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Abstract: The calcium channel blocker and antiarrhythmic agent verapamil is recommended by
the FDA for drug–drug interaction (DDI) studies as a moderate clinical CYP3A4 index inhibitor
and as a clinical Pgp inhibitor. The purpose of the presented work was to develop a mechanistic
whole-body physiologically based pharmacokinetic (PBPK) model to investigate and predict DDIs
with verapamil. The model was established in PK-Sim®, using 45 clinical studies (dosing range
0.1–250 mg), including literature as well as unpublished Boehringer Ingelheim data. The verapamil R-
and S-enantiomers and their main metabolites R- and S-norverapamil are represented in the model.
The processes implemented to describe the pharmacokinetics of verapamil and norverapamil include
enantioselective plasma protein binding, enantioselective metabolism by CYP3A4, non-stereospecific
Pgp transport, and passive glomerular filtration. To describe the auto-inhibitory and DDI potential,
mechanism-based inactivation of CYP3A4 and non-competitive inhibition of Pgp by the verapamil
and norverapamil enantiomers were incorporated based on in vitro literature. The resulting DDI
performance was demonstrated by prediction of DDIs with midazolam, digoxin, rifampicin, and
cimetidine, with 21/22 predicted DDI AUC ratios or Ctrough ratios within 1.5-fold of the observed
values. The thoroughly built and qualified model will be freely available in the Open Systems
Pharmacology model repository to support model-informed drug discovery and development.

Keywords: physiologically based pharmacokinetic (PBPK) modeling; verapamil; norverapamil;
drug–drug interactions (DDIs); cytochrome P450 3A4 (CYP3A4); P-glycoprotein (Pgp);
mechanism-based inactivation (MBI); non-competitive inhibition; model-informed drug discovery
and development (MID3)

1. Introduction

Verapamil is a voltage-dependent calcium channel blocker (class-IV antiarrhythmic agent), used
to treat hypertension, angina pectoris, and supraventricular tachycardia. Approved in the United
States since 1981, it was still the 145th most prescribed drug in the U.S. in 2017, with over 4 million
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prescriptions [1]. Verapamil inhibits cytochrome P450 3A4 (CYP3A4) and P-glycoprotein (Pgp), and
therefore care should be exercised when verapamil is co-administered with drugs that are substrates
of CYP3A4 or Pgp. However, the inhibitory potential of racemic R-/S-verapamil and of the less
cardioactive R-verapamil (“dexverapamil”) [2,3] towards Pgp is also leveraged advantageously to
improve the delivery of anti-cancer drugs [4–6]. The potency of newly developed Pgp inhibitors for the
reversal of cancer multidrug resistance is routinely compared to the inhibitory potential of verapamil
as a reference and benchmark.

In addition to its administration as a cardiovascular therapeutic and as a chemosensitizer
together with anti-cancer drugs, verapamil is widely used in drug–drug interaction (DDI) studies
and is recommended by the FDA as a moderate clinical CYP3A4 index inhibitor and as a clinical
Pgp inhibitor [7]. The CYP3A4 DDIs are caused by mechanism-based inactivation of CYP3A4 by
R-verapamil, S-verapamil, R-norverapamil, and S-norverapamil [8,9]. The Pgp DDIs are caused by
non-competitive inhibition of Pgp by these four entities [10–13]. Apart from the intended impact
of verapamil in DDI studies, pharmacokinetic DDIs in patients treated with verapamil are clinically
relevant. The CYP3A4 substrate midazolam shows a 2.9-fold increase of its area under the plasma
concentration-time curve (AUC) during co-administration with verapamil [14]. The Pgp substrate and
narrow therapeutic index drug digoxin shows a 1.5-fold increase of its AUC during co-administration
with verapamil [15] and a warning is issued in the verapamil label to adjust the dose of digoxin during
verapamil therapy [16].

Verapamil is a BCS Class I drug of high solubility and high permeability. It is positively charged
at physiological pH, has a chiral center at C2, and is administered as racemic mixture (1:1) of R- and
S-verapamil. The enantiomers exhibit different pharmacokinetic and pharmacodynamic properties,
with a 10-fold higher therapeutic potency of the S-enantiomer [17]. Although >90% of an oral
dose of verapamil is absorbed, bioavailability is only 10–22% due to high first-pass metabolism [18],
with ≤4% excreted unchanged in the urine [19]. Verapamil is stereoselectively bound to plasma
proteins and stereoselectively metabolized, mainly by CYP3A4, resulting in 2-fold higher plasma
concentrations of R-verapamil following intravenous administration of the racemate, and even 5-fold
higher plasma concentrations of R-verapamil following oral administration of the racemate [17].
The main metabolic pathway is N-demethylation by CYP3A4, not disturbing the chiral center and
producing R- and S-norverapamil with plasma concentrations that are barely detectable following
intravenous administration, but that are equal to or exceeding those of the parent drug enantiomers
following oral administration of verapamil [20]. Norverapamil assumedly retains about 20% of
the vasodilating activity of verapamil (studied in dogs) and is itself predominantly metabolized by
CYP3A4 [9,20].

