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Abstract. Nanocrystalline and ultrafine-grained Cu100-xCox (x =26 and 76) solid solutions have 

been prepared by severe plastic deformation (SPD) of elemental powder mixtures. For both 

concentrations a supersaturated solid solution fcc phase was identified after the deformation 

process with grain sizes of less than 50 nm for Co rich solutions and around 100 nm for Cu rich 

solutions. Additionally, synthesis of nanocrystalline materials in the Cu-Co alloy system by 

electrodeposition has been conducted. Microstructural characterization by scanning and 

transmission electron microscopy, differential scanning calorimetry, and microhardness 

measurements are used to investigate the structural evolution, the thermal stability and 

mechanical properties of the different nanocrystalline Cu-Co alloy materials during isothermal 

and non-isothermal annealing. In this study it is shown that the phase decomposition of the 

metastable Cu-Co solid solutions has a significant influence on their thermal stability, which 

can be linked to the underlying microstructure that forms during annealing.  

1.  Introduction 

Nanocrystalline (nc) and ultrafine-grained (ufg) materials have been a subject of extensive research 

over the past couple of decades due to their extraordinary mechanical and physical properties like high 

strength [1-3]. Nc and ufg materials are, however, thermally and mechanically unstable due to the 

large amount of enthalpy stored in their large grain boundary area, and structural coarsening affects 

material properties considerably even for annealing at low temperatures for short times [4]. Hence, the 

stability of nc and ufg materials is a fundamental issue, but strategies to enhance grain size stability are 

still under research.  

In this study, synthesis of bulk nc and ufg materials is conducted by severe plastic deformation 

(SPD) and electrodeposition (ED) in the Cu-Co model system. The peritectic Co-Cu system has a 

positive heat of mixing extending over the whole composition range and no room temperature 

solubility at all [5]. Due to strain-induced mechanical mixing, nc alloys with solubilities far beyond 

equilibrium have been already obtained in different immiscible Cu-based alloy systems by SPD [6-9]. 

In [10] it is reported, that Cu-Co solid solutions can be synthesized by ED as well. The metastable Cu-

Co solid solutions are not in an equilibrium state after processing. During subsequent annealing 

treatments, phase decomposition is expected. Tailoring material properties for potential technological 
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applications requires an understanding of the structural changes which occur during annealing and an 

evaluation of a possible impact of phase decomposition on thermal stability and mechanical-physical 

properties. In this study, microstructural evolution during annealing and the thermal stability of 

electrodeposited and severe plastically deformed nc and ufg Cu-Co solid solutions are investigated. It 
is shown that the phase decomposition process has a major impact on the thermal stability with a 

direct relation of structure to stability. 

2.  Experimental 

The initial two-phase Cu100-xCox materials (x=26 and 76 at. %) were hot-isostatically pressed at 900°C 

under vacuum by RHP-Technology (Seibersdorf, Austria) from Co powders (purity 99.9%) and Cu 

powders (purity 99.99%) into samples with a cylindrical shape and subsequently processed by SPD 

(high-pressure torsion (HPT) deformation at room temperature with a pressure of 5 GPa and a rotation 

speed of 0.2 rpm). To study the influence of the impurity content, Co and Cu powders with a lower 

purity (99.8 and 99.9%) were additionally prepared in the same composition by applying the same 

HPT deformation parameters. The strain value applied (equivalent strain ≥ 210 for a distance ≥ 1.5 

mm from the sample centre) is high enough to obtain the steady state region of the microstructural 

refinement (i.e. further HPT deformation does not induce further grain refinement) in the samples 

[11,12]. 

Synthesis of Cu24Co76 alloys was further conducted by ED in reducing simultaneously the Cu2+ and 

Co2+ ions onto a Cu substrate from an electrolyte solution containing 112 g/l CoSO4·7 H20, 6 g/l 

CuSO4, 142 g/l Na2SO4, 59 g/l C6H5Na3O7·2 H20, 19 g/l H3BO3, 2g/l C7H5NO3S and 

0.1 g/l C12H25NaO4S at 40°C. The deposition parameters were adjusted to obtain a Co content similar 

to the HPT deformed materials resulting in a current density j= − 30 mA/cm² at a pH= 4.5.  

