
Automatic Generation of
Models of Microarchitectures

Dissertation

zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik
der Universität des Saarlandes

von
Andreas Abel

Saarbrücken
2020

Tag des Kolloquiums: 12. Juni 2020

Dekan: Prof. Dr. Thomas Schuster

Prüfungsausschuss:

Vorsitzender: Prof. Dr. Thorsten Herfet

Berichterstatter: Prof. Dr. Jan Reineke
Prof. Dr. Wolfgang J. Paul
Dr. Boris Köpf

Akademischer Mitarbeiter: Dr. Roland Leißa

Abstract

Detailed microarchitectural models are necessary to predict, explain, or
optimize the performance of software running on modern microprocessors.
Building such models often requires a significant manual effort, as the docu-
mentation provided by hardware manufacturers is typically not precise enough.
The goal of this thesis is to develop techniques for generating microarchitec-
tural models automatically.

In the first part, we focus on recent x86 microarchitectures. We implement
a tool to accurately evaluate small microbenchmarks using hardware per-
formance counters. We then describe techniques to automatically generate
microbenchmarks for measuring the performance of individual instructions
and for characterizing cache architectures. We apply our implementations to
more than a dozen different microarchitectures.

In the second part of the thesis, we study more general techniques to obtain
models of hardware components. In particular, we propose the concept of
gray-box learning, and we develop a learning algorithm for Mealy machines
that exploits prior knowledge about the system to be learned.

Finally, we show how this algorithm can be adapted to minimize incompletely
specified Mealy machines—a well-known NP-complete problem. Our imple-
mentation outperforms existing exact minimization techniques by several
orders of magnitude on a number of hard benchmarks; it is even competitive
with state-of-the-art heuristic approaches.

Zusammenfassung

Zur Vorhersage, Erklärung oder Optimierung der Leistung von Software auf
modernen Mikroprozessoren werden detaillierte Modelle der verwendeten
Mikroarchitekturen benötigt. Das Erstellen derartiger Modelle ist oft mit
einem hohen Aufwand verbunden, da die erforderlichen Information von den
Prozessorherstellern typischerweise nicht zur Verfügung gestellt werden. Das
Ziel der vorliegenden Arbeit ist es, Techniken zu entwickeln, um derartige
Modelle automatisch zu erzeugen.

Im ersten Teil beschäftigen wir uns mit aktuellen x86-Mikroarchitekturen.
Wir entwickeln zuerst ein Tool, das kleine kleine Microbenchmarks mithilfe
von Performance Countern auswerten kann. Danach beschreiben wir Tech-
niken, um automatisch Microbenchmarks zu erzeugen, mit denen die Leistung
einzelner Instruktionen gemessen sowie die Cache-Architektur charakterisiert
werden kann.

Im zweiten Teil der Arbeit betrachten wir allgemeinere Techniken, um Hard-
waremodelle zu erzeugen. Wir schlagen das Konzept des “Gray-Box Learning”
vor, und wir entwickeln einen Lernalgorithmus für Mealy-Maschinen, der
bekannte Informationen über das zu lernende System berücksichtigt.

Zum Abschluss zeigen wir, wie dieser Algorithmus auf das Problem der
Minimierung unvollständig spezifizierter Mealy-Maschinen übertragen werden
kann. Hierbei handelt es sich um ein bekanntes NP-vollständiges Problem.
Unsere Implementierung ist in mehreren Benchmarks um Größenordnungen
schneller als vorherige Ansätze.

Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Jan Reineke.
He gave me the freedom to explore my own ideas and was always available
for discussions and to provide guidance. I’m looking forward to continuing
working with him!

I would also like to thank Prof. Wolfgang Paul and Dr. Boris Köpf for reviewing
my thesis, and Prof. Thorsten Herfet for acting as the chair of the examination
board.

Finally, I would like to thank my current and former colleagues at the Real-
Time and Embedded Systems Lab and the Compiler Design Lab. In particular,
I would like to thank Dr. Roland Leißa for serving as the academic assistant
on my examination board.

Contents

1 Introduction 13
1.1 Contributions and Structure of This Thesis 14
1.2 Publications . 19

2 nanoBench: A Low-Overhead Tool for Running Microbench-
marks on x86 Systems 21
2.1 Introduction . 21
2.2 Background . 23

2.2.1 Hardware Performance Counters 23
2.2.2 Assembler Instructions 25

2.3 Features . 25
2.3.1 Example . 26
2.3.2 Generated Code . 27
2.3.3 Running the Generated Code 27
2.3.4 Kernel/User Mode . 29
2.3.5 Interface . 29
2.3.6 Loops vs. Unrolling . 29
2.3.7 Accessing Memory . 30
2.3.8 Warm-Up Runs . 30
2.3.9 noMem Mode . 30
2.3.10 Performance Counter Configurations 31
2.3.11 Execution Time of nanoBench 31
2.3.12 Supported Platforms 32

2.4 Implementation . 32
2.4.1 Accurate Performance Counter Measurements 32
2.4.2 Generating Code . 33
2.4.3 Kernel Module . 34
2.4.4 Allocating Physically-Contiguous Memory 34

2.5 Related Work . 35
2.6 Conclusions and Future Work 36

3 uops.info: Characterizing the Latency, Throughput, and
Port Usage of Instructions on x86 Microarchitectures 39
3.1 Introduction . 40
3.2 Related Work . 42

3.2.1 Information Provided by the Manufacturers 42
3.2.2 Measurement-Based Approaches 43

3.3 Background . 44

9

CONTENTS

3.3.1 Pipeline of Intel Core CPUs 44
3.3.2 Pipeline of AMD Ryzen CPUs 46

3.4 Definitions . 46
3.4.1 Latency . 47
3.4.2 Throughput . 47
3.4.3 Port Usage . 48

3.5 Algorithms . 49
3.5.1 Port Usage . 49
3.5.2 Latency . 52
3.5.3 Throughput . 59

3.6 Implementation . 61
3.6.1 Details of the x86 Instruction Set 61
3.6.2 Measurements on the Hardware 62
3.6.3 Analysis Using IACA 63
3.6.4 Machine-Readable Output 63

3.7 Evaluation . 63
3.7.1 Experimental Setup . 64
3.7.2 Hardware Measurements vs. Documentation 64
3.7.3 Hardware Measurements vs. IACA 67
3.7.4 Interesting Results . 69

3.8 Limitations . 76
3.9 Conclusions and Future Work 77

4 Characterizing Cache Architectures 79
4.1 Introduction . 79
4.2 Background . 81

4.2.1 Cache Organization . 81
4.2.2 Replacement Policies 82

4.3 Cache-Characterization Tools 86
4.3.1 CacheInfo . 86
4.3.2 CacheSeq . 88
4.3.3 Replacement Policies 90
4.3.4 Age Graphs . 92
4.3.5 Test for Adaptive Policies 92

4.4 Results . 94
4.4.1 L1 Data Caches . 94
4.4.2 L2 Caches . 96
4.4.3 L3 Caches . 104
4.4.4 Resetting the Replacement Policy State 109
4.4.5 Implementation Costs 111

4.5 Related Work . 111

10

CONTENTS

4.5.1 Microbenchmark-Based Cache Analysis 111
4.5.2 Influence of the Replacement Policy on Performance

Prediction Accuracy 113
4.5.3 Security Aspects of Replacement Policies 114

4.6 Conclusions and Future Work 115

5 Gray-Box Learning of Serial Compositions of Mealy
Machines 117
5.1 Introduction . 118
5.2 Problem Statement . 119

5.2.1 Basic Notions . 119
5.2.2 The Gray-Box Learning Problem 120

5.3 Preliminaries . 121
5.4 Approach . 122

5.4.1 Observation Tables . 123
5.4.2 Inference Algorithm . 126

5.5 Implementation . 128
5.5.1 Computing the Partitions 128
5.5.2 Reachability of the Error State 131
5.5.3 Checking if Two Machines are Right-Equivalent 131
5.5.4 Handling Counterexamples 132

5.6 Evaluation . 132
5.7 Related Work . 134
5.8 Conclusions and Future Work 135
5.A Appendix: Proofs for Chapter 5 136

6 MeMin: SAT-Based Exact Minimization of Incompletely
Specified Mealy Machines 139
6.1 Introduction . 139

6.1.1 Outline . 141
6.2 Definitions . 141

6.2.1 Basic Definitions . 141
6.2.2 Problem Statement . 143
6.2.3 General Approach . 143

6.3 Related Work . 144
6.4 Approach . 146

6.4.1 Incompatibility Matrix 147
6.4.2 Encoding as a SAT Problem 147
6.4.3 Computing a Partial Solution 149

6.5 Implementation . 149
6.5.1 Dealing with Partially Specified Outputs 149

11

CONTENTS

6.5.2 Dealing with Partially Specified Inputs 150
6.5.3 Undefined Reset States 150

6.6 Evaluation . 150
6.6.1 Benchmarks . 151
6.6.2 Evaluation of MeMin 155
6.6.3 Other Tools . 155
6.6.4 Experimental Setup . 158

6.7 Conclusions and Future Work 158
6.A Appendix: Complete Benchmark Results 159

7 Summary, Conclusions, and Future Work 165
7.1 Summary and Conclusions . 165

7.1.1 Models of Recent Microarchitectures 165
7.1.2 General Models . 166

7.2 Future Work . 167

Bibliography 169

Index 197

12

1
Introduction

Modern microprocessors are among the most complex man-made systems.
As a consequence, it is becoming increasingly difficult to predict, explain, or
optimize the performance of software running on such microprocessors. As a
basis, one needs detailed models of their microarchitectures.

Such models are, for example, required to build optimizing compilers, worst-
case execution time (WCET) analyzers, cycle-accurate simulators, or self-
optimizing software systems. Similarly, such models are necessary to show
the presence or absence of microarchitectural security issues, such as Spectre
and Meltdown [KHF+19, LSG+18]. Finally, detailed knowledge of microar-
chitectural details is also helpful when manually fine-tuning a piece of code
for a specific processor.

