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Abstract

In the following work, results are presented which increase the understanding of the
properties of composite material consisting of a non-magnetic matrix and ferromag-
netic, spherical inclusions which fulfill the conditions of a homogeneous effective medium.
Especially, we are interested in the shift of the ferromagnetic resonance frequency and
the effective permeability tensor in dependence of the material properties and the mi-
crostructure of the composite. For generating the data of interest, various numerical
simulation methods, including calculation of the static orientation of the magnetic mo-
ments, modelling of the of waveguide-based transmission and reflection experiments
and corresponding evaluation methods, are used.
With the methods at hand, we are able to analyze as well composite bulk material as
finite samples and consider different kinds of inclusion arrangements from simple cubic
lattices to random insertion. One of the main tasks during this work was to find pos-
sibilites to produce results with low inclusion numbers, to which we are restricted due
to high memory consumptions in the high-frequency simulations, which also coincide
with the large system limit. Even if we come up against limits due to finite memory
resources leading to artifacts, we identify and isolate different, counteracting effects
which cause a shifting of the ferromagnetic resonance frequency.





Kurzdarstellung

In der vorliegenden Arbeit werden Ergebnisse präsentiert, die das Verständnis von
Eigenschaften von Kompositmaterialien erhöhen, die aus einer nichtmagnetischen
Matrix und ferromagnetischen, kugelförmigen Inklusionen bestehen, die die
Bedingungen des homogenen effektiven Mediums erfüllen. Besonderes Interesse gilt
dabei der Verschiebung der ferromagnetischen Resonanz und dem effektiven
Permeabilitätstensors in Abhängigkeit der Materialeigenschaften und der
Mikrostruktur des Komposits. Für die Untersuchung werden zahlreiche
Simulationsmethoden zur Berechnung der statischen Orientierung der magnetischen
Momente, zur Modellierung der wellenleitergestützten Transmissions- und
Reflexionsexperimente und entsprechende Auswertemethoden eingesetzt.
Mit den zur Verfügung stehenden Methoden können sowohl unendlich ausgedehnte
als auch endliche Kompositproben und verschiedene Anordnungen der Inklusionen,
vom einfach kubischen Gitter bis zum zufälligen Einwurf, untersucht werden. Eine der
Hauptaufgaben dieser Arbeit war es, Möglichkeiten zu finden, um mit
geringen Inklusionszahlen, auf die wir in den Hochfrequenzsimulationen aufgrund deren
hohen Speicherverbrauchs beschränkt sind, Ergebnisse zu produzieren, die auch für den
Grenzfall großer Systeme gelten. Obwohl wir dabei auf Grenzen und daraus
resultierende Artefakte stoßen, isolieren wir verschiedene, sich entgegenwirkende
Effekte, die eine Verschiebung der ferromagnetischen Resonanzfrequenz verursachen.





Nomenclature of the Magnetic Field
Magnitudes

In the presentation of the results gained during this work (see chapters 4 and 5), the
following nomenclature is used:

• Hinc: Internal magnetic bias of inclusions, which is an input parameter of the
simulations. Does not respect dipole interactions.

• Hdip: Dipole field acting on one regarded inclusion caused by the surrounding
inclusions. Calculated in the static simulations.

• Hdip
inc : Internal magnetic bias of inclusions when dipolar interaction is included.

Consequently,

Hdip
inc = Hinc +Hdip. (1)

• M inc
s : Saturation magnetization of the inclusions, also an input parameter of the

simulations.
• Meff : Effective magnetization of the composite sample.
• Heff : Effective field in the composite. Corresponds to the mean value of the field

magnitudes in the sample

Heff = 〈H(x)〉 = 1
V

∫
V
H(x)dV (2)

According to demagnetization theory (see equation 1.153), this magnitude is
connected with Hinc of one spherical inclusion in a medium with magnetization
Meff via

Hinc = Heff −
M inc

s −Meff

3 . (3)

• H loc
eff : Effective local field at the place of one regarded inclusion in the composite

and determining the resonance frequency of this inclusions via ν0 = γH loc
eff . When

we take into account spatial dipolar interactions between the inclusions, H loc
eff 6=

Heff is valid, in general. Contrary, in the simulations without dipolar interactions
every inclusion is exposed to H loc

eff = Heff . The differences between the field
magnitudes H loc

eff and Heff are schematically sketched in figure 1.
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Figure 1 – In the case when inclusions are placed on a simple cubic lattice, dipolar interactions
can be neglected (see section 4.2.1), meaning that every inclusion is exposed to the same effective
field Heff (top left picture). When microstructure is generated randomly, local fields at the places
of the inclusions fluctuate, as shown in the top right picture. Here, H loc

eff is the superposition
of Heff and dipolar fields resulting from all surrounding inclusions. H loc

eff is not the internal
magnetic field in the particle, but the field which would arise at the point of the inclusion’s
center when no particle would be placed at this point as indicated by the missing circles
in the top pictures, which are included in the lower ones.

In an analog manner as in equation 3, we can write

Hdip
inc = H loc

eff −
M inc

s −Meff

3 . (4)

in order to relate the internal magnetic field in the inclusion with the local field
in the matrix when dipolar interactions are respected. Further discussion of the
field magnitudes of Heff and H loc

eff can be found in context of figure 4.103.
• With regard to our simulation sequences, we distinguish:

1. Hinc = const. in which the internal magnetic bias of the inclusions is kept
constant for every filling factor. This is easily realized in the simulations
because Hinc is an input parameter.

2. Heff = const. in which the effective field in the sample should take the same
values for different volume fractions of inclusions.

Regarding equation 3 and setting Heff = Hinc + M inc
s

3 , as it is the case for one
isolated sphere in a non-magnetic environment (see further discussions in context
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of equation 4.22), when keeping this magnitude constant, both cases differ for
different filling factors by the term of ±Meff

3 .
• Hext: Externally applied magnetic field acting on the sample. In case of infinite

samples, Hext = Heff is fulfilled. Accordingly, the case of constant effective
fields in an infinitely extended device for different filling factors corresponds to
an externally applied field maintaining the same values for different samples.
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Introduction

Magnetic materials are used in a large variety of applications, as the interaction with
high-frequency electromagnetic fields in inductors, microwave filters or radar absorbers.
These instruments require special material properties at certain frequencies in order
to fulfill the tasks of interest [1–5]. Within this context, composite materials consist-
ing of different magnetic or non-magnetic components promise to be powerful tools in
order to tune the material behavior as desired. Accordingly, the understanding of the
developing of the properties of these materials is of great interest for the purpose of
efficiently engineering modern composite materials [6]. In this context, many analytic
effective medium theories have been developed in which the heterogeneous composite
is treated as a homogeneous material whose properties should be determined in depen-
dence of the components’ properties and the internal microstructure. These theories
can be applied if the included components in the composite are small compared to the
wavelength of the incident electromagnetic wave, which is unproblematically to fulfill
for microwave frequencies [7, 8]. Accordingly, the field fluctuations in the composite
material are treated in a mean field approximation.
In this work, we want to gain further knowledge on the formation of one of the com-
posite’s effective properties, the tensorial effective permeability in the vicinity of the
ferromagnetic resonance. For that purpose, we use simulation methods, which do not
disregard the spatial inhomogeneities, in contrast to analytic theories. Especially, we
are interested in the behavior of the ferromagnetic resonance frequency for different
composite systems in comparison to homogeneous bulk materials. In order to analyze
this issue, we regard composites which consist of a non-magnetic matrix with spher-
ical, ferromagnetic inclusions with material properties in the value range of ferrites.
Within this, the mathematical description of the tensorial magnetic permeability of
the inclusions is done according to Polder’s model [9], meaning the inclusions to be
fully magnetized by an externally applied magnetic field.
The work at hand is structured in the following manner: In the first chapter we present
the theorical basics with regard to the propagation of electromagnetic waves, mag-
netism of matter and the already mentioned effective medium theories, which represent
the fundamental knowledge for all further considerations. Following this, we reproduce
current results from modern works, in which common effective medium theories are
refined with regard to the topic of tensorial permeabilities of composites in the vicinity
of the ferromagnetic resonance. By this, we want to give an overview on the state of
the art and outline the motivation for this work. In chapter 3, the methods used in
the examinations are explained. Within this, we regard transmission and reflection ex-
periments, which are performed in silico in our case, and the corresponding evaluation
methods in dependence of the properties of the device under test. Furthermore, we
describe the simulation techniques we perform in order to reproduce experimental set-
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ups, i. e. the finite element method, model order reduction methods, the commercial
High Frequency Structure Simulator by Ansys and a numerical computing method in
order to include dipolar interaction between the magnetic moments of the inclusions.
Afterwards, examinations start in which bulk materials under different conditions with
regard to the microstructure of the devices are analyzed. Here, we first have to do
some previous considerations in order to prove the reliability of the methods at hand
before we choose composites with inclusions on a simple cubic lattice as a simple as
possible starting point. By this, we can draw first conclusions which are helpful for
the understanding of the results of the following sections in which more complicated
microstructures are analyzed. In chapter 5, we also take into account boundary effects
in order to analyze finite samples in our simulations and examine the influence of the
variation of the inclusion density.



Chapter 1

Fundamental Knowledge

In this chapter, the fundamental knowledge is presented, which is necessary in order
to understand the phenomena of interest and the background of the used methods in
the present work. Beginning with the propagation of electromagnetic waves and the
governing equations in section 1.1, the differences between propagating waves without
spatial restrictions (1.1.1) or in rectangular and parallel plate waveguides (1.1.2), re-
spectively, are highlighted.
This is continued by section 1.2 which deals with various properties of different mate-
rials in static or high-frequency fields. The materials of interest in this work are not
homogeneous, but composites consisting of a surrounding matrix of one material and
dispersed inclusions of another with different properties. Because these spherical inclu-
sions have a diameter small enough so that effective medium conditions are fullfilled,
we also have to deal with basic effective medium theories which are presented in section
1.3.

1.1 Propagation of Electromagnetic Waves

1.1.1 Free Space Propagation in Vacuum

In the following, the derivation and solution of the wave equation for electromagnetic
waves is presented as it can be found in many different textbooks as [10], for example.
The starting point for this are the Maxwell equations which are given below in their
differential formulation:

∇∇∇· D = ρ (Gauss’s law) (1.1)

∇∇∇×H− ∂

∂t
D = j (Ampère’s circuital law) (1.2)

∇∇∇· B = 0 (Gauss’s law for magnetism) (1.3)

∇∇∇× E + ∂

∂t
B = 000 (Faraday’s law of induction) (1.4)
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in which

∇∇∇ =


∂
∂x

∂
∂y

∂
∂z


denotes the nabla operator, D the electric displacement field, ρ the free charge density,
H the magnetic field, j the free current density, B the magnetic flux density and E the
electric field. Moreover, ∂

∂t
labels the partial time derivative.

Hereafter, we consider a region without currents and free charge carriers (meaning
ρ = 0 and j = 0), as in a vacuum, and use the relations

D = ε0εrE = εE and B = µ0µrH = µH (1.5)

with the vacuum permittivity ε0 = 8.854 · 10−12 A2s4

kg m3 , vacuum permeability
µ0 = 1.257 · 10−6 kg m

A2s2 and the dimensionless material dependent relative permit-
tivity/permeability εr, µr, which both equal one in vacuum. Consequently, equation
1.2 can be written as

∇∇∇×B = µ0ε0
∂

∂t
E. (1.6)

Moreover, equation 1.1 becomes
∇∇∇· E = 0. (1.7)

Taking the curl of equation 1.4 by applying ∇∇∇× and using 1.6 delivers

∇∇∇× (∇∇∇× E) = − ∂

∂t
(∇∇∇×B) (1.8)

= −µ0ε0
∂2

∂t2
E. (1.9)

The left side of this equation can be simplified through a well-known vector calculus
identity for the curl of the curl

∇∇∇× (∇∇∇× E) =∇∇∇(∇∇∇· E)−∇∇∇2E. (1.10)

Remembering equation 1.7, we finally find

∇∇∇2E = µ0ε0
∂2

∂t2
E (1.11)

By this, we calculated the wave equation for E which can be derived for B in a very
similiar way. For example, the solution of 1.11 can be calculated as

Ex(z, t) = E0 sin (ωt− kz) , Ey = 0 and Ez = 0 (1.12)

with the electric field amplitude E0, the angular frequency ω = 2πf , the wavenumber
k = 2π

λ
and λ· ν = ω

k
= c. Here, ν denotes the frequency of the electromagnetic wave,

λ its wavelength and c = 1√
ε0µ0

its propagation velocity - the speed of light in vacuum.
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According to 1.4, the B-field in this case can be computed via the resulting differential
equation

∂B
∂t

= E0k cos (ωt− kz) y (1.13)

with the unity vector in y-direction y. A solution to this problem can be found in

Bx = 0, By(z, t) = E0

c
sin (ωt− kz) , and Bz = 0. (1.14)

Consequently, both fields oscillate with the same phase and perpendicular to each
other and to the direction of propagation, which is the z-direction in this case. The
propagation is schematically drawn in figure 1.1. Moreover, it can be seen, that the
field amplitudes are connected via

B0 = E0

c
= E0

√
µ0ε0 (1.15)

⇔ H0 =
√
ε0

µ0
E0. (1.16)

Figure 1.1 – Schematic sketch of the free propagation of electromagnetic waves. The magnetic
field component is drawn in red and oscillates in y-direction, while the blue line represents the
electric field component oscillating in x-direction. The wave propagates along the z-axis.

1.1.2 Spatial Restrictions: Propagation in Waveguides

The above obtained propagation properties are not maintained when space is restricted,
as by the two different types of waveguides regarded in the following. These waveguides
are hollow tubes with a cross section that is constant along the direction of propagation
while their walls are supposed to have an infinite conductivity in theory. Experimen-
tally, this is well realized by choosing high-conductive materials for the waveguide
walls, as metals. As a consequence, special boundary conditions are imposed on the
solutions of the Maxwell equations, resulting in new propagation phenomena which
will be analyzed in detail in the following sections for rectangular and parallel plate
waveguides, respectively. Before, we regard the propagation of waves in conducting
media for the purpose of understanding the roots of the imposed boundary conditions.
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The underlying textbooks for the following sections were [11–14], but issues given here
can also be found in many further works dealing with guided waves.

1.1.2.1 Propagation in Conducting Materials

In real applications, the waveguide walls are made of high-conductive metals. There-
fore, it is justified to suppose them to have infinite conductivity for theoretical issues.
In order to understand the physical consequences of the spatial restriction by conduct-
ing walls, we have to derive the wave equation for the propagation in conducting media.
Contrary to the previous case, we have

j = σσσE 6= 0 (1.17)

with the material dependent conductivity σσσ, which is a tensorial quantity, in general.
Moreover, the relative permittivity εr and relative permeability µr of the regarded
medium can be different from one. An analog derivation of the wave equation as in
section 1.1.1 now delivers

∇∇∇2E = µε
∂2

∂t2
E + µσσσ

∂

∂t
E (1.18)

in which the additional damping term µσσσ ∂
∂t

E occurs. An exemplaric solution is given
by

Ex(z, t) = E0 exp
(
−α2 z

)
sin (ωt− kz) , Ey(t) = 0 and Ez(t) = 0 (1.19)

with the damping parameter

α =
√

2σω
εc2 . (1.20)

Obviously, the penetration depth δ = 1
α
in the limiting case σ → ∞ is zero, meaning

the electrical field component to vanish in the walls of the waveguide. The important
consequences for wave propagation are presented in the following.

1.1.2.2 TEM, TE and TM Modes

We regard waves propagating in z−direction through waveguides with constant cross
sections in the x − y−plane and perfectly conducting walls. Furthermore, we assume
time-harmonic fields according to E,H ∝ exp(−iωt), but dispense with this term for
the sake of clarity. Choosing a general ansatz, splitting z−dependence and separating
fields into transverse (e,h) and longitudinal components (ez, hz), we can write

E(x, y, z) = {e(x, y) + zez(x, y)} exp(−iβz) (1.21)
H(x, y, z) = {h(x, y) + zhz(x, y)} exp(−iβz) (1.22)

where z denotes unity vector in z−direction and β is the propagation constant. In free
space propagation β = k = 2π

λ
is valid, but as we will see, this relation does not always

hold and depends on the regarded boundary conditions. Applying equations 1.2 and
1.4 in a current-free environment (j = 0) and replacing B = µH and D = εE, we find
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the two relations

∇∇∇× E = −iωµH (1.23)
∇∇∇×H = −iωεE, (1.24)

which deliver six scalar, partial differential equations for the six vector components
Ex, Ey, Ez, Hx, Hy and Hz:

∂Ez
∂y

+ iβEy = −iωµHx (1.25)

−∂Ez
∂x
− iβEx = −iωµHy (1.26)

∂Ey
∂x
− ∂Ex

∂y
= −iωµHz (1.27)

∂Hz

∂y
+ iβHy = iωεEx (1.28)

−∂Hz

∂x
− iβHx = iωεEy (1.29)

∂Hy

∂x
− ∂Hx

∂y
= iωεEz. (1.30)

Eliminating Ey in 1.25 by inserting 1.29, Ex in 1.26 by inserting 1.28 and vice versa
for Hy in 1.28 and Hx in 1.29, leads to four equations for the transverse components

Ex = − i

k2
c

(
β
∂Ez
∂x

+ ωµ
∂Hz

∂y

)
(1.31)

Ey = i

k2
c

(
−β∂Ez

∂y
+ ωµ

∂Hz

∂x

)
(1.32)

Hx = i

k2
c

(
ωε
∂Ez
∂y
− β∂Hz

∂x

)
(1.33)

Hy = − i

k2
c

(
ωε
∂Ez
∂x

+ β
∂Hz

∂y

)
. (1.34)

Here, cut-off wavenumber k2
c = k2

m − β2 was introduced, where km = k0
√
εrµr is the

wavenumber in the material filling the waveguide and k0 the same for vacuum. So far,
only general considerations have been done, but now we will have a deeper look at the
different forms in which waves can propagate in the guides. These forms are called
modes and are characterized by their individual field patterns. One can distinguish
between

• transverse electromagnetic modes (TEM)
• transverse electric modes (TE)
• transverse magnetic modes (TM).

By definition, TEM modes are characterized by the condition Ez = Hz = 0, meaning
fields to be restricted to oscillate transversly to propagation along z−axis. Accordingly,
TE-modes fulfill only Ez = 0, while Hz 6= 0 and vice versa, Hz = 0 and Ez 6= 0 applies
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for TM-modes. In the following, the modes arising in rectangular and parallel plate
waveguides are analyzed.

1.1.2.3 Rectangular Waveguide

As suggested by its name, this waveguide has a rectangular cross section with the
dimensions a and b, whereby a denotes the longer edge, as shown in figure 1.2. Condi-

Figure 1.2 – A rectangular waveguide with the inner dimensions a and b and a length of d.

tioned by this geometry, this waveguide can support TE and TM, but not TEM modes.
In this case, the first arising mode is of TE-type, reducing equations 1.31-1.34 to

Ex = − i

k2
c

ωµ
∂Hz

∂y
(1.35)

Ey = i

k2
c

ωµ
∂Hz

∂x
(1.36)

Hx = − i

k2
c

β
∂Hz

∂x
(1.37)

Hy = − i

k2
c

β
∂Hz

∂y
. (1.38)

In order to solve these equations, one needs further information on Hz which can be
drawn from Helmholtz wave equation, which is actually the same as 1.11 applied on Hz(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 + β2
)
Hz = 0. (1.39)

SeparatingHz(x, y, z) = hz(x, y) exp(−ikmz) for the purpose of splitting its z−dependence
and using k2

c = k2
m − β2, one finds(

∂2

∂x2 + ∂2

∂y2 − k
2
c

)
hz = 0. (1.40)
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Now, one can choose the following separation ansatz

hz(x, y) = hxz(x)hyz(y)
= (A cos (kxx) +B sin (kxx) ) (C cos (kyy) +D sin (kyy) ) (1.41)

under the boundary conditions for the electric field components (see section 1.1.2.1)

Ex = 0 at y = 0 and y = b (1.42)
Ey = 0 at x = 0 and x = a. (1.43)

Since we are looking for a solution for the magnetic field, but only know boundary
conditions for the electric components, we have to use 1.35 and 1.36 to find

Ex = − i

k2
c

ωµky (A cos (kxx) +B sin (kxx) ) (−C sin (kyy) +D cos (kyy) ) (1.44)

Ey = i

k2
c

ωµkx (−A sin (kxx) +B cos (kxx) ) (C cos (kyy) +D sin (kyy) ) . (1.45)

By this, the relations

B = 0, D = 0, kx = πn

a
and ky = πm

b
(1.46)

with n,m ∈ N, denoting different modes, can be obtained. Accordingly, this leads to
the solution for the magnetic field

hn,mz (x, y) = An,m cos
(
πn

a
x
)

cos
(
πm

b
y
)

(1.47)

with the arbitrary amplitude An,m. Applying equation 1.40 on this solution, we obtain

k2
c = k2

x + k2
y. (1.48)

This yields the very important dispersion relation for TEn,m modes in the rectangular
waveguide

βn,m =
√
k2
m − k2

c =
√
k2
m −

(
πn

a

)2
−
(
πm

b

)2
. (1.49)

Obviously, this expression becomes purely imaginary if km < kc, meaning that waves
entering the waveguide will decay exponentially and do not propagate. The corre-
sponding cut-off frequency is given by

νn,mc = kc
2π√µε = 1

2π√µε

√(
πn

a

)2
+
(
πm

b

)2
(1.50)
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and the associated wavelength by

λn,mc = c

fn,mc
= 2√(

n
a

)2
+
(
m
b

)2
. (1.51)

In order to analyze devices in waveguides, it is necessary that only one mode is able to
propagate while all others are damped. So, the mode with the lowest cut-off frequency
is of special interest. In case a > b, the dominant TE mode is defined by n = 1 and
m = 0, leading to

ν1,0
c = 1

2a√µε. (1.52)

Considering a so-called X-band rectangular waveguide with the dimensions a = 2.286 cm
and b = 1.016 cm, a cut-off frequency for the dominant mode of ν1,0

c = 6.56 GHz re-
sults. The second mode is able to propagate at frequencies above ν2,0

c = 13.12 GHz.
Accordingly, this waveguide can be used for measurements between these two frequen-
cies, while it is recommended to limit to the range of 8− 12 GHz.
Below the cut-off frequencies for different modes, the above given concepts also deliver
the related field patterns. From 1.47, we conclude

Hn,m
z (x, y, z) = An,m cos

(
πn

a
x
)

cos
(
πm

b
y
)

exp (−iβz). (1.53)

The usage of 1.35-1.38 delivers the remaining field components

En,m
x (x, y, z) = An,m

iωµmπ

k2
cb

cos
(
πn

a
x
)

sin
(
πm

b
y
)

exp (−iβz) (1.54)

En,m
y (x, y, z) = −An,m

iωµnπ

k2
ca

sin
(
πn

a
x
)

cos
(
πm

b
y
)

exp (−iβz) (1.55)

Hn,m
x (x, y, z) = An,m

iβnπ

k2
ca

sin
(
πn

a
x
)

cos
(
πm

b
y
)

exp (−iβz) (1.56)

Hn,m
y (x, y, z) = An,m

iβmπ

k2
cb

cos
(
πn

a
x
)

sin
(
πm

b
y
)

exp (−iβz). (1.57)

For the dominant TE1,0 mode, these fields are shown in picture 1.3.
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Figure 1.3 – The E (blue) and H (red) pattern of the TE1,0 mode in a rectangular waveguide.
While E only oscillates in y−direction, the field lines of H draw circles in the x− z−plane.

Repeating the above calculations for TM modes, one finds the same dispersion re-
lation (1.49) and cut-off behavior (1.50) as for TE modes. An analysis of the field
patterns shows the first TM mode to be defined by n = m = 1.

1.1.2.4 Parallel Plate Waveguide

The second type of waveguides of interest is the parallel plate waveguide. It consists
of two parallely fixed, conducting plates with a constant distance b in y−direction,
but infinite extension in x−direction (see figure 1.4). One consequence of this changed

Figure 1.4 – Parallel plate guides consist of two opposing conducting plates in a distance b
and infinite extension perpendicular to propagation direction. It can be seen as a rectangular
waveguide in the limiting case a→∞.
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geometry compared to the previous case is that the dominant mode is now of TEM type,
accordingly fulfilling Hz = Ez = 0 when propagation follows z−direction. Including
this and taking additionally the limit of a→∞, the same procedure as in the previous
section can be repeated in order to gain insight in the cut-off behavior.
Again regarding equations 1.31-1.34 and applying Hz = Ez = 0, it directly becomes
clear that either no fields appear inside the waveguide or kc has to approach zero in
order to find solutions. Although these solutions are indetermined at this point, we
can already conclude that

k2
c = k2

m − β2 = 0 (1.58)
⇔ β = km = ω

√
µε (1.59)

and that the dominant mode arises already with frequency νc → 0 GHz. Further
insight into the topic of field patterns, can be gained by analyzing Laplace’s equation
for the electrostatic potential Φ inside the waveguide

∇∇∇2Φ(x, y, z) = 0. (1.60)

In the present case, we can reduce this equation to

∂2

∂y2 Φ(y) = 0. (1.61)

By this approach, the system is treated as a static plate capacitor, which is actually
correct because of the infinite extension in x−direction, implying no boundary condi-
tions on the guided waves, and because of the splitting of the z−dependence by the
separation ansatz with a factor of exp (−iβz). Accordingly, the boundary conditions
in y−direction are defined by

|Φ(y = 0)− Φ(y = b)| = V (1.62)

with the voltage V between the two plates. Choosing Φ(y = 0) = 0, we can find a
solution Φ by

Φ(y) = V
y

b
, (1.63)

which delivers the transverse electric field by applying the definition of the potential

e(x, y) = −∇t∇t∇tΦ = −V
b

y. (1.64)

Within this,

∇t∇t∇t =

 ∂
∂x

∂
∂y

 (1.65)
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denotes the transverse nabla operator. Consequently, the total electric field is given by

E = e(x, y) exp (−iβz) = −V
b

exp (−ikmz)y, (1.66)

in which we also used the result for the propagation constant km = β. Once again, the
magnetic component can be found by applying equation 1.23:

H = km
ωµ

V

b
exp (−ikmz)x. (1.67)

Hence, it becomes clear that both field components oscillate in only one direction. The
corresponding field patterns for E and H of this dominant TEM mode in the parallel
plate waveguide are shown in figure 1.5.

Figure 1.5 – The E (blue) and H (red) pattern of the TEM mode in a parallel plate wave-
guide. Both fields’ oscillations are restricted to only one direction: field lines of E follow
y−direction, while H oscillates in x−direction.

1.1.3 Transmission and Reflection of Electromagnetic Waves

The transmission and reflection of electromagnetic waves plays an important role for
the simulations and the evaluations performed in this work. For this reason, the un-
derlying continuity conditions for the fields will be derived in this section. At this
point, we restrict to the conditions for the components of E and H, which are parallely
orientated to the reflecting and transmitting surface, because these are sufficient in or-
der to understand the origin of the later used scattering parameters (S−Parameters).
Additionally, the continuity condition for the normal component of B will be analyzed
in 1.2.1. In this section, we refer to calculations which can be found in many textbooks
as [15] or [16], for example.
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Considering the electric field component E, we again regard equation 1.4

∇∇∇× E = − ∂

∂t
B (1.68)

and use Stoke’s theorem for a vector field F∫
A

(∇∇∇× F) dA′ =
∮
∂A

Fdl (1.69)

where ∂A denotes the border of area A, leading to∫
A

(∇∇∇× E) dA′ =
∮
∂A

Edl (1.70)

= −
∫
A

∂

∂t
BdA′. (1.71)

Now, we regard the boundary between two different media and define a rectangular
area with edge lengths h and b as shown in figure 1.6.

Figure 1.6 – The border line between two different media is considered in order to gain insight
into the boundary conditions of the magnetic field. The red line indicates area A along whose
edges E and H are integrated. t1 and t2 denote unity vectors parallely orientated to the regarded
border line.

Considering the limiting case of h → 0, the border integral reduces to the both edges
parallel to the boundary: ∮

∂A
Edl = E1t1b+ E2t2b (1.72)

= −
∫
A

∂

∂t
BdA′ (1.73)

= 0. (1.74)

Therein, the last integral becomes zero because the so defined area A vanishes in the
considered case. Accordingly, we can conclude

E1t1b+ E2t2b = 0 (1.75)
⇔ E1,tb− E2,tb = 0 (1.76)
⇔ E1,t = E2,t (1.77)
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because of t1 = −t2. Following this, the parallel component of the electric field Et is
continuous at such a boundary.
Analogically, we can derive the boundary condition for the magnetic field H by re-
garding equation 1.2 in the absence of a current j (which will be the case because we
restrict to non-conducting samples in our examinations):

∇∇∇×H = ∂

∂t
D. (1.78)

Repeating the previous considerations and computations, we find:∮
∂A

Hdl = H1t1b+ H2t2b (1.79)

= −
∫
A

d
dtDdA′ (1.80)

= 0. (1.81)

Consequently, we find in the limiting case h→ 0

H1t1b+ H2t2b = 0 (1.82)
⇔ H1,tb−H2,tb = 0 (1.83)
⇔ H1,t = H2,t (1.84)

meaning the parallel component of H to be continuous, too. With this knowledge, we
can calculate the reflection and transmission of an electromagnetic wave orthogonally
impinging the boundary between two media. For simplicity, we regard the first medium
as vacuum (see figure 1.7). Therein, fields are given by

Ei = Ei exp (−ikiz)x (1.85)
Er = Er exp (−ikrz)x (1.86)

= Er exp (ikiz)x (1.87)
Et = Et exp (−iktz)x (1.88)
Hi = Hi exp (−ikiz)y (1.89)

=
√
ε0

µ0
Ei exp (−ikiz)y (1.90)

Hr = Hr exp (−ikrz)y (1.91)
= Hr exp (ikiz)y (1.92)

= −
√
ε0

µ0
Er exp (ikiz)y (1.93)

Ht = Ht exp (−iktz)y (1.94)

=
√
ε

µ
Et exp (−iktz)y. (1.95)

Note that equation 1.16 was used in order to replace magnetic field amplitudes. Because
both fields parallely oscillate to the border in case of free or TEM waves, we can use
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Figure 1.7 – An electromagnetic wave impinges the transition from vacuum to another medium
with permittivity ε and permeability µ and is partly reflected and transmitted. Index i denotes the
incident wave, r the reflected and t the transmitted parts of it. Due to the reversal of propagation
direction ke = −kr through reflection, also the direction of the magnetic component changes.

the above derived continuity of the tangential components and conclude

Ei + Er = Et (1.96)

and

Hi +Hr = Ht. (1.97)

Inserting magnetic field expressions 1.90, 1.93 and 1.95 in 1.97 and respecting ε = εr ε0
and µ = µr µ0, leads to

Ei

√
ε0

µ0
− Er

√
ε0

µ0
= Et

√
εrε0

µrµ0
(1.98)

⇔ Et =
√
µr
εr

(Ei − Er). (1.99)

Now, using equation 1.96, we find

Et =
√
µr
εr

(Ei − Et + Ei) (1.100)

⇔ Et = 2
1 +

√
εr

µr︸ ︷︷ ︸
=:t

Ei (1.101)

in which we can define the transmission coefficient t. Again using equation 1.96, we
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find

Er = Et − Ei = (t− 1)︸ ︷︷ ︸
r

Ei (1.102)

leading to the reflection coefficient

r = t− 1 = 2
1 +

√
εr

µr

− 1 =
1−

√
εr

µr

1 +
√

εr

µr

. (1.103)

Now, we can regard the transmission and reflection behavior of an electromagnetic
wave with a given amplitude A passing through a finite sample with permittivity ε and
permeability µ: At the first border, a fraction r·A is reflected while t·A = (1 + r)A
is transmitted. Then, the transmitted wave has to cross the sample, leading to an ad-
ditional phase factor of a = exp (−ikmd) with the wave number in the device material
km and a sample length of d. Reaching the rear boundary of the sample, transmis-
sion and reflection occurs again, but now from test material to vacuum, changing the
reflection r → −r and transmission coefficient (1 + r) → (1 − r). Subsequently, the
reflected signal travels back whereby the factor of a occurs again. Although propaga-
tion direction changes through reflection, leading to km → −km, factor a remains the
same because the travelled path also changes from d→ −d. Afterwards, the wave hits
the first boundary, being transmitted and reflected again and so on. This process of
multiple reflection is illustrated in picture 1.8. The total parts of the wave which are

Figure 1.8 – An incident electromagnetic wave arriving from port 1 hits a finite sample. In this
process, the wave will be reflected and transmitted infinite times. The fractions of the incident
amplitude leaving the sample to port 1 or 2, respectively, are written in red.

reflected and transmitted are called scattering parameters and are calculated in the
following. Summing up the parts leaving the sample in the direction of incidence and
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travelling to port 1 again, we find

S11 = Er
Ei

= r − ra2(1− r2)− r3a4(1− r2)− ... (1.104)

= r·
(
1− a2(1− r2)− r2a2(a2(1− r2))− ...

)
(1.105)

= r·

1− (1− r2)a2 (1 + r2a2 + r4a4 + ...)︸ ︷︷ ︸∑∞
i=0(r2a2)i

 (1.106)

= r·
(

1− (1− r2)a2 1
1− r2a2

)
(1.107)

= (1− a2)r
1− r2a2 (1.108)

where we used the sum formula for infinite geometric series
∞∑
i=0

a0q
k = a0

1− q . (1.109)

Analogically, we calculate the fraction of the incident signal which passes the sample
and is measured at port 2

S21 = Et
Ei

= a(1− r2) + r2a3(1− r2) + r4a5(1− r2) + ... (1.110)

= a·
(
(1− r2) + r2a2(1− r2) + r4a4(1− r2) + ...

)
(1.111)

= a(1− r2)

1 + r2a2 + r4a4 + ...︸ ︷︷ ︸∑∞
i=0(r2a2)i

 (1.112)

= (1− r2)a
1− r2a2 . (1.113)

Within this, it has to be noted that a correction of the measured S−parameters at the
ports is necessary. In case that the air-filled distance between sample boundary and
port amounts l in propagation direction, an additional phase factor has to be taken
into account, which will be discussed in detail in section 3.1. There are two more
S−parameters, S22 and S12, for which the direction of propagation is changed, that
means the wave to be arised at port 2. In the case of reciprocal devices, S12 = S21 is
valid, while both values differ for non-reciprocal set-ups. Contrary, S11 = S22 is true
in both cases. Due to energy conservation,

|S11|2 + |S21|2 = |S22|2 + |S12|2 = 1 (1.114)

is always true in dissipation-free samples. In the case that the sample is hit by an elec-
tromagnetic wave in a waveguide, we have to respect the influence of the dominating
mode by choosing the right dispersion relation βn,m instead of km in the phase factor
a = exp (−iβn,md). Generally, the S−parameters are complex values.
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1.2 Magnetism of Matter

In this work, the previously discussed wave phenomena will be used as a tool in order
to gain insight into the behavior of composites in static and high-frequent magnetic
fields, which is described by the magnetic susceptibility χχχ or the related permeability µµµ.
Accordingly, a deeper look into the topic of magnetism of matter is necessary and will
be delivered in the following section. For that purpose, we will discuss magnetostatic
phenomena at first, before dealing with the ferromagnetic resonance, which will be the
main topic of the present work. The basic issues discussed in the following are drawn
from textbooks specialized on magnetism [17,18].

1.2.1 Matter in Static Magnetic Fields

If a material consists of atoms or molecules carrying a magnetic dipole moment pm,
interaction occurs when it is exposed to an externally applied magnetic field H. The
sum over all of these n microscopic dipole moments divided by the filled volume is
called magnetization

M = 1
V

n∑
i=1

pm,i. (1.115)

The two fields H and M are connected to each other by the magnetic susceptibility χχχ
via

M = χχχH. (1.116)

In general, χχχ is a tensorial quantity, but in many cases, it reduces to scalar values.
Moreover, flux density B is needed in order to describe magnetic phenomena properly.
These three regarded fields fulfill the relations

B = µ0 (H + M) (1.117)
= µ0 (H +χχχH) (1.118)
= µ0 (I +χχχ) H (1.119)
= µ0µrµrµrH (1.120)
= µµµH. (1.121)

By this, we showed the connection between the relative permeability µrµrµr = I + χχχ and
the susceptibility, in which I denotes the unity matrix. As these relations are caused by
the dipole moments on an atomic scale, we want to focus on the dipoles’ origin in the
following. As a starting point for that purpose, we regard an infinite long conducting
cylinder of radius r with a current density of j flowing in it, with the goal of calculating
the caused flux density B (figure 1.9). Assuming a time-independent electric field and
using B = µ0H, equation 1.2 can be written as

∇∇∇×B = µ0j. (1.122)
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Figure 1.9 – A current in a cylindrical conductor causes a radial symmetric magnetix flux around
itself.

Integrating both sides of this equation over a circular area S of radius R with its center
in the center of the cylinder’s cross section and its normal vector parallel to j, we obtain∫

S
(∇∇∇×B) dS′ =

∫
S
µ0jdS′ = µ0I (1.123)

with the strength of the electric current I. Remembering Stoke’s theorem (1.69), we
can conclude ∮

∂S
Bdl = µ0I. (1.124)

As a consequence of equation 1.122, Bdl is constant along ∂S, leading to

B = µ0I

2πRel ⇔ H = I

2πRel (1.125)

with the angular coordinate unity vector el.
Due to our interest in the atomic origin of magnetization, we have to the modify this
situation and regard a conducting wire bent to a closed loop, comparable to electrons
orbiting the nucleus. In this case, we need the Biot-Savart law, which is derived from
Maxwell equations, in order to calculate the resulting magnetic field:

dB = −µ0

4π
r× j
r3 dV. (1.126)

This formular describes the magnetic flux density at the origin when a volume of dV at
point r carries a current density of j. Replacing dV = adl with the area normal vector
a and the length element dl and additionally using I = ja, the above law becomes

dB = −µ0

4πI
r× dl
r3 . (1.127)

Regarding the field in the center of a circular loop of radius r with a current flowing in
it, the infinitesimal length element can be expressed by the radius and an incremental
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angle dθ via (see figure 1.10)

dl = rdθel. (1.128)

Figure 1.10 – The length element dl of a circle with radius r.

