.
We can formulate the converse in the case of globally-colourized quantum groups H (in
particular, if H ⊆O+(F)).

8.2.26 Proposition. LetH be a globally colourized compact matrix quantum group with degree
of reflection one. Then H ∗̃ Ẑk 'H ∗̂ Ẑk for every k ∈N0.

Proof. Denote by v the fundamental representation of H and by z the generator of C∗(Zk).
Again, it is enough to show that we have z ∈ C(H ×̃ Ẑk) ⊆ C(H) ⊗max C

∗(Zk) since this al-
ready implies the equality of the C*-algebras. From Proposition 8.2.6, we can find a vec-
tor ξ ∈ Mor(1,v⊗w) with c(w) = 1 and ‖ξ‖ = 1. Since H is globally colourized, we have
Mor(1,v⊗w) = Mor(1,v⊗w̃), where w̃ = . . . , |w̃| = |w|. For such a word, we have (vz)⊗w̃ =
(v z)(z∗v )(v z) · · · (v z) = v⊗w̃z, so

ξ∗(vz)⊗w̃ξ = ξ∗(v⊗w̃z)ξ = ξ∗ξ z = z. �

8.2.7 Free complexification of orthogonal quantum groups

In this section, we will study more in detail the free complexification H ∗̂ Ẑk with H ⊆O+(F).
Recall from Section 2.3.3 that we define O+(F) ⊆U+(F) only for F satisfying FF̄ = c1N for some
c ∈R. We will use this assumption in the whole section.

8.2.27 Definition. A quantum group G = (C(G),u) ⊆ U+(F) with FF̄ = cI is called invariant
with respect to the colour inversion if the map uij 7→ [FūF−1]ij extends to a ∗-isomorphism.

Let us explain a bit this definition. First of all, note that the required ∗-homomorphism
maps

uij 7→ uij , uij 7→ uij .

Indeed, the first assignment is exactly the definition. For the second one, we have

uij = [FūF−1]ij 7→ [FF̄uF̄−1F−1]ij = uij

thanks to the assumption FF̄ = c1N . In the Kac case F = 1N , the homomorphism maps uij 7→ u∗ij .
But let us stress that for general elements of C(G) the homomorphism does not coincide with
the ∗-operation (simply because the ∗ is not a homomorphism).

Secondly, we have the following alternative formulations.

8.2.28 Proposition. Consider G = (C(G),u) ⊆ U+(F) with FF̄ = c1N . Then the following are
equivalent.

(1) C(G) has an automorphism uij ↔ uij . That is, G is invariant w.r.t. the colour inversion.
(2) IG is invariant w.r.t. xij ↔ xij . More precisely, we mean one of the following equivalent

conditions.

(a) IG is invariant w.r.t. the ∗-homomorphism mapping xij 7→ xij
(b) IG is invariant w.r.t. the homomorphism mapping xij 7→ xij and xij 7→ xij .
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(3) FundRepG is invariant w.r.t. ↔ . That is, FundRepG(w̄1, w̄2) = FundRepG(w1,w2).

Proof. The equivalence (1)⇔ (2a) follows from the universal property of C(G).
For (1)⇒ (3), take T ∈ FundRepG(w1,w2), so T u⊗w1 = u⊗w2T . Applying the automorphism,

we get T u⊗w̄1 = u⊗w̄2T , so T ∈ FundRepG(w̄1, w̄2).
For (3) ⇒ (2b), we use the Tannaka–Krein, namely the fact that IG is spanned by the

relations of the form T x⊗w1 = x⊗w2T . Those relations are invariant with respect to the homo-
morphism x 7→ x , x 7→ x since this homomorphism maps xw 7→ xw̄. Consequently, the whole
ideal IG must be invariant with respect to this homomorphism.

The implication (2b)⇒ (1) again follows from the universal property of C(G). We get that
uij 7→ uij , uij 7→ uij extends to a homomorphism C(G)→ C(G). Using the assumption FF̄ = c1N ,
we can show this actually must be a ∗-homomorphism. �

As an example, note that all the universal unitary quantum groups U+(F) with FF̄ = c1N
have this property. In addition, any quantum group G ⊆O+(F) has this property.

8.2.29 Theorem. Consider G ⊆U+(F) with FF̄ = c1N . Then G is alternating and invariant with
respect to the colour inversion if and only if it is of the form G =H ∗̃ Ẑ, where H = G∩O+(F).

Proof. The right-left implication follows from Theorem 8.2.24: The fact thatH ∗̃Ẑ is alternating
is precisely the statement of Theorem 8.2.24. As we mentioned above, H ⊆ O+(F) is surely
invariant with respect to the colour inversion. According to Proposition 8.2.28, this is equivalent
to saying that the associated category FundRepH is invariant with respect to the colour inversion.
In particular, we must have FundRepH (∅, ( )j ) = FundRepH (∅, ( )j ), which are the generators
of FundRepH ∗̃Ẑ according to Theorem 8.2.24. Consequently, also H ∗̃ Ẑ must be invariant with
respect to the colour inversion.

In order to prove the left-right implication, we construct a surjective ∗-homomorphism

α:C(G)→ C(H ∗̃Z)

mapping uij 7→ u′ij := vijz. To prove that such a homomorphism exists, take any alternating
element f ∈ IG. Since H ⊆ G, we have f (vij ) = 0. We need to prove that f (u′ij ) = 0. If all terms
of f start with a non-star variable, then f (u′ij ) = f (vijz) = f (vij ) = 0; if all terms start with a star
variable, then f (u′ij ) = z∗f (vij )z = 0.

It remains to prove that α is injective. To do that, we define a ∗-homomorphism

β:C(H) ∗
C
C∗(Z)→M2(C(G))

mapping

vij 7→ v′ij :=
( 0 uij
uij 0

)
, z 7→ z′ :=

(0 1
1 0

)
.

We immediately see that indeed z′z′∗ = z′∗z′ = 1. In exactly the same way as in the proof of
Theorem 8.2.11, we also prove that v′ := (12 ⊗F)v̄′(12 ⊗F−1) = v′ =: v′ . Finally, take f ∈ IG and,
for convenience, use the representation in variables uij and uij . Suppose f (xij ,xij ) is alternating
such that all variables start with xij . We have

f (v′ij ,v
′
ij ) =

(
f (uij ,uij ) 0

0 f (uij ,uij )

)
= 0,

where f (uij ,uij ) = 0 directly by f ∈ IG and f (uij ,uij ) by invariance under the colour inversion.
Since obviously β ◦α is injective, we have proven that α is a ∗-isomorphism. �

Considering a quantum group H = (C(H),v) ⊆ O+(F), we have H ×̃ Ẑk ⊆ H ×̃ Ẑ ⊆ H ∗̃ Ẑ.
We express those subgroups in terms of relations in the variables uij = vijz. Of course, those
subgroups are given by the relations vijz = zvij and zk = 1, but those may not be well-defined
in C(H ∗̃ Ẑ) as we may not have z ∈ C(H ∗̃ Ẑ).

