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ABSTRACT

In this thesiswe theoretically explore the perspectives of control of the
quantum dynamics of experimentally relevant systems for quantum
technological applications.

In Part IIwe analyze a quantummemory for single photons consisting
of a single atom confined in an optical cavity and driven by a laser. We
optimize the absorption of the single photon into an atomic excitation
by suitably tailoring the laser pulse.

In Part III we analyze amonolithic diamond structurewhich embeds
a nitrogen-vacancy center. We identify the parameters regime and the
processes that lead to radiative cooling of a mechanical mode of the
diamond structure by laser-driving the NV-center.

In Part IVwe investigate spontaneous spin-spatial pattern formation
in an ensemble of laser driven thermal atoms confined in an optical
cavity and explore the perspectives of using this system as quantum
simulator of quantummagnetism.

ZUSAMMENFASSUNG

In dieser Arbeit erforschenwir theoretisch die Perspektiven die Dyna-
mik von Quantensystemen zu kontrollieren. Systeme, die relevant für
quanten-technologische Anwendungen sind, liegen dabei im Fokus die-
ser Arbeit.

In Abschnitt II untersuchenwir Quantenspeicher für einzelne Photo-
nen, bestehend aus einem einzelnen Atom,welches sich in einem opti-
schen Resonator befindet und durch einen Laser angetriebenwird.Wir
optimieren die Absorption des einzelnen Photons in eine atomare Anre-
gung durch geeignetesManipulieren der Form des Laserpulses.

In Abschnitt III untersuchenwir einemonolithische Diamantstruktur,
welche ein Stickstoff-Fehlstellen-Zentrum einbettet.Wir identifizieren
das Parameterregime und die Prozesse, die durch das Laser angetriebe-
ne Stickstoff-Fehlstellen-Zentrum zu einer Kühlung dermechanischen
Mode der Diamantstruktur führen.

In Abschnitt IV untersuchenwir die spontane Entstehung von spin-
räumlichen Mustern in einem Ensemble, bestehend aus thermischen
Atomen,welche sich in einem optischen Resonator befinden und durch
einen Laser angetriebenwerden.Wir erforschen die Perspektiven zur
Nutzung dieses Systems als Quantensimulator im Bereich des Quanten-
magnetismus.
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INTRODUCTION

Quantummechanics is the theory that describes in themost effective and
precise way the physical processes at the elementary particle level [1].
Experiments in different physical setups have confirmed the predictions
of quantum mechanics, and its validity is in general not questioned.
Currently, intensive effort is made to control the quantum dynamics of
the interaction between light andmatter for practical applications, for
instance to develop quantum based technologies [2, 3].

A primary goal of quantum based technologies is the realization of
quantum networks [4]. A quantum network exploits the superposition
principle and entanglement in order to enable secure communications
between distant nodes in space [2] and in principlewarrants secure com-
munications [2] (for instance via quantum key distribution (QKD) [5, 6]),
allows clock synchronization [7] and could improve astronomical obser-
vations by combining light from different telescopes [8]. The simplest
idealization of a quantum network consists of quantum nodes connected
via quantum channels: quantum nodes generate, store and process infor-
mation via quantum mechanical dynamics, while quantum channels
transmit the quantum information between the nodes.

Another primary goal is the realization of a quantum computer [9, 10].
A quantum computer is a device that, bymeans of quantum effects such
as superposition and entanglement, can perform certain computational
tasks that a classical computer practically cannot. A prominent example
is integer factorization: the Shor’s algorithm [11] (if run on a quantum
computer) can factorize an integer in a timewhich grows polynomially
with the input size, differing from classical algorithms known so far. In
fact the best known classical algorithm, the general number field sieve [12],
is sub-exponential in time, i. e. its running time growswith the input size
faster than anypolynomial. The concept of quantum computers being
able to perform tasks which are impossible for classical computers is
referred to as quantum supremacy [13]. RecentlyGoogle published a paper
claiming to have experimentally proven quantum supremacy [14, 15] by
sampling the output of a random quantum circuit [16]. Furthermore, a
quantum computer can be embedded in a quantum node of a quantum
network in order to process information.

Developments in applied quantum physics can also lead to the realiza-
tion of a quantum simulator [17, 18], i. e. a device that tailors the quantum
dynamics of a system in order to simulate another, less experimentally
controllable, quantum system. A quantum simulator could address the
solution of outstanding problems in physics such as high-temperature
(high-𝑇c) superconductors [19–21] and the dynamics of spin glasses [22,
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2 introduction

23], and improve understanding of quantumprocesseswith applications
in fields such as chemistry [24] and biology [25, 26].

Another promising goal is the development of tools for quantummetrol-
ogy and sensing [27–29]. Research in this area aims to develop approaches
and devices that allowmeasurementswith a precision beyondwhat is
possiblewith classical physics [29]. This has implications ranging from
measurement of physics’ fundamental constants [30] to imaging in bio-
logical systems [31].

The progress in each of these research areas draws from the control of
the quantum dynamics of manydifferent physical systems, such as for
instance singlephotons [32], trapped ions [33], quantumgases [34], single
atoms [35], impurities in solids [36] and superconducting circuits [37].
According to the present knowledge each physical system, having its
own advantages and drawbacks, is best suited for a particular task. For
instance, single photons seem best suited to transmit information and to
distribute entanglement between distant nodes,while atoms and atomic
ensembles seem best suited to store and process information [4].

In this thesiswe theoreticallyexplore theperspectives of control of the
quantumdynamics of physical systems relevant for quantum technolog-
ical applications. These are (i) a single atom trapped in an optical cavity
for the purpose of realizing a quantummemory, (ii) a solid-state system
consisting of a nitrogen-vacancy (NV) center embedded in a diamond
structurewith the aim of identifying promising features it may offer for
quantum communications and quantum sensing, and (iii) an ensemble
of spins confined in an optical cavitywith the goal of assessing its poten-
tial as quantum simulator of quantummagnetism and opto-magnonic
systems.

The common theoretical grounds for the description of these systems
are quantum optics, cavity quantum electrodynamics and the theory of
open quantum systems. We use themethods developed in these fields in
order to analyze and identify the control tools of light-matter interac-
tions in these setups.

This thesis is divided in four parts. In Part I we introduce the basic
theoretical tools: Chapter 1 reviews the basic concepts of light-matter
interactions in the quantum regime, and in Chapter 2we review the Born-
Markovmaster equation formalism and twomethods that can be used to
solve it, namely, the spectral decomposition of the Liouville operator and the
Wigner transformation.

In Part IIwe present the analysis of a quantummemory composed by a
single atom trapped inside an optical cavity. In Chapter 3we consider
a single photon impinging on one mirror of the cavity. The photonic
excitation is stored in an atomic excitation bymeans of an external driv-
ing laser. We derive the optimal shape of the laser field in order to store
the single photon with highest efficiency in presence of cavity losses.
We analyze both the adiabatic regime in which analytical results are
derived, and the non-adiabatic regime where we use optimal control
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theory (OCT) to explore the storage of photonswhich are short in time
with respect to the time scale of the atom-cavity system. In Chapter 4we
investigate theoretically howweak coherent pulses can be used to probe
the efficiency of single-photon quantummemories.

In Part III,we present the characterization a hybrid quantum system com-
posed of aNV-center in amonolithic diamond structurewhich is both an
optical and amechanical resonator. We analyze the cooling dynamics of
themechanical resonator harnessing an optical pump of the NV-center.
We show that the optical resonator has little impact on the cooling rate
andfinal temperature of themechanical oscillator,while pure dephasing
of the electronic energetic levels of the NV-center leads to amore robust
cooling. We also examine the spectrum of resonance fluorescence in
order to identify the cooling processes. Coolingmechanical degrees of
freedom of hybrid devices is important for quantum information pro-
cessing [38–41], and for ultrasensitive detection applications [42–46]
because of the reduced effect of thermal fluctuation.

Part IV is composed of the single Chapter 6. Here we investigate a
system composed by an ensemble of atoms confined in an optical cavity.
The atoms are driven by two external lasers and scatter light into the
cavity mode, which, in turn, dissipate lights. The parameters can be
tailored such that the system reaches an out-of-equilibrium steady state.
The atoms in this steady state exhibit a controllable antiferromagnetic
ordering. This setup can be used to simulate quantummagnetism [47]
and opto-magnonic systems [48, 49].





Part I

PREL IM INAR IES

Wereviewsomeof thebasic concepts onwhich the rest of the
thesis draws. In the first chapterwe summarize some impor-
tant models of atom-photon interactions in quantum optics.
We introduce the Hamiltonian of a two-level atom interact-
ingwith an electromagnetic field, both in free space and in an
optical cavity. We also shortlydiscuss cavityopto-mechanics.
In the second chapter we review the Born-Markovmaster
equation and sketch its derivation. We discuss the general
solution of the master equation bymeans of the damping
basis. We finally introduce theWigner function and describe
its applicationwithin themaster equation formalism.





1
L IGHT-MATTER INTERACTIONS

Electromagnetic interactions govern the dynamics of charged particles,
such as electrons, protons and ions. The understanding of the interac-
tions betweenmatter and light played and plays a central role inmodern
and contemporary physics. The characterization of black-body radia-
tion [50] andof thephotoelectric effect [51], for instance,were fundamen-
tal steps in the development of our current understanding of quantum
mechanics. The properties of light emitted and absorbed by atoms and
molecules allows us to gain information about their structure and their
dynamics. In atomic, molecular, and optical (AMO) physics, light-matter
interactions are nowadays well understood and used for applications
such as high-precision spectroscopy, optical trapping, cooling, manipu-
lation of atomic internal states, and quantum based technologies.

In this chapterwe provide some basic concepts of light-matter inter-
actions. In Sec. 1.1 we summarize the formalism used to describe the
interactions of an elecromagnetic fieldwith an atom. In Sec. 1.2we fo-
cus on the description of an optical cavity and its interactionswith an
atom. Finally, in Sec. 1.3 we briefly sketch the concepts at the basis of
cavity-optomechanics.

The presentation in this chapter follows broadlyRefs. [52–56].

1.1 the interactions between light and atoms

Consider an atom of mass𝑚whichmoves freely in space. The system
energy is the sum of the atom kinetic and internal energies, the electro-
magnetic field energyand the atom-field interaction. The corresponding
Hamiltonian is conveniently cast into the sum of three terms

�̂� = �̂�at + �̂�em + �̂�int, (1.1)

where �̂�at is the Hamiltonian of the free atom, �̂�em is the Hamiltonian
of the electromagnetic field, and �̂�int describes their interaction.

In quantum optics one typically assumes non-relativistic particles.
The fields are assumed to bemonochromatic and sufficientlyweak such
that the electronic levels can be reduced to the oneswhich resonantly
couple to the external driving field. In the followingwe assume a two-
level transition at frequency𝜔a.

The Hamiltonian �̂�at of the internal and external degrees of freedom
of the atom in free space is

�̂�at =
̂𝒑2

2𝑚 + ℏ𝜔a|𝑒⟩⟨𝑒|, (1.2)

7



8 light-matter interactions

where ̂𝒑 is themomentum operator of the atom center of mass and ℏ𝜔a
is the energy splitting between the ground state |𝑔⟩ and the excited state
|𝑒⟩ of the two level transition.

The Hamiltonian �̂�em of the electromagnetic field in second quantiza-
tion reads

�̂�em = ∑
𝑖
ℏ𝜔𝑖( ̂𝑎†𝑖 ̂𝑎𝑖 +

1
2), (1.3)

where ̂𝑎𝑖 and ̂𝑎†𝑖 annihilate and create, respectively, a photon in the 𝑖-th
mode of the electromagnetic field. They fulfill the commutation relation
[ ̂𝑎𝑖, ̂𝑎†𝑗 ] = 𝛿𝑖𝑗. We assume that the field is quantized over the volume 𝑉
with periodic boundary conditions. Eachmode is indexed by 𝑖 = (𝒌𝑖, 𝝐𝑖)
that consists of thewavevector 𝒌𝑖 and the polarization 𝝐𝑖, which satis-
fies 𝝐𝑖 ⟂ 𝒌𝑖. The frequency of the 𝑖-th mode is 𝜔𝑖 = |𝒌𝑖|𝑐 where 𝑐 is
the speed of light in vacuum. The Hamiltonian (1.3) has eigenvalues
∑𝑖 ℏ𝜔𝑖(𝑛𝑖 + 1/2). The integers 𝑛𝑖 = 0, 1, 2, … represent the number of
photons in themode 𝑖 and are the eigenvalues of the operator ̂𝑎†𝑖 ̂𝑎𝑖. The
corresponding eigenstates are denoted |𝑛𝑖⟩. The ground state |vac⟩ fulfills
the relation

̂𝑎𝑖|vac⟩ = 0, ∀𝑖, (1.4)

and is called vacuum state.
The interaction Hamiltonian in electric dipole approximation1 isdipole approximation

�̂�int = − ̂𝒅 ⋅ ̂𝑬( ̂𝒓), (1.5)

where ̂𝒅 = 𝒅eg|𝑒⟩⟨𝑔| + 𝒅ge|𝑔⟩⟨𝑒| is the dipole operator and 𝒅eg = 𝒅∗ge are
the transitionmatrix elements between the two states. The electric field
operator ̂𝑬( ̂𝒓) is quantized and taken at the center of mass position ̂𝒓 of
the atom

̂𝑬( ̂𝒓) = ∑
𝑖 √

ℏ𝜔𝑖
2𝜖0𝑉

𝝐𝑖𝑢𝑖( ̂𝒓) ̂𝑎𝑖 +H.c. (1.6)

The sum in Eq. (1.6) runs over themodes of the electromagnetic field, 𝜖0
is the electric permittivity and 𝑢𝑖(𝒓) is themode function of themode 𝑖.
Themode functions {𝑢𝑖(𝒓)} satisfy the orthogonal condition

∫
𝑉
d3𝒓 𝑢𝑖(𝒓)𝑢𝑗(𝒓) = 𝑉𝛿𝑖𝑗. (1.7)

1 The electric dipole approximation is valid if the electromagnetic field does not change
considerably over the size of the electronic wavepacket. It assumes that the field is
constant over the electronicwavepacket. This is a good approximation if the size of the
bound state of the electron is small compared to thewavelength of the electromagnetic
field. For an atom the typical size of a bound state is 𝑙 ≈ 10−10𝑚. For optical transitions,
where thewavelength is 𝜆 ≈ 10−7𝑚, this approximation is valid.



1.1 the interactions between light and atoms 9

Using Eq. (1.6), the interaction Hamiltonian Eq. (1.5) takes the form2

�̂�int = ∑
𝑖
ℏ(|𝑔⟩⟨𝑒| + |𝑒⟩⟨𝑔|)(𝑔𝑖( ̂𝒓) ̂𝑎𝑖 + 𝑔𝑖( ̂𝒓)∗ ̂𝑎†𝑖 ), (1.8)

wherewe have introduced the coupling strength

𝑔𝑖( ̂𝒓) = √
𝜔𝑖

2ℏ𝜖0𝑉
𝑢𝑖( ̂𝒓)(𝒅eg ⋅ 𝝐𝑖). (1.9)

We nowperform the rotatingwave approximation3 (RWA) and obtain rotating wave
approximation

�̂�int = ∑
𝑖
ℏ(𝑔𝑖( ̂𝒓)|𝑒⟩⟨𝑔| ̂𝑎𝑖 + 𝑔𝑖( ̂𝒓)∗ ̂𝑎†𝑖 |𝑔⟩⟨𝑒|). (1.10)

Hamiltonian (1.10) describeprocesses inwhichaphotonof the 𝑖-thmode
of the electromagnetic field is absorbed by the atomwhich undergoes a
transition from the ground |𝑔⟩ to the excited state |𝑒⟩, aswell as processes
where the atom undergoes a transition from the excited |𝑒⟩ to the ground
state |𝑔⟩ emitting a photon in themode 𝑖. The strength of the process is
position dependent, therefore �̂�int does not commutewith the atom’s
kinetic energyand thus photon absorption or emission affects the atomic
center-of-mass dynamics.

1.1.1 Atom-laser interaction

In this thesiswewill discuss the dynamics of systems driven by lasers.
The interaction of an atomwith a laser can be described by assuming
that the light emitted by a continuous-wave laser corresponds to the
state of the electromagnetic field inwhich each mode is in a coherent
state [57] of a harmonic oscillator. More precisely, each mode of the
electromagnetic field, labeled by the subscript 𝑖, is in the coherent state
|𝛼𝑖⟩, with ̂𝑎𝑖|𝛼𝑖⟩ = 𝛼𝑖|𝛼𝑖⟩. The coherent state |𝛼𝑖⟩ can be, in particular, the
vacuum state |0𝑖⟩with ̂𝑎𝑖|0𝑖⟩ = 0. The total state of the electromagnetic
field is then

|𝜓em⟩ =⨂
𝑖
|𝛼𝑖⟩ ≡ | … , 𝛼𝑖−1, 𝛼𝑖, 𝛼𝑖+1, …⟩, (1.11)

where the tensor product runs over themodes of the electromagnetic
field.

By applying a unitary transformation [52] to Hamiltonian �̂�, Eq. (1.1),
in dipole and rotating wave approximation (i. e. with the interaction

2 We have considered the dipole moment to be real. This is possible by adding a phase to
the definition of the states |𝑔⟩ and |𝑒⟩ [53].

3 In order to understand the rotatingwave approximation (RWA), one can see in interaction
picturewith respect to �̂�0 = �̂�at + �̂�em that the terms �̂�𝑖|𝑔⟩⟨𝑒| and �̂�†𝑖 |𝑒⟩⟨𝑔| in Eq. (1.8)
rotate at a frequency |𝜔a +𝜔𝑖|, while the terms �̂�𝑖|𝑒⟩⟨𝑔| and �̂�†𝑖 |𝑔⟩⟨𝑒| rotate at |𝜔a −𝜔𝑖|. If
𝜔a and𝜔𝑖 are optical frequencies, then4 |𝜔a +𝜔𝑖| ≫ |𝜔a −𝜔𝑖|. At the time scaleswe are
interested in, if the coupling strengths 𝑔𝑖 ≪ |𝜔a +𝜔𝑖|, the fast rotating terms average
out and the dominating contribution comes from the slowlyvarying partwhich rotates
at |𝜔a −𝜔𝑖| [53]. The RWA consists in neglecting the fast rotating terms.
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Hamiltonian �̂�int given byEq. (1.10)), in the newrepresentation the atom
is coupled to a classical external field and themodes of the electromag-
netic field are in the vacuum state |𝜓′em⟩ = |vac⟩, see Eq. (1.4). The cou-
pling of the atomwith the laser is then described by the Hamiltonian

�̂�L = ℏΩ( ̂𝒓, 𝑡)|𝑒⟩⟨𝑔| +H.c., (1.12)

where

Ω( ̂𝒓, 𝑡) = ∑
𝑖
𝑔𝑖( ̂𝒓)𝛼𝑖e−i𝜔𝑖𝑡 (1.13)

is the time-dependent coupling strength.
For the case of amonochromatic laserwithwavevector 𝒌L and polar-

ization 𝝐L only onemode of the electromagnetic field (whichwe denote
by the label L) is occupied, and all the other modes are in the vacuum
state. The coherent state is given byEq. (1.11)with 𝛼𝑖 = 𝛿𝑖,L𝛼L, i. e.

|𝜓em⟩ = | … , 0L−1, 𝛼L, 0L+1, …⟩. (1.14)

In this case Ω( ̂𝒓, 𝑡) is given byΩ( ̂𝒓, 𝑡) = 𝑔L( ̂𝒓)𝛼𝐿e−i𝜔L𝑡 [52], where 𝜔L =
|𝒌L|𝑐 is the laser frequency. For a standingwave laser field it takes the
formΩ( ̂𝒓, 𝑡) = Ω cos(𝒌L ⋅ ̂𝒓)e−i𝜔L𝑡, while for a running-wave laser field
Ω( ̂𝒓, 𝑡) = Ωe−i𝒌L⋅ ̂𝒓e−i𝜔L𝑡. In this representation, the complex numberΩ
is the so-called Rabi frequency5.

1.2 optical cavity

The setups discussed in this thesis also include optical cavities. Optical
cavities (or resonators) can be realized experimentally in amultitude of
forms [56]. A Fabry-Pérot cavity consists of two highly reflective mir-
rors facing each other and allows the electromagnetic field to populate
quantizedmodes6 [58]. If themirrors are separated by a distance 𝐿, the
𝑖-th quantizedmode has frequency𝜔c,𝑖 = 𝑖 ⋅ (𝑐/2𝐿). The separation in fre-
quencybetween two adjacent resonances is denoted free spectral range and
is Δ𝜔FSR = 𝑐/2𝐿. If the cavity length 𝐿 is sufficiently small7, one cavity
mode can be tuned quasi-resonantly to an atomic dipole transitionwhile
all other modes are off-resonant: In this case only the quasi-resonant
modewith frequency𝜔c can be kept in the description of the cavity. The
Hamiltonian of the cavity then reads

�̂�c = ℏ𝜔c( ̂𝑎† ̂𝑎 + 1
2), (1.15)

5 In order to avoid carrying extra factors of 2 around,Ω is defined as half of the traditional
definition of the Rabi frequency [52], so that a𝜋-pulse takes time𝜋/2Ω.

6 The electromagnetic field inside optical cavities is quantized using fixed boundary con-
ditions [53].

7 For a cavity length 𝐿 ∼ 500𝜇𝑚 [59] the free spectral range isΔ𝜔FSR ∼ 300𝐺𝐻𝑧, for a
cavity length 𝐿 ∼ 1 𝑐𝑚 [60, 61] it isΔ𝜔FSR ∼ 15𝐺𝐻𝑧.
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where the operators ̂𝑎† and ̂𝑎 create and annihilate, respectively, a cavity
photon of the resonantmode at frequency𝜔c, and fulfill the commuta-
tion relation [ ̂𝑎, ̂𝑎†] = 1.

1.2.1 Atom-cavity coupling

The Hamiltonian describing the interaction of a two-level atomwith
a cavity mode, in electric dipole and rotating wave approximations,
reads [53, 55]

�̂�JC = ℏ(𝑔( ̂𝒓)|𝑒⟩⟨𝑔| ̂𝑎 + 𝑔( ̂𝒓)∗ ̂𝑎†|𝑔⟩⟨𝑒|). (1.16)

Here 𝑔( ̂𝒓) is the coupling strength between cavitymode and the atomic
transition. For a standingwavemode along the 𝑥-axis it takes the form
𝑔( ̂𝒓) = 𝑔 cos(𝑘c ̂𝑥), where 𝑘c is the wavevector of the mode and 𝑔 is the
vacuumRabi frequency [53]. If the atomposition is fixed, i. e. if 𝑔( ̂𝒓) = 𝑔′

is constant, Eq. (1.16) becomes the celebrated Jaynes-Cummingsmodel [62],
whose dynamics can be solved exactly.

In Parts III and IIwewill consider the atom tightly confined inside a
cavity, such that it is localized at a cavityfield intensitymaximum. In this
limit the coupling 𝑔( ̂𝒓) can be treated as a constant, i. e. the fluctuations
in the coupling strength due to themotion can be neglected. In Part IV
insteadwewill consider that the atoms canmove along the cavity axis
and thus the coupling 𝑔( ̂𝒓) varieswith time.

1.2.2 Cavity losses

The finite transmittivity of the cavitymirrors can be described in terms
of a coupling between the cavitymode and the external electromagnetic
field. For optical cavities this interaction is typically described by the
Hamiltonian [55]

�̂�c−em = ℏ∑
𝑖
(𝜆𝑖 ̂𝑎† ̂𝑎𝑖 + 𝜆∗𝑖 ̂𝑎†𝑖 ̂𝑎), (1.17)

which is here given in the rotating wave approximation. Here 𝜆𝑖 are
the coupling strengths between the cavitymode and the 𝑖-th mode of
the free field and depend on the characteristics of the mirrors. This
interaction gives rise to cavity losses, i. e. to photons escaping the cavity
via themirror finite transmittivity. A description of the losses bymeans
of a Born-Markovmaster equation is given in Sec. 2.1.

1.3 cavity opto-mechanics

Light exchanges linear momentumwith matter giving rise tomechani-
cal forces. In this sectionwe brieflymention some effects of mechanical
forces of light, namelyDoppler cooling of atoms and some sub-Doppler
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coolingmechanisms, and thenwe review some theoretical concepts nec-
essary to describe the systemof Chapter 5, thus focusing on the radiation
pressure force.

Several methods have been developed to cool particles’ motion [63] by
means of mechanical effects of light. Doppler cooling,whichwas first
discussed in Refs. [64, 65] and experimentally realized for the first time
in Ref. [66], is the first proposedmethod for cooling atomswith light and
is nowadays commonly realized in laboratories. In Doppler cooling the
atoms are cooledwith counter-propagating laserswhose frequency is
tuned below (red detuned) the frequency of an atomic transition. If this
transition is closed8, i. e. if the excited state of the transitiondecays to the
lower state of the transitionwith rate 𝛾, then,with an appropriate choice
of the laser frequency, the atoms are cooled down to temperature of the
order of ℏ𝛾/𝑘B, where 𝑘B is the Boltzmann constant. This temperature
is referenced to asDoppler limit [63]. Laser coolingmechanisms that can
reach temperatures below the Doppler limit are denoted by sub-Doppler
cooling [69–71]. One of themost prominent approaches for sub-Doppler
cooling is polarization gradient cooling [72] which realizes temperatures
close to the recoil limit9 [73]. In an optical cavity, the particles can be
cooled with a mechanism called cavity cooling [74]. This method relies
on coherent scattering of photons by the particles and has been pro-
posed for cooling particleswhich do not have a closed transition such as
molecules [75, 76]. The steady state temperature of the cooled particles
is limited by the cavity loss rate [63]. Cavity cooling has been realized
for a single atom [77], for a cloud of atoms [78] and for nanoparticles [79,
80].

In Chapter 5we analyze the dynamics of a NV-center embedded in
a diamond structure. The latter can vibrate and confine light, thus be-
having as resonator for both photons and phonons. This can bemodeled
by an optical cavity with a movable mirror. The interaction between
phonons and photons, in this case, is due to the radiation pressure force10
that light exerts on the surface of themovable mirror.

The radiation pressure force exerted by a single photon is exceedingly
small. As an example consider a single photonwithwavenumber 𝑘 im-
pinging on amirror. The photon transfer to themirror themomentum
Δ𝑝 = 2ℏ𝑘. For a continuous light beam of power 𝑃, the photon rate
is 𝑃/ℏ𝑘𝑐, leading to a force 𝐹 = 2𝑃/𝑐, where 𝑐 is the speed of light. A
kilowatt light beam thus exerts on themirror a force of about 10−5𝑁. A

8 If the transition is not closed, Doppler cooling can still be effective with the use of a
repumping laser [67, 68]which re-excite thepopulationback into a state of the transition
used for cooling.

9 The recoil limit corresponds to kinetic energy of the particle of the order of the recoil
energyℏ𝜔r = ℏ2𝑘2/2𝑚, where 𝑘 is thewavenumber of the laser field and𝑚 themass of
the particle.

10 Radiation pressure force, the force that light exerts on a surface, was already speculated
in the 17th century byKepler [81], described theoretically byMaxwell [82] in 1873, and
was experimentally observed [83, 84] at the beginning of the 20th century.
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possibleway to increase the force a single photon exerts on themirror is
to confine the light into a resonator. In a simplified picture the photon
will bounce many times off the mirror instead of only once as in free
space, increasing thus themomentum transferred. Inside a cavity the
radiation-pressure force is

⟨ ̂𝐹⟩ = 2ℏ𝑘 ̄𝑛
𝜏c

=
ℏ𝜔c ̄𝑛
𝐿 , (1.18)

where 𝜏c = 2𝐿/𝑐 is the cavity round-trip time, 𝐿 is the length of the cavity,
̄𝑛 is themean photon number of the cavity and𝜔c is the cavity resonance

frequency.
In the followingwe introduce a Hamiltonian description of the inter-

action between a cavity light field and amovable cavitymirror.

1.3.1 Opto-mechanical Hamiltonian

We consider the simplest model in cavity opto-mechanics, which has
been useful to describemost of the experiments up to date [56]. It con-
sists in a Fabry-Pérot cavity setupwith onefixedmirror and onemovable
mirror of mass𝑀. For small displacements 𝑥 ≪ 𝐿 respect to the length
𝐿 of the cavity, the motion of the movable mirror can be considered
harmonic with frequency11 𝜔mec. The model thus consists of two har-
monic oscillators: One describing the cavitymodewith frequency𝜔c and
annihilation and creation operators ̂𝑎 and ̂𝑎†, with [ ̂𝑎, ̂𝑎†] = 1; and the
other describing themotion of onemirror of the cavitywith frequency
𝜔mec and annihilation and creation operators ̂𝑏 and ̂𝑏†, with [ ̂𝑏, ̂𝑏†] = 1
and [ ̂𝑎, ̂𝑏] = [ ̂𝑎, ̂𝑏†] = 0.

The coupling between the optical and themechanicalmode is paramet-
ric, i. e. the optical resonance frequency𝜔c(𝑥) depends parametrically
on the mirror displacement ̂𝑥. The motion of the movable mirror, in
fact, changes the cavity length, thus changing the cavity resonance fre-
quency. If the mirror displacement is small compared to the average
cavity length 𝐿, then the Hamiltonian to leading order in 𝑥/𝐿 reads

�̂� = ℏ𝜔c( ̂𝑥)( ̂𝑎† ̂𝑎 + 1
2) + ℏ𝜔mec( ̂𝑏† ̂𝑏 + 1

2) ≈

≈ ℏ(𝜔c − 𝐺 ̂𝑥)( ̂𝑎† ̂𝑎 + 1
2) + ℏ𝜔mec( ̂𝑏† ̂𝑏 + 1

2),
(1.19)

where ̂𝑥 = √ℏ/2𝑀𝜔mec( ̂𝑏 + ̂𝑏†) is the mirror position operator and
𝐺 = −𝜕𝜔c(𝑥)/𝜕𝑥|𝑥=0. Substituting in Eq. (1.19) we arrive at the stan-
dard optomechanical Hamiltonian [56]

�̂�om = ℏ𝜔c ̂𝑎† ̂𝑎 + ℏ𝜔mec ̂𝑏† ̂𝑏 − ℏ𝜒 ̂𝑎† ̂𝑎( ̂𝑏 + ̂𝑏†), (1.20)

11 In actual experimental systems the mechanical oscillator has many vibrational
modes [85]. However, for the purpose of our work, we focus on a single mode of vi-
brationwith frequency𝜔mec, assuming that the mode spectrum is sufficiently sparse
such that there is no spetral overlapwith othermechanical modes [56].
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wherewe neglect the terms due to the vacuum energies [86, 87] of both
harmonic oscillators12. Herewe have defined the vacuum optomechan-
ical coupling strength 𝜒 = 𝐺√ℏ/2𝑀𝜔mec, it quantifies the interaction
between a single phonon and a single photon. The last term in Eq. (1.20)
captures the basic features of the optomechanical interaction: The ra-
diation pressure of the cavity light results in an intensity-dependent
displacement of the cavitymirror, while the displacement of the cavity
mirror results in a change of the cavity resonance frequency.

A detailed derivation of Hamiltonian (1.20) can be found in Ref. [88].

12 Notice that the vacuum energy of the cavity field also gives rise to the additional
term−ℏ𝜒( ̂𝑏 + ̂𝑏†)/2 in Hamiltonian (1.19). This term is a constant force on the cav-
ity mirror and leads to a change of the mirror rest position but does not alter its
dynamics. By moving in the reference frame defined by the displacement operator
𝐷†(𝛽) = exp(−𝛽 ̂𝑏† + 𝛽∗ ̂𝑏), with 𝛽 = 𝜒/2𝜔mec, and by neglecting a constant energy
offset, one recovers Eq. (1.19).



2
BORN-MARKOV MASTER EQUATIONS

The quantum dynamics of a non-relativistic quantum system is deter-
mined by the Schrödinger equation. The Schrödinger equation generates
a unitary transformation of the Hilbert space’s vector describing the
system state. In quantum optics the quantum system of interest con-
sists only of few degrees of freedom, such as for instance a harmonic
oscillator or a single electron in a potential. However no system is iso-
lated from the rest of the universe and thus every system interactswith
its surroundings, its environment. Although the Schrödinger equation
formalism can be applied to systems of any size and thus could include
the environment as part of the system itself, its usage becomes more
and more challenging with increasing system size. To overcome this
problem an effective description of the environmentwith use of only
fewparameters has been developed. This is called system plus reservoir ap-
proach [89]: the fewdegrees of freedom of the system of interest are fully
considered,while the environment is treated as a reservoir characterized
only by a fewnumber of parameters such as its temperature. The system
interactswith the reservoir by exchanging energy and/or particles. For
this reason the expression open quantum system is used. Starting from
the dynamics of the full (system and reservoir) density operator, this
formalism leads to an equation for the reduced density operator of the
system,which is calledmaster equation. Such equation does not generate a
unitary evolution, but generally introduces damping of energy and loss
of quantum-mechanical coherence into the quantum system dynamics.

For certain systems some simplifying assumptions on the interaction
with its environment and on the timescales of their evolution can be
made. More specifically, if the interaction between the system and the
reservoir isweak and the time scale of the reservoir dynamics is order
of magnitudes shorter than the one of the system, then the so called
Born-Markov master equation holds. A peculiar property of this master
equation is that the reservoir has nomemory of the system at an earlier
time. Born-Markov master equations are quite common in quantum
optics problems.

InSection2.1wepresent abrief derivationof theBorn-Markovmaster
equationmostly following [52], and in Sec. 2.2 of the quantum regression
theorem. We then introduce in Sec. 2.3 amethod for solving themaster
equation denoted by damping basis [90–94]. In Section 2.4 we present
another method for solving the master equation based on the Wigner
function, which is a phase-space representation of a quantum state.

15
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2.1 derivation of the born-markovmaster equation

Consider a system S coupled to a reservoir R and denote byℋS andℋR
their respective Hilbert space. Be �̂�S and �̂�R the Hamiltonians of the
systemand reservoir, respectively, and be ̂𝑉 the operator describing their
mutual interaction. TheHamiltonian �̂�of the full system,which consists
of system S and reservoir R, acts on theHilbert spaceℋ = ℋS⊗ℋR and
reads

�̂� = �̂�S ⊗ 𝟙R + 𝟙S ⊗ �̂�R + ̂𝑉. (2.1)

Let ̂𝜒(𝑡) be the density operator of the full system. The dynamics ofvon Neumann
equation system and reservoir is governed by the von Neumann equation for the

density operator ̂𝜒(𝑡)

𝜕
𝜕𝑡 ̂𝜒(𝑡) = 1

iℏ[�̂�, ̂𝜒(𝑡)], (2.2)

with �̂� given in Eq. (2.1).
We are interested in the evolution of the system S, that is, we arereduced density

operator and partial
trace

looking for an equation of motion for the reduced density operator ̂𝜌(𝑡)
of the system S defined overℋS by

̂𝜌(𝑡) = Tr
R
[ ̂𝜒(𝑡)], (2.3)

where TrR denotes the partial trace1 over the reservoir degrees of free-
dom.

In order to determine the equation of motion of ̂𝜌(𝑡) from Eq. (2.2),
we use perturbation theory in ̂𝑉. We first transform Eq. (2.2) into the
interaction picturewith respect to �̂�0 = �̂�S + �̂�R and obtaininteraction picture

𝜕
𝜕𝑡 ̃𝜒(𝑡) = 1

iℏ[
̃𝑉(𝑡), ̃𝜒(𝑡)], (2.4)

where

�̃�(𝑡) = ei�̂�0𝑡/ℏ�̂�(𝑡)e−i�̂�0𝑡/ℏ, �̂� = ̂𝜒, ̂𝑉. (2.5)

A formal integration of Eq. (2.4) in the interval [𝑡, 𝑡 + Δ𝑡] yields

̃𝜒(𝑡 + Δ𝑡) = ̃𝜒(𝑡) + 1
iℏ ∫

𝑡+Δ𝑡

𝑡
d𝑡1[ ̃𝑉(𝑡1), ̃𝜒(𝑡1)]. (2.6)

Iterating Eq. (2.6)we obtain

Δ ̃𝜒(𝑡) = 1
iℏ ∫

𝑡+Δ𝑡

𝑡
d𝑡1[ ̃𝑉(𝑡1), ̃𝜒(𝑡)] +

− 1
ℏ2 ∫

𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2[ ̃𝑉(𝑡1), [ ̃𝑉(𝑡2), ̃𝜒(𝑡2)]],

(2.7)

1 The partial trace of an operator𝑂 over the reservoir degrees of freedom is defined as
TrR[𝑂] = ∑𝑟⟨𝑟|𝑂|𝑟⟩, where {|𝑟⟩}𝑟 is a basis of ℋR.
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wherewe have setΔ ̃𝜒(𝑡) = ̃𝜒(𝑡 + Δ𝑡) − ̃𝜒(𝑡).
Sincewe are interested in the evolution of the system S, described in

interaction picture by the density operator2 ̃𝜌(𝑡), we trace Eq. (2.7) over
the reservoir degrees of freedom and obtain

Δ ̃𝜌(𝑡) = 1
iℏ ∫

𝑡+Δ𝑡

𝑡
d𝑡1 TrR {[ ̃𝑉(𝑡1), ̃𝜒(𝑡)]} +

− 1
ℏ2 ∫

𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 TrR {[ ̃𝑉(𝑡1), [ ̃𝑉(𝑡2), ̃𝜒(𝑡2)]]},

(2.8)

whereΔ ̃𝜌(𝑡) = ̃𝜌(𝑡 + Δ𝑡) − ̃𝜌(𝑡). Notice that Eq. (2.8) is still exact.
Nowwe assume the existence of two very different time scales: the

typical time 𝜏S inwhich the system S changes appreciably is larger than
the time 𝜏R inwhich reservoir correlations disappear, andwe choose Δ𝑡
such that

𝜏R ≪ Δ𝑡 ≪ 𝜏S. (2.9)

We also assume that the reservoir R is large compared to the system S,
and that the interaction ̂𝑉 is small compared to theHamiltonians �̂�S and
�̂�R. The reduced density matrix of the reservoir �̃�(𝑡) = TrS{ ̃𝜒(𝑡)}may
thus be considered constant �̃�(𝑡) = �̃�(0) = 𝑅0. Moreoverwe assume that
the reservoir is in a stationary state, that is [𝑅0, �̂�R] = 0. We also assume
that TrR{ ̂𝑉𝑅0} = 0, if that is not the case, it is sufficient to include an
additional term in the systemHamiltonian �̂�S → �̂�S + TrR{ ̂𝑉𝑅0} and in
the interaction Hamiltonian ̂𝑉 → ̂𝑉 − TrR{ ̂𝑉𝑅0}.

Based on these assumptionswe can nowperform several approxima-
tions. Using the assumptions that ̂𝑉 is small compared to �̂�S and �̂�R, and
that Δ𝑡 ≪ 𝜏S, we neglect the evolution of ̃𝜒 between 𝑡 and 𝑡2 in the last
term of Eq. (2.8) and replace3 ̃𝜒(𝑡2) by ̃𝜒(𝑡). After such approximation
the right and side of Eq. (2.8) contains only ̃𝜒(𝑡)which can bewritten as

̃𝜒(𝑡) = ̃𝜌(𝑡) ⊗ �̃�(𝑡) + Δ𝜒(𝑡). (2.10)

Based on the assumption that 𝜏R ≪ Δ𝑡 and thatwe keep only terms up to
second order in ̂𝑉, we neglect the contributionΔ𝜒. Such approximation
is equivalent towrite ̃𝜒(𝑡) = ̃𝜌(𝑡)⊗𝑅0,wherewehave also used �̃�(𝑡) = 𝑅0.

Nowwe divide Eq. (2.8) byΔ𝑡 and, using the approximations above,
we obtain4

𝜕 ̃𝜌(𝑡)
𝜕𝑡 ≃ − 1

ℏ2
1
Δ𝑡 ∫

𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1

𝑡
d𝑡2 TrR {[ ̃𝑉(𝑡1), [ ̃𝑉(𝑡2), ̃𝜌(𝑡) ⊗ 𝑅0]]}, (2.11)

where, since Δ𝑡 ≪ 𝜏S, we approximated the derivative 𝜕 ̃𝜌(𝑡)/𝜕𝑡 with
the rate of variationΔ ̃𝜌(𝑡)/Δ𝑡. This approximationmeans thatwe look

2 TrR[�̃�(𝑡)] = ei�̂�S𝑡/ℏ ̂𝜌(𝑡)e−i�̂�S𝑡/ℏ = ̃𝜌(𝑡), where ̂𝜌(𝑡) is defined in Eq. (2.3).
3 Such approximation is equivalent to an iteration of Eq. (2.6) inwhich only terms up to

second order in �̂� are retained.
4 The first term of Eq. (2.8) is zero in fact: TrR{[�̃� (𝑡1), �̃�(𝑡)]} ≃ TrR{[�̃� (𝑡1), ̃𝜌(𝑡) ⊗ 𝑅0]} =
[TrR{�̃� (𝑡1)𝑅0}, ̃𝜌(𝑡)] = 0 becausewe assumed that TrR{�̂�𝑅0} = 0.
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at the evolution of ̃𝜌(𝑡)with a time resolutionwhich is of the order of
Δ𝑡. Effects which happen on a shorter time scale are averaged out. By
changing variables of integration in Eq. (2.11) to 𝑡1 = 𝑡1 and 𝜏 = 𝑡1 − 𝑡2
we obtain

𝜕 ̃𝜌
𝜕𝑡 (𝑡) = − 1

ℏ2
1
Δ𝑡 ∫

𝑡+Δ𝑡

𝑡
d𝑡1∫

𝑡1−𝑡

0
d𝜏Tr

R
{[ ̃𝑉(𝑡1), [ ̃𝑉(𝑡1 − 𝜏), ̃𝜌(𝑡) ⊗ 𝑅0]]}.

(2.12)

If the interaction Hamiltonian ̂𝑉 is a sum of products of operators ̂𝑠𝑖 on
the system S and ̂𝑟𝑖 on the reservoir, ̂𝑉 = ∑𝑖 ̂𝑠𝑖 ̂𝑟𝑖, then the integrand of
Eq. (2.12) scales with e−𝜏/𝜏R. Using the assumption on the time scales
𝜏R ≪ Δ𝑡 ≪ 𝜏S, we can approximate the upper limit of the integral
in 𝜏 with +∞, and then take the limit for Δ𝑡 → 0. Going back to the
Schrödinger picturewe then have

𝜕
𝜕𝑡 ̂𝜌(𝑡) = 1

iℏ[�̂�S, ̂𝜌(𝑡)]−∫
∞

0

d𝜏
ℏ2 Tr

R
{[𝑉, e−i�̂�0𝜏/ℏ[𝑉, ̂𝜌(𝑡) ⊗ 𝑅0]ei�̂�0𝜏/ℏ]}.

(2.13)

Equation (2.13) is called Born-Markov master equation ormaster equation
in Born-Markov approximation. At this point, knowing the explicit form
of ̂𝑉 and �̂�0, it is possible to carry out the 𝜏-integration in Eq. (2.13) and
arrive at the differential equation

𝜕
𝜕𝑡 ̂𝜌(𝑡) = ℒ ̂𝜌(𝑡). (2.14)

Here ℒ is a superoperator which is time independent and acts on the
space of the system operators, and it is often referred to as Liouville opera-
tor or Liouvillian. Equation (2.14) is the type of master equationwewill
use through the rest of the thesis.

Themaster equation (2.14) is still physically admissible if it preservesmaster equation in the
Lindblad form the properties of density operators5. It can be shown that a sufficient

condition is that it can bewritten in the Lindblad form [95, 96]

ℒ ̂𝜌(𝑡) = 1
iℏ[�̂�S, ̂𝜌(𝑡)] +∑

𝑘
𝛾𝑘𝒟[ ̂𝑜𝑘] ̂𝜌(𝑡). (2.15)

Here ̂𝑜𝑘 are bounded system operators6, 𝛾𝑘 > 0 are real positive scalars
and

𝒟[ ̂𝑜] ̂𝜌 = 2 ̂𝑜 ̂𝜌 ̂𝑜† − ̂𝑜† ̂𝑜 ̂𝜌 − ̂𝜌 ̂𝑜† ̂𝑜. (2.16)

The formal solution of Eq. (2.14) is

̂𝜌(𝑡) = eℒ𝑡 ̂𝜌(0), (2.17)

5 The properties of anydensity operator ̂𝜌(𝑡) are that Tr[ ̂𝜌(𝑡)] = 1, that it is Hermitian
̂𝜌†(𝑡) = ̂𝜌(𝑡) and positive semi-definite.

6 They are commonly called jump or Lindblad operators.
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where ̂𝜌(0) is the initial state of the system.
In this thesiswewill use the Born-Markovmaster equation to describe

the decayof the cavityfield due to the finite transmittivityof themirrors
(see Sec. 1.2.2) and the spontaneous decay of an atomic excitation.

The dynamics of the cavityfield due to the finitemirror transmittivity
can be cast in terms of the master equation for a damped harmonic
oscillator, where S is the cavitymode and R is the electromagnetic field
outside the cavity. In this case the Hamiltonian �̂�S is given byEq. (1.15),
�̂�R byEq. (1.3) and ̂𝑉 byEq. (1.17). Themaster equation in Born-Markov
approximation is then7

𝜕
𝜕𝑡 ̂𝜌(𝑡) = −i𝜔c[ ̂𝑎† ̂𝑎, ̂𝜌(𝑡)]+( ̄𝑛𝜔c + 1)𝜅𝒟[ ̂𝑎] ̂𝜌(𝑡)+ ̄𝑛𝜔c𝜅𝒟[ ̂𝑎†] ̂𝜌(𝑡), (2.18)

where [ ̂𝑎, ̂𝑎†] = 1, 2𝜅 is the damping rate, and

̄𝑛𝜔 =
e−ℏ𝜔/𝑘B𝑇

(1 − e−ℏ𝜔/𝑘B𝑇)
(2.19)

is the mean occupation number for an oscillator with frequency 𝜔 in
thermal equilibrium at temperature 𝑇.

In a similarway, spontaneous emission is described in terms of amas-
ter equationwhere S is a two-level system and R is the electromagnetic
field in space. The Hamiltonian �̂�S is given by Eq. (1.2), �̂�R by Eq. (1.3)
and the interaction ̂𝑉 byEq. (1.10). The resultingmaster equation reads8

𝜕
𝜕𝑡 ̂𝜌(𝑡) = −i𝜔a[|𝑒⟩⟨𝑒|, ̂𝜌(𝑡)]+( ̄𝑛𝜔a + 1)𝛾𝒟[|𝑔⟩⟨𝑒|] ̂𝜌(𝑡)+ ̄𝑛𝜔a𝛾𝒟[|𝑒⟩⟨𝑔|] ̂𝜌(𝑡),

(2.20)

where |𝑔⟩ and |𝑒⟩ are the ground and excited stateswith energy splitting9
ℏ𝜔a, 2𝛾 is the damping rate10 and ̄𝑛𝜔a is defined in Eq. (2.19). The last
terms in Eqs. (2.18) and (2.20) describe the process of absorption of a
thermal photon. For optical frequencies 𝜔 ∼ 1015𝐻𝑧 and room tem-
peratures 𝑇 = 300𝐾 one has ℏ𝜔 ∼ 25𝑘B𝑇 and ̄𝑛𝜔 ∼ 10−11; in this case
the contributions proportional to ̄𝑛𝜔 in (2.18) and (2.20) can be safely
neglected.