By definition, el and r are orthogonal to each other. It follows

dB = −µ0I

4π
r2dθ
r3 eB (1.129)

= −µ0

4πI
dθ
r

eB (1.130)

where r× el = reB. Then, integrating over the whole loop leads to

B = −µ0I

2r eB ⇔ H = − I

2reB. (1.131)

In summary, we find the magnetic field caused by a circular current, which could also
result from electrons circling around an atomic core. For the purpose of drawing further
conclusions on the magnetic moments pm, we now regard a line of N of such circular
currents as in a solenoid (figure 1.11). Repeating the previous calculations for this
case, we obtain ∮

∂S
Bdl = µ0

∫
S

jdS′ = µ0nI. (1.132)

Therein, the integration path is chosen as rectangular and containing parts of n
loops. Evaluating the left-hand side of equation 1.132 and considering the case of
n,N → ∞, while n < N , we observe the field Bin inside the solenoid to be constant
and parallel to the chosen integration path, while the field outside disappears. More-
over, the contributions of the left and right edge of the integration path become zero
because field lines are perpendicular to it, leading to a zero-valued scalar product.
Finally, we conclude from equation 1.132

Bind = µ0nI (1.133)

⇔ Bin = µ0
n

d
I ⇔ Hin = n

d
I. (1.134)

Now, we can compare this outcome with the magnetic field arising from microscopic
atomic currents in case that there is no external field applied (H = 0). Then, the
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Figure 1.11 – The magnetic field of a solenoid consisting of N = 6 turns. The red line marks
an exemplary integration path which is used in calculations, in this case including n = 4 currents.

equivalence of

B = µ0(H +M) (1.135)
= µ0M (1.136)

= µ0
n

d
I (1.137)

shows that, on the one hand, magnetization can be calculated as

M = n

d
I (1.138)

and, on the other hand, via the definition

M = n

V
pm (1.139)

= n

Ad
pm. (1.140)

Here, V is the total volume of the regarded line of atoms and A the area which is
circulated by one microscopic current. Consequently,

pm = IA, (1.141)

suggesting the magnetic moments to have their origin in microscopic atomic currents.
Regarding a hydrogen atom in the Bohr model, we can calculate the current caused by
a single electron orbiting the core by

I = ev

2πr0
(1.142)
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with the elementary charge e, tangential speed v and the radius of the first Bohr orbit
r0. Inserting the corresponding angular moment L = mr0v, we find

I = e

2mπr2
0
L (1.143)

⇒ pm = e

2mπr2
0
Lπr2

0 (1.144)

= e

2mL. (1.145)

Inserting the minimal value for L = ~, which is given by the reduced Planck constant,
we obtain the Bohr magneton

µB = e

2m~ = 9.27 · 10−24 Am2. (1.146)

Considering the arrangement of the atomic magnetic moments in solids in absence of an
external field, two different cases are possible. Firstly, the moments could be randomly
oriented without interacting with each other, leading to an overall magnetization of∑pm = 0 in the solid. Only when an external field is applied, moments align and a
non-vanishing magnetization is observed. In case that moments enforce the external
field, this material is called paramagnetic. Oppositely, a material with magnetic mo-
ments counteracting to an outer field is a diamagnet.
Secondly, there can be an interaction between the atomic magnetic dipole moments,
leading to ∑pm 6= 0 in general, even without an external magnetic bias. This phe-
nomena is called ferromagnetism, which will be treated in the next section.
Additionally to the previous enlisted types of magnetism, there are also antiferro-
magnetism and ferrimagnetism, which are not of interest in this work and are only
mentioned for the sake of completeness.
When analyzing the behavior of finite samples, we have to take care on an additional
effect appearing on the surface of magnetic materials. For gaining insight into this
issue, we regard the boundary between two media and use Maxwell’s equation 1.3

∇∇∇· B = 0

and Gauss’s theorem for a vector field F∫
V

(∇∇∇· F) dV ′ =
∮
S

F · ndS (1.147)

where S denotes the surface of volume V and n the corresponding unity normal vector.
These equations deliver ∫

V
(∇∇∇· B) dV ′ =

∮
S

B · ndS = 0. (1.148)

For our purpose, we define a box with height h and base area S, containing a part
of the boundary surface as shown in figure 1.12. By considering the limiting case of
h → 0, we are able to gain insight into the boundary conditions of the magnetic flux
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Figure 1.12 – The boundary area between two different media, indicated by black lines, is
considered in order to gain insight into the boundary conditions of the magnetic flux density. The
red box is used as integration volume for the divergence of B.

density. In this case, equation 1.148 becomes

B1n1S + B2n2S = 0 (1.149)

where n1 = −n2 denote the normal vectors on the two surfaces of the considered box
and B1 and B2 the flux densities in both media. Accordingly, one finds

(B1 −B2)n = 0 (1.150)
⇔ (H1 −H2)n = (M2 −M1)n (1.151)

yielding that the normal component of the flux density B is continous at the bound-
ary between two media, while the normal component of the magnetic field H shows a
discontinuity when the magnetizations of the two media distinguish from each other.
Considering an infinite magnetized plate with a magnetization M1 parallel to normal
surface vector n and surrounded by a medium with an also parallely aligned magneti-
zation M2 and a magnetic field H2, we find for the magnetic field inside the plate

H1 = H2 − (M1 −M2). (1.152)

More generally spoken, regarding an arbitrarily shaped magnetized device surrounded
by magnetic material, one can define the demagnetization tensor N, which fulfills

H1 = H2 −N(M1 −M2). (1.153)

In case of ellipsoid samples, N becomes exact and diagonal, where diagonal components
satisfy nx + ny + nz = 1. Due to rotational symmetry, nx = ny = nz = 1

3 is valid for
spheres.
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1.2.2 Ferromagnetism

Ferromagnetism and especially the effect of ferromagnetic resonance are of great in-
terest in this thesis. Accordingly, deeper insight into these topics are given in the
following.
As mentioned before, an interaction between the atomic dipole moments occurs in fer-
romagnets, giving them the ability to align even without the influence of external fields,
leading to non-vanishing magnetizations, in general. When additionally applying and
increasing a static magnetic field, the value of magnetization also arises and approaches
a maximum value which is called saturation magnetizationMs. This saturation magne-
tization is reached when the outer field is strong enough to align all magnetic moments
strictly parallel to themselves. The therefore required value of the external field is called
saturation field Hsat. Again reducing the strength of the external field, magnetization
also decreases due to thermal fluctuations which disturb the perfect alignment. When
external field reaches zero, a magnetization remains, which is typically for ferromag-
netic materials and is called remanence Mr, for which Mr < Ms is valid. Inverting the
direction of the outer field and increasing its magnitude again, magnetization vanishes
at a non-zero field which is called coercivity Hci before approaching the value of −Ms.
These behavior can be pictured in a ferromagnetic hysteresis loop, shown in figure 1.13.

Figure 1.13 – A typical hysteresis loop for a ferromagnet, where magnetization of a sample
is plotted in dependence of the applied external field. Curve starts in the demagnetized state
(M = 0). The quantities of saturation magnetization Ms, saturation field Hsat, remanence Mr

and coercitivity Hci are marked in the picture.

As already mentioned, thermal fluctuations disturb the alignment of magnetic mo-
ments. Consequently, such hysteresis loops are also temperature dependent and espe-
cially saturation magnetization is influenced by thermal energies. When examining the
hysteresis loop of a given device at different temperatures, it is observed that higher
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temperatures reduce saturation magnetization until it disappears at a special value
called Curie temperature Tc. Above this temperature, the material behaves like a
paramagnet due to the increasing influence of thermal perturbations on the magnetic
interaction between the atomic moments which prevents them from aligning. The typi-
cal relation between Curie temperature and saturation magnetization is shown in figure
1.14.

Figure 1.14 – Saturation magnetization Ms decreases with increasing temperature due to
disturbing thermal fluctuations. The Curie temperature TCurie denotes the point in which Ms

vanishes. The paramagnetic and ferromagnetic phases are separated by this curve.

A further important phenomena, which is the main topic of this work, is the ferromag-
netic resonance appearing when a ferromagnetic device is brought into an externally
applied static magnetic field Hext, while a high-frequent electromagnetic wave h(t) os-
cillates perpendicularly to it. This composition causes a precessive motion of the single
dipole moments (see figure 1.15), whose consequences will be derived in the following.

Figure 1.15 – The precessive motion of the magnetization vector M around the static magnetic
field Hext.
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We assume the static field to be applied in z−direction as

Hext =


0

0

Hext

 , (1.154)

(1.155)

while the magnetic component of the high-frequent wave oscillates in x− y−plane (as
the magnetic component of a TE1,0 mode in a rectangular waveguide with propagation
in x− or y−direction)

h(t) =


hx

hy

0

 . (1.156)

Within this, we assume the static field to be large enough in order to fully magnetize the
device unter test, meaning Hext > Hsat and, furthermore, Hext � hx, hy. Additionally,
the high-frequent magnetic components are time-harmonic, i. e. hx, hy ∝ exp(−iωt)
with the angular frequency ω.
The total magnetic field Htot inside a ferromagnetic device under test is also influenced
by a demagnetization field (see section 1.2)

Hdem = −NM (1.157)

with the magnetization M, which can be assumed to be static along z−direction, while
its x− and y−components should be time-harmonic as the incoming magnetic signal,
mx,my ∝ exp(−iωt). Assuming an ellipsoidal sample, we can write

Htot = Hext + Hdem + h =


hx − nxmx

hy − nymy

Hext − nzMz

 . (1.158)

This effective field has to fulfill the Landau-Lifshitz-Gilbert equation for the precessive
motion of the magnetic moments

∂M
∂t

= −γM×Htot + α

Mz

(
M× ∂M

∂t

)
. (1.159)

Here,

γ ≈ 2.21276 · 105 A
m·s (1.160)

denotes the gyromagnetic ratio and α is an empirically introduced damping coeffi-
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cient. Inserting equation 1.158 in 1.159 and using the time-harmonic dependencies, we
calculate for the three vector components

dmx

dt
= −γ

(
my(Hext − nzMz)−Mz(hy − nymy)

)
− α

Mz

Mz
dmy

dt
(1.161)

dmy

dt
= −γ

(
Mz(hx − nxmx)−mx(Hext − nzMz)

)
+ α

Mz

Mz
dmx

dt
(1.162)

0 = −γ
(
mx(hy − nymy)−my(hx − nxmx)

)
+ α

Mz

(
mx

dmy

dt
−my

dmx

dt

)
. (1.163)

Because of the assumption Hext � hx, hy and, consequently, Mz � mx,my, we can
restrict to linear terms of hx, hy,mx and my. Performing the derivatives, we get after
marginal rearrangements two relevant equations

−hyωm = (iαω − ωmny − ω0 + nzωm)my + iωmx (1.164)
hxωm = iωmy − (−nxωm − ω0 + nzωm + iαω)mx (1.165)

in which we introduced the frequencies

ωm = γMz (1.166)

and

ω0 = γHext. (1.167)

Comparing these relations with the known linkage

M = χχχH (1.168)

we can derive the susceptibility tensor by writing the above relations as one vectorial
equation and inverting the emerging matrix. Because α takes small values for most
materials, we ignore higher-order terms and obtain the Polder tensor

χχχ =

χ −κ

κ χ

 (1.169)

with

χ =
ωm
(
ω0 + iαω + ωm(ny − nz)

)
ω2
res − ω2 + 2iαω

(
ω0 + ωm

2 (nx + ny − 2nz)
) (1.170)

κ = iωωm

ω2
res − ω2 + 2iαω

(
ω0 + ωm

2 (nx + ny − 2nz)
) (1.171)

as it can be also found in textbooks like [19], for example. In this derivation, we intro-
duced the resonance angular frequency ωres which is determined by Kittel’s equation

ω2
res =

(
ω0 + (nx − nz)ωm

)(
ω0 + (ny − nz)ωm

)
. (1.172)
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Typical curves of the real and imaginary parts of µr and κ are shown in figure 1.16.

Figure 1.16 – Typical graphs for the entries of the Polder tensor. Demagnetization factors
are omitted, as it is the case for bulk material or for a sphere, where nx = ny = nz = 1

3 and,
consequently, eliminate each other. Note that imaginary parts µ′′r and κ′′ coincide.

1.3 Effective Medium Theory

The main target of the present work is to gain knowledge on the permeability of
composites material, consisting of a surrounding matrix and inclusions which are small
enough in order to describe the whole composite as an effective medium. Accordingly,
we want to focus on existing effective medium theories concerning the permittivity and
permeability of composite materials in order to understand and compare the results of
this work. Although these theories are commonly derived for the effective permittivity,
we can simply apply the same methodes for the permeability because of the equivalence
of electric and magnetic equations in the absence of charges and currents. For that
purpose, we rely in the following on the works [20–22].

1.3.1 Introduction of the Effective Permeability

One way to introduce the effective permeability µeff is the usage of the general relation
between the flux density and the magnetic field

B = µ0µrH (1.173)

and apply it on heterogeneous material, where neither B nor H are spatial constant.
There, we use the volume average for an arbitrary vector quantity X in volume V

〈X〉 = 1
V

∫
V

XdV (1.174)
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and define the effective permeability of an inhomogeneous material via

〈B〉 = µ0µeff〈H〉. (1.175)

Regarding a composite with only one species of a number of Ninc inclusions with volume
Vinc in a matrix, forming a two-phase-composite, we can derive

〈H〉 = f〈H〉inc + (1− f)〈H〉m (1.176)
〈B〉 = µ0µincf〈H〉inc + µ0µm(1− f)〈H〉m = µ0µeff〈H〉 (1.177)

where index m denotes matrix phase, while inc describes the inclusions which occupy
a fraction f = NincVinc

Vtot
of the total volume Vtot. Inserting equation 1.176 into 1.177, we

obtain

µeff = µincf〈H〉inc + µm(1− f)〈H〉m
f〈H〉inc + (1− f)〈H〉m

. (1.178)

At this point, a substantially problem occurs when analytically examining this equa-
tion: Beneath the determined quantities µinc, µm and f , the averaged fields in the
matrix and inclusion phases appear. These values strongly depend on the system’s
microstructure and can only be analytically calculated in special cases. Two examples
for such arrangements are used in the derivations of Maxwell-Garnett and Bruggemann
equations, which will be introduced in the following sections as examples for effective
medium mixing formulas. Actually, a high number of such formulas have been devel-
oped, which are suitable for different microstructures and parameter ranges. In order
to introduce the Maxwell-Garnett equation, we firstly derive the Clausius-Mosotti re-
lation, which is fundamental to this mixing formula.

1.3.2 Clausius-Mosotti

As already mentioned, the Clausius-Mosotti relation was originally derived for the
permittivity, but an analog derivation of an equivalent formula concerning the perme-
ability is possible. An exemplaric derivation for diamagnetic materials can be found
in [23], for example. Here, we choose the consideration of a magnetic moment pm of a
molecule, experiencing the local field Bloc, as starting point, yielding the relation

pm = αmBloc. (1.179)

Within this, αm denotes the magnetic polarisability (as an analog to electric polariz-
ability in the relation p = αE) and Bloc is defined as the flux density which results
from an external applied field and from further dipole moments on a fictional hollow
sphere around the regarded dipole (as a magnetic analog to Lorentz field). Accord-
ingly, the resulting macroscopic magnetization in a system of such molecules can be
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calculated via

M = 1
V

N∑
j=1

pm,j (1.180)

= nαmBloc (1.181)

where n = N
V

denotes particle density. Once more, we use the already known rela-
tion between magnetization and applied magnetic field M = χH = (µr − I)H and
Bloc = µ0Hloc, receiving

nαmµ0Hloc = (µr − 1)H. (1.182)

Therein, one has to obey that the local field is enforced by surrounding magnetization
compared to the applied field, according to

Hloc = H + 1
3M =

(
1 + µr − 1

3

)
H, (1.183)

leading to the desired Clausius-Mossotti relation

nαmµ0

(
1 + µr − 1

3

)
H = (µr − 1)H (1.184)

⇔ µr − 1
µr + 2 = nαmµ0

3 , (1.185)

which connects the microscopic polarisability to the macroscopic permeability and
therefore serves as a starting point for several fundamental mixing formulas.

1.3.3 Maxwell-Garnett

Now, we want to regard spherical inclusions with permeability µinc dilutely distributed
in a non-magnetic host matrix. Formula 1.185 yields for the polarisability of such an
inclusion

αm,inc = 3
nµ0

µinc − 1
µinc + 2 . (1.186)

Additionally, we can replace the dipole density n by

n = Ninc

V
= 1

4
3πr

3
inc

(1.187)

with the inclusions’ radius rinc when each particle is assumed to carry one dipole
moment pm,inc. It follows

αm,inc = 4πr3
inc

µ0

µinc − 1
µinc + 2 , (1.188)
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which can be inserted in equation 1.185 again. When µr is replaced by the effective
permeability of the composite µeff , we obtain

µeff − 1
µeff + 2 = f

µinc − 1
µinc + 2 , (1.189)

where f = Ninc

Vtot
· 4

3πr
3
inc denotes the volume fraction occupied by Ninc inclusions in the

total volume Vtot, as before. Deriving equation 1.189 for a composite with a magnetic
matrix with permeability µm, one finds

µeff − µm
µeff + 2µm

= f
µinc − µm
µinc + 2µm

, (1.190)

which is known as Maxwell-Garnett equation [24,25]. Rearranging delivers

µeff = µinc + 2µm + 2f(µinc − µm)
µinc + 2µm − f(µinc − µm) µm. (1.191)

Contrary, changing the roles of host and inclusion medium by switching µinc ↔ µm and
f ↔ (1− f) yields

µ∗eff = µm + 2µinc + 2(1− f)(µm − µinc)
µm + 2µinc − (1− f)(µm − µinc)

µinc, (1.192)

which does not deliver the same results as equation 1.191. This point highlights that the
effective permeability of a composite does not only depend on the parameters µm, µinc
and f , but also the regarded microstructure and the topology have a strong influence.
A drawback of the Maxwell-Garnett approach becomes clear, when trying to expand
the formula to composites with several types of inclusions, as done in [26], leading to

µeff − µm
µeff + 2µm

=
∑
i

fi
µi − µm
µi + 2µm

. (1.193)

Using this equation and regarding the case in which the host material is completely
replaced by the inclusions, meaning ∑i fi = 1, µeff still depends on µm. This irrational
fact shows that this expansion is not meaningful within the Maxwell-Garnett formalism.

1.3.4 Bruggeman

Contrary to the model of Maxwell-Garnett, in which spherical inclusions are dispersed
in a host matrix, a slightly changed arrangement is chosen by Bruggeman [27]. Here,
a model is described in which all involved materials are taken into account in the same
manner, leading to a mixing formula for a multiple phase composite

∑
i

fi

(
µi − µeff
µi + 2µeff

)
= 0, (1.194)

where index i denotes different materials. Such a microstructure, in which all involved
materials are symmetrically treated, is called aggregate topology. The counterpart, in



33 1.3 Effective Medium Theory

which inclusions are surrounded by a host matrix, meaning an asymmetric structure,
is referred to as cermet topology (see schematic sketches in figure 1.17).

Figure 1.17 – A cermet topology of spherical inclusions, which is assumed in the model of
Maxwell-Garnett, is exemplarily illustrated in the left picture, while an aggregate structure of
spheres is shown right. In case of an aggregate structure consisting out of spherical components,
a complete filling of the available space is only possible for polydisperse systems.

Regarding a composite of two materials, equation 1.194 approaches to 1.189 in the
limit of small volume fractions of inclusions, f → 0, but also gives meaningful results
for multicomponent systems. Unfortunately, this theory has also its insufficiencies. For
example, in [28] it was shown by numerical calculations, that there are critical values
for the material parameters in which the theory extremely fails.

1.3.5 Bounds of the Effective Medium

In addition to the previously described mixing formulas, one can also look for upper and
lower bounds of the effective properties of a composite material which will be discussed
in the following. For simplicity, we restrict to scalar- and real-valued permeabilities,
as it is the case when regarding isotropic and lossless materials, and to two-phase
composites with permeabilities µ1 and µ2 with µ1 < µ2 and the volume fraction f for
material 1 and (1− f) for material 2.
The most naive approach for the determination of boundaries is that the resulting
effective permeability should not fall below the lower value but also should not exceed
the higher one according to

µ1 ≤ µeff ≤ µ2. (1.195)

These bounds should hold independently of the geometric arrangements or parameter
values. Beyond these obvious limits, it is possible to define sharper bounds when
considering different microstructures. For that purpose, one should think of patterns
of the composite material which maximize or minimize the effective permeability. Such
arrangements can be found in the structures shown in figure 1.18: When slices of
different materials are parallely aligned to the magnetic field, the magnetic field is
constant in the whole device due to the continuity of the tangential component of the
H-field (see equation 1.84). Consequently, the flux B takes the values B1,2 = µ1,2µ0H
in the different phases. Then, the resulting effective permeability can be computed
according to equation 1.178 as the arithmetic mean value

µeff,max = fµ1 + (1− f)µ2. (1.196)
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Regarding a parallel alignment of the materials perpendicular to the magnetic field,
the magnetic flux B remains constant in the complete sample due to the continuity of
its normal component (see equation 1.150). Accordingly, H1,2 = 1

µ1,2µ0
B is valid in the

two phases, leading to an effective permeability of

µeff,min =
(
f

µ1
+ (1− f)

µ2

)−1

, (1.197)

calculated as the harmonic mean value of the two material permeabilities, which min-
imizes effective permeability. These derived limitations are called Wiener bounds. Ac-

Figure 1.18 – The maximizing (left) and minimizing (right) microstructures for the permeability.
The magnetic field is indicated by red arrows and points parallely or perpendicularly to material
layers. The continuity conditions for the H− and B−field allow an exact calculation of the
effective permeabilities.

tually, it is even possible to derive sharper bounds under the assumption that the
system is macroscopically isotropic, what is not the case for the two structures in the
calculation above. For that purpose, Hashin and Shtrikman [29] defined a functional
for the magnetostatic energy of a multiphase mixture and used variational methods in
order to derive upper and lower bounds of the effective permeability. For a two-phase
composite, these bounds can be written in the form

µeff,1 = µ1 + 3fµ1
µ2 − µ1

µ2 + 2µ1 − f(µ2 − µ1) (1.198)

µeff,2 = µ2 + 3(1− f)µ2
µ1 − µ2

µ1 + 2µ2 − (1− f)(µ1 − µ2) (1.199)

which are equivalent to the Maxwell-Garnett formula when spherical inclusions with
a permeability of µ2 are distributed in a matrix medium with µ1 (µeff,1) or the other
way around (µeff,2). These results, obtained by different approaches, highlight the
consistence of the basic theories. The different bounds are visualized in picture 1.19.
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Figure 1.19 – The Wiener and Hashin-Shtrikman bounds for the effective permeability of a
composite consisting out of spherical, isotropic inclusions with µinc = 5 and a host medium with
µm = 1.

In case of complex valued permeabilities, i. e. lossy materials, the determination of
the discussed bounds is more complicated and was treated in the works of [30–34]. In
this context, the accessible region for the effective permeability in the complex plane
is limited by arcs, as exemplarily shown for Wiener bounds in figure 1.20.

Figure 1.20 – The complex Wiener bounds for the effective permeability with a host medium
with µm = 1 and inclusions with µinc = 20 − 12i, which occupy f = 10 % of the composite’s
volume. Picture adapted from [35].





Chapter 2

State of the Art

After the introduction of the fundamentals in the previous chapter, the latest published
results which are relevant for this work will be focused in the following. The aspect
of highest interest, the ferromagnetic resonance of composite systems, was handled by
V. B. Bregar and M. Pavlin in 2004 [36] and again by Bregar in 2005 [37]. Therefore,
these two publications will be especially treated in this chapter.

2.1 Fully Magnetized Noninteracting Inclusions in a
Non-magnetic Matrix

In the work of [36], the authors regard a dilute composite consisting of spherical fer-
romagnetic inclusions in a non-magnetic host medium. Within this, the distances
between inclusions are assumed to be large enough in order to neglect interparticle
interactions. Moreover, it is presumed that the externally applied magnetic field is
strong enough to fully magnetize the ferromagnetic material. Consequently, the Polder
tensor is used for calculations of the resulting permeability.
Considering this case, the authors argue that, due to the missing interactions between
inclusions, every ferromagnetic particle in the composite is exposed to the same field
determining the resonance frequency. Accordingly, the resonance of the whole compos-
ite should arise at the same frequency as for a single, isolated sphere. In this regard,
one can consider Kittel’s equation for the ferromagnetic resonance angular frequency
(compare with 1.172)

ω2
res =

(
ω0 + (nx − nz)ωm

)(
ω0 + (ny − nz)ωm

)
(2.1)

which delivers the same value for bulk material (volume fraction f = 1, accordingly zero
demagnetization factors nx, ny, nz) as for an isolated sphere in a large non-magnetic
matrix (f → 0, nx = ny = nz = 1/3). Following this, resonance frequencies should be
equal in both cases.
Regarding the Maxwell-Garnett equation (1.190) for the effective susceptibility of such
a composite (with χ = µr − 1 and χm = 0), one obtains for the diagonal component of
the Polder tensor

χeff = f

(
3χinc

3 + χinc(1− f)

)
(2.2)
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where indicesm and inc again denote the matrix material or the inclusions, respectively.
Now, one can insert the inclusions’ susceptibility χinc as determined by Polder tensor
(see equation 1.169). Considering that spherical shape was already taken into account
in the corresponding derivation (see chapter 1.3), we use the expression for an infinitely
extended sample, meaning with demagnetization factors nx = ny = nz = 0. By
this, we can calculate the effective susceptibilities of such composites under a constant
externally applied field for different values of f , as shown in figure 2.1.

Figure 2.1 – Maxwell-Garnett, equation 2.2, and Polder tensor, equation 1.169, deliver the
effective susceptibility which is normalized with respect to to the inclusions’ volume fraction and
plotted over a given frequency range. Obviously, a shift of the resonance frequency occurs in this
formalism when the externally applied field Hext,z remains constant.
Parameters were chosen as in [36]: ω0 = γHext,z = 35.2 GHz (ν0 = 5.6 GHz), α = 0.05,
ωm = γMs = 66.3 GHz.

Contrary to the previous train of thought, resonance angular frequency shifts as a
function of inclusions’ volume fraction towards the limit

ω2
res

f→0−−→ ω0

(
ω0 + ωm

3

)
(2.3)

and does not reproduce the equivalence of the cases f → 0 and f → 1 which is crucial
due to the missing dipolar interaction in both cases. Accordingly, this shifting behavior
can not be meaningfully interpreted and has to be seen as an artifact of this formalism
which appears despite the considered interactions in the corresponding derivation (see
sections 1.3.2 and 1.3.3). Motivated by this, two different solutions for this discrepancy
have been analyzed:
Firstly, one can use theory of ferromagnetism, i.e. Landau-Lifshitz-equation (which is
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the general form of 1.159)

∂M
∂t

= γ(M×Hint)−
αγ

M
(M× (M×Hint)) (2.4)

with the internal magnetic field Hint. The static external field Hext,z is assumed to
point parallely to the magnetization M and the system’s z−axis while the high-frequent
magnetic field hext oscillates in the x − y−plane and raises a high-frequent magneti-
zation m. Accordingly, due to demagnetization effects of finite samples (see equation
1.153), fields can be put into context via

Hint,z = Hext,z − nzMs (2.5)
hint = hext −Nm. (2.6)

As usual, one assumes the high-frequent magnetic field and magnetization as time
harmonic, delivering

M = Msez + (mxex +myey) exp (−iωt) (2.7)
Hext = Hext,zez + (hxex + hyey) exp (−iωt). (2.8)

Moreover, magnetization and external field can be linked via the particle susceptibility
χχχ

m = χχχhext (2.9)

which is given by the Polder tensor with the right choice of demagnetization factors.
In addition to these considerations, which are quite similar to the derivation of the
Polder tensor, we regard the inclusions’ magnetic dipole moment pinc which is linked
with magnetization and the inclusions’ volume Vinc

pinc = Vincm (2.10)
= Vincχχχhext. (2.11)

For the purpose of drawing conclusions on the composite, the effective dipole moment of
the whole sample is considered. In the case of dilute composites, in which interactions
between the Ninc particles can be neglected, and at sufficiently large distance of the
observer, the relation

peff =
Ninc∑
i=1

pinc = Nincpinc (2.12)

is valid. In an analog manner to equation 2.11, one can define

peff = Vtotχeffχeffχeffhext. (2.13)

with the total volume of the composite Vtot. Combining equations 2.11, 2.12 and 2.13,
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one finds

χeffχeffχeff = NincVinc
Vtot

χχχ = fχχχ. (2.14)

This result shows that resonance frequency should remain constant and the normalized
permeability of a composite should not vary with filling factor f when the external field
is the same for every filling factor. This finding contradicts the outcomes illustrated in
picture 2.1, which result from Maxwell-Garnett.
The second approach in order to find this result is very similiar to a possible way of
deriving the Maxwell-Garnett formula, but includes further characteristics of this mag-
netostatic problem:
First of all, the tensor form of the permeability, which strongly depends on the static
magnetic field, has to be taken into account instead of assuming scalar values. Further-
more, one has to strictly distinguish between the internal magnetic field inside the in-
clusions and the externally applied magnetic field, which are only equal in non-magnetic
or infinite samples. Accordingly, internal flux-density bint and internal magnetic field
hint can be connected via

bint = µ0(hint + m) (2.15)
= µ0(1 +χintχintχint)hint. (2.16)

In the above relation, χintχintχint denotes the local susceptibility and differs from χχχ in equation
2.11, which refers on external fields. Nevertheless, it is reasonable to assume the same
non-diagonal structure for both, according to the Polder tensor

χintχintχint =

χint −κint
κint χint

 . (2.17)

This local susceptibility tensor can now be inserted into the magnetostatic problem,
described by Laplace’s equation

∇∇∇2Φ = 0, (2.18)

where Φ is the magnetic potential fulfilling H = −∇∇∇Φ. By considering the boundary
conditions for the potential and the magnetic field, an expression for the potential
outside the particle is found [39]

Φ =
(
−I + G

R3

r3

)
hext · r (2.19)

where

G = 1
(χint + 3)2 + κ2

int

(χint + 3)χint + κ2
int −3κint

3κint (χint + 3)χint + κ2
int

 , (2.20)
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r is the distance of the observer and R the radius of the inclusions. 1

Now, this calculation should be done again for the whole sample of the effective
medium, which is assumed to be shaped as a sphere with radius Reff (for the sake
of equal demagnetization factors nx = ny = nz = 1/3 as for the spherical inclusions),
analogically delivering

Φ =
(
−I + Geff

R3
eff

r3

)
hext · r (2.21)

with

Geff = 1
(χinteff + 3)2 + (κinteff )2

(χinteff + 3)χinteff + (κinteff )2 −3κinteff
3κinteff (χinteff + 3)χinteff + (κinteff )2

 ,
(2.22)

in which χinteff and κinteff denote the entries of the effective susceptibility tensor of the
composite sphere, relying on the effective internal magnetic field heff , according to

meff = χinteffχinteffχinteffheff . (2.23)

As in the ferromagnetic derivation, we assume an observer far enough from the effective
sphere so that dipole contributions of the effective material appear as the sum of the
Ninc inclusions’ dipole moments. At this point, it should be again highlighted that
composites are assumed to be so dilute that we can neglect interactions between the
inclusions, but particles of course carry a dipolar moment, nevertheless. Accordingly,
we can equate the dipole terms in equations 2.19 and 2.21 according to

(
Geff

R3
eff

r3

)
hext · r = Ninc

(
G
R3

r3

)
hext · r. (2.24)

Using the relation for the filling factor f = NincR
3

R3
eff

, one can conclude

Geff = fG. (2.25)

In frequency ranges which are remotely located from resonance, meaning κint → 0,
equation 2.25 reduces to

χinteff
χinteff + 3 = f

χint
χint + 3 (2.26)

which is the common formula of Maxwell-Garnett for a non-magnetic host medium
with χ = 0. However, this formula applies only for the internal susceptibilities.
For gaining knowledge on the quantity of χeff instead, the next task is to determine
the coefficients in this matrix equation. For this purpose, further information can be
drawn from the relations for the dynamic magnetization and the usage of equations

1An analog, but more detailed calculation of this expression can be found in section 2.2.
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2.6 and 2.9, according to

m = χintχintχinthint = χχχhext (by definition) (2.27)
⇔ χintχintχint(hext −Nm) = χχχhext (2.28)

⇔ χintχintχinthext = χχχhext +χintχintχintNm = (I +χintχintχintN)m (2.29)
⇔ χintχintχinthext = (I +χintχintχintN)χχχhext. (2.30)

By this, we have derived a relation linking χχχ, coupling magnetization and external
magnetic field, and the internal tensor χintχintχint, coupling magnetization and internal mag-
netic field. Applying the diagonal form of the demagnetization tensor N for a sphere
and performing a matrix inversion, one calculates

χχχ = (I +χintχintχintN)−1χintχintχint (2.31)

= 3
(χint + 3)2 + κ2

int

(χint + 3)χint + κ2
int −3κint

3κint (χint + 3)χint + κ2
int

 (2.32)

= 3G. (2.33)

In a completely analog manner, one obtains for the effective parameters of the com-
posite

meff =χinteffχinteffχinteffheff = χeffχeffχeffhext (2.34)
⇔ χeffχeffχeff =3Geff . (2.35)

Furthermore, by the usage of equations 2.25 and 2.33, the same result as in the ferro-
magnetic approach is obtained

χeffχeffχeff = 3Geff = 3fG = fχχχ. (2.36)

In summary, V. B. Bregar and M. Pavlin modified the conventional effective medium
theory for tensorial susceptibilites and showed that Maxwell-Garnett formula can be
only meaningfully applied far away from resonance (see equations 2.25 and 2.26). This
is caused by the susceptibility’s tensorial form which must be observed in the vicinity
of the ferromagnetic resonance.
Moreover, the not always carefully done, but important distinction between the local
and external magnetic fields is highlighted by the authors which plays an important
role due to demagnetization effects at the boundaries between media with different
magnetizations. The unphysical frequency shift, arising under a constant externally
applied magnetic field in a dilute composite with negligible interactions, shown in fig-
ure 2.1, has shown to be a consequence of this disregarded distinction.
Contrary, resulting from the here reproduced considerations, it was derived that ef-
fective susceptibility tensor of such a dilute composite, in which interactions between
inclusions can be neglected, divided by the volume fraction f of ferromagnetic material
should be independent of f when externally applied magnetic field remains constant.
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The same assumptions as done in the work presented in this section were included in
our simulations in section 4.2 in which dipolar interactions can be neglected due to
the arrangement of the inclusions on a simple cubic lattice. This simulative approach
delivers the same results as gained in the here reproduced analytic work.

2.2 Inclusion of Particle Interactions via an Effective
Medium Approach

One year later, in his subsequent work [37], Bregar extended his former approach by
also taking into account particle interactions, i.e. the static magnetization of neigh-
bouring inclusions by an effective medium approach and distinguished three different
situations: a fully magnetized composite, a composite with single-domain particles and
a composite with demagnetized particles. The results for the first two of these different
cases will be described in the following, while the composite consisting out of demag-
netized inclusions is not of interest for the present work.

2.2.1 Fully Magnetized Composite

Firstly, a fully magnetized composite is regarded. As a starting point, the magneto-
static potential Φ with H = −∇∇∇Φ is considered which fulfills in ferromagnetic materials

∇∇∇2Φ =∇∇∇M. (2.37)

When only considering the fundamental mode of moment precession, meaning a coher-
ent rotation, ∇∇∇M = 0 applies. Consequently, equation 2.37 reduces again to Laplace’s
equation

∇∇∇2Φ = 0. (2.38)

As in the previous work, magnetization and external magnetic field are assumed as
superpositions of static components Hext,z and M, defining the z−axis, and time har-
monic components oscillating in x − y−direction (compare to equation 2.8). Fur-
thermore, the Polder form of the susceptibility tensor (see equation 1.169), linking
high-frequent magnetization m and magnetic field hext as in equation 2.9, is assumed
for the inclusions.
As before, the solution of equation 2.37 should be found, for which the ansatz of

Φ = a · b + b · r
r3 (2.39)

is followed. Now, boundary conditions for magnetic fields and flux densities are con-
sidered (see section 1.2.1). Within this, a single inclusion embedded in an effective
medium is considered in order to gain insight into the internal fields. Due to the
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continuity condition of the potential on the particles’ surface, one can write

Φinc|boundary = Φeff |boundary. (2.40)

Moreover, the normal component of the magnetic flux density is continous (see section
1.2.1), leading to

Binc · n|boundary = Beff · n|boundary (2.41)
(µ0Hinc + µ0Minc) · n|boundary = (µ0Heff + µ0Meff) · n|boundary (2.42)

in which n denotes a normal surface vector on the particle boundary. In the next
step, we can again split fields into their static and dynamic components and use the
definition of the susceptibility tensor (equation 2.9). By this, we obtain(

µ0(Hinc,z + hinc) + µ0(Minc
s + minc)

)
· n|boundary

=
(
µ0(Heff ,z + heff) + µ0(Meff + meff)

)
· n|boundary (2.43)

⇔ µ0
(
Hinc,z + Minc

s + hinc +χintincχintincχintinchinc
)

· n|boundary
=µ0

(
Heff ,z + Meff + heff +χinteffχinteffχinteffheff

)
· n|boundary. (2.44)

Within this, it should be highlighted that the regarded fields are internal quantities.
Consequently, the chosen susceptibility tensors connect these internal fields. In case
that an infinitely extended host medium is regarded, externally applied magnetic field
and the effective field in the medium are equal to each other.
By substituting Hinc = −∇∇∇Φinc and Heff = −∇∇∇Φeff and solving the above equation
system (consisting out of equation 2.39, 2.42 and 2.44), one finds

Φeff =
(
−I + G

R3

r3

)
Hext · r + (M inc

s −Meff )R3

3r3 z · r (2.45)

which can be seen as an adjusted form of equation 2.19. Within this equation, G is a
tensor quantity, as before, and is given by

G = 1
(χintinc + 2χeff + 3)2 + (κintinc + 2κeff )2


G11 G12 0

G21 G22 0

0 0 0

 (2.46)

with

G11 = G22 = (χintinc − χeff )(χintinc + 2χeff + 3) + (κintinc − κeff )(κintinc + 2κeff + 3) (2.47)
G12 = −G21 = −3(κintinc − κeff + χeffκ

int
inc + χintincκeff ). (2.48)

Remembering demagnetization effects (see section 1.2.1 and especially equation 1.153),
we can link the magnitudes of the two static magnetic fields in the particles and the
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surrounding medium via

Hinc,z = Heff,z −
M inc

s −Meff

3 . (2.49)

This relation should be used for the determination of the particles’ intrinsic suscepti-
bility χintincχintincχintinc, leaving the effective quantities χeff , κeff and Meff as unknown in equation
2.45.
At this point, it has to be highlighted that a self-consistent effective-medium approx-
imation should be followed, meaning that the sum of the dipole contributions of the
system has to vanish when the effective field should remain constant for different filling
factors. Expressed in formulas, we can write for the total effective field Heff and the
effective field without dipolar interactions Hwd

eff

Heff = Hwd
eff +

∑
i

NiHdip,i
Heff =const.→

∑
i

NiHdip,i = 0 (2.50)

Regarding equation 2.45, dipole contributions are given by the second and third term,
thus leading to the condition

∑
i

(
GiHextNiR

3
i + (M inc,i

s −Meff )NiR
3
i

3 z
)

= 0 (2.51)

for a system consisting of several types of spherical particles indexed with i and a
respective number of Ni. It should be emphasized that this analytic step means the in-
troduction of an aggregate microstructure consisting exclusively of spherical inclusions
(compare to section 1.3.4) which form the effective medium.
Actually, condition 2.51 consists out of three equations, from which the one for the
z−component reduces to

Meff =
∑
iM

inc,i
s NiR

3
i∑

iNiR3
i

=
∑
i

fiM
inc,i
s (2.52)

with the inclusions’ volume fractions fi. This result is coherent with the definition of
the magnetization (see equation 2.11).
Moreover, the equations for the x− and y−components can be transformed into∑

i

fiGi = 0 (2.53)

which can be used for numerical calculations of χeff and κeff . Regarding frequencies
far from resonance, κintinc, κeff → 0 is valid, and equation 2.53 reduces to one single
equation

∑
i

fi
χintinc − χeff

χintinc + 2χeff + 3 = 0 (2.54)

which was already introduced as Bruggeman’s mixing formula (equation 1.194). Ac-
tually, the obtainment of the Bruggeman formula far from resonance frequency is a
consequence of the analog approaches in the here presented derivation including the
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the solution of the Laplace’s equation for one magnetized sphere in a homogeneous
environment (see equation 2.45) and applying the results on a system consisting out of
different types of spheres under self-consistency condition (included via equation 2.51).
Restricting to a system with only one single type of inclusions embedded in a non-
magnetic matrix medium (labeled with index m), the derived equations simplify to

Meff = fM inc
s (2.55)

fGinc + (1− f)Gm = 0 (2.56)

in which Ginc and Gm are calculated according to equation 2.46 with χintincχintincχintinc according
to the Polder model or χintmχintmχintm = 0. With these results, the entries of the effective
susceptibility tensor can be calculated and subsequently, the frequency of the resonance
can be determined for different volume fractions with a constant externally applied field.
Exemplary results are shown in figures 2.2-2.5.