161



8. From partition categories to general CMQGs

8.2.30 Proposition. Consider H ⊆O+(F). Then H ×̃ Ẑ is a quantum subgroup of H ∗̃ Ẑ given by
the relation

uijukl = uijukl . (8.6)

For k ∈N, H ×̃ Ẑ2k is a quantum subgroup of H ×̃ Ẑ with respect to the relation

ui1j1 · · ·uikjk = ui1j1 · · ·uikjk . (8.7)

Before proving the statement, note that Relations (8.6) and (8.7) correspond to the two-
coloured partitions ⊗ and ⊗k , respectively. Hence, those are exactly the same relations that
were used to construct the quantum groups H ×̃ Ẑ and H ×̃ Ẑ2k in Theorem 6.2.4.
Proof. Relation (8.6) is the relation of global colourization (see Def. 8.2.9) and it is obviously
satisfied in H ×̃ Ẑ. We just need to show that imposing this relation is enough. By Corol-
lary 3.4.13 and Theorem 8.2.13, the ideal IH×̃Ẑ is generated by relations of the form u⊗wξ = ξ,
where ξ ∈ FundRepH×̃Ẑ(∅,w) = FundRepH (∅,2l), c(w) = 0, l := |w| /2. In H ∗̃ Ẑ, we have a relation
of the form u⊗( )lξ = ξ. The former relation can surely be derived from the latter one and
Relation (8.6) since it is obtained just by permuting the white and black circles.

The second statement is proven in a similar way. If we denote uij = vijz, then Relations (8.7)
say vi1j1 · · ·vikjkz

k = vi1j1 · · ·vikjkz
−k , which is surely satisfied in H ×̃ Ẑ2k . For the converse, the

ideal IH×̃Ẑk
is generated by relations of the form u⊗wξ = ξ, where ξ ∈ FundRepH×̃Ẑ(∅,w) =

FundRepH (0,2l), where c(w) is a multiple of 2k and l := |w| /2. Again, this relation can be
derived from u⊗( )lξ = ξ using Rel. (8.6) to permute colours and Rel. (8.7) to swap colours of k
consecutive white points to black or vice versa. �

Finally, since Theorem 8.2.24 is rather new – it is not just a straightforward generalization
of what we know from partition categories – let us formulate it now also in the language of
partitions. The following proposition generalizes Proposition 6.4.15. We formulate it now
in terms of linear combinations of partitions. The formulation for ordinary partitions was
mentioned already as Proposition 6.2.8.
8.2.31 Proposition. LetK ⊆ PartN be a linear category of partitions and denote by H ⊆O+

N the
corresponding quantum group. Then H ∗̃ Ẑ ⊆U+

N corresponds to the category AltK . Moreover,
the following holds.

(1) If 0 , p ∈K (0, l) for some l odd, then H ∗̃ Ẑk corresponds to the category 〈AltK , p̃⊗k〉,
where p̃ is the partition p with colour pattern · · · .

(2) IfK (0, l) = {0} for all l odd, then H ∗̃ Ẑk =H ∗̃ Ẑ for all k ∈N.

Proof. The base statement thatH ∗̃Ẑ corresponds to AltK follows directly from Theorem 8.2.24.
By Proposition 8.2.8, the distinction of the cases correspond to the situation that either (1)H has
degree of reflection one or (2) H has degree of reflection two. So, item (2) is also contained in
Theorem 8.2.24.

For item (1), denote by w := · · · the word of length l with alternating colours. Since H
has degree of reflection one, we have H ∗̃ Ẑm 'H ∗̂ Ẑm for every m ∈N0 by Proposition 8.2.26.
We can actually prove this directly repeating the proof of Prop. 8.2.26: Denote by v the
fundamental representation of H and by z the fundamental representation of Ẑm. Then since
we have v⊗lξp = ξp, we must have

C(H ×̃ Ẑm) 3 ξ∗pu⊗wξp = ξ∗p(v⊗lz)ξp = z
∥∥∥ξp∥∥∥ .

Now, H ∗̃ Ẑk is just a quantum subgroup of H ∗̃ Ẑ with respect to the relation zk = 1. Note that

u⊗w
k
ξ⊗kp = (v⊗klzk)ξ⊗kp = ξ⊗kp z

k .

So, the relation zk = 1 can be written as u⊗w
k
ξ⊗kp = ξ⊗kp , which is exactly the relation correspond-

ing to p̃. �
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8.3 Interpolating products
In this section, we define quantum group product constructions interpolating the free product
G ∗̂H and the tensor product G ×H , for any given pair of quantum groups G and H . It is a
generalization of the construction of the Z2-extensions introduced in Section 6.4.5.

8.3.1 Definition. Let G and H be compact matrix quantum groups and denote by u and v their
respective fundamental representations. We define the following quantum subgroups of G ∗̂H .
The product G ××H is defined by taking the quotient of C(G ∗̂H) by the relations

ab∗x = xab∗, a∗bx = xa∗b. (8.8)

The product G ×× H is defined by the relations

ax∗y = x∗ya, axy∗ = xy∗a. (8.9)

The product G ×0 H by the combination of all Relations (8.8) and (8.9). Finally, given k ∈N,
the product G ×2k H is defined by the relations

a1x1 · · ·akxk = x1a1 · · ·xkak , (8.10)

where a,b,a1, . . . , ak ∈ {uij} and x,y,x1, . . . ,xk ∈ {vij}. (Equivalently, we can assume a,b,a1, . . . , ak ∈
span{uij} and x,y,x1, . . . ,xk ∈ span{vij}.)
8.3.2 Theorem. Consider quantum groups G,H . Then the products from Definition 8.3.1 are
indeed well-defined quantum groups. We have the following inclusions

G ∗̂H ⊇ G ××H ⊇
⊇ G ×× H ⊇ G ×0 H ⊇ G ×2k G ⊇ G ×2l H ⊇ G ×2 H = G ×H,

where we assume k, l ∈N such that l divides k. The last three inclusions are strict if and only if
the degree of reflection of both G and H is different from one (assuming, of course, k > l > 1).