2.2 quantum regression theorem

The formalism of Sec. 2.1 allows us, at least in principle, to calculate the
time evolution of the reduced density operator ̂𝜌(𝑡) of the system S in

7 Herewe neglected the frequency shift due to the interactionwith the bath. In the case of
the two-level atom this is the Lamb shift.

8 Herewe consider an atom fixed at the position 𝒓. This can be achieved for examplewith
an optical trap.

9 See note 7.
10 It is the Einstein A coefficient and can be calculated from theWigner-Weisskopf theory of

natural linewidth [97].
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Born-Markovapproximation. From this density operator one can obtain
time-dependent expectation values for any operator ̂𝑜 acting onℋS with
the formula ⟨ ̂𝑜(𝑡)⟩ = Tr[ ̂𝜌(𝑡) ̂𝑜]. However, it does not directly provide a
recipe to calculate the expectationvalues of products of systemoperators
evaluated at two different times, that is, two-time correlation functions

⟨ ̂𝑜1(𝑡) ̂𝑜2(𝑡 + 𝜏)⟩, 𝜏 > 0, ̂𝑜1, ̂𝑜2 operators onℋ𝑠. (2.21)

The result of such expectation valuewas derived in Refs. [98, 99] and it
is called quantum regression theorem or quantum regression formula [89]. Here
we present a short derivation.

In order to evaluate the correlation function given inEq. (2.21)weneed
to go back to the idea of system plus reservoir. In that case the two-time
correlation function is straightforwardly defined in Heisenberg picture

⟨ ̂𝑜1(𝑡) ̂𝑜2(𝑡 + 𝜏)⟩ = Tr
𝑆⊗𝑅

[ ̂𝜒(0) ̂𝑜1(𝑡) ̂𝑜2(𝑡 + 𝜏)], (2.22)

where ̂𝜒(0) is the density operator of system and reservoir at the initial
time 𝑡 = 0, and the system operators ̂𝑜𝑖(𝑡) in Heisenberg picture satisfy
the Heisenberg equations of motion

d
d𝑡 ̂𝑜𝑖(𝑡) =

1
iℏ[ ̂𝑜𝑖(𝑡), �̂�], (2.23)

whose formal solution is

̂𝑜𝑖(𝑡) = ei�̂�𝑡/ℏ ̂𝑜𝑖(0)e−i�̂�𝑡/ℏ. (2.24)

Here �̂� is the total Hamiltonian given in Eq. (2.1). Furthermore, the
formal solution of the von Neumann equation (2.2) is

̂𝜒(0) = ei�̂�𝑡/ℏ ̂𝜒(𝑡)e−i�̂�𝑡/ℏ. (2.25)

Substituting Eqs. (2.24) and (2.25) in Eq. (2.22) and using the cyclic prop-
erty of the trace one obtains

⟨ ̂𝑜1(𝑡) ̂𝑜2(𝑡 + 𝜏)⟩ = Tr
𝑆⊗𝑅

[ ̂𝑜2(0)e−i�̂�𝜏/ℏ ̂𝜒(𝑡) ̂𝑜1(0)ei�̂�𝜏/ℏ] =

=Tr
𝑆
{ ̂𝑜2(0)Tr𝑅 [e

−i�̂�𝜏/ℏ ̂𝜒(𝑡) ̂𝑜1(0)ei�̂�𝜏/ℏ]},
(2.26)

where in the last stepwe have used that the operator ̂𝑜2(0) acts onℋS.
We nowdefine the operator

̂𝑋(𝜏) = e−i�̂�𝜏/ℏ ̂𝜒(𝑡) ̂𝑜1(0)ei�̂�𝜏/ℏ (2.27)

which acts on the systemplus reservoirHilbert spaceℋS⊗ℋR. It clearly
satisfies the differential equation in the time-variable 𝜏

𝜕
𝜕𝜏

̂𝑋(𝜏) = 1
iℏ[�̂�,

̂𝑋(𝜏)] (2.28)

with initial condition ̂𝑋(0) = ̂𝜒(𝑡) ̂𝑜1(0). Equation (2.28) is the von Neu-
mann equation for the operator ̂𝑋(𝜏). In order to remove the reference
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to the reservoir in Eq. (2.26)we need to calculate the trace over R of ̂𝑋(𝜏),
Eq. (2.27), i. e. we need

̂𝑥(𝜏) = Tr
R
[ ̂𝑋(𝜏)]. (2.29)

Wearenowin the same situation as in Sec. 2.1: wehave thevonNeumann
equation for an operator acting onℋS ⊗ℋR andwewant to calculate an
equation for the reduced operator acting only onℋS by taking the trace
over the reservoir degrees of freedom. We can then use the same argu-
ments used in Sec. 2.1 to derive the Born-Markovmaster equation (2.14),
andwrite

𝜕
𝜕𝜏 ̂𝑥(𝜏) = ℒ ̂𝑥(𝜏) (2.30)

with the formal solution

̂𝑥(𝜏) = eℒ𝜏 ̂𝑥(0) = eℒ𝜏 Tr
R
[ ̂𝜒(𝑡) ̂𝑜1(0)] = eℒ𝜏[ ̂𝜌(𝑡) ̂𝑜1(0)], (2.31)

where ̂𝜌(𝑡) = TrR[ ̂𝜒(𝑡)] is the reduced density operator of the system S.
Substituting Eq. (2.31) in Eq. (2.26) one obtains

⟨ ̂𝑜1(𝑡) ̂𝑜2(𝑡 + 𝜏)⟩ = Tr
𝑆
{ ̂𝑜2(0)eℒ𝜏[ ̂𝜌(𝑡) ̂𝑜1(0)]}; (2.32a)

and analogously

⟨ ̂𝑜1(𝑡 + 𝜏) ̂𝑜2(𝑡)⟩ = Tr
𝑆
{ ̂𝑜1(0)eℒ𝜏[ ̂𝑜2(0) ̂𝜌(𝑡)]}. (2.32b)

Equations (2.32) constitute the result of the quantum regression theorem.

2.3 spectral decomposition of the liouvillian

Consider the space 𝐿(ℋS) of the linear operators acting on the Hilbert
spaceℋ𝑠. The density operators form a convex subset of 𝐿(ℋS). We can
define an inner product in 𝐿(ℋS) as

(𝐴, 𝐵) = Tr (𝐴†𝐵), (2.33a)

and an outer product as

[𝐴 ⊗ 𝐵]𝐶 = 𝐴(𝐵, 𝐶) = Tr (𝐵†𝐶)𝐴, (2.33b)
𝐶†[𝐴 ⊗ 𝐵] = (𝐶, 𝐴)𝐵† = Tr (𝐶†𝐴)𝐵†. (2.33c)

Definitions (2.33) are problematic since (𝐴, 𝐵) < ∞ is not guaranteed for
arbitrary operators𝐴, 𝐵 ∈ 𝐿(ℋS). We ignore this problem and assume
that (𝐴, 𝐵) < ∞ holds for all operators𝐴 and 𝐵we use, for a discussion
see [92].

Master equation (2.14) is a linear differential equation for the density
operator ̂𝜌(𝑡). The Liouvillianℒ is a linear operator that acts on the space
𝐿(ℋS), for this reason it is often referred to as superoperator. It is in general
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not Hermitian and its Hermitian conjugate is defined bymeans of the
scalar product introduced in Eq. (2.33a)

( ̂𝜌, ℒ ̂𝜌′) = (ℒ† ̂𝜌, ̂𝜌′), ∀ ̂𝜌, ̂𝜌′ density operators, (2.34)

aswell as its action to the left

( ̂𝜌, ℒ ̂𝜌′) = ( ̂𝜌ℒ, ̂𝜌′), ∀ ̂𝜌, ̂𝜌′ density operators. (2.35)

Sometimes it is useful towork in the setwhere the Liouvillian operator
is diagonal, if it exists. This set is called the damping basis in [91].

The eigenvalues equations forℒ aredamping basis

ℒ ̂𝜌𝜆 = 𝜆 ̂𝜌𝜆, ̌𝜌†𝜆ℒ = 𝜆 ̌𝜌†𝜆 (2.36)

where 𝜆 are the eigenvalues, ̂𝜌𝜆 the relative right eigenvectors and ̌𝜌𝜆 the
relative left eigenvectors. If the eigenvalues are not degenerate thenwe
can normalize the right and left eigenvectors such that the orthogonality
relation holds

( ̌𝜌𝜆, ̂𝜌𝜆′) = Tr ( ̌𝜌†𝜆 ̂𝜌𝜆′) = 𝛿𝜆𝜆′. (2.37)

For a non-Hermitian operator it is in general not a priori clear if the sets
{ ̌𝜌𝜆} and { ̂𝜌𝜆} form complete bases, for this reason the completeness relation

∑
𝜆

̂𝜌𝜆 ⊗ ̌𝜌𝜆 = ∑
𝜆
𝑃𝜆 = 𝟙 (2.38)

has to be checked case by case. It has been proved that the damping basis
of a damped harmonic oscillator [92, 93] and of a driven and dumped
two-level system [94] are complete.

Assuming that the completeness relation (2.38) holds, the damping
basis can be used to expand the formal solution Eq. (2.17) of master
equation (2.14). If the Liouvillianℒ is time-independent and the com-
pleteness relation Eq. (2.38) holds, then

̂𝜌(𝑡) = eℒ𝑡∑
𝜆
[ ̂𝜌𝜆 ⊗ ̌𝜌𝜆] ̂𝜌(0) = ∑

𝜆
𝑐𝜆e𝜆𝑡 ̂𝜌𝜆, (2.39)

with the coefficients 𝑐𝜆 = ( ̌𝜌𝜆, ̂𝜌(0)) = Tr[ ̌𝜌†𝜆 ̂𝜌(0)].

2.3.1 Some properties of the damping basis

Anyphysical density operator ̂𝜌 has the properties that Tr[ ̂𝜌] = 1, that
is Hermitian ̂𝜌 = ̂𝜌† and that all its eigenvalues are non-negative. The
Liouvillianℒ generates the time evolution of the density operatorwhich
must conserve theseproperties at all times. This considerationputs some
constraints onℒ. Liouville operatorswhich fulfill these constraints are
said to be of Lindblad form [95], Eqs. (2.15) and (2.16). In the following
we summarize some properties of the damping basis arising from those
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constraints. For simplicitywe assume a non-degenerate Liouvillian and
the existence of a unique steady state.

First, the condition Tr[ ̂𝜌] = 1 implies that the identity operator 𝟙 is a
left eigenvectorwith eigenvalue zero, 𝟙ℒ = 0. In fact:

0 = d
d𝑡 Tr( ̂𝜌) = Tr( 𝜕𝜕𝑡 ̂𝜌) = Tr(ℒ ̂𝜌) = Tr(𝟙ℒ ̂𝜌) = 0, (2.40)

this implies that 𝟙ℒ = 0, i. e., ̌𝜌†0 = 𝟙. Furthermore, the right eigenvector
̂𝜌0with respect to the eigenvalue 𝜆 = 0 is the steady state. In fact, by

definition

0 = 𝜕
𝜕𝑡 ̂𝜌0 = ℒ ̂𝜌0. (2.41)

The steady state ̂𝜌0 is the only right eigenvectorwhich is a density opera-
tor. In fact, since Tr(ℒ ̂𝜌) = 0, then

Tr(ℒ ̂𝜌𝜆) = 𝜆Tr( ̂𝜌𝜆) = 0, (2.42)

hence Tr( ̂𝜌𝜆) = 0, ∀𝜆 ≠ 0, i. e., all the right eigenvectors ̂𝜌𝜆 except the
steady state ̂𝜌0 are traceless. Finally, from the Lindblad theorem intro-
duced in Sec. 2.1 follows thatℜ(𝜆) ≤ 0.

2.4 the wigner function

In the preceding sectionswe have described the quantum state of a sys-
tem bymeans of its density operator ̂𝜌. However there are equivalent
representationswhich live in phase space and that allows us to express
the state in terms of a 𝑐-number function, often called quasi-probability
distribution. The reason for the name is that the quasi-probability dis-
tributions allow for the calculation of expectation values of quantum
operators using themethods of classical statistical physics. Nonetheless,
they are not actual probability functions, since, for example, some of
them could assume negative values. In the years 1969-1970 Refs. [100–
103] introduced a formalism inwhich an infinite amount of different
representations are defined. Here however, we focus on one special case,
which is the first quasi-probability distribution introduced as long ago
as 1932, that is theWigner function [104].

In the followingwe review theWigner function and some of its prop-
erties in order to illustrate its application for the solution of themaster
equation. Further details can be seen for example in Refs. [53, 89, 105].

Consider a particle in one dimension with mass 𝑚, position ̂𝑥 and
momentum ̂𝑝, with [ ̂𝑥, ̂𝑝] = iℏ. We define theWigner transformation of Wigner transform
an operator �̂� as

𝑊𝜇(𝑥, 𝑝) =
1
𝜋ℏ ∫

∞

−∞
⟨𝑥 + 𝑦|�̂�|𝑥 − 𝑦⟩e−2i𝑦𝑝/ℏd𝑦, (2.43)

where |𝑥 ± 𝑦⟩ are eigenstates of the position operator ̂𝑥with eigenvalues
𝑥 ± 𝑦, and 𝑥, 𝑦, 𝑝 ∈ ℝ. TheWigner function is theWigner transform of Wigner function
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the density operator ̂𝜌 of the system

𝑊(𝑥, 𝑝) = 𝑊𝜌(𝑥, 𝑝) =
1
𝜋ℏ ∫

∞

−∞
⟨𝑥 + 𝑦| ̂𝜌|𝑥 − 𝑦⟩e−2i𝑦𝑝/ℏd𝑦. (2.44)

For a harmonic oscillator it is possible to define theWigner function
𝑊(𝛼, 𝛼∗), where 𝛼 and 𝛼∗ are complex variables that are related to the
amplitude of a coherent state |𝛼⟩. In Appendix 2.Awe give theWigner
function𝑊(𝛼, 𝛼∗) for a harmonic oscillator bymeans of an equivalent,
but easier to generalize, definition.

2.4.1 Some properties of theWigner function

Themoments of theWigner function are equal to the expectation values
of symmetrically ordered products of position andmomentum opera-
tors

Tr[ ̂𝜌 { ̂𝑥𝑛 ̂𝑝𝑚}sym] = ∫
∞

−∞
∫

∞

−∞
𝑊(𝑥, 𝑝)𝑥𝑛𝑝𝑚d𝑥d𝑝, (2.45)

where {⋅}sym is the average of all possible ways of ordering the opera-
tors inside the brackets. In particular themarginals of 𝑊(𝑥, 𝑝) are the
probability distribution of position andmomentum

Tr[ ̂𝜌 ̂𝑥] = ∫
∞

−∞
⟨𝑥| ̂𝜌|𝑥⟩𝑥d𝑥 = ∫

∞

−∞
∫

∞

−∞
𝑊(𝑥, 𝑝)𝑥d𝑥d𝑝 = ∫

∞

−∞
𝑊(𝑥)𝑥d𝑥,

(2.46)

where𝑊(𝑥) is the probability distribution of the position

𝑊(𝑥) = ⟨𝑥| ̂𝜌|𝑥⟩ = ∫
∞

−∞
𝑊(𝑥, 𝑝)d𝑝, (2.47)

and analogously the probability distribution of themomentum is

𝑊(𝑝) = ∫
∞

−∞
𝑊(𝑥, 𝑝)d𝑥. (2.48)

Equation (2.45) also implies the normalization of theWigner function

∫
∞

−∞
∫

∞

−∞
𝑊(𝑥, 𝑝)d𝑥d𝑝 = Tr[ ̂𝜌] = 1. (2.49)

2.4.2 Master equation in phase-space

In Sec. 2.1we showed that the time evolution of an openquantumsystem
described by the density operator ̂𝜌 is, in the Born-Markov approxima-
tion, given by an equation of the form (2.14). We nowwant to derive an
equivalent formalism for theWigner function, i. e. wewant to find the
equation of motion for𝑊(𝑥, 𝑝).
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In order to do so,we apply theWigner transformation, Eq. (2.43), to
themaster equation (2.14) obtaining

𝜕
𝜕𝑡𝑊(𝑥, 𝑝, 𝑡) = ∫

∞

−∞
⟨𝑥 + 𝑦|ℒ ̂𝜌(𝑡)|𝑥 − 𝑦⟩e−2i𝑦𝑝/ℏd𝑦, (2.50)

where theWigner function𝑊(𝑥, 𝑝, 𝑡)dependsparametricallyon the time
𝑡via the timedependence of the densityoperator ̂𝜌(𝑡), see Eq. (2.44). Now
one needs to calculate the right hand side of Eq. (2.50), i. e. theWigner
transform of the operatorℒ ̂𝜌. This depends on the system under study,
however the operator ℒ ̂𝜌 is a linear combination of system operators
acting on ̂𝜌, both from right and left. The action of an operator on a
densityoperator ismirroredbythe actionof a correspondingdifferential
operator on theWigner function [105]. It is possible to calculate this
correspondence by using the definition of Wigner transformation and
Wigner function, Eqs. (2.43) and (2.44). The results are summarized in
Tab. 2.1.

density operator wigner function

̂𝑥 ̂𝜌 ⟷ (𝑥 + iℏ
2

𝜕
𝜕𝑝
)𝑊(𝑥, 𝑝)

̂𝜌 ̂𝑥 ⟷ (𝑥 − iℏ
2

𝜕
𝜕𝑝
)𝑊(𝑥, 𝑝)

̂𝑝 ̂𝜌 ⟷ (𝑥 − iℏ
2

𝜕
𝜕𝑥
)𝑊(𝑥, 𝑝)

̂𝜌 ̂𝑝 ⟷ (𝑥 + iℏ
2

𝜕
𝜕𝑥
)𝑊(𝑥, 𝑝)

Table 2.1: Correspondence between the action of an operator on the density
operator ̂𝜌 and the action of a differential operator on theWigner
function𝑊(𝑥, 𝑝).

Finally, having calculated theWigner transform of the operatorℒ ̂𝜌,
one can explicitlywrite Eq. (2.50): It is a partial differential equation for
theWigner function𝑊(𝑥, 𝑝). This is the equation of motion thatwewere
looking for.

In Appendix 2.Awe present the correspondence as the one in Tab. 2.1
for a harmonic oscillatorWigner function𝑊(𝛼, 𝛼∗).

appendices

2.A wigner function for a harmonic oscillator

Consider a harmonic oscillator of frequency 𝜔with annihilation and
creation operators ̂𝑎 and ̂𝑎†,with [ ̂𝑎, ̂𝑎†] = 1. We define the characteristic
function of a system operator �̂� by

𝜒𝜇(𝜆, 𝜆∗) = Tr[�̂�(e𝜆�̂�†−𝜆∗�̂�)], (2.51)
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where 𝜆 is a complex variable 𝜆 = 𝜆r + i𝜆i, with 𝜆r, 𝜆i ∈ ℝ. TheWigner
transformation of the operator �̂� is the Fourier transform of its charac-Wigner transform
teristic function

𝑊𝜇(𝛼, 𝛼∗) =
1
𝜋2 ∫

∞

−∞
∫

∞

−∞
𝜒𝜇(𝜆, 𝜆∗)e𝛼𝜆

∗−𝛼∗𝜆d2𝜆, (2.52)

where d2𝜆 = d𝜆rd𝜆i. Equation (2.52) is related to Eq. (2.43) by [105]

1
2ℏ𝑊𝜇(𝛼, 𝛼∗) = 𝑊𝜇(𝑥, 𝑝), (2.53)

with

𝑥 = √
ℏ

2𝑚𝜔(𝛼 + 𝛼∗), (2.54a)

𝑝 = −i√
𝑚𝜔ℏ
2 (𝛼 − 𝛼∗). (2.54b)

TheWigner function is theWigner transform of the density operator ̂𝜌Wigner function

𝑊(𝛼, 𝛼∗) = 1
𝜋2 ∫

∞

−∞
∫

∞

−∞
Tr[ ̂𝜌(e𝜆�̂�†−𝜆∗�̂�)]e𝛼𝜆∗−𝛼∗𝜆d2𝜆. (2.55)

In the following re report theproperties of theWigner functionEq. (2.55).

2.A.1 Some properties of theWigner function

Themoments of theWigner function𝑊(𝛼, 𝛼∗) are equal to the expecta-
tion values of symmetrically ordered products of creation and annihila-
tion operators

Tr[ ̂𝜌 { ̂𝑎𝑛( ̂𝑎†)𝑚}
sym

] = ∫
∞

−∞
∫

∞

−∞
𝑊(𝛼, 𝛼∗)𝛼𝑛(𝛼∗)𝑚d2𝛼, (2.56)

where {⋅}sym is the average of all possibleways of ordering the operators
and d2𝛼 = d𝛼rd𝛼i, with 𝛼 = 𝛼r + i𝛼i and 𝛼r, 𝛼i ∈ ℝ.

Equation (2.56) implies the normalization of theWigner function

∫
∞

−∞
∫

∞

−∞
𝑊(𝛼, 𝛼∗)d2𝛼 = Tr[ ̂𝜌] = 1. (2.57)

2.A.2 Master equation in phase-space

The equation of motion for theWigner function𝑊(𝛼, 𝛼∗) can be found
following the samestepsperformed inSec. 2.4.2: It is derivedbyapplying
theWigner transformation, Eq. (2.52), to themaster equation describing
the system dynamics.

As for𝑊(𝑥, 𝑝) in Sec. 2.4.2, it is possible to find the correspondence
between the action of an operator on the density operator ̂𝜌 and the
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density operator wigner function

̂𝑎 ̂𝜌 ⟷ (𝛼 + 1
2

𝜕
𝜕𝛼∗

)𝑊(𝛼, 𝛼∗)

̂𝜌 ̂𝑎 ⟷ (𝛼 − 1
2

𝜕
𝜕𝛼∗

)𝑊(𝛼, 𝛼∗)

̂𝑎† ̂𝜌 ⟷ (𝛼∗ − 1
2
𝜕
𝜕𝛼
)𝑊(𝛼, 𝛼∗)

̂𝜌 ̂𝑎† ⟷ (𝛼∗ + 1
2
𝜕
𝜕𝛼
)𝑊(𝛼, 𝛼∗)

Table 2.2: Correspondence between the action of an operator on the den-
sity operator ̂𝜌 and the action of a differential operator on the
Wigner function𝑊(𝛼, 𝛼∗). Notice that if 𝛼 = 𝛼r + i𝛼i then 𝜕/𝜕𝛼 =
(𝜕/𝜕𝛼r − i𝜕/𝜕𝛼i)/2 and 𝜕/𝜕𝛼∗ = (𝜕/𝜕𝛼r + i𝜕/𝜕𝛼i)/2.

action of a differential operator on theWigner function𝑊(𝛼, 𝛼∗). This is
summarized in Tab. 2.2.

Finally, after calculating theWigner transform of the operatorℒ ̂𝜌, for
example bymeans of Tab. 2.2, one derives a partial differential equation
which is the equation of motion for theWigner function𝑊(𝛼, 𝛼∗).





Part II

STORAGE OF A S INGLE PHOTON

We theoretically analyze the dynamics of storage of a single
photon in a quantum memory composed of a single atom
trapped into a high-finesse optical cavity. In Chapter 3we
optimize the storage efficiency by suitably tailoring a laser
pulse driving the atom. In the adiabatic regime we derive
an analytical expression for the optimal laser pulse shape
that leads to storage with maximal efficiency. In the non-
adiabatic regimewe employ optimal control theory to derive
the optimal pulse shape, the maximal efficiency, and the
shortest photon that can be storedwith a given efficiency. In
Chapter 4we investigate the storage processwhen the single
photon is replaced by an attenuated laser pulse.





3
OPTIMAL STORAGE OF A S INGLE PHOTON BY A
S INGLE INTRA- CAV ITY ATOM

The content of this chapter contains results, text and figures from:

• L. Giannelli, T. Schmit, T. Calarco, C. P. Koch, S. Ritter, and G.Mo-
rigi,
“Optimal storage of a single photon by a single intra-cavity atom,
In: ”New Journal of Physics 20 (2018), p. 105009,
doi: 10.1088/1367-2630/aae725.

3.1 introduction

Quantumcontrol of atom-photon interactions is aprerequisite for the re-
alization of quantum networks based on single photons as flying qubits
[4, 106]. In these architectures, the quantum information carried by the
photons is stored in a controlledway in a stable quantummechanical
excitation of a system, the quantummemory [107–111]. In several ex-
perimental realizations the quantummemory is an ensemble of spins
and the photon is stored in a spin wave excitation [107]. Alternative
approaches employ individually addressable particles, such as single
trapped atoms or ions [35, 112]: here, high-aperture lenses [113] or op-
tical resonators [114] increase the probability that the photon qubit is
coherentlytransferred intoanelectronic excitation. Inaddition, schemes
based on heralded state transfer have been realized [113, 115–117], and
fibre-coupled resonators coupled to single atoms have been used to per-
form SWAP gates [118, 119]. Most recently, storage efficiencies of the
order of 22% have been reported for a quantummemory composed by a
single atom in an optical cavity [120]. This value lieswell below the value
one can extract from theoretical works on spin ensembles for photon
storage [121]. This calls for a detailed understanding of these dynamics
and for elaborating strategies to achieve full control of the atom-photon
interface at the single atom level.

Thepurpose of thiswork is to provide a systematic theoretical analysis
of the efficiency of protocols for a quantummemory for single photons,
where information is stored in the electronic excitation of a single atom
inside a high-finesse resonator. The qubit can be the photon polariza-
tion [35, 122], or a time-bin superposition of photonic states [123], and
shall then be transferred into a superposition of atomic spin states.

The scheme is illustrated in Fig. 3.1: a photon propagating along a
transmission line impinges on the cavitymirror, the storage protocol
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(a)

(b)

𝑥

𝛾

𝜅loss

Ω(𝑡)

input photon

|𝑔⟩
|𝑟⟩

|𝑒⟩ 𝛾
Δ

𝛿

𝑔
Ω(𝑡)

Figure 3.1: Storage of a single photon in the electronic state of a single atom
confined inside an optical resonator. (a) The photon wave packet
propagates along a transmission line and impinges onto a cavity
mirror. (b) The single photon is absorbed by the cavity, which drives
the atomic transition |𝑔⟩ → |𝑒⟩. An additional laser couples to the
atomic transition |𝑟⟩ → |𝑒⟩. The dynamics of storage is tailored
by optimizing the functional dependence of the laser amplitude
on time, Ω(𝑡): Ideally, the atom undergoes a Raman transition to
the final state |𝑟⟩ and the photon is stored. We analyse the storage
efficiency including the spontaneous decaywith rate 𝛾 of the excited
state and photon absorption or scattering at the cavitymirrors via
an incoherent process at rate 𝜅loss. Further parameters are defined
in the text.

coherently transfers the photon into ametastable atomic state, here de-
noted by |𝑟⟩, with the help of an external laser. The protocolswe analyse
are based on the seminal proposal by Cirac et al. [106]. Here, we first
compare adiabatic protocols, originally developed for atomic ensembles
in bad cavities [122, 124] aswell as a protocol developed for any coupling
regime for a single atom [123]. We then extend the protocol of Ref. [124]
to quantummemories composed of single atoms confined inside a high-
finesse resonator. We investigate how the storage efficiency is affected
by parasitic losses at the cavitymirrors andwhether these effects can
be compensated by the dynamics induced by the laser pulse driving the
atom. We finally extend our study to the non-adiabatic regime, and anal-
yse the efficiency of storage of broadband photon pulses using optimal
control.
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This Chapter is organized as follows. In Sec. 3.2 we introduce the
basic model, which we use in order to determine the efficiency of the
storage process. In Sec. 3.3we analyse the efficiency of protocols based
on adiabatic dynamics in presence of irreversible cavity losses. In Sec.
3.4we investigate the storage efficiencywhen the photon coherence time
does not fulfil the condition for adiabatic quantum dynamics. Here,we
use optimal control theory to determine the shortest photon pulse that
can be stored. The conclusions are drawn in Sec. 3.5. The appendices
provide further details of the analyses presented in Sec. 3.3.

3.2 basic model

The basic elements of the dynamics are illustrated in Fig. 3.1. A photon
propagates along the transmission line and impinges on themirror of a
high-finesse cavity. Here, it interacts with a cavitymode at frequency
𝜔c. The cavitymode, in turn, couples to a dipolar transition of a single
atom,which is confinedwithin the resonator. We denote by |𝑔⟩ the initial
electronic state in which the atom is prepared, it is a metastable state
and it performs a transition to the excited state |𝑒⟩ by absorbing a cavity
photon. The relevant atomic levels are shown in subplot (b): they are two
meta-stable states, |𝑔⟩ and |𝑟⟩,which are coupled byelectric dipole transi-
tions to a common excited state |𝑒⟩ forming aΛ level scheme. Transition
|𝑟⟩ → |𝑒⟩ is driven by a laser, whichwemodel by a classical field.

In order to describe the dynamics of the photon impinging onto the
cavitymirror we resort to a coherent description of the modes of the
electromagnetic field outside the resonator. The incident photon is an
excitation of the external modes, and it coupleswith the single mode of
a high-finesse resonator via the finite transmittivity of the mirror on
which the photon is incident.

In this section we provide the details of our theoretical model and
introduce the physical quantitieswhich are relevant to the discussions
in the rest of this paper.

3.2.1 Master equation

The state of the system, composed of the cavitymode, the atom, and the
modes of the transmission line, is described by the density operator ̂𝜌.
Its dynamics is governed by themaster equation (ℏ = 1)

𝜕𝑡 ̂𝜌 = −i[�̂�(𝑡), ̂𝜌] + ℒdis ̂𝜌 , (3.1)

where Hamiltonian �̂�(𝑡) describes the coherent dynamics of themodes
of the electromagnetic field outside the resonator, of the single-mode
cavity, of the atom’s internal degrees of freedom, and of their mutual
coupling. The incoherent dynamics, in turn, is given by superoperator
ℒdis, and includes spontaneous decay of the atomic excited state, at rate
𝛾, and cavity losses due to the finite transmittivity of the second cavity
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mirror aswell as due to scattering and/or finite absorption of radiation
at themirror surfaces, at rate 𝜅loss.

We first provide the details of the Hamiltonian. This is composed of
two terms, �̂�(𝑡) = �̂�fields + �̂�I(𝑡). The first term, �̂�fields, describes the
coherent dynamics of the fields in absence of the atom. It reads

�̂�fields = ∑
𝑘
(𝜔𝑘 − 𝜔c) ̂𝑏†𝑘 ̂𝑏𝑘 +∑

𝑘
𝜆𝑘( ̂𝑎† ̂𝑏𝑘 + ̂𝑏†𝑘 ̂𝑎), (3.2)

and is reported in the reference frame of the cavitymode frequency𝜔c.
Here, operators ̂𝑏𝑘 and ̂𝑏†𝑘 annihilate and create, respectively, a photon at
frequency𝜔𝑘 in the transmission line,with [ ̂𝑏𝑘, ̂𝑏†𝑘′] = 𝛿𝑘,𝑘′. Themodes
̂𝑏𝑘 are formally obtained by quantizing the electromagnetic field in the

transmission line and have the same polarization as the cavity mode.
They couplewith strength 𝜆𝑘 to the cavitymode,which is described by
a harmonic oscillator with annihilation and creation operators 𝑎 and
𝑎†, where [ ̂𝑎, ̂𝑎†] = 1 and [ ̂𝑎, ̂𝑏𝑘] = [ ̂𝑎, ̂𝑏†𝑘] = 0. In the rotating-wave
approximation the interaction is of beam-splitter type and conserves
the total number of excitations. The coupling𝜆𝑘 is related to the radiative
damping rate of the cavitymode by the rate 𝜅 = 𝐿|𝜆(𝜔c)|2/𝑐, with 𝜆𝑘 =
𝜆(𝜔c) the coupling strengthat the cavity-moderesonance frequency [125]
and 𝐿 the length of the transmission line. Note that 𝜅 is the cavity decay
rate because of transmission into the transmission line and is necessary
for the storage,while 𝜅loss is the decay rate into othermodes and is only
detrimental.

Theatom-photon interaction is treated in thedipoleandrotating-wave
approximation. The transition |𝑔⟩ → |𝑒⟩ couples with the cavitymode
with strength (vacuumRabi frequency) 𝑔. Transition |𝑟⟩ → |𝑒⟩ is driven
by a classical laserwith time-dependent Rabi frequencyΩ(𝑡), which is
the function to be optimized in order to maximize the probability of
transferring the excitation into state |𝑟⟩. The correspondingHamiltonian
reads

�̂�I = 𝛿|𝑟⟩⟨𝑟| − Δ|𝑒⟩⟨𝑒| + [𝑔|𝑒⟩⟨𝑔| ̂𝑎 + Ω(𝑡)|𝑒⟩⟨𝑟| +H.c.], (3.3)

where Δ = 𝜔c − 𝜔𝑒 is the detuning between the cavity frequency𝜔c and
the frequency 𝜔𝑒 of the |𝑔⟩ − |𝑒⟩ transition, while 𝛿 = 𝜔𝑟 + 𝜔L − 𝜔c is
the two-photon detuningwhich is evaluated using the central frequency
𝜔L of the driving field Ω(𝑡). Here, we denote by 𝜔𝑟 = (𝐸𝑟 − 𝐸𝑔)/ℏ the
frequencydifference (Bohr frequency) between the state |𝑟⟩ (of energy𝐸𝑟)
and the state |𝑔⟩ (of energy𝐸𝑔). Unless otherwise stated, in the following
we assume that the condition of two-photon resonance 𝛿 = 0 is fulfilled.

The irreversible processes thatwe consider in our theoretical descrip-
tion are (i) the radiative decay at rate 𝛾 from the excited state |𝑒⟩, where
photons are emitted into free fieldmodes other than themodes ̂𝑏𝑘 intro-
duced in Eq. (3.2), and (ii) the cavity losses at rate 𝜅loss due to absorption
and scattering at the cavitymirrors and to the finite transmittivity of
the secondmirror. Wemodel each of these phenomena byBorn-Markov
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processes described by the superoperators ℒ𝛾 and ℒ𝜅loss, respectively,
such thatℒdis = ℒ𝛾 + ℒ𝜅loss and

ℒ𝛾 ̂𝜌 = 𝛾(2|𝜉𝑒⟩⟨𝑒| ̂𝜌|𝑒⟩⟨𝜉𝑒| − |𝑒⟩⟨𝑒| ̂𝜌 − ̂𝜌|𝑒⟩⟨𝑒|) , (3.4a)
ℒ𝜅loss ̂𝜌 = 𝜅loss(2 ̂𝑎 ̂𝜌 ̂𝑎† − ̂𝑎† ̂𝑎 ̂𝜌 − ̂𝜌 ̂𝑎† ̂𝑎) . (3.4b)

Here, |𝜉𝑒⟩ is an auxiliary atomic statewhere the losses of atomic popula-
tion from the excited state |𝑒⟩ are collected.

3.2.2 Initial state and target state

Themodel is one dimensional, the transmission line is at 𝑥 < 0, and the
cavitymirror is at position 𝑥 = 0. The single incident photon is described
by a superposition of single excitations of the modes of the external
field [126]

|𝜓sp⟩ = ∑
𝑘
ℰ𝑘 ̂𝑏†𝑘|vac⟩, (3.5)

where |vac⟩ is the vacuum state and the amplitudes ℰ𝑘 fulfil the normal-
ization condition∑𝑘|ℰ𝑘|

2 = 1. For the studies performed in thiswork,
wewill consider the amplitudes

ℰ𝑘 =√
𝑐
2𝐿 ∫

∞

−∞
d𝑡ei(𝑘𝑐−𝜔c)𝑡ℰin(𝑡) (3.6)

with 𝑐 the speed of light, 𝐿 the length of the transmission line, and

ℰin(𝑡) =
1
√𝑇

sech (2𝑡𝑇 ) (3.7)

the input amplitude at the position 𝑥 = 0, with 𝑇 the characteristic time
determining the coherence time 𝑇c of the photon, 𝑇𝑐 = 𝜋𝑇/4√3 (see def-
inition in Eq. (3.10)). Our formalism applies to a generic input envelope,
nevertheless the specific choice of Eq. (3.7) allows us to compare our
resultswith previous studies, see Refs. [122–124]. The total state of the
system at the initial time 𝑡 = 𝑡1 is given by the input photon in the trans-
mission line, the empty resonator, and the atom in state |𝑔⟩. In particular,
the dynamics is analysed in the interval 𝑡 ∈ [𝑡1, 𝑡2], with 𝑡1 < 0, 𝑡2 > 0
and |𝑡1|, 𝑡2 ≫ 𝑇c, such that (i) at the initial time there is no spatial overlap
between the single photon and the cavitymirror and (ii) assuming that
the cavitymirror is perfectly reflecting, at 𝑡 = 𝑡2 the photon has been
reflected away from themirror.

The initial state is described by the density operator 𝜌(𝑡0) = |𝜓0⟩⟨𝜓0|,
where

|𝜓0⟩ = |𝑔⟩ ⊗ |0⟩𝑐 ⊗ |𝜓sp⟩ , (3.8)

and |0⟩𝑐 is the Fock state of the resonatorwith zero photons.
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Our target is to store the single photon into the atomic state |𝑟⟩ byshap-
ing the laser fieldΩ(𝑡). When comparing different storage approaches,
it is essential to have a figure of merit characterizing the performance of
the process. In accordancewith Ref. [124]we define the efficiency 𝜂 of
the process as the ratio between the probability to find the excitation in
the state |𝜓𝑇⟩ = |𝑟⟩ ⊗ |0⟩𝑐 ⊗ |vac⟩ at time 𝑡 and the number of impinging
photons between 𝑡1 and 𝑡, namely

𝜂(𝑡) =
⟨𝜓𝑇|𝜌(𝑡)|𝜓𝑇⟩
∫𝑡
𝑡1
|ℰin(𝑡)|

2d𝑡
, (3.9)

where 𝑡 > 𝑡1 and the denominator is unity for 𝑡 → 𝑡2. We note that states
|𝜓0⟩ and |𝜓𝑇⟩ are connected by the coherent dynamics via the intermedi-
ate states |𝑒⟩⊗|0⟩𝑐⊗|vac⟩ and |𝑔⟩⊗|1⟩𝑐⊗|vac⟩. These states are unstable,
since they can decayvia spontaneous emission or via the parasitic cavity
losses. Moreover, the incident photon can be reflected off the cavity. The
latter is a unitary process, which results in a finite probability of finding
a photon excitation in the transmission line after the photon has reached
themirror. The choice of Ω(𝑡) shall maximize the transfer |𝜓0⟩ → |𝜓𝑇⟩
byminimizing the losses aswell as reflection at the cavitymirror.

3.2.3 Relevant quantities

The transmission line is here modelled by a cavity of length 𝐿, with a
perfect mirror at 𝑥 = −𝐿. The secondmirror at 𝑥 = 0 coincideswith the
mirror of finite transmittivity, separating the transmission line from the
optical cavity. The length 𝐿 is chosen to be sufficiently large to simulate
a continuum of modes for all practical purposes. This requires that the
distance between neighbouring frequencies is smaller than all character-
istic frequencies of the problem. The smallest characteristic frequency is
the bandwidth of the incident photon,which is the inverse of the photon
duration in time. Since the initial state is assumed to be a single pho-
ton in a pure state, the latter coincideswith the photon coherence time
𝑇𝑐 [127]which is defined as

𝑇c = √⟨𝑡2⟩ − ⟨𝑡⟩2 (3.10)

with ⟨𝑡𝑥⟩ ≡ ∫𝑡2
𝑡1
𝑡𝑥|ℰin(𝑡)|

2d𝑡, and

∫
𝑡2

𝑡1

|ℰin(𝑡)|
2d𝑡 = 1 − 𝜀 , (3.11)

where 𝜀 < 10−5 for the choice |𝑡1| = 𝑡2 = 6𝑇c and 𝐿 = 12𝑐𝑇c. Themodes
of the transmission line are standingwaveswithwave vector along the 𝑥
axis. For numerical purposeswe take a finite number𝑁 of modes around
the cavitywave number 𝑘c =

𝜔c

𝑐
. Theirwave numbers are

𝑘𝑛 = 𝑘c +
𝑛𝜋
𝐿 , (3.12)
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while𝑛 = −(𝑁−1)/2, … , (𝑁−1)/2, and the corresponding frequencies are
𝜔𝑛 = 𝑐𝑘𝑛. We choose𝑁 and𝐿 so that our simulations are not significantly
affected by the finite size of the transmission line and by the cutoff in the
mode number𝑁. We further choose𝑁 in order to appropriately describe
spontaneous decay by the cavitymode. This is tested by initialising the
systemwith no atomand one cavityphoton and choosing the parameters
so to reproduce the exponential damping of the cavity field.

Note that a single mode of the cavity is sufficient to describe the in-
teractionwith a single photon if the photon frequencies lie in a range
which is smaller than the free spectral range of the cavity and is centered
around the frequency of the cavity mode. In this work we choose the
central frequency of the photon to coincide with the cavity mode fre-
quency𝜔p = 𝜔c and the spectrallybroadest photonwe consider (Figs. 3.5
and 3.6) spans about 16 × 2𝜋𝑀𝐻𝑧 around the cavity frequency 𝜔c. A
cavity of 1 𝑐𝑚 has a free spectral range of about 15 × 2𝜋𝐺𝐻𝑧which is
three orders of magnitudes larger than the bandwidth of the photon.
This justifies the approximation to a single mode cavity. The employed
formalism can be applied to photonswith other center frequencies as
well, if the number of modes 𝑁 is chosen sufficiently large and their
center is appropriately shifted (c.f. eq. (3.12)).

Since the free fieldmodes are included in the unitary evolution, it is
possible to constantlymonitor their state. The photon distribution in
space at time 𝑡 is given by

𝑃(𝑥, 𝑡) = 2
𝐿

𝑁
∑

𝑛,𝑚=1
𝜌𝑛𝑚(𝑡) sin(𝑛

𝜋
𝐿𝑥) sin(𝑚

𝜋
𝐿𝑥), (3.13)

where 𝜌𝑛𝑚(𝑡) = Tr{ ̂𝜌(𝑡)|1𝑚⟩⟨1𝑛|} and |1𝑛⟩ = 𝑏†𝑘𝑛|vac⟩.
A further important quantity characterizing the coupling between

cavitymode and atom is the cooperativity𝐶, which reads [124]

𝐶 =
𝑔2

𝜅𝛾 . (3.14)

The cooperativity sets the maximum storage efficiency in the limit in
which the cavity can be adiabatically eliminated from the dynamics of
the system [124], which corresponds to assuming the condition

𝛾𝐶𝑇c ≫ 1 . (3.15)

In this limit, in fact, the state |𝑔⟩⊗|1⟩𝑐⊗|vac⟩ can be eliminated from the
dynamics. Then, the efficiency satisfies 𝜂(𝑡) ≤ 𝜂max where themaximal
efficiency 𝜂max reads [124]

𝜂max =
𝐶

1 + 𝐶. (3.16)

Themaximal efficiency 𝜂max is reached for any input photon envelope
ℰin(𝑡) and detuningΔ, provided the adiabatic condition (3.15) is fulfilled.
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In our studywe also determine the probability that the photon is in
the transmission line,

𝑃𝑟(𝑡) = ∑
𝑘

Tr{ ̂𝜌(𝑡)|1𝑘⟩⟨1𝑘|}, (3.17)

the probability that spontaneous emission occurs,

𝑃𝑠(𝑡) = Tr{ ̂𝜌(𝑡)|𝜉𝑒⟩⟨𝜉𝑒|}, (3.18)

and finally, the probability that cavity parasitic losses take place,

𝑃loss(𝑡) = Tr{ ̂𝜌(𝑡)|𝑔, 0𝑐, vac⟩⟨𝑔, 0𝑐, vac|}. (3.19)

Bymeans of these quantitieswe gain insight into the processes leading
to optimal storage.

3.3 storage in the adiabatic regime

In this sectionwe determine the efficiency of storage protocols derived
in Refs. [122–124] for the setup of Ref. [120] in the adiabatic regime.
We then analyse how the efficiency of these protocols is modified by
the presence of parasitic losses at rate 𝜅loss. In this case, we find also an
analytic resultwhich corrects themaximal value of Eq. (3.16).

We remark that inRefs. [122–124] the optimal pulsesΩ(𝑡)were analyt-
ically determined using input-output theory [55]. In Refs. [122, 124] the
authors consider an atomic ensemble inside the resonator in the adia-
batic regime. This regime consists in assuming the bad cavity limit 𝜅 ≫ 𝑔
and the limit 𝛾𝑇c𝐶 ≫ 1. The first assumption allows one to adiabatically
eliminate the cavity field variables from the equations of motion, the
second assumption permits one to eliminate also the excited state |𝑒⟩.
In Ref. [123] a single atom is considered and there is no such adiabatic
approximation, but the couplingwith the external field is treated using
a phenomenological model.

Herewe simulate the full Hamiltonian dynamics of the external field
in the transmission line and consider a quantummemory composed of
a single atom inside a reasonably good cavity. The parameterswe refer
to in our study are the ones of the setup of Ref. [120]:

(𝑔, 𝜅, 𝛾) = (4.9, 2.42, 3.03) × 2𝜋𝑀𝐻𝑧, (3.20)

corresponding to the cooperativity𝐶 = 3.27 and to themaximal storage
efficiency𝜂max = 0.77. Whenweanalyse thedependenceof the efficiency
on 𝛾 or 𝜅, we vary the parameters around the values given in Eq. (3.20).

3.3.1 Ideal resonator

Wefirst review the requirements and results of the individual protocols
of Refs. [122–124] and investigate their efficiencyfor a single-atomquan-
tummemory. Theworks of Refs. [122–124] determine the form of the
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optimal pulseΩ(𝑡) for cavitieswith cooperativities 𝐶 ≥ 1. The optimal
pulse is found by imposing similar, but not equivalent requirements.
In Refs. [122, 123] the authors determineΩ(𝑡) by imposing impedance
matching, namely, that there is no photon reflected back by the cavity
mirror. In Ref. [124] the pulseΩ(𝑡)warrantsmaximal storage, namely,
maximal probability of transferring the photon into the atomic excita-
tion |𝑟⟩. The latter requirement corresponds tomaximizing the storage
efficiency 𝜂 defined in Eq. (3.9).

