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I. Summary 
 

Some poorly-soluble nanoparticles (NPs) cause pulmonary inflammation upon 

inhalation. Histopathological effects of different NPs differ in types of initial inflammation as 

well as in long-term effects after chronic exposure. Surprisingly, also their lung clearance 

differs. Alveolar macrophages (AMs) are chiefly involved in pulmonary immune responses as 

well as in pulmonary clearance mechanisms. Thus, this dissertation project investigated on 

one hand whether AMs accelerate the biodissolution of e.g. BaSO4 NPs. On the other, it aimed 

at identifying AM subpopulations in lungs of animals exposed to NPs such as TiO2 or CeO2, 

and to find a correlation between early AM polarization and long-term outcome. It could be 

shown that under acidic conditions, as present in AM lysosomes, and in synergy with the 

dynamic conditions, which prevail in the well perfused lungs, BaSO4 NPs undergo accelerated 

biodissolution. Immunohistochemistry of lung specimen revealed a correlation of pro-

inflammatory M1 and anti-inflammatory M2 AM relative numbers with acute inflammation after 

5-day exposure to different NPs. A correlation with the quality of histopathological effects could 

not be found. Current data do not allow for the prediction of long-term outcome. An 

understanding of the contribution of AMs in the pathogenesis of pulmonary morphological 

changes might identify powerful, specific biomarkers, which potentially might allow for the 

prediction of the long-term outcome following NP exposure. 
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II. Zusammenfassung 
 

Manche schwerlösliche Nanopartikel (NP) verursachen Lungenentzündungen nach 

Inhalation. Die histopathologischen Effekte verschiedener NP unterscheiden sich in der Art der 

initialen Entzündung und in den Langzeiteffekten nach chronischer Exposition. 

Überraschenderweise unterscheidet sich auch die pulmonale Clearance. 

Alveolarmakrophagen (AM) spielen sowohl in der pulmonalen Immunantwort als auch bei der 

Clearance eine vorrangige Rolle. Daher untersuchte diese Arbeit einerseits ob AM das 

Auflösungsverhalten von NP wie z.B. BaSO4 beeinflussen. Andererseits wurden polarisierte 

AM in Lungen NP-exponierter Tiere identifiziert, um eine Korrelation mit Langzeiteffekten zu 

erkennen. Unter sauren Bedingungen, wie sie in Lysosomen vorherrschen, zusammen mit den 

dynamischen Bedingungen der gut perfundierten Lunge, lösten sich BaSO4 NP deutlich 

schneller auf, als aufgrund ihres Löslichkeitsproduktes in Wasser erwartet. 

Immunohistochemische Untersuchungen von Lungengewebe ergaben eine Korrelation der 

relativen Zellzahl pro-inflammatorischer M1 und anti-inflammatorischer M2 AM mit akuter 

Entzündung nach 5-tägiger NP-Exposition, wie z.B. TiO2 oder CeO2. Es wurde keine 

Korrelation mit der Qualität der histopathologischen Effekte gefunden. Eine Prädiktion von 

Langzeiteffekten ist auf Basis der Daten nicht möglich. Das Verständnis der Mitwirkung von 

AM an der Entstehung krankhafter Lungenveränderungen könnte Biomarker identifizieren, die 

zu einer Vorhersage von Langzeiteffekten von NP befähigen. 
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III. List of abbreviations 
 

AM  Alveolar macrophage 

ArgI  Arginase I 

BALF  Bronchoalveolar lavage fluid 

BaSO4  Barium sulfate 

CD  Cluster of differentiation 

CD206  Cluster of differentiation 206, mannose receptor 

CeO2  Cerium dioxide 

DNA  Deoxyribonucleic acid 

IFNγ  Interferon gamma 

IL  Interleukin 

iNOS  inducible nitric oxide synthase 

LDH  Lactate dehydrogenase 

M1  pro-inflammatory polarized macrophage 

M2  anti-inflammatory polarized macrophage 

mwCNT Multi-walled carbon nanotubes 

NF-κB  nuclear factor 'kappa-light-chain-enhancer' of activated B-cells 

NP  Nanoparticle 

PSF  Phagolysosomal simulant fluid 

ROS  Reactive oxygen species 

SrCO3  Strontium carbonate 

STIS  Short-term inhalation study 

TiO2  Titanium dioxide 

TNFα  Tumor necrosis factor alpha 

ZnO  Zinc oxide 
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1. Introduction 
 
1.1 Introduction to the inhalation toxicology of poorly-soluble nanoparticles 
 

Because of their unique physicochemical properties nanoparticles (NPs) can be found 

in various consumer applications, such as cosmetics, food, and textiles, industrial applications, 

such as nanoelectronics, catalysts, fillers, and coatings, and nanomedical applications, such 

as nanotherapeutics (Szakal et al., 2014; Vance et al., 2015). The variety of potential 

applications, for instance in nanomedicine, is still increasing (Webster, 2013; Lepeltier et al., 

2015; Pelaz et al., 2017; Ovais et al., 2019). It is because of the extraordinary characteristics 

of NPs that concerns arose whether these materials might have unique toxicological attributes, 

which differ from those of their bulk counterparts (Ferin et al., 1992; Oberdörster et al., 2005; 

Nel et al., 2006). Indeed, their small size (particles with at least one dimension in the size range 

1 - 100 nm), large surface to mass ratio, and exceptional surface reactivity lead to biological 

outcomes different from those of materials of the same chemical composition but with larger 

particle size (Oberdörster et al., 1994a; Oberdörster et al., 2005). 

Based on the wide applications of NPs, all routes of exposure (oral, dermal, inhalation, 

injection) are relevant for human exposure (Kuhlbusch et al., 2018). The usage of NPs as food 

additives for instance leads to oral exposure. The utilization of NPs in sunscreens results in 

dermal exposure. Moreover, numerous NPs are currently under investigation as carriers or 

therapeutics for substance application by inhalation (Gunday Tureli et al., 2017; Rigo et al., 

2017; Yasar et al., 2018). However, at the production sites of engineered NPs, NPs can be 

released in the ambient air. This results in exposure by inhalation of the worker during 

production, processing and handling of NPs at the workplace. Thus, inhalation represents the 

major route of occupational exposure and the greatest concern among other possible routes 

of exposure (Maynard and Kuempel, 2005; Borm et al., 2006). Because airborne NPs can 

easily reach the lower respiratory tract following inhalation and subsequently can deposit in 

the alveolar region, pulmonary effects are of particular interest for occupational safety 

(Oberdörster, 2000; Donaldson et al., 2002) and for this dissertation project. In general, the 

term ‘nanoparticles’ in this thesis refers to granular particles and does not include high aspect 

ratio materials (fibers) (WHO, 2000). The toxicity of granular particles differs partly from the 

toxicity induced by fibrous materials, but these differences are not the scope of the current 

dissertation project. The following paragraphs mainly focus on toxicological effects of granular 

particles. However, immunohistochemical investigations also include fibrous multi-walled 

carbon nanotubes (mwCNT). 

When deposited in the alveolar region of the lungs, any particulate matter is rapidly 

engulfed by alveolar macrophages (AMs) (Box 1). Typically, particles ≥ 0.5 µm are subjected  
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Box 1 Anatomy of the respiratory tract and functions of alveolar macrophages 

The respiratory system of mammalians is divided into the upper respiratory tract and the 

lower respiratory tract. The upper respiratory tract consists of the nose, the oropharynx and 

the larynx. The lower respiratory tract consists of the trachea, which divides at the 

bifurcation into two main bronchi, followed by the bronchial tree, and terminating in the 

alveolar sacs. The upper respiratory tract together with the tracheobronchial tree constitutes 

the conducting airways. They are lined amongst others with a ciliated pseudostratified 

columnar epithelium, which is covered by a mucus layer. In the distal part of the lower 

respiratory tract, the alveolar region, gas exchange takes place. The alveoli, more precisely 

the alveolar walls, are mainly formed by alveolar epithelial cells type I. The alveolar surface 

is lined with a thin layer of a lipid- and protein-rich fluid called surfactant. Here, at the 

alveolar surface, submersed in the lining fluid, resident alveolar macrophages (AMs) are 

located. AMs are large, mononuclear cells, which belong to the cellular arm of the innate 

immune system. They have a pivotal role in organ development and tissue homeostasis. 

As the first line of host defense, AMs are the key orchestrators of pulmonary immune 

responses. Following pathological stimuli, AMs become activated and exert their effector 

functions such as antimicrobial activities (e.g. respiratory burst). In addition, they have 

important roles in the resolution of inflammation and tissue repair. Apart from their diverse 

homeostatic and immunologic functions, AMs embody the main clearance mechanism of 

the alveolar region, which aims at disposing of any foreign particulate matter from the 

alveolar surface. As professional phagocytes AMs ensure the sterility of the alveolar surface 

by rapidly engulfing deposited particulate material, such as poorly-soluble NPs. 

 

 

modified from (Hussell and Bell, 2014) 
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to phagocytosis, whereby the optimal particle size for rapid phagocytosis is 2-3 µm (Champion 

et al., 2008). Smaller particles (< 0.5 µm), including NPs, are internalized by AMs as well, 

however, less specifically and less efficiently than larger particles (Geiser et al., 2008; Geiser, 

2010). AMs are professional phagocytes and the key orchestrators of pulmonary immune 

responses. They represent the first line of host immune defense at a location continuously 

exposed to the environment (Goldstein et al., 1974; Fels and Cohn, 1986). In addition, AMs 

embody the main clearance mechanism of particulate matter from the lower respiratory tract. 

When ingested by AMs, particulate matter can be removed from the lungs by migration of AMs 

to extrapulmonary targets (physical clearance) and/or it can be processed intracellularly 

(chemical clearance) (Bowden, 1984; Hussell and Bell, 2014) (Box 2). 

Several decades ago, human epidemiological data and data from rat inhalation studies 

revealed that dust composed of poorly-soluble granular particles caused pulmonary 

inflammation following inhalation exposure (Davis et al., 1978; Pepelko et al., 1980; Green et 

al., 1983; Bowden, 1987). These findings were surprising because these dusts showed very 

little toxicity in previous studies via oral and dermal exposure. Because of the latter, they were 

initially described as poorly-soluble particles of low inherent toxicity (ACGIH, 2000; 

Oberdorster, 2002). However, observations of pulmonary inflammatory reactions and eventual 

lung tumor formation in rats (Heinrich et al., 1995; Muhle et al., 1995) challenged the 

assumption of the low toxicity of these particles. 

Early examinations of inhalation toxicity studies suggested that following excessive 

engulfment of particulate matter, AMs seemed to gradually lose their mobility until they 

ultimately became immobile. Consequently, pulmonary clearance of particles gradually ceased, 

a phenomenon described as lung particle overload (Morrow, 1988). Importantly, the proposed 

overload mechanism is unspecific and applicable to poorly-soluble particles in general. Indeed, 

the lung overload concept seems to apply for a subset of microscale particles and NPs 

regarding pulmonary clearance (Oberdörster et al., 1994a; Keller et al., 2014; Borm et al., 

2015). However, it does not explain observed differences in inflammatory potency, quality of 

inflammation, and long-term histopathological outcome (such as fibrosis or tumor formation) of 

different biopersistent NPs (as described in detail in section 1.3). Upon short-term exposure, 

many poorly-soluble NPs elicited acute pulmonary inflammation in rat lungs (Shvedova et al., 

2008; Ma-Hock et al., 2009b; Keller et al., 2014; Morimoto et al., 2015). But sub-chronic (90-

days) and long-term inhalation toxicity studies published till now revealed distinct differences 

in morphological changes of rat lungs caused by different NPs (Bermudez et al., 2004; Ma-

Hock et al., 2009b; Schwotzer et al., 2017). With prolonged exposure effects may differ 

considerably. Pathological changes may persist or progress to fibrosis, or possibly lead to lung 

tumor formation (Heinrich et al., 1995; Muhle et al., 1995; Kasai et al., 2016; Ma-Hock et al., 

2017). 
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Hence, attempts were made to refine Morrow’s overload concept to explain why NPs 

caused more severe pulmonary effects than their microscale counterparts (Oberdörster et al., 

1992a; Pauluhn, 2009a). Pauluhn hypothesized that the tendency of NPs to form agglomerates 

results in an increased “void-space volume” of the composite compared to solid particles, 

which in turn increases the displaced volume inside AM cells (Pauluhn, 2009a, 2011). Further, 

he stated that the increased particle displacement volume together with a lung overload 

concept most appropriately explain the biological effects of NPs (Pauluhn, 2012, 2014). Other 

investigators found that the deposited surface area of NPs seems to be the dose metric best 

correlating with the NP’s biological effects (Oberdörster et al., 1992a; Oberdörster et al., 1994b; 

Lison et al., 1997; Tran et al., 2000; Brown et al., 2001; Duffin et al., 2002; Braakhuis et al., 

2016). Because of the versatility of NPs, it remains questionable whether one generic dose 

metric will be identified as the solely appropriate metric, which will correlate with all NP induced, 

biological effects observed (Bevan et al., 2018). 

Up to now, none of the postulated assumptions alone sufficiently explains all observed 

differences in the quality of effects elicited by different NPs. For instance, short-term  inhalation 

exposure to Titanium dioxide (TiO2) (5 day exposure) or Cerium dioxide (CeO2) NPs (5 or 28 

day exposure) caused an inflammatory response composed of polymorphonuclear neutrophils 

and AMs (Ma-Hock et al., 2009a; van Ravenzwaay et al., 2009; Keller et al., 2014). For TiO2, 

effects regressed after an exposure-free period of 14 days. For CeO2, however, the effects, as 

shown in a 28-day inhalation toxicity study, progressed to granulomatous inflammation after 

an exposure-free period of four weeks. In contrast, short-term as well as sub-chronic inhalation 

exposure to mwCNT provoked a multifocal granulomatous inflammation mainly composed of 

AMs immediately following exposure (Ma-Hock et al., 2009b). The effect was not reversible 

during a 24-day post-exposure period. Furthermore, a comparative study of the toxicological 

effects of TiO2 NPs, TiO2 microscale particles and Quartz microscale particles revealed that 

Quartz exerted the strongest toxicological effects, although the deposited surface area was 

considerably smaller than the one of the TiO2 nano-/microparticles. This suggests a crucial 

role of a particle’s composition for its toxicity (van Ravenzwaay et al., 2009). However, it was 

recognized that no single NP characteristic but characteristics such as chemical composition, 

size, shape, surface reactivity, surface structure, solubility, and aggregate formation together 

contribute to the mechanisms by which NPs interact with their local environment and provoke 

their specific biological effects (Nel et al., 2006; Donaldson et al., 2010a). Only considering the 

entirety of the physicochemical properties of a NP together with the conditions of the biological 

system in question will allow for the understanding of the toxic effects of NPs. 

Although the term ‘nanotoxicology’ is frequently used in the literature (Donaldson et al., 

2004; Oberdörster et al., 2005; Missaoui et al., 2018), there is no exclusive ‘nanotoxicity’ which 

might apply generally for NPs but not for their bulk counterparts (Donaldson and Poland, 2013; 
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ECETOC, 2013). Although toxicological properties of materials at nanoscale might differ from 

those of materials at microscale, they are not “nano-specific”, but resemble observations made 

already several decades ago in inhalation studies of e.g. ultrafine dusts, such as diesel soot or 

carbon black (McClellan et al., 1985; Mauderly et al., 1987; Heinrich et al., 1995; Nikula, 2000; 

Donaldson and Poland, 2013; Gebel et al., 2014; Stone et al., 2017). 

In general, particle toxicity results from the material’s biokinetics (including the retained 

dose and it’s biopersistence) together with its physicochemical properties (such as surface 

reactivity) and the subsequent cellular effects. Importantly, AMs play a central role in 

integrating pulmonary clearance of particulates and pulmonary immunological reactions. 

Attracted by deposited particulate matter, AMs migrate to the deposition site and clear any 

material, e.g. NPs, from the alveolar surface by phagocytosis. The uptake of particulate matter 

by AMs, followed by their translocation to the mucociliary escalator, is the main clearance 

mechanism of the alveolar region (physical clearance). Moreover, on the inside of the 

phagolysosome, NPs might be subjected to degradation, such as biodissolution (chemical 

clearance). Consequently, AMs contribute through physical and chemical clearance processes 

to the biopersistence of NPs and ultimately to the pulmonary dose retained. NPs, in turn, might 

influence AMs or exert damage to the macrophage cell. During the described processes, 

beginning with phagocytosis and continuing with biochemical processes in the 

phagolysosomal compartment, NPs might activate the AM, which is followed by differentiation 

of the immune cell (Lucarelli et al., 2004). Or NPs might induce cellular injury, which triggers 

cellular stress responses (Fritsch-Decker et al., 2018). When exerting their immunological 

effector functions, activated AMs secrete various cytokines, reactive oxygen species, and 

reactive nitrogen intermediates triggering a pro-inflammatory reaction (Fels and Cohn, 1986; 

Hussell and Bell, 2014). Any modulating effect of the phagocytosed material on AM function 

can have an effect on the initiation and the course of the immunological response (Laskin, 

2009; Alessandrini et al., 2017). Since AMs are chiefly involved in both the biokinetics and the 

(consequent) biological effects of inhaled NPs, the role of AMs on these two parameters is 

object of the present dissertation project. 
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1.2 Pulmonary biokinetics of inhaled, poorly-soluble nanoparticles 
 

Upon inhalation, particle deposition in the respiratory tract occurs mainly by impaction, 

sedimentation, and diffusion. In general, air borne particulate matter with particle size smaller 

than 4 µm reach the alveolar region (ICRP, 1994). For particles greater than 1 µm, deposition 

in the respiratory tract is predominantly determined by inertial impaction on the walls (in rats) 

or bifurcations (in humans) of the airways (Brain and Valberg, 1979; Hofmann et al., 1996). 

For particles at nano-scale, deposition in the respiratory tract is not determined by aerodynamic 

characteristics but by Brownian diffusion, because sufficiently strong drag forces are absent. 

The random motion enables the deposition of NPs onto the surfaces of the entire respiratory 

system (Heyder, 1982; Heyder et al., 1986). However, mathematical modelling of particle 

deposition in the human respiratory tract demonstrates that deposition varies dependent on 

particle size. In the human respiratory tract, 20 nm NPs are deposited about 50% in the alveolar 

region, whereas in the nasopharyngeal and tracheobronchial regions about 15% of the inhaled 

particles deposit. In contrast, 1 nm NPs have their highest deposition in the nasopharyngeal 

region, where 90% of inhaled particles deposit. Only 10% of inhaled 1 nm NPs deposit in the 

tracheobronchial region and almost none deposit in the alveolar compartment (ICRP, 1994). 

Importantly, characterization of test atmospheres of inhalation studies revealed that NP 

aerosols consist mainly of NP agglomerates in the micrometer range and primary particles 

constitute only a minor fraction of the aerosol (Ma-Hock et al., 2007; Pauluhn, 2009b; van 

Ravenzwaay et al., 2009; Keller et al., 2014). These agglomerates behave like particles in the 

micrometer range in terms of aerodynamics and deposition (Pauluhn, 2009b; Morfeld et al., 

2012). Examinations of histological lung sections of rats indicate that the NP agglomerates 

remain associated and that they do not disintegrate into their primary particles in the biological 

surrounding (Ma-Hock et al., 2009a; van Ravenzwaay et al., 2009; Creutzenberg et al., 2012a; 

Levy et al., 2012). Notably, the state of agglomeration or deagglomeration is relevant e.g. 

regarding particle clearance by AMs (Geiser, 2010) or translocation of NPs to secondary 

organs (Kermanizadeh et al., 2015). For instance, inhaled gold, iridium, and TiO2 NPs were 

shown to be less efficiently phagocytized by rat AMs than their bulk counterparts (Takenaka 

et al., 2006; Semmler-Behnke et al., 2007; Geiser et al., 2008; Geiser, 2010). Biodistribution 

studies using gold NPs revealed size-dependent translocation of NPs to secondary organs 

following inhalation exposure of rats. When applied at similar aerosol concentrations (about 13 

to 14 µg/m³) for 5 days, 13 nm-sized gold NPs translocated from lungs to liver, spleen, brain, 

testes, and blood, whereas 105 nm-sized gold NPs were detected only in blood. The authors 

concluded that the smaller gold NPs translocate at a faster rate than their larger counterparts 

(Han et al., 2015). In another rat inhalation study, animals were exposed for 15 days to gold 

NP aerosols with similar size distribution of NP agglomerates (45 nm) and particle number 

concentration (1 × 106 particles/cm³). Notably, the NP agglomerates were comprised of NPs 
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with different primary particle sizes, i.e. 7 nm and 20 nm. Size-related translocation, with the 7 

nm NPs translocating more than the 20 nm NPs, from lungs to brain, aorta, esophagus, and 

kidneys was observed. These observations indicate translocation of NPs being size-dependent 

and suggest, in contrast to previous observations, disintegration of the 45 nm agglomerates in 

lungs (Balasubramanian et al., 2013). Importantly, translocation of poorly-soluble NPs to 

secondary organs is very low upon inhalation exposure (Kermanizadeh et al., 2015). There 

are several parameters, which influence the agglomeration status of NPs in inhalation studies, 

i.e. aerosol generation technique, aerosol concentration, and dispersion efficiency. These 

parameters primarily determine the deposition efficiency, site of deposition, and subsequent 

biokinetic fate of NPs (Laux et al., 2017). 

Once deposited in the lower respiratory tract, NPs are subjected to various clearance 

mechanisms, which all aim at disposing of particulate matter from the lungs (Box 2). 

Importantly, it is not the initially deposited dose that is causal for the biological effects of NPs. 

The decisive parameter relevant for the dose-effect relationship is the retained dose 

(Oberdörster et al., 1994a). Retention describes a quantitative characteristic (measurable as 

organ burden [mg test material/ organ]) (Oberdörster et al., 1992b) and is thus a dosimetric 

parameter. The retained dose equals the amount of deposited material less the amount of 

cleared material at a certain timepoint. Hence, the eventually retained dose differs from the 

initially deposited dose over time. Importantly, it is the retained dose, which results in specific 

biological effects. Because different NPs become cleared at varying rates from the lungs, the 

in-depth knowledge of the clearance mechanisms (chemical, physical) most relevant for the 

material in question will enable the understanding of its behavior in vivo. Oberdörster et al. 

(1992b) suggested to describe this in vivo behavior with ‘biopersistence’. In contrast to 

retention, biopersistence describes a qualitative characteristic observable e.g. in histological 

tissue sections. Both, physical (translocation) and chemical (biodissolution) clearance 

processes contribute to the biopersistence of particulate matter in the lungs (Mercer, 1967). 

In animal inhalation studies, lung burdens are frequently assessed at the end of 

exposure and subsequently to an exposure-free period. These quantitative data provide 

information about the retention of the test material. Using the information on lung burdens at 

different times, clearance kinetics can be calculated and presented as retention half-times. 

Knowledge of clearance rates is especially relevant to determine whether AM clearance 

capacity is overwhelmed resulting in volumetric particle overload (Morrow, 1988). In rats, the 

pulmonary retention half-time of poorly-soluble particles is about 70 days (Oberdörster, 1988; 

Bailey et al., 1989). Considerably greater half-times are an indication of lung (or rather 

macrophage) particle overload. Under overload conditions, when particle clearance by AMs is 

overwhelmed, NP contact with alveolar epithelial cells is prolonged. With this, the probability 

of NP uptake by epithelial cells, translocation of NPs through the air-blood-barrier, and NP 
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induced cell damage, which can trigger or amplify pro-inflammatory immune reactions, is 

increased (Elder and Oberdörster, 2006; Geiser and Kreyling, 2010). For example, inhalation 

exposure of rats to 0.5 mg/m³ CeO2 NPs for 28 days resulted in an organ burden of 41 µg/lung 

one day after the end of exposure and 9 µg/lung 129 days after the end of exposure. The 

calculated clearance half-time was 40 days and rats showed minimal signs of pulmonary 

inflammation. Increasing aerosol concentration to 5 or 25 mg/m³ CeO2 resulted in organ 

burdens of 520 µg/lung or 2620 µg/lung one day post-exposure, respectively, and 1800 µg/lung 

129 days post-exposure in the 25 mg/m³ exposure group. Clearance half-times in the high 

dose group accounted for more than 200 days, suggesting lung overload conditions. Analysis 

of bronchoalveolar lavage fluid and histological examinations revealed a pronounced 

inflammatory reaction in rat lungs (Keller et al., 2014). 

Thus, understanding pulmonary retention kinetics of inhaled NPs is an essential 

element of establishing dose-response relationship and identifying overload conditions.  
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Box 2 Pulmonary clearance mechanisms 

The clearance mechanism, how particles are removed from the respiratory tract, depends 

on the region where they are deposited (nasopharyngeal, tracheobronchial or alveolar). In 

addition, particle removal can include chemical clearance, i.e. dissolution and absorption, 

or physical clearance, i.e. uptake by alveolar macrophages (AMs) and transport distal to 

the lungs. The latter is the most prevalent for poorly-soluble particulate matter in the lower 

respiratory tract. 
 

Conducting airways 

• The main clearance mechanism of particulate matter from the tracheobronchial tree is 

the mucociliary escalator. Ciliated cells of the epithelium of the trachea and the bronchi 

continuously propel the mucus layer, together with all trapped particulate matter, towards 

the pharynx. From here, the excretion via the gastrointestinal tract continues. 

• Water-soluble substances readily dissolve in the mucus layer of the nasopharynx and 

tracheobronchial tree.  
 

Alveolar region 

• The main clearance mechanism of poorly soluble particles from the alveolar surface is 

the phagocytosis of particulate matter by AMs. AMs rapidly engulf any particulate matter, 

e.g. NPs, from the alveolar surface. Subsequently, AMs can migrate toward the 

bronchioli and bronchi, where they are transported via the mucociliary escalator to the 

pharynx. Alternatively, AMs can also migrate to the local lung-draining lymph nodes. 

Besides this physical clearance, AMs are also involved in chemical clearance 

(degradation of the incorporated material). 

• NPs can be internalized to some extend by alveolar epithelial cells (Geiser et al., 2005). 

• NPs can translocate through the alveolar epithelium into the interstitium (Ferin et al., 

1992). Interstitial translocation occurs to a greater extend in primates and dogs than in 

rodents (Nikula et al., 1997; Oberdörster et al., 2005). 

• NPs can enter the lymphatic network, for instance through crossing open intercellular 

junctions between endothelial cells (Lauweryns and Baert, 1977), and can accumulate 

in draining lymph nodes. 

• NPs can translocate through the air-blood barrier into the blood stream, which renders 

them systemically available. NPs were found in liver, spleen, kidneys, heart, brain, 

reproductive organs, skeleton, and connective tissue after inhalation exposure 

(Oberdörster et al., 2002; Geiser et al., 2005; Geiser, 2010). However, systemic 

translocation of NPs subsequent to inhalation exposure occurs only at very low levels 

(Kreyling et al., 2002). 
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1.2.1 Theoretical considerations of biodissolution and transformation 
 

NPs are produced on purpose with specific size, shape, composition and with or without 

surface functionalization. The by now available toxicological data suggest that it is not possible 

to link one single material characteristic to the behavior of a NP in vivo. Rather the sum of 

several material’s characteristics affects its biokinetics and subsequent biological effects 

(Donaldson and Poland, 2013; Godwin et al., 2015; Landsiedel et al., 2017). The particle size 

and shape together with the surface chemistry (affecting e.g. surface charge) determine the 

agglomeration tendency, the hydrophobicity and importantly the protein binding capability of a 

NP. All physicochemical properties together distinctly influence the biokinetics of NPs 

(Landsiedel et al., 2012). In addition, the biokinetics of NPs are highly dependent on the 

conditions of the biological system (cell, tissue, organ) under investigation (Opanasopit et al., 

2002; Nagayama et al., 2007; Aggarwal et al., 2009; Tenzer et al., 2013; Docter et al., 2015). 

Thus, intrinsic physicochemical material properties as well as system-dependent properties in 

the given biological system under investigation, should be considered together when 

assessing the potential hazards of NPs. Proposed frameworks for the testing and grouping of 

NPs take this into account (Arts et al., 2015; Collier et al., 2015; Oomen et al., 2015). 

One parameter increasingly recognized as a fundamental parameter influencing 

inhalation toxicity of NPs is the material dissolution rate in vivo (Graham et al., 2017b), which 

should not be confused with the water solubility measured under static conditions (Box 3). 

Whereas first grouping strategies suggested water solubility as a grouping criterion, meanwhile 

it was recognized that the dissolution observed in vivo, the biodissolution, often differs from 

the water solubility measured in abiotic, static systems (Arts et al., 2015; Oberdörster and 

Kuhlbusch, 2018). Therefore, the rate of dissolution under simulated physiological conditions 

became one fundamental criterion to assess similarity between NPs in latest grouping 

frameworks (Gray et al., 2018; Oomen et al., 2018). 

One factor responsible for the observed difference between water solubility and 

biodissolution is the contribution of AMs to chemical particle clearance in vivo (Box 2). Once 

NP agglomerates deposited in the alveolar region are phagocytized by AMs, the formed 

phagosome, containing the internalized cargo, fuses with lysosomes, containing various 

hydrolytic enzymes. Notably, the maturation of the phagolysosome is accompanied with its 

continuous acidification. When these intracellular organelles are fully mature, lysosomes 

harbor a milieu of pH 4.5. This condition might be decisive in the scope of chemical clearance, 

as particle dissolution can be influenced by varying pH. For instance, strontium carbonate 

(SrCO3) has a very low water solubility but is readily soluble under acidic conditions. Similarly, 

the solubility of zinc oxide (ZnO) is known to be pH-dependent. At the end of a 90-day 

inhalation exposure period to ZnO NPs only 2 % of the deposited material were detectable 
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Box 3 Definitions for static solubility, non-equilibrium dissolution rate, biodissolution, and 

biotransformation (taken and modified from (Koltermann-Jülly et al., 2018)). 

 

in lungs, suggesting high biodissolution, although ZnO is poorly soluble in water (Creutzenberg 

et al., 2012b). No increased ZnO levels were found in other organs.  

Another factor responsible for the difference between water solubility and dissolution 

rate in vivo is the different dynamics of the two systems under investigation. Water solubility is 

measured under static conditions, which allow for saturation of the receptor medium (water) 

and reaching equilibrium. After a while, a solubility limit is reached in the static system. 

Because the lungs are embedded in a dynamic system, continuously perfused with blood, 

pulmonary biodissolution is a dynamic process out of equilibrium. Further, the biodissolution 

• Solubility is measured in equilibrium saturated suspensions, with appropriate 

descriptor of mg/L ion, identical with the conventional solubility limit. 

Implicitly, it often means solubility in water at neutral pH and was 

proposed as a first screening method for soluble NPs (Arts et al., 

2015), to be refined to the solubility in relevant medium as subsequent 

method (Arts et al., 2015; Avramescu et al., 2017). Plakhova et al. 

demonstrated that “% dissolved” is not an equivalent metric, and 

probably not appropriate (Plakhova et al., 2016). 

• Dissolution rate is measured at out-of-equilibrium conditions and below the saturation 

in the relevant medium, with appropriate descriptors in units of ion 

mass per solid mass per time (=%/h) or ion mass per solid particle 

surface per time (=ng/cm2/h). It is considered an extrinsic property. 

• Biodissolution describes the chemical clearance process of ion liberation from a 

deposited solid in a given biological environment at the respective 

physiological conditions. Because of the continuous perfusion of 

organs, biodissolution describes rather a dynamic process out of 

equilibrium, although local (super)saturation conditions in certain 

microenvironments are possible. 

• Biotransformation describes the propensity of the non-dissolved remaining solids to 

“change what they are” in the relevant medium, regarding their physical 

shape, or size, chemical identity or crystallinity, and has no clearly 

defined descriptors. It is also considered as extrinsic property and has 

implications for hazard assessment, e.g. if the aspect ratio or 

crystalline phase changes. 
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process is a gradual, time-dependent process. It reduces particle size, which in turn influences 

the dissolution kinetics (Pauluhn, 2014). Thus, using solubility as a surrogate for dissolution 

rate may underestimate the biodissolution. 

An outstanding example of pulmonary biokinetics is the case of Barium sulfate (BaSO4). 

BaSO4 has a very low water solubility and is frequently used as a harmless radiocontrast agent 

for medical diagnostic purposes. In the past, BaSO4 as bulk form was described as an inert 

dust (Einbrodt et al., 1972). Recent studies in rats, investigating BaSO4 NPs, revealed that 

intratracheally instilled 131BaSO4 had a pulmonary retention half-time of 9.6 days, which is 

around seven times faster than clearance via AMs and the mucociliary escalator. 

Histopathological analysis of exposed animals did not reveal any sign of pulmonary toxicity. 

Further, the instilled 131Ba was found incorporated into bones and bone marrow of experimental 

animals (Konduru et al., 2014). Similarly, a 90-day inhalation study, exposing rats to a high 

aerosol concentration of 50 mg/m³ BaSO4, revealed a pulmonary retention half-time of 56 days 

and no signs of lung overload and only slight pulmonary inflammation (Schwotzer et al., 2017). 

