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Abstract 
 

The mammalian organism comprises hundreds of different, and highly specialized cell 

types. They share identical DNA sequences and yet differ in their phenotypes and 

functionalities. This cellular diversity is governed by regulatory mechanisms and is 

imprinted in the epigenome of each cell. 

This work focused on the epigenomic profiles of astroglia subpopulations from 

adult murine brain, as well as the methylomes of a multitude of B-cell subpopulations 

and integrated gene expression profiles to unravel regulatory mechanisms in the 

establishment of cell diversity.  

The comprehensive analysis of transcriptomes, methylomes and open 

chromatin sites of astroglia populations from the cortex and the cerebellum revealed 

shared epigenetic programs but also highlighted strong differences in chromatin 

organization and local epigenetic signatures connected to specific regionally expressed 

transcription factor networks. 

The molecular characterization of Lag3-expressing and Lag3-non-expressing 

plasma cells confirmed the immuno-regulatory function of Lag3-expressing plasma 

cells and outlined unique transcriptional and epigenetic signatures. Moreover, DNA 

methylation signatures shed light on the cell ontogeny of Lag3-expressing plasma cells.  

 In summary, this work showcases approaches for the characterization and 

interpretation of epigenetic signatures to enhance our understanding of epigenetic 

gene regulation. 
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Zusammenfassung 
 

Ein Säugetierorganismus besteht aus hunderten von unterschiedlichen und 

hochspezialisierten Zelltypen. Diese besitzen dieselbe DNA Sequenz, unterscheiden 

sich jedoch in ihrem Phänotyp und in ihrer Funktionalität. Diese zelluläre Diversität wird 

durch regulatorische Mechanismen bestimmt und ist im Epigenom jeder Zelle 

eingeprägt.  

Die vorliegende Arbeit befasst sich mit epigenomischen Profilen von 

astroglialen Subpopulationen aus dem adulten Mausgehirn, sowie einer Vielzahl von B-

Zell Subpopulationen zusammen mit den jeweiligen Genexpressionsprofilen. 

Die umfassende Analyse der Transkriptome, Methylome und offenen 

Chromatinstellen von astroglialen Zellen aus der Großhirnrinde und dem Kleinhirn 

enthüllte gemeinsame epigenetische Programme aber auch Unterschiede in der 

Chromatinorganisation und lokalen epigenetischen Signaturen, die mit Regionen-

spezifischen Transkriptionsfaktor Netzwerken verbunden waren.  

Lag3-exprimierende und Lag3-nicht-exprimierende Plasmazellen wurden auf 

molekularer Ebene charakterisiert. Dies bestätigte zum einen die immuno-

regulatorische Funktion der Lag3-exprimierenden Plasmazellen und enthüllte deren 

einzigartige Signaturen. Des Weiteren beleuchten die DNA-Methylierungsprofile die 

Zellontogenese der Lag3-exprimierenden Plasmazellen.  

Zusammengefasst demonstriert diese Arbeit Möglichkeiten und 

Herangehensweisen zur Charakterisierung und Interpretierung von epigenetischen 

Profilen, um unser Verständnis der epigenetischen Genregulierung zu erweitern. 
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Chapter 1.                                                                          

Introduction 

 

 

1.1 Cell diversity arises from epigenetic diversity 

In the 19th century scientists became aware that cells are the structural units of all 

organisms and established the cell theory (Remak 1852; Schleiden, Schwann, and 

Smith 1847). This awareness led to investigation of the vast diversity of cell morphology 

and cell function and in turn the term cell type arose. However, until today there is no 

uniform definition of what a cell type is (Clevers et al. 2017). It is generally known that 

multiple cellular characteristics like different morphologies, cyto-anatomies, molecular 

and biochemical properties should be considered when defining a cell type 

(Armañanzas and Ascoli 2015; Maclean and Hall 1987; Poulin et al. 2016; Vickaryous and 

Hall 2006). Additionally, cells from the same cell type can undergo dynamic changes in 

their molecular features determined by extracellular signals, aging, or disease. In this 

case it is more appropriate to define cell states rather than distinct cell types (Tasic, 

Levi, and Menon 2017). Current estimations suggest 411 distinct cell types in the human 

body (Vickaryous and Hall 2006). Intriguingly, this multitude of distinct cell types 

originates from a single totipotent cell, the zygote. Hence, all cells in an organism share 

the same DNA sequence which contains the fundamental information for cells to 

synthesize proteins. The synthesized proteins and the amount of the respective 

proteins will in turn form cell identity features like morphology and function of the 

respective cell. Since the genomic information is the same among each cell in a 

multicellular organism, mechanisms that regulate cell-specific gene expression enable 

the establishment of cell diversity. The bridge between the genome and gene 

expression is the epigenetics and is defined as “the study of any potentially stable and, 

ideally, heritable change in gene expression or cellular phenotype that occurs without 
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changes in Watson-Crick base-pairing of DNA” (Goldberg, Allis, and Bernstein 2007). 

Epigenetic mechanisms involve modifications of DNA bases, modifications of histone 

residues, nucleosome positioning, chromatin compartmentalization, and 

posttranscriptionally regulation of messenger RNA (mRNA) by micro RNAs (miRNA). 

The entity of this regulatory machinery is described as the epigenome of a cell. The 

epigenome of each cell orchestrates the continuous spectrum of transcripts in 

differentiating cells and cell-specific gene expression in terminally differentiated cells. 

In 1957, before the emergence of sophisticated techniques to study epigenetics, Conrad 

Waddington proposed the concept of the epigenetic landscape. His metaphor depicts 

the progression of a cell from an undifferentiated state to the state of terminally 

differentiation undergoing distinct intermediate fates (Waddington 1957). In his 

analogy a marble rolling down the landscape represents the differentiation of a 

totipotent zygote (Figure 1-1). As the marble rolls down the landscape the valleys 

bifurcate into new valleys symbolising commitment to alternative cell lineages. The 

downward paths become more limited indicating the progressed differentiation of the 

cell. 

 

 

 

 

                       

 

             

                                       

 

Figure 1-1 Epigenetic landscape. The figure represents the cell fate commitment during 
differentiation. Each path will lead to distinct cell types determined by molecular factors 
symbolized in the topology of the landscape. Figure adapted from Waddington 1957. 
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Intense research efforts and methodological advances in the epigenetic field 

enhanced the understanding of the complex processes in establishing the epigenetic 

landscape. This knowledge can be used to target cell fate determining pathways, which 

would correspond to a position change in the epigenetic landscape (“reprograming”). 

For instance, differentiated fibroblasts can be reprogrammed into induced pluripotent 

stem (iPS) cells by overexpression of four transcription factors (Oct4, Sox2, Klf4, cMyc) 

involved in developmental signaling pathways (Takahashi and Yamanaka 2006; 

Xiaosong Liu et al. 2008). Human iPS cells bear a great potential in the regenerative 

medicine and became a popular model for pluripotency and diseases. The generation 

of iPS cells is only one of many examples to highlight the relevance and advancement 

that epigenetic studies entail. The following passage provides a more detailed 

background on epigenetic mechanisms in the regulation of cell-specific gene 

expression and outlines the methodology to generate epigenetic data.  

 

1.1.1 Epigenetic gene regulation 

The initial step in gene expression is the transcription of DNA into mRNA by the RNA 

polymerase II (RNAPII). This requires a tight regulation by the epigenetic machinery 

which enables or disables access of RNAPII to the DNA. In fact, 80.4% of the genome is 

estimated to be associated with regulatory functions, whereas only 2.94% of the 

human genome encodes proteins (The ENCODE Project Consortium 2012). RNA 

interference, organization of chromatin, and the modification of DNA play central roles 

in dynamic and specific gene regulation. 
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Figure 1-2 Overview of chromatin organization and epigenetic mechanisms. DNA is 
wrapped around a core histone complex which is further arranged into a chromatin fiber. 
The chromatin fibers form higher order conformation of the chromatin resulting in a highly 
compacted form of DNA. Modifications of histone residues, DNA methylation, higher order 
organization of the chromatin, and RNA interference represent the major components of 
epigenetic regulation of gene expression. Figure adapted from Rosa and Shaw 2013 and 
American Society of Hematology. "ASH agenda for hematology research." 

 

Chromatin organization 

Historically, the term chromatin was introduced by Emil Heitz in 1928 based on the 

observation of distinct DNA properties in chromosomal staining (Jost, Bertulat, and 

Cardoso 2012). Densely compacted DNA appeared darker and was referred to as 

heterochromatin, whereas the lighter compartments of the DNA was termed 

euchromatin. This categorization is nowadays used to describe functionally distinct 

compartments of the genome. Euchromatin represents protein-accessible DNA and is 



Introduction 
Cell diversity arises from epigenetic diversity 5 

transcriptionally active, while heterochromatin is condensed, has low gene density and 

is in general transcriptionally inactive.  

Besides the regulatory aspect, chromatin organization is necessary for 

packaging 2 meters of DNA into a nucleus of 5-10 µm. For this purpose, 146 base pairs 

of DNA is wrapped 1.7 turns around a histone octamer, which consists of two molecules 

of each of the histone proteins H3, H4, H2A, and H2B. This complex forms the basic unit 

of the chromatin and is referred to as the nucleosome (Figure 1-2). 

This structure constitutes the first level of DNA-compaction into the nucleus. Of 

note, the histones H3, H4, H2A and H2B build the core histone molecule in the S-phase 

of the cell cycle. However, many other replication-independent histone variants are 

assembled into the chromatin throughout the cell cycle (Kamakaka and Biggins 2005; 

Lyons et al. 2016). The incorporation of histone variants increases the diversity of 

nucleosomes and therefore increases the complexity and plasticity of chromatin. 

Besides the core histones, the linker histone H1 binds to the nucleosome at the entry 

and the exit sites of the DNA, keeps the integrity of nucleosome assembly, and enables 

compaction and stabilization of the chromatin structure. Furthermore, H1 is required in 

spacing nucleosomes and in the formation of a chromatin fiber. The fiber is further 

arranged into loops that are assembled into Topological Associating Domains (TADs), 

ultimately forming the chromosome territories (Figure 1-2) (Cremer and Cremer 2010; 

Nora et al. 2012; Dixon et al. 2012; Gibcus and Dekker 2013). TADs are characterized by 

high-frequency chromatin interactions in spatial neighborhoods which are similar from 

one cell type to another and are conserved between human and mouse (Phillips-

Cremins et al. 2013; Dixon et al. 2012; Nora et al. 2012). In contrast to TAD formation, 

dynamic local DNA configuration within the TADs (“sub-TAD”) is cell type-specific 

(Berlivet et al. 2013; Phillips-Cremins et al. 2013).  

The cell type-specific sub-TAD organization and the factors responsible for such 

chromatin compartmentalization resulting in unique transcriptional outputs are 

subjects of intensive research. Recently developed chromatin conformation capture 

technologies in combination with next generation sequencing (NGS) have provided 

important insights into the role of insulators in 3D genome organization (Dixon et al. 

2012; Le Gall, Valeri, and Nollmann 2015). In the mammalian genome the protein CTCF 

and the protein complex cohesin were found to bind TAD boundaries and affecting the 
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sub-TAD architecture (Phillips-Cremins et al. 2013; Sofueva et al. 2013; Zuin et al. 2014). 

This led to the current model of loop-extruding TAD formation, in which cohesin 

progressively forms DNA loops and stalls when it reaches CTCF-bound TAD 

boundaries. In contrast to the cohesin-CTCF interaction, DNA contacts within the loop 

are arranged by the interaction of cohesin with cell type-specific transcription factors 

(Figure 1-3). For instance, in murine embryonic stem cells pluripotency factors like 

Oct4, Sox2 and Nanog were found to bind to the same DNA regions as cohesin 

(Fudenberg et al. 2016). Emerging evidence, provided by chromatin conformation 

capture studies, links cell type-specific chromatin structure with gene expression by 

demonstrating the physical contact of distal regulatory elements like enhancers and 

promoters (Figure 1-3). 

 

 
 
 
 
 
 

 
 

Figure 1-3 Schematic representation of chromatin organization in mammals. 
Regulatory elements like promoters and enhancers are physically connected by the binding 
of cell type-specific transcription factors to enhancers and recruitment of RNA polymerase 
II. Cohesin complex together with CTCF stabilize the long range connection. (Hnisz, Day, 
and Young 2016) 
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Regulatory elements 

The diversity and the identity of cells is shaped by the combinatorial interaction of cis-

regulatory elements (CREs), present in the non-coding parts of the genome, with trans-

acting factors like transcription factors (TFs) and miRNAs. CREs are DNA sequences 

classified into distinct functional groups. CREs include binding sites for RNAPII at the 

transcription start site (TSS) or at close proximity to the TSS, called promoters. The 

binding of RNAPII to the promoter initiates the transcription of a gene into mRNA, 

however this binding alone is not sufficient to regulate dynamic and specific gene 

expression in mammalian cells. It requires the interaction of further CREs such as 

enhancers, silencers, and insulators (Figure 1-3). Among the CREs, enhancers have a 

major contribution to the initiation and regulation of gene expression. These DNA 

segments, typically located in intergenic and intronic regions, recruit TFs through a 

short (6 to 12 nt) TF-specific DNA sequence (TF binding site, TFBS). Importantly, TFs 

bind to enhancers in a spatiotemporal and combinatorial manner. Hence, the function 

of an enhancer deviates from cell type to cell type depending on the context-dependent 

occupancy by multiple TFs (Spitz and Furlong 2012). Moreover, a single enhancer can 

interact with multiple promoters and multiple enhancers can physically contact a single 

gene, leading to a complex regulatory network. Since enhancers and promoters are 

genomic features present in each cell, the usage of these elements has to be 

dynamically and specifically controlled in each cell. This is achieved by selectively 

facilitate or impede access of TFs to these loci through epigenetic modification. The 

following sections outline these mechanisms. 
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Histone modification 

The amino-terminal residues of core histones are flexible and extrude from the central 

protein domains. The amino acids of these “tails” are targets for post-translational 

modification by histone modifying enzymes. These modifications include e.g. 

acetylation of lysines, methylation of lysines and arginines, ubiquitination of lysines, 

and phosphorylation of serines and threonines. In particular, acetylation and 

methylation of H3 lysine (K) residues function positively or negatively in gene 

expression regulation. Acetyl groups are transferred onto lysines by the histone 

acetyltransferase (HAT) enzyme family. The negatively charged acetyl group reduces 

the interaction with the negatively charged DNA, which presumably results in a more 

accessible DNA, and thus correlates with active gene expression. The major targets of 

acetylation are H3K9, H3K14, H3K18, H3K23, and H3K27 localized around the TSS of a 

gene or at enhancers. The removal of acetyl groups is catalyzed by histone deacetylases 

(HDACs). In contrast to lysine acetylation, lysine methylation is associated activation 

and repression of transcription depending on the lysine residue and degree of 

methylation. Methyl groups are transferred by histone methyltransferases (HMTs) in a 

successive manner resulting in lysine monomethylation (me1), dimethylation (me2), 

and trimethylation (me3). Trimethylation of lysine 4 of H3 (H3K4me3) occurs at 

promoters of genes and is generally associated with active transcription of the 

respective gene. Trimethylation of lysine 27 and/or lysine 9, on the other hand, confers 

a repressive chromatin state (Mikkelsen et al. 2007). The methyl groups are removed 

by histone demethylases (HDMs). In the case of acetylation, regulatory effects are 

exerted through influence on chromatin structure. However, the other modifications 

are involved in recruitment of effector molecules. For example, readers of lysine 

methylation recognize the degreed of methylation and contain protein domains called 

Chromo-, Tudor-, and PHD-domains. Whereas lysine acetylation is recognized by 

proteins containing a Bromo-domain. The binding of these effectors is assumed to 

remodel the chromatin and therefore participate in gene expression. The diverse 

modifications occur in a combinatorial manner which in turn leads to an interplay of the 

readers and writers of these modifications. This fundamental process was termed 

“histone code” and is studied extensively to reveal transcriptionally active or silent 



Introduction 
Cell diversity arises from epigenetic diversity 9 

chromatin (Jenuwein and Allis 2001). The complexity of the histone code is increased 

further by a “cross-talk” among the modifications. For example, H3 serine 10 

phosphorylation promotes the acetylation of H3 lysine 14 by the acetyltransferase Gcn5 

(Lo et al. 2000).  

The usage of specific antibodies against histone marks enables to identify the 

genome wide location of respective modifications using an approach called chromatin 

immunoprecipitation coupled with NGS (ChIP-Seq) (Barski et al. 2007; Johnson et al. 

2007; Robertson et al. 2007). The proteins associated with DNA are crosslinked to DNA 

and labeled with an antibody. The chromatin is subsequently fragmented, and the 

antibody-bound fragments are separated from the rest. By sequencing those antibody-

bound fragments and aligning the sequencing reads to the reference genome it is 

possible to identify the presence of a histone modification in a tissue and/or a cell type. 

Similarly, TF binding sites can be determined using TF-specific antibodies. By 

combining the histone mark profiles with the entire gene expression of a cell type 

(transcriptome) it is possible to reveal cell type-specific gene regulation through the 

presence and location of histone modifications. For example, the analysis of 5 human 

cell lines showed a rather similar chromatin signatures at promoters and largely 

invariant CTCF binding sites. Interestingly, the cell type-specific expression pattern 

correlated with cell type-specific histone modification patterns at enhancer regions, 

highlighting the great relevance of enhancer activity for cell diversity (Heintzman et al. 

2009). 

 

Nucleosome positioning 

The access to the chromatin for regulatory factors and transcriptional machinery plays 

a crucial role in various regulatory effects. As described above, lysine acetylation 

reduces the interaction of histones with DNA resulting in an accessible state of the 

DNA. Together with the modification of histones, the placement of nucleosomes 

around regulatory regions results in repression or activation of a gene. Specifically, 

promoters and TFBS have been shown to be nucleosome-depleted in order to facilitate 

the DNA binding and in turn activate gene expression. In contrast, the rest of the 
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genome tends to be occupied by nucleosomal arrays. The nucleosome positioning 

pattern is determined by the interplay of several factors, including the DNA sequence, 

the RNAPII transcription machinery, transcription factors, and ATP-dependent 

nucleosome remodelers (Yuan et al. 2005; Lee et al. 2007; Schones et al. 2008; Valouev 

et al. 2011). Remodeling complexes of the imitation switch (ISWI) and SWI/SNF classes 

rearrange nucleosomal position or initiate histone eviction in an ATP-dependent 

fashion, enabling the transition from closed to open chromatin (Dann et al. 2017; Erdel 

and Rippe 2011). These remodelers contain protein subunits that allow to recognize 

distinct histone modifications and to direct their activity to certain genomic loci. 

Besides the remodeling complexes, some transcription factors are able to bind their 

DNA recognition sites within closed chromatin. These pioneer factors initiate the 

remodeling of the nucleosomes which in turn leads to an open chromatin state and 

enables the binding of further TFs to activate gene expression (Magnani, Eeckhoute, 

and Lupien 2011). The first described pioneer factor activity was observed in mouse liver 

cells. Factors of the GATA family occupied liver-specific enhancers even before 

differentiation and activation of the target gene (Bossard and Zaret 1998; Gualdi et al. 

1996). Pioneer factors therefore play an important role in establishing lineage-specific 

chromatin state and in turn the cell type-specific transcriptional programs. 

 

DNA methylation 

Together with histone modifications and chromatin organization, the addition of a 

methyl group to the 5’ carbon of cytosine is a key mechanism in gene regulation and 

cell type specification. Historically, the function of 5-methylcytosine (5-mC) was first 

described in 1975. It was proposed that 5-mC is an inheritable mark involved in gene 

silencing (Holliday and Pugh 1975; Riggs 1975). Later, it was revealed that 5-mC occurs 

predominantly symmetrically in the context of the dinucleotide CpG in mammals. Of 

note, the frequency of CpG sites in the genome is lower than the expected from the GC 

content of the DNA. This underrepresentation is caused by the high deamination rate 

of 5-mC which leads to mutations. Over a long time period this mutagenicity caused 

the depletion of CpGs in the genome (A. P. Bird 1980). Moreover, CpG sites are not 

equally distributed across the genome but are frequently concentrated in CpG dense 
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regions called CpG islands (CGIs) (Gardiner-Garden and Frommer 1987). On average, 

CGIs span regions of 1000 bp, are highly conserved between mice and humans, and 

coincide with approximately 70% of all annotated gene promoters (Saxonov, Berg, and 

Brutlag 2006). Methylation of cytosines directly impairs binding of transcription factors 

to their binding site or indirectly by recruiting methyl-binding proteins that occupy 

transcription factor binding sites. This mechanism is therefore associated with stable 

gene silencing. Interestingly, CGIs associated with promoters are usually 

unmethylated, whereas the majority of CpGs in a non-CGI context are methylated (A. 

Bird et al. 1985). This high methylation of the genome results from methylation of 

transposable elements, which ensures their stable inactivation (Schulz, Steinhoff, and 

Florl 2006). Moreover, DNA methylation plays a major role in X-chromosome 

inactivation and genomic imprinting (Hellman and Chess 2007; Reik and Walter 2001). 

Emerging evidence shows that DNA methylation also affects alternative splicing of 

precursor mRNA by demarcate exons and flanking introns (Shayevitch et al. 2018; 

Maor, Yearim, and Ast 2015).  

Besides the methylation of cytosines in the CpG context, non-CpG methylation 

(mCpH1, mainly mCpA) can be detected in embryonic stem cells and neuronal cells 

(Ramsahoye et al. 2000; Lister et al. 2009). Closer inspection of gene expression and 

genome wide mCpH distribution in mouse brain neurons from the cortex and 

embryonic (ES) stem cells revealed that mCpH is enriched in the gene body and 

depleted in protein binding sites and enhancers. Intriguingly, in ES cells intergenic CpH 

methylation positively correlates with gene expression whereas in neurons mCpH levels 

and gene expression correlate inversely (Lister et al. 2009, 2013).  

 

DNA methyltransferases 

The main enzymes establishing and maintaining DNA methylation patterns are DNA-

methyltransferases (DNMTs). The de-novo methyltransferases DNMT3A2 and 

DNMT3B2 catalyze the transfer of the methyl group from S-andenosyl methionine 

 
1 H = A, C, or T 
2 Equivalent for mouse are Dnmt3a, Dnmt3b, Dnmt1, Dnmt3l. 
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(SAM) onto the 5’ cytosine-carbon and thus establish new DNA methylation patterns 

during development/cell differentiation. The upregulation of Dnmt3a but not Dnmt3b 

in developing mouse brain coincides with the increase of mCpH which suggests 

methylation activity of Dnmt3a also on non-CpGs. In contrast, the maintenance 

methyltransferase DNMT12 is responsible for propagating the cellular methylation 

patterns after DNA replication by the recognition of hemimethylated DNA (Hermann, 

Goyal, and Jeltsch 2004; Okano et al. 1999). The third member of the DNA-

Methyltransferases is DNMT3L, that lacks a catalytical domain but interacts with 

DNMT3A and DNMT3B and enhances their activity (Suetake et al. 2004).  

 

DNA demethylation  

In general, global DNA methylation level of somatic cells is high and static. However, 

during germ cell and pre-implantation development the methylation profiles are highly 

dynamic. A rapid loss of 5-mC was observed in the paternal pronucleus in the zygote 

before DNA replication commences (Mayer et al. 2000; Oswald et al. 2000). Similarly, 

primordial germ cells (PGCs) undergo a genome-wide rearrangement of the 

epigenome with rapid erasure of DNA methylation (Hajkova et al. 2002). During 

development, both zygote and PGCs acquire de-novo methylation. These DNA 

methylation kinetics suggest DNA demethylation mechanisms. Indeed, evidence for 

two mechanisms emerged during the last years, namely passive or active DNA 

demethylation. The passive demethylation characterizes the loss of 5-mC after 

successive round of replication and incomplete maintenance machinery activity. On the 

other hand, the active demethylation involves the consecutively enzymatic oxidation 

of the 5-mC methyl group to 5-hydroxymethylcytosine (5-hmC), 5-formylcytosine (5-

fC), and 5-carboxycytosine (5-caC) (Figure 1-4). This Fe2+ and α-ketoglutarate 

dependent oxidation is catalysed by the members of the ten-eleven translocation (TET) 

family TET13, TET23, and TET33 (Tahiliani et al. 2009; Ito et al. 2010, 2011). Subsequently 

5-fC and 5-caC can be excised by the thymine DNA glycosylase TDG and replaced by an 

unmodified cytosine (He et al. 2011; Maiti and Drohat 2011). Besides the role as 

 
3 Equivalent for mouse are Tet1, Tet2, and Tet3. 
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intermediate in the active demethylation, 5-hmC may play a role in epigenetic gene 

regulation by the interaction with DNA associated proteins or indirectly by impairment 

of the interaction of 5-mC with 5-mC binding proteins (Valinluck et al. 2004). 

Interestingly, the detected 5-hmC level is the highest in central nervous system, 

followed by medium levels in kidney, nasal epithelium, bladder, heart, muscle, lung, 

and low levels in liver, spleen, and testes (Globisch et al. 2010). The functional relevance 

of 5-hmC in different cell types is not yet fully understood and in the focus of current 

investigations. The same holds true for the distinct expression levels and distinct 

transcript variants of TETs in different tissues/ cell types. 

 

 

 

Figure 1-4 Cytosine modifications in mammals. 5-Methylcytosine can be oxidized to 5-
hydroxycytosine and further to 5-formylcytosine and 5-carboxylcytosine by the 2-
oxoglutarate- and iron(II) dependent enzymes Tet1, Tet2 and Tet3. 

 

Crosstalk of DNA methylation and histone modifications 

DNA methylation and other epigenetic mechanisms like histone modifications 

cooperate with each other to regulate gene expression. It has been demonstrated that 

DNMTs interact with histone modifiers that mediate repressive modifications to 

establish a repressive state of the genomic region (Fuks et al. 2003, 2000; Geiman et al. 

2004). In contrast, active histone marks like H3K4me3 impairs the binding of DNMTs 

and thus prevent DNA methylation at the respective locus (Yingying Zhang et al. 2010; 

Ooi et al. 2007). Important mediators of the crosstalk between DNA methylation and 

histone modifications are methyl-CpG binding proteins like MeCP2. MeCP2 conveys 

the crosstalk by binding to methylated DNA and recruitment of histone deacetylases 

(Jones et al. 1998; Nan et al. 1998) 
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Non-coding RNA  

Non-coding RNAs (ncRNAs) function in the transcriptional and posttranscriptional 

regulation of gene expression and, unlike mRNA, are not translated into proteins. 

Epigenetic related ncRNA include miRNA, short interfering RNAs (siRNA), Piwi-

interacting RNAs (piRNA), and long non-coding RNA (lncRNA). These ncRNAs have 

been shown to play a role in heterochromatin formation, histone modification, DNA 

methylation, and in gene silencing through interaction with mRNA. ncRNAs can be 

classified according to their length in short ncRNAs (<30 nts; miRNAs, siRNAs, piRNAs) 

and long ncRNAs (>200 nts; lncRNAs). miRNAs bind to mRNAs with partially 

complementary sequences and inhibit the translation of bound mRNA, induce mRNA 

degradation, or destabilize their target mRNA. siRNAs, found in plants, fungi and non-

mammals, similarly interfere with mRNA processing by binding their target mRNA fully 

complementary. The third class of short non-coding RNAs, piRNAs, are mainly involved 

in suppression of transposable elements activity in germline cells (Morris and Mattick 

2014). The majority of non-coding RNAs comprises long non-coding RNAs. lncRNAs 

span tens or hundreds of kilobases and harbor classical hallmarks of bona fide genes 

like conserved promoters, epigenetic modifications and regulation by trans acting 

factors (Mattick 2009). They are implicated with various processes including chromatin 

remodeling, transcriptional regulation, and post-transcriptional regulation. This 

repertoire of functions is achieved by the interaction of different protein complexes. For 

instance, lncRNAs can form complexes with chromatin modifying proteins or Dnmts 

and recruit the complex to a target sequence (Morris and Mattick 2014). The best 

studied example for lncRNA function is the X-chromosome inactivation by the lncRNA 

Xist. Xist RNA coats the inactive X-chromosome which recruits polycomb repressive 

complex 2 and results in extensive histone methylation and therefore silencing of the 

genes (Silva et al. 2003; Plath et al. 2003).  
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1.1.2 DNA methylation as hallmark of cellular memory 

DNA methylation as a form of epigenetic memory in the central nervous system 

DNA methylation, once established, is a stable mark and is propagated through 

multiple cell divisions. As mentioned in chapter 1.1.1 on page 12, DNA methylation is 

dynamic during development and cell differentiation. However, DNA methylation 

profiles are partially retained in the descendant cells. This epigenetic memory was 

comprehensively investigated in neural stem cells (NSCs) (Ziller et al. 2015; Mo et al. 

2015; Sanosaka et al. 2017). NSCs have the capacity to self-renew and progressively 

give rise to the major cell types in the mammalian central nervous system (CNS) such 

as neurons, astrocytes and oligodendrocytes (Martynoga, Drechsel, and Guillemot 

2012). At early gestation (before embryonic day 9 (E9)) NSCs divide symmetrically to 

expand the progenitor pool. During midgestation (E9-E10) the cells are programmed to 

differentiate into neurons but lack the potency to differentiate into glia cells. During 

this step NSCs develop into neural progenitor cells (NPCs). At late gestation (E18.5), 

NPCs begin to give rise to astrocytes and oligodendrocytes. The potency of NSCs/NPCs 

to give rise to distinct cell types in a temporarily coordinated fashion critically depends 

on epigenetic mechanisms. Promoters of genes involved in the astrogliogenesis onset, 

such as glial fibrillary acidic protein (Gfap) and S100 calcium-binding protein B (S100b), 

are methylated in the early and midgestation and become unmethylated at E18.5 

(Namihira, Nakashima, and Taga 2004; Takizawa et al. 2001). Consistent with the 

differential methylation, the knock-out of Dnmt1 in NPCs leads to a global 

hypomethylation (including hypomethylation of gliogenic genes), which in turn leads 

to precocious onset of astrogliogenesis due to the expression of respective genes (Fan 

et al. 2005). Correspondingly, genes involved in the generation of neurons were 

unmethylated in NPCs and neurons but gained methylation upon differentiation into 

astrocytes (Sanosaka et al. 2017).  

Interestingly, Sanosaka et al. 2017 showed that the hypomethylation in course 

of E11.5 to E18.5 NPC development was not significantly associated with gene 

expression change of associated genes. Moreover, the DNA methylation profiles of 

NSCs and NPCs were closely correlated to neurons, while the gene expression profile 

of NSCs and NPCs showed strong differences to neurons. This suggests that the 
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observed methylation profiles in the precursors reflects the differentiation potential 

rather than the functional properties. In line with this observation, lowly methylated 

regions associated with transcription factors crucial in early neurogenesis are 

established in NSCs/NPCs and retained in mature neurons. Respective genes are 

expressed in NSCs/NPCs but are downregulated in mature neurons. This demonstrated 

that DNA methylation at these loci mirrors the origin of the cell and reflects the 

transient expression of respective genes (Sanosaka et al. 2017). 

 Mo et al. 2015 identified a unique DNA methylation pattern as a signature of 

epigenetic memory from the comparison of fetal cortex with adult cell types of the 

CNS. They determine DNA methylation valleys (DMVs)4 present in fetal and adult 

cortical cells at transient expressed developmental genes. Interestingly, comparison of 

the DMVs in the cell types revealed that DMVs remain unmethylated large regions but 

gain DNA methylation at the DMV boundaries during development. This 

hypermethylation was mostly pronounced at transcription factor expressed only in 

NPCs and immature neurons establishing neuronal subtype identity. This specific 

hypermethylation in neurons represents a signature of past gene expression (Mo et al. 

2015). 

 

Genome wide DNA methylation organization as a form of epigenetic memory 

Besides local traces of epigenetic memory described for neuronal development, DNA 

methylation pattern at larger scales is a hallmark for lineage-specific epigenetic sate. 

The methylome can be classified into unmethylated regions (UMRs), lowly methylated 

regions (LMRs), partially methylated regions (PMDs) and fully methylated regions 

(FMRs) (Lister et al. 2009; Stadler et al. 2011). PMDs are large regions of 100 kb to 20 

Mb, covering gene-poor and heterochromatic regions and represent up to 75% of the 

entire genome. In addition, PMDs are characterized by a reduced average DNA 

methylation. Comprehensive analysis of 195 methylomes by Salhab et al. 2018 

identified PMD arrangements as a cell type classifier and showed further high 

similarities between PMD arrangements in cells of the same lineage. This 

demonstrated that genome wide methylome organization in the progenitors is 

 
4 Unmethylated genomic domains spanning at least 5kb of developmental genes (Xie et al. 2013). 
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maintained throughout development and can be used to assign the origin of a cell 

(Salhab et al. 2018). 

 

1.1.3 Methods to profile epigenomes and transcriptomes 

This chapter outlines general technical principles to generate epigenetic and 

transcriptomic data. With recent innovation in sequencing and computational 

technology various techniques evolved to map cell type-specific epigenomes (Figure 

1-5). In the following paragraphs a general overview of the techniques will be given, and 

the methods used for this work will be described in more detail. 

 

 

Figure 1-5 Technology for profiling epigenomes and transcriptomes. Different 
epigenetic and chromatin states can be quantified using color-corresponding technologies. 

 

Next Generation Sequencing (NGS) 

In course of the Human Genome Project, sequencing of the human genome using 

Sanger sequencing was completed after 13 years of international collaboration. In 

contrast, using NGS technology it is now possible to sequence an entire human genome 

with high accuracy and dramatically decreased costs within a single day. The principle 

behind NGS is similar to Sanger sequencing. During DNA synthesis fluorescence 
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labeled deoxyribonucleotide triphosphates are incorporated into the newly 

synthesized strand based on the template. During each cycle the strand is extended by 

one base. The incorporation of the nucleotides leads to a signal emission of the 

respective fluorophore. The decisive advantage of NGS is that, instead of sequencing a 

single DNA fragment, it can detect the signals emitted from millions of DNA fragments 

in a massively parallel fashion. The workflow for all NGS application is in principle the 

same. The genome is fragmented randomly, or DNA fragments are enriched based on 

specific properties. Next, DNA fragments with known properties and sequences 

(sequencing adapters) are transferred onto the genomic fragments in order to generate 

libraries ready for sequencing. The libraries are subjected into a sequencing device and 

captured on a surface with immobilized oligonucleotides complementary to the 

sequencing adapters. After sequencing, the readout is translated into DNA sequences 

that can be aligned to the reference genome. 

 

DNA accessibility 

A widely used method to profile genome-wide DNA accessibility is the Assay for 

Transposase Accessible Chromatin Sequencing (ATAC-Seq, Figure 1-6) (Buenrostro et 

al. 2013). ATAC-Seq is based on the activity of the hyperactive, and sequencing-adapter 

preloaded Tn5 transposase in the cell nucleus. In the nucleus it binds to open chromatin, 

fragments the DNA, and simultaneously inserts sequencing adapters. After purification 

of the DNA fragments, the tagged fragments are amplified by Polymerase Chain 

Reaction (PCR) using sequencing primers and sequenced using next generation 

sequencing. The enrichment of mapped reads at certain loci in the genome represents 

an open chromatin state at this region. The procedure in detail and the analysis of the 

data are described in chapter 2.2.4 on page 46 and chapter 2.2.9 on page 51. Besides 

ATAC-Seq, there are various other methods to analyze DNA accessibility, e.g. DNase 

Sequencing, MNase Sequencing, and FAIRE Sequencing (Boyle et al. 2008; Kaplan et 

al. 2009; Giresi et al. 2007). These methods require a high number of cells and 

adjustment of the reagents for each cell type. Hence, ATAC-Seq was chosen for the 

work in this thesis due to the low cell number requirement and the straightforward 

procedure. 
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Figure 1-6 ATAC-Seq method to profile DNA accessibility. The transposase introduces 
adapters into accessible regions, the DNA fragments are then amplified with sequencing 
primers and sequenced using next generation sequencing. The enrichment of sequencing 
reads at a certain genomic position indicates DNA accessibility at this locus. 