Proof. It is a direct verification that in all cases the relations generate a Hopf ∗-ideal, so they
provide a good definition of quantum subgroups. Alternatively, it follows from the fact that
all the relations come from some intertwiners as described below.

Denote by u the fundamental representation of G and by v the fundamental representation
of H . Without loss of generality, we can assume that both u and v are unitary representations
since any representation of a quantum group is similar to a unitary one. Let us use the white
circle as the symbol for the representation u and the black circle for the unitarization
u = F1ūF

−1
1 . We use the white square for v and the black square for the unitary v = F2v̄F

−1
2 .

Then the relations are actually partition relations corresponding respectively to the partitions
, , , , and ( )⊗k .
We can use the partition calculus to show that Relations (8.10) imply both (8.8) and (8.9)

for any k ∈N. Indeed, rotating ( )⊗k , we get ( )⊗k . Then, using compositions with the pair
partitions, one can contract the tensor product ( )⊗k ⊗ ( )⊗k to the partition , which
can then be rotated to . The other partitions can be obtained similarly. All the remaining
inclusions are clear. Note that the partition calculus is just a shorthand for manipulating with
the corresponding intertwiners and hence with the corresponding relations. This works also if
the quantum group is not fully described by a category of partitions, in which case we may be
able to handle just a part of its representation theory by partitions. All of the arguments here
can be translated into direct manipulations with the relations themselves (using the unitarity
relations as well).

It remains to prove the statement about strictness. Denote by m the degree of reflection
of G and by n the degree of reflection of H (recall Definition 8.2.4). First, suppose that m and n
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are both different from one. Then it is sufficient to prove the strictness for the corresponding
subgroups Ẑm and Ẑn. So, we need to prove the strictness of the following inclusions

Ẑm ×0 Ẑn ⊇ Ẑm ×2k Ẑn ⊇ Ẑm ×2l Ẑn,

Directly from the definition, we have Ẑm ×0 Ẑn = Ẑm ∗̂ Ẑn = �Zm ∗Zn. Indeed, the matrices
u and v in this case have only one entry, say a and x. The Relations (8.8) then become trivial:

aa∗x = x = xaa∗, a∗ax = x = xa∗a

and likewise the relations (8.9).
For m = n = 2, we have that Ẑ2 ×2k Ẑ2 is the dual of the dihedral group of order 4k,

so we indeed have the strictness here. For general m and n, let us just briefly sketch the
proof. From the definition, we have that Ẑm ×2k Ẑn is the dual of the finitely presented group
〈a,b | an = 1 = bm, (ab)k = (ba)k〉. We need to prove that (ab)l , (ba)l . To do so, let us further
divide the relation (ab)k = 1. We obtain the so-called von Dyck group D(m,n,k), which has an
action on a (possibly non-Euclidean) plane. From this action, we can see that (ab)l and (ba)l are
indeed different for l < k (unless m = n = 2).

Now, assuming m = 1, we are going to show that G ××H = G ×H . Consider a Z-grading
on the polynomials C〈xij ,x∗ij〉 assigning the degree one to the variables xij and degree minus
one to the variables x∗ij . Then Relations (8.8) are equivalent to f (uij ,u∗ij )x = xf (uij ,u∗ij ) for any
x ∈ {vij} and f a homogeneous polynomial of degree zero. From Proposition 8.2.6, we have
that there exists a non-zero intertwiner T ∈Mor(u⊗w,1) with c(w) = 1. This means that there
is a polynomial g of degree minus one such that g(uij ,u∗ij ) = 1. Taking any a ∈ {uij} and x ∈ {vij},
we have that ag(uij ,u∗ij ) is a polynomial in uij of degree zero. Hence, we have

ax = ag(uij ,u
∗
ij )x = xag(uij ,u

∗
ij ) = xa. �

We could continue inventing other relations coupling somehow the factors C(G) and C(H)
using partitions. We believe however, that the above mentioned definition is the most natural.
Nevertheless, as an example of a different possibility, let us define the following.

8.3.3 Definition. Let G and H be quantum groups. Suppose G has a one-dimensional represen-
tation s and H has a one-dimensional representation r. Then we define G s ∗̂rkH to be a quantum
subgroup of G ∗̂H given by the relation (sr)k = 1.

It is easy to check that this relation indeed defines a quantum subgroup. One way to
see that this subgroup should not coincide with the tensor product (at least if G and H
are “non-trivial enough”) is to notice that the relation is non-crossing in the following sense.
Consider T1 ∈ Mor(u⊗k1 , s) and T2 ∈ Mor(u⊗k2 , r). Then imposing the relation means adding
the intertwiner (T1 ⊗ T2)⊗k to Mor((u ⊕ v)⊗2k ,1), which is a tensor product of intertwiners
acting non-trivially either just on u or just on v (compare with the definition of non-crossing
partitions). In particular, if G ⊆ B#+

N1
, so we can consider s :=

∑
k uik , and H ⊆ B#+

N2
, so we can

consider r :=
∑
k vik , then the relation (sr)k = 1 corresponds to ( ⊗ )⊗k .

This particular construction and many other relations that couple some one-dimensional
subrepresentations of the factors G and H were already described in [Fre19, Section 5].

8.4 Ungluing
The purpose of this section is to reverse the gluing procedure from Definitions 6.4.10, 8.2.1.
The motivating result is the one-to-one correspondence formulated in terms of partition
categories in Theorem 4.6.8. The functor F providing this correspondence translates to the
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quantum group language exactly in terms of gluing. In this section, we aim to generalize the
result outside easy quantum groups.

Recall from Def. 8.2.1 that given a quantum group G ⊆ U+(F) ∗̂ Ẑk with fundamental
representation u = v ⊕ z, we define its glued version to be the quantum group G̃ ⊆U+(F) with
fundamentar representation ũ := vz and underlying C*-algebra C(G̃) ⊆ C(G) generated by the
elements vijz.

8.4.1 Definition. Consider G̃ ⊆U+(F), k ∈N0. Then any G ⊆U+(F) ∗̂ Ẑk such that G̃ is a glued
version of G is called a Zk-ungluing of G̃.

In Section 8.4.1, we are going to study the ungluings in general and show that they always
exist. Unsurprisingly, an ungluing of a quantum group is not defined uniquely. The ungluings
introduced in Section 8.4.1 are universal, but not particularly interesting. In Section 8.4.2,
we are going to study more interesting ungluings of the form G ⊆O+(F) ∗̂ Ẑ2, which allow us
to generalize the one-to-one correspondence from Theorem 4.6.8. We formulate the result as
Theorem 8.4.13, which constitutes the main result of this section.