Unfortunately, the documentation provided by hardware manufacturers is
usually not detailed enough. To build microarchitectural models, engineers are
thus often forced to perform measurements using microbenchmarks. Existing
approaches typically require a significant amount of manual effort, and the
results are not always accurate and precise.

The goal of this thesis therefore is to develop techniques for generating detailed
models of microarchitectures automatically.

In the first part of the thesis, we focus on recent x86 microarchitectures.
In particular, we develop techniques to automatically generate models for
two properties that have a strong influence on the performance of software
on a specific microarchitecture: the cache architecture and the latencies,
throughputs, and port usages of individual instructions.

In the second part of the thesis, we look at more general techniques for
obtaining models of hardware components. Specifically, we introduce the
problem of gray-box learning, in which learning algorithms may exploit known
information about the system to be learned.

13

CHAPTER 1. INTRODUCTION

1.1 Contributions and Structure of This Thesis
We now describe the addressed problems, and our approaches and contribu-
tions in more detail.

nanoBench
In Chapter 2, we develop nanoBench, a tool for evaluating small microbench-
marks using hardware performance counters on x86 systems. Hardware
performance counters are special-purpose registers that store the counts of
various hardware-related events.

In contrast to previous tools, nanoBench can execute microbenchmarks
directly in kernel space. This makes it possible to benchmark privileged
instructions, and it allows for more accurate measurements by disabling
interrupts and preemptions. Furthermore, this makes it also possible to
directly access certain performance counters that are only available in kernel
space; previous tools require expensive system calls to access such counters.

nanoBench provides the option to temporarily pause performance counting
during specific parts of a microbenchmark. Furthermore, the reading of
the performance counters is implemented with minimal overhead, avoiding
function calls and branches. As a consequence, nanoBench is precise enough
to measure, e.g., whether individual memory accesses result in cache hits or
misses.

We use nanoBench to evaluate the microbenchmarks generated by the tools
described in the following paragraphs.

Instruction Characterizations
An aspect that has a relatively strong influence on performance is how ISA
instructions decompose into micro-operations (µops), which ports these µops
may be executed on, and what their latencies and throughputs are.

However, these properties are typically only poorly documented. Intel’s
processor manuals [Int12, Int19b], for example, only contain latency and
throughput data for a number of “commonly-used instructions.” They do not
contain information on the decomposition of individual instructions into µops,
nor do they state the execution ports that these µops can use.

The only way to obtain accurate instruction characterizations for many recent
microarchitectures is thus to perform measurements using microbenchmarks.

14

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

However, existing approaches, such as [Fog19], require significant manual
effort to create suitable microbenchmarks and to interpret their results.
Furthermore, the results are not always accurate and precise.

In Chapter 3, we develop a new approach that can automatically generate
microbenchmarks in order to characterize the latency, throughput, and port
usage of instructions on x86 CPUs in an accurate and precise manner.

Before describing our algorithms and their implementation, we first discuss
common notions of instruction latency, throughput, and port usage. For the
latency, we propose a new definition that, in contrast to previous definitions,
considers dependencies between different pairs of input and output operands,
which enables more accurate performance predictions.

We then develop algorithms that generate assembler code for microbench-
marks to measure the properties of interest for most x86 instructions. Our
algorithms take into account explicit and implicit dependencies, such as, e.g.,
dependencies on status flags. Therefore, they require detailed information
on the x86 instruction set. To this end, we create a machine-readable XML
representation of the x86 instruction set that contains all the information
needed to automatically generate assembler code for every instruction. The
relevant information is automatically extracted from the configuration files of
Intel’s x86 Encoder Decoder (XED) [Intc] library.

We have implemented our algorithms in a tool that we have successfully
applied to 16 different Intel and AMD microarchitectures. The output of our
tool is available both in the form of a human-readable, interactive HTML
table and as a machine-readable XML file, so that it can be easily used
to implement, e.g., simulators, performance prediction tools, or optimizing
compilers.

Finally, we discuss several interesting insights obtained by comparing the
results from our measurements with previously published data. Our precise
latency data, for example, uncovered previously undocumented differences
between different microarchitectures. It also explains discrepancies between
previously published information. Apart from that, we uncovered various
errors in Intel’s IACA tool [Inta], and inaccuracies in the manuals.

Characterizing Cache Architectures
To bridge the increasing latency gap between the processor and main memory,
modern microarchitectures employ memory hierarchies with multiple levels
of cache memory. These caches are small but fast memories that make use

15

CHAPTER 1. INTRODUCTION

of temporal and spatial locality. Typically, they have a big impact on the
execution time of computer programs; the penalty of a miss in the last-level
cache can be more than 200 cycles.

In Chapter 4, we develop techniques for creating models of cache architectures.
We focus, in particular, on cache replacement policies, which are typically
undocumented for recent microarchitectures.

To this end, we develop several tools for determining cache parameters. The
first tool, cacheInfo, provides details on the structure of the caches, such
as the sizes, the associativities, the number of cache sets, or the number of
C-Boxes and slices.

Our second tool, cacheSeq, makes it possible to analyze the behavior of the
caches by measuring the number of cache hits and misses when executing an
access sequence in one or more cache sets; the access sequence is supplied as
a parameter to the tool and can be specified using a convenient syntax. To
perform these measurements, the tool generates suitable microbenchmarks
that are evaluated using nanoBench.

Based on cacheSeq, we then develop several tools for identifying the replace-
ment policy. In particular, we implement a tool that can automatically infer
permutation policies, and a tool that can automatically determine whether
the policy belongs to a set of more than 300 variants of commonly used
policies, including policies like MRU and QLRU, which are not permutation
policies. These tools are precise enough to determine the policies used in
individual cache sets. In addition to that, we develop a tool that can find
out whether the cache uses an adaptive replacement policy. Furthermore, we
propose a tool that creates age graphs, which are helpful for analyzing caches
with nondeterministic replacement policies.

We have applied our tools to 13 different Intel microarchitectures, and we
provide detailed models of their replacement policies. We have discovered
several previously undocumented replacement policies.

Gray-Box Learning
The algorithms we developed for Chapters 3 and 4 can be seen as instances of
active learning approaches. Active learning (also called query learning) refers
to a class of machine-learning techniques in which the learning algorithm is
able to interact with the system to be learned.

However, the algorithms we developed for Chapters 3 and 4 are heavily
targeted at the specific problems. In Chapter 5, we look at more general

16

1.1. CONTRIBUTIONS AND STRUCTURE OF THIS THESIS

techniques. Specifically, we consider approaches for learning finite state
machines, which are, in principle, suitable abstractions for modeling the
behavior of microarchitectural components.

In active learning approaches, one commonly assumes an oracle, or teacher,
that admits two kinds of queries about the system: output queries return
the result of the system for a specific input, and equivalence queries check
whether a conjectured model is consistent with the system to be learned
and return a counterexample if not. Based on this setup, Angluin intro-
duced the L∗ algorithm [Ang87] for learning deterministic finite automata.
L∗ has since been extended to other modeling formalisms, such as Mealy ma-
chines [SG09], register automata [HSJC12, BHLM13, AFBKV15], or symbolic
automata [MM14].

As the system is usually treated as a black box, no information about the
internal structure of the system can be taken into account by most existing
learning algorithms. In practice, however, systems are often composed of
subcomponents, for some of which models might be available, but it is not
possible to access the known and the unknown parts separately from the
outside.

While it is in theory possible to learn a model of the entire system using
existing black-box approaches, this is often not viable in practice because the
state space is too large. A problem, which has received very little attention in
the literature so far, is how to use the available information about the system
to focus the learning algorithm on those parts that are unknown. We call
this problem gray-box learning.

As a first step toward solving this problem, we study one specific instance.
We consider the serial composition of two Mealy machines A and B, where A
is known and B is unknown, and we assume that we can only perform queries
on the composed machine.

While output queries can often be realized cheaply by measurements on the
actual system, equivalence queries can usually only be approximated by a
large number of such measurements. Our primary focus is thus to minimize
the number of equivalence queries. We introduce an algorithm to exactly
learn B in the context of A that performs at most |B| equivalence queries,
where |B| denotes the number of states of B.

We evaluate our approach on compositions of randomly-generated machines
against an implementation of the classic L∗ algorithm in LearnLib [IHS15].
We show that our approach requires significantly fewer output and equivalence
queries on most benchmarks.

17

CHAPTER 1. INTRODUCTION

Minimization of Incompletely Specified Mealy Machines
It is generally a desirable property of models to be as small as possible.
In Chapter 6, we take a fresh look at the problem of minimizing incom-
pletely specified Mealy machines, i.e., machines where one or more outputs
or next states might not be specified. While the minimization problem is
efficiently solvable for fully specified machines [Hop71], it is NP-complete for
incompletely specified ones [Pfl73].

It turns out that this problem is quite closely related to the gray-box learning
instance we studied in Chapter 5. A central algorithmic idea of our learning
technique is a reduction to a Boolean satisfiability (SAT) problem. In Chap-
ter 6, we show how a relatively straightforward adaptation of this reduction
approach can be used to minimize incompletely specified Mealy machines.

The minimization problem has been extensively studied before, and a number
of exact and heuristic approaches have been proposed. We compare an
implementation of our exact approach to several other approaches on two
sets of standard benchmarks.

Our approach outperforms the other exact approaches significantly, in partic-
ular on a number of hard benchmarks. In some cases, it is faster than existing
approaches by several orders of magnitude.

On most benchmarks, our approach is also competitive with state-of-the-art
heuristic methods. There are only two benchmarks on which a heuristic
approach is significantly faster. However, in these two cases, this heuristic
approach is not able to find the minimal result.

18

1.2. PUBLICATIONS

1.2 Publications
Key parts of this thesis have been published in the following papers.

• [AR14]: Andreas Abel and Jan Reineke. Reverse engineering of
cache replacement policies in Intel microprocessors and their
evaluation. In IEEE International Symposium on Performance Anal-
ysis of Systems and Software (ISPASS), Monterey, CA, USA, March
23–25, 2014, pages 141–142. © 2014 IEEE

• [AR15]: Andreas Abel and Jan Reineke. MeMin: SAT-based exact
minimization of incompletely specified Mealy machines. In
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), Austin, TX, USA, November 2–6, 2015, pages
94–101. © 2015 IEEE

• [AR16]: Andreas Abel and Jan Reineke. Gray-box learning of serial
compositions of Mealy machines. In NASA Formal Methods—
Proceedings of the 8th International Symposium, Minneapolis, MN,
USA, June 7–9, 2016, pages 272–287. Springer-Verlag, 2016.