However, during a two-year rat inhalation study with 50 mg/m3 BaSO4 an increase of retained 

Ba in the lungs during the first year of exposure, subsequently reaching a steady-state during 

the second year of the study, was observed. Ba retention was accompanied by pulmonary 

inflammation (Ma-Hock et al., 2017). In addition, substantial Ba accumulation in bone and bone 

marrow was repeatedly observed after inhalation exposure to BaSO4 (Konduru et al., 2014; 

Ma-Hock et al., 2017; Schwotzer et al., 2017). Notably, the applied analytical methods 

measured elemental Ba and did not differentiate ionic Ba2+ and particulate BaSO4. When 

investigating the biokinetics of inhaled NPs, it has to be critically evaluated whether the element 

detected in secondary organs arrived there in the original particulate form or if biodissolution 

preceded the subsequent translocation of ions. 

For NPs that undergo biodissolution, clearance mechanisms might be influenced due 

to binding to proteins or other biomolecules, or due to chemical or structural biotransformation. 

These bioprocessing events were found to be organ-specific and can prolong retention and 

modulate the overall biopersistence and eventually the biological effects of NPs (Graham et 

al., 2017a; Graham et al., 2017b; Graham et al., 2018; Oberdörster and Kuhlbusch, 2018). 

Biotransformation means physicochemical modifications of the parent solid during 

biodissolution, for example changes of particle size, particle shape, recrystallization, 

(re-)speciation (changing the chemical composition), and reprecipitation. Biotransformation in 

the form of recrystallization and respeciation was observed for zero-valent Ag- or Cu-particles 

in environmental media (Adeleye et al., 2014; Dale et al., 2015; Vencalek et al., 2016; Mitrano 

and Nowack, 2017; Gao and Lowry, 2018). Biotransformation in the form of reprecipitation was 

observed for amorphous SiO2 NPs and CeO2 NPs in the pulmonary microenvironment 

(Graham et al., 2017b). Cerium, for instance, forms secondary NPs via reprecipitation, i.e. 
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cerium phosphate particles, under lysosomal conditions (Berry et al., 1988; Li et al., 2014). 

Thus, biotransformation of NPs influences their biological effects and final toxicity. 

 

 

1.2.2 Methodological considerations of biodissolution and biotransformation 
 

It is more and more recognized that dissolution rates of poorly-soluble NPs might differ 

to a great extend from their determined water solubility and between different materials (Collier 

et al., 2015; Oberdörster and Kuhlbusch, 2018; Oomen et al., 2018). Oberdörster and 

Kuhlbusch (2018) realized that it might be too simplistic to group NPs just into groups of soluble 

and poorly-soluble materials. In addition, quantitative thresholds are still missing in most 

grouping frameworks for the testing of NPs proposed till now, as well as standardized (in vitro) 

methods, which are applicable to NPs (Steinhäuser and Sayre, 2017). Suitable methods 

should be specific, realistic and relevant to the assessment of pulmonary biodissolution of NPs. 

In addition, the ideal method will enable the evaluation of structural biotransformation of the 

remaining solid. However, establishing a standardized method representing biodissolution in 

the lungs is challenging, because the lungs have unique features that are difficult to replicate 

in vitro or in abiotic systems. For instance, lining and interstitial fluids are pH-balanced, 

complex mixtures of salts, lipids, serum proteins, and other biomolecules and it is not only 

difficult to simulate the composition but also the extremely small amount of lining fluid e.g. in 

the alveolar region, i.e. the thin layer of surfactant (Marques et al., 2011). Hence, simulated 

biological fluids need to be sufficiently complex to simulate oxidative, reductive and pH-driven 

dissolution pathways. For the purpose of simulating physiological conditions, several lung 

simulating fluids have been developed, such as Gamble’s solution with pH 7.4, which simulates 

the interstitial fluid deep within the lungs (Colombo et al., 2008; Marques et al., 2011). 

Considering the main clearance mechanism of particulate matter from the alveolar surface, i.e. 

the phagocytosis by AMs, simulated biological fluids which mimic the acidic phagolysosomal 

conditions inside the cell are most appropriate for the assessment of pulmonary biodissolution. 

Therefore, media with pH 4.5, such as artificial lysosomal fluid or phagolysosomal simulant 

fluid (PSF) were developed (Stefaniak et al., 2005; Marques et al., 2011). Simulated biological 

fluids are expected to be a more potent tool in estimating the biodissolution and in vivo behavior 

of NPs. 

Because the lungs are continuously and strongly perfused, grouping of NPs by static 

solubility values has been questioned (Klaessig, 2018). Dynamic systems may be better suited 

for evaluating the non-equilibrium biodissolution of deposited particles in the lungs, where ions 

that are liberated from the deposited particle’s surface are continuously removed. To measure 

physiologically relevant dissolution rates, dynamic systems consisting of flow cells were used 
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to mimic the non-equilibrium physiological conditions of the lungs (Christensen et al., 1994; Nti, 

2017). Different flow cells have been used to simulate biodissolution in the gastrointestinal 

tract (Bove et al., 2017). For mineral fibers, flow-through cell dissolution rates were found to 

correlate strongly with in vivo pulmonary clearance kinetics (Christensen et al., 1994; Guldberg 

et al., 1995). In flow-through cells, the material under investigation is trapped between two 

membranes with a pore size that excludes the translocation of the solid. Liberated ions pass 

through the membrane and are constantly removed from the system, following a flow, which is 

generated using a peristaltic pump. Thus, non-equilibrium conditions are achieved by flow-

through dialysis. The dialysate is collected in discrete volumes and the target analyte can be 

quantified. Importantly, for NPs, appropriate separation membranes with sufficiently small pore 

sizes are required (Stefaniak et al., 2005). 

In addition to biodissolution, dynamic systems are suitable to assess organ-specific 

transformation of the remaining solid under investigation when using an appropriate simulated 

biological fluid (Pompa et al., 2015; Bove et al., 2017; Graham et al., 2018). Subsequent to 

sample collection for dissolution analysis, remaining solid can be imaged through transmission 

electron microscopy (TEM) to investigate potential structural transformation processes 

(Graham et al., 2018). 

Still, abiotic dissolution testing, mimicking physiological conditions, remains a simplistic 

approximation of the in vivo situation. The macrophage-assisted chemical clearance of pH-

sensitive NPs might be underestimated (Kass, 1964; Geiser, 2010). To date, a vast amount of 

in vitro studies is being published investigating the cellular effects of NPs on pulmonary cells 

(Kroll et al., 2011; Nel et al., 2013; Vennemann et al., 2017; Wiemann et al., 2018). However, 

whether macrophage-based in vitro assays are applicable to assess the biokinetics of NPs 

needs further validation (Oberdörster and Kuhlbusch, 2018). The rat AM cell line NR8383 

proved to be a suitable tool in the hazard assessment of NPs (Pulskamp et al., 2007; Wagner 

et al., 2007; Lison et al., 2008; Eidi et al., 2010; Scherbart et al., 2011; Bhattacharjee et al., 

2012). The in vitro potency screening of NPs using NR8383 cells correlated well with results 

of short-term inhalation studies (STIS) regarding NP’s inflammogenicity (Wiemann et al., 2016). 

Moreover, these cells, like other macrophages in vivo, are capable of producing reactive 

oxygen species such as H2O2 (Wiemann et al., 2016), which may contribute to bioprocessing 

of NPs. Hence, this dissertation project investigated whether biodissolution of NPs can be 

assessed in vitro by NR8383 AMs. 
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1.3 Pulmonary effects of inhaled, poorly-soluble nanoparticles 
 

Data derived from early human epidemiological studies and rat inhalation studies, 

revealed that poorly-soluble granular dust caused pronounced pulmonary toxicity, in form of 

lung inflammation, although these materials caused very low toxicity in oral and dermal studies 

(Davis et al., 1978; Pepelko et al., 1980; Green et al., 1983; Bowden, 1987). Upon chronic 

exposure to granular dust, histopathological effects were reported to progress to fibrotic 

alterations of lung tissue and, in rats, chronic inflammation was repeatedly associated with 

lung tumor formation (Heinrich et al., 1995; Muhle et al., 1995). Similarly, in vivo studies in 

rodents indicated a hazard of inhaled, poorly-soluble NPs to cause pulmonary inflammation at 

sufficient dose. Prolonged exposure to NPs also seemed to facilitate potential progression of 

effects to fibrosis and/or lung tumor formation (Heinrich et al., 1995; Kasai et al., 2016; 

Landsiedel et al., 2017). Common observations made during long-term inhalation studies in 

rats, which investigated high aerosol concentrations of granular dusts, were ceasing particle 

clearance from the lungs and increasing lung burdens. To explain these observations, the lung 

particle overload concept, which is based on the overpowering of AM based particle clearance, 

was proposed (Morrow, 1988) (see section 1.1). Pulmonary clearance of deposited particulate 

matter begins to decrease when AM volume is increased by 6%, and it further decreases with 

more particles occupying increasing cellular volume as a result of excessive phagocytosis 

(Morrow, 1988). The overload concept for pulmonary particle clearance was described for 

micro-sized particles but seems to apply to biopersistent NPs and nanoparticle agglomerates, 

as well (Oberdörster et al., 1994a; Keller et al., 2014; Borm et al., 2015). Notably, the lung 

particle overload concept does not take the inherent toxicity of the investigated material into 

account (Morrow, 1988). Observed differences in inflammatory potency, quality of 

inflammation, and long-term histopathological outcome of different poorly-soluble NPs suggest, 

however, that this aspect should be considered. 

Pulmonary exposure to biopersistent NPs at sufficient dose results in an inflammatory 

response of the lungs (Shvedova et al., 2008; Ma-Hock et al., 2009b; Keller et al., 2014; 

Morimoto et al., 2015). Notably, intratracheal instillation and short-term inhalation studies 

(STIS) indicate differences in early biological effects of poorly-soluble NPs (Takebayashi et al., 

2019). STIS (5 day exposure) proved to be a valuable tool in the identification of hazard and 

potency (Ma-Hock et al., 2009a; Klein et al., 2012), prioritization (Landsiedel et al., 2008; 

Landsiedel et al., 2014), and grouping (Arts et al., 2015) of inhaled NPs. Cho et al. 

intratracheally instilled different metal oxide NPs (TiO2, CeO2, SiO2, NiO, ZnO and CuO), 

carbon black, and amine-modified polystyrene beads to rat lungs. The doses were adjusted to 

the same surface area applied per animal (cm² NP/rat). 24 hours and four weeks post exposure 

they found that only CeO2, NiO, ZnO and CuO elicited an inflammatory response and that the 
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reaction differed in types of infiltrating cells, inflammatory mediators, time course, and 

cytotoxicity. Distinct patterns of neutrophilic, lymphocytic, and/ or eosinophilic infiltrations, and 

for some materials, fibrotic changes of lung tissue or granulomatous inflammation were 

observed (Cho et al., 2010). Similarly, pulmonary toxicity of biopersistent NPs assessed by 

means of STIS differed from each other (Landsiedel et al., 2014). The inhalation exposure to 

100 mg/m³ TiO2 caused a pronounced inflammatory response as evidenced by highly 

increased parameters in BALF (e.g. dramatic increase in neutrophil cell counts, minimal 

increase in lymphocytes and monocytes). Histological lung sections of exposed animals 

revealed a minimal neutrophilic infiltration and minimal to moderate histiocytosis. The 

inflammation declined 14 days post-exposure. Lung burdens accounted 2.02 mg/lung at the 

end of exposure and 1.55 mg/lung two weeks post-exposure (van Ravenzwaay et al., 2009). 

Exposure to aerosol concentrations of 25 mg/m³ CeO2 resulted in strong pulmonary 

inflammation based on highly increased parameters in BALF (e.g. pronounced increase in 

neutrophil, as well as increase of lymphocyte, eosinophil and monocyte cell counts), and 

minimal histiocytosis in lung tissue. 21 days post exposure BALF parameters partly regressed 

but inflammation persisted, as evidenced by histiocytosis in histological lung sections. Lung 

burdens were 0.53 mg/lung and 0.4 mg/lung one day and three weeks post-exposure, 

respectively. Notably, inflammation caused by 25 mg/m³ CeO2 dust aerosol concentration, 

changed to granulomatous inflammation following 28-days exposure plus 34 days post-

exposure. One day after the end of exposure lung burden accounted for 2.62 mg/lung and 

decreased to 1.8 mg/lung 129 days post-exposure. The calculated clearance half-time was 

more than 200 days, suggesting lung overload conditions (Keller et al., 2014). Short-term 

inhalation exposure to 32 mg/m³ mwCNT lead to granulomatous type of inflammation with 

minimal to mild histiocytosis in lungs of exposed animals immediately following exposure. In 

BALF, lymphocyte and neutrophil cell numbers were increased, demonstrating pulmonary 

inflammation. Histopathological findings were not reversible and granulomatous inflammation 

persisted during a 21-day post-exposure period (Ma-Hock et al., 2009b). In comparison, 100 

mg/m³ non-nano quartz lead to a very strong inflammatory response with minimal to moderate 

histiocytosis in lungs of exposed animals one day post-exposure. BALF analysis resulted, 

similar to TiO2, in increased neutrophil and slightly increased lymphocyte and monocyte 

numbers, but to a much greater extend when compared to TiO2 NPs. 14 days post-exposure 

inflammatory parameters were not de- but increased and histological findings of a diffuse 

inflammatory response, composed of AMs, neutrophils and cell debris, progressed and 

increased in severity. Measured lung burden was 2.19 mg/lung and 1.76 mg/lung one day or 

two weeks post-exposure, respectively. The calculated clearance half-time of 92 days 

indicated slight lung overload conditions (van Ravenzwaay et al., 2009). 
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These differences in inflammatory potency of the investigated NPs became even more 

pronounced in sub-chronic (90-day) inhalation studies (Bermudez et al., 2004; Ma-Hock et 

al., 2009b; Schwotzer et al., 2017). Sub-chronic inhalation exposure to an aerosol 

concentration of 2 mg/m³ TiO2 caused minimal to mild lesions comprised of particle-laden 

macrophage accumulations, aggregations in sub-pleural and in centriacinar regions 

(Bermudez et al., 2004). These lesions were associated with minimal hypertrophy and 

hyperplasia of alveolar type II cells. At 10 mg/m³ more severe epithelial proliferative changes 

were observed. However, most of these lesions regressed during a post-exposure period of 

13 to 52 weeks. In comparison, sub-acute (28-day) and sub-chronic exposure to CeO2 elicited 

pulmonary inflammation at very low dust aerosol concentrations down to 0.1 mg/m³. Notably, 

inflammatory findings changed to granulomatous type of inflammation and persisted with time 

post exposure (13 weeks) (Keller et al., 2014; Schwotzer et al., 2017). CeO2 lung burdens 

were measured at termination of the 90-day exposure period and subsequent to a 90-day 

exposure free period and amounted to 1.3 mg/lung and 1.0 mg/lung, respectively. Under these 

overload conditions the clearance half-time was calculated to be 224 days (Schwotzer et al., 

2017). Furthermore, biopersistent, high aspect ratio nanomaterials, such as mwCNT, showed 

very high inflammogenic potential following inhalation exposure (Ma-Hock et al., 2009b; 

Landsiedel et al., 2010). Sub-chronic exposure to 0.1, 0.5, or 2.5 mg/m³ mwCNT caused dose-

dependently granulomatous inflammation, even at the lowest aerosol concentration. The 

granulomatous inflammation was composed of AMs and neutrophils and was located in the 

centriacinar region. In addition, intraseptal granuloma formation was observed. Deposition 

estimates of 1.2 mg deposited material/lung suggest that the highest dose tested caused 

pulmonary particle overload (Ma-Hock et al., 2009b). In another sub-chronic inhalation toxicity 

study, exposure of rats to 5 mg/m³ mwCNT, resulted in persistent pulmonary inflammation. 

Alveolar granulocytic infiltration, interstitial inflammation, and focal alveolar septal fibrosis were 

observed one year post-exposure (Pothmann et al., 2015; Régnier et al., 2017). High aerosol 

concentration of 60 mg/m³ non-nano quartz for 90 days lead i.a. to granuloma formation, 

histiocytosis, cellular debris, alveolar lipoproteinosis, increased septal cellularity, and focal 

interstitial fibrosis. Notably, the incidence and severity of these findings progressed during the 

course of the post-exposure period (52 weeks) (Reuzel et al., 1991). A second 90-day 

inhalation toxicity study exposing rats to 3 mg/m³ quartz found increased inflammatory 

parameters in BALF and  increased numbers of neutrophils, histiocytosis, greatly thickened 

alveolar septa, and progressive inflammation in histological lung sections subsequently to 

exposure and at the end of the post-exposure period (32 weeks) (Johnston et al., 2000). 

Finally, long-term inhalation studies uncovered distinct differences in long-term 

biological effects of these NPs. Inhalation exposure of rats for two years to 5 mg/m³ TiO2 

(Bayertitan T, rutile) resulted in slight fibrosis but no increased tumor incidence. The lung 
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burden was 2.7 mg/ lung, whereas the lung clearance was not determined (Muhle et al., 1995). 

Aerosol concentration of (on average) 10 mg/m³ TiO2 NPs for two years, however, caused 

toxic effects on AMs, retardation of particle lung clearance (clearance half-time 368 days), high 

lung burden of 40 mg/ lung, bronchoalveolar hyperplasia, interstitial fibrosis, and increased 

lung tumor rates (Heinrich et al., 1995). A long-term rat inhalation toxicity study was also 

conducted with CeO2. Animals were exposed to aerosol concentrations of 0.1, 0.3, 1, or 3 

mg/m³ CeO2. Lung inflammation based on increased BALF parameters, i.a. increased total cell 

number, neutrophils, eosinophils, lymphocytes, and macrophages, and on histopathological 

evaluation was observed for all doses tested. Lung burden after two-year exposure to 3 mg/m³ 

CeO2 was 5.88 mg/lung. Histopathological evaluation lead i.a. to the diagnosis of interstitial 

fibrosis (Ma-Hock et al., 2017). During a long-term inhalation toxicity study performed by Kasai 

et al., rats were exposed for two years to fibrous, straight-type mwCNT (MWNT-7) at aerosol 

concentrations of 0.02, 0.2, or 2 mg/m³. Concentration-dependent toxic effects in the lungs 

such as epithelial hyperplasia, granulomatous changes and focal fibrosis of alveolar septa, and 

alterations in BALF parameters (increased numbers of neutrophils, eosinophils, lymphocytes, 

and macrophages) were found. Lung burdens accounted for 1.2 mg/ lung in female and 1.8 

mg/ lung in male animals. The highest dose tested lead to increased lung tumor rates. In 

contrast to asbestos fibers, however, no development of pleural mesothelioma was observed 

(Kasai et al., 2016). A long-term inhalation toxicity study with quartz found that exposing rats 

to 1 mg/m³ quartz dust results in histological changes comprised of infiltration of neutrophils, 

multifocal lipoproteinosis, foamy macrophages, fibrosis, and increased lung tumor rates (Muhle 

et al., 1995). Thus, with prolonged exposure time, effects observed for NPs may persist or 

progress to fibrosis or possibly lead to lung tumor formation (Heinrich et al., 1995; Muhle et al., 

1995; Kasai et al., 2016; Ma-Hock et al., 2017). 

The above descriptions indicate that lung overload alone cannot account for the distinct 

biological effects of different biopersistent NPs. Further, it is now known that a material’s 

hazard is not governed by a single physicochemical determinant but by a range of 

physicochemical properties of the material (see also section 1.2). Size, shape, chemical 

composition, surface area, solubility, crystalline structure and surface reactivity are material 

properties which were shown to impact the toxicity of NPs (Brunner et al., 2006; Duffin et al., 

2007; Limbach et al., 2007; Wick et al., 2007; Yang et al., 2009; Landsiedel et al., 2010). Within 

a given biological microenvironment these material characteristics determine the toxic effects 

of NPs through different possible cellular mechanisms (Nel et al., 2006; Landsiedel et al., 2010): 

- Direct interactions with cellular structures/ intracellular organelles (Yanamala et al., 

2013; Lu et al., 2015), catalyzing formation of reactive species (see below), and release 

of toxic ions (Ivask et al., 2015). 
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- Potential to generate reactive oxygen species (ROS), either through catalyzing the 

formation of ROS at the particle’s surface or through induction of (intra-)cellular stress, 

which leads to ROS generation. Either way, excessive amounts of ROS induce further 

cell damage in the form of lipid, protein and DNA damage (Sayes et al., 2006b; Kroll et 

al., 2011; Kroll et al., 2013; Sauer et al., 2014; Lu et al., 2015; Lujan and Sayes, 2017). 

- Affecting cell viability, induction of cytotoxicity (Sayes et al., 2006a; Sayes et al., 2006b; 

Sauer et al., 2014; Lu et al., 2015). 

- Induction of genotoxicity, primary or secondary (Donaldson et al., 2010b; Oesch and 

Landsiedel, 2012). 

- Affecting gene expression profiles (Chen et al., 2006; Fujita et al., 2009). 

- Induction of pro-inflammatory signaling (Sayes et al., 2006b; Schinwald et al., 2012; 

Xia et al., 2013; Sauer et al., 2014). 

Thereby the apical toxic effect can result from a combination of various effects of particles on 

(different) cells. Due to their inherent surface reactivity, metal oxide NPs are potent inducers 

of oxidative stress (Limbach et al., 2007; Shvedova et al., 2008; Yang et al., 2009). Their ROS 

generating capacity is related to induction of DNA damage, inflammation, and cytotoxicity 

(Sayes et al., 2006b). For instance, although TiO2 NPs initially were described as poorly soluble 

and of low toxicity, several studies suggest that TiO2, might induce cellular oxidative stress, 

affecting intracellular redox signaling, and ultimately leading to the expression of pro-

inflammatory mediators, including pro-inflammatory enzymes such as inducible nitric oxide 

synthase (iNOS) (Singh et al., 2007; Horie et al., 2010; Scherbart et al., 2011). Instillation 

experiments, applying 0.5, 5, or 50 mg/kg bw TiO2 NPs to rats, revealed a dose-dependent 

induction of nitric oxide secretion by AMs (Liu et al., 2010). Similarly, it was shown that quartz 

particles are very potent in hydroxyl radical formation, and that AMs exposed to quartz particles 

suffer oxidative stress (Shi et al., 1988; Polimeni et al., 2008; Ghiazza et al., 2010). Because 

AMs represent the essential cell type of pulmonary defense and exert complex 

immunoregulatory functions, knowing the mechanisms induced by NPs at the cellular level will 

allow to understand the apical toxic effects that result in acute or chronic lung injury. 
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1.4 Effects of nanoparticles on alveolar macrophage polarization 
 

Obviously, AMs hold a central role in pulmonary particle clearance and pulmonary 

immune responses (Box 4) (Mills et al., 2015). Thus, the inflammogenic potential of NPs in the 

lungs highly depends on its interactions with and impact on AMs. In general, particle uptake 

by phagocytes is largely influenced by opsonization of the particle with immunological proteins. 

For poorly soluble particles, and for some NPs, it was shown that phagocytic uptake is 

influenced by their physicochemical properties and, associated with this, their protein binding 

capacity (Kumar et al., 2016a). Depending on size, shape, surface, adsorbed proteins etc. 

interactions with specific plasma membrane receptors (phagocytic, immunogenic, signal 

transducing etc.) and uptake mechanisms by which macrophages internalize foreign material 

can substantially differ, which already influences the intracellular signaling cascade to be 

initiated (Beningo and Wang, 2002; Champion et al., 2008; Doshi and Mitragotri, 2010; 

Scherbart et al., 2011). All these early initiating events determine the downstream signaling 

cascades, including specific transcription factors and the downstream expression of effector 

molecules and proteins, which might be activated or suppressed (Savill et al., 1992; Platt and 

Gordon, 1998; Ma et al., 2012). Once internalized, NPs can disturb directly or indirectly 

intracellular homeostasis, for instance through interacting with or entering into intracellular 

organelles (Ahlinder et al., 2013) or induction of intracellular (oxidative) stress (generation of 

ROS), respectively (Asati et al., 2010; Ahamed et al., 2016). Furthermore, ROS can affect 

numerous intracellular signaling cascades. At low concentrations, ROS act as signaling 

molecules either directly by interacting with oxidation-sensitive transcription factors, or 

indirectly by inducing the phosphorylation of central transcription factors such as NF-κB 

(Asehnoune et al., 2004; Amma et al., 2005). This might further affect gene expression of 

enzymes for defense, or proteins for pro-inflammatory signaling (Weigert et al., 2018). At high 

concentrations, ROS damage lipids, proteins and DNA of macrophages and neighboring 

epithelial cells, ultimately leading to tissue destruction (Grosche et al., 2018; van der Vliet et 

al., 2018) (see also section 1.3).  

Under physiological conditions, AMs handle metabolic tissue homeostasis; but when 

encountering pathological stimuli, danger signals arising from bacteria, NPs, or surrounding 

tissue damage, AMs become activated and exert their immunological effector functions, 

namely antimicrobial and antitumoral activities (Martinez et al., 2008; Wynn et al., 2013). 

However, their immunological repertoire comprises not only the induction of a pro-inflammatory 

immune response, but also the orchestration of resolution of inflammation and tissue repair 

(Laskin et al., 2011; Venosa et al., 2015). Data published during the past three decades 

suggest that these various activities are mediated by different subpopulations of macrophages, 

which exert these diverse roles and that their phenotype highly depends on the signals they 
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encounter in their local tissue microenvironment (de Waal Malefyt et al., 1993; Buttner et al., 

1997; Hancock et al., 1998; Porcheray et al., 2005; Anthony et al., 2006; Edwards et al., 2006; 

Sindrilaru et al., 2011; Lu et al., 2018; Laskin et al., 2019). In a rather simplistic view, these 

macrophage subpopulations can be divided into two major distinct macrophage phenotypes, 

which have been categorized broadly as classically activated, pro-inflammatory M1 

macrophages and alternatively activated, anti-inflammatory M2 macrophages (Mills, 2012; 

Gordon et al., 2014; Martinez and Gordon, 2014). As indicated above, the first response to 

pathogenic signals or toxicants is the release of mediators by activated AMs for eliminating 

foreign threats; here the cell acquires a M1 phenotype. This macrophage subpopulation is 

characterized by the expression and secretion of large quantities of pro-inflammatory cytokines 

(e.g. IL-6, TNFα, IL-1β, IL-8), high production of ROS and reactive nitrogen intermediates, with 

chemotactic and strong cytotoxic activities, respectively. Later in the immunological process, 

M2 macrophages appear at the inflamed and/or wounded site and secrete mediators that 

down-regulate the pro-inflammatory response and promote the resolution of inflammation, 

tissue remodeling, and wound repair. However, over-activation of M1 or M2 macrophages, 

characterized by prolonged or excessive release of respective mediators, can contribute to 

unrestrained tissue destruction, uncontrolled pulmonary inflammation, acceleration of disease 

progression, or development of fibrosis (Laskin, 2009; Mills et al., 2015). 

Inhaled NPs are capable of activating AMs leading to the expression of pro-

inflammatory mediators, recruitment of inflammatory cells and thereby mounting an 

inflammatory immune reaction (Blackford et al., 1994; Lucarelli et al., 2004; Rao et al., 2004; 

Ma et al., 2011; Scherbart et al., 2011; Barna et al., 2013; Chang et al., 2014; Rydman et al., 

2014; Meng et al., 2015; Kumar et al., 2016b; Li et al., 2017a; Dong and Ma, 2018). 

Furthermore, an emerging data base demonstrates that NPs differentially influence 

macrophage polarization (Miao et al., 2017). It should be noted that, on one hand AMs could 

be polarized to M1 or M2 phenotype by the engulfed material itself. On the other, AMs could 

be polarized by extracellular signals they encountered in the pulmonary microenvironment, for 

example released by wounded epithelial cells. Ultimately, NPs can impact the local tissue 

M1/M2 balance, which can alter pulmonary immune system defense properties (Chang et al., 

2014; Miao et al., 2017). TiO2 NPs as well as quartz particles were repeatedly found to 

differently influence M1 and M2 specific protein expression, respectively (Blackford et al., 1994; 

Lucarelli et al., 2004; Rao et al., 2004; Scherbart et al., 2011; Chang et al., 2014; Kumar et al., 

2016b). Also, there is first evidence that CeO2 as well as mwCNT might affect macrophage 

polarization (Ma et al., 2011; Barna et al., 2013; Rydman et al., 2014; Meng et al., 2015; Li et 

al., 2017b; Dong and Ma, 2018). It seems that not only the dose but also the dose rate and the 

duration of exposure influence the dynamics and the herewith associated spatio-temporal 

changes of M1 and M2 polarization. For instance, Kumar et al. found a dose-dependent shift 
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from M2 to M1 polarization of macrophages after i.v. administration of TiO2 in rats (Kumar et 

al., 2016b). Other authors found a time-dependent, sequential switch in the appearance of 

macrophage subpopulations (Ma et al., 2011; Venosa et al., 2016; Xiang et al., 2016; Dong 

and Ma, 2018). Intratracheal instillation of 0.15, 0.5, 1.3, 5 and 7 mg/kg bw CeO2 NPs caused 

dose-dependently pulmonary inflammation in exposed rats. Pro-inflammatory mediators were 

increased one day post-instillation and decreased afterwards. M2 markers were found 

upregulated 28 days post-instillation. The authors concluded there might be a switch from pro-

inflammatory M1 to pro-fibrogenic M2 macrophages (Ma et al., 2011). Similar results were 

found after oropharyngeal aspiration of mwCNT in mice. Administration of 1.86 mg/kg body 

weight mwCNT caused acute inflammation and fibrotic responses. Consistent with this, M1 

macrophages were most prominent three days post exposure and declined thereafter, 

whereas M2 macrophages started to accumulate from this timepoint on (Dong and Ma, 2018). 

In a mouse model of lung fibrosis, the oropharyngeal instillation of crystalline silica particles 

resulted in an early upregulation of pro-inflammatory mediators beginning one day post-

instillation, peaking at day three, and declining thereafter. At the same time, the authors 

observed a dramatic increase in M2 macrophages on day one, which progressively increased 

throughout the study period (day 28) (Xiang et al., 2016). Interestingly, there is first evidence 

that the crucial balance of M1 and M2 immune responses is not necessarily sequential (first 

M1, second M2 polarization) but there are various pathways, which are early stimulated in 

parallel, and which seem to be independent from each other; each differently affecting early 

macrophage polarization and leading to a different aspect of the observed pathophysiology 

(Re et al., 2014; Nikota et al., 2017; Fritsch-Decker et al., 2018). 
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Box 4 Alveolar macrophages – Origin, immunological functions, M1/M2 phenotypes and 

common M1/M2 markers 

A long-held dogma that all tissue-resident macrophages are derived from local 

differentiation of blood circulating monocytes after extravasation (van Furth and Cohn, 

1968) proved to be oversimplified. Lung resident alveolar macrophages (AMs) are derived 

from fetal monocytes of the fetal liver, which appear in the lungs from embryonic day 14 on. 

During development, the settled fetal lung monocyte population expands dramatically, 

thereby changing its expression profile of characteristic surface markers, until a mature 

phenotype defined as F4/80hiCD11chiSiglecFhiCD64hiCD11bloLy6Clo AMs is reached 

(Guilliams et al., 2013). Thereafter the mature, tissue resident AM population is maintained 

by local cell proliferation, autonomously from immigrating blood monocytes (Guth et al., 

2009; Guilliams et al., 2013; Hashimoto et al., 2013; Becher et al., 2014). The resident AM 

population turns over slowly, with a replacement rate of 40% per year in mice (Maus et al., 

2006). AMs are found in the air space of the alveoli where they form 90-95% of the cellular 

content in the steady state. Their roles encompass contribution to tissue development, 

maintain tissue homeostasis, phagocytosis and degradation of dead cells, cell debris, and 

foreign entities such as pathogens, and orchestrating immune responses (AMs are capable 

of antigen-presentation) (Gordon and Read, 2002). On the inner alveolar surface, they 

occupy a unique niche constantly exposed to innocuous environmental antigens and 

challenged with potential threats. For this reason, a specialized, immunosuppressive 

microenvironment exists that prevents innate immune cell activation unless the threat is 

significant (Guth et al., 2009). Alveolar epithelial cells type I (AEC-I) play a significant role 

in limiting the activation of AMs, i.a. through expressing CD200 and MUC-1 (Snelgrove et 

al., 2008). Through constant inter-cellular communication (e.g. AMs express CD200R at 

their cellular membrane), AEC-I and AMs set the threshold and the quality of the immune 

response. AMs orchestrate the early pro-inflammatory immune response but also its 

subsequent resolution and promote tissue repair processes (Hussell and Bell, 2014). 

According to their versatile functions, AMs can be polarized into various activation states 

(M1, M2) (Martinez and Gordon, 2014). However, when over-activated, they can contribute 

to the progression of disease states such as fibrosis (Mills et al., 2015). 