In detail, in Ref. [122] the authors determine the optimal pulseΩ(𝑡)
that suppresses back-reflection from the cavity andwarrants that the
dynamics follows adiabatically the dark state of the system composed by
cavityand atom. For this purpose the authors impose that the cavityfield
is resonant with the transition |𝑔⟩ → |𝑒⟩, namely Δ = 0. They further
require that the coherence time 𝑇c is larger than the cavity decay time,
𝜅𝑇c ≳ 1. Under these conditions the optimal pulseΩ(𝑡) = ΩF(𝑡) reads

ΩF(𝑡) =
𝑔ℰin(𝑡)

√𝑐1 + 2𝜅∫𝑡
𝑡1
|ℰin(𝑡′)|

2d𝑡′ − |ℰin(𝑡)|
2
, (3.21)

where 𝑐1 regularizeΩF(𝑡) for 𝑡 → 𝑡1. Thework in Ref. [123] imposes the
suppression of the back-reflected photonwithout any adiabatic approxi-
mation and finds the optimal pulseΩ(𝑡) = ΩD(𝑡), which takes the form

ΩD(𝑡) =
𝑔ℰin(𝑡) + ( ̇ℱ(𝑡) + 𝛾ℱ(𝑡))/𝑔

√
2𝜅𝜌0 + 2𝜅

𝑡
∫
𝑡1
|ℰin(𝑡′)|

2 − |ℰin(𝑡)|
2 −𝒟(𝑡)

, (3.22)

with

𝒟(𝑡) = 2𝛾

𝑡

∫
𝑡1

|ℱ(𝑡′)|2d𝑡′ + |ℱ(𝑡)|2 . (3.23)

and ℱ(𝑡) = ̇ℰin(𝑡) − 𝜅ℰin(𝑡). Coefficient 𝜌0 accounts for a small initial
population in the target state |𝑟⟩ and it is relevant in order to avoid diver-
gences in Eq. (3.22) for 𝑡 → 𝑡1, see Ref. [123] for an extensive discussion.
ThepulseΩF(𝑡)of Eq. (3.21) canbe recovered fromEq. (3.22) by imposing
the conditions

̇ℱ(𝑡) + 𝛾ℱ(𝑡) = 0, (3.24a)

−|ℱ(𝑡1)|
2 + 2𝜅𝜌0 = 𝑐1. (3.24b)

The control pulseΩD(𝑡) can be considered as a generalization of ΩF(𝑡)
since it is determined by solely imposing quantum impedancematching.

InRef. [124] the authors determine the amplitudeΩ(𝑡) thatmaximizes
the efficiency 𝜂. This condition is not equivalent to imposing impedance
matching. In fact, while in the case of impedancematchingmajor losses
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through the excited state |𝑒⟩ are acceptable in order tominimize the prob-
ability of photon reflection, in the case of maximum transfer efficiency𝜂
those losses are detrimental and thus have to beminimized. The optimal
pulseΩ(𝑡) = ΩG(𝑡) is determined for a generic detuning Δ by using an
analytical model based on the adiabatic elimination of the excited state
|𝑒⟩ of the atom and of the cavity field in the bad cavity limit 𝜅 ≫ 𝑔. It
reads

ΩG(𝑡) = 𝛾(1 + 𝐶) + iΔ
√2𝛾(1 + 𝐶)

ℰin(𝑡)

√∫𝑡
𝑡1
|ℰin(𝑡′)|

2d𝑡′

× exp(−i Δ
2𝛾(1 + 𝐶)

ln∫
𝑡

𝑡1

|ℰin(𝑡′)|
2d𝑡′) .

(3.25)

In the limit inwhich the adiabatic conditions are fulfilled, this control
pulse allows for storagewith efficiency 𝜂max, Eq. (3.16). This efficiency
approaches unity for cooperativities 𝐶 ≫ 1.

We start by integrating numerically themaster equation for a single
atom (3.1) after setting 𝜅loss = 0, namely, by neglecting parasitic losses.
We determine the storage efficiency at the time 𝑡2, whichwe identify by
taking 𝑡2 ≫ 𝑇c for different choices of the control fieldΩ = ΩG, ΩF, ΩD

in Hamiltonian (3.3). Numerically, 𝑡2 corresponds to the time the photon
wouldneed tobe reflectedback into the initialposition, assuming that the
partially reflectingmirror is replaced bya perfectmirror. Our numerical
simulations are performed for a single atom in a resonator in the good
cavity limit.

Figures 3.2 display the efficiency and the losses as a function of 𝜅, 𝛾,
and of the coherence time 𝑇𝑐 of the photon (and thus of the adiabatic
parameter 𝛾𝑇c𝐶). Each curve corresponds to the different control pulses
in the Hamiltonian (3.3) according to the three protocols. In subplot (a)
we observe that the efficiency reachedwith the pulseΩG(𝑡) corresponds
to themaximum theoretical efficiency 𝜂max, while the efficiencywithΩD

is the smallest. In subplot (b) it is visible that the control pulseΩG(𝑡)war-
rants themaximum efficiency even down to values of 𝜅 of the order of
𝜅 ∼ 𝑔/5. Subplot (c) displays the efficiency as a function of the adiabatic
parameter 𝛾𝑇c𝐶: the protocolΩG(𝑡) reaches the maximum theoretical
efficiency 𝜂max for 𝛾𝑇c𝐶 ≳ 20, while the other protocols have smaller
efficiency for all values of 𝑇c. Figures 3.2(d)(e)(f ) report the probability
that the photon is reflected back into the transmission line, eq. (3.17). It
is evident that protocolΩD perfectly suppresses the back reflection prob-
ability in every regime here considered. However in the non-adiabatic
regime (subplots (c)(f )(i), 𝛾𝑇c𝐶 ≲ 20) the protocolΩD, aswell as the proto-
colΩF, requires an increasingmaximumRabi frequency for decreasing
𝑇c. At the value of about 𝛾𝑇c𝐶 ≈ 3.74 the Rabi frequency is so high that
it is not anymoremanageable by our numerical solver, for this reason
the plots for the protocolsΩD andΩF are reported for 𝛾𝑇c𝐶 ≳ 3.74. The
same happens for small values of 𝜅, subplots (b)(e)(h): in this case the
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Figure 3.2: Comparison between the protocols of Refs. [122–124]. (Upper row)
Storage efficiency 𝜂, Eq. (3.9), (central row) probability that the
photon is reflected 𝑃𝑟, Eq. (3.17), and (bottom row) probability of
spontaneous emission, Eq. (3.18), evaluated at time 𝑡2 = 6𝑇c by
integrating numerically Eq. (3.1) for 𝜅loss = 0. The quantities are
reported as a function of (left column) the decay rate 𝛾 from the
excited state (for 𝜅 = 𝜅0 and 𝑇c = 𝑇0

c ), (central column) the de-
cay rate 𝜅 of the cavity field (for 𝛾 = 𝛾0 and 𝑇c = 𝑇0

c ) and (right
column) the coherence time of the photon 𝑇c (in units of 1/(𝛾𝐶)
and for 𝜅 = 𝜅0 and 𝛾 = 𝛾0). The three different lines ΩF, ΩD,
andΩG refer to the evolutionwith the respective control pulse (see
Eqs. (3.21), (3.22), (3.25), respectively). The dotted lines in panels
(a)(b)(c) correspond to the maximum efficiency 𝜂 = 𝐶/(1 + 𝐶), Eq.
(3.16). Here, (𝑔, 𝜅0, 𝛾0) = (4.9, 2.42, 3.03) × 2𝜋𝑀𝐻𝑧 and 𝑇0

c = 0.5 𝜇𝑠.
The inputpulseℰin(𝑡) is given inEq. (3.7), at the initial time 𝑡1 = −6𝑇c
the pulse has negligible overlap with the cavity mode. The trans-
mission line has length 𝐿 = max(12𝑐𝑇c, 15𝑐/𝜅) and 211 equispaced
modes. With this choice the frequency range of themodes included
in the simulation is about 40𝜅 around the cavity frequency𝜔c.

plots for the protocols ΩD and ΩF are reported for 𝜅 ≳ 0.3 × 2𝜋𝑀𝐻𝑧.
The diverging Rabi frequency can be avoided by an appropriate choice
of the parameters 𝑐1 and 𝜌0 in Eqs. (3.21) and (3.22), respectively. Fig-
ures 3.2(g)(h)(i) report the losses via spontaneous emission of the atom,
Eq. (3.18): while these losses are acceptable in order to minimize the
back-reflected photon, they are detrimental for the intent of populating
the target state |𝑟⟩. Protocol ΩD, which perfectly suppresses the back
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reflected photon, has the highest lossesvia spontaneous emission,which
in the end leads to a lower efficiency𝜂. ProtocolΩG in turn, has the lowest
radiative losses and it allows for the transferwith themaximal efficiency
𝜂max. ProtocolΩF tries to minimize reflection of the photon at the cavity
mirror. However, sinceΩF is derivedwith some approximations, it does
not suppress completely the reflection and its final efficiency is between
the ones of the other two protocols.

An important general result of this study is that the bad cavity limit is
not essential for reaching themaximal efficiencyas long as the dynamics
is adiabatic: the relevant parameter is in fact the cooperativity.

3.3.2 Parasitic losses

The protocols so far discussed assume an ideal optical resonator. In this
sectionwe analyse how their efficiency is modified by the presence of
parasitic losses, here described by the superoperatorℒ𝜅loss in Eq. (3.4b).
In particular, we derive themaximal efficiency the protocols can reach
as a function of 𝜅loss > 0.

We first numerically determine the efficiency of the individual pro-
tocols as a function of 𝜅loss for 𝑇c = 0.5 𝜇𝑠. Figure 3.3(a) displays 𝜂 for
Ω = ΩG, ΩD, ΩF. It is evident that the effect of losses is detrimental, for
instance it leads to a definite reduction of themaximal efficiency from
𝜂 = 0.77 down to 𝜂 = 0.68 for 𝜅loss ∼ 0.1𝜅. This result can be improved by
identifying a control fieldΩ = ΩX which compensates, at least partially,
the effects of these parasitic losses. The control field ΩX(𝑡) is derived
in Sec. 3.3.3 using the input-output formalism: it corresponds to per-
forming the substitution 𝜅 → 𝜅+𝜅loss in the functional formΩG(𝑡) of Eq.
(3.25). Specifically, it reads

ΩX(𝑡) = 𝛾(1 + 𝐶′) + iΔ
√2𝛾(1 + 𝐶′)

ℰin(𝑡)

√∫𝑡
𝑡1
|ℰin(𝑡′)|

2d𝑡′
(3.26)

× exp(−i Δ
2𝛾(1 + 𝐶′)

ln∫
𝑡

𝑡1

|ℰin(𝑡′)|
2d𝑡′) ,

with themodified cooperativity

𝐶′ =
𝑔2

𝛾(𝜅 + 𝜅loss)
. (3.27)

When the control pulseΩX(𝑡) is used, the efficiency of the process corre-
sponds to themaximal efficiency 𝜂′max, which is nowgiven by

𝜂′max =
𝜅

𝜅 + 𝜅loss
𝐶′

1 + 𝐶′ . (3.28)

Clearly, 𝜂′max ≤ 𝜂max, while the equality holds for 𝜅loss = 0.
By inspecting the numerical results, we note that the efficiency ob-

tained usingΩX is always higher than the one reached by the other proto-
cols. Even though for some values of 𝜅loss the efficiencies using different
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Figure 3.3: Efficiency of storage protocols in the adiabatic regime as a func-
tion of the rate of parasitic losses 𝜅loss (in units of 𝜅). (a) Storage
efficiency, Eq. (3.9), (b) the probability that the photon is reflected,
Eq. (3.17), (c) the probability of spontaneous decay, Eq. (3.18), and
(d) the probability of parasitic losses, Eq. (3.19), evaluated at time
𝑡2 = 6𝑇c and for (𝑔, 𝜅, 𝛾) = (4.9, 2.42, 3.03)×2𝜋𝑀𝐻𝑧,𝑇c = 0.5 𝜇𝑠. The
other parameters are the same as in Fig. 3.2. The linesΩX,ΩF,ΩD,
andΩG refer to the evolutionwith the respective control pulse (resp.
Eqs. (3.26), (3.21), (3.22), (3.25)). The dotted line in (a) corresponds
to the value of 𝜂′max, Eq. (3.28).

control fieldsmayapproach the one foundwithΩX, yet the dynamics are
substantially different. This is visible by inspecting the probability that
the photon is reflected, the radiative losses, and the parasitic losses, as a
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function of 𝜅loss as shown in Figs. 3.3(b)(c)(d), respectively: Each pulse
distributes the losses in a differentway,withΩX(𝑡) interpolating among
the different strategies in order tomaximize the efficiency.
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Figure 3.4: Dynamicsof storage. (a) Photonenvelope |ℰin(𝑡)|
2, Eq. (3.7), as a func-

tion of time. (b) Time dependence of the control pulsesΩF(𝑡),ΩG(𝑡),
ΩD(𝑡), andΩX(𝑡) (resp. Eqs. (3.21), (3.25), (3.22), (3.26)). (c) Time evo-
lution of the diagonal elements of the densitymatrixwhen the atom
is driven byΩX. The curves are the population 𝜌𝑟𝑟 of state |𝑟⟩, the
population 𝜌𝑒𝑒 of state |𝑒⟩, the probability that there is one photon in
the cavity 𝜌𝑎𝑎, the probability that the photon is in the transmission
line 𝑃𝑟, Eq. (3.17), the probability of spontaneous decay, Eq. (3.18)
𝑃𝑠, and the probability of cavity parasitic losses 𝑃loss, Eq. (3.19). The
parameters are (𝑔, 𝜅, 𝛾, 𝜅loss) = (4.9, 2.42, 3.03, 0.33)× 2𝜋𝑀𝐻𝑧,Δ = 0
and 𝑇c = 0.5 𝜇𝑠.
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Figure 3.4 shows the evolution of the system for 𝑇c = 0.5 𝜇𝑠. Fig. 3.4(a)
displays the envelope in time |ℰin(𝑡)|

2 for the photon given in eq. (3.7),
which is the one used also in this simulation. Fig. 3.4(b) displays the
control pulse shapes of the protocols ΩF, ΩG, ΩD, of Refs. [122–124]
and ΩX derived in this work (the pulse shapes are given analytically
in Eqs. (3.21), (3.25), (3.22), (3.26)). Fig. 3.4(c) shows the population of
the states and the losses during the evolutionwhen the atom is driven
by ΩX(𝑡). The efficiency of the transfer, Eq. (3.9), corresponds to the
population of the state |𝑟⟩, 𝜌𝑟𝑟. For the parameters of Ref. [120] the final
efficiency is 𝜂(𝑡2) ≈ 𝜂′max ≈ 0.653.

In the next subsection we report the derivation of ΩX and 𝜂′max by
means of the input-output formalism.

3.3.3 Maximal efficiency in presence of parasitic losses

In this sectionwe generalize the adiabatic protocol of Ref. [124] in order
to identify the control field that maximizes the storage efficiency and to
determine themaximumstorage efficiencyone can reach. Thederivation
presented in this section is based on the input-output formalism and it
delivers Eq. (3.26) and Eq. (3.28).

We first justify the result for Eq. (3.28) using a time reversal argument
applied in Refs. [124, 128]. Let us consider retrieval of the photon, as-
suming the atom is initially in state |𝑟⟩ and there is neither external nor
cavity field. Then, in order to retrieve the photon, the control pulseΩ(𝑡)
shall drive the transition |𝑟⟩ → |𝑒⟩ such that at the end of the process the
state |𝑟⟩ is completelyempty. The excited state |𝑒⟩dissipates the excitation
with probability 1/(1 + 𝐶′), while it can emit into the cavitymodewith
probability𝐶′/(1 + 𝐶′). When the cavitymode is populated, a fraction
𝜅loss/(𝜅 + 𝜅loss) is lost, while the fraction 𝜅/(𝜅 + 𝜅loss) is emitted via the
coupling mirror into the transmission line. From this argument one
finds that the probability of retrieval is given by Eq. (3.28). Using the
time reversal argument, this is also the efficiency of storage.

We nowderive this result aswell asΩX(𝑡) starting from the retrieval
process and then applying the time reversal argument. For this purpose,
we restrict the dynamics to the Hilbert spaceℋ composed by the states
{|𝑔, 1𝑐, vac⟩, |𝑒, 0𝑐, vac⟩, |𝑟, 0𝑐, vac⟩, |𝑔, 0𝑐, 1𝑘⟩ ∶ 1 ≤ 𝑘 ≤ 𝑁}. Inℋ the prob-
ability is not conserved due to leakage via spontaneous decay and via
parasitic cavity losses. Therefore, a generic state inℋ takes the form
|𝜙(𝑡)⟩ = 𝑐(𝑡)|𝑔, 1𝑐, vac⟩+𝑒(𝑡)|𝑒, 0𝑐, vac⟩+𝑟(𝑡)|𝑟, 0𝑐, vac⟩+∑𝑘 ℰ𝑘(𝑡)|𝑔, 0𝑐, 1𝑘⟩,
it evolves according to a non-Hermitian Hamiltonian and its norm de-
cays exponentiallywith time [129]. We assume that at the initial time
𝑡 = 𝑡1 the probability amplitude 𝑟(𝑡1) equals 1, while all other proba-
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bility amplitudes vanish. The equations of motion for the probability
amplitudes read

̇𝑐(𝑡) = −i𝑔𝑒(𝑡) − i√2𝜅ℰin(𝑡) − (𝜅 + 𝜅loss)𝑐(𝑡), (3.29a)
̇𝑒(𝑡) = (iΔ − 𝛾)𝑒(𝑡) − i𝑔𝑐(𝑡) − iΩ(𝑡)𝑟(𝑡), (3.29b)
̇𝑟(𝑡) = −iΩ∗(𝑡)𝑒(𝑡) , (3.29c)

wherewe used theMarkov approximation and the input-output formal-
ism [55]. We nowassume the bad-cavity limit 𝜅 ≫ 𝑔 and adiabatically
eliminate the cavity field from the equations of motion (which corre-
sponds to assuming ̇𝑐(𝑡) ≈ 0 over the typical time scales of the other
variables). In this limit the input-output operator relation, ̂ℰout(𝑡) =
i√2𝜅 ̂𝑎(𝑡) − ̂ℰin(𝑡), takes the form

ℰout(𝑡) = 𝐺√2𝛾𝐶𝑒(𝑡) +
𝜅 − 𝜅loss
𝜅 + 𝜅loss

ℰin(𝑡) , (3.30)

where
𝐺 = 𝜅/(𝜅 + 𝜅loss)

and 𝐶 is given in Eq. (3.14). This equation has to be integrated together
with the equations

̇𝑒(𝑡) = [iΔ − 𝛾(1 + 𝐺𝐶)]𝑒(𝑡) − iΩ(𝑡)𝑟(𝑡) − 𝐺√2𝛾𝐶ℰin(𝑡) , (3.31)
̇𝑟(𝑡) = −iΩ∗(𝑡)𝑒(𝑡) . (3.32)

Our goal is to determine the retrieval efficiency assuming that at time
𝑡 = 0 there is no input photonic excitation, thus ℰin(𝑡) = 0 at all times.
Using these assumptions, the above equations can be cast into the form

d
d𝑡(|𝑒(𝑡)|

2 + |𝑟(𝑡)|2) = −2𝛾(1 + 𝐶′)|𝑒(𝑡)|2 . (3.33)

The probability that no excitations are left in the atom at time 𝑡2 > 0
(𝑡2 ≫ 𝑇c) is the retrieval efficiency

𝜂′max = ∫
𝑡2

𝑡1

|ℰout(𝑡)|
2d𝑡 = 2𝐺2𝛾𝐶∫

𝑡2

𝑡1

|𝑒(𝑡)|2d𝑡 =

= −𝐺𝐶′

1 + 𝐶′ [|𝑒(𝑡)|
2 + |𝑟(𝑡)|2]

𝑡2
𝑡1
= 𝐺𝐶′

1 + 𝐶′ .

(3.34)

Bymeansof the time reversal argument, this is also the storage efficiency.
The output field can be analytically determined by adiabatically elim-

inating the excited state from Eqs. (3.30). This leads to the expression

ℰout(𝑡) = i√2𝛾𝐺𝐶′ Ω(𝑡)
iΔ − 𝛾(1 + 𝐶′)

× exp(∫
𝑡

𝑡1

|Ω(𝑡′)|2

iΔ − 𝛾(1 + 𝐶′)
d𝑡′) .

(3.35)
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Integrating the norm squared of Eq. (3.35) one obtains

(𝐺 𝐶′

1 + 𝐶′ )
−1
∫

𝑡

𝑡1

|ℰout(𝑡′)|
2d𝑡′ =

= 1 − exp[ −2𝛾(1 + 𝐶′)
𝛾2(1 + 𝐶′)2 + Δ2

∫
𝑡

𝑡1

|Ω(𝑡′)|2d𝑡′] .
(3.36)

We solve Eq. (3.36) to find |Ω(𝑡)|, while the phase of Ω(𝑡) can be deter-
mined fromEq. (3.35). Finally,weobtain the control pulseΩX

retr(𝑡)which
retrieves the photonwith efficiency 𝜂′max. It reads

ΩX
retr(𝑡) =

𝛾(1 + 𝐶′) − iΔ
√2𝛾(1 + 𝐶′)

ℰout(𝑡)

√∫𝑡2
𝑡 |ℰout(𝑡′)|

2d𝑡′

× exp(i Δ
2𝛾(1 + 𝐶′)

ln∫
𝑡2

𝑡
(|ℰout(𝑡′)|

2/𝜂′max)d𝑡′) .

(3.37)

Using the time reversal argument, the control pulseΩX(𝑡) = ΩX∗
retr(𝑇 −𝑡)

stores the time reversed input photonwith ℰin(𝑡) = ℰ∗out(𝑇 − 𝑡)/√𝜂′max

and 𝑇 = 𝑡2 − 𝑡1, and it takes the form given in Eq. (3.26). This pulse has
the same form as the pulse of Eq. (3.25), where now𝐶 has been replaced
by𝐶′ (or equivalently 𝜅 → 𝜅 + 𝜅loss).

3.3.4 Photon Retrieval

The generation of single photonswith arbitrary shape of thewavepacket
envelope in atom-cavitysystemshas beendiscussed theoretically in [124,
130] and demonstrated experimentally in [131, 132].

In Ref. [106, 128] it has been pointed out that photon storage and
retrieval are connectedbya time reversal transformation. This argument
has profound implications. Consider for instance the pulse shapeΩ(𝑡)
which optimally stores an input photonwith envelope ℰin(𝑡). This pulse
shape is the time reversal of the pulse shapeΩretr(𝑡) = Ω∗(𝑇 − 𝑡)which
retrieves a photonwith envelope ℰout(𝑡) = ℰ∗in(𝑇 − 𝑡) (here 𝑇 = 𝑡2 − 𝑡1).
In this case, the storage efficiency is equal to the efficiency of retrieval
and is limited by the cooperativity through the relation in Eq. (3.28). We
have numerically checked that this is fulfilled by considering adiabatic
retrieval and storage of a single photon through 5 nodes, consisting of
5 identical cavity-atom systems. We applied Ωretr(𝑡) for the retrieval
and the correspondingΩ(𝑡) for the storage. Within the numerical error,
we verified that the storage efficiency of each retrieved photon remains
constant and equal to the one of the first retrieved photon.

3.4 beyond adiabaticity

In this sectionweanalyse theefficiencyof storageof singlephotonpulses
in the regime inwhich the adiabaticity condition Eq. (3.15) does not hold.
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Our treatment extends to single-atom quantummemories the approach
that was applied to atomic ensemble in Refs. [133, 134] and allows us
to identify theminimum coherence time scale of the photon pulse for
which a given target efficiency can be reached.

Ourprocedure is developed as follows. Weuse thevon-Neumannequa-
tion, obtained from Eq. (3.1) after setting 𝛾 = 𝜅loss = 0, and resort to
optimal control theory for identifying the control pulseΩ(𝑡) = Ωopt(𝑡)
that maximizes the storage efficiency for 𝛾 = 𝜅loss = 0. Specifically,
wemake use of the GRAPE algorithm [135] implemented in the library
QuTiP [136, 137]. We then determine the storage efficiency of the full
dynamics, including spontaneous decay and cavity parasitic losses, by
numerically integrating themaster equation (3.1) using the pulseΩopt(𝑡).
We show that the dynamics due toΩopt(𝑡) significantly differs from the
adiabatic dynamics, and thereby improve the efficiency for short coher-
ence times.
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Figure 3.5: Storage efficiency 𝜂 at 𝑡 = 𝑡2 as a function of the coherence time
of the single-photon pulse 𝑇c (in units of (𝛾𝐶)−1). The legenda in-
dicates the pulses used in the numerical integration of Eq. (3.1).
The parameters are (𝑔, 𝜅) = (4.9, 2.42) × 2𝜋𝑀𝐻𝑧, the lines labeled
“with losses” refer to the efficiency of the processwhen (𝛾, 𝜅loss) =
(3.03, 0.33) × 2𝜋𝑀𝐻𝑧, otherwise 𝛾 = 𝜅loss = 0; 𝑡2 = −𝑡1 = 6𝑇c. The
other parameters are given in Fig. 3.2.

Figure 3.5 displays the storage efficiency 𝜂 as a function of the photon
coherence time 𝑇c when the control pulse isΩX(𝑡), Eq. (3.26), andwhen
instead the control pulse is found bymeans of the numerical procedure
specified above, which we denote byΩopt(𝑡). The storage efficiency is
reported for 𝛾 = 𝜅loss = 0 and for (𝛾, 𝜅loss) = (3.03, 0.33) × 2𝜋𝑀𝐻𝑧. The
results show that optimal control, in thewaywe implement it, does not
improve themaximal value of the storage efficiency,which seems to be
limited by the value of 𝜂′max, Eq. (3.28). We remark that this behaviour is
generally encounteredwhen applying optimal-control-based protocols
toMarkovian dynamics [138]. Nevertheless, the protocols identified us-
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Figure 3.6: (a) Photon envelope |ℰin(𝑡)|
2, Eq. (3.7), and optimized pulseΩopt(𝑡) as

a functionof time (the initial guess pulseΩX(𝑡) is shown for compari-
son). Subplot (b) and (c) display the time evolution of the diagonal el-
ements of thedensitymatrixwhen theatom isdrivenbyΩX andΩopt,
respectively. The curves are the population 𝜌𝑟𝑟 of state |𝑟⟩, the popu-
lation 𝜌𝑒𝑒 of state |𝑒⟩, the probability that there is one photon in the
cavity𝜌𝑎𝑎, and the probability that the photon is in the transmission
line 𝑃𝑟, Eq. (3.17). The parameters are (𝑔, 𝜅) = (4.9, 2.42) × 2𝜋𝑀𝐻𝑧,
𝛾 = 𝜅loss = Δ = 0 and 𝑇c = 0.009 𝜇𝑠, thus the regime is non adia-
batic as 𝑇c ≈ 0.57/(𝛾𝐶). At 𝑡 = 𝑡2 the population 𝜌𝑟𝑟 gives 𝜂(𝑡2). In
this case the system has been simulated for a longer time interval:
𝑡2 = −𝑡1 = 15𝑇c.

ing optimal control extend the range of values of 𝑇c, where themaximal
efficiency is reached, down tovalueswhere the adiabatic condition is not
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fulfilled. We further find that the optimized pulsewe numerically iden-
tified in absence of losses provides an excellent guideline for optimizing
the storage also in presence of losses.

Inorder toget insight into theoptimizeddynamicsweanalyse the time
dependence of the control pulse aswell as the dynamics of cavity and
atomic state populations for𝑇c = 0.009 𝜇𝑠, namely,when the dynamics is
non-adiabatic. Figure 3.6(a) shows the time evolution of the pulseΩopt(𝑡)
resulting from the optimization procedure in the non-adiabatic regime;
the pulseΩX(𝑡) is shown for comparison. The efficiency of the transfer
(when the losses are neglected)with the control pulseΩX is 𝜂X ≈ 0.07 <
𝜂max because the process is non adiabatic,while the efficiency reached
with the optimized pulse Ωopt(𝑡) is 𝜂opt ≈ 0.63. The value of the solid
green line at 𝑡 = 𝑡2 in Fig. 3.6(b) and 3.6(c) corresponds to the leftmost
point in Fig. 3.5 for the casewithout losses. A double bump in the cavity
population is visible in Fig. 3.6(b): this is due to the Jaynes-Cummings
dynamics, and is thus the periodic exchange of population between the
atomic excited state |𝑒⟩ and the cavity field. In Fig. 3.6(a) it is noticeable
that the intensity of the optimized pulse exhibits a relatively high peak
when the photon is impinging on the cavity. It corresponds to away to
perform impedancematching in order tomaximize the transmission at
themirror, and it is related to the same dynamicswhich gives rise to the
divergence of ΩF(𝑡) andΩD(𝑡)which is foundwhen they are applied in
the non-adiabatic regime. After this the intensity of the control pulse
vanishes and then exhibits a secondmaximumwhen the population of
the excited state reaches themaximum: we verified that the area about
this second “pulse” corresponds to the one of a𝜋 pulse, thus transferring
the population into state |𝑟⟩.

We now investigate the limit of optimal storage. For this purposewe
determine the lower bound 𝑇min

c to the coherence time 𝑇c of the photon,
forwhichagivenefficiency𝜂 = 𝜂tr canbe reached. For eachvalueof 𝑔and
𝑇c we optimize the control pulse using GRAPE. For each 𝑔we determine
𝜂 as a function of 𝑇c and then extract 𝑇min

c = min𝑇c{𝑇c ∶ 𝜂(𝑇c) ≥ 𝜂tr}. We
then analyse how the minimum coherence time 𝑇min

c scales with the
vacuumRabi frequency 𝑔.

Figure3.7displays theminimumphotoncoherence time𝑇min
c required

for reaching the storage efficiency (a) 𝜂tr = 0.99 and (b) 𝜂tr = 2/3 as a
function of the coupling constant 𝑔. We observe two behaviours, sepa-
rated by the value 𝑔 = 𝜅: For 𝑔 ≪ 𝜅, in the bad cavity limit,we extract the
functional behaviour 𝑇min

c ∝ 1/𝛾𝐶 = 𝜅/𝑔2. On the contrary, in the good
cavity limit, 𝑔 > 𝜅, we find that 𝑇min

c ∝ 1/𝜅: The limit to photon storage
is here determined by the cavity linewidth. The general behaviour as a
function of 𝑔 interpolates between these two limits. This result shows
that the photon can be stored as long as its spectralwidth is of the order
of the linewidth of the dressed atomic state. Fig. 3.7(a) also displays the
minimum photon coherence times 𝑇X

c and 𝑇D
c that allows for a transfer

with efficiency 𝜂 = 𝜂tr = 0.99 for the protocolsΩX andΩD, respectively.



3.5 conclusions 51

10−2

10−1

100

101

102

ph
ot
on

co
he

re
nc

et
im

e(
𝜇s

) (a) fit𝑓1(𝑔)
fit𝑓2(𝑔)
𝑔 = 𝜅

𝑇min
c

𝑇X
c

𝑇D
c

10−1 100 101
𝑔 (units of 𝜅)

10−2

10−1

100

ph
ot
on

co
he

re
nc

et
im

e(
𝜇s

) (b)

Figure 3.7: Minimumphoton coherence time as a function of 𝑔 (in units of 𝜅).
The coherence time 𝑇min

c is the lower bound to the coherence time
of photons which can be stored with efficiency (a) 𝜂tr = 0.99 and
(b) 𝜂tr = 2/3 for 𝛾 = 𝜅loss = Δ = 0. The vertical dotted line shows
the value 𝑔 = 𝜅 = 2.42 × 2𝜋𝑀𝐻𝑧. The data in the region 𝑔 ≪ 𝜅
and 𝑔 ≫ 𝜅 have been fitted with the functions 𝑓1(𝑔) = 𝑎𝜅/𝑔2 and
𝑓2(𝑔) = 𝑎′/𝜅, respectively. Plot (a) also shows theminimum photon
coherence times 𝑇X

c and 𝑇D
c that allows for a storagewith 𝜂 = 0.99

for the protocolsΩX andΩD, respectively.

The time 𝑇𝐷
c is difficult to evaluate numerically because, for each 𝑔, there

is a 𝑇0
c such that for each photon coherence time 𝑇c ≥ 𝑇0

c the efficiency is
onewithin the numerical error, and for each 𝑇c ≤ 𝑇0

c the Rabi frequency
ΩD is numerically intractable (ΩD, given in Eq. (3.22), becomes so high
that it is not anymore manageable by our numerical solver). We then
take 𝑇𝐷

c = 𝑇0
c .

3.5 conclusions

We have analysed the storage efficiency of a single photon by a single
atom inside a resonator. We have focused on the good cavity limit and
shown that, as in the bad cavity limit, the storage efficiency is bound by
the cooperativityand themaximalvalue it can reach is givenbyEq. (3.16).
We have extended these predictions to the case inwhich the resonator
undergoes parasitic losses. For this case we determined the maximal
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storage efficiency for an adiabatic protocol aswell as the corresponding
control field respectively given in Eq. (3.28) and Eq. (3.26). Numerical
simulations show that protocols based on optimal control theory do
not achieve higher storage efficiencies than 𝜂′max. Nevertheless they can
reach this upper bound even for spectrally-broad photonwave packets
where the dynamics is non-adiabatic, as long as the spectralwidth is of
the order of the linewidth of the dressed atomic state.

Our analysis shows that the storage efficiency is limited by parasitic
losses. Nevertheless,we have demonstrated that these can be partially
compensated by the choice of an appropriate control field. This result
has been analytically derived for adiabatic protocols, yet it shows that
extending optimal control theory to incoherent dynamics could provide
new tools for efficient quantummemories.

Experimental realizations of this process have been attempted in the
adiabatic regime [120, 139] aswell as in the non-adiabatic regime [140].
While the theoretical predictions for single photon production are ex-
perimentally confirmed, the storage efficiency reached in experiments is
about 50% lower than the theoretically predicted one [139]. One possible
explanation for this discrepancy is the fact that attenuated laser pulses
have been employed in place of single photons. Attenuated laser pulses,
which arewell described theoretically byweak coherent pulses, are in fact
easier to produce in a lab respect to single photons [139]. In Chapter 4we
address this question by theoretically analyzing the dynamics of storage
of an attenuated laser pulse, where the pulse intensity is at the single
photon level.

The storage dynamics in the non-adiabatic regime presents various
opportunities for improving the storage efficiency. For instance optimal
control algorithms different from the one we used can be employed,
as for example in Appendix 3.C. Furthermore, storage protocols based
on super-adiabatic quantum dynamics [141, 142] may be investigated.
Here an additional Hamiltonian is used in order to completely suppress
non-adiabatic processes in the unitary evolution.
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appendices

3.A input-output formalism

In input-output formalism [55] the equation of motion are

̇̂𝑎 = −i𝑔 ̂𝜎𝑔𝑒 − i√2𝜅 ̂ℰin(𝑡) − (𝜅 + 𝜅bad) ̂𝑎(𝑡) + ̂𝐹𝑎,
̇̂𝜎𝑔𝑔 = i𝑔 ̂𝜎𝑒𝑔 ̂𝑎 − i𝑔 ̂𝑎† ̂𝜎𝑔𝑒,
̇̂𝜎𝑟𝑟 = iΩ(𝑡) ̂𝜎𝑒𝑟 − iΩ∗(𝑡) ̂𝜎𝑟𝑒,
̇̂𝜎𝑒𝑒 = − i𝑔 ̂𝜎𝑒𝑔 ̂𝑎 + i𝑔 ̂𝑎† ̂𝜎𝑔𝑒 − iΩ(𝑡) ̂𝜎𝑒𝑟 +

+ iΩ∗(𝑡) ̂𝜎𝑟𝑒 − 𝛾�̂�𝑒𝑒 + ̂𝐹𝑒𝑒,
̇̂𝜎𝑔𝑒 = iΔ ̂𝜎𝑔𝑒 + i𝑔( ̂𝜎𝑒𝑒 − �̂�𝑔𝑔) ̂𝑎 − iΩ(𝑡) ̂𝜎𝑔𝑟 +

− 𝛾
2 ̂𝜎𝑔𝑒 + ̂𝐹𝑔𝑒,

̇̂𝜎𝑒𝑟 = − iΔ ̂𝜎𝑒𝑟 + i𝑔 ̂𝑎† ̂𝜎𝑔𝑟 + iΩ∗(𝑡)( ̂𝜎𝑟𝑟 − �̂�𝑒𝑒) +

− 𝛾
2 ̂𝜎𝑒𝑟 + ̂𝐹𝑒𝑟,

̇̂𝜎𝑔𝑟 = i𝑔 ̂𝜎𝑒𝑟 ̂𝑎 − iΩ∗(𝑡) ̂𝜎𝑔𝑒,

(3.38)

where ̂𝜎𝑗𝑘 = |𝑗⟩⟨𝑘|are atomicoperators and ̂𝐹𝑎, ̂𝐹𝑒𝑒, ̂𝐹𝑔𝑒 and ̂𝐹𝑒𝑟 areLangevin
noiseoperators [52]. The inputoperator for thequantumelectromagnetic
field is

̂ℰin(𝑡) = √
𝐿𝑐
2𝜋2 ∫

∞

−∞
𝑒−i𝑘𝑐(𝑡−𝑡1) ̂𝑏(𝑘 + 𝑘𝑐, 𝑡 = 𝑡1)d𝑘, (3.39)

here ̂𝑏(𝑘, 𝑡 = 𝑡1) is the annihilation operator of themode 𝑘 at the initial
time 𝑡 = 𝑡1. The input output relation is given by

̂ℰout(𝑡) = i√2𝜅 ̂𝑎(𝑡) − ̂ℰin(𝑡). (3.40)

The equations of motion for 𝑀 ≫ 1 atoms in the cavity take the
same form as Eqs. (3.38) when one performs the replacement ̂𝜎𝑗𝑘 →
∑𝑁

𝑖=1 ̂𝜎𝑖𝑗𝑘 [124]. In this case, one canmake the approximations ⟨ ̃𝜎𝑔𝑔(𝑡)⟩ ≈
𝑀, ⟨ ̃𝜎𝑟𝑟(𝑡)⟩ ≈ ⟨�̃�𝑒𝑒(𝑡)⟩ ≈ ⟨�̃�𝑒𝑟(𝑡)⟩ = 0, where ⟨⋅⟩ = Tr(𝜌0⋅) and 𝜌0 is the
initial state. Then, the set of equations (3.38) reduces to the equations of
motion of a single photon given in Eqs. (3.29).

We note that the quantum impedancematching condition imposed
by the authors of Refs. [122] consists in taking ℰout(𝑡) = ̇ℰout(𝑡) = 0,
according towhich the form of the control pulseΩF, Eq. (3.21), is found.

3.B effect of photon detuning on storage

TheprotocolΩG(𝑡)does not have anyrestriction onΔ: for everyΔ there is
a pulseΩG(𝑡) that allows for storagewith efficiency𝜂max (within the adia-
batic regime), see Eq. (3.25). Figure 3.8 displays the storage efficiencyand
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Figure 3.8: (a) Storage efficiency, (b) probability of photon reflection, Eq. (3.17),
and (c) probability of spontaneous decay, Eq. (3.18), as a function
of the single photon detuning Δ and at time 𝑡2. The parameters are
(𝑔, 𝜅, 𝛾) = (4.9, 2.42, 3.03) × 2𝜋𝑀𝐻𝑧, 𝑇c = 0.5 𝜇𝑠. The input photon
ℰin(𝑡) is defined as in Eq. (3.7). See Fig. 3.2 for further details.

the losses for each protocol as a function of Δ, as expected the protocol
ΩG(𝑡) performs in the sameway for anyvalues of Δ.

A time-dependent phase 𝜒(𝑡) of the control pulseΩ(𝑡) = |Ω(𝑡)|𝑒i𝜒(𝑡)

can be implemented as a two-photon detuning

𝛿 = ̇𝜒(𝑡). (3.41)

In fact, by applying the unitary transformation �̂�(𝑡) = exp(−i|𝑟⟩⟨𝑟|𝜒(𝑡)),
the transformed Hamiltonian is �̂�′ = �̂�′

I + �̂�fields, where

�̂�′
I = ̇𝜒(𝑡)|𝑟⟩⟨𝑟| − Δ|𝑒⟩⟨𝑒| +

+ (𝑔|𝑒⟩⟨𝑔| ̂𝑎 + |Ω(𝑡)||𝑒⟩⟨𝑟| +H.c.).
(3.42)
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ForΩG(𝑡)we have

̇𝜒G(𝑡) = −Δ
2𝛾(1 + 𝐶)

⋅
|ℰin(𝑡)|

2

∫𝑡
𝑡1
|ℰin(𝑡′)|

2d𝑡′
= (3.43a)

=
−Δ||ΩG(𝑡)||

2

Δ2 + 𝛾2(1 + 𝐶)2
. (3.43b)

Recall that also ||ΩG(𝑡)|| depends onΔ. This can be understood in terms of
AC Stark shift: one-photon detuningΔ ≠ 0 is a shift of the control laser
out of resonance for the transition |𝑟⟩ − |𝑒⟩ and thereby induces an AC
Stark shift on the levels |𝑒⟩ and |𝑟⟩ of the atom; thus the condition of two-
photon resonance does not hold anymore. In order to restore the latter,
changes in frequency of the carrier and/or of the cavity and/or of the
atomic levels are needed and they appear as a two-photon detuning in
theHamiltonian. This also explainswhy the reflected photon probability
for the protocols ΩF(𝑡) and ΩD(𝑡) (see Fig. 3.8), which do not take into
account the one-photon detuning, increaseswith increasingΔ: the input
photon sees the system out of resonance and hence it is mostly reflected.

Eq. (3.43b) gives the energy shift as a function of the Rabi frequency
of the control pulse.

3.C optimal control with incoherent dynamics

We extend the analysis performed in Sec. 3.4 and implement the GRAPE
optimal control algorithm for the full dynamics of the systems, i. e. we
include the irreversible processes in the optimization procedure. The
evolution of the system in this case is obtained bynumerically solving
Eqs. (3.29)with 𝛾 = 3.03×2𝜋𝑀𝐻𝑧 and𝜅loss = 0.33×2𝜋𝑀𝐻𝑧. We identify
the control pulseΩ(𝑡) = Ωopt′(𝑡) that maximizes the storage efficiency
𝜂 for several values of the single-photon coherence time 𝑇c. Figure 3.9
displays the efficiency of single-photon storagewith the pulseΩopt′(𝑡)
in dependence of 𝑇c. For comparison, we also report the efficiencies
obtainedwith the pulsesΩX(𝑡) andΩopt(𝑡) already reported in Fig. 3.5,
where theywere labeled “ΩX with losses” and “Ωopt with losses”, respec-
tively. Comparing the efficiency forΩopt′with the one forΩopt it isvisible
that the inclusion of the irreversible losses during the optimization of
the control pulse leads to higher efficiencies.

This result can be understood by comparing the optimized pulseΩopt′

with the pulseΩopt obtained in Sec. 3.4,which are shown in Fig. 3.10. We
emphasize twomain differences: (i) the initial high peak in the Rabi fre-
quencyΩopt appearing around the instant inwhich the photon impinges
on the cavity (see Sec. 3.4 for a discussion) almost disappears inΩopt′,
and (ii) the second pulse inΩopt, which is a 𝜋-pulse and at the instant in
timewhen the population of the excited state |𝑒⟩ is maximal switches
the populations between |𝑒⟩ and the target state |𝑟⟩, has beenmoved at
an earlier time and has an area larger than 𝜋. We interpret the better
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“ΩX with losses” and “Ωopt with losses”, respectively. Ωopt′ refers to
the efficiencyreachedwith the control pulse obtained inSec. 3.C.The
parameters are (𝑔, 𝜅, 𝛾, 𝜅loss, Δ) = (4.9, 2.42, 3.03, 0.33, 0) × 2𝜋𝑀𝐻𝑧.
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Figure 3.10: Optimized pulseΩopt′(𝑡) as a function of time. The control pulse
Ωopt(𝑡) obtained in Sec. 3.4 and reported in Fig. 3.6(a) is shown for
comparison.

performance of Ωopt′ mainly due to point (ii): while in the case of Ωopt

the excited state does not decay and thuswaiting until it is maximally
populated and thenmoving the excitation to the target state is a good
strategy, in the case of Ωopt′ the excited state |𝑒⟩ loses populationwith
rate 2𝛾 and thus an earlier pulse, which transfer the excitation to the
target state |𝑟⟩ sooner, minimizes the losses due to decay of |𝑒⟩ and is a
better strategy.

This analysis can be extended by employing different optimization
strategies such as the Krotov [143] and the CRAB [144] algorithms.



4
WEAK COHERENT PULSES FOR S INGLE-PHOTON
QUANTUM MEMORIES

The content of this chapter contains results, text and figures from:

• L. Giannelli, T. Schmit, and G.Morigi,
“Weak coherent pulses for single-photon quantummemories,
In: ”Physica Scripta 94 (2019), p. 014012,
doi: 10.1088/1402-4896/aaee36.

4.1 introduction

Attenuated laser pulses are often employed in place for single photons
in order to test the efficiency of the elements of a quantumnetwork. The
laser pulses are typically attenuated to the regimewhere the probability
that they contain a single photon is very small,while the probability that
two ormore photons are detected is practically negligible. Even though
photo-detection after a beam splitter shows the granular properties of
the light, yet the coherence properties of weak laser pulses are quite
different from the ones of a single photon [145]. In particular, they are
well described by coherent states of the electromagnetic field, whose
correlation functions can be reproduced by a classical coherent field [53,
57, 146]. In this perspective it is therefore legitimate to askwhich specific
information about the efficiency of a single-photon quantum network
can one possibly extract bymeans of weak laser pulses.

Theoretically, similar questions have been analysed in Ref. [109–111,
121–124, 128]. In [121–124, 128], in particular, the authors consider a
quantummemory composed by an atomic ensemble, where the number
of atoms ismuch larger than themeannumberof photonsof the incident
pulse. In this limit the equations describing the dynamics can be brought
to the formof the equations describing the interaction of a single photon
with themedium, and one can simply extract from the study of one case
the efficiency of the other. This scenario changes dramatically if the
memory is composed by a single atom [35, 106, 112, 113]. In this case
the dynamics is quite different depending onwhether the atom interacts
with a single photon or with (the superposition of) several photonic
excitations.

In thisworkwe theoretically analyse the dynamics of the storage of a
weak coherent pulse into the excitation of a single-atom confinedwithin
an optical resonator like in the setups of [131, 147–149]. The laser pulse
propagates along a transmission line and impinges on themirror of the
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resonator, as illustrated in Fig. 3.1(a). A control laser drives the atom in
order to optimize the transfer of the propagating pulse into the atomic
excitation |𝑟⟩, as shown in Fig. 3.1(b). We determine the efficiency of
storageunder theassumption that the control laser optimizes the storage
of a single photon,which possesses the same time dependent amplitude
as theweak coherent pulse. Our goal is to identify the regime and the
conditions forwhich the dynamics of storage of theweak coherent pulse
reproduces the one of a single photon. This studydraws on the protocols
based on adiabatic transfer identified in Refs. [122–124, 150] and in
Chapter 3. The theoretical formalism for the interface between theweak
coherent pulse propagating along the transmission line and the single
atom inside the resonator is quite general andcanbe extended todescribe
the storage fidelityof an arbitraryquantum state of light into excitations
of thememory.

This Chapter is organized as follows. In Sec. 4.2we introduce the the-
oretical model. In Sec. 4.3we report our results: in Sec 4.3.1we analyse
the storage fidelity of aweak coherent pulse. In Sec. 4.3.2we analyze the
storage fidelity of an arbitrary incident pulse at the single photon level.
We then compare themwith the storage fidelity of a single photon. The
conclusions are drawn in Sec. 4.4. The appendices provide details to the
calculations in Secs. 4.2 and 4.3.