• [AR19]: Andreas Abel and Jan Reineke. uops.info: Characterizing
latency, throughput, and port usage of instructions on Intel
microarchitectures. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Providence, RI, USA, April 13–17,
2019, pages 673–686. ACM, 2019.

• [AR20]: Andreas Abel and Jan Reineke. nanoBench: A low-over-
head tool for running microbenchmarks on x86 systems. In
IEEE International Symposium on Performance Analysis of Systems
and Software (ISPASS), Boston, MA, USA, August 23–25, 2020. To
appear. © 2020 IEEE

19

2
nanoBench:

A Low-Overhead Tool for Running
Microbenchmarks on x86 Systems

In this chapter, we present nanoBench, a tool for evaluating small micro-
benchmarks using hardware performance counters on Intel and AMD x86
systems. Most existing tools and libraries are intended to either benchmark
entire programs, or program segments in the context of their execution within
a larger program. In contrast, nanoBench is specifically designed to evaluate
small, isolated pieces of code. Such microbenchmarks are commonly used for
analyzing undocumented hardware properties.

Unlike previous tools, nanoBench can execute microbenchmarks directly in
kernel space. This allows to benchmark privileged instructions, and it enables
more accurate measurements. The reading of the performance counters is
implemented with minimal overhead, avoiding function calls and branches. As
a consequence, nanoBench is precise enough to measure individual memory
accesses.

Most of the work presented in this chapter has been published in [AR20].

2.1 Introduction
Benchmarking small pieces of code using hardware performance counters
is often useful for analyzing the performance of software on a specific mi-
croprocessor, as well as for analyzing performance characteristics of the
microprocessor itself.

21

CHAPTER 2. NANOBENCH

Such microbenchmarks can, e.g., be helpful in identifying bottlenecks in loop
kernels. To this end, modern x86 CPUs provide many performance events
that can be measured, such as cache hits and misses in different levels of the
memory hierarchy, the pressure on execution ports, mispredicted branches, etc.

Low-level aspects of microarchitectures are typically only poorly documented.
Thus, the only way to obtain detailed information is often through mi-
crobenchmarks using hardware performance counters. This includes, for
example, the latency, throughput, and port usage of individual instructions
(see Section 3.2.2). Microbenchmarks have also been used to infer properties
of the memory hierarchy (see Section 4.5.1). In addition to that, such bench-
marks have been used to identify microarchitectural properties that can lead
to security issues, such as Spectre [KHF+19] and Meltdown [LSG+18].

Often, such microbenchmarks consist of two parts: The main part, and an
initialization phase that, for example, sets registers or memory locations to
specific values or tries to establish a specific microarchitectural state, e.g., by
flushing the caches. Ideally, the performance counters should only be active
during the main part.

To facilitate the use of hardware performance counters, a number of tools and
libraries have been proposed. Most of the existing tools fall into one of two
categories. First, there are tools that benchmark entire programs, such as
perf [per], or profilers like Intel’s VTune Amplifier [Intb]. Tools in the second
category are intended to benchmark program segments that are executed in the
context of a larger program. They usually provide functions to start and stop
the performance counters that can be called before and after the code segment
of interest. Such tools are, for example, PAPI [TJYD10] and libpfc [Bil].

Tools from both categories are not particularly well suited for microbench-
marks of the kind described above. For tools from the first category, one
obvious reason is that it is not possible to measure only parts of the code.
Another reason is overhead. Just running a C program with an empty main
function, compiled with a recent version of gcc, leads to the execution of
more than 500,000 instructions and about 100,000 branches. Moreover, this
number varies significantly from one run to another.

Overhead can also be a concern for tools from the second category. In
PAPI, for example, the calls to start and stop the counters involve several
hundred memory accesses, more than 150 branches, and for some counters
even expensive system calls. This leads to unpredictable execution times and
might, e.g., destroy the cache state that was established in the initialization
part of the microbenchmark. Moreover, these calls will modify general-purpose

22

2.2. BACKGROUND

registers, so it is not possible to set the registers to specific values in the
initialization part and use these values in the main part.

For several reasons, microbenchmarks often need to be run multiple times.
One reason is the possibility of interference due to interrupts, preemptions or
contention on shared resources that are also used by programs on other cores.
Another reason are issues such as cold caches that impact the performance
on the first runs. A third reason is that there are more performance events
than there are programmable counters, so the measurements may need to
be repeated with different counter configurations. Also, the code to be
benchmarked itself often needs to be repeated several times. This is typically
done by executing it in a loop or by unrolling it multiple times, or by a
combination of both. All of this leads to a significant engineering effort that
needs to be repeated over and over again.

In this chapter, we present nanoBench1, an open-source tool that makes
it very easy to evaluate small microbenchmarks on recent x86 CPUs. In
Chapters 3 and 4, we describe techniques to automatically generate such
microbenchmarks for characterizing the performance of instructions and for
analyzing properties caches.

There are two variants of our tool: A user-space implementation and a kernel-
space version. The kernel-space version makes it possible to directly bench-
mark privileged instructions, in contrast to any previous tool we are aware of.
Furthermore, it allows for more accurate measurements than existing tools by
disabling interrupts and preemptions. The tool is precise enough to measure,
e.g., whether individual memory accesses result in cache hits or misses.

Microbenchmarks may use and modify any general-purpose and vector reg-
isters, including the stack pointer. After executing the microbenchmark,
nanoBench automatically resets them to their previous values. The loop and
unroll counts, as well as the number of repetitions and the aggregate function
to be applied to the measurement results, can be specified via parameters.

2.2 Background

2.2.1 Hardware Performance Counters
Recent Intel and AMD processors are equipped with different types of hard-
ware performance counters, i.e., special-purpose registers that store the counts
of various hardware-related events. All of these counters can be read using

1https://github.com/andreas-abel/nanoBench

23

https://github.com/andreas-abel/nanoBench

CHAPTER 2. NANOBENCH

the RDMSR2 instruction; many of them can also be read using the RDPMC 3

instruction. The RDMSR instruction is a privileged instruction and can, thus,
only be used in kernel space. The RDPMC instruction, on the other hand, is
faster than the RDMSR instruction, and it can be directly accessed in user
space if a specific flag in a control register is set.

Core Performance Counters

Each logical core has a private performance monitoring unit with multiple
performance counters. There are two types of core performance counters:

• Fixed-Function Performance Counters

Recent Intel CPUs have three fixed-function performance counters that
can be read with the RDPMC instruction. They count the number
of retired instructions, the number of core cycles, and the number of
reference cycles.

In addition to that, there are two fixed-function counters that are
available both on recent Intel CPUs, as well as on AMD family 17h
CPUs: the APERF counter, which counts core clock cycles, and the
MPERF counter, which counts reference cycles. These two counters
can only be accessed with the RDMSR instruction and are, thus, only
available in kernel space.

• Programmable Performance Counters

Recent Intel CPUs have between two and eight, and AMD family 17h
CPUs have six programmable performance counters. They can be
programmed with a large number of different performance events (more
than 200 on some CPUs), such as the number of µops that use a specific
port, the number of cache misses in different levels of the memory
hierarchy, the number of mispredicted branches, etc. These counters
can be read with the RDPMC instruction.

Uncore/L3 Performance Counters

In addition to the per-core performance counters described above, recent
processors also have a number of programmable global performance counters
that can, in particular, count events related to the shared L3 caches. On Intel
CPUs, these counters can only be read in kernel space.

2“Read from model specific register”
3“Read performance-monitoring counters”

24

2.3. FEATURES

2.2.2 Assembler Instructions
Throughout this thesis, we use assembler instructions in Intel syntax. They
have the following form:

mnemonic op1, op2, ...

The mnemonic identifies the operation, e.g., ADD or XOR. The first operand
op1 is typically the destination operand, and the other operands are the
source operands (an operand can also be both a source and destination
operand). Operands can be registers, memory locations, or immediates.
Memory operands use the syntax

[Rbase+Rindex*scale+disp],

where Rbase and Rindex are general-purpose registers, disp is an integer, and
scale is 1, 2, 4, or 8. All of these components are optional and can be omitted.

In addition to these explicit operands, an instruction can also have implicit
operands. As an example, consider the following instruction:

ADD RAX, [RBX]

This instruction computes the sum of the general-purpose register RAX and the
memory at the address of register RBX, and stores the result in RAX. We refer
to RAX and [RBX] as explicit operands. In addition to that, the instruction
updates the status flags (e.g., the carry flag) according to the result. The
status flags are implicit operands of the ADD instruction.

There are often multiple variants of an instruction with different operand
types and/or widths.

Note that there is not always a one-to-one correspondence between assembler
code and machine code. Sometimes, there are multiple possible encodings for
the same assembler instruction. It is, in general, not possible to control which
of these encodings the assembler selects. Thus, some machine instructions
cannot be generated using assembler code.

2.3 Features
In this section, we first give a high-level overview by looking at a simple
example that shows how nanoBench can be used. We then describe various
features of nanoBench in more detail.

25

CHAPTER 2. NANOBENCH

2.3.1 Example
The following example shows how nanoBench can be used to measure the
latency of the L1 data cache on a Skylake-based system.

./nanoBench.sh -asm "mov R14, [R14]"
-asm_init "mov [R14], R14"
-config cfg_Skylake.txt

The tool will first execute the instruction

mov [R14], R14,

which copies the value of register R14 to the memory location that R14 points
to. nanoBench always initializes R14 (and a number of other registers) to point
into a dedicated memory area that can be freely modified by microbenchmarks;
this is described in more detail in Section 2.3.7.

nanoBench then starts the performance counters and executes the instruction

mov R14, [R14]

multiple times. The number of repetitions can be controlled via parameters;
for more information see Section 2.3.6. The instruction loads the value at
the address in R14 into R14. Thus, the execution time of this instruction
corresponds to the L1 data cache latency. Afterwards, nanoBench stops the
performance counters. The entire benchmark is then repeated multiple times
to obtain stable results.