Figure 2.2 – The real part of the diagonal component χeff of the effective susceptibility
tensor, which is normalized with regard to volume fraction f and frequency ratio ωm

ω0
= M inc

s
Hext,z

in dependence of angular frequency ratio ω
ω0

and for different values of f . The non-interacting
case is shown by dashed lines. Values of the inclusions’ parameter are chosen according to
M inc
s = 3 · 105 A

m and α = 0.1, which are quite realistic for ferromagnetic materials. Moreover,
an external magnetic field of Hext,z = 1.6 · 105 A

m remaining constant for different volume
fractions is regarded. Since an infinitely extended effective medium is regarded, Hext,z and Heff,z

correspond to each other. Accordingly, equation 2.49 is used for calculating the internal magnetic
field inside the inclusions, determining the entries of the Polder tensor. Picture taken from [37].
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Figure 2.3 – The real part of the off-diagonal component κeff of the effective susceptibility
tensor for different volume fractions. Normalization and parameters are the same as in figure 2.2.
Picture taken from [37].

Figure 2.4 – The imaginary part of the components of the effective susceptibility tensor for
different volume fractions. Normalization and parameters are the same as in figures 2.2 and 2.3.
Please note imaginary parts of χeff and κeff take the same values in this calculation. Picture
taken from [37].
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Figure 2.5 – From the previously calculated entries of the permeability tensor (see figures 2.2-
2.4), resonance angular frequency can be determined for different volume fractions when externally
applied field remains constant. Picture taken from [37].

Figure 2.6 – The real part of χeff for a volume fraction of f = 30 %, which marks the strongest
variation from the non-interacting case, is plotted for different values of M inc

s . All other
parameters are the same as in figures 2.2-2.5. Picture taken from [37].

Within these diagrams, it can be seen that even for low volume fractions of ferromag-
netic material as f = 1 %, there is a clear discrepancy between the non-interacting and
interacting case. This difference, which also changes the resonance frequency, increases
until f = 30 % is reached before curves approach again the values of the bulk material.
This turning back for f → 100 % can be explained by the the identical behavior of bulk
and spherical ferromagnetic samples. As expected, the strength of the variation from
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the non-interacting case can be tuned by the inclusions’ saturation magnetization, as
shown in figure 2.6.
Looking at these results, especially the shift of the resonance frequency is of high in-
terest. In the model of Polder and for small values of the damping coefficient α, the
frequency of the resonance only depends on the internal magnetic field. Accordingly,
a shift of the resonance frequency must be a consequence of a change of the magnetic
fields inside the sample by the effect of neighbouring inclusions, which can be either
tuned by different volume fractions or different magnetization of inclusions, which is
in coherence with the presented results.

2.2.2 Composite with Isotropically Orientated Single-Domain
Inclusions

The second case examined in the work of [37] is a composite consisting of single-domain
particles which are also magnetized in the absence of an external magnetic field. Conse-
quently, the orientations of the single magnetic moments are not
necessarily in alignment to a given bias, but can be arbitrarily chosen. Despite of
this freedom of orientation, one can also consider a perfect alignment of single-domain
inclusions, which again leads to the same results as in the previous section with the
anisotropy field Ha, generated by the crystal structure, instead of an external field.
Therefore, the consideration of an isotropical distribution of the magnetic moments is
more interesting and yields further results, which will be reproduced in the following.
Just like in the previously considered case of an external magnetization source, we
regard an incident high-frequent magnetic wave oscillating in x−y−direction, defining
the laboratory coordinate system. Contrary to the previously examined case, all mag-
netization vectors do not point in z− direction in this laboratory system. Thus, we
have to introduce an internal coordinate system for every inclusion, where the z′−axis
is defined by its magnetic moment’s orientation. As shown in many textbooks as [41],
a transformation between two of such coordinate systems can be done with the help of
a transformation matrix A which can be written with the three Euler angles φ, θ, ψ in
the form

A =


cosψ cosφ− cosθ sinφ sinψ −sinψ cosφ− cosθ sinφ cosψ sinθ sinφ

cosψ sinφ− cosθ cosφ sinψ −sinψ sinφ+ cosθ cosφ cosψ −sinθ sinφ

sinθ sinψ sinθ cosψ cosθ

 .
(2.57)

Following this, we can relate the magnetizations in different systems M and M′ via

M = AM′ = A(χ′h′ +Msz′) = Aχ′A−1︸ ︷︷ ︸
χχχ

h +MsAz′ = χh +Msz. (2.58)

Within this, we found an expression for the individual susceptibility tensors χχχ in the
laboratory system which can be used in order to solve Laplace’s equation again. Con-
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trary to the corresponding previous calculation, we can use the susceptibility of the
effective medium χeff as a scalar value because of the isotropic distribution of the
dipoles’ orientation. Apart from this, the same steps as in the derivation of equation
2.45 are repeated for an arbitrary direction of magnetization, delivering

Φm = −
(

I + B−1D
R3

r3

)
hext · r +M inc

s

R3

3r3 (B−1Az) · r (2.59)

for the magnetostatic potential outside the inclusions. Within this expression B and
D denote tensorial terms given by

B = χint
inc + (3 + 2χeff )I (2.60)

D = χeffI− χint
inc (2.61)

containing the inclusions’ susceptibility tensor in the laboratory system, determined
by material properties, the magnetic orientation and the internal magnetic field. The
latter is the superposition of the anisotropy field and demagnetization effects which are
given from the inclusions’ inner magnetostatic potential according to

Hd = − M inc
s

3 + 2χeff
. (2.62)

For a non-magnetic material, B and D become scalar values and the above equations
reduce to

B = (3 + 2χeff ) (2.63)
D = χeff (2.64)

⇒ Φm = −
(

1 + χeff
3 + 2χeff

R3

r3

)
hext · r. (2.65)

Again, self-consistency requires the sum of the dipole parts of the system to vanish.
Before summarizing, we average the dipole contributions (second and third term in
equation 2.59) over all possible orientations. Thereby, we notice that averaging of the
third term yields

< M inc
s

R3

3r3 (B−1Az) · r > (2.66)

= M inc
s

R3

3r3 < (B−1Az) · r >︸ ︷︷ ︸
0

(2.67)

= 0

due to the isotropic distribution of the dipole orientations. Summing up over all i types
of inclusions and the non-magnetic matrix delivers∑

i

fi < B−1
i Di >︸ ︷︷ ︸

inclusions

+ (1−
∑
i

fi)
χeff

2χeff + 3I︸ ︷︷ ︸
matrix

= 0. (2.68)
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Within this, the term < B−1
i Di > also becomes scalar through averaging, leading to

a completely scalar valued equation which can be solved in order to determine the
complexed valued quantity χeff . For the purpose of calculating the inclusions’ intrin-
sic susceptibility, the Polder model is used with an anisotropy field Ha instead of an
external magnetic bias, which is given by Ha = 2K

µ0M inc
s

with the anisotropy constant
K and points along the direction of magnetization. For simplicity’s sake, we assume a
crystal with an uniaxial anisotropy, meaning that there is only one prefered direction of
magnetization. Choosing an exemplary set of parameters and a composite consisting
of only one type of inclusions in the non-magnetic matrix medium, the scalar valued
effective susceptibility is calculated and plotted in figure 2.7.

Figure 2.7 – The real (left) and imaginary part (right) of the normalized effective susceptibility
for a composite of single-domain ferromagnetic inclusions whose magnetic orientations are isotrop-
ically distributed in a non-magnetix matrix. The inclusions’ parameters are chosen as anisotropy
constant K = 3 · 104 J

m3 , saturation magnetization M inc
s = 3 · 105 A

m and damping coefficient
α = 0.1. The later two are the same as before, while the anisotropy constant is also chosen in
the range of values of real ferrites and leads to an anistropy field Ha = 2K

µ0M inc
s
≈ 1.6 · 105 A

m ,
comparable to the external field in the previous section. For the purpose of normalizing the results,
ω0 = γ 2K

µ0M inc
s

and ωm = γM inc
s are defined. Picture taken from [37].

Obviously, the filling factor’s influence on the susceptibility is much smaller than before
and almost no shift of the resonance frequency can be observed. Thus, the results for
isotropically orientated single domain particles strongly differ from the previously ex-
amined case of a fully magnetized composite, in which all dipole moments are perfectly
aligned.
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2.3 Discussion and Motivation for this Work

In the paper of [36], the authors highlighted that the tensor form of the susceptibil-
ity and a clear distinction between the internal and external fields have to be taken
into account when using effective medium theory for ferromagnetic materials. Not
disregarding these facts, the unphysical result of a shifting resonance frequency for
non-interacting inclusions in a non-magnetic host matrix is adjusted. Moreover, it is
shown that the normalized susceptibility tensor’s entries do not vary with the filling
factor when interactions are negligible, as in a very dilute composite.
Expanding this approach in the work of [37] by including static magnetization of sur-
rounding particles in a mean field approximation, results are refined and show a strong
variation of the non-diagonal susceptibility tensor with inlusions’ volume fraction in
a fully magnetized composite, connected with a significant shift of the resonance fre-
quency. This shift increases until filling factor reaches a value of approximately 30 %,
before curves turn back for higher volume fractions and approach the ones of a bulk
material, again. Contrary, in a composite of single-domain inclusions with isotropic
orientation, these effects are much smaller and effective susceptibility becomes scalar
valued.
Although these results are substantial and allow much insight into the topic of compos-
ites with ferromagnetic inclusions in the vicinity of the ferromagnetic resonance, the
underlying equations are derived with the help of mean field approximations, mean-
ing that one single inclusion is treated as embedded in a homogeneous medium with
calculated properties, and later applied on composites with an aggregate topology. Ac-
tually, this approach disregards local inhomogeneities in the field distributions which
may have a significant influence on the composite’s behavior. Accordingly, the local
influence of static magnetization of surrounding particles and the interplay between the
externally applied field and the magnetic fields generated by the inclusions’ dipole mo-
ments should be regarded in order to further refine the results. Naturally, this exceeds
the possibilities of the accessible analytic methods. Consequently, one has to restrict
to numerical methods in order to gain further insight into this topic, which should be
done in this work. For that purpose, different simulation and evaluation methods are
chosen which will be described in the following chapter.
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Methods

In this chapter, the different computational approaches which are chosen in order to
generate the later presented results should be introduced. At first, the experimental
transmission- and reflection method in waveguides in which the S−parameters can be
determined are discussed. As it will be highlighted, these experimental set-ups must
be adjusted according to the device under test: An isotropic sample with scalar valued
permittivity and permeability requires a less complicated arrangement and evaluation
procedure than an anisotropic device with tensorial properties. In each context, the
used computation algorithm for the determination of the permittivity and permeability
is presented, as the Nicholson-Ross-Weir (NRW) method for isotropic [41–44] and the
elaborate procedure by Queffelec et al. for anisotropic materials [45, 46].
Afterwards, the commercial High Frequency Structure Simulator (HFSS), a finite ele-
ment method solver by Ansys Incorporation, is presented, in which the experimental
set-ups are reconstructed, finite element meshes are generated and S−parameters can
be calculated. Due to run time optimization, theses meshes are exported to the systems
of Lehrstuhl für theoretische Elektrotechnik (LTE) at Saarland University by Romanus
Dyczij-Edlinger in order to calculate the S−parameters with model order reduction
(MOR) methods, which will also be introduced in this chapter.
In addition to these tools, a numerical computing method of the local magnetic fields
due to the inclusions’ moments is needed in order to respect dipolar interactions in the
composite. This procedure is described in the end of the present chapter.

3.1 Transmission and Reflection Methods

In the paper of [42], the former works of [43] and [44] are extended and a method for
the determination of the permittivity ε and permeability µ of a sample in one single
experiment is described. This Nicholson-Ross-Weir method, which will be discussed at
first, was worked out for isotropic materials. Afterwards, the more complex method
by Queffelec et al. [45,46], which also applies for anisotropic samples and must be used
for the examination of the ferromagnetic composites of interest in this work, will be
introduced.
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3.1.1 Isotropic Samples

In order to determine the electric and magnetic properties of a sample at microwave
frequencies, ε and µ, the device under test is brought into a waveguide (or into a
transmission line, which is not regarded in this work), in such a way that the total
cross section is filled (see set-up shown in figure 3.1).

Figure 3.1 – The experimental set-up for determining ε and µ within the transmission-reflection
method. Left picture shows structures from the side while waves travel from left to right. Right
picture highlights that the whole cross section is filled by the sample.

The inner waveguide dimensions are chosen in such a way that only one mode can
propagate in the frequency range of interest, while the others are damped in the air or
vacuum filled segment of length l (see section 1.1.2). This experiment can be done either
with a rectangular waveguide, for example supporting frequencies of the so called X-
band (waveguide cross section of 2.286 cm×1.016 cm with a frequency range of around
7 to 12 GHz), or in a parallel plate waveguide. For both types, the NRWmethod, which
will be introduced in the following, can be applied.
First of all, the S−parameters Smeas11 (ω) and Smeas21 (ω) have to be measured for each
frequency point of interest. Because of the finite distance of l between the device under
test and the places of measurement, a phase correction of these parameters has to be
done according to

S11 = Smeas11 · exp (−2iβ0l) (3.1)
S21 = Smeas21 · exp (−2iβ0l) (3.2)

with the propagation constant in the vacuum filled waveguide β0, which depends on
the chosen type of waveguide and its geometry (see equations 1.49 and 1.59). Here,
the factor of 2 appears due to the wave passing the distance of length l twice: once
from port 1 to the first sample boundary and a second time through reflection in case
of S11 or through travelling from the second sample boundary to port 2 in case of S21.
By this calibration, we obtain the S−parameters which are given by equations 1.108
and 1.113

S11 = (1− a2)r
1− r2a2 (3.3)

S21 = (1− r2)a
1− r2a2 (3.4)
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with the material propagation constant (see sections 1.1.2.3 and 1.1.2.4)

βm =

β0
√
εrµr TEM mode in parallel plate waveguides√

β2
0εrµr − k2

c TE mode in rectangular waveguides
, (3.5)

the phase factor

a = exp (iβmd) (3.6)

and the reflection coefficient

r =
1−

√
εr

µr

1 +
√

εr

µr

(3.7)

as described in section 1.1.3. Afterwards, the following calculations are performed as
intermediate steps in order to isolate εr and µr. First of all, a magnitude K is defined
as

K = S2
11(ω)− S2

21(ω) + 1
2S11(ω) (3.8)

which is useful in order to determine the reflection coefficient r via

r = K ±
√
K2 − 1. (3.9)

Within this calculation, the plus or minus sign is chosen in such a way that the condition
|r| ≤ 1, which is set by energy conservation, is fulfilled. Afterwards, the propagation
factor can be calculated according to

a = S2
11(ω) + S2

21(ω)− r
1− [S11(ω) + S21(ω)] r . (3.10)

Then, µr and εr are given by

µr = 1 + r

Λ(1− r)
√

1
λ2

0
− 1

λ2
c

(3.11)

εr =
( 1

Λ2 + 1
λ2

c
)λ2

0

µr
(3.12)

with

1
Λ2 = −

[ 1
2πd ln

(1
a

)]2
, (3.13)

λ0 = c
f
and the cut-off wavelength λc (see section 1.1.2).

In this procedure, two problems occur: In equation 3.13, the logarithm of the complex
valued magnitude 1

a
is calculated. Due to the logarithmic identity for a complex number
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z = |z| exp
(
iArg(z)

)
,

log(z) = log(|z|) + iArg(z) (3.14)
(3.15)

and the periodicity of the complex exponential function, according to

z = z exp(i2πk) (3.16)
= |z| exp

(
iArg(z)

)
exp(i2πk) (3.17)

= |z| exp
(
i(Arg(z) + 2πk)

)
(3.18)

with an integer number k, the computation in equation 3.13 is not unambiguous.
Consequently, a resolution of this ambiguity is needed which is found in

ln
(1
a

)
= ln

(∣∣∣∣1a
∣∣∣∣)+ i(Arg

(1
a

)
+ 2πk), (3.19)

(3.20)

where k equals the highest integer number smaller than d
λm

and corresponds to the
number of full wavelengths performed by the dominant mode inside the sample. Within
this, the wavelength in the material filled guide is given by

λm = Re
(εrµr

λ2
0
− 1
λ2
c

)−1/2
 (3.21)

and must be estimated by predictions of εr and µr. Otherwise, k can also be found by
trying different integer values.
The second occuring problem within the NRW method becomes obvious regarding
equation 3.8: When S11 approaches zero, then S21 approaches one, because energy
conservation requires |S11|2 + |S21|2 = 1. Consequently, equation 3.8 becomes a fraction
in the form of 0

0 . From the mathematical point of view, this represents a removable
singularity, but becomes unstable under experimental conditions (or in simulations)
which are always linked with noisy measurements or calculations. The described situa-
tion appears for low loss materials at frequency points fulfilling the condition d = nλm

2 .
Exemplary experimental results appearing as a consequence of this issue are shown in
figure 3.2. Contrary to the problem of the ambiguous complex logarithm, this draw-
back can not be resolved in the NRW evaluation method, but bypassed by the usage
of short devices, which avoid satisfying d = nλm

2 in the frequency range of interest.
Unfortunately, the shortening of the sample reduces accuracy in experiments, which
marks the great disadvantage of the analytic NRW method.
Alternatively, it is possible to solve equations 1.108 and 1.113 by numerical compu-
tations, as Newton’s method, in which the problem of removable singularities does
not appear. Within this, one can use the results from NRW method as an estimation
for εr and µr in the first frequency point. Naturally, this is much more akward then
analytic calculations. The results for the different methods with S−parameter drawn
from HFSS simulations will be analyzed in section 3.2.2.
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Figure 3.2 – A 3.279 cm long teflon sample in a transmission line is analyzed by the NRW
method. In the determination of εr and µr of this low loss material, singularities appear at special
frequencies which are determined by the sample length. Picture taken from [47].

3.1.2 Anisotropic Samples

In the previous described methods, two complex valued magnitudes, S11 = S22 and
S21 = S12, are used in order to determine two different complex valued parameters ε
and µ. Regarding anisotropic samples, with a non-diagonal permeability tensor in the
form of

µ =

µ −κ

κ µ

 , (3.22)

an additional unknown and complex valued magnitude κ appears. Consequently, a
further complex magnitude must be measured in order to obtain a determinable prob-
lem. In this context, P. Quéffélec et al. developed a method in which the sample’s
anisotropy is used in order to create a non-reciprocal experimental set-up (leading to
S21 6= S12), whereby a third measured magnitude is gained. In order to determine ε,
µ and κ, the following strategy is chosen: Firstly, one examines the so called direct
problem, which means the calculation of S−parameters out of previously defined per-
mittivity and permeability values of the sample. Afterwards, a sequential quadratic
programming method is used in order to bring the calculated S−parameters into accord
with the results of the experiment or simulation, whereby solutions for the material
parameters ε, µ and κ are found.



Chapter 3 Methods 58

3.1.3 Direct Problem: Determination of Scattering Parameters

The realization of a non-reciprocal cell and the solution of the direct problem are
treated in [45]. In this work, the following configuration of the measurement cell is
chosen (see figure 3.3): An uniform static magnetic field is applied along the small side
of a rectangular waveguide (defined as y−direction) with a cross section of dimensions
a and b. This cross section is only partially filled with an auxiliary dielectric slab from
x = 0 to x = h, which increases the cell’s sensitivity, and the ferritic material of interest
from x = h to x = l with 0 < h < l < a.

Figure 3.3 – The proposed non-reciprocal measurement cell. Contrary to the previous described
experimental set-ups for isotropic samples, the waveguide’s cross section is not completely filled
by the sample. Pictures taken from [45] and adapted.

In order to reduce numerical effort in the FEM simulations used in the present work, the
dispensable dielectric slab is omitted here. Consequently, there is only one material slab
of the ferrite material from x = 0 to x = l. Nevertheless, both configurations produce
three different S−parameters in transmission-reflection experiments, as we will see in
following calculations, which can be also found in textbooks like [11]. Starting point
is Helmholtz equation for the magnetic field in a medium with permittivity ε and
permeability µ in the form 1

∇∇∇2H−∇∇∇(∇∇∇H) + ω2ε0εµ0µH = 0. (3.23)

As already mentioned, direction of the static magnetic field is defined as y−direction,
leading to a Polder permeability tensor in the form

µ =


µ 0 −κ

0 µy 0

κ 0 µ

 (3.24)

1Contrary to Helmholtz equation for the electric field, an additional term ∇∇∇(∇∇∇H) appears, because
∇∇∇H 6= 0, while ∇∇∇E = 0.
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in which µy does not influence further results, as will become clear later. As usual, the
ansatz of 

Hx

Hy

Hz

 =


Hrx

Hry

Hrz

 exp
(
−i(βxx+ βyy + βzz)

)
(3.25)

is chosen in order to solve equation 3.23. Within this, βi, i = x, y, z represent propaga-
tion constants in different directions and Hri

(or Eri
) denote the different magnitudes

of the magnetic (or electric) field. Accordingly, the electric field can also be written in
the form 

Ex

Ey

Ez

 =


Erx

Ery

Erz

 exp
(
−i(βxx+ βyy + βzz)

)
. (3.26)

In the next step, we use the conditions for the electric field at the waveguide walls at
y = 0 and y = b: Here, the parallel components Ex and Ez of the electric field have to
disappear (compare to equation 1.77). Consequently, we can concludeEx

Ez

 =

Erx

Erz

 sin (βyy) exp
(
−i(βxx+ βzz)

)
(3.27)

with βy = nπ
b

and n = 0, 1, 2... . By applying equation 1.1 in the form of ∇∇∇E = 0 one
finds

Ey = Ery cos (βyy) exp
(
−i(βxx+ βzz)

)
. (3.28)

Furthermore using equation 1.4 in the form of ∇∇∇ × E = −µ0µµµ
d
dtH and inserting the

found expressions for E, one finds
Hx

Hy

Hz

 =


Hrx cos (βyy)

Hry sin (βyy)

Hrz cos (βyy)

 exp
(
−i(βxx+ βzz)

)
. (3.29)

As shown in works like [48], the fields in a rectangular waveguide, excited by a TE1,0
mode, can be interpreted as superposition of TE eigenmodes, which do not depend on
the y−coordinate. Since the discontinuities in the regarded measurement cell also only
appear in x− and z−direction, we can set βy = 0 and conclude

Ex = Ez = Hy = 0, (3.30)
Ey = Ery exp

(
−i(βxx+ βzz)

)
(3.31)
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and Hx

Hz

 =

Hrx

Hrz

 exp
(
−i(βxx+ βzz)

)
. (3.32)

These derived expressions for H can be inserted again in equation 3.23. Using the
tensor form of permeability, this leads to a system of equations for the fields in the
ferrite material  µk2

r − β2
z βxβz − k2

rκ

βxβz + k2
rκ µk2

r − β2
x


Hrx

Hrz

 = 0 (3.33)

with k2
r = ωε0µ0ε. Non-trivial solutions of equation 3.33 only exist, if the system’s

determinant equals zero. Accordingly, one finds the condition

±βx =
√
k2
r

µ2 + κ2

µ
− β2

z . (3.34)

Regarding both solutions ±βx separately, field amplitudes Hrx and Hrz can be deter-
mined by solving the system of 3.33. Naturally, this system allows an infinite number
of solutions in which only the ratio between the amplitudes is fixed. For the purpose
of simplicity, the following solution is chosen for +βx:

H+
rx

= −βxβz + k2
rκ (3.35)

H+
rz

= µk2
r − β2

z . (3.36)

Subsequently, relation 1.2 in the form of ∇∇∇ × H = ε0ε
∂E
∂t

can be used in order to
calculate the amplitude of the electric field, delivering

E+
ry

= ωµ0(µβx − κβz). (3.37)

Repeating the same procedure for −βx, one finds:

H−rx
= βxβz + k2

rκ (3.38)
H−rz

= µk2
r − β2

z (3.39)
E−ry

= ωµ0(−µβx − κβz). (3.40)

Accordingly, we write the total expressions for the fields in the ferrite as superposition
of both solutions with amplitude factors A and B as:

Hx =
(
AH+

rx
exp(−iβxx) +BH−rx

exp(iβxx)
)

exp(−iβzz) (3.41)

Hz =
(
AH+

rz
exp(−iβxx) +BH−rz

exp(iβxx)
)

exp(−iβzz) (3.42)

Ey =
(
AE+

ry
exp(−iβxx) +BE−ry

exp(iβxx)
)

exp(−iβzz) (3.43)

For the purpose of eliminating one of the amplitude factors, we use the boundary
condition for the electric field, which imposes for the tangential component at the
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waveguide wall

Ey(x = 0) = 0 (3.44)
⇔ 0 = AE+

ry
+BE−ry

(3.45)

⇔ B = −A
E+
ry

E−ry

(3.46)

= A
µβx − κβz
µβx + κβz

. (3.47)

Analogically, one can derive field expressions for the vacuum or air-filled region in
the waveguide by changing the tensor permeability to unity and setting ε = 1. In
conclusion, we find the following field expressions for the tangential field components
in the different waveguide regions:
From x = 0 to x = l (ferrite material)

Hx = A

(
H+
rz

exp (−iβxx)−
E+
ry

E−ry

H−rz
exp (iβxx)

)
exp(−iβzz) (3.48)

Hz = AH+
rz

(
exp(−iβxx)−

E+
ry

E−ry

exp(−iβxx)
)

exp(−iβzz) (3.49)

Ey = −2iAE+
ry

sin (βxx) exp(−iβzz) (3.50)

and from x = l to x = a (air or vacuum)

Hx,0 = C
k2
r,0 − β2

x,0

βx,0βz
cos
(
βx,0(x− a)

)
exp(−iβzz) (3.51)

Hz,0 = −Ccos
(
βx,0(x− a)

)
exp(−iβzz) (3.52)

Ey,0 = C
iωµ0

βx,0
sin
(
βx,0(x− a)

)
exp(−iβzz). (3.53)

Within the derivation of the fields in the air or vacuum region, the boundary condition
Ey,0(x = a) = 0 was used again in order to get rid of one amplitude constant. Therein,
βx,0 denotes the propagation constant in x−direction in this region and k2

r,0 = ωε0µ0.
The two remaining constants, A and C are subjected to the following equation system,
which can be concluded from the continuity condition of the tangential field components
at x = l,2H+

rz
(µβx cos (βxl) − iκβz sin (βxl) ) (µβx + κβz) cos (βx,0(l − a))

−2iE+
ry

sin (βxl) iωµ0
βx,0

sin (βx(l − a))


A
C

 = 0.

(3.54)

Within the entries of this matrix, the propagation constant in z−direction, βz, is
included in the prefactors E+

ry
and H+

rz
and can be, analogically to the derivation

of expression 3.34, determined by setting the corresponding determinant F (βz) = 0.
Because βz is generally complex-valued, the occuring problem is non-trivial and an
adequate solution technique has to be chosen. As tested by Quéffélec et al., different
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existing methods (as described in [49] and [50]) mainly showed ineffectiveness in solving
this special problem. Accordingly, a more suitable technique was developed which will
be described in the following.
At first, a square with defined edge length c and vertices z1

i with i = 1, 2, 3, 4 is defined
with its midpoint in the origin of the complex plane. Then, Re (F (z1

i )) and Im (F (z1
i ))

are calculated at these vertices while the signs of the results are compared to each other.
If there are changes in the sign of F between two vertices in the real as in the imaginary
part, the root search is continued with a smaller square with edge length c/2, firstly
placed in the upper right corner of the larger square. If no doubled change of sign of F
is detected between the vertices of a square, it is shifted according to the form of a helix
in the complex plane and new vertices z2

i are defined (see figure 3.4). The search for a
single root is continued until a given treshold of square edge length cmin is undershot
while the possible number of roots to search is unlimited, in principle, and has to
be chosen by the user. For the purpose of decreasing calculation time, the described

Figure 3.4 – The procedure how the complex plane is scanned. When a doubled change of sign
of F is detected, a smaller square with halved edge length is defined and scans the area of the
previously defined square with more precision, as indicated for the square which is defined by z16

i .

method is only used for the determination of roots at the lowest frequency points.
Afterwards, Taylor series expansions are used in order to estimate solutions at higher
frequency points and initialize the root search at these values. By this performance,
the dispersion relations of forward travelling modes are found. Accordingly, dispersion
relations of backwards travelling modes can be calculated by an analog procedure in
which the material regions in x−direction are switched, i.e. ferrite from x = a − l to
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x = a and vacuum or air from x = 0 to x = l. After this calculation of the propagation
constants βzi, the field distributions of each mode can be determined by solving system
3.54, delivering values for constants A and C.
The next step is the calculation of the S−parameters out of the previously gained
results. For that purpose, modal matching techniques are applied which take advantage
of the continuity conditions for the tangential components of the field at the boundaries
between the different waveguide regions in direction of wave propagation (see figure
3.5).

Figure 3.5 – The waveguide regarded from y−direction. The electromagnetic wave incides
from left in the empty region I and propagates through the partially filled region II and empty
region III. Picture adapted from [45].

At the boundary between region I and II, defined by z = 0, the dominant TE1,0 mode
is partially reflected and transmitted, whereby higher order modes are additionally
excited. Accordingly, in region I, the incident and reflected part of the TE1,0 mode
and backwards travelling excited modes must be regarded. On the other side of the
boundary, transmitted parts of the incoming signal are splitted into different modes
which partly reach the next boundary at z = z0, where they again excite reflected
modes which also reach the boundary at z = 0 after travelling over a length of z0. In
summary, the boundary conditions at this plane can be written in the form

(1 + ρ1)EI
y1 +

N∑
i=2

ρiE
I
yi =

N∑
i=1

TiE
II
yi +

N∑
i=1

RiE
II
yi exp (βIIzi z0) (3.55)

(1− ρ1)HI
x1 −

N∑
i=2

ρiH
I
xi =

N∑
i=1

TiH
II
xi −

N∑
i=1

RiH
II
xi exp (βIIzi z0). (3.56)

Within these equations, ρi and Ti denote the reflection and transmission coefficients of
mode i at the regarded boundary. Analogically, reflection at z = z0 plane is described
by Ri and transmission by ti. Roman numbers label the waveguide region, in which
fields or propagation constants are regarded. Accordingly, the previously determined
roots of system 3.54 are denoted with βIIzi while number of considered modes is given
by N . The negative signs in the equations for the magnetic field result from the phase
shift of the H−component when being reflected. By the same considerations, equations
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for the second boundary between region II and III can be found

N∑
i=1

TiE
II
yi exp (−βIIzi z0) +

N∑
i=1

RiE
II
yi =

N∑
i=1

tiE
III
yi (3.57)

N∑
i=1

TiH
II
xi exp (−βIIzi z0)−

N∑
i=1

RiH
II
xi =

N∑
i=1

tiH
III
yi . (3.58)

Of course, these relations are only true in the case of N → ∞. Nevertheless, under
certain conditions (as shown in [51]), convergence can already reached with a finite
number of modes, which will be also analyzed for the situation in this work in section
4.2.
Obviously, we find four equations with 4N unknowns (ρi, Ti, Ri and ti with
i = 1, 2, 3...N). Consequently, we require further information for determining an unique
solution, which can be found in the orthogonality condition for TE modes [48]∫∫

S
EyiHxj dS = 0, if i 6= j (3.59)

where S denotes the waveguide’s aperture. Fortunately, this relation is still maintained
in waveguides partially filled with ferrite material [52, 53] and, therefore, can be used
in the context of the problem at hand. By using the orthogonality relation, we can
generate N equations out of every of the four derived conditions, which will be ex-
emplary demonstrated for equation 3.55. At first, we multiply with HI

x1 and perform
integration

∫∫
S ... dS, delivering

(1 + ρ1)
∫∫

S
EI
y1H

I
x1 dS +

N∑
i=2

∫∫
S
ρiE

I
yiH

I
x1 dS︸ ︷︷ ︸

=0, orthogonality!

=
N∑
i=1

Ti

∫∫
S
EII
yiH

I
x1 dS +

N∑
i=1

Ri exp (βIIzi z0)
∫∫

S
EII
yiH

I
x1 dS (3.60)

⇔ (1 + ρ1)
∫∫

S
EI
y1H

I
x1 dS

=
N∑
i=1

Ti

∫∫
S
EII
yiH

I
x1 dS +

N∑
i=1

Ri exp (βIIzi z0)
∫∫

S
EII
yiH

I
x1 dS. (3.61)
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By evaluating
∫∫

S
EI
y1H

I
x1 dS = − exp(−i2βIz1z)

∫ b

0

∫ a

0

iωπ

k2
ca

iβIz1π

k2
ca

sin2
(
π

a
x
)
dx dy (3.62)

= ωβIz1π
2b

k4
ca

2 exp(−i2βIz1z)
∫ a

0
sin2

(
π

a
x
)
dx dy︸ ︷︷ ︸

=a/2

(3.63)

= ωβIz1π
2b

2k4
ca

exp(−i2βIz1z) (3.64)

∫∫
S
EII
yiH

I
x1 dS =

∫ b

0
dy

∫ l

0
EyiH

I
x1dx︸ ︷︷ ︸

Ferrite

+
∫ a

l
Eyi,0H

I
x1dx︸ ︷︷ ︸

Air or Vacuum

 (3.65)

= exp(−i(βIz1 + βIIzi )z)
∫ b

0
dy

∫ l

0
(−2)iAiE+

ryi
sin (βxix)

iβIz1π

k2
ca

sin
(
π

a
x
)
dx+

∫ a

l
Ci
iωµ0

βxi,0
sin (βxi,0(x− a)) iβ

I
z1π

k2
ca

sin
(
π

a
x
)
dx


(3.66)

= exp(−i(βIz1 + βIIzi )z)b
2AiβIz1π

k2
ca

E+
ryi

∫ l

0
sin (βxix) sin

(
π

a
x
)
dx

− Ci
ωµ0β

I
z1π

2

βxi,0k2
ca

∫ a

l
sin (βxi,0(x− a)) sin

(
π

a
x
)
dx

 (3.67)

with∫ l

0
sin (βxix) sin

(
π

a
x
)
dx

=
a
(
−π cos

(
lπ
a

)
sin (βxil) + aβxi cos (βxil) sin

(
lπ
a

) )
(−aβxi + π)(aβxi + π) (3.68)∫ a

l
sin (βxi,0(x− a)) sin

(
π

a
x
)
dx

= − a

π2 − a2β2
xi

(
π cos

(
πl

a

)
sin (βxi(a− l)) + aβxi sin

(
πl

a

)
cos (βxi(a− l))

)
(3.69)

(terms for EI
y1 and HI

x1 derived in 1.1.2.3) we find the first equation in the system to
derive. By multiplying equation 3.55 with HI

xi with i = 2, ..., N and repeating the
same steps again, N equations can be derived in total. Applying the same strategy on
equations 3.57 and on 3.56 and 3.58, but with multiplication by EI

yi instead of HI
xi, a

system of 4N equations with 4N unknowns is obtained, which can be solved in order to
determine ρi, Ti, Ri and ti. Regarding the analog problem for the backwards travelling
modes, one finds different values for the transmission and reflection parameters which
will be denoted with ρ′i, T ′i , R′i and t′i. Because of the damping of higher order modes



Chapter 3 Methods 66

in waveguide regions I and III, the entries of the scattering matrix are given by

S11 = ρ1 exp(−2βIz1zI) (3.70)
S21 = t1 exp(−βIz1(zI + zIII)) (3.71)
S12 = t′1 exp(−βIz1(zI + zIII)) (3.72)
S22 = ρ′1 exp(−2βIz1zIII). (3.73)

Within this, zI and zIII denote the lengths of waveguide regions I and III, respectively.
Summarizing, a technique which enables to calculate the S−parameter out of given
material characteristics µ and κ and geometric parameters was derived in this section,
solving the direct problem. In the following, we will deal with the vice-versa problem,
which is of great interest in this work.

3.1.4 Inverse Problem: Determination of Permittivity and
Permeability

Due to the complexity of the present problem, it is not possible to analytically calculate
ε, µ and κ from the S−parameters. Consequently, one has to use numerical methods
in order to solve this inverse problem. In this context, the following procedure is
chosen [46]: First of all, we measure the S−parameters from the described experimental
or in-silico set-up to which we refer as Smeasij in the following. Then, we use initial guess
values for ε, µ and κ and calculate the corresponding theoretical S−parameters, Stheoij ,
according to the previously described direct problem’s solving method. Afterwards, we
define an objective function as

E(x) =
2∑
i=1

2∑
j=1
|Smeasij − Stheoij (x)|2 (3.74)

with x = (ε′, ε′′, µ′, µ′′, κ′, κ′′) which has to be minimized in order to bring the theoret-
ical S−parameters as close as possible to the measured data. In the present work, this
minimization process is done via a sequential quadratic programming method (SQP)
(firstly developed in [54], modern formulation can be found in many textbooks and
essays as [55] and [56]). The corresponding mathematical recipe will be described in
the following.
In the general form, we consider a non-linear optimization problem, in which an ob-
jective function f(x) in dependence of a n−dimensional vector x has to be minimized.
Furthermore, we can define m non-linear inequality constraints in the form of

gi(x) ≥ 0,with i = 1...m. (3.75)

In our case, we can use this inequalities in order to restrict to possible values for the
permittivity and permeability according to bounds of effective media (see section 1.3.5).
During the solution procedure, a constraint gi(x) is called active if gi(x) = 0 is fulfilled.
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The corresponding Lagrangian function with its multipliers ui is given by

L(x, u1...uh) = f(x) +
h∑
i=1

uigi(x) (3.76)

in which gi with i = 1...h are the active constraints at x.
In order to solve this problem, we use an initial guess value for the solution, x0, and
formulate a quadratic subproblem in which we search the minimum of

f0(d0) = 1
2d0

TB0d0 + (∇∇∇f(x0))Td0 (3.77)

under the conditions

g0,i(d0) = (∇∇∇gi(x0))Td0 + gi(x0) ≥ 0 with i = 1...h (3.78)

which are given by the active constraints at x0. Within these formulas, B0 denotes the
Hessian matrix of the Lagrangian

B0 =



∂2L
∂x2

1

∂2L
∂x1∂x2

... ∂2L
∂x1∂xn

∂2L
∂x2∂x1

∂2L
∂x2

2
... ...

... ... ... ...

∂2L
∂xn∂x1

... ... ∂2L
∂x2

n


(3.79)

and d the n−dimensional optimization parameter. In fact, this step is just a quadratic
Taylor expansion of the Lagrangian and a linear Taylor expansion of the active con-
straints. In conclusion, we approximate the actual problem. Subsequently, the corre-
sponding solution d0 can be found by applying Lagrange’s method

L0(d0) = f0(d0) +
h∑
i=1

u0,ig0,i(d0) (3.80)

∂L0

∂d1
= 0 (3.81)

...

∂L0

∂dn
= 0 (3.82)

∂L0

∂u0,1
= 0 (3.83)

...

∂L0

∂u0,h
= 0 (3.84)

which delivers n+ h linear equations with the same numbers of unknowns. By solving
this problem, we obtain d0 and u0,i with i = 1...h, which we can use in order to update
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our approximation of the total solution via

x1 = x0 + d0. (3.85)

Using this new x1, we define a new quadratic subproblem according to equation 3.77
and check which constraints are active at this point, leading to new conditions according
to system 3.78. Then, the whole procedure is repeated until convergence is reached.
When implementing this algorithm, derivatives have to be approximated by using
difference quotients in the form of ∂f

∂x
= f(x+h)−f(x)

h
with a problem adjusted parameter

h. Furthermore, the initial guess value of x0 has to be chosen properly in order to
reach convergence. In the present work, it was also noticed that a limiting step length
dmax in the updating process (equation 3.85) can be useful. This means that we reduce
dk to the length dmax while maintaining its direction in case that |dk| > dmax. For
solving the system of linear equations 3.80-3.84, Gaussian algorithm is used.
Combining the presented SQP method with the previously described calculations of
the direct problem, one obtains a laborious, but effective and reliable method for the
computation of the Polder susceptibility tensor which is used for gaining the later
presented results.