All samples were further subjected to isothermal heat treatments at 300°C, 400°C, 600°C for 1 h in 

air. Selected HPT deformed samples are also annealed at the same temperatures for 7 h and 100 h to 

investigate the long term stability of the processed materials. Vickers microhardness was measured on 

all samples in as-deformed/deposited and annealed conditions. Microstructural characterization was 

carried out by scanning electron microscopy (SEM) using a Zeiss SIGMA™-VP field emission SEM 

device. Electron-back scatter diffraction (EBSD) is conducted using the EBSD system (Oxford 

Nordlys EBSD detector) attached to the SEM and Oxford HKL Channel 5 analysis software. 

Transmission electron microscopy (TEM) investigations of selected samples were performed on a 

JEOL JEM 2011 instrument at an acceleration voltage of 200 kV. 

Differential scanning calorimetry (DSC) and differential thermal analysis (DTA) measurements on 

selected samples were performed using a Perkin Elmer DSC 8000 and a Netsch STA 446/C/6/MFG/G 

Jupiter device. Subsequent re-runs served as the reference measurement and baseline for the analysis 

for all measurements. For the determination of the activation energies with the method of Kissinger, 

different linear heating rates of 10, 20, 60 and 120 °C/min in a temperature range from 25°C to 720°C 

were applied. 

3.  Results and Discussion 

 

3.1.  As-deformed state 

Both Cu-Co alloy materials are deformed until the steady state is reached. During the HPT process, the 

microstructure of the initial two-phase Cu-Co materials is strongly refined. The microstructures of the 

alloys in this steady state are displayed in Figure 1, which shows SEM images recorded with back 

scattered electrons. Both samples are homogeneously refined. From the SEM images, it is not possible 

to distinguish between the Cu and Co phases. With increasing Co content in the alloy, the grain size is 

reduced. Similar types of nanostructures are obtained for the samples from the low-purity Cu-Co 

materials. Vickers hardness measurements reveal for both compositions the typical high hardness of 

HPT deformed materials. The hardness in the as-deformed state is 314±11 HV and 444±12 HV for the 

Cu74Co26 and Cu24Co76 alloy obtained from the high-purity material, respectively. The hardness of the 
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samples made of the lower-purity material is 281±4 HV (Cu74Co26) and 437±4 HV (Cu24Co76). All 

alloys exhibit a higher hardness compared to pure HPT deformed Cu and Co [13,14], which is due to 

the smaller grain size in the alloys compared to pure HPT deformed materials.  

 

 

 

 

 

 

 

 

Figure 1: SEM images recorded 

with back-scattered electrons of 

the microstructure of the samples 

in the as-deformed condition: 

a) Cu74Co26 and b) Cu24Co76. 

 

Figure 2 shows bright-field TEM images of the as-deformed Co- and Cu-rich samples. From these 

images, a grain size less than 50 nm for Co rich alloy (Figure 2a) and around 100 nm for Cu rich alloy 

(Figure 2b) can be confirmed. In both selected area diffraction (SAD) patterns, a single set of 

diffraction rings is visible, which are either fcc Cu or fcc Co Debye-Scherrer rings of {111}, {200}, 

{220}, {311} and {222} planes. The fact that the fcc Cu and fcc Co Debye-Scherrer rings merge into 

each other might be explained by the formation of a supersaturated solid solution in the Cu-Co alloys. 

Due to the small difference in the lattice parameters of fcc Cu and fcc Co, a clear discrimination 

between the reflections from the SAD patterns is challenging. However, large supersaturations up to 

26 at. % Co in fcc Cu have been recently confirmed by atom probe tomography (APT) in the Cu74Co26 

alloy [15]. To prove the formation of supersaturated solid solutions in the alloys with a higher Co-

content, APT investigations are currently conducted.  

 

 

 

 

 

 

 

Figure 2: TEM bright field images 

with corresponding SAD patterns 

(insets) of the microstructure of the 

samples in the as-deformed 

condition: Cu24Co76 (a) and 

Cu74Co26 (b). 