 

DNA methylation 

A variety of sequencing-based methods emerged to profile DNA methylation. They 

include immunoprecipitation of DNA fragments containing 5-mC using anti-5mC 

antibodies (Methylated DNA Immunoprecipitation, MeDIP), methylation-sensitive 

cleavage, and sodium bisulfite treatment of the DNA. The respective methods differ in 

the resolution, number of analyzed CpGs and experimental costs. Currently it is not 

possible to directly distinguish between cytosine and 5-mC during sequencing. 

However, DNA methylation status at single base resolution can be explored using 

bisulfite sequencing. For this method, the DNA is treated with sodium bisulfite which 

converts cytosines into uracils that are read as thymines after PCR. In contrast to 

unmethylated cytosines, 5-mC is not converted by sodium bisulfite treatment and is 

read as a cytosine after PCR (Figure 1-7). This approach can be used to detect CpG 

methylation in targeted regions of interest or at a genome wide level. The genome wide 
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approach is widely used to characterize the methylomes of cells/tissues and to discover 

changes in the methylome. As mentioned in chapter 1.1.1 on page 10, the majority of 

all CpGs is highly methylated across all cell types and the methylation status of certain 

CREs like promoters and enhancers shows the highest degree of change across cell 

types or cell states. This observation was made using Whole Genome Bisulfite 

Sequencing (WGBS), the most comprehensive method to study DNA methylation by 

covering nearly all CpGs (Lister et al. 2009; Ziller et al. 2013). However, it is not 

necessary to perform expensive WGBS experiments, if the interest of a study lies in e.g. 

gene regulation difference. As a cost-efficient alternative Meissner et al. 2005 

developed a method that enriches for CpG rich regions and therefore covers the 

majority of CPIs, promoters, and putative enhancers. For Reduced Representation 

Bisulfite Sequencing (RRBS) endonucleases are used to fragment the DNA. The 

enzymes are selected based on the recognition site that enriches for DNA fragments 

with present CpGs. The commonly used enzyme MspI (C^CGG) generates methylomes 

that represent 20% of all CpGs with a strong enrichments of methylation information 

at promoters. For this work, the enzyme HaeIII (GG^CC) was selected, as it yields a 

broader coverage across the genome (4-5 million CpGs in mouse, 6-8 million CpGs in 

human) and provides a good approximation to WGBS. The workflow to generate 

sequencing libraries is represented in Figure 1-7 and described in detail in chapter 2.2.5 

on page 47. Briefly, in the first step the DNA is digested with the endonuclease HaeIII 

and subsequently ligated to sequencing adapters. In the next step the DNA fragments 

are treated with sodium bisulfite, which converts unmethylated cytosines into uracil 

while 5-mCs are not converted. After amplification of the bisulfite treated single 

stranded DNA and subsequent sequencing, it is possible to distinguish between 

methylated and unmethylated CpG positions based on the comparison to the reference 

sequence. In case the reference cytosine is read as thymine, the position was 

unmethylated, conversely, a cytosine readout indicates a methylated CpG position. 

The detailed processing of the data is described in chapter 2.2.10 on page 53. 
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Figure 1-7 RRBS method overview. DNA is digested by the endonuclease HaeIII, the 
fragments are adenylated to subsequently ligate sequencing adapters. The fragments are 
treated with sodium bisulfite which converts unmethylated cytosine into uracil. The 
conversion is a three-step process. First, the reactive agent hydrogen sulfite HSO3- binds 
to the C5 position of cytosine by nucleophile addition (1). Nucleophilicity of C5 position of 
5-mC is reduced due to the positive inductive effect of the methyl group. Therefore, the 
addition of HSO3- to 5-mC is much slower compared to cytosine, 5-fC or 5-caC. By 
subsequent deamination (2) and desulfonation (3) cytosine is converted into uracil. The 
bisulfite treated DNA is amplified by PCR and sequenced. After PCR the converted uracils 
are read as Ts (thymines) and 5-mC positions are read as Cs (cytosines) in the sequencing 
procedure. The mapping to a reference genome reveals the 5-mC positions. 

 

RNA Sequencing 

Various technologies have been developed to approach and quantify the 

transcriptome, including sequencing based approaches. The principle for the various 

available protocols is based on a reverse transcription of the RNA into copy DNA 

(cDNA). The different RNA species are separated based on size exclusion or 

hybridization of the poly adenylated (polyA) mRNA. The subsequent library 

preparation differs between the protocols. The workflow used for this thesis is 

represented in Figure 1-8 and described in detail in chapter 2.2.6 on page 49. Briefly, 

the mRNA is captured by oligo(dT) oligonucleotides and reverse transcribed into cDNA. 

The double stranded cDNA is fragmented using the hyperactive Tn5 transposase which 

directly introduces sequencing adapters to the DNA fragments. The library is amplified 
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by PCR and sequenced using NGS. The sequencing reads are aligned to reference 

genome and the reads mapped to the exons of a genes are used to quantify the 

expression of the respective gene. The data processing is described in more detail in 

chapter 2.2.11 on page 53. 

 

                          

 

Figure 1-8 mRNA-Sequencing workflow. polyA selected mRNA is reverse transcribed into 
double stranded cDNA which is subsequently fragmented and linked to sequencing 
adapters by the hyperactive transposase Tn5. After sequencing the reads are aligned to 
the reference and the reads aligned to the exons of a gene/transcript are used for 
expression quantification. 
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1.2 Biological background on astrocytes 

The CNS consists of four major cell types, namely neurons, astrocytes, 

oligodendrocytes and microglia. Astrocytes are the most abundant glial in the adult 

human and mouse brain and are implicated in various functions such as metabolic, 

homeostatic, blood flow modulating, as well as structural functions. These ubiquitous 

cells extrude thousands of processes that ensheath synapses, nodes of Ranvier, blood 

vessels and form contact via gap junctions with astrocytes in the close neighborhood. 

They take up nutrients through the blood vessel and deliver them to neurons. For 

example, the up taken glucose is stored in the form of glycogen and metabolized to 

lactate to provide an essential energy source to adjacent neurons (Brown and Ransom 

2007). Furthermore, astrocytes are the main source of essential structural components 

of the plasma membrane like cholesterol and lipoproteins for neurons since the liver 

produced cholesterol cannot pass the blood-brain-barrier. Through the contact of 

astrocytic processes with synapses, astrocytes are involved in synapse formation, 

removal, and function. For instance, astrocytes secrete Hevin that promotes the 

formation of excitatory synapses by connecting pre- and post-synaptic adhesion 

proteins. On the other hand, astrocytes can secrete Sparc that antagonizes Hevin and 

therefore can suppress synapse formation (Kucukdereli et al. 2011). Through 

membrane-bound receptors that recognize engulfment signals and phagocytosis 

activity, astrocytes contribute actively to synapse elimination (Chung et al. 2013, 2016). 

Astrocytes respond to excitatory and inhibitory neurotransmission by intracellular and 

intercellular Ca2+ elevations and in turn modulate neuronal activity. The term tripartite 

synapse (Figure 1-9) refers to this astrocytic modulatory activity in synaptic 

transmission and includes sensing of synaptic activity through membrane-bound 

receptors (e.g. AMPA, NMDA and GABAa/b receptors), taking up synaptic 

neurotransmitters via transporters (e.g. GLAST, GLT-1 and GAT-3), and releasing 

gliotransmitters (e.g. glutamate, D-serine and ATP) (Perea, Navarrete, and Araque 

2009; Haydon and Parpura 2009). In addition, astrocytes modulate excitability of 

neurons by rapidly decrease the extracellular K+ concentration enabling fast repetitive 

neurotransmission (Walz 2000). Consequently, the awareness of such a coordinated 
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network comprising both neurons and glia changed the historical view on brain function 

to be a result exclusively conducted by neurons. 

 

                        

Figure 1-9 Tripartite synapse. Astrocytes together with pre- and post-synapse form the 
tripartite synapse. Astrocytes are involved in the synaptic transmission by taking up and 
releasing neurotransmitters. The astrocytic response to neuronal signaling is transmitted 
through intracellular Ca2+ elevations. Allen and Eroglu 2017 

 

1.2.1 Morphological astrocyte diversity 

The functional complexity described above is accompanied by morphological and 

regional diversity of astrocytes in the CNS. The earliest morphological heterogeneity 

was mentioned in 1893 by William Lloyd Andriezen who described differences between 

protoplasmic astrocytes of the grey matter and fibrous astrocytes of the white matter 

(Andriezen 1893). The morphological heterogeneity was further refined by Ramon y 

Cajal who stained mammalian cortices using a gold chloride-sublimate method that 

stains GFAP intermediate filaments (García-Marín, García-López, and Freire 2007). 

However, the lack of approaches and technologies to explore the functional relevance 

of morphologically distinct astrocytes led to the view that astrocytes are a functionally 

homogenous cell population. Only in the past decades, with the advances in cell 

culturing, cell labeling and molecular approaches, the functional and molecular 

diversity of astrocytes began to be appreciated.  

Today, nine different astrocytic morphologies across the mammalian CNS are 

reported along with an array of functional features reflecting their neuronal 
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environment. Protoplasmic astrocytes are found in the grey matter of the CNS, possess 

highly branched “bushy” processes that form perivascular endfeet, enwrapping blood 

vessels, and form contacts with neurons. One single protoplasmic astrocyte is in 

contact with about 100,000 synapses in mice and exhibits the above described 

functions of a tripartite synapse (Bushong et al. 2002). Fibrous astrocytes are present in 

the white matter of the CNS, have an elongated shape that is in line with myelinated 

fibers of the white matter, and form less elaborate processes that are in contact with 

blood vessels and nodes of Ranvier. This astrocyte type is characterized by a high 

expression of the intermediate filament protein GFAP in the entire cell body, while 

protoplasmic astrocytes GFAP is often found in the perivascular endfeets (Oberheim, 

Goldman, and Nedergaard 2012). The function of fibrous astrocytes remains to be 

explored in detail. Bergmann glia is a specialized, unipolar astrocyte type of the 

cerebellum found in the Purkinje cell layer. Eight Bergmann glia cells surround one 

Purkinje neuron and send out long and branched processes through the molecular layer 

of the cerebellum to the pial surface. During development, the radial processes serve 

as scaffold for migrating granule neurons of the cerebellum. In the mature brain, the 

processes contact numerous synapses and exhibit synapse modulating functions of the 

above described tripartite synapse (Yamada and Watanabe 2002). Radial glia is a 

bipolar shaped neural precursor cell type that exhibits many features of astrocytes such 

as glycogen granules, expression of intermediate filaments GFAP and vimentin, and 

expression of glutamate transporter Glast. Radial glia has two processes with one at the 

ventricular wall and the other extruding to the pial surface. As precursor cell they give 

rise to neurons and glial cells during development and constitute a scaffold for neuronal 

migration. Besides the developing brain, Radial glia is found in the subventricular zone 

(Malatesta, Appolloni, and Calzolari 2008). Furthermore, specialized astrocyte types 

were described in the retina (Müller glia), in the granular layer of the cerebellum (velate 

glia), at the pial surface (perivascular glia), in the third ventricle (tanycytes), and as an 

epithelial layer that lines the brain ventricles (ependymal glia).  

Functionally highly specialized astrocytes are found in the chemoreceptive 

regions of the ventral surface of the medulla oblongata. They sense changes in the 

blood pH and release ATP to adjust the respiratory rate (Gourine et al. 2010). The 
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hypothalamus contains hormone responsive astrocytes that are sensitive to hunger and 

thirst hormones and modulate neuronal activity to regulate glucose uptake (García-

Cáceres et al. 2016). 

 

1.2.2 Molecular astrocyte diversity 

The advent of transgenic mouse lines to target astrocytes in combination with gene 

expression analysis extended the understanding of the molecular differences between 

regional astrocytes. In 2017, three independent studies using different approaches to 

isolate astrocytes investigated the transcriptomes of astrocytes from distinct brain 

regions (Morel et al. 2017; Chai et al. 2017; John Lin et al. 2017). Morel et al. 2017 

demonstrated that astrocytic gene expression follows the dorsoventral axis with 

gradual changes in expression and with only a low number of genes to be exclusively 

expressed in only one region. Moreover, by co-culturing astrocytes and neurons from 

cortical and subcortical regions in matched or mismatched cultures, they demonstrated 

a selectively region-matched modulation of neurite growth and synaptic activity. A 

comprehensive, integrated study on striatal and hippocampal astrocytes comparing 

their physiology, morphologies, proteomes, and transcriptomes revealed properties 

such as morphology, electrophysiology, and Ca2+-signaling to be specific within the 

respective neural circuit (Chai et al. 2017). Very recently, a transcriptome study of 

astrocytes on single-cell level revealed seven molecularly distinct sub types with a clear 

spatially specialized distribution that developmental patterning of the neural tube 

(Zeisel et al. 2018). 

This interregional diversity is accompanied by intraregional heterogeneity 

demonstrated in mouse brain cortex and cerebellum. Farmer et al. 2016 compared the 

gene expression profiles of cerebellar astrocyte population present in the Purkinje cell 

layer (Bergmann glia) or granular cell layer (velate glia). In physiological conditions, 

these cells have distinct expression profiles driven by the presence or absence of the 

Purkinje cell-derived sonic hedgehog (SHH) protein. By artificial increase of SHH in the 

granular cell layer, the gene expression profile of velate astrocytes becomes more 

similar to Bergmann glia profile (W. T. Farmer et al. 2016). The cerebral cortex is 
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organized in six layers and contains layer-specific astrocytes. By the disruption of the 

layer-generation, astrocytes lose layer-specific properties as a result of missing 

environmental signals (Lanjakornsiripan et al. 2018). These observations indicate that 

the formation of intraregional subpopulations is highly dependent on the 

environmental cues. 

  

1.2.3 Developmental patterning of astrocytes 

The above described morphological and molecular differences of reginal astrocytes 

were long thought to be mainly determined by the signals derived from distinct 

neuronal environments. However, a growing body of evidence indicates that the 

molecular properties of astrocytes strongly relate to their derivation from regionally 

specialized (patterned) radial glia (see chapter 1.2.2 on page 26). During embryonic 

brain development, neuroepithelium cells are organized into domains that produce 

domain-restricted neuronal subtypes (see also chapter 1.1.2 on page 15). These 

domains are established by extrinsic morphogens such as bone morphogenetic protein 

(BMP) for dorsal orientation and SHH for ventral orientation. In turn, dorsoventral 

segmentation of the progenitor cells is reflected in the expression of homeodomain and 

basic helix–loop–helix (bHLH) transcription factors that refine domain boundaries 

(Campbell 2003; Sur and Rubenstein 2005). This interplay of transcriptions factors leads 

to the differentiation of radial glia into specified neuronal subtypes. After the 

neurogenic phase, radial glia cells start to differentiate into astrocytes. Fate mapping 

experiments of astrocytes in the spinal cord and the brain demonstrated that astrocytes 

derive from spatially pre-specified progenitors, show little to no lateral migration and 

are unable to populate adjacent domains (Tsai et al. 2012; Hochstim et al. 2008; Magavi 

et al. 2012). The usage of the same transcription factor code in neurons and astrocytes 

might ensure regionally matched interactions and neural circuit formation. 
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1.3 Biological background on B-cells 

The mammalian immune system is a multilayered complex system comprising innate 

and adaptive immune responses to defend the organism from foreign substances 

(antigens). Innate immune response represents the immediate protection against 

antigens and is mediated on the cellular level by macrophages, neutrophils, 

eosinophils, basophils, natural killer cells, mast cells, and dendritic cells. Adaptive 

immunity is a highly sophisticated biological response mediated by B- and T-cells after 

exposure to a specific antigen that evaded innate immune system (Moser and Leo 

2010). B-cells mediate immune response by producing antigen-specific antibodies and 

secreting pro- and anti-inflammatory cytokines and operate as antigen presenting 

cells. There are three major classes of mature B-cells that are distinguished by their 

ontogeny and anatomic localization: follicular (FO) B-cells, marginal zone (MZ) B-cells 

and B1 B-cells (Figure 1-10). FO and MZ B-cells develop from transitional 2 (T2) B-cells 

that originate from hematopoietic precursor cells from the bone marrow, while B1 B-

cells arise from progenitors in the fetal liver and are maintained by self-renewing during 

adulthood. FO B-cells reside in the lymphoid follicles of the spleen and lymph nodes, 

whereas MZ B-cells are located around the splenic marginal sinus where they are in 

close association with blood-borne pathogens. B1 B-cells reside mostly in the 

peritoneal and pleural cavities and produce polyreactive or polyspecific antibodies 

(IgM) to bind both self-antigens and microbial antigens (Hoffman, Lakkis, and 

Chalasani 2016). 
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Figure 1-10 B-cell subtypes. Hematopoetic stem cells (HSC) are the common precursor for 
all B-cells. They give rise to progenitor cells of B1 B-cells in the fetal liver and progenitor 
cells of transitional 2 (T2) B-cells in the bone marrow. T2 B-cells further differentiate into 
marginal zone (MZ) and follicular (FO) B-cells in the spleen. This lineage commitment is 
determined by B-cell receptor (BCR) signals. The three B-cell classes exhibit distinct 
properties in antigen-recognition, as well as distinct antibody classes production 
(Hoffman, Lakkis, and Chalasani 2016). 
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In order to produce antibodies, B-cells have to differentiate into plasmablasts 

(PBs) and further into plasma cells (PCs). The differentiation is initiated by the 

activation of the B-cell through antigen-receptor interaction. The differentiation takes 

place either rapidly outside of the follicle to generate a fast but less specific response, 

or after the entry of the activated cell into the follicle where the cell undergoes 

extensive proliferation, affinity maturation of immunoglobulin antigen–binding sites 

and immunoglobulin class-switching to generate highly specific antibodies (Nutt et al. 

2015). 

Besides antibody production, B-cells mediate immune responses by the 

secretion of pro-inflammatory cytokines such as interleukin (Il) 1, Il2, Il4, Il6, Il12, IFNγ, 

TNFα, as well as anti-inflammatory cytokines Il10 and Il35 (Fillatreau 2013). 

Consequently, B-cells play multifaceted roles in infection, autoimmune reactions, and 

cancer. 
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1.4 Aim of this thesis 

This work focuses on the analysis of epigenomic profiles of various cell types such as 

astroglia subpopulations from the adult murine brain, as well as a multitude of B-cell 

subpopulations and integrates the respective gene expression profiles. The epigenomic 

and transcriptomic patterns shed light on the characteristics of the respective cell 

populations and thereby contribute to our understanding of the factors responsible for 

the establishment of cell identity. Moreover, DNA methylation signatures can be used 

to infer relations between the epigenomes of different cell populations to explore the 

origin of respective cell populations.  

 Chapter 3.1. presents the comprehensive epigenomic and transcriptomic 

analyses on astrocyte diversity. Astrocytes were, for a long time, considered a 

homogenous, glue-like cell population and despite important progress, they remain 

understudied. This thesis seeks to determine whether astroglia populations from two 

distinct, mature brain regions display diversity in their molecular machinery and if so, 

how the differences were established. To this end, two exemplary brain regions were 

chosen: the cerebral cortex (CTX) and the cerebellum (CB). Both regions differ in 

cellular composition, connectivity, and are involved in distinct central nervous 

functions. Putative region-specific programs were expected to be found by isolating 

astrocytes from CTX and CB, and exploring their DNA methylation, open chromatin, 

and transcriptome in an integrative manner. 

 Chapter 3.2. dissects the molecular characteristics of in vivo regulatory B-cells 

(Bregs), employing gene expression and DNA methylation analyses. Bregs support 

immunological tolerance by immunosuppressive activity. The suppression of 

immunopathology is exerted by the production of Interleukin-10, which in turn restricts 

expansion of other lymphocytes, and the production of pro-inflammatory cytokines. 

The identification of Lag3-expressing plasma cells as Bregs led to two questions: (I) 

What are the molecular differences between Lag3+ plasma cells and Lag3- plasma cells? 

(II) And which B-cell subtype gives rise to these regulatory plasma cells? 

 Besides the investigation of the above described biological questions, this thesis  
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extends the background of regulatory concepts and epigenetic mechanisms involved in 

the establishment of cell identity. It provides a general overview of the complexity of 

epigenetic gene regulation. 
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Chapter 2.                                                                                         

Materials and Methods 

 

 

2.1 Materials 

 

Table 1 Antibodies used in this work 

Antibodies Source Catalogue number 

Anti-Goat Alexa Fluor®555 

conjugated 
Invitrogen A21432 

Anti-Lhx2 Merck ABE1402 

Anti-NeuN Antibody, clone A60, 

Alexa Fluor®488 conjugated 
MerckMillipore MAB377X 

Anti-Rabbit Alexa Fluor®546 

conjugated 
Invitrogen A10040 

Anti-Zic1 RDsystems AF4978 
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Table 2 Chemicals and enzymes used in this work 

Chemicals, Enzymes Source Catalogue number 

Adenosine 5′-Triphosphate (ATP) New England Biolabs P0756L 

Bovine serum albumin Sigma Aldrich A9647-100G 

Calcium chloride (CaCl2) Roth 5239.1 

Chloroform VWR 22920.K2 

cOmplete, EDTA-free Protease 

Inhibitor Cocktail 
Sigma Aldrich 11873580001 

Deoxyribonucleotide triphosphate 

(dNTPs) 
Solis Biodyne 02-21-00400 

4′,6-Diamidino-2-phenylindole 

(DAPI) 
Roche 10236276001 

Dithiothreitol (DTT) Invitrogen Y00147 

DNA Polymerase I New England Biolabs M0209L 

DNase I Sigma Aldrich D4263 

Ethanol Fisher chemicals E/0650DF/17 

Ethylene glycol-bis(2-

aminoethylether)-N,N,N′,N′-

tetraacetic acid (EGTA) 

Fluka 3778 

Ethylenediaminetetraacetic acid 

(EDTA) 
Sigma Aldrich E9884 

Glycogen Thermo Fischer 10814010 

HaeIII New England Biolabs R0108M 

Hanks' Balanced Salt solution 

(HBSS) 
Sigma Aldrich RNBG4539 

HBSS 10x Thermo Fischer 14185052 

Hoechst 33342 Sigma Aldrich B2261-25MG 

HotStar Taq Qiagen 203207 

ImmunMount Thermo Fischer 9990402 

Klenow Fragment exo- New England Biolabs M0212L 
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Chemicals, Enzymes Source Catalogue number 

Magnesium acetate 

(Mg(C2H3O2)2) 
Merck 5819 

M-MLV Reverse Transcriptase 

RNase H- 
Promega M3683 

Normal goat serum 
Jackson Immuno 

Research 
005-000-121 

10% NP-40 Abcam ab142227 

Papain Sigma Aldrich P3125 

Pefabloc SC Sigma-Aldrich 76307 

Percoll Sigma Aldrich P1644-25ML 

Phenol-chloroform-isoamyl 

(25:24:1) 
Sigma Aldrich P2069-100ML 

Phenylmethanesulfonylfluoride 

(PMSF) 
Sigma Aldrich 10837091001 

Potassium chloride (KCl) Merck 1.04936.0500 

Potassium dihydrogenphosphate 

(KH2PO4) 
Merck P8416 

Propidium iodide Miltenyi Biotec 130-093-233 

Proteinase K Sigma Aldrich  

RNase H New England Biolabs M0297L 

Saccharose Roth 4621.1 

Sodium chloride (NaCl) ZChL 701313 

Sodium dihydrogenphosphate 

(NaH2PO4) 
Merck S9638 

T4-ligase New England Biolabs M0202M 

T4-ligase New England Biolabs M0202L 

Tris(hydroxymethyl)aminomethane 

hydrochloride (TrisHCl) 
Roth 90.90.3 
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Table 3 Devices used in this work 

Devices Source 

Agilent 2100 Bioanalyzer Agilent 

AxioScanZ.1 Zeiss 

BD FACSaria III Becton Dickinson 

HiSeq 2500 Illumina 

LSM 710 Zeiss 

Nanodrop2000c Thermo Fischer 

PCR thermocycler Eppendorf/ Applied, Biosystems 

Qbit® Fluorometer Invitrogen 

 

 

Table 4 Commercially available Kits used in this work 

Kits Source Catalogue number 

Agencourt AMPure XP Beckman Coulter A63881 

Agilent High Sensitivity DNA Kit Agilent 5067-4626 

Agilent RNA 6000 Pico Agilent 5067-1514 

CellTrics strainer (20 or 150 µm) Symex Partec 
04-0042-2315, 04-

0042-2319 

Direct-zol RNA Miniprep Plus Kits Zymo research R2072 

EASYstrainer™ for 50 ml tubes, 70 μm 

mesh size 
Greiner 542 070 

EZ DNA Methylation-Gold Kit Zymo research D5005 

MinElute PCR Purification Kit Qiagen 28006 

mRNA Capture Kit Sigma-Aldrich 11787896001 

NEBNext High-Fidelity 2X PCR Master 

Mix 
New England Biolabs M0541S 

Nextera DNA Library Preparation Kit Illumina FC-121-1031 

Nextera Index Kit Illumina FC-121-1011 
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Kits Source Catalogue number 

Qubit® dsDNA HS Assay Kit 
Thermo Fisher 

Scientific 
Q32851 

TruSeq DNA Single Indexes Set A Illumina 20015960 

 

 

Table 5 Mouse models used in this work 

Mouse models/strains Source 
Catalogue 

number 

Mouse: TgN(hGFAP-EGFP)GFEA (GFAP-

EGFP) 
AG Kirchhoff N/A 

Mouse: TgN(PLP-DsRed1)PRDB (PLP-

DsRed) 
AG Kirchhoff N/A 

Mouse: (C57BL6/J x DBA2/N)F1 AG Walter N/A 

 

 

Table 6 Oligonucleotides used in this work 

Oligonucleotides 

TruSeq PCR primer 1 5'AAT GAT ACG GCG ACC GAG ATC TAC AC 

TruSeq PCR primer 2 5'CAA GCA GAA GAC GGC ATA CGA GAT 
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Table 7 Software and R packages used in this work 

Software Source Web page 

2-step STAR 

alignment  
(Dobin and Gingeras 2015)  

Alibaba2  

http://gene-

regulation.com/pub/programs/alibaba

2/ 

BWA (Heng Li and Durbin 2010) http://bio-bwa.sourceforge.net/ 

ChipSeek  (Chen et al. 2014) 
http://chipseek.cgu.edu.tw/index_sho

w.py 

ChromH3M  (Salhab et al. 2018) 
https://github.com/asalhab/ChromH3

M/releases 

circlize (Gu et al. 2014) 

https://cran.r-

project.org/web/packages/circlize/inde

x.html 

csaw (Lun and Smyth 2016) 
https://bioconductor.org/packages/rele

ase/bioc/html/csaw.html 

Cutadapt  (Martin 2011) http://dx.doi.org/10.14806/ej.17.1.200 

Cytoscape  (Shannon et al. 2003) https://cytoscape.org/ 

DAVID 
(Huang, Sherman, and 

Lempicki 2009a, 2009b) 
https://david.ncifcrf.gov/ 

deepTools  (Ramírez et al. 2014) 
https://deeptools.readthedocs.io/en/de

velop/ 

edgeR 

(M. D. Robinson, 

McCarthy, and Smyth 

2010) 

https://bioconductor.org/packages/rele

ase/bioc/html/edgeR.html 

featureCount

s  

(Liao, Smyth, and Shi 

2014) 
http://subread.sourceforge.net/ 

Galaxy (Afgan et al. 2018) https://usegalaxy.org/ 

Galaxy 

Operations 
 https://github.com/galaxyproject/gops 

http://chipseek.cgu.edu.tw/index_show.py
http://chipseek.cgu.edu.tw/index_show.py
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Software Source Web page 

GEM mapper  (Marco-Sola et al. 2012) 
https://github.com/smarco/gem3-

mapper 

genevenn  http://genevenn.sourceforge.net/ 

Ggplot2 (Wickham 2016) http://ggplot2.org 

graphics  

https://stat.ethz.ch/R-manual/R-

devel/library/graphics/html/00Index.ht

ml 

GREAT  (McLean et al. 2010) 
http://bejerano.stanford.edu/great/pub

lic/html/ 

IGV  

(J. T. Robinson et al. 2011; 

Thorvaldsdottir, 

Robinson, and Mesirov 

2013) 

http://software.broadinstitute.org/soft

ware/igv/ 

Jaspar (Khan et al. 2018) http://jaspar.genereg.net/ 

macs2  
(Yong Zhang et al. 2008, 

2) 
https://pypi.org/project/MACS2/ 

MethylCtools  (Hovestadt et al. 2014) 
https://github.com/hovestadt/methylC

tools 

methylKit  (Akalin et al. 2012) 
https://bioconductor.org/packages/rele

ase/bioc/html/methylKit.html 

MethylSeekR  (Burger et al. 2013) 
https://bioconductor.org/packages/rele

ase/bioc/html/MethylSeekR.html 

Panther  (Mi et al. 2017, 2013) http://www.pantherdb.org/ 

pheatmap  
https://CRAN.R-

project.org/package=pheatmap 

Picard tools   http://broadinstitute.github.io/picard 

R  
(R Development Core 

Team 2008) 
https://www.r-project.org/ 

http://ggplot2.org/
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/00Index.html
https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/00Index.html
https://github.com/hovestadt/methylCtools
https://github.com/hovestadt/methylCtools
https://cran.r-project.org/package=pheatmap
https://cran.r-project.org/package=pheatmap
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Software Source Web page 

RColorBrewe

r 
 

https://cran.r-

project.org/web/packages/RColorBrew

er/index.html 

REVIGO  (Supek et al. 2011) http://revigo.irb.hr/ 

RNA-seQC  (DeLuca et al. 2012)  

RSAT  (Nguyen et al. 2018) http://rsat.sb-roscoff.fr/ 

samtools 

(version 1.3)  
(H. Li et al. 2009) 

https://sourceforge.net/projects/samto

ols/files/samtools/1.3/ 

stats  
https://www.rdocumentation.org/pack

ages/stats 

STRING db (Szklarczyk et al. 2017) https://string-db.org/ 

Trap 
(Thomas-Chollier et al. 

2011) 
http://trap.molgen.mpg.de/ 

Trim Galore  
http://www.bioinformatics.babraham.a

c.uk/projects/trim_galore 

Zen  Zeiss  
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Table 8 Solutions and buffers used in this work 

Solutions and buffers Components 

0.5 M PIPES stock buffer5 0.5 M PIPES in ddH2O 

1X TE Buffer 10 mM Tris-HCl pH 7.5, 1 mM EDTA pH 8.0 

10x GKN Buffer5 

80 g/l NaCl, 4 g/l KCl, 35.6 g/l Na2HPO4 12 H2O, 

7.8 g/l NaH2PO4 2 H2O, 20 g/l D-(+)-glucose, pH 

7.4 

10X Phosphate buffered saline 

(PBS) 

80 mM Na2HPO4, 20 mM KH2PO4, 1.5 M NaCl, 

30 mM KCl, pH 7.4 

25 % Percoll solution 2.5 ml SIP, 7.5 ml 1X PBS pH 7.4 

ATAC Reaction Buffer 
25 µl TD Buffer 2X, 2.5 µl TD Enzyme, 22.5 µl 

MilliQ 

Blocking Solution 
3% bovine serum albumin, 2 % normal goat 

serum in 1X PBS; pH 7.4 

DNA extraction Solution A 75 mM NaCl, 25 mM EDTA 

DNA extraction Solution B 10 mM EDTA, 10 mM Tris-HCl (pH 8.0), 1 % SDS 

Homogenization buffer 

10 mM Tris-HCl (pH 8), 0.1 mM EDTA, 3 mM 

Mg(Ac)2, 5 mM CaCl2, 0.1 % NP-40, 0.32 M 

sucrose, 1X cOmplete EDTA-free Protease 

Inhibitor Cocktail (Sigma Aldrich), 0.16 mM 

DTT, 10 mM PMSF 

Nuclei extraction buffer 

60 mM KCl, 15 mM Tris-HCl, 15 mM NaCl, 1 mM 

EDTA, 0.5 mM EGTA, 0.5 mM Spermidine (free 

base), 1X cOmplete Protease Inhibitor Cocktail, 

0.1 % NP-40 

Papain activation buffer5 55 mM L-Cystein HCl, 11 mM EDTA, pH 7.4 

 
5 Provided by AG Kirchhoff 
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Solutions and buffers Components 

PIPES working solution5 

0.5 M PIPES stock buffer (PIPES 0.5 M (Sigma 

Aldrich), 1 M NaOH, 1.2 M NaCl and 50 mM KCl 

solution, 45 % glucose in 50 ml ddH2O 

RRBS lysis buffer 10 mM TrisHCl, 5 mM EDTA  

Stock Isotonic Percoll (SIP) 1 ml 10X PBS, 9 ml Percoll, adjust pH to 7.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
5  Provided by AG Kirchhoff 
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2.2 Methods 

2.2.1 Preparation of single cell suspension from fresh mouse brain 

Mice were anesthetized with ketamine/xylazine (140 mg/kg and 10 mg/kg body weight) 

and perfused with ice cold HBSS by Dr.Carmen Kasakow. After perfusion the brain was 

directly removed, and cerebral cortex and cerebellum were dissected and minced into 

small tissue pieces and transferred into 10 ml ice cold HBSS. The tissue was spun down 

at 300 xg, 4 °C for 1 minutes and the supernatant was removed down to 5 ml. Next, 5 ml 

PIPES working solution were added to the cells gently mixed by inverting. The tissue 

was centrifuged at 300 xg, 4 °C for 5 minutes. In the meantime, the papain solution was 

prepared by adding 156 µl papain (16 U/ml) into 4.5 ml PIPES working solution 

supplemented with 500 µl of activation buffer. The papain was activated for 20 minutes 

at 37 °C. After activation, 100 µl DNaseI (80 Kunitz units/mL) were added to the papain 

solution and the mixture was drawn into a 10 ml syringe. After pelleting the tissue, the 

supernatant was removed down to 5 ml and the papain/DNaseI was added to the 

suspension by pushing the solution through an attached 40 µm syringe filter. The 

suspension was mixed by gentle inversion, placed into the MACSmix™ Tube Rotator 

and incubated at 37 °C for 50 minutes with low speed rotation. During the incubation 

DNaseI solution II was prepared by adding DNaseI (final concentration 25 Kunitz 

units/mL) to 6 ml of wash buffer (0.5 % BSA in DMEM). After the 50 minutes digestion 

the tissue was gently triturated by using p1000 with cut and flamed tips. After the first 

trituration step the DNaseI solution II was added to the suspension followed by the 

second digestion step at 37 °C, 15 minutes with low speed rotation. The papain/DNaseI 

solution was removed by centrifugation at 300 xg for 10 minutes at 4 °C and discarding 

the supernatant. 2 ml wash buffer were added to the cell pellet and the cells were 

triturated gently using a p1000 to a homogeneous single cell suspension. The cells were 

filtered through a pre-wetted 70 µm strainer and centrifuged at 300 xg for 10 minutes 

at 4 °C. The supernatant was discarded, and the cells were washed with 40 ml wash 

buffer (0.5 % BSA in DMEM) to quench the digestion reaction. Subsequently, the cells 

were centrifuged at 300 xg for 20 minutes at 4 °C, the supernatant was discarded, and 

the cells were resuspended in 1 ml 1X GKN buffer. 

http://www.dict.cc/englisch-deutsch/anesthetized.html
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2.2.2 Nuclei preparation for NeuN Sorting 

Neuronal and non-neuronal nuclei of F1(C57BL6/J x DBA2/N) mice were extracted from 

frozen forebrain tissue. The tissue was transferred into a douncer filled with 5 ml pre-

cooled homogenization buffer and dissociated on ice with 50 strokes in 1 minute. To 

remove undissociated tissue and cell debris, the suspension was filtered sequentially 

through 150 µm and 20 µm CellTrics strainer. The nuclei were centrifuged at 500xg, 4 

°C for 7 minutes and the supernatant was discarded. The nuclei pellet was resuspended 

in 25 % Percoll solution and centrifuged for 15 minutes at 4° C with 750 xg and low brake 

to remove the remaining cell debris and myelin. The debris formed a layer on top of the 

suspension which was discarded. Nuclei pellet was kept on ice for 10 minutes to 

facilitate a gentle resuspension of nuclei in 10 ml PBS supplemented with Protease 

Inhibitor Cocktail. After the PBS wash, nuclei were resuspended and incubated in 500 µl 

blocking solution for 30 minutes at 4 °C in the dark. The anti-NeuN-Alexa488 antibody 

was diluted 1:1000 in 500 µl blocking solution and blocked for 30 minutes at 4 °C in the 

dark. After blocking, the antibody solution was added to the nuclei and the immune 

reaction was carried out for 1 h at 4 °C in the dark. The antibody solution was removed, 

and the nuclei were resuspended in 500 µl blocking solution containing 1 µg/ml 

propidium iodide (PI). 