The purpose of this study was to build and evaluate a whole-body physiologically based
pharmacokinetic (PBPK) model of verapamil that mechanistically describes and predicts the nonlinear
pharmacokinetics of verapamil and its DDIs. The R- and S-enantiomers of verapamil and norverapamil
with their stereospecific plasma protein binding, metabolism and mechanism-based inactivation of
CYP3A4 are represented individually and the model was qualified for DDI prediction with the CYP3A4
and Pgp victim drugs midazolam and digoxin, as well as with the CYP3A4 perpetrator drugs rifampicin
and cimetidine. The model will be shared in the Open Systems Pharmacology model repository
(www.open-systems-pharmacology.org) as a tool for the pharmacometric analysis of racemic verapamil
and its enantiomers (e.g., dexverapamil) and for the investigation and prediction of verapamil CYP3A4
and Pgp DDIs during drug development and labeling. The Supplementary Materials to this manuscript
were compiled as one comprehensive reference manual, providing documentation of the complete
model performance assessment.

www.open-systems-pharmacology.org
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2. Materials and Methods

2.1. Software

The PBPK model was developed using the open-source PK-Sim® and MoBi® modeling software
(Open Systems Pharmacology Suite 8.0, released under the GPLv2 license by the Open Systems
Pharmacology community, www.open-systems-pharmacology.org). Published clinical study data
were digitized with GetData Graph Digitizer 2.26.0.20 (© S. Fedorov). Model parameter optimization
(Levenberg–Marquardt algorithm using multiple starting values) and sensitivity analysis were
performed in PK-Sim®. Pharmacokinetic parameters and model performance measures were calculated
in R 3.6.3 (The R Foundation for Statistical Computing, Vienna, Austria). Plots were generated in R
and RStudio 1.2.5033 (RStudio PBC, Boston, MA, USA).

2.2. Clinical Data

Clinical studies of intravenous and oral administration in single- and multiple-dose regimens
were collected and digitized from literature [21], complemented by unpublished verapamil plasma
concentration-time profiles of two clinical trials previously conducted at Boehringer Ingelheim [22,23].
Both studies were performed in accordance with the Declaration of Helsinki and its later amendments.
The first study [22] was approved by the local Independent Ethics Committee (Ethikkommission
der Landesärztekammer Baden-Württemberg, Stuttgart, Germany) and by the Federal Institute
for Drugs and Medical Devices (2008-039, 4034097, NCT02171533, EudraCT 2008-001021-34); the
second study [23] was approved by the local Independent Ethics Committee (Ethikkommission der
Ärztekammer Hamburg, Hamburg, Germany) and by the Federal Institute for Drugs and Medical
Devices (PVN5656, 4042346, NCT03307252, EudraCT 2017-001549-29). All subjects gave their informed
consent before they participated in the studies. In addition to verapamil plasma concentration-time
profiles, measured fraction excreted in urine data were included for model development.

The gathered verapamil plasma profiles were divided into a training dataset, used for model
building and parameter optimization, and a test dataset, used for model evaluation. To build the
training dataset, clinical studies were selected to include intravenous and oral administration over the
entire dosing range, as well as fraction excreted in urine data. If multiple studies of the same dose
were available, studies with many participants, modern bioanalytical methods and frequent as well as
late sampling were chosen for the training dataset. The remaining studies were assigned to the test
dataset. The allocation of the utilized clinical studies to either training or test dataset is documented in
the clinical study table, and the data of all included clinical studies are shown in semilogarithmic as
well as linear plots in the Supplementary Materials and provided in the released PK-Sim® file.

2.3. PBPK Model Building

Verapamil model building was started with a comprehensive literature search for physicochemical
parameters and information on verapamil absorption, distribution, metabolism, and excretion (ADME)
processes. This information was used to develop the model in predict-learn-confirm cycles, testing
different reported values and the impact of different ADME processes.

Virtual mean individuals to simulate the collected clinical studies were generated according to the
published demographic information, using the reported age, sex, ethnicity, body weight, and height,
if available. If no information was provided, a default value was substituted (30 years of age, male,
European, mean body weight and height characteristics from the PK-Sim® population database).

Metabolic enzymes and transporters for the disposition of verapamil were implemented in
agreement with the current literature and the PK-Sim® expression database [24], to define their relative
expression in each of the 27 compartments of the virtual individuals. Details on the distribution and
localization of the implemented enzymes and transporters are provided in the system-dependent
parameter table in the Supplementary Materials. Model input parameters that could not be informed
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from literature were optimized by fitting the model simulations of all studies assigned to the training
dataset simultaneously to their respective observed data.

2.4. PBPK Model Evaluation

Model performance was evaluated with various methods. First, predicted plasma
concentration-time profiles were compared to the profiles measured in the respective clinical
studies. Second, the predicted plasma concentration values of all studies were plotted against
their corresponding observed values in goodness-of-fit plots.

In addition, model performance was evaluated by comparison of predicted to observed AUC and
maximum plasma concentration (Cmax) values. All AUC values (predicted as well as observed) were
calculated from the time of drug administration to the time of the last concentration measurement
(AUClast).