Pro-inflammatory immune responses are the host’s physiological defense mechanism to 

constrain and destroy invading pathogens. For this purpose, activated AMs acquire a high 

antimicrobial activity, and proteolytic and catabolic capacity (Mackaness, 1964). AMs 

become activated when encountering pro-inflammatory activation signals such as LPS, 

TNFα, IFNγ, or GM-CSF. These mediators trigger the so-called classical pathway of 

activation (Ehrt et al., 2001), which results in an M1 phenotype. 
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Box 4 continued Alveolar macrophages – Origin, immunological functions, M1/M2 

phenotypes and common M1/M2 markers 

M1 polarized AMs up-regulate their phagocytic capacity, the synthesis and release of pro-

inflammatory cytokines (i.a. IL-12, IL-23, TNFα, IL-6, and IL-1β), reactive oxygen species 

and reactive nitrogen intermediates. The latter being produced by the cytoplasmic enzyme 

nitric oxide synthase (iNOS). iNOS becomes induced upon pro-inflammatory signaling (e.g. 

by IFNγ) and metabolizes L-arginine to nitric oxide (NO) and citrulline. High amounts of NO 

are cytotoxic. Thus, iNOS is frequently used as a M1 macrophage marker (MacMicking et 

al., 1997; Mills, 2012; Davis et al., 2013). 

An alternative form of macrophage activation is mediated by cytokines such as IL-4 and IL-

13 and leads to a M2 polarization state (Stein et al., 1992). IL-4/IL-13 signaling suppresses 

the expression of pro-inflammatory cytokines and induces genes for immunoregulation and 

tissue remodeling (e.g. TGF-β) (McKenzie et al., 1999). In M2 polarized AMs the activity of 

a distinct phagocytic receptor repertoire is highly up-regulated, importantly expression of 

the mannose receptor (CD206 or MRC-1) becomes induced (Stein et al., 1992). Activation 

of CD206 is associated with up-regulation of anti-inflammatory cytokines (IL-10, IL-1RA) 

and expression of IL-1 decoy receptors (Taylor et al., 2005). CD206 is a 

phagocytic/endocytic receptor and responsible for the internalization of molecules released 

during an (inflammatory) immune reaction. Upon ligand binding, the receptor-ligand-

complex gets internalized and pathogens or pro-inflammatory mediators undergo lysosomal 

degradation. Thus, CD206 is key in clearing pro-inflammatory signaling molecules and 

resolution of inflammation (Lee et al., 2002; Gazi and Martinez-Pomares, 2009; Martinez-

Pomares, 2012; Kambara et al., 2015) and is frequently used as an M2 macrophage 

marker. In accordance with the immunosuppressive environment of the lungs, AMs show a 

M2 phenotype in the healthy lungs, expressing high amounts of CD206 (Hussell and Bell, 

2014). Another common M2 marker is arginase I (ArgI). ArgI is a cytoplasmic enzyme of 

the arginine metabolism counteracting the effects of iNOS. Several studies point to the 

crucial role of the arginine metabolism in immune responses and the herewith associated 

regulation of iNOS and ArgI expression (Setoguchi et al., 1996; Hesse et al., 2001; Mills, 

2001; Pesce et al., 2009). ArgI is suspected to be involved in cell proliferation, granuloma 

formation, fibrosis, and tissue repair (Mills et al., 1992; Hesse et al., 2001; Gordon, 2003; 

Mills, 2012; Mattila et al., 2013; Duque-Correa et al., 2014). However, several studies 

reported contradictory results on the role of ArgI in these processes (Setoguchi et al., 1996; 

Hesse et al., 2001; Wangoo et al., 2001; Pesce et al., 2009). 
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2. Working hypotheses, aims, and research strategy of the 
dissertation project 

 
The present dissertation project focusses on the biokinetics and biological effects of 

NPs under simulated pulmonary conditions or in the lungs in vivo, respectively. Since the major 

route of occupational exposure during production or processing of NPs is the inhalation route. 

 
Hypotheses 

(1) Triggered by the observed unusual clearance for some poorly water-soluble NPs, 

such as BaSO4, it was hypothesized that internalization of poorly water-soluble NPs 

by AMs can accelerate their biodissolution in vivo, leading to enhanced chemical 

clearance. 

(2) Based on the key role of AMs in pulmonary pro- and anti-inflammatory immune 

responses, it was hypothesized that initial polarization of AMs correlates with short-

term effects of NPs in vivo and that distinct early AM polarization is predictive for 

long-term outcome. 

 
Aims 

The aim of this dissertation project was to investigate to what extent AMs contribute to 

the biodissolution and biological effects of inhaled, biopersistent NPs. Both, the biopersistence 

as well as the pro-inflammogenic, cellular effects of NPs are driving its pulmonary toxicity. 

Because AMs are chiefly involved in pulmonary particle clearance and pulmonary 

immune responses, the current body of work investigates on one hand whether the 

internalization by AMs accelerate biodissolution processes of poorly-soluble NPs, such as 

BaSO4, and on the other whether distinct biological effects of NPs in the lungs correlate with 

different AM phenotypes and if AM phenotypes after short-term exposure are predictive for 

long-term effects. Based on short pulmonary clearance halt-times observed for BaSO4, which 

could not be explained by physical clearance mechanisms, it was hypothesized that AMs 

facilitate accelerated biodissolution (chemical clearance) under physiological conditions. 

Referring to their effector and immunoregulatory functions, it was further hypothesized that 

AMs determine short-term and long-term effects of NPs in vivo and that distinct early AM 

polarization is predictive for the long-term outcome. Standardized abiotic test systems, which 

enable the simulation of physiological conditions, thereby avoiding animal studies, and which 

show good correlation with in vivo biokinetic data, will be valuable tools for these purposes. 

Furthermore, knowledge of the early contribution of M1 and M2 AMs to pathogenesis of early 

pulmonary inflammation and long-term outcome will enable efficient hazard assessment 

reducing the number of extensive long-term inhalation studies in animals. 
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Research strategy 

In the first part of this dissertation project, biodissolution of NPs was assessed using 

different dissolution setups each mimicking various physiological conditions. The solubility and 

dissolution rate of NPs were evaluated as follows. (1) Static solubility of BaSO4 was assessed 

in water and a relevant simulated biological fluid named phagolysosomal simulant fluid (PSF) 

at pH 4.5, to investigate to which extend intracellular phagolysosomal conditions and acidic pH 

affects solubility. (2) Quasi-dynamic dissolution of BaSO4 was assessed in water and PSF with 

pH 4.5, to examine how dissolution changes when equilibrium is disturbed. (3) AM assisted 

dissolution was assessed in vitro, to simulate the complex macrophage-assisted dissolution in 

vivo. The rat AM cell line NR8383 was used. The experiments were performed (by the doctoral 

candidate) in collaboration at IBE R&D Institute for lung health gGmbH (Münster, Germany). 

(4) Dynamic dissolution rates of NPs were quantitatively assessed using flow-through or flow-

by dissolution setups. Dissolution cells were flushed with acidic PSF (pH 4.5) for seven days. 

Further, measured dissolution rates were compared to in vitro and in vivo data, to ascertain to 

which extend measured abiotic dissolution rates are compatible with macrophage-assisted 

dissolution and in vivo biokinetic data. (5) In addition, and beyond the scope of this dissertation 

project, following the dissolution rate quantification, remaining solids were prepared on 

transmission electron microscopy (TEM) grids and assessed for possible biotransformation of 

(nano-)particles by TEM. In addition, lung tissue obtained from rats following twelve months 

inhalation exposure to an aerosol concentration of 50 mg/m³ of BaSO4 was examined by high-

resolution TEM to compare in vivo biotransformation processes with abiotic findings. Dynamic 

dissolution and biotransformation investigations were performed by collaborators at the 

material physics department of BASF SE (Ludwigshafen, Germany), University of Rochester 

medical center (Rochester, New York, USA), and National Institute of Occupational Safety and 

Health (Cincinnati, Ohio, USA). (6) Results obtained with the abiotic flow through setup and in 

vitro experiments were compared with each other and with results from published in vivo 

instillation/inhalation studies. 

In the second part, this dissertation project examined the appearance of AM 

subpopulations in lung tissue following short-term (5-day) inhalation exposure to poorly-soluble 

NPs, and a subsequent exposure-free period, using an immunohistochemical approach. After 

establishing the immunohistochemical protocols, the expression of general (CD68) and 

specific (iNOS for M1 and CD206 and ArgI for M2) macrophage markers was detected by 

double immunolabelling of formalin-fixed, paraffin-embedded histological lung sections, which 

allowed to observe the appearance of AM subsets in situ. Next, occurrence of AM subsets was 

quantitatively analyzed. Quantification of M1 and M2 AMs was performed to examine whether 

the balance of M1 or M2 polarization correlates with the different qualities of histopathological 

outcomes of NPs. In addition, quantitative examination was conducted to ascertain whether 
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early macrophage polarization might be indicative for the progression of long-term effects of 

NPs (promoting inflammation, tissue injury, fibrosis or lung tumor formation). 

To this end, highly industrial relevant NPs were selected, which are descriptive for the 

broad field of NP applications. Materials were chosen based on the availability of in vivo data 

and most materials are representatives of reference material- or benchmark material-

inventories. Assessing similarity to known reference or benchmark materials can be a powerful 

approach to reduce the uncertainty related to the hazards of newly developed NPs and can be 

used to implement grouping and testing frameworks. The selected NPs and the comparative 

non-nano, bulk counterparts varied in chemical composition, size, shape, crystallinity, and 

coating; each being thoroughly characterized. 

The test set for biodissolution experiments in the dynamic dissolution setup consisted 

of: ZnO NM-110, ZnO NM-111, SrCO3, Levasil 50, Levasil 100, Levasil 200, Levasil 300, 

aminated SiO2, phosphonated SiO2, (unmodified) SiO2 NM-203, Pigment Red 101, rod-shaped, 

spherical, or cubic Fe2O3, CuO, Cu2(OH)2CO3, nano-scale Cu-Phthalocyanine (Pigment Blue 

15), halogenated Cu-Phthalocyanine (Pigment Green 7), TiO2 NM-104, TiO2 NM-105, CeO2 

NM-211, CeO2 NM-212, BaSO4 IRMM381, and BaSO4 NM-220. 

The test set for biodissolution experiments using NR8383 AMs in vitro consisted of: 

SrCO3, ZnO NM-110, and BaSO4 NM-220. SrCO3 and ZnO are pH sensitive materials with low 

solubility at neutral but high solubility at acidic pH. Inhalation toxicity studies revealed short 

pulmonary clearance half-times for ZnO. Based on the unexpected fast clearance kinetics of 

BaSO4, it was hypothesized that macrophage-assisted biodissolution is the underlying 

mechanism of its short clearance half-times. 

The test set for assessing AM activation state after NP inhalation exposure consisted 

of: TiO2 NPs, CeO2 NPs (NM-212), mwCNT, and micro-sized, non-nano quartz (DQ12). These 

materials were extensively tested in short-term (5-day exposure), sub-chronic (90-day 

exposure) and long-term (two-year exposure) inhalation studies. They are poorly soluble and 

highly biopersistent and their biological effects differ in terms of initial inflammatory response, 

reversibility of effects and long-term pathological outcome. Short-term inhalation studies are 

commonly used to identify hazard and potency of inhaled NPs and proved to be useful in 

prioritizing and grouping NPs. Previously published short-term inhalation studies performed 

with 100 mg/m³ TiO2, 25 mg/m³ CeO2, 32 mg/m³ mwCNT or 100 mg/m³ quartz were chosen 

for the present examinations. Thus, the current investigations were retrospectively performed 

using existing formalin-fixed, paraffin-embedded specimen.   
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3. Main findings 
 

In this thesis, the main findings section (section 3) summarizes the most relevant results 

from three peer reviewed publications. Each publication is presented in the scientific output 

section (section 6). 

The first two publications (sections 6.1 and 6.2) present research, which aimed at 

elucidating the dissolution kinetics of various NPs and potential biotransformation processes. 

Further, it was investigated whether results obtained with abiotic, dynamic dissolution setups 

are consistent with results of in vitro and/or in vivo studies. BaSO4 was investigated in much 

detail because of its unexpected biokinetics observed in in vivo studies of varying exposure 

durations (instillation and five-day to two-year inhalation studies). 

(1) Static solubility of BaSO4 was assessed at static, equilibrium conditions (beaker) in 

acidic PSF and in water for seven and 28 days and two years. Measured Ba ion concentrations 

were slightly higher in acidic PSF than in pH neutral medium control. Approximately 0.1% 

dissolved BaSO4 NPs was found in PSF at any time point, confirming the poor solubility of 

BaSO4. The addition of EDTA, to mimic alkaline earth metal-transporting proteins, did not 

significantly increase solubility. 

(2) Quasi-dynamic dissolution of BaSO4 was assessed in water and PSF at pH 4.5. 

Dissolution of BaSO4 at out-of-equilibrium conditions, was measured using a setup comprising 

two compartments, one inner donor (containing BaSO4) and one outer receptor compartment. 

The medium in the receptor compartment was changed at constant time intervals, repeatedly 

disrupting equilibrium. The two compartments were separated from each other by a dialysis 

membrane. The measured ion concentration in the receptor medium remained roughly 

constant. The cumulative dissolution of 0.1% over 7 days and an overall dissolution rate of k 

= 0.01 ng/cm²/h remained on the same level as the static solubility system. This indicated that 

an equilibrium Ba concentration of about 1 to 2 mg/L in the pH 4.5 PSF medium was the limiting 

factor preventing further dissolution. 

(3) NR8383 AM-assisted dissolution was assessed in vitro. NR8383 cells were exposed 

for 3, 6, 12, 24 and 48 hours to non-cytotoxic concentrations of SrCO3, BaSO4, or ZnO NPs. 

Incubation of NR8383 AMs with SrCO3 significantly increased the concentration of dissolved 

ions in the cell culture medium compared to cell-free medium control at each time point tested. 

The macrophage-mediated increase in dissolved SrCO3, whose solubility is known to be pH-

dependent, developed progressively with longer incubation periods (up to 48 hours); due to 

the gradual acidification of macrophage’s phagolysosomes (McNeil et al., 1983; Yamashiro et 

al., 1983). In comparison, the incubation of SrCO3 in PSF (pH 4.5) led to a rapid dissolution of 

the total SrCO3 mass. The high values remained fairly constant over time (3 to 48 h). In the 
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cell-free medium control, no significant dissolution of SrCO3 was measured (Figure 1). After 

incubation of BaSO4 with cell-free culture medium, NR8383 cells or acidic PSF for up to 48 

hours very low amounts of dissolved material were found in cell culture medium for all time 

points investigated. At 24 and 48 hours dissolution was slightly increased following incubation 

with NR8383 cells or PSF. However, increased dissolution by NR8383 cells was hardly 

discernible from abiotic dissolution. One limiting factor might be the very low Ba concentration 

to be measured and/or the settings of the sensitivity of the analysis method used. The 

analytical uncertainty might mask subtle cellular effects. Next, macrophage-assisted 

dissolution was assessed for two ZnO NPs, uncoated ZnO NM-110 and surface-coated ZnO 

NM-111, which were shown to be readily soluble in vivo. While the solubility of both ZnO NPs 

was confirmed and shown to be increased in acidic PSF, phagolysosomal processes of AM 

cells in vitro had no major influence on the solubilization of Zn ions when compared to cell-free 

medium control. For all experiments, cytotoxicity was monitored by lactate dehydrogenase 

(LDH) activity measurement. LDH activity remained low till 24 h incubation but increased at 

the 48 h timepoint, although there were no visible signs of reduced cell viability or cell 

deterioration after 48 hours incubation seen (Figure 2). In summary, cultured AMs are able to 

accelerate the biodissolution of particulate matter, which was most obvious for SrCO3. 

However, additional factors might contribute to the biodissolution processes in vivo, which 

cannot be simulated in static cell culture experiments in vitro as evidenced by the results for 

BaSO4 and ZnO NPs. Certainly, sensitive methods are required when measuring trace 

concentrations of poorly soluble materials like BaSO4. 

 

 

 

 

 

 

 

 

 

Figure 1: Dissolution of SrCO3 subjected to neutral and acidic pH conditions over time. F-12K 

cell culture medium control without cells (white bars); NR8383 rat AM (black bars); PSF pH 4.5 

(grey bars); n=3; * means p ≤ 0.05. Taken from (Koltermann-Jülly et al., 2018). 
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Figure 2: Exposure of NR8383 AMs to SrCO3 NPs. Contrast-enhanced phase contrast 

micrograph showing (a) numerous SrCO3 NP agglomerates settled onto the bottom of the 

culture vessel post centrifugation under cell-free conditions, and (b) NR8383 cells following 48 

h incubation with SrCO3 NPs. Note that cells appear healthy with smooth outer contours 

(arrows). The space between cells is devoid of visible particles. Taken from (Koltermann-Jülly 

et al., 2018). 

 

(4) Dissolution rates of different (nano-)materials were quantitatively investigated by 

collaborators using dynamic dissolution setups flushed with PSF (pH 4.5). Notably, the 

dissolution rate k was given in units of ng/cm²/h, which takes the dissolved fraction of the 

material, the material’s specific surface area, and the time elapsed into account. For all test 

items composed of TiO2, CeO2, and Fe2O3 dissolved ion concentration was below the detection 

limit of the analysis technique used. Additional measurements, using a more sensitive analysis 

technique, confirmed the poor solubility of the materials but revealed that although the 

dissolution rates did not differ between different (nano-)forms of the same substance, it differed 

between substances of different chemical composition. These results were published in an 

addendum to the original article. Test substances composed of SiO2 showed low dissolution 

at simulated physiological conditions as expected from in vivo data. However, surface 

functionalization of SiO2 particles was potent to accelerate the dissolution rate compared to 

untreated SiO2 particles. The dissolution kinetics of different Cu-based materials varied 

considerably. One reason might be different technical grades used. ZnO NPs dissolved readily 

under acidic conditions as expected. Again, it was observed that coating of particles influenced 

the dissolution kinetics. Further, when normalizing to the initial surface area, the nano-form 

and the bulk-form of BaSO4 had almost identical k values. This confirms the applicability of k 

as a surface-based metric to express dynamic dissolution kinetics. The maximum observed 

liberated Ba ion concentration in the dynamic flow-through setup was close to the pH 4.5 PSF 

solubility limit observed in the static and quasi-dynamic setups but the total dissolved fraction 
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after seven days was considerably higher in the flow-through system. The abiotic dissolution 

kinetic indicates 50% dissolution after five to six days (t1/2 5.9 days) at non-equilibrium, non-

saturating conditions, which is close to the in vivo clearance half-time of 9.6 days after 

intratracheal instillation. In addition, more detailed investigations on BaSO4 NPs revealed that 

the dissolution kinetics depend on the initial mass of BaSO4 loaded into the flow-through 

dissolution cells. It was demonstrated that higher initial mass loading leads to system 

saturation thereby determining a solubility limit. When liberated Ba ion concentration in the 

local vicinity of the BaSO4 particles reached this solubility limit, ions reprecipitated before the 

PSF flow removed them from the dissolution cell (see also below). This reprecipitation 

phenomenon was specific for BaSO4 and could not be reproduced using another NPs (CuO). 

In summary, the biodissolution rate k obtained by abiotic, dynamic dissolution testing is 

consistent with in vivo clearance of NPs; although BaSO4 is termed “insoluble” in static, 

aqueous systems, its relatively high in vivo biodissolution is correctly predicted by the dynamic 

dissolution method. 

(5) Following the dissolution rate quantification for seven days, remaining solids were 

transferred to TEM grids and assessed for possible biotransformation of (nano-)particles by 

TEM. In addition, lung tissue from rats exposed to BaSO4 NPs was examined by high-

resolution TEM. These investigations were out of scope of the initial objectives of this 

dissertation project but were within the scope of the first two papers, which aimed at providing 

standardized methodology for the hazard assessment of NPs. For TiO2, CeO2, and Fe2O3 NPs 

no biotransformation was observed. According to the low dissolution, untreated SiO2 particles 

decreased moderately. Further, for SiO2 NPs different intermediate structures were observed, 

most probably due to the formation of aggregates. TEM analysis revealed that both Cu-based 

materials (nano-scale Cu-Phthalocyanine and halogenated Cu-Phthalocyanine) extensively 

formed aggregates during acidic treatment. Complete dissolution of ZnO NPs was confirmed 

by TEM analysis, as no particles could be found on TEM grids. Additional investigations 

demonstrated continuous decrease of radii of curvature of the particles until they were 

completely dissolved. On the contrary, for BaSO4 NPs the radii of curvature increased after 

incubation at acidic conditions. This was observed under saturation conditions by TEM in the 

abiotic system as well as by high-resolution TEM inside AMs in vivo. Instead of shrinking the 

size, TEM scans of particles retrieved from flow-cells or rat lungs showed an increase in 

sphericity of the remaining solids at the expense of particles with smaller radii of curvature. 

Such chemical transformation is consistent with Ostwald ripening. Thus, the long-term 

biopersistence of BaSO4 observed in vivo is dependent on both biodissolution as well as 

biotransformation processes. 

(6) Results of abiotic, dynamic dissolution testing were compared with results of 

macrophage-assisted dissolution in vitro and with in vivo instillation/inhalation data. For all 
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(nano-)materials, the abiotic dissolution rates at out-of-equilibrium conditions were consistent 

with in vivo observations. Results were not enhanced by AM-assisted biodissolution 

experiments in vitro for up to 48 hours.  

The third publication (section 6.3) presents research, which examined the appearance 

of polarized AM subpopulations in lung tissue following short-term (5-day) inhalation exposure 

to poorly-soluble NPs, and a subsequent exposure-free period, using an immunohistochemical 

approach. Immunohistochemical, double-staining protocols for the general AM marker CD68, 

and the M1 marker iNOS (CD68-iNOS double immunolabeling), and the M2 markers CD206 

(CD68-CD206 double immunolabeling) and ArgI (CD68-ArgI double immunolabeling) were 

successfully established on formalin-fixed, paraffin-embedded histological lung sections. 

Expression of iNOS could be observed in lungs of treated animals, but not in control animals 

(Figure 3). In accordance with the immunosuppressive environment of the lungs, a high 

baseline expression of CD206 and ArgI were observed in control animals, which varied in the 

different NP-exposure groups (Figure 3). Quantitative analysis revealed that relative numbers 

of pro-inflammatory M1 AMs (CD68+iNOS+) were significantly increased in rat lungs, which 

were diagnosed with pulmonary inflammation, compared to control (Table 1). Furthermore, M1 

AM relative numbers correlated with regression, persistence, or progression of inflammatory 

processes after a post-exposure period (Table 2). Relative numbers of CD206 expressing anti-

inflammatory M2 AMs were generally downregulated during acute inflammation (Table 1) but 

recovered during the post-exposure period when inflammatory signs were declining (Table 2). 

However, between the four investigated (nano-)materials no substantially different expression 

pattern of M1 or M2 AMs after 5-day exposure or 14 or 21 days post-exposure, which might 

explain the different short-term and long-term histopathological outcomes, especially regarding 

granulomatous inflammation, could be determined. Thus, although the appearance of M1 and 

M2 macrophages correlated with acute pulmonary inflammation caused by (nano-)materials, 

it was neither indicative for the different qualities of histopathological outcomes upon short-

term exposure nor predictive for long-term effects. 

 

 
_________________________________________________________________________________ 

Figure 3: Micrographs of left lung sections of animals exposed to different (nano-)materials for 

5 days. Effects on iNOS (M1), ArgI (M2) and CD206 (M2) expression shortly after the last 

exposure were visualized by immunohistochemistry. Binding of antibodies was visualized 

using a red chromogen for the AM marker CD68 and a brown chromogen for the M1 (iNOS) 

and M2 (ArgI and CD206) markers. Arrows indicate macrophages in insets. Scale bars in 

insets are 10 µm one scale line. Representative sections from each treatment group are shown. 

Controls were exposed to air only. 
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Table 1 Percentages of CD68 and M1 (iNOS) or M2 (CD206 or ArgI) marker double-

positive alveolar macrophages (AMs). Animals were sacrificed after 5-day exposure to 100 

mg/m³ TiO2 (n=6), 100 mg/m³ quartz (n=6), 25 mg/m³ CeO2 (n=5), or 32 mg/m³ mwCNT (n=3). 

Each animal was assessed for all three markers, i.e. three lung sections with one double-

immunostaining each. In each lung section the marker-expression of one hundred AMs was 

assessed. Because mixed phenotype macrophages co-exist with M1 and M2 macrophages 

the overall percentage of cells per lung might exceed one hundred percent. 

 

 M1 or M2 marker expressing AMs [%] ± SD 

  iNOS (M1) CD206 (M2) ArgI (M2) 

controla 1.5 ± 0.8 77.2 ± 4.8 47.7 ± 5.4 

TiO2 79.3 ± 9.6** 65.2 ± 15.5 55.1 ± 6.8 

quartz 44.9 ± 5.1** 55.5 ± 8.8** 26.0 ± 6.0** 

controlb 0.7 ± 0.2 91.5 ± 2.2 19.5 ± 5.5 

CeO2 8.0 ± 1.9** 83.2 ± 3.6** 33.0 ± 5.3** 

mwCNT 42.0 ± 1.7** 71.7 ± 4.2** 21.7 ± 0.9 

          
SD standard deviation 
a control group of TiO2 and quartz study 
b mean of control groups of CeO2 and mwCNT studies 
* p ≤ 0.05 treated vs. control group 
** p ≤ 0.01 treated vs. control group 
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Table 2 Percentages of CD68 and M1 (iNOS) or M2 (CD206 or ArgI) marker double-

positive alveolar macrophages (AMs). Animals were sacrificed 14 (TiO2, quartz) or 21 

(mwCNT) days post exposure. Animals were exposed for 5 days to 100 mg/m³ TiO2 (n=6), 100 

mg/m³ quartz (n=6), or 32 mg/m³ mwCNT (n=3). Each animal was assessed for all three 

markers, i.e. three lung sections with one double-immunostaining each. In each lung section 

the marker-expression of one hundred AMs was assessed. Because mixed phenotype 

macrophages co-exist with M1 and M2 macrophages the overall percentage of cells per lung 

might exceed one hundred percent. 

 

 
M1 or M2 marker expressing AMs [%] ± SD 

  iNOS (M1) CD206 (M2) ArgI (M2) 

controla 2.0 ± 2.5 82.0 ± 6.4 37.0 ± 2.3 

TiO2 73.4 ± 8.3** 80.7 ± 4.2 47.2 ± 7.7* 

quartz 59.1 ± 10.6** 66.7 ± 6.4** 41.0 ± 5.1 

controlb 2.0 ± 0.8 93.7 ± 2.5 24.2 ± 7.6 

mwCNT 44.7 ± 4.9** 78.5 ± 0.5* 38.8 ± 2.0 

          
SD standard deviation 
a control group of TiO2 and quartz study 
b control group of mwCNT study 
* p ≤ 0.05 treated vs. control group 
** p ≤ 0.01 treated vs. control group 
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4. Summary, conclusion and outlook 
 

This dissertation project investigated the role of AMs in biodissolution and biological 

effects of inhaled, biopersistent NPs. 

 

Summary 

In vitro experiments using NR8383 cells revealed that AMs can accelerate the 

biodissolution of pH-sensitive materials, such as SrCO3. However, the unusual biokinetics 

initially observed for BaSO4 could neither be explained by the in vitro experimental setup nor 

by abiotic, static experimental designs. By simulating the acidic lysosomal conditions of AMs 

in an abiotic, dynamic dissolution system, where liberated ions were continuously removed 

from the vicinity of the solids by a constant flow, short in vivo clearance half-times of BaSO4 

could be replicated. In additional experiments of collaborators, biodissolution testing at out-of-

equilibrium conditions was extended to a set of different benchmark and industrial relevant 

NPs. Simulated biodissolution rates of different NPs measured with flow-through or flow-by 

dissolution systems achieved a high degree of consistency with in vivo pulmonary clearance 

kinetics of rats. Further investigations of the remaining solids, subsequent to dissolution testing, 

using electron microscopy, revealed different biotransformation processes for different NPs. 

For BaSO4, biotransformation in the form of recrystallization could be observed. Remarkably, 

increase in particle size of BaSO4 NPs was consistent with Ostwald ripening, which could be 

observed for particles of flow-cells as well as on the inside of AMs in vivo. 

To determine the polarization state of AMs, histological lung sections of rats exposed 

for five days to biopersistent NPs were immunohistochemically investigated. Quantitative 

analysis revealed that relative cell numbers of pro-inflammatory M1 and anti-inflammatory M2 

AMs correlated with BALF analysis and histopathological findings of acute pulmonary 

inflammation. The initial inflammatory response correlated with a strong upregulation of 

CD68+iNOS+ M1 and a downregulation of CD68+CD206+ M2 AMs. Following an exposure-free 

period, sequential changes in M1 or M2 AM relative cell numbers correlated with regression, 

persistence or progression of the acute inflammatory immune response. This suggests a role 

of M1/ M2 AMs in the pathogenesis of pulmonary inflammation. Regarding the regression of 

inflammation this is of special importance for the hazard assessment of NPs. It remains to be 

determined to what extent these findings can be generalized to other biopersistent NPs. In fact, 

AM polarization was not indicative or predictive for the different quality of histopathological 

findings observed for different (nano-)materials after short-term or long-term exposure, 

respectively. 
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Conclusion 

In conclusion, I ascertained during this dissertation project, together with collaborators, 

that AM-assisted biodissolution in vitro is acknowledged as a potential method for specific 

mechanistic investigations but cannot represent the numerous characteristics and features of 

a complex organ such lungs. Results of abiotic, dynamic dissolution testing at simulated 

physiological conditions were consistent for all NPs and non-nano materials tested with in vivo 

biokinetics. Importantly, the non-equilibrium conditions of flow-cells are essential to simulate 

in vivo biodissolution, as results of static or quasi-dynamic systems were not consistent with in 

vivo data. Further, simulation of physiological conditions requires the use of relevant biological/ 

physiological fluids. Obviously, for (nano-)materials with very low biodissolution pulmonary 

clearance is mainly mediated by physical clearance mechanisms, i.e. macrophage-mediated 

transport via the mucociliary escalator. For (nano-)materials with high biodissolution in vivo 

clearance is dominated by chemical clearance. Importantly, biokinetics can be modulated by 

biotransformation processes, such as reprecipitation, which in turn might alter toxicological 

effects. 

Triggered by the observed unusual clearance for some poorly water-soluble NPs, such 

as BaSO4, it was hypothesized that internalization of poorly water-soluble NPs by AMs 

accelerates their biodissolution in vivo, leading to enhanced chemical clearance. Consequently, 

chemical clearance together with physical clearance would be the underlying mechanisms of 

the unusual biokinetics. Using a dynamic dissolution system, the hypothesis could be verified, 

as measured dissolution rates correlated with in vivo clearance. 

Based on the key role of AMs in pulmonary pro- and anti-inflammatory immune 

responses, it was hypothesized that initial polarization of AMs correlates with short-term effects 

of NPs in vivo and that distinct early AM polarization is predictive for long-term outcome. I 

recognized at the end of the present dissertation project that the current data does not allow 

for the prediction of histopathological long-term effects. However, following short-term 

exposure to different NPs, acute pulmonary inflammation was accompanied by increased pro-

inflammatory M1 relative cell numbers and decreased anti-inflammatory M2 relative cell 

numbers. 
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Outlook 

Beyond the scope of this dissertation project a new grouping hypothesis by means of 

the similarity of biodissolution rates (quantitative data obtained with abiotic, dynamic flow-

through dissolution setup at simulated physiological conditions) and biotransformation 

(qualitative data obtained with TEM analysis of the remaining solids) was proposed 

(Koltermann-Jülly et al., 2018). The mechanistic understanding of biodissolution processes 

and possible biotransformation of NPs will enable the development of standardized abiotic test 

systems, which enable the simulation of physiological conditions (by means of appropriate 

simulated biological fluids) and which show good correlation with in vivo biokinetic data.  

An in-depth understanding of the underlying processes of nanomaterial-induced 

morphological changes and the role of M1 and M2 AMs in their pathophysiology is needed. 