 

2.2.3 Fluorescence activated cell sorting (FACS) 

Before setting up the sorting strategy, following conditions had to be adjusted on the 

BD FACSaria III. The collection device was cooled to 5 °C. The sample reservoir was 

cooled to 4 °C and agitation of the sample reservoir had to be switched on. A 70 µm 

nozzle and a 2.0 grey filter had to be installed. The stream flow speed was set to 3 and 

the drop delay was determined with AccuDrops for 95-100% events in the side stream 

to achieve high accuracy during the sort. After adjustment of the machine settings, cell-

/ nuclei-suspensions were filtered through a prewetted 50 µm strainer followed by DNA 

staining with Hoechst 33342 1:1000 (for cells) or PI 1:100 (for nuclei) before installing the 

tubes into the BD FACSaria III. Cells from the TgN(hGFAP-EGFP)GFEA (GFAP-EGFP) 

mice were sorted for a high EGFP signal measured with the FITC 530/30 filter, a high 
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Hoechst 33342 signal measured with the Hoechst blue 450/20 filter, and in addition for 

the size according to the forward scatter to exclude debris and cell nuclei. Cells from 

the TgN(PLP-DsRed1)PRDB (PLP-DsRed1) mice were sorted for a high DsRed signal 

measured with the mCherry 610/20 filter, a high Hoechst 33342 signal measured with 

the Hoechst blue 450/20 filter, and in addition for the size according to the forward 

scatter to exclude debris and cell nuclei. The cells were sorted into 5 ml BD tubes 

containing 250 µl 1X GKN. Cells were transferred into 1.5 ml tubes after sorting and 

centrifuged at 300 xg, 4 °C for 10 minutes. The supernatant was discarded, and the cell 

pellets were frozen on dry ice and stored at -80 °C for RRBS and mRNA-Seq. For ATAC-

Seq the cells were directly used for library preparation. Cell nuclei from the NeuN 

labeling were sorted for a high or low Alexa Fluor® 488 signal measured with the FITC 

530/30 filter, and a high PI signal measured with the PE 585/15 filter. Duplets and clumps 

displayed gradually higher PI signals and were excluded accordingly. The nuclei were 

sorted into 5 ml BD tubes containing 250 µl 1X HBSS. Nuclei were transferred into 1.5 ml 

tubes after sorting and centrifuged at 500 xg, 4 °C for 10 minutes. The supernatant was 

discarded, and the nuclei pellets were frozen on dry ice and stored at -80 °C for DNA 

preparation. For ATAC-Seq the nuclei were directly used for library preparation. Sorting 

accuracy was evaluated by flow cytometry of a small aliquot of the sorted populations. 

 

2.2.4  ATAC-Seq library preparation 

After FACS, 50,000 cells were centrifuged at 300 xg, 4 °C for 10 minutes and the 

supernatant was discarded. The pellet was carefully resuspended in Nuclei Extraction 

Buffer and kept on ice for 10 minutes. To remove the extraction buffer, nuclei were 

pelleted at 500 xg, 4 °C, for 10 minutes, and the supernatant was discarded. For sorted 

NeuN+ and NeuN- nuclei, the nuclei extraction steps were skipped. Nuclei were carefully 

resuspended in ATAC Reaction Buffer using a p200 with cut and flamed tips. The 

transposase reaction was incubated at 37 °C for 30 minutes. The reaction was stopped 

with the addition 250 µl of the PB Buffer from the Qiagen MinElute PCR Purification 

Kit. This buffer contains guanidine hydrochloride which inactivates the transposase and 

releases it from the DNA, resulting in tagmented and adapter-linked DNA fragments. 
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The DNA was purified with the Qiagen MinElute PCR Purification Kit following the 

manufacturer’s manual and eluted in 10 µl nuclease free water. The library was 

amplified by PCR for 9-10 cycles using 12.5 µl of the NEBNext High-Fidelity 2X PCR 

Master mix and 0.5 µl of 10 µM Index-adapters 

(5’AATGATACGGCGACCACCGAGATCTACAC[i5] TCGTCGGCAGCGTC3’ and 

5’CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG3’) in 25 µl total 

volume. The library was purified with 1x Agencourt AMPure XP beads according to 

manufacturers’ protocol and eluted in 20 µl Qiagen elution buffer. The concentration 

was measured using the Qbit HS Kit and the quality was assessed by analyzing the 

fragment distribution using the Agilent 2100 Bioanalyzer according to manufacturers’ 

protocol. The libraries were sequenced on the Illumina HiSeq 2500 with 2x100 bp 

paired-end reads. 

Thermocycler program:  

Temp.   Min 

72°C 5:00 

98°C 0:30 

98°C 0:10 

63°C 0:30 9-10 cycles 

72°C 1:00 

72°C 5:00 

4°C hold 

 

 

 

 

2.2.5 RRBS library preparation 

The frozen cell pellets were thawed in 16 µl RRBS lysis buffer and 2 µl proteinase K (1 

mg/ml) were added to digest DNA-bound proteins. The reaction was carried out at 65 
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°C for 4 h. After cooling down the reaction to room temperature (RT), the protease 

activity was inhibited by the addition of 2.8 µl Pefabloc SC (8.14 mM) and incubation 

for 1 h at RT. Alternatively, the procedure was done with 100-200 ng DNA directly. After 

inhibition of the proteinase K, the reaction was supplemented with 3 µl NEB 10X 

Cutsmart buffer, 3.2 µl H2O, and 1 µl HaeIII endonuclease (50 U/µl) to digest the DNA 

over night at 37 °C. HaeIII was inactivated at 80 °C for 20 minutes. Adenine overhangs 

were added to the 3’ end of the DNA fragments by the addition of 1 µl dATP (10mM) 

and the 1 µl DNA Polymerase Klenow fragment (5 U/µl), lacking exonuclease activity. 

The A-tailing was carried out at 37 °C for 30 minutes and the enzyme was inactivated at 

75 °C for 20 minutes. Indexed Illumina TruSeq adaptors were ligated at 16°C overnight 

using 2µl 1:10 adapter dilutions, 4 µl ATP (10mM), 1 µl NEB 10X Cutsmart buffer, and 

1 µl T4-Ligase (2000U/µl). The enzyme was inactivated at 65 °C for 20 minutes and the 

DNA was purified using 1.5x Agencourt AMPure XP beads and eluted in 20 µl H2O. 

Bisulfite conversion of the DNA was performed using the EZ DNA Methylation-Gold Kit 

following the manufacturers’ protocol. The bisulfite-DNA was eluted in 24 µl pre-

warmed H2O (65°C). 19 µl of this elution was supplemented with 2.5 µl 10X HotStar PCR 

Puffer, 2.5 dNTPs (2.5 mM each), 0.25 µl forward primer 

(5'AATGATACGGCGACCACCGAGATCTACAC3’; 10 µM), 0.25 µl reverse primer 

(5'CAAGCAGAAGACGGCATACGAGAT3’, 10µM), and 0.5 µl HotStarTaq. The library 

was amplified by 12-15 cycles of PCR and purified with 0.9x Agencourt AMPure XP 

beads. The library quality was assessed by analyzing the DNA fragment distribution 

using High Sensitivity DNA Assay on the Agilent 2100 Bioanalyzer following 

manufacturers’ protocol. The library concentration was measured using the Qubit® 

dsDNA HS Assay Kit according to manufacturers’ protocol. Sequencing was done with 

the Illumina HiSeq 2500 system with 100 bp single-end reads.  
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Thermocycler program:  

Temp.   Min 

95°C 15:00 

95°C 0:30 

60°C 0:30       12-15 cycles 

72°C 1:00  

72°C 7:00 

4°C hold 

 

2.2.6 mRNA-Seq library preparation 

The mRNA of sorted cells was extracted using the mRNA Capture Kit. First, the cells 

were lysed in 49 µl lysis buffer. The cell lysate was then heated at 70 °C for 5 minutes to 

disrupt secondary mRNA structures and directly put on ice to avoid formation of 

secondary structures. Next, the lysate was incubated with 1 µl of biotinylated 

oligo(dT)20 (1:20) for 5 minutes at 37 °C to hybridize the poly-A tails and biotinylated 

oligo(dT)20 and was then transferred into streptavidin coated tubes to immobilize the 

mRNA. The lysate was discarded, and the tube-bound mRNA was washed 3 times to 

remove potential DNA contamination. For reverse transcription the following first-

strand solution was added to the tube-bound mRNA and incubated for 2 h at 37 °C: 28 µl 

nuclease free water, 10 µl MLV-Buffer 5X, 10 µl dNTPs 10 mM each, 1 µl RNasin 40 U/µl, 

1 µl MLV-RT 200 U/µl. The first-strand solution was discarded, and the tube was washed 

once with 250 µl wash buffer. To generate double stranded cDNA, the RNA strand was 

removed by RNase H while the DNA Polymerase I synthesized the complementary DNA 

strand. The following second-strand solution was prepared, added to the tube and 

incubated at 16 °C for 2.5 h: 33.8 µl H2O, 5µl T4-DNA Ligase Buffer 10X, 3.75 µl KCl 1 M, 

3 µl dNTPs 10 mM, 3 µl DNA Polymerase I 10 U/µl, 0.5 µl T4-Ligase 400 U/µl (NEB), 1 µl 

RNase H 5 U/µl (NEB). After washing with 250 µl wash buffer, the cDNA was 

fragmented using 0.2 µl hyperactive Tn5 transposase from the Illumina Nextera DNA 

Library Preparation Kit in 50 µl reaction (24.8 µl H2O, 25 µl Tn5 2X Buffer). The reaction 

was carried out at 55 °C for 5 minutes and stopped with the addition of 250 µl guanidine 
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hydrochloride containing Qiagen PB buffer. The adapter-linked cDNA was purified with 

the Qiagen MinElute PCR Purification Kit following the manufacturers’ manual and 

eluted in 11.5 µl nuclease free water. The library was amplified by PCR for 9-12 cycles 

by the addition of 12.5 µl of the NEBNext High-Fidelity 2X PCR Master mix, 0.5 µl 

Illumina indexed Primer 1 (1:10; 

5'AATGATACGGCGACCACCGAGATCTACAC[i5]TCGTCGGCAGCGTC3’), and 0.5 µl 

Illumina indexed Primer 2 (1:10, 

5'CAAGCAGAAGACGGCATACGAGAT[i7]GTCTCGTGGGCTCGG3’). The libraries were 

purified with 0.8x Agencourt AMPure XP beads following manufacturers’ manual, 

eluted in 12 µl 0.1X TE and sequenced on the Illumina HiSeq 2500 with 1x100 bp single-

end reads. 

Thermocycler program:  

Temp.   Min 

72°C 3:00 

98°C 0:30 

98°C 0:10        

63°C 0:30 9-12 cycles 

72°C 3:00 

72 °C 5:00 

4°C hold 

 

2.2.7 DNA extraction 

DNA was extracted from sorted nuclei and purified from proteins with the 

phenol/chloroform extraction method. The Volume of the nuclei suspension was 

adjusted to 250 µl with 0.1X TE and mixed with 125 µl Solution A and 125 µl Solution B. 

For protein digestion 20 µl Proteinase K (20 mg/ml) was added to the sample and the 

reaction was incubated at 60 °C over night with agitation. An equivalent volume of 

phenol/chloroform/isoamyl alcohol (25:24:1, v/v) solution was added, the mixture was 

then mixed by overhead rotation for 15 minutes. After 15 minutes of centrifugation at 

13,000 rpm, the aqueous phase was carefully transferred into a fresh tube. Again, an 
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equivalent volume of phenol/chloroform/isoamyl alcohol (25:24:1, v/v) was added, 

mixed by overhead rotation and centrifuged for 15 minutes at 13,000 rpm. The aqueous 

phase, free from proteins, was again transferred into a new tube. An equivalent volume 

of chloroform/isoamyl alcohol (24:1) was added, mixed by overhead rotation and 

centrifuged for 15 minutes at 13,000 rpm. The aqueous phase was again transferred into 

a new tube. The DNA was precipitated by the addition of 1 µl glycogen (20 µg/µl), 20 µl 

NaCl (5 M), and 500 µl ice-cold absolute ethanol. The solution was mixed by gentle 

inversion and in case of a visible DNA precipitant, the DNA was carefully transferred 

into a fresh tube and washed twice with ice-cold ethanol (70 %). In case of no visible 

DNA precipitant, the solution was placed at -20 °C over night and centrifuged for 

40 minutes at 4 °C at 13,000 rpm. The supernatant was discarded, and the pellet was 

washed with 70 % ethanol, spun down again and the supernatant was discarded. The 

pellet has been air-dried and resolved in 20-50 µl 0.1X TE. 

 

2.2.8 RNA extraction 

RNA extraction was performed using the Direct-zol RNA Miniprep Plus Kits following 

the manufacturers’ manual. The RNA quality was assessed by analysis of the RNA 

Integrity Number (RIN) using the Agilent RNA 6000 Pico Kit on the Agilent 2100 

Bioanalyzer. 

 

2.2.9 ATAC-Seq data analysis 

After sequencing of the samples on the Illumina HiSeq 2500, the sequencing reads were 

filtered for quality (read tails Q > 20) and trimmed for adapters sequences using Trim 

Galore! (version 0.4.2). Trimmed reads were aligned to the mouse reference genome 

(mm10) using GEM mapper (version 1.376 beta). The SAM file format was then 

converted into BAM file format using samtools (version 1.3). MarkDuplicate (version 

1.115) from Picard tools was used to mark the PCR duplications and peaks were called 

using macs2 (version 2.1.0.20140616). The parameters to call peaks were set as follows: 

--nomodel, --shift -125, --extsize 250. Normalization of the coverage files was 
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performed using the library size using the bamCoverage command from deep Tools 

(v1.5.9.1). The processing of the data up to this point was done by Abdulrahman Salhab.  

The visualization of the coverage files was done by using the normalized 

coverage BigWig files as input into deeptools. Heatmaps were generated using 

compute matrix command with center of region as reference point extended by 1 kb 

upstream and downstream. Coverage profiles were generated using the deeptools 

plotProfile command.  

The differential analysis of ATAC-Seq data was done using the R package csaw. 

The workflow requires the conversion of reads into read counts in two user-specified 

fixed-width genomic intervals (window sizes). The first window size defines genomic 

intervals that will be treated as regions to test enrichment over the background. The 

background is defined as the sum of read counts in a large user-specified window. Dr. 

Karl Nordström generated 100 bp and 10 kb read count files by using featureCounts. 

These files were then imported into csaw and were used to remove composition biases 

as the first step. This was done using the normOffsets wrapper function which uses the 

trimmed mean of M-values (TMM) method (Mark D Robinson and Oshlack 2010) to 

correct for any systematic enrichment differences between samples. This allows to 

compare samples that have a higher background with low-background samples. To 

reduce the running time of the differential analysis, the windows are then filtered for a 

count fold change of >2 compared to the background. Based on the assumption that 

these represent background, the majority of the windows is then removed from the 

analysis. The biological variance in the data is modeled using estimateDisp and 

glmQLFit commands which use quasi-likelihood (QL) and negative binomial methods 

to estimate the dispersion. Differential enrichment was tested with the glmQLFTest 

command which uses QL F-test to compute p-values (S. P. Lund et al. 2012). Significant 

adjacent or overlapping windows were merged into clusters up to 3 kb width with gaps 

no greater than 150 bp using mergeWindows and combined p-values were computed 

using combineTests function. The resulting counts per million (cpm) values and fold 

changes were used as quantitative values to represent and analyze the overall ATAC-

Seq data or differentially accessible regions (DARs). 
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2.2.10 RRBS data analysis 

In the first step of the RRBS data processing, the sequencing reads were trimmed for 

adapters using the Cutadapt wrapper Trim Galore! (version 0.4.2) in RRBS mode. To 

align the bisulfite converted DNA sequences, the mm10 reference genome was in silico 

converted (C to T for top strand and G to A for bottom strand) using MethylCtools. In 

addition, the Cs of the first sequencing read were converted to Ts and the Gs of the 

second read were converted to As. The alignment was then done using BWA (bwa-

0.6.2-tpx), and the reads were re-converted to the original state. Reads with alignment 

scores < 1 were removed. The processing of the data up to this point was done by Dr. 

Karl Nordström. 

Differential analysis of DNA methylation was carried out using the R package 

methylKit. In the first step, the data is filtered with the commands filterByCoverage and 

unite for CpG sites that are covered at least 10x and are present in at least three 

replicates of a group. If a group consists of less than three replicates, the sites of all 

available replicates are considered. After filtering, the regions to test for differential 

methylation were defined as 1 kb regions with at least three CpGs using the function 

tileMethylCounts. The function calculateDiffMeth uses logistic regression to calculate p-

values and the SLIM method to calculate adjusted p-values (q-values) (H.-Q. Wang, 

Tuominen, and Tsai 2011). Differentially methylated regions (DMRs) were then defined 

as regions with at least 25 % methylation difference with a q-value ≤ 0.01. 

The segmentation of the RRBS data was done by Abdulrahman Salhab using the 

R package MethylSeekR with default parameters (Salhab et al. 2018). Using the 

ChromH3M workflow combinatorial states were identified for partially methylated 

regions. 

 

2.2.11 mRNA data analysis  

After sequencing, the reads (FastQ format) were filtered for low quality (phred 

score=20). After filtering adapter sequences were trimmed using Trim Galore! (version 

0.3.3). The reads were then aligned to the mm10 reference genome using 2-step STAR 
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alignment. After alignment, PCR duplications were determined using MarkDuplicate 

from Picard tools (version 1.115). The quality of the data was controlled with the output 

of RNA-seQC. In order to work with quantitative values in subsequent analysis, 

featureCounts was used to count and assign the reads to genes from Gencode 

annotation (vM2). The processing of the data up to this point was done by Dr. Karl 

Nordström. 

Read counts were normalized into counts per million (cpm) mapped reads using 

the R package edgeR. The data was first filtered for genes with cpm values ≥2.5 in at 

least two replicates of a group. Composition biases were removed using the 

calcNormFactors function which uses the TMM method for correction of systematic 

enrichment differences. Biological variance was determined by estimating the 

dispersion using estimateDisp and a generalized linear model was fit using glmQLFit. 

glmQLFTest function tested for the differential expression and computed p-values with 

the QL F-test. The read counts per gene were normalized for sequencing depth and 

gene length with the rpkm command resulting in the quantitative values Reads Per 

Kilobase per Million (RPKM). Differentially expressed genes (DEGs) were defined as 

genes with significant (p-value ≤ 0.01 and FDR ≤ 0.05) difference in gene expression 

without restricting the fold change. The resulting RPKM values and fold changes were 

used to represent and analyze the overall gene expression or expression difference, 

respectively. In addition, the expression difference was visualized using row-z-scores 

which are defined as numbers of standard deviations from the mean expression of the 

respective genes. Z-scores were calculated with the formula: 

z = (x – μ) / σ 

x=RPKMgeneX(Sample X) 

µ= Mean(RPKMgeneX(all Samples)) 

σ= Gene expression standard deviation 

Heatmaps of row-z-scores were generated using the R package pheatmap. 
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2.2.12 Correlation of gene expression 

Correlation between the expression values of the astrocyte mRNA-Seq data with 

published external mRNA-Seq data was calculated using the R function cor which 

returns Pearson coefficients. The external data was downloaded as processed FPKM 

values and joined with the data in this thesis based on the gene name. 

 

2.2.13 Annotation of genomic intervals to genes and genomic features 

Annotation of ATAC peaks, DARs, CpGs, and DMRs to genes and genomic location was 

done using ChipSeek which utilizes the HOMER function annotatePeaks.pl. The 

annotation to genes is determined by the distance to the nearest TSS (-1kb to +100bp) 

and the region is further assigned to the genomic location which the center of the 

peak/region occupies (e.g. TSS, exon, intron, intergenic). 

 

2.2.14 Integrative analysis 

The first step in integrative analyses was to assign DMRs to DARs or DMRs and DARs 

to DEGs. The subsequent analyses were performed using the intersected genes/ 

regions. For pairwise comparison, DMRs and DARs were intersected based on the 

genomic position with an overlap of at least 1bp using the command intersect from 

Galaxy Operation Tools. The assignment of expression values to DNA accessibility or 

DNA methylation values was done based on gene symbols. Two different methods to 

link DARs and DMRs to differential gene expression were chosen. First, to retrieve the 

genes that have distinct chromatin accessibility and distinct DNA methylation, 

common gene symbols between the DEGs/ DARs/ DMRs lists were found using the 

online tool genevenn. The obtained gene list comprises DEGs with DARs and DMRs that 

do not necessarily overlap. In the second method, the DMRs that overlap with DARs by 

at least 1bp are selected and assigned to the respective DEG based on the gene symbol. 

The epigenetic changes linked to gene expression changes were represented in a 

heatmap with row scaled values. Row-z-scores were calculated as described in chapter 

2.2.11 for each dataset separately using the DNA methylation, RPKM, and cpm values, 
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respectively. The z-scores were then combined based on identifiers created from the 

combination of gene symbol and chromosomal position. The rows were clustered using 

Manhattan distance and average linkage. 

 

2.2.15 Gene Ontology Term enrichment analysis 

Gene Ontology (GO) Term enrichment of was performed using DAVID functional 

annotation in case of DEGs. The GO terms for DMR and DAR associated genes was 

either analyzed using the online tool GREAT, which annotated the given genomic 

intervals to genes with the closest TSS, or using the gene annotation from ChipSeek as 

input for DAVID (see chapter 2.2.13). 

The reduced visualization of GO terms was done with REVIGO using GO terms 

and associated p-values as input. Default parameters were selected (whole UniProt 

database, simRel score, medium sized list). The output was extracted and imported into 

R to modify the aesthetics (see chapter 2.2.17 on page 58). 

 

2.2.16 Transcription factor binding motif analysis 

Overrepresentation of transcription factor binding motifs in DARs, DMRs or specified 

genomic intervals was assessed using RSAT with following parameters: Cut peak 

sequences: +/-100; Compare discovered motifs with known motifs from databases: 

JASPAR core nonredundant vertebrates, cisBP mouse, RSAT non-redundant 

vertebrates, Hocomoco (Mouse TFs). For the other parameters the default settings 

were not changed. Trap (multiple sequences) and alibaba2 were used to find motifs in 

a small number of given genomic intervals as it was the case for the Il10 locus. For Trap, 

mouse promoters were selected as background models. Both, Jasper and transfac 

databases were used for the same region analysis. Alibaba2 was used with default 

parameters.  
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2.2.17 Data visualization 

Principal component analysis  

Principal component analysis (PCA) is a technique used to emphasize biological or 

technical variation in large data sets. For this thesis, the prcomp function was used in R 

on epigenetic or transcriptomic quantitative values stored in matrices with samples as 

rows and genes/ CpGs/ genomic intervals as columns. The analysis of the features, 

contributing to the separation of respective samples, was done by extracting the 

squared variable loadings of the PCA object (pca$rotation**2) and ordering the initial 

data matrix based on the largest loading values. The PCA object generated by prcomp 

was visualized using the autoplot function from the ggfortify R package. 

Heatmaps/ Patternmaps 

A heatmap/patternmap converts values into colors to visualize and simplify large 

datasets. For this thesis, the pheatmap function from the pheatmap R package was 

used with varying parameters for the clustering of the rows/columns. 

Venn diagrams 

The overlap of genomic intervals was assessed using the Venn diagram from bed files 

function from the internal Galaxy EpiGenetics ToolBox. The Intersection of gene names 

from different gene lists was done using GeneVenn. 

Hierarchical clustering 

Unsupervised hierarchical clustering of epigenetic and/or transcriptomic data were 

generated using the hclust function in R. The dendrograms were visualized using 

fviz_dend function from the factoextra R package.  

Violin plots, scatter plots 

Violin plots were generated using ggplot with the geom_violin function. The distribution 

difference of respective data points was tested with Wilcoxon rank sum test using the 

wilcox.test function 
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Scatter plots 

Scatter plots were generated using ggplot with the geom_point function. Revigo output 

was imported into R and also visualized using the geom_point function, with point sizes 

representing -log10(pValue).  

Bar diagrams 

Bar diagrams were generated using the ggplot geom_bar function or using the column 

chart function in excel. 

Boxplot 

Bar diagrams were generated using the ggplot geom_boxplot function or the R boxplot 

function. 

Circular genome maps 

Circular visualization of the genomic distribution of DMRs was done using the circlize R 

package. Initially, circos.initializeWithIdeogram is used to generate circular 

chromosome ideograms. Next, genomic positions are indicated as points in circular 

tracks using circos.genomicTrackPlotRegion with the circos.genomicPoints command. 

Protein-Protein Interaction Networks 

Protein-Protein interactions were investigated using the STRING database. The 

resulting networks were exported as tabular formats and imported as network into 

Cytoscape. Additionally, a table containing information whether the respective gene is 

associated with a DMR or DAR is imported and joined with the network based on gene 

symbol. 

 Genome Browser visualization 

The data is represented in in the genome browser IGV. Biological replicates were 

merged into one track using the function Overlay Tracks, or visualized as single 

replicates in separated tracks. Methylation values range was set from 0-100, 

methylation coverage range was set from 0-30. The chromatin and cDNA enrichment 
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data were visualized either in autoscale mode or the scale range was set for a minimum 

of background. 

 

2.2.18 Immunohistochemistry 

The immunohistochemistry was done by Dr. Carmen Kasakow and Dr. Laura Stopper 

from the Kirchhoff group. hGFAP-EGFP mice were anesthetized with 

ketamine/xylazine 140 mg/kg and 10 mg/kg body weight to perform the subsequent 

intracardial perfusion wit PBS and 4 % formaldehyde in 0.1 M phosphate buffer (pH 

7.4). The brain was isolated and fixed overnight. Sagittal slices were prepared with a 

vibratome (Leica VT1000S) and permeabilized and blocked. The slices were incubated 

with primary antibody over night at 4 °C, washed, and incubated with the secondary 

antibody. Subsequently the slices were stained with DAPI or ToPro3 and mounted with 

ImmuMount. Images were recorded with confocal laser scanning microscopy (LSM 

710). z-Stacks of images were taken at 1 µm intervals, processed with Fiji and displayed 

as maximum intensity projections. For quantitative analysis of the signals, regions-of-

interest (ROIs) were selected based on nuclear signal. The means of three consecutive 

z-layers were determined and compared with GraphPad Prism 7. The Intensity values 

were tested for normality using the Shapiro-Wilk normality test and the ROUT-test for 

outliers. 

 

2.2.19 Statistical Analysis 

Statistical analysis of the sequencing data was done in R using the statistical tests 

implemented within the respective functions/packages. The variance of ATAC-Seq and 

mRNA-Seq data were tested glmQLFTest command which uses QL F-test to compute 

p-values. The DNA methylation data was tested for significant difference using the 

function calculateDiffMeth which uses logistic regression to calculate p-values and the 

SLIM method to calculate adjusted p-values (q-values). The distribution difference in of 

data represented as violin plots were tested with Wilcoxon rank sum test using the 

wilcox.test function. The significant enrichment of GO Terms was determined by 
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DAVID with a P-value cut off of ≤0.01. Immunofluorescence data were analyzed with 

the Mann-Whitney-U-test with the following p-values * p= 0.01-0.05, ** p= 0.001-0.01, 

*** p= 0.0001-0.001, ****p< 0.00001. Data are represented as means ± STDEV of 

single cell values. 
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Chapter 3.                                                                                      

Results and Discussion 

 

 

3.1 Epigenetic control of region-specific transcriptional programs in 

mouse cerebellar and cortical astrocytes  

3.1.1 Introduction 

For a long time, astrocytes were viewed as a functional homogenous cell population to 

support neurons throughout the brain. However, in the past decade functional diversity 

of astrocytes in distinct brain regions became evident (W. Todd Farmer and Murai 

2017). It was demonstrated that gene expression of astrocytes follows the dorsoventral 

axis. In addition, astrocytes preferentially stimulate neurite growth and are involved in 

the synaptic activity of region matched neurons (Morel et al. 2017). Moreover, striatal 

and hippocampal astrocytes were shown to have distinct and region-specialized 

properties like altered morphology, electrophysiology, and Ca2+-signaling within neural 

circuits (Chai et al. 2017). The molecular heterogeneity of intraregional subpopulations 

was shown to be highly dependent on the interaction with the neuronal environment. 

For instance, disruption of neuronal layers in the neocortex subsequently leads to the 

loss of layer-specific properties of cortical astrocytes (Lanjakornsiripan et al. 2018). In 

the cerebellum, neuron derived sonic hedgehog (Shh) controls the gene expression 

profile of Bergmann glia and may drive the gene expression in velate astrocytes 

towards Bergmann glia profiles (W. T. Farmer et al. 2016).  

However, the underlying mechanisms ofthe regional specification of astrocytes 

remain to be uncovered. Epigenetic modifications are key mechanism to establish and 

maintain cell identity by modulating gene expression. Functional and cell-specific 

program changes in the genome can be approached by exploring genome wide 
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distribution of DNA methylation and its local variation. In addition, DNA methylation 

profiles allow to indirectly infer the developmental history of cells (see chapter 1.1.2 on 

page 15). Next to DNA methylation, chromatin modifications are excellent indicators 

of the functional state of genes and genomes. The integration of epigenetic 

modifications paves the way to understand the regulatory programs of regional 

astroglial populations to identify differences explaining their functional, epigenomic, 

and regional diversity. 

This thesis addressed the molecular diversity of astrocytes from two distinct 

adult brain regions using genome wide approaches. For this purpose, using the well 

documented hGFAP-EGFP mouse model (EGFP expression under the control of the 

human glial fibrillary acidic protein promoter; Nolte et al. 2001; Figure 3-1), 

protoplasmic astrocytes from the cerebral cortex and astrocytes from the cerebellum 

(mainly Bergmann glia) were isolated using fluorescence activated cell sorting (FACS). 

Subsequent comprehensive epigenomic and gene expression profiling followed by 

integrative analyses resolved commonalities and differences of both astroglial 

populations (Figure 3-2).  

 

 

 

 

Figure 3-1 Sagittal illustration of hGFAP-EGFP mouse brain (left) with EGFP+ 
astrocytes in CTX (upper panel right) and CB (lower panel right). bv=Blood vessel, 
WM=White matter; scale bars=20 µm. Immunofluorescence images were produced by Dr. 
Carmen Kasakow in terms of a cooperation. 
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Figure 3-2 Schematic of the experimental setup to characterize molecular astrocyte 
diversity. 

 

3.1.2 Isolation of astrocytes from the cerebral cortex and the cerebellum  

The isolation of astrocytes required dissociation of the tightly connected brain tissue 

into single cell suspensions. The cells were prepared as described in chapter 2.2.1 on 

page 44 and sorted based on the fluorescence signal of EGFP and Hoechst blue to 

obtain astrocytes. The sorted population was evaluated under a fluorescence 

microscope which revealed intact cells with EGFP expression in the cytosol (Figure 3-3)  

 

                                     

Figure 3-3 Fluorescence activated cell sorting (FACS) of hGFAP-EGFP mouse 
cerebellum. The single cell suspension (left) consists of EGFP+ and EGFP- cells. Using FACS 
the EGFP+ cells were gated for high EGFP and Hoechst blue signals and were collected for 
subsequent procedures. 
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To characterize the molecular programs of astroglial populations from CTX and 

CB, the sorted cells were used for the preparation of replicate libraries for sequencing 

on a Illumina HiSeq2500 to profile gene expression by mRNA-Seq, genome-wide DNA 

methylation by RRBS, and DNA accessibility by ATAC-Seq (see chapter 2.2.4 above, 

chapter 2.2.5 on page 47, and chapter 2.2.6 on page 49 for more details). In addition, 

RRBS and ATAC-Seq libraries were constructed with NeuN+ and NeuN- nuclei6 to 

compare astroglial profiles with neuronal and glial profiles. Moreover, 

oligodendrocytes were sorted based on high DsRed fluorescence signal using a single 

cell suspension prepared from the cortex of a PLP-DsRed1 mouse and used for genome-

wide DNA methylation comparisons. Before analyzing the molecular diversity between 

astrocytes from distinct brain regions, the data quality and purity of the samples had to 

be assessed. Various features of the mapped sequencing reads were analyzed to assess 

the data quality. For mRNA-Seq the exonic rate was similarly high and the intronic rate 

similarly low among the samples. The number of detected genes was comparably high 

and almost no ribosomal RNA was detected. Taken together, the sequencing data 

represented transcriptomes with high quality (Table 9). 

RRBS on the sorted cells/nuclei covered 3-4 million CpGs per sample and yielded 

a mean coverage above 10x. This assured a broad and representative DNA methylation 

profile (Table 10). The reads from ATAC-Seq had high mapping rates (>90%) in the 

astrocyte samples and slightly lower mapping rates for the NeuN-sorted nuclei (>80%). 

Moreover, the fraction of reads in peaks was higher in astrocytes from the cortex than 

in the cerebellum, indicating distinct distribution of accessible fragments in astrocytes 

(Table 11).  