 

3.2.  As-deposited state  

Synthesis of bulk nc Cu-Co alloys is additionally conducted by ED. By adjusting the deposition 

parameters, a Cu-Co alloy with the same Co content as the HPT deformed Co-rich alloy (Cu24Co76) is 

obtained. Smaller Co contents similar to the composition of the HPT deformed Cu-rich alloy could not 

be achieved up to now. Figure 3a shows the microstructure of the as-deposited alloy recorded with 

back scattered electrons. Similar to the HPT deformed Co-rich alloys the grain size is nc and hardly 

resolvable by SEM. In Figure 3b, a bright-field TEM image with corresponding SAD pattern of the as-

deposited Co-Cu alloy sample is shown. Only one set of fcc Debye-Scherrer rings (either fcc Cu or fcc 

Co) is observable in the SAD pattern, which also suggests a mixture of the two phases in the as-

deposited condition. The ED Cu-Co alloy sample exhibits a quite high hardness in the as-deposited 
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state, which exceeds the hardness of the HPT deformed sample. The microhardness of the Cu24Co76 

alloy is 471±9 HV. 

 

 

 

 

 

 

Figure 3: SEM image (a) recorded 

with back-scattered electrons and 

TEM bright field image (b) with 

corresponding SAD patterns (inset) 

of the microstructure of the 

Cu24Co76 alloy sample in the as-

deposited condition. 

 

3.3.  Non-isothermal and isothermal annealing 

To investigate the thermal stability of the Cu-Co alloys, the samples are initially annealed for 1h in air 

at three different temperatures (300°C, 400°C, 600°C), which corresponds to ~35, 40 and 52 % Tm  

with Tm being the melting temperature of the corresponding Cu24Co76 or Cu74Co26 alloys, respectively. 

The microhardness as a function of the annealing temperature after annealing for 1h in air is plotted in 

Figure 4. The microhardness of the HPT deformed Cu24Co76 alloy decreases only slightly for 

annealing temperatures up to 400°C. The hardness of the Cu rich alloy (Cu74Co26) even increases 

during annealing at the same temperatures. At the highest annealing temperature (600°C), a drop in 

hardness can be observed for both HPT deformed samples, which is less pronounced for the Co rich 

alloy. The microhardness of the ED Cu24Co76 alloy increases for the lowest annealing temperature 

(300°C) as well. However, at an annealing temperature of 400°C, a strong hardness decrease is 

observed (Δ HV = 133). 

 

 
Figure 4: Microhardness of HPT deformed and ED Cu-Co alloy samples as a function of annealing 

temperature (300°C, 400°C, 600°C) after 1h annealing time. The microhardness of HPT deformed 

samples annealed at 300°C, 400°C and 600°C for 7 h and 100 h is also shown in the plot. Dark-field 

TEM images of the HPT deformed and ED Cu24Co76 alloy samples annealed for 1h at 300°C obtained 

by selecting the lattice reflections as indicated in the SAD patterns. 

 

In Figure 4, dark-field TEM images of selected annealed microstructures (HPT deformed and ED 

Cu24Co76 alloy annealed for 1h at 300°C) are additionally shown. In both samples a nc structure is still 

visible. The corresponding SAD patterns (see insets) reflect the nc structure as well. Evaluation of the 

annealed microstructures by SEM after annealing at 400°C for 1h shows that the HPT deformed 
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Cu-Co alloys exhibit no distinct change compared to the microstructure in the as-deformed state. By 

contrast, massive grain growth occurs in the ED Cu24Co76 alloy (Figure 5a). Inside the micrometer-

sized grains, a fine scaled substructure is visible (Figure 5b). 

 

 

 

 

 

 

Figure 5: SEM images recorded 

with back-scattered electrons of 

the microstructure of the ED 

Cu24Co76 alloy sample after 

annealing for 1h at 400°C: 

Overview (a) and detailed view 

with a high magnification (b). 