4.2 basic model

Figure 3.1 reports the basic elements of the dynamics. Aweak coherent
pulse propagates along the transmission line and impinges on themirror
of a optical high-finesse cavity. Here it is transmitted into a cavitymode
at frequency 𝜔c, which, in turn, interacts with a single atom confined
within the resonator. The atom is driven by a laser, whose temporal
shape is tailored in order tomaximize the transfer of a single photonic
excitation,with the same amplitude as theweak coherent pulse, into an
atomic excitation |𝑟⟩.

In the followingwe provide the details of the theoreticalmodel andwe
introduce the physical quantitieswhich are important for the discussion
of the rest of this paper.

4.2.1 Master equation

Thestartingpointof ouranalysis ismaster equation (3.1)whichdescribes
the evolution of the densityoperator ̂𝜌 for the cavitymode, the atom, and
themodes of the transmission line. Herewe report themaster equation
again in order to facilitate the reading of this chapter, for details see
Sec. 3.2.1. The evolution of the density operator ̂𝜌 is governed by the
master equation (ℏ = 1)

𝜕𝑡 ̂𝜌 = −i[�̂�(𝑡), ̂𝜌] + ℒdis ̂𝜌 , (4.1)
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whereHamiltonian �̂�(𝑡)determines the coherent evolution and superop-
eratorℒdis the incoherent dynamics. Hamiltonian �̂�(𝑡) = �̂�fields + �̂�I(𝑡)
is the sum of the term

�̂�fields = ∑
𝑘
(𝜔𝑘 − 𝜔c) ̂𝑏†𝑘 ̂𝑏𝑘 +∑

𝑘
𝜆𝑘( ̂𝑎† ̂𝑏𝑘 + ̂𝑏†𝑘 ̂𝑎), (4.2)

which describes the coherent dynamics of the electromagnetic field in
absence of the atom, and the term

�̂�I = 𝛿|𝑟⟩⟨𝑟| − Δ|𝑒⟩⟨𝑒| + [𝑔|𝑒⟩⟨𝑔| ̂𝑎 + Ω(𝑡)|𝑒⟩⟨𝑟| +H.c.], (4.3)

which describes the dynamics of the atom coupled to the cavitymode
with coupling constant 𝑔 and driven by the laser with Rabi frequency
Ω(𝑡).

4.2.2 Initial state

The total state of the system |𝜓𝑡⟩ at the initial time 𝑡 = 𝑡1 is given by a
weak coherent pulse in the transmission line, the empty optical cavity,
and the atom in state |𝑔⟩:

|𝜓𝑡1⟩ = |𝑔⟩ ⊗ |0⟩𝑐 ⊗ |𝜓coh⟩, (4.4)

where |0⟩𝑐 is the Fock state of the resonatorwith zero photons.
Belowwe specify in detail the state of thefield. The incident light pulse

is characterized by the time-dependent operator �̂�, such that its state at
the interfacewith the optical resonator reads

|𝜓coh⟩ = �̂�({𝛼𝑘})|vac⟩ (4.5)

and |vac⟩ is the vacuum state of the external electromagnetic field. Op-
erator �̂�({𝛼𝑘}) takes the form

�̂�({𝛼𝑘}) = ⊗𝑘 exp(𝛼𝑘 ̂𝑏†𝑘 − 𝛼∗𝑘 ̂𝑏𝑘) , (4.6)

where 𝛼𝑘 is a complex scalar and the index 𝑘 runs over all modes of the
electromagnetic field with the same polarization. It thus generates a
multi-mode coherent state, whosemean photon number 𝑛 is

𝑛 = ⟨𝜓coh||
|
∑
𝑘

̂𝑏†𝑘 ̂𝑏𝑘
|
|
|
𝜓coh⟩ = ∑

𝑘
|𝛼𝑘|

2 . (4.7)

In the followingwe assume that 𝑛 ≪ 1, which is fulfilledwhen |𝛼𝑘|2 ≪ 1
for all 𝑘. Wewill denote this aweak coherent pulse. This state approximates
a single-photon state since at first order in 𝑛 it can be approximated by
the expression

|𝜓coh⟩ ≈ (1 − 𝑛/2)|vac⟩ +∑
𝑘
𝛼𝑘 ̂𝑏†𝑘|vac⟩ . (4.8)
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Coefficients 𝛼𝑘 are related to the pulse envelope ℰin(𝑡) at position 𝑥 =
0 (which is the position of the mirror interfacing the cavity with the
transmission line) via the relation

𝛼𝑘 =√
𝑐
2𝐿 ∫

∞

−∞
d𝑡𝑒i(𝑘𝑐−𝜔c)𝑡ℰin(𝑡) (4.9)

with 𝑐 the speed of light and 𝐿 the length of the transmission line. The
squared norm of ℰin(𝑡) equals the number of impinging photons in
Eq. (4.7):

∫
∞

−∞
|ℰin(𝑡)|

2d𝑡 = 𝑛 . (4.10)

In thisworkwe are interested in determining the storage efficiency of a
weak coherent pulse by the atom. We compare in particular the storage
efficiencywith the one of a single photon,whose amplitude is given by
the same amplitude ℰin(𝑡), apart for a normalization factor giving that
the integral in Eq. (4.10) is unity. For this specific studywe choose

ℰin(𝑡) =
√𝑛

√𝑇
sech (2𝑡𝑇 ) , (4.11)

where 𝑇 is the characteristic time determining the coherence time 𝑇c =
𝜋𝑇/4√3 of the light pulse, defined as

𝑇c = √⟨𝑡2⟩ − ⟨𝑡⟩2 (4.12)

with ⟨𝑡𝑥⟩ ≡ ∫𝑡2
𝑡1
𝑡𝑥|ℰin(𝑡)|

2d𝑡. The dynamics is analysed in the interval
𝑡 ∈ [𝑡1, 𝑡2], with 𝑡1 < 0 < 𝑡2 and |𝑡1|, 𝑡2 ≫ 𝑇c, such that (i) at the initial
time there is no spatial overlap between the input light pulse and the
cavitymirror and (ii) at 𝑡 = 𝑡2 the reflected component of the light pulse
is sufficiently far away from themirror so that it has no spatial overlap
with the cavitymode. The choice of these parameters has been discussed
in detail in Sec. 3.2.3.

4.2.3 Target dynamics

The target of the dynamics is to absorb a single photon excitation and
populate the atomic state |𝑟⟩. This dynamics is achieved bysuitably tailor-
ing the control fieldΩ(𝑡). Wewill consider protocols using control fields
Ω(𝑡) that have been developed for a single-photonwave packet [122–124,
150], see Chapter 3. The figures of meritwe take are (i) the probability 𝜂
to find the excitation in the state |𝑟⟩ of the atom after a fixed interaction
time and (ii) the fidelity of the transfer 𝜈, whichwe define as the ratio
between the probability 𝜂 and the number of impinging photons. This
ratio, aswe show in the next section, approaches the fidelity of storage
of a single photon 𝜂sp when 𝑛 → 0.
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We give the formal definition of these two quantities. The probability
𝜂 reads [124]

𝜂 = Tr{ ̂𝜌(𝑡2)|𝑟⟩⟨𝑟| ⊗ 𝟙em} = ⟨𝑟||Trem
{ ̂𝜌(𝑡2)}||𝑟⟩ (4.13)

where 𝟙em and Trem denote respectively the identity and the trace over
the electromagnetic fields (both the fields in the transmission line and
in the optical cavity), and ̂𝜌(𝑡) is the density operator of the system.

The fidelity of the transfer is defined as the ratio between 𝜂 and the
number of impinging photons, namely

𝜈 =
𝜂

∫𝑡2
𝑡1
|ℰin(𝑡)|

2d𝑡
, (4.14)

which is strictlyvalid for a coherent pulse. This definition of the fidelity
quantitatively describes the probability that the incident pulse is stored
by the atom. It agreeswith the definition of Ref. [124],where the authors
denote this quantity by “efficiency”. Indeed, if the initial state is a single
photon, the fidelity 𝜈 and the efficiency 𝜂 coincide.

Beforeweconclude,weremind the readerof thecooperativity𝐶,which
determines themaximumfidelity of single-photon storage [124, 150].
The cooperativity𝐶 characterizes the strength of the coupling between
the cavitymode and the atomic transition, it reads [124]

𝐶 =
𝑔2

𝜅tot𝛾
, (4.15)

where 𝜅tot = 𝜅 + 𝜅loss is the total cavity decay rate. For protocols based
on adiabatic transfer of the single photon into the atomic excitation,
the maximum fidelity of single-photon storage reads [124, 150] (see
Chapter 3)

𝜂spmax =
𝜅
𝜅tot

𝐶
1 + 𝐶 , (4.16)

and it approaches𝜅/𝜅tot for𝐶 → ∞. Equation (4.16) is also theprobability
for emission of a photon into the transmission line when the atom is
initially prepared in the excited state |𝑒⟩ and no control pulse is applied.

The parameterswe use in our study are the ones of the setup of Ref-
erence [120], (𝑔, 𝜅, 𝛾, 𝜅loss) = (4.9, 2.42, 3.03, 0.33) × 2𝜋𝑀𝐻𝑧, correspond-
ing to the cooperativity 𝐶 ≈ 2.88 and to the maximal storage fidelity
𝜂spmax ≈ 0.65. Furthermorewe choose 𝑇c = 0.5 𝜇𝑠 such that the adiabatic
condition is fulfilled: 𝛾𝑇c𝐶 ≈ 27 ≫ 1 (see Chapter 3).

4.3 storage

In this section we report the results of the storage of weak coherent
pulses into a single atom excitation. We first determine efficiency and
fidelity by numerically solving themaster equation of Eq. (4.1). We com-
pare the resultswith the corresponding storagefidelityof a singlephoton
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with temporal envelope ℰin(𝑡), Eq. (4.11). We then determine analyti-
cally the efficiency 𝜂 and the fidelity 𝜈 for weak coherent pulses with
meanphotonnumber𝑛 ≪ 1 and quantify the discrepancybetween these
quantities and the single-photon storage fidelity as a function of 𝑛. We
further discuss how this method can be extended in order to determine
the efficiency of storage of an arbitrary incident pulse.

4.3.1 Numerical results

Wedetermine the dynamics of storage bynumerically integrating amas-
ter equation in the reduced Hilbert space of cavity mode and atomic
degrees of freedom, which we obtain from the master equation (4.1)
aftermoving to the reference framewhich displaces themultimode co-
herent state to the vacuum. The procedure extends to an input multi-
mode coherent state an established procedure for describing the in-
teraction of a quantum system with an oscillator in a coherent state,
see for instance [52]. We apply the unitary transformation �̂�′(𝑡) =
�̂�({𝛼𝑘(𝑡)}), where operator �̂� is given in Eq.(4.6) and the arguments are
𝛼𝑘 → 𝛼𝑘(𝑡) = 𝛼𝑘𝑒−i(𝜔𝑘−𝜔c)𝑡. In this reference frame the initial state
of the electromagnetic field is the vacuum, the full density matrix is
given by ̂𝜌′(𝑡) = �̂�′(𝑡)†𝜌(𝑡)�̂�′(𝑡) and its coherent dynamics is governed
byHamiltonian

�̂�′(𝑡) = �̂�(𝑡) + √2𝜅(ℰin(𝑡) ̂𝑎† + ℰ∗in(𝑡) ̂𝑎). (4.17)

Here ℰin(𝑡) carries the information about the initial state of the electro-
magnetic field and it is related to the amplitudes 𝛼𝑘 by the following
equation (consistentlywith Eq. (4.9))

ℰin(𝑡) = √
𝐿𝑐
2𝜋2 ∫

∞

−∞
𝛼(𝑘 + 𝑘𝑐)𝑒−i𝑘𝑐𝑡d𝑘. (4.18)

By using the Born-Markov approximation one can now trace out the
degrees of freedom of the electromagnetic field outside the resonator.
The Hilbert space is then reduced to the cavitymode and atom’s degrees
of freedom, the densitymatrixwhich describes the state of this system
is

̂𝜏(𝑡) = Tr
ff

̂𝜌′(𝑡) , (4.19)

whereTrff denotes thepartial tracewith respect to thedegreesof freedom
of the external electromagnetic field. Its dynamics is governed by the
master equation

𝜕𝑡 ̂𝜏 = −i[�̂�″(𝑡), ̂𝜏] + ℒ𝛾 ̂𝜏 + ℒ𝜅tot ̂𝜏. (4.20)

where

𝐻″(𝑡) = �̂�I(𝑡) + √2𝜅(ℰin(𝑡) ̂𝑎† + ℰ∗in(𝑡) ̂𝑎), (4.21)
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�̂�I(𝑡) is given in Eq. (3.3) and superoperatorsℒ𝛾 andℒ𝜅tot are defined in
Eqs. (3.4),where now the cavityfield is damped at rate 𝜅tot = 𝜅+𝜅loss and
𝜅 is the linewidth due to radiative decay of the cavitymode by the finite
transmittivity of themirror at 𝑥 = 0. The initial state is here described
by the density operator ̂𝜏(𝑡1) = |𝑔, 0𝑐⟩⟨𝑔, 0𝑐|, and the storage efficiency is
𝜂 = Tr{ ̂𝜏(𝑡2)|𝑟⟩⟨𝑟|}.

0 2 4 6 8 10
mean photon number 𝑛

0.0

0.2

0.4

0.6

0.8

fid
el
ity

an
d
effi

ci
en

cy

𝜂
𝜈
𝜂Gauss
𝜈Gauss
𝜂sp
max

Figure 4.1: Storage efficiency 𝜂, Eq. (4.13), and fidelity 𝜈, Eq. (4.14), at time
𝑡 = 𝑡2 as a function of the mean photon number 𝑛 of the incident
weak coherent pulse with shape of Eq. (4.11) (solid and dashed).
The figures of merit 𝜂 and 𝜈 have been evaluated by determining
numerically the densitymatrix of the system ̂𝜏(𝑡2) from the initial
state ̂𝜏(𝑡1) = |𝑔, 0𝑐⟩⟨𝑔, 0𝑐| by integrating the master equation (4.20)
in the truncated Hilbert space of the cavity fieldwith amaximum
of 14 excitations. For comparison we also report the fidelity and
efficiency of storage of aweak coherent pulsewith Gaussian shape
(labels “Gauss”); In this case the control pulse is optimized for the
storage of a single photon with Gaussian shape. The dashed line
indicates the maximal fidelity of storage of a single photon. The
other parameters are given in Sec. 4.2.3.

We integrate numerically the optical Bloch Equation for the matrix
elements of Eq. (4.20) taking a truncated Hilbert space for the cavity
field, with number states ranging from 𝑚 = 0 to 𝑚 = 𝑚max. For the
parameters we use in our simulation we find that the mean average
number of intracavity photons is below 2. We check the convergence
of our simulation for different values of 𝑚 = 𝑚max and fix𝑚max = 14.
Figure 4.1 displays the storage efficiency 𝜂 and fidelity 𝜈 at time 𝑡 = 𝑡2
for different mean number of photons 𝑛 of the incidentweak coherent
pulse. When evaluating the dynamics we employed the control laser
pulseΩ(𝑡)which optimizes the storage of the incident pulsewhen this
is a single photonwith temporal envelope ℰin(𝑡), Eq. (4.11). In detail, the
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amplitude of the laser pulse has been determined in Chapter 3 and reads
(for 𝛿 = Δ = 0)

Ω(𝑡) =
√

2𝛾(1 + 𝐶)
(𝑒4𝑡/𝑇 + 1)𝑇

. (4.22)

We observe that the storage efficiency 𝜂 rapidly increases with 𝑛 and
saturates to the asymptotic value 𝜂∞ ≈ 0.79 for 𝑛 ≳ 10. This asymptotic
value indicates that the field in the cavity is essentially classical, the
dynamics is the one of STIRAP [151], and its efficiency does not reach
unity being the control pulse optimal for single-photon storage but not
for STIRAP. The fidelity 𝜈 decreases with 𝑛, while in the limit 𝑛 → 0 it
approaches the single-photon storage fidelity. We note that the behavior
for 𝑛 ≳ 1 depends on the pulse shape (see Fig. 4.1).

In Ref. [120] the authors report the experimental results of measuring
thefidelity𝜈asa functionof 𝑛. Inparticular theyreport the ratiobetween
thefidelityof storing aweak coherent pulsewith𝑛 ≈ 0.02 and thefidelity
for 𝑛 ≈ 1 to be 𝜈exp(𝑛 = 0.02)/𝜈exp(𝑛 = 1) ≈ 1.27. We compare these
resultswith our predictions for 𝑛 ≪ 1where the fidelity is independent
of the photon shape. Then,we extract the same ratio from Fig. 4.1 and
obtain 𝜈(𝑛 = 0.02)/𝜈(𝑛 = 1) ≈ 1.5. Even if for 𝑛 = 1 the fidelity depends
on the pulse shape,we have verified by comparingwith different pulse
shapes that the discrepancy is typically small.

4.3.2 Extracting the single-photon storage fidelity from arbitrary incident pulses

Themethodwe applied in Sec. 4.3.1 is convenient but valid solelywhen
the inputpulse is a coherent state. Wenowshowamoregeneral approach
for describing storage of a generic input pulse by an atomic medium
(which can also be composedbya single atom) andwhich allows to obtain
a useful description of the dynamics. This approach does not make
use of approximations such as treating the atomic polarization as an
oscillator [124] and allows one to determine the storage fidelity.

For this purposewe considermaster equation (4.1), and recast it in the
form [129, 152]

𝜕𝑡 ̂𝜌 = −i(�̂�eff(𝑡) ̂𝜌 − ̂𝜌�̂�†
eff(𝑡)) + 𝒥 ̂𝜌, (4.23)

where �̂�eff(𝑡) is a non-Hermitian operator, which reads

�̂�eff(𝑡) = �̂�(𝑡) − i𝛾|𝑒⟩⟨𝑒| − i𝜅loss ̂𝑎† ̂𝑎 , (4.24)

and is denoted in the literature as effective Hamiltonian. The last term
on the right-hand side of Eq. (4.23) is denoted by jump term and is here
given by

𝒥 ̂𝜌 = 2(𝛾|𝜉𝑒⟩⟨𝑒| ̂𝜌|𝑒⟩⟨𝜉𝑒| + 𝜅loss ̂𝑎 ̂𝜌 ̂𝑎†). (4.25)
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This decomposition allows one to visualize the dynamics in terms of
an ensemble of trajectories contributing to the dynamics, where each
trajectory is characterized by a number of jumps at given instant of time
within the intervalwhere the evolution occurs [125, 152]. Of all trajecto-
ries, we restrict to the onewhere no jump occurs since this is the only
trajectorywhich contributes to the target dynamics. In fact, even though
trajectories with spontaneous emission events may lead to dynamics
where the atom is finally in state |𝑟⟩, yet such trajectories are incoher-
ent and thus irreversible. We therefore discard them since they do not
contribute to the fidelity of the process. The corresponding densityma-
trix is 𝜌0(𝑡) = 𝑆(𝑡)𝜌(𝑡1)𝑆(𝑡)†/𝑃0, where 𝑆(𝑡) = 𝑇 ∶ exp(−𝑖 ∫𝑡

𝑡1
𝑑𝜏�̂�eff(𝜏)/ℏ)

and 𝑇 is the time ordering operator, while 𝑃0 = Tr{𝑆(𝑡)𝜌(𝑡1)𝑆(𝑡)†} is the
probability that the trajectory occurs. Since the initial state is a pure
state, ̂𝜌(𝑡1) = ||𝜓𝑡1⟩⟨𝜓𝑡1||, then ̂𝜌0(𝑡) = |𝜓𝑡⟩⟨𝜓𝑡| with |𝜓𝑡⟩ = 𝑆(𝑡)|𝜓𝑡1⟩/√𝑃0.
The efficiency of storage 𝜂, in particular, can bewritten as

𝜂 = 𝑃0 Tr{|𝑟⟩⟨𝑟|𝜌0(𝑡2)} . (4.26)

We note that this definition can be extended also to input pulseswhich
are described bymixed states. In fact, consider the densitymatrix 𝜇 of
the incident pulse: 𝜇 = ∑𝛼 𝑝𝛼|𝜓

𝛼⟩⟨𝜓𝛼|, with∑𝛼 𝑝𝛼 = 1 and each |𝜓𝛼⟩ a
quantum state of the electromagnetic field. The efficiency of storage of
themixed state 𝜇 is then

𝜂mix = ∑
𝛼
𝑝𝛼𝜂𝛼 . (4.27)

Here, 𝜂𝛼 is the efficiency of storage of the pure state |𝜓𝛼⟩which can be
computed using Eq. (4.26).

In order to determine 𝜂, we first decompose the incident pulse at 𝑡 = 𝑡1
into photonic excitations, namely:

|𝜓coh⟩ =
∞
∑
𝑚=0

𝐶𝑚|𝜓(𝑚)⟩, (4.28)

where∑𝑚 |𝐶𝑚|2 = 1, and the state |𝜓(𝑚)⟩ contains exactly𝑚 photons,
⟨𝜓(𝑙)|𝜓(𝑚)⟩ = 𝛿𝑙𝑚. The dynamics transfers the excitations but preserves
their total number, since �̂�eff commuteswith∑𝑘 𝑏

†
𝑘𝑏𝑘+𝑎†𝑎+|𝑒⟩⟨𝑒|+|𝑟⟩⟨𝑟|.

Therefore it does not couple states |𝜓(𝑚)⟩with different number of pho-
tons. By this decompositionwe can numerically determine the fidelity
𝜂 for a finite number of initial excitations, aswe show in Appendix 4.A.
The efficiency 𝜂, in particular, can be cast in the form

𝜂 =
∞
∑
𝑚=0

|𝐶𝑚|2𝜂(𝑚) , (4.29)

where 𝜂(𝑚) = ⟨𝜓(𝑚)|𝑆(𝑡)†|𝑟⟩⟨𝑟|𝑆(𝑡)|𝜓(𝑚)⟩ is the efficiency that one photon
from a𝑚-photon state is transferred into the atomic excitation |𝑟⟩. Here,
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𝜂(1) is the storage fidelity of a single photon 𝜂sp. For a weak coherent
pulse 𝐶𝑚 = √𝑒−𝑛𝑛𝑚/𝑚!, and for 𝑛 ≪ 1we obtain the expression

𝜂 = 𝑛𝜂(1) + 𝑛2(𝜂(2)/2 − 𝜂(1)) + 𝑂(𝑛3) . (4.30)

such that the fidelity takes the form

𝜈 =
𝜂
𝑛 = 𝜂(1) + 𝑛(𝜂(2)/2 − 𝜂(1)) + 𝑂(𝑛2) . (4.31)

If the control pulse Ω(𝑡) is chosen to be the one which maximize the
storage fidelity of a single photon, then 𝜂(1) = 𝜂spmax, Eq. (4.16). This can
be clearly seen in Fig. 4.1.

Wenowdiscuss this dynamics if, insteadof a single atom, thequantum
memory is composed by𝑀 atomswithin the resonator. In the follow-
ing we assume that the atoms are identical and that the vacuum Rabi
coupling and the control laser pulse intensity and phase do not depend
on the atomic positionswithin the cavity. Let us first consider that the
input pulse is a single photon. In this case the dynamics can bemapped
to the one described by Eq. (4.1), where in the Hamiltonian (3.3) the
states of the Λ transition are replaced by the collective atomic states
|𝑔⟩ → |𝑔′⟩ = |𝑔1, … , 𝑔𝑀⟩, |𝑒⟩ → |𝑒′⟩ = ∑𝑀

𝑖=1 |𝑔1, … , 𝑒𝑖, … , 𝑔𝑀⟩/√𝑀, and
|𝑟⟩ → |𝑟′⟩ = ∑𝑀

𝑖=1 |𝑔1, … , 𝑟𝑖, … , 𝑔𝑀⟩/√𝑀, where the latter is the target state.
For a single incident photon, in fact, these are the only internal states
involved in the dynamics. The coupling between the cavitymode and
the |𝑔′⟩ − |𝑒′⟩ transition is now 𝑔√𝑀, leading to a higher cooperativity𝐶
and thus to a larger value of 𝜂spmax. In this case the control pulse leading
to optimal storage is the same as for a single atom,which couples to the
cavitywith vacuumRabi frequency ̃𝑔 = 𝑔√𝑀 (see for example Eq. (4.22)
and Chapter 3).

If the incident pulse is not a single photon, further collective excita-
tions of the atoms have to be accounted for and the dynamics cannot
be reduced to the coupling of a Λ structure with the cavity field, as is
detailed in Appendix 4.A for the case of aweak coherent pulse. Never-
theless, if the number of atoms is much larger than themean number of
excitations in the incident pulse𝑀 ≫ 𝑛, the dynamical equations can be
reduced to the ones describing storage of the single photon [122–124].
In this limiting case, the optimal control pulses for storage of a single
photon can also be applied to storage of the input pulse by the atomic
ensemble, as long as the input pulse has the same envelope as the single
photon. We refer the interested reader to Ref. [124] for details.

In general, the formalism of the effective Hamiltonian can be applied
to determine the control field for storage of an arbitrary input pulse by
an atomic ensemble,without having to impose the condition𝑀 ≫ 𝑛. For
an arbitrary input pulse, |𝜓⟩ = ∑∞

𝑚=0 𝐶𝑚|𝜓
(𝑚)⟩with∑𝑚 |𝐶𝑚|2 = 1, the

target state is∑∞
𝑚=0 𝐶𝑚|𝑟𝑚⟩, where |𝑟𝑚⟩ is the Dicke state of the atomic

ensemblewhere𝑚 atoms are in |𝑟⟩ andwhich is coherently coupled to
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the Dicke state |𝑔′⟩ by the dynamics. The control pulseΩ(𝑡) shall then
optimize the dynamics bymaximizing the fidelity

𝜂′ = ∑
𝑚
|𝐶𝑚|2𝜂

(𝑚)
𝑚 , (4.32)

where 𝜂(𝑚)
𝑚 = ⟨𝜓(𝑚)|𝑆(𝑡)†|𝑟𝑚⟩⟨𝑟𝑚|𝑆(𝑡)|𝜓(𝑚)⟩ and 𝑆(𝑡) is calculated for the

effective Hamiltonian of the atomic ensemble. The control fieldΩ(𝑡) can
be found bymeans of an analogous strategyas for ensemble optimal con-
trol theory (OCT), finding the control pulse that optimizes the dynamics
in each subspace of 𝑚 excitations so tomaximize 𝜂′ [138, 153–156].

4.4 conclusions

Wehave analysed the storage of aweak coherent pulse into the excitation
of a single atom inside a resonator, which acts as a quantummemory.
Our specific objectivewas to characterize the process in order to show
underwhich conditions an attenuated incident pulse can be considered
as a single photon for storage purposes. Thus we have identified the
conditions and the figures of meritwhich allowone to extract the single-
photon storage fidelity bymeasuring the probability that the atom has
been excited at the end of the process.

We remark that the retrieved information by a single atomwill always
be a single photon [157]. Nevertheless, the formalismwe developed in
thiswork permits one to extend this dynamics to other kind of incident
pulses and to quantummemories composed by spin ensembles. For this
general case it sets the basis for identifying the optimal control pulses
for storage and retrieval of an arbitrary quantum light pulse.

appendices

4.A storage efficiency for 𝑛 ≪ 1

In this appendixwe provide the details for calculating the dynamics and
the fidelity for an incident pulse which is a superposition of different
photon number states. We apply the procedure tomultimode coherent
states, nevertheless it can be generalised in a straighforwardmanner to
a generic initial input pulse.

4.A.1 Decomposition of a coherent state

The coherent state in Eq. (4.5) can be decomposed in a linear combination
of states each with a fixed number of excitations (see Eq. (4.28) with
𝐶𝑚 = √𝑒−𝑛𝑛𝑚/𝑚!): Themean number of photons in themode 𝑘 is |𝛼𝑘|

2

and the mean photon number in the coherent state is 𝑛 = ∑𝑁
𝑘=1|𝛼𝑘|

2,
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see Eq. (4.7). State |𝜓(𝑚)⟩ contains exactly𝑚 excitations of the quantum
electromagnetic field and reads

|𝜓(0)⟩ = |vac⟩, (4.33a)

|𝜓(1)⟩ =
𝑁
∑
𝑘=1

ℰ𝑘 ̂𝑏†𝑘|vac⟩, (4.33b)

|𝜓(2)⟩ =
𝑁
∑
𝑘=1

𝑁
∑
𝑘′=1

ℰ𝑘,𝑘′ ̂𝑏†𝑘 ̂𝑏†𝑘′|vac⟩, (4.33c)

⋮

|𝜓(𝑚)⟩ = ∑
{𝑘}𝑚

ℰ{𝑘}𝑚

𝑚

⏞⎴⎴⎴⏞⎴⎴⎴⏞̂𝑏†𝑘 ̂𝑏†𝑘′ … ̂𝑏†𝑘′′⋯″ |vac⟩. (4.33d)

Coefficients ℰ{𝑘}𝑚 read

ℰ𝑘 =
𝛼𝑘
√𝑛

, (4.34a)

ℰ𝑘,𝑘′ = ℰ𝑘′,𝑘 =
ℰ𝑘ℰ𝑘′
√2

, (4.34b)

⋮ (4.34c)

ℰ{𝑘}𝑚 = ℰ
𝑘,𝑘′…𝑘′′⋯″⏟⎵⎵⏟⎵⎵⏟

𝑚

=
∏𝑖∈{𝑘}𝑚

ℰ𝑖

√𝑚!
, (4.34d)

and it is easy to check that the states |𝜓(𝑚)⟩ are orthonormal ⟨𝜓(𝑚)|𝜓(𝑛)⟩ =
𝛿𝑚𝑛 and complete.

The storage fidelitywhen the initial state is the coherent state intro-
duced in Eq. (4.28) is given by (see Eq. (4.29))

𝜂 = 𝑒−𝑛
∞
∑
𝑚=1

𝑛𝑚
𝑚! 𝜂

(𝑚). (4.35)

4.A.2 Equations of motion

Wehere explicitly derive the equations of motion in the subspaceswith
𝑚 ≤ 2 excitations.

Zero excitations - Vacuum: The subspace of zero excitations𝑚 = 0 con-
tains only the state |𝑔, 0, vac⟩, meaning that the atom is in the ground
state |𝑔⟩, the cavity is empty and the electromagnetic field is in the vac-
uum state. Thus the time evolution in this subspace is |𝜙(0)𝑡 ⟩ = |𝜙(0)𝑡1 ⟩.

Oneexcitation -Single photon: Abasis for the subspacewithoneexcitation
𝑚 = 1 is

ℬ1 = {|𝑔, 1, vac⟩, |𝑒, 0, vac⟩, |𝑟, 0, vac⟩,
|𝑔, 0, 1𝑘⟩ ∶ 𝑘 ∈ {1, … , 𝑁}}
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and a general state can bewritten as

|𝜙(1)𝑡 ⟩ = 𝑐1(𝑡)|𝑔, 1, vac⟩ + 𝑒1(𝑡)|𝑒, 0, vac⟩ +
+ 𝑟1(𝑡)|𝑟, 0, vac⟩ +∑

𝑘
ℰ𝑘(𝑡)|𝑔, 0, 1𝑘⟩.

(4.36)

The equations of motion in this subspace are (𝜆𝑘 = 𝜆)

̇𝑐1(𝑡) = −i𝑔𝑒1(𝑡) − i𝜆∑
𝑘
ℰ𝑘(𝑡) − 𝜅loss𝑐1(𝑡),

̇𝑒1(𝑡) = (iΔ − 𝛾)𝑒1(𝑡) − i𝑔𝑐1(𝑡) − iΩ(𝑡)𝑟1(𝑡),
̇𝑟1(𝑡) = −iΩ∗(𝑡)𝑒1(𝑡),

̇ℰ𝑘(𝑡) = −iΔ𝑘ℰ𝑘(𝑡) − i𝜆𝑐1(𝑡),

(4.37)

and they constitute a system of (𝑁 + 3) coupled differential equations
with time dependent coefficients. Using the input-output formalism [55]
one obtains

̇𝑐1(𝑡) = −i𝑔𝑒1(𝑡) − i√2𝜅ℰin(𝑡) − (𝜅 + 𝜅loss)𝑐1(𝑡),
̇𝑒1(𝑡) = (iΔ − 𝛾)𝑒1(𝑡) − i𝑔𝑐1(𝑡) − iΩ(𝑡)𝑟1(𝑡),

̇𝑟1(𝑡) = −iΩ∗(𝑡)𝑒1(𝑡),

(4.38)

where 𝜅 = 𝐿𝜆2/𝑐 is the decay rate of the cavity field and ℰin(𝑡) is defined
in Eq. (4.18). Equations (4.37) or Eqs. (4.38) can be easily solved numeri-
cally. These equations correspond to the storage of a single photon into a
single atom [150] (see Eqs (3.29)) and are equivalent to the approximated
equations obtained in Ref. [124] describing the storage of a light pulse in
an atomic ensemble composed by a large number𝑁 ≫ 1 of atoms.

Two excitations - Two-photons states: A basis for the subspacewith two
excitations𝑚 = 2 is

ℬ2 = {|𝑔, 2, vac⟩, |𝑔, 1, 1𝑘⟩, |𝑔, 0, 1𝑘1𝑘′⟩, |𝑒, 1, vac⟩,
|𝑒, 0, 1𝑘⟩, |𝑟, 1, vac⟩, |𝑟, 0, 1𝑘⟩ ∶ 𝑘, 𝑘′ ∈ {1, … , 𝑁}}

thus a general state in this subspace can bewritten as

|𝜙(2)𝑡 ⟩ = 𝑐2(𝑡)|𝑔, 2, vac⟩ +∑
𝑘
ℰ𝑐𝑘(𝑡)|𝑔, 1, 1𝑘⟩ +

+∑
𝑘
∑
𝑘′≥𝑘

ℰ𝑘,𝑘′(𝑡)|𝑔, 0, 1𝑘1𝑘′⟩ +

+ 𝑒2(𝑡)|𝑒, 1, vac⟩ +∑
𝑘
ℰ𝑒𝑘(𝑡)|𝑒, 0, 1𝑘⟩ +

+ 𝑟2(𝑡)|𝑟, 1, vac⟩ +∑
𝑘
ℰ𝑟𝑘(𝑡)|𝑟, 0, 1𝑘⟩.

(4.39)

The state in Eq. (4.39) can be used to describe the interaction of the atom-
cavity systemwith a two-photon state; in fact the term

∑
𝑘,𝑘′

ℰ𝑘,𝑘′(𝑡)|𝑔, 0, 1𝑘1𝑘′⟩
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describes a two-photon state of the electromagnetic field. Notice thatwe
use the definition |⋅, ⋅, 1𝑘1𝑘′⟩ = 𝑏†𝑘𝑏

†
𝑘′|⋅, ⋅, vac⟩which implies |⋅, ⋅, 1𝑘1𝑘⟩ =

√2|⋅, ⋅, 2𝑘⟩. The equations of motion in this subspace are

̇𝑐2(𝑡) = − i√2𝑔𝑒2(𝑡) − i√2𝜆∑
𝑘
ℰ𝑐𝑘(𝑡) +

− 2𝜅loss𝑐2(𝑡)

̇𝑒2(𝑡) = (iΔ − 𝛾 − 𝜅loss)𝑒2(𝑡) − i√2𝑔𝑐2(𝑡) +
− iΩ(𝑡)𝑟2(𝑡) − i𝜆∑

𝑘
ℰ𝑒𝑘(𝑡)

̇𝑟2(𝑡) = −iΩ∗(𝑡)𝑒2(𝑡) − i𝜆∑
𝑘
ℰ𝑟𝑘(𝑡) − 𝜅loss𝑟2(𝑡)

̇ℰ𝑐𝑘(𝑡) = − (iΔ𝑘 + 𝜅loss)ℰ𝑐𝑘(𝑡) − i𝑔ℰ𝑒𝑘(𝑡) +

− i𝜆∑
𝑘′
𝐴𝑘,𝑘′(𝑡) − i√2𝜆𝑐2(𝑡)

̇ℰ𝑒𝑘(𝑡) = i(Δ − Δ𝑘)ℰ𝑒𝑘(𝑡) − i𝑔ℰ𝑐𝑘(𝑡) +
− iΩ(𝑡)ℰ𝑟𝑘(𝑡) − i𝜆𝑒2(𝑡)

̇ℰ𝑟𝑘(𝑡) = −iΔ𝑘ℰ𝑟𝑘(𝑡) − iΩ∗(𝑡)ℰ𝑒𝑘(𝑡) − i𝜆𝑟2(𝑡)
̇𝐴𝑘,𝑘′(𝑡) = − i(Δ𝑘 + Δ𝑘′)𝐴𝑘,𝑘′ +

− i𝜆(ℰ𝑐𝑘(𝑡) + ℰ𝑐𝑘′(𝑡)),

(4.40)

wherewe have defined𝐴𝑘,𝑘′(𝑡) = ℰ𝑘,𝑘′(𝑡) + ℰ𝑘′,𝑘(𝑡). Eqs. (4.40) are a sys-
tem of (𝑁2+3𝑁 +3) coupled differential equationswith time dependent
coefficients; this system can be solved numerically.
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Figure 4.2: Efficiency𝜂of the storageprocess of aweak coherentpulse. Solution
with the master equation formalism of Sec. 4.3.1 (solid line) and
approximated solutionwith truncation to two excitations𝑚 ≤ 2 as
described in the current section (dashed).

Calculation of the efficiency: The efficiency 𝜂 can be calculatedwith the
formalism introduced in this section in two ways: (i) solve Eqs. (4.37)
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and Eqs. (4.40)with initial conditions given by the expansion (4.28) and
the coefficients given byEqs. (4.34a) and (4.34b), then the efficiency is

𝜂 = |𝑟1(𝑡2)|
2 + |𝑟2(𝑡2)|

2 +∑
𝑘
||ℰ𝑟𝑘(𝑡2)||

2; (4.41)

or (ii) solve Eqs. (4.37) and Eqs. (4.40) with initial conditions (4.34a)
and (4.34b) separately to obtain the efficiencies 𝜂(1) and 𝜂(2) of single
and double photon storage; then the efficiency as function of 𝑛 is given
byEq. (4.30).

Fig. 4.2 reports the efficiency 𝜂 as a function of 𝑛, the solid line rep-
resent the result of the numerical integration of the master equation
described in Sec. 4.3.1. The dashed line is the solutionwith the decom-
position until𝑚 = 2 described in this section. It is evident that for 𝑛 ≪ 1
the two results coincide.





Part III

HYBR ID QUANTUM SYSTEMS

We analyze the dynamics of a hybrid quantum system com-
posed of an NV-center in a diamond crystalwhich is an op-
tical and a mechanical resonator. Bymeans of the master
equation formalism, we investigate the dynamics of a me-
chanical mode of the diamond structure and identify the
regime inwhich it is radiatively cooled. We determine the
steady state temperature and the cooling rate as a function of
the system parameters. We further determine the spectrum
of resonancefluorescence to identifythe scatteringprocesses
that lead to cooling.





5
LASER AND CAV ITY COOL ING OF A MECHANICAL
RESONATOR WITH A N ITROGEN-VACANCY CENTER IN
D IAMOND

The content of this chapter contains results, text and figures from:

• L. Giannelli, R. Betzholz, L. Kreiner, M. Bienert, and G.Morigi,
“Laser and cavity cooling of amechanical resonatorwith a nitro-
gen-vacancy center in diamond,
In: ”Physical ReviewA 94 (2016), p. 053835,
doi: 10.1103/PhysRevA.94.053835.

5.1 introduction

A nitrogen-vacancy (NV) center is formed by replacing two adjacent car-
bon atoms by a nitrogen atom and a vacancy in a diamond crystal. This
atomic defect exhibit atom-like properties such aswell-defined optical
transitions and long lived spin quantum states [158]. Colour centers
in diamond, such as NV-centers, are widely studied because of their
exceptional properties as bright solid-state quantum emitters at room
temperature [158, 159]. Their dynamics is being analysed in a wide
variety of setups, which for instance can achieve the strong coupling
with high-finesse optical resonators [160–162] and/or the strain cou-
plingwith high-Qvibrating structures [161–167] or standingmechan-
ical waves [168, 169]. This experimental progress makes NV centers
promising candidates for realizing quantum hybrid devices, namely, de-
vices capable of interfacing photons, phonons, and spin excitations in a
controlledway, and can offer awide range of applications for quantum
information processing [56, 170–172] and quantum sensing [56, 173–
176]. It thus calls for identifying the perspectives for control of these
hybrid devices, which requires a systematic characterization of their
dynamics.

In this work, we theoretically analyse laser cooling of a high-Q vi-
bratingmode,which is strain coupled to the electronic transitions of an
NV-center in diamond and optomechanically coupled to an optical cav-
ity. This situation can be realised, for instance, when NV center, high-Q
mechanical mode, and optical resonators are assembled in amonolithic
diamond structure, as illustrated in Fig. 5.1 and recently discussed in
Refs. [165, 166]. In this setup the high-Q vibratingmode can be optome-
chanically cooled by the couplingwith the cavity and/or laser-cooled by
the strain-coupling with the NV-center transitions between the state
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|𝑔⟩ ≡ |3𝐴20⟩ and the levels |𝐸𝑥⟩ ≡ |𝑥⟩ and |𝐸𝑦⟩ ≡ |𝑦⟩, sketched in Fig. 5.1(b).
The starting point of our study is the theoretical model of Ref. [177],
where the authors investigated the effect of the NVmultilevel structure
on the dynamics of a high-Q vibrational mode. We extend this model
by including the high-finessemode of an optical cavity,which couples
to the electronic transitions of the NV center and to themechanical res-
onator bymeans of radiation pressure, and determine the laser cooling
dynamics. We focus in particular on the regimewhere the linewidth of
the resonances induced by the couplingwith the cavity is of the same
order as the one of the electronic transitions of theNVcenter. We further
determine the effect of pure dephasing,which tends to destroy the coher-
ence of theNV-center excitations, on the cooling dynamics. Surprisingly,
we identify regimeswhere pure dephasing can improve the cooling rate.

(a)

(b) (c)

|𝑔, 𝑛⟩

|𝑥, 𝑛⟩ |𝑔, 𝑛 + 1⟩

|𝑦, 𝑛⟩

𝜅𝜅

𝜅

Γ

Γ
𝑔𝑦

𝑔𝑥

|𝑔, 𝑛⟩

|𝑥, 𝑛⟩ |𝑔, 𝑛 + 1⟩

|𝑦, 𝑛⟩

Δ
𝛿L

Δc

Ω

Figure 5.1: (a)Amechanical resonator,which is also aphotonic crystal, interacts
with a NV center in a diamond bulk via strain coupling. (b) The NV-
center internal level structure, including the photonic excitations:
the ground state |𝑔⟩ ≡ |3𝐴20⟩ couples to the excited states |𝑥⟩ ≡ |𝐸𝑥⟩
and |𝑦⟩ ≡ |𝐸𝑦⟩, which radiatively decay at rate Γ. Amode of the high-
finesse optical cavity decays at rate 𝜅 and drives quasi-resonantly
the transitions |𝑔, 𝑛+1⟩ → |𝑥, 𝑛⟩, |𝑦, 𝑛⟩with 𝑛 the intracavityphoton
number. Coefficients 𝑔𝑥 and 𝑔𝑦 denote the corresponding vacuum
Rabi frequencies. (c) Sketch of the relevant frequencies 𝛿L, Δc, Δ, as a
function of which the cooling efficiency is characterised, in presence
of a laser driving the transition |𝑔⟩ → |𝑦⟩with Rabi frequencyΩ.
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This Chapter is organised as follows. In Sec. 5.2we review some gen-
eral concepts ruling the cooling dynamics in presence of the strong cou-
plingwith a resonator. In Sec. 5.3 the theoreticalmodel is introduced and
in Sec. 5.4 the parameter regime is discussedwith reference to existing
experimental realisation. In Sec. 5.5 the rate equations for the phonon
dynamics are derived and in Sec. 5.6 the cooling rate, the asymptotic tem-
perature, and the spectrum of resonance fluorescence are determined
and discussed in the presence and in the absence of the couplingwith
the optical cavitymode. Moreover, the cooling efficiency as a function of
the dephasing rate is analysed. The conclusions are drawn in Sec. 5.7.

5.2 general considerations

Our study is motivated by an experimentally existing platform, like the
one sketched in Fig. 5.1. Our purpose is to investigatewhether the op-
tomechanical coupling can help in achieving lower temperatures than
the ones that have been predicted by sideband cooling using the strain-
couplingwith the NV center, see Ref. [177]. In fact, there can be an ad-
vantage by resorting to the optical cavity if the final occupation of the
mechanical oscillator is lower than by just performing sideband cooling
with the NV center, and thus if (i) the cavity-assisted cooling processes
are sufficiently faster than the thermalizationwith the external environ-
ment and yet (ii) the final occupation of the oscillator is smaller than
the one obtained by solely employing sideband cooling, according to a
protocol like the one described in Ref. [177]. This analysis draws from
severalworkswhere itwas studied how the interplay between theme-
chanical effects due to the coupling of an electronic transition with a
laser andwith a cavitycan increase the cooling efficiencyof amechanical
oscillator [178–182]. There it was found that ground state cooling can be
achieved as long as themechanical oscillator frequency, here denoted by
𝜈, is larger than either the linewidth of the electronic transition, Γ, or of
the optical resonator, 𝜅. Theminimal final mechanical oscillator occupa-
tion one can achieve is then controlled by the ratio between the linewidth
of the narrower resonance,whichwe denote here byΓmin = min (𝜅, Γ),
and 𝜈. Accordingly, the cooling rate Γ̃ is slower and scaleswith Γmin.

These dynamics can be often illustrated bymeans of a set of rate equa-
tions for the occupations 𝑝𝑛 of the oscillator’s statewith 𝑛 excitations
(𝑛 = 0, 1, 2, …) [183]:

̇𝑝𝑛 = −𝑛(𝐴+ + 𝐴−)𝑝𝑛 + (𝑛 + 1)𝐴−𝑝𝑛+1 + 𝑛𝐴+𝑝𝑛−1 , (5.1)

with∑𝑛 𝑝𝑛 = 1 (see Sec. 5.5 for details how this equation is derived).
Here, 𝑛𝐴+ and 𝑛𝐴− are the rateswithwhich the oscillator in state |𝑛⟩ is
heated and cooled, respectively, by one phonon, and can have the form
of lorentz functions, whose linewidth is determined by the linewidth
scattering resonance.
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Specific predictions for the relevant quantities,whose dynamics Equa-
tion (5.1) describes, can be directly extracted from the equation for the
mean phonon occupation number ⟨𝑛⟩ = ⟨𝑎†𝑎⟩ = ∑𝑛 𝑛𝑝𝑛 [183]:

̇⟨𝑛⟩ = −(Γ̃ + 𝛾)(⟨𝑛⟩ − 𝑛𝑓). (5.2)

Here 𝛾 is the thermalization rate and 𝑛𝑓 the final phonon occupation of
themechanical mode. Finally

Γ̃ = 𝐴− − 𝐴+ (5.3)

is the cooling ratewhen𝐴− > 𝐴+, whosemaximum amplitude scales as
Γ̃ ∼ (𝜔𝑟/𝜈)Γmin with 𝜔𝑟 the frequency scaling themechanical effects due
to the couplingwith light (when these are due to the phase or intensity
gradient of the lightwave,𝜔𝑟 is the recoil frequency; Here,𝜔𝑟 ∼ (Λ/ℏ)2/𝜈,
withΛ the strength of the strain coupling). In this regime and for 𝛾 = 0
radiation cools the vibrations to the asymptotic occupation𝑁0, which is
given by

𝑁0 =
𝐴+

𝐴− − 𝐴+
=
𝐴+
Γ̃
, (5.4)

andwhoseminimum scaleswith𝑁0 ∼ (Γmin/𝜈)2.
In a solid-state environment, where the heating rate due to the cou-

pling with the external reservoir is not negligible, slowing down the
cooling dynamics can be detrimental. This is visiblewhen considering
the final occupation:

𝑛𝑓 =
Γ̃

Γ̃ + 𝛾
𝑁0 +

𝛾
Γ̃ + 𝛾

𝑁th , (5.5)

where 𝑁th is the mean phonon occupation at the temperature of the
external reservoir. Thus, maximizing the ratio Γmin/𝛾 andminimizing
the ratio Γmin/𝜈 is crucial and limits the parameter intervalwhere cavity-
assisted cooling can improve the efficiency.