 

 

 

 

 
6 NeuN is a neuron-specific nuclear protein that can be targeted by antibodies to label and isolate 
neuronal cell nuclei. 
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Table 9 Sequencing Information on mRNA-Seq 

Sample 
Number 
of Reads 

Mapping 
rate 

Ribosomal 
RNA rate 

Detected 
Genes 

Exonic 
rate 

Intronic 
rate 

CB1 37289395 0.939 0.003 21,091 0.564 0.155 

CB2 95298868 0.958 0.002 23,536 0.677 0.118 

CB3 56239574 0.958 0.002 22,062 0.617 0.149 

CTX1 69592154 0.97 0.003 21,525 0.599 0.133 

CTX2 79904620 0.964 0.004 24,653 0.653 0.141 

 

Table 10 Sequencing Information on RRBS 

Sample 
Number of 

Reads 
Number of 

Sites 

Number of 
Sites with 

coverage≥10x 

Mean 
coverage 

CB1 43525776 3554016 1237528 10.91 

CB2 52660387 4165161 1720049 12.09 

CB3 94150304 4462068 1787610 18.78 

CTX1 43491013 4068652 1400616 10.06 

CTX2 63717524 2972471 1129551 17.92 

CTX3 51185762 3721804 1409414 10.85 

CTX4 66036845 4216310 1787610 12.38 

NeuN_positive 67338205 4187436 1927446 14.91 

NeuN_negative 61340311 3954107 1822102 15.72 

Oligodendrocyte 60313767 4308408 1699619 10.94 

 

Table 11 Sequencing Information on ATAC-Seq 

Sample Number of Reads Mapping rate Fraction in peak 

CB2 115455035 0.97008 0.096 

CB4 108172651 0.918528 0.109 

CTX3 73433999 0.974331 0.157 

CTX4 81505152 0.972028 0.162 

NeuN_positive 72577417 0.804753 0.050 

NeuN_negative 86352354 0.837109 0.068 
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After evaluation of the sequencing quality, the purity of the EGFP+ cells had to 

be confirmed. Examination of the mRNA-Seq data for molecular signatures specific for 

astrocytes, endothelial cells, microglia, neurons, oligodendrocytes or oligodendrocyte 

precursor cells (OPCs) revealed a high enrichment of astrocyte-specific genes such as 

Aqp4, Gja1 (connexin 43), Slc1a3 (Glast), and Gjb6 (connexin 30) (Figure 3-4A). In 

contrast, endothelium-, microglia-, and neuron-specific genes were depleted. Traces of 

oligodendroglial and OPC marker expression were detected in both astrocyte 

populations with slightly higher presence in the cortical astrocytes. This can be 

assigned to a minor contamination with highly transcribed oligodendroglial mRNAs 

that were floating in the single cell suspension after brain dissociation and a weak 

GFAP-EGFP transgene activity in few OPCs. In addition to the validation of marker 

expression, the global transcriptome data was correlated to published transcriptomes 

of astrocytes, and other major brain cell types (Figure 3-4B). The astroglial 

transcriptome profiles of this thesis correlated highly with transcriptomes of astrocytes 

derived from other isolation methods. Furthermore, the correlation with the 

transcriptomes of other cell types, such as neurons, microglia or endothelium was low.    
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Figure 3-4 Validation of astroglial transcriptomes. A. Gene expression of cell type-
specific genes measured in RPKM. B. Correlation of mean gene expression data (this thesis) 
with published data sets (Boisvert et al. 2018; Y. Zhang et al. 2014). CTX=cortex, 
CB=cerebellum, NFO=newly formed oligodendrocytes, MO=myelinating 
oligodendrocytes, OPC=oligodendrocyte precursor cell.  
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Besides the transcriptomes, the genome-wide DNA methylation and 

accessibility was compared between astrocytes and other major brain cell types. 

Additionally, the epigenetic signatures around cell type-specific genes were evaluated 

to confirm astroglial identity of the sorted cells (Figure 3-5). Unsupervised principal 

component analysis (PCA) of the DNA methylation of all covered CpGs revealed a clear 

separation of astrocyte methylomes from NeuN+, NeuN-, and oligodendrocyte 

methylomes in the first major component explaining 33% of the DNA methylation 

variance in the data.  Examination of the methylation level of the 500 most variable 

CpGs contributing to the separation showed astrocyte-specific hypomethylation of 

these CpGs (Figure 3-5A). Of note, a part of these CpGs are annotated to genes 

encoding members of the Notch-, Tgfß-, and Wnt-signaling pathways known to 

promote astrogliogenesis (e.g. Fgfr3, Hes1, Notch2/3, Dll4, Ncor2, Prdm16, Sfrp1, Sox9, 

Tcf7l1, Tcf7l2). Similarly, PCA of genome-wide DNA accessibility binned in 10 kb 

windows clearly separated astrocytes from NeuN+ and NeuN- cell populations in the 

first principal component explaining 84% of the variation in the data (Figure 3-5B). In 

order to investigate the commonalities of open regions in both astrocyte population, 

shared open regions (n=20,648) were subjected to a transcription factor motif 

enrichment analysis. A significant enrichment for binding sites of the nuclear factor 1 

(Nfi) family was observed in 24% of the common open regions (p-Value = 10-413) (Figure 

3-5C). Nfi members are essential factors for astroglial differentiation by regulating the 

expression of astrocyte-specific genes. Furthermore, Nfia is involved in DNA-

demethylation of gliogenic gene promoters such as Gfap and Olig1 and promotes 

astrogliogenesis (Namihira et al. 2009; Sanosaka et al. 2017). Both, genome-wide DNA 

methylation and genome wide DNA accessibility, indicated that astrocytes from CTX 

and CB share a broad spectrum of epigenomic signatures involved in establishment and 

maintenance of astrocytic cell identity. 

Examination of local epigenetic signatures at astrocyte-specific genes such as 

Aldh1l1, Slc1a3, and Gfap showed low DNA methylation and high DNA accessibility at 

regulatory elements in both astrocyte populations, while neurons and 

oligodendrocytes showed high DNA methylation and little to no DNA accessibility at 

these loci (Figure 3-5D). In contrast, the promoters of neuron-specify Tubb3 gene and 
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oligodendrocyte-specific Mag gene were highly methylated and closed in both 

astrocytes, while neurons and oligodendrocytes showed unmethylated and open 

promoters at respective gene (Figure 3-5E).  
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Figure 3-5 Validation of astroglial epigenomes. A. PCA of genome wide DNA 
methylation data with heatmaps representing the methylation values of the 500 most 
variable CpGs in PC1 and PC2. B. PCA of genome wide DNA accessibility data. C. 
Enrichment of binding motifs in common open regions of CB and CTX astrocytes. D.  DNA 
methylation and DNA accessibility of Aldh1l1, Slc1a3, Gfap (left) with mean DNA 
methylation values of the transcription start site ±1kb of Aldh1l1, Slc1a3, Gfap in 
respective cell type (right). E. DNA methylation and DNA accessibility of neuronal Tubb3 
and oligodendroglial Mag. 
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Taken together, the reporter- and FACS-based isolation enabled generation of 

highly pure astrocyte epigenomes and representative transcriptomes, allowing further 

integrated analyses of cell type-specific epigenetic program differences. Before 

performing integrated analyses of the datasets, each dataset was analyzed separately 

to characterize the differences between CTX and CB astrocytes on gene expression 

level, DNA methylation, and DNA accessibility. 

 

3.1.3 Astrocytes from cerebellum and cortex show common transcriptional 

programs 

The first pairwise comparative analysis of CTX and CB astrocyte transcriptome data 

showed an overall high correlation of gene expression levels (r=0.89; Figure 3-6A). The 

scatterplot already showed some genes that are considerably higher expressed in CTX 

or CB. In CTX astrocytes genes encoding Apolipoprotein E (Apoe), Carboxypeptidase E 

(Cpe), Insulin-like growth factor binding protein-2 (Igfbp2), and Regulator of cell cycle 

(Rgcc) were higher expressed than in CB astrocytes. These genes are involved in 

metabolism and cell proliferation and have been described to be highly expressed in 

cortical astrocytes (Y. Zhang et al. 2014; X. Liu et al. 1994, 2; Sakers et al. 2017; Boyles 

et al. 1985). However, the decreased expression of these genes in the CB and, in turn, 

the respective potential functional decrease has not been discussed before. In addition, 

oligodendroglial genes such as Mag, Mog, Cldn11 were found to be higher expressed in 

CTX astrocytes. Conversely, the Bergmann glia-specific Tgfß ligand Gdf10 and the 

neuropeptide Y (Npy) were considerably higher expressed in CB astrocytes than in CTX 

astrocytes. Npy was recently shown to be expressed in Bergmann glia in a topographic 

zone-restricted manner following the parasagittal domains of Purkinje cells (Reeber, 

Arancillo, and Sillitoe 2018). The function of Gdf10 in Bergmann glia is not yet fully 

understood. However, it was shown that Gdf10 is directly regulated by neuron-derived 

Shh protein, a crucial signal for the establishment and maintenance of Bergmann glia 

gene expression profiles, which indicated the involvement of Gdf10 in Bergmann glia 

specification (W. T. Farmer et al. 2016; Mecklenburg et al. 2014, 10). Other genes that 

deviated strongly from the expression level in CTX astrocytes were the radial glia 



 
Results and Discussion 72 

marker Hopx and Vimentin (Vim), S100a10, the transcription factors Zic1 and Msx2, the 

protease inhibitor A2m and a thyroid hormones transporter, Slco4a1, that is usually 

expressed in cortical microglia. These genes have multiple functions, but the functions 

in CB astrocytes are not characterized.  

 Next, the highest expressed genes in CTX and CB astrocytes were compared 

(Figure 3-6B, Figure 3-6C). The highest expressed gene in both cell types was 

Gm10800, a predicted gene with unknown function. Inspecting the genes, 12 genes 

were present in both top 20 list (Apoe, Cst3, Gm10800, Gm10801, Gm21738, Gpm6a, 

Gpr37l1, Itm2b, Mt1, Mt3, Plpp3, Sparcl1). In general, these 12 highest transcribed genes 

were similarly high transcribed in both regional astrocytes. Exceptions constitute the 

gene encoding the inhibitor of cysteine proteinases Cst3 (higher expressed in CTX 

astrocytes), and genes with higher expression in CB astrocytes such as Sparcl1 (synapse 

formation), Itm2b (deposition inhibition of beta-amyloid), and Gpm6a (neurogenesis, 

synapse formation). These top common genes represent some of astroglial core 

functions such as neuroprotection (Gpr37l1, Mt1, Mt3, Itm2b, Cst3), and synapse 

formation and elimination (Apoe, Sparcl1, Gpm6a). Although highly expressed, 

Gm10800, Gm10801, Gm21738, and Plpp3 are still of poorly defined function in 

astrocytes.  
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Figure 3-6 Pairwise comparison of CTX and CB astrocyte transcriptomes. A. 
Correlation of gene expression levels of all detected genes. B. Expression values of the 20 
highest expressed genes in CTX astrocytes. C. Expression values of the 20 highest 
expressed genes in CB astrocytes. r= Pearson correlation coefficient; mean ± STDEV, * 
indicates genes present in both top20 lists. 
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Analysis of the global gene expression showed that the overall transcriptional 

activity was highly similar (Figure 3-7A) between both astrocyte populations. When 

classifying the detected genes (n=12,801) based on the mean expression into lowly 

expressed genes (RPKM > 0 ≤ 10), medium expressed genes (RPKM > 10 ≤ 100), and 

highly expressed genes (RPKM >100), no apparent quantitative differences was 

observed (Figure 3-7B). In addition, the assessment of global gene expression showed 

that the majority of the genes were lowly expressed in both astrocyte types. Of note, 

more than 90% of lowly expressed genes in CTX or CB were also lowly expressed in the 

other cell type and are involved in metabolic processes (Figure 3-8). Functional analysis 

of the lowly expressed genes only in one of the two cell types revealed processes related 

to development. Comparison of the medium and highly expressed genes indicated 

that, in percentage terms, the intersection in these classes was smaller than in lowly 

expressed genes (70-83%; Figure 3-9, Figure 3-10). These intersected genes with 

similar gene expression levels were strongly enriched for metabolic processes, 

suggesting that the majority of homeostatic and core functional processes are shared 

between CTX and CB astrocytes. However, this comparison also pointed out 

differences in expression of genes involved in various functions. The enrichment 

analysis of non-overlapping genes of medium expressed genes resulted partially in the 

same GO Terms (e.g. sensory perception, cellular processes, metabolic processes), 

which means that distinct gene sets were contributing to the same function (Figure 

3-9). The enrichment analysis of non-overlapping genes of highly expressed genes was 

more diverse between CTX and CB astrocytes. In CB astrocytes processes related to 

transport were found to be enriched, while in CTX astrocytes the enriched processes 

were related to axon ensheathment, and development (Figure 3-10). 

In summary, the examination and first comparisons of CTX and CB astrocyte 

transcriptomes revealed a broad spectrum of commonalities, while also pointing to 

gene expression differences related to various functions.   
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Figure 3-7 Global gene expression in CTX and CB astrocytes. A. Heatmap representing 
all 12,801 detected genes measured in logRPKM. B. Display of numbers of lowly, medium, 
and highly expressed genes in CB and CTX astrocytes. Low: RPKM > 0 ≤ 10, mid: RPKM > 
10 ≤ 100, high: RPKM >100. 
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Figure 3-8 Intersection and GO Term enrichment of lowly expressed genes in CB and 
CTX astrocytes. 
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Figure 3-9 Intersection and GO Term enrichment of medium expressed genes in CB 
and CTX astrocytes. 
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Figure 3-10 Intersection and GO Term enrichment of highly expressed genes in CB and 
CTX astrocytes. 
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3.1.4 Transcriptional differences between astrocytes from cerebellum and cortex  

The previous chapter described shared gene expression profiles between CTX and CB 

astrocytes, and core astrocyte functions, while also pointing to differences between 

them (e.g. the dendrogram in Figure 3-7A). The following chapter describes significant 

gene expression differences between CTX and CB astrocytes that were identified 

performing a differential analysis using the R package edgeR (see chapter 2.2.11 on 

page 53). The analysis resulted in 3,104 differentially expressed genes (DEGs) with 1,727 

genes higher expressed in CTX and 1,377 genes higher expressed in CB astrocytes 

(Figure 3-11). The main biological processes associated with these DEGs were related 

to ion transport, metabolism, cytoskeleton organization, glial morphogenesis, 

signaling and development. Of note, many terms (e.g. ion transport, cell migration, 

nervous system development) were enriched in both populations when performing GO 

term enrichment analysis with genes that were regionally higher expressed. This 

suggested a similar functionality of the cells but with different gene sets involved in 

these processes. In addition to shared functionalities, genes higher expressed in CB 

were involved in nucleosome and cilium assembly, and actin filament organization. On 

the other hand, genes higher expressed in CTX were involved in axon guidance, lipid 

metabolism, and filopodium assembly.  
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Figure 3-11 Differentially expressed genes between CTX and CB astrocytes. On the 
left, the heatmap displays the 3,104 identified differentially expressed genes. Row z-scores 
were calculated using log2 of RPKM. On the right, GO terms for higher expressed genes in 
CB (top) and CTX astrocytes (bottom). Red boxes indicate common terms, yellow boxes 
indicate unique terms for respective brain region. 

 

 When classifying the identified DEGs based on the mean expression into lowly 

expressed genes (RPKM > 0 ≤ 10), medium expressed genes (RPKM > 10 ≤ 100), and 

highly expressed genes (RPKM >100), 58%-62% of DEGs were classified as lowly 

expressed, 31%-37% of DEGs were classified as medium expressed, and 5%-7% of DEGs 

were classified as highly expressed. Comparing the cell types, one can observe a trend 

that in cortical astrocytes more DEGs were expressed at medium level and less DEGs 

were expressed at low or high level (Figure 3-12A). The comparison of expression levels 

of the respective differentially expressed genes and clustering them into five clusters 

based on k-means clustering resulted in the observation that the majority of the DEGs 

were found in the same class (Figure 3-12B). 1,991 DEGs were lowly expressed in both 

CTX and CB astrocytes (cluster 2), 730 DEGs were expressed at medium level in both 

CTX and CB astrocytes (cluster 3), and 108 DEGs were highly expressed in both CTX and 
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CB astrocytes (cluster 4). Cluster 1 represented 413 DEGs that were lowly expressed in 

CTX but had medium expression levels in CB. Cluster 5 summarized 128 genes that were 

expressed at a medium level in CTX astrocytes but at high levels in CB. This clustering 

of gene expression levels suggested a gradual expression difference between CTX and 

CB astrocytes for the majority of the DEGs rather than a difference based on presence 

and absence of these genes. In fact, only 13 genes were found to be regionally exclusive 

expressed (Table 12; criteria for exclusive expression: mean RPKM > 1 in one cell type 

while RPKM < 0.1 in the other). These “uniquely expressed” genes are involved in 

various functions and mostly are not well characterized in the brain. Noteworthy, as 

shown in Table 12, the expression of these genes was fairly low in the respective 

astrocyte type. One exception forms Emx2, a homeobox-containing transcription 

factor gene involved in early spatially specification of the forebrain. 

 

 

 

Figure 3-12 Gene expression level of differentially expressed genes between CTX and 
CB astrocytes. A. Number of differential genes classified into lowly, medium, and highly 
expressed. B. Differential genes clustered based on gene expression level into 5 clusters. 
Low: RPKM > 0 ≤ 10, mid: RPKM > 10 ≤ 100, high: RPKM >100. 
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Table 12 Exclusevly expressed genes in CTX or CB astrocytes. LogFC=log2(foldchange). 
Colorcode represents low to high expression (blue to red). Gene symbols are colorcoded 
based on  higher expression in the respective cell type (reddisch= higher expressed in CTX, 
green= higher expressed in CB).. 

 

  

Table 13 displays the top 20 differentially expressed genes in CTX and CB 

astrocytes and represents the molecular basis by which cortical and cerebellar 

astrocytes differ. The transcription factor genes Foxg1, Lhx2 and Emx2 were among the 

genes with highest fold change in expression in CTX. In CB astrocytes we found Dao, 

encoding D-amino acid oxidase, Slco4a1, a thyroid hormone transporter, and Cnpy1, 

the FGF signaling regulator 1, and the transcription factor genes Irx5 and Zic4 as genes 

with the highest fold change in expression.  
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Table 13 Top 20 differentially expressed genes ordered based on the absolute 
expression fold change between CTX and CB astrocytes. LogFC=log2(foldchange). 
Gene symbols are colorcoded based on higher expression in the respective cell type 
(reddisch= higher expressed in CTX, green= higher expressed in CB). 

 

 
In summary, mRNA-Seq data demonstrated that cortical and cerebellar 

astrocytes are molecularly distinct cell populations. These populations share a broad 

spectrum of common functions. However, differential analysis demonstrated that 

genes responsible for these functionalities are distinct in both astrocytes.  

 

3.1.5 Astrocytes from cerebellum and cortex differ in local DNA methylation 

The first comparative analyses indicated commonalities between CTX and CB 

astrocytes with respect to local DNA methylation of cell type-specific genes (Figure 

3-5D, Figure 3-5E) and genome-wide DNA methylation (PC1 in Figure 3-5A). Still, the 

PCA on DNA methylation revealed a clear separation of CTX and CB astrocytes in the 

second principal component (PC2 in Figure 3-5A). The methylation state of the CpGs 

contributing to this separation was closer to neurons than to CTX astrocytes, while 

NeuN- cells and oligodendrocytes were equidistant to CB and CTX astrocytes. These 
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CpGs were associated with genes linked to neuronal tube development (pValue <1-10). 

A closer inspection of global DNA methylation revealed a comparable high methylation 

(median methylation > 90%) in both astrocyte populations (Figure 3-13A, Figure 

3-13B). However, similar to the PCA in Figure 3-5A, hierarchical clustering of the 

methylomes pointed to detectable differences between these cells. Moreover, a 

genome wide DNA methylation segmentation analysis (see chapter 2.2.10 on page 53), 

classifying the genome into highly and partially methylated domains (see chapter 1.1.2 

on page 16 ), separated CTX and CB showing that both astrocyte populations slightly 

differ in the genome wide methylome organization (Figure 3-13C). 

 

 

Figure 3-13 Global DNA methylation. A. Heatmap representing DNA methylation of the 
genome binned in 1kb tiles. B. Distribution of DNA methylation values of all detected CpGs 
(coverage ≥10x) in each sample. C. Hierarchical clustering and emission probabilities for 
partially methylated domains calculated by ChromH3M. 
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  In order to investigate the DNA methylation differences in more detail, 

differential analysis using the R package methylKit was performed (Figure 3-14A; see 

also chapter 2.2.10 on page 53 for more details). This analysis resulted in a total of 5,363 

differentially methylated regions (DMRs) with 3,052 hypomethylated regions in CB and 

2,311 hypomethylated regions in CTX (Figure 3-14B). More than 90% of the identified 

DMRs were located in intronic and intergenic regions, most likely demarcating proximal 

and distal gene regulatory elements (Figure 3-14C). Of note, a high proportion of genes 

associated to DMRs coded for transcription factors and nucleic acid binding proteins 

followed by genes encoding hydrolases, receptors, transporters and cytoskeletal 

proteins (Figure 3-14D). The main biological processes associated with DMRs were 

related to developmental processes (Table 14). 
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Figure 3-14 Differentially methylated regions (DMRs). A. Strategy to identify and define 
DMRs. B. Heatmap representing the 5,363 DMRs discriminating CB astrocytes from CTX 
astrocytes. C. Genomic distribution of the hypomethylated regions in CTX (top) and CB 
astrocytes (bottom). D.  Classification of DMR-associated genes into protein classes. Cov= 
Coverage; TSS= Transcription start site; TTS= Transcription termination site; UTR= 
Untranslated region. 
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Table 14 GO Term enrichment for DMRs between CTX and CB astrocytes. 

 

 

 

 

 

 

 

 

 

 

GO Biological process 
Term Name 

P-Value 
Observed 
Gene Hits 

Respiratory system development 2.8E-31 95 

Lung development 1.6E-26 84 

Respiratory tube development 2.9E-26 86 

Negative regulation of cellular response to growth 
factor stimulus 

4.2E-25 33 

Regulation of cellular response to growth factor 
stimulus 

6.4E-24 59 

Somatic stem cell maintenance 1.4E-23 26 

Stem cell maintenance 8.7E-23 48 

Mammary gland development 4.6E-20 58 

Embryonic cranial skeleton morphogenesis 1.5E-19 20 

Mesoderm development 9.2E-19 47 
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3.1.6 Astrocytes from cerebellum and cortex differ in global and local DNA 

accessibility. 

Similar to the global DNA methylation, the first comparative analyses indicated 

commonalities between CTX and CB astrocytes with respect to local DNA accessibility 

of cell type-specific genes (Figure 3-5D, Figure 3-5E) and genome-wide DNA 

accessibility (PC1 in Figure 3-5B), while the second principal component revealed a 

clear separation of accessibility of CTX and CB astrocytes (PC2 in Figure 3-5B). In line 

with this, unsupervised hierarchical clustering on the read counts in 100bp windows 

across the genome discriminated between CB and CTX astrocytes (Figure 3-15A). In 

order to investigate the DNA accessibility differences in more detail, differential 

analysis using the R package csaw was performed (see chapter 2.2.9 on page 51 for 

more details). This analysis resulted in a total of 17,097 differentially accessible regions 

(DARs) between CTX and CB astrocytes with 15,866 regions more open in CTX and 

2,311 more open regions in CB (Figure 3-15B). In addition to the strikingly high number 

of DARs, the peak height and width of open chromatin sites were more pronounced in 

CTX (Figure 3-15B, lower panel). More than 90% of the identified DARs were located in 

intronic and intergenic regions, again indicating epigenetic differences in proximal and 

distal gene regulatory elements (Figure 3-15C). Interestingly, the classification of the 

DARs into protein classes showed a very similar picture as for DMRs. A high proportion 

of genes associated to DARs coded for nucleic acid binding proteins, followed by genes 

encoding hydrolases, transcription factors, receptors, transporters and cytoskeletal 

proteins (Figure 3-15D). The biological processes associated with more open regions in 

CTX were related to various processes such as somatic stem cell maintenance, cell 

adhesion and migration, and Notch signaling (Table 15, Table 14). More open regions 

in CB were associated with genes related to early brain development (Table 16).  
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Figure 3-15 Differential DNA accessibility in CB and CTX astrocytes. A. Unsupervised 
hierarchical clustering of global DNA accessibility. B. Heatmap representing the 
accessibility around the center of differentially accessible regions (DARs) ±1kb (15,866 
regions more open in CTX, and 1,231 regions more open in CB). Profile of the coverage 
across DARs (±1 kb) is represented beneath the DARs heatmap. C. Genomic annotation of 
more open regions in the respective astrocyte type. D. Classification of DMR-associated 
genes into protein classes. TSS= Transcription start site; TTS= Transcription termination 
site; UTR= Untranslated region. 
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Table 15 GO Term enrichment for more accessible regions in CTX 

GO Biological Processes  
Term Name 

P-Value 
Observed 
Gene Hits 

Somatic stem cell maintenance 7.02E-41 32 

Regulation of Notch signaling pathway 2.12E-26 30 

Regulation of generation of precursor metabolites and 
energy 

1.38E-21 32 

Filopodium assembly 8.68E-19 13 

Cerebral cortex radially oriented cell migration 4.03E-17 20 

Homotypic cell-cell adhesion 4.72E-17 20 

Negative regulation of osteoblast differentiation 6.56E-16 28 

Cerebral cortex radial glia guided migration 3.22E-15 13 

Regulation of oligodendrocyte differentiation 7.84E-15 18 

Cerebellum morphogenesis 1.04E-13 22 

Negative regulation of gliogenesis 1.34E-13 21 

Ventral spinal cord interneuron differentiation 1.13E-12 12 

Dentate gyrus development 1.55E-12 12 

Positive regulation of mrna catabolic process 2.82E-12 13 

Regulation of nuclear-transcribed mRNA catabolic 
process, deadenylation-dependent decay 

3.43E-12 11 

Negative regulation of cell-cell adhesion 1.34E-11 20 

Positive regulation of Notch signaling pathway 1.41E-11 15 

Positive regulation of nuclear-transcribed mRNA 
catabolic process, deadenylation-dependent decay 

1.44E-11 10 

Lamellipodium assembly 2.45E-11 17 

Fatty acid elongation 8.16E-11 8 
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Table 16 GO Term enrichment for more accessible regions in CB 

GO Biological Processes 
Term Name 

P-Value Observed 
Gene Hits 

Morphogenesis of embryonic epithelium 6.10E-10 29 

Mammary gland specification 1.65E-08 3 

Epithelial tube formation 2.47E-08 25 

Embryonic epithelial tube formation 4.01E-08 24 

Tube formation 1.51E-07 26 

Regulation of binding 1.82E-07 27 

Chondrocyte development 2.52E-07 7 

Craniofacial suture morphogenesis 2.69E-07 5 

Primary neural tube formation 3.69E-07 15 

Neural tube development 3.87E-07 26 

Spinal cord development 5.69E-07 15 

Bone development 5.81E-07 25 

Negative regulation of DNA binding 2.20E-06 9 

Neural crest cell migration 4.12E-06 10 

Regulation of smoothened signaling pathway 6.47E-06 12 

Neural tube formation 1.23E-05 17 

Cell differentiation in spinal cord 1.37E-05 12 

Regulation of protein processing 1.79E-05 9 

Specification of nephron tubule identity 1.85E-05 4 

Pattern specification involved in metanephros 
development 

2.28E-05 3 
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The strong difference in the openness indicated a major difference in chromatin 

organization. In line with this, by inspecting gene expression data, an enhanced 

expression of genes involved in chromatin modification (Hat1, Prmt2, Ino80c), telomere 

control and chromatin compaction (Hgmb1, Hmgn1), and histone chaperones (Anp32e, 

Npm1, Nap1l1, Asf1a) and all major members of the cohesion complex (Smc3, Stag1, 

Rad21 and Ctcf) was observed in CB astrocytes. On the other hand, histone modifiers 

such as Hdac7 and Hdac11, Kmt5a and Kdm5b were higher expressed in CTX astrocytes 

(Table 17). Moreover, an enhanced expression of core histone variants H2a, H2b, H3.3 

and H4, the linker histone H1, together with replication-independent histone variants 

was observed in the cerebellum. Evaluation of expression values in recently published 

single cell and bulk transcriptome data confirmed these differences (Appendix Figure 

4-2, Figure 4-4, Figure 4-5) (Boisvert et al. 2018; Zeisel et al. 2018). 

Immunohistochemistry using antibodies against H3K27me3 and H3K27ac indeed 

revealed a significant difference between CB and CTX (Figure 3-16). These findings 

indicated that the chromatin of CB astrocytes may comprise an overall higher 

nucleosome density which affects the general DNA accessibility.  

Intriguingly, the 12-fold increase in open chromatin sites was not associated 

with general increase of gene expression (Figure 3-7, Figure 3-11). Furthermore, the 

number of DMRs was rather balanced between CB and CTX astrocytes and genes 

associated with DNA methylation dynamics such as Dnmts, Tets or Mecp2 were not 

differentially expressed (Table 17). 

In conclusion, cortical and cerebellar astrocytes displayed an overall distinct 

chromatin organization that did not entirely correlate to gene expression changes or 

DNA methylation changes.  
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Table 17 Gene expression of genes involved in chromatin organization and DNA 
methylation dynamics. 
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Figure 3-16 Immunofluorescence and signal quantification of H3K27ac (left) and 
H3K27me3 (right) in CTX and CB of hGFAP-EGFP mice. Arrows indicate EGFP+ cells, 
arrow heads indicate EGFP- cells. Number of analyzed cells (CB EGFP+/CTX EGFP+/CB 
EGFP-/CTX EGFP-) n= 33/16/15/17 (H3K27ac), n=26/13/20/28 (H3K27me3). Data 
represented as mean + STEDV. Mann-Whitney-U-test, * p=0.01-0.05, ** p=0.001-0.01, 
*** p=0.0001-0.001, ****p< 0.00001. Scale bar=20µm. Immunofluorescence staining 
and quantification were done by Dr. Laura Stopper in terms of a cooperation 
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3.1.7 Correlation between epigenetics and gene expression reveals positive and 

negative regulation of cell type-specific expression 

Next, the relationship between local epigenomic signatures in cross correlations to 

open chromatin was tested to identify loci that potentially regulate gene expression 

(Figure 3-17). Loci with a higher chromatin accessibility tend to exhibit an overall lower 

DNA methylation in the respective astrocyte groups (Figure 3-17A top). Moreover, the 

expression of genes associated to the respective more open region was higher (Figure 

3-17A bottom). Conversely, inspection of hypomethylated regions in CB or CTX 

astrocytes showed a higher median DNA accessibility in the respective cell population 

in addition to a slightly higher expression of the associated genes (Figure 3-17B). This 

relation indicated that a cell type-specific openness and hypomethylation at regulatory 

regions, such as e.g. potential enhancers, is accompanied by a cell type-specific 

expression.  
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Figure 3-17 Integrating epigenetics and gene expression indicates regulation of cell 
type-specific expression. A. Distribution of DNA methylation levels at DARs (top), and 
gene expression of DAR-associated genes (bottom). On the left for more open regions in 
CTX astrocytes and on the right for more open regions in CB astrocytes. B. Distribution of 
DNA accessibility at DMRs (top), and the gene expression of DMR-associated genes 
(bottom). On the left for hypomethylated regions in CTX astrocytes and on the right for 
hypomethylated regions in CB astrocytes. 

 

 The previous analysis showed a general effect of epigenetic differences on 

global gene expression without accounting for gene-based resolution or statistical 

significance. To better understand the relation between open chromatin (DARs), DNA 

methylation status (DMRs) and expression changes (DEGs) further comparative tests 

were performed. Relating significant DNA methylation changes to significant gene 

expression changes results in 467 lower methylated regions linked to higher expression 

of the associated genes in CTX and 529 of lower methylated regions linked to higher 

expression of the associated genes in CB (Figure 3-18A, red boxes). The link between 

higher chromatin accessibility and higher gene expression in CTX (3,647 genes) is 10-

fold higher than in CB (348 genes) (Figure 3-18B, red boxes). Of note, this comparison 

revealed a number of cases in which gene expression was associated to DMRs and DARs 

in a non-canonical correlation (Figure 3-18A, Figure 3-18B, blue boxes). 328 DMRs, 

showing higher methylation in CTX astrocytes, were associated with higher gene 
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expression in CTX, while 145 DMRs followed this correlation in CB astrocytes (Figure 

3-18A, blue boxes). In CTX, decreased DNA accessibility was associated with genes 

showing higher gene expression in CTX in the case of 1,071 DARs (Figure 3-18B, blue 

boxes) and only 59 genes followed this association in CB. A third cross comparison 

between methylation and open chromatin showed that 383 hypomethylated regions 

overlapped with increased accessibility in CTX, and only 76 hypomethylated regions in 

CB followed this trend (Figure 3-18C).  

Next, we performed GO term enrichment analysis with the genes shown in each 

quadrant of Figure 3-18 (Figure 3-18A-C). Gene sets associated with lower methylation 

and increased gene expression in the cortex were enriched for processes involved in 

somatic stem cell maintenance (Q3 in Figure 3-18A), while higher gene expression 

linked with higher DNA accessibility was predominantly associated with gene sets 

related to development, and cell migration (Q3 in Figure 3-18B).  

In CB astrocytes lower DNA methylation coupled to higher gene expression was 

associated with genes regulating peptidyl phosphorylation and cytoskeleton 

organization (Q2 in Figure 3-18A) and more open chromatin coupled to higher 

expression was found to be most strongly associated with morphogenesis (Q2 in Figure 

3-18B).  