8.4.1 General ungluings

8.4.2 Proposition. There exists a Zk-ungluing for every quantum group G̃ and for every k ∈N0.
Namely, we have the trivial Zk-ungluing G̃ ×E, where E ⊆ Ẑk is the trivial group. Moreover,
G̃ × Ẑk is an ungluing of G̃ whenever k divides the degree of reflection of G.

Proof. The first statement is obvious as we have G̃ ×̃ E = G̃. The second follows from
Lemma 8.2.5 as we have G̃ ×̃ Ẑk = G̃. �

Let us denote by ι:C〈x̃ij , x̃∗ij〉 → C〈xij ,x∗ij , z, z∗〉 the embedding x̃ij 7→ xijz. Consider G̃ ⊆
U+(F) and G its ungluing. The fact that G̃ is a glued version of G is, according to Proposi-
tion 8.2.3, characterized by the equality ĨG̃ := ι(IG̃) = IG ∩ ι(C〈x̃ij , x̃∗ij〉). Consequently, we have
IG ⊇ ĨG̃ for every ungluing G of a quantum group G̃.

8.4.3 Definition. Consider G̃ ⊆U+(F), k ∈N0. Let IG ⊆C〈xij ,x∗ij , z, z∗〉 be the ∗-ideal generated
by ĨG̃. Put C(G) := C∗(C〈xij ,x∗ij , z, z∗〉/IG). Then G := (C(G),v ⊕ z) is called the maximal Zk-
ungluing of G̃.

8.4.4 Proposition. The maximal Zk-ungluing always exists. That is, considering the notation
of Definition 8.4.3, G is indeed a compact matrix quantum group and G̃ is indeed its glued
version.

Proof. First of all, note that ĨG̃ contains the relations vv∗ = v∗v = 1N and v v ∗ = v ∗v = 1N ,
where v = Fv̄F−1. So, if G is well defined, then we must have G ⊆U+(F) ∗̂ Ẑk .

To prove that G is well defined, we need to check that IG/IU+(F) is a Hopf ∗-ideal. Since
IG̃/IU+(F) is a Hopf ∗-ideal, we have that ĨG̃/IU+(F) is a coideal invariant under the antipode.
Consequently, the ideal generated by ĨG̃/IU+(F) must be a Hopf ∗-ideal. (See Sect. 2.3.2.)

From the construction, it is clear that, if G̃ has some Zk-ungluing, then G must be the
maximal one (since we take the smallest possible ideal IG). But every quantum group has the
trivial ungluing as mentioned in Prop. 8.4.2. �

8.4.5 Remark. We do not have to know explicitly the whole ideal IG̃ to compute the maximal
ungluing. Consider G̃ ⊆U+(F) and suppose that it is determined by a set of relations R̃. That
is, IG̃ is generated by the coideal R̃. Then the maximal Zk-ungluing G of G̃ is defined by the
relations R := ι(R̃). That is, taking the generating relations for G̃ and exchanging ṽij for vijz and
ṽ∗ij for z∗v∗ij .

Alternatively, we can describe the maximal ungluing by its representation category. Recall
the definition of the gluing homomorphism O ∗ → Wk mapping 7→ , 7→ . Given a
word w ∈ O ∗, the image w̃ under this homomorphism is called the glued version of w by
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Definition 8.2.2. If G is a quantum group and G̃ its glued version, then FundRepG̃ is a full
subcategory of FundRepk-ext

G according to Proposition 8.2.3. The full embeding is given exactly
by the above mentioned gluing homomorphism. Consequently, the maximal ungluing G of
some G̃ should be a quantum group with the minimal representation category containing
FundRepG̃ as a full subcategory.

8.4.6 Proposition. Consider G̃ ⊆ U+(F) and G ⊆ U+(F) ∗̂ Ẑk its maximal Zk-ungluing. Then
the Zk-extended representation category FundRepk-ext

G is generated by the sets C(w̃1, w̃2) =
FundRepG̃(w1,w2), where w̃1, w̃2 are glued versions of w1,w2 ∈ O ∗. In addition, if FundRepG is
generated by some C̃0, then FundRepk-ext

G̃
is generated by C0(w̃1, w̃2) = C̃0(w1,w2).

Proof. By Tannaka–Krein duality, (Thm. 3.4.6), IG̃ is linearly spanned by relations of the form
[T ṽ⊗w1 − v⊗w2T ]j i . By definition of the maximal ungluing, the ideal IG is generated by elements
of ĨG̃, which are exactly the relations [T u⊗w̃1 −u⊗w̃2T ]j i corresponding to the set C.

For the second stament, notice that if C̃0 generates FundRepG̃, then C0 must generate C.
This follows simply from the fact that gluing of words is a monoid homomorphism (see also
Prop. 8.2.3). Consequently, by what was already proven, C0 generates FundRepG. �

8.4.7 Example. As an example, consider the quantum group G̃k := O+
N ×̃ Ẑ2k , k ∈ N. By

Theorem 6.2.4, alternatively by Proposition 8.2.30, it corresponds to the two-coloured category
of partitions 〈 ⊗k〉, so it can be also defined as a quantum subgroup of U+

N given by the relations

ṽi1j1 ṽi2j2 · · · ṽikjk = ṽ∗i1j1 ṽ
∗
i2j2
· · · ṽ∗ikjk ,

where ṽ denotes the fundamental representation of G̃. We can also take G̃0 :=O+
N ×̃ Ẑ, which

corresponds to the category 〈 ⊗ 〉 and hence is a quantum subgroup of U+
N defined by the

relation
ṽij ṽ

∗
kl = ṽ∗ij ṽkl .

Now, take arbitrary l ∈N0. The maximal Zl-ungluing of G̃k is a quantum groupGk ⊆U+
N ∗̂Ẑl

with fundamental representation of the form v ⊕ z given by the same relations if we substitute
ṽij by vijz, that is,

vi1j1zvi2j2z · · ·vikjkz = z∗v∗i1j1z
∗v∗i2j2 · · ·z

∗v∗ikjk .

The ungluing G0 is defined by the relation

vijv
∗
kl = z∗v∗ijvklz.