Fromthese considerationsonecangenerally identifythe regimewhere
thecouplingwitha resonator can increase thesidebandcoolingefficiency.
In fact, a large cavity decay rate such that 𝜅 > 𝜈 > Γwould increase the
cooling rate Γ̃. Yet it can also increase the asymptotic occupation number
of themechanical mode𝑁0. On the other hand, a very good cavitywith
𝜅 < Γ < 𝜈 can allowone to achieve smaller values of 𝑁0, but at the price
of decreasing Γ̃, so that the final occupation number of themechanical
mode 𝑛𝑓 becomes effectively larger.

The parameter regime to explore is quite large. However in general
we expect that, in the regimewhere laser sideband cooling is efficient,
the coupling to a resonator at linewidth 𝜅 > Γ can be of help only if it
substantially increases the cooling rate keeping𝑁0 < 1. The coupling to
a resonatorwith 𝜅 < Γ < 𝜈 can help in reaching ultralow temperatures,
provided thermalization can be neglected. In this Chapterwe limit our
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analysis by taking the optimal parameters for sideband cooling of anNV
center and adding the couplingwith a cavitywith linewidth 𝜅 ∼ Γ, in or-
der to search for possible effectswhich cannot be foreseen drawing from
these simple considerations. We refer the reader to Sec. 5.4where the
choice of the parameter regime is discussed in relation to existing exper-
imental implementations. The cooling rate, the asymptotic temperature,
and the spectrum of resonance fluorescence are then determined and
discussed in Sec. 5.6 in the presence and in the absence of the coupling
with the optical cavitymode. The readerwho is solely interested in the
resulting cooling efficiency can skip Sec. 5.5 and jump directly to Sec. 5.6.

5.3 the system

In this Section we introduce the theoretical model which is at the ba-
sis of our study. We describe the interaction of a high-Q mechanical
resonator mode of a phononic crystal cavity, with a quantum emitter,
specifically, aNVcenter in diamond, and ahigh-finesse optical resonator
mode of a photonic crystal cavity. The NV center is strain-coupledwith
themechanical resonator and the electronic dipole transitions strongly
couple with the photonic mode. The mechanical resonator, in turn, is
optomechanically coupled to the photonic cavity. The interactions in this
system are expected to be strongly enhanced by the co-localization in a
single structure ensuring a perfect spatial overlap between the different
degrees of freedom,which is achieved by assemblance in amonolithic
diamond structure sketched in Fig. 5.1(a). The system is intrinsically
dissipative due to radiative decay of the electronic excitations and opti-
cal cavity losses. Additionally, themechanical resonator couples to an
external thermal reservoir. We assume that it is continuously driven
by a laser field, which directly couples to an electric dipole transition
of the defect. Inwhat followswe define themaster equation governing
the dynamics of the densitymatrix 𝜌, which describes the state of the
composite system composed by the NV center, and the photonic and
phononic resonators.

5.3.1 Basic equations

The dynamics of the hybrid system’s density operator 𝜌, describing the
state of the system composed by the internal degrees of freedom of the
NV-center, of the optical cavitymode and of themechanical oscillator,
is governed by themaster equation 𝜕𝑡𝜌 = ℒ𝜌, where superoperatorℒ is
defined as (ℏ = 1):

ℒ𝜌 = −i[𝐻, 𝜌] + ℒdis𝜌 , (5.6)

andwhich will be conveniently reported in the reference frame rotat-
ingwith the laser frequency𝜔L. Belowwe provide the detailed form of
Hamiltonian𝐻 and superoperatorℒdis.
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5.3.1.1 Unitary dynamics

Wefirst give the detailed form of the Hamiltonian𝐻, which generates
the unitary part of the time evolution. For convenience,we decompose
it into the sum of Hermitian operators:

𝐻 = 𝐻mec + 𝐻I + (𝑎 + 𝑎†)𝑉 , (5.7)

where 𝑎 and 𝑎† annihilate and create, respectively, a mechanical vibra-
tion at frequency 𝜈, while 𝑉 acts on the cavity and NV-center degrees of
freedom and is specified later on. Operator

𝐻mec = 𝜈𝑎†𝑎 (5.8)

is the internal energyof themechanical resonator,whileHamiltonian𝐻I
describes the coupled dynamics of the NV center and the optical cavity:

𝐻I = (𝜔𝑦 − 𝜔L)|𝑦⟩⟨𝑦| + (𝜔𝑥 − 𝜔L)|𝑥⟩⟨𝑥| + (𝜔c − 𝜔L)𝑐†𝑐

+[Ω2
|𝑦⟩⟨𝑔| + (𝑔𝑥|𝑥⟩⟨𝑔| + 𝑔𝑦|𝑦⟩⟨𝑔|)𝑐 +H.c.] . (5.9)

Here, 𝜔𝑥 (𝜔𝑦) is the frequency splitting in the laboratory frame between
the excited state |𝑥⟩ (|𝑦⟩) and the ground state |𝑔⟩; operators 𝑐 and 𝑐† an-
nihilate and create, respectively, a cavity photon at frequency𝜔c (in the
laboratory frame). The splitting between the |𝑥⟩ and |𝑦⟩ states is, for in-
stance, due to a non-zero strain coupling, which is not related to the
mechanical mode we consider. The frequencies appear shifted by 𝜔L
since Hamiltonian𝐻I is reported in the reference frame rotating at the
laser frequency. The second line of Eq. (5.9) describes, from left to right,
the external laser driving the transition |𝑔⟩ → |𝑦⟩with Rabi frequencyΩ,
while the opticalmode drives the transitions |𝑔⟩ → |𝑥⟩ and |𝑔⟩ → |𝑦⟩with
vacuumRabi frequency 𝑔𝑥 and 𝑔𝑦, respectively. We note that the laser
polarization can be chosen to selectively drive one electronic transition,
aswe do in ourmodel, while in general the cavitymode’s polarization
has a finite projection to the dipolemoment of both transitions, since
this depends on the preparation of the sample. Therefore,we generally
assume 𝑔𝑥, 𝑔𝑦 ≠ 0 unless otherwise stated. The relevant NV center and
cavity states are reported in Fig. 5.1(b)-(c) with the relative detunings
with respect to the laser frequencies. These are defined as:

𝛿L = 𝜔L − 𝜔y,
Δ = 𝜔x − 𝜔y,
Δc = 𝜔c − 𝜔y .

(5.10)

Finally, operator 𝑉 is the sum of the strain and of the optomechanical
coupling of themechanical resonatorwith NV center and optical cavity,
respectively. We decompose it hence into the sum 𝑉 = 𝑉strain + 𝑉om,
where 𝑉strain acts on the NVdegrees of freedom and reads [184]

𝑉strain = ∑
𝑗=𝐼,𝑋,𝑍

Λ𝑗𝐴𝑗 , (5.11)
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whereΛ𝑗 are the strain coupling constants and the operators𝐴𝑗 are de-
fined as:

𝐴𝐼 = |𝑥⟩⟨𝑥| + |𝑦⟩⟨𝑦| ,
𝐴𝑋 = |𝑥⟩⟨𝑦| + |𝑦⟩⟨𝑥| ,
𝐴𝑍 = |𝑥⟩⟨𝑥| − |𝑦⟩⟨𝑦| .

(5.12)

The optomechanical coupling reads 𝑉om = −𝜒𝑐†𝑐with 𝜒 the optome-
chanical coupling constant [88, 185].

5.3.1.2 Dissipation

The irreversible processes we consider in our theoretical description
are: (i) the radiative decay of the NV excitations and pure dephasing
of the electronic coherences, (ii) cavity losses, and (iv) the mechanical
damping rate due to the coupling of themechanical resonatorwith an
external thermal reservoir. We model each of these phenomena by a
Born-Markov process described by the corresponding superoperator,
such that superoperatorℒdis in Eq. (5.6) can be cast in the form

ℒdis = ℒΓ + ℒ𝜅 + ℒ𝛾 . (5.13)

The individual terms read

ℒΓ =
Γ
2 ∑
𝜉=𝑥,𝑦

𝒟[|𝑔⟩⟨𝜉|] +
Γ𝜙
2 ∑

𝜉=𝑥,𝑦
𝒟[|𝜉⟩⟨𝜉|] , (5.14)

ℒ𝜅 =
𝜅
2𝒟[𝑐] , (5.15)

ℒ𝛾 =
𝛾
2(𝑁th + 1)𝒟[𝑎] +

𝛾
2𝑁th𝒟[𝑎†] , (5.16)

wherewe used the definition

𝒟[𝑜]𝜌 = 2𝑜𝜌𝑜† − 𝑜†𝑜𝜌 − 𝜌𝑜†𝑜 , (5.17)

with 𝑜 = |𝑔⟩⟨𝜉|, |𝜉⟩⟨𝜉|, 𝑐, 𝑎, 𝑎†. The coefficients are the radiative decay rate
Γ of the NV-center excited states, the dephasing rate of the electronic
coherences Γ𝜙, cavity losses at rate 𝜅, and the damping rate of the me-
chanical oscillator𝛾. Finally,𝑁th = (exp(𝜈/𝑘B𝑇) − 1)−1 is the equilibrium
phonon occupation number of the bath towhich the oscillator couples,
with 𝑇 the bath’s temperature.

5.3.2 Spectrum of resonance fluorescence

Inwhat followswewill use themaster equation, Eq. (5.6), in order to ana-
lyze the cooling efficiencyof themechanical resonator and the spectrum
of the light emitted by the NV center at the steady state of the cooling
dynamics. In order to better characterize the parameter regimewhere
cooling is efficientwe choose an analytical approach,which is based on
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a perturbative expansion of the Lioville operator and allows us to de-
termine the cooling regime, the corresponding rate and the asymptotic
temperature. This approach is reported in the following Section.

Moreover, in the regimes of interestwe determine the spectrumof the
scattered light, for the purpose of identifying the relevant features in the
photonswhich are emitted bytheNVcenter outside of the resonator. The
spectrum of resonance fluorescence is, apart from a constant propor-
tionality factor, the Fourier transform of the auto-correlation function
of the electric field [186]:

𝒮(𝜔) ∝ Re∫
∞

0
d𝜏 e−i𝜔𝜏⟨𝐸(−)(𝜏)𝐸(+)(0)⟩st (5.18)

where 𝐸(−)(𝑡) and 𝐸(+)(𝑡) are the negative and positive frequency com-
ponent of the electric field at time 𝑡 and ⟨⋅⟩st ≡ Tr{⋅𝜌st} denotes the trace
taken over the steady state density matrix 𝜌st which solves ℒ𝜌st = 0.
The intensity of the scattered field (away from the forward direction) is
proportional to the source field, hence in the far-field the electric field
is proportional to the sum of the operators ⃗𝑑𝑗|𝑔⟩⟨𝑗| + H.c., for 𝑗 = 𝑥, 𝑦
where ⃗𝑑𝑥 and ⃗𝑑𝑦 are the dipole moments of the transitions |𝑔⟩ → |𝑥⟩ and
|𝑔⟩ → |𝑦⟩, respectively (notice that || ⃗𝑑𝑥|| = || ⃗𝑑𝑦||). Since the dipolemoments
aremutually orthogonal, the spectrum integrated over the full solid an-
gle 4𝜋 is the incoherent sum of the two components coming from the
|𝑔⟩⟨𝑥| and |𝑔⟩⟨𝑦| operators, i. e. the interference term integrates to zero.
With the help of the quantum regression theorem [89] one can cast the
spectrum into the form

𝒮(𝜔) ∝ ∑
𝑗=𝑥,𝑦

ℜTr {|𝑗⟩⟨𝑔|[𝑖(𝜔 − 𝜔L) − ℒ]−1|𝑔⟩⟨𝑗|𝜌st}. (5.19)

In thisworkwe numerically determine the spectrum for the parameter
regimes of interest.

5.4 parameter regime

In order to justify the experimental relevance of the cooling dynamics
wediscuss in the rest of thisChapter,wenowrelate the theoreticalmodel
to existing experimental realisations and identify the parameter regime
whichwewill consider in our analysis.

Optical resonator. A structure like the one discussed here can be found
for instance in a so-called phoxonic crystal (PxC),which co-localizes con-
fined optical andmechanical resonatormodes [165]. Photonic crystals
are formed by a periodic modulation of the refractive index (in this case
air holes in diamond), resulting in the formation of optical bands similar
to electronic band structures in solids. A local defect like e. g. a variation
of the hole diameters along the PxC structure perturbs the perfect peri-
odicity and gives rise to an optical cavitymode. So far, fabrication imper-
fections limit experimental quality factors to 104 at visiblewavelengths
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suitable for the interactionwith colour centers in diamond and up to 105
in the telecomband around 1550 𝑛𝑚 [166, 187–189]. Nevertheless, simu-
lations of one-dimensional photonic crystal cavities designed for visible
light predict quality factors up to 107 andmode volumes around 1 cubic
wavelengthwith cavity loss rate in the range 𝜅 ∼10𝑀𝐻𝑧 − 1𝐺𝐻𝑧 [165].

Mechanical resonator: In a PxC a periodic variation of the elastic mod-
ulus creates a mechanical band structure and a suitable variation of
the regular pattern allows for a localized mode of the mechanical res-
onator. Recent experimentswith structures at mechanical frequencies
of 6𝐺𝐻𝑧with optical properties suitable for telecomwavelengths show
mechanical quality factors of 103 [189]. Numerical modeling shows that
modes with frequencies in the range 10 − 20𝐺𝐻𝑧with quality factors
reaching 107 can be achievedwith an effectivemass of 10−16 𝑘𝑔 for struc-
ture dimensionsmatching visiblewavelengthswith the confined optical
mode [165]. The parameters we choose are consistent with assuming
mechanical frequencies of the order of 1 − 10𝐺𝐻𝑧 and a quality factor
of the order of 106 − 107, giving a damping rate 𝛾 of few 𝑘𝐻𝑧. The strain
coupling constants are taken to be of the order of 1 − 10𝑀𝐻𝑧 [177, 190,
191]. The optomechanical coupling constant 𝜒 is taken to be of the order
of few 𝑀𝐻𝑧 [165].

NV center. Figure 5.1(b)-(c) reports the relevant level structure of the
NV center in diamond. In absence of strain coupling, the𝑚𝑠 = 0 ground
state |3𝐴20⟩ can be selectively coupled to the excited states |𝐸𝑥,𝑦⟩, which
have zero spin angular momentum. While the ground state is much less
sensitive to lattice distortion, these excited states are highly susceptible
to external perturbations [158, 191, 192]. Axial strain (parallel to the
NV center axis, equivalent ⟨111⟩ crystal direction) leads to an additional
splittingbetweengroundandexcited states aswell as between the𝑚𝑠 = 0
and𝑚𝑠 = ±1 levels in the ground state. Radial strain (perpendicular
to NVaxis) mixes the excited state levels 𝐸𝑥 and 𝐸𝑦 and leads to a split-
ting of the new states 𝐸∗𝑥 and 𝐸∗𝑦 (𝑚𝑠 = +1∗ and𝑚𝑠 = −1∗). The effect
of strain coupling on the excited states is several orders of magnitude
larger than on the ground state and hence dominates the strain-induced
modification of the NV’s optical properties. Therefore,we restrict our
model to the interaction between themechanical resonatormode and
the transition coupling the ground state |𝑔⟩ ≡ |3𝐴20⟩ to the excited states
|𝑥⟩ ≡ |𝐸𝑥⟩ and |𝑦⟩ ≡ |𝐸𝑦⟩. For the excited stateswe take the radiativedecay
rate Γ∼100𝑀𝐻𝑧 [193, 194]. The interaction between the NV transitions
and the 71𝑚𝑒𝑉 lattice phonon modes [195] changes the energy of the
|𝑥⟩ and |𝑦⟩ states and can thus give rise to a dephasing mechanism of
the electronic coherence [160, 196]. In our model we neglect the mix-
ing between the states and consider only pure dephasingwith rates of
the order of Γ𝜙 ∼ 100𝑀𝐻𝑧, which can be achieved in bulk diamond at
temperatures lower than 10𝐾 [184, 197]. We restrict the frequency of
themechanical resonator mode to 𝜈 = 2𝜋 × 1𝐺𝐻𝑧 in order to avoid cou-
pling toNVexcited states other that𝐸𝑥 and𝐸𝑦. As the optical cavitymode
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should still be near resonant on the optical transition of theNVat 637 𝑛𝑚
this doesn’t correspond to a real structure design for the full threefold
hybrid-system. However,we still model this artificial parameter set in
order to obtain qualitative results on the nature of the interaction.

Cooling regime: The analysis of the cooling efficiency is performed by
determining the cooling rate Γ̃ and the ideal asymptotic occupation num-
ber of themechanical mode𝑁0 as a function of the tunable parameters,
whichwe take here to be the frequency splitting of the electronic excited
states and the laser frequency, corresponding to changing 𝛿L, Δc, and
Δ. The analysis is performed by searching for the parameter regime
where the asymptotic occupation number𝑁0 < 1 and the cooling rate Γ̃
ismaximized, in order to realise regimeswhere the radiative cooling can
overcome thermalization by the external reservoir. This constrains the
range of parameters. A necessary condition for performing ground state
cooling is the presence of a resonancewhose linewidth 𝐿 is smaller than
the trap frequency [198], which poses an upper bound to 𝐿. Moreover,
the cooling rate shall exceed the thermalization rate. Since the cooling
rate is proportional to the effective linewidth of the cooling transition,
this condition sets a lower bound to 𝐿. If one performs optomechanical
cooling by driving the optical resonator, then 𝐿 = 𝜅. In absence of the
resonator, themechanical oscillator can be cooled bydriving the NVcen-
ter transitionswith a laser and 𝐿 = Γ. When the NV center transitions
also couple with the optical cavity, then 𝐿 is a linear interpolation of
the cavity linewidth 𝜅 and of the NV transition linewidth Γ, and varies
between Γ and 𝜅 [180, 181] (smaller linewidths could be achieved by cou-
pling to other stable electronic transitions,which in our system are not
considered [199, 200]).

In order to get a relatively small phonon occupation of the bath𝑁th
we take a largemechanical frequency, 𝜈 ∼ 2𝜋 × 1𝐺𝐻𝑧, and thus for our
parameter choice Γ < 𝜈. We then fix the cavity linewidth 𝜅 ≃ Γ.

5.5 effective dynamics of themechanical resonator

For the parameter regimewe consider all characteristic frequencies char-
acterizing the coupling of themechanical resonatorwith NV center and
optical cavity are much smaller than the mechanical resonator eigen-
frequency Λ𝐼, Λ𝑋, Λ𝑍, 𝜒 ̄𝑛c ≪ 𝜈 ( ̄𝑛c being the mean intracavity photon
occupation number). This justifies a perturbative treatment,which al-
lowsus to eliminate thedegrees of freedomof NVandoptical cavity from
the dynamics of themechanical oscillator in second-order perturbation
theory. Bymeans of this procedurewe derive an effectivemaster equa-
tion for the mechanical resonator only, which allows us to determine
the parameter regimewhere the vibrations are cooled, the correspond-
ing cooling rate and the asymptotic vibrational state. The details of the
derivation are reported in Appendix 5.A.



5.5 effective dynamics of the mechanical resonator 85

5.5.1 Perturbative expansion

Wederive a closedmaster equation for themechanical oscillator starting
from Eq. (5.6) and assuming that the coupling frequencies, which scale
the operator 𝑎 + 𝑎†, aremuch smaller than 𝜈. This can be summarized
by the inequality 𝛼 ≪ 𝜈, with 𝛼 = Λ𝐼, Λ𝑋, Λ𝑍, 𝜒 ̄𝑛c and ̄𝑛c the mean in-
tracavity photon occupation number. We then perform perturbation
theory in second order in the small parameter 𝛼/𝜈. We further assume
that the incoherent dynamics of the oscillator due to the couplingwith
the environment is sufficiently slow that the occurrence of these pro-
cesses during a scattering process can be discarded. This requires that
𝛾𝑁th ≪ 𝛼, which for the parameters considered in thiswork is valid also
at room temperature, so thatwe treat it in first order.

According to these considerationswe split the Liouville operator as

ℒ = ℒ0 + 𝒱 + ℒ𝛾 ,

with ℒ0 = ℒE + ℒI, where ℒE and ℒI are the Liouville operators that
generate the uncoupledmechanical oscillator and internal (NV center
+ optical cavity) dynamics, respectively,while𝒱 describes the coupling
betweenmechanical and internal degrees of freedom. In detail,

ℒE𝜌 = −i[𝐻mec, 𝜌], (5.20a)
ℒI𝜌 = −i[𝐻I, 𝜌] + ℒΓ𝜌 + ℒ𝜅𝜌, (5.20b)
𝒱𝜌 = −i[𝑉(𝑎 + 𝑎†), 𝜌] . (5.20c)

We formally eliminate the coupling betweenmechanical resonator and
internal degrees of freedom as done for instance in Refs. [90, 180, 181,
201, 202]. We first introduce the superoperators𝒫𝑘 such that

𝒫𝑘𝜌 = 𝜎st

∞
∑
𝑛=0

|𝑛⟩⟨𝑛 + 𝑘|⟨𝑛|𝜇|𝑛 + 𝑘⟩ , (5.21)

with 𝜇 = TrI{𝜌(𝑡)} the reduced densitymatrix, TrI{⋅} being the trace over
the internal degrees of freedom, |𝑛⟩ the eigenstates of themechanical os-
cillator, 𝑘 = 0,±1, ±2, ... (𝑘 ≥ −𝑛) and 𝜎st the steady state for the internal
degrees of freedom: ℒI𝜎st = 0. Applying𝒫𝑘 to themaster equation (5.6),
with the definitions of the superoperators (5.20), in a second-order per-
turbative expansion in parameter 𝛼/𝜈 and first order in 𝛾(𝑁th + 1), leads
to the equation

𝜕
𝜕𝑡𝒫𝑘𝜌 = {𝑖𝑘𝜈 + 𝒫𝑘𝒱(𝑖𝑘𝜈 − ℒ0)

−1𝒬𝑘𝒱𝒫𝑘}𝒫𝑘𝜌 + ℒ𝛾𝒫𝑘𝜌, (5.22)

with 𝒬𝑘 = 𝟙 − 𝒫𝑘 and 𝟙 is here the superoperator whose action is the
identity on both sides of the density matrix. The master equation for
the reduced densitymatrix 𝜇 is obtained after tracing out the internal
degrees of freedom in Eq. (5.22) and reads

�̇� = −i ̄𝜈[𝑎†𝑎, 𝜇] + 𝐴−
2 𝒟[𝑎]𝜇 +

𝐴+
2 𝒟[𝑎†]𝜇 + ℒ𝛾𝜇 . (5.23)
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The rates𝐴± are defined as

𝐴± = 2ℜ𝑠(∓𝜈), (5.24)
̄𝜈 = 𝜈 + ℑ𝑠(𝜈) + ℑ𝑠(−𝜈) , (5.25)

with

𝑠(𝑣) = ∫
∞

0
𝑑𝑡 ei𝑣𝑡⟨𝑉 exp (ℒI𝑡)𝑉⟩st , (5.26)

which is the Fourier component at frequency 𝜈 of the autocorrelation
function of operator𝑉, where the average ⟨⋅⟩st is taken in the steady state
𝜎st.

The diagonal elements of Eq. (5.23) give a set of rate equations for the
occupation 𝑝𝑛 = ⟨𝑛|𝜇|𝑛⟩ of the phonon state |𝑛⟩, which are reported in
Eq. (5.1).

5.6 results

In this sectionwe characterize the parameter regimes inwhich theme-
chanical resonator is cooled by photon scattering process in the setup of
Fig. 5.1(a). We focus on the range of parameters discussed in Sec. 5.4. We
consider laser cooling of the mechanical resonator by strain coupling
with the NV center and analyse how the cooling dynamics is affected by
the presence of the optical resonator and of dephasing. The resultswe re-
port are compared to the predictions in absence of the optical resonator
and for vanishing dephasing. This latter case has been extensively dis-
cussed in Ref. [177] andwe refer the interested reader to it for a detailed
discussion of the predicted dynamics in that specific limit.

5.6.1 Cavity-assisted cooling

Wenowanalyse howlaser cooling dynamics of themechanical resonator
by strain couplingwith the NV center is affected by the presence of the
optical resonator. In order to better understand the role of the resonator,
we first discard thermal effects and dephasing (setting 𝛾 = Γ𝜙 = 0).

Figure 5.2 displays the cooling rate Γ̃ and themeanvibrational number
at the asymptotics𝑁0 as a function of 𝛿L and Δ in absence (left panels)
and in presence of the optical cavity (right panel). Both plots show that
the cooling rate is maximum, and the final occupationminimum, along
the lines 𝛿L = −𝜈 and 𝛿L = Δ − 𝜈. In the first case cooling is achieved by
setting the laser frequency to the value 𝜔L = 𝜔𝑦 − 𝜈, hence resonantly
driving the transition |𝑔, 𝑛⟩ → |𝑦, 𝑛−1⟩ (red sideband). In the second case
the laser frequency is𝜔L = 𝜔𝑥−𝜈, so that the transition |𝑔, 𝑛⟩ → |𝑥, 𝑛−1⟩
is resonantly driven by an effective process, which combines the laser
and the strain coupling. Formost values of the detuningΔ the excitation
of the intermediate state |𝑦⟩ is virtual, except forΔ = 𝜔𝑥 − 𝜔𝑦 = 𝜈. This
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Figure 5.2: Predictions on the cooling efficiency extracted from the rate equa-
tion, Eq. (5.1), for laser cooling of themechanical resonator by driv-
ing the NV centerwith a laser (left panel) and by additionally cou-
pling the dipole transitions to an optical cavity (right panel). (a)
and (b) show the cooling rate Γ̃, Eq. (5.3) in units of Λ2/𝜈, (c) and (d)
the asymptotic occupation𝑁0 of the vibrational mode, according to
Eq. (5.4), as a function of the excited level splittingΔ and the laser de-
tuning 𝛿L (in units of 𝜈). Thewhite region are heating regions (Γ̃ < 0)
or where 𝑁0 > 1. The parameters for the left panel are Ω = 0.1𝜈,
Γ = 1.6 × 10−2𝜈, Γ𝜙 = 0, Λ𝐼 = 0, Λ𝑋 = Λ𝑍 = 𝜒 = Λ = 0.1Γ and
𝑔𝑥 = 𝑔𝑦 = 0. In the right panelwe take the same parameters except
for 𝑔𝑥 = 𝑔𝑦 = 𝜅 = Γ. The cavity frequency is fixed to the value
Δc = 8.5 × 10−2𝜈 (see text).

latter case corresponds to the vertical line visible in both figures, where
cooling results to be efficient. These properties have been identified
and discussed in Ref. [177] and do not depend on the couplingwith the
resonator. The curves in Fig. 5.3 show the cooling rate and theminimum
phonon occupation as a function of 𝛿L after fixing the detuning Δ = 𝜈.
Some (relatively small) differences are visible close to the values 𝛿L = 0
and 𝛿L = −𝜈, which are due to the level splitting induced by the strong
couplingwith the resonator: for this choice of Δ𝑐, in fact, the cavitydrives
almost resonantly the transition |𝑔⟩ → |𝑦⟩.

We have tested that thevalue of the detuningΔc, and thus of the cavity
frequency, in Figs. 5.2 and 5.3, leads to the best results by comparing
cooling rate and final temperature for different values of Δc. The results
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Figure 5.3: (a) Cooling rate Γ̃ and (b) asymptotic occupation𝑁0 of thevibrational
mode as a function of 𝛿L for the same parameters as in Fig. 5.2 and
Δ = 𝜈. The dashed (solid) line corresponds to the predictions in
absence (presence) of the coupling to the cavity. The shaded region
indicates the regimewhere the resonator is heated by the radiative
processes (Γ̃ < 0) orwhere𝑁0 > 1.

of this analysis are summarized in Fig. 5.4, which displays (a) themaxi-
mum cooling rate (maximized byvaryingΔ and 𝛿L by keepingΔ𝑐 fixed).
The mean phonon occupation in (b) and the mean intracavity photon
number in (c) are reported for the corresponding values of Δ and 𝛿L, at
which Γ̃ is maximum. These plots show thatmaximal cooling rates are
found forΔ𝑐 ≃ 0. Weverified that the curves do not differ substantially if
insteadwe search forΔc byminimizing themeanphononnumber. There-
fore, the contour plots in Fig. 5.2(b) and (d) show the optimal cooling
rate and temperature in presence of the resonator. On the basis of the
comparisonwith the plots on the left panels, we can thus conclude that
the couplingwith the cavity does not substantially improve the cooling
efficiency for the chosen parameter regime.

We nowanalyse how the spectrum of resonance fluorescence is modi-
fied by the couplingwith the resonator. We focus on the light emitted
once the system has reached the stationary state. Figure 5.5 displays the
resonance fluorescence spectrum in absence and in presence of the opti-
cal cavity for the parameters of Fig. 5.3with 𝛿L = 0. To better understand
how the cavitymodifies the dynamics,we first discuss the spectrum in
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Figure 5.4: (a) Maximum cooling rate Γ̃max in presence of the resonator as a
function of Δc. The value Γ̃max has been calculated byvarying 𝛿L and
Δ and keepingΔc fixed. Subplot (b) displays the correspondingvalue
of 𝑁0 and (c) themean intracavity photon number. The parameters
are: Ω = 0.1𝜈, Γ𝜙 = 0, Γ = 𝜅 = 𝑔𝑥 = 𝑔𝑦 = 1.6 × 10−2𝜈,Λ𝐼 = 0, Λ𝑋 =
Λ𝑍 = 𝜒 = Λ = 0.1Γ. The dashed lines in (a) and (b) indicate the
maximum cooling rate and corresponding value of 𝑁0 in absence
of the optical resonator. In the latter case Γ̃max is maximum for
Δ ≈ 0.93𝜈 and 𝛿L ≈ −3.5 × 10−2𝜈.

absence of the cavity. In this casewe observe the three broad resonances
around 𝜔 = 𝜔L. These are due to inelastic processes inwhich themotion
is not involved and can be interpreted as a Mollow-type triplet [203].
We further observe the narrow resonances at 𝜔 = 𝜔L ∓ 𝜈, which are the
red and the bluemotional sidebands of the elastic peak. Subplots 5.5(b)
and 5.5(c) report the details of the sidebands of the elastic peak. These
spectral components correspond to the photons emitted in the processes
where a phonon is created (𝜔L − 𝜈) or destroyed (𝜔L + 𝜈) in themechani-
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Figure 5.5: Spectrumof light emitted by theNVcenter at the asymptotics of the
laser cooling dynamics. The left panels correspond to the parameter
regime of Fig. 5.2(a)(c) (no cavity), the right panels to the param-
eter regime of Fig. 5.2(b)(d) (cavity assisted cooling). The dashed
(dashed-dotted) line correspond to the emission from the transition
𝑔 ↔ 𝑥 (𝑔 ↔ 𝑦), the solid line correspond to the sum of these two
contributions. Here,we tookΔ = 𝜈 and 𝛿L = 0. Panels (c), (d), (e) and
(f ) show the details of the sidebands.

cal resonator. Themotional sideband has awidth of the order of ∝ Λ2𝑋,
and appears on a broader backgroundwith linewidth ≈ Γ. Our analy-
sis shows that this structure is due to the fact that mechanical effects
are dominated by the strain coupling𝐴𝑋, whichmixes the two excited
states. For our parameter choice, where Δ = 𝜈, this coupling is weak
but resonant so that the effect of the strain coupling is particularly en-
hanced. Figure 5.5(d)-(f ) displays corresponding spectra of resonance
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Figure 5.6: Predictions on the cooling efficiency extracted from the rate equa-
tion, Eq. (5.1), for laser cooling of themechanical resonator by driv-
ing the NV centerwith a laser in absence (left panel) and in presence
of pure dephasing (right panel). (a) and (b) show the cooling rate Γ̃,
Eq. (5.3) in units of Λ2/𝜈, (c) and (d) the asymptotic occupation 𝑁0
of the vibrational mode, according to Eq. (5.4), as a function of the
excited level splittingΔ and the laser detuning 𝛿L (in units of 𝜈). The
white area are heating regions (Γ̃ < 0) orwhere𝑁0 > 1. The parame-
ters areΩ = 0.1𝜈, Γ = 1.6×10−2𝜈,Λ𝐼 = 0, Λ𝑋 = Λ𝑍 = 𝜒 = Λ = 0.1Γ,
and (left panel) Γ𝜙 = 0, (right panel) Γ𝜙 = Γ.

fluorescence in presence of the cavity. The significantly different fea-
tures aredue to themodifieddressed state structurebecauseof the strong
coupling between cavity and NV center, while for both cases the cool-
ing (heating) processes are dominated by emission along the transition
|𝑥⟩ → |𝑔⟩ (|𝑦⟩ → |𝑔⟩).

The summaryof this analysis is that the effect of the optical resonator
on the cooling dynamics can consist in a very small improvement of the
cooling efficiency. This result, which seems to contrast with previous
investigationswhere the effect of the cavity on the cooling efficiencywas
relevant [180, 181, 200], can be understoodwhen considering that (i) the
loss rate of the resonator and the radiative decay rate of the electronic
excitations have been chosen to be of the same order of magnitude, and
(ii) the cooperativity𝐶 = 𝑔2/𝜅Γ ∼ 1, so that the level splitting induced
by the couplingwith the resonator is of the order of the loss rate 𝜅. Be-
cause of (i) the couplingwith the resonator gives rise to an effective level
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structurewhere the linewidths of all excited levels is of the same order
of magnitude. Since for sideband cooling the linewidth determines both
the cooling rate as well as the final temperature, the improvement of
the cooling efficiency by coupling this level structure to a resonator is
incremental. Because of (ii), the level splitting induced by the coupling
with the cavity does not exceed the linewidth of the resonances, so that
the regime of optimal detunings is essentially the same aswithout the
cavity.

5.6.2 Dephasing-assisted cooling

Wenowanalyse the effect of other noise sources on the cooling efficiency,
and consider in particular dephasing,which is an important source of
loss of coherence in solid-state systems. We here discard the coupling
with the optical resonator and calculate the cooling efficiencywhen Γ𝜙 ≠
0.
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Figure 5.7: (a) Cooling rate Γ̃ and (b) asymptotic occupation𝑁0 of thevibrational
mode as a function of 𝛿L for the same parameters as in Fig. 5.6 and
Δ = 𝜈. The solid line corresponds to the predictions in absence
of dephasing. The dashed (dashed-dotted) line corresponds to the
predictions when the dephasing rate is Γ𝜙 = Γ (Γ𝜙 = 10Γ). The
shaded region indicates the regimewhere the resonator is heated by
the radiative processes (Γ̃ < 0) orwhere𝑁0 > 1.
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Figure 5.8: Spectrum of light emitted by the NV center at the asymptotics of
the laser cooling dynamics. The parameters are the same as in
Fig. 5.6(b)(d) (dephasing assisted coolingwith Γ𝜙 = Γ). The dashed
(dashed-dotted) line correspond to the emission from the transition
𝑔 ↔ 𝑥 (𝑔 ↔ 𝑦), the solid line correspond to the sum of these two
contributions. Here, we took Δ = 𝜈 and 𝛿L = 0. Panels (b) and (c)
show the details of the sidebands.

Figure 5.6 compares the cooling rate and final occupation for Γ𝜙 = 0
(left panel) and Γ𝜙 = Γ (right panel). We observe that pure dephasing
decreases the cooling efficiencywhen cooling is achieved by tuning the
laser to the red sideband of the dressed states. Nevertheless, the cooling
region is larger and thedependence on the exactvalues of the experimen-
tal parameters is less pronounced. Moreover, the cooling performance
is enhanced in most parts of parameter landscape. Figures 5.7(a) and
(b) compare the cuts along the line Δ = 𝜈: one clearly sees that the case
of Γ𝜙 = Γ outperforms the case when Γ𝜙 = 0. This occurs over almost
the full range of 𝛿L in terms of both cooling rate andminimal phonon
number. We have checked that the value Γ𝜙 = Γ is close to the optimal
dephasing rate. We also found the range of values inwhich the dephas-
ing has a beneficial effect on the cooling spans till several Γ (see dotted
line,which shows the predictions for Γ𝜙 = 10Γ).

The effect of dephasing is also visible in the spectrum of resonance
fluorescence. We observe in Fig. 5.8 for 𝛿L = 0 a broadening of the
background at themotional sidebands,which now scalewith≈ Γ + Γ𝜙.
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This linewidth is indeed the cooling rate,which results to be enhanced
by the presence of pure dephasing.

We understand this behaviour since pure dephasing increases the
width of the excited states |𝑥⟩ and |𝑦⟩without increasing their decay rate.
Thus it increases the excitation probability. Since this cooling scheme is
optimalwhen population is transferred to the excited state, then pure
dephasing leads to larger transition rates, and thus larger cooling rate.
This reasoning works within a certain parameter interval: dephasing
rates exceeding the Rabi frequency, in fact, tend to suppress population
transfer and thus are detrimental.

The beneficial role of pure dephasing on the cooling efficiency can be
best illustrated by analysing the finalmean occupation for different tem-
peratures of the bath. Figure 5.9 illustrates howdephasing can improve
the cooling efficiency over a large parameter regime, flattening out the
minimum of 𝑛𝑓 (Eq. (5.5)) as a function of the frequency of the driving
laser.
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Figure 5.9: Final phonon number of the mechanical resonatorwith 𝜈 = 2𝜋 ×
1𝐺𝐻𝑧 and a quality factor𝑄 = 𝜈/𝛾 = 107, Eq. (5.5), for (a) 𝑇 = 0.1 𝐾
(𝑁th ≈ 1.6) and (b)𝑇 = 4𝐾 (𝑁th ≈ 83), for the sameparameter regime
of Fig. 5.7(b). The solid (dashed) line corresponds to the predictions
in absence (presence) of pure dephasing. The black dotted lines
correspond to 𝑛𝑓 = 𝑁th. The shaded region indicates the regime
where the resonator is heated by the radiative processes.
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5.7 conclusions

Wehave analysed the cooling efficiencyof amechanical resonatorwhich
is laser cooled by the strain couplingwith a NV center. The cooling dy-
namics is essentially due to the strain couplingwith the NV center and
the parameter regime is such that the resolved-sideband cooling can be
performedbydriving theNVcenter electronic resonances. In this regime
we have analysed the effect of the coupling to an optical resonator, and
found that it does only incrementally improve the cooling efficiency. We
have further shown that pure dephasing canmake the cooling dynamics
more robust against parameter fluctuations,without affecting the over-
all efficiency, as long as the dephasing rate does not exceed the driving
strength of the laser.

In our analysis the optomechanical coupling was a small effect. It
can be increased in configurations where the cavity is driven: in this
case the optomechanical couplingwould cool the resonator according
to the dynamics explored in Refs. [204, 205]. Another possibility is to
drive both optical cavity and NV center for large cooperativity: In this
situation phonon excitation or absorption can be realised bymeans of
two excitation paths, that can interfere. This interference depends on
the relative phase between the lasers and could be a control parameter
for realisingmulti-wavemixing.

A further interesting possibility is the analysis of entanglement and
coherent quantum information transfer between the different compo-
nents of this hybrid quantum system.

This setup could also be investigated to develop a quantummemory:
by using the system analyzed here, a photonic excitation traveling in
space or in an optical fiber can be transferred and stored into the nuclear
spin of the nitrogen atom [206] intrinsic to the NV-center or into the
nuclear spin of an adjacent carbon atom [207].

Recentlya similar setuphasbeenanalyzedexperimentallyinRef. [208]
inwhich the authors manipulate the NV-center electronic states by driv-
ing themechanical resonator.

appendices

5.A elimination of the internal degrees of freedom

In this sectionwe report the details of the calculation covered in Sec. 5.5.

5.A.1 Perturbation theory

We consider the parameter regime

𝛾𝑁th ≪ 𝛼 ≪ 𝜈, (5.27)
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with 𝛼 = Λ𝐼, Λ𝑋, Λ𝑍, 𝜒 ̄𝑛c ( ̄𝑛c being the mean cavity photon occupation
number) and perform perturbation theory in second order in the small
parameter 𝛼/𝜈.

We solve the right and left eigenvalues equations for the Liouvillian
operator Eq. (5.6)

ℒ ̂𝜌𝜆 = 𝜆 ̂𝜌𝜆 (5.28a)

̌𝜌†𝜆ℒ = 𝜆 ̌𝜌†𝜆 (5.28b)

perturbativelywith the expansion

ℒ = ℒ(0) + ℒ(1) + ℒ(2) + …
𝜆 = 𝜆(0) + 𝜆(1) + 𝜆(2) + …

̂𝜌𝜆 = ̂𝜌(0)𝜆 + ̂𝜌(1)𝜆 + ̂𝜌(2)𝜆 + …

̌𝜌𝜆 = ̌𝜌(0)𝜆 + ̌𝜌(1)𝜆 + ̌𝜌(2)𝜆 + … .

(5.29)

Sobstituting Eqs. (5.29) in Eqs. (5.28)we obtain the following equations
for the order 𝛼

𝛼
∑
𝛽=0

ℒ(𝛽) ̂𝜌(𝛼−𝛽)𝜆 =
𝛼
∑
𝛽=0

𝜆(𝛽) ̂𝜌(𝛼−𝛽)𝜆 (5.30a)

𝛼
∑
𝛽=0

( ̌𝜌(𝛽)𝜆 )
†
ℒ(𝛼−𝛽) =

𝛼
∑
𝛽=0

𝜆(𝛼−𝛽)( ̌𝜌(𝛽)𝜆 )
†
. (5.30b)

In the spirit of Eq. (5.27) and Eqs. (5.29) and (5.30)we decompose the
master equation as

ℒ𝜌 = ℒ(0)𝜌 + ℒ(1)𝜌 (5.31)

where (see Eq. (5.20) of themain text)

ℒ(0) = ℒE + ℒI, (5.32a)
ℒE𝜌 = −i[𝐻mec, 𝜌], (5.32b)
ℒI𝜌 = −i[𝐻I, 𝜌] + ℒΓ𝜌 + ℒ𝜅𝜌, (5.32c)

ℒ(1)𝜌 = 𝒱𝜌 = −i[𝑉(𝑎 + 𝑎†), 𝜌] = −i[𝑉𝑥, 𝜌], (5.32d)
ℒ(𝑖) = 0 ∀𝑖 > 1, (5.32e)

here we have defined for simplicity 𝑥 = 𝑎 + 𝑎†. The superoperatorℒE
describes the dynamics of the external degrees of freedom, i. e., the
mechanical oscillator. The superoperatorℒI describes the dynamics of
the internal degrees of freedom, i. e., the NV-center, the optical cavity
and their coupling. The superoperator𝒱 describes the coupling between
the internal and external degrees of freedom.

5.A.1.1 Zeroth order

At zeroth order Eqs. (5.30) (with 𝛼 = 0) become

ℒ(0) ̂𝜌(0)𝜆 = 𝜆(0) ̂𝜌(0)𝜆 (5.33a)

( ̌𝜌(0)𝜆 )†ℒ(0) = 𝜆(0)( ̌𝜌(0)𝜆 )†. (5.33b)
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According to Eq. (5.32) the internal and external degree of freedom are
decoupled in zeroth order and the eigenvalue 𝜆(0)will then be the sum
𝜆(0) = 𝜆𝐼 + 𝜆𝐸 of the eigenvalues of ℒI and ℒE, respectively. Corre-
spondingly, the zeroth order eigenelements are product states of inter-
nal eigenelements ̂𝜌𝜆𝐼, ̌𝜌𝜆𝐼 and external eigenelements �̂�𝜆𝐼, �̌�𝜆𝐼 fulfilling
the equations

ℒI ̂𝜌𝜆𝐼 = 𝜆𝐼 ̂𝜌𝜆𝐼, ( ̌𝜌𝜆𝐼)
†
ℒI = 𝜆𝐼( ̌𝜌𝜆𝐼)

† (5.34a)

ℒE�̂�𝜆𝐸 = 𝜆𝐸�̂�𝜆𝐸, (�̌�𝜆𝐸)
†
ℒE = 𝜆𝐸(�̌�𝜆𝐸)

†
. (5.34b)

The right and the left eigenelements of the external degree of freedom
can bewritten in the form [91–93, 209]

�̂�𝑘(𝑛) = |||𝑛 +
|𝑘| − 𝑘
2 ⟩⟨𝑛 +

|𝑘| + 𝑘
2

|||

(�̌�𝑘(𝑛))
† = |||𝑛 +

|𝑘| + 𝑘
2 ⟩⟨𝑛 +

|𝑘| − 𝑘
2

|||

(5.35)

with external eigenvalue 𝜆𝐸 = i𝑘𝜈 and 𝑘 = 0,±1, ±2, … . It is important
to notice that each external eigenelement is infinite degenerate and the
elements are spanned by the quantum number 𝑛 = 0, 1, 2, … . Neverthe-
less the external eigenelements are orthogonal and complete [91–93,
209]. Due to this degeneracy the eigenelements of ℒ(0) are not uniquely
determined. In fact, they can bewritten as

̂𝜌(0)𝜆 = ̂𝜌𝜆𝐼�̂�𝜆𝐸 (5.36a)

̌𝜌(0)𝜆 = ̌𝜌𝜆𝐼�̌�𝜆𝐸 (5.36b)

with

�̂�𝜆𝐸 =
∞
∑
𝑛=0

𝑐𝑛�̂�𝑘(𝑛) and �̌�𝜆𝐸 =
∞
∑
𝑛=0

𝑑𝑛�̌�𝑘(𝑛), (5.37)

andanysuperpositionwithcoefficients 𝑐𝑛 and𝑑𝑛 of theexternal eigenele-
ments can be used to satisfy Eq. (5.33). The only restriction on the coeffi-
cients 𝑐𝑛 and 𝑑𝑛 comes by the orthogonality condition

Tr( ̂𝜌(0)𝜆 ( ̌𝜌(0)𝜆′ )
†) = 𝛿𝜆,𝜆′ (5.38)

and the completeness relation

∑
𝜆0

̂𝜌(0)𝜆 ⊗ ̌𝜌(0)𝜆 = 𝟙 (5.39)

which requires∑𝑛 𝑐𝑛𝑑
∗
𝑛 = 1.