The output of nanoBench will be similar to the following:

Instructions retired: 1.00
Core cycles: 4.00
Reference cycles: 3.52
UOPS_ISSUED.ANY: 1.00
UOPS_DISPATCHED_PORT.PORT_0: 0.00
UOPS_DISPATCHED_PORT.PORT_1: 0.00
UOPS_DISPATCHED_PORT.PORT_2: 0.50
UOPS_DISPATCHED_PORT.PORT_3: 0.50
UOPS_DISPATCHED_PORT.PORT_4: 0.00
UOPS_DISPATCHED_PORT.PORT_5: 0.00
MEM_LOAD_RETIRED.L1_HIT: 1.00
MEM_LOAD_RETIRED.L2_HIT: 0.00
MEM_LOAD_RETIRED.L3_HIT: 0.00
MEM_LOAD_RETIRED.L3_MISS: 0.00

26

2.3. FEATURES

The first three lines show the result of the fixed-function performance counters.
The remaining lines correspond to the performance events specified in the
cfg_Skylake.txt configuration file that was supplied as a parameter in the
nanoBench call shown above; details on configuration files are described in
Section 2.3.10.

From the results, we can conclude that the L1 data cache latency is 4 cycles.
This agrees with the documentation in Intel’s optimization manual [Int19b].

2.3.2 Generated Code
To execute a microbenchmark, nanoBench first generates code for a function
similar to the pseudocode shown in Algorithm 2.1.

In line 2, the generated code first saves the current values of the registers to the
memory and initializes certain registers to point to specific memory locations
(see Section 2.3.7). Then, the initialization part of the microbenchmark is
executed (line 3). In the next line (line 4), the performance counters are read.
Unless the noMem option (see Section 2.3.9) is used, this step does not modify
the values in any general-purpose or vector registers that were set by the
initialization code (technically, it does modify certain registers temporarily,
but it resets them to their previous value before the next line is executed).

Lines 5 to 9 contain the code for the main part of the microbenchmark. The
code is unrolled multiple times (this can be configured via a parameter, see
Section 2.3.6). If the parameter loopCount is larger than 0, the code for a
for-loop is inserted in line 5; in this case, the code of the microbenchmark
must not modify register R15, which is used to store the loop counter.

Afterwards, the performance counters are read a second time (line 10), and
in line 11, the registers are restored to the values that were saved in line 2.
Finally, the difference between the two performance counter values, divided
by the number of repetitions, is returned.

2.3.3 Running the Generated Code
Algorithm 2.2 shows how the generated code is run. The code is run a
configurable number of times. At the end, an aggregate function is applied
to the measurement results, which can be either the minimum, the median,
or the arithmetic mean (excluding the top and bottom 20% of the values).
A configurable number of runs in the beginning can be excluded from the
result; this is described in more detail in Section 2.3.8.

27

CHAPTER 2. NANOBENCH

By default, nanoBench generates and runs two versions of the code: the first
one with localUnrollCount set to the specified unrollCount, and the second
time with localUnrollCount set to two times the specified unrollCount. The
reported result is the difference between the two runs. This removes the
overhead of the measurement instructions from the result, as well as anomalies
that might be caused by the serialization instructions that are needed before
and after reading the performance counters (see also Section 2.4.1).

nanoBench also provides an option that uses a localUnrollCount of 0 for one
of the runs instead (i.e., there are no instructions between line 4 and line 10
in this case).

Algorithm 2.1: Generated code for a microbenchmark
1 Function generatedCode()
2 saveRegs
3 codeInit
4 m1← readPerfCtrs // stores results in memory,

// does not modify registers
5 for j ← 0 to loopCount do // this line is omitted

// if loopCount=0
6 code // copy #1
7 code // copy #2

8
...

9 code // copy #localUnrollCount

10 m2← readPerfCtrs
11 restoreRegs
12 r ← (m2−m1)/(max(1, loopCount) ∗ localUnrollCount)
13 return r

Algorithm 2.2: Running a microbenchmark
1 Function run(code)
2 for i← −warmUpCount to nMeasurements do
3 m← code()
4 if i ≥ 0 then // ignore warm-up runs
5 measurements [i]← m

6 return agg(measurements) // apply aggregate function

28

2.3. FEATURES

2.3.4 Kernel/User Mode
nanoBench is available in two versions: A user-space and a kernel-space
version. The kernel-space version has several advantages over the user-space
version:

• It makes it possible to benchmark privileged instructions.

• It can allow for more accurate measurement results as it disables inter-
rupts and preemptions during measurements.

• It can use several performance counters that are not accessible from
user space, like the uncore counters on Intel CPUs, or the APERF and
MPERF counters.

• It can allocate physically-contiguous memory. See also Section 2.3.7.

On the other hand, executing microbenchmarks in kernel space can lead to
potential data loss and security problems if the microbenchmarks contain bugs.
It is thus recommended to use the kernel-space version only on dedicated test
machines.

2.3.5 Interface
We provide a unified interface to the user-space and the kernel-space version
in the form of two shell scripts, nanoBench.sh and kernel-nanoBench.sh,
that have mostly the same command-line options.

In addition to that, we also provide a Python interface for the kernel-space
version. This interface is used for the tools described in Chapters 3 and 4.

With all interfaces, the code of the microbenchmarks can be specified ei-
ther as an assembler code sequence in Intel syntax (like in the example in
Section 2.3.1), or by the name of a binary file containing x86 machine code.

2.3.6 Loops vs. Unrolling
For microbenchmarks that have code that needs to be repeated several times
to obtain meaningful results, there is a trade-off between unrolling the code
(i.e., creating multiple copies of it) and executing the code in a loop.

Using a loop has the advantage of keeping the code size small, so that it
will fit into the cache. On the other hand, the loop introduces an additional
overhead, which can be significant if the body of the loop is small.

29

CHAPTER 2. NANOBENCH

Whether unrolling or a loop should be used, depends on the particular
benchmark. For benchmarks that measure, e.g., the number of data cache
misses, a loop is the better choice, as it does not introduce any overhead in
terms of memory accesses. On the other, for a benchmark that measures the
port usage of an instruction, using only unrolling is better, as otherwise, the
µops of the loop code compete for ports with the µops of the benchmark. For
some benchmarks, a combination of both a loop and unrolling yields the best
results.

nanoBench provides two parameters, loopCount and unrollCount, that control
the number of loop iterations, and how often the code is unrolled.

2.3.7 Accessing Memory
nanoBench initializes the registers RSP (i.e., the stack pointer), RBP (i.e., the
base pointer), RDI, RSI, and R14 to point into dedicated memory areas (of
1MB each) that can be freely modified by the microbenchmarks.

Furthermore, for microbenchmarks needing a larger memory area, like bench-
marks for determining cache parameters, the kernel version of nanoBench
provides an option for reserving a physically-contiguous memory area of a
configurable size (see also Section 2.4.4).

2.3.8 Warm-Up Runs
nanoBench provides the option of performing a configurable number of initial
benchmark runs that are excluded from the results. This can, for example,
be useful to make sure that the code and other accessed memory locations
are in the cache. It can also be used to train the branch predictor to
reduce the number of mispredicted branches. Furthermore, there are some
instructions that require a warm-up period after having not been used for a
while before they can execute at full speed again, like AVX2 instructions on
some microarchitectures.

2.3.9 noMem Mode
By default, the code to read the performance counters writes the results to
the memory. After a warm-up run, this memory location is usually in the
cache, and thus, the time for these memory operations is constant.

However, for microbenchmarks that contain many memory accesses to different
addresses that map to the same cache set, writing the performance counter

30

2.3. FEATURES

results to the memory can be problematic. One reason for this is that the
memory accesses in line 4 may change a cache state that was established
by the initialization part of the benchmark. Another reason is that the
microbenchmark code may evict the block that stores the performance counter
results, which would lead to additional cache misses.

To avoid these problems, nanoBench has a special mode that stores all
performance counter measurements in registers instead of in memory. If this
mode is used, certain general-purpose registers must not be modified by the
microbenchmark.

Moreover, if this mode is used, nanoBench also provides a feature to tem-
porarily pause performance counting. This feature can be used by including
special magic byte sequences in the microbenchmark code for stopping and
resuming performance counting. Using this feature incurs a certain timing
overhead, so it is in particular useful for benchmarks that do not measure the
time but, e.g., the number of cache hits or misses.

2.3.10 Performance Counter Configurations
The performance events to be measured are specified in a configuration file.
The file uses a simple syntax to define the events. Unlike in some previous
tools, like libpfc [Bil], the events are not hard-coded, which makes it easy to
adapt nanoBench to future CPUs, as only a new configuration file has to be
created.

If the configuration file contains more events than there are programmable
performance counters, the benchmarks are automatically executed multiple
times with different counter configurations.

We provide configuration files with all events for all recent Intel microarchi-
tectures and the AMD Zen microarchitecture.

2.3.11 Execution Time of nanoBench
Evaluating microbenchmarks with nanoBench is very fast. As an example, we
consider a benchmark consisting of a single NOP instruction, that is run with
unrollCount = 100, loopCount = 0, nMeasurements = 10, and a configuration
file with four events. On an Intel Core i7-8700K, running nanoBench with
these parameters takes about 15ms for the kernel version (assuming that the
kernel module is already loaded), and about 50ms for the user-space version.

31

CHAPTER 2. NANOBENCH

2.3.12 Supported Platforms
We have successfully used nanoBench on processors from most generations of
Intel’s Core microarchitecture and with AMD Ryzen CPUs. All experiments
were performed under Ubuntu 18.04, but nanoBench should be compatible
with any Linux distribution that uses a recent kernel version.

2.4 Implementation

2.4.1 Accurate Performance Counter Measurements
Serializing Instruction Execution

As described in Section 2.2, performance counters can be read with the
RDPMC or the RDMSR instruction. These instructions are not serializing
instructions. Thus, due to out-of-order execution (see Section 3.3), they may
be reordered with earlier or later instructions by the processor. For obtaining
meaningful measurement results, it is therefore important to add instructions
that serialize the instruction stream both before and after any instructions
that read performance counters.