As quantitative measures of the model performance, the mean relative deviation (MRD) of all
predicted plasma concentrations (Equation (1)) and the geometric mean fold error (GMFE) of all
predicted AUClast and Cmax values (Equation (2)) were calculated. MRD and GMFE values ≤ 2
characterize an adequate model performance.

MRD = 10x; x =

√ ∑k
i=1 (log 10cpredicted,i − log10cobserved,i

)2

k
(1)

where cpredicted,i = predicted plasma concentration, cobserved,i = corresponding observed plasma
concentration, k = number of observed values.
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2.5. DDI Modeling

To mechanistically model the DDIs, the interaction type (competitive inhibition, non-competitive
inhibition, mechanism-based inactivation, induction, etc.) and the corresponding in vitro interaction
parameters were extracted from literature. These processes were then incorporated into the perpetrator
PBPK models, to dynamically compute the impact of the perpetrator on the victim drug. The
mathematical implementation of the different interaction types is shown in the Supplementary Materials.

2.6. DDI Modeling Evaluation

The DDI modeling performance was assessed by comparison of predicted versus observed
plasma concentration-time profiles of the victim drugs, administered alone and during perpetrator
co-administration. Furthermore, predicted DDI AUClast ratios (Equation (3)) and DDI Cmax ratios
(Equation (4)) were evaluated.

DDI AUClast ratio =
AUClast victim drug during co− administration

AUClast victim drug control
(3)

DDI Cmax ratio =
Cmax victim drug during co− administration

Cmax victim drug control
(4)
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As a quantitative measure of the prediction accuracy, GMFE values of the predicted DDI AUClast

ratios and DDI Cmax ratios were calculated according to Equation (2).

3. Results

3.1. Verapamil PBPK Model Building and Evaluation

For PBPK model building and evaluation, 45 clinical studies of intravenous or oral administration
were utilized, covering a broad dosing range of 0.1–250 mg verapamil, including seven studies with
only one of the verapamil enantiomers (R- or S-verapamil) administered. A table listing all utilized
clinical studies is provided in the Supplementary Materials.

To mechanistically describe the pharmacokinetics of racemic verapamil, the enantiomers of
verapamil and norverapamil are represented separately in the model. This approach allows the
incorporation of the enantioselective plasma protein binding and CYP3A4 metabolism as well as the
simulation of clinical studies using enantiopure R- or S-verapamil. As the majority of the published
clinical studies administered racemic verapamil (50% R-verapamil + 50% S-verapamil) and reported
the plasma concentrations of total verapamil (sum of R- and S-verapamil) and total norverapamil
(sum of R- and S-norverapamil), so-called “observers” were implemented into the PK-Sim file that
conveniently and directly display total verapamil and total norverapamil in blood plasma and as
fraction of dose excreted unchanged in urine. These observers are auxiliary simulation outputs, that
add up the simulated plasma concentrations or fractions of dose of either R- and S-verapamil or
those of R- and S-norverapamil, so that they can be instantly compared to clinical data reporting total
verapamil or total norverapamil.

The processes implemented to describe the pharmacokinetics of verapamil are enantioselective
plasma protein binding, enantioselective metabolism by CYP3A4 to different metabolites,
non-stereospecific transport by Pgp (according to literature [25–27]), and passive glomerular filtration.
R-verapamil is metabolized by CYP3A4 via two different pathways, either to generate R-norverapamil,
or to produce other metabolites such as “R-D617” that are not represented in the model as stand-alone
compounds. The generated metabolite R-norverapamil is eliminated via CYP3A4 as well. S-verapamil
is also metabolized by CYP3A4 via two different pathways, either to generate S-norverapamil or to
produce other metabolites such as “S-D617” that are not represented in the model as stand-alone
compounds. The generated metabolite S-norverapamil is eliminated via CYP3A4 as well. All four
modeled entities (R-verapamil, S-verapamil, R-norverapamil, S-norverapamil) are mechanism-based
inactivators of CYP3A4; this auto-inactivation was implemented using in vitro values [9]. A schematic
illustration of CYP3A4 metabolism and inactivation is given in Figure 1.

In addition to their CYP3A4 metabolism, all four compounds are substrates and non-competitive
inhibitors of Pgp [10,12,13,28]; but contrary to their CYP3A4 metabolism, no stereospecificity of their
Pgp transport was found in vitro or in vivo [25–27]. Small fractions of an orally administered verapamil
dose are excreted in the urine as verapamil or norverapamil (3–4% as total verapamil and 6% as total
norverapamil [19]). The parameters of the final enantiomer-parent-metabolite model are summarized
in the verapamil and norverapamil drug-dependent parameter tables (Tables 1 and 2). Details on the
implemented drug metabolizing enzymes and transporters are provided in the system-dependent
parameter table in the Supplementary Materials.