Diagrammatically, we can just put a white triangle after every white circle and a black
triangle in front of every black circle . So, the first relation corresponds to the partition ( )⊗k

and the second one to .
We may have hoped to split the original quantum group G̃k into smaller pieces – namely to

obtain O+
N × Ẑ2k as the ungluing. However, this is not what happens here. The ungluing Gk

seems to be rather more complicated than the original G̃k .

This will actually happen always. The maximal ungluing never provides any useful
decomposition into smaller pieces since we always have the trivial decomposition inside the
maximal one G̃×E ⊆ G. It makes much more sense to look for “small” ungluings rather than
for the maximal one. In the following section, we are going to study Z2-ungluings of the form
G ⊆O+(F) ∗̂ Ẑ2, which surprisingly exist for a large class of quantum groups G̃ ⊆U+(F).

8.4.2 Orthogonal ungluings
As just mentioned, constructing large unitary ungluings G ⊆U+(F) ∗̂ Ẑk may not be very useful.
In this subsection, we study ungluings that are orthogonal, that is, of the form G ⊆O+(F) ∗̂ Ẑ2.
For the rest of this subsection, we assume FF̄ = c1N .
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For a given quantum group G ⊆O+(F) ∗̂ Ẑ2, we will denote by IG the corresponding ideal
inside A := C〈xij〉 ∗CZ2 (instead of taking C〈xij , r〉 or C〈xij ,x∗ij , r, r∗〉). The generator of CZ2 will
be denoted by r. Note that we have to consider the non-standard involution x∗ij = [F−1xF]ij
on A. The algebra A is Z2-graded (assigning all variables xij and r degree one). We will denote
by Ã the even part of A. Then Ãr is the odd part of A.

8.4.8 Lemma. The mapping xij 7→ xijr extends to an injective ∗-homomorphism ιA:C〈xij ,x∗ij〉 →
A. Its image ιA(A) equals to Ã – the even part of A.

Proof. The existence of the ∗-homomorphism ιA follows from the fact that its domain is a free
algebra. The injectivity can be proven the same way as in Theorem 6.4.13. Alternatively, we
can also prove it directly together with the statement about the image.

Obviously for any monomial f ∈C〈xij ,x∗ij〉, the image ιA(f ) has even degree. Conversely,
we need to show that, for any monomial of even degree f̃ ∈ Ã, there exists a unique monomial
f ∈ C〈xij ,x∗ij〉 such that f̃ = ιA(f ). This is done easily by induction on the “length” of f̃
measured by the number of variables xij or x∗ij (ignoring the r’s). Suppose f̃ is in the reduced
form, that is, the variable r does not appear twice consecutively. If f̃ starts with the variable xij ,
we can write f̃ (xij , r) = xijrf̃0(xij , r) for some f0 ∈ Ã, so ι−1

A (f̃ )(xij ,x∗ij ) = xij ι
−1
A (f̃0)(xij ,x∗ij ). If f̃

starts with r followed by xij , so f̃ (xij , r) = rxij f̃0(xij , r) for some f0 ∈ Ã, then ι−1
A (f̃ )(xij ,x∗ij ) =

x∗ij ι
−1
A (f̃0)(xij ,x∗ij ). �

8.4.9 Remark. Ã is the ∗-subalgebra of A generated by the elements xijr. Consequently, for any
G ⊆O+(F) ∗̂ Ẑ2, we can express the coordinate algebra associated to its glued version G̃ as

Pol G̃ = {f (vij , r) | f ∈ Ã} ⊆ PolG.

In addition, we can rephrase Proposition 8.2.3 by saying that a quantum group G̃ ⊆U+(F) is
a glued version of G ⊆O+(F) ∗̂ Ẑ2 if and only if we have ĨG̃ := ιA(IG̃) = IG ∩ Ã.

Recall the definition of quantum groups G̃ ⊆U+(F) invariant with respect to the colour
inversion from Def. 8.2.27.

8.4.10 Proposition. Consider a compact matrix quantum group G̃ ⊆ U+(F) with FF̄ = c1N
invariant with respect to the colour inversion. Let G′ be its maximal Z2-ungluing. Then
G := G′ ∩ (O+(F) ∗̂ Ẑ2) is also a Z2-ungluing.

8.4.11 Definition. The quantum group G from Proposition 8.4.10 will be called the canonical
Z2-ungluing of G̃.

Before proving the proposition, recall that IG′ ⊆ C〈xij ,x∗ij , r, r∗〉 is defined as the small-
est ideal containing ι(IG̃). Consequently, IG = IG′ /(x = x ,r2 = 1) is the smallest ideal of
the algebra A = C〈xij ,x∗ij , r, r∗〉/(x = x ,r2 = 1) containing ĨG̃ = ι(IG̃)/(x = x ,r2 = 1). In other
words, the canonical Z2-ungluing is determined by relations of the form f (xijr, rxij ) with
f ∈ IG̃ ⊆C〈xij ,x∗ij〉.

Proof. Adopting the notation introduced above, we need to prove that IG ∩ Ã = ĨG̃. We prove
that

IG = ĨG̃ + ĨG̃r = span{f , f r | f ∈ ĨG̃}.

Then it will be clear that IG ∩ Ã = (ĨG̃ + ĨG̃r)∩ Ã = ĨG̃ since ĨG̃ ⊆ Ã, so ĨG̃r ∩ Ã = ∅.
To prove the equality, it is enough to show that the right-hand side is an ideal since then it

must be the smallest one containing ĨG̃, which is exactly IG. So, denote the right-hand side by I .
By Proposition 8.2.28, G being invariant with respect to the colour inversion means that IG
is invariant with respect to interchanging xij ↔ xij . Applying ιA, we get that ĨG̃ is invariant
with respect to xijr↔ rxij , so ĨG̃ is invariant with respect to conjugation by r, that is, x 7→ rxr.
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We use that to prove that I is an ideal. The subspace I is obviously invariant under right
multiplication by r. For the left multiplication, we can write rx = (rxr)r. For multiplication
by xij , we can write xxij = (xxijr)r and xijx = r((xijr) x). �

8.4.12 Proposition. Consider G ⊆ O+(F) ∗̂ Ẑ2 and denote by k its degree of reflection. Then
exactly one of the following situations occurs.

(1) If k = 1, then C(G̃) = C(G) and hence G̃ ' G.
(2) If k = 2, then C(G) is Z2-graded and C(G̃) is its even part.