3.2 Simulation Methods

In the following section, the simulation methods which are used in this work will be
brought into focus. First of all, we want to introduce the finite element method (FEM)
with respect to electromagnetic phenomena. Based on this method, the commercial
software High Frequency Structure Simulator (HFSS) was developed by Ansys Inc.
which will be used in order to generate our experimental set-up in silico and discretize
our model on finite element meshes. Due to different reasons, these meshes are then
exported to model order reduction (MOR) software, supplied by Lehrstuhl für theo-
retische Elektrotechnik (LTE) from Saarland University, in which S−parameters are
calculated.
As a preparatory work before using high-frequency simulations, we also have to perform
static simulations in which the local dipole fields inside the inclusions in our sample
are computed. For this purpose, a simple numerical procedure was developed which is
presented in the end of this section.

3.2.1 The Finite Element Method and Model Order Reduction

All calculations in HFSS and MOR are based on the FEM, which is a numerical tech-
nique for solving differential equations underlying given boundary conditions. Since
these calculations are the crucial element of all results presented in this work, we want
to introduce the mathematical basics of this technique with regard to electromagnetic
field modeling. For that purpose, we refer to [57], but the same issues can be found in
several textbooks dealing with numerical solution techniques of differential equations.
Subsequently, the rudiments of MOR are presented which can be read in more detail
in [58].
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In general, a boundary value problem is given by one or several governing differential
equations in a domain Ω according to

Lφ = f (3.86)

in which L denotes a differential operator, φ is the physical or mathematical field of
interest and f an excitation term. Moreover, Ω is surrounded by a boundary Γ, on
which certain conditions are imposed. Due to lack of analytic solutions in most cases,
various numerical solution techniques were developed. Among these, the FEM is best-
suited when domain Ω, in our case a specified volume, becomes inhomogeneous with
inseperable geometries. Consequently, with regard to our topic of interest, electromag-
netic fields in composite materials, the approach with FEM is adequate.
For the purpose of calculating an approximative solution in FEM, Ω has to be dis-
cretized in smaller elements as line segments in one, triangles in two and tetrahedra
in three dimensions, for example. This discretization has to cover the whole domain
Ω, while the non-overlapping subdomains are connected to their neighbours, forming
a mesh of finite elements. In order to solve equation 3.86 with FEM approximation,
different techniques can be used while we restrict to the method by Petrov-Galerkin in
the following. Within this, the unknown field is approximated as

φ =
N∑
j=1

ωjcj = ωωωTc (3.87)

where wj are polynomial functions with coefficients cj and N denotes their maximal
regarded order. Inserting the ansatz of 3.87 in equation 3.86, we are able to compute
the resulting residual error r

r = LωωωTc− f. (3.88)

Now, the idea is to weight this residual with the testing functions ωj and to seek
a solution for which the weighted average residual in a domain Ω disappears. This
approach leads to a linear system of requirements∫∫∫

Ω
ωωωrdv = 0 (3.89)

⇔
(∫∫∫

Ω
ωωωLωωωTdv

)
c =

∫∫∫
Ω
ωωωfdv. (3.90)

For the purpose of calculating the electric field with this method, one uses the already
derived wave equation 1.18 as starting point which is a consequence of the governing
Maxwell’s equations 1.1-1.4. Under assumption of time-harmonic fields, we can write

∇× µrµrµr−1∇× E + iωµ0σE− ω2µ0ε0εrE = 0. (3.91)

Additionally, we have to include different boundary conditions. First of all, the bound-
ary conditions between different media surfaces inside the regarded volume Ω are given
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by the continuity conditions for the fields,

n× (E1 − E2) = 0 (3.92)
n · (D1 −D2) = ρs (3.93)
n× (H1 −H2) = Js (3.94)
n · (B1 −B2) = 0, (3.95)

which can partly be found in different forms in equations 1.77, 1.84 and 1.150. Within
this, n denotes the unit normal vector on the boundary, ρs the interface’s charge density
and Js the electric current density on the surface. Furthermore, the conditions at the
enclosing boundary Γ must be defined in order to obtain a problem with an unique
solution. When the regarded domain is restricted to the volume inside a rectangular
or parallel plate waveguides, as in this work, we have to distinguish between three
different types of conditions on Γ (see also figure 3.6):

• Perfect electric conductor: At the waveguide walls, perfect electric conductance
is assumed (compare 1.1.2.1), leading to the condition n×E = 0 on these areas,
which is in accordance with equation 3.92.

• Perfect magnetic conductor: Regarding parallel plate waveguides, two waveguide
walls are virtually infinitely far away from each other. Due to finity of Ω, this
can not be modeled directly, but the same behavior of the fields is reproduced
by the choice of the condition of a perfect magnetic conductor n × H = 0 at
corresponding areas.

• Ports: At the waveguide ports i, i = 1, 2, the electromagnetic signal enters and
leaves the system. Accordingly, the high-frequent excitation of the system takes
place at the corresponding areas ΓPi

. In this regard, tangential components of E
and H can be written as

Ei
t =

∞∑
k=1

aikEi
tk exp (−βikx) + bikEi

tk exp (βikx) (3.96)

Hi
t =

∞∑
k=1

aikHi
tk exp (−βikx)− bikEi

tk exp (βikx) (3.97)

in which aik and bik denote the complex amplitude of the mode k travelling forward
and backward in x−direction.

The thereby defined boundary value problem can be discretized. By this procedure,
we obtain a sparse equation system in the form of

Az = b. (3.98)

Within this, the entries of A and b are given by

Akl =
∫

Ω
(∇∇∇×ωωωk)µrµrµr−1(∇∇∇×ωωωl)dΩ + iωµ0

∫
Ω
ωωωkσωωωldΩ− ω2ε0εrµ0

∫
Ω
ωωωkωωωldΩ

−
2∑
j=1

i

µr
βi1

∫
ΓPi

(n×ωωωk)(n×ωωωl)dΓ (3.99)
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Figure 3.6 – When simulating field distributions in a rectangular or parallel plate waveguide,
the shown model geometry has to be used. The purple labeled areas in the top left picture have
to be defined as perfect electric conductors in both cases, while the marked ones in the top
right picture are defined as perfect electric conductors in case of a rectangular waveguide, but as
perfect magnetic conductors for a parallel plate waveguide. In the lower picture, the ports’ area
are highlighted. Please note that there is no sample defined inside the waveguide.

and

bk = −2
2∑
j=1

i

µr
βi1

∫
ΓPi

(n×ωωωk)(n× Ei
t1)dΓ (3.100)

with the three dimensional ansatz functions ωωωi which are chosen in such a way that
perfect electric boundary conditions are fulfilled in advance and integrals over perfect
magnetic areas disappear. Solving system 3.98 delivers the components of z, from
which the fields can be calculated via

E(r) =
N∑
i=1

ziωωωi(r) (3.101)

H(r) = i

ωµ0

N∑
i=1

zi∇∇∇×ωiωiωi(r) (3.102)

with r ∈ Ω. For a more detailed discussion of finite element simulations and the com-
prehensive derivation of equation 3.98, we refer to [57].
Of course, the system of 3.98 depends on the regarded frequency. Accordingly, it is
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necessary to generate and solve such a system for every single frequency point in the
range of interest, which can be very time-consuming. However, changes in the electro-
magnetic fields in dependence of frequency are observed to be very small. This fact
induces the fundamental idea behind MOR: Instead of using a large FEM problem in
every frequency point, this is only done at a few frequency sites νi with i = 1, ..., n
while solutions in between are interpolated as linear combinations of the fields at these
evaluation points. From a mathematical point of view, this strategy reduces the order
of the solution space and, as a consequence, the calculation times for the fields at the
frequency points between the νi. Because this technique delivers only an approxima-
tion of the right FEM solution (which itself is also only an approximation of the real
fields), one has to analyze the convergence and accuracy of the results. As for FEM,
this can be also done via the computation of the residual error as in equation 3.88 [58].
The used MOR software which delivers the results presented in this work was imple-
mented by Lehrstuhl für theoretische Elektrotechnik at Saarland University, chaired by
Romanus Dyczij-Edlinger. A further insight into the explicit details of this programs
can be found in [59].

3.2.2 Ansys High Frequency Structure Simulator

As already mentioned, the HFSS program by Ansys is used in order to model the
experimental set-ups in silico and generate meshes for FEM simulations. Within this,
a three-dimensional model and the already discussed boundary conditions must be
defined before the mesh generator subdivides the volume into tetrahedral elements
(see picture 3.7). For these and all further regarded simulations during the elaboration
of this work, the following settings for the mesh generator are used:

• Initial mesh: lambda target of 0.6667 (default)
• Maximum refinement per pass: 25 %
• Solution order: second
• Solution frequency: 12 GHz (always the highest frequency of interest).

Consequently, the initial mesh is generated in such a way, that the edge lengths of the
corresponding finite elements undershot 0.6667 of the material dependent wave length.
Then, this mesh can be refined in subsequent passes or iteration steps, in which up to
25 % of the number of existing tetrahedra can be added in order to improve solutions.
Via the parameter solution order, the number of unknowns for each tetrahedron can
be adjusted, while second order is the maximum value and corresponds to the highest
accuracy. Furthermore, the solution frequency determines the frequency point at which
the mesh is generated. Because wavelengths decrease with increasing frequency, it is
senseful to generate meshes at the highest frequency of interest before a sweap uses this
mesh in order to calculate further results at lower frequency points. In this case, we
examine the so called X−band between 8 − 12 GHz. In later examinations, in which
results depend on frequency, we will expand the region of interest to 7− 12 GHz which
causes no problems concerning mode propagation in our simulations.
Moreover, the mesh generating process can be automatically stopped via the maximum
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Figure 3.7 – a) A waveguide filled with a homogeneous sample of ε = 5 and µ = 1 (purple box)
is modeled in HFSS. The waveguide’s dimensions amount 2.286 cm× 1 cm× 6 cm. Accordingly,
the usage with only one propagating mode is possible between 6.56 − 13.11 GHz. The sample
with a length of 1 cm is placed in the waveguide’s middle concerning direction of propagation.
Accordingly, two 2.5 cm long vacuum filled regions between sample and the two ports are defined.
All other boundaries of the geometry underly perfect electric or perfect magnetic conditions in
dependence of the modeled type of waveguide (see section 3.2.1). Two corresponding meshes
are shown in picture b) and c): The mesh in b) corresponds to the first iteration step with 563
tetrahedra, while the mesh in c) is much more accurate and consists out of 10 813 tetrahedra
(iteration step 15).

Delta S criterion: This value is calculated between passes l − 1 and l according to

maximum Delta Sl = max
i,j=1,2

|Sl−1
ij − Slij|. (3.103)

Accordingly, mesh refinement process stops if this value falls below the chosen tresh-
old. Actually, in this work, this criterion is not used but results calculated out of the
S−parameters are compared between different steps in order to guarantee convergence
(see section 4.1). Further information on HFSS can be found in the corresponding
user’s guide [60].
After this short introduction, we want to analyze the accuracy of HFSS and the pre-
sented evaluation methods (see section 3.1.1) for a homogeneous material in a rectan-
gular or parallel plate waveguide as shown in figure 3.7. For that purpose, we firstly
compare S−parameters which can be analytically computed according to equations 3.3
and 3.4 with the ones generated by HFSS. Exemplaric results are shown in figure 3.8
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and show very good agreement.

Figure 3.8 – The real and imaginary part of the S11−parameter of a parallel plate waveguide
containing a d = 5.0 cm long device with ε = 5 and µ = 1 (as shown in figure 3.7 a)) are
calculated in the frequency region of 8 − 12 GHz with the help of HFSS and via equation 3.3.
Although simulation is performed with the initially generated mesh without further refinement
passes, a very high accuracy is reached.

Figure 3.9 – Data of figure 3.8 is evaluated with the method by NRW.
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Of course, we also want to use the produced S−parameters and calculate the per-
mittivity ε of the corresponding samples. In this context, we firstly want to demon-
strate the arising of divergencies when evaluating simulated (or experimentally) gained
S−parameters of long devices with the NRW method, shown in figure 3.9 (compare
to figure 3.2). Contrary, the evaluation with the analytically produced data leads to
much smoother results, highlighting small simulation noise as origin of the divergencies
(see section 3.1.1). As already mentioned, these divergencies occur at frequency points
fulfilling d = nλm

2 . Consequently, the choice of short samples, for which this condition
is not valid at any frequency point in the regarded range, prevents the appearance of
this phenomenon. This is shown for a device with a length of d = 1 cm in both types
of waveguides in figure 3.10. Results for this shorter sample show deviations up to 5 %
for the rectangular waveguide and only 1 % for the parallel plate waveguide.

Figure 3.10 – The S−parameters from HFSS simulations are evaluated with the help of the
NRW method. Left picture shows results for a rectangular waveguide (RWG) while the outcomes
for a parallel plate waveguide (PPWG) are shown on the right side. In both cases, sample lengths
of d = 1 cm and d = 5 cm are regarded while ε = 5 is still valid.

Additionally, the avoidance of these divergencies is also possible for arbitrary sample
lengths by applying Newton’s method for solving the corresponding equations (see
section 3.1.1) which is performed for generating data shown in figure 3.11 for devices of
d = 1 cm and d = 5 cm in a parallel plate and rectangular waveguide. Here, we obtain
deviations in the range of 8 % (d = 1.0 cm) or 2 % (d = 5.0 cm) in the rectangular
waveguide and 0.6 % (d = 1.0 cm) or 0.3 % (d = 5.0 cm) in the parallel plate waveguide.
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Figure 3.11 – The same S−parameters as in figure 3.10 (sample with ε = 5 and a length of
d = 1 cm or d = 5 cm, respectively) are evaluated with Newton’s method. In this example,
equation 3.4 for S21 is used in order to calculate permittivity. Left picture shows again results for
the rectangular waveguide while a parallel plate waveguide is used in order to produce results on
the right. Please note different scalings of the ε−axis.

Within this, we observe results for longer devices to be more precise when using New-
ton’s method (see figure 3.11). Moreover, accuracy shows up to be always higher for
simulations in the parallel plate waveguide.
In summary, the usage of short samples is recommended when evaluation should be
performed via NRW method, while longer samples improve results when Newton’s
method is applied. Considering all outcomes, the analysis of long devices in a paral-
lel plated waveguide and subsequent evaluation with Newton’s method shows highest
accuracy concerning our methods. Although this first examination of a homogeneous
and isotropic medium is problem-free and accurate to handle with the help of HFSS,
simulation times can become huge when modeling composites with ferritic inclusions.
These large simulation times are caused by strongly increased numbers of tetrahedra,
especially at the inclusions’s surfaces, which are necessary in order to produce precise
results. Hence, HFSS will be only used in order to generate models and meshes before
these data are imported into MOR software by LTE.

3.2.3 Numerical Computing of the Local Magnetic Dipole Fields

In general, the magnetic dipole-dipole interaction between the inclusions plays an im-
portant role and must be included in our model in order to achieve more realistic results.
Unfortunately, the commercial software of HFSS is only capable to process pre-defined
static magnetic biases, while their interaction and following changes in their orientation
(relaxation) are not taken into account. Consequently, a method must be implemented
in order to analyze the influence of the interaction between the several dipole moments.
For that purpose, many existing models can be found in literature (see [61], for exam-
ple), from which the following calculation method is chosen: At first, a given number
Ninc of inclusions with a appropriate diameter is distributed randomly (or in a deter-
ministic manner, see section 4.3) in a well-defined sample volume in such a way that
desired volume fractions of inclusions are realized. Moreover, inclusions are supposed
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to be fully magnetized and the correlated magnetic moments p are calculated via

p =
∫
V

Ms dV = 4
3πr

3
incMinc

s (3.104)

under the assumption of a homogeneous magnetization inside the inclusions with radius
rinc and saturation magnetization Minc

s . In the beginning, these magnetic moments
are supposed to be perfectly aligned parallely to the static magnetic field, pointing
in z−direction. The physical interpretation of these starting conditions is that the
whole composite sample is exposed to an external field which is much stronger than
the field caused by the inclusions. Consequently, it is able to fully magnetize it. Then
the field in the sample is reduced to a lower value of Heff , increasing the influence of
the interactions between the inclusions’ moments. For the purpose of including these
effects into our simulations, one inclusion j inside the sample is randomly chosen and
the local internal field at its center is computed according to

Hdip
inc,j = Heff −

1
3Minc

s +
Ninc∑

i=1,i 6=j

Hij +
26∑
h=1

Hihj︸ ︷︷ ︸
PBC!

 (3.105)

with the interaction fields

Hij = 1
4πr2

ij

3rij(p · rij)− p · rij
2

r3
ij

(3.106)

and the distance vector rij between the centers of inclusion i and j.
In case that infinitely extended material should be simulated, periodic boundary con-
ditions are needed, which are included via the summation of the interaction fields
resulting from the 26 periodic disposed copies of each inclusion. Then, the magnetic
moment pj of inclusion j is orientated parallely to the local field Hint,j, meanwhile its
magnitude remains constant |pj| = 4

3πr
3
incMs. This procedure is schematically illus-

trated in figure 3.12.
In the following, this calculation is done for every inclusion in a random sequence in one
update step, while these steps are repeated until no moment’s orientation is changed
anymore by an angle greater than one degree. Accordingly, the simulation delivers the
vector components of every inclusion’s internal magnetic field in the equilibrium state
of the static case.
The results of this numerical procedure become important in section 4.3, in which
they are also presented. Furthermore, a discussion of the model assumptions and their
physical influence is given there.
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Figure 3.12 – A schematic sketch of the calculation mechanism for an inclusion number of
Ninc = 100. At first (a), one inclusion j with magnetic moment pj is randomly chosen. In the
beginning, this vector is aligned parallely to the field Heff . Afterwards, the contributions to the
local internal field Hdip

inc,j from all other inclusions are computed (b and c). In picture (d), the
new alignment of the updated magnetic moment p′j is shown.



Chapter 4

Examination of Composite Material with
Infinite Extensions

In this chapter, the first results of the simulations done during this work are presented.
We consider composites consisting of ferromagnetic inclusions in a non-magnetic host
matrix (accordingly, a cermet topology is under test, see figure 1.17) with the target
of studying the behavior of such heterogeneous devices and draw analogies to effective,
homogeneous materials. In this context, we firstly concentrate on determining material
parameters for infinitely extended samples, requiring certain conditions and procedures
which will be illuminated.
As a simple as possible starting point, we analyze devices containing inclusions arranged
on a simple cubic lattice before dealing with randomly generated microstructures in
the following. Though, a detailed and exact examination of accuracy of the physical
approximations, the simulation techniques and the evaluation methods is needed in
order to justify our results. Contrary to the contents of this chapter, the analysis of
finite samples will be done in chapter 5.

4.1 Previous Considerations

Before analyzing results, an extensive consideration of possibly sources of inaccuracy
should be done, which will be given in this section. Concerning the topic and the
methods of this work, one can differ between three types of challenges.

1. Physical issues: First of all, the effective medium approach requires the wave-
length λ to be much larger than the inclusions’ radius rinc, which is no problem
to fullfill in experiments, where inclusions on micro- and even nanometer scales
(see [8], for example) are analyzed in the frequency range of microwaves (wave-
lengths in the order of centimeters). Contrary, in our simulation, a low inclusions’
diameter leads to high inclusion numbers, requiring high memory allocation ca-
pacity. Therefore, the treat-off between small particles and limited computing
resources has to be well-considered.
Additionally, the composite’s microstructure naturally influences the behavior
of the effective medium via different interactions (demagnetizing effects, dipole-
dipole interaction) between inclusions. Accordingly, different types of well-described
arrangements and their effects concerning interactions are analyzed in simula-
tions.
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Last, but not least, one has always to be aware of the fact that our computations
are done in finite samples which underly surface effects which are highly unde-
sired in this chapter and have to be eliminated in order to study pure material
properties.

2. Simulation accuracy: Of course, the accuracy of the used simulation techniques
has to be verified by analyzing the convergence behavior of the computational
methods. This includes the discretization of meshes in HFSS and the choice of
the order of ansatz functions and the maximum residuum in ROM.

3. Evaluation accuracy: Another point is the choice of many different parameters
in numerical evaluation methods as for the approximation of derivatives, for
example. The most important issue in our case is a sufficiently high choice of the
number of considered modes in the modal-matching technique.

First of all, we want to investigate the influence of the inclusions’ radius in order to
verify that λ� rinc is sufficiently reached in our simulations.
One approach for that purpose could be to analyze the two structures shown in figure
4.1. Both have a filling factor of 1 %.

Figure 4.1 – Two cubes with an edge length of 1 cm, containing Ninc = 8 inclusions with a
radius of rinc = 0.0668 cm (left) or Ninc = 64 inclusions with a radius of rinc = 0.0334 cm (right),
respectively. Consequently, the filling factor is f = 1 % in both cases, whereby microstructure is
randomly generated. For the purpose of comparing both samples, inclusions’ material parameters
are the same in both cases.

Simulating wave propagation in both systems and calculating the resulting effective
permeability tensor then delivers different results. Now, the appearing problem is that
one is not able to isolate the dependence on the inclusions’ radius. The differences
in the results may also occure due to the completely different microstructures. Ac-
cordingly, this must also be kept comparable in both cases in order to draw sensible
conclusions.
At this point, several solutions for this task are possible. For example, one could use
a given randomly microstructure and realize different inclusion sizes by shrinking the
whole device (inclusions and host matrix) by a suitable factor. This maintains the
filling factor, but changes the extensions of the device, which has a strong influence on
the results, as we will see later in this chapter. Therefore, this examination is done with
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no randomly microstructure, but an arrangement on a simple cubic lattice inside the
matrix. Now, one changes the number of inclusions (in case of a cubic device restricted
to cubic numbers, i.e. Ninc = 1, 8, 27, 64, 125...) and chooses the inclusions’ radius in
such a way that filling factor and device geometry are maintained. This is done for the
three cases of Ninc = 8, 27 and 64, as illustrated in figure 4.2.

Figure 4.2 – Three cubes with an edge length of 1 cm and filling factor f = 1 %. The influence
of inclusions’ radii should be analyzed. For that purpose, Ninc inclusions are placed on a simple
cubic lattice with Ninc = 8 and rinc = 0.0668 cm (left), Ninc = 27 and rinc = 0.0445 cm
(middle) or Ninc = 64 and rinc = 0.0334 cm (right).

Following measurements are done with material parameters
M inc

s = 302 394.5 A
m (= 3800 Gs) and α = 0.05, which are actually in the range

of these values for ferrite materials and also used in the works of V. Bregar (see [36]
and [37]). For the reason of receiving a resonance frequency of ν0 = 10 GHz for an
isolated sphere, the magnitudes of the internal magnetic biases of the inclusions are
chosen according to

ω0 = 2πν0 = γHeff with Heff = Hinc + M inc
s

3

⇔ Hinc = 2πν0

γ
− M inc

s

3

= 183 154 A
m .

These biases are orientated parallely to z−axis, while waves propagate in x−direction
(see figure 4.3). Within this, γ denotes again the gyromagnetic ratio (as introduced
in equation 1.160). For simplicity’s sake, dipolar interactions between inclusions are
neglected in these simulations. This will be further justified later in this section.
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Figure 4.3 – The whole waveguide model as produced in HFSS. Static magnetization of in-
clusions points along z−direction. Waves propagating along x−axis have to pass a 2.5 cm long
empty part in the waveguide before reaching the device under test in order to damp higher ordered
modes.

The models of these microstructures are created with HFSS, in which different meshes
are considered in order to determine the necessary discretization. The settings of HFSS
mesh generator are the same which are described in section 3.2.2. Subsequently, meshes
and models were exported to the MOR software of LTE and corresponding calculations
are done with the following settings, unless otherwise stated:

• Solution order: fourth
• Maximum residuum: 10−3

• 201 frequency points between 7 GHz and 12 GHz.
In the presented evaluation method (see section 3.1.2), 50 forwards and backwards
travelling modes are considered. All these settings will be justified later. At this
point, one minor technical problem occurs considering the software in use: When
already defining anisotropic material in HFSS, the exportation of meshes into the
MOR software of LTE fails. Accordingly, HFSS meshes are generated with isotropic
materials whose permeabilities are chosen to have the maximum values of the Polder
tensor’s diagonal component of the anisotropic material of interest in the analyzed
frequency range. This means that µ′′iso of the isotropic material is chosen to have the
value of µ′′max = µ′′aniso(νres) of the anisotropic material at resonance frequency, while
µ′iso of the isotropic material also amounts the highest value of µ′aniso of the anisotropic
material reached in the frequency range under test. Afterwards, the permeabilities of
the magnetic materials are calculated according to Polder tensor (see equation 1.169)
in the MOR software of LTE. By this, the results shown in figures 4.4, 4.5, 4.6 and 4.7
are produced, which highlight, that the second discretization pass is already convergent
in case of an filling factor of f = 1 %. Nevertheless, we use the third pass for safety’s
sake.
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Figure 4.4 – Imaginary part of µ for Ninc = 8 inclusions and rinc = 0.0668 cm in dependence
of frequency for different passes of mesh discretizations in HFSS. Regarded host matrix is a cube
with an edge length of 1 cm, leading to a filling factor of f = 1 %. Numbers in brackets denote
the number of tetrahedra of the different meshes. Results for the first four passes are given.
There are only small variations between the first and second pass, but almost no changes when
further increasing mesh discretization.

Figure 4.5 – Results of discretization pass 2 and 3 as in figure 4.4 are shown again in order to
highlight that there are almost no more differences between them.
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Figure 4.6 – For Ninc = 27, one can draw the same conclusions as for Ninc = 8: the second
pass of mesh refinement is already sufficient. Measurements are again done with a cube of an
edge length of 1 cm and a filling factor of f = 1 %.

Figure 4.7 – As shown in figure 4.6 for Ninc = 27, the second discretization pass is also
sufficient for a further increased inclusion number of Ninc = 64.

Within these simulations, one also notices the increased numbers of required tetrahe-
dras when inclusion number grows (15 896 for Ninc = 8 in pass 3 and 119 403 for the
same settings with Ninc = 64). This can be explained by the growing boundary surface
between matrix and inclusions, at which more tetrahedras are necessary in order to
guarantee accuracy.
After this first verification of simulation accuracy, one can compare the results for the
different microstructures (figures 4.8 and 4.9). As we notice, only small differences
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between samples with inclusions of different sizes and almost identical results between
the arrangements with Ninc = 27 and Ninc = 64 inclusions are obtained.

Figure 4.8 – A comparison between the three described microstructures shows that there are
only small changes in dependence of inclusions’ radii in the regarded range.

Figure 4.9 – Only plotting the results for the structures with Ninc = 27 and Ninc = 64
highlights that the condition for the effective medium approach, namely λ� rinc, is sufficiently
satisfied.
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Because simulations are desired to be analyzed in the range of f = 1 % . . . 10 %,
the same examination is also done for the highest filling factor. In order to realize
different volume fractions of inclusions while maintaining their radius, the host matrix
is shrinked to smaller edge lengths, as a = 0.464 cm in case of f = 10 %. The
corresponding result is shown in figure 4.10, which confirms Ninc = 27 inclusions with
rinc = 0.0445 cm to be sufficiently small, even for a volume fraction of f = 10 %.
Consequently, λ � rinc is supposed to be fulfilled in the frequency range of interest
when rinc ≤ 0.0445 cm is chosen.
At this point, one has to admit that it is not possible to decide if the deviation between
the simulations with Ninc = 8 inclusions with a radius of rinc = 0.0668 cm and the
ones with higher numbers and smaller radii is a consequence of too few or too large
inclusions. Nevertheless, due to convergence, one can be sure that all necessary criteria
are fulfilled.

Figure 4.10 – For f = 10 %, the cubic host matrix is shrinked to an edge length of
a = 0.464 cm, while microstructures, inclusion numbers and radii are maintained. Again, the
results for Ninc = 27 and Ninc = 64 are almost identical.

Additionally, the sufficience of the used order of ansatz functions in the MOR software
should be analyzed. For that purpose we consider a sample with Ninc = 27 inclusions
on a simple cubic lattice and a volume fraction of f = 1 % and f = 10 %. All other
parameters (material parameters, static field, mesh discretization) are used as described
before, but order of ansatz function is changed between two and four (see figures 4.11
and 4.12). These results highlight the influence of the order of ansatz functions, because
the usage of an order of two strongly distinguishes from higher orders in both cases.
Interestingly, differences between the results for an order of three and four decrease
when volume fraction f rises. According to the shown results, we will use an order
of four in order to obtain the highest level of accuracy. Moreover, the influence of
the maximum residual error (see section 3.2.1), which is an input parameter in MOR
software, should be examined in order to ensure that no significant inaccuracies arise.
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Figure 4.11 – For f = 1 % and Ninc = 27 inclusions, different orders of ansatz function are
tested. Obviously, an order of two differs much from higher orders, but also the results for orders
of three and four can be clearly distinguished from each other.

For this, we use again the same simulation parameters as before and samples with
f = 1 % and f = 10 %, but vary the maximum residuum between resmax = 10n with
n = −1,−2,−3. The corresponding results are shown in 4.13 and 4.14, proving that a
value of 10−3 is sufficiently small in both cases.

Figure 4.13 – The influence of the maximum residuum on the results is analyzed. Small
deviations between the results for resmax = 10−1 and resmax = 10−2 are detected, while the
curves for resmax = 10−2 and resmax = 10−3 do not differ. Picture shows results for f = 1 %
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Figure 4.12 – For f = 10 % and Ninc = 27, the differences between the results for an order of
three and four are much smaller than for f = 1 %.

Figure 4.14 – The same analysis as in figure 4.13 is done for a filling factor of f = 10 %.
Again, a maximum residuum of 10−3 is proven to be more than sufficiently accurate.

The last point of accuracy to analyze at this point is modal matching’s convergence
behavior. For that purpose, we again use the S−parameters from simulations with
the outworked accuracy parameters. Contrary to the previous considerations, we can
restrict to consideration of the case of f = 10 % because here, due to highest resulting
effective permeability, more modes will be arised comparing to lower volume frac-
tions. Evaluating the corresponding simulated data with different numbers of consid-
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ered modes, we obtain the results shown in figure 4.15. Convergence becomes obviously
for more than ten modes. Nevertheless, due to the minor numerical effort of evaluation
compared with simulations, 50 modes are considered in the following sections.

Figure 4.15 – Influence of the number of modes is tested for a composite with Ninc = 27
inclusions, a filling factor of f = 10 % and the justified accuracy parameters. When increasing
from three to five or five to ten strong differences become clear concerning the strength of the
peak and shifting of the resonance frequency. A consideration of more than 10 modes does not
change the results anymore.

Summarizing, we have justified a set of parameters with which we are able to mean-
ingfully analyze the system’s behavior.
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4.2 Inclusions on a Simple Cubic Lattice

4.2.1 Simulation Investigation

In first simulation sequences, the structure with inclusions placed on a simple cubic
lattice will be maintained for two reasons: Firstly, this delivers a very simple first
case in order to analyze the influence of differently generated microstructures. The
second motive becomes clear assuming a strong static magnetic field in z−direction
which saturates magnetization of all inclusions. Consequently, dipole moments of all
inclusions show parallely in z−direction and resulting magnetic field of one inclusion i
evaluated at the place of another inclusion j is described through

Hij = 1
4πr2

ij

3rij(p · rij)− p · r2
ij

r3
ij

(4.1)

as introduced by equation 3.106. Regarding one pointlike inclusion j placed on and
surrounded by an infinite simple cubic lattice of identical inclusions, we can determine
the resulting dipolar field at center of inclusion j by

Hdip,j =
∞∑

i=1,i 6=j
Hij (4.2)

=
∑
i∈Mij

Hij +
∑
i/∈Mij

Hij. (4.3)

wherein Mij = {i|inclusion i is nearest neighbour of inclusion j} denotes the set of
nearest neighbours of j at distance rnn, which we numerate according to figure 4.16.

Figure 4.16 – Inclusion j is surrounded by six neareast neigbours on a simple cubic lattice.
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Continuing evaluation, we find∑
i∈Mij

Hij = H1j + H2j + H3j + H4j + H5j + H6j (4.4)

= 1
4πr2

nn

3rnnx (pzrnnx)− pzr2
nn

r3
nn

(4.5)

+ 1
4πr2

nn

−3rnnx (−pzrnnx)− pzr2
nn

r3
nn

(4.6)

+ 1
4πr2

nn

3rnny (pzrnny)− pzr2
nn

r3
nn

(4.7)

+ 1
4πr2

nn

−3rnny (−pzrnny)− pzr2
nn

r3
nn

(4.8)

+ 1
4πr2

nn

3rnnz (pzrnnz)− pzr2
nn

r3
nn

(4.9)

+ 1
4πr2

nn

−3rnnz (−pzrnnz)− pzr2
nn

r3
nn

(4.10)

= 1
4πr3

nn

(−6pz + 3pz + 3pz) (4.11)

= 0. (4.12)

Accordingly, the magnetic fields caused by the nearest neigbours equalize themselves
at the center of inclusion j. The same phenomenon can be shown for the second, third
and so on nearest neighbours (see textbooks like [38], for example) or simply calculated
by our simulation software presented in section 3.2.3. Obviously, this holds for every
inclusion in case of an infinite sample, wherefore dipole-dipole interactions do not have
to be considered here. Regarding a finite sample, consisting of a limited number of in-
clusions as Ninc = 64, this is not true anymore. But, remembering our goal of drawing
conclusions concerning infinitely extended material, disregarding dipole-dipole interac-
tions in case of a simple cubic lattice is justified under the condition that other artifacts
due to the finite device are also eliminated. Consequently, only static magnetic field
(determining the permeability tensor according to Polder without crystal anisotropy)
and demagnetization effects will influence the results given in this section.
Now, we want to analyze the composites’ permeability with different volume fractions
of inclusions with a constant internal magnetic bias Hinc = 183 154 A

m . For these exam-
inations, we use the derived accuracy parameters and the further material properties
as described before. Although only µ′′ was used in order to analyze the accuracy of the
results, we also regard the corresponding results for all four entries of the Polder ten-
sor, which are shown in figures 4.17-4.20. In order to intensively analyze the behavior
of the resonance frequency, the components of µ′′ are normalized with regard to the
inclusions’ volume fraction in figure 4.21.
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Figure 4.17 – The described parameters are used in order to study the system’s behavior with
different volume fractions of inclusions f . This is realized by shrinking the host matrix for higher
values of f . In this graph, we regard the behavior of µ′ int the case of Hinc = const..

Figure 4.18 – When regarding µ′′, we notice the strength of the resonance peak to increase
with higher filling factors, which is not surprising. Additionally, resonance shifts towards lower
frequencies when Hinc = const. is valid for every filling factor.



93 4.2 Inclusions on a Simple Cubic Lattice

Figure 4.19 – By the methods at hand, we also determine the non-diagonal entry κ of the
Polder tensor. Here, the real part for different volume fractions with Hinc = const. is shown.

Figure 4.20 – The imaginary part of κ for different filling factors with Hinc = const. is shown
in this graph.
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Figure 4.21 – While in figure 4.18, absolute values for µ′′ are shown, the above curves are
normalized due to the inclusions’ volume fractions. In this plot, normalized strength of the
resonance peak decreases with increasing volume fraction.

Before interpreting these outcomes, one has to be aware of the fact that different
filling factors were analyzed by changing the device geometry, which is linked with a
change of surface effects influencing our results. In order to highlight the effect of this
disturbing phenomenom, even at the matrix’s surface of composite materials, three
different geometries (see figure 4.22) are analyzed, with the results shown in picture
4.23.

Figure 4.22 – The different device geometries with the same inclusion size are considered. In
the left picture, the previously considered cube with Ninc = 27 inclusions is shown. The second
device, shown in the middle, is an increased cube, which contains Ninc = 64 inclusions. Thirdly,
a non-cubic device with a doubled length in propagation direction and a square cross section is
used, which is shown at the right side. This sample contains Ninc = 54 inclusions. The volume
fraction is f = 10 % in every case, geometric dimensions are a = 0.464 cm and b = 0.618 cm.
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Figure 4.23 – The three device geometries shown in figure 4.22 deliver different resonance
peaks, although material parameters and inclusions’ volume fractions are the same.

This geometry-dependence is highly undesired and has to be eliminated in order to
study the material characteristics. For that purpose, the following procedure is used:
for every analyzed composite, a homogeneous sample with equal geometric dimensions
is considered. Then, material properties Hint and Ms, labelling the internal magnetic
field and saturation magnetization, for the homogeneous material, which are input
parameters in simulations, are varied until the same results are produced as for the
composite device. Afterwards, the accordance with this parameter set is tested for
other geometries. If the found parameters of the homogeneous sample then actually
reproduce the results of the heterogeneous composite for different geometries, then
effective medium parameters for the composite materials are found in our input data.
In the following, we refer to these values as Heff and Meff . In this consideration,
material parameter α is always maintained because the origin of this damping term
is on an atomic or molecular scale and should not vary with volume fraction. The
analysis of the homogeneous samples is done with the same accuracy parameters as for
the composites, but number of mesh discretazion passes in HFSS is increased to 20 in
order to ensure exactness. This can be done without problems concerning computation
resources because of the much lower number of required mesh elements for homogeneous
samples. Fortunately, the described procedure is succesful and it is possible to find
effective parameters which reproduce the composite’s behavior very well, as shown for
a volume fraction of f = 10 % in figures 4.24, 4.25 and 4.26. The requirements to
find the effective parameters were defined in such a way that resonance frequencies of
composite and homogeneous material differ not more than 0.025 GHz and the maximum
deviation of µ′′ is less than 2.5 % in every evaluated frequency point, whereby minimum
deviations in single frequency points reach values in the order of 0.001 %. The trial
of further reducing maximum deviation fails because a minimization of error in one
frequency point increases deviation at other frequencies. Nevertheless, curves are in
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very good agreement.

Figure 4.24 – The cubic sample with Ninc = 27 shown in figure 4.22 is considered and
input material parameters Heff and Meff for the homogeneous samples are varied until results
agree with the heterogeneous composite’s behavior for this geometry. Found values amount:
Heff = 274 582 A

m and Meff = 29 444 A
m . Note the very high accordance of the curves.

Figure 4.25 – For producing these curves, the cubic sample with Ninc = 64 shown in figure
4.22 was analyzed. Concerning the homogeneous sample, we use Heff and Meff as found for
the smaller cube (see figure 4.24), delivering again very good matching results.
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Figure 4.26 – The sample with an increased length in propagation direction is examined and
again the found values of Heff and Meff are used for the homogeneous device. Also in this case,
we get results with high accordance.

Repeating this procedure for every desired volume fraction of inclusions (actually done
with the smaller cubic sample, accordingly the resonance curves shown in figure 4.18
are in use) under the condition Hinc = const., one finds the correlations for Heff and
Meff as functions of filling factor f as shown in figure 4.27.
Linear fitting processes with the help of OriginLab deliver

Meff (f) = (2934.5± 4.3) A
m % · f [%] (4.13)

Heff (f) = 283 952 A
m − (942.6± 3.1) A

m % · f [%]. (4.14)

The fixed conditions for y−interceptions take into account that Meff has to be zero
if samples include no magnetic material and that internal magnetic field is chosen in
such a way that resonance should occur at ν = 10 GHz for an isolated sphere in a
non-magnetic matrix.
Regarding the effective magnetizationMeff , the identified slope with respect to volume
fraction of inclusions of (2934.5±4.3) A

m % is very close to the intuitively expected value
of M inc

s

100 % = 3023.9 A
m % , with a deviation of only 3.04 %.
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Figure 4.27 – The found values for Meff and Heff are linear fitted with fixed condi-
tions for f = 0 %: Meff (f = 0 %) = 0 A

m (sample without magnetic material) and
Heff (f = 0 %) = 283 952 A

m (defined by the condition ν0 = γ
2πHext = 10 GHz). In the cor-

responding simulation sequence, Hint = 183 154 A
m was kept constant for every filling factor.