The good model performance is illustrated in Figure 2, showing predicted plasma
concentration-time profiles compared to the corresponding clinical data of representative studies.
Predicted compared to observed plasma profiles of all 45 modeled studies are shown in the
Supplementary Materials (semi-logarithmic as well as linear plots). Furthermore, plasma concentration
goodness-of-fit plots are presented in Figure 3a,b and MRD values for all studies are listed in the
Supplementary Materials.
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Mechanism-based inactivationMetabolismEnzymeCompound

R-Norverapamil R-Verapamil 

CYP3A4 Metabolites CYP3A4

CYP3A4

Metabolites 

S-Verapamil S-Norverapamil 

CYP3A4 CYP3A4 Metabolites 

Metabolites 

CYP3A4

Figure 1. Verapamil metabolism and CYP3A4 inactivation. R-verapamil, S-verapamil, R-norverapamil,
and S-norverapamil are either metabolized by CYP3A4 or they destroy a CYP3A4 molecule in an
irreversible mechanism-based inactivation, depleting the CYP3A4 pool until new enzyme is synthesized.
R- and S-verapamil are metabolized via two different CYP3A4-mediated pathways: N-demethylation
(to produce R- and S-norverapamil) or N-dealkylation. The metabolites that are not modeled as
stand-alone compounds (D617 and D620) are assumed to be no inhibitors of CYP3A4 and Pgp according
to literature reports [8,11].

In addition, the good model performance is demonstrated in plots (Figure 3c–f) and tables
(Supplementary Materials) comparing the predicted to observed AUClast and Cmax values, showing
low overall GMFE values of 1.24 (AUClast) and 1.22 (Cmax). A total of 67/68 of the predicted AUClast

values (some of the 45 studies report more than one analyte, for example total verapamil and total
norverapamil) and 51/51 of the predicted Cmax values are within the 2-fold acceptance limits.

Sensitivity analysis of a simulation of 120 mg orally administered racemic verapamil with a
sensitivity threshold of 0.5 revealed that the only optimized parameter value that the predicted total
verapamil or total norverapamil plasma concentrations are sensitive to, is the R-norverapamil→ D620
CYP3A4 catalytic rate constant. The predicted total verapamil plasma concentrations are sensitive to
the values of fraction unbound of R-verapamil and S-verapamil (both fixed to literature values), and
the predicted total norverapamil plasma concentrations are sensitive to the values of fraction unbound
of R-norverapamil and S-norverapamil (both fixed to the literature values of verapamil) as well as
to the CYP3A4 catalytic rate constant for the metabolism of R-norverapamil (optimized). The full
quantitative results of the sensitivity analysis are provided in the Supplementary Materials.

3.2. Verapamil DDI Modeling and Evaluation

Verapamil DDI model qualification was accomplished using a total of 22 clinical DDI studies with
two different victim drugs (midazolam and digoxin) and two different perpetrators (rifampicin and
cimetidine). An overview of the modeled DDI combinations is shown in Figure 4. The parameters of
the previously developed PBPK models of midazolam, digoxin, rifampicin [49], and cimetidine [50]
are reproduced in the Supplementary Materials.
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Table 1. R- and S-verapamil drug-dependent parameters.

Parameter Value Unit Source Literature Reference Value Unit Source Literature Reference Description

R-Verapamil S-Verapamil
MW 454.611 g/mol Lit. 454.611 [29] 454.611 g/mol Lit. 454.611 [29] Molecular weight

pKa (base) 8.75 - Lit. 8.75 [30] 8.75 - Lit. 8.75 [30] Acid dissociation constant
Solubility (pH 6.54) 46.0 g/L Lit. 46.0 [31] 46.0 g/L Lit. 46.0 [31] Solubility

logP 2.84 * - Optim. 3.79 [32] 2.84 * - Optim. 3.79 [32] Lipophilicity
fu 5.1 % Lit. 5.1 [33] 11.0 % Lit. 11.0 [33] Fraction unbound

CYP3A4 Km→ Norv 19.59 µmol/L Lit. 19.59 ‡ [9] 9.72 µmol/L Lit. 9.72 ‡ [9] Michaelis–Menten constant
CYP3A4 kcat→ Norv 34.94 1/min Optim. - - 26.17 1/min Optim. - - Catalytic rate constant
CYP3A4 Km→ D617 35.34 µmol/L Lit. 35.34 ‡ [9] 23.64 µmol/L Lit. 23.64 ‡ [9] Michaelis–Menten constant
CYP3A4 kcat→ D617 43.98 1/min Optim. - - 56.42 1/min Optim. - - Catalytic rate constant

Pgp Km 1.01 µmol/L Lit. 1.01 [34] 1.01 µmol/L Lit. 1.01 [34] Michaelis–Menten constant
Pgp kcat 12.60 ◦ 1/min Optim. - - 12.60 ◦ 1/min Optim. - - Transport rate constant

GFR fraction 1.00 - Ass. - - 1.00 - Ass. - - Filtered drug in the urine
EHC cont. fraction 1.00 - Ass. - - 1.00 - Ass. - - Bile fraction cont. released

CYP3A4 MBI KI 27.63 µmol/L Lit. 27.63 ‡ [9] 3.85 µmol/L Lit. 3.85 ‡ [9] Conc. for 50% inactivation
CYP3A4 MBI kinact 0.038 1/min Lit. 0.038 [9] 0.034 1/min Lit. 0.034 [9] Maximum inactivation rate