Proof. Since G is orthogonal, its degree of reflection must be either one or two by Proposi-
tion 8.2.8. First, let us assume that k = 1. To show that C(G̃) = C(G), it is enough to prove that
r ∈ C(G̃). The assumption k = 1 means that there is a vector ξ ∈Mor(1,u⊗k), ‖ξ‖ = 1 for some k
odd, so we have ξ∗u⊗kξ = 1 in C(G). Consequently, r = ξ∗u⊗kξr holds in C(G), and, since it is
an even polynomial, it must be an element of C(G̃) (see Remark 8.4.9).

If the degree of reflection equals two, then by Proposition 8.2.6 the Z2-grading of A passes
to PolG and hence also C(G). As mentioned in Remark 8.4.9, Pol G̃ consists of even polynomials
in the generators vij and r and hence is the even part of PolG. �

The following theorem provides a non-easy counterpart of Theorems 4.6.8, 6.4.13.

8.4.13 Theorem. There is a one-to-one correspondence between

(1) quantum groups G ⊆O+(F) ∗̂ Ẑ2 with degree of reflection two and
(2) quantum groups G̃ ⊆U+(F) that are invariant with respect to the colour inversion.

This correspondence is provided by gluing and canonical Z2-ungluing.

Proof. Almost everything follows from Proposition 8.4.10. The only remaining thing to prove
is that, given G ⊆ O+(F) ∗̂ Ẑ2 and G̃ its glued version, then G̃ is invariant with respect to the
colour inversion and G is its canonical Z2-ungluing. The first assertion follows from the fact
that IG and hence also Ĩ := IG ∩ Ã = ĨG̃ is invariant with respect to conjugation by r. For the
second assertion, we need to prove that IG = Ĩ + Ĩ r (see the proof of Proposition 8.4.10). Since G
has degree of reflection two, we have that IG is Z2-graded and hence it decomposes into an
even and odd part, which is precisely Ĩ and Ĩ r. �

Recall now Theorem 6.4.13 saying that, given a compact quantum group G ⊆ O+
N ∗̂ Ẑ2

corresponding to a category of partitions with extra singletons C ⊆Peven, its glued version
G̃ ⊆ U+

N is described by the category C̃ := F(C ). Note that the assumption that C contains
only partitions of even length is equivalent to assuming that G has degree of reflection
two. Reversing this process, we can say that, given a unitary easy quantum group G̃ ⊆ U+

N
corresponding to some category C̃ , its canonical Z2-ungluing is an easy quantum group
G ⊆O+

N ∗̂Ẑ2 corresponding to the categoryC := F−1(C ). In this way, Theorem 8.4.13 generalizes
the one-to-one correspondence from Theorem 4.6.8.

As a particular example, recall from Section 6.4.5 that we introduced the Z2-extensions
H ×2k Ẑ2 exactly to be the canonical Z2-ungluings of H ×̃ Ẑ2k . In the following proposition, we
give a direct proof for arbitrary H ⊆O+(F).

8.4.14 Proposition. Consider H ⊆ O+(F) with degree of reflection two, k ∈ N0. Then the
canonical Z2-ungluing of H ×̃ Ẑ2k is H ×2k Ẑ2.

Proof. From Proposition 8.2.30, we can expressH ×̃Ẑ2k as a quantum subgroup ofH ∗̃Ẑ =H ∗̃Ẑ2
given by certain relations. Denoting by ṽ the fundamental representation of H ×̃ Ẑ2k , we just
have to “unglue” the relations substituting ṽij by vijr. For H ×̃ Ẑ, we get

vijvkl = rvijvijr,
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which is obviously equivalent to vijvklr = rvijvkl – the defining relation for H ×× Ẑ2 =H ×0 Ẑ2.
For H ×̃ Ẑ2k , k > 0, we get

vi1j1zvi2j2z · · ·vikjkz = zvi1j1zvi2j2 · · ·zvikjk ,

which is exactly the defining relation for H ×2k Ẑ2. �

8.4.3 Irreducibles and coamenability for ungluings and Z2-extensions

In this section, we will study properties of the gluing procedure and canonical Z2-ungluing. In
many cases, we can view the Z2-extensions H ×2k Ẑ2 as a motivating example. It remains an
open question, whether one can generalize the statements for arbitrary products H1 ×2k H2.

For this section, we will assume that G ⊆O+
N ∗̂ Ẑ2 has degree of reflection two.

For quantum groups G and H , the property PolH ⊆ PolG can be understood either as H
being a quotient of G or the discrete dual Ĥ being a quantum subgroup of Ĝ. In that case, we
can study the homogeneous space Ĝ/Ĥ by defining

l∞(Ĝ/Ĥ) := {x ∈ l∞(Ĝ) | x(ab) = x(b) for all a ∈ PolH and b ∈ PolG},

where l∞(Ĝ) is the space of all bounded functionals on PolG.

8.4.15 Proposition. Consider G ⊆ O+
N ∗̂Z2 with degree of reflection two and denote by G̃ its

glued version. Then Ĝ/ ˆ̃G consists of two points. More precisely,

l∞(Ĝ/ ˆ̃G) = {x ∈ l∞(Ĝ) constant on the Z2-homogeneous parts of PolG} ' C
2.

Proof. Consider x ∈ l∞(Ĝ). By Proposition 8.4.12, PolG is Z2-graded. Putting b := 1 in the
equality x(ab) = x(b), we get that x is constant on the even part. Putting b := r, we get that x is
constant on the odd part. �

Recall that a compact quantum group G is called coamenable if C(G) = Cr(G) (recall that
we denote C(G) = Cu(G) in this chapter). This notion dualizes the amenability for discrete
(quantum) groups.

8.4.16 Proposition. Consider G ⊆O+
N ∗̂ Ẑ2 and G̃ ⊆U+

N its glued version. Then G is coamenable
if and only if G̃ is coamenable.

Proof. Let us denote the surjections q:C(G)→ Cr(G) and q̃:C(G̃)→ Cr(G̃). Taking a ∈ C(G̃), we
have

q(a) = q̃(a) and q(ar) = q̃(a)r.

Since C(G) = C(G̃)+C(G̃)r from Proposition 8.4.12, we obviously have that q is an isomorphism
if and only if q̃ is. �

Coamenability is not preserved by dual free products (since amenability of discrete groups
is not preserved by free products). On the other hand, it is preserved by the tensor product by
Proposition 2.5.7. An interesting question is whether the new interpolating products preserve
coamenability. We answer this question in the special case of the Z2-extensions.

First, let us formulate the following well-known lemma.

8.4.17 Lemma. If a compact quantum group G is coamenable, then any its quotient is coa-
menable.

Proof. If H is a quotient of G, so C(H) ⊆ C(G), then the coamenability of H directly follows
from Theorem 2.3.4. �
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8.4.18 Proposition. Consider H ⊆O+
N , k ∈N0. Then H ×2k Ẑ2 is coamenable if and only if H is

coamenable.