Considering the effective magnetic field Heff , one has to recall demagnetization theory
in order to understand this result. Accordingly, the internal magnetic bias of the
inclusions Hinc can be correlated with the effective field according to equation 1.153.
In conclusion, we find the relation

Heff = Hinc + 1
3(M inc

s −Menv) (4.15)

which determines the resonance frequency. In this, Hinc and M inc
s are defined input

parameter and Menv describes magnetization of the environmental medium around
one regarded sphere. Consequently, in our simulation sequence, Hinc = 183 154 A

m
and M inc

s = 302 394.5 A
m remained constant, while Menv corresponds to the effective

magnetization of the composite Meff .
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So, in this case, above equation can be written as

Heff (Hinc = const.) = Hinc + 1
3M

inc
s −

1
3Meff (f) (4.16)

Comparing the determined slope of −942.6 A
m % with the theoretically determined

value of −1
3Meff (f) = −1

3
M inc

s

100 % · f [%] = −1007.98 A
m % · f [%], one recognizes a de-

viation of 6.49 %. Additionally, one can also use the before determined value of
Meff (f) = 2934.5 A

m % · f [%], obtaining −1
3Meff (f) = −978.2 A

m % · f [%], which
means again a deviation of 3.04 %.
Taking into account that we regarded a composite of Ninc = 27 inclusions with a vol-
ume of Vsphere for each in a total volume V , we have to consider the following fact:
In this composite, one arbitrary sphere is surrounded by (Ninc − 1) = 26 other inclu-
sions which determine demagnetization effects for this sphere in focus. Accordingly,
not disregarding this detail, theoretical expectation of Meff for an arbitrary sphere in
a composite of Ninc inclusions refines to

Meff = 1
V

Ninc−1∑
i=1

pm,i (4.17)

= (Ninc − 1) ·M inc
s ·Vsphere

V
(4.18)

with V = Ninc ·Vsphere · 100 %
f [%] , we obtain

Meff = M inc
s · (Ninc − 1)

Ninc

· f [%]
100 % , (4.19)

delivering for Ninc = 27

Meff (f) = 2911.9 A
m % · f [%].

Comparing this with results drawn from simulations, we discover an error of only
0.77 %. For the purpose of coming closer to the limit of Ninc → ∞, we repeat the
procedure with Ninc = 64 inclusions, with the same accuracy parameters (three passes
in HFSS, fourth order of ansatz functions in LTE software, maximum deviation of
µ′′ of 2.5 % in every frequency point of the adapation with homogeneous material).
According to equation 4.19, we theoretically expect

Meff (f) = 2976.7 A
m % · f [%]

while simulation sequence delivers no noteworthy difference to the case of Ninc = 27, as
mentioned before when dealing with accuracy parameters. Two explanations for this
are possible: Either the chosen parameters, namely for the mesh descretization or the
order of ansatz functions, are not sufficient for smaller particles or the principly reach-
able accuracy limit for these methods is reached. Considering the first assumption, one
has to admit that further refinement of the meshes or higher orders of ansatz function
are not possible because the related memory comsumption exceeds the available RAM
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of 147 GB.
On the one hand, these results, which are in very good agreement with theory, proof the
accuracy of the simulation, the chosen parameters and the used methods and so enforce
the trustworthyness for more complicated cases. But, on the other hand, the presented
simulation sequence can not be compared with experiments or analytic computations,
in which the external field remains constant for different volume fractions of magne-
tized material and a possible shift of resonance is analyzed. In the above described
simulation runs, external field was involuntarily decreased by maintaining the input
parameter Hinc constant, while Meff increased with volume fraction. Consequently,
the question for a possible shift of the resonance frequency under experimental condi-
tions is not answered so far. For that purpose, we remember that resonance frequency
for spherical samples is determined by the effective static field acting on them, which
corresponds to Heff in this case. Moreover, in case of infinite samples, this value is
identical with an externally applied field. Following, we have to include a correction
corr(f) of our parameter as function of filling factor according to

Hext = Heff = Hinc + 1
3
(
M inc

s −Meff (f)
)

+ corr(f) != const. (4.20)

From this, we conclude

corr(f) = 1
3Meff (f) (4.21)

in order to keep the externally applied or effective field constant for all volume fractions.
We will refer to examinations of the influence of different filling factors under a constant
external or effective field by Heff = const., in the following, while Hinc = const. labels
analysis with a constant internal magnetic bias in the inclusions. According to previous
thoughts, this constant effective field amounts

Hext = Heff = Hinc + 1
3M

inc
s = 283 952 A

m (4.22)

and causes the resonance frequency of an isolated sphere in a non-magnetic environ-
ment to occur at ν = 10 GHz, as mentioned before. For drawing conclusions on the
behavior of infinitely extended composite material, we use the same device geometries
as in the previous simulation sequence, choose corr(f) according to equation 4.21 and
eliminate geometry dependence again by comparing with a homogeneous sample, in
which we define an internal magnetic bias of H = 2π

γ
10 GHz = 283 952 A

m , which also
causes the resonance to occur at 10 GHz in an infinite sample. Accordingly, detected
deviations of the resonance frequency of the homogeneous material from 10 GHz only
appear due to the finite sample size. Within this, effective magnetization of the ho-
mogeneous device is chosen according to the determined values in the first simulation
sequence (data in figure 4.27). In case that resonance frequency of the composite shifts
as a function of filling factor f , the results of composite material and so-defined homo-
geneous media should differ. The obtained results are shown in figures 4.28, 4.29 and
4.30, showing again very good agreement of the corresponding graphs. Summarizing,
resonance frequency is not shifted in the physical scenario presented in this chapter.
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Figure 4.28 – The comparison of the results for a composite and a homogeneous sample for
the volume fraction of f = 1 % shows good accordance for the chosen parameter, indicating the
resonance frequency to be independent on the filling factor in this case. The case ofHeff = const.
is examined.

Figure 4.29 – The same comparison with Heff = const. as in figure 4.28 is done for a filling
factor of f = 5 %, which also shows very good agreement.
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Figure 4.30 – Even for an inclusion volume fraction of f = 10 %, no remarkable shift between
the resonance frequencies of the heterogeneous and the homogeneous device occurs when Heff =
const. is valid. Deviation from 10 GHz is a result of the finite sample size in the waveguide and
according demagnetization effects.

Additionally, we also want to analyze the behavior of the strength of the resonance peak
|µ′′max| in dependence of the volume fraction for infinitely extended materials. In this
case, we have shown that our composites would behave according to the Polder model,
when we insert the previously gained values Heff = 2π

γ
10 GHz= 283952 A

m = const. and
Meff (f) for every filling factor. Accordingly, we can calculate the values of |µ′′max(f)|
with the help of equation 1.170 and obtain the data plotted in figure 4.31.

Figure 4.31 – The calculated values for |µ′′max| are plotted for every filling factor f and linear
fitted. Here, the case of Heff = const. for every filling factor is analyzed.



103 4.2 Inclusions on a Simple Cubic Lattice

Linear fitting with the help of OriginLab delivers

|µ′′max| =
(0.1039± 3 · 10−4)

% · f [%]. (4.23)

In order to explain this result, we analyze equation 1.170 for an infinitely extended
material (i.e. nx = ny = nz = 0), insert ω = ω0 and separate into real and imaginary
parts for the purpose of finding an expression for µ′′max. Accordingly, we find

|µ′′max| =
ωm

2αω0
(4.24)

= Meff

2αHeff

. (4.25)

Using the determined linear relation 4.13 for Meff (f) and the constant values of Heff

and α, we calculate

|µ′′max| =
(0.1033± 3 · 10−4)

% · f [%] (4.26)

in good agreement with the result in equation 4.23, which is not surprising due to the
calculation of all results with the same equation (1.170).
Moreover, we are also interested in the low frequency permeability µ′stat = lim

ω→0
µ′ for

different volume fractions. Firstly, we want to check if our parameters from the adap-
tions of the resonance peak in the case of Hinc = const. (see figures 4.24-4.26) also
reproduce the values of µ′ for all frequency points, which is shown in figures 4.32 and
4.33.

Figure 4.32 – The behavior of µ′ for the composite with the same input parameters as before
and a volume fraction of f = 1 % is well reproduced by the homogeneous sample. Here, the case
of Hinc = const. is analyzed. Properties of the homogeneous sample correspond to data plotted
in figure 4.27.
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Figure 4.33 – In an analogical manner to figure 4.32, a composite with f = 10 % is examined.

Obviously, this is fulfilled with high accordance. In order to analyze µ′stat in the case of
Heff = const., we use again the found parameters of Heff and Meff (f) and calculate
the desired magnitudes with equation 1.170. Corresponding results are shown in figure
4.34.

Figure 4.34 – The low frequency values of µ′stat are calculated and linear fitted. Here, the case
of Heff = const. for every filling factor is analyzed.

Again, we linear fit these data and obtain

µ′stat = 1 + (0.01039± 3 · 10−5)
% · f [%] (4.27)
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As before, we take a deeper look at equation 1.170 and regard the limit for an infinitely
extended material

µ′stat = lim
ω→0

µ′ (4.28)

= 1 + ωm
ω0

(4.29)

= 1 + Meff

Heff

. (4.30)

Inserting relation 4.13 and the constant value of Heff , we find

µ′stat = 1 + (0.01033± 2 · 10−5)
% · f [%] (4.31)

which is again in very good accordance with equation 4.27 due to the same reason as
it was the case for the values of |µ′′max|.

4.2.2 Conclusions

Although the presented results are mainly conventional theoretical issues, as demag-
netizing effects of spheric samples, we can draw important and interesting conclusions
out of this chapter:
First of all, the good agreement with analytic theory and consistence of the results
enforce reliance on them and deliver a powerful tool in order to examine more compli-
cated cases by generating microstructures randomly and switch on more interactions,
as dipole-dipole coupling between inclusions.
Secondly, it has been shown that an almost perfect equivalence between composite
and homogeneous material with regard to their resonance curves is valid in these
finite-element-simulations (see figures 4.24-4.26, 4.28-4.30 and 4.32-4.33). It has to
be highlighted that the given equation,

Heff = Hinc + 1
3(M inc

s −Meff ), (4.32)

is only used as a mean field approach concerning composite materials in analytic cal-
culations. By this, you treat the regarded sphere as embedded in a homogeneous
medium with magnetization Meff , ignoring the heterogeneous structure consisting out
of further inclusions in the host matrix (see figure 4.35). Here, by obtaining almost
identical permeabilities for composites and equivalent homogeneous material in simu-
lations, which do not disregard local material distribution, and the found linear fitted
data in figure 4.27, we showed that equation 4.32 is actually accurate in the considered
case of inclusions on a simple cubic lattice.
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Figure 4.35 – As shown by simulations, the three cases do not differ significantly: Despite
spatial resolution in our simulations, it does not matter if we regard a homogeneous medium
with an effective magnetization according to Ninc distributed spheres (left), an isolated sphere
embedded in an effective medium whose magnetization, regarded as homogeneously distributed,
is arised by Ninc − 1 spheres (middle) or a composite with Ninc inclusions located on a simple
cubic lattice (right).

Thirdly, we gain insight into the behavior of the effective field in the sample, determin-
ing resonance frequency, under different conditions. In the case of a constant internal
magnetic bias inside the inclusions (Hint = const.), Heff decreases with rising filling
factor (as shown in figure 4.27). This phenomenon can be easily understood by taking
into account that internal fields inside magnetic materials, in this case Hint, are always
weakened compared to the fields in a surrounding non-magnetic medium. Accordingly,
the effective field in the whole sample of Volume V , defined as the spatial mean value
of the local fields

Heff = 〈H(x)〉 = 1
V

∫
V
H(x)dV, (4.33)

shrinks when increasing volume fractions are occupied by the defined value of Hint. But
actually, in the work of V. Bregar in 2004 [36] (see chapter 2.1) and in real experiments,
the externally applied magnetic field is maintained for different volume fractions. For
the purpose of comparing the corresponding outcomes to the ones of this work, we
have to convert our results with regard to demagnetization effects by equation 4.20.
Thereby, we achieve data which can be assigned to measurements performed with a
constant externally applied field, which equals the effective field in infinitely extended
samples. For this case, resonance frequency of the composite does not shift compared
to homogeneous material (see accordance of both curves in figures 4.28-4.30 and note
deviations of resonance from 10 GHz to be a consequence of the device geometry) and
|µ′′max| and µ′stat are analyzed (see figures 4.31 and 4.34).
Summarizing, in the considered case of irrelevant dipolar interactions between inclu-
sions in an infinitely extended sample (nx = ny = nz = 0), we can calculate the effective
permeability tensor out of the inclusion material parameters (M inc

s and α), the effective
field Heff , which corresponds to the externally applied field, and the filling factor f by
inserting

ωm = γMeff (f) = γM inc
s · f [%]

100 (4.34)

ω0 = γHeff (4.35)

into Polder’s formula (see equations 1.169-1.171), while for damping parameter α, the
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inclusion material value is used.

4.3 Randomly Distributed Inclusions

4.3.1 Static Field Calculations

4.3.1.1 Previous Considerations

The next step in order to increase complexity is to distribute inclusions in a ran-
domly manner in the host matrix and thereby switching on the dipole-dipole interac-
tion between them. As already mentioned, the orientation of the numerous inclusions’
magnetic moments in the equilibrium state has to be computed in a static magnetic
simulation, which is done before the mesh generation in HFSS and the simulation run
in MOR. The corresponding model is described in section 3.2.3. According to the prior
examinations, we again use a saturation magnetization of M inc

s = 302 394.5 A
m and an

internal magnetic bias, which initially points along z− direction and causes the reso-
nance of a spherical, isolated inclusion to occur at νres = 10 GHz (Hinc = 183 154 A

m
for every filling factor). The simulation then calculates the equilibrium orientation
of the magnetic moments, which are exposed to the dipolar fields of the surrounding
inclusions.
Before presenting further results, we want to highlight the fundamental assumptions
which form the basis of this procedure and analyze their influence. First of all, the
model described in section 3.2.3 assumes the internal magnetic field at the midpoint
of an inclusion as the magnitude of a homogeneous field in the whole sphere volume,
which is actually an approximation in order to reduce numerical effort. In the limit of
high inclusion numbers and corresponding small diameters, the influence of this simpli-
fication disappears, but in the case of low numbers of inclusions, it should be analyzed
in order to guarantee the validity of our results. For this purpose, we generate samples
with Ninc = 27 or Ninc = 64 inclusions, whose positions are stochastically varied until
the distribution of the spheres’ midpoints field reproduces the unambiguous large sys-
tem limit of Ninc →∞ with a given accuracy. The technical details of this procedure
are described later (in section 4.3.1.2). Afterwards, the calculation of the magnetic mo-
ments’ static orientation is performed in these composites as described before. Then,
the z−component of the internal local field is evaluated at 1 000 randomly distributed
points inside every single sphere and the resulting distribution, especially the mean
value of the internal fields and its standard deviation are compared to the internal
field at the midpoint of the inclusion. This is done for a filling factor of f = 1 %
and f = 10 % with a constant value of Hinc and inclusion numbers of Ninc = 27 and
Ninc = 64 (see figures 4.36-4.47) in the case of Hinc = const. for every filling factor.
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Moreover, we also compare the gained data to the results when the same number of
inclusions is distributed in the host matrix in a purely random manner, instead of using
the arranging scheme decribed in section 4.3.1.2.

Figure 4.36 – The averaged z−component of the magnetic field inside the different inclusions
(red circles), the corresponding standard deviation of the field distribution (indicated by red error
bars) and the internal magnetic field’s z−components at the midpoints (black squares) are plotted
for each of the Ninc = 27 inclusions. The middle black line marks the average z−component
of the magnetic field at the inclusions’ midpoints and the both outer inclose the area within one
standard deviation of all inclusions’ midpoint fields’ z−component. Material parameters are the
same as before. Here, the case of an filling factor of f = 1 % is examined. While the top picture
shows results for the arranging strategy of section 4.3.1.2, the picture in the bottom shows the
same outcomes for a purely random distribution. Note the different scaling of the magnetic field
axis.
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Figure 4.37 – The probability distribution of the different internal magnetic field z−component
values for one single sphere of the composite of Ninc = 27 inclusions is plotted against the relative
magnetic field (field values divided by their mean value). In this figure, we regard the inclusions
with the highest standard deviation of the magnetic field at the 1 000 internal points which is
sphere number 13 in the case of the proposed arranging strategy (left) and sphere number 19
for the random insertion (right, see also red error bars in figure 4.36). Black squares denote the
distribution of the 1 000 evaluated values inside the sphere while the red circles show the peaked
distribution when assuming the magnetic field as homogeneous with the value at the center for
the whole inclusion. Here, a composite with a volume fraction of f = 1 % is regarded. Material
parameters are the same as before. Note the different scaling of the relative magnetic field axis.

Figure 4.38 – The same analysis as in figure 4.37 is done, but for the inclusions with the lowest
standard deviation of the magnetic field at the 1 000 internal points. In both cases (proposed
arranging strategy left, random insertion right), sphere number 12 is regarded (see also red error
bars in figure 4.36).
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Figure 4.39 – The same analysis as in figure 4.36 is done for a volume fraction of f = 10 %.
Again, the picture at the top shows the results for the proposed arranging procedure while the
picture at the bottom shows data for the purely random inclusion insertion. The magnetic field
axes are differently scaled, as before.

Figure 4.40 – Again, we regard the spheres with the highest standard deviation concerning the
internal field distribution as in figure 4.37, but for a filling factor of f = 10 %. Left side shows
sphere number 7 for the proposed arranging method, right side sphere number 9 for the randomly
inserted inclusions (see also red error bars in 4.39).
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Figure 4.41 – In this figure, we regard the spheres with the lowest standard deviation concerning
the internal field distribution as in figure 4.38, but for a filling factor of f = 10 %. Left side
shows sphere number 24 for the proposed arranging method, right side sphere number 19 for the
randomly inserted inclusions (see also red error bars in 4.39).

Figure 4.42 – The same data as plotted in picture 4.36, but for Ninc = 64 inclusions. Filling
factor amounts f = 1 %. Again, top picture shows results for the proposed arranging method,
down picture shows data for the random insertion of spheres. Note the different scaling of the
the magnetic field axes.
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Figure 4.43 – The same distribution as in figure 4.37 is shown for single spheres in a composite
with Ninc = 64 inclusions and an inclusion volume fraction of f = 1 %. Again, we regard the
inclusions with the highest standard deviation of the magnetic field at the 1 000 internal points.
This is sphere number 23 in the case of the proposed arranging strategy (left) and sphere number
21 for the random insertion (right, see also red error bars in figure 4.42)

Figure 4.44 – The same distribution as in figure 4.38 is shown for single spheres in a composite
with Ninc = 64 inclusions and an inclusion volume fraction of f = 1 %. Again, we regard the
inclusions with the lowest standard deviation of the magnetic field at the 1 000 internal points.
This is sphere number 46 in the case of the proposed arranging strategy (left) and sphere number
9 for the random insertion (right, see also red error bars in figure 4.42)
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Figure 4.45 – The same data as plotted in figure 4.39, but for Ninc = 64 inclusions. Filling
factor amounts f = 10 %. Again, top picture shows results for the proposed arranging method,
down picture shows data for the random insertion of spheres.

Figure 4.46 – The same distribution as in figure 4.40 is shown for single spheres in a composite
with Ninc = 64 inclusions and an inclusion volume fraction of f = 10 %. Again, we regard the
inclusions with the highest standard deviation of the magnetic field at the 1 000 internal points.
This is sphere number 19 in the case of the proposed arranging strategy (left) and sphere number
25 for the random insertion (right, see also red error bars in figure 4.45).
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Figure 4.47 – The same distribution as in figure 4.41 is shown for single spheres in a composite
with Ninc = 64 inclusions and an inclusion volume fraction of f = 10 %. Again, we regard the
inclusions with the lowest standard deviation of the magnetic field at the 1 000 internal points.
This is sphere number 41 in the case of the proposed arranging strategy (left) and sphere number
6 for the random insertion (right, see also red error bars in figure 4.45)

Through this analysis, several things become clear concerning the results for the pro-
posed arranging strategy. First of all, the value of the magnetic field at the center of
the spheres is always very close to the mean value of the fields at the 1 000 points
distributed inside the sphere (compare positions of the red circles and black squares
in figures 4.36, 4.39, 4.42 and 4.45). Secondly, the inner-sphere field distributions are
quite symmetric (see distributions in the left sides of 4.37, 4.38, 4.40, 4.41, 4.43, 4.44,
4.46 and 4.47) and sharp compared to the field fluctuations between different inclu-
sions (compare length of the red error bars to distance between black lines in 4.36,
4.39, 4.42 and 4.45) in all cases. Furthermore, it is obvious that the averaged standard
deviations of the inner field distributions increase from f = 1 % to f = 10 % (see table
4.1), which is a result of the reduced distance and the thereby enforced interaction be-
tween single inclusions. Naturally, this effect will increase for higher package densities
of inclusions. Accordingly, the assumption of a homogeneous magnetic field inside the
sphere is only justified in the case of low volume fractions of well distributed inclusions.
When comparing these results with the purely randomly generated microstructures, we
notice the following aspects: Firstly, the midpoint field values are still very close to
the mean values of the fields in the sphere, but the symmetry of their distribution is
a little bit disturbed (compare left and right side of figure 4.46, for example). Most
importantly, the field fluctuations inside single spheres and between the midpoints of
different spheres (values of 〈σ〉inc and σmid in table 4.1) strongly increase compared to
the values connected with the proposed arranging method. In contrast, these values
decrease for higher inclusion numbers. Consequently, the inserting strategy described
in section 4.3.1.2 is confirmed as a powerful tool in order to come closer to the behav-
ior in the large system limit of Ninc → ∞ without increasing the number of included
spheres.
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f = 1 % f = 10 %

Ninc = 27 Ninc = 64 Ninc = 27 Ninc = 64

arr. rand. arr. rand. arr. rand. arr. rand.

〈σ〉inc in A
m 1 737 18 905 1 383 14 533 33 925 35 156 32 511 78 853

σmid in A
m 4 955 56 001 3 680 42 168 38 077 116 997 42 508 107 646

Table 4.1 – The standard deviation of the field distribution in a single inclusion, averaged
over all spheres, 〈σ〉inc is always smaller than the standard deviation σmid, which describes the
distributions of the middle point fields in all inclusions. Columns “arr.” denote results for the
proposed arranging strategy while columns “rand.” denote data for the randomly generated
microstructures. All values increase for denser systems.

A further aspect of the model which should be highlighted is that the inclusion-induced
magnetic fields are assumed as purely dipolar fields from pointlike sources. Exact
calculations would require the additional consideration of higher moments which are
homogeneously distributed in the spherical volume of the inclusions. Concerning higher
moments, it was shown in [40] that they can be neglected for volume fractions up to
f = 10 %, as it is the case in this work. The aspect of a spatial distribution of the
magnetic sources will be analyzed in the following by comparing the resulting fields
when considering only one pointlike source with an arrangement of nsub = 7, nsub = 33
or nsub = 87 pointlike and parallely aligned dipolar moments for one single sphere,
schematically shown in figure 4.48. For the purpose of analyzing the resulting fields of
this single, but maybe subdivided, sphere, moments are aligned along z−direction and
the z−component of the resulting field is calculated on a perpendicular axis through
the center of the initial (red) sphere. The orientation of this axis in the x−y-plane does
not influence the results due to the rotational symmetry of the dipolar fields and the
considered arrangements of the magnetic moments. Corresponding results are shown
in figures 4.49-4.52.

Figure 4.48 – The magnetic dipolar field of one inclusion (red sphere with magnetic moment
µ1) is assumed as caused by seven (left), 33 (middle) or 87 magnetic dipoles (right), indicated by
the green spheres. The corresponding results are compared to the case when magnetic moment is
assumed to be caused by a pointlike source at the red sphere’s midpoint. In the case of nsub = 87,
arrows are omitted in order to improve clarity. The sum of the magnetic moments of the four
different formations are kept constant as indicated by the maintained total volume.
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Although only one single sphere, no complete composite, is examined, positions at
which fields are evaluated are given in the units of the mean value of the distances
between inclusions in the corresponding composite which can be calculated via

dinc =
(
V

Ninc

) 1
3

(4.36)

with

f = NincVsphere
V

(4.37)

⇔ V = NincVsphere
f

. (4.38)

In summary, we find

dinc =
(
Vsphere
f

) 1
3

. (4.39)

Obviously, this value depends on Vsphere and, accordingly, on the regarded radius of
the inclusions (rinc = 0.0445 cm for Ninc = 27 and rinc = 0.0334 cm for Ninc = 64).
But actually, the shown results do not depend on this parameter due to the form
of the magnetic dipolar fields. In order to prove this, we regard equation 3.106 and
exemplarily insert rij = dincx and µµµ = VsphereM

inc
s z:

Hdip(dinc) = 1
4πd2

inc

3dincx(VsphereM inc
s z · dincx)− VsphereM inc

s z · (dincx)2

d
3
inc

(4.40)

= 3
4π d3

inc︸︷︷︸VSphere/f

Vsphere

x(M inc
s z · x︸ ︷︷ ︸

=0

)− M inc
s

3 z · x2︸︷︷︸
=1

 (4.41)

=− fM inc
s

4π z (4.42)

Thereby, we found an expression which does not depend on the regarded inclusion
sizes. Consequently, we do not have to distinguish according to this parameter.
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Figure 4.49 – The z−component of the magnetic dipolar fields on a perpendicular axis caused
by nsub = 1, 7, 33 or 87 dipole moments, which are aligned in z−direction, are plotted in units
of the mean distance between inclusions for a filling factor of f = 1 %.

Figure 4.50 – The relative deviations of the z−component of the magnetic dipolar fields with
nsub = 7, 33, 87 from the case with only one dipole moment are plotted for a volume fraction
of f = 1 %.



Chapter 4 Examination of Composite Material with Infinite Extensions 118

Figure 4.51 – The same situation as in figure 4.49 is calculated for a volume fraction of
f = 10 %, leading to a smaller mean value of the distance between the inclusions.

Figure 4.52 – The relative deviations of nsub = 7, 33, 87 from the case with only one dipole
moment are plotted for a volume fraction of f = 10 %.
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Obviously, the cases of nsub = 33 and nsub = 87 do not significantly differ from each
other, indicating that further subdividing of the magnetic moments is not necessary.
Furthermore, deviations from the case of nsub = 1 are smaller comparing to the results
for nsub = 7 due to the better approximation of the spherical volume. In summary,
we can draw the same conclusions as before: the proposed model with a pointlike
magnetic moment for every sphere is very accurate if inclusions are separated by a
certain distance, but becomes more imprecise if this length is decreased. As can be
seen in figures 4.50 and 4.52, relative deviations between the fields caused by one or
87 dipoles at the mean value of the distance between inclusions are in the range of
1 % or lower. Following this, the usage of the model is adequate in the case of quite
homogeneous composites with low volume fractions in the range of f = 1 . . . 10 %. If
an extension to higher volume fractions is desired, a more accurate model, which takes
into account higher ordered magnetic moments and higher resolved spatial definitions
concerning field and magnetic source distribution should be used, which is unavoidably
linked with higher computational effort.
Moreover, it is again important to analyze the model’s convergence behavior concerning
inclusion numbers and radii. For that purpose, we start with the highest volume
fraction of f = 10 %, define a cubic sample with the same geometric extensions as
used in section 4.2 and insert inclusions in a completely random manner, but with no
overlapp between the spheres. For lower filling factors, we stretch the cubic matrix
and the positions of the inclusions in all directions of space with the center of the
sample as fixed point while the spheres’ volumes are maintained. By this, a more
homogeneous distribution of inclusions is produced for lower values of f comparing to
a simple random insertion. With regard to the previous discussion of the error due
to the pointlike magnetic moments in dependence of the distance, we firstly analyze
the distribution of the spatial separation between the inclusions. For that purpose,
we calculate the distance of each of the Ninc inclusions to every of the surrounding
Ninc − 1 spheres. Then, we determine the minimum distance and the average over the
distances to the six nearest neighbours (motivated by the six nearest neighbours in a
simple cubic lattice). The distributions of both quantities is shown in figure 4.53.
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Figure 4.53 – The distributions of the shortest distance between two inclusions and the average
distance of the six nearest neigbours of one inclusion are plotted.

Thereby, we obtain the peak of the minimum distance distribution at
d = 0.79 · dinc, corresponding to a relative deviation of the dipolar fields (compar-
ing nsub = 1 and nsub = 87) of 0.15 % for f = 1 % and 3.92 % in the case of f = 10 %
while the peak of the six nearest neighbour average is located at d = 0.96 · dinc, mean-
ing an error of 0.07 % for f = 1 % and 1.79 % for the higher packaging of f = 10 %
(compare with relative deviations in figures 4.50 and 4.52). Accordingly, the reduction
of the spatial distribution of the magnetic moments to a pointlike source will not have
a great influence on our results.
In the following, we observe the trend of the internal magnetic field at the inclusions’
centers, averaged over all inclusions, and its distribution in dependence of the number
of inclusions. This is done for volume fractions of 1 % to 10 % and inclusion numbers
(respectively radii rinc) Ninc = 50 (rinc = 0.0363 cm), Ninc = 100 (rinc = 0.0288 cm),
Ninc = 500 (rinc = 0.0168 cm), Ninc = 1 000 (rinc = 0.0134 cm), Ninc = 5 000
(rinc = 0.00782 cm) and Ninc = 10 000 (rinc = 0.0062 cm). Regarding the average
midpoint fields, two facts are recognizable in figures 4.54 and 4.55: Firstly, the mean
values of the components of the magnetic field at the inclusions’ centers are almost con-
stant and can be seen as free from artifacts due to the limited system size. Secondly,
due to the strong external field in z−direction, the Hz component is much larger then
the perpendicular components Hx and Hy. Therefore, we neglect these components in
the following and treat the internal fields as aligned along z−direction. Analyzing the
values of Hz for different volume fractions and a high inclusion number of Ninc = 5 000,
we obtain the graph shown in picture 4.56.
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Figure 4.54 – The average values of the internal magnetic field components are plotted for
different numbers of inclusions and a filling factor of f = 1 %.

Figure 4.55 – The same analysis as in figure 4.54 is done for a volume fraction of f = 10 %.

Figure 4.56 – The mean value of the internal magnetic field in z−direction is plotted in depen-
dence of inclusions’ volume fraction in the sample, when dipolar interaction between randomly
inserted spheres is taken into account (black squares). As it can be seen, a denser packaging
of inclusions enforces the local effective field in the spheres. For the purpose of highlighting the
influence of the dipolar interaction, red squares mark the corresponding field when inclusions are
located on a simple cubic lattice, causing the dipolar effects to disappear (see section 4.2.1) and
the field to remain constant.
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At first glance, the rising of the mean value of the fields at the positions of the inclusions
seems to conflict with the requirement of self-consistency of the dipolar fields which is
of vital importance in the analytic calculations in the work of [37] (see section 2.2). Ac-
cording to self-consistency, the average dipolar contribution to the effective field should
be zero and, accordingly, a rising of the effective field in total would be an unphysical
artifact of the simulation. For resolving this contradiction, we use the equilibrium con-
figuration of systems with Ninc = 10 000 inclusions, calculate fields at 50 000 randomly
chosen points in the devices and determine the mean values. Corresponding data is
plotted in figure 4.57.

Figure 4.57 – The effective field is calculated by averaging field values at 50 000 randomly
chosen points for every filling factor. Afterwards, the result is divided by the value of the externally
applied field. Self-consistency requires a constant value of one in this calculation.

As it becomes obvious, the condition of self-consistency is satisfied with perturbations
which are smaller than 1 % until a filling factor of f = 7 % is reached. For higher
volume fractions, deviations grow which is caused by the discussed approximations of
the simulation model, which become more inacurate for increasing values of f . Never-
theless, no unphysical artifact is included into the model.
Accordingly, the rising of the local effective field at the positions of the inclusions,
shown in figure 4.56, is a consequence of the relaxation of the orientation of the mag-
netic moments in these simulations. During this process, magnetic moments prefer an
orientation which enforce fields at the positions of the surrounding inclusions, at least
in average. Consequently, the mean field at locations without inclusions decreases. In
order to prove this explanation, the mean value of the magnetic field at the positions of
the inclusions was also calculated without a relaxation process, meaning a strict align-
ment of all moments in z−direction. Of course, no growing of the average field was
detected in this reduced model. For clarity’s sake, we will refer to the local effective
field at the positions of the inclusions (data in figure 4.56) in the following as H loc

eff .
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Besides the mean value of the internal field, we are also interested in its distribution,
which is also examined in the range of 1 % to 10 % in dependence of the number
of inclusions. The results are shown in the histogramms 4.58 and 4.59 and show
convergence for Ninc ≥ 5 000.

Figure 4.58 – The whole distribution of the internal fields is analyzed. Comparing to the mean
value, the distribution is stronger influenced by the inclusion number, but shows convergence for
Ninc ≥ 5 000. Dividing the different values into classes was done with the default settings
of OriginLab’s automatic frequency count for the highest inclusion number of Ninc = 10 000.
Afterwards, these classes are used for smaller inclusion numbers. Picture shows results for a
volume fraction of f = 1 %.

Figure 4.59 – The same examination of the distribution of the magnetic fields at the inclusions’
midpoints as in figure 4.58 is done for a filling factor of f = 10 %.

In conclusion, we know the mean values and the distribution functions of the magnetic
field inside the inclusion phase in the limit of an infinite system size. By the application
of periodic boundary conditions in the described simulations, we found the values
corresponding to an infinitely extended system.
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4.3.1.2 Local Distribution of Inclusions

With this data, we now want to return to the HFSS simulations runs, in which we
are again confronted with the limited memory allocation resources, allowing only in-
clusion numbers in the range of Ninc ≈ 101 − 102. Unfortunately, convergence of the
field distribution does not occur until inclusion number reached values in the range of
Ninc ≈ 103 − 104. Accordingly, the challenge is to find a scheme to reproduce the be-
havior of the large system with an inclusion number which is two orders of magnitude
below. In other words: We want to find a representative system containing only few
inclusions with the static characteristics occuring in the large system limit.
In order to achieve this goal, we again start with a sample with Ninc = 27 inclusions
which are arranged on a simple cubic lattice, as before. Then, the positions of the in-
clusions are stochastically displaced until the field distributions in the limit of N →∞
(shown for f = 1 % and f = 10 % in figures 4.58 and 4.59, respectively) are reached
with sufficient accuracy.
The shifting of the inclusions is done by adding a three dimensional vector to the po-
sitions of the spheres. For every inclusion, an individual vector is determined with
components computed according to a random gaussian distribution with a mean value
of zero and a standard deviation of dinc/10, where dinc denotes the mean value of
the distance between inclusions, which is defined in equation 4.36. Afterwards, the
orientation of the magnetic moments is determined as described in section 4.3.1 and
corresponding field distribution is calculated and compared to the large system limit,
which was computed with Ninc = 10 000 inclusions. Subsequently, an error quantity
∆ is defined according to

∆ =
k∑
i=1

∆i =
k∑
i=1

[Φ1(Hi)− Φ2(Hi)]2 (4.43)

where Φ1(Hi) and Φ2(Hi) denote the frequency count values of both distributions at
the field value class of Hi (the same classes of the magnetic fields as in figures 4.58
and 4.59 are in use), meanwhile k denotes the number of classes in which the field
distribution is divided. The deviations between the two distributions in the single
points are squared in order to give high deviations a stronger weighting.
This procedure is repeated several times until a treshold of ∆min = 0.005 between
the two distributions is undershot, while the mean fields, averaged over all inclusions’
midpoints, do not differ more than 1 % in both cases, leading to the results for f = 1 %
and f = 10 % exemplarily shown in figures 4.60 and 4.61. In these and following
diagrams, the field distributions achieved according to the here presented strategy,
which is based upon adding gaussianly distributed vectors to the positions of a simple
cubic lattice, are labeled with “gaussian” while the distribution of composites with a
purely random insertion of inclusion is denoted with “random”.
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Figure 4.60 – The described proceeding delivers good agreement between the both field dis-
tributions. In this histogram, a filling factor of f = 1 % is regarded, where ∆ = 0.0021 is
reached.

Figure 4.61 – Analog to figure 4.60, we regard a volume fraction of f = 10 %. Again, a
minimal deviation quantity of ∆ = 0.0021 is reached

The corresponding arrangements of the inclusions in the samples are shown in figure
4.62. Obviously, this procedure generates microstructures which are quite similar to
the previously regarded simple cubic lattice arrangements.
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Figure 4.62 – The corresponding microstructures to the distributions in figures 4.60 (left) and
4.61 (right) are shown. The arrangements are still very similar to a simple cubic lattice, but small
local differences have great influences on the interactions. Average dislocation from the initial
simple cubic lattice amounts ∆x = 1.33rinc for f = 1 % and ∆x = 0.57rinc for f = 10 %
(rinc = 0.0445 cm in both cases).

Within this context, the question arises if there are also other well-suited methods in
order to create such representatives systems with only few inclusions which reproduce
the desired static H−field distribution. Therefore, we also analyzed the magnetic
field distribution with completely random generated microstructures (with the only
restriction that inclusions do not overlap), which was not very successful even after a
large number of trials. Moreover, in further simulation sequences, we again randomly
choose particle positions, but refuse the insertion if the distance between two inclusions
undershots a minimum distance dmin. This procedure again delivers results which are
comparable to the ones which were created with gaussianly distributed displacements.
We refer to this insertion strategy in the following diagrams by the label “min. dist.”.
A comparison of typical field distributions for different insertion mechanisms are shown
in figures 4.63 and 4.64.

Figure 4.63 – The H−field distribution of composites with Ninc = 10 000 inclusions is tried
to reproduce in two additional manners: While the purely random insertion of spheres into the
matrix does not show good agreement (blue triangles), keeping a minimum distance between
single inclusions improves results again (pink triangles). Results for a filling factor of f = 1 %
are shown and the corresponding error quantities amount: ∆gauss = 0.0021, ∆random = 0.0231,
∆min.dist. = 0.002, while the minimum distance between inclusions is chosen to be dmin = 6rinc.
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Figure 4.64 – For f = 10 %, adaption trials yield error quantities of ∆gauss = 0.0021,
∆random = 0.0183, ∆min.dist. = 0.0042, with a reduced mimimum distance of dmin = 3r due to
higher packaging of inclusions compared to the case of f = 1 %, treated in figure 4.63.

The assigned microstructures to the H−field distributions of the purely random inser-
tion and the insertion with a minimum distance in the case of f = 1 % are shown in
figure 4.65.

Figure 4.65 – Left side shows the microstructure which is purely randomly generated and the
microstructure with a minimum distance of dmin = 6rinc is shown on the right side. Filling factor
amounts f = 1 %.

Even if these outcomes show that good accordance with regard to the internal H−field
distribution can not be achieved with an arbitrary stochastic insertion method, we also
want to analyze the influence of the differently generated microstructures on the results
of the high-frequent simulations. The corresponding results are shown in section 4.3.2.4
and highlight that agglomerations in composites with low inclusion numbers must be
avoided in order to reproduce large systems. In the following dynamic field calculations
(section 4.3.2), we use the microstructures generated by the gaussian displacements.
Before, we want to analyze another situation in static simulations in the next section.
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4.3.1.3 Polydisperse Inclusions

While the inclusions in one composite are always identical in the rest of the present
work, we want to analyze the influence of different radii of the spheres in this section.
For that purpose, we generate samples as before, but choose the radius of every inclu-
sion according to a gaussian distribution with the mean value of rmean which is chosen
in dependence of the regarded inclusion number and the filling factor, as in the previous
section, and a standard deviation of σ = 0.1rmean or σ = 0.2rmean, respectively. One
example of a device generated in this manner is shown in figure 4.66.

Figure 4.66 – A sample with Ninc = 27 inclusions with rmean = 0.0445 cm and radius standard
deviation of σ = 0.2rmean filling the matrix with a volume fraction of f = 10 %.

As before, we want to eliminate the influence of the finite inclusion numbers and
therefore, increase Ninc until convergence with regard to the average internal magnetic
field at the places of the inclusions is observed. Corresponding analyses are shown in
figures 4.67-4.70.

Figure 4.67 – The components of the average magnetic field at the places of the spheres in the
matrix in dependence of the inclusion numbers. Here, the sample with f = 1 % and an inclusion
radius standard deviation of σ = 0.1rmean is under test.
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Figure 4.68 – The same analysis as in figure 4.67 is done for a sample with f = 1 % and an
inclusion radius standard deviation of σ = 0.2rmean.