Pgp non-competitive Ki 0.038 * µmol/L Optim. 0.31 [35] 0.038 * µmol/L Optim. 0.31 [35] Conc. for 50% inhibition
Partition coefficients Diverse - Calc. R&R [36,37] Diverse - Calc. R&R [36,37] Cell to plasma partitioning
Cellular permeability 9.94 × 10−2 * cm/min Optim. PK-Sim [38] 9.94 × 10−2 * cm/min Optim. PK-Sim [38] Perm. into the cellular space

Intestinal permeability 3.54 × 10−6 * cm/min Optim. 1.21 × 10−5 Calc. 3.54 × 10−6 * cm/min Optim. 1.21 × 10−5 Calc. Transcellular intestinal perm.
SR tablet Weibull time 155.24 min Optim. - [39] 155.24 min Optim. - [39] Dissolution time (50%)

SR tablet Weibull shape 2.37 - Optim. - [39] 2.37 - Optim. - [39] Dissolution profile shape

* Assumed to be the same for all four compounds, ◦ assumed to be the same for R-/S-verapamil, ‡ in vitro values corrected for binding in the assay using fraction unbound to microsomal
protein measurements from the same study, ass.: assumed, calc.: calculated, conc.: concentration, cont.: continuously, CYP3A4: cytochrome P450 3A4, D617: verapamil metabolite,
EHC: enterohepatic circulation, GFR: glomerular filtration rate, lit.: literature, MBI: mechanism-based inactivation, Norv: norverapamil, optim.: optimized, perm.: permeability, Pgp:
P-glycoprotein, PK-Sim: PK-Sim standard calculation method, R&R: Rodgers and Rowland calculation method, SR: sustained release formulation.
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Table 2. R- and S-norverapamil drug-dependent parameters.

Parameter Value Unit Source Literature Reference Value Unit Source Literature Reference Description

R-Norverapamil S-Norverapamil
MW 440.584 g/mol Lit. 440.584 [29] 440.584 g/mol Lit. 440.584 [29] Molecular weight

pKa (base) 8.75 - Lit. 8.6–8.9 [40] 8.75 - Lit. 8.6–8.9 [40] Acid dissociation constant
logP 2.84 * - Optim. - - 2.84 * - Optim. - - Lipophilicity

fu 5.1 a % Ass. - - 11.0 b % Ass. - - Fraction unbound
CYP3A4 Km→ D620 144.0 µmol/L Lit. 144.0 [41] 36.0 µmol/L Lit. 36.0 [41] Michaelis–Menten constant
CYP3A4 kcat→ D620 145.64 1/min Optim. - - 41.10 1/min Optim. - - Catalytic rate constant

Pgp Km 1.01 * µmol/L Ass. - - 1.01 * µmol/L Ass. - - Michaelis–Menten constant
Pgp kcat 3.39 ◦ 1/min Optim. - - 3.39 ◦ 1/min Optim. - - Transport rate constant

GFR fraction 1.00 - Ass. - - 1.00 - Ass. - - Filtered drug in the urine
EHC cont. fraction 1.00 - Ass. - - 1.00 - Ass. - - Bile fraction cont. released

CYP3A4 MBI KI 6.10 µmol/L Lit. 6.10 ‡ [9] 2.90 µmol/L Lit. 2.90 ‡ [9] Conc. for 50% inactivation
CYP3A4 MBI kinact 0.048 1/min Lit. 0.048 [9] 0.080 1/min Lit. 0.080 [9] Maximum inactivation rate

Pgp non-competitive Ki 0.038 * µmol/L Optim. 0.30 c [11] 0.038 * µmol/L Optim. 0.30 c [11] Conc. for 50% inhibition
Partition coefficients Diverse - Calc. R&R [36,37] Diverse - Calc. R&R [36,37] Cell to plasma partitioning
Cellular permeability 9.94 × 10−2 * cm/min Optim. PK-Sim [38] 9.94 × 10−2 * cm/min Optim. PK-Sim [38] Perm. into the cellular space

Intestinal permeability 3.54 × 10−6 * cm/min Optim. 1.40 × 10−5 Calc. 3.54 × 10−6 * cm/min Optim. 1.40 × 10−5 Calc. Transcellular intestinal perm.

* Assumed to be the same for all four compounds, ◦ assumed to be the same for R-/S-norverapamil, ‡ in vitro values corrected for binding in the assay using fraction unbound to microsomal
protein measurements from the same study, a assumed to be the same for R-verapamil/R-norverapamil, b assumed to be the same for S-verapamil/S-norverapamil, c IC50 with substrate
conc. in the assay much smaller than the Pgp substrate Km, ass.: assumed, calc.: calculated, conc.: concentration, cont.: continuously, CYP3A4: cytochrome P450 3A4, D620: norverapamil
metabolite, EHC: enterohepatic circulation, GFR: glomerular filtration rate, lit.: literature, MBI: mechanism-based inactivation, optim.: optimized, perm.: permeability, Pgp: P-glycoprotein,
PK-Sim: PK-Sim standard calculation method, R&R: Rodgers and Rowland calculation method.
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Figure 2. Verapamil plasma concentrations. Model predictions of verapamil and norverapamil plasma
concentration-time profiles of representative (a–c) intravenous and (d–i) oral studies, compared to
observed data [22,42–48]. Predictions are shown as lines, observed data are shown as dots ± SD.
Black = total verapamil, grey = total norverapamil, orange = R-verapamil, yellow = R-norverapamil,
green = S-verapamil, blue = S-norverapamil. Details on the study protocols and model predictions
of the remaining studies used for model building and evaluation are provided in the Supplementary
Materials. iv: intravenous, po: oral.