We now introduce the zeroth order projectors

𝒫𝜆
0 = ̂𝜌(0)𝜆 ⊗ ̌𝜌(0)𝜆 = 𝒫𝜆𝐼

𝐼 𝒫𝜆𝐸
𝐸 (5.40)

which can be decomposed in the internal and external part due to the
uncoupled dinamics. The internal projectors are

𝒫𝜆𝐼
𝐼 = ̂𝜌𝜆𝐼 ⊗ ̌𝜌𝜆𝐼. (5.41)
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The external projector must take account for the degeneracy of exter-
nal eigenelements, thus the projectorwhich project onto the subspace
relative to the eigenvalue 𝜆𝐸 is

𝒫𝑘 = 𝒫𝜆𝐸
𝐸 =

∞
∑
𝑛=0

�̂�𝜆𝐸(𝑛) ⊗ �̌�𝜆𝐸(𝑛), 𝜆𝐸 = i𝑘𝜈. (5.42)

It can be shown that the completeness relation

∑
𝜆𝐸
𝒫𝜆𝐸
𝐸 = 𝟙𝐸 (5.43)

holds. We further assume that the completeness relation for the internal
projectors∑𝜆𝐼

𝒫𝜆𝐼
𝐼 = 𝟙𝐼 holds, such that the zeroth orders projectors

fulfill

∑
𝜆0
𝒫𝜆
0 = 𝟙, (5.44)

that is, they are complete in the composite system of internal and exter-
nal degrees of freedom.

5.A.1.2 First order
the general procedure
is: (i) use eqs. (5.30) to

derive equations for
order𝛼. (ii) project the
equation for the right
eigenvectors with𝒫𝜆

0
on the left to obtain the
eigenvalue correction
of order𝛼. (iii) project

the equation for the
right eigenvectors with
𝒬𝜆
0 on the left to obtain
the right eigenvectors
correction of order𝛼.

(iv) project the
equation obtained
from (i) for the left

eigenvectors with𝒬𝜆
0

on the right to obtain
the left eigenvector

correction of order𝛼.
(v) the corrections of

order𝛼 calculated here
will be used in the
calculation for the

order𝛼+ 1 following
the same steps.

Equations (5.30) for 𝛼 = 1 lead to

ℒ(0) ̂𝜌(1)𝜆 + ℒ(1) ̂𝜌(0)𝜆 = 𝜆(0) ̂𝜌(1)𝜆 + 𝜆(1) ̂𝜌(0)𝜆 (5.45a)

( ̌𝜌(1)𝜆 )†ℒ(0) + ( ̌𝜌(0)𝜆 )†ℒ(1) = 𝜆(0)( ̌𝜌(1)𝜆 )† + 𝜆(1)( ̌𝜌(0)𝜆 )†. (5.45b)

Let’s consider the projector𝒫𝜆
0 introduced in Eq. (5.40) and the orthog-

onal projector𝒬𝜆
0 = 1 − 𝒫𝜆

0 . Since the subspaces onwhich they project
are orthogonalwe have

𝒫𝜆
0 𝒬𝜆

0 = 𝒬𝜆
0𝒫𝜆

0 = 0 (5.46)

and since { ̂𝜌(0)𝜆 , ̌𝜌(0)𝜆 } are eigenstates of ℒ(0)

[𝒫𝜆
0 , ℒ(0)] = [𝒬𝜆

0 , ℒ(0)] = 0 (5.47)

and consequently

𝒫𝜆
0 ℒ(0)𝒬𝜆

0 = 𝒬𝜆
0ℒ(0)𝒫𝜆

0 = 0. (5.48)

Notice also thatℒ(0)𝒫𝜆
0 = 𝒫𝜆

0 ℒ(0) = 𝜆(0)𝒫𝜆
0 . Nowwe project Eq. (5.45a)

with𝒫𝜆
0 and𝒬𝜆

0 . Using the properties just givenwe have

𝒫𝜆
0 ℒ(1) ̂𝜌(0)𝜆 = 𝜆(1)𝒫𝜆

0 ̂𝜌(0)𝜆 (5.49a)

ℒ(0)𝒬𝜆
0 ̂𝜌(1)𝜆 + 𝒬𝜆

0ℒ(1) ̂𝜌(0)𝜆 = 𝜆(0)𝒬𝜆
0 ̂𝜌(1)𝜆 . (5.49b)
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From Eq. (5.49a)we obtain

̂𝜌(0)𝜆 ⊗ ̌𝜌(0)𝜆 ℒ(1) ̂𝜌(0)𝜆 = 𝜆(1) ̂𝜌(0)𝜆 ⊗ ̌𝜌(0)𝜆 ̂𝜌(0)𝜆

⟹

̂𝜌(0)𝜆 Tr {( ̌𝜌(0)𝜆 )†ℒ(1) ̂𝜌(0)𝜆 } = 𝜆(1) ̂𝜌(0)𝜆 ��������:1
Tr {( ̌𝜌(0)𝜆 )† ̂𝜌(0)𝜆 }

andwe obtain for the first order correction to the eigenvalue 𝜆(0)

𝜆(1) = −i Tr {( ̌𝜌(0)𝜆 )†[𝑉𝑥, ̂𝜌(0)𝜆 ]}. (5.50)

Eq. (5.50) is identically zero in fact

𝜆(1) = −i Tr {( ̌𝜌(0)𝜆 )†[𝑉𝑥, ̂𝜌(0)𝜆 ]} =

= −i Tr {( ̌𝜌(0)𝜆 )†𝑉[𝑥, ̂𝜌(0)𝜆 ]} − i Tr {( ̌𝜌(0)𝜆 )†[𝑉, ̂𝜌(0)𝜆 ]𝑥} =

= −i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†𝑉[𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸]} +
− i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†[𝑉, ̂𝜌𝜆𝐼�̂�𝜆𝐸]𝑥} =

= −i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†𝑉( ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸] +
�
���*0

[𝑥, ̂𝜌𝜆𝐼]�̂�𝜆𝐸)} +

− i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†( ̂𝜌𝜆𝐼�����:0
[𝑉, �̂�𝜆𝐸] + [𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸)𝑥} =

= −i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†𝑉 ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸]} +
− i Tr {( ̌𝜌𝜆𝐼)†(�̌�𝜆𝐸)†[𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸𝑥} =

= −i Tr
𝐼
{( ̌𝜌𝜆𝐼)†𝑉 ̂𝜌𝜆𝐼}

���������:0
Tr
𝐸
{(�̌�𝜆𝐸)†[𝑥, �̂�𝜆𝐸]} +

− i Tr
𝐼
{( ̌𝜌𝜆𝐼)†[𝑉, ̂𝜌𝜆𝐼]}

��������:0
Tr
𝐸
{(�̌�𝜆𝐸)†�̂�𝜆𝐸𝑥} =

= 0.

(5.51)

To perform this calculationwe have used eqs. (5.36) and that the commu-
tators [𝑥, ̂𝜌𝜆𝐼] and [𝑉, �̂�𝜆𝐸] are identically zero because 𝑥 = 𝑎 + 𝑎† acts
onlyon the external subspace,while𝑉 acts onlyon the internal subspace.
For the last linewe used that either 𝑥�̂�𝜆𝐸 or �̂�𝜆𝐸𝑥 are out of the subspace
corresponding to 𝜆𝐸 = i𝑘𝜈 but rather in the subspacewith 𝜆′𝐸 = i(𝑘 ± 1)𝜈
and so the tracewith (�̌�𝜆𝐸)† vanishes due to orthogonality.

Plugging the solution 𝜆(1) = 0 in Eq. (5.49a)we get

𝒫𝜆
0 ℒ(1) ̂𝜌(0)𝜆 = 0 (5.52a)

andmultiplying on the right by ̌𝜌(0)𝜆

𝒫𝜆
0 ℒ(1)𝒫𝜆

0 = 0. (5.52b)

Equations (5.52) express the fact that the action of ℒ(1) leads out of the
subspace selected by𝒫𝜆

0 (ℒ(1) only couples subspaces relative to different
eigenvalues).
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From Eq. (5.49b)we obtain

(𝜆(0) − ℒ(0))𝒬𝜆
0 ̂𝜌(1)𝜆 = 𝒬𝜆

0ℒ(1) ̂𝜌(0)𝜆 (5.53)

Since 𝒬𝜆
0 projects out all contribution which potentially could lead to

(𝜆(0) − ℒ(0)) = 0, we can safely form the inverse of it and find

𝒬𝜆
0 ̂𝜌(1)𝜆 = ̂𝜌(1)𝜆 = 1

𝜆(0) − ℒ(0)𝒬
𝜆
0ℒ(1) ̂𝜌(0)𝜆 =

=
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1) ̂𝜌(0)𝜆 = 𝟙
𝜆(0) − ℒ(0)ℒ

(1) ̂𝜌(0)𝜆

(5.54)

wherewe have assumed that the first order contribution ̂𝜌(1)𝜆 is orthog-
onal to the zeroth order part, that is 𝒫𝜆

0 ̂𝜌(1)𝜆 = 0. Analogouslywe can
derive the first order correction to the left eigenvector

( ̌𝜌(1)𝜆 )†𝒬𝜆
0 = ( ̌𝜌(1)𝜆 )† = ( ̌𝜌(0)𝜆 )†ℒ(1) 𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0) = ( ̌𝜌(0)𝜆 )†ℒ(1) 𝟙

𝜆(0) − ℒ(0) ,

(5.55)

bymultiplyingEq. (5.45b) on the rightwith𝒬𝜆
0 andusing𝜆(1) = 0. Results

Eq. (5.54) and Eq. (5.55) can be used towrite the first order correction to
the projector

𝑃𝜆1 = ̂𝜌𝜆0 ⊗ ̌𝜌𝜆1 + ̂𝜌𝜆1 ⊗ ̌𝜌𝜆0

= 𝑃𝜆0 ℒ(1) 𝟙 − 𝒫𝜆
0

𝜆(0) − ℒ(0) +
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1)𝑃𝜆0

= 𝑃𝜆0 ℒ(1) 𝟙
𝜆(0) − ℒ(0) +

𝟙
𝜆(0) − ℒ(0)ℒ

(1)𝑃𝜆0 .

(5.56)

5.A.1.3 SecondOrder

From Eq. (5.30)with 𝛼 = 2we obtain

ℒ(0) ̂𝜌(2)𝜆 + ℒ(1) ̂𝜌(1)𝜆 = 𝜆(0) ̂𝜌(2)𝜆 + 𝜆(2) ̂𝜌(0)𝜆 (5.57a)

( ̌𝜌(2)𝜆 )†ℒ(0) + ( ̌𝜌(1)𝜆 )†ℒ(1) = 𝜆(0)( ̌𝜌(2)𝜆 )† + 𝜆(2)( ̌𝜌(0)𝜆 )†. (5.57b)

We project Eq. (5.57a)with𝒫𝜆
0 obtaining

𝒫𝜆
0 ℒ(0) ̂𝜌(2)𝜆 + 𝒫𝜆

0 ℒ(1) ̂𝜌(1)𝜆 = 𝜆(0)𝒫𝜆
0 ̂𝜌(2)𝜆 + 𝜆(2)𝒫𝜆

0 ̂𝜌(0)𝜆 ⇒

�����
𝜆(0)𝒫𝜆

0 ̂𝜌(2)𝜆 + 𝒫𝜆
0 ℒ(1) ̂𝜌(1)𝜆 =�����

𝜆(0)𝒫𝜆
0 ̂𝜌(2)𝜆 + 𝜆(2)𝒫𝜆

0 ̂𝜌(0)𝜆 ⇒

𝒫𝜆
0 ℒ(1) ̂𝜌(1)𝜆 = 𝜆(2)𝒫𝜆

0 ̂𝜌(0)𝜆 = 𝜆(2) ̂𝜌(0)𝜆

(5.58)

Nowwe apply the scalar productwith ̌𝜌0𝜆 from left and obtain

𝜆(2) = Tr {( ̌𝜌0𝜆)
†( ̂𝜌0𝜆 ⊗ ̌𝜌0𝜆)ℒ

(1) ̂𝜌(1)𝜆 } =

= Tr {�������:1
Tr [( ̌𝜌0𝜆)

† ̂𝜌0𝜆]( ̌𝜌0𝜆)
†ℒ(1) ̂𝜌(1)𝜆 } = Tr {( ̌𝜌0𝜆)

†ℒ(1) ̂𝜌(1)𝜆 }.
(5.59)
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Projecting Eq. (5.57a)with𝒬𝜆
0 we obtain

𝒬𝜆
0ℒ(0) ̂𝜌(2)𝜆 + 𝒬𝜆

0ℒ(1) ̂𝜌(1)𝜆 = 𝜆(0)𝒬𝜆
0 ̂𝜌(2)𝜆 + 𝜆(2)𝒬𝜆

0 ̂𝜌(0)𝜆 . (5.60)

Notice that

𝒬𝜆
0ℒ(0) ̂𝜌(2)𝜆 = (𝟙 − 𝒫𝜆

0 )ℒ(0) ̂𝜌(2)𝜆 = ℒ(0) ̂𝜌(2)𝜆 − 𝜆(0)𝒫𝜆
0 ̂𝜌(2)𝜆 (5.61a)

and

𝜆(0)𝒬𝜆
0 ̂𝜌(2)𝜆 = 𝜆(0)(𝟙 − 𝒫𝜆

0 ) ̂𝜌(2)𝜆 = 𝜆(0) ̂𝜌(2)𝜆 − 𝜆(0)𝒫𝜆
0 ̂𝜌(2)𝜆 . (5.61b)

Inserting Eq. (5.61a) and Eq. (5.61b) into Eq. (5.60)we obtain

𝒬𝜆
0ℒ(1) ̂𝜌(1)𝜆 − 𝜆(2)𝒬𝜆

0 ̂𝜌(0)𝜆 = (𝜆(0) − ℒ(0)) ̂𝜌(2)𝜆 . (5.62)

Then the second order correction to the right eigenvector is then

̂𝜌(2)𝜆 =
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1) ̂𝜌(1)𝜆 −
���������:0
𝜆(2)

𝟙 − 𝒫𝜆
0

𝜆(0) − ℒ(0) ̂𝜌(0)𝜆

=
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1) 𝟙 − 𝒫𝜆
0

𝜆(0) − ℒ(0)ℒ
(1) ̂𝜌(0)𝜆

=
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1) 𝟙
𝜆(0) − ℒ(0)ℒ

(1) ̂𝜌(0)𝜆 .

(5.63)

The second order correction to the left eigenvector can be derived analo-
gously bymultiplying Eq. (5.57b) on the right by𝒬𝜆

0 and reads

( ̌𝜌(2)𝜆 )† = ( ̌𝜌(0)𝜆 )†ℒ(1) 𝟙
𝜆(0) − ℒ(0)ℒ

(1) 𝟙 − 𝑃𝜆0
𝜆(0) − ℒ(0) . (5.64)

Notice that we have used the fact (𝟙 − 𝒫𝜆
0 ) ̂𝜌(0)𝜆 = 0. The second order

correction to the projector is

𝒫𝜆
2 = ̂𝜌𝜆0 ⊗ ̌𝜌𝜆2 + ̂𝜌𝜆1 ⊗ ̌𝜌𝜆1 + ̂𝜌𝜆2 ⊗ ̌𝜌𝜆0

= 𝒫𝜆
0 ℒ(1) 𝟙

𝜆(0) − ℒ(0)ℒ
(1) 𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)+

+ 𝟙
𝜆(0) − ℒ(0)ℒ

(1)𝒫𝜆
0 ℒ(1) 𝟙

𝜆(0) − ℒ(0)+

+
𝟙 − 𝒫𝜆

0
𝜆(0) − ℒ(0)ℒ

(1) 𝟙
𝜆(0) − ℒ(0)ℒ

(1)𝒫𝜆
0 .

(5.65)

5.A.1.4 Lifting the degeneracy

We showed in Secs. 5.A.1.2 and 5.A.1.3 that the first correction to the
eigenvalue 𝜆(0) appears in second order perturbation theory. We now
calculate this correctionand see that thedegeneracythat occurs in zeroth
order is lifted.

Consider an effective eigenvalue equation in the subspace fixed by
𝜆(0) = 𝜆𝐼 + 𝜆𝐸. We look for the basis elementswhich span the degener-
ated subspace and fulfill simultaneously the second order eigenvalue
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equations (5.57). In order to do thiswe plug Eq. (5.54) into Eq. (5.58) to
obtain

𝜆(2) ̂𝜌(0)𝜆 = 𝒫𝜆
0 ℒ(1) ̂𝜌(1)𝜆 = 𝒫(𝜆)

0 ℒ(1) 𝟙
𝜆(0) − ℒ(0)ℒ

(1) ̂𝜌(0)𝜆 =

= 𝒫𝜆
0 ℒ(1) 𝟙

𝜆(0) − ℒ(0)ℒ
(1)𝒫𝜆

0 ̂𝜌(0)𝜆 = ̃ℒ(𝜆(0)) ̂𝜌(0)𝜆

(5.66)

with

̃ℒ(𝜆(0)) = 𝒫𝜆
0 ℒ(1) 𝟙

𝜆(0) − ℒ(0)ℒ
(1)𝒫𝜆

0 . (5.67)

Eq. (5.66) lives in the subspace selected by𝒫𝜆
0 and depends parametri-

cally on the eigenvalue 𝜆(0) and its relative subspace. It is the eigenvalue
equation in the degenerated subspace belonging to 𝜆(0) that determines
the second order correction 𝜆(2) to the chosen 𝜆(0) and fixes the correct
choice of eigenelements ̂𝜌𝜆0,𝜆2 = ̂𝜌𝜆𝐼�̂�𝜆𝐸,𝜆2 which diagonalize ̃ℒ(𝜆(0)).
Nowwe take the scalar product of Eq. (5.66)with ̌𝜌𝜆𝐼 on the left, i. e. we
multiply on the leftwith ( ̌𝜌𝜆𝐼)† and take the trace over the internal de-
gree of freedom. We obtain then an eigenvalue equation for the external
degrees of freedom

𝜆(2) Tr
𝐼
[( ̌𝜌𝜆𝐼)† ̂𝜌𝜆𝐼�̂�𝜆𝐸,𝜆2] = Tr

𝐼
[( ̌𝜌𝜆𝐼)†𝒫𝜆𝐼

𝐼 𝒫𝜆𝐸
𝐸 ℒ(1) 𝟙

𝜆(0) − ℒ(0)ℒ
(1) ̂𝜌𝜆𝐼�̂�𝜆𝐸,𝜆2].

(5.68)

We define

̃ℒ𝐸(𝜆(0)) = Tr
𝐼
[( ̌𝜌𝜆𝐼)†𝒫𝜆𝐼

𝐼 𝒫𝜆𝐸
𝐸 ℒ(1) 𝟙

𝜆(0) − ℒ(0)ℒ
(1) ̂𝜌𝜆𝐼]. (5.69)

such thatwe canwrite

𝜆(2)�̂�𝜆𝐸,𝜆2 = ̃ℒ𝐸(𝜆(0))�̂�𝜆𝐸,𝜆2. (5.70)

Thus the states �̂�𝜆𝐸,𝜆2 are eigenstates of ̃ℒ𝐸(𝜆(0))with respect to the eigen-
value 𝜆(2), and eigenstates of ℒ𝐸with respect to the eigenvalue 𝜆𝐸. Now
we calculate explicitly the action of the superoperator ̃ℒ𝐸(𝜆(0)) on the
operator �̂�𝜆𝐸. Using Eq. (5.32d), the equivalence

𝟙
𝜆(0) − ℒ(0) = ∫

∞

0
𝑒(ℒ(0)−𝜆(0))𝑡d𝑡 (5.71)

and noting that

( ̌𝜌𝜆𝐼)†𝒫𝜆𝐼
𝐼 = ( ̌𝜌𝜆𝐼)† ̂𝜌𝜆𝐼 ⊗ ̌𝜌𝜆𝐼 = Tr[( ̌𝜌𝜆𝐼)† ̂𝜌𝜆𝐼]( ̌𝜌𝜆𝐼)† = ( ̌𝜌𝜆𝐼)† (5.72)

we have

̃ℒ𝐸(𝜆(0))�̂�𝜆𝐸 = −∫
∞

0
d𝑡 𝑒−𝜆(0)𝑡 Tr

𝐼
{( ̌𝜌𝜆𝐼)†𝒫𝜆𝐸

𝐸 [𝑉𝑥, 𝑒ℒ𝐼𝑡𝑒ℒ𝐸𝑡[𝑉𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸]]}.

(5.73)
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The calculation is performed in Sec. 5.A.1.6. The result is (Eq. (5.95) and
Eq. (5.96))

̃ℒ𝐸(𝜆(0))�̂�𝜆𝐸 = 𝑠𝜆𝐼(𝜈)(𝑎�̂�𝜆𝐸𝑎† − 𝑎†𝑎�̂�𝜆𝐸) +
+ 𝑠𝜆𝐼(−𝜈)(𝑎†�̂�𝜆𝐸𝑎 − 𝑎𝑎†�̂�𝜆𝐸) +
+ 𝑠′𝜆𝐼(𝜈)(𝑎†�̂�𝜆𝐸𝑎 − �̂�𝜆𝐸𝑎𝑎†) +
+ 𝑠′𝜆𝐼(−𝜈)(𝑎�̂�𝜆𝐸𝑎† − �̂�𝜆𝐸𝑎†𝑎) +
− 𝑡𝜆𝐼(𝑎�̂�𝜆𝐸𝑎† + 𝑎†�̂�𝜆𝐸𝑎) +
+ 𝑡′𝜆𝐼(�̂�𝜆𝐸𝑎†𝑎 + �̂�𝜆𝐸𝑎𝑎†)

(5.74)

with

𝑠𝜆𝐼(𝑣) = ∫
∞

0
d𝑡 𝑒(i𝑣−𝜆𝐼)𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼], (5.75a)

𝑠′𝜆𝐼(𝑣) = ∫
∞

0
d𝑡 𝑒(i𝑣−𝜆𝐼)𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡 ̂𝜌𝜆𝐼𝑉], (5.75b)

𝑡𝜆𝐼 = ∫
∞

0
d𝑡 𝑒−𝜆𝐼𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼]], (5.75c)

𝑡′𝜆𝐼 = ∫
∞

0
d𝑡 𝑒−𝜆𝐼𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡 ̂𝜌𝜆𝐼𝑉]]. (5.75d)

5.A.1.5 Effective dynamics of the mechanical oscillator

We now consider the internal part of the system to be always in the
steady state and always decoupled from the external part, i. e., 𝜆𝐼 = 0
and

𝜌(𝑡) = ̂𝜌𝜆𝐼=0 ⊗ �̂�𝜆𝐸(𝑡) = ̂𝜌𝜆𝐼=0 ⊗∑
𝜆2
𝑐𝜆2�̂�

𝜆𝐸,𝜆2e(𝜆𝐸+𝜆(2))𝑡 (5.76)

where ̂𝜌𝜆𝐼=0 = ̂𝜌𝑠𝑠𝐼 is the steady state of the internal degree of freedom
solution of ℒ𝐼 ̂𝜌𝜆𝐼 = 0 and �̂�𝜆𝐸(𝑡) = Tr𝐼 [𝒫

𝜆𝐼=0
𝐼 𝜌(𝑡)] is the reduced density

matrix of the mechanical oscillator. In the last step of Eq. (5.76) we
have expanded the state �̂�𝜆𝐸(𝑡) as a superposition of �̂�𝜆𝐸,𝜆2 eigenstates of
̃ℒ𝐸(𝜆𝐸)with eigenvalue 𝜆(2) (see Eq. (5.70)).
The effective dynamics is then given by

𝜕
𝜕𝑡 �̂�

𝜆𝐸(𝑡) = [ℒ𝐸 + ̃ℒ𝐸(𝜆𝐸)]�̂�𝜆𝐸(𝑡) (5.77)

where ̃ℒ𝐸(𝜆𝐸)�̂�𝜆𝐸(𝑡) is givenbyEq. (5.74) andEq. (5.75)with𝜆𝐼 = 0. Equa-
tion (5.77) (apart from a trace and the termℒ𝛾whichwill be considered
later) is Eq. (5.22) reported in the main text. Notice that the left eigen-
vector relative to the eigenvalue 𝜆𝐼 = 0 is ( ̌𝜌𝜆𝐼=0)† = 𝟙. Using this fact
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with eqs. (5.75c) and (5.75d) it is clear that 𝑡𝜆𝐼=0 = 𝑡′𝜆𝐼=0 = 0 because the
trace of a commutator is zero. We define

𝑠(𝑣) = 𝑠𝜆𝐼=0(𝑣) = 1
ℏ2 ∫

∞

0
d𝑡 𝑒i𝑣𝑡⟨𝑉(𝑡)𝑉(0)⟩𝑠𝑠, (5.78a)

𝑠∗(𝑣) = 𝑠′𝜆𝐼=0(−𝑣) = 1
ℏ2 ∫

∞

0
d𝑡 𝑒−i𝑣𝑡⟨𝑉(0)𝑉(𝑡)⟩𝑠𝑠, (5.78b)

wherewe used the quantum regression theorem towrite the coefficient 𝑠(𝑣)
in the form of steady state expectation value. We define also

𝐴±
2 = ℜ𝑠(∓𝜈) (5.79a)

̄𝜈 = ℑ𝑠(𝜈) + ℑ𝑠(−𝜈) (5.79b)

and Eq. (5.77) is explicitly given by

𝜕
𝜕𝑡 �̂�

𝜆𝐸 = −i(𝜈 + ̄𝜈)[𝑎†𝑎, �̂�𝜆𝐸] +
𝐴−
2 (2𝑎�̂�𝜆𝐸𝑎† − {𝑎†𝑎, �̂�𝜆𝐸}) +

+
𝐴+
2 (2𝑎†�̂�𝜆𝐸𝑎 − {𝑎𝑎†, �̂�𝜆𝐸}).

(5.80)

Eq. (5.80) is a generalizedmaster equation of a damped harmonic oscil-
latorwith renormalized frequency (𝜈 + ̄𝜈) and generalized feeding rates
𝐴±. Apart from the termℒ𝛾�̂�𝜆𝐸 whichwill be added later, it is Eq. (5.23)
reported in the main text. Notice that each subspace relative to 𝜆𝐸 is
effectively damped. We define the cooling rate

Γ̃ = 𝐴− − 𝐴+, (5.81)

and theminimal phonon number

𝑁0 =
𝐴+

𝐴− − 𝐴+
=
𝐴+
Γ̃
. (5.82)

The equation describing the effective dynamics can then bewritten as

𝜕
𝜕𝑡𝜇 = −i(𝜈+ ̄𝜈)[𝑎†𝑎, 𝜇]+ Γ̃

2 (𝑁0+1)𝒟[𝑎]𝜇+
Γ̃
2𝑁0𝒟[𝑎

†]𝜇+ℒ𝛾𝜇, (5.83)

where𝒟[𝑜]𝜌 = 2𝑜𝜌𝑜†−{𝑜†𝑜, 𝜌} andwe added themechanical dissipation
due to the couplingwith the thermal bath of phonons described byℒ𝛾.

5.A.1.6 Calculation of the action of the operator ̃ℒ𝐸(𝜆(0)) on �̂�𝜆𝐸

Herewe perform the calculations used in Sec. 5.A.1.4. Wewant to calcu-
late Eq. (5.73)whichwe report here

̃ℒ𝐸(𝜆(0))�̂�𝜆𝐸 = −∫
∞

0
d𝑡 𝑒−𝜆(0)𝑡 Tr

𝐼
{( ̌𝜌𝜆𝐼)†𝒫𝜆𝐸

𝐸 [𝑉𝑥, 𝑒ℒ𝐼𝑡𝑒ℒ𝐸𝑡[𝑉𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸]]}.

(5.84)
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Wefirst evaluate

[𝑉𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸] = 𝑉[𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸] + [𝑉, ̂𝜌𝜆𝐼�̂�𝜆𝐸]𝑥 =

= 𝑉( ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸] +
��

��*0
[𝑥, ̂𝜌𝜆𝐼]�̂�𝜆𝐸) +

+ ( ̂𝜌𝜆𝐼�����:0
[𝑉, �̂�𝜆𝐸] + [𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸)𝑥

= 𝑉 ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸] + [𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸𝑥,

(5.85)

where somecommutatorsvanishbecause theyare commutators between
operators that act ondifferent degrees of freedom (internal and external).

Nowwe calculate

[𝑉𝑥, 𝑒ℒ(0)𝑡[𝑉𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸]] =

= [𝑉𝑥, 𝑒ℒ(0)𝑡𝑉 ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸] + 𝑒ℒ(0)𝑡[𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸𝑥] =

= 𝑉[𝑥, 𝑒ℒ(0)𝑡𝑉 ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸]] + [𝑉, 𝑒ℒ(0)𝑡𝑉 ̂𝜌𝜆𝐼[𝑥, �̂�𝜆𝐸]]𝑥+

+ 𝑉[𝑥, 𝑒ℒ(0)𝑡[𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸𝑥] + [𝑉, 𝑒ℒ(0)𝑡[𝑉, ̂𝜌𝜆𝐼]�̂�𝜆𝐸𝑥]𝑥 =

= 𝑉𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼[𝑥, 𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]] + [𝑉, 𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼]𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]𝑥 +
+ 𝑉𝑒ℒ𝐼𝑡[𝑉, ̂𝜌𝜆𝐼][𝑥, 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥] + [𝑉, 𝑒ℒ𝐼𝑡[𝑉, ̂𝜌𝜆𝐼]]𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2

(5.86)

where in the last stepwe sorted internal and external quantities. Then

Tr
𝐼
{( ̌𝜌𝜆𝐼)†𝒫𝜆𝐸

𝐸 [𝑉𝑥, 𝑒ℒ𝐼𝑡𝑒ℒ𝐸𝑡[𝑉𝑥, ̂𝜌𝜆𝐼�̂�𝜆𝐸]]} =

= Tr
𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼]𝒫𝜆𝐸

𝐸 [𝑥, 𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]] +

+ Tr
𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼]]𝒫𝜆𝐸

𝐸 𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]𝑥 +

+ Tr
𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡[𝑉, ̂𝜌𝜆𝐼]]𝒫𝜆𝐸

𝐸 [𝑥, 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥] +

+ Tr
𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡[𝑉, ̂𝜌𝜆𝐼]]]𝒫𝜆𝐸

𝐸 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2.

(5.87)

Wewant to calculate each external expression in Eq. (5.87). In order to
do so, it is useful to express the action of 𝒫𝜆𝐸

𝐸 on a general operator 𝑋.
With the use of Eq. (5.35) and Eq. (5.42)we have

𝒫𝜆𝐸
𝐸 𝑋 =

∞
∑
𝑛=0

�̂�𝜆𝐸(𝑛) ⊗ �̌�𝜆𝐸(𝑛)𝑋 =

=
∞
∑
𝑛=0

�̂�𝜆𝐸(𝑛)Tr[[�̌�𝜆𝐸(𝑛)]†𝑋] =

=
∞
∑
𝑛=0

|||𝑛 +
|𝑘| − 𝑘
2 ⟩⟨𝑛 +

|𝑘| + 𝑘
2

|||⟨𝑛 +
|𝑘| − 𝑘
2

|||𝑋
|||𝑛 +

|𝑘| + 𝑘
2 ⟩ =

=
∞
∑

𝑛= |𝑘|−𝑘
2

|𝑛⟩⟨𝑛 + 𝑘|⟨𝑛|𝑋|𝑛 + 𝑘⟩.
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(5.88)

Wewill also use Eq. (5.37)which can be rewritten as

�̂�𝜆𝐸=i𝑘𝜈 =
∞
∑
𝑛=0

𝑐𝑛�̂�𝑘(𝑛) =
∞
∑

𝑛= |𝑘|−𝑘
2

𝑐𝑛|𝑛⟩⟨𝑛 + 𝑘| (5.89)

and the completeness relation Eq. (5.43). Nowwe calculate each external
expression of Eq. (5.87). We first evaluate

𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2 = ∑
𝜆′𝐸

𝒫𝜆′𝐸
𝐸 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2 = ∑

𝜆′𝐸

𝑒𝜆′𝐸𝑡𝒫𝜆′𝐸
𝐸 �̂�𝜆𝐸𝑥2 =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡∑
𝑚
|𝑚⟩⟨𝑚 + 𝑘′|⟨𝑚||�̂�𝜆𝐸𝑥2||𝑚 + 𝑘′⟩ =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡 ∑
𝑚,𝑛

|𝑚⟩⟨𝑚 + 𝑘′|����*
𝛿𝑚𝑛

⟨𝑚|𝑛⟩𝑐𝑛⟨𝑛 + 𝑘||𝑥2||𝑚 + 𝑘′⟩ =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡∑
𝑚
𝑐𝑚|𝑚⟩⟨𝑚 + 𝑘′|⟨𝑚 + 𝑘||𝑥2||𝑚 + 𝑘′⟩,

(5.90)

and𝒫𝜆𝐸
𝐸 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2 =

= 𝒫𝜆𝐸
𝐸 ∑

𝜆′𝐸=i𝑘′𝜈
𝑒𝜆′𝐸𝑡∑

𝑚
𝑐𝑚|𝑚⟩⟨𝑚 + 𝑘′|⟨𝑚 + 𝑘||𝑥2||𝑚 + 𝑘′⟩ =

= ∑
𝑛,𝑘′,𝑚

𝑒i𝑘′𝜈𝑡𝑐𝑚|𝑛⟩⟨𝑛 + 𝑘|��
��*
𝛿𝑛𝑚

⟨𝑛|𝑚⟩⟨𝑚 + 𝑘′|𝑛 + 𝑘⟩⟨𝑚 + 𝑘||𝑥2||𝑚 + 𝑘′⟩ =

= ∑
𝑛,𝑘′

𝑒i𝑘′𝜈𝑡𝑐𝑛|𝑛⟩⟨𝑛 + 𝑘|
�������:𝛿𝑘𝑘′
⟨𝑛 + 𝑘′|𝑛 + 𝑘⟩⟨𝑛 + 𝑘||𝑥2||𝑛 + 𝑘′⟩ =

= 𝑒i𝑘𝜈𝑡∑
𝑛
𝑐𝑛|𝑛⟩⟨𝑛 + 𝑘|⟨𝑛 + 𝑘

||||
𝑎𝑎† + 𝑎†𝑎 +���

0
𝑎2 +���*0

(𝑎†)2
||||
𝑛 + 𝑘⟩ =

= 𝑒i𝑘𝜈𝑡∑
𝑛
𝑐𝑛|𝑛⟩⟨𝑛 + 𝑘|

�������:1
⟨𝑛 + 𝑘|𝑛 + 𝑘⟩((√𝑛 + 𝑘 + 1)

2
+ (√𝑛 + 𝑘)

2
) =

= 𝑒i𝑘𝜈𝑡∑
𝑛
𝑐𝑛|𝑛⟩⟨𝑛 + 𝑘|(𝑎𝑎† + 𝑎†𝑎) =

= 𝑒𝜆𝐸𝑡�̂�𝜆𝐸(𝑎𝑎† + 𝑎†𝑎).
(5.91)
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Nowwe evaluate 𝑒ℒ𝐸𝑡𝑥�̂�𝜆𝐸𝑥 =

= ∑
𝜆′𝐸

𝒫𝜆′𝐸
𝐸 𝑒ℒ𝐸𝑡𝑥�̂�𝜆𝐸𝑥 = ∑

𝜆′𝐸

𝑒𝜆′𝐸𝑡𝒫𝜆′𝐸
𝐸 𝑥�̂�𝜆𝐸𝑥 =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡∑
𝑚
|𝑚⟩⟨𝑚 + 𝑘′|⟨𝑚||𝑥�̂�𝜆𝐸𝑥||𝑚 + 𝑘′⟩ =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡 ∑
𝑚,𝑛

𝑐𝑛|𝑚⟩⟨𝑚 + 𝑘′|⟨𝑚|𝑥|𝑛⟩⟨𝑛 + 𝑘|𝑥|𝑚 + 𝑘′⟩ =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡 ∑
𝑚,𝑛

𝑐𝑛|𝑚⟩⟨𝑚 + 𝑘′|(√𝑛𝛿𝑚,𝑛−1 +√𝑛 + 1𝛿𝑚,𝑛+1)⋅

⋅ ⟨𝑛 + 𝑘|𝑥|𝑚 + 𝑘′⟩ =

= ∑
𝜆′𝐸=i𝑘′𝜈

𝑒𝜆′𝐸𝑡∑
𝑛
𝑐𝑛[√𝑛|𝑛 − 1⟩⟨𝑛 − 1 + 𝑘′|⟨𝑛 + 𝑘|𝑥|𝑛 − 1 + 𝑘′⟩ +

+ √𝑛 + 1|𝑛 + 1⟩⟨𝑛 + 1 + 𝑘′|⟨𝑛 + 𝑘|𝑥|𝑛 + 1 + 𝑘′⟩],

(5.92)

and𝒫𝜆𝐸
𝐸 𝑒ℒ𝐸𝑡𝑥�̂�𝜆𝐸𝑥 =

= 𝒫𝜆𝐸
𝐸 ∑

𝜆′𝐸=i𝑘′𝜈
𝑒𝜆′𝐸𝑡∑

𝑛
𝑐𝑛[√𝑛|𝑛 − 1⟩⟨𝑛 − 1 + 𝑘′|⟨𝑛 + 𝑘|𝑥|𝑛 − 1 + 𝑘′⟩ +

+ √𝑛 + 1|𝑛 + 1⟩⟨𝑛 + 1 + 𝑘′|⟨𝑛 + 𝑘|𝑥|𝑛 + 1 + 𝑘′⟩] =

= ∑
𝑘′,𝑛,𝑚

𝑒i𝑘′𝜈𝑡𝑐𝑛|𝑚⟩⟨𝑚 + 𝑘|⋅

⋅ [√𝑛�����:
𝛿𝑚,𝑛−1

⟨𝑚|𝑛 − 1⟩⟨𝑛 − 1 + 𝑘′|𝑚 + 𝑘⟩⟨𝑛 + 𝑘|𝑥|𝑛 − 1 + 𝑘′⟩ +

+ √𝑛 + 1�����:
𝛿𝑚,𝑛+1

⟨𝑚|𝑛 + 1⟩⟨𝑛 + 1 + 𝑘′|𝑚 + 𝑘⟩⟨𝑛 + 𝑘|𝑥|𝑛 + 1 + 𝑘′⟩] =

= ∑
𝑘′,𝑛

𝑒i𝑘′𝜈𝑡𝑐𝑛[√𝑛|𝑛 − 1⟩⟨𝑛 − 1 + 𝑘|⋅

⋅
�����������:

𝛿𝑘,𝑘′

⟨𝑛 − 1 + 𝑘′|𝑛 − 1 + 𝑘⟩⟨𝑛 + 𝑘|𝑥|𝑛 − 1 + 𝑘′⟩ +

+ √𝑛 + 1|𝑛 + 1⟩⟨𝑛 + 1 + 𝑘|⋅

⋅
�����������:

𝛿𝑘,𝑘′

⟨𝑛 + 1 + 𝑘′|𝑛 + 1 + 𝑘⟩⟨𝑛 + 𝑘|𝑥|𝑛 + 1 + 𝑘′⟩] =

= 𝑒i𝑘𝜈𝑡∑
𝑛
𝑐𝑛[√𝑛|𝑛 − 1⟩⟨𝑛 − 1 + 𝑘|⟨𝑛 + 𝑘|𝑥|𝑛 − 1 + 𝑘⟩ +

+ √𝑛 + 1|𝑛 + 1⟩⟨𝑛 + 1 + 𝑘|⟨𝑛 + 𝑘|𝑥|𝑛 + 1 + 𝑘⟩] =

= 𝑒𝜆𝐸𝑡∑
𝑛
𝑐𝑛[√𝑛|𝑛 − 1⟩⟨𝑛 + 𝑘 − 1|√𝑛 + 𝑘 +

+√𝑛 + 1|𝑛 + 1⟩⟨𝑛 + 𝑘 + 1|√𝑛 + 𝑘 + 1] =

= 𝑒𝜆𝐸𝑡∑
𝑛
𝑐𝑛[𝑎|𝑛⟩⟨𝑛 + 𝑘|𝑎† + 𝑎†|𝑛⟩⟨𝑛 + 𝑘|𝑎] =

= 𝑒𝜆𝐸𝑡(𝑎�̂�𝜆𝐸𝑎† + 𝑎†�̂�𝜆𝐸𝑎)
(5.93)
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The other terms are calculated in a similarway, the results are

𝒫𝜆𝐸
𝐸 [𝑥, 𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]] = 𝑒𝜆𝐸𝑡[𝑒−i𝜈𝑡(𝑎𝑎†�̂�𝜆𝐸 + �̂�𝜆𝐸𝑎†𝑎) +

+ 𝑒i𝜈𝑡(𝑎†𝑎�̂�𝜆𝐸 + �̂�𝜆𝐸𝑎𝑎†) +
− (𝑒−i𝜈𝑡 + 𝑒i𝜈𝑡)(𝑎�̂�𝜆𝐸𝑎† + 𝑎†�̂�𝜆𝐸𝑎)],

(5.94a)

𝒫𝜆𝐸
𝐸 𝑒ℒ𝐸𝑡[𝑥, �̂�𝜆𝐸]𝑥 = 𝑒𝜆𝐸𝑡(𝑎�̂�𝜆𝐸𝑎† + 𝑎†�̂�𝜆𝐸𝑎 − �̂�𝜆𝐸𝑎𝑎† − �̂�𝜆𝐸𝑎†𝑎),

(5.94b)

𝒫𝜆𝐸
𝐸 [𝑥, 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥] = 𝑒𝜆𝐸𝑡[𝑒−i𝜈𝑡(𝑎�̂�𝜆𝐸𝑎† − �̂�𝜆𝐸𝑎†𝑎)+

+ 𝑒i𝜈𝑡(𝑎†�̂�𝜆𝐸𝑎 − �̂�𝜆𝐸𝑎𝑎†)],
(5.94c)

𝒫𝜆𝐸
𝐸 𝑒ℒ𝐸𝑡�̂�𝜆𝐸𝑥2 = 𝑒𝜆𝐸𝑡�̂�𝜆𝐸(𝑎𝑎† + 𝑎†𝑎). (5.94d)

Inserting Eqs. (5.94) in Eq. (5.87) and then in Eq. (5.84), recasting the
termswe finally obtain

̃ℒ𝐸(𝜆(0))�̂�𝜆𝐸 = 𝑠𝜆𝐼(𝜈)(𝑎�̂�𝜆𝐸𝑎† − 𝑎†𝑎�̂�𝜆𝐸) + 𝑠𝜆𝐼(−𝜈)(𝑎†�̂�𝜆𝐸𝑎 − 𝑎𝑎†�̂�𝜆𝐸) +
+ 𝑠′𝜆𝐼(𝜈)(𝑎†�̂�𝜆𝐸𝑎 − �̂�𝜆𝐸𝑎𝑎†) + 𝑠′𝜆𝐼(−𝜈)(𝑎�̂�𝜆𝐸𝑎† − �̂�𝜆𝐸𝑎†𝑎) +
− 𝑡𝜆𝐼(𝑎�̂�𝜆𝐸𝑎† + 𝑎†�̂�𝜆𝐸𝑎) + 𝑡′𝜆𝐼(�̂�𝜆𝐸𝑎†𝑎 + �̂�𝜆𝐸𝑎𝑎†)

(5.95)

where

𝑠𝜆𝐼(𝑣) = ∫
∞

0
d𝑡 𝑒(i𝑣−𝜆𝐼)𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼], (5.96a)

𝑠′𝜆𝐼(𝑣) = ∫
∞

0
d𝑡 𝑒(i𝑣−𝜆𝐼)𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†𝑉𝑒ℒ𝐼𝑡 ̂𝜌𝜆𝐼𝑉], (5.96b)

𝑡𝜆𝐼 = ∫
∞

0
d𝑡 𝑒−𝜆𝐼𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡𝑉 ̂𝜌𝜆𝐼]], (5.96c)

𝑡′𝜆𝐼 = ∫
∞

0
d𝑡 𝑒−𝜆𝐼𝑡 Tr

𝐼
[( ̌𝜌𝜆𝐼)†[𝑉, 𝑒ℒ𝐼𝑡 ̂𝜌𝜆𝐼𝑉]], (5.96d)

which is the solution reported in Eqs. (5.74) and (5.75).



Part IV

SP INOR SELF-ORDER ING

We theoretically analyze the dynamics of cold atomic spins
in a single-mode standing-wave cavityas a function of the in-
tensity and phase of two transverse lasers, driving the atoms.
We identify and discuss the conditions underwhich stable
spatial patterns form,where atomic position andmagneti-
zation are correlated. We discuss the properties of the light
emitted by the cavity as a method to reveal the state of the
atomic vapor.





6
SP INOR SELF-ORDER ING OF MAGNETIC ATOMS IN
AN OPTICAL CAV ITY

6.1 introduction

A remarkable aspect of light-matter interactions inside optical cavities
is the appearance of collective phenomena induced bymultiple scatter-
ing of photons. Cavity photons exchange information between atoms
across the cavityvolume andmediate effective long-range interactions
between them [210]. This leads to prominent collective effects such as
synchronization [211–213] and spontaneous spatial ordering [214–216].

Among several setups, spontaneous pattern formation (self-organiza-
tion) in cavities has been the object of several theoretical and experimen-
tal studies [214–222]. Self-organization occurs when an ensemble of
polarizable particles is confined in an optical resonator and is driven
by an external laser. If the laser intensity exceed a threshold value, the
particles spontaneously order in space in a periodic structure (Bragg
grating)with period 𝜆c, where 𝜆c is the cavity-modewavelength. In this
configuration the laser light that is scattered by the atoms into the cav-
ity mode constructively interferes and leads to the build up of cavity
field. In turn, the cavity field stabilizes the Bragg grating bymeans of
themechanical effects of light. In this process the atomic internal state
remains in good approximation unchanged and can be eliminated from
the dynamics.

Recent studies investigated setups where spatial self-organization
is accompanied by correlations with internal degrees of freedom [47,
223–229]. One example are setups where different electronic ground
states of the atoms are coupled via a Raman transitionwith cavity and
laser photons, as for instance in Ref. [226]. Here the authors considered
a Bose Einstein condensatewith two effective internal states (spin states)
confined in a optical cavity. Transitions between the spin states are
induced via Raman scattering of two external pumping lasers into the
cavity mode (see Fig. 6.1). For sufficiently high laser intensities, the
system reaches an ordered state. This state involves a periodic spatial
density with period 𝜆c/2 and a periodic spin structure with period 𝜆c.
Experimental evidence of this phenomenon, called spinor self-ordering,
has been discussed in Ref. [227]. Spatial-spin textures in ultra-cold gases
have also been observed in Ref. [225].

In this Chapterwe address the questionwhether spatial-spin struc-
tures can also arise in the dynamics of a thermal cloud of atoms confined
in an optical cavity. Our analysis shows that the cloud can be cooled
into spinor self-ordered structures. Furthermore we show how some
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properties of the self-ordered state can be controlled bymeans of the
external lasers. These properties can bemeasured at the cavity output.

In Section 6.2 we introduce the system and the basic equations de-
scribing its dynamics. In Section 6.3we discuss the quantities that are
relevant to characterize the state of the system. In Section 6.4 we an-
alyze numerically the dynamics of the system, the properties of the
self-ordered state and showhow some properties can be externally con-
trolled andmeasured. Finally in Section 6.5we summarize the results
and draw the conclusions.