Proof. The left-right implication follows directly from Lemma 8.4.17. Now, let us prove
the right-left implication. If the degree of reflection of H is one, then H ×2k Ẑ2 = H ×Z2 by
Theorem 8.3.2, so we can apply Proposition 2.5.7.

Now supposeH has degree of reflection two. IfH is coamenable, thenH×Ẑ2k is coamenable
by Theorem 8.3.2, so H ×̃ Ẑ2k is coamenable by Lemma 8.4.17 and H ×2k Ẑ2 is coamenable by
Proposition 8.4.16. �

Now, we are going to look on the irreducible representations of the ungluings.

8.4.19 Proposition. Consider G ⊆O+(F) ∗̂ Ẑ2 with degree of reflection two and fundamental
representation v ⊕ r. Let G̃ ⊆U+

N be its glued version. Then the irreducibles of G are given by

{uα ,uαr | α ∈ Irr G̃}.

Proof. First, we prove that all the matrices are indeed representations of G. Surely all uα are
representations. The r is also a representation. Hence uαr = uα ⊗ r must also be representations.

Secondly, we prove that the representations are mutually inequivalent. The representa-
tions uα are mutually inequivalent by definition. From this, it follows that the representa-
tions uαr are mutually inequivalent. Since G has degree of reflection two, we have that PolG
is graded with Pol G̃ being its even part. So, the entries of uα are even, whereas the entries of
uαr are odd, so they cannot be equivalent.

Finally, we need to prove that those are all the representations. This can be proven using
the fact that entries of irreducible representations form a basis of the polynomial algebra
(Prop. 2.3.1). If we prove that the entries of the representations span the whole PolG, we are
sure that we have all the irreducibles. This is indeed true:

span{uαij ,u
α
ijr | α ∈ Irr G̃} = Pol G̃+ Pol G̃ r = PolG. �

8.4.20 Proposition. Consider H ⊆ O+(F) with degree of reflection two, k ∈ N0. Then the
complete set of mutually inequivalent irreducible representations of H ×2k Ẑ2 is given by

uα,i,η = uαsirη , α ∈ IrrH, i ∈ {0, . . . , k − 1}, η ∈ {0,1}, (8.11)

where
s =

∑
l

vilrv
∗
ilr =

∑
k

v∗kjrvkjr for any i, j = 1, . . . ,N . (8.12)

Here v ⊕ r denotes the fundamental representation of H ×2k Ẑ2.

Proof. Denote ṽ := vr the fundamental representation of the glued version of H ×2k Ẑ2, which
can be identified with H ×̃ Ẑ2k by Proposition 8.4.14. Thus, we can also write ṽij = vijz ∈
C(H ×̃ Ẑ2k) ⊆ C(H × Ẑ2k). We can also express

s =
∑
l

vilrv
∗
ilr = [vrvr∗]ii = [vr(F−1vrF)t]ii = [ṽ(F−1ṽF)t]ii = [v(F−1vF)tz2]ii = [vv∗]iiz

2 = z2

and similarly for the second expression in Eq. (8.12). In particular, we have that s = z2 is
a representation of H ×̃ Ẑ2k and hence also of H ×2k Z2.

According to Proposition 8.2.19, we know that irreducibles of H ×̃ Ẑ2k are of the form
uα,i := uαz2i+dα , α ∈ IrrH , i = 0, . . . , k − 1 and dα ∈ {0,1} is the degree of α. According to
Proposition 8.4.19, we have that the set of irreducibles of H ×2k Ẑ2k is uα,irη . Now the only
point is to express these in terms of uα, s, and r.
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Suppose first that dα = 0. In this case, the situation is simple since we can use the above
mentioned fact that z2 = s to derive

uα,irη = uαz2irη = uαsirη .

In the situation dα = 1, we need to prove that uαz = uαr. The left hand side is a representa-
tion of H ×̃ Ẑ2k – the glued version of H × Ẑ2k – and the right-hand side is a representation
of the glued version of H ×2k Ẑ2. As we already mentioned, these quantum groups coincide,
so the equality makes sense. (Note that it is not possible to show that z = r. Not only that
this is not true, the equality does not even make sense since s and r are not elements of a
common algebra.) Since uαz is a representation of H ×̃ Ẑ2k , we have, in particular, that the
entries of the representation uαabz are elements of Pol(H ×̃ Ẑ2k). That is, there are polynomials
f αab ∈ C〈xij ,xij〉 of degree one such that f αab(ṽij , ṽij ) = f αab(vijz,z

∗vij ) = uαabz. Since vij commute
with z, we can arrange the “ -pattern” of the monomials in f αab in an arbitrary way if we keep
the property that they have degree one. In particular, we can say that every monomials of f αab
have an alternating colour pattern, that is, they are of the form xi1j1xi2j2 · · ·xinjn . Then we can
express

uαabz = f αab(vijz,z
∗vij ) = f αab(ṽij , ṽij ) = f αab(vijr, rvij ) = uαabr.

This is exactly what we wanted to prove. Now we have

uα,irη = uαzzirη = uαrsirη

To obtain the form in the statement, note just that rsr = s∗ = sk−1. �
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Chapter 9

Conclusion
The original goal for the PhD project was to come up with the first examples of non-easy
categories of partitions using some computer experiments. In the end, the thesis surpasses
this goal significantly as the study of the linear categories of partitions forms just a part of
the results.

In this concluding chapter, we would like to set our research into some more general
framework and to show what are the possible directions for further research.

From quantum groups to partitions and back

The research presented in our thesis follows some kind of general philosophy (see also ~Web17,
Sect. 7.5.5�)

9.1 Philosophy. How to produce results on quantum groups using partitions:

Input: Take (some result on) some (quantum) group.

(1) Describe it using partitions.
(2) Generalize it in the framework of partitions.
(3) Generalize it for a larger class of quantum groups without the need of using partitions.

Of course, one does not always have to perform all the three steps.
As an example, we might consider the concept of tensor complexification and global

colourization.

Input: Non-crossing globally colourized categories of two-coloured partitions correspond
to tensor complexification of free easy quantum groups. [TW17]

(1) The input is already formulated using partitions.
(2) We generalize it by dropping the non-crossing condition (Thm. 6.2.4)
(3) We generalize it further by dropping the easiness condition. On the other hand, we

must assume a degree of reflection zero. (Thm. 8.2.11).