The verapamil-midazolam DDI was predicted as mechanism-based inactivation of CYP3A4
midazolam metabolism using the intrinsic mechanism-based auto-inactivation processes that are
part of the verapamil model to describe the inactivation of CYP3A4 by R-verapamil, S-verapamil,
R-norverapamil, and S-norverapamil. KI (corrected for binding in the microsomal assay) and kinact
values of these inactivation processes were obtained from in vitro literature [9] and are listed in the
verapamil and norverapamil drug-dependent parameter tables (Tables 1 and 2).

The verapamil-digoxin DDI was modeled as non-competitive inhibition of Pgp digoxin transport
by R-verapamil, S-verapamil, R-norverapamil, and S-norverapamil. Non-stereospecific, equipotent
inhibition by all four compounds was assumed, as described in the literature [10,12]; the Ki = 0.038
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µmol/L (also listed in Tables 1 and 2) was optimized using one of the 10 clinical verapamil-digoxin
DDI studies [51] and then applied to predict the remaining nine studies.
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1
Figure 3. Goodness-of-fit plots illustrating the model performance for the training dataset (left) and the
test dataset (right). Shown are predicted compared to observed values of (a,b) all measured verapamil
and norverapamil plasma concentrations, (c,d) all AUClast values, and (e,f) all Cmax values. The solid
line marks the line of identity, dotted lines indicate 1.25-fold, dashed lines indicate 2-fold deviation.
Details on all studies are provided in the Supplementary Materials. iv: intravenous, po: oral.
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R-/S-Verapamil
+ R-/S-Norverapamil

Competitive 
Inhibition

Induction

CYP3A4P-glycoprotein

Cimetidine Rifampicin

Midazolam

Non-competitive 
Inhibition

Digoxin

Mechanism-based
Inactivation

R-/S-Verapamil
+ R-/S-Norverapamil

CYP3A4 P-glycoprotein

Figure 4. Schematic illustration of the modeled drug–drug interactions. Verapamil acts as the
perpetrator in the drug–drug interactions (DDIs) with midazolam and digoxin, whereas it is the victim
drug in the DDIs with rifampicin and cimetidine. Metabolism and transport of the victim drugs are
shown as black arrows. Mechanism-based inactivation is shown as a red line, non-competitive inhibition
as an orange line, competitive inhibition as purple lines, and induction as green dashed arrows.

The rifampicin-verapamil DDI was predicted as induction of CYP3A4 verapamil metabolism
and Pgp verapamil transport by rifampicin, with simultaneous competitive inhibition of CYP3A4 and
Pgp [49]. The parameter values to model these interactions were obtained from literature (values and
references are listed in the rifampicin drug-dependent parameter table in the Supplementary Materials)
and have been qualified in previous DDI analyses [49,52].

The cimetidine-verapamil DDI was predicted as competitive inhibition of CYP3A4 verapamil
metabolism by cimetidine. The Ki = 268.0 µmol/L (listed in the cimetidine drug-dependent parameter
table in the Supplementary Materials) for this weak inhibition was obtained from literature [53] and
has been qualified previously by prediction of the cimetidine-midazolam DDI [50].