In summary, these cross comparisons revealed positive and negative 

correlations between DMRs, DARs and gene expression. This observation suggested 

that epigenetically marked regions are acting as potential positive or negative gene 

regulators for cell type-specific expression in CB and CTX astrocytes.  
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Figure 3-18 Integrating epigenetics and gene expression reveals positive and negative 
regulation of cell type-specific expression. A. Pairwise comparison of DNA methylation 
difference and gene expression difference. B. Pairwise comparison of DNA accessibility 
difference and gene expression difference. C. Pairwise comparison of DNA methylation 
difference and DNA accessibility difference. A-C. Bar diagrams below respective 
scatterplots show enrichment of biological processes for the respective genes in Q1-Q4. No 
GO term enrichment for Q1 in B, and Q2 in C was detected. Positive expression FCs 
represent significantly higher expression or higher DNA accessibility in CB astrocytes. 
Negative expression FCs represent significantly higher expression or higher DNA 
accessibility in CTX astrocytes. Positive methylation difference represents significantly 
lower methylation in CB. Negative methylation difference represents significantly lower 
methylation in CTX astrocytes. ***pValue<0.001, NS=not significant (Wilcoxon Test). 
FC=fold change. Data represented as mean. 
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3.1.8 Epigenetic differences indicate regional transcription factor control  

As shown in Figure 3-14 and Figure 3-15, more than 90% of the DMRs and DARs 

identified were located in intronic and intergenic regions, most likely demarcating 

proximal and distal gene regulatory elements. Moreover, the majority of DMR- and 

DAR-associated genes were classified into transcription factors (TFs) and DNA binding 

proteins. Together with the indicated positive and negative regulation of gene 

expression in Figure 3-18 it was important to resolve potential regulators. To this end, 

TF binding motif analyses exploring DARs and DMRs sequences was performed. More 

open regions in CTX were particularly enriched for binding sites of the TFs Emx2 and 

Lhx2. Both TFs are known from tissue studies to be essential for the cerebral cortex 

regionalization and development (Bulchand et al. 2001; Mallamaci et al. 2000, 2) 

(Figure 3-19A). Of note, as reported in chapter 3.1.4, both were among the top 20 

differentially expressed genes (Table 13; Figure 3-19E). Published single cell expression 

data confirmed that Lhx2 is expressed in a large number of cortical astrocytes 

(Appendix Figure 4-6). In addition, Lhx2/Emx2 motif -containing open regions were 

much less methylated in CTX astrocytes (Figure 3-19B). Lhx2 expression was verified 

by immunohistochemistry showing a higher expression in CTX compared to CB 

astrocytes (Figure 3-19F). The consistency on all four levels (enrichment of binding 

sites at open regions, hypomethylation, higher mRNA expression and higher protein 

expression) suggested an important role of Lhx2 in cortical astrocytes. Motif 

enrichment of more open region in CB astrocytes revealed an overrepresentation of Zic 

family binding sites (Figure 3-19A). Interestingly, Zic binding at enhancers was shown 

to be associated with the development of granule cells7 to establish gene expression 

patterns of mature neurons (Frank et al. 2015). Along with Zic binding prediction, the 

expression of Zic family members was strongly enhanced in CB astrocytes (Zic1 (63-

fold), Zic2 (4-fold) and Zic4 (120-fold) ; Figure 3-19E) and, as reported in chapter 3.1.4, 

Zic4 was in the top 20 most differentially expressed genes (Table 13). Published single 

cell expression data revealed that Zic1 is expressed in nearly every Bergmann glia cell 

(Appendix Figure 4-5). Furthermore, the inspection of DNA methylation level of Zic-

enriched sites showed hypomethylation of respective sites in CB astrocytes (Figure 

 
7 Neuron population in the cerebellum. 
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3-19B). Immunohistochemistry of Zic1 revealed a weak protein expression in 

Bergmann Glia along with strong signals in Purkinje cells and granule cells, but no 

signals in the cortical astrocytes (Figure 3-19G). The apparently prominent role of Zic 

family TFs in CB astrocytes was not reported before and remains to be clarified. The 

motif enrichment analysis also highlighted a strong enrichment of Nfi binding motifs in 

regions-specific enriched open regions (Figure 3-19A), confirming Nfi as an important 

astrocyte signature and suggesting the involvement of Nfi in region-specific astroglial 

programs.  

For motif analyses of DMRs, regions with a methylation difference of at least 

50% between CTX and CB astrocytes were subjected to the analysis, reasoning that this 

would restrict the results to major regulators of region-specific programs. 379 of these 

DMRs were hypomethylated in CTX and 573 hypomethylated in CB. Again, this analysis 

highlighted the strong enrichment of Lhx2 consensus motifs CTX astrocytes (Figure 

3-19C) together with stronger enrichment of open chromatin at respective DMRs 

(Figure 3-19D). Hypomethylated regions of CB astrocytes were not significantly 

enriched for Zics but for binding motifs for Sox2/ Sox3/ FoxJ3 (Figure 3-19C). With the 

exception of Etv5, none of the found TFs in hypomethylated region in CB were 

differentially expressed (Figure 3-19E).  
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Figure 3-19 Epigenetic changes and transcription factor control. A. Enriched 
transcription factor binding motifs in more accessible regions of CTX astrocytes (left) or CB 
astrocytes (right). B. DNA methylation around the center of open regions (±1 kb) enriched 
for Lhx2/Emx2 or Zic binding motifs. C. Enriched transcription factor binding motifs in the 
hypomethylated regions of CTX astrocytes (left) or CB astrocytes (right). D. DNA 
accessibility around the center of DMRs (±2.5 kb) enriched for Lhx2 or Sox2 binding motifs. 
E. Gene expression of transcription factors with enriched binding sites in DMRs or DARs 
grouped by higher expression in CTX astrocytes, comparable expression in both, higher 
expression in CB astrocytes, and not expressed. F-G. Immunofluorescence of Lhx2 and 
Zic1 in CTX and CB of hGFAP-EGFP mice. Scale bars= 20µm (left), 10µm (right). 
Immunofluorescence staining was done by Dr. Laura Stopper in terms of a cooperation 
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3.1.9 Cortical and cerebellar astrocytes execute specific programs through 

complex epigenetic networks  

To further investigate the interplay between DARs, DMRs, and astrocyte-specific 

expression programs, genes were analyzed that were linked to both DARs and DMRs 

(Figure 3-20A). 661 of such genes were identified and classified into protein classes. 

Consistently with the classification of DMRs and DARs alone, a high proportion of the 

intersected genes coded for transcription factors, nuclei acid binding proteins, 

hydrolases and receptors (Figure 3-20B). Functionally, nervous system development 

was identified as the most prominent common feature (Figure 3-20C). The fact, that 

this term was the highest enriched for both gene sets indicated that the development 

of these cell populations is differentially controlled by epigenetic mechanisms. Lhx2, 

Emx2 together with their interaction partners Otx1, the antisense transcript Emx2os, 

Nr2e1, Sfrp1, Fezf2 and Sall1 were among the gene set related to nervous system 

development in the CTX. These genes were previously shown to play a crucial role in 

the early patterning and development of the forebrain (Bulchand et al. 2001; Kimura et 

al. 2005; Monaghan et al. 1997; Trevant et al. 2008; Harrison et al. 2012, 1) (Appendix 

Figure 4-7). Among the genes higher expressed and differentially regulated in CB 

astrocytes and related to nervous system development were midbrain-hindbrain 

specification factors such as En1, En2, Irx1, Irx2, Irx3, Irx5, Zic1 and Zic4 (Cheng et al. 

2010; Elsen et al. 2008; Lecaudey et al. 2005; Matsumoto et al. 2004) (Appendix Figure 

4-7). As shown in Figure 4-7, these genes are highly expressed in the early embryonic 

brain in a region restricted fashion. However, the persistent expression of these genes 

in astrocytes has not been reported or investigated in detail so far. Of note, the 

evaluation of single cell expression data showed a heterogenous expression pattern in 

the respective astrocyte population (Appendix Figure 4-5, Figure 4-6), which might be 

due to a heterogeneous expression or technical reasons. 

 The functional analysis of the intersected genes revealed further a distinct 

regulation of transcription in both astrocytes. Interestingly, in CTX astrocytes negative 

transcription regulators were overrepresented, while in the CB astrocytes more positive 

regulators were observed (Figure 3-20C, Figure 3-20D). This is in line with the overall 

higher accessibility but comparable global gene expression in CTX astrocytes.  
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Figure 3-20 Integrative analysis of epigenetics and transcriptomics. A. Overlap of 
genes associated with DMR(s), genes with differential ATAC peak(s) and differential 
expression. B. Classification of the 661 intersected genes (A) into protein classes. C. 
Biological processes of the 661 intersected genes (A) higher expressed in CB astrocytes 
(n=255, left) or higher expressed in CTX astrocytes (n=405, right). D. Higher expressed and 
differentially regulated genes in CTX or CB astrocytes (related to C). 
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The previous integration of epigenetic and transcriptome data was based on the 

premise, that a gene is differentially expressed and associated with at least one DMR 

and at least one DAR regardless of the relative position of the DMR and DAR. Hence, 

the next step of data integration was a stricter integration of the three differential 

analyses. To this end, differentially expressed genes were extracted that were 

associated with a DMR that overlapped a DAR (by at least 1bp). This led to 194 

differential genes following this criterium.  

The visualization of the relative differences in DNA methylation, open 

chromatin and expression revealed that the majority of the cases followed the classical 

mechanism of epigenetic gene regulation where low DNA methylation and open 

chromatin lead to gene expression (cluster 1, cluster 5 in Figure 3-21). Of note, within 

cluster 1 the TF gene Lhx2 was found along with the TF gene Otx1, an interaction 

partner of Emx2 during the forebrain development, as well as the regulatory antisense 

transcript of Emx2 Emx2os. The previous findings suggested that Lhx2 and plays a 

crucial role in cortical astrocytes (see chapter 3.1.8). The comparative integrative 

analysis now showed that this factor is also epigenetically distinct regulated and 

revealed potential regulatory regions within the promoter and first intron of the short 

Lhx2 isoform (Figure 3-21 red box). Recent work based on ChIP-Seq experiments 

demonstrated that Lhx2 is regulated by the telencephalon specification marker Foxg1 

in the developing brain (Godbole et al. 2018). The identified Foxg1 binding site at the 

Lhx2 locus overlapped with an enriched open region in cortical astrocytes upstream of 

the promoter (Figure 3-21). However, the strong enrichment of open chromatin 

together with hypomethylation at the promoter and intron 1 suggested either the 

involvement of further TFs or an alternative binding site of Foxg1 in adult astrocytes. 

Cluster 5 represents the genes that were hypomethylated within a region that showed 

higher enrichment of open chromatin and elevated expression in CB astrocytes. 

Interestingly, Zic1 was found among the genes in cluster 5. Similar to the findings of 

Lhx2 in cortical astrocytes, this result goes hand in hand with the previous results that 

suggested an important role of Zic1 in CB astrocytes (see chapter 3.1.8). The epigenetic 

profile at the Zic1/Zic4 locus revealed potential regulatory regions downstream of Zic1 

(Figure 3-21 red box). Of note, the epigenetic profiles of Lhx2 and Zic1/Zic4 showed 
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additional DARs that were hypomethylated in both astrocyte populations, indicating 

that the distinct activity of TFs at these elements was regulated only by DNA 

accessibility. 

In addition, several other genes related to astrocyte-specific programs, 

including the GABAB receptors subunit gene Gabbr1, GABA transporter gene Slc6a11, 

membrane bound growth factor receptor gene Fgfr3, and the metabolic genes Dagla 

and Hk1 (Figure 3-21 cluster1) were identified to be hypomethylated, more accessible 

and higher expressed in cortical astrocytes. The NMDA receptor gene Grin2b, the 

metabolic genes Hk2 and Man1c1 were identified by this integrative analysis to be 

hypomethylated, more accessible and higher expressed in in CB astrocytes (Figure 3-21 

cluster5).  

 

 

 

Figure 3-21 Locus based integrative analysis of epigenetics and transcriptomics. On 
the left: Heatmap displaying methylation changes, chromatin accessibility changes and 
expression changes of genes with DMR(s) that overlap DAR(s). Row-Z-scores were 
calculated for each data set separately using logRPKM, DNA methylation in %, and DNA 
accessibility in cpm. On the right: Genomic browser representation of data of the Lhx2 and 
Zic1/4 loci as representative genes found in cluster 1 or cluster 5. The red box indicates the 
epigenetically different positions. Blue bar marks a Foxg1 binding site in the Lhx2 locus. 
Bars and peaks of biological replicates are displayed as overlaid tracks for genomic browser 
representations. Black bars mark covered CpG position. 
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The TF motif enrichment analyses of DMRs and DARs together with expression 

profiles and local epigenetic differences of Lhx2 and Zic1 strongly suggested the 

involvement of these factors in the differential molecular features of cortical and 

cerebellar astrocytes. Therefore, known or predicted interaction partners of Lhx2 and 

Zic family members were retrieved from the protein-protein interaction database 

STRING, and the epigenetic states of these genes were analyzed (Figure 3-22). Various 

transcription factors such as Foxn3, Otx1, Fezf2, Nr2e1, Emx2, Lef1, Wnt7a, Msx1 and 

Dbx2 form a network around Lhx2 and were predominantly expressed in CTX 

astrocytes. Together with higher expression, these genes were all associated with 

differential DNA accessibility and differential DNA methylation. In CB astrocytes, 

twelve TFs formed a network around Zic1. Among the connected genes/proteins the 

network comprises nearly all members of the Iroqois homeobox containing TF family 

Irx1, Irx2, Irx3 and Irx5. The TFs have been associated with brain development in fish, 

frog, and chicken, but were so far not characterized in the context of mouse brain 

function or development (Matsumoto et al. 2004; Lecaudey et al. 2005). Zic1 has also 

been shown to interact with the midbrain-hindbrain regionalization transcription 

factors Pax3 and En2 (Sato, Sasai, and Sasai 2005; Nakata et al. 1998). En2 has an 

accessible region around its TSS in CB astrocytes, it was hypomethylated and higher 

expressed in CB. Published Zic1 ChIP-Seq data of adult cerebellum confirmed the 

binding of Zic1 at this particular DAR.  

In conclusion, the comparative integrative analysis demonstrated that the gene 

expression of CTX astrocyte-, and CB astrocyte-specific genes were strongly controlled 

by the epigenetic state of transcription factors within networks formed around the 

developmentally important TFs Lhx2 and Zic1, which themselves were affected by cell 

type-specific epigenetic control (Figure 3-21, Figure 3-22). 
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Figure 3-22 Network analysis of Lhx2 and Zic family members. Bar diagrams display 
the expression values, blue circle indicates the presence of a DMR in the respective gene 
and a yellow triangle indicates the presence of a DAR for the respective gene. The red 
outlined genes mark the genes involved in transcription regulation (related to Figure 
3-20D). The genome browser representation shows the En2 locus, the blue bar indicates a 
Zic1 binding position in P60 cerebellum.  
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3.1.10 Discussion 

Astrocytes were long regarded as a homogenous cell type but are now known to be a 

morphologically and functionally diverse cell population whose complexity is only 

beginning to be appreciated. Morphological differences of protoplasmic astrocytes in 

grey matter, fibrous astrocytes in white matter, radial Bergmann glia (BG) in 

cerebellum and Müller cells in the retina were extensively described since the early 

stages of neuroscience. However, the distinct morphologies were not assigned to 

functional differences mainly due to the lack of suitable techniques. Technical 

advancement and detailed physiological studies demonstrated common functionalities 

between astrocytes from distinct brain regions, such as K+ homeostasis, glutamate 

uptake, gap junctional communication, as well as marker expression (GFAP, S100B, 

glutamine synthetase) (Reichenbach, Derouiche, and Kirchhoff 2010). In addition to the 

common astroglial features, physiological and molecular studies revealed region-

specific functionality and specific molecular features of astrocytes from distinct brain 

regions (Boisvert et al. 2018; Chai et al. 2017; Morel et al. 2017; Zeisel et al. 2018; W. 

Todd Farmer and Murai 2017). Developmental and transcriptome approaches 

investigated the establishment of astrocyte diversity and, in particular by bulk and 

single cell transcriptomic studies, indicate that the molecular properties of astrocytes 

are established by cell-extrinsic cues. These include neural tube patterning during brain 

development, which leads to region-specific transcription factor expression in 

astrocytes, as well as signals derived from distinct neuronal environments, implying an 

instructive, neuronal activity dependent mechanism. To better understand the 

underlying cell-intrinsic mechanisms, that include a complex balance of transcriptional 

regulation, epigenomic and transcriptomic signatures of cortical protoplasmic 

astrocytes and astrocytes of the cerebellum were systematically compared in this 

thesis.  

Astrocytes from cerebellum and cortex show commonalities and differences 

The initial comparison of the data showed that CB and CTX astrocytes shared a broad 

spectrum of similarities. First, the global DNA methylation was similarly high and gene 

expression levels were similarly distributed in both astrocyte populations (chapter 3.1.3, 
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chapter 3.1.5). Second, the local DNA methylation and DNA accessibility was at 

comparable levels at genes typical for astrocytes, neurons, and oligodendrocytes. 

Finally, gene expression data confirmed various known core astrocyte functions, such 

as neuroprotection, metabolism of neurotransmitters, and synapse formation and 

elimination (chapter 3.1.3). Of note, the list of the 20 most abundant astrocyte 

transcripts in CB and CTX astrocytes revealed several genes whose functions are 

unclear. 

The data also revealed differences between CTX and CB astrocytes. The 

epigenomic and transcriptomic data strongly suggested that astrocytes of the adult 

mouse brain retained specific signatures of epigenetic memory of early regional radial 

glia specification, a principle that also governs neuronal diversity (Greig et al. 2013). The 

memory of regional specification is in line with previous developmental approaches, 

such as fate mapping experiments, demonstrating pre-specified spatial diversification 

of astrocytes in the brain. The early regionalization memory was evident in nearly all 

results of the data analyses. For instance, the transcription factors Lhx2, Emx2, and 

Foxg1, which have been shown to play a crucial role in the regional specification of 

cortical neural progenitors, were strongly expressed in cortical astrocytes (Hanashima 

et al. 2004; Molyneaux et al. 2007; Monuki, Porter, and Walsh 2001). Moreover, 

hypomethylated and more open regions in CTX astrocytes were enriched for 

Lhx2/Emx2 binding motifs. As counterpart in CB astrocytes, the transcription factor 

Zic1 was found to be highly expressed and biding sites of Zic1 were strongly 

overrepresented in CB-specific open regions. Zic1 was shown to be involved in the 

development of the cerebellum (Aruga et al. 1998, 1). Of particular interest, it takes part 

in chromatin reorganization and establishment of gene expression profiles of mature 

neurons during development of granule cells, a neuronal cell population in the 

cerebellum (Frank et al. 2015). The high expression and the overrepresentation of 

binding sites for Lhx2 and Zic1 in cell type-specific open chromatin regions, and for 

Lhx2 in DMRs, argues for their important role in maintaining cell-specific expression of 

downstream target genes.  
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Gene expression programs of CTX and CB astrocytes are strongly controlled by 

transcriptional and epigenetic networks around Lhx2 and Zic1 

The inspection of the interaction partners of Lhx2 and Zic1 further highlighted the 

programmatic differences manifested in the course of early brain development. Lhx2 

was connected to transcription factors such as Foxn3, Otx1, Fezf2, Nr2e1, Emx2, Lef1, 

Wnt7a, Msx1 and Dbx2 that were exclusively or predominantly expressed in CTX 

astrocytes. These transcription factors are known to be important for brain patterning 

and neuronal specification (Rubenstein and Rakic 2013). Zic1 is known to interact with 

a series of homeobox genes, involved in early brain or neuronal development, such as 

En2, Meis2, Pax3, Hopx, and Irx1-5 (Agoston et al. 2012, 2; Zweifel et al. 2018). These 

genes showed a strong and predominant expression in adult CB astrocytes. TF’s within 

these networks have previously been shown to be important for regional specification 

of neurons, indicating that regional programs of common precursors remain 

manifested in epigenetic signatures of adult astrocytes. The expression of these TFs 

within the networks was furthermore accompanied by epigenetic signatures, such as 

the presence of DARs and DMRs. These epigenetic networks can be related to the 

functional networks like demonstrated for the connection of Foxg1 and Lhx2, Lhx2 and 

Hes5, or Zic1 and En2. A recent study showed that Foxg1 acts upstream of Lhx2 during 

the development of the cortical signaling center hem by regulating its expression 

(Godbole et al. 2018). The authors identified a Foxg1 binding site in the Lhx2 locus in 

E14.5 cortical tissue by ChIP-Seq experiments which overlapped with an enriched open 

region in cortical astrocytes. de Melo et al., 2016b demonstrated that Lhx2 directly 

upregulates the Notch signaling pathway effector Hes5 by binding to a cis-regulatory 

region and by this promotes gliogenesis in the developing retina. Published Zic1 ChIP-

Seq data of adult cerebellum identified a Zic1 binding site at the promoter of the 

midbrain-hindbrain regionalization transcription factor En2. This particular region was 

highly open and hypomethylated in CB astrocytes, indicating the potential activity of 

Zic1 in En2 gene expression in CB astrocytes. These examples remarkably demonstrate 

the interplay of identified astrocyte diversity regulators and local epigenetic state of 

downstream target genes. These networks can be further used for future studies to 
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resolve the interplay of all these factors in the establishment and maintenance of 

astrocyte diversity. 

Nfi is involved in the establishment of pan-astrocyte profiles as well as cell type-

specific programs 

In both adult astrocyte populations evidence for a strong role of the nuclear factor one 

(Nfi) family was observed. Studies on brain development and astrogliogenesis 

identified Nfi as a central factor for the onset of astrogliogenesis. It was recently 

demonstrated that Nfia is involved in DNA-demethylation of gliogenic gene promoters 

such as Gfap and Olig1 and promotes the transition from neurogenesis to gliogenesis in 

radial glia (Deneen et al. 2006; Piper et al. 2010; Sanosaka et al. 2017; Tiwari et al. 2018; 

Namihira et al. 2009). In line with this, the ATAC-Seq data showed a very high 

enrichment of Nfi binding sites in about 25 % of open chromatin sites shared between 

CTX and CB astrocytes. This overrepresentation of binding sites was accompanied by a 

high and almost equal expression of Nfia, Nfic and Nfix in CTX and CB astrocytes. The 

enrichment of Nfi binding sites in shared open regions together with the pan-astrocyte 

expression of Nfi suggests a broad regulation of common astrocytic programs in both 

brain regions. Interestingly, within region-specific open regions Nfi binding sites were 

also overrepresented. Consequently, Nfi might also be of importance for cell type-

specific programs through differences in epigenetic control. Of note, Nfi is so far 

regarded as a factor involved in early astrocyte differentiation. However, gene 

expression data as well as published single cell expression data (Appendix Figure 4-6) 

demonstrated the persistent expression of Nfi in adult astrocytes, suggesting the 

importance of Nfi family members not only for establishment but also maintenance of 

astrocyte identities. 

Environmental influence on astrocyte diversity 

Bergmann glia, the astrocytes of the cerebellum come with a unique morphology and 

a specialized gene expression profile optimized for dealing with the high 

concentrations of glutamate in the molecular layer (W. Todd Farmer and Murai 2017). 

Astrocytic adaption to the neural circuit environment was also reported for striatal and 

hippocampal astrocytes, where measured K+-currents differed in both astrocyte 
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populations and were accompanied by distinct expression of K+ channels (Chai et al. 

2017). Indeed, in this thesis, a functional adaptation of astrocytes to the neuronal 

environment was reflected in expression of receptors, transmembrane receptors, ion 

channels, transporters, signaling molecules and cytoskeletal proteins in CTX and CB 

astrocytes. Many of these genes were linked to epigenetically controlled regulation 

such as Gabbr1, encoding the subunit 1 of the GABAB receptor, and Slc6a11, encoding 

the GABA transporter Gat3, which were hypomethylated, more accessible and higher 

expressed in cortical astrocytes. Grin2b, encoding the glutamate NMDA receptor 

subunit 2B, was higher expressed in CB astrocytes and was linked to hypomethylation 

and higher accessibility at its gene locus.  

In the cerebellum, neuron-derived Shh protein controls the gene expression 

profile of Bergmann glia (W. T. Farmer et al. 2016). Indeed, a clear difference in 

expression and underlying epigenetic signatures were distinct between CB and CTX 

astrocytes. In CB astrocytes, the epigenetic states were permissive for gene expression 

of Shh receptor Ptch2 and the effector Gli2 which results in their higher expression 

(Figure 3-23).  

The local epigenetic differences of genes related to signal perception and 

transmission leads to the hypothesis that extracellular signals are transduced to the 

nucleus where effectors impinge on “preset” regulatory landscapes of epigenetic 

control to readily activate or repress the transcription of respective neurotransmitter 

receptor and transporter genes.  
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Figure 3-23 Sonic hedgehog signaling pathway. Genes with differential expression, DNA 
methylation, and DNA accessibility between CTX and CB astrocytes are marked by color, 
circles, and triangles, respectively.  

 

Astrocytes from cerebellum and cortex show extensive differences in chromatin 

organization 

One major observation was the striking difference of chromatin openness around DARs 

of astrocytes from CTX and CB. The overall higher DNA accessibility in CTX astrocytes 

may reflect a higher degree of heterogeneity. Cortical astrocytes are organized in layers 

and are interacting with layer-specific neurons which results in individual gene 

expression programs (Lanjakornsiripan et al. 2018). Furthermore, astrocytes of the 

cerebral cortex reside within functional restricted areas like somatosensory cortex, 

motor cortex and visual cortex, which was also shown to be reflected in slightly distinct 
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gene expression profiles (Boisvert et al. 2018). Finally, transcriptome analysis on single 

cell level demonstrated a broader spectrum of individual gene expression programs in 

cortical protoplasmic astrocytes than in CB astrocytes (Appendix Figure 4-3; Zeisel et 

al. 2018).  

Besides the degree of heterogeneity, an overall distinct chromatin organization 

might explain the observed chromatin accessibility differences. In the cerebellum, the 

detection of a higher gene expression of core histones was accompanied by a higher 

expression of histone chaperones. Furthermore, higher signal intensities of H3K27ac 

(enhancer) and H3K27me3 (heterochromatin) marks were shown by 

immunohistochemistry. These results lead to the speculation that the chromatin of CB 

astrocytes may comprise an overall higher nucleosome density than cortical astrocytes 

which enhances epigenetic signals and affects the general DNA accessibility. This 

hypothesis has to be tested by e.g. mass spectrometry in the future.   

Finally, transcriptional repressors were overrepresented among higher 

expressed genes in CTX astrocytes. The elevated activity of transcriptional repressors 

could explain the discrepancy between a strong difference in openness and a 

comparable expression rate in CTX and CB astrocytes. Intriguingly, Lhx2 was shown to 

regulate the subcortical neuronal subtype identity through interaction with the 

nucleosome remodeling and histone deacetylase (NuRD) complex at Fezf2 and Sox11 

loci leading to a repression of these genes (Muralidharan et al. 2017). Lhx2 also 

regulates the chromatin accessibility in retinal progenitor cells (Zibetti et al. 2017). Lhx2 

may therefore be involved in the higher chromatin accessibility in cortical astrocytes 

through binding or recruiting chromatin remodelers, or as has been shown by Lhx2 

knockout in Müller glia, to regulate such effects indirectly through the Notch signaling 

pathway (de Melo et al. 2016; de Melo, Clark, and Blackshaw 2016). This would in turn 

mean, that CB and CTX astrocytes employ distinct basic transcriptional regulatory 

mechanism, that determine the global transcription rate by the nucleosome 

density/DNA accessibility (in the case of CB astrocytes), or by the active repression of 

gene expression (in the case of CTX astrocytes). This hypothesis can be explored in the 

future by knockout experiments of Lhx2 in astrocytes and subsequent monitoring of 

the global and target gene expression. 
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Overall conclusion 

In summary, the findings provided insights into regionally transcription factor-

controlled regulation of astrocyte identity. Key regulators, previously identified as 

regional specifiers in neurons, are also prominent actors in astrocytes. Their function 

seems to be embedded into layers of transcriptional and epigenomic control with 

regional specificities. The question remains how the clearly distinct functionalities are 

implemented. Genome wide epigenetic data along with the respective transcriptomes 

provides a good resource for prediction of regulatory networks which in turn can be 

targeted to clarify the control of regional, and cell (sub)type-specific gene expression. 

The observed regional specification might be a result from a combination of 

developmental and spatially determined epigenomic programming to match the 

interaction of neurons and astrocytes in distinct neural circuits. Future studies could 

explore the dynamics of epigenetic and transcriptional changes in astrocyte 

development in distinct brain regions to investigate whether regional TFs regulate the 

same target genes in neurons as they do in astrocytes or do these factors regulate genes 

with complementary functions to ensure regional matched interaction? Gradually 

disentangle these questions will extend the understanding of computational processes 

in distinct neural circuits and neural circuit related diseases.    
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3.2 LAG-3 Inhibitory Receptor Expression Identifies 

Immunosuppressive Natural Regulatory Plasma Cells. 

3.2.1 Introduction 

B-lymphocytes play multifaceted roles in immune responses such as infection, 

autoimmune reactions, and cancer. They execute stimulatory and inhibitory functions 

in order to protect the organism from infectious diseases and remove damaged cell 

components. The anti-inflammatory function is of great importance to regulate 

immune responses and to prevent disproportionate reactions against auto-antigens. 

The first reported evidence for the regulatory effect of B-cells was demonstrated in 

mice lacking B-cells in the context of experimental autoimmune encephalomyelitis 

(EAE), an animal model for autoimmune central nervous system disease (Wolf 1996). 

These mice suffered a severe progression of EAE and further dissection of the 

underlying mechanisms revealed the production of interleukin-10 (Il10) by B-cells as key 

factor in this autoimmune disease (Fillatreau et al. 2002). It was further demonstrated 

that Il10 expression in B-cells was activated in anti-microbial immune reaction driven 

by various types of microbes including bacteria, helminths and viruses (Shen and 

Fillatreau 2015). However, the identity of the B-cell subpopulation producing Il10 as a 

suppressive factor in vivo was yet incompletely defined. In vivo experiments using Il10-

eGFP reporter mice infected with Salmonella typhimurium showed an accumulation of 

Il10 producing cells in the spleen within 24 hours after infection. Moreover, these cells 

expressed elevated levels of the plasma cell-specific surface marker CD138, identifying 

a subset of plasmocytes8 as source of Il10 production after challenge (Neves et al. 2010).  

 The identification of plasmocytes as regulatory B-cells (Bregs) raises the 

questions about the progenitors of this B-cell subtype and the difference of these 

plasmocytes in comparison to non-regulatory plasmocytes. DNA methylation is a key 

mechanism to establish and maintain cell identity and functional competence, and 

contains information of the origin of the cell (see chapter 1.1.1 on page 10 and chapter 

1.1.2 on page 15). Therefore, in a collaboration with Prof. Dr. Simon Fillatreau and his 

 
8 Collective term for plasmablasts and plasma cells. 
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group this part of the thesis addressed these questions by comprehensive epigenome 

and transcriptome analyses. Initial gene expression analysis and subsequent validation 

by flowcytometry of Il10+CD138hi cells in comparison to Il10-CD138hi cells by the 

collaborative group revealed discriminative expression of the inhibitory receptor 

lymphocyte-activation gene 3 (Lag3), an MHC-class-II-binding CD4 homolog. This 

surface protein is known to be expressed on activated CD4+ T cells, but also on MHC 

class II non-binding cells such as activated CD8+ T cells, natural killer cells and myeloid 

cells, suggesting multifaceted functions of Lag3 (Lui and Davis 2018).Interestingly, in 

contrast to the homologous CD4, inhibition of Lag3 prolongs T cell responses (Huard et 

al. 1994). However, the mechanism of action remains unclear. Using Lag3 as a tracer, 

the group around Prof. Dr. Simon Fillatreau discovered that Lag3+CD138hi plasma cells 

were present in the spleens of naïve mice. These naïve Lag3+CD138hi plasma cells 

rapidly upregulate Il10 upon Salmonella typhimurium infection. To delineate the 

molecular properties and possible origin of Lag3+CD138hi plasma cells, a comparative 

analysis of the methylomes of Lag3+CD138hi plasma cells and other B-cell subtypes was 

performed. For this comparison, Dr. Andreia Lino isolated various B-cell subsets 

including Lag3+CD138hi plasma cells and Lag3-CD138hi plasmocytes from the spleen of 

naïve mice and Lag3+CD138hi, Lag3-CD138hi, Il10+CD138hi, and Il10-CD138hi cells isolated 

at day 1 post infection (p.i.) with Salmonella typhimurium. Furthermore, B1a, B1b, and 

B2 from the peritoneal cavity as well as the immature transitional cells T1, and T2, 

follicular and marginal zone B-cells from the spleen of naïve mice were isolated and 

subjected to methylome analysis. In addition to the DNA methylation analysis, 

transcriptomes of Lag3+CD138hi plasma cells and Lag3-CD138hi plasmocytes of naïve 

and day1 p.i. mice were profiled and integrated with the DNA methylation analyses 

(Table 18). The results of these comparative analyses were partially published (Lino et 

al. 2018).    
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Table 18 Overview of analyzed B-cell subsets. The number of biological replicates for 
the methylome and transcriptome approaches is given for the respective B-cell subset. 
“Day1” labels the Salmonella typhimurium infected cells 24 hours after infection.   

Origin B-cell subtype 
Methylomes 

(n) 
Transcriptomes 

(n) 

Spleen T1 3  

Spleen T2 3  

Spleen Marginal zone (MZ) 3  

Spleen Follicular (FO) 3  

Spleen Lag3- plasma cells naïve (Lag3-) 3 2 

Spleen Lag3- plasma cells day1 (Lag3- day1) 3 2 

Spleen 
Lag3+ plasma cells naïve 

(Lag3+) 
3 2 

Spleen 
Lag3+ plasma cells day1 

(Lag3+ day1) 
3 3 

Spleen Il10eGFP- Plasma cells day1 3  

Spleen Il10eGFP+ Plasma cells day1 3  

Peritoneal 
cavity 

B1a 3  

Peritoneal 
cavity 

B1b 3  

Peritoneal 
cavity 

B2 3  

 

3.2.2 Quality control of transcriptome data 

For the molecular characterization of Lag3+ plasma cells, sorted cells were used for the 

preparation of replicate libraries for sequencing on an Illumina HiSeq2500. The 

transcriptome was profiles by mRNA-Seq, and genome-wide DNA methylation by 

RRBS (see chapter 2.2.4 above, and chapter 2.2.5 on page 47 for more details).  

The following chapters will first cover the transcriptome analyses by which the 

functional differences between naïve Lag3+ plasma cells and naïve Lag3- plasma cells, 

as well as the difference between activated Lag3+ plasma cells and Lag3- plasma cells 

will be determined. Moreover, the molecular processes after activation of Lag3+ plasma 

cells will be analyzed. Following the transcriptome analyses, the methylome 

comparison will deal with both, the distinct features of Lag3+ plasma cells and their 

origin. The subsequent integrated analysis will highlight the basic programmatical 

differences that define the identity of Lag3+ plasma cells. 
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The data quality of the sequenced mRNA libraries was assessed by evaluation 

of various features of the mapped sequencing reads. The exonic rate was similarly high 

and the intronic rate similarly low among the samples, indicating a proper distribution 

of the reads across exons and reflecting a high-quality transcriptome profile. The 

number of detected genes was in the range of 13,000-18,000, which reflects a gene 

repertoire of highly specialized cells. Ribosomal RNA was nearly not detected in the 

samples. Taken together, the sequencing data represented transcriptomes with high 

quality (Table 19).  

 

 

Table 19 Quality control of sequenced mRNA libraries. 

mRNA-Sequencing 

Sample 
Reads 

sequenced 
Transcripts 

detected 
Genes 

detected 
rRNA 
rate 

Exonic 
Rate 

Intronic 
Rate 

Lag3- R2 67709257 48006 16706 0.001 0.72 0.15 

Lag3- R1 62957878 49819 17875 0.001 0.68 0.17 

Lag3- day1 R1 61729857 46429 15819 0.001 0.74 0.16 

Lag3- day1 R2 88672096 49235 16331 0.001 0.76 0.14 

Lag3- day1 R3 51726966 43251 14647 0.001 0.75 0.15 

Lag3+ R1 30929565 37385 13481 0.001 0.71 0.16 

Lag3+R2 63315503 47683 18216 0.001 0.62 0.20 

Lag3+ day1 R1 30796942 38933 13411 0.001 0.74 0.16 

Lag3+ day1 R2 36308480 38656 13389 0.001 0.74 0.15 
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3.2.3 Transcriptome of Lag3+ plasma cells shows an overall plasma cells 

conformity 

In order to characterize the differences between Lag3+ and Lag3- cells, pairwise 

comparisons of the expression of all detected genes in naïve and 1dpi Lag3+ and Lag3- 

cells were performed. In fact, this first comparative analysis revealed a high correlation 

between both plasma cell types (Figure 3-24A; Pearsosn r=0.96 - 097), indicating an 

overall similar transcriptional profile. The scatterplots also showed subsets of genes 

that were higher expressed in naïve and 1dpi Lag3- cells compared to naïve and 1dpi 

Lag3+ plasma cells. Inspection of these subsets disclosed distinct transcription levels of 

numerous immune globuline variable heavy and light chains between these plasma cell 

types (Appendix Table 22). The evaluation of the highest expressed genes in the 

respective cell subpopulations showed, as expected from plasma cells, a predominat 

and remarkably high expression of immune globuline components (Figure 3-24B). The 

majority of these genes were transcribed at a comparable level, however, some 

exceptions were observed. For instance, Igkv14-126 was higher expressed in Lag3+ 

(naïve and 1dpi) than in Lag3- (naïve and 1dpi). This is of particular interest, since Igkv14-

126 encodes a component of the VH11+Vk14.126+ B-cell receptor (BCR), typical for B1a 

cells (Hardy, Wei, and Hayakawa 2004). Notably, both naïve Lag3+ and Lag3+ isolated 

from infected mice on day 1 p.i. expressed mostly IgM, the first immunoglobulin class 

produced after antigen exposure, indicating that they had not undergone isotype 

switching. In contrast, naïve and day1 Lag3- plasma cells expressed IgA at highest levels 

as well as IgM, IgG, and IgE. 