Investigations on involved signaling pathways will add to this understanding. A distinct 

induction of AM polarization might indicate different underlying initiating events, which in turn 

might explain the various histopathological outcomes after long-term exposure to different 

inhaled NPs. Interestingly, first evidence points out that the crucial balance of M1 and M2 

immune responses is not necessarily sequential (first M1, second M2 polarization) but there 

are various pathways, which are early stimulated in parallel, and which seem to be independent 

from each other; each differently affecting early macrophage polarization and leading to a 

different aspect of the observed pathophysiology (Re et al., 2014; Nikota et al., 2017; Fritsch-

Decker et al., 2018). Additionally, in humans it was observed that AMs can express M1 and 

M2 markers simultaneously, which confirms that M1 and M2 signatures of activated AMs do 

not necessarily exclude each other, but coexist (Bazzan et al., 2017). Unraveling these 

pathways will add to our understanding of the pathogenesis of morphological changes 

observed and the exact contribution of AM subsets. In addition, specific biomarkers might be 

identified, which potentially will allow for the prediction of the quality of long-term 

histopathological outcome following NP exposure. This will also promote further development 

of scientifically sound adverse outcome pathways, which could path the way to predictive in 

vitro testing strategies, for inhalation hazard of NPs. 
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A B S T R A C T

Numerous recent reviews have highlighted the urgent need for methods to determine the biodissolution of
nanomaterials in relevant lung fluids, and to validate the results against the bioprocessing in vivo. Moreover, it is
largely unknown to what extent (nano)forms of a substance that differ in size, shape, or coating also differ in
biodissolution. Here we apply a previously optimized abiotic flow-through method to 24 (nano)forms of 6
substances and compare the results with alveolar macrophage-assisted biodissolution of a subset of these na-
nomaterials in vitro and short-term inhalation results in vivo. As a main result we found that the results obtained
with the flow-through method for the lung were consistent to the results of in vivo studies and were not improved
by measuring alveolar macrophage-assisted biodissolution for up to 48 h. Based on selected benchmark materials
we propose four groups of materials according to quantitative biodissolution rates (1 ng/cm2/h to 100 ng/cm2/h
cutoffs) and qualitative transformation parameters, as detected by TEM analysis. These groups were also re-
flected by different lung clearance rates, as previously determined in short term inhalation studies.
Biodissolution was similar within substance (nano)forms of Fe2O3, SiO2, CeO2, ZnO, though slightly varied upon
surface area/coating. But the difference of biodissolution between the substances was in some cases> 1000-
fold. Among the Cu-containing materials, the behavior of the two CuPhthalocyanin nanoforms was similar with
each other, but completely different than the dissolution and transformation of Cu salts. Different production
routes and/or surface coatings significantly modulated biodissolution, whereas effects of shape or size were
limited. In summary, we refined a protocol for the abiotic determination of biodissolution along with an in-
tegrated assessment of nanomaterial transformation. The protocol is suggested as tier 2 methodology for
grouping and read-across purposes.

1. Introduction

Engineered nanomaterials (ENM) are produced in numerous grades,
which are each optimized for specific applications and differ in prop-
erties such as composition, size, shape, surface treatments. Especially
fillers and pigments represent established materials that are produced
in megaton quantities in many different (nano)forms (Wohlleben et al.,

2017a; Ministère de l'Environnement, 2015). For a given material
composition, the properties size, shape, and surface chemistry describe
the “nanoform” for regulatory purposes (ECHA, 2017a), but none of
these properties is sufficient to predict the extent to which human or
environmental hazards differ from the non-nanoform of the same
composition (Godwin et al., 2015; Landsiedel et al., 2017; Donaldson
and Poland, 2013). Assessing similarity to known benchmark materials

https://doi.org/10.1016/j.impact.2018.08.005
Received 26 April 2018; Received in revised form 6 August 2018; Accepted 22 August 2018

⁎ Correspondence to: M. Wiemann, IBE R&D Institute for Lung Health gGmbH, 48149 Münster, Germany.
⁎⁎ Correspondence to: W. Wohlleben, BASF SE, Dept. of Material Physics and Dept. of Experimental Toxicology and Ecology, 67056 Ludwigshafen, Germany.

1 Equal contribution.

E-mail addresses: johanna.koltermann-juelly@basf.com (J. Koltermann-Jülly), johannes-georg.keller@basf.com (J.G. Keller),
vennemann@ibe-ms.de (A. Vennemann), kai.werle@basf.com (K. Werle), lan.ma-hock@basf.com (L. Ma-Hock), robert.landsiedel@basf.com (R. Landsiedel),
martin.wiemann@ibe-ms.de (M. Wiemann), wendel.wohlleben@basf.com (W. Wohlleben).

NanoImpact 12 (2018) 29–41

Available online 25 August 2018
2452-0748/ © 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

T

69

http://www.sciencedirect.com/science/journal/24520748
https://www.elsevier.com/locate/nanoimpact
https://doi.org/10.1016/j.impact.2018.08.005
https://doi.org/10.1016/j.impact.2018.08.005
mailto:johanna.koltermann-juelly@basf.com
mailto:johannes-georg.keller@basf.com
mailto:vennemann@ibe-ms.de
mailto:kai.werle@basf.com
mailto:lan.ma-hock@basf.com
mailto:robert.landsiedel@basf.com
mailto:martin.wiemann@ibe-ms.de
mailto:wendel.wohlleben@basf.com
https://doi.org/10.1016/j.impact.2018.08.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.impact.2018.08.005&domain=pdf


can be a powerful approach to reduce the uncertainty related to the
risks of innovative (nano)materials, and to revisit the safety of estab-
lished materials. Especially the rate of dissolution under simulated
physiological conditions (biodissolution) is an important criterion to
assess similarity between (nano)forms of the same substance in several
frameworks of grouping and read-across (Collier et al., 2015; Nel et al.,
2013; Kuempel et al., 2012; Braakhuis et al., 2014; Oomen et al., 2017;
Arts et al., 2015, 2016). However, Steinhäuser and Sayre have stressed
that most frameworks do not propose a specific method, often confound
solubility with the dissolution rate or transformation, and rarely pro-
pose quantitative group limits (Steinhäuser and Sayre, 2017). One has
to differentiate:

• “solubility” is measured in equilibrium saturated suspensions, with
appropriate descriptors of mg/L ion, identical with the conventional
solubility limit. Implicitly, it often means solubility in water at
neutral pH and was proposed as Tier 1 screening for soluble ENM,
(Arts et al., 2015) to be refined to the solubility in relevant medium
as Tier 2 method (Arts et al., 2015; Avramescu et al., 2016). Pla-
khova et al. demonstrated that “% dissolved” is not an equivalent
metric, and probably not appropriate (Plakhova et al., 2016).

• “dissolution rate” is measured out of equilibrium conditions and
below the saturation in the relevant medium, with appropriate de-
scriptors in units of ion mass per solid mass per time (=%/h) or ion
mass per solid particle surface per time (=ng/cm2/h). It is con-
sidered an extrinsic property.

• “transformation” describes the propensity of the non-dissolved re-
maining solids to “change what they are” in the relevant medium,
regarding their physical shape, or size, or chemical identity, and has
no clearly defined descriptors. It is also considered as extrinsic
property and has implications for hazard assessment, e.g. if the as-
pect ratio or crystalline phase changes.

Accordingly, a recent review by Oberdörster and Kuhlbusch found
that “because the in vivo dissolution rates of ENM can differ widely, it is
too simplistic to group ENM just into soluble and poorly soluble ma-
terials.” (Oberdörster and Kuhlbusch, 2018), and the appropriate dif-
ferentiation of (nano)materials by static solubility values has been
questioned (Klaessig, 2018). To measure instead dissolution rates, flow
cells (Nti, 2017) mimic the non-equilibrium physiological conditions,
where ions can be transported away from the lungs. Variants of flow
cells have been used recently for environmental dissolution (Kent and
Vikesland, 2016) and for oral dissolution of nanomaterials (Bove et al.,
2017a). For mineral fibers, flow-through cell dissolution rates correlate
strongly with in vivo pulmonary clearance (Guldberg et al., 1995; IARC,
2002). Simulant media need to be sufficiently complex to offer oxida-
tive, reductive and pH-driven dissolution pathways (Wang et al., 2016).
Specifically for pulmonary biodissolution, phagolysosomal simulant
media with a low pH value (4.5) are appropriate because alveolar
macrophages (AMs) collect and engulf the vast majority of inhaled ENM
from the alveolar surface, and rapidly transfer them into acidic pha-
golysosomes (Stefaniak et al., 2005; Marques et al., 2011).

Here we apply the abiotic flow-through method with a phagolyso-
somal simulant to a wide range of (nano)materials with different sub-
stance, size, shape, coating. Following the dissolution rate quantifica-
tion we prepare the remaining solids on transmission electron
microscopy (TEM) grids and assess the transformation of nanoparticles
by electron microscopy.

However, abiotic dissolution at phagolysosomal conditions remains
a simplistic approximation and may underestimate the more complex
macrophage-assisted physical (mobility) and chemical (dissolution)
clearance (Kass, 1964; Geiser, 2010). Oberdörster and Kuhlbusch con-
cluded that “Results from [Alveolar Macrophage] in vitro assays with
microparticles show good agreement with in vivo kinetics; yet further
studies using MNs/ENM of different solubilities are required to validate
this in vitro AM assay for nanomaterials.” (Oberdörster and Kuhlbusch,

2018) Here we hypothesize that AMs might accelerate dissolution,
especially of pH sensitive nanomaterials, and explore to which extent
the dissolution rates are compatible between abiotic and macrophage-
assisted dissolution, using BaSO4, ZnO and SrCO3 as test cases. ZnO was
proposed earlier as benchmark material, because it is poorly soluble in
water, but becomes soluble under phagolysosomal conditions (Arts
et al., 2015; Avramescu et al., 2016). Further, it is known that SrCO3 is
poorly soluble in water but readily soluble under acidic conditions. In
contrast to an earlier approach based on human and dog AMs (Kreyling
et al., 1979) whose isolation demands human volunteers or animal
experiments, we used an AM cell line (NR8383) from rat lung lavage
cells (Helmke et al., 1987, 1989). It was shown, that NR8383 cells
maintain their typical AM-like size, appearance, and phagocytic prop-
erties over many passages. In addition, they maintain their im-
munological properties, thus reacting to test material exposure by the
formation and release of different pro-inflammatory and fibrogenic
cytokines and chemokines, including TNF-α, IL-1, TGF-β and PDFG
(Helmke et al., 1987, 1989; Koslowski et al., 2003; Albrecht et al.,
2007; Scherbart et al., 2011; Bhattacharjee et al., 2012). Furthermore,
the cells are capable of producing H202 e.g. via the NADPH oxidase
reaction process (also known as “respiratory burst”) which is an in-
herent part of the macrophages' armament and may contribute to the
processing or dissolution of ENM.

NR8383 cells have been used for the in vitro testing of a variety of
ENM including functionalized amorphous silicates, indium tin oxide,
alumina, ultrafine titania, (multi-walled) carbon nanotubes (mwCNTs),
various copolymers and also heparin nanoparticles (Scherbart et al.,
2011; Bhattacharjee et al., 2012; Lison et al., 2008, 2009; Pulskamp
et al., 2007; Wagner et al., 2007; Eidi et al., 2010, 2012; Bhattacharjee
et al., 2013). Most specifically, the in vitro potency screening by
NR8383 cells correlates excellently with in vivo inflammatory short-
term inhalation study (STIS) results for the purposes of Tier 2 grouping
of ENM in the DF4nanoGrouping framework (Arts et al., 2015;
Wiemann et al., 2016), such that cell-assisted biodissolution with
NR8383 macrophages would seamlessly integrate in a grouping fra-
mework, if necessary.

2. Materials and methods

2.1. Materials

To obtain results which are representative for the broad field of
ENM applications, six substances with 24 different (nano)forms were
selected with prioritization by availability of in vivo studies (cited for
each material in the following) and industrial relevance (Ministère de
l'Environnement, 2015). The (nano)forms vary in size, crystallinity/
shape and coating. Both, CeO2 NM-211 and CeO2 NM-212 were pro-
vided by the JRC repository of the Organization for Economic Co-op-
eration and Development (OECD) sponsorship program, they differ in
size and form (Keller et al., 2014; Molina et al., 2014). The test set also
includes two kinds of BaSO4 whereas the nanosized BaSO4 NM-220 was
provided by the OECD sponsorship program (via Fraunhofer Institute)
and the non-nano-sized BaSO4 IRMM381 is a reference material, pro-
vided by the Institute for Reference Materials and Measurement (IRMM,
Geel, with kind permission by Solvay) (Babick et al., 2016; Wohlleben
et al., 2017b). Seven different silica materials were investigated. Four
different sizes of untreated, colloidal silica: Levasil 50, Levasil 100,
Levasil 200 and Levasil 300 were all commercially acquired from Akzo
Nobel N. V. (Wiemann et al., 2018). Based on Levasil 200, we synthe-
sized two nanoforms with surface coatings: SiO2_aminated and
SiO2_phosphonated (Landsiedel et al., 2014). The powdered silica NM-
203 was provided by the JRC repository of the OECD sponsorship
program. In addition, the test set includes three different kinds of Iron
Oxides (Pigment Red 101), the rod shaped Fe2O3_nano_A and the
spherical Fe2O3_nano_B were both provided by BASF SE and the cubic
Fe2O3_larger (borderline non-nano) was provided by Rockwood
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Holdings Inc. (Hofmann et al., 2016). Two UV-active TiO2 materials
were compared: TiO2 NM-104 with an Al2O3 coating and TiO2 NM-105,
both supplied by the JRC repository of the OECD sponsorship program
and extensively tested by inhalation (Landsiedel et al., 2010). Both ZnO
materials NM-110 and NM-111 are supplied by the JRC repository of
the OECD sponsorship program and differ in their coating. ZnO NM-111
has a hydrophobic silicone coating, and is a benchmark “biosoluble”
material in the DF4nanogrouping framework (Arts et al., 2016;
Landsiedel et al., 2010). Furthermore, the test set consists of four
copper-containing materials: The powdered nanoform CuO, provided
by PlasmaChem GmbH (Gosens et al., 2016), and the suspension-mi-
cronized nanoform Cu2(OH)2CO3, were previously studied for en-
vironmental transformations (Pantano et al., 2018), and we added two
nanoforms of metal-organic pigments Cu_Phthalocyanine_nano (Pig-
ment Blue 15) and Cu_Phthalocyanine_halogen (Pigment Green 7),
which were provided by BASF SE (Arts et al., 2016). Hydrophilic SrCO3

was donated by Solvay and was characterized previously in the course
of the NanoCare project (Kroll et al., 2011).

2.2. Abiotic flow-through testing of dissolution and transformation

The setup (Fig. 1) implements a “continuous flow system” described
in ISO 19057:2017 (Nti, 2017). It is essentially a replication of the es-
tablished flow-through testing of the dissolution kinetics of mineral
fibers (Guldberg et al., 1995; IARC, 2002), was described for this pur-
pose (Wohlleben et al., 2017c), and was used here with minor adap-
tations to match the specifics of ENM: The ENM mass of 1mg was
weighed onto a membrane (cellulose triacetate, Sartorius Stedim Bio-
tech GmbH, Goettingen, Germany): 47mm diameter, 5 kDa pore size,
topped by another membrane, and enclosed in flow-through cells.
Standard conditions are 1mg initial solid mass in the flow-through cell,
and 2mL/h flow. The phagolysosomal simulant fluid (PSF), an acidic
buffer simulating the phagolysosomal compartment of macrophages
(Stefaniak et al., 2005; Wohlleben et al., 2017c), which was previously
validated for the purpose of inhaled beryllium dissolution by NIST la-
boratories (Stefaniak et al., 2005), was employed at 37 ± 0.5 °C. The
PSF composition is reproduced in the supplementary information (SI).
In contrast to the larger volume flow cells used by Bove et al. for oral
dissolution testing (Bove et al., 2017a), in our setup the ENM are in
direct contact with the ultrafiltration membrane. In contrast to the flow
cells used by Kent et al., our cells hold industrially produced ENM, not
lab-grown arrays of same chemical composition (Kent and Vikesland,

2016). The core idea of separating ions from remaining solids is shared
by all three setups.

The programmable sampler drew 4–10mL of the eluate once per
day for seven days. For shorter sampling times at the beginning of the
dissolution, the samples were drawn for only 2–3 h instead of 5 h. The
rest of the eluate was collected in a container. The ion concentrations of
the eluates from different time points were determined by inductively
coupled plasma-optical emission spectrometry (ICP-OES Agilent 5100
and Varian 725 ES) with a limit of detection of 0.1mg/L, alternatively
by inductively coupled plasma-mass spectrometry (ICP-MS Perkin
Elmer Nexion 2000b) with a limit of detection of 0.1 ppb. Prior to
taking the measurement, the instrument was optimized in accordance
with the manufacturer's specification. Duplicate measurements are
taken and averaged. We measured with 10 s integration time, and the
dilution factors were between 1 and 10. External calibration used
concentrations of 0/1/5mg/L with matrix-matched standards. The
nebulizer (Meinhard 1mL) had a flow of 0.7 L/min at a pump rate of
15 rpm. For ICP-MS duplicate measurements were taken and averaged.
The eluate was diluted with a factor between 100 to 1000 and the ex-
ternal calibration used concentrations of 0.1/1/10 ppb. The nebulizer
had a flow of 0.92 L/min at a pump rate of 35 rpm.

After the experiment, the remaining solids were rinsed off the
membrane as shown in the photo-protocol in Fig. SI_S3 documenting
specifically developed accessories. The resulting suspension was then
pelleted onto a TEM grid held at the bottom of a centrifuge vial within
30min, then dried, so that the remaining solids morphology can be
inspected without interference from drying artifacts of PSF salts, which
are removed by this preparation. The remaining solids were analyzed
by TEM with a Tecnai G2-F20ST or Tecnai Osiris Microscope (FEI
Company, Hillsboro, USA) at an acceleration voltage of 200 keV under
bright-field conditions. For the automated image analysis the pre-vali-
dated NanoDefine SEM/TEM software packages were used (Ullmann
and Müller, 2017; Mielke et al., 2016; Muller et al., 2015).

We multiplied the measured ion concentration of each eluate with
the eluted volume to obtain a mass of dissolved ions, and corrected for
the molar mass m of the pristine ENM and of the detectable metal ion,
to obtain the mass of ENM solids Mdissolved(t) that were dissolved during
the sampling interval Δti. Interim calculations are detailed in the SI.
Cumulated from all samplings with concentration ci, flow Vi and sam-
pling interval Δti, the dissolved mass at the final time T is

Fig. 1. Dissolution setup. The reservoir
for the physiological fluid is controlled at
37 °C, as well as the flow-through cells.
The peristaltic pump regulates the flow-
rate of up to 8 cells in parallel, with a
programmable autosampler for fluid
collection. The flow-through cell is
equipped with 5 kDa membranes to hold
back particles and only allow the flow of
ions. The meniscus of the reservoir is
elevated approx. 0.5 m above the cells
such that the hydrostatic pressure bal-
ances the pressure drop by the 5 kDa
membrane.
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The dissolution rate k is then obtained via
Msolids(T)=M0−Mdissolved(T) with the relation:

k ln {M /M (T)}/(SSA(T) T)0 solids= ∗ (2)

This calculation is consistent with the first order modeling of ISO
19057:2017 (Nti, 2017), but gives k in units of ng/cm2/h as re-
commended by Oberdörster and Kuhlbusch (2018). SSA(T) is the spe-
cific surface area at time T, equal to BET at time zero; k can be con-
verted to a halftime t1/2 by Eq_SI_1. The alternative metric “%
dissolved” is given by Mdissolved (T)/M0.

2.3. Preparation of nanoparticle suspensions for in vitro testing

BaSO4 NM-220, SrCO3, ZnO NM-110, or ZnO NM-111 ENM were
suspended in double distilled H2O at a concentration of 1mg/mL.
Suspensions were ultrasonicated on ice for 10×10 s using a 3mm
probe adjusted to 50W (Vibra Cell™, Sonics & Materials, USA). To re-
move larger aggregates (typical for the spray dried BaSO4 ENM) which
cannot be engulfed by macrophages, the BaSO4 and SrCO3 suspensions
were filtered through a depth-type filter with 2.7 μm pore size
(Whatman™ GD/X 25 syringe filter with 2.7 μm GF/D Glass Microfiber
Membrane). The filtrate was dried and the particle content was mea-
sured gravimetrically, resulting in a concentration of 500 μg/mL.
Aqueous suspensions of SrCO3 and BaSO4 were then adjusted to 90 μg/
mL. Suspensions of ZnO NM-110 and ZnO NM-111 were diluted to
11.25 μg/mL. All aqueous suspensions were then mixed with an equal
volume of double-concentrated (2×) F-12K cell culture medium pre-
pared from powder medium (Sigma-Aldrich GmbH, Munich, Germany),
supplemented with glutamine (4mM) and penicillin (200 U), strepto-
mycin (200mg/ml), and 10% (v/v) fetal bovine serum (FBS) (PAN
Biotech GmbH, Aidenbach, Germany), or with double-concentrated
phagolysosomal simulant fluid (PSF) adjusted to pH 4.5 with 1M
NaOH. The final suspension, as used for dissolution experiments,
therefore contained all F-12K components and supplements, 5% FBS
and 45 μg/mL (SrCO3, BaSO4) or 5.6 μg/mL (ZnO) of the ENM, re-
spectively. Equal concentrations of ENM were prepared in PSF. All ENM
suspensions were prepared shortly before use and vortexed im-
mediately before in vitro application. Based on previous cytotoxicity
data for BaSO4 and ZnO (Wiemann et al., 2016) the concentrations
were maximized up to values where cytotoxic effects were absent or
minimal. For SrCO3, a no adverse effect level larger than 90 μg/mL was
found under the same conditions. This strategy was chosen to increase
the yield of dissolved ions and also to avoid early cell death.

2.4. Preparation of the NR8383 test system

The rat AM cell line NR8383 (Helmke et al., 1987, 1989) was
purchased from ATCC (Manassas, VA, USA) and used for in vitro ex-
periments. Cells were grown in F-12K medium (Sigma-Aldrich GmbH,
Munich, Germany) supplemented with 15% FBS, glutamin, and peni-
cillin (100 U), streptomycin (100 μg/ml) under standard cell culture
conditions (37 °C, 5% CO2) as described (Wiemann et al., 2016). For
dissolution tests, the macrophages were detached from the substrate by
mechanical agitation, fully dispersed by pipetting, seeded into 96-well
flat-bottom plates (Primaria™, Corning, NY, USA) at a density of
3× 105 live cells per well, and pre-incubated in F-12K supplemented
with 5% FBS for 24 h. Then the medium was completely replaced by
ENM suspensions (see above). Cell-free experiments were conducted
side-by-side, i.e. on the same plates, using F-12K medium with 5% FBS
and PSF as dispersants. For each single experiment 8 identical wells
were run in parallel. To accelerate sedimentation of particles and unify
the onset of exposure of cells to ENM, plates were centrifuged at 100×g
(37 °C) for 10min and incubated under cell culture conditions for 3 h,

6 h, 12 h, 24 h, and 48 h with SrCO3 or BaSO4, or 24 h to ZnO NM-110
or NM-111, respectively. Phase contrast micrographs were taken to
monitor gravitational settling, uptake of larger particles or cell lysis
using a Zeiss Axiovert C40 microscope equipped with an Axiocam C3
camera.

Following incubation with ENM, cells were completely lysed by
adding 20 μl of a concentrated mixture of Triton X-100 and proteinase K
(final concentration: 0.1% and 0.1 mg/mL, respectively) for 45min, as
controlled by phase contrast microscopy. Non-lysed ENM were sepa-
rated by ultrafiltration. Therefore lysates were pooled, loaded onto
100 kDa filter devices (Amicon 100k ultra-0.5, Merck KGaA, Darmstadt,
Germany) and centrifuged at 14,000×g for 15min. Filtrates were then
forced through a 3 kDa filter (Amicon 3k ultra-0.5, Merck KGaA,
Darmstadt, Germany) by centrifugation (14,000×g, 20min) and used
for chemical analysis.

The ionic Ba, Sr, or Zn concentration was assessed by ICP-MS (ICP-
MS 8800, Agilent Technologies, Santa Clara, CA, US) and corrected for
the molar mass of the pristine ENM and the detectable metal ion, to
obtain the mass of dissolved ENM solids. Results are shown as
mean ± standard deviation (SD). To test for statistical significance,
test values were compared to control values using Welch's unequal
variances t-test. Test results with p≤ 0.05 were assessed as significant
(*). All experiments were performed in triplicates.

2.5. Determination of cytotoxicity

Cytotoxic effects of ENM were monitored by measuring the lactate
dehydrogenase (LDH) activity in the cell culture supernatant as an in-
dicator for membrane damage and/or cell necrosis. Measurements were
carried out as described (Wiemann et al., 2016) using the Roche Cy-
totoxicity Kit (Roche, Germany). In brief, cell culture supernatants were
centrifuged (10min, 200g) to remove larger particles and cell debris. A
volume of 50 μL was incubated with LDH reaction mix (Roche Cyto-
toxicity Kit; Roche, Germany) and evaluated as described by the man-
ufacturer. Optical density (OD) was measured at 490 and 620 nm in a
plate photometer (Tecan 200Pro, Tecan, Germany). Measurements
were routinely corrected for cell free-adsorption (to erase effects of
particles on the optical signal) and normalized to the positive control
value (set to 100%) obtained from NR8383 cells lysed with 0.1% Triton
X-100 (Sigma, Aldrich, Germany). Particles investigated in this study
had no influence on the LDH signals.

3. Results

3.1. Abiotic dissolution and transformation

The dissolution kinetics of 24 ENM was investigated in pH 4.5 PSF
(Fig. 2A–E). For some materials, e.g. both nanoforms of CeO2, the ion
concentration in the eluate remains below the limit of detection (LoD)
at any sampling time. In this case a virtual value was calculated from
the number of consecutive measurements multiplied by LoD, however
no plot was generated for this data. With ICP-OES as analysis technique,
dissolution remained below LoD for all nanoforms of CeO2 and Fe2O3.
With ICP-MS as analysis technique that is sufficiently sensitive on the
ppb ion level that is to be expected, (Plakhova et al., 2016) quantitative
values could be generated also by the flow cells, but would not change
the assignment to the group of materials with low dissolution rate. The
dissolution of the barely soluble material BaSO4 NM-220 (Fig. 2B) has
been identified elsewhere as a combination of dissolution and Ostwald
ripening, highlighted by an unexpected growth of particle size (re-
produced in Fig. SI_S6) (Keller et al., 2018). Here we compare the non-
nanoform by the same supplier BaSO4_IRMM381, and find that by
matching the initial surface area of the two forms (testing BaSO4 NM-
220 at M0= 0.17mg), both the nanoform and the non-nanoform have
nearly identical kapp and Mion/T (Table 1). In this manner, the max-
imum ion concentration is different but remains for both below the
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pH 4.5 solubility limit, such that reprecipitation and Ostwald ripening
are suppressed. The matching of dissolution rates from nano- and non-
nanoform confirms the validity of the surface-based k metric.

For all six forms of SiO2 (Table 1 and Fig. 2C) the dissolution is
rather limited in the acidic PSF medium, as expected. However, we do
observe a higher dissolution for SiO2 NM-203, which is produced by a
different process (precipitation, then drying) than the colloidal nano-
forms of SiO2 (SiO2_untreated_50 to SiO2_untreated_300). Knowing that
soluble forms of SiOx tend to polymerize, we stored the elution samples
from NM-203 alternatingly with or without addition of 10% of 1M HCl,
but the resulting kinetics superimposed completely, confirming suffi-
cient stability of dissolved Si-species before detection. Additionally, we
measured another SiO2 powder (NM-200) and found similar dissolution
rates. While there is a trend to release more ions from smaller particles
(in the SiO2_untreated_50 to SiO2_untreated_300 family (Wiemann
et al., 2018)), the surface increase is larger so that the nominal dis-
solution rate k is lower for the smaller forms. Considering that espe-
cially in acidic medium SiO2 tends to undergo polymerization and gel
formation, a lower initial concentration of solids might help to de-
monstrate a stronger relationship with size, but would underscore the
detection limit of our ICP-MS. Interestingly, surface functionalization
(SiO2_amino_200, SiO2_phosphonate_200) can increase dissolution
threefold compared to the core particle (SiO2_untreated_200).

The four Cu-containing nanoforms show a very diverse dissolution
as seen in Fig. 2A. CuO dissolves completely after 7 days under standard
conditions, whereas Cu2(OH)2CO3 dissolves moderately (32% after
7 days) and both Cu_Phthalocyanin nanoforms shed only negligible
amounts of ions. The difference is evident by the comparison of daily Cu
release of 456 μg from CuO compared to 0.66 μg from Cu_Phthalocya-
nin_nano (Pigment Blue 15). These traces of Cu from Pigment Blue 15
are not necessarily attributed to particle dissolution but rather to re-
maining Cu from the complexation synthesis of the technical materials.

Very interestingly, Fig. 2D demonstrates a small retardation (from
day 2 to 5) of the dissolution kinetic for the ZnO nanoform with coating,
ZnO NM-111. However, after this retardation, attributed to the dis-
solution of the coating, the overall dissolution of ZnO NM-111 is ac-
celerated (Table 2).

Transformation is frequently observed for zero-valent Ag- or Cu-
particles with numerous studies showing re-crystallization, re-specia-
tion (changing the chemical composition) especially in environmental
media (Gao and Lowry, 2018; Vencalek et al., 2016; Dale et al., 2015;
Mitrano and Nowack, 2017; Mitrano et al., 2015). Here we apply a
standardized protocol of aging and sample preparation (Fig. SI_S3),
with representative results shown in Fig. 3. Comparing the first pair of
images (Fig. 3a), the TEM results support the complete dissolution of
ZnO NM-110 incurred from the addition of all ions in the eluates, ob-
servations made for with the dissolution setup, as no particles could be
found. In contrast, Fe2O3_nano_B (Fig. 3b) showed no significant dif-
ference between the pristine material and the material after a week of
exposure to PSF. Cu_Phthalocyanin_nano tended to form aggregates, as
no smaller particles remained (Fig. 3c). TEM images of SiO2_untreated
nanoparticles (Fig. 3d) revealed a moderate shrinkage. Furthermore,
the homogeneous electron density of the particles transformed into an
electron dense core and a less electron dense surface layer, which may
be interpreted as gel-like and is not unexpected for SiO2 under acidic
conditions (Iler, 1979).

In addition to the representative cases (potential benchmark mate-
rials) in Fig. 3, more ENM have been analyzed with TEM of initial solids
vs. remaining solids (Fig. 4). For Cu_Phthalocyanin_halogenated we
observed the same behavior as for Cu_Phthalocyanin_nano, because the
remaining particles were strongly aggregated. When comparing the
TEM image of the pristine particles of Cu2(OH)2CO3 with the TEM after
the treatment with PSF, we observed that pristine particles had dis-
appeared, while very few secondary particles were visible which con-
sisted mainly of Si, but were devoid of Cu. SiO2 NM-203 was found to
dissolve faster than colloidal silica of roughly the same constituent
particle size (SiO2_untreated_200), and forms different intermediate
structures (Fig. 4c). This may be due to the aggregate structure with
negative radii of curvature (necks between primary particles) (Iler,
1979). As CuO and ZnO underwent complete dissolution within 7 days,
an “infinite dilution” approach was employed to study transformation
processes: we repeatedly dipped the grids into PSF and successively
imaged the same spot of a TEM grid. The results on ZnO nicely de-
monstrate how its dissolution behavior is completely different from
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Fig. 2. Dissolution kinetics. A: Cu (red CuO, blue CuPhtalo_nano, yellow CuPhtalo_halogen, green Cu2(OH)2CO3); B: BaSO4 (red NM-220 1.05mg, blue NM-220
0.17 mg, yellow IRMM381), C: SiO2 (red NM-203, blue SiO2_amino), D: ZnO (red NM-110, blue NM-111), with inset enlarging the initial effects. E: SrCO3. The error
bars displayed here equal the duplicate uncertainty of the ICP-OES measurements.
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BaSO4 NM-220 (Keller et al., 2018), as ZnO reduces the radii of cur-
vature until complete disappearance (Fig. SI_S4). No dissolution was
quantified with our ICP-OES limit of detection for TiO2 NM-104, CeO2

NM-212 or Fe2O3_nano_A. The absence of major dissolution or trans-
formation was also confirmed through the analyzation of the crystal
structure through selected area electron diffraction (SAD, Fig. SI_S7).
The SAD graph showed unique Cerianite (CeO2) signals and thus con-
firmed that transformation remained limited, although especially CeIII-
rich surface layers may have undergone transformations. In contrast to
the case of BaSO4 NM-220 (Fig. SI_S6 reproduced from (Keller et al.,
2018)) no Ostwald ripening has occurred for BaSO4 non-nano (Fig.
SI_S7).