Previous approaches (e.g., [Fog]) often use the CPUID instruction for that
purpose. However, for benchmarking short code segments, this is problematic.
One reason for this is that the CPUID instruction has a variable latency and
µop count. Paoloni [Pao10] observed that the execution time of the CPUID
can differ by hundreds of cycles from run to run. The variable µop count
can be eliminated by setting the register RAX to a fixed value before each
execution of the CPUID instruction; this also reduces the variance in the
execution time, but does not fully eliminate it. Moreover, for an instruction
sequence of the form

A; CPUID; B,

the serialization property of the CPUID instruction only guarantees that
all µops of A have completed before B is fetched and executed. It does not
guarantee that all µops of A have completed before the first µop of the CPUID
instruction is executed, and it does also not guarantee that all µops of the
CPUID instruction have completed before the first µop of B is executed.

We propose to use the LFENCE instruction instead. This instruction is
not fully serializing: it does not guarantee that earlier stores have become
globally visible, and subsequent instructions may be fetched from memory
before LFENCE completes. However, on Intel CPUs it does guarantee that

32

2.4. IMPLEMENTATION

“LFENCE does not execute until all prior instructions have completed locally,
and no later instruction begins execution until LFENCE completes” [Int19c].
For our purposes, this is sufficient, and the guarantee is even somewhat
stronger than that for the CPUID instruction, as it also orders the LFENCE
instruction itself with respect to the preceding and succeeding instructions. On
AMD CPUs, the LFENCE provides similar guarantees if Spectre mitigations
are enabled. Using the LFENCE instruction for measurements of short
durations was also recently recommended by McCalpin [McC18].

Reducing Interference

In the kernel-space version, we disable preemptions and hard interrupts during
measurements, as they can perturb the measurement results [WM08, WTM13].
This is not possible for the user-space version; however, we do pin the process
to a specific core in this case to avoid the cost of process switches between cores.

Furthermore, for obtaining unperturbed measurement results, we recommend
disabling hyper-threading. When using performance counters for resources
shared by multiple cores, such as L3 caches, we furthermore recommend
disabling all cores that share these resources. We provide shell scripts for this
in our repository.

For microbenchmarks that measure properties of caches, such as the bench-
marks described in Chapter 4, it can be helpful to disable cache prefetching.
On Intel CPUs, this can be achieved by setting specific bits in a model-specific
register (MSR). Details on how to do this are available in the documentation
of nanoBench.

2.4.2 Generating Code
As described in Section 2.3, nanoBench runs microbenchmarks by generating
a function that contains the code of the microbenchmark, as well as setup
and measurement instructions. This is implemented by first allocating a large
enough memory area and marking it as executable. Then, the corresponding
machine code is written to this memory area, including unrollCount many
copies of the code of the microbenchmark. If this code contains the magic
byte sequences for pausing performance counting as described in Section 2.3.9,
they are replaced by corresponding machine code for reading performance
counters.

Generating the code for executing the microbenchmarks at runtime in this
way makes it possible to access the performance counters without having to
execute any function calls or branches.

33

CHAPTER 2. NANOBENCH

2.4.3 Kernel Module
The kernel-space version of nanoBench is implemented as a kernel module.
While the module is loaded, it provides a set of virtual files that are used to
configure and run microbenchmarks. For example, setting the loop count, or
the code of the microbenchmark is done by writing the corresponding values
to specific files under /sys/nb/. Reading the file /proc/nanoBench generates
the code for running the benchmark (as described in Section 2.4.2), runs the
benchmark (possibly multiple times, depending on the configuration), and
returns the result of the benchmark.

Note that it is usually not necessary to access these virtual files directly, as
we provide convenient interfaces that perform these accesses automatically
(see Section 2.3.5).

2.4.4 Allocating Physically-Contiguous Memory
In Linux kernel code, the kmalloc function can be used to allocate physically-
contiguous memory. However, with recent kernel versions, this is limited to
at most 4MB.

Some of the microbenchmarks for determining properties of the L3 caches that
we describe in Chapter 4 require larger memory areas. We are not aware of a
way to directly allocate larger physically-contiguous memory areas. However,
we noticed that in many cases, subsequent calls to kmalloc yield adjacent
memory areas. This is, in particular, the case if the system was rebooted
recently. Moreover, the corresponding virtual addresses are also adjacent.

Based on this observation, we implemented a greedy algorithm that tries to
find a physically-contiguous memory area of the requested size by performing
multiple calls to kmalloc. If this does not succeed, the tool proposes a reboot.
Note that allocating memory is only necessary once when the kernel module
is loaded, and not before each microbenchmark run.

34

2.5. RELATED WORK

2.5 Related Work
Perf [per] and Intel’s VTune Amplifier [Intb] are two examples of tools
that are targeted at analyzing whole programs using hardware performance
counters. Tools from this category can often display performance statistics
at different levels of granularity, sometimes for individual source code lines.
However, this data is usually obtained via sampling and, thus, not precise.
Such tools are commonly used for identifying the parts of a program that
would most benefit from further optimizations.

PAPI [TJYD10] is a widely used tool for accessing performance counters. It
provides C and Fortran interfaces that provide functions for configuring and
reading performance counters. It can be used for measuring the performance of
smaller code segments in the context of a larger program. However, reading the
performance counters leads to multiple function calls, branches, and memory
accesses. Therefore, it is not suitable for the class of microbenchmarks
considered in this thesis.

LIKWID [THW10] is a tool suite providing multiple performance analysis
tools. It can both benchmark whole programs, as well as, similar to PAPI,
specific code regions of a larger program. Reading the performance counters
requires expensive system calls [RTHW14].

libpfc [Bil] is a library that was designed in a way to make it possible to use
performance counters with a very low overhead. It provides macros with
inline assembler code for reading the performance counters. Thus, it does
not require function calls or branches. Like our tool, it uses the LFENCE
instruction to serialize the instruction stream. In fact, a very early version of
our tool was based on libpfc. However, libpfc only supports Haswell CPUs,
and it does not support accessing uncore performance counters.

Agner Fog [Fog] provides a framework for running microbenchmarks similar to
the microbenchmarks considered in this thesis. The code of the microbench-
mark, which is not allowed to use all registers, must be inserted into specific
places in a file provided by the framework. The overhead for reading per-
formance counters is relatively small; it does not require function calls or
branches. However, the tool uses the CPUID instruction for serialization,
which can be problematic for short microbenchmarks, as described in Sec-
tion 2.4.1. The tool only supports a relatively small number of performance
events, and it only supports performance counters that can be read with the
RDPMC instruction (i.e., it does not support uncore counters on Intel CPUs,
or the APERF/MPERF counters).

35

CHAPTER 2. NANOBENCH

In concurrent work, Chen et al. [CBM+19] present a tool for benchmarking
basic blocks using the core cycles, and the L1 data and instruction cache
performance counters. Unlike similar tools, Chen et al.’s tool supports mi-
crobenchmarks that can make arbitrary memory accesses; this is implemented
by automatically mapping all accessed virtual memory pages to a single
physical page. The tool was used to train Ithemal [MRAC19], which is a basic
block throughput predictor that is based on a neural network. Chen et al. also
propose a benchmark suite, called BHive, that consists of more than 300, 000
basic blocks, and they use their tool to obtain throughput measurements
for these basic blocks on CPUs with the Ivy Bridge, Haswell, and Skylake
microarchitectures. The code that reads the performance counters contains
branches, and it uses the CPUID instruction for serialization; however, it
lacks a serialization instruction after reading the core cycles counter for the
first time. As a consequence, the measurement results are relatively noisy.
For Skylake, for example, we found in the BHive benchmark suite about
20, 000 basic blocks that have instructions with memory operands, but a
measured throughput value smaller than 0.5; for more than 2, 200 of these
blocks, the measured throughput value was even smaller than 0.454. These
throughput values are obviously incorrect, since Skylake can execute at most
two instructions with memory operands per cycle. Chen et al. compare their
measurement results with predictions from Ithemal and several other through-
put prediction tools, including Intel’s IACA (see also Section 3.2.1). As the
average deviation of Ithemal’s predictions from the measured throughputs is
smaller than the average deviations of the other tools, the authors conclude
that Ithemal outperforms the other tools.

None of the existing tools that we are aware of allows for executing benchmarks
directly in kernel space.

2.6 Conclusions and Future Work
We have presented a new tool that significantly reduces the engineering effort
required for evaluating small microbenchmarks in an accurate and precise way.

We demonstrate the usefulness of our tool in the following two chapters. In
Chapter 3, we show how it can be used to characterize the latency, throughput,
and port usage of x86 instructions. In Chapter 4, we use nanoBench to
evaluate microbenchmarks for analyzing cache properties.

4https://github.com/ithemal/bhive/issues/1

36

2.6. CONCLUSIONS AND FUTURE WORK

Future Work

On Intel CPUs, the performance counters can be configured in way such that
when one of the counters overflows, all counters stop counting. Recently,
Brandon Falk [Fal19] proposed an approach that uses this feature in a creative
way to get cycle-by-cycle performance data. The main idea is to set the value
of the core cycles counter to N cycles below overflow before the measurements,
and to repeat the measurements multiple times with different values for N .
Falk implemented this technique in a custom CPU research kernel, called
Sushi Roll, that is, unfortunately, not publicly available. We plan to add a
similar functionality to nanoBench.

Furthermore, we would also like to adapt nanoBench to non-x86 architectures,
such as ARM, MIPS, or RISC-V [WLPA14].

37

3
uops.info:

Characterizing the Latency,
Throughput, and Port Usage of

Instructions on x86 Microarchitectures

In this chapter, we present the design and implementation of a tool to
construct faithful models of the latency, throughput, and port usage of x86
instructions.

To this end, we first discuss common notions of instruction throughput and
port usage, and introduce a more precise definition of latency that, in contrast
to previous definitions, considers dependencies between different pairs of input
and output operands.