Figure 4.69 – The same analysis as in figure 4.67 is done for a sample with f = 10 % and an
inclusion radius standard deviation of σ = 0.1rmean.
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Figure 4.70 – The same analysis as in figure 4.67 is done for a sample with f = 10 % and an
inclusion radius standard deviation of σ = 0.2rmean.

From these plots, we can drawback that convergence of the value of the mean field
in the static simulations is reached without problems. Moreover, we learn that field
components of Hx and Hy can be neglected, as before. In addition to the mean value
of the magnetic field, we also want to examine the convergence of its distribution in
dependence of the included spheres which is done in figures 4.71-4.74.

Figure 4.71 – The distribution of the magnetic field in the sample with a filling factor of
f = 1 % and σ = 0.1rmean for different inclusion numbers.
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Figure 4.72 – The distribution of the magnetic field in the sample with a filling factor of
f = 1 % and σ = 0.2rmean for different inclusion numbers.

Figure 4.73 – The distribution of the magnetic field in the sample with a filling factor of
f = 10 % and σ = 0.1rmean for different inclusion numbers.
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Figure 4.74 – The distribution of the magnetic field in the sample with a filling factor of
f = 10 % and σ = 0.2rmean for different inclusion numbers.

In contrast to the mean values of the magnetic field, we need higher inclusion numbers
to ensure convergence of the field distributions. Nevertheless, we see that values of
Ninc ≥ 5 000 are sufficiently large.
After this analysis of the convergence behavior, we are able to make justified statements
about the influence of the regarded polydispersity. While the average magnetic field
in direction of the external magnetic bias Hz increases with the standard deviation of
the radius distribution (see figure 4.75), the distribution of the field values broadens
(see figures 4.76 and 4.77).

Figure 4.75 – The mean values of the magnetic field component Hz for the three regarded
cases of radius distributions. Left side belongs to the case of a filling factor of f = 1 %, right
side to f = 10 %.
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Figure 4.76 – The distribution of the field values for the three regarded cases of radius distri-
butions in the composites with a volume fraction of f = 1 %.

Figure 4.77 – The distribution of the field values for the three regarded cases of radius distri-
butions in the composites with a volume fraction of f = 10 %.

Due to the linkage of the resonance frequency and the magnetic field via ω0 = γHdip
eff ,

we can assume that the regarded polydiversity will lead to resonances at higher values.
In the next sections dealing with the following dynamic field calculations, we will
also learn that the broadening of the magnetic field distribution also influences the
resonance shifting, but strongly impedes a senseful analysis with low particle numbers
in high-frequency simulations. For that purpose, we will not further examine the case
of polydisperse inclusions in this work.
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4.3.2 Dynamic Field Calculations

After these preparatory static calculations, we can come back to the high-frequency
simulations with HFSS.

4.3.2.1 Neglection of Dipole-Dipole-Interaction

In order to isolate the influence of different characteristics of the system, we use
the obtained configurations with the adapted positions of the inclusions, gained by
the strategy described in the previous section with gaussianly distributed vectors,
but again regard constant values of Hinc = 183 154 A

m and
Hdip = 0 A

m for every inclusion. By this, we again switch off static dipole-dipole
interaction between magnetic moments, at first. Afterwards, we repeat the simulation
series leading to the results with inclusions on a simple cubic lattice shown in figure
4.27 with these new microstructures in order to analyze the effect of the inclusions’
arrangement on the effective magnetization Meff and effective magnetic field Heff .
Again, this includes the following steps: keeping inclusions’ input parameter M inc

s

and Hinc constant, realizing different volume fractions by shrinking the sample volume
and comparing with homogeneous devices with the same extensions (see section 4.2).
Thereby, no significant difference to the simple cubic arrangements are noticed (see fig-
ures 4.78-4.80) and linear fitting processes (see figure 4.81) deliver quite similar values
(compare to results in equations 4.13 and 4.14):

Meff (f) = (2934± 4.8) A
m % · f [%] (4.44)

Heff (Hinc = const., f) = 283 952 A
m − (925.5± 8.8) A

m % · f [%]. (4.45)

Figure 4.78 – Comparison between µ′′ of the devices with inclusions on a simple cubic lattice
and with gaussianly distributed displacements. For a low volume fraction of f = 1 %, there is
almost no difference between the both curves.
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Figure 4.79 – Regarding a filling factor of f = 5 %, there is also no significant deviation
between the resonance peaks of the composites with inclusions on a simple cubic lattice and
gaussianly displaced arrangements.

Figure 4.80 – For the highest considered filling factor of f = 10 %, small differences at the
resonance can be observed in contrast to the results shown in figures 4.78 and 4.79.

These outcomes highlight that the regarded effective parameters are nearly independent
of such small changes in the microstructure for a volume fraction range of 1 % to 10 %
in these simulations. As a result of this numeric analysis, we can conclude that even
in the structures with gaussian displacements of the inclusions, demagnetization fields
are nearly the same for every inclusion as it is the case for the arrangement on a simple
cubic lattice. Otherwise, a stronger deviation of the values in equations 4.44 and 4.45
comparing to 4.13 and 4.14 would be observed. Accordingly, a mean field approach for
demagnetization effects is justified in this case.
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4.3.2.2 Mean Field Approach for Dipole-Dipole-Interaction

Afterwards, we include the results from the calculation of the magnetic moments, but
instead of taking into account the local field values at the places of the inclusions,
we firstly restrict to the average internal magnetic field Hdip

inc = Hinc + Hdip for every
sphere while Hinc = 183 155 A

m is kept constant for different filling factor (data plotted
in figure 4.56). Within this, Hdip denotes the mean value of the dipolar fields at the
inclusions’ center, averaged over all inclusions in the composite. Accordingly, a mean
field approach for the dipolar fields is chosen in this intermediate stage and we will
isolate the influence of the local field inhomogeneities when they are included in our
simulations, afterwards.
Beyond this changed internal magnetic field (Hinc → Hdip

inc) as input parameter, all
further analyzes are again quite the same as for the simple cubic lattice. These deliver
the results shown and compared to previous examinations in the graphs in figure 4.81.
While effective magnetization Meff is still not influenced, the effective magnetic field
strongly deviates. The first of these two results can be easily understood, because of
the definition of Meff as the number of magnetic moments per volume, which is not
affected by the switched-on dipolar interaction.
Contrary, the effective magnetic field of an equivalent homogeneous sample is enforced
when higher densities of moments are placed in the composite regarding this model.
This phenomenon is founded by the relaxation process of the magnetic moments, as
discussed in connection with figure 4.56. Here, we worked out, that average fields
increase at places of the inclusions, while average fields in total remain constant and
correspond to the effective field in the composite. Accordingly, it would be misleading
to refer to the so determined values of the magnetic fields in the homogeneous sample
as Heff . In order to overcome this problem, we emphasize the local enforcement of the
fields at places of inclusions by choosing the label H loc

eff for this case.
Remembering the results for the simple cubic lattice, we recognize that we again have
to convert the obtained data, produced under the condition Hinc = const. for every
filling factor, in order to perform analog examinations as in experimental works, in
which the externally applied field is the tunable parameter. Including demagnetization
effects by again using relation 4.20 with the values of H loc

eff (Hinc = const.) shown
by red circles in picture 4.81, we can analyze the composite samples’ behavior under
constant external field, which is exemplary done for f = 1 %, f = 5 % and f = 10 %,
with the results shown in figure 4.82. Furthermore, we compare these outcomes to
the results for the effective sample without dipolar interaction, for which we put the
values of Heff (Hinc = const.) (black squares in figure 4.81) in equation 4.20 in order
to simulate a constant externally applied field. In this context, we remember that
this data set without the influence of dipolar interaction corresponds to an unshifted
resonance frequency.
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Figure 4.81 – In the upper picture, the effective magnetization Meff for different volume
fractions is shown. This linear correlation is not influenced by the different analyzed models.
Contrary, the effective magnetic field H loc

eff (Hinc = const.) is strongly increased for higher fill-
ing factors compared to the previously examined system. Black squares correspond to values
of Heff (Hinc = const.) without dipolar interaction (according to equation 4.16, fitting process
delivers relation 4.45) while red circles mark data for the composites in which the average mag-
netic field with switched-on dipolar interaction between inclusions is regarded. These values for
H loc
eff (Hinc = const.) can be understood by considering equation 4.46. As before, values of

Meff and H(loc)
eff (Hinc = const.) are found by the comparison between the resonance curves of

the homogeneous and heterogeneous materials and the variation of the input parameter for the
magnetization and the internal magnetic field of the homogeneous device.
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Figure 4.82 – Contrary to the effective, homogeneous samples in which dipolar interaction is
disregarded (black lines), a significant frequency shift to higher values for increasing volume frac-
tions can be recognized when including the interaction of the magnetic moments in a mean field
approach (red lines) for the effective samples. For producing these graphs, samples were exposed
to a constant external field for different filling factors, as experimentally relevant. Compare to
figures 4.28-4.30 for composites with inclusions arranged on a simple cubic lattice.
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Obviously, the resonance frequency is not constant anymore, but increases with inclu-
sions’ filling factor. In order to illuminate the background of this frequency shift, we
recapitulate: Because the slope of Heff (Hinc = const.) from the interaction-free model

dHeff (Hinc = const.)
df = −(925.5± 8.8) A

m %

is very close to the magnitude of demagnetization effects on a spherical inclusion

1
3Meff = 1

3(2934± 4.8) A
m % = (978± 1.6) A

m %

and due to their different sign, both phenomena compensate when keeping the exter-
nal magnetic field constant (see equation 4.20), whereby resonance frequency is main-
tained. Contrary, in the case with static dipolar interaction, effective magnetic field
H loc
eff (Hinc = const.), whose values are taken from figure 4.81, can be interpreted as the

sum

H loc
eff (Hinc = const., f) = Hinc + 1

3M
inc
s −

1
3Meff (f)︸ ︷︷ ︸

Heff (Hinc=const.,f)

+Hdip(f) (4.46)

with the additional term Hdip comparing to equation 4.16 arising from the interaction
of the magnetic moments which was calculated in the static simulation. For the pur-
pose of determining the resonance frequency of such a material with infinite extensions,
we cannot use the graphs in figure 4.82, because they are influenced by the finite sam-
ple geometries, as in the previous section. Nevertheless, we can gain insight into the
frequency shift behavior under a constant external field by using the magnetic fields
H loc
eff (Hinc = const.) and magnetizations Meff for different volume fractions, drawn

from the adaption of homogeneous and composite materials in the dynamic simula-
tion (data from plots in 4.81). The fundamental assumption for this calculation of the
resonance frequency of the system is that it is determined by the average static field
around the particles, i.e. ν = ν(H loc

eff ), which is only a first trial. The consideration of
the local field values around different particles will be treated in the next section.
As a first approach in this context, we calculate resonance frequencies which are de-
termined by the local effective field H loc

eff (Heff = const., f) according to

νdynres (f) = γ

2πH
loc
eff (Heff = const., f) (4.47)

= γ

2π
(
H loc
eff (Hinc = const., f) + 1

3Meff (f)
)
. (4.48)

The additional term 1
3Meff is again chosen in order to keep the external magnetic field

constant.
Alternatively, we can skip the dynamic simulation runs and use only the dipole contri-
butions calculated in the static simulations and the input parameter Hinc, instead. By
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this approach, we calculate resonance frequencies according to

νstatres (f) = γ

2π

(
Hinc + 1

3M
inc
s

)
︸ ︷︷ ︸

ν0

+ γ

2πHdip(f)︸ ︷︷ ︸
νshift

(4.49)

in which the first term ν0 remains constant at 10 GHz for the used parameter set, as
already discussed. The both resulting resonance behaviors are shown in figure 4.83 and
are very similar to each other.

Figure 4.83 – The progress of the resonance frequency in dependence of the filling factor when
dipolar interaction is included in a mean field approach into the model. Model parameters are
the same as before. Black squares show results from dynamic simulations (HFSS and MOR, see
equation 4.48), while measure points marked by red circles completely rely on results from static
simulations (see equation 4.49). A parabolic fitting of both data sets yields good agreements.

Fitting of the data with a parabolic function delivers for our set of parameters

νdynres (f) = (0.00588± 1.2 · 10−4)f 2 GHz
(%)2 − (0.00196± 9.4 · 10−4)GHz

% f + 10 GHz

(4.50)

for the dynamic results and

νstatres (f) = (0.00557± 0.8 · 10−4)f 2 GHz
(%)2 − (6.3 · 10−4 ± 8.8 · 10−4)GHz

% f + 10 GHz

(4.51)

when restricting to static simulations. Naturally, this relations can only be true in the
range of small volume fractions. Obviously, in the limit of f → 100 %, we approach
a homogeneous sample again, where resonance frequency cannot be shifted anymore.
Accordingly, a maximum of the shift must be reached at some value of f before reso-
nance frequency again approaches the initial value for f → 0 of 10 GHz. Unfortunately,
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this cannot be examined with the help of the model in use because it is restricted to
small volume fractions of inclusions, as already discussed. Nevertheless, the influence
of the inclusions’ saturation magnetization M inc

s can be analyzed for what we restrict
to static simulations. The corresponding results are shown in figure 4.84.

Figure 4.84 – Static simulations are performed for different saturation magnetizations of inclu-
sion material. According to expectations, higher saturation magnetizations enforce the resonance
shift by stronger dipolar interactions.

Parabolic fitting processes now deliver

M inc
s = 151 197.25 A

m : (4.52)

νstatres (f) = (0.00122± 4 · 10−6)f 2 GHz
(%)2 − (2.03 · 10−4 ± 3.4 · 10−5)GHz

% f + 10 GHz

(4.53)

M inc
s = 604 789 A

m : (4.54)

νstatres (f) = (0.03247± 6.9 · 10−4)f 2 GHz
(%)2 − (−0.0231± 0.006)GHz

% f + 10 GHz.

(4.55)

As in the section dealing with inclusions on a simple cubic lattice inside the matrix,
we also want to analyze the magnitudes of µ′′max and µ′stat. For that purpose, we firstly
have to check if the composites’ permeabilities are again in such a good agreement
with corresponding homogeneous materials, as before. If this is the case, then we
can again use equations 4.25 and 4.30 along with the determined values of Meff (f)
and H loc

eff (Heff = const., f) in order to calculate the desired values. An exemplaric
comparison between the real and imaginary parts of µ of the composite with a volume
fraction f = 10 % and the assigned homogeneous material is shown in figure 4.85,
yielding that a very high accordance is reached, again.
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Figure 4.85 – The real (left picture) and imaginary (right picture) part of µ of the composite
with f = 10 % and the homogeneous device of the same extensions with Meff = 29 443 A

m and
H loc
eff (Heff = const.) = 300 012 A

m are plotted. In contrast to the effective magnetic fields of
the homogeneous samples regarded in figure 4.82, the part of Hdip(f) is included.

Accordingly, we are able to calculate the desired magnitudes of µ′′max and µ′stat and
compare them to the previously found values when there was no dipolar interaction
between inclusions (see figures 4.86 and 4.87).

Figure 4.86 – Equation 4.25 and the determined values ofMeff (f) andH loc
eff (Heff = const., f)

are used in order to calculate µ′′max for every regarded volume fraction in case of a mean-field
dipolar interaction (red circles). Found values are compared to the case of inclusions on a simple
cubic lattice, in which no dipolar interaction takes place (black squares).
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Figure 4.87 – Equation 4.30 and the determined values ofMeff (f) andH loc
eff (Heff = const., f)

are used in order to calculate µ′stat for every regarded volume fraction in case of a mean-field dipolar
interaction (red circles). Found values are compared to the case of inclusions on a simple cubic
lattice, in which no dipolar interaction takes place (black squares).

As we can see, both magnitudes decrease compared to the case of an inclusion ar-
rangement on a simple cubic lattice while the differences increase with filling factor
f . The reason for this can be found in the dipolar fields which raise the values of
H loc
eff (Heff = const., f) while the values of Meff remain the same apart from this

interaction. For the purpose of calculating the effective permeability tensor of an in-
finitely extended medium out of the input parameters M inc

s , α,Hinc and f under a
constant effective field , we recapitulate: Effective magnetization is not influenced by
the switched-on dipolar interaction, meaning

ωm = γMeff (f) = γM inc
s · f [%]

100 (4.56)

still remains true, as in the case without this interaction (see section 4.2 and equation
4.34). Contrary, we observed that the local effective field at the places of the inclusions
is enforced by the dipolar interaction, leading to an analog form of equation 4.49 for
the circular resonance frequency

ω0 = γ
(
Hinc + 1

3M
inc
s +Hdip

)
. (4.57)

Now, the arising question is, if we are able to calculate the term of Hdip as a function
of the filling factor f and the inclusions’ magnetization M inc

s . In order to analyze this,
we plot Hdip in dependence of the inclusion volume fraction for the three different
regarded values of M inc

s in figure 4.88.
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Figure 4.88 – We regard three different values of M inc
s and calculate the arising dipolar fields

Hdip with the help of our static simulation. Compare to figure 4.84.

Then, we apply a polynomial fit of second order with the help of OriginLab in the form
of

Hdip(f) = B2f
2 +B1f, (4.58)

in which we respect that for f = 0, no dipolar fields arise, and determine the values
of B2 and B1. The corresponding fitting curves are also shown in figure 4.88 and
approximate the data set very well. We get

M inc
s = 151 197.25 A

m : (4.59)

Hdip(f) = (34.6± 0.1)f 2 A
m(%)2 + (5.8± 0.9) A

m%f (4.60)

M inc
s = 302 394.5 A

m : (4.61)

Hdip(f) = (166± 3)f 2 A
m(%)2 − (56± 27) A

m%f (4.62)

M inc
s = 604 789 A

m : (4.63)

Hdip(f) = (921± 20)f 2 A
m(%)2 − (657± 159) A

m%f. (4.64)

Afterwards, we analyze the obtained values in dependence of the inclusions’ magneti-
zation M inc

s (see figure 4.89 and 4.90).
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Figure 4.89 – The fitting parameter B2 is plotted and parabolic fitted in dependence of M inc
s .

Figure 4.90 – The fitting parameter B1 is plotted and parabolic fitted in dependence of M inc
s .

Again, we use a parabolic fit and obtain

B2(M inc
s ) = (2.5 · 10−9 ± 3 · 10−10)

(
M inc

s

)2
− (1.5 · 10−4 ± 5 · 10−5)M inc

s (4.65)

B1(M inc
s ) = (−1.9 · 10−9 ± 5 · 10−10)

(
M inc

s

)2
− (3.4 · 10−4 ± 8 · 10−5)M inc

s (4.66)

In summary, we are able to calculate an approximation of the effective permeability
tensor for this mean field approach for the dipolar interaction out of the given parameter
set M inc

s , Hinc and f , when we insert equation 4.56 and 4.57 in combination with 4.58
and the values in 4.65 and 4.66 into Polder’s formula 1.169 while for damping parameter
α, the inclusion material value is used, as before.
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4.3.2.3 Inhomogeneous Fields

After this mean field approximation in which the resonance frequency νres(H loc
eff ) was

calculated as a function of the average local field, we want to further increase com-
plexity and respect the local field distributions in connection with the generated mi-
crostructures gained from the procedure described in section 4.3.1. De facto, these
field inhomogeneities imply different local effective magnetic fields for every inclusion
and, consequently, different permeability tensors, according to Polder’s model. Conse-
quently, the internal magnetic biases of the inclusions are chosen asHdip

inc,j = Hinc+Hdip,j

with different values of Hdip,j for every sphere and j = 1...Ninc instead of setting
H
dip

inc = Hinc + Hdip for all inclusions, which was done in the previous section. Due
to this diversity, an inclusion number as high as possible in order to reduce statistical
errors is desirable, wherefore numerical effort, meaning discretization passes in HFSS
and solution order in MOR, is analyzed again in order to ensure convergence of the
results for these systems with an inclusion number of Ninc = 64 (see figures 4.91 and
4.92). Within this analysis, it appears that the second discretization pass in HFSS and
an order of four in MOR are sufficient while all other parameters remain the same as
before.

Figure 4.91 – The influences of the number of passes in HFSS and the order of solution in
MOR are analyzed for a composite with an inhomogeneous field distribution, a volume fraction
of 1 % and an inclusion number of Ninc = 64. Obviously, results for the first mesh from HFSS
and a solution order of three in MOR strongly deviate from results calculated with more effort.
Unfortunately, it is not possible to perform simulation runs with the third mesh discretization pass
and a solution order of four, due to limited memory capacity.
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Figure 4.92 – The same analysis as in figure 4.91 is performed for a volume fraction of 5 %.
Here, convergence appears with less effort.

As already indicated, higher inclusion numbers may be necessary compared to the
previously analyzed mean field approaches. In order to gain insight into this, we
compare results between systems with Ninc = 27 (third mesh discretization pass, fourth
solution order) and Ninc = 64 inclusions and different volume fractions (see figures
4.93-4.95).

Figure 4.93 – A comparison between the results for inclusion numbers of Ninc = 27 and
Ninc = 64 for a volume fraction of f = 1 %. Although the composites’ microstructures differ
from each other, results are in good agreement and underline convergence with respect to inclusion
number.
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Figure 4.94 – For a filling factor of f = 5 %, small differences in the resonance curves for
Ninc = 27 and Ninc = 64 occur.

Figure 4.95 – Further increasing inclusions’ volume fraction to f = 10 %, strong deviations
can be observed, indicating that artifacts due to the limited system size appear.

Obviously, the deviation between Ninc = 27 and Ninc = 64 is quite small for volume
fractions up to f = 5 %, indicating convergence with regard to inclusion numbers.
Further increasing the filling factor, strong differences become obvious and highlight
artifacts due to the low number of inclusions. As already mentioned, limited compu-
tation resources do not allow simulations with higher numbers of inclusions, wherefore
we restrict to the range of f = 1 % to f = 5 % and use Ninc = 64 in the following. For
that reason, accuracy analysis with regard to mesh discretization and order of ansatz
function is also performed with f = 1 % and f = 5 % (see figures 4.91 and 4.92).
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At first, we use the justified numerical parameters, the found microstructures and local
field distributions in order to determine the effective permeability for different volume
fractions in analog simulation sequences as in the previous sections. Then, we com-
pare the new outcomes, for which every inclusion is supposed to different local effective
fields, to the former results, in which a homogeneous effective field for all inclusions was
assumed as a mean field approach. At this point, we regard the case of Hinc = const.
(see figures 4.96-4.98).

Figure 4.96 – The results for the mean field approach, in which equal dipolar interactions are
assumed for every inclusion, Hdip

inc = Hinc + Hdip with Hinc = const., are compared to the now
performed simulation runs with regarding of the local field inhomogeneities, i.e. different values
of Hdip for every inclusion instead of its mean value. Picture shows resonance curves for f = 1 %.

Figure 4.97 – The same comparison as in figure 4.96 is regarded for a filling factor of f = 3 %.
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Figure 4.98 – In this picture, a volume fraction of f = 5 % is regarded.

Figure 4.99 – The imaginary part of µ according to Polder’s model for infinitely extended
material (nx = ny = nz = 0). Damping coefficient α = 0.05 and saturation magnetization
Ms = 30 239.45 A

m are the same for every curve while static magnetic field H is varied in or-
der to generate resonances in the range of 8 to 11 GHz, according to νres = γ

2πH.

Within this, three different tendencies can be observed: Firstly, the strength of the
resonance peaks decreases while, secondly, its width grows with rising filling factor.
The reason for these effects can be found in the local distribution of the effective
magnetic fields in the sample: While in the mean field approach, every inclusion was
exposed to the same effective field, determining and concentrating resonances at one
frequency for all particles, inhomogeneous local field distributions disperse resonances
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over a frequency range which grows with the filling factor. The third outcome is that
resonances tend to lower frequencies when including local field distributions. In order to
understand this phenomenon, one has to recall the characteristics of the implemented
Polder model: When maintaining input parameters α, ni with i = x, y, z and Ms while
decreasing resonance frequency by reducing H, the strength of the resonance peak is
enforced (see figure 4.99). When superposing resonance curves of individual inclusions
with different surrounding static magnetic fields, as it is more or less the case in the
regarded composite samples, then peaks at lower frequencies are heavier weighted than
at higher frequencies, wherefore resonance of the whole sample tends to lower values.
Simultaneously, asymmetry of the resonance peaks increase due to the same reason.
In order to quantify these outcomes, we again try to assign material parameters for
a homogeneous sample with the same dimensions, which reproduces the composites’
behavior. Contrary to the previous considerations, α and H loc

eff (Hinc = const.) are
varyed whileMeff is taken from former results. This strategy is founded by the already
remarked widening of the resonance peak, which can be tuned via damping coefficient α,
and the magnetization’s independence on dipolar interactions. Within this procedure,
it becomes clear that such an good agreement between homogeneous and heterogeneous
samples as before is not possible in this case. Consequently, it was tried to reach a
maximum of congruence at resonance peaks while disagreements in remoter frequency
ranges must be accepted. The corresponding curves are shown in figure 4.100-4.102.

Figure 4.100 – As before, we try to reproduce the behavior of the composites with homogeneous
samples with the same geometry in order to eliminate boundary effects and assign effective material
parameters. Picture shows results for a volume fraction of f = 1 % for which adaption can
be performed with good agreement. Used input parameters for the homogeneous sample are:
H loc
eff (Hinc = const.) = 283 099 A

m , Meff = 2 865 A
m and αeff = 0.053.
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Figure 4.101 – Regarding a filling factor of f = 3 %, differences between the homogeneous
and the heterogeneous sample increase compared to lower volume fractions. Input parameters
for the homogeneous sample are: H loc

eff (Hinc = const.) = 281 111 A
m , Meff = 8 753 A

m and
αeff = 0.075.

Figure 4.102 – In the case of f = 5 %, we notice further growing variations between the
resonance curves of the composite and the homogeneous device. Used input parameters for
the homogeneous sample are: H loc

eff (Hinc = const.) = 279 123 A
m , Meff = 14 722 A

m and
αeff = 0.098.

From these adaptions, we once again draw the local effective magnetic fields
H loc
eff (Hinc = const.) and the effective damping parameters αeff which are plotted

in figures 4.103 and 4.104.
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Figure 4.103 – The assigned effective magnetic fields in the samples of the three regarded
cases (inclusions on a simple cubic lattice, gaussianly displaced inclusions surrounded by a mean
field and with inhomogeneous local field distribution), when Hinc = const. is valid, are plotted in
dependence on the filling factor.

Figure 4.104 – While damping coefficient previously remained constant at α = 0.05, it is varyed
in this case due to the broadening of the resonance peak by the field distribution. The assignment
for different volume fractions is plotted and linear fitted here.

Before we want to discuss these outcomes, we have to take into account that a con-
version of the results is necessary in order to keep the effective field in the composite
(corresponds to the externally applied field) constant instead of the internal magnetic
biases in the inclusions (changing from Hinc = const. to Heff = const.), as in former
considerations. As already shown in figure 4.81, dipolar interaction does not influence
the present demagnetization fields in the composites. Accordingly, equation 4.20 re-
mains valid for the purpose of receiving a constant external field. At this point, it
should be again emphasized that this conversion is indeed also a mean field approach
because demagnetization effects at the surfaces of the inclusions are assumed as the
same at every place in the matrix. But, as already illustrated in figure 4.35, we dis-
covered the almost perfect equivalence between this mean field approach and the local
resolution of the fields in our simulations. Accordingly, this proceeding does not con-
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tain significant erros. Executing this correction, we obtain the resonance peaks shown
in figure 4.105.

Figure 4.105 – The homogeneous samples with the found effective magnetization Meff and
damping coefficient αeff , but without dipolar interactions with regard to the magnetic field (ac-
cordingly, Heff is given by the data set labelled with black squares in figure 4.103, inserted into
equation 4.20) are compared to the corresponding composites with spatial resoluted inhomoge-
neous dipolar fields for the case of Heff = const.. A slight tendency of the resonance peak to
shift to lower values can be observed which is founded by the spatial resoluted dipolar interactions
only occuring in the composites. Top picture shows the comparison for a filling factor of 1 %,
the middle one for 3 % and the one at the bottom for 5 %.
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Within these plots, it can be observed that resonance frequency shifts qualitatively to-
wards lower values. But, as in section 4.3.2.2 (see figure 4.82), the resonance curves in
pictures 4.105 are influenced by the finite sample size and, therefore, can not be used
in order to exactly determine resonance frequency of the composite material with-
out boundary effects. For this purpose, we again use equation 4.48 with the values
H

(loc)
eff (Hinc = const.) from figure 4.103 and compare to the previously obtained results

for the resonance behavior (see figure 4.106).

Figure 4.106 – The resonance frequencies with Heff = const. are compared for the three
regarded cases of a composite with a simple cubic inclusion lattice, i.e. without dipolar interaction,
and a gaussianly disturbed lattice with a mean field approach and a local field distribution of dipolar
interactions.

First of all, with regard to figure 4.106, we want to analyze how a dependency of the
resonance frequencies on the used microstructures and model assumptions is possible,
when the case of Heff = const. is considered. For that purpose, we split off the the
dipolar contribution from the total effective field

Heff = Hwd
eff + 〈Hdip〉 (4.67)

where Hwd
eff denotes the effective field without static dipolar fields. Please note that

〈Hdip〉 denotes the spatial mean value of the dipolar fields in the whole sample while
Hdip marks the average dipole fields surrounding the inclusions. Due to self-consistency
(compare to equation 2.50) in the case of Heff = const.,

〈Hdip〉 = 0 (4.68)

is valid. Splitting

〈Hdip〉 = f〈Hdip〉p + (1− f)〈Hdip〉m (4.69)
= f〈Hdip〉p + (1− f)

(
Hdip + 〈Hdip〉m∗

)
= 0, (4.70)

where indices p and m denote particle and matrix phase and m∗ the reduced ma-
trix phase without the regions surrounding the inclusions, it becomes obvious that
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self-consistency can be obeyed while fluctuations between different regions in the com-
posite are permitted, as long as they cancel each other out. Regarding that resonance
frequency of one inclusion j is determined by the effective local field surrounding it

H loc
eff,j =


Hwd
eff = Heff = const. (simple cubic, without dipolar interaction)

Heff +Hdip (gaussian, mean field dipolar interaction)
Heff +Hdip,j (gaussian, local field dipolar interaction),

(4.71)

the differences in figure 4.106 can be explained by different values of the magnetic field
at the surfaces of the inclusions depending on the regarded microstructure and model.
Very interestingly, we observe different, superposing effects which can be isolated in
the regarded models: When placing the inclusions on a simple cubic lattice in the
host matrix, and thereby eliminating the influence of dipolar interactions, we found
a constant resonance frequency for every volume fraction under a constant external
field. Accordingly, surrounding demagnetization fields do not influence the resonance
frequency of the spherical inclusions.
Using representative composites with static properties of randomly generated mi-
crostructures in the large system limit and including the average dipolar field at the
places of the inclusions, we found an increasing resonance frequency in the range of
f = 1 % to f = 10 %. So, we identified the influence of the dipolar interaction as
resonance frequency raising.
Contrary, when including local distributions of the dipolar fields, we found the reso-
nance’s tendency to shift to lower values in the range of f = 1 % to f = 5 % which is
a consequence of the blurring of the resonance peak and the properties of the Polder
model. Because this model is the one which respects most of the physical circumstances
in this chapter, we conclude that the resonance frequency descends for the composite
systems of interest with growing filling factor of the ferromagnetic inclusions when
boundary effects are eliminated and the externally applied field remains constant.
Also in this case, we want to analyze the magnitudes of µ′stat and µ′′max. For that
purpose, we firstly examine if an assignment of these both values between the com-
posite and the homogeneous material with the determined effective parameter Meff ,
H loc
eff (Heff = const.) and αeff is possible by comparing the curves of µ′ and µ′′. The

corresponding plots are shown in figure 4.107
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Figure 4.107 – The real (left picture) and imaginary (right picture) part of µ of the composite
with f = 5 % and the homogeneous device of the same extensions with Meff = 14 722 A

m ,
H loc
eff (Heff = const.) = 279 053 A

m and αeff = 0.098 are plotted. In contrast to the effective
magnetic field of the homogeneous samples regarded in figure 4.105, H loc

eff (Heff = const.) is
chosen instead of Heff , leading to matching resonances.

As already remarked in connection with figure 4.102, a perfect match between the
permeabilities of the composite and the homogeneous medium can not be achieved
anymore. Nevertheless, we notice that the values of µ′stat and µ′′max agree despite of this.
Accordingly, both values can again calculated by using equations 4.25 and 4.30 and the
determined effective parametersMeff and H loc

eff (Heff = const.). Corresponding results
are shown in figures 4.108 and 4.109 and compared to the outcomes of the previously
considered models.

Figure 4.108 – The values of |µ′′max| are plotted for the three different regarded models.
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Figure 4.109 – The values of µ′stat are plotted for the three different regarded models.

Comparing to the case of no dipolar interaction between the inclusions or a mean
field approach with respect to the dipolar fields, we find lower values for |µ′′max| for
an infinitely extended material in the present case. This tendency was already shown
in figures 4.96-4.98 and is a consequence of the blurring of the individual resonance
frequencies of the inclusions. Contrary, no significant deviations between the different
models can be determined with regard to µ′stat. The reason for this can be found by
regarding equation 4.30: The values of H(loc)

eff (Heff = const.) fluctuate only in the range
of a few percent (see figure 4.103) while Meff remains constant in all cases. Summa-
rizing, we found the values of µ′stat to be nearly independent from dipolar interactions.
At this point, we again want to derive an analytic formula for the effective suscepti-
bility tensor for the model of inhomogeneous field distributions inside the matrix. For
that purpose, we have to analyze the three parameters Meff , H loc

eff (Heff = const.) and
αeff . Regarding the former one, we notice that the relation

ωm = γMeff (f) = γM inc
s · f [%]

100 (4.72)

is still valid, independent of the kind of dipolar interaction between the inclusions.
Concerning the local effective magnetic field H loc

eff (Heff = const.), we plot the deter-
mined values for different volume fractions and again perform a parabolic fit (see figure
4.110). This procedure yields the formula

H loc
eff (Heff = const., f) = (−244± 97)f 2 A

m(%)2 + (251± 412) A
m%f + 283950.5 A

m .

(4.73)

For damping parameters αeff , linear fitting with the condition αeff = 0.05 for f → 0
was already performed in picture 4.104, leading to

αeff (f) = (0.0092± 0.0005)
% f + 0.05. (4.74)
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Figure 4.110 – The local effective field in case of inhomogeneous field distributions inside the
composite is parabolic fitted. Values shown here, H loc

eff (Heff = const.), differ from the ones in
figure 4.103, H loc

eff (Hinc = const.), by the demagnetization correction +1
3Meff (f).

All together, we can insert these relations into Polder’s model and calculate a homo-
geneous material approximation of the effective susceptibility tensor in the range of
f = 1 % to f = 5 % which is done figures 4.111-4.113.

Figure 4.111 – The real part of the diagonal entry of the permeability tensor for a homogeneous
medium with the assigned effective parameters according to relations 4.72-4.74 is calculated for
different volume fractions.
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Figure 4.112 – In an analog manner to figure 4.111, the imaginary parts of the diagonal and
non-diagonal entries of the permeability tensor are shown.

Figure 4.113 – In an analog manner to figure 4.111, the real part of the non-diagonal entry of
the permeability tensor is shown.

In conclusion, we have found a set of analytic formulas which deliver the effective
permeability tensor of homogeneous materials, which approximate the ferromagnetic
behavior of the regarded composites in the regarded volume fraction range. Admittedly,
the found relations only work for the parameter set of M inc

s , Hinc and α at hand. It
would be desirable to derive equations in which the dependencies on these magnitudes
is explicitly highlighted. For achieving this, it is necessary to perform many further
high-frequency simulations in the whole phase space of the regarded parameters, which
can not be done in this work due to the large simulation times.
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Up to there, we have analyzed the following models in this chapter:
1. Inclusions on a simple cubic lattice without static dipolar interaction
2. Inclusions with gaussian displacements without static dipolar interaction
3. Inclusions with gaussian displacements with static dipolar interaction in a mean

field and a local field approach
Within this, the second model was only regarded in order to isolate the influence of
the underlying microstructure. For completeness’ sake, we now also regard composites
in which inclusions are arranged on a simple cubic lattice, but the corresponding local
effective magnetic fields are the same as for the gaussianly disturbed lattices. Compar-
ing the susceptibilities of these composites with the results for the previously examined
systems, we once again isolate the influence of different microstructures. Exemplarily,
the outcomes for the composite with a filling factor of f = 5 % and the previously
used parameters are shown in figure 4.114. For this result, we regarded the case of
H loc
eff (Heff = const.).

Figure 4.114 – We compare the permeability of the composite with inclusions on a simple cubic
lattice and on the gaussianly disturbed lattice with the same inhomogeneous field distributions in
both cases for a filling factor of f = 5 %.

Obviously, no significant differences can be observed. This result is in accordance with
the previous finding (see section 4.3.2.1) that the regarded small changes in the mi-
crostructure do not meaningfully influence the composite’s magnetic characteristics in
the high-frequency simulations. Consequently, it can be followed that the exportation
of the microstructure into the high-frequency simulation was not important and only
the static magnetic fields surrounding the inclusions strongly influence the results.
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In order to critically question the results gained in this section, one could ask if the
assignment of composites to effective parameters of a homogeneous sample can also
be done in another way: So far, we adjusted resonance frequencies by variation of the
effective fields, the strengths of the resonance peaks via the saturation magnetizations
and their width by the damping coefficients. Although this procedure is motivated
by logical arguments, we also want to try another strategy: We keep effective mag-
netic field for every sample at a constant value of H loc

eff = 283952 A
m (corresponding

to a resonance frequency of γ
2πHeff = 10 GHz for an infinite sample) and try to fix

resonance curves by varying only saturation magnetization and damping coefficient.
Within this, resonance frequency can be shifted towards higher values by increasing
Meff , due to demagnetization effects of the samples, while α can be used in order to
tune the strength of the resonance peak. Indeed, this technique is successful for the
composite with a volume fraction of f = 1 % and inhomogeneous field distribution be-
cause of the marginal frequency shift. Contrary, already for a composite with a filling
factor of f = 2 %, linked with a more significant resonance shift towards lower values,
an assignment without varying local effective magnetic field is not possible anymore
(see figures 4.115 and 4.116).

Figure 4.115 – The resonance peak of the composite with a filling factor of f = 1 % and
inhomogeneous field distribution is well reproduced by a homogeneous sample with parameters
H loc
eff corresponding to an unshifted resonance at ν = 10 GHz (when eliminating boundary effects),

Meff = 2 944 A
m and αeff = 0.054.
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Figure 4.116 – Even for Meff = 80 A
m (approximately corresponding to 1 Gs), the resonance

of the homogeneous sample appears at a slightly higher frequency as for the composite with a
filling factor of f = 2 %. Effective local field is chosen again according to a frequency at 10 GHz
for an infinitely extended sample and damping parameter as αeff = 0.05. Both curves where
normalized to the maximum value of µ′′max = |µ′′(νres)| because of different orders of magnitudes
of strength of the peak (homogeneous sample with Meff = 80 A

m has a very weak peak) in order
to highlight the different values of the resonance frequencies.

For the purpose of highlighting that increasing saturation magnetization only allows
shifts to higher frequencies while varying αeff does not influence resonance frequency
at all, we analyzed the resulting resonance peaks for a various set of parameters. Cor-
responding results are shown in figures 4.117-4.120.

Figure 4.117 – A homogeneous sample with the geometric extensions as the composite with
f = 2 % is analyzed with parameters Heff corresponding to a constant resonance frequency of
an infinitely extended sample at ν0 = 10 GHz and αeff = 0.05 while Meff is varied. Picture
shows absolute values of µ′′ outlining the influence on the strength of the peak.
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Figure 4.118 – Curves from figure 4.117 are normalized to the maximum value of for each
magnetization µ′′max = |µ′′(νres)|. Obviously, resonance can only be shifted to higher frequencies,
but a given minimum (which should be at 10 GHz, but is located at 9.95 GHz due to numerical
errors) cannot be undershot by varying Meff due to its restriction to non-negative values.