In summary, the examination and first comparisons of Lag3+ and Lag3- plasma 

cell transcriptomes revealed an overall high similarity, while pointing to a distinct 

repertoire of immune globulins. 
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Figure 3-24 Pairwise comparison of plasma cell transcriptome profiles. A. Pairwise 
correlation of gene expression using RPKM values; Pearson correlation coefficient. B. 
Expression values of the highest expressed genes in the respective plasma cell 
subpopulation.  
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3.2.4 Differential gene expression highlights cell cycle control and immune 

response as the major processes discriminating Lag3+ and Lag3- plasma cells 

To determine the transcriptional variance between Lag3+ and Lag3- plasma cells, 

principal component analysis and hierarchical clustering were performed. Both 

methods revealed a clear separation of Lag3+ plasma cells from Lag3- plasma cells 

(Figure 3-25). Moreover, the distance in PCA (PC2) and the height of the dendrogram 

branches indicated a stronger divergence between Lag3+ naïve and Lag3+ day1 than 

Lag3- naïve and Lag3- day1, indicating a stronger impact of the activation on the cell 

function of Lag3+ cells.  

 

 

 

Figure 3-25 Gene expression variance between Lag3+ and Lag3- plasma cells (naive 
and 1dpi). A. PCA based on the 1000 most variable genes detected in naïve and 1dpi Lag3+ 
and Lag3- plasma cells. B. Hierarchical clustering of full transcriptomes; Manhattan 
distance coupled to ward method represented. 
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To identify significant functional differences discriminating Lag3+ from Lag3- 

plasma cells, a differential analysis on the mRNA-Seq data was performed using the R 

package edgeR (see chapter 2.2.11 on page 53 for more details). Using cutoffs for 

significance of differential expression (pval  0.01; FDR  0.05), 648 DEGs were found 

in the comparison of naïve Lag3+ and naïve Lag3- plasma cells (Figure 3-26). A nearly 

four-fold higher number of DEGs (n= 2280) was found in the comparison of Lag3+ and 

Lag3- plasma cells on day1 after Salmonella challenge, suggesting that their 

transcriptomes became increasingly different after challenge. The majority of the 648 

genes found to be differentially expressed between naïve Lag3+ and naïve Lag3- plasma 

cells were also found in the other comparisons (n= 379+11+60+6), indicating distinct 

ground states of Lag3+ compared to Lag3- plasma cells that are maintained after 

activation. Among all DEGs, 11 genes were found to be differentially expressed 

between Lag3+ and Lag3- and between the naïve and activated state (Figure 3-27A 

lower panel). The function of these genes is not well characterized for plasma cells but 

can be summarized into inflammatory (Pycard, Slamf9, Ifi27l2a, Rsad2, Il2rg), signaling 

(Lpp, Anxa2), and metabolic (Tg, Ada, Ctsz) functions.  
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Figure 3-26 Differential gene expression in plasma cells. A. Diagram showing the 
number of differentially expressed genes (DEGs) resulting from the respective comparison 
(upper panel). The venn diagram displays the number of intersected genes from each 
comparison (lower panel). B. Heatmap representing the gene expression difference of all 
detected DEGs from all comparisons (n= 3851). Row-Z-scores were calculated based on 
RPKM values. 
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Figure 3-27 Gene expression of expressed genes found to differentially expressed in 
all analyzed plasma cells. Related to Figure 3-26A. 

 

 

Among the top DEGs identified by the comparison of naïve Lag3+ and Lag3- 

plasma cells and day1 Lag3+ and day1 Lag3- plasma cells were genes coding for Il10, cell 

surface proteins such as Lag3, CD200, L-Selectin (Sell) and Cxcr3, transcription factors 

such as Egr1 and Egr2, and immune globulins such as IgG and IgE (Table 23, Table 24). 

Lag3 and CD200 are known receptors implicated in negative regulation of immunity 

(Mihrshahi, Barclay, and Brown 2009, 200; Lui and Davis 2018, 3). Thus, CD200 extends 

the mechanisms by which Lag3+ plasma cells mediate regulatory function. Of particular 

interest, the transcription factor Egr2 was shown to regulate the expression of Lag3 and 

Il10 in regulatory T-cells (Tregs) (Zheng et al. 2013; Okamura et al. 2009, 4). This 

suggests a shared program between Tregs and Bregs by which they control the anti-

inflammatory function. The distinct expression of Sell (higher expressed in naïve and 

day1 Lag3+ plasma cells) and Cxcr3 (higher expressed in naïve and day1 Lag3- plasma 

cells) suggests a distinct migratory program to ensure homing to inflammatory sites, 

which also points to potentially distinct regions of origin.  
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A GO-Term enrichment analysis of the 648 DEGs in naïve mice further 

elucidated the differences between Lag3+ and Lag3- plasma cells. Genes higher 

expressed in Lag3- were mainly associated with cell cycle regulation which indicated a 

higher proliferation rate of these cells (Figure 3-28). In contrast, genes higher expressed 

in Lag3+ were related to immune system regulation. Similarly, when comparing 

differentially expressed gene sets in infected mice, cell cycle regulation was the major 

process annotated to genes higher expressed in Lag3- plasma cells (Figure 3-29). 

Interestingly, genes higher expressed in day1 Lag3+ plasma cells were associated with 

chromatin organization, suggesting a restructuring of the chromatin to adapt gene 

expression as a proliferation-independent activation response. 
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Figure 3-28 GO-Term enrichment of differentially expressed genes between naive 
Lag3+ and naive Lag3- plasma cells.  

 

 

 

 

 

Figure 3-29 GO-Term enrichment of differentially expressed genes between Lag3+ 

day1 and Lag3- day1 plasma cells. 
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3.2.5 Transcriptional changes in Lag3+ plasma cells upon Salmonella infection 

The differential analysis of Lag3+ and Lag3- plasma cells before and after Salmonella 

infection revealed an increasingly different transcriptome after challenge (Figure 

3-26A (A),(B)). This raised the question how the cells change after activation. The 

comparison of naïve and day1 Lag3+ transcriptomes highlighted the changes in Lag3+ 

cells after antigen exposure (Figure 3-26A (C)). In total, 593 genes were differentially 

expressed after activation of Lag3+ plasma cells, of which 320 were higher expressed in 

the naïve state and 273 were higher expressed 24h after challenge. The genes higher 

expressed in naïve state were related to cell cycle regulation as well as immune 

response, while the higher expressed genes at day 1 were enriched for immune system 

processes only (Figure 3-30).  

 

 

Figure 3-30 GO-Term enrichment of differentially expressed genes between naïve 
Lag3+ and Lag3+ day1 plasma cells. 

 

Among the top 50 differential genes that were higher expressed in the activated 

cells were genes implicated in metabolic functions (e.g. Tg, Ggta1, Usp18, Ada, Psmd14, 

Ube2l6, Npc2, Cox7a2l), membrane bound proteins (e.g. Lag3, Ly6c2, Ly6c1, Ly6a, 

Slamf9, Vmp1, Fcgr2b), as well as the transcription factor genes Irf7, Phf11b, Phf11d, and 

Stat1, involved in the transcriptional activation of cytokines (Appendix Table 25). The 

closer inspection of the 50 most differentially expressed genes of day1 Lag3- plasma 

cells actually showed that many of the upregulated genes found in Lag3+ plasma cells 

were also upregulated in Lag3- plasma cells after activation (Appendix Table 26). This 

was also displayed by the high overlap shown in the venn diagram in Figure 3-26A. 

Consequently, another strategy was applied to identify genes that were up- or 
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downregulated solely in activated Lag3+ plasma cells. From the 594 DEGs 

discriminating naïve and day1 Lag3+ plasma cells, genes were excluded that showed the 

same direction of expression fold change when comparing the gene expression of Lag3- 

plasma cells before and after activation. This resulted in 178 genes that were 

downregulated only in Lag3+ plasma cells after activation and 122 genes that were 

upregulated only in Lag3+ plasma cells after activation (Figure 3-31). The majority of 

genes that were downregulated in Lag3+ cells after infection were related to cell 

division. Of note, the genes in this group were expressed at very low levels, which 

indicated a low level of cell division in the naïve cells and an even lower rate in the 

activated state (Table 20, Appendix Table 27). Moreover, a reduction in the expression 

of IgG (IgG2b, IgG2c) could be observed in Lag3+ plasma cells after infection, while the 

IgG expression in Lag3- plasma cells remained the same. Genes that were upregulated 

only in Lag3+ plasma cells upon infection, were involved in processes related to cell 

activation and rapid immune response such as signal transduction, translation and 

protein transfer (Table 20, Appendix Table 28). In addition, various Igkv genes were 

identified to be highly upregulated after infection in Lag3+ cells, representing unique 

BCR combinations.  

Among the genes with unique expression profiles, Enpp1 and Cbfa2t3, are of 

particular interest as they can be implicated in Il10 expression of day1 Lag3+ plasma 

cells. ENPP1 encodes the plasma cell alloantigen 1 (PC1) protein which is expressed by 

a subset of Il10 expressing B1a cells in the human (H. Wang et al. 2012). B1a cells that 

do not express PC1 also do not express Il10 which suggests a co-expression of these 

proteins. Moreover, PC1 expressing B1a cells were shown to have a protective function 

during pregnancy by participation in tolerance induction toward the fetus, further 

demonstrating the regulatory function of this co-expression (Schumacher et al. 2018). 

Cbfa2t3 is a transcriptional corepressor which facilitates transcriptional repression. This 

repressor was expressed at the same level in Lag3-, day1 Lag3- and naïve Lag3+ plasma 

cells and was strongly reduced in day1 Lag3+ plasma cells (Appendix Table 27). The 

reduction of a repressor in turn may activate the transcription of its target genes. 

Hence, further studies on the target genes of this repressor would be helpful to identify 

the transcriptional regulation of Il10.   
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Figure 3-31 Influence of the Salmonella infection on the expression profile in Lag3+ 
plasma cells. Venn diagram displays the number of genes that are downregulated (left) 
and upregulated (right) in Lag3- or Lag3+ plasma cells after infection. The heatmaps 
represent the expression difference of the uniquely up- or downregulated genes. Row z-
scores were calculated using RPKM. 
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Table 20 GO-Term enrichment of genes affected by the Salmonella infection only in 
Lag3+ plasma cells. 

Genes that are downregulated only in 
Lag3+ cells after infection 

 Genes that are upregulated only in Lag3+ 
cells after infection 

Term PValue Term PValue 

Cell cycle 3.16E-14 
Positive regulation of cap-
independent translational 

initiation 
0.016993 

Cell division 7.39E-13 Protein transport 0.019791 

Cellular response to DNA 
damage stimulus 

5.48E-11 Immune system process 0.022298 

Mitotic nuclear division 1.86E-10 
Positive regulation of B-cell 

proliferation 
0.024934 

DNA repair 1.14E-08 Regulation of translation 0.031878 

Mitotic cytokinesis 4.73E-06 
Negative regulation of cell 

growth 
0.03461 

Chromosome segregation 1.00E-05 Regulation of cell shape 0.045096 

Regulation of attachment of 
spindle microtubules to 

kinetochore 
0.001434 

Positive regulation of cellular 
senescence 

0.050125 

Positive regulation of exit from 
mitosis 

0.002431 Transport 0.052671 

Protein ubiquitination 0.003577 
Positive regulation of 

proteasomal protein catabolic 
process 

0.055538 

 

 

3.2.6 Transcriptional control of Il10 production in Lag3+ plasma cells 

The previous analysis pointed to potential transcriptional regulators of Il10 expression. 

Thus, a systematically analysis of the transcription factor repertoire in Lag3+ and Lag3- 

plasma cells was performed to identify more potential Il10 regulators. First, TFs and 

transcription co-factors, gene expression regulators, and general DNA binding proteins 

were identified that were higher expressed in Lag3+ plasma cells 24h after Salmonella 

infection compared to Lag3- plasma cells after infection (Figure 3-32A). Next, the 

differential genes between naïve Lag3+ and naïve Lag3- plasma cells were filtered for 

TFs that were higher expressed in Lag3+ plasma cells (Figure 3-32B). Finally, 22 factors 

were identified with higher expression in Lag3+ plasma cells (Figure 3-32C). Lag3+ 
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plasma cells showed a higher expression of the cell cycle control genes Klf4, Bhlhe40, 

and Bmyc. The higher expression of Hes1 indicated higher Notch signaling activity in 

Lag3+ plasma cells and the higher expression of Fos, Junb, Egr1, Egr2, Cebpb, Irf8, and 

Satb1 suggested a distinct regulatory program. In order to link the expression of these 

factors to the Il10 expression, the DNA sequence of the Il10 locus (40 kb upstream of 

TSS and 30 kb downstream of TTS) was scanned for TF binding sites. In fact, 8 of the 22 

factors had at least one binding site in the Il10 locus (Figure 3-32D, E). Notably, Fos, 

Jun-b, and Egr-2 are known drivers of Il10 expression in other immune cells (Iwasaki et 

al. 2013; Z.-Y. Wang et al. 2005; Yoshida et al. 2012). In addition, the early growth 

response factor 2 Egr2 was also shown to be involved in Lag3 expression in CD4+ T cells, 

along with Blimp-1-mediated induction of Il10 in CD4+ T cells (Iwasaki et al. 2013), and 

their regulatory activity (Okamura et al. 2009). Furthermore, putative repressors of Il10 

expression were identified by filtering the DEGs for lower expression of TFs and 

transcription co-factors, gene expression regulators, and general DNA binding proteins 

in Lag3+ plasma cells (Figure 3-33A, B, C). By comparing the TF binding sites at the Il10 

locus with the resulted TF list, Foxm1 was identified to be the factor that is reduced in 

Lag3+ and has a binding site at the Il10 locus, suggesting potentially negative control of 

Il10 transcription (Figure 3-33D).  

 Previous results suggested a co-expression of Il10 together with Lag3, Cd200 

(Table 23, Table 24) and Pdcd1lg2 (CD273 or PD-L2; flow cytometry analysis by the 

group of Prof. Dr. Simon Fillatreau and validated by mRNA expression: RPKM Lag3- 

naïve 1.06; Lag3- day1 0.86; Lag3+ naïve 2.85; Lag3+ day1 2.01). Accordingly, the DNA 

sequences at these loci were scanned for TF binding motifs to identify factors that bind 

to the Il10 locus and in addition to the loci of Lag3, Cd200, and Cd273. Notably, all 9 

factors previously found to bind at the Il10 locus (Aire, Fos, Junb, Egr1, Egr2, Cebpb, Irf8, 

Satb1, and Foxm1) also had predicted binding sites in the Lag3, Cd200 and Cd273 loci 

(Figure 3-33).   

Taken together, these expression analyses combined with binding motif 

analyses identified 9 factors as putative regulators of the regulatory activity of Lag3+ 

plasma cells. The function of these factors has to be validated in further experiments, 

such as B-cell-specific knock outs or over expression experiments. 
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Figure 3-32 Transcriptional control of programs in Lag3+ plasma cells. A. Expression 
difference between Lag3+ and Lag3- plasma cells (naïve and 1dpi) of transcription factors 
(TFs) that are higher expressed in Lag3+ plasma cells 1dpi. B. Expression difference of TFs 
that are higher expressed in naïve Lag3+ plasma cells. C. TFs that are higher expressed in 
naïve and 1dpi Lag3+ plasma cells compared to naïve and 1dpi Lag3- plasma cells. D. 
Expression difference of TFs that are higher expressed in Lag3+ plasma cells (naïve and 
1dpi) and with TF binding motifs in the Il10 locus. E. Expression levels of the TFs in D.  Row 
z-scores were calculated using RPKM.   
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Figure 3-33 Transcriptional control of programs in Lag3+ plasma cells. A. Expression 
difference between Lag3+ and Lag3- plasma cells (naïve and 1dpi) of transcription factors 
(TFs) that are higher expressed in Lag3- plasma cells 1dpi. B. Expression difference of TFs 
that are higher expressed in naïve Lag3-+ plasma cells. C. TFs that are higher expressed in 
naïve and 1dpi Lag3- plasma cells compared to naïve and 1dpi Lag3+ plasma cells. D. 
Expression levels of Foxm1.  Row z-scores were calculated using RPKM.   

 

 

Figure 3-34 Expression levels of potential regulators of Lag3+ plasma cells. Il10 and 
Lag3 are included as potential target genes of the represented transcription factors. 
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3.2.7 Global DNA methylation profiles 

To delineate the epigenetic status of Lag3+ plasma cells and to relate them 

epigenetically to other B-cells and plasma cells the genome-wide DNA-methylomes of 

naïve Lag3+ plasma cells, naïve Lag3- plasma cells, and peripheral B-cell subsets from 

naïve mice were compared. In addition, Lag3+ plasma cells, Lag3- plasma cells, 

Il10+CD138hi, and Il10-CD138hi cells isolated at day 1 p.i. were included. RRBS on the 

sorted cells covered 3-4 million CpGs per sample and yielded a mean coverage above 

10x. This assured a broad and representative DNA methylation profile (Table 21). 

 

 

Table 21 Quality control of RRBS sequencing data of the analyzed B-cell subsets. 

DNA methylation RRBS 

Cell type 
Number 

of 
replicates 

Average read 
number per 

replicate 

Average 
number of 

covered CpG 
sites 

Mean 
coverage 

MZ 3 78539896 4307863 17 

B2 3 56108154 3745166 17 

T2 3 74758822 3920087 20 

T1 3 81720486 4326240 18 

FO 3 71351059 4325648 18 

B1a 3 70952888 3630778 21 

B1b 3 83341406 4223385 17 

Lag3+ 3 68000054 4413438 14 

Lag3- 3 83785905 4562053 18 

Lag3+ day1 3 30233795 1658746 20 

Lag3- day1 3 33263739 3033639 9 

Il10eGFP+ Plasma cells 
day1 

3 41321783 2743169 18 

Il10eGFP- Plasma cells 
day1 

3 47658459 4063170 11 
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An unsupervised PCA separated B-cells from plasma cells on the major 

component PC1 (Figure 3-35A). Furthermore, the position of B1 cells on PC1 suggested 

similarity of B1 cells to plasma cells (B1a > B1b). PC2 split Lag3+ and Il10+ plasma cells 

from Lag3- and Il10- plasma cells, as well as from other B-cell subsets, and displayed the 

closest proximity to B1 cells. The relative cluster position of Lag3+ and Lag3- plasma 

cells did not change for cells derived from day 1 p.i. as compared to naïve mice. Of note, 

Il10+ and Il10- plasma cells co-localized with Lag3+ and Lag3-, respectively, underlining 

the expression of Lag3 as valid marker for Il10 producing plasma cells. 

 A striking difference in the global DNA methylation level was observed across 

the B-cell subsets and plasma cells. In line with a previous study in human, plasma cells 

displayed the lowest degree of genome wide methylation among all analyzed B-cell 

populations (Kulis et al. 2015) (Figure 3-35B). Loss of methylation predominantly 

occurred in partially methylated domains (PMDs, see chapter 1.1.2 on page 15) (Figure 

3-35C). PMDs usually cover up to 75 % of the entire genome (Salhab et al. 2018). Hence, 

PMDs were responsible for the observed low global DNA methylation in plasma cells. 

Progressive loss of DNA methylation in PMDs is a hallmark of cell differentiation and is 

linked to an increase in heterochromatic marks along with a decrease of gene 

expression (Salhab et al. 2018). This is reflected in the DNA methylation loss in the 

analyzed plasma cells and the relatively low number of detected genes (Table 19). 

Durek et al. 2016 observed a progressive and proliferation-associated global loss of 

DNA methylation in PMDs during the differentiation of memory T-cells, indicating a 

shared mechanism of epigenome and genome organization during lymphocyte 

development. 
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Figure 3-35 Overview of the global DNA methylation in distinct B-cell subsets. A. 
Unsupervised PCA of genome-wide DNA methylation data based on single CpG levels. B. 
Average DNA methylation level in the analyzed B-cell subsets. C. Average DNA 
methylation level of genomic segments identified by the hidden markov model for B-cells 
isolated from the spleen, peritoneal cavity and for plasma cells.  
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3.2.8 Differentially methylated regions reveal intimate relationship of Lag3+ 

plasma cells to B1a cells 

In search for epigenetic states contributing to the separation in PC2 (Figure 3-35A) the 

local DNA methylation differences between Lag3+ and Lag3- plasma cells from naïve 

mice were determined. Using stringent filtering methods (see chapter 2.2.10 on page 

53) 469 predominantly gene-associated DMRs distributed across the genome were 

identified (Figure 3-36A, B). These DMRs not only discriminated naïve Lag3+ plasma 

cells from naïve Lag3- plasma cells, but also separated them in a hierarchical clustering 

along with B1 cells from the other B-cell subsets (Figure 3-36A). Intriguingly, the 

methylation state of a set of these DMRs showed the highest similarity of Lag3+ to B1a 

cells (Figure 3-36A, D). This similarity was the strongest in hypomethylated regions, 

however, was also observed in hypermethylated regions (Figure 3-36C). Including the 

data on plasma cells derived from infected mice revealed the intimate relationship of 

naïve Lag3+, day1 Lag3+, Il10+, and B1a cells (Figure 3-36D). 
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Figure 3-36 Differentially methylated regions discriminating naive Lag3+ and naive 
Lag3- plasma cells. A. Heatmap representing 469 DMRs identified between naïve Lag3+ 
and naïve Lag3- plasma cells. B. Genomic distribution of the 469 DMRs with green dots 
representing the genomic position of hypomethylated regions in naïve Lag3+ plasma cells 
and grey dots representing hypomethylated region in naïve Lag3- plasma cells. C. 
Heatmaps showing the 469 DMRs separated into hypomethylated and hypermethylated 
regions in naïve Lag3+ plasma cells. D. Heatmap representing the mean methylation 
status of the 469 DMRs including the methylation state of infected mice. 

      

 

 

 

 



 
Results and Discussion 140 

Next, the discriminators between Lag3+ and Lag3- of infected mice were 

identified by a pairwise DNA methylation comparison. The search for DMRs between 

day1 Lag3+ and day1 Lag3- resulted in 359 regions (Figure 3-37A). The majority of these 

DMRs (n=291) were higher methylated in day1 Lag3+ plasma cells compared to day1 

Lag3- plasma cells. Inspecting the methylation level of these regions, a generally higher 

methylation was observed in day1 Lag3+ compared to naïve Lag3+ and Il10+ plasma 

cells, while B1a showed the same methylation hypermethylation tendency. The search 

for DMRs between Il10+ and Il10- plasma cells resulted in 369 regions (Figure 3-37B). In 

this case, the majority of the DMRs (n=335) were hypomethylated in Il10+ plasma cells 

compared to Il10- plasma cells. Similar to the previously identified DMRs of naïve Lag3+ 

and naïve Lag3- plasma cells (Figure 3-36D, Figure 3-37C) the methylation level of 

those regions correlated well with naïve Lag3+, day1 Lag3+ and B1a cells.  

These comparisons revealed a preferential epigenetic relationship of Lag3+ 

plasma cells, Il10+ plasma cells to B1a cells. Interestingly, the majority of the identified 

DMRs were exclusively found in the respective comparison (Figure 3-37D), indicating 

activation state dependent local changes. Only three regions were found to be 

differentially methylated in all three comparisons. These DMRs were annotated to 

Biotinidase gene Btd (last exon), Sialyltransferase gene St3gal4 (intron 1), and Tbc1d23 

(30 kb upstream of TSS). Tbc1d23 was shown to be a general inhibitor of innate 

immunity signaling, affecting toll-like-receptor signaling (De Arras et al. 2012). Along 

with the methylation difference, mRNA-Seq data showed a slightly higher expression 

of Tbc1d23 in Lag3+ plasma cell (mean RPKM: day1 Lag3- 3.49; naive Lag3- 3.90; day1 

Lag3+ 4.84, naive Lag3+ 4.55). 
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Figure 3-37 Differentially methylated regions in Lag3+ and Il10+ plasma cells derived 
from infected mice. A. Heatmap representing 359 DMRs identified between day1 Lag3+ 
and day1 Lag3- plasma cells. B. Heatmap representing 369 DMRs identified between Il10+ 
and Il10- plasma cells. C. Heatmap representing 469 DMRs identified between naïve Lag3+ 
and naïve Lag3- plasma cells. D. Overlap of DMRs resulted from the respective 
comparisons. Mean of the methylation is presented in A-C. 
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3.2.9 Epigenetic state of Il10 locus 

A particular local DNA methylation difference was found at the Il10 locus (40 kb 

upstream of TSS and 30 kb downstream of TTS) and further highlighted the closer 

epigenetic relationship of Lag3+ plasma cells (naïve and day1) and B1a cells. The overall 

degree of DNA methylation at this locus was lowest in Il10+ plasma cells, Lag3+ plasma 

cells (naïve and day1), and B1a cells (Figure 3-38A), a hierarchy not following the 

genome-wide level where Lag3- and Il10- plasma cells displayed the lowest degree of 

DNA methylation (Figure 3-35B). Furthermore, Lag3+ and Il10+ plasma cells shared 

distinct patterns of hypomethylated regions around the Il10 gene that overlapped with 

DNase I hypersensitivity sites indicating open chromatin in B-cells (Figure 3-38B). 

These hypomethylated and open regions flanked the Il10 locus up to 50 kb, and were 

thus likely to demarcate regulatory regions. Taken together, the epigenetic signatures 

at the Il10 locus indicated an epigenetic “preprogrammed” permissive state of Il10 

expression in Il10+ plasma cells, Lag3+ plasma cells (naïve and day1), and B1a cells. 

 

 

 

Figure 3-38 Epigenetic state of Il10 locus. A. DNA methylation of Il10 locus (mean ± 
SEM). B. Methylation for covered CpG in the Il10 locus. Coverage weighted average 
methylation of three replicates is represented. The positions of selected CpG are indicated 
by vertical black bars, with the Il10 gene locus depicted. ENCODE B-cell DNase I data is 
represented in the red track.  
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3.2.10 Integrated analysis highlights epigenetic control of crucial factors 

When selecting for genes exhibiting both differential expression and methylation 

between naïve Lag3+ and naïve Lag3- plasma cells, 23 genes were identified including 

Il10, Bcl2, Irf8 and other known B-cell regulators, such as the NF-κB inhibitor  Nfkbiz, as 

well as the apoptosis related nuclear factor Nr4a1 (Figure 3-39A). Of particular interest, 

an epigenetic control of mRNA binding factors such as Zfp36l1, Pdcd4, and Ptbp2 was 

observed. The posttranscriptional regulation of Il10 is focus of current studies since Il10 

mRNA is constitutively transcribed in many cells but the protein is not detected in all of 

these cells (as the case for naïve Lag3+ plasma cells and day1/naïve Lag3- plasma cells; 

Figure 3-39B). It has been shown that AU-rich elements (ARE) in the 3′ UTR of Il10 lead 

to the degradation of its mRNA and in turn to variation of the protein levels (Powell et 

al. 2000). Zfp36l1 has been shown to be a factor that destabilize several cytoplasmic 

ARE-containing mRNA transcripts (Blackshear et al. 2003; Hudson et al. 2004). The 

expression of Zfpl36l1 decreased in Lag3+ plasma cells after infection, which in turn 

could lead to translation of Il10 and emphasizes Zfp36l1 as an interesting candidate in 

posttranscriptional Il10 regulation (Figure 3-39B). However, the lower expression level 

of Zfp36l1, as well as the other mRNA binding factors Pdcd4, and Ptbp2 in Lag3- plasma 

cells points to a complex regulation of Il10 that yet has to be unraveled.  

The integration of DNA methylation and expression of the associated gene 

further displayed an epigenetic control of chromatin modifiers Elmsan1, Jade2, and the 

Hdac1 down-regulator Kctd6. The function of these chromatin organizers is yet not 

clearly defined, and the implicated distinct chromatin modifications have to be 

investigated in the future. 

In conclusion, the observed relationship between gene hypomethylation and 

elevated expression for Il10 and other factors argued for an epigenetically primed 

control of the expression of these genes.  
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Figure 3-39 Integrated analysis of differential expression and differential DNA 
methylation in naïve plasma cell subtypes. A. Relative changes in DNA methylation and 
expression of respective gene. Row z-scores were calculated using RPKM and DNA 
methylation in %. B. Gene expression levels of mRNA binding factors, chromatin binding 
factors and Il10. 
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3.2.11 Discussion 

B-cells are classically known as one of the mediators of humoral immunity. It is 

commonly considered that B-cells differentiate into antibody-secreting cells, known as 

plasma cells, and thereby exert immune responses against pathogens and maintenance 

of immune homeostasis. Their broad implication in cellular immunity was discovered 

and investigated intensively in the past decades. B-cells contribute to T-cell activation 

and expansion by antigen-presentation (Townsend and Goodnow 1998; Bouaziz et al. 

2007). They release a variety of cytokines modulating CD4+ T-cell functions (F. E. Lund 

2008) and are capable to expand Foxp3+ Tregs by releasing TGF-β (Shah and Qiao 

2008). The activation and expansion of Tregs is only one mechanism by which B-cells 

participate in the regulation of cellular and humoral immune responses to pathogens or 

self-antigens. Over the past 10 years, the regulatory function of B-cells has been studied 

intensively and was demonstrated in animal models of e.g. rheumatoid arthritis, and 

systemic lupus erythematosus (SLE) (Carter et al. 2011; Fillatreau et al. 2002). These 

studies led to a wide acceptance of the concept of Bregs as negative regulators of the 

immune system to prevent a pathological autoreactive reaction and protecting from 

uncontrolled inflammation. Further investigation on the mechanisms of action 

revealed that Bregs exert the immunosuppressive function primarily via the production 

of the anti-inflammatory cytokine Interleukin-10 (Il10) (Fillatreau et al. 2002; Mauri 

2010). The Breg-derived Il10 inhibits the proliferation of T-helper-cells, affects the 

expression of pro-inflammatory cytokines by innate immune cells, and alters 

expression of molecules involved in antigen presentation (Couper, Blount, and Riley 

2008). Il10 expressing B-cells can be detected in the spleen of Salmonella typhimurium 

infected mice within a few hours after challenge (Neves et al. 2010). Interestingly, these 

Il10 producing B-cells were identified among CD138hi plasmocytes. Further 

characterization of Il10+CD138hi cells revealed the expression of the inhibitory receptor 

lymphocyte-activation gene 3 (Lag3) as a discriminative surface marker on these cells 

(Lino et al. 2018). However, their precursor in the naïve immune system and 

mechanisms of action are still not completely identified. In order to delineate the 

molecular properties of Lag3+ plasma cells, epigenetic and transcriptomic signatures of 

Lag3+ and Lag3- plasma cells isolated from naïve, as well as Salmonella infected mice 
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(1dpi) were systematically compared in this thesis. Furthermore, DNA methylomes of 

Lag3+, Lag3+ 1dpi, Il10+ 1dpi, Lag3-, Lag3- 1dpi, Il10- 1dpi plasma cells, as well as 

immature and mature B-cells were generated and compared in order to assess the 

possible origin of Lag3+ plasma cells. 

Epigenetic similitude between Lag3+ plasma cells and Il10+ plasma cells reflects their 

close developmental relation 

Similar expression profiles of B-cell receptor/antibody components between Lag3+ cells 

from naïve mice and Lag3+ cells from infected mice corroborated their close relation. 

Moreover, DNA methylation as the hallmark of cell identity and developmental 

memory, was highly similar between Lag3+ cells from naïve mice, Lag3+ cells 1dpi, and 

Il10+ cells 1dpi and differed from the methylomes of Lag3-, Lag3- 1dpi, Il10- 1dpi plasma 

cells and other B-cell subsets. Noteworthy, naïve Lag3+, Lag3+ 1dpi, and Il10+ 1dpi 

displayed the lowest DNA methylation of putative regulatory regions at the Il10 locus, 

reflecting a local regulatory adaptation to rapidly activate Il10 expression. These results 

validated Lag3 as marker of Il10 producing Bregs.   

Transcriptome profiles reveal non-proliferating status of Lag3+ plasma cells  

The differentiation of antibody-secreting plasma cells is associated with B-cell 

proliferation, epigenome remodeling, the expression of plasma cell-specific 

transcription factors, and the expression of cell division related proteins, and usually 

takes up to 3 days (Nutt et al. 2015). The transcriptome analysis of Lag3+ and Lag3- 

plasma cells revealed a decreased expression of genes involved in cell cycle regulation 

in Lag3+ plasma cells. Moreover, the lowest global DNA methylation level was observed 

in Lag3- plasma cells, pointing to a high proliferation rate of these cells. These results 

suggest a non-proliferating state of Lag3+ plasma cells, whereas Lag3- cell population 

comprise proliferating plasmablasts. Intriguingly, the non-proliferating state of Lag3+ 

cells 24h after infection implicates the pre-existence of these cells in the naïve mice 

rather than the activation-dependent conversion of B-cells into plasma cells. This 

characterizes Lag3+ plasma cells as natural regulatory plasma cells. The higher 

expression of genes involved in chromatin organization in Lag3+ cells 1dpi compared to 
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Lag3- 1dpi suggests a remodeling of the chromatin as mechanism to adapt gene 

expression as a proliferation-independent activation response.  

Lag3+ plasma cells display features reminiscent of B1a cells and may be involved in 

the removal of damaged cells 

The principal component analysis of the global DNA methylation of all analyzed cell 

types revealed B1a cells to have the closest relation to Lag3+ (naïve and 1di) and Il10+ 

1dpi plasma cells. Moreover, the signatures of local DNA methylation differences that 

distinguished Lag3+ and Il10+ from Lag3- and Il10- plasma cells showed striking 

similarities to B1a cells. Of all analyzed B-cell subsets, B1a cells showed the lowest 

degree of DNA methylation at regulatory regions at the Il10 locus, suggesting a primed 

state for Il10 expression in these cells. 