3.2. Uptake of nanomaterials by NR8383 cells and cell-assisted dissolution

In the next step we explored in as much macrophage-assisted dis-
solution differs from the abiotic flow-through dissolution. In contrast to
former experiments with AMs (Kreyling et al., 1979), we used culti-
vated NR8383 rat AMs to avoid animal consumption necessary for the
use of primary cells. NR8383 cells are actively moving phagocytic cells
which gather particles from the bottom of the cell culture vessels. The
cells can be transiently cultivated under low serum-conditions. How-
ever, as NR8383 cells are not firmly attached to the substrate, a change
of medium may lead to cell loss, such that their incubation with SrCO3

and BaSO4 in wells of a 96 well plate was limited to 1–2 days. To in-
crease the yield of dissolved ions under these conditions, a compara-
tively high concentration of 45 μg/mL was used which, in case of

BaSO4, were found to be non-toxic under the conditions of the macro-
phage assay ((Wiemann et al., 2016), see Supplement Table SI 1 for
SrCO3). Exposure of the cells to the particle was accelerated by brief
centrifugation of ENM onto the bottom of the 96-well plate (Fig. 5a).
This procedure had no obvious influence on cell shape or motility but
circumvented the phase of gravitational settling and, therefore, pro-
vided a common starting point for the time-lapse study of particle
dissolution. Under these conditions AMs had entirely engulfed micro-
scopically visible SrCO3 agglomerates from the bottom of the wells after
≥3 h and this situation persisted until the end of incubation (Fig. 5b).

To measure the total amount of intra- and extracellular Sr ions by
ICP-MS analysis, cells within each well were completely lysed with
Triton X-100 and proteinase K after 3, 6, 12, 24 and 48 h and the
homogenates were separated from any particulate constituents by
passing through a 3 kDa filter unit. Incubation of SrCO3 with NR8383
cells significantly increased the concentration of dissolved material in
the medium compared to cell-free control at any point in time. For
example, after 24 h concentrations of 21.87 ± 0mg/kg (49% of total
mass) and 6.71 ± 0mg/kg (15% of total mass, n= 3) were measured
for the macrophage-mediated dissolution and the cell-free medium
control, respectively. Of note, the macrophage-mediated increase in
dissolved SrCO3 developed progressively up to 48 h, indicating ongoing
cellular activity. In contrast, the incubation of SrCO3 ENM in acidic PSF
for 24 h led to a rapid dissolution of 97% of the total SrCO3 mass
(43.79 ± 0mg/kg) and these high values remained fairly constant
over time (Fig. 6, Table SI S1a). To analyze cytotoxic effects during
SrCO3 incubation, the activity of LDH was monitored in the cell culture

Table 1
Nanoform physical-chemical descriptors of the 24 test materials.

Minimum external
dimension (TEM or
AUCa)

Shape (TEM) Specific
surface area
(BET)

Composition/crystallinity/
impurities (XRD, ICP-MS,
XPS)

Surface modification

[nm] Descriptive [m2/g] [%] Descriptive

BaSO4 NM-220 32 Spheroidal 41 Purity > 93.8%; Na, Ca, Sr,
F, Cl, organic compounds

None

BaSO4 IRMM381 253 Spheroidal 2.5 Ba 58.8% O 27.4% S 13.7% None
CeO2 NM-211 4–15 Spheroidal 66 Purity > 95% None
CeO2 NM-212 40 Mixed

spheroidal+ platelets
27 Purity > 99.5%, 0.7%

organic contaminations
None

Cu2(OH)2CO3 34a Platelets 19 Cu 57% None
Cu_Phthalo_halogen 14 Platelets 61 Cu 5% None
Cu_Phthalo_nano 17 Spheroidal 58 Cu 10.4% None
CuO 40 Spheroidal 34 Purity >99%, Al, Si 0.1–1% None
Fe2O3_larger 48 ± 27 Spheroidal 12 Predominantly Fe2O3,

hematite; traces of magnetite
(cubic) Fe3O4

None

Fe2O3_nano_A 15–130×4–21 Rod shaped 107 Fe2O3, hematite None
Fe2O3_nano_B 37 Spheroidal 30 Fe2O3, hematite None
SiO2 NM-203 20 Spheroidal 200–226 Purity > 99%, Al 0.43% None
SiO2_aminated 15a Spheroidal 200 SiO2 amorphous covalent surface functionalization with low-

molar-mass silane having a pos. charged amino
end group

SiO2_phosphonated 15a Spheroidal 200 SiO2 amorphous covalent surface functionalization with low-
molar-mass silane having a neg. charged
phosphonate end group

SiO2_untreated_50 55a Spheroidal 50 SiO2 amorphous None
SiO2_untreated_100 30a Spheroidal 100 SiO2 amorphous None
SiO2_untreated_200 15a Spheroidal 200 SiO2 amorphous None
SiO2_untreated_300 9a Spheroidal 300 SiO2 amorphous None
SrCO3 13–19 Rod shaped 33 Sr: 21.1%; C 27.1%; O:

51.3%
None

TiO2 NM-104 21 Spheroidal 57 TiO2 rutile Al2O3 coating+ 2% Polydimethylsiloxan
TiO2 NM-105 25 Spheroidal 51 TiO2 mix rutile/anatase None
ZnO NM-110 42 Mixed spheroidal and rod

shaped
12 ZnO >99% None

ZnO NM-111 34 Mixed spheroidal and rod
shaped

14 ZnO >97% Triethoxycaprylsilane silicone coating

a Following the NanoDefine e-tool (http://www.nanodefine.eu/index.php/nanodefiner-e-tool), materials that are originally produced as colloidal suspensions
were characterized by Analytical Ultracentrifugation (AUC) (Mehn et al., 2018), and powders by Transmission Electron Microscopy (TEM).
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supernatants. LDH activity was low after 3 h and 24 h (9.8 ± 6.5% of
Triton X-100 control), but increased to 81.0 ± 38.1% of positive
control at 48 h. At this point in time light microscopic inspection re-
vealed cells with many pseudopodia and smooth surface, devoid of any
signs of cell deterioration (Fig. 5b). In summary, SrCO3, whose solu-
bility is known to be pH-dependent, showed an enhanced and pro-
gressive dissolution upon uptake and digestion by live macrophages in
vitro.

In the next step we analyzed whether the dissolution of BaSO4, a
material with a low solubility at neutral pH, might be also enhanced
after uptake by macrophages. Following the same procedure as de-
scribed for SrCO3, 45 μg/mL BaSO4 ENM suspension was applied to
NR8383 AMs. Phase contrast micrographs confirmed the settling of
BaSO4 to the bottom of the wells after centrifugation (Fig. 7a). No
BaSO4 agglomerates remained visible between the cells at all time-
points ≥3 h (Fig. 7b). ICP-MS analysis of the filtrated cell homogenates
and respective controls revealed that, after 24 h incubation of BaSO4

with NR8383 cells, 1.88 ± 0.38mg/kg material had dissolved, com-
pared to 1.33 ± 0.37mg/kg in the cell-free medium control, which
corresponds to 4.18% and 2.95% of applied material, respectively.
Exposure of BaSO4 ENM to acidic PSF for 24 h led to dissolved material
fractions of 2.4 ± 0.08mg/kg, which corresponds to a dissolution of
5.34% (Figs. 8 and SI S1b). In accord with the well-known poor solu-
bility of BaSO4, we found low amounts of dissolved material in F-12K
medium for all time points investigated, namely 2.98% of applied
material in average. Although very subtle, NR8383 AM increased the
dissolved material portion up to 6.13% at the 48 h timepoint. Similarly,
PSF accelerated the dissolution up to 5.34% after 48 h.

The release of LDH 3, 6, 12, and 24 h post administration was very
moderate (9.53 ± 4.05% of positive control) but raised to
48.86 ± 10.22% of positive control values after 48 h. Again, the mi-
croscopic inspection of BaSO4-treated cells showed no signs of cell
deterioration.

We finally assessed the macrophage-assisted dissolution of uncoated
ZnO (NM-110) and surface-coated ZnO (NM-111). Both materials show
a high solubility under in vivo conditions, i.e. at near neutral pH.
NR8383 cells were exposed to only 5.6 μg/mL ZnO NM-110 and ZnO

NM-111. At this concentration, cytotoxic effects of both ENM were
moderate after 24 h (ZnO NM-110: 33.59%; ZnO NM-111: 33.69%) and
were not influenced by stimulation with lipopolysaccharide (data not
shown). ZnO agglomerates of either quality were not visible on the
bottom of the cell culture vessel between the cells (not shown) after
24 h. At this timepoint 2.86 ± 0.1mg/kg (51% dissolution) and
2.7 ± 0.12mg/kg ZnO NM-110 (48% dissolution) were detected in the
supernatant in the presence and absence of NR8383 cells, respectively.
Compared to the medium control a significantly higher amount of ZnO
NM-110 (p=0.005) was dissolved in PSF (3.78 ± 0.06mg/kg, 67%
dissolution). Likewise, concentrations of ZnO NM-111 amounted to
2.2 ± 0.06mg/kg in the NR8383 sample (39%), 2.2 ± 0.38mg/kg in
the medium control (39%), and 2.86 ± 0.35mg/kg in PSF (51%). Due
to these results we abstained from measuring after 48 h.

In summary, while the high solubility of both ZnO ENM was con-
firmed and shown to be increased in acidic PSF, phagolysosomal pro-
cesses of live macrophages had no major influence on the solubilization
of Zn ions (Fig. SI S1c and d).

4. Discussion

4.1. Discussion of macrophage-assisted mechanisms

As previously shown for the dissolution of poorly soluble, radi-
olabeled 57Co3O4 by primary alveolar macrophages (AMs) from humans
and dogs (Kreyling et al., 1979), we found that also cultured AMs can
accelerate the biodissolution of particulate matter. This was most ob-
vious for SrCO3, which is known to be soluble only under acidic con-
ditions. Whereas SrCO3 was readily soluble in PSF after 3 h incubation,
only a minor fraction was dissolved after 3 h incubation with NR8383
macrophages. However, with longer incubation periods the dissolved
fraction increased continuously. This might be due to the gradual
acidification of the macrophage's phagolysosomes. In contrast, no sig-
nificant dissolution occurred in the control experiment of medium
without macrophages.

BaSO4 was tested in comparable static (beaker) super-saturation
condition in acidic PSF and in pH neutral medium. In this static

Table 2
Cumulative evaluation of biodissolution of ENM in flow cells with pH 4.5 media at 2mL/h flow-through. For many materials, the ion concentration remained below
the limit of detection (LoD), but could be improved by using dedicated ICP-MS instruments. Significant dissolution is marked bold.

M0 Max. ion concentration Dissolved per 7 days k Mion/T

Unit [mg] [mg/L] [%] [ng/cm2/h] [μg/day]

BaSO4 NM-220 (nano) 1.05 1.3 58 10 51
BaSO4 NM-220 (nano) 0.17 0.8 100 45 18
BaSO4 IRMM381 (non-nano) 1.78 0.49 9 53 16
CeO2 NM-211 1.1 < 0.1 (LoD) < 3 <0.28 (LoD) <3.9 (LoD)
CeO2 NM-212 1.02 < 0.1 (LoD) < 3 <0.73 (LoD) <3.6 (LoD)
Cu2(OH)2CO3 1.07 3.0 32 172 24
Cu_Phthalo_halogen 1 < 0.1 (LoD) < 35 (LoD) < 3.7 (LoD) <2.4 (LoD)
Cu_Phthalo_nano 0.98 0.05 0.4 0.531 0.66
CuO 1.56 37 100 283 456
Fe2O3_larger 1.09 < 0.1 (LoD) < 3 (LoD) < 1.56 (LoD) <3.7 (LoD)
Fe2O3_nano_A 1.07 < 0.1 (LoD) < 3 (LoD) < 0.17 (LoD) <3.2 (LoD)
Fe2O3_nano_B 0.99 < 0.1 (LoD) < 3 (LoD) < 0.65 (LoD) <3.6 (LoD)
SiO2 NM-203 1.12 0.3 8 0.23 11
SiO2 NM-200 1.01 0.45 11 0.383 7.76
SiO2_amino_200 1.06 0.28 7 0.216 4.83
SiO2_phosphonate_200 1.01 0.18 8 0.275 5.76
SiO2_untreated_50 1.17 0.03 0.5 0.088 1.6
SiO2_untreated_100 1.08 0.04 0.9 0.066 1.7
SiO2_untreated_200 1.0 0.05 1.2 0.044 2.1
SiO2_untreated_300 1.05 0.06 1.4 0.034 2.6
SrCO3 1.08 12.7 100 108 240
TiO2 NM-104 1.09 < 0.1 (LoD) < 0.03 (LoD) < 0.031 (LoD) <2.4 (LoD)
TiO2 NM-105 1.04 < 0.01 (LoD) < 0.1 (LoD) < 0.013 (LoD) <0.1 (LoD)
ZnO NM-110 1.12 18 100 204 217
ZnO NM-111 1.12 17 100 177 150
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experiment, Ba ion concentration was slightly higher in acidic PSF than
in pH neutral medium control. Interestingly, the total dissolved fraction
was considerably higher in the flow-through system (Keller et al.,
2018). However, a trend of acceleration was hardly discernible after
incubation with NR8383 cells. Because of the trace concentrations of Ba
to be measured the analytical uncertainty might mask subtle cellular
effects. In addition, the incubation time was limited to 48 h (to prevent
a change of medium), and this is a major difference to the study of

Kreyling and co-workers on the in vitro dissolution of 57Co3O4, who
exposed AMs for 14 days and measured dissolved Co ions by gamma
counting.

To compare the dissolution efficiency of AMs in vivo, we approx-
imate the deposited dose per AM for an inhalation exposure of rats to
50mg/m3 BaSO4 for 5 days, resulting in a lung burden of 1055.7 μg/
lung. After a post-exposure period of 21 days the lung burden decreased
to 239.7 μg/lung (difference 816 μg) (Landsiedel et al., 2014). The
average AM cell count of female Wistar rats is approximately 1× 107

(Rehn et al., 1992). Assuming a stable AM number throughout the post-
exposure period, each macrophage engulfed/cleared 3.9×10−6 μg
BaSO4 per day, partially by dissolution. In the present study, 3× 105

NR8383 cells were exposed to 9 μg BaSO4 (45 μg/mL). After 24 h each
macrophage dissolved 1.3×10−6 μg BaSO4. Hence, the in vivo dis-
solution was augmented approximately by a factor of 3 compared to the
in vitro situation. The in vivo clearance of particulate matter from the
alveolar surface is primarily triggered by AMs, as particles are known to
be phagocytosed within a few hours. Besides AM-associated muco-
ciliary clearance, dissolution may contribute significantly to the clear-
ance in vivo, which is obviously dependent on additional factors like
surfactant turnover, lymphatic flow, and lung perfusion. This complex
process cannot be mimicked in vitro. We conclude that for materials
with a low solubility limit, an increase of biological complexity e.g.
using macrophages of the testing method, compared to the abiotic
dissolution system, is not beneficial.

This is also true for the ZnO ENM investigated. The dynamic in vivo
situation which leads to a fast ZnO clearance from rat lungs could not
be simulated in the static cell culture approach. It should be noted, that
LDH activity was increased after 48 h incubation with SrCO3 and BaSO4

possibly pointing at beginning cytotoxicity although there were no
visible signs of reduced viability or deteriorated cells. Apart from Sr, Ba,
or Zn ions high LDH activity or membrane leakage may be caused by
the comparatively high cell density under static culture conditions.
Moreover, the AM approach suffers from unknown effective doses. Even
if dissolution in phagolysosome occurs, reprecipitation and low-dose
effects may occur, as shown for Ni-containing particles (Latvala et al.,
2016). The dose uncertainties are especially relevant for materials that
are partially soluble in the medium (ZnO) and/or well dispersed na-
noparticles (such as colloidal silica) whose gravitational settling cannot
be monitored by light microscopy (Wiemann et al., 2018). Complete
transformation (by dissolution) during the in vitro incubation was
confirmed for CuO and ZnO using advanced characterization with a
synchrotron X-ray source (Ivask et al., 2017).

4.2. Discussion of abiotic dissolution vs. macrophage-assisted dissolution vs.
in vivo pulmonary clearance

For the three cases of direct abiotic-vs-in vitro comparison, BaSO4

NM-220, SrCO3 and ZnO NM-111, the differentiation of dissolution
rates from abiotic flow-through testing was consistent with differ-
entiation by the in vitro AM method, and quantitative rates were within
a factor 2.4, 1.8 and 1.5, respectively (Table 3). Time-resolved in vivo
clearance kinetics are available for CeO2 NM-212 and BaSO4 NM-220
(from radio-activated intratracheal instillation), and are plotted against
the dissolution rates of flow-through testing (Fig. 9) (Keller et al., 2014;
Konduru et al., 2014). For all other materials, the percentage of re-
maining solid after 7 days in abiotic flow-through testing is compared in
Table 3 to the remaining lung burden after 21 days of recovery in vivo,
because only this value is available from the standardized STIS in-
halation results. Thus our comparison in Table 3 targets consistency,
not quantitative predictivity, and avoids modeling that would require
several assumptions, such as mono-exponential decay, spherical shape
etc. Assuming first-order kinetics (mono-exponential decay), the dis-
solution rate can be converted to half-times by Eq. SI_1, with the results
given in Table 3. Assuming monodisperse size and spherical shape, Eqs.
SI_4 to SI_5b reproduce the modeling of shrinking spheres from ISO

Fig. 3. Electron microscopic analysis of representative cases of ENM transfor-
mation. Comparison between TEM images of the pristine state (left column) and
after the recovery from the flow-through cell after 7 days of treatment (right
column). a) ZnO NM-110 (complete dissolution), b) Fe2O3_nano_B (no dis-
solution, no transformation), c) Cu_Phtalo_nano (no dissolution, aggregating
transformation), d) SiO2_untreated_200 (low dissolution, reprecipitation trans-
formation).
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TR19057:2017. With polydispersity, however, the time course of mass
and surface area may result in multiphase kinetics, such as observed for
ZnO (Fig. 2D); the in situ TEM (Fig. SI_4) confirms that this material is
initially polydisperse in size and shape, and deviates even stronger from
spherical shape during dissolution and transformation.

The measured reduction of lung burden was available for CuO
(Gosens et al., 2016), ZnO NM-111 and TiO2 NM-105 (Landsiedel et al.,
2010), CeO2 NM-212, NM-211 (Keller et al., 2014), SiO2_untreated, and
SiO2_amino (Landsiedel et al., 2014). Most of these studies were also
summarized as case studies of the DF4nanogrouping framework (Arts
et al., 2016).

For all materials, the abiotic dissolution is consistent with in vivo
observations, considering that both physical clearance and chemical
dissolution contribute. For TiO2 NM-105 and both nanoforms of SiO2,
dissolution means a marginal contribution to clearance, indicating that
in vivo clearance is dominated by macrophage-mediated transport.
However, for BaSO4 NM-220, CuO, ZnO NM-110 and ZnO NM-111 lung

Fig. 4. Transformation analysis of addi-
tional materials: TEM images of the pris-
tine materials (left) and after 7 days dis-
solution under standard conditions in PSF
(right). a) CuPhthalocyanin_halogenated,
b) Cu(OH)2CO3, c) SiO2 NM-203, d) CeO2

NM-212, e) TiO2 NM-104, f) non-nano
BaSO4_IRMM381. By additional EDX, the
structure in b) was found to contain
mainly Si, not Cu, and is thus not as-
signed to the test material.

Fig. 5. Exposure of NR8383 alveolar macrophages to
SrCO3 ENM. Contrast-enhanced phase contrast mi-
crograph showing (a) numerous SrCO3 ENM ag-
glomerates settled onto the bottom of the culture
vessel post centrifugation under cell-free conditions,
and (b) NR8383 cells after a 48 h incubation period
with SrCO3 ENM. Note that cells appear healthy with
smooth outer contours (arrows). The space between
cells is devoid of visible particles.

Fig. 6. Dissolution of SrCO3 subjected to neutral and acidic pH conditions over
time. F-12K cell culture medium control without cells (white bars); NR8383 rat
AM (black bars); PSF pH 4.5 (grey bars); n= 3; * means p≤ 0.05.
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clearance is dominated by dissolution. The dynamic dissolution flow-
through system is the method of choice to predict the contribution of
dissolution for in vivo clearance. Materials that were identified as of low
dissolution rate in this system (e.g. TiO2 NM-105) will be removed in
vivo from the lungs mainly by AM-assisted mucociliary clearance. The
physical clearance as well as the mobility of particles within the rat
lungs may also be influenced by agglomeration in situ, whose me-
chanisms are beyond the scope of this discussion. For a read-across on
low dissolution ENM (see group ranges proposed below), extrinsic
properties such as dispersion stability, heteroagglomeration, affinity
need to be considered to appropriately frame the mobility in the body.
E.g., affinity to phospholipids is higher for SiO2_amino than for
SiO2_untreated (Wohlleben et al., 2016), and may contribute to the
slightly lower clearance despite faster dissolution rates. Chemical

transformation has been observed also in vivo (Graham et al., 2017a,b),
and specifically for the case of BaSO4 we showed that the Ostwald ri-
pening is consistently observed in the flow-through setup and in vivo
(Keller et al., 2018). In principle, the remaining solids that we recover
by the centrifugation procedure could be administered to cell cultures
to test the response to the transformed material, as was done for static
transformation in stomach/intestine simulants (DeLoid et al., 2017).
However, our system cannot currently predict reprecipitation after
systemic circulation, as has been observed on some ceria species
(Graham et al., 2014).

It should be noted that the recommended conditions of (M0= 1mg,

Fig. 7. Exposure of NR8383 alveolar macrophages to
BaSO4 ENM. Contrast-enhanced phase contrast mi-
crographs showing (a) numerous BaSO4 ENM ag-
glomerates settled onto the bottom of the culture
vessel post centrifugation under cell-free conditions
and (b) NR8383 cells after a 48 h incubation period
with BaSO4 ENM. Note that cells have numerous
pseudopodia (arrows). The space between cells is
devoid of particles.

Fig. 8. Dissolution of BaSO4 subjected to neutral and acidic pH conditions over
time. F-12K cell culture medium control without cells (white bars); NR8383 rat
AM (black bars); PSF pH 4.5 (grey bars); n= 3.

Table 3
Comparison of 7-day abiotic dissolution (standard conditions) with 1-day alveolar macrophage-assisted dissolution and 28-day clearance in vivo STIS.

Dissolution rate macrophage-
assisted (24 h) [ng/cm2/h]

Dissolution rate
Abiotic flow-through,
pH 4.5 [ng/cm2/h]

Half-time calculated
from k [days]

Dissolution rate
Abiotic flow-through, pH 4.5
[% per 7 days]

In vivo pulmonary clearance in STIS
recovery [% per 21 days]

BaSO4 NM-220 4.2 10 7 58% 52%
CeO2 NM-211 <0.28 (LoD) > 156 <3% (LoD) 7%
CeO2 NM-212 <0.73 (LoD) > 146 <3% (LoD) 5%
CuO 283 0.7 100% >85% (LoD)
SiO2_amino 0.216 66 7% 34%
SiO2_untreated 0.044 328 1.2% 39%
TiO2 NM-105 <0.013 (LoD) > 4356 <0.1% (LoD) 26%
ZnO NM-111 117 177 1.2 100% 93%
SrCO3 61 108 1.9 100%

LoD: level of detection. STIS: short term inhalation study.
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Fig. 9. Comparison of in vivo clearance vs. abiotic flow-through dissolution in
PSF on BaSO4 NM-220, CuO and CeO2 NM-212. Red: CeO2 NM-212 in vivo
(Molina et al., 2014), yellow: BaSO4 NM-220 abiotic flow-through, black:
BaSO4 NM-220 in vivo (Konduru et al., 2014), blue: CuO abiotic flow-through.
After 504 h, the in vivo remaining CuO solids are zero or maximally 15% (LoD in
vivo), consistent with the abiotic results (Gosens et al., 2016). Throughout the
abiotic test from 0 h to 168 h, the dissolved CeO2 is< 3% (LoD abiotic), con-
sistent with the in vivo result.
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V=2mL/h) are appropriate for many materials, but no universal op-
timum. As a quality control, it is recommended to check that mea-
surement at two different SA/V leads to the same grouping. If SA/V was
lower, then for several materials in our test set (e.g. the Cu-
Phthalocyanins, the SiO2 materials), the ion concentration in the eluate
drops below the limit of detection of ICP-OES as a method that is highly
established and robust against the high matrix concentrations of phy-
siological buffers. ICP-MS and more optimization would allow to
measure at lower SA/V. In contrast, for higher SA/V more materials
may be limited by saturation. The specific SA/V conditions are selected
to reproduce on the critical test case of BaSO4 the in vivo transformation
and dissolution behavior (Fig. 9) (Keller et al., 2018).

Flow-through systems are described by ISO 19057:2017 as “seen to
be the best method of measuring durability in vitro” (Nti, 2017). Re-
cently, flow-systems have been used to study gastro-intestinal dissolu-
tion of nanomaterials (without the exact same flow cells) (Bove et al.,
2017a,b), and with the same flow cells (De Jong et al., 2018), and to
study environmental dissolution (Pantano et al., 2018). To capture re-
actions of highly instable ENM-medium combinations on a time scale of
minutes, it appears possible to eliminate fraction collection, and instead
to hyphenate flow-cells directly to an ICP-MS; however, we adapted
sampling times to physiological time scales (hours to days), guided by
earlier evidence on other oxide materials. More specifically, flow-
through systems have previously been used to study the pulmonary
biodissolution of respirable man-made vitreous fibers (MMVF) (Nti,
2017). A large collection of abiotic dissolution rates and associated in
vivo lung clearance rates has been made available for natural and man-
made mineral fibers in a WHO report (IARC, 2002) which lists, among
others, the following biodissolution rates of MMVF:

• MMVF34 “biosoluble stone wool” with a lung clearance half-life
time of 6 days and k=620 ng/cm2/h (at pH 4.5) and k=59 ng/
cm2/h (at pH 7.4);

• MMVF11 glass wool with a lung clearance half-life time of 9 days
and k=25 ng/cm2/h (at pH 4.5) and k= 100 ng/cm2/h (at
pH 7.4);

• MMVF32 E-glass-wool with half-life time of 79 days and k=9 ng/
cm2/h (at pH 4.5) and k=7 ng/cm2/h (at pH 7.4);

• crocidolite and amosite asbestos with half-life time of> 400 days
and k < 1 ng/cm2/h (at both pH).

It is interesting to note that many of the nanomaterials have dis-
solution rates (k values) at the lower end of the range spanned by the
partially amorphous, partially crystalline aluminosilicates (stone wool,
glass wool, asbestos). This is plausible considering the chemical com-
position. On the other hand, the BET surface of ENM is> 100× larger
than that of typical glass or mineral fibers (which range around 0.2m2/
g, due to several micrometer diameter) and this favors a low bio-
persistence of ENM, because half-times are given by the inverse of k and
lung-deposited specific surface area (Eq. SI_1).

4.3. Discussion grouping and read-across

The results of the abiotic flow-through dissolution can be essential
to substantiate a grouping hypothesis via the similarity of dissolution
rates: The degree of biodissolution is similar for families of Fe2O3

(nano)forms, SiO2 nanoforms, CeO2 nanoforms, ZnO nanoforms, thus
primarily determined by the substance, but shows significant modula-
tion by production routes and surface coatings. In contrast, the mod-
ulation by shape or size is limited. Nanoforms although different in
shape (Fe2O3), size (CeO2, Fe2O3) or coatings (SiO2, ZnO) can be
grouped for pulmonary persistence, if their dissolution is sufficiently
similar.

On the contrary, a dissimilarity of dissolution may be used to dif-
ferentiate between ENM which are seemingly similar due to toxic
components: Thus the four Cu-containing materials fall into different

groups as CuO and Cu2(OH)2CO3 exhibit a significant or complete
dissolution after 7 days, whereas both Cu-Phthalocyanine ENM do not
show significant solubility. Accordingly, the in vivo potency (mediated
by Cu ions) was high for CuO (Gosens et al., 2016) but low for Cu-
Phthalocyanine (Arts et al., 2016). Similarly, a differential lung toxicity
was observed for a set of NiO nanoparticles after intratracheal in-
stillation. Also in this case there was a strong correlation of in-
flammation parameters with solubility in artificial lysosomal fluid
(Shinohara et al., 2017).

Especially coatings or functionalization modulated the dissolution
rate within an order of magnitude in our dataset. Stronger modulation
is expected only for closed shells, such as oxide coatings on more so-
luble core particles. For those materials with a very low equilibrium
solubility limit under lysosomal conditions, the local dose of the ENM is
another important parameter affecting the dissolution rate. This was
the case for BaSO4, but not for the other materials. Accordingly, also in
vitro the dissolution rate can depend on initial mass, and this needs to
be considered in screening and grouping strategies, e.g. for im-
plementation of the DF4nanoGrouping framework:

• Tier 1 Solubility: The method for Tier 1 should be stirring of the
suspension in a beaker, followed by ultrafiltration and ICP-OES (or
-MS) analysis, as established by (Avramescu et al., 2016) for their
enhancement of the DF4nanoGrouping framework. A cutoff between
soluble and non-soluble ENM should be defined as absolute con-
centration, e.g. 100mg/L, as by the DF4nanoGrouping framework.
○ If already at Tier 1 the intended use and the critical route of

exposure are known, then it is an option to perform the same test
in the most relevant biological medium.

○ For environmental hazard assessment purposes, the same method
with simple media ranging from pH 4 to pH 9, and a cutoff at
9mg/L (at 10mg/mL initial solids) is discussed in the OECD task
group on dissolution (Rasmussen et al., 2018).

• Tier 2 Dissolution: For a more detailed measurement and a re-
finement in Tier 2 a flow-through dissolution setup is recommended.
Dissolution rates are thus tested out of equilibrium using relevant
media that are derived from the intended exposure scenario of the
ENM, such as pH 4.5 PSF for mimicking the dissolution within al-
veolar macrophages. The flow-through setup (consisting of an ultra-
filtration cell, subsequent ICP-MS analysis of the eluate, and TEM
analysis of the remaining solids) has been standardized and
benchmarked against inhalation results with the following para-
meters: 1 mg of ENM initial solids, relevant medium (for inhalation
concern: PSF at pH 4.5) and a continuous flow-rate of 2mL/h for 7
consecutive days. However, the dose of ENM, the medium and the
flow-rate used for the flow-through dissolution can be adapted to
the requirements of other exposure scenarios, such as investigation
of the dissolution in the gastrointestinal tract, requiring independent
validation.

• Tier 2 Transformation: The analysis of changes during dissolution
can be integrated into this strategy by our medium-removing TEM
sample preparation after completion of the flow-through dissolution
test. In a companion paper, we show that also complex transfor-
mations of a borderline soluble material (BaSO4) are assessed cor-
rectly (Keller et al., 2018). The results presented here for 21 addi-
tional materials furthermore support the plausibility of
transformation detection. No quantitative evaluation of crystallinity
or composition can be proposed yet, but changes of the constituent
particle size are quantified by automated image analysis (N > 300,
e.g. using the NanoDefine tools).

Contrary to the hypothesis that AMs in vitro dissolution provides a
more realistic model than the abiotic simulation of the AM lysosome
alone, we found that macrophage-assisted dissolution in vitro is ap-
plicable only for a limited exposure period (1–2 days) and, therefore,
may liberate comparatively low amounts of ions from ENM. Since the
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method, as performed here, provided no further predictive value, we
suggest that the Tier 2 “assessment of ENM similarity” can stick to
abiotic flow-through dissolution at standardized conditions (initial
mass of 1mg, flow 2mL/h) for grouping and read-across purposes. This
experimental setup is in line with standards for evaluating biodissolu-
tion of mineral fibers. However, mechanistic investigations in Tier 3
may still require in vivo and cell-assisted studies.

The results of this study allow us to propose quantitative ranges to
assign the tested nanomaterials in four distinct groups for the purpose
of grouping of inhalation hazards.

1. The first group are non-persistent materials showing a high dis-
solution rate k > 100 ng/cm2/h and no remaining original parti-
cles in TEM, including CuO, Cu(OH)2CO3, SrCO3, ZnO NM-110 and
coated ZnO NM-111. This cutoff corresponds to an abiotic dissolu-
tion ranging from 30% to 100% after 7 days. Materials in this group
are cleared completely (down to LoD) during a STIS inhalation re-
covery period.

2. The second group are non-persistent materials showing a k ranging
from 1 ng/cm2/h to 100 ng/cm2/h and also significant trans-
formation or reprecipitation. The range corresponds to a significant
dissolution above 10% per 7 days. This group comprises both (nano)
forms nano-BaSO4 NM-220 and non-nano BaSO4 IRMM381.
Chemical clearance (dissolution) dominates, but physical clearance
(transport) and reprecipitation contribute to the processes in a re-
latively complex interplay.

3. The third group of nanomaterials shows a very low dissolution
(k < 1 ng/cm2/h or below LoD) but a significant transforma-
tion during the test period. This corresponds to an abiotic dissolu-
tion ≪30% (or even no apparent dissolution). Examples are both
nanoforms of Cu-Phthalocyanine and all tested silica materials,
where differences may be related to the silica production process.
For these materials the physical clearance from the lung (transport)
is accompanied by aggregation and/or reprecipitation.

4. The fourth group contains all biopersistent materials that show very
low or no dissolution (k < 1 ng/cm2/h or below LoD) and no
significant transformation. All tested (nano)forms of Fe2O3 (A, B,
larger) as well as both CeO2 (NM-211, NM-212) and both TiO2 NM-
104 and NM-105 belong to this group. Physical clearance (transport)
dominates the pulmonary clearance.