Figure 4.119 – The same geometry with the same effective field as for results in figure 4.117
is under test, but saturation magnetization remains constant at Meff = 8000 A

m while damping
coefficient α is varied. Picture shows absolute values of µ′′ and the damping parameter’s ability
of influencing the strength and the width of the resonance peak.
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Figure 4.120 – Curves from 4.119 are normalized to the maximum value of µ′′, as in figure
4.118. As it can be seen, variation of damping coefficient does not influence resonance frequency.

By this analysis, it was shown that an assignment between composite with dipolar
interaction and homogeneous sample is not possible when keeping effective magnetic
field at a constant value for different filling factors. Accordingly, the thesis of the
resonance peaks shifting towards lower values when respecting inhomogeneous field
distributions in the analyzed parameter range is supported.

4.3.2.4 Comparison with Arbitrary Random Insertion

In the previous sections, we used microstructures of composites with Ninc = 27 and
Ninc = 64 which were generated with much effort compared to an arbitrary stochas-
tic insertion of inclusions into the host matrix. In order to subsequently justify these
method with regard to high-frequency simulations, we want to analyze the resonance
curves of composites with such a completely random internal structure. For that pur-
pose, we regard two devices with Ninc = 64 and a filling factor of f = 1 % and f = 5 %,
shown in figure 4.121.

Figure 4.121 – Two samples are generated by a completely stochastical insertion of inclusions
without further restrictions but an exclusion of overlapping spheres. Left picture shows the
composite with a volume fraction of f = 1 %, right picture f = 5 %.
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Again, we firstly neglect the influence of dipolar interactions in order to analyze the
effect of the microstructure (compare to section 4.3.2.1). Corresponding resonance
curves are shown and compared to results with gaussian displacements in figures 4.122
and 4.123.

Figure 4.122 – Picture shows µ′′ for a sample with a filling factor of f = 1 % and inclusions on
a simple cubic lattice with gaussian displacements and purely randomly inserted inclusions. In this
case, dipolar interactions between the spheres are neglected. Accordingly, all spheres hold the same
internal magnetic bias of Hinc = 183 154 A

m while magnetization amounts M inc
s = 302 394.5 A

m
and damping coefficient α = 0.05.

Figure 4.123 – The same comparison as in figure 4.122 is done for a volume fraction of f = 5 %
with the same input parameters.

Comparing with pictures 4.78 and 4.79, we notice more distincted deviations of the
resonance curves with regard to the microstructure. Consequently, we have to search
for new effective parameters of a corresponding homogeneous medium. The adaption
of the resonance curves of the homogeneous by varying Meff and Heff (Hinc = const.)
to the respond of the heterogeneous composite is shown in figures 4.124 and 4.125.
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Figure 4.124 – Considering the sample with f = 1 %, we determined Meff = 2824 A
m and

Heff (Hinc = const.) = 284 660 A
m as adequate effective parameters of the homogeneous sample.

Comparing with the previously found values for the composite with gaussian displacements of
inclusions (Meff = 2944 A

m and Heff (Hinc = const.) = 283 099 A
m), we notice slight differences.

Figure 4.125 – The same adaption as in figure 4.124 is done for a composite with a filling factor
of f = 5 %. In this case, we find Meff = 13 369 A

m and Heff (Hinc = const.) = 279 691 A
m for

the effective medium. For the composite with gaussian displacements, we previously determined
Meff = 14 722 A

m and also Heff (Hinc = const.) = 279 691 A
m .

Using the found effective magnetization Meff , we can again perform a demagnetiza-
tion conversion to switch from Hinc = const. to Heff = const. (see equation 4.20) and
include the dipolar interactions between different spheres by respecting the inhomoge-
neous field distribution. Corresponding resonance curves are shown and compared with
the results which were generated with the adaption method of the previous chapters
in figures 4.126 and 4.127.
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Figure 4.126 – The both resonance curves of the composite with a volume fraction of f = 1 %
and included dipolar interaction with spatial resolution. Red line shows results for the composite
with purely random insertion of inclusions, black line displays the results for the method with
H−field adaption with the help of gaussian displacements of inclusions.

Figure 4.127 – The same comparison as in figure 4.126 is done for a filling factor of f = 5 %.

Comparing these results with the ones already presented in section 4.3.2.3, we notice
that the H−field adaption with the help of gaussian displacements is superior to the
simply stochastic insertion method with regard to the supressing of artifacts due to the
limited inclusion numbers: The resonance curves of composites with the stochastically
inserted inclusions deviate much more from the typical shape of resonance curves in
the Polder model and show a more blurred resonance peak. Accordingly, the invested
effort in adapting the H−field distribution is an important tool in order to reduce
the influences of the small systems’ size and to enforce the trustworthiness of the
corresponding results.
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4.4 Comparison with Analytic Works

At this point, we want to compare the outworked numerical results to the analytically
derived ones in previous works.
With regard to the work of Bregar [36] (see section 2.1), in which no frequency shift was
predicted for different volume fractions of inclusions under a constant externally applied
magnetic field when dipolar interactions are neglected, we obtain exact the same results:
Arranging the inclusions on a simple cubic lattice and thereby eliminating dipolar
interactions, resonance frequency remains constant while effective magnetization of
the composites is given by Meff = M inc

s · f [%]
100 % .

Including dipolar interactions as in the second relevant work of Bregar [37] (see section
2.2), we distinguish two approaches, i.e. the averaging of the dipolar fields over all
inclusions and applying the mean field on every included sphere on the one hand and
the respecting of the spatial inhomogeneities of the dipolar fields on the other hand.
In the later case, which is the most realistic model in this work, we also detected a
decreasing resonance frequency for low volume fractions up to f = 5 %, as predicted in
[37]. Although these results qualitatively agree with analytic predictions, quantitative
deviations are obtained (see comparison of all models in figure 4.128). For clarity’s
sake, the different models are schematically sketched in figure 4.129

Figure 4.128 – Figure 4.106 is expanded by the analytic prediction of Bregar [37] and numerical
results in which no relaxation process of magnetic moments is taken into account.
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Figure 4.129 – The corresponding models to three of the data sets shown in figure 4.128.

Within our analyses, we noticed the raising of the averaged local field at the places
of the inclusions to be a consequence of the relaxation process the of corresponding
magnetic moments, which was numerically determined in static simulations. Due to
the limits of analytic methods with regard to this manybody problem, the influence
of this process is not regarded in the analytical model of Bregar [37]. Of course, this
phenomenon also influences the results in which the inhomogeneity of the field is taken
into account (blue triangles in figure 4.128). In order to examine the influence of
this effect, we exclude the possibility of relaxation in our static simulation, i.e. local
fields at the places of the inclusions are only once calculated, but no realignment of
the moments is performed, and determine the effective parameters of such systems,
when we respect these local fields (included as pink triangles in figure 4.128). As
expected, results shift closer to the analytic prediction, but still not perfectly match.
The main reason for this discrepancy can be found in the different topologies which
are analyzed: While in [37], a structure leading to Bruggeman’s mixing formula for the
static case (see equation 2.54) is used for analytic calculations, which corresponds to
an aggregate structure consisting out of spheres for both matrix and particle phase.
As a consequence, polydispersity of these spheres is needed in order to reach a total
filling factor of f = 100 %. As shown in section 4.3.1.3, polydispersity influences the
distribution of the static dipolar fields.
Contrary, a cermet topology is numerically simulated (compare to figure 1.17) in this
work. Accordingly, the presented results suggest that analytic predictions from [37]
may be accurate for finely powdered samples, but overestimate the magnitude of the
frequency shift for two-phase-composites in which monodispersal spherical inclusions
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are homogeneously distributed in a continuous matrix.
Nevertheless, we want to compare our results for the adaption of the resonance peaks
in our most complex model (corresponding to blue triangles in figure 4.128) to the
prediction of Bregar [37] in figures 4.130-4.132.

Figure 4.130 – The resonance curve according to the analytic prediction from [37] and the re-
sults for the here presented model with inhomogeneously local dipolar interactions with relaxation.
Filling factor amounts f = 1 %.

Figure 4.131 – Same comparison as in figure 4.130 for a volume fraction of f = 3 %.
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Figure 4.132 – Same comparison as in figure 4.130 for a volume fraction of f = 5 %.

In these graphs, we again observe qualitative accordance: For rising filling factors in
this range, peaks shift towards lower resonance frequencies while broadening. Within
this, strength of the peaks in the model of Bregar are more pronounced, which is
separately analyzed in figure 4.133.

Figure 4.133 – The maximum values of the resonance curves of the five regarded models as in
figure 4.128 are plotted.
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Figure 4.134 – Figure 4.108 is expanded by Bregar’ results and the regarded model with
inhomogenenous fields without relaxation. Moreover, results according to equation 1.196 are
drawn as line. The used parameters lead to a static particle permeability of µstatinc = 2.065.

Obviously, the relaxation process does not influence the values of µ′′max as we learn from
the matching of the results from the model without dipolar interaction (black squares
in figure 4.133) and the mean field dipolar interaction (red circles) as well as from
the regarding of the local fields with and without relaxation (blue and pink triangles).
Only the widening of the peaks, caused by the inhomogeneous field distribution in the
samples, reduces these values. As already remarked, this phenomenon is more distinct
in Bregar’s model.
Additionally, we also want to analyze the outcomings for the static permeability µ′stat.
As can be seen in figure 4.134, all results from this work and Bregar’s analytic predic-
tion, corresponding to Bruggeman’s mixing formula, deliver almost the same results.
Furthermore, values resulting from equation 1.196 are included, which are in accor-
dance with the outcomings in the work of [36] (see equation 2.36), in which

χeff = fχinc (4.75)
⇔ µeff = 1 + fχinc (4.76)

= (1− f) + f(1 + χinc) (4.77)
= (1− f)µm + fµinc (4.78)

is predicted. According to this, differences in the various models do not influence the
static behavior of the composites due to the very small deviations from the parallel
alignment of the magnetic moments. Consequently, discrepancies are restricted to the
vicinity of the ferromagnetic resonance.
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4.5 Chapter Summary

In this chapter, we investigated the magnetic response of infinitely extended composite
materials with ferromagnetic inclusions in a non-magnetic matrix. For that purpose, we
firstly dealt with preparatory work in which we examined the convergence of the ferro-
magnetic resonance curves with respect to various simulation and analysis parameters.
In this context, we located inclusions on a simple cubic lattice in order to eliminate
the dependence of the results on the present microstructure when comparing different
samples. As a byproduct, this arrangement simplified the problem on hand because
the neglection of dipolar interactions between the included ferromagnetic spheres is
justified.
In order to analyze the behavior of samples with different volume fractions of inclu-
sions, inclusion number and radius was kept constant (Ninc = 27 or Ninc = 64 with
rinc = 0.0445 cm or rinc = 0.0334 cm, respectively) in order to avoid simulations’ mem-
ory requirement to exceed the available resources while the geometric extensions of the
host matrix were adjusted. In the following, the comparison between heterogeneous
composite materials and homogeneous effective samples was used in order to eliminate
the influences of boundary effects of the sample on the results and draw conclusions on
geometry-independent material properties. During these examinations, a surprisingly
high accordance of the resonance curves of the effective and the composite material
has been detected.
Within the analysis of the results, a fundamental issue has to be obeyed: In experi-
mental works, the static magnetic field, which is externally imposed on the samples,
is kept constant in order to examine a possible resonance shift of the devices under
test for different filling factors of ferromagnetic material. Contrary, in our simulation
sequences, we have to define an internal magnetic bias of the ferromagnetic inclusions.
Due to demagnetization effects at the boundaries between magnetic and non-magnetic
domains in the composite, internal fields in the inclusions and the externally applied
fields do not correspond to each other. Fortunately, this disagreement can be overcome
by a demagnetization correction and the knowledge of the effective magnetization of
the composite material which was already gained in previous simulation runs. Actu-
ally, the used proceeding for the demagnetization correction is a mean field approach,
which, however, has been shown to be very accurate. In the here examined case of in-
finitely extended samples, no further demagnetization effects at the composite’s outer
boundaries have to be taken into account, leading to an equivalence of the effective
field in the sample and the externally applied field. According to these approaches,
it was shown that resonance frequency of samples with spheric inclusions on a simple
cubic lattice, for which dipolar interactions can be neglected, is independent on the
volume fraction of the ferromagnetic material and remains constant under a constant
external static field.
In the following, we were interested in randomly generated microstructures. For that
purpose, we firstly analyzed the influence of the assumptions in the static field calcu-
lations, which were necessary for a meaningful inclusion of dipolar interactions, and
their convergence behavior with respect to inclusion numbers. Within this, it became
obvious that large numbers of Ninc ≥ 5 000 are necessary in order to generate adequate
field distributions inside the samples. Consequently, we had to develop a strategy in
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order to reproduce this behavior with much lower inclusion numbers to which we are
restricted in the high-frequency simulations. The corresponding solution was found in
the following procedure: Firstly, we again started with inclusions on a simple cubic
lattice, but added randomly generated and gaussianly distributed vectors to their po-
sitions. Subsequently, the corresponding distribution of the local magnetic fields at the
inclusions’ centers is calculated and compared to the large system limit. Then, an error
function is defined which delivers a quantitative tool in order to compare the deviation
between the two distributions. Now, small systems are generated and the correspond-
ing error function is calculated until it undershots a given treshold. Afterwards, the
found microstructures and the calculated field distributions are used for analog simu-
lation sequences as in the first section with inclusions on a simple cubic lattice. Here,
three different models are examined: Firstly, we investigated the pure influence of the
new microstructure by neglecting the additional appearing dipolar fields. By this, we
showed that the regarded small displacements from the simple cubic lattice do not
influence the results. Consequently, ferromagnetic resonance still remains constant in
this case when externally applied field also remains constant. Secondly, we performed a
mean field approach, meaning that the local distribution of the calculated dipolar fields
was neglected, but the average field is considered to be present at the place of every
inclusion. Repeating the comparison with homogeneous samples and the demagneti-
zation correction, we showed the resonance frequency to increase with higher volume
fractions of ferromagnetic material in the regarded parameter range. Thirdly, we also
included the local field distribution into our high-frequency simulations, leading to an
inverted behavior of the resonance frequency, which now shifts towards lower values for
rising filling factors. This effect can be explained by the characteristics of the Polder
model for ferromagnetic materials in usage. Especially, the counteracting behaviors of
the last two models with included dipolar interactions highlight that the mean field
approach leads to inverted and, consequently, wrong results. Despite these interesting
outcomes, one has to admit the appearance of artifacts due to low inclusion numbers
in high-frequency simulations which become more influential for higher filling factors.
Accordingly, we must restrict to volume fractions up to 5 % in the simulations with
the consideration of spatial resoluted field distributions. Thereby, results which are in
qualitative accordance with previous analytic works are obtained. Reasons for devi-
ations can be found in the effect of magnetic moment relaxation, calculated in static
simulations in this work, but not accessible in analytic calculations, and the different
considered topologies.
Summarizing, the results in this chapter delivered a fundamental insight into different
effects which play important roles in the behavior of the resonance frequency of the
composite material of interest.





Chapter 5

Examination of Finite Samples

In the previous chapter, we noticed that the measured permeabilities of samples strongly
depends on their geometry (see figure 4.23). This influence was erased by the imple-
mentation of periodic boundary conditions in the static calculation of the inclusions’
magnetic moments and comparison of the results of the dynamic simulation with ho-
mogeneous samples with identical extensions. Contrary, in this chapter, we want to
gain further insights into the behavior of finite samples under various conditions in
order to explain results drawn from real experiments in rectangular waveguides.

5.1 Homogeneous Inclusion Distribution

As a starting point, we investigate finite samples with homogeneously distributed
spheres and firstly regard the calculation of the magnetic orientation of the inclu-
sions when a static magnetic field is applied in z−direction. Accordingly, we switch off
periodic boundary conditions in these simulation runs and, once again, increase inclu-
sion numbers until convergence in the mean values of internal magnetic fields and their
distribution is reached, as in section 4.3.1.1. As three different types of geometries we
use a cubic sample with edge length ax = ay = az = 1 cm, a cuboid with halved length
in propagation direction (ax = 0.5 cm, ay = az = 1 cm) and a cuboid with doubled
length in propagation direction (ax = 2 cm, ay = az = 1 cm) and choose inclusions’
diameter according to their number and the desired volume fraction f . Accordingly,
matrix extensions do not vary with filling factor, as it was the case in the examination
of infinite samples. Strength of the static magnetic field is chosen in such away that
resonance of an isolated sphere occurs at νres = 10 GHz, as before. Moreover, ferrite
parameters are also identical to previous considerations, i.e. M inc

s = 302 394.5 A
m

and
α = 0.05. Convergence analysis is done for f = 1 % and f = 10 % for each of the
three geometries, highlighting that a number of Ninc ≥ 10 000 inclusions is sufficient
in every case (see figures 5.1-5.8).
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Figure 5.1 – Convergence analysis of the mean values of the magnetic field components in
the inclusions of the cubic sample. As before, Hx and Hy can be ignored comparing to Hz.Top
picture shows the case of f = 1 %, bottom f = 10 %.

Figure 5.2 – Convergence analysis of the distribution of the internal z−components of the
magnetic fields inside the ferrite spheres in the cubic sample for different inclusion numbers.
Picture shows the case of f = 1 %.
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Figure 5.3 – The same analysis as in figure 5.2 for a filling factor f = 10 %.

Figure 5.4 – Convergence analysis of the mean values of the magnetic field components in the
inclusions of the sample with doubled length. Top picture shows the case of f = 1 %, bottom
f = 10 %.
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Figure 5.5 – Convergence analysis of the distribution of the internal z−components of the
magnetic fields inside the ferrite spheres in the sample with doubled length. Upper picture shows
the case of f = 1 %, lower for f = 10 %.

Figure 5.6 – Convergence analysis of the mean values of the magnetic field components in the
inclusions of the sample with halved length. Picture shows the case of f = 1 %.
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Figure 5.7 – The same analysis as in figure 5.6 for a filling factor f = 10 %.

Figure 5.8 – Convergence analysis of the distribution of the internal z−components of the
magnetic fields inside the ferrite spheres in the sample with halved length. Top picture shows the
case of f = 1 %, bottom f = 10 %.
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Accordingly, we use a sufficiently high number of Ninc = 10 000 randomly distributed
inclusions and perform static simulation runs for each of the geometries in the given
range of f = 1 % to f = 10 %. Thereby, we determine the behavior for the mean
values of the z−component of the magnetic field Hz at the places of the inclusions
which is shown in picture 5.9 while we again neglect the components Hx and Hy,
because Hz � Hx, Hy is still fulfilled.

Figure 5.9 – The mean values of the z-component of the magnetic field at the places of
inclusions for different geometries. Obviously, the infinite sample produces the slowest increase
with growing filling factor, while a reduced length enforces the magnetic field more compared to
both other extensions of the finite device. This highlights the strong influence of the geometry
on the results. Here, the case of Hint = 183 154 A

m = const. for all volume fractions is examined
.

As in the previous chapter, we want to transfer these results into high-frequency simu-
lations in HFSS and MOR. Once again, we have to reproduce the H-field distribution
in the sample with much less spheres in the matrix due to the high memory con-
sumption in HFSS. For the purpose of finding representative microstructures with low
inclusion numbers and the static properties of the large system limit, the same strategy
of H−field adaption is chosen as in section 4.3.1.2 while the volume fraction is chosen
in the range of f = 1 % to f = 5 %, for the same reason as in section 4.3.2.3.
In this context, the question appears if there are strong differences in the values of the
magnetic field between core and periphery of the host matrix. In order to follow this
issue, we firstly regard the internal magnetic fields of the inclusions which are placed
in a cross section of thickness a/5 around z = a/2 parallely orientated to x − y−area
(see figure 5.10). Within this, a again denotes the edge length of the cubic sample.
Moreover, we divide this cross section into 20 circular sections (see picture 5.11), in
which we regard the average magnetic field inside the inclusions. As in the former
static simulations, we analyze composites with an inclusion number of Ninc = 10 000
in the following. Moreover, we examine the case of Hinc = 183 154 A

m = const. for
different volume fractions.
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Figure 5.10 – The internal magnetic fields of the inclusions in the blue cross section are analyzed
in order to study boundary effects in the finite samples. For clarity’s sake, no inclusions are drawn
in the picture.

Figure 5.11 – The observed cross section of the composite is again divided into 20 sections
which are defined by the distance to the sample center. Areas outside of section 20 are small do
not contain any inclusions. This schematic sketch is not true to scale.

First of all, we analyze theH−field distribution in the shown cross section when spheres
are arranged on a simple cubic lattice in order to gain first insight into this question.
Corresponding results are shown in figure 5.12.
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Figure 5.12 – The cross section as shown in figure 5.10 is regarded for composites with a simple
cubic lattice of inclusions with volume fractions of f = 1 % and f = 10 %. The distance from
the midpoint of the considered area is divided into 20 sections in which field values are averaged.

Within this, a strong dependence of the magnetic field on the position inside the matrix
becomes obvious: Values are very high in the periphery of the sample, but decrease
when approaching the core. An explanation for this phenomenon becomes obvious by
repeating the calculations in equations 4.4-4.12 (corresponding to figure 4.16), but at
the x− z−boundary of the sample, schematically illustrated in figure 5.13.

Figure 5.13 – Figure 4.16 is slightly modified in order to explain the difference between the
center and the periphery of a sample with aligned magnetic moments on a simple cubic lattice.
Here, one of the boundaries of the sample which are parallely orientated to the x − z−plane is
examined, leading inclusion 3 to drop out.
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In this regard, inclusion 3 is not integrated in the system, modifying calculations of
the total dipolar field acting on inclusion j to:∑

i∈Mij

Hij = H1j + H2j + H4j + H5j + H6j (5.1)
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Since the sum of the dipolar fields approaches zero in the center of such a composite
(compare to result in equation 4.12), it is shown that dipolar fields become stronger in
the periphery of slices parallel to the x− y−plane of these systems.
Performing the same analysis for finite composites with randomly inserted inclusions,
results shown in figure 5.14 are obtained.

Figure 5.14 – The same analysis as in figure 5.12 is done for a sample with a random inclusion
insertion. A difference of around 3 % between the fields in the first and last section is observed
for a filling factor of f = 10 %.
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In this case, an analog tendency for the fields to decrease in the inner device could be
assumed, but is much less extended then in the previous case, which is a consequence
of the not structured arrangement of the inclusions.
Not disregarding the anisotropy of the system, induced by the inclusions’ internal
magnetic bias pointing along the z−axis, we want to perform the same analysis for the
x− z−direction. Results for finite samples with inclusions arranged on a simple cubic
lattice or randomly inserted are shown in figures 5.15 or 5.16, respectively.

Figure 5.15 – The same analysis for inclusions on a simple cubic lattice in a finite sample
(compare to figure 5.12) is done in a corresponding slice of the composite parallel to x−z−plane.

In this direction, we detect a shrinking of the dipolar fields when approaching from
the core to the periphery, which can be again explained by an analog calculation to
equations 5.1-5.8. Omitting the contribution of inclusion 5 or 6, as it is the case close
to the sample boundaries parallel to x− y−direction, we obtain

∑
i∈Mij

Hij = − 1
2πr3

nn

pz (5.9)

which has the opposite sign as the former result (equation 5.8), explaining the reduced
values of the fields.
But, in the outer periphery of the composite in x− z−direction, behavior is inversed,
at least for a filling factor of 10 %. Here, we reach the vicinity of the corners of
the quadratic slices of the composites in which two boundary areas are in proximitty.
Following this, we can explain the rising of the magnetic field by omitting inclusions 2
and 6 in the common calculation, for example, delivering

∑
i∈Mij

Hij = − 1
4πr3

nn

pz (5.10)

which is reduced by a factor of 2 compared to the result in equation 5.9. In the data
set coressponding to a filling factor of f = 1 %, interactions are simply too weak for
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showing this inversion.
With regard to the analysis in the x − y−planes of the samples, such an inversion is
neither detected in the simulations nor can be analytically predicted, when omitting
inclusions 2 and 3 in the calculation, as it would be the case in one of the corresponding
corners. This proceeding delivers

∑
i∈Mij

Hij = 1
2πr3

nn

pz (5.11)

and therefore an enforcement of the same tendency as detected in equation 5.8 instead
of a reduction.

Figure 5.16 – The same analysis for stochastically inserted inclusions in a finite sample (compare
to figure 5.14) is done in a corresponding slice of the composite parallel to x − z−plane. Here,
we observe a difference of around 14 % between the field values of the first and last section in
the case of f = 10 %.

Regarding the randomly generated composite (figure 5.16), we also detect a shrinking
of the field magnitudes, but the disordered microstructure again produces statistically
noise in the results.
For meaningfully answering the question if is is justified to neglect boundary effects
within these procedures, we also analyze the cross section behavior of the magnetic
field for infinite samples with random inclusion insertion, which is done in figures 5.17
(x− y−direction) and 5.18 (x− z−direction).
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Figure 5.17 – The same analysis in a cross section parallel to the x− y−plane as in figure 5.14
is done for a sample with periodic boundary conditions. Deviations in the range of 22 % between
highest and lowest field values are observed for f = 10 %.

Figure 5.18 – The same analysis in a cross section parallel to the x− z−plane as in figure 5.16
is done for a sample with periodic boundary conditions. Deviations in the range of 9 % between
highest and lowest field values are observed for f = 10 %.

Actually, the field values in the infinitely extended samples should be approximately
constant, but are influenced by statistical deviations. Regarding the magnitude of these
perturbations, 22 % in x− y−direction and 9 % in x− z−direction, we can expect the
statistical errors for finite samples to be in the same order. Accordingly, it is justified
to neglect the detected deviations between core and periphery (3 % in x− y−direction
and 14 % in x− z−direction) in the regarded composites. Consequently, we reproduce
the H-field distribution of all spheres in the large system limit by all inclusions of the
low inclusion number microstructure without distinction between periphery and core
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of the composites.
Returning to the purpose of finding representative systems for high-frequency simu-
lations, we must deviate from our former procedures in one point: In the previous
chapter, we maintained the inclusions’ radii and varyed the extensions of the matrix in
order to generate different volume fractions. Now, it is desired to draw conclusions on
the sample geometry for different filling factors. Accordingly, the matrix extensions of
a considered geometry must kept constant and increasing volume fractions can be only
realized by higher inclusion numbers or the choice of larger spheres. Again, limited
memory capacity inhibits us from boosting the number of the included spheres.
Consequently, we are restricted to enlarge the diameters of the spheres whereby the
following settings are chosen:

• Cubic sample: Ninc = 64 inclusions, radii from rinc = 0.0344 cm (f = 1 %) to
rinc = 0.0571 cm (f = 5 %)

• Halved length sample: Ninc = 32 inclusions, radii from rinc = 0.0344 cm
(f = 1 %) to rinc = 0.0571 cm (f = 5 %)

• Doubled length sample: Ninc = 54 inclusions, radii from rinc = 0.0445 cm
(f = 1 %) to rinc = 0.0762 cm (f = 5 %)

Although these radii exceed the value of 0.0445 cm, for which convergence with respect
to inclusions’ size was detected in section 4.1, we have to accept this drawback due to
lack of alternatives. But, as shown in figure 4.8, variations between r = 0.0334 cm and
r = 0.0668 cm were very small and also influenced by the changed inclusion number
(Ninc = 8 and Ninc = 64, see also equation 4.19 and the corresponding discussion).
Because the minimal number of spheres in usage exceeds Ninc = 8 by a factor of four
in the present case, this error source can be estimated as very small.
Summarizing, this procedure delivers sample structures which can be modeled in HFSS
(shown in figure 5.19). The adaption of the H−field distribution is exemplarily shown
for the case of the cubic sample with f = 1 % (see figure 5.20).
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Figure 5.19 – The three regarded sample geometries (top: cubic, middle: halved length,
bottom: doubled length) with filling factors of f = 1 % (left) and f = 5 % (right). As it can be
seen, different inclusion volume fractions are realized by changing the spheres’ diameter in order to
maintain the geometric extensions of the matrix. Compared to the arrangements in picture 4.62
for infinite devices, deviations from the initial simple cubic lattice are much more distinct. For
the cubic sample, average dislocation from the initial simple cubic lattice amounts ∆x = 3.26rinc
with rinc = 0.0334 cm for f = 1 % (infinite device: ∆x = 1.33rinc with rinc = 0.00445 cm)
and ∆x = 6.84rinc for f = 5 % with rinc = 0.0571 cm (infinite device: ∆x = 0.57rinc with
rinc = 0.00445 cm).

Figure 5.20 – The H−field distribution must be adapted in order to reproduce the behavior of
large systems containing Ninc = 10 000 inclusions with the realizable inclusion numbers in HFSS.
Here, the case of a cubic sample with f = 1 % and 64 inclusions is shown. Error function equals
∆ = 0.0028.
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This procedure is repeated for every geometry and every value of f between 1 % and
5 %. Using these results, we perform high-frequency simulations in HFSS. Within this
context, we again have to be aware that internal magnetic biases were kept constant for
different volume fractions, so far. Before simply adding 1

3Meff (f) to them, according
to equation 4.20, we have to check if it is still possible to assign effective values Meff

to homogeneous samples in such a way that they reproduce the resonance curves of
the composites with the gained, new microstructures with high accordance. For that
purpose, we once again switch off dipolar interactions between the inclusions and define
identical internal magnetic biases leading an isolated sphere with M inc

s = 302 394.5 A
m

to resonate at νres = 10 GHz (compare to section 4.3.2.1, Hinc = 183 154 A
m). Then,

we try to reproduce the corresponding resonance curves with homogeneous samples by
variation ofMeff and Heff (Hinc = const.) while α = 0.05 remains constant. Again, the
performed adaptions, exemplarily shown for the three considered geometries and f =
5 % in figures 5.21-5.23, show very good accordance when using the already determined
values of Meff and Heff (Hinc = const.) (data shown in figure 4.27), underlining that
effective parameters of composites are still only marginally affected by the considered
microstructures when neglecting dipolar interactions.

Figure 5.21 – The comparison between the cubic samples consisting out of composite material
with a filling factor of f = 5 % and the homogeneous sample with the already found values of
Meff = 14 722 A

m , Heff (Hinc = const.) = 279 125 A
m and α = 0.05 shows good accordance.
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Figure 5.22 – The results produced by samples with doubled length in wave propagation direc-
tion and a volume fraction of f = 5 % are also very similiar. Input parameters are the same as
for the results shown in figure 5.21.

Figure 5.23 – The adaption of the samples with halved length and f = 5 % is shown. Input
parameters are the same as for the results shown in figure 5.21.

Accordingly, we can perform the demagnetization correction in order to keep the ef-
fective field in the composite constant, as before. Unfortunately, in contrast to the
previously regarded infinitely extended samples, this effective field does not equal the
externally applied field due to demagnetization fields of the whole composite devices,
impeding a direct comparison the experimental works. Nevertheless, we analyze these
systems under a constant effective field in the sample in order to detect impacts of
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different properties of the composite on the permeability tensor.
In order to analyze the resonance behavior of the finite samples of interest, we use our
most realistic model in which the local distribution of the dipolar fields is included
and perform high-frequency simulations (compare to section 4.3.2.3). Then, we use
the S−parameters gained from HFSS and MOR in order to determine the permeabil-
ity tensors of the different samples. Corresponding results for µ′′ are shown in figures
5.24-5.26.

Figure 5.24 – The gained resonance peaks of µ′′ for different filling factors in the cubic sample
when Heff is kept constant for different filling factors.

Figure 5.25 – The same comparison as in figure 5.24 for the sample with halved length in wave
propagation direction.
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Figure 5.26 – The same comparison as in figure 5.24 for the sample with doubled length in
wave propagation direction.

In this context, it is also interesting to compare the results for fixed values of f in
dependence of the analyzed geometry. This is done in figures 5.27-5.29.

Figure 5.27 – A comparison between the results of the three geometries for f = 1 % in the
case of a constant value for Heff .
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Figure 5.28 – The same analysis as in figure 5.27 is done for a volume fraction of f = 3 %.

Figure 5.29 – The same analysis as in figure 5.27 is done for a volume fraction of f = 5 %.

From these graphs, several information can be drawn. Firstly, we notice that arti-
facts due to limited inclusion numbers are even more pronounced compared to the
examination of infinite samples (compare with pictures 4.93-4.95). Of course, this
effect complicates a senseful analysis. For the purpose of overcoming this problem,
we regard several different microstructures for one geometry and one volume fraction,
fulfilling our requirements with regard to the large system limit, and analyze the de-
viations between them. Corresponding results for f = 1 % and f = 5 % are shown in
figures 5.30-5.35.
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Figure 5.30 – Three different microstructures in the cubic sample with f = 1 % are under test.
Obviously, resonance curves do not differ much and show almost the same resonance frequency.

Figure 5.31 – Comparing with the results in picture 5.30, deviations between different mi-
crostructures and artifacts, meaning the blurring of the peaks, become more distinct in the case
of a filling factor f = 5 % in the cubic sample. Especially the third simulation run (blue curve)
shows almost two peak character as a result of the low inclusion number.
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Figure 5.32 – Comparable to the results for the cubic sample shown in figure 5.30, the sample
with halved length and a volume fraction of f = 1 % also shows relatively stable resonance peaks.

Figure 5.33 – Increasing filling factor to f = 5 % in the sample with halved length, we notice
the same tendencies as for the cubic sample (see figure 5.31): Artifacts in the form of additional
hilltops arise and the resonance peaks become blurred.
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Figure 5.34 – As in the previous samples, the device with doubled length also shows good
agreement in the resonance curves for f = 1 %.

Figure 5.35 – For the sample with doubled length and a volume fraction of f = 5 %, artifacts
are less distinct then in the previous cases but there are also strong deviations between the different
resonance frequencies.

Secondly, we notice that resonance peaks move in dependence of geometry and in-
clusions’ volume fraction. In order to draw meaningful conclusions, we average the
resonance frequencies (meaning always the frequency point in which the maximum
value of |µ′′max| is reached) of the three different microstructures and plot the results
in dependence of the inclusions’ volume fraction in picture 5.36. For clearness sake, it
should be highlighted that in this case, no comparison to homogeneous samples with
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the same extensions is necessary, which was done in the previous chapter in order to get
rid of demagnetization effects of the sample in the waveguide, because we are interested
in the behavior of finite devices.

Figure 5.36 – The averaged resonance frequencies of the three different regarded microstruc-
tures for each geometry and each value of filling factor f are shown. Error bars mark the standard
deviations between the resonances of different microstructures. The magnitude of Heff was
maintained for every filling factor.

Within the plot shown in figure 5.36 two results become obvious: Firstly, the standard
deviations between different resonance frequencies of one type of sample (cubic, dou-
bled length, halved length) increase with rising volume fraction of inclusions, which
is seen as an artifact due to limited number of included spheres. It can be assumed
that this effect would disappear if the large system limit would also be feasible in the
high-frequency simulations. Despite of this drawback, the performed analysis delivers
the tendencial behavior of the resonance frequencies under the condition Heff = const.
which can be seen as qualitatively reliable: While the resonance of the finite cubic
sample can be assumed as constant or slightly growing with increasing values of f , the
device with halved length shows a rising resonance frequency. Contrary, the doubled
length causes the resonance to tend towards lower values. In conclusion, a strong de-
pendence of the resonance frequency behavior on the sample geometry is detected and
should be considered in real experiments, in which always finite devices are under test.
Accordingly, an experimenter, who is interested in geometry independent effective pa-
rameters of composite material, is recommended to obey the following recipe: First of
all, the sample should be analyzed via the transmission and reflection method in a real
experiment, delivering the effective permeability of the device in the waveguide. But,
as shown in the present work, this result is influenced by geometry dependent effects
as demagnetization in the waveguide and dipolar interaction between the inclusions.
Therefore, a numerical simulation sequence, static and dynamic, of the experimental
set-up with composite samples with the same geometric extensions as the device of the
real experiment should be performed. In these simulations, the value for the effective
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field (differing from the experimentally applied external field) in the composite has
to be varied until coincidence of the results is reached, while M inc

s and α should be
known as parameters of the included material. Afterwards, the parameter set should
be used in static simulations with periodic boundary conditions. By this procedure,
the geometry dependence due to the dipolar interaction of the inclusion is removed.
Then, the results of this static simulation should be implemented in a high-frequency
simulation of the composite. Finally, a further simulation sequence with homogeneous
devices is necessary, in which input parameter are again varied until the results of the
previous simulation is reproduced, in order to draw meaningful conclusions on the ef-
fective values of the composite material under test.
Moreover, we also want to gain isight into the origins of the detected frequency be-
havior. For that purpose, we firstly analyze the influence of the different geometries
when using homogeneous materials with identical material parameters, i.e. the impact
of demagnetization effects. The corresponding graphs are shown in figure 5.37 and
show indeed a slight tendency for the resonance frequencies to behave according to
νdoubleres < νcubicres < νhalveres , but which is quantitatively too weak comparing with results
shown in figure 5.36.

Figure 5.37 – We regard the resonance curves of homogeneous samples with different geome-
tries. Input parameters are α = 0.05, Heff = 283 952 A

m and Meff = 14 722 A
m .
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Accordingly, the explanation for the resonance behavior must be found in the charac-
teristics of the dipolar interactions which are shown in figure 5.38

Figure 5.38 – In order to explain the behavior of the magnetic
fields in the inclusions and the resonance frequencies of the compos-
ites depending on the matrix geometry (see figures 5.9 and 5.36),
we have to take a look at the form of the dipole field of one arbitrary
inclusion (in the beneath picture placed at the coordinate system’s
origin and labeled with number one) and its influence on surrounding
magnetic dipoles which all are parallely aligned in z−direction in our
simulations, at first. While the dipole field caused by inclusion 1 is
parellely aligned with the magnetic moment of inclusion 2 which is
placed on the z−axis, the same dipole field antiparallely acts to the
magnetic moment of inclusion 3 placed on the y−axis. Due to rota-
tional symmetry of the dipole fields, the same effect appears for an
inclusion located at the x−axis. Following this, included magnetic
moments enforce each other when they are parallely aligned to their
spatial connection vector, but counteract when the connection vec-
tor is orthogonally orientated. Consequently, a large extension of the
sample in the direction of the dominant orientation of the magnetic
moments, connected with many enforcing acting dipoles, compared
to small extensions in the orthogonal directions leads to higher field
values in the inclusions. Accordingly, the sample with halved length,
for which extension in z−direction is twice as large as matrix size
in x−direction, shows an increasing resonance frequency while the
doubled length sample behaves the other way around.

Beneath the resonance frequency, we also want to discuss the magnitudes of µ′stat and
µ′′max in the case of finite samples with a constant value of Heff . Concerning the latter
one, we can simply average the values of µ′′max over the results of the three different
microstructures for each volume fraction (resonance curves shown in the graphs in 5.30-
5.35 for the cases of f = 1 % and f = 5 %) because we are interested in the behavior of
finite samples. Corresponding values for different geometries in dependence of volume
fractions are shown in figure 5.39.
In this plot, we see that the values of µ′′max are nearly independent from the regarded
geometry, in contrast to the resonance frequencies (see figure 5.36). With regard to an
analysis of µ′stat, we take a look the found curves for µ′ for different volume fractions
and geometrix extensions shown in figures 5.40-5.45.
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Figure 5.39 – The values of µ′′max for the three different geometries and volume fractions in
the range from f = 1 % to f = 5 % are averaged over the three regarded microstructures for
every case. Error bars denote standard deviations. Magnitude of Heff was kept constant.

Figure 5.40 – The curves for µ′ for the three cubic samples with different microstructures and
a volume fraction of f = 1 %.
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Figure 5.41 – The curves for µ′ for the three cubic samples with different microstructures and
a volume fraction of f = 5 %.

Figure 5.42 – The curves for µ′ for the three samples with halved length in propagation direction
with different microstructures and a volume fraction of f = 1 %.
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Figure 5.43 – The curves for µ′ for the three samples with halved length in propagation direction
with different microstructures and a volume fraction of f = 5 %.