 

Thermal analysis was further performed to determine the decomposition temperature and annealing 

kinetics of the HPT deformed Cu-Co alloy materials. The Cu74Co26 and Cu24Co76 alloy samples show 

broad and overlapping exothermic peaks in the DSC scans (Figure 6a and b). Overlapping peaks are 

reported to occur frequently during annealing of supersaturated solid solutions [16]. The thermal 

processes of the Cu-Co alloys are further not completed at the maximum temperature (720°C) which 

can be applied during the DSC measurements. Therefore, additional DTA measurements were carried 

out with a linear heating rate of 20 °C/minute in a temperature range from 25°C to 1000°C (Figure 6c). 

In these scans, additional broad exothermic peaks at higher temperatures are visible. 

 

SEM microstructural characterization of the DSC samples heated up to 700°C shows no significant 

grain growth although distinct heat releases are clearly observable in the DSC scans (Figure 6a and b). 

On the contrary, SEM analysis shows that grain growth and phase decomposition take place in the 

Cu-Co alloy samples after the DTA scans (maximum temperature 1000°C). As an example, an EBSD 

phase map of the Cu74Co26 alloy sample after the DTA scan is displayed in Figure 7. Areas appearing 

red and blue in the map represent the fcc Cu phase and the hcp Co phase, respectively.  

 

Figure 6: DSC scans with different heating rates for the Cu-Co alloys after HPT deformation: a) 

Cu74Co26 and b) Cu24Co76. DTA scans of both Cu-Co alloy samples with a heating rate of 

20°C/minute (c). Kissinger plot for the Cu-Co alloy samples with different initial purities (d).  
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Figure 7: EBSD scan of the Cu74Co26 alloy sample after 

the DTA scan, with all grains belonging to the hcp Co and 

fcc Cu are marked as blue and red, respectively. The phase 

map is superimposed by an image quality map. 

  

Hence, the exothermic peaks at intermediate temperatures (indicated by the arrows in the DSC and 

DTA scans) might be attributed to the decomposition process of the metastable Cu-Co solid solutions. 

With increasing Co content, the peak temperature of the decomposition process increases from 

~440°C (Cu74Co26) to ~545°C (Cu24Co76). Additionally, the starting temperature of the second 

exothermic process (i.e. grain growth) is shifted to higher temperatures with increasing Co content 

(marked with dashed line in Figure 6c). 

For the Cu74Co26 and Cu24Co76 alloy samples (low and high purity initial materials), the peak 

temperatures of the decomposition process at various heating rates are also evaluated by the method of 

Kissinger (Figure 6d). Due to the occurrence of broad and poorly separated peaks, the validity of the 

Kissinger analysis in terms of a single process is not strictly fulfilled and the obtained activation 

energies provide only a qualitative hint for the underlying processes occurring during phase 

decomposition. For the Cu24Co76 alloy samples, similar activation energies of 1.42±0.05eV (lower 

purity material) and 1.36±0.09eV (higher purity material) are determined. For the Cu74Co26 alloy 

samples, slightly different activation energies of 1.79±0.03eV (lower purity material) and 

1.49±0.04eV (higher purity material) are observed. The value of activation energies for phase 

decomposition are considerably lower than values typical found for Co tracer diffusion in bulk Cu, 

2.2 eV [17], Cu tracer diffusion in bulk Co, 2.85 eV, [18] and Co-Cu interdiffusion, 2.5 eV [19] and 

Cu and Co self-diffusion activation energies in the fcc lattice [20,21].  

 

3.4.  Long term stability 

Selected samples are also annealed at 300°C, 400°C and 600°C for 7 h and 100 h to investigate the 

long term stability of the HPT processed materials. The measured microhardness after annealing is 

summarized in Table 1 and additionally plotted in Figure 4. At low annealing temperatures (300°C and 

400°C), nearly no change in microhardness independent on annealing time is measured. In contrast, 

the microhardness decreases with increasing annealing time at the highest annealing temperature 

(600°C). After an annealing time of 7 h, a microhardness of 178±4 HV and 363±20 HV is measured 

for the Cu74Co26 and Cu24Co76 alloy, respectively. After 100h annealing time, the microhardness is 

further reduced to 171±3HV (Cu74Co26) and 343±13HV (Cu24Co76). 