Alternatively, group ranges might be defined by k values given in
ng/cm2/h, or by the more pragmatic “% dissolution per 7 days” which
requires no BET measurement of the specific surface area of the ENM
for evaluation of the flow-through raw data. The consideration of the
specific surface area in case of the “k metric” is the major difference
between the two metrics, and allows us to motivate the decadic group
ranges with a rich body of mineral fiber literature (see discussion
above). The k metric also favors the read-across between nanoform and
non-nanoform, because it eliminates the dissimilarity of the specific
surface and focuses on differences beyond size and surface area.

5. Conclusions

In this work, the flow-through dissolution system was used to in-
vestigate the out of equilibrium dissolution behavior of a broad set of
ENM and compared to alveolar macrophage-assisted dissolution as well
as the in vivo clearance in rats. A high degree of consistency of the
abiotic dissolution and the in vivo clearance has been achieved for CeO2

NM-212, two forms of colloidal SiO2, TiO2 NM-105, CuO, nano BaSO4

NM-220 and ZnO NM-111. This method and benchmark materials can
be used to implement grouping frameworks such as those of ECHA
(2017b) or ECETOC (Arts et al., 2015): For Tier 1 testing the in-
vestigation of the dissolution under static conditions is sufficient as
proposed by (Avramescu et al., 2016). However, for Tier 2 testing the
abiotic flow-through setup in relevant media is required, as proposed in

this work on the example of pulmonary biodissolution. Cultured al-
veolar macrophage-assisted dissolution is acknowledged as a potential
method for very specific Tier 3 investigations but needs to be further
explored to achieve sufficiently long exposure periods.

The flow-through dissolution setup and protocol used in this work
combines an integrated quantification of dissolution by ICP-MS/-OES
and detection of transformation through TEM. Using our 24 case stu-
dies, we proposed four groups based on decadic ranges of quantitative
dissolution rates and on a qualitative analysis of transformation. The
representatives of the four groups (benchmark materials) are ZnO NM-
110 (complete dissolution), BaSO4 NM-220 (slow dissolution, re-
precipitation transformation), SiO2 NM-203 (very low dissolution, re-
precipitation/aggregation transformation), TiO2 NM-105 or
Fe2O3_nano_B (very low dissolution, very low transformation). Finally,
the method can be employed for testing of dissolution and transfor-
mation in environmental media.
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Abstract  

Barium sulfate (BaSO4) was considered to be poorly-soluble and toxicologically inert, but BaSO4 NM-

220 showed a surprisingly short retention after intratracheal instillation in rat lungs, and incorporation 

of Ba within the bones. Here we show that static abiotic dissolution cannot rationalize this result, 

whereas two dynamic abiotic dissolution systems (one flow-through and one flow-by) indicated 50 % 

dissolution after 5 to 6 days at non-saturating conditions regardless of flow orientation, which is close 

to the in vivo half-time of 9.6 days. Non-equilibrium conditions were thus essential to simulate in vivo 

biodissolution. Instead of shrinking from 32 nm to 23 nm (to match the mass loss to ions), TEM scans 

of particles retrieved from flow-cells showed an increase to 40 nm. Such transformation suggested 

either material transport through interfacial contact or Ostwald ripening at saturating conditions and 

was also observed in vivo inside macrophages by high-resolution TEM following 12 months inhalation 

exposure. The abiotic flow cells thus adequately predicted the overall pulmonary biopersistence of the 

particles that was mediated by non-equilibrium dissolution and recrystallization. The present 

methodology for dissolution and transformation fills a high priority gap in nanomaterial hazard 

assessment and is proposed for the implementation of grouping and read-across by dissolution rates.  

Keywords: inhaled engineered nanomaterial, in vivo processing, nanomaterial dissolution, 

transformation, in vivo clearance 
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Introduction 

Knowledge about pulmonary retention kinetics of inhaled particles is an essential element of hazard 

assessment and of understanding the mechanisms by which adverse health outcomes may occur. 

Barium sulfate was generally assumed to be poorly-soluble and toxicologically inert unless delivered 

at high concentrations over an extended period 1,2. However, Konduru and colleagues reported that 

intratracheally instilled 131BaSO4 NM-220 exhibited a lung retention half-time of only 9.6 days in rats 

and that 131Ba was incorporated into the bones, suggesting nanoparticle dissolution and/or 

translocation to extrapulmonary sites 3. A subsequent 90-day inhalation study in rats with a high 

concentration of aerosolized BaSO4 NM-220 (50 mg/m3) 4 revealed no signs of lung overload and a 

retention half-time of 56 days, which is close to the normal range for the rat lung 4. A two-year rat 

inhalation study with BaSO4 NM-220 (50 mg/m3), however, demonstrated an increase of retained Ba 

in the lung during the first year of exposure, after which a steady-state was achieved 5. Since significant 

Ba accumulation in bone and bone marrow was also observed and, given that the measurements of 

Ba distribution [1-3] provide no information about its physicochemical characteristics, the complex in 

vivo dissolution and/or transformation of BaSO4 secondary to inhalation exposure require more 

detailed investigation.   

Particle clearance from the lung involves absorptive (dissolution) and non-absorptive (physical) 

mechanisms.  For poorly-soluble particles, physical clearance mechanisms – involving macrophage 

engulfment, transport, and mucociliary propulsion towards the oropharynx – dominate the pattern of 

overall clearance. Kreyling 6 demonstrated a retention half-time of 70 days in the rat for poorly-soluble 

particles 7. For metal nanoparticles that undergo in vivo dissolution, clearance may not be immediate 

due to biotransformation and binding events (proteins or other biomolecules) that prolong retention 

8-10. Thus, the collective in vivo observations with lung-deposited BaSO4 suggest that it is more

biosoluble than assumed and, therefore, in vivo dissolution and processing must be considered. 

The evaluation of particle solubility is a key element of many integrated testing strategies 10-12 and of 

frameworks for categorizing broad classes of materials, such as engineered nanomaterials (ENMs), in 
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terms of their physicochemical properties 13-19. Methods to assess the equilibrium (or quasi-dynamic) 

solubility of ENMs that are suspended in water or physiological buffers – as was done with BaSO4 and 

supported the conclusion regarding its low solubility – are relatively well developed 20,21. The OECD 

draft guideline under current discussion involves suspending particles in a medium, incubation, 

removal of remaining solids by centrifugation or ultrafiltration, and measurement of the analyte in 

solution 22. These approaches could be adequately predictive of particle dissolution in a closed system, 

e.g., a cell culture well for in vitro exposure studies 21. There are several drawbacks with these

approaches, however, when the model in question is an in vivo one.  First, the lung is not a static 

(equilibrium) system, as the ions that are liberated from the particles via dissolution are continuously 

removed from the compartment where deposition originally occurred, or they become bound to 

biomolecules or may form secondary nanoparticles via reprecipitation. Secondly, if the closed system 

reaches the solubility limit in the selected medium, the dissolution rate is easily underestimated and 

particles with some solubility may appear as very poorly-soluble. Thirdly, commonly-used methods 

generally lack a means for evaluating the structural transformation of remaining solids, i.e., 

physicochemical modifications that could impact clearance and particle disposition. Lastly, any abiotic 

system does not fully reflect disposition in lung because the lining and interstitial fluids throughout the 

respiratory tract are pH-balanced, complex mixtures of salts, serum proteins, and other 

biomolecules. Most importantly, phagocytosis by macrophages or other cell types introduces particles 

to the lysosomal microenvironment with an acidic pH.  Thus, a dynamic (non-equilibrium) system may 

be better suited to an evaluation of the in vivo bioprocessing of deposited particles in the lung, 

particularly if both the intraphagolysosomal and lung surface microenvironments are considered.  

Indeed, dynamic systems were developed and validated to estimate the biopersistence of mineral 

fibers 23-25. In these systems, dissolved ions pass through a membrane with a pore size that excludes 

the parent particles.  The ions on the other side of the membrane are continually removed from the 

system using flow-through or flow-by macrodialysis, thus achieving non-equilibrium conditions over 

the time course – hours to days – of the study.  The dialysate is collected in discrete volumes, after 
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which the target analyte is quantitated in the collected fractions and the waste that was not sampled. 

Adaptation to ENMs mainly requires the choice of appropriate separation membranes. Stefaniak and 

colleagues employed a membrane to separate the suspended particles from a larger volume of 

particle-free receptor medium, thus gaining size exclusion in addition to the flow-mediated 

concentration gradient that provided short-term disruption of equilibrium conditions 21. Another 

quasi-dynamic system with relatively large volume was explored and a setup patented for oral 

exposure purposes 26, demonstrating that dynamic setups can also be employed to study the structural 

transformations of remaining solids 27. Transformation of nanoparticles by in vivo processing has been 

directly observed for the relatively biosoluble amorphous SiO2 in the pulmonary compartment 9. 

Transition metal oxides, specifically CeO2, have also demonstrated the potential to recrystallize in 

lysosomal conditions 28 or in extracellular medium 9, and bioprocessing was observed to be organ-

specific 29. Such modulations of biopersistence by local physiological conditions could, thus, contribute 

significantly to the unusual biokinetics of nanoscale BaSO4 4,5,30. 

We hypothesize that both the shedding of ions and in vivo biotransformation of remaining solids 

contribute to the biokinetics of nanoparticles. We describe here methodology to evaluate the abiotic 

dissolution of BaSO4, thought to be a poorly-soluble ENM, and explore the extent of agreement that 

can be reached in comparison to in vivo results. 

Materials 

Previous in vivo studies on BaSO4 NM-220 have already been conducted 3,4  and their physicochemical 

properties published in multiple reports 31-33. BaSO4 NM-220 is a benchmark material of the OECD 

sponsorship program. Table 1 lists physicochemical properties of NM-220 as relevant for ECHA 

nanoforms 34. 
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Table 1 Physicochemical properties of BaSO4 NM-220 

Property BaSO4 NM-220 

Composition / crystallinity 

/ impurities (XRD*) 

purity > 93.8 %; Na, Ca, Sr, F, 

Cl, organic compounds 

Minimum external 

dimension (TEM**) 
32 nm 

Shape (TEM**) Spheroidal 

Specific surface area 

(BET***) 
41 m²/g 

Surface modification None 

Contact angle (water) <10° (hydrophilic) 

*X-ray diffraction (XRD); **Transmission electron microscopy (TEM); ***Brunauer-Emmett-Teller method (BET) 

Methods 

Static solubility or quasi-dynamic abiotic dissolution 

Details for testing the solubility of BaSO4 in phagolysosomal simulant fluid (PSF) under static conditions 

are provided in the Supplementary Information. In short, BaSO4 was suspended in 200 mL PSF 

(composition described in 21) at a concentration of 10 mg/mL, then incubated for 7 or 28 days at 37 °C 

with stirring. The remaining particulate matter was separated from the ions in solution using 

ultracentrifugation at 67,000 ×g for 2 h, and the Ba concentration in the supernatant fraction was 

analyzed by inductively-coupled plasma mass spectrometry (ICP-MS).  Particle dissolution under quasi-

dynamic conditions was performed by suspending BaSO4 in PSF (10 mg/mL) and injecting the 

suspension into a 2 mL dialysis cassette with a cut-off at 7 kDa (Supplementary Information). The 

dialysis cassette was placed horizontally in a glass vessel filled with 200 mL PSF as receptor medium at 
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37 °C with stirring. The receptor medium was exchanged daily and analyzed by ICP-MS.  The 

methodological limit of detection for Ba was 0.1 mg/L. 

Flow-by abiotic dissolution 

The setup implements a Continuous Flow System (CFS) according to ISO TR 19057. A dynamic flow-by 

macrodialysis system 23,24 has been employed to estimate the in vivo dissolution of ENMs 35. Here 

(Figure 1), BaSO4 (~1 mg/mL) was suspended in dissolution buffer before being injected into the upper 

chamber of a dialysis cell fitted with a 3.5 kDa cellulose ester symmetric membrane (Spectra/Pore®, 

Gardena, CA; effective pore size ~1.4 nm). The Ba-free dissolution buffers simulated extracellular lung 

lining fluid (pH maintained at 7.4 by bubbling 5% carbon dioxide into the buffer reservoir) or 

intraphagolysosomal fluid (pH adjusted to 4.5 with HCl). The latter of the two buffers is termed EU 

pH4.5 herein (see composition in Supplementary Information). The dialysis cells were submerged in a 

37 ˚C water bath in a dark room. The buffers flowed by the dialysis cells at a rate of 60 μL/min, or ~3 

mL/h. A fraction collector with metal-free, pre-weighed polypropylene tubes was used to collect the 

dialysates over the course of 7 days.  For the first 24 h, two-hour fractions were collected (so, 12 

fractions for Day 1); thereafter, the fractions were combined such that there were 6 daily fractions. 

The sample weight for each tube was recorded. After 7 days, the following additional samples were 

collected in ultra-clean polypropylene digestion tubes for analysis: the remaining solids in the upper 

chamber; three rinses with 18 MΩ deionized water; and the dialysis membrane. The tubes were placed 

in a 90 °C heating block. Ultra-pure nitric acid was added to dissolve the membrane and the BaSO4 

nanoparticles. The Ba remaining in the upper cell after 7 days, the Ba left in the dialysis membrane, 

and the Ba found in each fraction was quantitated via atomic emission spectroscopy (Beckman 

Spectraspan V, Fullerton, CA; instrument limit of detection, ~10 µg/L). 
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Figure 1 Dissolution method in abiotic flow cells (adapted from 36). The medium was selected to match 

the conditions of either the phagolysosomal (pH 4.5) or lung lining fluid (pH 7.4) microenvironment. 

Particles are in direct contact with the membrane. The choice of the ultrafiltration membrane 

permeation cutoff is essential; a range 3 kDa to 5 kDa is recommended. This represents a size cut-off 

of ~1-2 nm (Ren et al., 2006). Smaller cutoffs could induce excess pressure drops and are not 

recommended.  Other options include (recommended):  1) especially for flow-through operation, anti-

clogging filters on inlet tubing in the reservoir and elevation of the reservoir by roughly 30 cm, such 

that hydrostatic pressure compensates for the pressure drop by ultra-high molecular-weight 

polyethylene (UHMWPE) ultrafiltration membranes. 2) In one implementation, we operated five cells 

in parallel with a programmable autosampler. Each cell then has its own reservoir inlet tube, peristaltic 

pump tubing, and sampling. 
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Flow-through abiotic dissolution and transformation 

The flow-through setup (Figure 1) was recently described in detail as another implementation of a CFS 

according to ISO TR 19057 36,37. CFS is established as a screening method of the dissolution kinetics of 

mineral fibers 25,38,39. Unless otherwise mentioned, an ENM mass of M0 = 1 mg was weighed onto a 

membrane (cellulose triacetate, Sartorius Stedim Biotech GmbH, Goettingen, Germany: 47 mm 

diameter, 5 kDa pore size), topped by another membrane, and enclosed in flow-through cells. The flow 

through cells were kept upright within a tempered water bath to ensure that emerging air bubbles can 

leave the system and do not accumulate within the cell. The initial surface area SA is M0*BET (Table 1). 

The flow rate (V) was 48 mL/d, but was varied up to 100 mL/d. For the lower flow rate, this corresponds 

to a ratio, SA/V = 0.02 h/cm. The compositions of simulant fluids vary significantly in literature.40 With 

the compositions documented in Table S1, the EU pH4.5 medium with a whole range of organic acids, 

or the simpler PSF medium –previously validated for the purpose of particle dissolution 21– were 

employed at 37 ± 0.5 °C. The programmable sampler drew 10 mL eluates once per day from the total 

100 mL collected. The Ba concentration in the eluates was determined by ICP optical emission 

spectrometry (ICP-OES, Agilent 5100). After the experiment, the cells were flushed with deionized 

water before opening them to rinse the remaining solids off the membrane. The resulting suspension 

was then pelleted onto a transmission electron microscopy (TEM) grid held at the bottom of a 

centrifuge vial within 30 min and then dried 36 so that the morphology of the remaining solids could be 

inspected with a reduction of interference from drying artifacts of PSF salts, which are removed by this 

preparation. Particle morphology was analyzed by TEM with a Tecnai G2-F20ST or Tecnai Osiris 

Microscope (FEI Company, Hillsboro, USA) at an acceleration voltage of 200 keV under bright-field 

conditions. X-ray photoelectron spectroscopy (XPS) was done using a Phi Versa Probe 5000 

spectrometer using monochromatic Al Kα radiation. 
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Derivation of dissolution rates 

For both of the flow-cell setups, we multiplied the measured Ba concentration of each eluate by the 

eluted volume to obtain a mass of dissolved Ba ions per sample and then stoichiometrically adjusted 

this value to obtain the dissolved mass of BaSO4 at each sampling interval, ∆t. We then analyzed the 

dissolution kinetics in three alternative ways:  

• Cumulative rate: The amount of dissolved BaSO4 at each time point Mion(T), is expressed as a

fraction of the initial mass loading (M0 = 100%) and cumulated from all samplings with

concentration ci, flow Vi and sampling interval ∆ti , and includes the stoichiometry of BaSO4:

𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇)
𝑀𝑀0

= 𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵4)
𝑚𝑚(𝐵𝐵𝐵𝐵)∗𝑀𝑀0

∗ ∑ 𝑐𝑐𝑖𝑖(𝐵𝐵𝐵𝐵) ∗ 𝑉𝑉𝑖𝑖 ∗ ∆𝑡𝑡𝑖𝑖𝑇𝑇
𝑖𝑖=0   (Eq. 1a) 

𝑘𝑘 = 𝑀𝑀𝑖𝑖𝑖𝑖𝑖𝑖(𝑇𝑇)
𝑀𝑀0

1
𝑇𝑇∗𝐵𝐵𝐵𝐵𝐵𝐵

(Eq. 1b) 

The rate k incorporates the BET value in order to report results with a focus on composition or 

coating dependence, instead of size dependence. The conventional units of k are ng/cm²/h.25,41 

We typically determine k by the cumulated ions at the end of the test.  

• Curve fitting: To verify first-order dissolution kinetics,41 the cumulative dissolved BaSO4 mass

is expressed as an inverse relationship, i.e., decreasing solid retained BaSO4 mass (Mion(T)–

M0)/M0, and plotted against time on a semi-log scale. The dissolution rate – expressed as a

fraction per hour – is calculated from the slope of this line and then converted to percent per

day using the total system available starting mass.  Dissolution rate and half-time (t’1/2, 50%

dissolved) are inversely related and can be expressed in two alternative metrics (below) as

given for first order modeling in ISO 19057:2017 37,41.  The BaSO4 dissolution half-time allows

direct extrapolation and comparison to the in vivo dissolution t1/2 of inhaled BaSO4, which is

derived from the total in vivo t1/2:

or   (Eq. 2a) 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  
ln 2
𝑡𝑡1/2
′  𝑡𝑡′1/2 =  

ln 2
𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
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𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = ln 2
𝑡𝑡1/2∗𝐵𝐵𝐵𝐵𝐵𝐵

or       𝑡𝑡1/2 = ln 2
𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑∗𝐵𝐵𝐵𝐵𝑇𝑇

 (Eq. 2b)  

• Instantaneous rates: For each sampling interval ∆t, the instantaneous dissolution rate k was

constructed as: 

k(t) = Mion(t) / SA(t) / ∆t.       (Eq. 3) 

We approximated the instantaneous surface area  

SA(t) = BET(t=0) * (M0 – Mion(t))      (Eq. 4) 

and, thus, ignored changes of the size distribution and shape (see Discussion). Elsewhere 36 we 

explore modeling of SA(t) via the assumption of shrinking spheres,37,41 which does not apply 

for particles with a tendency to transform, such as BaSO4. 

It should be noted that the BET value that is used in Eq. 2b for the determination of t1/2 cancels out 

with BET in Eq. 1b. Accordingly, the two evaluation approaches (fitting vs. cumulated rate) should 

coincide if the assumption of exponential decay (first order kinetics) is true. Also, the cumulative rate 

and the instantaneous rate should coincide in the absence of transformation during the test.  

Expression of the rate as kdiss favors the read-across between nanoform and non-nanoform, because it 

eliminates the dissimilarity of the specific surface and focuses on modulation of the rate by different 

coatings or different crystallinities.  The expression of the rate as bdiss avoids uncertainties regarding 

changes in particle surface area during the test and indicates a fraction of mass loss per unit time, 

which can readily be compared to in vivo dissolution rates – or to predict them – with the assumption 

of rapid clearance (no binding) of the dissolved ions. 

Evaluation of in vivo structural transformations via high-resolution analytical TEM 

Rat lung blocks from the 24-months inhalation study at 50 mg/m³ of BaSO4 NM-220 5 were cut to 50 

to 70 nm thick sections and collected on 200 mesh Formvar/carbon coated copper grids. For 
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ultrastructural and elemental characterization of selected lung sections high resolution scanning 

transmission microscopy (HRSTEM) was performed using a JEOL 2100F field emission TEM/STEM 

operated at 200 keV with an analytic pole piece. Tissue sections for HRSTEM were prepared without 

staining or osmication since OsO4 nanoparticles form and can bind to select tissue regions, which 

makes it difficult to optically distinguish those from potentially inhaled BaSO4 nanoparticles or second-

generation particles from in vivo processing. Images were recorded with a Gatan Ultrascan 4kx 4k CCD 

camera and data analysis and processing used Gatan Digital Micrograph software (Gatan, Inc.). 

HRSTEM imaging and Energy-dispersive X-ray spectroscopy (EDS) were performed with a GATAN 

HAADF detector, Digiscan II, Gatan 2000 Image Filter (GIF), and an Oxford Aztec EDS system (Oxford 

Instruments, Oxfordshire, United Kingdom) respectively.  All HRSTEM images were acquired using an 

analytical probe with 0.17 nm. A FEI Talos transmission and scanning electron microscope was used 

for fast EDS mapping with a high degree of sensitivity due to the wrap-around style EDS detector 

mounted on the objective lens. Maps generally took 1 to 2 min to acquire with a sensitivity great 

enough to detect elemental concentrations in 4-nm size particles.  EDS provides the means to 

determine the relationship between elemental accumulation and tissue regions, particularly in a 

situation where dynamic processes may be in play such as in vivo processing 9.  

Results 

Static abiotic solubility 

Data on the water solubility of BaSO4 (2.45 ppm Ba ions at 20 °C 42) cannot explain the in vivo 

observations. Even when solubility was measured in a medium that mimicked the intraphagolysosomal 

space, BaSO4 was classified as insoluble with less than 0.1 % dissolved (1000 ppm Ba ions) 3. Here we 

replicated the static solubility measurements in different media and found 8 mg/L BaSO4 (or 0.08 %, 

nominal) dissolved in pH 4.5 phagolysosomal simulant fluid (PSF) over 7 days, stagnating at 5 mg/L (or 

0.05 %, nominal) after 28 days. We hypothesize it is not appropriate to express the data from a known 

static system as a rate but indicate nominal rates here to test the hypothesis. One sample of BaSO4 
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was left to settle in PSF for nearly 2 years in a 200-mL beaker. The resulting ion concentration after 

nearly 2 years was identical to the concentration after 7 days. The addition of EDTA, to mimic alkaline 

earth metal-transporting proteins, only minimally increased BaSO4 solubility to 9 mg/L within 28 days 

(or 0.09 %). This is in contrast to recent investigations on Zn-ENM, for which adjustment of the relevant 

medium was sufficient to induce dissolution, thus better-matching the lack of in vivo biopersistence 20. 

We also evaluated the quasi-dynamic dissolution of BaSO4 using dialysis 43. The ion concentration in 

the receptor medium remained roughly constant in this system: 1.3 mg/L, 1.2 mg/L, 1.1 mg/L, 

1.0 mg/L, and 2.0 mg/L on days 1, 2, 3, 4 and 7, respectively. The cumulative dissolution of 0.07 % over 

7 days and an apparent dissolution rate of k = 0.01 ng/cm²/h remained on the same level as the static 

solubility system, but below in vivo rates. This indicates that an equilibrium Ba concentration of about 

1 to 2 mg/L in the pH 4.5 PSF medium is the limiting factor preventing further dissolution. 

Dynamic abiotic dissolution 

Motivated by a correlation between the in vivo biopersistence of mineral fibers and their abiotic 

dynamic dissolution rates, two laboratories independently evaluated the dissolution of BaSO4 NM-220 

using similar macrodialysis systems: one flow-by and one flow-through (Figure 1). While a flow-by 

system with the EU pH4.5 medium (composition in Table S1) was used at the University of Rochester, 

a flow-through system with PSF medium (Table S1) was used at BASF SE. The initial mass (~1 mg BaSO4) 

was the same and the flow rates (2-3 mL/h) were similar. Both labs found that BaSO4 NM-220 exhibited 

a significant dissolution (≥20 % over 7 days) under dynamic conditions (Figure 2A). The dissolution 

rates and half-times for the two setups do not agree quantitatively despite similar initial mass loadings 

and flow rates. Exponential fits (Figure 2A) indicate dissolution t1/2 values of 5.9 days (flow-through, 

pH 4.5 PSF) and 28.9 days (flow-by, EU pH4.5), estimating about 10 % uncertainty due to extrapolation 

of surface areas for the flow-by data. The different composition of the pH 4.5 media and the different 

flow geometries are potential reasons for the differing values. 
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Figure 2 Dissolution kinetics of BaSO4 (starting mass, ~1 mg) in pH 4.5 medium, tested by two 

dynamic dissolution methods: A flow-through (BASF, blue boxes) or flow-by (Rochester, orange 

crosses) macrodialysis. B comparison of both simulant fluids in the flow-through geometry (starting 

mass, 50 mg): PSF (blue boxes), EU pH4.5 (orange boxes). Note the different ranges of the y-axes. 

We replicated the experiment at BASF using EU pH4.5 and the flow-through system, keeping all other 

parameters unchanged except that the starting mass was increased to 50 mg. The dissolution kinetics 

in the flow-through setup were identical between the more complex EU pH4.5 and the simpler PSF 

pH4.5 media over the first few days (Figure 2B). After 7 days, the dissolution rate in the PSF medium 

slowed down slightly as compared to the rates in the EU pH4.5 medium. Although it is possible that 

the phthalates in the PSF acted as ion scavengers – which would increase the solubility limit – PSF 

seems to slightly favor re-precipitation, thus reducing the apparent dissolution rate. To confirm this 

hypothesis, we changed the temperature during flow-through dissolution from 37 °C to 4 °C but 

started with the same initial mass of 1 mg. The apparent dissolution rate was reduced significantly by 

a factor of 2.5 (data not shown). Also, dissolution in neutral pH medium at 37 °C demonstrated 

significantly lower rates compared to media with pH 4.5 (Figure S1 and S3), whereas an omission of 

organic acid and salts resulted in slight acceleration of apparent dissolution by 7 % (data not shown). 

Thus, temperature, pH, flow geometry, and initial loading can all slightly impact the reproducibility of 

dissolution tests for partially-biosoluble materials such as BaSO4. In flow-by geometry, the diffusion of 

ions from the sample compartment through the membrane into the flow (receptor) compartment 
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could add another rate-limiting step that tends to reduce the apparent dissolution rate as observed 

from the ion concentrations in the flow compartment. 

Both labs observed that the dissolution kinetics depend on the initial mass of BaSO4 (Table 2). 

Specifically, both labs observed that the Ba ion concentration was limited to a maximum of ~1 mg/L in 

the eluate from flow-through cells and to ~0.3 mg/L in the dialysate from flow-by cells. This limit is 

better reflected by the integral of the total mass of ions over the entire duration of the dissolution 

period, Mion/T (Equation 1a), which turns out to be limited to about 60 µg/day in flow-through and 

about 15 µg/day in flow-by geometry (Table 2) at the specific flow rates used here.  See also Figure 2B 

and Figure S2, demonstrating that higher MO leads to system saturation. 

Table 2 Evaluation of cumulative dissolution of BaSO4 in flow cells with pH 4.5 media using flow-

through or flow-by methodology. The half-times 𝑡𝑡1
2�

′  are obtained from bdiss by direct fitting of the

decay curve on a semi-log plot using Eq. 2a, whereas the half-times 𝑡𝑡1
2�

 are derived via conversion of

the cumulative rate k by Eq. 2b.   

M0 Mion/T 
𝒕𝒕𝟏𝟏

𝟐𝟐� 𝒌𝒌𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 𝒕𝒕𝟏𝟏/𝟐𝟐
′  𝒃𝒃𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅 

[µg/d] [d] [ng/cm²/h] [d] [%/d] 
Flow-

through, 

PSF pH4.5 

0.17 mg 17.5 2.6 44.7 1.6 43.3 
1 mg 51.1 5.9 10.3 6.8 10.2 

10 mg 53.6 72.1 0.9 78 0.89 

50 mg 58.0 247 0.2 346 0.2 

Flow-by, 

EU pH4.5 

0.08 mg 3.9 5 13.8 5.6 12.4 
0.8 mg 13.7 28.9 3.4 25.7 2.7 
8 mg 14.7 72.2 0.32 53.3 1.3 

Although the mass loadings in abiotic dissolution experiments are not likely to mimic realistic in vivo 

exposure conditions, an observed solubility limit may be predictive of saturation-related events that 

occur in vivo. This is discussed further below, but first we rationalize the solubility limit by considering 

99



the ion sources (by particle dissolution) and ion losses (by flow 37, flow cell geometries and 

reprecipitation).   

The maximum observed ion concentration in flow-through geometry is close to the pH 4.5 solubility 

limit observed in the static and quasi-dynamic geometries but is about an order of magnitude higher 

than in flow-by geometry. The lower threshold of the flow-by system is attributed to the ion 

concentration in the local vicinity of the particles reaching the pH 4.5 solubility limit. We interpret the 

data to suggest that upon reaching the pH 4.5 solubility limit locally, ions reprecipitate before the flow 

removes them. This phenomenon can indeed be observed in both the flow-through and flow-by 

systems, i.e., only the measurements at lowest M0 (0.17 mg or 0.08 mg, respectively) remain below 

this limit. We also doubled the flow rate to V= 4 mL/h for M0=10 mg and observed an increase in Mion/T 

to 102 µg/day, which is roughly twice the observed value at a flow rate of V=2 mL/h (Table 2). In 

summary, the cumulative apparent dissolution rates k and b (Table 2) scale roughly linearly with the 

SA/V ratio. Thus, to avoid reaching the solubility limit, either the initial mass can be reduced, or the 

flow can be increased.  

We extensively tested both the reduction of initial mass or the increase of flow independently and in 

combination and analyzed both cumulative and instantaneous dissolution rates of the identical raw 

data. If we determine for each sampling interval the instantaneous rates k (in units of ng/cm²/h, Eq. 3) 

and the instantaneous surface area per volume flow SA/V (in units of h/cm, Eq. 4), hundreds of 

instantaneous release rates collapse on a single linear relationship, regardless if SA/V was modulated 

by initial surface area or by flow rate or by gradual dissolution (Figure 3). To ensure that this unusual 

observation is not an artifact of the experimental parameters, but truly a material-specific 

phenomenon, we tested another nanomaterial under identical conditions. We chose 10-nm CuO 

because it is a benchmark material in the draft OECD guideline on nanomaterial solubility and 

dissolution 22 and in the DF4nanoGrouping framework 44. Like BaSO4, no redox processes are involved 

in CuO dissolution, whereas other benchmark materials might differ by oxidative or reductive 

dissolution mechanisms.12 If the CuO dissolution process is mediated by the ENM surface, re-
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precipitation remains irrelevant, and our calculation is correct, then k(t) of CuO should be constant for 

all t until full dissolution. Indeed, the instantaneous dissolution rates k of CuO were independent of 

SA/V across many orders of magnitude (Figure 3), contrasting to the BaSO4 NM-220 behavior. 

Figure 3 Instantaneous rate evaluation of biodissolution of BaSO4 in flow-through cells with pH 4.5 PSF 

media. Each cloud of stepwise rates stems from separate experiment of initial mass M0 and volume 

flow V. Five experiments for BaSO4 (orange) and two for CuO (black). See Table 2 for conventional 

evaluation (cumulative rates) of the same raw data.  

Table 2 also highlights that the half-times 𝑡𝑡1
2�

 obtained by direct fitting on a semi-log plot are in close

agreement with the half-times 𝑡𝑡1
2�

′  derived from conversion of the cumulative dissolution rate via Eq.