The DDI model performance for the four different DDIs is illustrated in Figure 5, showing
predicted victim drug plasma concentration-time profiles (before and during DDI) compared to the
corresponding clinical data of representative studies (one for each drug combination). Predicted
compared to observed plasma profiles of all 22 modeled DDI studies are shown in the Supplementary
Materials (semi-logarithmic as well as linear plots). The successfully predicted DDI regimens include
three studies using multiple doses of verapamil (240 mg daily) with single doses of midazolam
(intravenous or oral), 10 studies using single (120 mg) or multiple (240–360 mg daily) doses of
verapamil with single (intravenous or oral) or multiple (oral) doses of digoxin, two studies using
multiple doses of rifampicin (600 mg daily) with single doses of verapamil (intravenous or oral),
and seven studies using multiple doses of cimetidine (800–1200 mg) with single doses of verapamil
(intravenous or oral). Further details on the dosing schedules are provided in the DDI study tables in
the Supplementary Materials.
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Figure 5. Victim drug plasma concentrations of the modeled drug-drug interactions.
(a) Verapamil-midazolam DDI model performance; (b) verapamil-digoxin DDI model performance;
(c) rifampicin-verapamil DDI model performance, and (d) cimetidine-verapamil DDI model
performance for representative studies, shown in semilogarithmic (left) and linear plots (right) and
compared to the corresponding observed data [14,15,43,54]. Predictions are shown as lines, observed
data are shown as dots ± SD. Green, blue, and black = victim drug plasma concentrations without
perpetrator co-administration, red = victim drug plasma concentrations during perpetrator treatment.
Details on the study protocols and model predictions of the remaining DDI studies are provided in the
Supplementary Materials. po: oral.
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The predicted DDI AUClast ratios are close to the observed values (see Figure 6), with overall
GMFEs of 1.06, 1.17, 1.68, and 1.17 for the four modeled DDIs (verapamil with midazolam, digoxin,
rifampicin, and cimetidine, respectively). The predicted DDI Cmax ratios show GMFE values of 1.14,
1.13, 3.32, and 1.17, respectively. A total of 21/22 of the predicted DDI AUClast ratios or DDI trough
plasma concentration (Ctrough) ratios are within 1.5-fold of the observed values; 7/8 of the predicted DDI
Cmax ratios are within 1.5-fold of the observed values. The full quantitative evaluation with all predicted
and observed ratios, DDI GMFE values and ranges is presented in the Supplementary Materials.
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1Figure 6. Correlation of predicted and observed DDI ratios. Model predicted (a) DDI AUClast ratios,
(b) DDI Cmax ratios, and (c) DDI Ctrough ratios, compared to the corresponding clinically observed
ratios of all 22 analyzed DDI studies. The different colors indicate the verapamil-midazolam DDI (blue),
the verapamil-digoxin DDI (orange), the rifampicin-verapamil DDI (grey), and the cimetidine-verapamil
DDI (green). The straight solid line marks the line of identity, the curved solid lines show the prediction
acceptance limits proposed by Guest et al. [55]. Dotted lines indicate 1.25-fold, dashed lines indicate
2-fold deviation. Details on the study protocols and the values of the plotted DDI ratios are provided
in the Supplementary Materials. iv: intravenous, po: oral.

Based on this DDI evaluation, the verapamil model is considered applicable to predict the impact
of verapamil on CYP3A4 and Pgp victim drugs. Parameters to model the inhibition of further metabolic
enzymes or transporters are not yet implemented, as this requires evaluation of the resulting DDI
predictions with clinical data, which is beyond the scope of this study. However, the implementation
of additional interaction parameters is technically a simple and straight-forward extension of the
current model.

4. Discussion

Verapamil is mostly administered in its racemic form, but the two enantiomers show different
pharmacokinetic properties. Following intravenous administration of the racemate, 2-fold higher
concentrations of R-verapamil are found in plasma and following oral administration, the plasma
concentrations of R-verapamil are even 5-fold higher than those of S-verapamil [17]. The metabolism
of R- and S-verapamil, and also that of their main metabolites R- and S-norverapamil, is catalyzed
primarily by CYP3A4, with all four compounds being mechanism-based inactivators of CYP3A4. For a
mechanistic description of the pharmacokinetics of verapamil and its drug–drug interactions, these
four compounds were incorporated into the model, using in vitro values as input for the stereospecific
plasma protein binding, CYP3A4 metabolism and mechanism-based CYP3A4 auto-inactivation, and
clinical studies that quantified the R- and S-enantiomers of verapamil and norverapamil to build and
evaluate the model [17,22,23,44,48,56].

Although metabolism of verapamil by CYP2C8 could be observed in vitro [41,57], the CYP2C8
affinity and catalytic rate were much lower than those of CYP3A4 in the same experimental setting
(measured with recombinant CYP enzymes) [57]. The addition of verapamil metabolism by CYP2C8



Pharmaceutics 2020, 12, 556 14 of 19

to the model resulted in an underestimation of the rifampicin-verapamil DDI and was therefore not
retained. Norverapamil is reported to be predominantly metabolized by CYP3A4 [9].

The role of Pgp in the pharmacokinetics of verapamil is difficult to assess. Some in vitro studies
report that transport of verapamil and norverapamil could only be observed in Pgp overexpressing
cells [11], whereas other studies demonstrated verapamil transport in normal Caco-2 cells as well as
in overexpressing cells [34]. The weak impact of Pgp on verapamil in vitro and in vivo is explained
by the high passive permeability of verapamil and the early saturation of Pgp [11,25] that together
prevent a significant effect of Pgp on verapamil absorption and bioavailability in vivo [25].