6.2 system and model

In this sectionwe provide the details of our theoretical model and intro-
duce the physical quantitieswhich are relevant to the discussions in the
rest of this chapter.

(a)

(b)

𝜅

Ω2Ω1

|0⟩

|2⟩

|1⟩

|3⟩

𝛿2 − 𝛿1Δc − 𝛿1

𝛿3 Δc + 𝛿1

𝑔1 cos 𝑘c𝑥𝑗

𝑔2 cos 𝑘c𝑥𝑗
Ω1

Ω2

Figure 6.1: Sketchof the system. (a)𝑁 atoms tightly trapped in a lossycavityand
driven by 2 laserswith Rabi frequencyΩ1 andΩ2; 𝜅 is the linewidth
of the cavity. (b) Level scheme of the atoms. The relevant levels are
the ground states |0⟩ and |1⟩ and the excited states |2⟩ and |3⟩. The
external lasers drive the transitions 1 ↔ 2 and 0 ↔ 3with Rabi
frequencyΩ1 andΩ2, respectively;while the transitions 0 ↔ 2 and
1 ↔ 3 are coupled to the cavitymodewith strength 𝑔1 cos(𝑘c ̂𝑥𝑗) and
𝑔2 cos(𝑘c ̂𝑥𝑗), respectively; here ̂𝑥𝑗 is the position of the atom and 𝑘c
is thewavevector of the cavitymode. The pump frequencies𝜔L1 and
𝜔L2 and the cavity frequency𝜔c are assumed to be far detuned from
of the frequencies of the atomic transitions 0 ↔ 2, 0 ↔ 3, 1 ↔ 2 and
1 ↔ 3. The detunings 𝛿1, 𝛿2, 𝛿3 andΔc are defined in Appendix 6.A.

The physical system is illustrated in Figure 6.1: 𝑁 atoms are confined
inside a lossy cavity and are illuminated by two external pumping lasers.
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We assume a tight trap along the transverse directions so that the atomic
motion is confined along the cavity axis. The relevant states of the atoms
are the ground states |0⟩ and |1⟩, and the excited states |2⟩ and |3⟩. The
coupling of the atomswith the external lasers and the cavitymode form
a double Λ configuration scheme. The first Λ scheme is formed by the
transitions 0 ↔ 2 ↔ 1: the 2 ↔ 1 transition is driven by the first laser,
while the transition 0 ↔ 2 couples to the cavity mode. Similarly, the
second Λ scheme is formed by the transitions 0 ↔ 3 ↔ 1: transition
0 ↔ 3 is driven by the second laser,while transition 3 ↔ 1 is coupled to
the same cavitymode. We assume the laser frequencies and the cavity
frequency to be far detuned from the frequencies of the atomic transi-
tions 0 ↔ 2, 0 ↔ 3, 1 ↔ 2 and 1 ↔ 3. This setting induces two-photon
Raman transitions between the states |0⟩ and |1⟩, which form spin states.
This setting has been considered in several otherworks, as for example
Refs. [47, 226–229].

6.2.1 Hamiltonian for𝑁 four-level atoms

The Hamiltonian of the system composed by 𝑁 transversally driven
atoms and the cavity includes the kinetic and internal energies of the
atoms, the interaction between the atoms and the lasers, the cavity en-
ergy and the interaction between the cavity and the atoms. The Hamilto-
nian can be cast into the sum of three terms

�̂�sys = �̂�at + �̂�cav + �̂�int. (6.1)

The first term, �̂�at, describes the dynamics of 𝑁 four-level atoms driven
by two lasers. In a convenient rotating frame (see Appendix 6.A) it reads
(ℏ = 1)

�̂�at =
𝑁
∑
𝑗=1

(
̂𝑝2𝑗

2𝑚 − ∑
𝜏=1,2,3

𝛿𝜏|𝜏⟩𝑗⟨𝜏|) +
𝑁
∑
𝑗=1

(Ω1|2⟩𝑗⟨1| + Ω2|3⟩𝑗⟨0| + h.c.).

(6.2)

Here ̂𝑝𝑗 is the momentum operator of the atom 𝑗,𝑚 is the mass of the
atoms and 𝛿𝜏 are atomic detunings (see Appendix 6.A). The lasers drive
the transitions 1 ↔ 2 and 0 ↔ 3with Rabi frequencies Ω1 and Ω2, re-
spectively.

The term �̂�cav describes the dynamics of the cavitymode and reads

�̂�cav = −Δc ̂𝑎† ̂𝑎 (6.3)

whereΔc is the cavity detuning (see Appendix 6.A), and the operators ̂𝑎
and ̂𝑎† annihilate and create, respectively, a cavity photon at frequency
𝜔c, with [ ̂𝑎, ̂𝑎†] = 1.

The atom-photon interaction is treated in dipole and rotating-wave
approximation. The transitions 0 ↔ 2 and 1 ↔ 3 are coupled to a cavity
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mode with space-dependent strength 𝑔1 cos(𝑘c ̂𝑥𝑗) and 𝑔2 cos(𝑘c ̂𝑥𝑗), re-
spectively. Here 𝑔𝑖 are the vacuum Rabi frequencies, ̂𝑥𝑗 is the position
operator of the 𝑗-th atom and is the canonical conjugate operator of
the momentum ̂𝑝𝑗 with [ ̂𝑥𝑗, ̂𝑝𝑙] = iℏ𝛿𝑗𝑙, 𝑘c = 2𝜋/𝜆c is thewave vector of
the cavitymode and 𝜆c itswavelength. The corresponding Hamiltonian
reads

�̂�int =
𝑁
∑
𝑗=1

cos(𝑘c ̂𝑥𝑗)(𝑔1 ̂𝑎†|0⟩𝑗⟨2| + 𝑔2 ̂𝑎†|1⟩𝑗⟨3| + h.c.). (6.4)

We consider a cavitywith losses at rate 𝜅. In the following of this chap-
terwewill use both themaster equation and the Heisenberg-Langevin
equation formalism. When using the master equation formalism we
model the cavity losseswith the superoperator

ℒ𝜅 ̂𝜌 = 𝜅(2 ̂𝑎 ̂𝜌 ̂𝑎† − ̂𝑎† ̂𝑎 ̂𝜌 − ̂𝜌 ̂𝑎† ̂𝑎), (6.5)

where ̂𝜌 is the densitymatrix of the system. When using the Heisenberg-
Langevin equation formalism the cavity losseswill be taken into account
with a damping term−𝜅 ̂𝑎 and the corresponding Gaussian noise√2𝜅 ̂𝑎in.
The detailswill be clearwhenwe introduce the two formalism.

6.2.2 Adiabatic elimination of the excited states

When the laser frequencies 𝜔L1 and 𝜔L2 and the cavity frequency𝜔c are
far detuned from atomic transition frequencies, i. e., 𝛿2, 𝛿3 ≫ 𝛿1, Δc, the
excited states |2⟩ and |3⟩ of the atoms can be adiabaticalyeliminated from
the dynamics. We now follow the derivation given in [218]. Let us first
assume that the particles do not move so that the couplings 𝑔1,2 cos(𝑘c ̂𝑥𝑗)
with the cavity field are fixed. In this case the states |2⟩ and |3⟩ of the
atoms can be eliminated in second order in an expansion in the param-
eter 1/𝛿, 𝛿 = min (|𝛿2|, |𝛿3|), assuming that [230] 𝛿 ≫ |𝛿1|, |Δc|, 𝜅, √𝑁 ̄𝑛𝑔1,
√𝑁 ̄𝑛𝑔2,√𝑁Ω1,√𝑁Ω2, with ̄𝑛 themean photon number in the cavity. If
the center-of-massmotions is considered, then the coupling strengths
𝑔1,2 cos(𝑘c ̂𝑥𝑗) varywith time. Furthermore atomswith different veloc-
ities experience different Doppler shifts, whichmodify the resonance
condition. These effects can be neglectedwhen the corresponding time
scales are longer than the typical time scale inwhich the excited states
are occupied, i. e., when 𝜔r, 𝑘c ̄𝑝𝑗/𝑚 ≪ 𝛿 (with ̄𝑝𝑗 = √⟨ ̂𝑝2𝑗 ⟩) [183, 231].
Herewe have used the recoil frequency

𝜔r =
ℏ𝑘2c
2𝑚 , (6.6)

which scales the exchange of mechanical energy between photons and
atoms.

We adiabatically eliminate the excited states |2⟩ and |3⟩ bymeans of a
projection method [201] (the calculations are shown in Appendix 6.B)
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and obtain the effective Hamiltonian of the system composed by the two
ground states |0⟩ and |1⟩, which are the spin states, and the cavitymode.
This Hamiltonian is the sum of the kinetic and internal energies of the
spins, the cavity energy and the interaction of the spinswith the cavity
mode and can be cast as a sum of three terms

�̂� = �̂�S + �̂�C + �̂�I. (6.7)

The first term describes the dynamics of free spins and reads

�̂�S =
𝑁
∑
𝑗=1

(
̂𝑝2𝑗

2𝑚 + Δe ̂𝜎†𝑗 ̂𝜎𝑗), (6.8)

where ̂𝜎𝑗 = |0⟩𝑗⟨1| is the lowering operator for the 𝑗-th spin. The Stark-
shifted energy splitting between the states |0⟩ and |1⟩ isΔe = |Ω1|

2/𝛿2 −
|Ω2|

2/𝛿3 − 𝛿1. The second term describes the cavity energy and reads

�̂�C = −[Δc −
𝑁
∑
𝑗=1

(𝑈1 ̂𝜎𝑗 ̂𝜎†𝑗 + 𝑈2 ̂𝜎†𝑗 ̂𝜎𝑗) cos2(𝑘c ̂𝑥𝑗)] ̂𝑎† ̂𝑎. (6.9)

It contains the shiftof the cavityfrequencydue to the interactionwith the
atoms,which scaleswith the frequencies𝑈1 = |𝑔1|

2/𝛿2 and𝑈2 = |𝑔2|
2/𝛿3.

The last term describes the interaction of the spinswith the cavity and
reads

�̂�I =
𝑁
∑
𝑗=1

(𝑆1 ̂𝑎† ̂𝜎𝑗 + 𝑆∗1 ̂𝜎†𝑗 ̂𝑎 + 𝑆2 ̂𝑎† ̂𝜎†𝑗 + 𝑆∗2 ̂𝑎 ̂𝜎𝑗) cos(𝑘c ̂𝑥𝑗), (6.10)

where the coupling strength are 𝑆1 = Ω1𝑔1/𝛿2 and 𝑆2 = Ω2𝑔2/𝛿3.

6.2.3 Heisenberg-Langevin equations

Using Hamiltonian (6.7)we nowwrite the Heisenberg-Langevin equa-
tions for the position and momentum operators ̂𝑥𝑗 and ̂𝑝𝑗 and for the
Hermitian operators

̂𝜎𝑥𝑗 = �̂�𝑗 + �̂�†𝑗 , �̂�𝑦𝑗 = i( ̂𝜎𝑗 − �̂�†𝑗 ), �̂�𝑧𝑗 = |1⟩𝑗⟨1| − |0⟩𝑗⟨0|, (6.11a)

̂𝑎r =
̂𝑎 + ̂𝑎†
2 , ̂𝑎i = i ̂𝑎† − ̂𝑎

2 . (6.11b)

The operators (6.11a) are Pauli operators and fulfill the commutation
and anti-commutation relations

[ ̂𝜎𝑛𝑗 , �̂�
𝑚
𝑙 ] = ∑

𝑞=𝑥,𝑦,𝑧
2i ̂𝜎𝑞𝑗 𝜀𝑛𝑚𝑞𝛿𝑗𝑙, (6.12a)

{ ̂𝜎𝑛𝑗 , �̂�
𝑚
𝑙 } = 2[𝛿𝑛𝑚𝛿𝑗𝑙𝟙 + �̂�𝑛𝑗 ̂𝜎𝑚𝑙 (1 − 𝛿𝑗𝑙)]. (6.12b)

Here 𝜀𝑛𝑚𝑞 is the Levi-Civita symbol and 𝑛,𝑚, 𝑞 ∈ {𝑥, 𝑦, 𝑧}. The opera-
tors (6.11b) fulfill the commutation relation [ ̂𝑎r, ̂𝑎i] = i/2.
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The Heisenberg-Langevin equations read (ℏ = 1)

d
d𝑡 ̂𝑥𝑗 =

̂𝑝𝑗
𝑚, (6.13a)

d
d𝑡 ̂𝑝𝑗 = 𝑘c sin(𝑘c ̂𝑥𝑗){(𝑅+ ̂𝜎𝑥𝑗 ̂𝑎r − 𝑅− ̂𝜎𝑦𝑗 ̂𝑎i + 𝐼+ ̂𝜎𝑥𝑗 ̂𝑎i + 𝐼− ̂𝜎𝑦𝑗 ̂𝑎r) +

+ cos(𝑘c ̂𝑥𝑗)[𝑈1(1 − �̂�𝑧𝑗 ) + 𝑈2(1 + �̂�𝑧𝑗 )]( ̂𝑎2r + ̂𝑎2i −
1
2)},

(6.13b)
d
d𝑡 ̂𝜎𝑥𝑗 = − [Δe − (𝑈1 − 𝑈2) cos2(𝑘c ̂𝑥𝑗)( ̂𝑎2r + ̂𝑎2i −

1
2)] ̂𝜎𝑦𝑗 +

+ 2 cos(𝑘c ̂𝑥𝑗) ̂𝜎𝑧𝑗 [𝐼− ̂𝑎r − 𝑅− ̂𝑎i],
(6.13c)

d
d𝑡 ̂𝜎𝑦𝑗 = [Δe − (𝑈1 − 𝑈2) cos2(𝑘c ̂𝑥𝑗)( ̂𝑎2r + ̂𝑎2i −

1
2)] ̂𝜎𝑥𝑗 +

− 2 cos(𝑘c ̂𝑥𝑗) ̂𝜎𝑧𝑗 [𝑅+ ̂𝑎r + 𝐼+ ̂𝑎i],
(6.13d)

d
d𝑡 ̂𝜎𝑧𝑗 = −2 cos(𝑘c ̂𝑥𝑗)[𝐼− ̂𝜎𝑥𝑗 ̂𝑎r − 𝐼+ ̂𝜎𝑦𝑗 ̂𝑎i − 𝑅− ̂𝜎𝑥𝑗 ̂𝑎i − 𝑅+ ̂𝜎𝑦𝑗 ̂𝑎r],

(6.13e)

d
d𝑡 ̂𝑎r = − [Δc −

𝑁
∑
𝑗=1

(𝑈1
1 − �̂�𝑧𝑗
2 + 𝑈2

1 + �̂�𝑧𝑗
2 ) cos2(𝑘c ̂𝑥𝑗)] ̂𝑎i +

+
𝑁
∑
𝑗=1

cos(𝑘c ̂𝑥𝑗)
2 [ ̂𝜎𝑥𝑗 𝐼+ − �̂�𝑦𝑗 𝑅−] − 𝜅 ̂𝑎r +√2𝜅 ̂𝑎in

r ,

(6.13f)

d
d𝑡 ̂𝑎i = [Δc −

𝑁
∑
𝑗=1

(𝑈1
1 − �̂�𝑧𝑗
2 + 𝑈2

1 + �̂�𝑧𝑗
2 ) cos2(𝑘c ̂𝑥𝑗)] ̂𝑎r +

−
𝑁
∑
𝑗=1

cos(𝑘c ̂𝑥𝑗)
2 [ ̂𝜎𝑥𝑗 𝑅+ + �̂�𝑦𝑗 𝐼−] − 𝜅 ̂𝑎i +√2𝜅 ̂𝑎in

i .
(6.13g)

where 𝑅± = ℜ(𝑆1) ± ℜ(𝑆2) and 𝐼± = ℑ(𝑆1) ± ℑ(𝑆2). The noise terms are

̂𝑎in
r =

̂𝑎in + ̂𝑎†in
2 , ̂𝑎in

i = i
̂𝑎†in − ̂𝑎in
2 , (6.14)

and have the correlations

⟨ ̂𝑎in
r (𝑡) ̂𝑎in

r (𝑡′)⟩ = ⟨ ̂𝑎in
i (𝑡) ̂𝑎in

i (𝑡′)⟩ =
𝛿(𝑡 − 𝑡′)

4 ,

⟨ ̂𝑎in
r (𝑡) ̂𝑎in

i (𝑡′)⟩ = i𝛿(𝑡 − 𝑡′)
4 ,

⟨ ̂𝑎in
i (𝑡) ̂𝑎in

r (𝑡′)⟩ = −i𝛿(𝑡 − 𝑡′)
4 .

(6.15)

The noise operators ̂𝑎in and ̂𝑎†in in Eq. (6.14) are Gaussian noises with
⟨ ̂𝑎in(𝑡)⟩ = ⟨ ̂𝑎†in(𝑡)⟩ = ⟨ ̂𝑎†in(𝑡) ̂𝑎in(𝑡′)⟩ = 0 and ⟨ ̂𝑎in(𝑡) ̂𝑎†in(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′).
The expectation values ⟨⋅⟩ are taken over the tensor product between
the initial density matrix of the system and the external Markovian
environmentwith vanishingmean number of photons [232].
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We perform our study by replacing the operators in Eqs. (6.13)with
scalar functions, i. e. ⟨ ̂𝑜(𝑡)⟩ = 𝑜(𝑡) for any symmetrically ordered oper-
ator ̂𝑜, and the average is taken over the initial state of the system (see
Appendix 6.C.2 for a description of the initial state). We include cavity
shot-noise as diagonal stochastic terms in the equations for the cavity
field [233, 234]. With these approximation Eqs. (6.13) become a system
of stochastic differential equations. A comparison of these stochastic
differential equations with the equations obtained by a semiclassical
approximation is attempted in Section 6.D.

6.3 preliminar discussion

6.3.1 Relevant quantities

We consider the case |𝑆1| = |𝑆2| = 𝑆 andwithout loss of generalitywe
choose 𝑆1 = 𝑆 ∈ ℝ and 𝑆2 = 𝑆e−i2𝜙. Here 2𝜙 ∈ [−𝜋, 𝜋) is the relative
phase between the Rabi frequencies Ω1 and Ω2 of the external lasers,
and 𝑆 is the Raman coupling strength. In this case the interaction term,
Eq. (6.10), can bewritten as

𝐻I = 𝑁𝑆e−i𝜙Φ̂ ̂𝑎† + 𝑁𝑆ei𝜙Φ̂ ̂𝑎 = 𝑁𝑆Φ̂ (ei𝜙 ̂𝑎 + e−i𝜙 ̂𝑎†), (6.16)

where the operator Φ̂ is defined as

Φ̂ = cos(𝜙) ̂𝑋 + sin(𝜙) ̂𝑌 , 𝜙 ∈ [−𝜋2 ,
𝜋
2 ). (6.17)

We call ̂𝑋 and ̂𝑌 the generalized collective spin operators [213, 235] de-
fined by

̂𝑋 = 1
𝑁

𝑁
∑
𝑗=1

̂𝜎𝑥𝑗 cos(𝑘c ̂𝑥𝑗), (6.18a)

̂𝑌 = 1
𝑁

𝑁
∑
𝑗=1

̂𝜎𝑦𝑗 cos(𝑘c ̂𝑥𝑗). (6.18b)

If the motion of the atoms is neglected and the atomic positions are
fixed at the cavity field maxima, i. e. cos(𝑘c ̂𝑥𝑗) = 1, ∀𝑗 = 1, … , 𝑁, then
the generalized collective spin operators ̂𝑋 and ̂𝑌 reduce to the 𝑥 and 𝑦
components of the collective spin1 ̂𝑱 = ( ̂𝐽𝑥, ̂𝐽𝑦, ̂𝐽𝑧)where

̂𝐽𝑖 =
1
𝑁

𝑁
∑
𝑗=1

̂𝜎𝑖𝑗 , 𝑖 = 𝑥, 𝑦, 𝑧. (6.19)

In this case the system is equivalent to the Dickemodel [237–239] and
the average values ⟨ ̂𝐽𝑥⟩ and ⟨ ̂𝐽𝑦⟩ being different from zero indicates the
build-up of macroscopic coherence in the spins of different atoms [240].

1 Typically the spins ̂𝑆𝑖 = 𝑁 ̂𝐽𝑖,with 𝑖 = 𝑥, 𝑦, 𝑧 are called collective spin operators because
they fulfill thewell-known commutation relations [𝑆𝑖, 𝑆𝑗] = ∑𝑙=𝑥,𝑦,𝑧 2𝜖𝑖𝑗𝑙𝑆𝑙 [236].
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This phenomenon is called superradiance. For this particular case, i. e.
when the atoms are fixed at the cavity fieldmaxima, the average values
of ⟨ ̂𝐽𝑥⟩ = ⟨ ̂𝑋⟩ and ⟨ ̂𝐽𝑦⟩ = ⟨ ̂𝑌⟩ can be different from zero if the spins, on
average, are partially aligned along the 𝑥 or the 𝑦 direction, respectively.

However, other spatial spin structures can give rise to a non-vanishing
value of ⟨ ̂𝑋⟩ and ⟨ ̂𝑌⟩. For instance, if the atoms are localized at the anti-
nodes of the cavity fieldmode,we can observe a non-vanishing value of
⟨ ̂𝑋⟩ or ⟨ ̂𝑌⟩ if the spins organize in a ferromagnetic pattern. This spatial-
spin pattern is an example of correlations between internal and external
degrees of freedom since

⟨ ̂𝑋⟩ = 1
𝑁

𝑁
∑
𝑗=1

⟨ ̂𝜎𝑥𝑗 cos(𝑘c ̂𝑥𝑗)⟩ ≠
1
𝑁

𝑁
∑
𝑗=1

⟨ ̂𝜎𝑥𝑗 ⟩⟨cos(𝑘c ̂𝑥𝑗)⟩, (6.20)

or similarly for ⟨ ̂𝑌⟩. The correlations between the positions of the atoms
and their spin can be measured by the generalized collective spin op-
erators ̂𝑋 and ̂𝑌, Eq. (6.18). In these operators, in fact, the spins ̂𝜎𝑖𝑗 are
weighted with the amplitude of the cavity field at the position of the
atom 𝑗 itself.

We interpret the expectation values

𝑋 = ⟨ ̂𝑋⟩, (6.21a)
𝑌 = ⟨ ̂𝑌⟩ (6.21b)

as the components of a two dimensional vector (𝑋, 𝑌) that in the special
case cos(𝑘c ̂𝑥𝑗) = 1, ∀𝑗 = 1, … , 𝑁 is the projection of the Bloch vector ⟨ ̂𝑱⟩,
Eq. (6.19), in the 𝑥 − 𝑦 plane. We then define the collective spin phase as

𝜙s = arg(𝑋 + i𝑌), (6.22)

which is the angle between the generalized collective spin vector (𝑋, 𝑌)
and the 𝑥-axis in the 𝑥 − 𝑦 plane, see Fig. 6.2.

𝜙𝑠
(𝑋, 𝑌)

𝑥

𝑦

𝑧

Figure 6.2: Representation of the collective spin phase 𝜙s, eq. (6.22), on the
Bloch sphere.

So farwe only discussed a static picture of the atoms. In general the
atoms are moving, thus the position of the atoms, and their coupling
with the cavity fieldmode,will varywith time. One important question
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thatwe address in ourwork isweather correlations ⟨ ̂𝑋⟩, ⟨ ̂𝑌⟩ ≠ 0 can arise
in presence of motion. To quantify themotion of the atomswe introduce
the average kinetic energy per particle

𝐸kin =
1
𝑁

𝑁
∑
𝑗=1

⟨ ̂𝑝2𝑗 ⟩
2𝑚 . (6.23)

Moreover, to analyze the atomic spatial pattern in the cavity fieldmode
we introduce the bunching parameter

ℬ = 1
𝑁⟨

𝑁
∑
𝑗=1

cos(𝑘c𝑥𝑗)2⟩ (6.24)

which characterizes the spatial distribution of the atoms: If the atoms
are uniformly distributed thenℬ ≈ 0.5, if the atoms are localized at the
cavity intensitymaxima (minima) thenℬ ≈ 1 (ℬ ≈ 0).

6.3.2 Spinor self-ordered state and broken symmetry

We shownumerically in Sec. 6.4.1 the existence of a pumping threshold
𝑆c: If the system is driven below threshold 𝑆 < 𝑆c, then the cavitymode
is empty and there is no correlations between the position and the phase
of the spins of the atoms. If the system is driven above threshold 𝑆 > 𝑆c
then the cavitymode is populated and there is a build-up of correlations
between atomic positions and spins phase. The latter is called the spinor
self-ordered state. Herewe discuss qualitatively some properties of the
spinor self-ordered state in order to make the rest of the discussion
clearer.

The spinor self-ordered state involves spatial density orderingwith
periodicity 𝜆c/2with the atoms localized at the cavity intensitymaxima,
and spatial spin orderingwith periodicity 𝜆c: all atoms localized at odd
anti-nodes of the cavityfieldhave their spin aligned along thedirection𝜃
(on the equator of the Bloch sphere), and all atoms localized at even anti-
nodes have their spin aligned along 𝜃+𝜋, see Fig. 6.3. The angle 𝜃, in this
idealized picture, is one of 𝜙s or 𝜙s + 𝜋, Eq. (6.22). In this configuration
the atoms scatter light in phase into the cavity mode. The discrete ℤ2
symmetry associated with the transformation ( ̂𝑎, �̂�𝑗, ) → (− ̂𝑎, −�̂�𝑗), i. e.
with the sign change of the cavity field andwith the flip of all the spins,
is broken by the transition into the self-ordered state. The breaking of
theℤ2 symmetry corresponds to the expectation value of the operator Φ̂

Φ = ⟨Φ̂⟩ = cos(𝜙)𝑋 + sin(𝜙)𝑌 (6.25)

being positive or negative, while Φ = 0 below threshold 𝑆 < 𝑆c. The
quantityΦ being different from zero indicates the build-up of correla-
tions between the atomic positions and their spin phase. We identifyΦ
as an order parameter.
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𝜅

Ω2Ω1

𝜙s

Figure 6.3: Sketch of the spinor self-ordered state: The spin of the atoms local-
ized at themaxima of the cavity field assume the opposite direction
respect to the spin of the atoms which localize at the cavity-field
minima. In this configuration the atoms scatter light in phase into
the cavitymode. The state represented in this sketch is only one of
the two possible (for a fixed 𝜙), the other being the onewith all the
spins pointing in the opposite direction.

Some properties of the self-ordered state can be qualitatively under-
stood by looking for the stateswhichminimize the energy. Neglecting
𝑈1, 𝑈2 and the noise terms due to cavity losses, the steady state of the
cavity field is

̂𝑎 ≃ 𝑁𝑆e−i𝜙Φ̂
Δc + i𝜅 , (6.26)

i. e. the cavity field amplitude ⟨ ̂𝑎⟩ is proportional to the order parameter
Φ. The interaction energy, Eq. (6.16), scales then as �̂�I ∝ ΔcΦ̂2. Sincewe
chooseΔc < 0, the energy isminimal if |Φ| is maximal. Notice that the
energy remains constant upon a sign change of the order parameterΦ.
The fact that the system, in order tominimize the energy, can randomly
choose the sign of Φ is associatedwith the breaking of the ℤ2 symmetry
discussed earlier.

The maximization of |Φ| has several implications on the properties
of the self-ordered state. First, according to Eq. (6.26), maximizing |Φ|
corresponds tomaximizing the scattering of light into the cavitymode
and having non-zero population into the cavity mode. Furthermore,
since Φ is the scalar product between the vector (𝑋, 𝑌) and the vector
(cos𝜙, sin𝜙), maximizing |Φ|means having the vector (𝑋, 𝑌) co-linear
with (cos𝜙, sin𝜙), i. e.

𝜙s = {
𝜙 if Φ > 0,
𝜙 + 𝜋 if Φ < 0,

(6.27)

the definition of 𝜙s is given in Eq. (6.22). Table 6.1 reports the sign of
the order parameter Φ and of the expectation values 𝑋 and 𝑌 for the
two stateswhich break the ℤ2 symmetry, in dependence of the sign of
the phase 𝜙. The condition given in Eq. (6.27) allows us to control the
spin phase 𝜙s by controlling 𝜙. This is shown numerically in Sec. 6.4.5.
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phase 𝜙 𝑋 and 𝑌 order parameter Φ

𝜙 > 0
𝑋 > 0, 𝑌 > 0 Φ > 0

𝑋 < 0, 𝑌 < 0 Φ < 0

𝜙 < 0
𝑋 > 0, 𝑌 < 0 Φ > 0

𝑋 < 0, 𝑌 > 0 Φ < 0

Table 6.1: Sign of the expectation values 𝑋 and 𝑌 and of the order parameterΦ
calculated in the stateswhich break the ℤ2 symmetry, in dependence
of the sign of the phase 𝜙 ∈ [−𝜋/2, 𝜋/2).

Furthermore Eq. (6.26) allows us also to calculate the phase 𝜙c of the
cavity field as a function of 𝜙, which in the caseΔc < 0 reads

𝜙c = {
arctan(−𝜅

Δc
) − 𝜙 − 𝜋 if Φ > 0,

arctan(−𝜅
Δc
) − 𝜙 if Φ < 0.

(6.28)

In the followingwewill investigate numerically the time evolution of
the system and its ordering properties in dependence of the pumping
strength 𝑆 and of the phase 𝜙.

6.4 numerical results

We numerically integrate the stochastic differential equations obtained
in Sec. 6.2.3with theMonte-Carlo basedmethod of Ref. [241]. The ini-
tial state that we use is unordered. It consists of the atoms uniformly
distributed in space and in a thermal state. The initial internal atomic
state is randomly chosen such that it is close to the ground state |0⟩with
high probability. For more details see Sec. 6.C.2. All the simulations are
performedwith𝑁 = 100 particles. The other parameters are reported
case by case.

6.4.1 Threshold

Wecalculate the steadystate of the system for severalvalues of thepump-
ing strength 𝑆 and report in Figs. 6.4 the cavity population ⟨ ̂𝑎† ̂𝑎⟩, the
absolute value of the order parameter |Φ| and the bunching parameter
ℬ, for different values of the energy spittingΔe between the spins states,
Eq. (6.8). Weobserve the existence of aΔe-dependent pumping threshold
𝑆c(Δe). When the system is driven below threshold 𝑆 < 𝑆c(Δe), the cavity
mode is empty (see Fig. 6.4(a)), there is no correlations between spins
and position (see Fig. 6.4(b)) and the atoms are uniformly distributed
in space (see Fig. 6.4(c)). In this state, the laser light scattered by the
atoms inside the cavity has a random phase and destructively interfere.
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Figure 6.4: Spinor self-ordering as a function of the pumping strength 𝑆. (a)
Cavity population ⟨ ̂𝑎† ̂𝑎⟩, (b) order parameter |Φ|, Eq. (6.17), and (c)
bunching parameterℬ, Eq. (6.24); forΔe = 𝜅/10 (dashed green) over
183 trajectories, Δe = 𝜅/5 (dotted red) over 102 trajectories and Δe =
𝜅/2 (dashed dotted purple) over 102 trajectories. The shaded regions
contain 90% of the trajectories. All the quantities are calculated at
time 𝑡 = 800𝜔−1r . The parameters used are 𝜅 = 100𝜔r, Δc = −𝜅,
𝑈1 = 𝑈2 = 0 and𝑁 = 100.

If the pumping strength is larger than the threshold 𝑆 > 𝑆c(Δe), then
the atoms self-organize and scatter the laser light constructively into
the cavity: the cavity field builds up (see Fig. 6.4(a)), the atomic positions
and spins phase are correlated (see Fig. 6.4(b)) and the atoms localize
(see Fig. 6.4(c)). In the followingwe first show the dynamics that, above
threshold 𝑆 > 𝑆c, leads to the ordered state and then characterize some
of its properties.
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6.4.2 Dynamics

We show in Fig. 6.5 the typical time evolution of some observables of
the systemwhen driven above threshold 𝑆 > 𝑆c. The statewhich breaks
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Figure 6.5: Dynamics of the system calculated with 192 trajectories for 𝑁 =
100 particles. (a) Order parameter 𝑋, (b) order parameter 𝑌, (c) real
and (d) imaginary part of the cavity field, (e) collective spin ⟨𝐽𝑥⟩, (f )
collective spin ⟨𝐽𝑦⟩, (g) collective spin ⟨𝐽𝑧⟩ and (h) bunchingparameter
⟨ℬ⟩. The shaded region contains 90% of the trajectories. The solid
blue line corresponds to the state with Φ < 0, the dotted orange
line corresponds to Φ > 0. The parameters used are 𝐸kin(0) = ℏ𝜅,
𝜅 = 100𝜔r,Δc = −𝜅,Δe = 𝜅/10,𝑈1 = 𝑈2 = 0, 𝜙 = −𝜋/6 and 𝑆 = 0.5𝜅.

the ℤ2 symmetrywith Φ < 0 corresponds to the solid blue line, while
the statewithΦ > 0 corresponds to the dotted orange line. In this plot
𝜙 = −𝜋/6 and the generalized collective spins 𝑋 and 𝑌, shown in panels
(a) and (b), fulfill the conditions given in Tab. 6.1, as expected. Panels (c)
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and (d) show the real and imaginary part of the cavity field, respectively.
The phase of the cavity field is 𝜙c

+ ≈ −7𝜋/12 for Φ > 0, and 𝜙c
− ≈

5𝜋/12 for Φ < 0, in agreementwith Eq. (6.28). The collective spins ⟨ ̂𝐽𝑖⟩,
Eq. (6.19), have zero expectation values both in the initial state,which
is unordered, and in the ordered state (see panels (e-g)). Figure 6.5(h)
displays the bunching parameterℬ: In the initial state it has the value
ℬ(𝑡 = 0) ≈ 0.5 as expected for an uniform spatial density, while in the
final stateℬ(𝑡 = 800𝜔−1r ) ≈ 0.8 indicating that the atoms have localized
at the cavity intensitymaxima.

6.4.3 Cooling

Figure 6.6(a) shows the mean kinetic energy per atom, Eq. (6.23), as a
function of time: The initial momentum distribution of the atoms is
Gaussianwithmean kinetic energy𝐸kin(0) = 10ℏ𝜅. The atomicmotion
is cooled and the atoms reach themean kinetic energy of 𝐸kin(400𝜔−1r ) ≈
ℏ𝜅. This coincideswith the temperature limit of cavity cooling [74, 75].
Figure 6.6(b) shows the Gaussianmomentum distribution of the initial
state and the momentum distribution of the final state. It is evident
that themomentum distribution in the final state has a smallerwidth
indicating that theatomsare colder. Weobserve that theatomsare cooled
when the system is drivenwith a pumping strength 𝑆 that can be both
below and above the threshold 𝑆c.
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Figure 6.6: (a) Mean kinetic energy 𝐸kin (solid red line) of 𝑁 = 100 atoms as a
function of time, calculated over 399 trajectories. The shaded region
contains 90% of the trajectories. The dotted blue line corresponds to
𝐸kin = ℏ𝜅. (b)Momentumdistribution of the atoms in the initial (𝑡 =
0) state (solid blue) and in thefinal (𝑡 = 400𝜔−1r ) state (dashedorange).
The initial distribution of momenta is a Gaussian distributionwith
kinetic energy𝐸kin(0) = 10ℏ𝜅. The parameters used are 𝜅 = 100𝜔r,
Δc = −𝜅, Δe = 𝜅/100, 𝑈1 = 𝑈2 = 0, 𝑆 = 0.2𝜅 and 𝜙 = 0. In this
parameters range the system is unordered.
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6.4.4 Spin-position correlations

The correlations between the position of the atoms and their spin phase
in either of the broken symmetry states are reported in Fig. 6.7. The
data correspond to Fig. 6.5 at the final time 𝑡 = 800𝜔−1r . The two states
are connected by the transformation that flips the spins and change the
phase of the cavity field by a factor 𝜋, as discussed in Sec. 6.3.2. The spin
flip is evident in Fig. 6.7when comparing the top panels (which report
the correlations for the statewithΦ < 0) with the lower panels (which
report the correlations for the statewithΦ > 0). The phase of the cavity
field also changes by a factor 𝜋, in fact it is 𝜙c

− ≃ 5𝜋/12 for Φ < 0 and
𝜙c

+ ≃ −7𝜋/12 forΦ > 0, as discussed in Sec. 6.4.2. Figure 6.7 also shows
that, in both stateswithΦ ≷ 0, the spatial density has periodicity 𝜆c/2
and that the phase of the spins has periodicity 𝜆c.
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Figure 6.7: Atomic spin-position correlations of the final state for the data used
in Figure 6.5. The top (lower) panels show the correlations of the
final state with Φ < 0 (Φ > 0). (a) and (c) display the correlations
between ⟨ ̂𝜎𝑥⟩ and the position modulus 𝜆c, (b) and (d) display the
correlations between ⟨ ̂𝜎𝑦⟩ and the positionmodulus 𝜆c.
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6.4.5 Control of the spin phase

Equation (6.27) shows that the collective spin phase 𝜙s, equation (6.22),
can be controlled via the relative phase 2𝜙 of the two pumping lasers.
Furthermore the phase 𝜙 also determines the phase 𝜙c of the cavityfield,
see Eqs. (6.26) and (6.28). We report in Figs. 6.8 the collective spin phase
𝜙s and the cavityfield phase𝜙c obtained fromour numerical simulations,
for various values of the phase 𝜙. The numerical results coincidewith
our analytical predictions.
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Figure 6.8: (a) Collective spin phase 𝜙s, Eq. (6.22), and (b) cavity field phase 𝜙c,
Eq. (6.28), as functions of the phase 𝜙, calculated over 183 trajec-
tories. The solid blue line corresponds to the statewithΦ < 0, the
dotted orange line corresponds to Φ > 0. The shaded regions cor-
respond to the standard deviation calculated over the trajectories.
All the quantities are calculated at time 𝑡 = 800𝜔−1r . The parameters
used are 𝑆 = 0.5𝜅, Δe = 𝜅/10, 𝜅 = 100𝜔r, Δc = −𝜅,𝑈1 = 𝑈2 = 0 and
𝑁 = 100.

The interaction Hamiltonian (6.16) (and thus the total Hamiltoni-
an (6.7) of the system), considered as a function of 𝜙, is periodic with
period 𝜋. However, Fig. 6.8 shows that the steady states in the ordered
phase are periodicwith period 2𝜋.
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6.5 conclusions

In this chapter we studied the dynamics of a cloud of thermal atoms
with two internal states in a lossy cavity. Raman transition between the
two energy levels of each atom are induced by two transversal pumping
lasers and amode of the cavity. We observed the existence of an ordered
phase above a certain pumping threshold. In this ordered phase the
atomic density exhibits modulation with half cavity wavelength 𝜆c/2
and the spins assume opposite phase when they localize in the cavity
field minima or maxima. The transition into the ordered state breaks
the ℤ2 symmetry associated with the change of the sign of the cavity
field andwith the spin flip of all the atoms. We showed that cooling to
kinetic energy of the order of ℏ𝜅 happens in both the organized and
the non-organized state. Furthermore the spin orientation inside the
cavity can be controlled by the relative phase of the pumping lasers. The
latter also fixes the cavityfield phasewhich can bemeasured at the cavity
output. The organized structure emerges from the interplay between
the coherent drive of the atoms and the noisy environment of the cavity,
and from the interplay between themotion and the internal states of the
atoms.

This system can be used to explore the dynamics of strong long range
interacting spins. Envisaged applications also include sensors [242],
quantum-enhancedmetrology [243] and quantum simulation [244, 245]
of quantummagnetism [47, 246] and opto-magnonic systems [48, 49].
Further developmentsmay include the coupling of the atoms to several
cavitymodes andmay be used to engineer quantum spin glasses [223,
224].

appendices

6.A hamiltonian in the rotating frame

The single-particle Hamiltonian in the dipole and rotatingwave approx-
imation reads (ℏ = 1)

̂�̃�(1) =
̂𝑝2

2𝑚 + ∑
𝜏=1,2,3

𝜔𝜏|𝜏⟩⟨𝜏| + (Ω1e−i𝜔L1𝑡|2⟩⟨1| + Ω2e−i𝜔L2𝑡|3⟩⟨0| + h.c.) +

+ 𝜔c ̂𝑎† ̂𝑎 + cos(𝑘c𝑥)(𝑔1 ̂𝑎†|0⟩⟨2| + 𝑔2 ̂𝑎†|1⟩⟨3| + h.c.);
(6.29)

here, {0, ℏ𝜔1, ℏ𝜔2, ℏ𝜔3} are the energies of the atomic electronic states,
𝜔L1 and 𝜔L2 are the frequencies of the pumping lasers, ̂𝑥 and ̂𝑝 are the
position andmomentum operator of the atom along the cavity axis such
that [𝑥, 𝑝] = i, 𝑚 is the mass of the atom, and ̂𝑎 is the annihilation
operator of a cavitymodewith frequency𝜔c which fulfills [𝑎, 𝑎†] = 1.
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We can express the single-particle Hamiltonian (6.29) in the rotating
frame defined by the unitary operator

�̂�(𝑡) = exp{i[(𝜔L1 + 𝜔L2
2 )( ̂𝑎† ̂𝑎 + |2⟩⟨2|) + (

𝜔L2 − 𝜔L1
2 )|1⟩⟨1| + 𝜔L2|3⟩⟨3|]𝑡}

(6.30)

bymeans of �̂�(1) = �̂� ̂�̃�(1)�̂�† + i(𝜕𝑡�̂�)�̂�†:

�̂�(1) =
̂𝑝2

2𝑚 − 𝛿1|1⟩⟨1| − 𝛿2|2⟩⟨2| − 𝛿3|3⟩⟨3| + (Ω1|2⟩⟨1| + Ω2|3⟩⟨0| + h.c.) +

− Δc ̂𝑎† ̂𝑎 + cos(𝑘c ̂𝑥)(𝑔1 ̂𝑎†|0⟩⟨2| + 𝑔2 ̂𝑎†|1⟩⟨3| + h.c.),
(6.31)

where the detunings are defined as

𝛿1 = (
𝜔L2 − 𝜔L1

2 ) − 𝜔1, 𝛿2 = (
𝜔L1 + 𝜔L2

2 ) − 𝜔2,

𝛿3 = 𝜔L2 − 𝜔3, Δc = (
𝜔L1 + 𝜔L2

2 ) − 𝜔c.
(6.32)

6.B adiabatic elimination of the excited states

The single-particleHamiltonian (6.31) can bewritten as �̂�(1) = �̂�S+�̂�F+
�̂�int, where

�̂�S =
̂𝑝2

2𝑚 − 𝛿1|1⟩⟨1| − Δc ̂𝑎† ̂𝑎 (6.33a)

�̂�F = −𝛿2|2⟩⟨2| − 𝛿3|3⟩⟨3| (6.33b)
�̂�int = (Ω1|2⟩⟨1| + Ω2|3⟩⟨0| + h.c.) +

+ cos(𝑘c ̂𝑥)(𝑔1 ̂𝑎†|0⟩⟨2| + 𝑔2 ̂𝑎†|1⟩⟨3| + h.c.)
(6.33c)

andwe consider themaster equation

𝜕 ̂𝜌
𝜕𝑡 = ℒ ̂𝜌 = (ℒS + ℒF + ℒint) ̂𝜌 (6.34)

with

ℒS ̂𝜌 = −i[𝐻S, ̂𝜌] + ℒ𝜅 ̂𝜌, (6.35a)
ℒ𝜅 ̂𝜌 = 𝜅(2 ̂𝑎 ̂𝜌 ̂𝑎† − ̂𝑎† ̂𝑎 ̂𝜌 − ̂𝜌 ̂𝑎† ̂𝑎) (6.35b)
ℒF ̂𝜌 = −i[𝐻F, ̂𝜌], (6.35c)
ℒint ̂𝜌 = −i[𝐻int, ̂𝜌], (6.35d)

where ̂𝜌 is the density matrix of the system. We neglect the radiative
decay of the excited states |2⟩ and |3⟩, this is a good approximation if 𝛿2
and 𝛿3 are the largest frequencies in the system. Letℒ0 = ℒS + ℒF and
ℒ1 = ℒint, we nowperform an expansion inℒ1.
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6.B.1 Projectors on the slow and fast subspace

We introduce the projector 𝑃 = |0⟩⟨0| + |1⟩⟨1| on the slow subspacewhere
ℒS acts, and the superoperators 𝒫 and 𝒬 defined as 𝒫 ̂𝑜 = 𝑃 ̂𝑜𝑃 and 𝒬 =
𝟙 − 𝒫, where ̂𝑜 is an operator. They have the following properties:

1. 𝒫2 = 𝒫 and𝒬2 = 𝒬, i. e. they are projectors:

𝒫2 ̂𝜌 = 𝑃𝑃 ̂𝜌𝑃𝑃 = 𝑃 ̂𝜌𝑃 = 𝒫 ̂𝜌,
𝒬2 ̂𝜌 = (𝟙 − 𝒫)2 ̂𝜌 = ̂𝜌 + 𝒫2 ̂𝜌 − 2𝒫 ̂𝜌 = ̂𝜌 − 𝒫 ̂𝜌 = 𝒬 ̂𝜌;

2. 𝒫𝒬 = 𝒬𝒫 = 0:

𝒫𝒬 ̂𝜌 = 𝒫(𝟙 − 𝒫) ̂𝜌 = (𝒫 − 𝒫) ̂𝜌 = 0,
𝒬𝒫 ̂𝜌 = (𝟙 − 𝒫)𝒫 ̂𝜌 = (𝒫 − 𝒫) ̂𝜌 = 0;

3. [𝒫,ℒ0] = [𝒬,ℒ0] = 0:

ℒ0𝒫 ̂𝜌 = −i[𝐻S + 𝐻F, 𝑃 ̂𝜌𝑃] + ℒ𝜅𝑃 ̂𝜌𝑃 =
= −i[(𝐻S + 𝐻F)𝑃 ̂𝜌𝑃 − 𝑃 ̂𝜌𝑃(𝐻S + 𝐻F)] + 𝑃ℒ𝜅 ̂𝜌𝑃 =
= −i[𝑃(𝐻S + 𝐻F) ̂𝜌𝑃 − 𝑃 ̂𝜌(𝐻S + 𝐻F)𝑃] + 𝑃ℒ𝜅 ̂𝜌𝑃 =
= −i𝑃[𝐻S + 𝐻F, ̂𝜌]𝑃 + 𝑃ℒ𝜅 ̂𝜌𝑃 = 𝒫ℒ0 ̂𝜌,

[𝒬,ℒ0] = [𝟙 − 𝒫,ℒ0] = 0;

4. 𝒫ℒF = ℒF𝒫 = 0;

5. 𝒬ℒF = ℒF𝒬 = ℒF;

6. [ℒS, 𝒫] = 0;

7. 𝒫ℒ1𝒫 = 0:

𝒫ℒ1𝒫 ̂𝜌 = −i𝑃[𝐻int, 𝑃 ̂𝜌𝑃]𝑃 = −i𝑃(𝐻int𝑃 ̂𝜌𝑃 − 𝑃 ̂𝜌𝑃𝐻int)𝑃 =
= −i[𝑃𝐻int𝑃, 𝑃 ̂𝜌𝑃] = −i[0, 𝑃 ̂𝜌𝑃] = 0;

8. 𝒬ℒ1𝒫 = ℒ1𝒫:

𝒬ℒ1𝒫 = (𝟙 − 𝒫)ℒ1𝒫 = ℒ1𝒫 − 𝒫ℒ1𝒫 = ℒ1𝒫.