2a. Of note, the conversion assumes an exponential shape of the decay curve. Only for the highest 

initial loadings M0 ≥ 8mg, the values disagree significantly, because the saturation processes are 

reflected by linear (not exponential) kinetics (Figure S3). 
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We also investigated the transformation of the shape and speciation of solids after abiotic testing: We 

flushed the flow-through cells with water, then opened the cells and rinsed off the remaining solids 

into a centrifuge vial with a TEM grid at the bottom as described in methodical detail in a recent paper 

and SI 36. By centrifugation, all solid >10 nm was spun onto the TEM grid and the supernatant with its 

buffer salts was discarded. Compared to as-produced BaSO4 NM-220 (Figure 4A), there was a shift 

towards larger particle diameters (Figure 4B). Structural rearrangement towards a loss of small radii 

of curvature are observed (Figure 4B), and occasionally, very large spherical structures were observed 

(Figure 4D). Two different transformation processes are possible reasons for this observation. Ostwald 

ripening, which is generally explained as a minimization of interfacial energy by an overall increase of 

the radii of curvature mediated by a minimal solubility of ions first described in 45. Or secondly, 

competing intermolecular forces at the particle-particle interface inducing a material transport 

between particles of different sizes, as deduced from the study of perfluorocarbon blood substitutes.46 

Both processes are driven by the reduction of free energy. When comparing the TEM median particle 

size before and after continuous flow in PSF (Figure 4C), a size shift from 32.2 ± 16 nm to 39.9 ± 16.4 

nm was measured (by manual evaluation of approximately 300 particles). In contrast, the “shrinking 

sphere” model 37 would predict a diameter of 23 nm to match the 60 % mass loss that is quantified as 

dissolved ions in the same experiment. XPS analysis confirmed that the preferred recrystallization 

species is BaSO4 (Figure 5, Figure S4), in accord with the in vivo EDS observations (see next section).  

With the present protocol, the flow conditions are highly controlled, but it is not possible to image the 

same nanoparticle over time. We also explored an alternative approach, where we repeatedly imaged 

the same ensemble of nanoparticle very far below the solubility limit at pH 4.5, but without controlling 

flow. The repeat scan shows that the sphericity of the remaining structures increases at the expense 

of structures with smaller radius of curvature (Figure S5), consistent with either of the material 

transport mechanisms. 
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Figure 4 TEM images of BaSO4 transferred from remaining solids onto TEM grids (scale bar corresponds 

to 500 nm for A and B and 1 µm for D. Panels: A as-produced particles; B and D after 72 hours of 

treatment in the flow-through cells with PSF. C shows the TEM particle size analysis of pristine BaSO4 

particles (orange) and BaSO4 particles after treatment in PSF (blue) (NA=331; NB=280). 
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Figure 5 XPS results for BaSO4 after flow-through testing in pH 4.5 PSF for 72 h. A photoelectron 

energy line for Ba (3 days). B photoelectron energy line for S (2p). The spectra can be fitted 

quantitatively with the benchmark chemical shifts of BaSO4. The elemental composition (Figure S4) 

confirms a ratio Ba:S of 1:1.023, all consistent with an identification of the transformation product as 

BaSO4. Data was acquired and averaged on N=5 measurements. 

Bioprocessing of BaSO4 particles in lung tissue: contributions to overall retention kinetics 

Long-term inhalation exposures (12-24 months) to BaSO4 NM-220 (Figure 6A, B) at a high aerosol 

concentration (50 mg/m³) resulted in significant accumulation of BaSO4 in lung macrophages (Figure 

6C, D).  The retention of BaSO4 particles in the lung had reached a maximum at ~12 months of 

exposure. At 12 months of continued inhalation exposure, the retained dose of BaSO4 did not increase 

further, despite continued exposure.  It appears that the continued pulmonary deposition of inhaled 

BaSO4 was counterbalanced by removal (dissolution of the nanoparticles due to shedding of ions from 

the particle surfaces and elimination from the lung). The retained Ba in the lung was, thus, at an 

equilibrium between 12 and 24 months of exposure.  The lung macrophages (Figure 6C) contained 

nanoparticles that were identified with high resolution EDS to correspond to BaSO4 (Figure 6E). The 

spacing or relative distance between BaSO4 particles inside the macrophages was rather small, with 

many particles seeded side-by-side (Figure 6C-E).  Surprisingly, the particle size distribution of BaSO4 

inside macrophages was significantly larger as compared with the parent material (Figure 6A, B). This 
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indicates that Ba and SO4 ion concentrations inside the macrophage environment that contained many 

densely packed BaSO4 particles, approached supersaturation conditions following the long-term 

inhalation exposure at a very high aerosol concentration (50 mg/m3). This resulted in the 

transformation and recrystallization of particles inside the lung macrophages. Material transport 

between particles had also occurred, whereby smaller particles dissolved faster, and the released ions 

were not removed, but rather deposited onto neighboring particle surfaces, allowing selective particle 

growth to take place (Figure 6D, E). This is the first documentation of an inter-particle material 

transport mechanism of nanoparticles after uptake in vivo.  In addition, BaSO4 particles exhibited a 

greater size range (from sub-nano to micron scale) as compared with that of the starting materials 

which is in good agreement with observations from the abiotic flow through cells. Transformation of 

BaSO4 involved a particle size effect and a recrystallization of the particles which was controlled by the 

saturation and supersaturation conditions in the macrophage microenvironment.   The shedding of 

ions drove not only the in vivo dissolution kinetics, but also controlled the shape, morphology, and size 

distribution of retained BaSO4 in the lung. This indicates that BaSO4 undergoes transformation 

mediated by non-equilibrium dissolution (in line with the observed incorporation of Ba in bones within 

days after intratracheal instillation) and recrystallization, thus modulating the overall biopersistence 

of the particles.  Not all macrophages contain copious amounts of densely packed BaSO4 and it is 

important to point out that each macrophage represents a unique system where dissolution and 

supersaturation conditions are subject to the nanoparticle accumulation rate. Only when enough 

BaSO4 nanoparticles collect inside a macrophage transformation can occur.  
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Figure 6 HRTEM/STEM structural characterization of as-produced BaSO4 nanoparticles and in rat lung 

sections.  (a) and (b) pristine BaSO4 NM-220; (c) BaSO4 after 12 months inhalation exposure: 

accumulation in lung macrophage; (d) Transformation of BaSO4 in macrophage showing particle 

growth with crystaline facets. (e) HRSTEM of recrystallized BaSO4 in macrophage with corresponding 

high-resolution EDS mapping for S, Ba, O and C. 
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Discussion 

We posit that the measurement of dynamic particle dissolution should be an important element of 

predictive toxicity testing, i.e., the determination of dissolution rates in abiotic systems as opposed to 

static solubility. The solubility categorizes BaSO4 (including the specific NM-220 grade) as poorly-

soluble in water.  However, solubility in water does not reflect in vivo reality in terms of 1) ongoing 

dynamic processes and 2) composition and pH of physiological fluids. The dissolution rates in 

physiological media better reflect an important component of in vivo particle clearance, considering 

that both absorptive chemical and physical clearance mechanisms are always working in tandem to 

affect total particle clearance (see below). Dissolution rates determined in appropriately-designed 

abiotic systems will be useful for grouping and classification of ENMs.  From these predictive testing 

results, we also gain insight into the mechanisms that underlie biosolubility, which may explain 

experimental findings, e.g., the incorporation of Ba2+ in bones (as Ca2+ analogue). 

Concerning the methodology, a solubility limit of ~100 mg/L has been proposed for testing strategies 

30,47 and grouping frameworks 13 to define readily-soluble particles that would quickly lose their 

particulate nature. A currently developing OECD guideline describes a “screening test” that fulfills the 

requirements for Tier 1 grouping frameworks 22. For purpose of initial screening of equilibrium 

solubility, the test could be performed in water, and then in the most relevant medium for exposure-

specific testing 20. For ENMs with solubility limits below 100 mg/L, for hazard assessment of innovative 

nanomaterials, or for endpoint-specific grouping and read-across between nanoforms, flow-by or flow-

through dynamic dissolution (both are continuous flow systems 37) in relevant media can offer 

predictivity of in vivo dissolution behavior 10, but not necessarily total in vivo clearance rates. 

In order to best model the contribution of dissolution to in vivo clearance, it makes good sense to focus 

on the intraphagolysosomal environment at pH 4.5 (although dissolution in extracellular fluid (at 

neutral pH) could also be considered and included in kinetic model equations).  Additional information 

about the impact of different flow rates and starting masses would provide insight regarding 

saturability, which could be predictive of in vivo events. The selected methods for ion analysis should 
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ideally have a limit of detection of 10 µg/L or below for the target analyte. Methods for morphological 

analysis of remaining solids require sample preparation, which was developed here based on the 

NanoDefine D6.3 protocol for TEM analysis, using centrifugal pelleting of remaining solids onto a TEM 

grid (which inherently is a purification from dissolved species). To assess the extent of transformation, 

we recommend TEM-based morphological and size distribution analyses (N>>100), with optional 

confirmation of chemical speciation, e.g., via SAD or XPS or XANES. For materials other than BaSO4, 

more complex re-speciations must be expected, e.g. Ag sulfidation, Cu oxidation 48,49, CeO2 re-

speciation to CePO3 needles 29). Reprecipitation in flow-cells has been observed frequently during 

dissolution testing of stone wool mineral fibers, where especially Si tends to reprecipitate as gel on the 

surface of the fibers 50-53. Most interestingly, a faster flow (lower SA/V ratio) is known to suppress gel 

formation and to increase the apparent stone wool dissolution rate 54. These reports are analogous to 

our findings with BaSO4.  

Dissolution should be expressed in terms of rate (e.g., k in units of ng/cm²/h or %/day) for which ample 

literature on dusts exists 10. This approach challenges the cutoffs for categorization and grouping of 

ENMs, typically expressed in % dissolved or mg/L concentrations. BaSO4 is clearly “insoluble” in mg/L 

metrics as determined using static systems but is correctly predicted to dissolve in vivo by the dynamic 

dissolution methods.  

The findings from these studies could be used to propose alternative categories for grouping 

approaches of ENMs.  For the rat, lung retention half-times (t1/2) for ‘poorly-soluble low-toxicity’ 

particles (PSLTs) are ~70 days and, by definition, reflect mechanical, macrophage-mediated clearance, 

generally following first-order kinetics10. Half-time and rate constants are inversely related to each 

other via Equation 2.  Using this equation to determine a rate constant for PSLTs yields ~0.01/day or 

roughly 1% of starting material – as expressed using any metric of choice – per day for the mechanical 

component of clearance. Knowing that total lung particle clearance reflects the sum of mechanical and 

dissolution clearance, one can derive groups of dissolution clearance rates such that faster rates would 

indicate readily- or partially-biosoluble particles. In a previous paper we applied the continuous flow 

system to 24 different ENMs, and  suggested decadic ranges of the dissolution rates between <1 
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ng/cm²/h (insignificant dissolution – also asbestos falls into this group) and >100 ng/cm²/h (half-times 

on the order of 1 day) 36. Expressing dissolution rates in percent per day enables comparisons to and 

predictions of in vivo clearance rates. 

The preceding discussion is based on results from studies that were conducted in rats but could be 

adapted to human hazard characterization via the use of human-specific rate constants or retention 

half-times.  While mechanical clearance rates exhibit species specificity and also be impacted by 

inflammatory responses, it is predicted that dissolution rates are similar between humans and rodents 

10. The method could be used to enhance the DF4nanoGrouping 13, and to implement the ECHA

grouping guidance 55 pending further validation by more varied case studies as proposed elsewhere 36. 

With regard specifically to BaSO4 pulmonary clearance and transformation, Konduru and colleagues 

reported that intratracheally instilled 131BaSO4 NM-220 exhibited a lung retention half-time of 9.6 days 

in rats and that 131Ba was incorporated into the bones, suggesting nanoparticle dissolution and/or 

extrapulmonary translocation 3. A subsequent 90-day inhalation study in rats with aerosolized BaSO4 

of the same grade (50 mg/m3, full physicochemical equivalence to NM-220 4) showed the gradual 

accumulation of Ba in lung tissue during exposure followed by steady clearance over a 90-day post-

exposure period, with a reported retention half-time of 56 days, indicative of low in vivo solubility of 

BaSO4 affecting its overall lung clearance.  A two-year rat inhalation study in rats with BaSO4 NM-220 

(50 mg/m3) confirmed a steady increase of retained Ba in the lung up to one year of exposure, with no 

further increase during subsequent continued exposure up to two years 5.  The equilibrium lung burden 

of Ba over the exposure period (12-24 months) is explained by the fact that the daily deposited dose 

in the lung is equal to the amount being cleared daily, i.e., deposition and clearance rates are in 

equilibrium.  Knowing the BaSO4 aerosol characteristics (mass median aerodynamic diameter, 

geometric standard deviation, exposure concentration) and exposure duration, the daily deposition 

rate can be estimated using the MPPD model for rats with body weight-adjusted respiratory 

parameters, which results in a daily BaSO4 lung clearance rate of 0.0154 % of the daily deposited dose. 

This is equivalent to a retention half-time of 45 days (Equation 2a).  Since the lung clearance rate for 

biosoluble particles is the sum of mechanical and dissolution clearance rates, the difference between 

109



the normal rat clearance rate for PSLT particles (0.01/day) and the observed clearance rate in the 

equilibrium phase (0.0154/day) is the BaSO4 in vivo dissolution clearance rate (0.0054/day; t1/2 = 128 

d) (Table 3).  The available data show that, for acute exposures, rapid clearance of BaSO4 occurs and

that dissolution contributes significantly to the total clearance.  Following subchronic or chronic 

exposures, total lung clearance is slower, but is nevertheless faster than mechanical clearance alone. 

Of note is that the predicted dissolution rates and associated half-times for the 90-day and two-year 

studies are prolonged as compared to acute exposures, suggesting a saturation event.  Both the fast, 

short-term in vivo dissolution at a lower ‘dose’ and the saturation at higher ‘doses’ were predicted by 

the abiotic assay (Table 2).  The bioavailability of ionic Ba could predict secondary organ uptake with 

the caveat that there could be macromolecule binding events that might limit the clearance of Ba. 

Table 3 Pulmonary dissolution rates and associated half-times for BaSO4 derived from acute and 
repeated rat exposure studies 

Exposure 
duration 

Particle type and 
method of delivery 

Total Retention 
t1/2 (d) 

𝑏𝑏𝑡𝑡𝑡𝑡𝑡𝑡 (d-1) Dissolution Retention 
t1/2 (d) 

𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (d-1) 

---- (3) 131BaSO4 NM-220 
intratracheal instillation 

     9.6 7.23 % 11.1 6.23 % 

90 days (4) BaSO4 NM-220 
nose-only inhalation 

56 1.24 % 289 0.24 % 

2 years (5) BaSO4 NM-220 
head-nose inhalation 

  45* 1.54 % 128 0.54 % 

* At steady-state

Depending on the initial loading, flow rate and flow cell geometry, the bdiss in the abiotic test ranges 

from 0.2 % at strong saturation to 43 % well below saturation, and abiotic dissolution half-times range 

from 350 days to 2 days (Table 2). The range of the half-time and rate values includes that which was 

found in the different in vivo studies. One might interpret that the intratracheal instillation study 

induced no or only mild saturation (locally), whereas the 90-day and two-year inhalation studies 

induced significant saturation, consistent with the morphological observations (Figure 6). 

The collective in vivo findings and those from the present dissolution studies suggest that Ba ions 

dissolved from lung-deposited particles – as opposed to the particles themselves – and were 
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transported throughout the body and incorporated in bone epiphysis.56-58. Furthermore, the long-term 

inhalation study results can be explained by a phenomenon whereby bone tissue – with its limited 

capacity and varying demand for bivalent cations over time – was saturated,59  after which the net 

transport of Ba from lungs to bone decreased and, ultimately, the accumulation of Ba in the lungs 

increased. Within the (local) environment of the lungs, the ion removal rate depends on many factors, 

e.g., binding to biomolecules, that may affect the clearance rate.

Whether there is a specific or non-specific transport mechanism of Ba ions from the lung or a key 

trigger whose signaling results in the reduced removal of Ba from the lung remains to be elucidated. 

The measurement of Ba blood levels might help to shed light onto these questions. In addition, local 

clearance mechanisms in the lungs, such as mucociliary clearance and the clearance by alveolar 

macrophages, might be prolonged. We qualitatively observed significant accumulation of BaSO4 in rat 

lung macrophages exposed for 12 months or longer to BaSO4. Of note, the acidic pH of the macrophage 

lysosome is essential to BaSO4 dissolution, which is very significantly reduced at pH 7.4 (Figure S1), by 

~35 % as compared to pH 4.5. Furthermore, removing the organics from the PSF pH 4.5 medium results 

in a significant decrease in dissolution (Figure S3) and thus points to the ion scavenging effect of 

organic acids in lysosomal fluids. Taken together, uptake in macrophages and active transport of the 

ions are most likely steps in the clearance pathway, but dissolution in the neutral lining fluid may also 

contribute to total in vivo clearance.  

Since the time-resolved abiotic dissolution shows that saturation conditions are reached, and 

furthermore crystalline particle growth was observed in vivo as well as in abiotic conditions, the 

structural transformation process are best described as Ostwald ripening. Once the net transport 

ceases, accumulation entails supersaturation conditions leading to the Ostwald ripening in 

macrophages that have accumulated BaSO4 particles in phagolysosomes. Since each macrophage 

harbors unique concentrations of BaSO4 particles, there are just as many systems (local 

supersaturation) to be considered.   In this concept, the structure formation process is a self-catalyzing 

phenomenon: once the local ion concentration exceeds the solubility, triggering particle growth, the 
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specific surface area of the deposited particles decreases, thus slowing dissolution until equilibrium is 

reached between removal via dissolution and addition by deposition. Further evidence for in vivo 

Ostwald ripening of inhaled BaSO4 particles in lung tissue was recently presented.60 Families of 

(nano)forms that share each one substance but differ in sizes, coatings or shapes, have been assessed 

by the same methodology for dissolution and transformation 36. The BaSO4 dissolution rate is 

intermediate in comparison, and materials such as amorphous silica show related reprecipitation 

phenomena, albeit at slower rate 36.  

Although the present study was designed to rationalize the clearance of BaSO4 after inhalation, we 

note that the same concepts of local supersaturation (reaching the solubility limit of the specific ion in 

the lung medium) may be relevant to understand biokinetics after any other uptake routes. 

Accumulation of Ba in the lungs was reported after IV injection: 3,61 Giese 1934 and 1935 found after 

IV injection of BaSO4 deposition in bone marrow, liver, spleen and lungs. Konduru et al found 20% of 

the administered dose in lungs at 2 days post IV injection 3. Ba ions are likely to have precipitated, 

similar to the observation via HRTEM of newly formed Ce-containing (nano)particles in the liver 43,62. 

Huston et al. observed the formation of “refractile masses” after instillation of a Ba containing solution 

Veriopaque, which was accompanied by inhibited removal of Ba by macrophages. 

Ba2+ ions elicit systemic toxicity mainly via hypokalemia that is caused by the blocking of rectifying 

potassium channels in many cell types 63. Although these effects do not necessarily require cellular 

uptake, it should be pointed out that Ba2+ ions, similar to Sr2+ ions, are capable of permeating specific 

Ca channels as well as non-selective cation channels of the cell membrane 64-66, and some of these 

channels have been shown to be essential for macrophage function 67-69. Ba2+ ions may also be actively 

transported against an electrochemical gradient by Ca2+ ATPases 70. Once inside a cell, Ba2+ ions may 

further pass to the different cell organelles such as endoplasmic reticulum, mitochondria, and 

lysosomes 71. Thus, Ba2+ ions dissolving from BaSO4 nanoparticles may distribute across membranes 

between subcellular compartments with the net fluxes being determined by electrochemical driving 

forces: of note, phagolysosomes are acidified by an active transport of H+ ions carried out by V-ATPases 
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69, resulting in a positive potential of approximately 30 mV. This potential may act as an outward driving 

force for Ba2+ ions, while at the same time creating an inward driving force for chloride ions, e.g., via 

CLC channels 68,69. Although not yet proven it is tempting to speculate that these processes may be 

involved in fostering dissolution and/or recrystallization processes of BaSO4 nanoparticles trapped in 

a macrophage`s phagolysosome. 

Conclusion 

Our results confirmed the previous findings that prediction of dissolution rates requires the use of 

relevant biological/physiological fluids rather than water.20 The methodologies described herein for 

measuring abiotic dynamic particle dissolution and transformation involve a number of improvements: 

• The use of continuous flow, rather than static incubation;

• The integrated assessment of residual solids with respect to transformations of shape, size

distribution, and crystallinity by protocols for preparation, analysis and statistical image

analysis, using TEM, optionally supported by XPS and EDX.

• The ready comparison, using the same experimental system, to compare to rapidly- and

poorly-soluble benchmark particles, for grouping purposes as demonstrated elsewhere;36

• Ability to predict in vivo dissolution rates (with the acknowledged limitation that dissolved ions 

could be retained in tissues via binding to other molecules);

• The observation of dependence on initial loading mass could be useful for estimating in vivo

solubility limits and, thus, provide insight regarding supersaturation that would impact total

clearance rates.

Specifically, to BaSO4 we propose that the unusual biokinetics of the long-term, high concentration 

BaSO4 rat inhalation studies indicate a) the release of Ba ions via in vivo dissolution of phagocytosed 

particles, with transport to and uptake into the bone and b) recrystallization in lungs as additional 

transformation process that modifies ENM lung retention. The process is a self-catalyzing phenomenon 

as the specific surface area of the transforming particles decreases, thus slowing down dissolution. 
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Especially the second year of the two-year inhalation study was, thus, conducted at significant 

saturation. Control measurements on CuO demonstrated that Ostwald ripening and supersaturation 

phenomena are not a methodical artifact, but characteristic of the BaSO4 properties, and were 

reproducible in two labs and different lysosomal simulants. The rates and the transformation and the 

Ba speciation were verified in vivo, with the only limitation that in vivo processing resulted in less 

sphericity and more crystalline facets. The dynamic dissolution results thus qualitatively predicted the 

in vivo BaSO4 dissolution, as well as the concentration-dependent Ostwald ripening process observed 

within the rat lung.  
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Abstract 

Following inhalation and deposition in the alveolar region at sufficient dose, biopersistent 

(nano)materials generally provoke pulmonary inflammation. Alveolar macrophages (AMs) are 

mediators of pulmonary immune responses. According to their disparate functions, both pro-

inflammatory M1 and anti-inflammatory M2 macrophages have been described. This study aimed at 

broadly identifying AM phenotype as M1 or M2 upon short-term inhalation exposure to different 

(nano)materials followed by a post-exposure period. AM phenotyping was retrospectively performed 

using immunohistochemistry. M1 (CD68+iNOS+) and M2 (CD68+CD206+ and CD68+ArgI+) macrophages 

were characterized in formalin-fixed paraffin-embedded lung tissue of rats exposed for 6 h/day on five 

consecutive days to air (control), 100 mg/m³ nano-TiO2, 25 mg/m³ nano-CeO2, 32 mg/m³ multi-walled 

carbon nanotubes, or 100 mg/m³ micron-sized quartz. During acute inflammation, relative numbers of 

M1 AM were markedly increased, whereas relative numbers of M2 were generally decreased 

compared to control. Following an exposure-free period, changes in iNOS or CD206 expression 

correlated with persistence, regression or progression of the inflammation, suggesting a role of 

M1/M2 AMs in the pathogenesis of pulmonary inflammation. However, no clear correlation of AM 

subpopulations with qualitatively distinct histopathological findings caused by different 

(nano)materials was found. A more detailed understanding of the biokinetics of the (nano)material in 

the lung and of the processes underlaying morphological changes is needed, to identify early 

biomarkers for different histopathological outcomes. 
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1. Introduction 

Nanomaterials are widely used in industrial applications. During the production and processing of 

nanomaterials in the workplace, particulate matter might be released to the air1,2. Thus, inhalation is 

a major route of occupational exposure to nanomaterials. In vivo inhalation studies in laboratory 

animals suggest a potential hazard of biopersistent nanomaterials to the lungs, commonly initiated by 

a pulmonary inflammatory response3-6. 

Early human epidemiological data and rat inhalation studies showed that different poorly-soluble dusts 

at sufficient dose caused pulmonary inflammation upon inhalation exposure7-9, although these 

materials were of very low inherent toxicity in oral and dermal studies. More recent inhalation toxicity 

studies in rats showed distinct differences in morphological changes of lungs caused by different 

poorly-soluble nanomaterials3,5,10-14. The inflammatory potency as well as the quality of the 

inflammation of these biopersistent particles differ largely from each other. 

For the present examinations, nano-TiO2, nano-CeO2, multi-walled carbon nanotubes (mwCNT), and 

micron-sized quartz were chosen as model substances because data from short-term as well as long-

term rat inhalation toxicity studies are available for all four materials3-5,15. These substances are 

considered poorly-soluble and highly biopersistent. Quartz and mwCNT are known to exhibit specific 

toxicity due to their surface reactivity or shape, respectively.  In the past, TiO2 and CeO2 were 

considered as “poorly-soluble particles with low inherent toxicity”, however, it was shown that both 

TiO2 and CeO2 nanoparticles provoke distinct pulmonary toxicity in rat lungs upon inhalation exposure. 

In a 90-day inhalation study16 TiO2 caused only minimal to mild lesions comprising particle-laden 

macrophage accumulation, aggregations in sub-pleural region and in centriacinar region at an aerosol 

concentration of 2 mg/m³. These lesions were associated with minimal hypertrophy and hyperplasia 

of alveolar epithelial type II cells. At 10 mg/m³ more severe epithelial proliferative changes were 

observed. Most of these lesions regressed post-exposure (13-52 weeks). In comparison, sub-acute (28 

days) and sub-chronic (90 days) inhalation exposure to CeO2 elicited pulmonary inflammation at very 

low dust aerosol concentrations (down to 0.1 mg/m³). The CeO2 induced inflammatory reaction 

persisted during a post-exposure period of 13 weeks and progressed during this time to granulomatous 

inflammation12,17. The initial pulmonary inflammation was characterized by an increased number of 

AMs loaded with amber-colored small particles, diagnosed as histiocytosis, alveolar – with particles. 

Whereas the granulomatous inflammation was characterized by septal/interstitial conglomerates of 

particle-laden macrophages intermingled with mixed inflammatory cells (lymphocytes, plasma cells). 

Also, biopersistent nanomaterials with high aspect ratio, such as mwCNT, showed high inflammogenic 

potential following inhalation exposure14. Sub-chronic exposure to 0.1, 0.5, or 2.5 mg/m³ mwCNT 

caused dose-dependently initial granulomatous inflammation, characterized by conglomerated 
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macrophages, lymphocytes and plasma cells, even at the lowest aerosol concentration tested. The 

inflammation was composed of AMs and polymorphonuclear neutrophils and was located in the 

centriacinar region. In addition, intraseptal granulomas were observed14. With prolonged exposure 

duration (up to two years in rats), long-term effects caused by nanomaterials were observed to persist 

or progress to fibrosis or possibly lung tumor formation3-5,15. 

Compared to sub-chronic inhalation studies, short-term inhalation studies (STIS) (five-day exposure) 

provide important information on early key elements of pulmonary inflammation caused by 

nanomaterials and consistent prediction of respiratory tract toxicity. Combining information from 

quantitative analysis of bronchoalveolar lavage fluid (BALF) with histopathological findings and with 

information on the location, persistence, regression or progression of effects, STIS are well suitable for 

the hazard assessment of nanomaterials6,18,19. Archived formalin-fixed paraffin-embedded (FFPE) lung 

tissue of formerly performed STIS were chosen for the present examinations. Rats were inhalation 

exposed to 100 mg/m³ nano-TiO2, 25 mg/m³ nano-CeO2, 32 mg/m³ mwCNT or 100 mg/m³ micron-sized 

quartz. The studies were published previously10,13,14. Main findings are summarized in table 1. In brief, 

the inhalation exposure to 100 mg/m³ TiO2 caused pulmonary inflammation composed of minimal to 

moderate diffuse, alveolar histiocytosis and minimal multifocal infiltration with neutrophils. 

Importantly, the inflammation declined 14 days after the end of exposure13. Exposure to 25 mg/m³ 

CeO2 resulted in pulmonary inflammation composed of minimal to slight alveolar histiocytosis. Here, 

inflammation persisted following a 21-day post exposure period. Short-term inhalation exposure to 32 

mg/m³ mwCNT lead to granulomatous inflammation in lungs of exposed animals. Histopathological 

findings were not reversible and granulomatous inflammation persisted during a 21-day post-exposure 

period14. In comparison, 100 mg/m³ quartz lead to a very strong inflammatory response with minimal 

to moderate diffuse, alveolar histiocytosis in lungs of exposed animals immediately following 5-day 

exposure. 14 days post-exposure, increases of inflammatory parameters were not reversible, on the 

contrary, histological findings of a diffuse inflammatory response, composed of AMs, neutrophils and 

cell debris, increased in severity13. 

Obviously, AMs have a crucial role in pulmonary clearance as well as in orchestrating pulmonary 

immune responses20. Data published during the past three decades suggest that these various 

activities are mediated by distinct subpopulations of macrophages, which are induced by signals they 

encounter in their local tissue microenvironment21-35. In a rather simplistic view, these subpopulations 

can be divided into two major distinct macrophage phenotypes, which have been categorized broadly 

as pro-inflammatory/ cytotoxic M1 macrophages and anti-inflammatory/ wound repair M2 

macrophages36-38. Increasing evidence suggests that nanomaterials are capable of activating 

macrophages to the M1 phenotype, leading to the expression of pro-inflammatory mediators and 
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recruitment of inflammatory cells. Ultimately nanomaterials may have an impact on the M1/M2 

balance, which might change immune defense properties39,40. Furthermore, over-activation, 

characterized by prolonged or excessive release of mediators, of M1 and/or M2 macrophages can 

contribute to tissue injury and disease progression, such as the development of fibrosis20,41. 

The present study is a retrospective investigation and the histological specimens examined were 

derived from available FFPE lungs of the studies mentioned above10,13,14. Since AMs represent the 

immediate, immunocompetent main contact with particulate matter in the alveolar region, the main 

focus was on the possibility and feasibility to characterize the different phenotype (M1 or M2) of AMs 

in existing FFPE lung tissue, which is comparable to material coming from toxicity studies for regulatory 

purposes, and to elucidate whether AMs subsets can be correlated to the qualitatively different 

histopathological findings of different (nano)materials. We hypothesize that initial macrophage 

polarization is dependent on intrinsic material properties and affects the different morphological 

changes observed. The available, FFPE specimen did not allow for further detailed mechanistic 

investigations or high throughput quantification as qRT-PCR or flow cytometry of not-paraffinized 

tissue would have allowed, respectively. However, immunohistochemistry allowed specific assessment 

of polarized AMs in the alveolar lumen in situ, without the need for sophisticated immunophenotyping 

of pulmonary immune cells. In addition, it was repeatedly described that bronchoalveolar lavage 

techniques are not capable of detaching sessile macrophages out of the lungs42,43. Furthermore, using 

an immunohistochemical approach restricted the current investigations to a simplistic classification of 

macrophages exhibiting merely a pro-inflammatory M1 or anti-inflammatory M2 phenotype. Future 

studies, using for instance flow cytometry, could identify in more detail macrophages that share 

characteristics of different shades of activation. 

As STIS are commonly used to identify hazard and inflammogenic potency of inhaled nanomaterials18,19 

and proved to be useful in prioritizing6,44 and grouping nanomaterials45, this retrospective study was 

performed to examine the appearance of AM subpopulations in lung tissue upon short-term exposure 

to poorly-soluble (nano)materials and aimed at identifying a potential correlation of early AM 

polarization with histopathological outcome. Using an immunohistochemical approach, we identified 

polarized AMs, which accumulated in lung tissue following inhalation exposure to (nano)materials. The 

expression of general and specific macrophage markers was detected by double immunolabelling. In 

addition, we quantitatively analyzed the macrophage subpopulations subsequently to the termination 

of exposure and following an exposure-free period. 
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2. Materials and Methods 

2.1 Test substances 

TiO2 P25 (CAS No. 13463-67-7) was commercially obtained from the producer (Degussa AG, Frankfurt 

am Main, Germany) and described in detail in13. Shortly, nano-TiO2 was specified with a purity of >99.5% 

and consisted of anatase as well as rutile forms (70%/30%), without surface coating. The primary 

particle size was in the size range of 20–30 nm (globular shape) and the BET-specific surface area 

(determined with the Brunauer Emmet Teller (BET) method) amounted to 48.6 m²/g. CeO2 NM-212 

was received from the repository of the Organization for Economic Co-operation and Development 

(OECD) sponsorship program for the testing of manufactured nanomaterials and was extensively 

characterized in10. In brief, CeO2 NM-212 had an average primary particle size of 40 nm and a BET-

specific surface area of 27 m²/g with an irregular, but globular primary particle shape. MwCNT were 

provided by Nanocyl S.A. (Sambreville, Belgium) under the product name Nanocyl NC 700014. The 

purity was 90 % carbon and 10 % metal oxides. According to the manufacturer, the tubes had 

diameters of 5–15 nm and length of 0.1–10 µm, with a BET-specific surface area of 250–300 m²/g. 

Quartz DQ12 was commercially acquired from the producer (Dörentrup Quarz GmbH, Westfalen, 

Germany) as depicted in13. Briefly, quartz possessed a median particle size of 315 nm in ethanol and a 

BET-specific surface area of 5.9 m²/g. For more detailed information on material characterization 

please refer to46. 