We then develop novel algorithms to infer the latency, throughput, and port
usage based on automatically-generated microbenchmarks that are more
accurate and precise than existing work. The microbenchmarks are evaluated
using nanoBench (see Chapter 2).

The output of our tool is provided both in the form of a human-readable,
interactive HTML table and as a machine-readable XML file.

We provide experimental results for many recent microarchitectures and
discuss various cases where the output of our tool differs considerably from
prior work.

This chapter is an extended version of [AR19]. We analyze seven additional
microarchitectures (including two from AMD) and more than 10, 000 additional
instruction variants. Furthermore, we provide a more detailed description of
our algorithms and an enhanced evaluation.

39

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

3.1 Introduction
Developing tools that predict, explain, or even optimize the performance
of software is challenging due to the complexity of today’s microarchitec-
tures. Unfortunately, this challenge is exacerbated by the lack of a precise
documentation of their behavior.

While the high-level structure of modern microarchitectures is well-known
and stable across multiple generations, lower-level aspects may differ con-
siderably between microarchitecture generations and are generally not as
well documented. An important aspect with a relatively strong influence on
performance is how ISA instructions decompose into micro-operations (µops),
which ports these µops may be executed on, and what their latencies are.

Knowledge of this aspect is required, for instance, to build performance-
analysis tools like CQA [CRON+14], Kerncraft [HHEW15], UFS [PWKJ16],
llvm-mca [Bia18], or OSACA [LHH+18, LHHW19]. It is also useful when
configuring cycle-accurate simulators like Zesto [LSX09], gem5 [BBB+11], Mc-
Sim+ [ALOJ13], or ZSim [SK13]. Optimizing compilers, such as GCC [GCC]
or LLVM [LA04], can profit from detailed instruction characterizations to
generate efficient code for a specific microarchitecture. Similarly, such knowl-
edge can be helpful when manually fine-tuning a piece of code for a specific
processor.

Unfortunately, information about the port usage, latency, and throughput
of individual instructions at the required level of detail is hard to come by.
Intel’s processor manuals [Int12, Int19b] only contain latency and throughput
data for a number of “commonly-used instructions.” They do not contain
information on the decomposition of individual instructions into µops, nor do
they state the execution ports that these µops can use.

The only way to obtain accurate instruction characterizations for many recent
microarchitectures is thus to perform measurements using microbenchmarks.
Such measurements are aided by the availability of performance counters
that provide precise information on the number of elapsed cycles and the
cumulative port usage of instruction sequences. A relatively large body of
work (see Section 4.5.1) uses microbenchmarks to infer properties of the
memory hierarchy. Another line of work [JEJI08, GJB+10, GJ11, BBG+12]
uses automatically generated microbenchmarks to characterize the energy
consumption of microprocessors. Comparably little work [CRON+14, Fog19,
Gra17, Ins] is targeted at instruction characterizations. Furthermore, existing
approaches, such as [Fog19], require significant manual effort to create the

40

3.1. INTRODUCTION

microbenchmarks and to interpret the results of the experiments. Furthermore,
its results are not always accurate and precise, as we will show later.

In this chapter, we develop a new approach that can automatically generate
microbenchmarks in order to characterize the latency, throughput, and port
usage of instructions on x86 CPUs in an accurate and precise manner.

Before describing our algorithms and their implementation, we first discuss
common notions of instruction latency, throughput, and port usage. For the
latency, we propose a new definition that, in contrast to previous definitions,
considers dependencies between different pairs of input and output operands,
which enables more accurate performance predictions.

We then develop algorithms that generate assembler code for microbench-
marks to measure the properties of interest for most x86 instructions. Our
algorithms take into account explicit and implicit dependencies, such as, e.g.,
dependencies on status flags. Therefore, they require detailed information on
the x86 instruction set. We create a machine-readable XML representation of
the x86 instruction set that contains all the information needed to automati-
cally generate assembler code for every instruction. The relevant information
is automatically extracted from the configuration files of Intel’s x86 Encoder
Decoder (XED) [Intc] library.

We have implemented our algorithms in a tool that we have successfully applied
to 16 different Intel and AMD microarchitectures. In addition to running
the generated microbenchmarks on the actual hardware using nanoBench
(see Chapter 2), we have also implemented a variant of our tool that runs
them on top of IACA [Inta]. IACA is a closed-source tool published by Intel
that can statically analyze the performance of loop kernels on different Intel
microarchitectures. It is, however, not updated anymore and its results are
not always accurate, as we will show later.

The output of our tool is available both in the form of a human-readable,
interactive HTML table and as a machine-readable XML file, so that it can
be easily used to implement, e.g., simulators, performance prediction tools,
or optimizing compilers.

Finally, we discuss several interesting insights obtained by comparing the
results from our measurements with previously published data. Our precise
latency data, for example, uncovered previously undocumented differences
between different microarchitectures. It also explains discrepancies between
previously published information. Apart from that, we uncovered various
errors in IACA, and inaccuracies in the manuals.

41

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

3.2 Related Work
In this section, we describe existing sources of detailed instruction data for
recent Intel and AMD microarchitectures. We first consider information
provided by the manufacturers directly and then look at measurement-based
approaches.

3.2.1 Information Provided by the Manufacturers

Intel

Intel’s Optimization Reference Manuals [Int12, Int19b] contain a set of tables
with latency and throughput data for “commonly-used instructions.” The
tables are not complete; for some instructions, only throughput information
is provided. The manuals do not contain detailed information about the port
usage of individual instructions.

For the most recent microarchitecture (Ice Lake), Intel provides a machine-
readable file with latency and throughput numbers for a relatively large
number of instruction variants [Int19a]. However, the file does not contain
information on the port usage of these instruction variants.

IACA [Inta] is a closed-source tool developed by Intel that can statically
analyze the performance of loop kernels on several microarchitectures (which
can be different from the system that the tool is run on). The tool generates
a report which includes throughput and port usage data of the analyzed loop
kernel. By considering loop kernels with only one instruction, it is possible to
obtain the throughput of the corresponding instruction. However, it is, in
general, not possible to determine the port bindings of the individual µops
this way. Early versions of IACA were also able to analyze the latency of loop
kernels; however, support for this was dropped in version 2.2. As of April
2019, IACA has reached its “End Of Life”1.

The instruction scheduling components of LLVM [LA04] for Sandy Bridge,
Haswell, Broadwell, and Skylake were recently updated and extended with
latency and port usage information that was, according to the commit mes-
sage2, provided by the architects of these microarchitectures. The resulting
models are available in the LLVM repository.

1https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
2https://reviews.llvm.org/rL307529

42

https://reviews.llvm.org/rL307529

3.2. RELATED WORK

AMD

AMD provides a spreadsheet with latency, throughput, and port usage data
for Family 17h processors [AMD17]. This data “is based on estimates and
is subject to change.” The document was last updated in 2017, when Zen
was AMD’s current microarchitecture. It is unclear in how far the data also
applies to CPUs with the Zen+ or the Zen 2 microarchitecture, which are
also Family 17h processors.

3.2.2 Measurement-Based Approaches
Agner Fog [Fog19] provides lists of instruction latency, throughput, and port
usage data for different x86 microarchitectures. The data in the lists is not
complete; for example, latency data for instructions with memory operands
is often missing. The port usage information is sometimes inaccurate or
imprecise; we discuss reasons for this in Section 3.5.1. The data is obtained
using a set of test scripts developed by the author. These test scripts generate
microbenchmarks that are evaluated using Fog’s measurement framework (see
Section 2.5). The outputs of the microbenchmarks have to be interpreted
manually to build the instruction tables.

CQA [CRON+14] is a performance analysis tool for x86 code that requires
latency, throughput, and port usage data to build a performance model of
a microarchitecture. It includes a microbenchmark module that supports
measuring the latency and throughput of many x86 instructions. For non-
supported instructions, the authors use Agner Fog’s instruction tables [Fog19].
The paper briefly mentions that the module can also measure the number of
µops that are dispatched to execution ports using performance counters, but
no further details are provided.

EXEgesis [Goo] is a project that can create a machine-readable list of in-
structions by parsing the PDF representation of Intel’s Software Developer’s
Manual [Int19c]. One of the goals of the project is also to infer latencies and
µop scheduling information for different instruction and microarchitecture
pairs.

Granlund [Gra17] presents measured latency and throughput data for differ-
ent x86 processors. He considers only a relatively small subset of the x86
instruction set.

AIDA64 [Fin] is a commercial, closed-source system information tool that can
perform throughput and latency measurements of x86 instructions. Results
for many processors obtained using AIDA64 are available at [Ins].

43

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

Fr
on

tE
nd

Ex
ec
ut
ion

En
gin

e
M
em

or
y

Instruction Cache

Instruction Fetch & Decode

µop Cache

Renamer / Reorder Buffer

Scheduler
Port 0 Port 1 Port 2 Port 3 Port 4 Port 5

AL
U,

V-
M

UL
,.

..

AL
U,

V-
AD

D
,.

..

Lo
ad

,A
GU

Lo
ad

,A
GU

St
or

e
D

at
a

AL
U,

JM
P,

..
.

L1 Data Cache

L2 Cache

µops

µops

µops

µop µop µop µop µop µop

Figure 3.1: Pipeline of Intel Core CPUs (simplified)

3.3 Background
In this section, we describe the pipelines of recent Intel and AMD x86
processors.

3.3.1 Pipeline of Intel Core CPUs
Figure 3.1 shows the general structure of the pipeline of Intel Core CPUs
[Int19b, Wika]. The pipeline consists of the front end, the execution engine
(back end), and the memory subsystem.

44

3.3. BACKGROUND

Fr
on

tE
nd

Ex
ec
ut
ion

En
gin

e
M
em

or
y

Instruction Cache

Instruction Fetch & Decode

µop Cache

Retire
QueueInteger Rename Floating-Point Rename

Scheduler Scheduler Scheduler Scheduler Scheduler Scheduler

ALU0 ALU1 ALU2 ALU3 AGU0 AGU1

AL
U,

Br
an

ch

AL
U,

IM
UL

AL
U,

ID
IV

AL
U,

Br
an

ch

AG
U

AG
U

Scheduler

Pipe 0 Pipe 1 Pipe 2 Pipe 3
FM

UL
,A

ES
,.