The transcriptome analysis revealed a distinct BCR repertoire of Lag3+ plasma cells 

compared to Lag3- plasma cells. Of particular interest, Lag3+ plasma cells (naïve and 

1dpi) expressed Igkv14-126 at significantly higher level than Lag3- plasma cells (naïve 

and 1dpi). This gene encodes the immunoglobulin kappa chain variable 14-126 which is 

a component of the BCR typically found on B1a cells and which recognizes the 

phosphatidylcholine (PtC) that is present in plasma membranes of host cells (Hardy, 

Wei, and Hayakawa 2004). The expression of this BCR by B1a cells is part of their innate-

like function to provide first line of defense against pathogens and auto-antigens 

(Baumgarth 2010). The expression of antibodies of this type can be detected in 

germfree organisms and are so-called natural antibodies which are produced by plasma 

cells derived from activated B1a cells (Bos et al. 1989; Haury et al. 1997; Berland and 

Wortis 2002). Accordingly, the expression of this BCR/antibody component by Lag3+ 

plasma cells links their development to the recognition of auto-antigens such as 

damaged and apoptotic cells, as well as aged red blood cells. This hypothesis is further 

extended by the observation that the apoptosis related nuclear factor Nr4a1 is 

differentially methylated in Lag3+ and Lag3- plasma cells and higher expressed in Lag3+ 

plasma cells. Nr4a1 was shown to mediate anti-inflammatory properties of 

macrophages after the phagocytosis of apoptotic cells to ensures the nonimmunogenic 

clearance of dying cells (Ipseiz et al. 2014). This Nr4a1-dependent process was 
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mediated by the inhibition of NF-κB signaling. In line with this, the NF-κB inhibitor 

Nfkbiz was also differentially methylated and higher expressed in Lag3+ plasma cells. In 

addition, Lag3+ plasma cells expressed Sirpa, encoding the immunoglobulin-like cell 

surface receptor for the so called “don’t eat me’” molecule CD47, at a higher level than 

Lag3- plasma cells (Appendix Table 23) (Bian et al. 2016, 47). This enables Lag3+ plasma 

cells to distinguish between apoptotic and healthy cells and associates them with the 

clearance of apoptotic cells. 

The expression of Enpp1 by Lag3+ plasma cells after Salmonella infection 

furthermore underlines the colse relation to B1a cells. This gene encodes the plasma 

cell alloantigen 1 (PC1) protein and was shown to be co-expressed with Il10 by a subset 

of B1a cells which mediated fetus-tolerance during pregnancy (H. Wang et al. 2012; 

Schumacher et al. 2018).  

Lag3+ plasma cells exert immunosuppressive function by the co-expression of 

multiple inhibitory molecules 

Lag3+ plasma cells distinctly expressed genes coding for several molecules implicated 

in the negative regulation of immunity such as Lag3, PD-L2, CD200, and Tbc1d23. Lag3 

was shown to play immunoregulatory roles on activated CD4+ T-cells (Maruhashi et al. 

2018). The PD-1 ligand PD-L2 dramatically inhibits cytokine production by CD4+ T-cells 

and their proliferation (Latchman et al. 2001). CD200 is a membrane protein expressed 

by a broad range of cell types, including B-cells, T-cells, endothelial cells, and neurons. 

Its interaction with the CD200 receptor, expressed by myeloid cells, mediates an 

immunological inhibitory signal of myeloid cells (Barclay et al. 2002). Tbc1d23 affects 

toll-like-receptor signaling leading to an inhibitory effect of innate immune cells (De 

Arras et al. 2012). The synergistically activity of a variety of molecules involved in 

immunoregulatory mechanisms define more precisely Lag3+ as a regulatory plasma cell 

subset. 

Interplay of multiple mechanisms result in the regulation of Il10 and Lag3 expression 

in Lag3+ plasma cells  

The co-expression of multiple inhibitory molecules together with Il10 raised the 

question for the transcriptional control of these genes. The transcription factor genes 
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Aire, Fos, Junb, Egr1, Egr2, Cebpb, Irf8, and Satb1 were found to be higher expressed by 

Lag3+ (naïve and 1dpi) plasma cells compared to Lag3- plasma cells. In addition, these 

factors had binding sites at the Il10, Lag3, CD200, and Pdcd1lg2 (PD-L2) loci, 

emphasizing an important role in the expression of these genes. The transcriptional 

repressor gene Cbfa2t3 was found to be downregulated in Lag3+ after infection which 

in turn activates the transcription of the target genes. However, the specific function of 

these factors in Lag3+ plasma cells has to be studied by performing B-cell-specific knock 

outs or over expression experiments in order to validate the predicted transcriptional 

control. 

 Noteworthy, the transcription factor Egr2 activates the co-expression of Lag3 

and Il10 in CD4+CD25-Foxp3-regulatory T-cells (Okamura et al. 2009, 4). This indicates 

a shared program between Tregs and Bregs which controls the anti-inflammatory 

function. 

 Il10 mRNA is expressed by a broad range of cell types. However, the protein is 

produced only by some cell types. The regulation of Il10 expression in different immune 

cells is achieved by a complex interplay of signal transduction, epigenetics, 

transcription factor binding and posttranscriptional modifications (Saraiva et al. 2005). 

The DNA methylation data and transcriptome data on Lag3+ and Lag3- plasma cells 

revealed a differential regulation of the mRNA decay activator Zfp36l1. Together with 

the methylation signatures of the Il10 locus, and the predicted binding of certain 

transcription factors, the observed downregulation of Zfp36l1 in Lag3+ plasma cells 

after infection extends the potential mechanisms of Il10 regulation in Lag3+ plasma 

cells. 

Overall conclusion 

In conclusion, Lag3+ plasma cells possess an epigenome status of mature plasma cells 

yet display a distinct epigenetic landscape with features reminiscent of B1a cells. 

Furthermore, the methylome analyses supports the hypothesis that Lag3+ plasma cells 

in naïve mice are the primed precursors of Il10-expressing Lag3+ plasma cells found on 

day 1 p.i., supporting the hypothesis of pre-existing natural Bregs. The combinatorial 

analysis of DNA methylation and gene expression revealed epigenetic programs that 
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controlled expression of key effector genes (such as Il10) and regulatory transcription 

factors (Egr2, Fos, Foxm1). Further studies shall aim at the function of the identified 

potential regulators of Il10 as well as other checkpoint inhibitors.  
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Chapter 4.                                                                                    

Overall Discussion and Outlook 

 

 

One single fertilized egg can give rise to a multitude of distinct cell types forming a 

complex mammalian organism. How this fascinating process is achieved is a question 

of high interest and its answer is encoded in the epigenome. Precise temporal and 

spatial orchestration of gene expression by epigenetic mechanisms is required to 

establish functional cellular diversity (see chapter 1.1.1 on page 3). Transcriptional 

regulation shows the highest dependency on the binding of TFs to regulatory elements 

such as promoters, enhancers, and repressors which together form complex regulatory 

landscapes in the non-coding part of the genome (Vaquerizas et al. 2009). Through the 

plethora of epigenetic studies, especially in the case of DNA methylation studies, the 

promoter-centric dogma assuming an anti-correlation with gene expression shifted 

towards a more regulatory perspective in which epigenetic state of distal elements, 

such as enhancers, are closely linked to gene expression in development and disease 

(Carullo and Day 2019; Schübeler 2015; Lister et al. 2009).  

This thesis dissected the molecular diversity of two highly distinct cell type 

compartments. On the on hand, astrocytes from two distinct adult brain regions 

(cerebral cortex and cerebellum) were analyzed by an integrative genome wide 

approach using comprehensive epigenomic and gene expression profiling. Astrocytes 

represent a tissue resident cell type that derives from the same progenitor cell which 

undergoes spatial specification by extrinsic factors (see chapter 3.1.10 on page 110) 

(Bayraktar et al. 2015). Furthermore, mature astrocytes differ in their morphology and 

functionality depending on the distinct neuronal environment in the respective brain 

region (see chapter 3.1.10 on page 111) (W. Todd Farmer and Murai 2017). B-cells and 

plasma cells on the other hand, represent morphologically homogenous, non-resident, 
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circulating cell types that exert their pre-specified and specialized function upon various 

extrinsic signals, and derive from distinct progenitors (LeBien and Tedder 2008).  

Epigenetic signatures provide information on developmental origins  

Despite the distinct characteristics of these cell types, similar conclusions and 

interpretations can be drawn from the epigenomic analyses. For instance, local DNA 

methylation provided information on the developmental origin of the respective cell 

(sub)type and a potential future response. In the case of Lag3+ and Il10+ plasma cells, 

methylation levels of DMRs discriminating these cells from Lag3- and Il10- plasma cells 

were highly similar in B1a cells. In addition, the methylation pattern at the Il10 locus was 

highly similar between Il10-producing plasma cells and B1a cells. Together with other 

observation, these results revealed an intimate relation of Lag3+/Il10+ plasma cells to 

B1a cells and supports the hypothesis that B1a cells contribute as progenitor cells to the 

Lag3+/Il10+ plasma cell population. Moreover, the strong hypomethylation at the Il10 

locus suggests a priming of B1a cells and Lag3+ for Il10 expression. The DNA 

methylation profiles of astrocytes also shed light on the developmental history of these 

cells even despite the lack of data on potential progenitors. A high number of 

transcription factors involved in brain cell development were differentially methylated. 

Noteworthy, differential methylation was not predominantly associated with 

differential expression (Figure 3-17), but rather represented long-lasting epigenomic 

signature of transient expression during cell development (Mo et al. 2015). Mo et al. 

identified hypermethylated regions flanking TF genes that are transiently expressed 

and shape neuronal subtype identity, while the respective gene body remained 

unmethylated (Mo et al. 2015). Such a signature can be observed at the Zic1/Zic4 locus, 

where the gene bodies are unmethylated in both astroglia populations and the flanking 

regions show hypermethylation in the Zic1/Zic4 non-expressing CTX astrocytes (Figure 

3-21). This methylation pattern is accompanied by closed chromatin in CTX astrocytes 

ensuring inactivated expression despite the absence of DNA methylation. On the on 

hand, this demonstrates one possible approach how DNA methylation of adult cells 

captures the developmental history, and on the other hand, this example remarkably 

demonstrates the benefit of integrating chromatin accessibility to infer gene 

expression. Furthermore, hypomethylated regions in the cortical astrocytes were 
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enriched for binding sites of Lhx2, a TF broadly expressed in the cortex and involved in 

cortical neurogenesis (Godbole et al. 2018). This observation is indirectly supporting the 

hypothesis, that neurons and astrocytes maintain the transcriptional program 

established in common regional pre-specified progenitors in order to imprint a region-

specific functionality. This interpretation is further supported by the region-specific 

open chromatin regions and expression of respective region-specific TFs and was 

discussed in chapter 3.1.10. This demonstrates how detangling epigenomic data 

generated from terminally differentiated cells can provide information on cell 

development without the direct comparison with epigenomic data of the progenitor 

cell.  

Distal regulatory regions determine cell identity 

In both cases, astrocytes and B-cells, DNA methylation differences that delineated the 

respective cell subtypes were predominantly identified at intergenic and intronic 

regions. This extends the current discussions that epigenetic states at distal cis 

elements rather than promoter regions determine the cell identity, as was 

demonstrated in e.g. stem cells and neuronal progenitors, with evidence in astroglia 

subpopulations and plasma cell subpopulations (Stadler et al. 2011). However, caution 

has to be taken since the distribution of DMRs identified by using RRBS is biased due to 

the usage of a sequence-specific endonuclease and a WGBS approach would provide 

more robust conclusions (Figure 1-7). Nevertheless, HaeIII-RRBS provides a valid 

approximation to WGBS and the observed predominant enrichment of astrocyte DARs 

at intergenic and intronic regions affirms the conclusion of enhancer-driven cell 

diversity.  

Concluding remarks on integrative analyses 

Integrating multi-omics data paves the way for a more refined understanding of 

transcriptional regulation. However, the integration is challenging due to various 

factors that will be discussed in the following. Firstly, regulatory elements need to be 

defined and identified and secondly, they need to be associated with the right target 

gene. The identification of regulatory regions can be addressed in different ways. For 

instance, by defining enhancers via the co-occurrence of H3K27ac, H3K4me1 and 
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absence of H3K4me3, via binding of enhancer associated protein p300, or via TF binding 

prediction using DNA accessibility data (Schmidt et al. 2017; Visel et al. 2009; Ernst et 

al. 2011). ChIP Seq data as well as DNA accessibility data are usually processed using 

peak calling algorithms to determine the presence or absence of the respective 

enrichment. Peak calling, however, is not trivial and has limitations by setting 

thresholds for signal-to-noise ratios (Koohy et al. 2014). Furthermore, technical reasons 

such as cell number can limit an accurate detection of enriched regions (Gilfillan et al. 

2012). The binary output from the peak caller can further be analyzed by ChromHMM 

using a multivariate hidden Markov model to identify chromatin-state signatures (Ernst 

and Kellis 2017). However, the focus on the qualitative signal limits the data 

interpretation by excluding quantitative differences.  

 Various distinct approaches have been proposed to assign putative regulatory 

regions to their target genes. These different approaches are based on biological 

evidence that regulatory elements affect either the gene with the lowest genomic 

distance or influence the expression of a gene located at great genomic distances of up 

to hundreds of kilobases by loop formation (Rada-Iglesias et al. 2011; G. Li et al. 2012). 

Methods based on physical interactions of genomic regions such as Hi-C and ChIA-PET 

enable the mapping of direct interactions between enhancers and promoters of the 

target gene (Fullwood and Ruan 2009; Yao, Berman, and Farnham 2015). A different 

approach is to use correlation-based methods to link enhancer state, defined by DNase 

I-Seq or histone modifications, with the expression of nearby genes (Ernst and Kellis 

2017; Yao, Berman, and Farnham 2015).  

As pointed out above, there is no golden standard in integrative multi-omics 

analyses. Several factors will influence the results and consequently the 

interpretations. It is therefore all the more important to clearly describe the approaches 

used to integrate epigenomic data with gene expression data in order to recognize 

potential limitations of the analysis. In this work, putative regulatory regions were 

defined by differential DNA methylation or differential DNA accessibility. This 

definition is prone to result in the identification of false positives since DNA methylation 

differences are not always associated with distinct TF binding, but e.g. can reflect 

distinct proliferation states. In addition, a distinction of 5-mC and 5-hmC is not possible 
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with the standard procedure of RRBS. Hence, hypermethylation might partially 

represent an enrichment of 5-hmC at enhancer regions which is currently discussed to 

be an intermediate during active DNA demethylation and in turn leads to an activation 

of the enhancer (Stroud et al. 2011; Hon et al. 2014). Further, a subset of regulatory 

regions was defined by the overlap of at least 1bp of DMRs and DARs. This reduces the 

accurate prediction of all regulatory regions since the DMR detection is based on RRBS. 

Nevertheless, one ends up with a good approximation of regulatory regions by using 

these simple approaches. Finally, the putative regulatory regions were assigned to the 

closest gene which does not take long-range interactions into account. Ideally, the 

predicted involvement of certain loci in transcriptional regulation of genes should be 

validated by assays such as luciferase reporter assay, or genome editing using the 

CRISPR/Cas9 system (Sander and Joung 2014). 

 In conclusion, comprehensive integrated analyses are just beginning to be 

systematically approached. A great effort and contribution to elucidate the regulatory 

roles of the epigenome and its influence on cell identity was done by the epigenomic 

consortia like ENCODE, Roadmap, DEEP and IHEC that provided a deluge of 

epigenomic data and standardized methods and analyses (The ENCODE Project 

Consortium 2012; Roadmap Epigenomics Consortium et al. 2015; 

http://www.deutsches-epigenom-programm.de/; http://ihec-epigenomes.org/). The 

data produced for this thesis extends the currently available murine epigenomic data 

and provide a valuable resource for future hypothesis-driven experiments. 

4.1 Outlook 

As pointed out in the previous discussion, the CRISPR/Cas9 editing enables highly 

specific targeting of regulators which holds the key to validation of the derived 

hypotheses on regulatory regions. In addition, the predicted activity of Lhx2 and 

Zic1/Zic4 needs to be validated. One possibility would be to determine functional 

consequences of an astrocyte-specific loss of function of Lhx2 or Zic1/Zic4 in the cortex 

or cerebellum, respectively. Another possible validation of their activity would be a 

Lhx2/Zic1/Zic4 immunoprecipitation to verify binding sites and identify target genes. 

Besides the validation of the results, it would also be interesting to perform similar 

http://www.deutsches-epigenom-programm.de/
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assays and analyses using different mouse models. The hGFAP-EGFP mouse model 

used in this thesis is known to have a higher recombination rate in perivascular 

astrocytes of the cortex and Bergmann glia of the cerebellum (Nolte et al. 2001). The 

use of Aldh1l1 reporter mice was shown to label astrocytes of the cortex more 

homogenously and would result in a slightly distinct subset of astrocytes (Winchenbach 

et al. 2016; Srinivasan et al. 2016). On the one hand, the comparison of various mouse 

models could reveal a common epigenetic network-specific for each brain region, and 

on the other it would emphasize a strong heterogeneity of astrocytes in the cortex.  

The bulk astrocyte epigenomes and transcriptomes shed light on the basic 

differences of regional astrocytes and provided hypotheses on how they are 

established. Further disentanglement of the cell heterogeneity by single cell 

transcriptomic and epigenomic assays will pave the way to accurately characterize 

molecular properties of astrocytes residing in distinct brain regions. 

 In regard of the observed high expression of Egr2 in Lag3+ plasma cells, and the 

link to the known activation of Lag3 and Il10 co-expression in Foxp3-regulatory T-cells, 

it is necessary to investigate the question whether Il10 producing regulatory B-cells 

share common programs with regulatory T-cells. It will be exciting to test whether 

comparative methylome and transcriptome analyses of Lag3+ Tregs and Lag3+ Bregs 

will reveal a common epigenetic signature for immuno-regulatory function.      
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 Appendix 

 

 

Figure 4-1 Single cell gene expression of genes involved in chromatin organization. 
Related to Table 17. Displayed data were obtained from http://mousebrain.org/ provided 
by the Linnarsson Lab (Zeisel et al., 2018). Values represent the mean expression relative 
to the highest detected expression value. ACTE2 and ACBG cell types correspond to the 
CTX and CB astrocytes from this thesis, respectively. 
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Figure 4-2 Gene expression of chromatin-organizer and -modifier, and histones from 
Boisvert et al. 2018. On the left the mean ± STDEV of the FPKM are shown. On the right 
expression of the same genes are represented as row-Z-scores. CTX= Mean (visual + motor 
+ somatosensory cortex); HTH= Hypothalamus; CB= Cerebellum. 
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Figure 4-3 Major clusters of single astrocytes represented in a T-distributed 
Stochastic Neighbor Embedding (gt-SNE plot), colored by cluster identity (top). Figure 
was obtained from the loom viewer provided by the Linnarsson Lab 
(http://loom.linnarssonlab.org/) (Zeisel et al., 2018). 
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Figure 4-4 Single cell gene expression of selected genes related to chromatin 
organization found to be differentially expressed between CB and CTX astrocytes 
shown on the gt-SNE layout from Figure 4-3 Major clusters of single astrocytes 
represented in a T-distributed Stochastic Neighbor Embedding (gt-SNE plot), colored 
by cluster identity (top). Figure was obtained from the loom viewer provided by the 
Linnarsson Lab (http://loom.linnarssonlab.org/) (Zeisel et al., 2018).Figure 4-3. Boxes in 
the lower left corner display expression values of respective gene obtained from this study. 
Figures were obtained from the loom viewer provided by the Linnarsson Lab 
(http://loom.linnarssonlab.org/) (Zeisel et al., 2018).  
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Figure 4-5 Single cell gene expression of selected genes found to be higher expressed 
in CB astrocytes shown on the gt-SNE layout from Figure 4-3. Boxes in the lower left 
corner display the expression values of respective gene obtained from this study. Figures 
were obtained from the loom viewer provided by the Linnarsson Lab 
(http://loom.linnarssonlab.org/) (Zeisel et al., 2018).  
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Figure 4-6 Single cell gene expression of selected genes found to be higher expressed 
in CTX astrocytes, and Nfi family members shown on the gt-SNE layout from Figure 
4-3. Boxes in the lower left corner display the expression values of respective gene 
obtained from this study. Figures were obtained from the loom viewer provided by the 
Linnarsson Lab (http://loom.linnarssonlab.org/) (Zeisel et al., 2018).  
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Figure 4-7 In situ hybridization of early specification factors in mouse E11.5 embryos. 
Colored based on the stronger expression in CB or CTX. Circles indicate cortical (reddish) 
and cerebellar (green) brain regions. Images were obtained from the Allen Developing 
Mouse Brain Atlas. 
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Table 22 Mean gene expression of immune globulins in the analyzed plasma cell 
subtypes. 

Symbol Lag3+  
Lag3+ 
day1 Lag3- 

Lag3- 
day1  Symbol Lag3+  

Lag3+ 
day1 Lag3- 

Lag3- 
day1 

Ighe 2.61 4.55 78.45 140.41  Ighv14-3 10.42 24.83 115.32 154.19 

Ighg2b 6070.52 1585.17 
39132.7

6 35671.95  Ighv1-43 0.51 4.21 8.58 9.51 

Ighg2c 3713.04 1444.17 
30590.

01 31379.09  Ighv14-4 6.07 13.60 46.18 98.09 

Ighg3 792.35 430.55 5743.51 7381.58  Ighv1-47 1.51 6.49 47.86 64.41 

Ighj1 15.82 38.05 144.14 78.26  Ighv1-49 1.15 0.00 3.87 6.61 

Ighj3 8.70 38.94 118.62 161.27  Ighv1-5 7.26 7.90 55.68 162.33 

Ighj4 12.35 34.87 151.31 171.55  Ighv1-50 3.88 7.06 47.90 146.93 

Ighm 
166413.

97 257023.15 
86381.

97 80636.36  Ighv15-2 0.43 0.75 37.10 6.04 

Ighv10-1 13.41 80.76 100.71 180.79  Ighv1-52 4.43 5.53 44.23 69.22 

Ighv10-3 11.08 34.42 125.73 147.65  Ighv1-53 22.61 91.44 237.90 427.80 

Ighv1-12 7.12 24.77 90.26 119.37  Ighv1-54 5.19 7.89 56.84 95.28 

Ighv1-18 28.88 36.17 288.40 384.63  Ighv1-55 37.44 78.63 377.04 545.65 

Ighv1-19 28.78 46.75 364.49 292.54  Ighv1-56 2.04 1.20 10.15 22.84 

Ighv1-20 2.31 4.66 22.87 32.19  Ighv1-58 8.47 17.57 81.98 208.48 

Ighv1-22 21.40 30.77 177.14 331.36  Ighv1-59 17.93 30.62 175.28 241.99 

Ighv12-3 1.14 3.25 11.21 29.44  Ighv1-61 12.29 21.56 104.72 180.98 

Ighv1-26 73.69 123.40 586.24 1051.85  

Ighv1-62-
1 1.44 0.75 2.81 9.84 

Ighv1-31 7.04 14.62 78.76 110.79  

Ighv1-62-
2 15.94 42.75 119.07 256.05 

Ighv13-2 1.11 8.56 16.66 32.62  

Ighv1-62-
3 11.44 21.18 78.95 129.51 

Ighv1-34 11.80 20.88 138.94 129.01  Ighv1-63 4.34 8.80 25.77 216.75 

Ighv1-36 3.82 5.16 11.25 23.83  Ighv1-64 19.44 57.09 236.12 388.71 

Ighv1-37 0.75 2.73 3.81 62.24  Ighv1-66 9.16 11.68 78.56 66.89 

Ighv1-39 41.34 64.63 293.09 560.16  Ighv1-67 1.58 0.61 2.53 5.02 

Ighv1-4 2.40 9.13 39.15 45.14  Ighv1-69 6.53 15.77 51.29 144.32 

Ighv14-1 3.28 9.88 36.07 62.95  Ighv1-7 2.61 10.41 47.60 70.56 

Ighv14-2 7.23 21.07 67.45 117.24  Ighv1-71 0.32 0.92 2.95 9.65 

Ighv1-42 4.58 10.39 66.81 115.02  Ighv1-72 15.22 32.10 127.73 207.24 

Ighv1-77 4.84 8.05 47.17 52.65  Ighv1-74 8.60 29.26 99.76 234.55 

Ighv1-78 12.36 46.61 156.85 290.81  Ighv1-75 7.38 30.89 207.76 263.25 

Ighv1-80 10.36 14.18 94.87 174.44  Ighv1-76 12.66 35.28 187.63 309.80 

Ighv1-81 17.38 18.30 115.44 205.50  Ighv5-9-1 9.13 34.13 73.63 169.56 

Ighv1-82 18.65 28.26 164.05 338.82  Ighv6-3 16.59 142.52 120.21 256.55 

Ighv1-84 3.47 13.35 66.01 85.76  Ighv6-6 8.55 109.43 79.99 172.59 

Ighv1-85 4.00 11.37 53.06 70.94  Ighv7-1 5.54 28.40 68.70 100.24 

Ighv1-9 22.94 42.25 281.77 397.77  Ighv7-3 11.76 72.01 83.97 144.95 

Ighv2-2 8.41 41.71 143.25 173.01  Ighv7-4 0.43 3.59 2.78 11.74 

Ighv2-3 7.36 27.41 92.52 183.91  Ighv8-12 7.05 30.62 88.07 115.84 

Ighv2-4 4.13 6.98 45.03 26.04  Ighv9-1 1.77 6.65 38.25 51.86 

Ighv2-5 2.61 13.27 29.99 42.79  Ighv9-2 5.39 6.92 60.94 75.83 

Ighv2-6 2.37 25.23 18.37 127.31  Ighv9-3 23.35 60.08 309.78 264.01 

Ighv2-6-
8 0.46 4.22 4.67 13.80  Ighv9-4 10.07 16.59 68.88 89.76 

Ighv2-9 2.23 16.26 16.56 36.07  Igkc 
106869

9.95 
1263315.2

9 
765997.

23 
761523.0

5 

Ighv2-9-
1 4.32 15.68 58.36 97.51  Igkj1 580.39 1270.37 1107.54 978.90 

Ighv3-1 10.27 27.63 77.38 95.97  Igkj4 427.45 1022.67 711.59 734.77 

Ighv3-3 0.62 0.92 3.44 2.32  Igkv10-94 
2526.9

0 5617.02 4373.53 5296.12 

Ighv3-5 1.96 8.28 17.61 24.84  Igkv10-95 167.30 499.46 317.46 262.88 

Ighv3-6 58.43 117.98 548.66 867.30  Igkv10-96 
10053.7

0 18128.74 
18330.2

6 21777.55 

Ighv3-8 9.48 18.03 108.40 121.97  Igkv1-110 8353.43 29829.16 
11548.9

7 13173.79 

Ighv4-1 20.83 90.34 108.30 332.50  

Igkv11-
125 101.03 331.95 245.19 158.86 
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Ighv5-12 5.77 12.55 62.67 65.21  Igkv1-117 
6485.5

2 25844.96 
13080.9

4 12757.48 

Ighv5-15 2.30 3.13 27.21 23.42  Igkv1-122 639.07 1781.72 567.83 559.28 

Ighv5-16 12.77 23.98 99.92 129.47  Igkv1-131 201.31 558.03 236.36 409.46 

Ighv5-17 16.23 39.00 142.66 225.96  Igkv1-132 47.13 260.39 108.13 255.88 

Ighv5-2 1.50 2.66 7.85 7.65  Igkv1-133 531.00 1351.35 672.29 913.25 

Ighv5-4 6.19 33.22 47.76 109.33  Igkv1-135 9567.37 30401.82 
10170.0

6 18544.82 

Ighv5-6 8.72 16.51 103.01 146.24  Igkv12-38 131.33 203.17 306.22 381.47 

Ighv5-9 2.31 4.86 23.40 50.67  Igkv12-41 1611.40 2467.65 3308.26 2762.48 

Igkv12-
98 677.36 2177.83 

1068.3
0 1358.80  Igkv12-44 5713.66 14793.94 6445.17 8103.39 

Igkv1-35 1.41 5.44 2.56 5.15  Igkv12-46 3865.19 8100.30 7805.52 7279.18 

Igkv13-
84 636.00 827.86 

1820.3
4 1291.74  Igkv12-89 

1828.9
6 4595.19 1548.27 1178.69 

Igkv13-
85 0.48 0.09 0.33 0.14  Igkv4-53 2239.77 5373.87 4338.69 3760.84 

Igkv14-
100 976.66 2984.54 

1865.0
6 2037.67  Igkv4-54 34.66 73.53 91.48 89.10 

Igkv14-
111 3255.07 6163.33 

9548.5
2 10290.04  Igkv4-55 1518.37 2980.41 2411.41 2549.13 

Igkv14-
126 

10003.0
7 28975.87 

3352.2
2 2861.16  Igkv4-57 

2200.0
4 4693.35 3820.32 3186.50 

Igkv14-
130 130.39 292.23 385.65 472.53  Igkv4-57-1 1126.28 2515.74 2703.71 2306.08 

Igkv15-
103 4612.90 13342.38 

4652.1
4 6593.78  Igkv4-58 299.91 823.59 858.63 994.60 

Igkv16-
104 4330.55 9163.22 

5158.5
2 4496.23  Igkv4-59 2471.25 7069.66 3712.58 5077.59 

Igkv17-
121 1763.73 2227.06 3775.69 3915.09  Igkv4-61 1076.05 1673.87 3096.42 2251.04 

Igkv17-
127 3179.81 5943.96 6742.71 6436.71  Igkv4-62 189.40 286.09 183.69 367.36 

Igkv18-
36 15.65 33.05 15.69 28.59  Igkv4-63 

1486.0
9 3283.86 1519.82 1807.64 

Igkv1-88 694.87 1981.31 892.69 954.79  Igkv4-68 1531.09 3028.20 2086.41 2562.63 

Igkv1-99 616.43 1723.40 1210.21 961.21  Igkv4-69 422.65 385.31 1645.33 347.29 

Igkv19-
93 8.00 21.20 34.33 24.31  Igkv4-70 583.98 1538.16 945.02 1021.05 

Igkv2-
109 4002.55 12053.07 

5918.7
8 5850.59  Igkv4-71 352.86 643.31 524.46 471.54 

Igkv2-
112 786.30 3462.97 936.66 680.47  Igkv4-72 1020.34 1494.90 3028.11 3287.32 

Igkv2-
137 2531.35 10382.50 3349.53 4349.87  Igkv4-74 549.42 965.15 1006.13 947.72 

Igkv3-1 302.11 471.07 798.97 1107.82  Igkv4-78 36.23 166.63 95.72 61.17 

Igkv3-10 572.91 1336.61 
2250.3

0 1839.83  Igkv4-79 295.41 884.34 540.52 662.96 

Igkv3-12 733.76 1720.90 
2365.3

6 3124.58  Igkv4-80 671.61 1604.58 1395.59 1373.42 

Igkv3-2 1637.28 3228.53 
4890.9

7 4975.51  Igkv4-81 32.94 100.59 27.13 17.74 

Igkv3-3 22.97 88.16 156.69 166.70  Igkv4-86 3906.97 11924.99 2538.74 2224.75 

Igkv3-4 1588.60 3510.77 
3510.9

8 3253.61  Igkv4-90 416.49 1031.61 897.70 1627.25 

Igkv3-5 1400.66 3123.76 3476.10 3733.21  Igkv4-91 1356.30 4251.66 1854.49 2141.28 

Igkv3-7 485.45 1073.17 1658.17 1526.20  Igkv4-92 31.20 96.64 75.18 130.28 

Igkv3-9 53.31 45.72 126.10 107.43  Igkv5-37 60.61 124.15 185.39 174.89 

Igkv4-50 740.62 1677.32 1389.75 1657.57  Igkv5-39 
29323.5

6 43384.78 
42104.2

3 32318.07 

Igkv4-51 44.39 104.92 69.37 81.96  Igkv5-43 3882.43 9271.75 6302.65 7584.13 

Igkv6-14 258.48 452.56 1054.37 930.07  Igkv5-45 1047.89 3010.38 1820.05 2028.85 

Igkv6-15 7095.53 11597.76 
13159.7

7 12306.12  Igkv5-48 4633.18 6646.39 9848.33 10156.36 

Igkv6-17 2049.58 4136.83 
5284.4

3 5521.01  Igkv6-13 840.65 1722.31 1756.55 1559.74 

Igkv6-20 754.64 1479.62 
1929.8

6 1491.24       
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Igkv6-23 5669.43 6440.10 
15337.1

7 19201.06       

Igkv6-25 734.40 2543.31 
2446.8

6 2961.34       
Igkv6-29 149.11 430.39 554.35 426.00       

Igkv6-32 1278.38 1880.32 
3545.4

4 3647.37       
Igkv7-33 394.04 1409.69 146.54 155.03       
Igkv8-16 68.68 449.86 84.36 69.44       
Igkv8-18 81.34 269.95 92.39 120.93       

Igkv8-19 3415.72 8426.03 
3804.5

6 3456.21       

Igkv8-21 1039.27 1928.18 
2616.7

2 4531.62       

Igkv8-24 6811.07 16632.54 
6430.1

9 7029.77       
Igkv8-26 14.01 44.95 4.30 14.75       

Igkv8-27 9998.45 24398.94 
13801.

88 14205.36       

Igkv8-28 1786.08 6503.42 
2907.3

4 3290.64       

Igkv8-30 6987.18 18135.22 
6615.2

0 8495.07       
Igkv9-
120 6948.22 13389.52 

6573.2
2 7506.63       

Igkv9-
123 182.27 574.85 150.46 206.26       
Igkv9-
124 4275.15 9764.94 

2850.7
3 5528.53       

Igkv9-
129 180.56 393.01 265.39 181.35                              
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Table 23 Top 50 genes that are higher expressed in naïve Lag3+ compared to naïve 
Lag3- (left) or higher expressed in naïve Lag3- compared to naïve Lag3+ (right). 