The inhibitory potential of verapamil on Pgp is even more challenging to assess, because Pgp has
at least two different binding sites for verapamil which accommodate simultaneous binding [13,35,58],
and because the inhibition of Pgp by verapamil has been investigated in vitro with many different
techniques and calculation methods [59]. This may explain the multitude of different reported Ki
and IC50 values in the literature, with 32 entries in the University of Washington Drug Interaction
Database for the verapamil inhibition of Pgp digoxin transport alone, which range from 0.06 to
224 µmol/L. Underprediction of the verapamil-digoxin DDI, applying a low verapamil in vitro Ki
value of 0.1 µmol/L, has been reported previously [60], and was confirmed in the presented study.
Optimization of this Ki value (to 0.038 µmol/L), using one of the clinical verapamil-digoxin DDI
studies, resulted in an accurate description of all 10 clinical studies, with predicted DDI AUClast,
Cmax, and Ctrough ratios within 1.25-fold of the observed data (values for all studies are listed in the
Supplementary Materials). One hypothesis to explain this underprediction of the in vivo DDI using
in vitro values is that digoxin is not only a substrate of Pgp, but additionally requires active uptake
by an as yet unidentified transporter, as has been observed in human hepatocytes, Caco-2, MDCK,
and HEK293 cells [61–63]. This unidentified transporter might be inhibited by verapamil [62], but is
not yet incorporated into the applied digoxin model and therefore was not inhibited in the presented
verapamil-digoxin DDI simulations.

The other three modeled DDIs are entirely predicted, using interaction parameters from literature.
The verapamil-midazolam DDI is very well described, applying the intrinsic CYP3A4 mechanism-based
auto-inactivation parameters that are part of the verapamil model to inhibit the metabolism of
midazolam (Figure 6 and Supplementary Materials). The rifampicin-verapamil DDI with orally
administered verapamil is underpredicted, with a predicted DDI AUClast ratio of 0.07 compared to
an observed ratio of 0.03, and a predicted DDI Cmax ratio of 0.11 against an observed ratio of 0.03.
This DDI was modeled applying parameters for the rifampicin induction of CYP3A4 and Pgp that
have been qualified previously [49]. The modeled clinical study [54] was designed with a dose gap
of 12 h between the administration of rifampicin and verapamil, to avoid the competitive inhibition
of metabolic enzymes and transporters by rifampicin. Furthermore, verapamil was given as a single
dose, preventing effects of verapamil on rifampicin exposure. This leaves induction of an additional
metabolic enzyme or transporter as a possible explanation. The cimetidine-verapamil DDI is well
described, applying the competitive inhibition of CYP3A4 by cimetidine (Ki = 268.0 µmol/L [53])
that has been qualified previously by prediction of the cimetidine-midazolam DDI [50]. The model
predicts no effect of cimetidine on verapamil except for the study with the highest dose of cimetidine
and oral administration of verapamil [64], where a DDI AUClast ratio of 1.10 was estimated. 6/7
of the corresponding clinical studies also report no significant effect of cimetidine on the AUC of
verapamil [43,48,64,65]. Given a maximum cimetidine plasma concentration of 10 µmol/L, this weak
CYP3A4 DDI most probably occurs at the intestinal level.

Previously published, well-established PBPK models of verapamil do not consider the inactivation
of CYP3A4 by norverapamil [60], the stereospecific characteristics of the R- and S-enantiomers [60,66],
or the prediction of Pgp-mediated DDIs [9,66]. The individual representation of the verapamil and
norverapamil R- and S-enantiomers in the presented whole-body PBPK model allows its application
for the prediction of verapamil and norverapamil exposure following administration of racemic or
enantiopure verapamil or norverapamil, as well as the mechanistic implementation of the CYP3A4
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MBI by all four compounds, using in vitro values to characterize their different inactivation potencies
(S-norverapamil > S-verapamil > R-norverapamil > R-verapamil) [8,9]. The implementation of
R- and S-norverapamil was enabled by the clinical data of two studies that quantified not only
R- and S-verapamil but also R- and S-norverapamil following single and multiple dose verapamil
administration [22,23].

The presented model can be applied to develop dose recommendations for cardiovascular patients,
to help manage the DDI potential of verapamil. As a tool for drug development, it can be used to
explore different study protocols during clinical DDI study design and to predict the outcome of
untested clinical scenarios. In some cases, it might even be applied to predict the DDI of verapamil
with an investigational drug to waive part of a clinical study. Furthermore, the model could be used to
predict the exposure of cancer patients following administration of racemic verapamil (first generation
chemosensitizer), R-verapamil, or norverapamil (second generation chemosensitizers). Future possible
applications include the implementation of a tumor compartment using individual tumor biopsy Pgp
expression information, to predict the delivery of anti-cancer drugs that are Pgp substrates during
co-administration of verapamil, R-verapamil, or norverapamil.

5. Conclusions

A comprehensive and mechanistic, enantioselective parent-metabolite PBPK model of verapamil
was established, which includes whole-body PBPK modeling of R-verapamil, S-verapamil,
R-norverapamil, and S-norverapamil. The model reliably describes the nonlinear pharmacokinetics
of verapamil and was thoroughly qualified to predict the verapamil-midazolam, verapamil-digoxin,
rifampicin-verapamil, and cimetidine-verapamil DDIs. Model evaluation was transparently
documented, showing the model performance for all 45 clinical verapamil and all 22 clinical DDI
studies included in this analysis. The model will be shared in the Open Systems Pharmacology
repository (www.open-systems-pharmacology.org) [67] to support verapamil therapy of cardiovascular
disease, its application as multidrug resistance reversal agent, and to support DDI studies during
drug development.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/6/556/s1,
Electronic Supplementary Materials: A comprehensive reference manual, providing documentation of the
complete model performance assessment.
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