Long-term annealing at 400°C leads only to minor microstructural coarsening.  Annealing at 600°C 

for different times results in notable coarsening instead. To give an example, TEM images of the 

Cu74Co26 alloy after annealing for 7h and 100h at 400°C and after annealing for 100h at 600°C are 

displayed in Figure 8. A grain size on the average around 100 nm is visible in the TEM bright field 

image of the microstructure annealed at 400°C for 7h (Figure 8a). Inside the grains, fine scaled 

contrast variations are additionally visible. Tilting the electron beam reveals that nearly all of the large 

grains show this kind of contrast modulations in the regions explored with TEM. In the SAD pattern, 

only fcc Debye-Scherrer rings of {111}, {200}, {220}, {311} and {222} planes are observed. 

Annealing for longer times at the same annealing temperature does not lead to further coarsening or to 

a significant change in the resulting microstructure (Figure 8b). 
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Table 1. Microhardness of annealed HPT processed samples. 

microhardness 

annealed  

HPT Cu74Co26  HPT Cu24Co76 

7h  100h  7h 100h 

300°C 283±10 HV 296±6 HV  433±7HV  448±8HV 

400°C 320±12 HV  295±11 HV   464±13 HV  432±12 HV  

600°C 178±4 HV 171±3HV   363±20 HV  343±13HV  

 

On the contrary, the TEM bright field image of the Cu74Co26 alloy annealed for 100h at 600°C 

displays a microstructure in which significant grain growth occurred (Figure 8c). Similar modulated 

contrast variations as displayed in Figure 8a-b are visible in some of the grains. Some grains, however, 

fail to show any of these contrast variations. The SAD pattern shows two sets of spotty diffraction 

rings (fcc Cu and fcc Co) further confirming the observed microstructural coarsening.  

 

 

Figure 8: TEM bright field images with corresponding SAD patterns (insets) of the microstructure 

of the Cu74Co26 alloys after annealing for 7h (a) and 100 h (b) at 400°C and 100h at 600°C (c). 

 

4.  Summary 

Nc and ufg bulk Cu-Co alloys have been prepared by HPT and ED with similar Co contents and their 

thermal stability during isothermal and non-isothermal annealing is investigated. The grain size and 

hardness in the as-deposited or as-deformed condition depends on the Co content. Samples with a 

higher Co content exhibit a higher hardness and smaller grain sizes. For both alloy compositions, the 

formation of fcc solid solutions is observed.  

No significant grain growth is observed before completion of phase separation in the SPD-

processed Cu-Co solid solutions. At intermediate annealing temperatures (≤400°C), the Cu-Co alloys 

are thermally stable even after annealing for several days. At the same time, a high hardness is 

maintained in the HPT deformed alloy materials. The onset temperature of phase separation is a 

function of the Co content and increases with increasing Co content. TEM investigations reveal that 

the vast majority of the grains at these temperature show modulated contrast variations which might 

indicate spinodal decomposition inside the grains. 

For isothermal annealing at 600°C, phase separation and clearly visible microstructural coarsening 

is observed in the HPT deformed Cu-Co alloys. Although decomposition and microstructural 

coarsening cannot be hindered, an ufg structure is still maintained in the Cu-Co alloys even after 

annealing at 600°C (~50% Tm) for 100h. In principle, such phase decomposition mechanisms can be 

used to produce tailored nano structures to optimize e.g. thermal or mechanical properties. 
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Similarly, no significant change in the microstructure and microhardness is observed in the ED 

Cu24Co76 alloy sample annealed at 300°C. On the contrary, significant coarsening is observed in the 

ED alloy at an annealing temperature of 400°C. Inside the micrometer-sized grains, a fine-scaled 

substructure is observable, which might be responsible for the still quite high hardness of the ED 

Cu-Co alloy in the annealed state. The reasons for the differing behavior of electrodeposited and 

severe plastically deformed alloys is the scope of future work.  
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