Gene symbol logFC PValue FDR  Gene symbol logFC PValue FDR 

Lag3 4.91 1.33E-07 0.001528 Ighe -4.86 5.86E-07 0.002004 

Cpq 2.35 8.83E-07 0.002004 Ighg3 -2.79 7.65E-07 0.002004 

Vav3 1.96 1.16E-06 0.002004 Cdk1 -1.76 9.26E-07 0.002004 

Bcl2 1.67 1.4E-06 0.002004 Mcm5 -1.81 1.25E-06 0.002004 

Zfp36l1 2.05 1.71E-06 0.002178 Cdc45 -2.12 3.06E-06 0.002981 

Egr1 1.95 2.04E-06 0.002343 Kpna2 -1.41 0.000004 0.002981 

Inpp4a 1.89 3.49E-06 0.002981 Ada -1.14 4.83E-06 0.002981 

Kctd12 1.45 3.66E-06 0.002981 Ighg2c -3.01 4.93E-06 0.002981 

Prg2 1.84 4.22E-06 0.002981 Eno1 -1.34 5.79E-06 0.003164 

Il4i1 2.70 4.59E-06 0.002981 Ncapg -1.84 8.08E-06 0.003273 

Sema6d 1.91 4.65E-06 0.002981 Rrm2 -1.63 8.94E-06 0.003273 

Otud1 1.90 5.44E-06 0.003125 Kif11 -1.64 9.79E-06 0.003273 

Bcl2l15 1.96 6.53E-06 0.003273 Slpi -2.10 9.81E-06 0.003273 

Ppfibp2 1.45 6.68E-06 0.003273 Ighg2b -2.66 1.03E-05 0.003273 

Sirpa 1.32 7.47E-06 0.003273 Ccnb2 -1.69 1.04E-05 0.003273 

Sell 2.59 7.49E-06 0.003273 Nuf2 -2.30 1.26E-05 0.003614 

Jade2 1.31 8.61E-06 0.003273 Cep55 -1.82 0.000014 0.003929 

Krt222 1.45 9.23E-06 0.003273 Spc24 -2.04 1.88E-05 0.004793 

AW112010 1.97 9.69E-06 0.003273 Rfc4 -1.21 0.000021 0.005062 

Klf4 1.94 9.72E-06 0.003273 Nmral1 -1.27 2.18E-05 0.005062 

Rgcc 1.52 1.04E-05 0.00327  Ssr2 -1.57 2.89E-05 0.00615 

Vegfa 2.01 1.06E-05 0.00327  Prelid1 -1.00 3.35E-05 0.00674 

Bhlhe40 2.58 1.08E-05 0.00327  Cdkn3 -1.82 3.49E-05 0.00680 

Ggh 2.00 1.18E-05 0.00346  Cdc20 -1.83 4.37E-05 0.00822 

Oosp2 1.62 1.44E-05 0.00395  Tg -1.33 4.74E-05 0.00840 

Ly6k 1.67 1.48E-05 0.00395  Selm -1.17 4.78E-05 0.00840 

Cd200 1.65 1.77E-05 0.00461  Ighv1-63 -2.70 4.86E-05 0.00840 

Serpina3f 1.45 2.06E-05 0.00506  Ddost -1.15 4.97E-05 0.00840 

Plekha1 1.24 2.13E-05 0.00506  Ahcy -1.19 5.06E-05 0.00840 

Nfkbiz 1.12 2.22E-05 0.00506  Igkv4-69 -1.91 5.10E-05 0.00840 

Ackr3 1.92 2.25E-05 0.00506  Ighv1-75 -4.83 5.12E-05 0.00840 

Rnf130 1.47 2.42E-05 0.00535  NA -3.48 5.12E-05 0.00840 

Snn 1.14 2.87E-05 0.00615  Top2a -1.38 5.61E-05 0.00894 

Egr2 2.55 3.00E-05 0.00627  Ighv15-2 -6.47 6.09E-05 0.00924 

Phlda1 1.47 3.24E-05 0.00665  Tigit -1.83 6.12E-05 0.00924 

Il10 1.57 3.48E-05 0.00680  H2-Eb1 -0.87 6.34E-05 0.00936 

Ephx1 1.93 3.76E-05 0.00719  Spc25 -1.26 6.39E-05 0.00936 

AB124611 1.49 5.07E-05 0.00840  Kif22 -1.89 6.44E-05 0.00936 

Btla 1.34 5.60E-05 0.00894  Tcf19 -1.50 6.58E-05 0.00942 

Irf2bp2 1.15 5.77E-05 0.00907  Mad2l1 -1.14 6.72E-05 0.00942 

Clec2i 1.80 5.85E-05 0.00908  Cxcr3 -2.33 7.37E-05 0.00985 

Pglyrp1 1.31 6.71E-05 0.00942  Igkv3-10 -1.93 7.74E-05 0.01002 

Abhd6 1.49 6.95E-05 0.00962  Pbk -2.26 7.84E-05 0.01002 

Srsf7 0.89 7.30E-05 0.00985  Ighv1-47 -5.14 8.04E-05 0.01004 

Fgf1 3.38 7.36E-05 0.00985  Dnpep -1.03 8.16E-05 0.01008 

Ctss 1.32 7.70E-05 0.01002  Srm -0.92 8.80E-05 0.01021 

Twsg1 1.26 7.88E-05 0.01002  Gstp2 -1.30 9.19E-05 0.01034 

Zswim6 1.46 7.94E-05 0.01002  Tmem97 -1.47 9.61E-05 0.01058 

Gpr18 1.49 8.27E-05 0.01010  Shcbp1 -1.71 9.65E-05 0.01058 

Rtp4 1.62 8.39E-05 0.01010  Cenpe -1.81 9.77E-05 0.01058 
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Table 24 Top 50 genes that are higher expressed in Lag3+ day1 compared to naïve 
Lag3- day1 (left) or higher expressed in Lag3- day1 compared to Lag3+ day1 (right). 

Gene symbol logFC PValue FDR 

 

Gene symbol logFC PValue FDR 

Lag3 5.93 3.40E-09 2.84E-05 Cdk1 -2.83 1.10E-08 2.84E-05 

Vav3 2.96 7.17E-09 2.84E-05 Rrm2 -3.38 1.47E-08 2.84E-05 

Cpq 3.10 1.98E-08 2.84E-05 Kif11 -3.56 1.59E-08 2.84E-05 

Sema6d 2.95 2.88E-08 3.20E-05 Mcm5 -2.92 1.63E-08 2.84E-05 

Rab30 1.99 7.30E-08 5.65E-05 Cep55 -4.38 1.78E-08 2.84E-05 

Btla 2.48 8.11E-08 5.65E-05 Ighg3 -4.07 2.81E-08 3.20E-05 

Bcl2 1.97 9.73E-08 6.21E-05 Top2a -3.28 3.32E-08 3.20E-05 

Prg2 2.32 1.54E-07 7.37E-05 Cdca5 -4.17 3.34E-08 3.20E-05 

Snn 1.82 1.77E-07 7.46E-05 Cdc45 -3.28 6.85E-08 5.65E-05 

Oosp2 2.28 2.06E-07 7.46E-05 Spc24 -4.21 8.30E-08 5.65E-05 

P2rx4 1.72 2.27E-07 7.68E-05 Ccnb2 -3.01 8.36E-08 5.65E-05 

Cd200 2.29 3.33E-07 9.80E-05 Ttk -4.21 1.08E-07 6.39E-05 

Slamf9 2.10 3.51E-07 9.80E-05 Ccr9 -2.45 1.11E-07 6.39E-05 

Ephx1 2.88 3.84E-07 9.80E-05 Prc1 -2.85 1.26E-07 6.91E-05 

Rgcc 1.92 4.09E-07 9.80E-05 Cdc20 -3.82 1.45E-07 7.30E-05 

Otud1 2.20 4.24E-07 9.93E-05 Ighg2b -4.46 1.46E-07 7.30E-05 

Pglyrp1 2.09 4.65E-07 0.000104 Brca1 -3.32 1.87E-07 7.46E-05 

Egr1 1.99 4.82E-07 0.000104 Ptgr1 -3.37 1.93E-07 7.46E-05 

Gpr18 2.32 5.91E-07 0.000118 Hmmr -4.38 2.01E-07 7.46E-05 

Dsel 2.84 6.05E-07 0.000118 Ighg2c -4.41 2.03E-07 7.46E-05 

Sesn1 2.25 6.69E-07 0.000124  Foxm1 -6.02 2.09E-07 7.46E-05 

2610035D17Rik 2.17 6.79E-07 0.000124  Kpna2 -1.88 2.13E-07 7.46E-05 

Hsd17b11 1.96 8.53E-07 0.000138  Ube2c -3.72 2.14E-07 7.46E-05 

Ypel3 1.39 9.13E-07 0.000144  Ighv1-63 -4.59 3.04E-07 9.80E-05 

Il13ra1 1.78 9.47E-07 0.000145  Rad51ap1 -3.41 3.28E-07 9.80E-05 

Ggh 2.30 1.02E-06 0.000154  Eno1 -1.76 3.34E-07 9.80E-05 

Vegfa 2.22 1.08E-06 0.000159  Bub1 -3.71 3.43E-07 9.80E-05 

Fam214a 1.44 1.13E-06 0.000165  Nuf2 -3.61 3.81E-07 9.80E-05 

Ly6k 1.94 1.19E-06 0.000166  Mcm10 -4.08 3.87E-07 9.80E-05 

Iglc2 2.54 1.21E-06 0.000166  Ighe -4.92 4.03E-07 9.80E-05 

Egr2 3.22 1.25E-06 0.000168  Tacc3 -2.44 4.05E-07 9.80E-05 

Fez2 1.65 1.31E-06 0.000172  Clspn -4.24 4.10E-07 9.80E-05 

Thbd 2.23 1.41E-06 0.000180  H2-Eb1 -1.47 4.10E-07 9.80E-05 

Kcnmb4os2 1.56 1.51E-06 0.000188  Banf2os -3.38 4.71E-07 0.000104 

Hdac9 1.68 1.58E-06 0.000193  Cdca8 -3.69 4.72E-07 0.000104 

Ptpn6 2.22 1.60E-06 0.000193  Birc5 -3.83 5.00E-07 0.000106 

Ipcef1 1.61 1.63E-06 0.000195  Ncapg -2.45 5.44E-07 0.000114 

Serpina3f 1.68 1.68E-06 0.000198  2810417H13Rik -3.57 5.56E-07 0.000114 

Klf4 2.06 1.74E-06 0.000202  Shcbp1 -3.24 6.14E-07 0.000118 

Sepp1 2.25 1.82E-06 0.000205  Uhrf1 -4.37 6.19E-07 0.000118 

Ppt1 1.50 1.91E-06 0.000210  Ccna2 -3.10 6.67E-07 0.000124 

Itgav 1.52 1.92E-06 0.000210  Cenpe -3.44 7.04E-07 0.000126 

Rasgef1a 2.38 2.07E-06 0.000221  Neil3 -3.78 7.51E-07 0.000133 

Epb41l2 1.49 2.17E-06 0.000223  Pik3r5 -2.47 7.64E-07 0.000133 

Cnst 1.52 2.20E-06 0.000223  Gmnn -1.71 7.97E-07 0.000137 

Tspan32 1.46 2.26E-06 0.000227  Cdkn3 -2.92 8.38E-07 0.000138 

Sell 2.51 2.52E-06 0.000248  Cdca3 -3.39 8.40E-07 0.000138 

Clec2i 2.29 2.55E-06 0.000248  Spc25 -2.02 8.52E-07 0.000138 

Samsn1 1.72 2.61E-06 0.000249  Tyms -1.94 8.87E-07 0.000141 

Ctss 1.71 2.86E-06 0.000265  Cdc6 -2.76 9.48E-07 0.000145 
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Table 25 Top 50 genes that are higher expressed in naïve LAG-3+ compared to LAG-3+ 
day1 (right) or higher expressed in LAG-3+ day1 compared to naïve LAG-3+ (left). 

Symbol logFC PValue FDR  Symbol logFC PValue FDR 

Tg -2.624 1.4E-07 5.6E-04 Ccr9 2.432 1.96E-07 0.00056 

Oasl2 -3.418 1.4E-07 5.6E-04 Trim7 2.270 3.22E-06 0.00231 

Slamf9 -2.716 1.5E-07 5.6E-04 Ccr10 2.660 3.68E-06 0.00249 

Lgals3bp -2.091 2.8E-07 6.2E-04 AI504432 1.645 5.34E-06 0.00323 

Tgtp2 -3.175 3.2E-07 6.2E-04 NA 1.498 6.00E-06 0.00330 

Ly6c2 -2.237 5.1E-07 8.1E-04 Foxm1 4.491 6.03E-06 0.00330 

Rtp4 -2.669 5.9E-07 8.1E-04 Itgb7 2.386 6.51E-06 0.00340 

Pik3cg -1.601 6.4E-07 8.1E-04 Cbfa2t3 2.332 7.29E-06 0.00355 

Ifitm3 -2.014 8.2E-07 9.4E-04 Fhit 3.201 7.72E-06 0.00355 

Isg15 -2.211 9.0E-07 9.4E-04 Pycard 1.263 9.56E-06 0.00407 

Ly6c1 -3.026 1.3E-06 1.2E-03 Rapgef1 2.235 1.18E-05 0.00424 

Gbp10 -1.968 1.3E-06 1.2E-03 Pik3r5 1.884 1.38E-05 0.00443 

Zbp1 -1.624 1.5E-06 1.2E-03 Osbpl3 2.451 1.42E-05 0.00443 

Pydc4 -1.866 2.6E-06 2.0E-03 H2-Eb1 1.044 1.48E-05 0.00443 

Tgtp1 -3.331 4.1E-06 2.6E-03 Rasgrp2 1.338 2.29E-05 0.00607 

Xaf1 -1.715 7.6E-06 3.5E-03 Ccnd2 1.300 2.33E-05 0.00607 

Ada -1.073 8.9E-06 3.9E-03 Sspn 2.071 2.35E-05 0.00607 

Usp18 -1.825 1.0E-05 4.2E-03 Ltb 2.373 2.38E-05 0.00607 

Gm43302 -1.762 1.1E-05 4.2E-03 Chka 2.208 2.62E-05 0.00640 

Ifi47 -1.601 1.1E-05 4.2E-03 Cbll1 1.297 2.89E-05 0.00692 

Stat1 -1.371 1.2E-05 4.2E-03 Runx2 2.149 3.07E-05 0.00694 

Gm5431 -2.353 1.3E-05 4.4E-03 Kif11 1.596 3.25E-05 0.00712 

Phf11b -1.683 1.4E-05 4.4E-03 Ctse 1.048 3.29E-05 0.00712 

AW011738 -1.400 1.5E-05 4.4E-03 Il2rg 1.038 3.74E-05 0.00767 

Npc2 -1.386 1.5E-05 4.4E-03 Usp2 2.966 4.71E-05 0.00917 

Herc6 -1.822 1.5E-05 4.4E-03 Cep55 1.945 4.95E-05 0.00948 

Serpina3f -1.414 2.4E-05 6.1E-03 Cdca5 1.982 5.17E-05 0.00974 

Lamp2 -1.260 2.6E-05 6.4E-03 Bhlhe40 2.099 6.38E-05 0.01062 

Vmp1 -1.176 3.0E-05 6.9E-03 Smim3 1.985 7.14E-05 0.01131 

Phf11d -2.006 3.1E-05 6.9E-03 Nfkbid 1.765 7.19E-05 0.01131 

Psmd14 -1.191 3.5E-05 7.4E-03 Ryr1 1.320 7.65E-05 0.01183 

Ggta1 -0.985 3.7E-05 7.7E-03 Cntnap1 2.631 8.03E-05 0.01183 

Rsph1 -1.502 4.1E-05 8.3E-03 Ccdc17 1.134 8.54E-05 0.01200 

Ube2l6 -1.711 4.2E-05 8.3E-03 Ptgr1 1.779 8.54E-05 0.01200 

Ifi204 -1.986 5.3E-05 9.9E-03 Sgpp2 3.052 8.57E-05 0.01200 

Gm11827 -1.632 5.9E-05 1.1E-02 Slc22a15 4.466 9.20E-05 0.01253 

Fcgr2b -0.980 6.1E-05 1.1E-02 Sema4d 1.183 9.42E-05 0.01253 

Gm4955 -1.607 6.1E-05 1.1E-02 Cxcr3 2.838 9.44E-05 0.01253 

Ifi27l2a -2.071 6.1E-05 1.1E-02 Nebl 2.330 9.54E-05 0.01253 

Lgals9 -1.147 6.3E-05 1.1E-02 Ighg2b 1.988 9.84E-05 0.01253 

Atp6v0a2 -1.046 6.4E-05 1.1E-02 Lpp 2.111 0.000109 0.01287 

Ifi27 -1.137 6.9E-05 1.1E-02 H2-Ab1 1.188 0.000112 0.01299 

H2-T22 -0.920 6.9E-05 1.1E-02 Gm10720 6.993 0.000123 0.01350 

Ly6a -1.288 7.8E-05 1.2E-02 Tmem138 2.019 0.000135 0.01424 

Cldn7 -2.970 7.9E-05 1.2E-02 Ttk 1.983 0.00016 0.01584 

Nt5c3 -0.952 8.0E-05 1.2E-02 Spc24 1.860 0.000168 0.01624 

Lag3 -1.923 8.4E-05 1.2E-02 Top2a 1.255 0.000179 0.01667 

Irf7 -1.593 8.9E-05 1.2E-02 Neil3 2.119 0.000182 0.01671 

Cox7a2l -1.146 9.7E-05 1.3E-02 Nek6 1.437 0.000185 0.01671 

A430005L14Rik -1.079 9.9E-05 1.3E-02 Prc1 1.297 0.000185 0.01671 
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Table 26 Top 50 genes that are higher expressed in naïve Lag3- compared to Lag3- 
day1 (right) or higher expressed in Lag3- day1 compared to naïve Lag3- (left). 

Symbol logFC PValue FDR   Symbol logFC PValue FDR 

Rtp4 -3.795 2.6E-08 1.5E-04 NA 1.433 2.7E-06 2.2E-03 

Gbp10 -2.718 4.9E-08 1.5E-04 Igkv4-69 2.289 3.4E-06 2.3E-03 

Oasl2 -3.516 5.6E-08 1.5E-04 Atp1b1 1.424 1.1E-05 4.5E-03 

Lgals3bp -2.300 7.2E-08 1.5E-04 Ctse 1.003 1.6E-05 5.7E-03 

Isg15 -2.770 7.9E-08 1.5E-04 Ltb 2.021 1.9E-05 6.1E-03 

Usp18 -2.992 8.4E-08 1.5E-04 Cd28 1.034 1.9E-05 6.2E-03 

Ifitm3 -2.454 9.3E-08 1.5E-04 Ccdc17 1.168 2.3E-05 6.8E-03 

Gm43302 -2.640 2.1E-07 3.0E-04 Pycard 1.001 2.4E-05 6.8E-03 

Tgtp2 -2.823 4.7E-07 6.0E-04 Trim7 1.523 2.4E-05 6.8E-03 

Ifit1 -3.670 5.9E-07 6.8E-04 Sspn 1.669 2.9E-05 7.8E-03 

Pydc4 -2.010 7.6E-07 8.0E-04 Reln 1.110 3.0E-05 7.8E-03 

Xaf1 -2.049 9.3E-07 8.9E-04 Lpp 2.090 3.8E-05 9.4E-03 

Ly6c2 -1.894 1.3E-06 1.2E-03 Il2rg 0.896 4.7E-05 1.1E-02 

Zbp1 -1.382 3.3E-06 2.3E-03 Snn 0.934 6.5E-05 1.4E-02 

H2-T22 -1.220 3.4E-06 2.3E-03 Gm15513 1.052 7.1E-05 1.5E-02 

Ighv1-63 -3.018 4.3E-06 2.7E-03 Fhit 1.913 8.0E-05 1.6E-02 

Bst2 -1.740 4.6E-06 2.8E-03 Ctso 0.783 1.1E-04 2.0E-02 

Ube2l6 -2.046 5.0E-06 2.8E-03 Anxa2 2.267 1.3E-04 2.2E-02 

Rnf213 -1.320 5.2E-06 2.8E-03 Itgam 1.680 1.3E-04 2.2E-02 

Ifi47 -1.603 5.8E-06 3.0E-03 Il18 1.300 1.4E-04 2.3E-02 

Slamf9 -1.660 6.3E-06 3.1E-03 Rapgef1 1.406 1.6E-04 2.6E-02 

Tgtp1 -2.818 8.1E-06 3.9E-03 Tspan32 0.875 1.8E-04 2.8E-02 

Herc6 -1.797 9.2E-06 4.2E-03 Evi2a 0.838 2.2E-04 3.1E-02 

Ada -0.969 1.0E-05 4.4E-03 Rasgef1a 1.311 2.9E-04 3.9E-02 

Rsph1 -1.603 1.1E-05 4.5E-03 Dnm3 1.193 3.6E-04 4.5E-02 

Ly6a -1.527 1.2E-05 4.6E-03 St6gal1 0.713 3.7E-04 4.5E-02 

Stat1 -1.249 1.4E-05 5.3E-03 Tmem173 0.820 4.2E-04 5.0E-02 

Igtp -1.258 1.4E-05 5.3E-03   

AW011738 -1.258 1.8E-05 6.1E-03 

  

Ly6c1 -2.058 1.9E-05 6.1E-03 

Tg -1.318 2.3E-05 6.8E-03 

Ifi27l2a -2.219 2.4E-05 6.8E-03 

Gm4955 -1.621 2.9E-05 7.8E-03 

Lgals9 -1.155 3.0E-05 7.8E-03 

H2-Q7 -1.168 4.4E-05 1.1E-02 

Ifi204 -1.816 4.4E-05 1.1E-02 

Il22 -5.505 4.5E-05 1.1E-02 

Ifi27 -1.079 6.0E-05 1.3E-02 

Serpina3f -1.179 6.1E-05 1.4E-02 

Parp9 -0.960 7.4E-05 1.5E-02 

Rsad2 -1.682 7.7E-05 1.6E-02 

Ifi35 -0.993 8.0E-05 1.6E-02 

Irgm2 -1.146 8.5E-05 1.7E-02 

Cldn7 -2.727 8.8E-05 1.7E-02 

Mx1 -1.981 8.8E-05 1.7E-02 

Tlr7 -1.504 9.4E-05 1.7E-02 

H2-T23 -1.078 9.8E-05 1.8E-02 

NA -1.232 1.0E-04 1.9E-02 

Ccl5 -2.812 1.5E-04 2.5E-02 

Ighv2-6 -2.741 1.7E-04 2.7E-02 
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Table 27 Genes with unique downregulation in Lag3+ day1 cells 

Symbol 
Lag3- 

day1 R1 
Lag3-

day1 R2 
Lag3- 

day1 R3 
Lag3- R2 Lag3- R1 

Lag3+ 
day1 R1 

Lag3+ 
day1 R2 

Lag3+ R2 Lag3+ R1 

2610524H06Rik 32.12 34.46 36.43 26.47 34.54 7.83 11.47 17.14 18.45 

2810468N07Rik 2.15 1.59 2.11 2.02 2.41 1.07 0.75 2.83 2.39 

Akap1 1.34 1.22 0.89 0.94 0.96 0.18 0.38 0.80 1.02 

Anln 0.86 0.75 0.88 0.53 0.62 0.08 0.02 0.21 0.29 

Apaf1 1.21 1.20 1.24 1.32 1.20 0.60 0.42 0.88 0.93 

Arhgap11a 1.92 1.01 1.88 1.64 1.48 0.16 0.29 0.63 0.95 

Atp2a3 12.39 6.29 11.85 10.93 10.67 3.00 2.08 6.90 5.59 

Brca1 1.19 1.26 1.05 0.74 0.61 0.12 0.11 0.22 0.31 

Btk 7.32 6.29 6.45 6.77 7.42 3.15 3.56 5.36 5.11 

Car2 0.55 0.69 0.79 0.74 0.55 0.09 0.05 0.55 0.76 

Casc5 0.43 0.37 0.44 0.26 0.34 0.05 0.08 0.16 0.30 

Cbfa2t3 7.10 3.93 6.23 8.33 6.48 1.16 1.43 6.48 6.57 

Cbll1 2.61 2.24 2.54 2.57 2.70 1.28 1.21 2.75 3.37 

Ccnb2 11.95 11.04 13.69 12.60 9.35 1.65 1.40 3.03 3.74 

Ccnd2 14.84 11.05 15.03 14.24 15.23 5.43 4.83 12.84 12.41 

Ccr9 2.66 2.74 2.59 3.78 3.02 0.53 0.45 2.80 2.46 

Cdca8 2.59 2.50 2.44 1.69 1.61 0.18 0.20 0.33 0.72 

Celf1 4.27 3.59 4.36 4.17 3.82 2.45 2.61 4.02 4.06 

Chst12 5.65 4.25 6.47 5.65 6.24 2.93 2.79 5.59 4.94 

Cntnap1 0.40 0.42 0.43 0.57 0.46 0.14 0.06 0.57 0.63 

Cpeb2 11.06 8.86 9.50 11.95 10.30 5.36 4.29 8.09 9.07 

D3Ertd254e 0.31 0.39 0.40 0.35 0.48 0.16 0.19 0.57 0.46 

Dnmt1 2.28 1.91 2.47 2.15 1.85 0.84 0.48 1.23 1.76 

Elac2 1.82 1.77 1.73 2.04 1.95 0.91 0.83 1.74 1.57 

Eme2 2.10 1.27 2.01 2.11 2.33 0.97 0.63 1.91 1.75 

Erdr1 21.21 16.67 18.68 25.11 15.76 9.75 8.84 17.42 17.88 

Ermp1 0.95 1.05 0.86 0.92 1.00 0.41 0.58 0.97 0.90 

Fas 6.29 5.82 7.31 7.91 7.68 3.20 2.32 5.15 5.40 

Fmn2 0.15 0.25 0.24 0.19 0.19 0.02 0.03 0.17 0.21 

Gbf1 2.74 1.33 2.56 2.80 2.51 0.87 0.75 2.01 2.78 

Gga3 2.42 1.65 2.34 2.25 2.43 1.61 1.33 2.71 2.56 

Gm22579 26.72 14.89 19.40 24.71 23.53 13.73 8.58 25.95 43.90 

Gmnn 16.67 19.14 20.73 13.88 13.54 5.86 5.68 11.01 9.26 

H2-Eb2 4.88 5.33 5.53 5.03 5.78 2.51 2.60 4.43 4.41 

Hn1 37.21 36.34 41.58 47.10 41.75 18.16 19.77 28.01 32.79 

Hnrnpul2 4.33 3.39 4.50 4.67 4.59 2.40 2.84 5.42 4.49 

Ighg2b 27362.19 24059.34 23646.32 24957.14 32071.51 1329.10 951.04 5481.98 3561.50 

Ighg2c 25677.73 22195.67 18208.49 17542.64 27114.34 1173.53 901.59 3119.29 2435.24 

Iqgap2 0.35 0.20 0.48 0.48 0.38 0.03 0.01 0.23 0.33 

Irf5 4.83 2.84 4.92 3.86 5.26 2.27 2.10 4.61 4.75 

Kmt2b 1.52 0.93 1.36 1.28 1.42 0.55 0.65 1.20 1.19 

Larp1 4.74 3.93 4.72 5.30 4.81 2.99 3.16 4.53 5.06 

Larp4b 4.11 3.46 4.81 3.80 4.38 2.66 2.30 5.10 3.89 

Lat 2.97 3.29 2.83 2.61 2.06 1.03 1.30 2.26 5.80 

Mapk1ip1l 2.62 2.23 2.68 2.28 2.22 1.60 1.55 2.77 3.22 

Med24 1.70 1.31 1.46 1.43 1.82 0.68 0.78 1.35 1.40 

Mum1 0.76 0.53 0.78 0.79 0.72 0.40 0.35 0.89 0.83 

Myc 6.02 5.12 6.31 5.58 4.94 4.01 4.53 10.19 6.78 

Nln 1.48 2.12 2.05 2.58 2.02 0.86 0.92 1.83 2.22 

Pabpc4 5.99 6.25 6.29 5.64 5.22 3.38 4.67 6.84 7.76 

Palm3 0.73 0.26 0.52 0.57 0.53 0.02 0.01 0.34 0.12 

Pfn2 0.47 0.40 0.87 0.59 0.75 0.07 0.22 0.94 0.75 

Prc1 2.12 2.19 2.75 2.11 1.74 0.33 0.32 0.68 0.91 

Prrc2b 1.50 0.82 1.45 1.61 1.57 0.79 0.65 1.64 1.54 

Pycr2 32.90 25.92 29.87 28.23 29.80 12.71 12.88 19.73 25.42 

Racgap1 2.75 2.29 2.65 2.71 1.89 0.53 0.41 0.96 1.34 
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Symbol 
Lag3- 

day1 R1 
Lag3-

day1 R2 
Lag3- 

day1 R3 
Lag3- R2 Lag3- R1 

Lag3+ 
day1 R1 

Lag3+ 
day1 R2 

Lag3+ R2 Lag3+ R1 

Rad51ap1 1.97 1.63 2.19 1.22 1.02 0.18 0.18 0.38 0.48 

Rhbdf2 0.66 0.24 0.46 0.50 0.55 0.09 0.14 0.40 0.70 

Rrm2 30.94 31.72 33.68 20.40 19.78 3.60 2.59 5.40 7.53 

Runx2 1.74 1.02 1.79 2.07 1.51 0.33 0.30 1.27 1.48 

Safb 2.76 2.17 2.47 2.51 2.40 1.17 1.40 2.25 2.73 

Sdad1 2.66 2.35 2.20 2.20 1.99 1.41 1.09 2.67 2.21 

Sema4d 3.22 2.52 2.98 3.06 2.93 0.99 1.11 2.08 2.67 

Serinc5 8.88 9.20 9.63 12.46 11.87 5.61 6.86 10.75 9.44 

Slc39a14 0.89 0.86 0.93 0.87 0.99 0.29 0.18 0.48 0.56 

Slc43a3 5.37 4.39 5.46 3.53 3.87 1.53 1.34 2.23 3.24 

Slc4a7 1.83 1.48 2.09 1.76 1.66 0.88 0.80 1.42 1.60 

Slx4 1.15 0.67 0.88 1.13 1.12 0.18 0.29 0.70 0.60 

Smim3 1.94 2.42 1.85 2.23 1.91 0.45 0.60 1.86 2.29 

Top2a 5.47 5.77 5.70 3.88 3.34 0.50 0.66 1.11 1.66 

U2af2 3.35 3.11 3.61 3.02 4.42 1.91 2.57 4.22 5.33 

Vps52 3.95 2.45 3.57 3.88 3.68 1.59 1.31 3.09 3.61 

Zfp599 0.30 0.37 0.15 0.35 0.26 0.00 0.04 0.35 0.26 
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Table 28 Genes with unique upregulation in Lag3+ day1 cells 

Symbol 
Lag3- 

day1 R1 
Lag3-

day1 R2 
Lag3- 

day1 R3 
Lag3- R2 Lag3- R1 

Lag3+ 
day1 R1 

Lag3+ 
day1 R2 

Lag3+ R2 Lag3+ R1 

Igkv1-110 8124.02 11937.76 7689.99 8807.46 7965.95 23928.29 18914.91 9219.71 3059.28 

Igkv1-117 7509.98 13270.31 6123.28 8170.94 10898.86 21332.98 15823.05 6910.30 2647.44 

Igkv2-137 3264.76 3579.54 2321.49 2464.30 2404.04 8005.36 6887.89 2683.81 1047.97 

Igkv8-28 2021.45 3066.93 1845.26 2007.89 2222.94 5296.19 4049.25 1888.69 744.89 

Igkv2-112 432.96 621.47 379.35 718.36 641.85 2625.75 2339.13 798.48 364.18 

Igkv1-122 358.17 484.78 335.01 477.42 345.53 1542.97 1022.77 650.52 294.28 

Xbp1 489.68 595.28 429.17 394.16 458.01 649.91 711.02 395.83 356.41 

Igkv8-16 27.77 72.05 46.41 74.71 47.41 338.39 306.41 65.83 36.11 

Slamf7 153.07 179.19 145.58 136.15 150.62 235.48 201.44 124.30 86.94 

Igkv4-78 29.38 53.71 45.60 74.39 64.59 163.42 77.66 34.32 19.50 

Rabac1 77.28 119.35 62.80 59.85 94.43 156.26 198.51 78.56 74.93 

Myl12a 59.71 63.42 60.22 51.04 45.19 113.04 124.36 71.84 72.46 

Gabarap 64.48 85.59 60.71 49.71 67.98 107.47 135.53 63.10 58.37 

Cox7a2l 35.59 48.21 34.18 39.29 37.45 100.09 100.43 48.58 42.05 

Cr1l 60.66 68.19 57.99 64.47 60.85 87.18 86.58 62.61 47.99 

Rpl18 51.29 59.17 43.10 43.09 52.33 63.16 74.12 29.88 43.92 

Ypel3 20.86 22.88 18.83 28.43 27.86 56.19 53.53 29.20 33.17 

Rab30 13.14 14.20 12.89 21.59 16.27 53.86 52.86 29.38 31.29 

Tnfrsf13c 27.24 30.05 30.43 23.42 26.99 48.14 51.16 31.74 30.63 

Ppt1 14.15 17.00 14.64 18.42 17.86 46.40 39.81 29.48 22.76 

Rgs10 22.99 24.23 24.70 20.75 22.14 44.97 50.62 29.90 34.12 

Gpx4 16.67 21.96 11.12 19.39 21.06 44.44 40.41 19.58 15.91 

Btla 6.50 8.19 8.47 10.04 8.62 42.35 43.78 27.92 19.52 

Ddrgk1 27.46 28.20 24.48 23.94 24.30 40.03 36.17 22.33 22.06 

Eif4ebp1 17.59 23.27 16.85 16.04 16.79 38.65 45.76 21.63 22.58 

Use1 18.50 18.30 17.98 20.01 18.33 36.89 39.20 27.20 25.44 

Atraid 23.05 23.05 21.80 22.88 22.17 35.09 37.46 23.90 23.98 

Pcbp2 19.18 21.14 15.92 16.50 16.12 31.61 27.71 18.44 13.59 

Mif4gd 9.45 11.43 9.20 8.56 8.81 29.71 23.13 17.42 13.93 

Ppp1r11 18.51 19.68 17.75 14.70 17.36 20.99 25.00 14.21 14.06 

Katna1 7.32 7.78 7.58 6.63 5.75 19.87 15.95 9.50 8.59 

Surf1 11.65 12.73 10.34 11.18 10.90 19.10 17.02 10.79 9.56 

Rab9 9.37 10.44 9.63 9.75 8.46 18.96 18.44 12.00 9.61 

Eif4b 12.21 13.75 11.39 12.15 11.22 18.66 16.08 10.83 10.02 

Epb41l2 5.48 6.37 6.07 5.38 4.53 18.35 15.33 11.25 9.06 

4921524J17Rik 8.61 10.19 8.47 7.01 7.22 16.94 18.71 12.34 9.65 

Far1 9.45 9.64 10.79 7.45 7.83 16.71 17.28 11.17 9.84 

Ctsl 5.34 6.16 4.78 5.13 5.47 14.55 13.73 8.52 7.60 

Il13ra1 4.35 5.12 4.05 3.98 4.06 14.12 16.92 10.59 7.88 

Leprotl1 9.25 10.08 8.40 7.28 8.15 13.36 13.77 8.70 8.44 

Gm11827 3.40 3.09 3.53 2.20 3.53 10.64 9.55 3.48 3.05 

Mfap1b 5.48 5.39 5.50 5.38 5.38 10.60 8.70 6.51 5.78 

Sypl 3.78 3.98 3.74 3.37 2.95 10.25 9.06 5.56 3.96 

Vrk1 5.98 6.98 5.74 5.44 4.82 9.48 8.75 5.34 4.58 

Osbpl9 5.10 6.40 5.70 6.99 5.94 9.34 9.90 6.50 5.71 

Snap23 4.51 5.12 5.05 4.49 4.41 8.61 7.38 5.47 4.35 

Srfbp1 4.18 4.20 3.18 3.28 2.99 8.21 8.09 4.84 4.35 

Cfl2 5.08 5.47 5.13 4.65 3.84 8.04 7.23 5.14 3.97 

Mtpap 5.14 6.06 5.97 5.90 4.63 7.68 6.86 4.49 4.20 

Enpp1 6.24 6.90 5.25 5.06 5.35 7.17 7.88 3.91 4.34 

Bbs9 2.04 2.73 1.92 2.42 2.07 6.30 6.30 3.59 3.26 

Nck1 3.39 3.82 4.32 3.65 3.14 6.12 5.62 3.71 3.57 

Thbd 1.27 1.27 1.57 1.09 1.59 5.23 7.58 2.51 2.12 

Ap5m1 2.77 2.89 3.08 2.89 2.50 4.74 3.73 2.39 2.49 

 