Figure 5.44 – The curves for µ′ for the three samples with doubled length in propagation
direction with different microstructures and a volume fraction of f = 1 %.
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Figure 5.45 – The curves for µ′ for the three samples with doubled length in propagation
direction with different microstructures and a volume fraction of f = 5 %.

With respect to these outcomes, one has to admit two facts: Firstly, results for higher
inclusion volume fractions (see figures 5.41, 5.43 and 5.45) are characterized by strong
artifacts making a senseful analysis impossible. Secondly, even for low filling factors
(see figures 5.40, 5.42 and 5.44), the values of µ′stat can not be determined because the
feasible frequency range in the experimental set-up with a rectangular waveguide has a
lower boundary (compare to section 1.1.2.3). The later of these two problems could be
overcome by the usage of a parallel plate waveguide, whose accessible frequency range
is unlimited for low values. Unfortunately, the evaluation method in use by Quéffélec
et al. does not apply for this type of waveguide. Accordingly, we are not able to gain
deeper insight into the behavior of this magnitude in a direct manner.

However, also in this chapter, we want to derive an analytic formula for the effective
susceptibility tensor in the case of Heff = const., which will also offer an opportunity
for examining the magnitude of µ′stat. For that purpose, we firstly average the results
for µ′′ for the different microstructures in order to reduce artifacts due to statistical
errors and then try to find input parameter H loc

eff and αeff for equation 1.169 so that
mean curves for every regarded volume fraction are well reproduced by Polder’s for-
mula. During this, we keep the same values for Meff as in the previous sections, which
is confirmed to be true for all geometries, as shown in figures 5.21-5.23. Corresponding
adaptions are shown in figures 5.46-5.54.
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Figure 5.46 – The three curves for µ′′ and a filling factor of f = 1 % of the cubic samples (see
figure 5.30) are averaged. Afterwards, input parameter for Polder’s formula are searched in order to
obtain the highest accordance between the two curves. Here, parameter valuesMeff = 3023.9 A

m ,
H loc
eff = 283 900 A

m and αeff = 0.0915 are in use. The case of Heff = const. is regarded.

Figure 5.47 – The same analysis as in figure 5.46 is done for a volume fraction of f = 3 %. Input
parameters for Polder’s equation are Meff = 9071.8 A

m , H loc
eff = 287 500 A

m and αeff = 0.1525.
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Figure 5.48 – The same analysis as in figure 5.46 is done for a volume fraction of f = 5 %. Input
parameters for Polder’s equation are Meff = 15 119.6 A

m , H loc
eff = 290 000 A

m and αeff = 0.205.

Figure 5.49 – The three curves for µ′′ and a filling factor of f = 1 % of the samples with
halved length (see figure 5.32) are averaged. Afterwards, input parameter for Polder’s formula
are searched in order to obtain the highest accordance between the two curves. Here, parameter
values Meff = 3 023.9 A

m , H loc
eff = 288 700 A

m and αeff = 0.0835 are in use. The case of
Heff = const. is regarded
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Figure 5.50 – The same analysis as in figure 5.49 is done for a volume fraction of f = 3 %. Input
parameters for Polder’s equation are Meff = 9 071.8 A

m , H loc
eff = 295 000 A

m and αeff = 0.145.

Figure 5.51 – The same analysis as in figure 5.49 is done for a volume fraction of f = 5 %. Input
parameters for Polder’s equation are Meff = 15 119.6 A

m , H loc
eff = 307 000 A

m and αeff = 0.19.
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Figure 5.52 – The three curves for µ′′ and a filling factor of f = 1 % of the samples with
doubled length (see figure 5.34) are averaged. Afterwards input parameter for Polder’s formula
are searched in order to obtain the highest accordance between the two curves. Here, parameter
values Meff = 3 023.9 A

m , H loc
eff = 282 500 A

m and αeff = 0.0885 are in use. The case of
Heff = const. is regarded.

Figure 5.53 – The same analysis as in figure 5.52 is done for a volume fraction of f = 3 %. Input
parameters for Polder’s equation are Meff = 9 071.8 A

m , H loc
eff = 281 000 A

m and αeff = 0.157.
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Figure 5.54 – The same analysis as in figure 5.52 is done for a volume fraction of f = 5 %. Input
parameters for Polder’s equation are Meff = 15 119.6 A

m , H loc
eff = 256 600 A

m and αeff = 0.197.

These adaptions show good agreement for the cases of f = 1 %, but decreasing quality
for higher filling factors, especially for the sample with doubled length (see figure 5.54).
Nevertheless, we can assume that in the large system limit of Ninc →∞ the differences
between the composite’s resonance curves and the adaption with the help of Polder’s
model reduce. Under this assumption, we try to formulate equations for the effective
susceptibility tensor in the case of the regarded finite samples. For that purpose, we
plot the found effective parameters H loc

eff and αeff in dependence of the filling factor
for every geometry in figures 5.55 and 5.56.

Figure 5.55 – The found values for the local effective magnetic field H loc
eff are plotted in

dependence of the filling factor for every of the three regarded geometries and parabolic fitted.
Thereby, we observe the same tendencies as for the averaged resonance frequency in figure 5.36.
The case of Heff = const. is regarded.
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Figure 5.56 – The determined values for the effective damping coefficient αeff are plotted in
dependence of the filling factor for every of the three regarded geometries and linear fitted.

Parabolic fitting of the data set for the effective magnetic fields delivers (under the
condition H loc

eff (f = 0 %) = 283 950.5 A
m)

cubic:

H loc
eff (f) = (276± 220) A

m(%)2f
2 + (100± 931) A

m%f + 283 950.5 A
m (5.12)

halved length:

H loc
eff (f) = (305± 123) A

m(%)2f
2 + (3103± 518) A

m%f + 283 950.5 A
m (5.13)

doubled length:

H loc
eff (f) = (−1454± 531) A

m(%)2f
2 + (2426± 2241) A

m%f + 283 950.5 A
m . (5.14)

Linear fitting of the data sets for the effective damping coefficients delivers (under the
condition αeff (f = 0 %) = 0.05)

cubic :

αeff (f) = (0.031± 0.001) f

% + 0.05 (5.15)

halved length :

αeff (f) = (0.029± 0.001) f

% + 0.05 (5.16)

doubled length :

αeff (f) = (0.033± 0.001) f

% + 0.05. (5.17)
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Within this, we observe two phenomena:
Firstly, the local effective magnetic fields show the same tendencies as the resonance
frequencies (see figure 5.36) which is no surprise due to the coupling of both magnitudes.
This highlights again that dipolar fields in the matrix strongly depend on the sample
geometry.
Secondly, we obtain values for the effective damping coefficient αeff which seem to be
independent of the device extensions and always show a linear relationship with regard
to the volume fraction of the inclusions.
As already indicated, the performed adaptions are used for determining the values of
µ′stat = 1 + Meff

Hloc
eff

. Corresponding results are shown in figure 5.57.

Figure 5.57 – The magnitude of µ′stat is analyzed for the three differentgeometric extensions.

As can be observed, values of µ′stat show a dependence on the sample geometry, which
is a consequence of the different tendencies of the local effective field. Accordingly,
µ′stat is larger, when H loc

eff is small.
Of course, the gained relations for the magnitudes of the local effective magnetic field,
the damping coefficient and so on only apply for the material parameters of the ferrite
inclusions and the magnetic field values in use. In order to derive general formulas, an
analysis of the whole phase space of Hinc, M inc

s and α would be necessary, which can
not be delivered in this work.

5.2 Variation of Inclusion Density

After the analysis of finite samples with a homogeneous inclusion distribution in the
previous section, we want to include a further aspect which could play an important
role when experimentally examining real composites. Under the influence of gravity,
buoyancy or other forces in the host matrix, it is possible that internal inclusion density
becomes inhomogeneous what could be linked with an influence on the ferromagnetic
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resonance. In the following, we want to analyze this issue with the methods at hand.
In order to perform a senseful examination of this topic, we have to define a model
as simple as possible for an inhomogeneous inclusion distribution inside the matrix.
For that purpose, we consider the finite cubic sample from the previous section with
an edge length of ax = ay = az = 1 cm, Ninc = 64 (in high-frequency simulations),
f = 3 % and divide it at z = 0.5 cm into two halves, an upper and a lower region.
Afterwards, we distribute inclusions in such a way that in both regions different volume
fractions are realized.
As before, we firstly have to analyze the static dipolar fields in these samples. Therefore,
we once again analyze the convergence behavior of the average magnetic field at the
centers of the inclusions and the field distributions in the large system limit for the
sample in total and separately for the both regions. For this purpose, we regard
the following filling factors in the both regions (first value valid for the upper region
z ≥ 0.5 cm):

• 3 %− 3 %
• 2.4375 %− 3.5625 %
• 1.5 %− 4.5 %
• 0.75 %− 5.25 %
• 0 %− 6 %

Within this, the first density distribution 3 % − 3 % does not have to be analyzed
because it corresponds to the cubic composite with a homogeneous inclusion distribu-
tion which was under test in the previous section. Regarding the four other, results of
the convergence analysis with regard to the average internal magnetic field and static
field distributions are shown in figures 5.58-5.64 or 5.65-5.77, respectively. In these
examinations, Hinc = 183 154 A

m = const. is regarded.

Figure 5.58 – The components of the average magnetic field at the positions of the inclusions
in dependence of the number of included spheres. Here, the complete sample with the filling
factors 2.4375 % and 3.5625 % is regarded.
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Figure 5.59 – The z−components of the average magnetic field in dependence of the number
of included spheres in the regions with 2.4375 % and 3.5625 % are compared to each other.

Figure 5.60 – The convergence analysis of the magnetic field components is done for the whole
device with the volume fractions 1.5 % and 4.5 % in both regions.
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Figure 5.61 – The z−components of the average magnetic field in dependence of the number
of included spheres in the regions with 1.5 % and 4.5 % are compared to each other.

Figure 5.62 – The convergence analysis of the magnetic field components is done for the whole
device with the volume fractions 0.75 % and 5.25 % in both regions.
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Figure 5.63 – The z−components of the average magnetic field in dependence of the number
of included spheres in the regions with 0.75 % and 5.25 % are compared to each other.

Figure 5.64 – The convergence analysis of the magnetic field components is done for the device
with the volume fractions 0 % and 6 % in both regions. Because inclusions are only placed in
the high volume fraction region, a separated analysis of both regions does not contain further
information.
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Figure 5.65 – We regard field distributions for different inclusion numbers in the whole sample
with an inclusion volume fraction of 2.4375 % in the upper region and 3.5625 % in the lower one.
Curves for Ninc = 12 000 and Ninc = 24 000 are almost identical.

Figure 5.66 – The same sample as analyzed in figure 5.65 is regarded, but only fields in the
lower region with f = 3.5625 % are taken into account.
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Figure 5.67 – The same sample as analyzed in figure 5.65 is regarded, but only fields in the
upper region with f = 2.4375 % are taken into account.

Figure 5.68 – The comparison between the field distributions in the high and low density region
for the sample with an inclusion volume fraction of 2.4375 % in the upper region and 3.5625 %
in the lower one. Both distributions are normalized concerning the number of inclusions in the
respective region.
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Figure 5.69 – We regard field distributions for different inclusion numbers in the whole sample
with an inclusion volume fraction of 1.5 % in the upper region and 4.5 % in the lower one. Curves
for Ninc = 12 000 and Ninc = 24 000 are almost identical.

Figure 5.70 – The same sample as analyzed in figure 5.69 is regarded, but only fields in the
lower region with f = 4.5 % are taken into account.
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Figure 5.71 – The same sample as analyzed in figure 5.69 is regarded, but only fields in the
upper region with f = 1.5 % taken into account.

Figure 5.72 – The comparison between the field distributions in the high and low density region
for the sample with an inclusion volume fraction of 1.5 % in the upper region and 4.5 % in the
lower one. Both distributions are normalized concerning the number of inclusions in the respective
region.
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Figure 5.73 – We regard field distributions for different inclusion numbers in the whole sample
with an inclusion volume fraction of 0.75 % in the upper region and 5.25 % in the lower one.
Curves for Ninc = 12 000 and Ninc = 24 000 are almost identical.

Figure 5.74 – The same sample as analyzed in figure 5.73 is regarded, but only fields in the
lower region with f = 5.25 % are taken into account.
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Figure 5.75 – The same sample as analyzed in figure 5.73 is regarded, but only fields in the
upper region with f = 0.75 % are taken into account.

Figure 5.76 – The comparison between the field distributions in the high and low density region
for the sample with an inclusion volume fraction of 0.75 % in the upper region and 5.25 % in the
lower one. Both distributions are normalized concerning the number of inclusions in the respective
region.
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Figure 5.77 – We regard field distributions for different inclusion numbers in the whole sample
with an inclusion volume fraction of 0 % in the upper region and 6 % in the lower one. Curves
for Ninc = 12 000 and Ninc = 24 000 are almost identical. Because inclusions are only placed
in the high volume fraction region, a separated analysis of both regions does not contain further
information.

Again, we detect convergence behavior for Ninc ≥ 12 000 in every case and in every
density region and, thereby, gain knowlegde about the large system limit. As before, it
is also justified to neglect the components of the magnetic field in x− and y−direction
becauseHx, Hy � Hz is still always fulfilled. Furthermore, we observe that the average
internal magnetic field in the inclusions in the region with the lower density is always
stronger compared to the values in the high density region. Phenomenologically, this
can be explained by again regarding the schematic sketch of the dipolar interaction in
figure 5.38: Due to the orientation of the magnetic moments along z−axis, the inclu-
sions’ dipoles of the low and high density region (separated by z = 0.5 cm) enforce the
magnetic fields at the positions of the inclusions in the other region. Consequently, the
larger number of magnetic dipoles in the high density region creates stronger magnetic
fields in the low density area than the other way around.
Moreover, the distribution in the low density region becomes sharper the higher the
volume fraction difference grows while the distribution in the high density region be-
comes more blurred (see figures 5.68, 5.72 and 5.76). In order to compare the static
behavior of the samples with different volume fraction differences, we regard the in-
clusions’ average internal magnetic field component in z−direction, which is shown in
figure 5.78 for the case of Hinc = const..
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Figure 5.78 – The average magnetic fields inside the inclusions are plotted in dependence of
the differences between the filling factors of the upper and lower region of the device. Black
squares rely on the total sample, red circles on the high density region and blue triangles on the
low density region. Hinc = 183 154 A

m is valid in every simulation.

In this graph, a clear tendency for the average magnetic field to shift towards lower
values for higher differences of the volume fraction becomes obvious. For classifying the
order of magnitude of this effect, we take a deeper look at the sample with a inclusions’
volume fraction of 1.5 % in the low density and 4.5 % in the high density region, i.e. a
volume fraction difference of 3 % and corresponding a relative deviation of 50 % with
regard to the total filling factor of 3 %. While the average field shrinks by 0.8 % and
the high density region field by 1.7 %, magnetic field in the low density area increases
by 2.1 %. Contrary, a shift of the the average magnetic field by 1 % requires a volume
fraction difference of 3.3 %, i.e. a filling factor of 1.35 % in the low density region
and 4.65 %, meaning a relative deviation of 55 %, as interpolated from the shown
data. Regarding the systematic errors of the static field simulation in the context of
self-consisteny (see figure 4.57), this conclusions are qualitatively trustworthy due to
accuracy with more than 99.7 %.
Nevertheless, due to the separation of the composite into two different regions with
different properties, a two-peak character of the resonance curve could be assumed.
In order to transfer these results into high-frequency simulations, the found distribu-
tions are again used in order to reproduce the large system behavior with an inclusion
number of Ninc = 64, with the same proceeding as before. Though, contrary to previ-
ous examinations, we also have to take care on the different volume fractions in both
regions. For that purpose, we firstly define a simple cubic lattice in each region with
inclusion numbers Ninc,up and Ninc,low, according to the desired volume fractions, and
afterwards add gaussianly distributed vectors to their position with the restriction that
no inclusion can leave its region.
Again, adaption to H−field distribution works very well for the whole sample when
trying enough different arrangements, as exemplarily shown for the volume fractions
0.75 % and 5.25 % in figure 5.79.
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Figure 5.79 – As before, adaption of the distribution of the magnetic field works very well for
Ninc = 64 and the large system limit. In this case of volume fractions of 0.75 % and 5.25 % in
the different regions, the defined error function takes the value of ∆ = 0.0035.

Figure 5.80 – The same sample and microstructure as in figure 5.79 is regarded, but only
inclusions in the high density region are taken into account.
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Figure 5.81 – The same sample and microstructure as in figure 5.79 is regarded, but only
inclusions in the low density region are taken into account.

With regard to figures 5.80 and 5.81, one has to admit that adaption in the different
regions is of lower quality. Nevertheless, the total distribution of the magnetic field and
the density of inclusions in both regions is reconstructed by this representative system.
Repeating this procedure for every desired contrast of filling factors, microstructures
as shown in figure 5.82 are generated.

Figure 5.82 – The devices under test for the inhomogeneous inclusion distributions. Top left
picture shows the sample with the filling factor of 2.4375 % in the upper and 3.5625 % in the
lower region. Analogically, top right shows the case of 1.5 % and 4.5 %, bottom left 0.75 % and
5.25 % and bottom right the case with an empty upper region and f = 6 % in the lower one.
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Accordingly, we use the shown devices for our high-frequency simulations in which
we again include a demagnetization conversion in order to keep the effective field in
the composite Heff constant for different filling factors, as in the previous sections.
Though, in the present case, we have to take in account that our sample is divided into
two halves with different inclusion volume fractions. Accordingly, we use two different
values for Meff for the demagnetization correction (according to equation 4.20) for the
inclusions in the upper and lower sample region. These values ofMeff are calculated by
inserting the used volume fractions f into equation 4.13 which we drew from the cor-
responding linear fitting function. Afterwards, we calculate the entries of the effective
Polder tensor with the same accuracy parameters as before, delivering the resonance
peaks shown in figure 5.83. Within this plot, it becomes again obvious that the results
are affected by artifacts in the form of minor additional hilltops. Accordingly, we again
try to gain more insight by considering three different microstructures for every case.
The corresponding resonance peaks are shown in pictures 5.84-5.87.

Figure 5.83 – The resonance peaks resulting from different filling factor contrasts. The case
of Heff = const. is examined.
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Figure 5.84 – The resonance curves of three different microstructures fulfilling our requirements
for the volume fractions of 2.4375 % in the upper and 3.5625 % in the lower region.

Figure 5.85 – Same plot as in figure 5.84 for filling factors of 1.5 % and 4.5 %.
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Figure 5.86 – Same plot as in figure 5.84 for filling factors of 0.75 % and 5.25 %.

Figure 5.87 – Same plot as in figure 5.84 for an empty upper region and 6 % in the lower
region.

These three different resonance curves for every case show very strong deviations be-
tween each other, highlighting that an inclusion number of Ninc = 64 in the high-
frequency simulations is not sufficient in order to draw senseful conclusions for very
large systems. Nevertheless, we tried to calculate an average resonance frequency for
every regarded case, leading to results shown in figure 5.88.
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Figure 5.88 – The resonance frequencies of the three different devices for every case are
averaged and plotted in dependence of the difference of the volume fractions of the lower and
upper region. Error bars denote standard deviations of the frequencies. Note that a zero volume
fraction difference belongs to the cubic sample with a homogeneous inclusion distribution analyzed
in the previous section and the value of 6 % relies on the sample with an empty upper half.
Heff = const. is valid for every volume fraction difference.

In contrast to data in figure 5.78, no unambiguous tendency can not be observed from
the performed high-frequency simulations. This result implies that larger inclusion
numbers in the high-frequency simulations are necessary in order to examine this is-
sue in a meaningful manner. Furthermore, a growing of the standard deviation with
increasing volume fraction difference can be observed which is a consequence of the
blurring of the magnetic field distribution in the static simulations.
Concerning the magnitude of |µ′′max| we again simply average the values for the three
different microstructures for every volume fraction difference with Heff = const. and
plot the results in figure 5.89.
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Figure 5.89 – The averaged values of |µ′′max| are shown in dependence of the volume fraction
difference in the case of Heff = const..

This graph shows that the values of |µ′′max| are slightly decreasing with raising volume
fraction difference, but quality of the results is too low in order to draw quantitative
conclusions.
For the purpose of analyzing the magnitude of µ′stat, we regard the curves for µ′ for
every microstructure of every volume fraction contrast in figures 5.90-5.93.

Figure 5.90 – The results for µ′ for the three microstructures with inclusion volume fractions
of 2.4375 % and 3.5625 % in both regions.
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Figure 5.91 – The same analysis as in figure 5.90 is done for volume fractions of 1.5 % and
4.5 % in both regions.

Figure 5.92 – The same analysis as in figure 5.90 is done for volume fractions of 0.75 % and
5.25 % in both regions.
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Figure 5.93 – The same analysis as in figure 5.90 is done for volume fractions of 0 % and 6 %
in both regions.

Within these graphs, it becomes clear that a meaningful direct analysis is again not
possible, due to the same reasons as in section 5.1: artifacts are distinct and the
accessible frequency range is limited. Accordingly, we again firstly derice an analytic
formula for the effectice permeability tensor in order to gain knowledge about the static
behavior of µ′.
For the purpose of finding this relation in the case of Heff = const., we again average
the three different resonance curves for every volume fraction contrast (see figure 5.94)
and try to adapt these mean curves by variation of the input parameters H loc

eff and αeff
in Polder’s formula 1.169, whileMeff = 9071.8 A

m remains constant due to the constant
filling factor of f = 3 % concerning the whole sample. Adaptions to the mean curves
are shown in figures 5.95-5.98.
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Figure 5.94 – The results for µ′′ for the three microstructures for every volume fraction contrast
are averaged to the mean curves µ′′. The effective field Heff was maintained constant for every
filling factor difference.

Figure 5.95 – The mean curve for the volume fractions of 2.4375 % and 3.5625 % is adapted
with the parameters H loc

eff = 282 500 A
m and αeff = 0.195.
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Figure 5.96 – The mean curve for the volume fractions of 1.5 % and 4.5 % is adapted with
the parameters H loc

eff = 284 200 A
m and αeff = 0.175.

Figure 5.97 – The mean curve for the volume fractions of 0.75 % and 5.25 % is adapted with
the parameters H loc

eff = 287 000 A
m and αeff = 0.2.
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Figure 5.98 – The mean curve for the volume fractions of 0 % and 6 % is adapted with the
parameters H loc

eff = 266 000 A
m and αeff = 0.2334.

For further analysis, we plot the determined adaption parameters in dependence of the
inclusions’ volume fraction difference in figures 5.99 and 5.100.

Figure 5.99 – The effective damping coefficient αeff from Polder adaption in figures 5.95-5.98
is plotted for the regarded volume fraction differences with Heff = const. in every case.
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Figure 5.100 – The effective magnetic field H loc
eff from Polder adaption in figures 5.95-5.98 is

plotted for the regarded volume fraction differences Heff = const. in every case.

With regard to the damping coefficient αeff , we find a growing of the values with
increasing volume fraction difference, which is a consequence of the decreasing of |µ′′max|
(see also figure 5.89) and the progressive blurring of the resonance peak. Considering
the local effective magnetic fields, we again determine a similar behavior as for the
resonance frequencies (see figure 5.88). But, unfortunately, no clear tendency can be
drawn for the effective magnetic field from this graph, making a quantitative analysis
impossible. For completeness sake, also the values for µ′stat are again calculated from the
derived effective parameters (see figure 5.101, also not showing an analyzable behavior.

Figure 5.101 – The magnitude of µ′stat is analyzed for different volume fraction differences.

Nevertheless, we want to find an accessible way in order to raise the quality of our
results. Besides the increasing of the inclusion number, it is also possible that the



Chapter 5 Examination of Finite Samples 238

implementation of periodic boundary conditions in the static simulations is a senseful
step in order to improve the quantitative analyzability of the results because it could
be helpful in order to reduce the blurring of the magnetic field distribution in the high
density regions and, consequently, reduce the standard deviations of the resonance fre-
quencies. Accordingly, we also want to examine the model of varied inclusion densities
with periodic boundary conditions in the next section, even if it does not match to the
chapter of finite samples.

5.3 Excursion: Variation of Inclusion Density with
Periodic Boundary Conditions

In this context, we firstly have to find a meaningful realization of the periodic boundary
conditions which is schematically drawn in figure 5.102. By this, we model an infinite
sample which is divided into two inclusion density regions by the plane area parallely
orientated to the x− y−plane at z = 0.5 cm.

Figure 5.102 – The implementation of the periodic boundary conditions is schematically shown.
The actual sample is highlighted by red contours while light blue marks the low density region
and dark blue the high density region. Picture shows how copies of these regions, of course with
identical inclusion microstructures, are arranged in x− and z−direction in order to generate the
desired conditions. Naturally, the sample is also continued in y− direction (and in the directions
of the bisectings) in the same manner, which is omitted in the sketch for clarity’s sake.

With these boundary conditions, we repeat the analysis of the static magnetic fields for
the same inclusion volume fractions as in the previous section. Corresponding results
for the convergence behavior of the mean values of the magnetic field components
(see figures 5.103-5.109) and the distributions (see figures 5.110-5.122) for the whole
sample and separated according different density regions . There, we regard the case
of Hinc = 183 154 A

m = const. for every volume fraction contrast.
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Figure 5.103 – The components of the average magnetic field at the positions of the inclusions
in dependence of the number of included spheres. Here, the complete sample with the filling
factors 2.4375 % and 3.5625 % under periodic boundary conditions is regarded.

Figure 5.104 – The z−components of the average magnetic field in dependence of the num-
ber of included spheres in the regions with 2.4375 % and 3.5625 % with implemented periodic
boundary conditions are compared to each other.
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Figure 5.105 – The convergence analysis of the magnetic field components is done for the
whole device under periodic boundary conditions with the volume fractions 1.5 % and 4.5 % in
both regions.

Figure 5.106 – The z−components of the average magnetic field in dependence of the number
of included spheres in the regions with 1.5 % and 4.5 % with implemented perdiodic boundary
conditions are compared to each other.
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Figure 5.107 – The convergence analysis of the magnetic field components is done for the
whole device under periodic boundary conditions with the volume fractions 0.75 % and 5.25 %
in both regions.

Figure 5.108 – The z−components of the average magnetic field in dependence of the number
of included spheres in the regions with 0.75 % and 5.25 % with implemented perdiodic boundary
conditions are compared to each other.



Chapter 5 Examination of Finite Samples 242

Figure 5.109 – The convergence analysis of the magnetic field components is done for the
whole device under periodic boundary conditions with the volume fractions 0 % and 6 % in both
regions. Because inclusions are only placed in the high volume fraction region, a separated analysis
of both regions does not contain further information.

Figure 5.110 – We regard field distributions for different inclusion numbers in the whole sample
under periodic boundary conditions with an inclusion volume fraction of 2.4375 % in the upper
region and 3.5625 % in the lower one.
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Figure 5.111 – The same sample as in figure 5.110 is regarded, but only fields in the lower
region with f = 3.5625 % are taken into account.

Figure 5.112 – The same sample as in figure 5.110 is regarded, but only fields in the upper
region with f = 2.4375 % are taken into account.
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Figure 5.113 – The comparison between the field distributions in the high and low density
region for the sample with an inclusion volume fraction of 2.4375 % in the upper region and
3.5625 % in the lower one with periodic boundary conditions. Both distributions are normalized
concerning the number of inclusions in the respective region.

Figure 5.114 – We regard field distributions for different inclusion numbers in the whole sample
under periodic boundary conditions with an inclusion volume fraction of 1.5 % in the upper region
and 4.5 % in the lower one.
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Figure 5.115 – The same sample as in figure 5.114 is regarded, but only fields in the lower
region with f = 4.5 % are taken into account.

Figure 5.116 – The same sample as in figure 5.114 is regarded, but only fields in the upper
region with f = 1.5 % are taken into account.
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Figure 5.117 – The comparison between the field distributions in the high and low density
region for the sample with an inclusion volume fraction of 1.5 % in the upper region and 4.5 %
in the lower one with periodic boundary conditions. Both distributions are normalized concerning
the number of inclusions in the respective region.

Figure 5.118 – We regard field distributions for different inclusion numbers in the whole sample
under periodic boundary conditions with an inclusion volume fraction of 0.75 % in the upper region
and 5.25 % in the lower one.
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Figure 5.119 – The same sample as in figure 5.118 is regarded, but only fields in the lower
region with f = 5.25 % are taken into account.

Figure 5.120 – The same sample as in figure 5.118 is regarded, but only fields in the lower
region with f = 0.75 % are taken into account.
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Figure 5.121 – The comparison between the field distributions in the high and low density
region for the sample with an inclusion volume fraction of 0.75 % in the upper region and 5.25 %
in the lower one with periodic boundary conditions. Both distributions are normalized concerning
the number of inclusions in the respective region.

Figure 5.122 – We regard field distributions for different inclusion numbers in the whole sample
under periodic boundary conditions with an inclusion volume fraction of 0 % in the upper region
and 6 % in the lower one.
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Once again, results converge when we use sufficiently large inclusion numbers in the
whole sample, Ninc ≈ 10 000 in this case, and we can still neglect the magnetic fields
in x− and y−direction. All other observations are qualitatively the same as for the
finite samples in the previous chapter. The question is if the widening of the field
distributions, especially in the high density region, was reduced by the implementation
of the periodic boundary conditions. In order to examine this issue, we exemplarically
compare corresponding distributions for the case of f = 0.75 % in the low density
region and f = 5.75 % in the high density region in figures 5.123 and 5.124.
Unfortunately, we observe that the widening of the distributions was not reduced by the
periodic boundary conditions and the results do not differ significantly. Consequently,
better results compared to the previous chapter can not be expected, wherefore we
dispense of further analysis of these models with high-frequency simulations. Nev-
ertheless, we also want to compare the average magnetic field in the whole samples
for different inclusion volume fractions differencs in both cases which is done in figure
5.125. Here, we recogneize small differences, which increase with the density contrast.
In accordance with results plotted in figure 5.9, we again find lower values for the
devices with periodic boundary conditions.

Figure 5.123 – The magnetic field distributions in the high density region of the composite
with inclusion volume fractions of 0.75 %− 5.25 % are compared for the case of a finite sample
and with periodic boundary conditions.
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Figure 5.124 – The magnetic field distributions in the low density region of the composite with
inclusion volume fractions of 0.75 % − 5.25 % are compared for the case of a finite sample and
with periodic boundary conditions.

Figure 5.125 – The average magnetic field at the places of all inclusions in the sample for dif-
ferent inclusion volume fractions in the cases of finite devices and samples with periodic boundary
conditions are compared. Hinc = 183 154 A

m is valid for inclusion in every simulation.
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5.4 Chapter Summary

In contrast to the previous chapter, we were interested in finite samples in this part of
the present work. For that purpose, we switched off periodic boundary conditions in
the simulations of the static dipolar fields and increased the number of the randomly
inserted inclusions until the large system limit was reached, as also previously done.
Then, this limiting case was again reproduced by representative small systems with
similar static properties in high-frequency simulations. During the evaluation of the
corresponding results, strong artifacts related with the low inclusion number appeared.
In order to reduce this statistical errors, we averaged the entries of the permeability
tensor of interest over several simulation runs with different microstructures inside the
sample. By this procedure, we improved the evaluability of the results.
In this context, we firstly analyzed the permeability tensor’s dependence on the geo-
metric extensions of the device under test. In contrast to examinations of infinitely
extended samples in the previous chapter, the externally applied field and the effec-
tive field, Heff , are not equal anymore due to demagnetization effects at the sample
boundaries. Accordingly, further analysis referred only to the case of Heff = const. for
every volume fraction.
Within this, we showed that different shapes of the sample can cause rising, constant
and decreasing resonance frequencies, which is a very fundamental cognition. Espe-
cially when interpreting experimental measured permeability tensors, this knowledge
must be considered. In order to draw meaningful conclusions from experiments on bulk
material parameters for the equivalent homogeneous samples, a recipe is proposed in
this chapter.
Furthermore, we also regarded inhomogeneous inclusion distributions inside the host
matrix, which could be involuntarily caused through interactive forces like gravity or
buoyancy in real samples. For analyzing this issue, we defined two zones in our sample
with different filling factors of inclusions and applied the same prepatory work with
regard to static field distributions on these systems. Afterwards, the corresponding
small system devices were under test in high-frequency simulations. At this point,
we recognized that artifacts due to the low inclusion numbers were very distinct and
prevented a meaningful analysis. Even averaging of the results for different microstruc-
tures and the implementation of periodic boundary conditions, which were assumed to
reduce statistical errors, were not capable to improve our results. Due to this prob-
lem, no significant conclusions can be drawn on systems with inhomogeneous inclusion
distribution.





Chapter 6

Summary and Outlook

The main task of the present work was to gain knowledge on the properties of com-
posites in the vicinity of the ferromagnetic resonance, consisting out of spherical in-
clusions of ferromagnetic material, which were dispersed in a non-magnetic host ma-
trix. Thereby, the included spheres must fulfill the condition of the effective medium
theory, meaning that they are small in comparison to the wavelength of the incoming
high-frequent electromagnetic signal. With regard to this topic, many analytic ap-
proaches has been proposed over decades, as the mixing formulas by Maxwell-Garnett
and Bruggeman, which try to calculate the composite’s properties out of the compo-
nents’ material parameters. These fundamental theories, which suffer from different
unphysical deficiencies, were taken up in the works of [36,37], in which several of these
lacks were overcome. Therein, the authors mainly concentrate on a possible shift of
the resonance frequency in dependence of the filling factor of the ferromagnetic ma-
terial under a constant externally applied field. By an analytic approach, taking into
account the tensorial character of the permeability of ferromagnetic materials and the
influence of static magnetization of the included spheres, a shift of the resonance to-
wards lower frequencies was derived for filling factors smaller than 30 % in a spherical
or infinite sample, before tendency inverts and returns to values for homogeneous ma-
terials, again.
In this work, we tried to gain further insight into this topic by analyzing such com-
posites with filling factors up to 10 % with the help of simulation methods, which is
done in several steps. At first, we calculate static dipolar interactions between the
magnetic moments of the included spheres in the large system limit, i.e. we require
convergence of the distribution of the dipolar field values at the center of every inclusion
with regard to their number Ninc. In these simulation, a relaxation of the magnetic
moment to an equilibrium state is included while the condition of self-consistency is
obeyed. Due to the high memory consumption in the high-frequency simulations, we
can not examine these large systems, but we are able to find composites with low in-
clusion numbers (Ninc = 27 or Ninc = 64) reproducing the static field distributions
in the limit of Ninc → ∞. These systems with low inclusion numbers are then trans-
ferred into high-frequency simulations of transmission and reflection experiments in a
rectangular waveguide performed with HFSS by Ansys and MOR by LTE. From the
found S−parameters, we are able to calculate the effective permeability tensor of the
composite under test with the help of the evaluation method developed in [45, 46].
These simulation steps are firstly excuted with a constant magnetic bias Hinc in every
inclusion and for every filling factor in order to determine the effective magnetization
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of the composites under test. Afterwards, these determined values of Meff are used
for a demagnetization conversion between the internal field in the inclusions and the
effective field Heff in the composite. With this converted data, we analyze the shift of
the ferromagnetic resonance, the strength of the resonance peak |µ′′max| and the static
permeability µ′stat with a constant value of Heff in dependence of the volume fraction
of included ferromagnetic material. Furthermore, we also derived formulas for the ef-
fective permeability tensor in the given parameter range.
Firstly, we concentrated on composites with infinite extensions, in which inclusions are
arranged on a simple cubic lattice, as an elementary starting point of our examinations.
Conditioned by this microstructure, we can neglect dipolar interactions between the
ferromagnetic spheres, through which we are able to separate the influence of their
static magnetization. Drawing conclusions on infinitely extended samples was possible
by performing high-frequency simulations with homogeneous samples with the same
shape whose material parameters were varied until their resonance curves match the
ones of the corresponding composite. Due to the equivalence of the externally applied
field and the effective field Heff in case of infinite samples, we were able to analyze the
resonance frequency under a constant external field, as experimentally relevant. As
evaluation of the in-silico experiments showed, resonance frequency remains constant
for every volume fraction of ferromagnetic material in this case.
In the next step, we analyzed infinitely composites with a random inclusion insertion,
leading to significant dipolar interactions between the ferromagnetic spheres, which
were firstly included in a mean field approach. Accordingly, we neglected the spatial
inhomogeneity of the dipolar field and assumed the corresponding mean value Hdip for
the place of every inclusion. As simulation sequences with a constant external field
showed, this approach leads to rising resonance frequencies for the regarded range of
filling factors. Further increasing complexity, we also took into account the spatial
distribution of the dipolar fields. Consequently, every inclusion is supposed to a dif-
ferent magnetic field in our simulations, causing different permeabilities and resonance
frequencies. Within this, we detected the tendency of the resonances to shift towards
lower values under constant externally applied field. This phenomenon was detected
as a consequence of the blurring of the resonance peaks and the implemented Polder
model. Summarizing, we found two supposing and counteracting effects with regard
to the shift of the resonance, from which the decreasing one is dominant. Especially,
these recognition showed that a mean field approach for respecting the dipolar inter-
action leads to wrong results. Consequently, we concluded that the regarded infinitely
extended composites show a decreasing resonance frequency when inclusions’ volume
fraction increases in the range from 0 % to 5 % while the external magnetic field re-
mains constant. As it was shown in the performed high-frequency simulations, further
increasing of the filling factor is connected with growing errors due to the low accessible
particle number, leading to unreliable data.
In order to come closer to the results of real experiments, we also investigated finite
samples with regard of the spatial inhomogeneity in the dipolar fields in our simulations.
In contrast to infinitely extended samples, the externally applied and the effective field
Heff differ due to demagnetization effects at the sample boundaries in the waveguide.
Accordingly, we kept only the value of Heff constant for different filling factors.
In this context, we firstly analyzed the influence of the matrix geometry on the per-
meability and especially the resonance frequency. Therein, we recognized that we can
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create devices with increasing, constant and shrinking resonance frequencies by the
variation of the host matrix’s shape. An explanation for this behavior can be found in
the form of the dipolar field of the magnetic moments and their interaction. During
these simulation sequences, statistical errors and artifacts, caused by the more dis-
ordered microstructures in comparison to the composites corresponding to infinitely
extended material systems, appeared which were reduced by taking the mean value of
the effective permeabilities of different samples generated under the same conditions.
Nevertheless, examination appeared only meaningful in the range to filling factors up
to 5 % due to the enforcing of the artifacts with growing inclusion volume fractions, as
before.
In the last simulation sequences of this work, we tried to analyze the influence of the
inhomogeneous inclusion densities in the sample. Unfortunately, this examination was
disturbed by even stronger artifacts due to the limited inclusion numbers in the high-
frequency simulations, which could not be overcome with the methods at hand.

Considering forthcoming research, it would be very helpful to develop methods which
allow higher inclusion numbers in high-frequency simulations in order to reduce sta-
tistical errors in the analysis of randomly generated systems. Besides a refining effect
on the gained results, especially in the case of finite samples, this would open new op-
portunities with regard to further examinations: As it was already indicated in static
simulations in the present work, polydispersity of the included spheres could have
further influence on the composites behavior. Unfortunately, the accessible inclusion
numbers are much too low in order to gain meaningful insight into this topic. More-
over, the issue of inhomogeneous inclusion distributions, which is tried to examine with
the help of a simple model, offers much more interesting cases, as the accumulation of
spheres, induced by attractive forces, or other special microstructures.
Furthermore, the usage of ellipsoid but spherical inclusions, with corresponding more
complex demagnetization effects, could be an interesting topic of research.
Additionally, the examination of higher filling factors in every of the regarded or not-yet
regarded cases is worthy to analyze because of the necessary existence of a returning
point of the resonance shift behavior. For that purpose, further refinement of the
static simulations, meaning the inclusion of higher magnetic moments and taking into
account the spatial distribution of them, is necessary in order to generate trustworthy
results.
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