The last step of Philosophy 9.1 is probably the most interesting one for further applications.
In this thesis, we devoted Chapter 8 to it. Let us mention here a few open problems and
directions for further research that emerged in this chapter.

As we just mentioned, we were able to prove Theorem 8.2.11 only for degree of reflection
zero. However, we have no counterexample for other degrees of reflection.

9.2 Open problem. Prove or disprove Theorem 8.2.11 for degree of reflection k , 0. (See also
Remark 8.2.12.)

In Section 8.4.3, we formulated some properties of the Z2-extensions H ×2k Ẑ2 using the
fact that we can describe those as ungluings of H ×̃ Ẑ2k . Another direction for further research
would be to generalize those results for the interpolating products G×2kH considering arbitrary
quantum groups G and H .

9.3 Further research direction. Study properties of the interpolating products G××H , G ×× H ,
G ×2k H . What are the irreducible representations? Do the products preserve amenability? Can
one give a formula for L2-Betti numbers?

Linear combinations of partitions

The results of our thesis regarding linear categories of partitions may be seen as a contribution
to achieve the following.
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9.4 Ultimate goal. Classify all linear categories of partitions.

Solving this problem would solve also the classification of all quantum groups G with
SN ⊆ G ⊆O+

N .
One can ask how reasonable this classification problem is and whether it is possible to

solve it anyhow. From our experience, working with linear combinations of partitions is much
harder than working with plain partitions because one is losing the combinatorial nature.
Nevertheless, the research in this direction can bring very interesting results even if we do
not achieve the Ultimate goal. Let us review what our thesis brought in this direction and
mention a few possible directions for further research.

In our thesis, we found several examples of non-easy quantum groups and then we
essentially used them as an input to Philosophy 9.1.

9.5 Philosophy. Using Philosophy 9.1 to interpret non-easy categories of partitions.

(0) Find a non-easy linear category of partitions and interpret the corresponding quantum
group. Use it as an input for Philosophy 9.1, that is, continue as follows:

(1) Find a combinatorial description of the representation category (generalizing the
partition approach, e.g. using coloured points). That is, reformulate the description
of the representation category trying to avoid linear combinations.

(2) Study this new combinatorial structure (e.g. obtain some classification).
(3) Generalize the result for arbitrary quantum groups.

In our case, the research ran as follows: (0) We used computer experiments to find examples
of non-easy categories of partitions (Sects. 5.2, 5.3). Then we were trying to interpret the
quantum groups and many of them appeared to be somehow connected with quantum groups
with reducible fundamental representation having a one-dimensional subrepresentation
(Sect. 7.1). (1) This motivated us to study such quantum groups in a more systematic way
and to invent a combinatorial structure for this purpose – categories of partitions with extra
singletons (Sects. 4.6, 6.4). (2) We obtained many classification results here. Some of them
were interpreted as some new Z2-extensions of the form H ×k Ẑ2. (3) Finally, we generalized
those extensions as products of two arbitrary compact quantum groups (Section 8.3).

9.6 Further research direction. Continuing in search for non-easy categories
Since linear categories of partitions are far from being classified, continuing in the work we

began is one of the possible directions for further research. Note however that we essentially
reached the limit of our naive computer algorithm here. For continuing in the search using
computer, one would have to introduce some optimization. For example, note that all the
non-easy generators we discovered are rotationally symmetric. So, we may focus on such
generators only.

9.7 Further research direction. Studying the categories we omitted in Section 5.3.
In Section 5.3, we omitted some non-easy categories because they were not defined for

all δ ∈ {5,6,7, . . .}. Nevertheless, categories defined for δ = 4 might actually also induce
some non-trivial quantum groups and hence be interesting for us. Moreover, modifying the
functor p 7→ Tp, we might even be able to interpret categories defined for a larger class of the
parameter δ (i.e. not necessarily natural numbers). Note for example that the category of all
non-crossing pairings NCPairδ (also known as the Temperley–Lieb category) can be interpreted
as a quantum group representation category for all δ ∈ [2,∞) (see ~NT13, Sect. 2.5�).

9.8 Further research direction. Testing concrete hypotheses.
The framework of linear categories of partitions may be convenient for solving some

concrete hypotheses such as the following.

9.9 Open problem. Is there a quantum group G with SN ( G ( S+
N for some N ?

174



9. Conclusion

9.10 Open problem. Is there a quantum group G with O∗N ( G (O+
N for some N ?

See [BBCC13, Ban18] for a more detailed discussion on such maximality results. For the
first problem, we know that there is no such quantum group for N ≤ 5 (for N = 1,2,3, it is
trivial as SN = S+

N here; for N = 4, it was proven in [BB09]; for N = 5, it was proven in [Ban18]).
The article [BBCC13] proves that there is no quantum group between ON and O∗N .

Those questions can be reformulated in terms of linear combinations of partitions as
follows.

9.11 Open problem. Is there a linear category of partitionsK with PartN )K ) NCPartN for
some N ?

9.12 Open problem. Is there a linear category of partitions K with 〈 〉N ) K ) 〈〉N for
some N ?

Other diagrammatic categories

We may try to generalize the partition categories even further not only by introducing some
colourings. A very interesting concept appeared recently in [MR19] – so called graph categories.
Graph categories are also categories equipped with some diagrammatic calculus that can be
used to model representation categories of quantum groups. They are particularly useful to
describe quantum groups connected to symmetries of graphs.

We can do similar stuff with graph categories as we did with partition categories – we can
classify them or we can incorporate them into Philosophy 9.1 or 9.5.

Let us also mention the work [VV19] that introduces yet another diagrammatic calculus
for describing representation categories of certain quantum groups (including an interesting
combinatorial open problem, see [VV19, Question 7.1]).

Current project: the free Coxeter D4

As a concrete application of many of the above mentioned ideas, let us mention a concrete
project the author is working on [Gro20b].

The motivation is the following. There are three infinite series of Coxeter groups – series A
formed by the symmetric groups, series B formed by the hyperoctahedral groups, and series D.
While there is a free counterpart for the first two series, no free counterpart for Coxeter groups
of type D was introduced yet.

In our project, we aim to define the free counterpart of the Coxeter group of type D in
a special case N = 4. We do this first by introducing some new non-easy linear category
of partitions. Then we look for an alternative description of this category in the spirit of
Philosophy 9.5. Namely the graph categories appear to be a convenient framework for this
purpose. The associated graph category turns out to be very interesting and we study it in
more detail.
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