..

FM
UL

,A
ES

,.
..

FA
D

D
,V

SH
IF

T,
..

.

FA
D

D
,F

D
IV

,.
..

L1 Data Cache

L2 Cache

µops

6 µops 4 µops

Figure 3.2: Pipeline of AMD Ryzen CPUs (simplified)

The front end is responsible for fetching instructions from the memory and
for decoding them into a sequence of micro-operations (µops). Decoded µops
are stored in a µop cache.

The reorder buffer stores the µops in order until they are retired. The
renamer is responsible for register allocation (i.e., mapping the architectural
registers to physical registers), and for eliminating false dependencies among
µops. On some microarchitectures, it can also directly execute certain special
µops, including zero idioms (e.g., an XOR of a register with itself), and
register-to-register moves (“move elimination”).

45

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

The remaining µops are then forwarded to the scheduler (also known as the
reservation station), which queues the µops until all their source operands
are ready. Once the operands of a µop are ready, it is dispatched through
an execution port. Due to out-of-order execution, µops are not necessarily
dispatched in program order.

Each port (Intel Core microarchitectures have 6, 8, or 10 of them) is connected
to a set of different functional units, such as an ALU, an address-generation
unit (AGU), or a unit for vector multiplications.

Each port can accept at most one µop in every cycle. However, as most
functional units are fully pipelined, a port can typically accept a new µop in
every cycle, even though the corresponding functional unit might not have
finished executing a previous µop. An exception to this are the divider units,
which are not fully pipelined.

All recent Intel processors have performance counters for the number of µops
that are executed on each port.

3.3.2 Pipeline of AMD Ryzen CPUs
Figure 3.2 shows the general structure of the pipelines of recent AMD pro-
cessors [AMD17, Wikb]. A main difference to Intel’s pipelines is that the
execution engine is split into two parts: The left part handles integer and
memory operations, while the right part handles floating-point and SIMD
operations. The retire queue (which is similar to the reorder buffer in Intel
processors) is shared between both parts.

The functional units are grouped into so-called pipes. Each pipe can start
executing at most one µop in every cycle. As most functional units are fully
pipelined, each pipe can typically accept a new µop in every cycle. For the
purpose of the discussion in this chapter, pipes can thus be considered to be
similar to ports on Intel CPUs, and we will use the two terms interchangeably
in the remainder of this chapter.

Recent AMD CPUs have performance counters for each of the four floating-
point pipes. However, there are no individual counters for the pipes on the
integer side.

3.4 Definitions
In this section, we define the microarchitectural properties we want to infer,
i.e., latency, throughput, and port usage.

46

3.4. DEFINITIONS

3.4.1 Latency
The latency of an instruction is commonly [Int19b] defined as the “number of
clock cycles that are required for the execution core to complete the execution
of all of the µops that form an instruction” (assuming that there are no other
instructions that compete for execution resources). Thus, it denotes the time
from when the operands of the instruction are ready and the instruction can
begin execution to when the results of the instruction are ready.

This definition ignores the fact that different operands of an instruction may
be read and/or written by different µops. Thus, a µop of an instruction I
might already begin execution before all source operands of I are ready, and
a subsequent instruction I ′ that depends on some (but not all) results of I
might begin execution before all results of I have been produced.

To take this into account, we propose the following definition for latency
instead. Let S = {s1, ..., sm} be the source operands, and D = {d1, ..., dm}
be the destination operands of an instruction. We define the latency of the
instruction to be the mapping

lat : S ×D → N

such that lat(si, dj) denotes the time from when source operand si becomes
ready until the result dj is ready (assuming all other dependencies are not on
the critical path). Thus, if tsi

denotes the time at which source operand si
becomes ready, then destination operand dj is ready at time

tdj
= max{tsi

+ lat(si, dj) | si ∈ S}.

With the usual approach of using a single value lat as the latency of an
instruction, this value would be

tdj
= max{tsi

| si ∈ S}+ lat,

which might be significantly greater than what would be observed in practice.

3.4.2 Throughput
When comparing throughput data from different publications, it is important
to note that these publications do not all use the same definition of throughput.
Intel defines throughput in its manuals [Int12, Int19b] as follows.

Definition 3.1 (Throughput—Intel). The number of clock cycles required
to wait before the issue ports are free to accept the same instruction again.

47

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

On the other hand, Agner Fog [Fog19] uses the following definition for (recip-
rocal) throughput:

Definition 3.2 (Throughput—Fog). The average number of core clock cycles
per instruction for a series of independent instructions of the same kind in
the same thread.

Granlund [Gra17] uses a similar definition as Fog.

These two definitions are not equivalent, as there can be factors other than
contention for the issue ports that may reduce the rate at which instructions
can be executed (e.g., the front end, or the memory subsystem). Moreover,
it is not always possible to find instructions of the same kind that are truly
independent, as many instructions have implicit dependencies on certain
registers or flags. Hence, the second definition may yield higher throughput
values (corresponding to a lower throughput) than the first definition for the
same instruction.

Some publications [Fog19, Gra17] use the term throughput to denote in-
structions per cycle, while others [Int19b, Inta] use it to denote cycles per
instruction. In this chapter, we will use the term with the latter meaning.

3.4.3 Port Usage
Let P be the set of ports of a CPU and U the set of µops of an instruction
instr . Let ports : U → 2P be a mapping such that ports(u) is the set of ports
which have a functional unit that can execute the µop u.

We define the port usage pu : 2P → N of instr to be a mapping such that

pu(pc) =
∣∣{u ∈ U | ports(u) = pc}

∣∣ ,
i.e., pu(pc) denotes the number of µops of instr whose functional units are at
the ports in pc (we will call the set pc a port combination). Note that, e.g.,
for a 1-µop instruction with a µop u such that ports(u) = {0, 1}, we have
that pu({0, 1}) = 1, but pu({0}) = pu({1}) = 0.

For, e.g., an instruction with pu({0, 1, 5}) = 3, pu({2, 3}) = 1, and pu(pc) = 0
for all other port combinations pc, we will use the notation 3 ∗ p015 + 1 ∗ p23
to denote the port usage. In other words, the instruction consists of three
µops that may each be executed on ports 0, 1, and 5, and one µop that may
be executed on ports 2 and 3.

48

3.5. ALGORITHMS

3.5 Algorithms
In this section, we describe the algorithms that we developed to infer the port
usage, the latency, and the throughput.

3.5.1 Port Usage
The existing approach by Agner Fog [Fog19] to determine the port usage
measures the number of µops on each port when executing the instruction
repeatedly in isolation. If the result of such a measurement is, e.g., that there
is, on average, one µop on port 0 and one µop on port 5, the author would
conclude that the port usage is 1 ∗ p0 + 1 ∗ p5.

However, this might be incorrect: A port usage of 2∗p05 could lead to exactly
the same measurement result when the instruction is run in isolation, but to
a very different result when run together with an instruction that can only
use port 0 (the PBLENDVB3 instruction on the Nehalem microarchitecture
is an example for such a case).

In another example, if the measurement result is that there are, on average,
0.5 µops on each of port 0, 1, 5, and 6, the author would conclude that the
port usage is 2 ∗ p0156, whereas the actual usage might, for example, be
1 ∗ p0156 + 1 ∗ p06 (this is, e.g., the case for the ADC 4 instruction on the
Haswell microarchitecture).

In this section, we propose an algorithm that can automatically infer an
accurate model of the port usage. Our algorithm is based on the notion of a
blocking instruction: We define a blocking instruction for a port combination
pc to be an instruction whose µops can use all the ports in pc, but no other
port that has the same functional unit as a port in pc. Blocking instructions
are interesting because they can be used to determine whether or not an
instruction can only be executed on a given set of ports, the set of ports
blocked by the blocking instruction.

Before describing our algorithm to infer a model of the port usage we will first
describe how to find a suitable set of blocking instructions. Let FU be the set
of types of functional units that the CPU uses, and let ports : FU → 2P be a
mapping from the functional unit types to the set of ports P that are connected
to a functional unit of the given type. The set of port combinations for which
we need to find blocking instructions is the set {ports(fu) | fu ∈ FU}.

3“Variable blend packed bytes”
4“Add with carry”

49

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

We assume that for each of these port combinations (except for the ports
that are connected to the store data and store address units), there is a
1-µop instruction that can use exactly the ports in the combination. This
assumption holds on all recent microarchitectures.

Our algorithm first groups all 1-µop instructions based on the ports they use
when run in isolation. We exclude several classes of instructions, for example
system instructions, serializing instructions, zero-latency instructions, the
PAUSE instruction, and instructions that can change the control flow based
on the value of a register. From the remaining instructions, the algorithm
chooses from each group an instruction with the highest measured through-
put (see Section 3.5.3) as the blocking instruction for the port combination
corresponding to this group; here, we consider only throughput measurements
obtained by unrolling (see Section 3.6.2) to ensure that blocking instructions
do not lead to bottlenecks in the front end.

As blocking instructions for the port combinations for the ports that are con-
nected to the store data and store address units, we use the MOV instruction
(from a general-purpose register to the memory). This instruction is a 2-µop
instruction; one of its µops uses the store data unit, and the other a store
address unit.

To avoid SSE-AVX transition penalties when characterizing SSE or AVX
instructions, our algorithm determines two separate sets of blocking instruc-
tions for these two types of instructions. For SSE instructions, the blocking
instructions should not contain AVX instructions, and vice versa.

Port Usage Algorithm

We use Algorithm 3.1 to infer the port usage of an instruction instr . The
algorithm first sorts the set of port combinations by the size of its elements.
This ensures that, when iterating over the port combinations, combinations
that are a subset of another port combination are processed first.