 

2.2 Short-term inhalation studies 

Short-term inhalation studies were performed as previously described6,18,19. In brief, Wistar rats were 

inhalation-exposed for six hours per day on five consecutive days to 100 mg/m³ TiO2, 25 mg/m³ CeO2 

NM-212, 32 mg/m³ mwCNT, or 100 mg/m³ quartz aerosols. Concurrent control groups were exposed 

to conditioned air only. Please note that three independent studies were performed. One study for 

CeO2 exposure (female rats, five animals per group), a second one for mwCNT exposure (male rats, 

three animals per group) and a third one for TiO2 or quartz exposure (male rats, six animals per group). 

Animals were sacrificed immediately following the last exposure in the CeO2 and the TiO2 and quartz 

studies. In the mwCNT study, animals were sacrificed three days after the last exposure. Additional 

post-exposure groups were sacrificed after an exposure-free period of 14 days (in case of TiO2 and 

quartz) or 21 days (in case of mwCNT). Further, selected tissues, i.e. mesenteric lymph nodes, liver, 

and spleen, were collected as positive control tissues for immunohistochemistry from untreated 

animals. Tissue selection was based on the expression patterns of the proteins of interest known from 

literature. Tissues were collected immediately following sacrifice, lungs were inflated with 10% neutral 
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buffered formalin (NBF) and all organs were placed in NBF at room temperature. Fixation was followed 

by standard histotechnical processing and paraffin embedding (Leica ASP300 S, Leica Biosystems). 

Subsequently, tissues were sectioned (2-3 µm, Microm HM 355S, Thermo Scientific), mounted onto 

slides and hematoxylin-eosin (HE) stained for standard diagnostic evaluation by a well-experienced 

and board-certified veterinary pathologist. Histopathological analyses were performed in a blinded 

manner and according to the International Harmonization of Nomenclature and Diagnostic Criteria 

(INHAND)47. For further details please refer to13,14,17. 

 

2.3 Immunohistochemistry 

For immunohistochemical investigations, tissue sections of the left lung lobe (lobus pulmo sinister), 

mesenteric lymph nodes, liver, and spleen were mounted onto silane-coated slides (Q Path adhesive 

slide, Q Path). From each left lung lobe several sections were prepared. One was used for HE routine 

staining in the original study (see above). And three for iNOS-CD68, ArgI-CD68 or CD206-CD68 double 

immunostaining, and three more as negative control for each immunostaining for the present 

retrospective study. The sections for immunohistochemistry were prepared right before staining. 

Mesenteric lymph node as well as liver and spleen tissue served as positive control tissue for CD68 

immunostaining and liver tissue served also as positive control tissue for iNOS (Kupffer cells), ArgI 

(hepatocytes) or CD206 (liver sinusoidal endothelial cells) staining48-54. 

First, tissue sections were deparaffinized and rehydrated, followed by heat-mediated antigen retrieval 

and quenching of endogenous peroxidase activity using 6% hydrogen peroxide. Subsequently, slides 

were subjected to immunohistochemical staining. Primary polyclonal rabbit anti iNOS (1:100, ab15323, 

abcam), polyclonal rabbit anti ArgI (1:600, LS-B4660, LifeSpan BioSciences), polyclonal rabbit anti 

CD206 (1:5000, ab64693, abcam) antibody, or serum/IgG negative control (universal negative control 

serum, Biocare Medical) were applied. As secondary antibody for the first staining anti rabbit 

conjugated to horse radish peroxidase (HRP) (CytoChem-Plus HRP Polymer Kit, Zytomed Systems) was 

used according to the manufacturer. As first chromogen served 3,3'-Diaminobenzidine (DAB) (Zytomed 

Systems). Subsequently, the same slides were incubated again with a primary antibody, monoclonal 

mouse anti CD68 (1:300, MCA341, abd serotec), or serum/IgG negative control. Afterwards, 

biotinylated anti mouse immunoglobulins were applied followed by streptavidin linked to alkaline 

phosphatase (AP) incubation (link label IHC detection system, BioGenex) according to the 

manufacturer. As second chromogen served Permanent AP Red (Zytomed Systems). 
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2.4 Quantitative immunohistochemistry 

Slides were digitalized using a slide scanner (NanoZoomer 2.0HT, Hamamatsu) and ndp.scan software 

(NanoZoomer Digital Pathology v2.5, Hamamatsu). Evaluation of scanned left lung tissue was 

performed with ndp.view software (NanoZoomer Digital Pathology v2.5, Hamamatsu). 

Each left lung was assessed for four immunohistochemical markers (CD68 (macrophage marker), iNOS 

(M1), CD206 (M2), ArgI (M2)), applying three double-immunolabeling protocols (CD68-iNOS, CD68-

ArgI or CD68-CD206). Hence, each lung was analyzed three times (one slide for each double-

immunostaining). Positively stained macrophages were identified by a red reaction product covering 

the cytoplasm in case of CD68 immunolabeling, eventually accompanied by a brown reaction product 

covering the cytoplasm for iNOS, ArgI or CD206 immunolabeling. Only cells located in the alveolar 

region and showing typical AM morphology regarding size and shape were included in the analysis. 

Apoptotic or necrotic cells exhibiting red and/or brown reaction product were excluded from 

quantification. The number of macrophage cells in lung tissue per high power field (HPF) differed 

between the control groups and the treatment groups, the latter being diagnosed with diffuse 

histiocytosis. Thus, the total lung tissue area analyzed differed between the different exposure groups. 

Overall, a total of 100 CD68+ cells per lung section, scattered throughout the tissue, were counted 

manually. Considering the objectives of this paper, macrophages present at sites of inflammation were 

preferentially assessed. Counting was truncated once the minimum number of 100 AMs was reached. 

Out of those 100 CD68+ cells, double-stained AMs were counted. Then, for each lung section the 

relationship of single-/and double labeled AM was calculated. As the control animals revealed a lower 

number of AMs per HPF, more HPFs had to be evaluated in controls reaching the number of 100 CD68+ 

AMs. 

 

2.5 Statistical analysis 

Group sizes varied from 3 animals per group in the mwCNT study to 5 animals per group in the CeO2 

study, and 6 animals per group in the TiO2 and quartz study. Percentages of M1 or M2 marker double-

positive AMs were calculated from counted CD68+ AMs. Then, data were evaluated using arcsine 

transformation. The arcsine transformation is indicated when dealing with percentages. It pulls the 

values close to 0 and 100 apart while compressing the mean values. This enables a more powerful 

evaluation of substantial changes e.g. from 4% to 8% compared to changes from 50% to 54%. Each 

dose group was compared to the concurrent control group of the respective study. Because of 

differences in study design, the dose groups were not compared to each other. Therefore, an unpaired 

t-test was performed (dose group vs. concurrent control). In lungs of control animals baseline 
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expression of iNOS is approximately 0%. Thus, a one-sided t-test for iNOS data was chosen. Baseline 

expression of CD206 and ArgI is more variable and both, increase and decrease of CD206 or ArgI 

expression was assumed. Here, a two-sided t-test was performed55. p < 0.05 was considered significant. 

Accordingly, labeling * for p ≤ 0.05 or ** for p ≤ 0.01 was applied. Data are presented as mean ± SD. 

  

132



3. Results 

3.1 Immunohistochemistry of histological sections of rat lungs exposed to different (nano)materials 

In the lungs of control animals, small, spindle-shaped CD68+ AMs were found sparsely scattered 

throughout the tissue. In some animals, occasionally, single macrophage-like cells were found 

unstained. This is consistent with previous findings, which showed a high and specific CD68 expression 

in the vast majority of mature, resident AMs56. CD68 immunostaining was restricted to the cytoplasm 

of macrophage cells, without any background staining. iNOS immunolabeling in lung tissue was found 

cytoplasmatically in CD68+ AMs of treated but not of control animals. Further, untreated animals 

showed a high abundance of CD68+CD206+ macrophages, whereby specific immunostaining was 

discernible in the cytoplasm. Positive signal of ArgI was observed in the nuclei of bronchial and alveolar 

epithelial cells, as well as in the nuclei of the cells of the vasculature. Nuclear ArgI signal was also found 

in AMs, therefore ArgI+ staining was defined for quantification as brown reaction product in the 

cytoplasm of CD68+ cells.  

Following five-day exposure to 100 mg/m³ TiO2 a large proportion of CD68+ AMs was fully loaded with 

grey, globular material, presumably TiO2 agglomerates. In addition, CD68 staining was accompanied 

by cytoplasmic iNOS, ArgI or CD206 immunolabeling (Fig. 1, second row). In the 25 mg/m³ CeO2 

treatment group particulate matter in the cytoplasm of CD68+ AMs was noted, which was accompanied 

by an increase in cellular size and a more globular cell shape. Additionally, particulate matter and cell 

debris were found in the alveolar lumen. Immunohistochemical M1 and M2 specific double-staining 

was restricted to the cytoplasm (Fig. 1, third row). Subsequently to the five-day exposure to 32 mg/m³ 

mwCNT CD68+ AMs were laden with black fibrous structures. Cell debris as well as intact CD68+iNOS+, 

CD68+ArgI+ or CD68+CD206+ cells could be observed (Fig. 1, fourth row). In comparison, exposure of 

rats to 100 mg/m³ quartz resulted in considerable amount of cell debris and necrotic cells in the 

alveolar lumen, which were stained with red reaction product (Fig. 1, bottom row). 

At the end of a 14-day post-exposure period the distribution of M1 specific immunostaining of cells 

changed. Only AMs which obviously internalized grey TiO2 particles were CD68+ and iNOS+. AMs not 

obviously loaded with particulate matter were CD68+ only. For the M2 specific double- immunolabeling 

 

__________________________________________________________________________________ 

Fig. 1 Micrographs of left lung sections of animals exposed to different (nano)materials for 5 days. 
Effects on iNOS (M1), ArgI (M2) and CD206 (M2) expression shortly after the last exposure were 
visualized by immunohistochemistry. Binding of antibodies was visualized using a red chromogen for 
the AM marker CD68 and a brown chromogen for the M1 (iNOS) and M2 (ArgI and CD206) markers. 
Arrows indicate AMs in insets. Scale bars in insets are 10 µm one scale line. Representative sections 
from each treatment group are shown. Controls were exposed to air only.  
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Fig. 2 Micrographs of left lung sections of animals exposed to different (nano)materials following an 
exposure-free period (14 days in case of TiO2 and quartz, 21 days in case of mwCNT). Effects on iNOS 
(M1), ArgI (M2) and CD206 (M2) expression were visualized by immunohistochemistry. Binding of 
antibodies was visualized using a red chromogen for the AM marker CD68 and a brown chromogen for 
the M1 (iNOS) and M2 (ArgI and CD206) markers. Arrows indicate AMs in insets. Scale bars in insets 
are 10 µm one scale line. Representative sections from each treatment group are shown. Controls 
were exposed to air only.   

control 

TiO2 

MWCNT 

quartz 

iNOS CD206 ArgI 

135



of AMs such a separation was not noticeable. Here, CD68+ArgI+ or CD68+CD206+ immunostaining of 

AMs was not obviously associated with the cellular content (Fig. 2, second row). 21 days post inhalation 

exposure to 32 mg/m³ mwCNT and in contrast to the TiO2 exposure group, the M1 specific 

immunolabeling of AMs did not show an apparent association with the staining and the cellular 

content. Interestingly, the intracellular localization of the CD206 immunostaining translocated in a few 

cells from the cytoplasm to the cell membrane (Fig. 2, third row). In rats treated with 100 mg/m³ quartz 

the 14-day post-exposure period resulted in AMs that were increased in size, more globular in shape 

and more vacuolated. The pronounced accumulation of cell debris found in the alveolar space, which 

was stained with red reaction product, was very prominent. Notably, the staining pattern of CD206 

changed. So far, CD206 labeling was found cytoplasmatically, here, the immunolabeling was 

concentrated at the cellular surface for most of the cells, similar but more pronounced than in the 

mwCNT group (Fig. 2, bottom row). 

 

3.2 Quantitative evaluation of the phenotype of immunolabeled AMs 

To more objectively characterize the occurrence of polarized AMs, we quantified 

immunohistochemically labeled AMs positive for the general AM marker CD68 and M1 (iNOS) or M2 

(CD206 and ArgI) macrophage markers in lungs of (nano)material exposed animals. In all concurrent 

control groups following five-day exposure, the baseline expression of the M1 marker iNOS was low, 

i.e. between 0 and 2% of counted cells. The exposure to TiO2, however, increased the expression of 

iNOS in AMs to 79%. In contrast, CeO2 exposure lead to a small but significant increase in iNOS 

expression to 8%. In animals exposed to mwCNT, iNOS expression levels were significantly elevated to 

42%. And quartz caused a significant increase up to 45% (Table 2). Further, we evaluated the 

expression of M2 macrophage markers after the five-day exposure period. The percentages of 

CD68+CD206+ macrophages generally decreased following exposure to nanomaterials or quartz. A 

reduction of CD206 frequency was observed in TiO2 treated animals (65%) compared to control animals 

(77%), however, not significant. A slight but significant decrease was observed in CeO2 (control: 93%, 

CeO2: 83%) and mwCNT (control: 90%, mwCNT: 72%) exposed animals. And a marked decrease was 

observed following exposure to quartz (control: 77%, quartz: 56%) (Table 2). Quantitative analysis of 

ArgI expression revealed variable values of the control groups of the three different inhalation-studies 

(Table 2 and 3). One possible explanation is that the animals of the TiO2 and quartz study were 

subjected to surgery (implantation of BrdU-minipumps). This might have affected the immunological 

state of the animals. Compared to the concurrent control group of the TiO2 and quartz study, ArgI 

expression in TiO2 exposed animals was not altered (control: 48%, TiO2: 55%), whereas it significantly 

decreased in quartz exposed animals to 26%. CeO2 exposure lead to a significant increase in the 
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percentage of ArgI+ cells (33%) compared to the control (17%). The exposure to mwCNT, however, did 

not alter the expression of ArgI in treated (22%) compared to control (22%) animals (Table 2).  

After an exposure-free period of 14 days the percentage of iNOS positive cells in animals exposed to 

TiO2 remained elevated at 73.4% but decreased compared to values one day post-exposure. Similarly, 

the increased iNOS expression values in animals exposed to mwCNT did not change following a post-

exposure period of 21 days (45%). In contrast, animals exposed to quartz exhibited even higher 

percentage of iNOS+ positive cells, significantly increased to 59% compared to the control and the five-

day exposure group (Table 3). Further, CD206 expression in the TiO2 exposure group recovered to 81% 

(control: 82%), whereas it remained significantly decreased in mwCNT (79%, control: 94%) and quartz 

(67%, control: 82%) exposure groups (Table 3). The careful evaluation of the ArgI expression levels of 

the post-exposure groups revealed a general increase. In TiO2 treated animals ArgI expression 

remained elevated at 47% compared 37% of the concurrent controls. For the mwCNT and quartz 

treated groups a progressive increase in ArgI expression levels to 39% and 41% could be observed 14 

and 21 days post exposure, respectively (Table 3). 
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Table 2 Percentages of CD68 and M1 (iNOS) or M2 (CD206 or ArgI) marker double-positive alveolar 

macrophages (AMs) of animals sacrificed after 5-day exposure to 100 mg/m³ TiO2 (n=6), 100 mg/m³ 

quartz (n=6), 25 mg/m³ CeO2 (n=5), or 32 mg/m³ mwCNT (n=3). Each animal was assessed for all 

three markers, i.e. three lung sections with one double-immunostaining each. In each lung section 

the marker-expression of one hundred AMs was assessed. Because mixed phenotype macrophages 

co-exist with M1 and M2 macrophages the overall percentage of cells per lung might exceed one 

hundred percent. 

 

 M1 or M2 marker expressing AMs [%] ± SD  

  iNOS (M1) CD206 (M2) ArgI (M2) 
Lung burden 

[mg/lung] 

controla 1.5 ± 0.8 77.2 ± 4.8 47.7 ± 5.4   

TiO2 79.3 ± 9.6** 65.2 ± 15.5 55.1 ± 6.8 2.02c 

quartz 44.9 ± 5.1** 55.5 ± 8.8** 26.0 ± 6.0** 2.19c 

controlb 0.7 ± 0.2 91.5 ± 2.2 19.5 ± 5.5   

CeO2 8.0 ± 1.9** 83.2 ± 3.6** 33.0 ± 5.3** 0.53c 

mwCNT 42.0 ± 1.7** 71.7 ± 4.2** 21.7 ± 0.9 n.m.d 

           

SD standard deviation 
a control group of TiO2 and quartz study 
b mean of control groups of CeO2 and mwCNT studies 
c pulmonary particle clearance was retarded/ reached overload 
d n.m. lung burden was not measured 
* p ≤ 0.05 treated vs. control group 
** p ≤ 0.01 treated vs. control group 
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Table 3 Percentages of CD68 and M1 (iNOS) or M2 (CD206 or ArgI) marker double-positive alveolar 

macrophages (AMs) of animals sacrificed 14 (TiO2, quartz) or 21 (mwCNT) days post exposure. 

Animals were exposed for 5 days to 100 mg/m³ TiO2 (n=6), 100 mg/m³ quartz (n=6), or 32 mg/m³ 

mwCNT (n=3). Each animal was assessed for all three markers, i.e. three lung sections with one 

double-immunostaining each. In each lung section the marker-expression of one hundred AMs was 

assessed. Because mixed phenotype macrophages co-exist with M1 and M2 macrophages the overall 

percentage of cells per lung might exceed one hundred percent. 

 

 

M1 or M2 marker expressing AMs [%] ± SD  

  iNOS (M1) CD206 (M2) ArgI (M2) 
Lung burden 

[mg/lung] 

controla 2.0 ± 2.5 82.0 ± 6.4 37.0 ± 2.3   

TiO2 73.4 ± 8.3** 80.7 ± 4.2 47.2 ± 7.7* 1.55c 

quartz 59.1 ± 10.6** 66.7 ± 6.4** 41.0 ± 5.1 1.76c 

controlb 2.0 ± 0.8 93.7 ± 2.5 24.2 ± 7.6   

mwCNT 44.7 ± 4.9** 78.5 ± 0.5* 38.8 ± 2.0 n.m.d 

   
 

  
 

  
  

SD standard deviation 
a control group of TiO2 and quartz study 
b control group of mwCNT study 
c pulmonary particle clearance was retarded/ reached overload 
d n.m. lung burden was not measured 
* p ≤ 0.05 treated vs. control group 
** p ≤ 0.01 treated vs. control group 
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4. Discussion 

The present investigation was conducted to assess whether possible differences in early alveolar 

macrophage (AM) polarization upon short-term (5 days) inhalation exposure correlates with variable 

histopathological findings of poorly-soluble (nano)materials, especially regarding the possible onset of 

granulomatous inflammation. Using an immunohistochemical approach, we identified AM 

subpopulations, which appeared in lung tissue following exposure to poorly-soluble (nano)materials. 

Further, we quantitatively analyzed the initial macrophage polarization shortly after five-day exposure 

and the polarization state seen after 14 or 21 days post-exposure. TiO2, CeO2, mwCNT and quartz 

served as model substances, representing thoroughly-studied materials with high biopersistence and 

qualitatively different histopathological effects (Tables 1 and 4). However, the available, paraffinized 

specimen did not allow for detailed mechanistic investigations. For more information on cytokine 

expression please refer to the BALF analysis of the respective study publication. Measured lung 

burdens are summarized in table 4. Similarly, assessing biokinetics was not the motivation of the 

current study, therefore please refer to the respective publications. Furthermore, there is an emerging 

concept that AMs and interstitial macrophages within rodent lungs are differentially recruited57 

following exposure to particles58 and that they differ in their cytokine secretion profiles57,59. 

Investigations in macaques60 revealed that both cell types, AMs as well as interstitial macrophages, are 

CD68+. Thus, differentiation between resident AMs and recruited interstitial macrophages in the 

alveolar lumen is not possible with the current study design. However, this was not the focus of the 

present study. 

 

4.1 Immunohistochemical method for labeling AMs in lung sections using macrophage markers 

Our immunohistochemical observations of the expression of CD68, iNOS, ArgI and CD206 are in line 

with previous studies. CD68, often handled as the ‚pan‘ macrophage marker, was discussed not to be 

a suitable marker for macrophages in general, but rather a marker indicative of phagocytosis61,62. 

However, we found high expression of CD68 in AMs and only rarely single cells with macrophage like 

appearance throughout all study groups not labelled for CD68, resembling the findings of 

Zaynagetdinov et al.56. Therefore, we considered immunolabeling of cells with anti-CD68 antibody as 

a suitable tool to identify AMs. 

iNOS serves commonly as marker of pro-inflammatory macrophages (M1)37. It becomes early induced 

in the frame of a pro-inflammatory immune response; nitric oxide (NO) production by iNOS is 

important for e.g. microbial killing63. Like other investigations, we observed no expression of iNOS in  
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control animals but strong iNOS induction in AMs of treated animals64,65. Thus, we found iNOS a specific 

and suitable immunohistochemical marker for the identification of M1 macrophages. 

Further, and in accordance with previous observations48,66, we detected the enzyme ArgI (M2 marker), 

which was initially described as a cytoplasmic enzyme67, in the cytoplasm and nuclei of AMs, and within 

the nuclei of other cell types of histological lung sections. Available data demonstrate a colocalization 

of arginase with heterochromatin, suggesting an important role for arginase, or its family, in nuclear 

events related to cell cycle progression68. In addition, ArgI immunohistochemical labeling was 

previously observed in rat bronchial and alveolar epithelial cells69 and it was shown that ArgI plays an 

important role in physiological blood vessel function when expressed in endothelial and smooth 

muscle cells70,71. Considering the available data, our observations in the present study are in 

accordance with previously published results and thus, the use of ArgI immunolabeling for M2 

identification using the current staining protocol seemed well justified. 

As reported earlier, the mannose receptor CD206 is highly expressed by AMs under homeostatic 

conditions24,56. In addition, it was early recognized as an important marker for alternative activation of 

macrophages (M2)72. Accordingly, we found specific and abundant immunolabeling for CD206 of AMs 

of control animals and used CD206 as a marker for M2 macrophage identification. The combination of 

cell membrane and cytoplasmic immunostaining derives from the fact that CD206 continuously 

recycles between the surface membrane of macrophages and intracellular phagolysosomal 

compartments. Under homeostatic conditions up to 70% of CD206 receptors can be localized 

intracellularly73,74. Therefore, cytoplasmic occurrence is repeatedly seen in immunohistochemical 

investigations62,65. 

 

4.2 AM polarization correlates with histopathological findings and the post exposure pro- or regression 

As reported previously, five-day inhalation exposure to the for example used in this study examined 

(nano)materials caused pulmonary inflammation which was diagnosed by light microscopic 

examination of HE stained slides and changes of respective BALF parameters13,14,17. Histological 

findings were consistent with the original publications (Table 1). In accordance with the ongoing 

inflammatory process, our examination using immunohistochemistry revealed relative increase of the 

expression of the M1 marker iNOS in CD68+ AMs, which was accompanied by a decrease of the M2 

marker CD206. This is consistent with the pro-inflammatory characteristics of M1 and anti-

inflammatory characteristics of M2 macrophages. The most significant relative increase of M1 

macrophages was observed in TiO2-exposed animals, while the decrease of M2 macrophages was most 

prominent in quartz-exposed animals. 
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Although TiO2 (nano)particles were described as poorly-soluble and of low toxicity, several studies 

suggested that TiO2 might induce cellular oxidative stress, affecting intracellular redox signaling, and 

ultimately leading to the expression of pro-inflammatory mediators, including pro-inflammatory 

enzymes such as iNOS75-77. Noteworthy, CeO2 elicited pulmonary inflammation similar to the other 

materials investigated but iNOS expression levels were only slightly increased compared to the others. 

Notably, inflammation caused by 25 mg/m³ CeO2 dust aerosol concentration, progressed to a 

granulomatous inflammation following 28-days exposure plus 34 days post-exposure17. Given the fact 

that CeO2 induced inflammatory changes that included granulomatous inflammation following a post-

exposure period, more detailed investigations might unravel possible differences in the initiation and 

progression of effects. 

Following an exposure-free period, light microscopic examination of HE stained lung sections and BALF 

analysis of the original publications, revealed that biological effects elicited by the investigated 

(nano)materials changed differently over time (regression, persistency or progression of effects 

induced by TiO2, mwCNT or quartz, respectively)13,14,17. Correspondingly, differences were seen in 

temporal patterns of AMs depending on the nanomaterial. In general, our quantitative analysis 

revealed, that the occurrence of M1 and M2 macrophages correlated with the persistence, progression, 

or regression of pulmonary inflammation. CD68+iNOS+ M1 macrophage percentages decreased, 

whereas CD68+CD206+ M2 macrophage percentages recovered in case of resolution of inflammation. 

This statement is based on the observations made for TiO2, where a decline of inflammatory 

parameters in BALF and a disappearance of granulocytic infiltration in lung tissue indicated a regression 

of the inflammatory response. It remains to be elucidated whether this applies also to other materials 

showing transient inflammatory responses in rat lungs. In case of persistent pulmonary inflammation, 

increased CD68+iNOS+ (M1) as well as decreased CD68+CD206+ (M2) cell numbers did not substantially 

change over time, although exposure was terminated. This was observed for animals exposed to 32 

mg/m³ mwCNT, where granulomatous inflammation persisted 21 days post-exposure. Furthermore, 

progressive inflammation was correlated with additional relative increase of M1 macrophages after an 

exposure free period. For example, quartz histopathological findings increased in severity during the 

post-exposure period, which was paralleled with a significant relative increase of CD68+iNOS+ AMs 

when compared to the control and the exposure group analyzed immediately following the last 

exposure.  

As it was recognized that surface reactivity is a major component of (nano)material toxicity78,79, the 

increase of CD68+iNOS+ cell numbers might arise from signals of different origin. On one hand AMs 

could have been polarized to the M1 phenotype by the engulfed material itself. Depending on the 

physicochemical properties of (nano)materials, the uptake mechanisms by which macrophages 

internalize the foreign material can substantially differ, which already influences the intracellular 
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signaling cascades to be initiated77,80-82. In addition, the surface reactivity of (nano)materials may 

disturb intracellular homeostasis and ultimately effect gene expression78,83. On the other, AMs could 

have been polarized to the M1 phenotype due to extracellular, pro-inflammatory signals they 

encountered in the pulmonary microenvironment, for example released by wounded epithelial cells. 

Interestingly, only in TiO2-exposed animals of the post-exposure group, iNOS expression was restricted 

to AMs harboring grey, globular material, assumed to be TiO2 agglomerates. CD68+ AMs not obviously 

laden with particulate matter, did not show iNOS+ immunolabelling in the post-exposure group. One 

explanation for this might be, as speculated above, that TiO2 particles themselves induced intracellular 

signaling, which gave rise to iNOS expression, either through binding to respective effector proteins or 

through their surface reactivity, which might have disturbed chemical cell homeostasis. Another 

explanation is that the local pulmonary microenvironment changed during the post-exposure period 

from a pro- to an anti-inflammatory one. Monocytes, which entered the lung at a late timepoint, where 

engulfment of TiO2 particles from the alveolar surface was already accomplished and resolution of 

inflammation was already ongoing, did not encounter M1 inducing signals. 

Similarly, the decrease of CD68+CD206+ M2 macrophages observed in the present study might be the 

result of different mechanisms. As the pulmonary microenvironment, which is usually 

immunosuppressive84-86, was altered to a pro-inflammatory microenvironment subsequent to 

(nano)material exposure, M1 mediators were upregulated and M2 mediators were downregulated. 

But also, cell death of M2 macrophages, which were initially present in high amounts in the lungs, due 

to cytotoxic properties of the inhaled materials, might have led to the decrease of CD68+CD206+ cell 

numbers. For CeO2, free granular material was described in alveoli of exposed animals, most probably 

cell debris of destroyed AMs, indicating it’s cytotoxic potential17. In addition, we observed a change in 

localization of the immunolabelling of CD68+CD206+ AMs for two post-exposure groups. Intracellular 

localization of CD206 changed from a diffuse (cell membrane and cytoplasm) to a cell membrane 

restricted manner, to some extend in the mwCNT post-exposure group (Fig. 3, third row) and to a 

greater extend in the quartz post-exposure group (Fig. 3, bottom row). The reason for and relevance 

of this observation is unclear. However, the importance of intact intracellular trafficking of the 

phagocytic receptor CD206 becomes particularly apparent when considering its role in the resolution 

of inflammation22,87,88. 

In addition to CD206, ArgI is a well-known and important marker for M2 polarization of 

macrophages27,89. Several studies point to the crucial role of the arginine metabolism in immune 

responses and the herewith associated regulation of iNOS and ArgI expression90-93. Because M2 

macrophages exert a wide spectrum of immunological functions, which led to subdividing them into 

different subtypes94, we chose two markers for M2 identification, each indicative for the different 

processes macrophages are involved in. In the present study, ArgI expression was found to be variable 
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between the control groups of the three different inhalation-studies. One possible explanation is that 

the animals of the TiO2 and quartz study were subjected to surgery. For the purpose of assessing the 

proliferation rate of bronchial cells, small BrdU-containing minipumps were implanted beneath the 

skin of the experimental animals on the second day of exposure. The implantation of the BrdU-

minipumps might have affected the immunological state of the animals. Thus, careful data analysis 

should be conducted, and values of treatment groups should be compared to the concurrent control 

group of the respective study only. When comparing the ArgI values of the treatment groups with the 

respective concurrent control group, CD68+ArgI+ macrophages were significantly upregulated in CeO2 

exposed animals and significantly downregulated in the quartz exposure group. This observation might 

trigger speculations, considering that ArgI is suspected to be involved in granuloma formation and 

healing processes91,95,96, and CeO2 causes granulomatous inflammation and quartz progressive 

inflammation and tissue destruction. However, although granulomatous inflammation was also 

observed in mwCNT exposed animals, ArgI expression was not changed. Nevertheless, we consider our 

data as valid because several studies reported contradictory results on the role of ArgI in tissue repair 

processes, fibrosis, and granuloma formation90-92,97-99. Thus, the exact role of ArgI in pulmonary 

inflammation and fibrosis is still not fully resolved. 

An increasing body of data demonstrates that nanomaterials differentially influence macrophage 

polarization. TiO2 as well as quartz particles were repeatedly found to differently influence M1 and M2 

specific protein expression39,77,83,100-102. Further, there is first evidence that CeO2 and mwCNT might 

affect macrophage polarization as well99,103-107. However, several aspects should be considered when 

investigating macrophage polarization and biological effects of inhaled nanomaterials in vivo. 

Obviously, the dose is a central element in eliciting toxicity, in addition, duration of exposure but also 

dose rate should be considered. All these factors will differently influence the spatio-temporal 

dynamics of M1 and M2 polarization. For instance, Kumar et al. found a dose-dependent shift in 

macrophage polarization101. Others found a time-dependent, sequential switch in the appearance of 

macrophage subpopulations65,99,104,108. Interestingly, first evidence points out that the crucial balance 

of M1 and M2 immune reactions is not necessarily sequential but there are various pathways, which 

are early stimulated at the same time, and which seem to be independent from each other; each 

leading to a different aspect of the observed pathophysiology109-111. Unraveling these pathways will 

add to our understanding of the pathogenesis of morphological changes observed, the exact 

contribution of AMs, and might identify powerful, specific biomarkers, which potentially allow for the 

prediction of long-term outcome following nanomaterial exposure77,112,113. 

 

In conclusion, the overall appearance of pro-inflammatory M1 and anti-inflammatory M2 

macrophages correlated with histopathological findings indicative for pulmonary inflammation upon 
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short-term (5 days) inhalation exposure at the end of the exposure as well as after a post-exposure 

period (14 or 21 days). Initial pulmonary inflammation correlated with a strong upregulation of M1 and 

a downregulation of M2 AMs, and sequential changes in macrophage polarization correlated with 

changes in histopathological findings post-exposure.  However, AM polarization was not indicative for 

the different quality of histopathological findings observed with different (nano)materials at later 

timepoints in longer-term studies. Between the four investigated (nano)materials no substantially 

different expression pattern of M1 or M2 AMs at an early timepoint (5 day exposure) or 14/21 days 

post-exposure was seen, that could explain the different histopathological patterns (especially 

granulomatous inflammation) observed at later timepoints in longer-term studies. 

A distinct induction of AM polarization might indicate different underlying initiating events, which in 

turn might explain the various histopathological outcomes after long-term exposure to different 

inhaled (nano)materials. Unraveling the underlying pathways might identify biomarkers, which could 

allow for the prediction of the quality of histopathological outcome following long-term exposure. For 

this, a more in-depth understanding of the underlying processes of nanomaterial-induced 

histopathological changes and the role of AMs in the pathophysiology is needed. Investigations on 

biokinetics and cytokine mediated signaling will add to this understanding. Additional or more specific 

early markers of long-term inhalation outcomes will promote further development of scientifically 

sound adverse outcome pathways for inhalation hazard of biopersistent particulate matter. 
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