6.B.2 Effective master equation for the slow subspace

The density matrix ̂𝜌 can be split in ̂𝜌 = (𝒫 + 𝒬) ̂𝜌 = 𝑣 + 𝑤, where
𝑣 = 𝒫 ̂𝜌 = 𝑃 ̂𝜌𝑃 and𝑤 = 𝒬 ̂𝜌.

Wenowconsider the interactionpicturedefinedbythe transformation
̃̂𝜌 = e−ℒ0𝑡 ̂𝜌 and project master equation (6.34) with 𝒫 and 𝒬 obtaining

(notice that ̃𝒫 = e−ℒ0𝑡𝒫eℒ0𝑡 = 𝒫 and �̃� = 𝒬)

̇̃𝑣 = 𝒫 ̃ℒ1 ̃𝑣 + 𝒫 ̃ℒ1�̃�, (6.36a)
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̇�̃� = 𝒬 ̃ℒ1 ̃𝑣 + 𝒬 ̃ℒ1�̃�, (6.36b)

where ̃𝑣 = 𝒫 ̃̂𝜌 = 𝒫e−ℒ0𝑡 ̂𝜌 = e−ℒ0𝑡𝒫 ̂𝜌 = e−ℒ0𝑡𝑣, �̃� = e−ℒ0𝑡𝑤, ̃ℒ1 =
e−ℒ0𝑡ℒ1eℒ0𝑡. Note that the first term on the right side of equation (6.36a)
vanishes𝒫 ̃ℒ1𝒫 = 0. We formally solve equation (6.36b) and obtain

�̃�(𝑡) = �̃�(0) +∫
𝑡

0
𝒬 ̃ℒ1(𝑡′) ̃𝑣(𝑡′)d𝑡′ +∫

𝑡

0
𝒬 ̃ℒ1(𝑡′)�̃�(𝑡′)d𝑡′. (6.37)

Assuming �̃�(0) = 0, namely, the state of the atomat 𝑡 = 0 is in the {|0⟩, |1⟩}
subspace, by iterationwe obtain

�̃�(𝑡) = ∫
𝑡

0
𝒬 ̃ℒ1(𝑡′) ̃𝑣(𝑡′)d𝑡′+∫

𝑡

0
𝒬 ̃ℒ1(𝑡′)∫

𝑡′

0
𝒬 ̃ℒ1(𝑡″) ̃𝑣(𝑡″)d𝑡″d𝑡′+𝒪(ℒ3

1),

(6.38)

and substituting in equation (6.36a)

̇̃𝑣(𝑡) = 𝒫 ̃ℒ1(𝑡)∫
𝑡

0
𝒬 ̃ℒ1(𝑡′) ̃𝑣(𝑡′)d𝑡′ + 𝒪(ℒ3

1). (6.39)

Moving back to the Schrödinger picture the equation for 𝑣 is

̇𝑣(𝑡) ≈ ℒ0𝑣(𝑡) + 𝒫ℒ1∫
𝑡

0
e𝒬ℒ0(𝑡−𝑡′)𝒬ℒ1𝑣(𝑡′)d𝑡′ =

= ℒS𝑣(𝑡) + 𝒫ℒint∫
𝑡

0
e𝒬ℒ0𝜏𝒬ℒint𝑣(𝑡 − 𝜏)d𝜏.

(6.40)

Nowweperformsomeapproximationsusing the fact that theparameters
inℒS are smaller then the parameters inℒF. Since [ℒS, ℒF] = 0, we have

eℒ0𝜏 = e(ℒS+ℒF)𝜏 = eℒF𝜏[𝟙 + ℒS𝜏 + 𝒪(ℒ2
S𝜏2)], (6.41)

andwe expand 𝑣(𝑡 − 𝜏) around 𝜏 = 0

𝑣(𝑡 − 𝜏) = 𝑣(𝑡) − ̇𝑣(𝑡)𝜏 + … . (6.42)

The last term in equation (6.40) becomes

𝒫ℒint∫
𝑡

0
e𝒬ℒF𝜏(𝟙 + 𝒬ℒS𝜏 + …)𝒬ℒint[𝑣(𝑡) − ̇𝑣(𝑡)𝜏 + …]d𝜏 =

= 𝒫ℒint∫
𝑡

0
e𝒬ℒF𝜏𝒬ℒint𝑣(𝑡)d𝜏 +

+ 𝒫ℒint∫
𝑡

0
e𝒬ℒF𝜏𝜏[𝒬ℒS𝒬ℒint𝑣(𝑡) − 𝒬ℒint ̇𝑣(𝑡)]d𝜏 +

− 𝒫ℒint∫
𝑡

0
e𝒬ℒF𝜏𝜏2𝒬ℒS𝒬ℒint ̇𝑣(𝑡)d𝜏 + … .

(6.43)
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The first term in the right side of equation (6.43) is of the order 𝑔2

𝛿
, the

second term is of the order 𝑔2Δ
𝛿2

, and the third term is of the order 𝑔2Δ2

𝛿3
,

where 𝑔 = max(𝑔1, 𝑔2, Ω1, Ω2), Δ = max(𝛿1, Δc, 𝜅) and 𝛿 = min(𝛿2, 𝛿3).
Keeping only the first orderwe obtain

̇𝑣(𝑡) = ℒS𝑣(𝑡) + 𝒫ℒint∫
𝑡

0
e𝒬ℒF𝜏𝒬ℒint𝑣(𝑡)d𝜏. (6.44)

Note that

eℒF𝜏ℒint𝑣(𝑡) = −ieℒF𝜏[𝐻int, 𝑣(𝑡)] = −ie−i𝐻F𝜏[𝐻int, 𝑣(𝑡)]ei𝐻F𝜏 =
= −i[e−i𝐻F𝜏𝐻intei𝐻F𝜏, 𝑣(𝑡)],

(6.45)

thus

∫
𝑡

0
eℒF𝜏ℒint𝑣(𝑡)d𝜏 = −i∫

𝑡

0
[e−i𝐻F𝜏𝐻intei𝐻F𝜏, 𝑣(𝑡)]d𝜏 =

= −i[∫
𝑡

0
e−i𝐻F𝜏𝐻intei𝐻F𝜏d𝜏, 𝑣(𝑡)],

(6.46)

and

e−i𝐻F𝜏𝐻intei𝐻F𝜏 = (Ω1ei𝛿2𝜏|2⟩⟨1| + Ω2ei𝛿3𝜏|3⟩⟨0| + h.c.) +
+ cos(𝑘c𝑥)(𝑔1e−i𝛿2𝜏𝑎†|0⟩⟨2| + 𝑔2e−i𝛿3𝜏𝑎†|1⟩⟨3| + h.c.),

(6.47)

thus

∫
𝑡

0
e−i𝐻F𝜏𝐻intei𝐻F𝜏d𝜏 =

= [
Ω1
i𝛿2

(ei𝛿2𝑡 − 1)|2⟩⟨1| +
Ω2
i𝛿3

(ei𝛿3𝑡 − 1)|3⟩⟨0| + h.c.] +

+ cos(𝑘c𝑥)[
𝑔1
i𝛿2

(1 − e−i𝛿2𝑡)𝑎†|0⟩⟨2| +
𝑔2
i𝛿3

(1 − e−i𝛿3𝑡)𝑎†|1⟩⟨3| + h.c.].

(6.48)

Nowwe use coarse graining in order to eliminate fast rotating terms in
equation (6.44): we choose a time scale Δ𝑡 such that 𝛿−12 , 𝛿−13 ≪ Δ𝑡 ≪
𝛿−11 , Δ−1c , 𝜅−1 andweapplyto equation (6.44) theoperator (Δ𝑡)−1 ∫𝑡+Δ𝑡

𝑡 d𝑡′
on the left. In this way the fast oscillating terms average out on the
timescaleΔ𝑡 and one obtains

̇𝑣(𝑡) = ℒS𝑣(𝑡) + 𝒫ℒint(−i[𝐻′, 𝑣(𝑡)]), (6.49)

where

𝐻′ = [
iΩ1
𝛿2

|2⟩⟨1| +
iΩ2
𝛿3

|3⟩⟨0| + h.c.] +

+ cos(𝑘c𝑥)[
−i𝑔1
𝛿2

𝑎†|0⟩⟨2| +
−i𝑔2
𝛿3

𝑎†|1⟩⟨3| + h.c.].
(6.50)
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Now

𝒫ℒint(−i[𝐻′, 𝑣]) = 𝒫{−i[𝐻int, −i[𝐻′, 𝑣]]} = 𝒫{−[𝐻int, [𝐻′, 𝑣]]} =
= −𝑃𝐻int𝐻′𝑃𝑣𝑃 + 𝑃𝐻int𝑃𝑣𝐻′𝑃 +

+ 𝑃𝐻′𝑣𝑃𝐻int𝑃 − 𝑃𝑣𝑃𝐻′𝐻int𝑃 =
= −𝑃𝐻int𝐻′𝑃𝑣 − 𝑣𝑃𝐻′𝐻int𝑃,

(6.51)

and

𝑃𝐻int𝐻′𝑃 = i{
|Ω2|

2

𝛿3
|0⟩⟨0| +

|Ω1|
2

𝛿2
|1⟩⟨1| +

+ 𝑎†𝑎 cos2(𝑘c𝑥)[
|𝑔1|

2

𝛿2
|0⟩⟨0| +

|𝑔2|
2

𝛿3
|1⟩⟨1|] +

+ cos(𝑘c𝑥)[
Ω1𝑔1
𝛿2

𝑎†|0⟩⟨1| +
Ω2𝑔2
𝛿3

𝑎†|1⟩⟨0| + h. c.]} =

= i𝐻eff,
(6.52)

with𝐻eff = 𝐻†
eff. Nownotice that (𝐻int𝐻′)† = 𝐻′𝐻int because𝐻int and𝐻′

are hermitian. Thus

𝑃𝐻′𝐻int𝑃 = (𝑃𝐻int𝐻′𝑃)† = −i𝐻eff,
𝒫ℒint(−i[𝐻′, 𝑣]) = −i[𝐻eff, 𝑣].

Equation (6.49) becomes

̇𝑣(𝑡) = −i[𝐻S + 𝐻eff, 𝑣(𝑡)] + ℒ𝜅𝑣(𝑡). (6.53)

Shifting the energy bymeans of the unitary operator

𝑈(𝑡) = 𝟙 exp(i
|Ω2|

2

𝛿3
𝑡),

finally one gets themaster equation for the densitymatrix 𝑣(𝑡)

̇𝑣(𝑡) = −i[𝐻(1), 𝑣(𝑡)] + ℒ𝜅𝑣(𝑡), (6.54)

where

𝐻(1) =
𝑝2

2𝑚 + Δe|1⟩⟨1| − [Δc − cos2(𝑘c𝑥)(𝑈1|0⟩⟨0| + 𝑈2|1⟩⟨1|)]𝑎†𝑎 +

+ cos(𝑘c𝑥)[𝑆1𝑎†|0⟩⟨1| + 𝑆2𝑎†|1⟩⟨0| + h. c.]
(6.55)

and

Δe =
|Ω1|

2

𝛿2
−
|Ω2|

2

𝛿3
− 𝛿1, (6.56a)

𝑈1 =
|𝑔1|

2

𝛿2
, (6.56b)
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𝑈2 =
|𝑔2|

2

𝛿3
, (6.56c)

𝑆1 =
Ω1𝑔1
𝛿2

, (6.56d)

𝑆2 =
Ω2𝑔2
𝛿3

. (6.56e)

Themaster equation for𝑁 atoms is derived in the sameway [230] and it
reads

̇̂𝜌(𝑡) = −i[𝐻, ̂𝜌(𝑡)] + ℒ𝜅 ̂𝜌(𝑡), (6.57)

where the Hamiltonian𝐻 is

𝐻 =
𝑁
∑
𝑗=1

(
𝑝2𝑗
2𝑚 + Δe ̂𝜎†𝑗 ̂𝜎𝑗) − [Δc −

𝑁
∑
𝑗=1

(𝑈1 ̂𝜎𝑗 ̂𝜎†𝑗 + 𝑈2 ̂𝜎†𝑗 ̂𝜎𝑗) cos2(𝑘c𝑥𝑗)]𝑎†𝑎 +

+
𝑁
∑
𝑗=1

(𝑆1𝑎† ̂𝜎𝑗 + 𝑆∗1 ̂𝜎†𝑗 𝑎 + 𝑆2𝑎† ̂𝜎†𝑗 + 𝑆∗2𝑎 ̂𝜎𝑗) cos(𝑘c𝑥𝑗).

(6.58)

Here ̂𝜎𝑗 = |0⟩𝑗⟨1| is the lowering operator for the 𝑗-th atom, 𝑥𝑗 and 𝑝𝑗 are
the position andmomentum of the atom 𝑗, respectively. The conditions
of validity are 𝛿 ≫ |𝛿1|, |Δc|, 𝜅, √𝑁 ̄𝑛𝑔1, √𝑁 ̄𝑛𝑔2, √𝑁Ω1, √𝑁Ω2.

6.C details of the numerical computations

6.C.1 Units

The recoil frequency is defined as

𝜔r =
ℏ𝑘2c
2𝑚 (6.59)

where 𝑘c is thewavenumber of the cavitymode and𝑚 is themass of an
atom. We use the recoil frequency 𝜔r as unit of frequency. Its inverse
𝜔−1r is used as unit of time. We use ℏ𝑘c as unit of momentum and 𝑘−1c as
unit of position. With this choicewe have that

d ̂𝑥
d𝑡 = 2 ̂𝑝 (6.60)

where the position ̂𝑥, the time 𝑡 and themomentum ̂𝑝 are expressed in
this unit system.

6.C.2 Initial state

The initial state of each atom in each trajectory are chosen randomly.
The initial position 𝑥𝑗(0) of each atom is uniformly distributed in the
interval [0, 2𝜋). Notice that this is not a restriction sincewe use the unit



134 spinor self-ordering of magnetic atoms…

systemdescribed in Sec. 6.C.1. During the evolution the positions are not
bounded. The initial momentum 𝑝𝑗(0) of each atom follows a Gaussian
distribution with zero mean and variance 𝐸kin(0), where 𝐸kin(0) is the
mean initial kinetic energy. The initial spin state is

|𝜓s(0)⟩ = sin(𝛾/2)ei𝛽|0⟩ + cos(𝛾/2)|1⟩, (6.61)

where 𝛾 is a randomvariable uniformly distributed in [𝜋, 1.1𝜋), and 𝛽 is
a randomvariable uniformly distributed in [0, 2𝜋). The initial values of
the spin variables are thus

𝜎𝑥𝑗 (0) = ⟨𝜓s(0)|| ̂𝜎𝑥𝑗 ||𝜓s(0)⟩,

𝜎𝑦𝑗 (0) = ⟨𝜓s(0)|| ̂𝜎
𝑦
𝑗 ||𝜓s(0)⟩,

𝜎𝑧𝑗 (0) = ⟨𝜓s(0)|| ̂𝜎𝑧𝑗 ||𝜓s(0)⟩.

(6.62)

The cavity is initially empty ⟨ ̂𝑎†(0) ̂𝑎(0)⟩ = 0. Figure 6.9 shows a sample
of initial conditions for 19200 atoms.

0 𝜋/2 𝜋 3𝜋/2 2𝜋
atom position 𝑥

0.0

0.1

0.2

di
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n
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2
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𝜍𝑥

𝜍𝑦

−1 0 1
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0

20

di
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Figure 6.9: Sample of initial conditions for 19200 atoms. The distribution are
normalized such that the area behind each curve is 1. The kinetic
energy is 𝐸kin(0) = ℏ𝜅, with 𝜅 = 100𝜔r.

6.D semi-classical treatment

In this section we report the main steps of a calculation based on the
Wigner representation [105] in order to derive semi-classical equations
of motion for the system [218, 233]. The details are given in the following
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subsections. We use the tools introduced in Sec. 2.4 and 2.A. Let ̂𝜌(𝑡) be
the densitymatrix describing the cavityfield degree of freedom together
with the internal (spin states |0⟩ and |1⟩) and external (motional) degrees
of freedom of the atoms. Consider the operator �̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i) defined
by

�̂�𝑡(𝒙, 𝒑,𝛼r, 𝛼i) =
1

(𝜋ℏ)𝑁𝜋2
∫d2𝜂 {e𝜂∗𝛼−𝜂𝛼∗ ×

× Tr
cav
[e𝜂𝑎†−𝜂∗𝑎∫

∞

−∞
d𝑁𝒚 ⟨𝒙 + 𝒚|𝑣(𝑡)|𝒙 − 𝒚⟩e

−2i𝒚⋅𝒑
ℏ ]}

(6.63)

where 𝝐 = (𝜖1, … , 𝜖𝑁)with 𝝐 = 𝒙, 𝒑, 𝒚, 𝜂 is a complexvariable,𝛼 = 𝛼r+ i𝛼i,
and Trcav{⋅} denotes the trace over the cavity field degree of freedom.
�̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i) is an operator for the atomic spins, and a function of the
atoms’ positions 𝒙, canonically conjugatedmomenta 𝒑 and cavity field
amplitudes 𝛼r and 𝛼i. The Wigner transformation, corresponding to
Eq. (6.63), of the master equation (6.57) leads to a partial differential
equation for the operator �̂�. Wewant to treat the atomic motion and
the cavity field semi-classically. Let us nowdiscuss the conditions under
which this is valid.

The atomicmotion can be treated semi-classicallywhen thewidth of
themomentum distributionΔ𝑝𝑗 of a single atom ismuch larger than the
photonmomentum ℏ𝑘c, where 𝑘c is thewavenumber of the cavitymode

ℏ𝑘c ≪ Δ𝑝𝑗. (6.64)

In this limit, single photon emission or absorption does not change the
momentumdistribution considerably. Accordingly, the small parameter
ℏ𝑘c/Δ𝑝𝑗 ≪ 1 introduces a hierarchy of approximationswhichwe trun-
cate at second order. Furthermorewe require that the atomic position
uncertainty Δ𝑥𝑗 is larger than the value set by the Heisenberg uncer-
tainty principle,Δ𝑥𝑗 > ℏ/Δ𝑝𝑗. Details of this calculation are reported in
Sec. 6.D.1.

A sufficient condition in order to treat the cavity field semi-classically
is to assume that the field is in a coherent state |𝛼⟩withmean number of
photon |𝛼|2 ≫ 1. This allows us to neglect third-order derivatives [233].
Details of this calculation are reported in Sec. 6.D.2.

At this pointwe have a partial differential equation for the operator
�̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i), given in Eq. (6.74), with up to second-order derivatives
in position, momentum and cavity field variables.

In the next stepwe trace out the spins degrees of freedom: we consider
the equations of motion for the expectation values of the products of
spin operators ⟨ ̂𝜎𝑛𝑗 … �̂�𝑚𝑙 ⟩ = Tr{ ̂𝜎𝑛𝑗 … �̂�𝑚𝑙 �̂�},where 𝑗 ≠ 𝑙 and 𝑗, 𝑙 ∈ {1, … , 𝑁}
indexes the atom and 𝑛,𝑚 = 𝑥, 𝑦, 𝑧 indexes the spin component.

Our assumption is that a probability density 𝑓𝑡(𝒙, 𝒑, 𝒔, 𝑎𝑟, 𝑎𝑖) exists,
where

𝒔 = (𝑠𝑥1 , … , 𝑠𝑥𝑁, 𝑠
𝑦
1 , … , 𝑠

𝑦
𝑁, 𝑠𝑧1 , … , 𝑠𝑧𝑁), (6.65)
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and that the function 𝑓𝑡 has the following properties:

1. it is solution of a Fokker-Plank equationwhich is equivalent to the
stochastic differential equations obtained in Sec. 6.2.3,

2. the difference between expectation values of the products of vari-
ables 𝑠𝑛𝑗 and the expectation values of the corresponding product
of spin operators ̂𝜎𝑛𝑗 is of the order𝑂(𝑁−1), i. e.

∫
𝑤
∏
𝑟=1

𝑠𝑛𝑟𝑗𝑟
𝜕
𝜕𝑡𝑓𝑡d

3𝑁𝒔−Tr{ ̂𝜎𝑛1𝑗1 … �̂�𝑛𝑟𝑗𝑟 … �̂�𝑛𝑤𝑗𝑤
𝜕
𝜕𝑡�̂�} ≃ 𝑂(𝑁−1), (6.66)

with 𝑛𝑟 ∈ {𝑥, 𝑦, 𝑧}, 𝑗𝑟 ∈ {1, …𝑁}, 𝑗𝑟 ≠ 𝑗𝑞 if 𝑟 ≠ 𝑞 and𝑤 ≪ 𝑁.

We report in the following sections the calculation onlyup to the product
of one spin operator, i. e. for Tr{�̂�} and Tr{ ̂𝜎𝑚𝑙 �̂�}.

6.D.1 Semiclassical approximation for the atomic motion

Let ̂𝜌(𝑡) be the densitymatrix describing the cavity field degrees of free-
dom and the internal (spin states |0⟩ and |1⟩) and external (motional)
degrees of freedom of the atoms. In order to treat the atomic motion
semiclassicallywe consider the operator

�̂�𝑡(𝒙, 𝒑) =
1

(𝜋ℏ)𝑁
∫

∞

−∞
⋯∫

∞

−∞
⟨𝒙 + 𝒚|𝜌(𝑡)|𝒙 − 𝒚⟩e

−2i𝒚⋅𝒑
ℏ d𝑁𝒚, (6.67)

where 𝝐 = (𝜖1, … , 𝜖𝑁) is a𝑁-dimensional vectorwith 𝝐 = 𝒙, 𝒑, 𝒚,𝑁 is the
number of particles. �̂�𝑡(𝒙, 𝒑) is an operator for the cavity field degrees
of freedom and the spin states of the atoms. TheWigner transforma-
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tion, corresponding to Eq. (6.67), of master equation (6.57) leads to the
equation

𝜕
𝜕𝑡�̂�𝑡(𝒙, 𝒑) = −∑

𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

�̂�𝑡(𝒙, 𝒑) − iΔe∑
𝑗
[ ̂𝜎†𝑗 ̂𝜎𝑗, �̂�𝑡(𝒙, 𝒑)] +

+ iΔc[𝑎†𝑎, �̂�𝑡(𝒙, 𝒑)] +

− i
4 ∑𝑗

{(𝑈1 ̂𝜎𝑗 ̂𝜎†𝑗 + 𝑈2 ̂𝜎†𝑗 ̂𝜎𝑗)𝑎†𝑎[2�̂�𝑡(𝒙, 𝒑) +

+ e2i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 − 𝒌𝑗) + e−2i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 + 𝒌𝑗)] +

− [2�̂�𝑡(𝒙, 𝒑) + e2i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 + 𝒌𝑗) +

+ e−2i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 − 𝒌𝑗)](𝑈1 ̂𝜎𝑗 ̂𝜎†𝑗 + 𝑈2 ̂𝜎†𝑗 ̂𝜎𝑗)𝑎†𝑎} +

− i
2 ∑𝑗

{(𝑆1𝑎† ̂𝜎𝑗 + 𝑆∗1 ̂𝜎†𝑗 𝑎 + 𝑆2𝑎† ̂𝜎†𝑗 + 𝑆∗2𝑎 ̂𝜎𝑗) ×

× [ei𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 − 𝒌𝑗/2) + e−i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 + 𝒌𝑗/2)] +

− [ei𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 + 𝒌𝑗/2) + e−i𝑘c𝑥𝑗�̂�𝑡(𝒙, 𝒑 − 𝒌𝑗/2)] ×

× (𝑆1𝑎† ̂𝜎𝑗 + 𝑆∗1 ̂𝜎†𝑗 𝑎 + 𝑆2𝑎† ̂𝜎†𝑗 + 𝑆∗2𝑎 ̂𝜎𝑗)} +

+ 𝜅(2𝑎�̂�𝑡(𝒙, 𝒑)𝑎† − 𝑎†𝑎�̂�𝑡(𝒙, 𝒑) − �̂�𝑡(𝒙, 𝒑)𝑎†𝑎),
(6.68)

where 𝒌𝑗 = (0, … , 𝑘𝑗 = 𝑘c, … , 0). Now, in order to perform the semi-
classical approximation,we expand theWigner operator �̂�𝑡(𝒙, 𝒑±ℏ𝒌𝑗/2)
in power series about 𝒑

�̂�𝑡(𝒙, 𝒑 ± ℏ𝒌𝑗/2) = �̂�𝑡(𝒙, 𝒑) ±
ℏ𝑘c
2

𝜕
𝜕𝑝𝑗

�̂�𝑡(𝒙, 𝒑) +

+
(ℏ𝑘c)2

8
𝜕2

𝜕𝑝2𝑗
�̂�𝑡(𝒙, 𝒑) + 𝒪((

ℏ𝑘c
Δ𝑝 )

3
).

(6.69)

We assume that the typicalwidth of themomentumdistribution ismuch
larger than the photon momentum Δ𝑝 ≫ ℏ𝑘c, and truncate expan-
sion (6.69) at second order. Substituting in Eq. (6.68)we obtain

𝜕
𝜕𝑡�̂�𝑡(𝒙, 𝒑) = [ℒ0 + ℒ1 + ℒ2]�̂�𝑡(𝒙, 𝒑), (6.70)

where

ℒ0�̂�𝑡(𝒙, 𝒑) = − iΔe∑
𝑗
[ ̂𝜎†𝑗 ̂𝜎𝑗, �̂�𝑡(𝒙, 𝒑)] + iΔc[𝑎†𝑎, �̂�𝑡(𝒙, 𝒑)] +

+ i∑
𝑗
[�̂�𝑗, �̂�𝑡(𝒙, 𝒑)] +

+ 𝜅(2𝑎�̂�𝑡(𝒙, 𝒑)𝑎† − 𝑎†𝑎�̂�𝑡(𝒙, 𝒑) − �̂�𝑡(𝒙, 𝒑)𝑎†𝑎),
(6.71a)
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ℒ1�̂�𝑡(𝒙, 𝒑) = −∑
𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

�̂�𝑡(𝒙, 𝒑) −
1
2 ∑𝑗

{ 𝜕
𝜕𝑥𝑗

�̂�𝑗,
𝜕
𝜕𝑝𝑗

�̂�𝑡(𝒙, 𝒑)},

(6.71b)

ℒ2�̂�𝑡(𝒙, 𝒑) = − i
8 ∑𝑗

[ 𝜕
2

𝜕𝑥2𝑗
�̂�𝑗,

𝜕2

𝜕𝑝2𝑗
�̂�𝑡(𝒙, 𝒑)]. (6.71c)

Herewe used thework operator

�̂�𝑗 = − 1
2(1 + cos(2𝑘c𝑥𝑗))(𝑈1 ̂𝜎𝑗 ̂𝜎†𝑗 + 𝑈2 ̂𝜎†𝑗 ̂𝜎𝑗)𝑎†𝑎 +

− cos(𝑘c𝑥𝑗)(𝑆1𝑎† ̂𝜎𝑗 + 𝑆∗1 ̂𝜎†𝑗 𝑎 + 𝑆2𝑎† ̂𝜎†𝑗 + 𝑆∗2𝑎 ̂𝜎𝑗),
(6.72)

such that ̂𝐹𝑗 =
𝜕
𝜕𝑥𝑗

�̂�𝑗 is the force operator on the 𝑗-th atom. Equation (6.70)
is a partial differential equationwith up to second order derivatives in
the variables 𝑡, 𝑥𝑗 and 𝑝𝑗 of the operator �̂�𝑡(𝒙, 𝒑).

6.D.2 Semiclassical approximation for the cavity field

Consider now the operator

�̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i) =
1
𝜋2 ∫d2𝜂 e𝜂∗𝛼−𝜂𝛼∗ Tr

cav
{�̂�𝑡(𝒙, 𝒑)e𝜂𝑎

†−𝜂∗𝑎}, (6.73)

where 𝜂 is a complex variable, 𝛼 = 𝛼r + i𝛼i with 𝛼r, 𝛼i ∈ ℝ, and Trcav{⋅}
is the trace over the cavity field degrees of freedom. �̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i) is an
operator for the spins degrees of freedom. Nowwe perform theWigner
transformation, corresponding to Eq. (6.73), of equation (6.70). In order
to simplify the calculationwe consider the case𝑈1 = 𝑈2 = 0. We assume
that the cavity field is in the coherent state |𝛼⟩ with |𝛼|2 ≫ 1 so that
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we can neglect third order derivatives. The equation for the operator
�̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i) ≡ �̂� then reads

𝜕
𝜕𝑡�̂� = −∑

𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

�̂� − iΔe∑
𝑗
[
𝟙 + �̂�𝑧𝑗
2 , �̂�] + 𝜅

4(
𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼2i
)�̂� +

+ 1
2
𝜕
𝜕𝛼r

{𝜅𝛼r + Δc𝛼i −∑
𝑗

cos(𝑘c𝑥𝑗)
2 [𝐼+ ̂𝜎𝑥𝑗 − 𝑅− ̂𝜎𝑦𝑗 ], �̂�} +

+ 1
2
𝜕
𝜕𝛼i

{𝜅𝛼i − Δc𝛼r +∑
𝑗

cos(𝑘c𝑥𝑗)
2 [𝑅+ ̂𝜎𝑥𝑗 + 𝐼− ̂𝜎𝑦𝑗 ], �̂�} +

− i∑
𝑗
cos(𝑘c𝑥𝑗)(1 +

𝑘2c
8

𝜕2

𝜕𝑝2𝑗
)[ ̂𝜎𝑥𝑗 [𝛼r𝑅+ + 𝛼i𝐼+], �̂�] +

− i∑
𝑗
cos(𝑘c𝑥𝑗)(1 +

𝑘2c
8

𝜕2

𝜕𝑝2𝑗
)[ ̂𝜎𝑦𝑗 [𝛼r𝐼− − 𝛼i𝑅−], �̂�] +

−∑
𝑗

𝑘c
2 sin(𝑘c𝑥𝑗)

𝜕
𝜕𝑝𝑗

{{ ̂𝜎𝑥𝑗 [𝛼r𝑅+ + 𝛼i𝐼+], �̂�} +

+ { ̂𝜎𝑦𝑗 [𝛼r𝐼− − 𝛼i𝑅−], �̂�} − i
4[𝐼

+ ̂𝜎𝑥𝑗 − 𝑅− ̂𝜎𝑦𝑗 ,
𝜕
𝜕𝛼r

�̂�] +

+ i
4[𝑅

+ ̂𝜎𝑥𝑗 + 𝐼− ̂𝜎𝑦𝑗 ,
𝜕
𝜕𝛼i

�̂�]},

(6.74)

where 𝑅+ = ℜ(𝑆1) + ℜ(𝑆2), 𝑅− = ℜ(𝑆1) − ℜ(𝑆2), 𝐼+ = ℑ(𝑆1) + ℑ(𝑆2) and
𝐼− = ℑ(𝑆1) −ℑ(𝑆2). Equation (6.74) is a partial differential equationwith
up to second order derivatives in the variables 𝑡, 𝑥𝑗, 𝑝𝑗, 𝛼r and 𝛼i of the
operator �̂� ≡ �̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i).

Wenowcalculate the timeevolutionof the functionsTr{�̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i)}
and Tr{ ̂𝜎𝑙𝑗 �̂�𝑡(𝒙, 𝒑, 𝛼r, 𝛼i)}, where Tr{⋅} denotes the trace over the spins de-
grees of freedom. Tracing equation (6.74)we obtain

𝜕
𝜕𝑡 Tr(�̂�) = [ −∑

𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

+ 𝜅
4(

𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼2i
) +

+ 𝜕
𝜕𝛼r

(𝜅𝛼r + Δc𝛼i) +
𝜕
𝜕𝛼i

(𝜅𝛼i − Δc𝛼r)]Tr(�̂�) +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)

𝜕
𝜕𝑝𝑗

(𝛼r𝑅+ + 𝛼i𝐼+) +

+
cos(𝑘c𝑥𝑗)

2 (𝐼+ 𝜕
𝜕𝛼r

− 𝑅+ 𝜕
𝜕𝛼i

)]Tr( ̂𝜎𝑥𝑗 �̂�) +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)

𝜕
𝜕𝑝𝑗

(𝛼r𝐼− − 𝛼i𝑅−) +

−
cos(𝑘c𝑥𝑗)

2 (𝑅− 𝜕
𝜕𝛼r

+ 𝐼− 𝜕
𝜕𝛼i

)]Tr( ̂𝜎𝑦𝑗 �̂�).

(6.75)
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Using equation (6.74)we calculate Tr( ̂𝜎𝑥𝑙 �̂�):

𝜕
𝜕𝑡 Tr( ̂𝜎𝑥𝑙 �̂�) = [𝜅4(

𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼2i
) −∑

𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

+

+ 𝜕
𝜕𝛼r

(𝜅𝛼r + Δc𝛼i) +
𝜕
𝜕𝛼i

(𝜅𝛼i − Δc𝛼r)]Tr( ̂𝜎𝑥𝑙 �̂�) +

− Δe Tr( ̂𝜎𝑦𝑙 �̂�) +

−
cos(𝑘c𝑥𝑙)

2 [ 𝜕
𝜕𝛼r

𝐼+ − 𝜕
𝜕𝛼i

𝑅+ +

− 𝑘c sin(𝑘c𝑥𝑙)
𝜕
𝜕𝑝𝑙

(𝛼r𝑅+ + 𝛼i𝐼+)]Tr(�̂�)

+ [2 cos(𝑘c𝑥𝑙)(1 +
𝑘2c
8

𝜕2

𝜕𝑝2𝑙
)(𝛼r𝐼− − 𝛼i𝑅−) +

+
𝑘c
4 sin(𝑘c𝑥𝑙)

𝜕
𝜕𝑝𝑙

(𝑅− 𝜕
𝜕𝛼r

+ 𝐼− 𝜕
𝜕𝛼i

)]Tr( ̂𝜎𝑧𝑙 �̂�) +

−∑
𝑗≠𝑙

[
cos(𝑘c𝑥𝑗)

2 (𝐼+ 𝜕
𝜕𝛼r

− 𝑅+ 𝜕
𝜕𝛼i

) +

+ 𝑘c sin(𝑘c𝑥𝑗)
𝜕
𝜕𝑝𝑗

(𝛼r𝑅+ + 𝛼i𝐼+)]Tr( ̂𝜎𝑥𝑙 ̂𝜎𝑥𝑗 �̂�) +

+∑
𝑗≠𝑙

[
cos(𝑘c𝑥𝑗)

2 (𝑅− 𝜕
𝜕𝛼r

+ 𝐼− 𝜕
𝜕𝛼i

) +

− 𝑘c sin(𝑘c𝑥𝑗)
𝜕
𝜕𝑝𝑗

(𝛼r𝐼− − 𝛼i𝑅−)]Tr( ̂𝜎𝑥𝑙 ̂𝜎𝑦𝑗 �̂�).

(6.76)

Equations (6.75) and (6.76) are partial differential equationswith up to
second order derivatives in the variables 𝑡, 𝑥𝑗, 𝑝𝑗, 𝛼r and 𝛼i of the scalar
functions Tr(�̂�) and Tr( ̂𝜎𝑥𝑙 �̂�), respectively.
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6.D.3 Simulated Focker-Planck equation

The system of stochastic differential equation introduced in Sec. 6.2.3 is
equivalent to the following Focker-Planck equation

𝜕𝑓𝑡
𝜕𝑡 = −∑

𝑗
{
𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

+ 𝜅
4(

𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼i2
) + 𝜅 𝜕

𝜕𝛼r
𝛼r + 𝜅 𝜕

𝜕𝛼i
𝛼i +

+ 𝑘c sin(𝑘c𝑥𝑗)(𝑅+𝑠𝑥𝑗 𝛼r − 𝑅−𝑠𝑦𝑗 𝛼i + 𝐼+𝑠𝑥𝑗 𝛼i + 𝐼−𝑠𝑦𝑗 𝛼r)
𝜕
𝜕𝑝𝑗

+

+ [ − Δe𝑠
𝑦
𝑗 + 2 cos(𝑘c𝑥𝑗)𝑠𝑧𝑗 (𝐼−𝛼r − 𝑅−𝛼i)]

𝜕
𝜕𝑠𝑥𝑗

+

+ [Δe𝑠𝑥𝑗 − 2 cos(𝑘c𝑥𝑗)𝑠𝑧𝑗 (𝑅+𝛼r + 𝐼+𝛼i)]
𝜕
𝜕𝑠𝑦𝑗

+

− 2 cos(𝑘c𝑥𝑗)(𝐼−𝑠𝑥𝑗 𝛼r − 𝐼+𝑠𝑦𝑗 𝛼i − 𝑅−𝑠𝑥𝑗 𝛼i − 𝑅+𝑠𝑦𝑗 𝛼r)
𝜕
𝜕𝑠𝑧𝑗

}𝑓𝑡 +

− [−Δc𝛼i +
𝑁
∑
𝑗=1

cos(𝑘c𝑥𝑗)
2 (𝑠𝑥𝑗 𝐼+ − 𝑠𝑦𝑗 𝑅−)]

𝜕
𝜕𝛼r

𝑓𝑡 +

− [Δc𝛼r −
𝑁
∑
𝑗=1

cos(𝑘c𝑥𝑗)
2 (𝑠𝑥𝑗 𝑅+ + 𝑠𝑦𝑗 𝐼−)]

𝜕
𝜕𝛼i

𝑓𝑡.

(6.77)

for the probability density 𝑓𝑡 ≡ 𝑓𝑡(𝒙, 𝒑, 𝒔, 𝛼r, 𝛼i), where 𝒙 and 𝒑 are 𝑁-
dimensional vectors and 𝒔 = (𝑠𝑥1 , … , 𝑠𝑥𝑁, 𝑠

𝑦
1 , … , 𝑠

𝑦
𝑁, 𝑠𝑧1 , … , 𝑠𝑧𝑁).

We define the functions

𝑊(𝑡, 𝒙, 𝒑, 𝛼r, 𝛼i) = ∫𝑓𝑡d3𝑁𝒔, (6.78a)

𝑊𝑚
𝑙 (𝑡, 𝒙, 𝒑, 𝛼r, 𝛼i) = ∫𝑠𝑚𝑙 𝑓𝑡d3𝑁𝒔, (6.78b)

𝑊𝑚𝑛
𝑙𝑗 (𝑡, 𝒙, 𝒑, 𝛼r, 𝛼i) = ∫𝑠𝑚𝑙 𝑠

𝑛
𝑗 𝑓𝑡d3𝑁𝒔, (6.78c)
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where 𝑙, 𝑗 = 1, … , 𝑁 and 𝑚, 𝑛 = 𝑥, 𝑦, 𝑧. Using Eq. (6.77) we now calcu-
late the equations for the functions𝑊 and𝑊𝑚

𝑙 , Eqs. (6.78a) and (6.78b).
Integrating equation (6.77) in d3𝑁𝒔 one obtains

𝜕𝑊
𝜕𝑡 = [ −∑

𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

+ 𝜅
4(

𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼i2
) +

+ 𝜕
𝜕𝛼r

(𝜅𝛼r + Δc𝛼i) +
𝜕
𝜕𝛼i

(𝜅𝛼i − Δc𝛼r)]𝑊 +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)(𝑅+𝛼r + 𝐼+𝛼i)

𝜕
𝜕𝑝𝑗

+

+
cos(𝑘c𝑥𝑗)

2 (𝐼+ 𝜕
𝜕𝛼r

− 𝑅+ 𝜕
𝜕𝛼i

)]𝑊 𝑥
𝑗 +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)

𝜕
𝜕𝑝𝑗

(𝐼−𝛼r − 𝑅−𝛼i) +

−
cos(𝑘c𝑥𝑗)

2 (𝑅− 𝜕
𝜕𝛼r

+ 𝐼− 𝜕
𝜕𝛼i

)]𝑊 𝑦
𝑗 .

(6.79)

Integrating equation (6.77) in 𝑠𝑥𝑙 d3𝑁𝒔 one obtains

𝜕𝑊 𝑥
𝑙

𝜕𝑡 =[ −∑
𝑗

𝑝𝑗
𝑚

𝜕
𝜕𝑥𝑗

+ 𝜅
4(

𝜕2

𝜕𝛼2r
+ 𝜕2

𝜕𝛼i2
) +

+ 𝜕
𝜕𝛼r

(𝜅𝛼r + Δc𝛼i) +
𝜕
𝜕𝛼i

(𝜅𝛼i − Δc𝛼r)]𝑊 𝑥
𝑙 +

− Δe𝑊
𝑦
𝑙 + 2 cos(𝑘c𝑥𝑗)(𝐼−𝛼r − 𝑅−𝛼i)𝑊 𝑧

𝑙 +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)(𝑅+𝛼r + 𝐼+𝛼i)

𝜕
𝜕𝑝𝑗

+

+
cos(𝑘c𝑥𝑗)

2 (𝐼+ 𝜕
𝜕𝛼r

− 𝑅+ 𝜕
𝜕𝛼i

)]𝑊 𝑥𝑥
𝑙𝑗 +

−∑
𝑗
[𝑘c sin(𝑘c𝑥𝑗)

𝜕
𝜕𝑝𝑗

(𝐼−𝛼r − 𝑅−𝛼i) +

−
cos(𝑘c𝑥𝑗)

2 (𝑅− 𝜕
𝜕𝛼r

+ 𝐼− 𝜕
𝜕𝛼i

)]𝑊 𝑥𝑦
𝑙𝑗 .

(6.80)

6.D.4 Discussion

Wenow identify the function𝑊with Tr(�̂�), and the function𝑊 𝑥
𝑙 with

Tr( ̂𝜎𝑥𝑙 �̂�), and compare Eq (6.75)with Eq. (6.79) and Eq. (6.76)with Equa-
tion (6.80). They differ of terms of the order of 𝑂(𝑁−1). Further analysis
is required in order to complete this treatment and verify our assump-
tions.
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SUMMARY AND CONCLUS IONS

In this thesis we have investigated the dynamics of several quantum
systemswith potential applications in quantum technologies [2, 3].

In Part II we have analyzed the system composed of a single atom
trapped in an high-finesse optical cavity for the purpose of realizing a
quantummemory for single photons. The atomcouples to the cavitypho-
ton field and is driven by a laser. The input photon, propagating in the
transmission line, impinges on one of themirrors of the cavity. Photon
storage is realized by the controlled transfer of the photonic excitation
into a metastable state of the atom and occurs via a Raman transition
by suitably tailoring the laser pulse. We take into account irreversible
losses due to the finite lifetime of the excited state of the atom, due to
absorption and reflection at the cavitymirrors and due to thefinite trans-
mittivity of the second mirror. We first analyze the adiabatic regime
wherewe compare three different protocols [122–124] and derive a new
protocolwhich takes into account all the irreversible losses. We also gen-
eralize a result of [124] showing that, in the adiabatic regime, there is an
upper bound to the storage efficiencywhich is mainly determined by the
cooperativity and the parasitic cavity losses. Furthermorewe derive the
shape of the laser pulse that leads to storage of the single photonwith
the maximal efficiency. We then explore the non-adiabatic regime by
means of optimal control theory (OCT): the optimized control pulse does
not lead to efficiencies higher then the one in the adiabatic limit, how-
ever themaximal efficiency can also be reached in a parameter regime
where the dynamics is not adiabatic. We also numerically determine
the lower bound to the coherence time of the photon forwhich a given
efficiency can be reached, and show that this is limited by the linewidth
of the cavity. Finallywe analyze how such a quantummemory for single
photons can be tested with other types of light pulses. In particular,
we analyze the storage of attenuated laser pulses because, due to the
simplicity of their production, they are often employed in experimental
setups [120, 139]. We determine how the storage efficiency of a single
photon is related to the storage efficiency of aweak coherent pulse. The
methodwe develop can be easily extended to other type of light pulses.

In Part III we have analyzed a solid-state system consisting of a nitro-
gen-vacancy (NV) center embedded in amonolithic diamond structure
which is both an optical and amechanical resonator (also called phox-
onic crystal cavity [165]). The NV-center is driven by an external laser
and interacts with the optical cavity photon field and with the strain
field of themechanical oscillator. The optical cavity and themechanical
oscillator are coupled byradiation pressure. Furthermore, theNV-center
excited states exhibit pure dephasing due to the phononic environment
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of the diamond crystal [160, 195]. We have characterized the dynam-
ics of cooling of themechanical resonatorwith respect to controllable
external parameters, such as the laser detunings. We have determined
the cooling regime, the cooling rate, the asymptotic temperatures, and
the spectrum of resonance fluorescence for experimentally relevant pa-
rameter regimes. For these parameterswe show that the addition of an
optical cavity in general does not improve the cooling efficiency,while
pure dephasing of the NV-center’s electronic transitionsmakes the cool-
ing more robust respect to change of external parameters. Cooling of
mechanical degrees of freedom is relevant for quantum information
processing [38–40], and for ultrasensitive detection applications [42–
46].

In Part IVwe investigate the system composed of a thermal ensemble
of atoms confined in an optical cavity. The atoms are driven by two
external lasers and coherently scatter light into the cavitymode,which,
in turn, dissipate lights. Transitions between two internal states of the
atoms are induced byRaman scattering of cavity and laser photons. We
numerically predict the existence of a spinor self-ordered statewhich
involves a periodic spatial densitywith period 𝜆c/2,where 𝜆c is the cavity
wavelength, and an anti-ferromagnetic ordering of the atomic spins
with period 𝜆c. The transition into the self-ordered state occurswith the
breaking of the discrete ℤ2 symmetry associatedwith the sign change of
the cavityfield andwith theflip of all the spins. This phenomenonoccurs
above a threshold value of the pumping lasers strength. Furthermore
we show how some properties of the spinor self-ordered state can be
manipulated bymeans of the external lasers, and how the light emitted
by the cavity can be used to reveal the state of the system. Envisaged
applications of this system include sensors [242], quantum-enhanced
metrology [243] and quantum simulators [244, 245].

All the systems we analyze in this thesis are presently intensively
investigated in experimental setups [120, 165, 225, 227, 247].

All the analysis presented in this thesis can be extended in various
directions,which are already discussed in each Chapter. However here
we point out some possible common paths. The methods developed
in Parts III and II, for example, can be used to investigate the develop-
ment of a quantum memory in the solid state system composed of a
NV-center in a phoxonic crystal cavity, where the nuclear spin of the
nitrogen atom [206] intrinsic to the NV-center or the nuclear spin of an
adjacent carbon atom [207] is used to store the photonic excitation. Here,
themechanical resonator could also be driven [208] in order to improve
the storage efficiency. Another possibility, is to analyze spin synchro-
nization of an ensemble of NV-centers embedded in a phoxonic crystal.
Also, synchronization of different mechanical modes of the diamond
structure can be explored. The setup of Part IV can be investigated to
build a robust quantummemory since the symmetry broken states are
robust against fluctuations of external parameters.
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Within the last two decades, many advances have beenmade in the
development of quantum technologies. It is, however, still difficult to
predictwhat the exact physical components of future quantum technolo-
gieswill be. Also for this reason, research in several different fields and
platforms is very important. This thesis is a contribution towards the
control of quantum systems for the development quantum technologies.
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