For each port combination pc, the algorithm determines the number of µops
that may use all of the ports in pc but no others. To determine this set,
the algorithm concatenates blockRep copies of the corresponding blocking
instruction with the instruction that we want to analyze (line 5). blockRep is
the product of the maximum latency of the instruction (see Section 3.5.2), i.e.,
the maximum over the latencies for all input/output pairs, and the maximum
number of ports. This ensures that there is always a sufficient number of
instructions available that can block the ports of the combination. The
operands of the copies of the blocking instructions are chosen such that they

50

3.5. ALGORITHMS

Algorithm 3.1: Port usage
1 portCombinationsList← sort(portCombinations)
2 µopsForCombination← [] // list of pairs
3 foreach pc in portCombinationsList do
4 blockRep← 10 ·maxLatency(instr)
5 code← copy(blockingInstr(pc), blockRep) + ";" + instr
6 µops← measureUopsOnPorts(code, pc)
7 µops← µops− blockRep
8 foreach (pc′, µops′) in µopsForCombination do
9 if pc′ ⊂ pc then

10 µops← µops− µops′

11 if µops > 0 then
12 µopsForCombination.add((pc, µops))

13 return µopsForCombination

are independent from the operands of instr and independent from subsequent
instances of the blocking instruction.

When executing the concatenation, instruction instr will only be executed
on one of the blocked ports if there is no other port that it can be executed
on. The algorithm thus measures the number of µops that use the ports
in the combination when executing the concatenation (line 6). From this
value, it subtracts the number of µops, blockRep, of the blocking instructions
(line 7). The remaining number of µops can only be executed on the ports in
pc, otherwise they would have been executed on other ports.

However, it may have been determined previously for a strict subset pc′ of pc
that some or even all of these µops can only be executed on that subset pc′.
Thus, the number of µops′ on subsets pc′ of the port combination pc, which
have been determined in previous iterations of the loop, are subtracted from
µops (line 10). The remaining number of µops can be executed on all ports
in pc but on no other ports.

The algorithm can be optimized by first measuring which ports are used when
running the instruction in isolation. The loop then does not need to iterate
over all port combinations, but only over those whose ports are also used
when the instruction is run in isolation. Furthermore, we can exit the loop
early when the sum of the µops in the µopsForCombination list reaches the
total number of µops of the instruction.

51

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

3.5.2 Latency
Let I be an instruction with source operands S and destination operands D.
We use the following general approach to determine the latency lat(s, d) for
some s ∈ S and d ∈ D.

Let us first consider the simplest possible case:

1. The type of the source operand s is the same as the type of the destina-
tion operand d.

2. All instruction operands are explicit register operands, and no register
operand is both read from and written to by I.

3. The µops of I do not compete for execution ports.

Then we can create a dependency chain of copies of I, such that the register
for the destination operand of an instance of I is the register used for the
source operand of the next instance of I. The other registers should be chosen
such that no additional dependencies are introduced.

Given such a chain c of sufficient length, we can determine lat(s, d) by
measuring the run time of the chain and dividing it by the length of c.

Let us now consider the case that the types of the source operand s and
the destination operand d are different. Then it is impossible to create a
dependency chain consisting only of instances of the instruction I. To create
a chain we need an instruction C that has a source operand sC with the
same type as d, and a destination operand dC with the same type as s. We
call such an instruction a chain instruction. Given a chain instruction C,
we can create a chain by concatenating instances of I and C, such that the
destination operand of I uses the same register as the source operand of C
and vice versa. Assuming we already know the latency latC(sC , dC) of C,
we can determine the latency lat(s, d) by measuring the chain’s run time,
dividing it by the number of occurrences of I, and by subtracting latC(sC , dC).
Chain instructions should be instructions that have as few as possible other
operands, they should ideally be one-µop instructions that can use multiple
ports, and their latency should either be known or easy to determine in
isolation.

Let us now assume there are implicit operands or register operands that are
both read from and written to by the instruction I. Such operands are a
challenge as they may introduce additional dependencies: This is the case
if I has implicit operands that are both read from and written to (such as,
e.g., status flags), or if s 6= d, and s or d are both read from and written to.

52

3.5. ALGORITHMS

In such cases, the run time of a chain involving I may be determined by the
latency of the additional dependency, rather than the latency from s to d,
which we would like to determine.

Similar issues can occur if there are µops of I that are not needed for computing
the output in d based on the input in s, but that compete for execution ports
with the µops needed for this dependency.

We handle these issues by adding sufficiently many additional chain instruc-
tions to the dependency chain, such that the execution time of the dependency
chain exceeds the latencies of any additional dependencies, and µops that
are not on the critical path can be executed in parallel to the dependency
chain. The number of additional chain instructions is determined based the
execution time of running instruction I in isolation (i.e., without any chain
instructions).

In the following subsections, we first describe the most interesting cases of
how we create dependency chains for different types of source/destination
operands. Then, we briefly describe how we determine the latencies of the
chain instructions themselves.

Register → Register

Both registers are general-purpose registers If both registers are
general-purpose registers, we use the MOVSX 5 instruction to create a depen-
dency chain.

We do not use the MOV or MOVZX 6 instructions for this purpose, as these
can be zero-latency instructions on some microarchitectures in some cases,
which can be executed by the renamer (“move elimination”, see Section 3.3.1).
However, move elimination is not always successful (in our experiments, we
found that in a chain consisting of only (dependent) MOV instruction, about
one third of the instructions were actually eliminated). Using the MOVSX
instruction avoids this uncertainty.

Moreover, because the MOVSX instruction supports source and destination
registers of different sizes, this also avoids problems with partial register
stalls (see Section 3.5.2.4 of Intel’s Optimization Manual [Int19b]). A partial
register stall occurs when an instruction writes an 8 or 16-bit portion of a
general-purpose register, and a subsequent instruction reads a larger part of
the register.

5“Move with sign-extension”
6“Move with zero-extend”

53

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

If at least one of the two register operands is not an implicit operand, we
could also use the same register for both operands instead of using a chain
instruction for measuring the latency. However, if one of the operands is
both read and written, it would not be possible to measure the latencies
between the two operands separately. Moreover, there are some instructions
that behave differently if the same register is used for multiple operands. For
example, some instructions with two register operands (like XOR and SUB)
are zero idioms that always set the register to zero (independent of the actual
register content) if the same register is used for both operands. In all recent
microarchitectures, these instructions break the dependency on the register
that is used; on some microarchitectures, they can in some cases be executed
by the renamer and do not use any execution ports (see Section 3.5.1.7 of
Intel’s Optimization Manual [Int19b]). There are also other instructions that
behave differently on some microarchitectures when the same register is used,
for example the SHLD instruction (for details see Section 3.7.4).

To be able to detect such a behavior, our algorithm therefore creates mi-
crobenchmarks for both scenarios (i.e., using a separate chain instruction,
and using the same register for different operands).

A third option would be to chain the instruction with itself by reversing the or-
der of the two operands (i.e., the destination operand of one instruction would
use the same register as the source operand of the next instruction). However,
as this would not work for instructions with implicit register operands, we do
not pursue this alternative.

Both registers are MMX registers In this case, we use the MOVQ7

instruction, which is not a zero-latency instruction, to create a dependency
chain. We also perform a separate experiment where the same register is used
for different operands, as described above for general-purpose registers.

Both registers are SIMD registers Since all MOV instructions for SIMD
registers (i.e., XMM, YMM, and ZMM registers) can be zero-latency instruc-
tions on some microarchitectures, we use shuffle instructions instead.

SIMD instructions can perform floating-point or integer operations. If a
source for a floating-point operation comes from an integer operation (or
vice-versa), a bypass delay can occur (see Sections 3.5.1.10 and 3.5.2.3 of
Intel’s Optimization Manual [Int19b]). To capture such cases, we perform
measurements with both a floating-point and an integer shuffle instruction

7“Move quadword”

54

3.5. ALGORITHMS

as chain instructions. In particular, we use the SHUFPD8 and PSHUFD9

instructions (with immediate operand 0). For AVX instructions, we use the
corresponding VEX encoded instructions (VSHUFPD and VPSHUFD) to
avoid AVX-SSE transition penalties.

As described in the previous paragraphs, we also consider the case where
different operands use the same register. However, this is not possible for
AVX2 gather instructions, as they require all arguments to be pairwise
different.

The registers have different types If the registers have different types
(e.g., one is a vector register, and the other a general-purpose register), then
it is, in general, not possible to find a chain instruction whose latency could
be determined in isolation. Instead, we separately measure and report the
execution times for compositions of the instruction with all meaningful chain
instructions with the corresponding types. Note that these times might
be higher than the sum of the latencies of the instruction and the chain
instruction due to bypass delays. If we then take the minimum of these times
and subtract 1, we can obtain an upper bound on the latency of the instruction
(there are no zero-latency instructions between registers of different types).

Memory → Register

To measure the latency of a MOV instruction from the memory to a general-
purpose register, we can use a chain of

MOV RAX, [RAX]

instructions, where we assume that register RAX contains the address of a
memory location that stores its own address. As its address depends on the
result of the previous load, the next load can only begin after the previous
load has completed.

However, this simple approach would not work for most other instructions, as
they usually do not just copy a value from the memory to a register. Instead,
we generalize the approach as follows: Let Ra be the register that contains
the memory address, and let Rd be the destination register. We use

XOR Ra, Rd; XOR Ra, Rd

to create a dependency from Rd to Ra. Note that the double XOR effectively
leaves Ra unchanged. However, since XOR also modifies the status flags,

8“Packed interleaved shuffle of pairs of double-precision floating-point values”
9“Shuffle packed doublewords”

55

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

we additionally add a dependency-breaking instruction for the flags to the
chain (i.e., an instruction that writes the flags but does not read them so
that subsequent instructions that read the flags do not have to wait until
XOR completes before they can begin execution). Furthermore, if Rd is an 8
or 16-bit register, we prepend a MOVSX instruction to the chain to avoid
partial register stalls.

The base register of a memory operand is always a general-purpose register. If
the destination register of the instruction is not a general-purpose register, we
combine the double XOR technique with the approach for registers described
in the previous section to obtain an upper bound on the latency.

Status Flags → Register

As there are no instructions that read the status flag register and write a
vector register, we only need to consider general-purpose registers here.

To create a dependency from a general-purpose register R to the status flags
register, we use the instruction

TEST R, R

This instruction reads both register operands (we use for both operands the
same register), and writes all status flags (except the AF flag). It has no other
dependencies.

Register → Memory

It is not directly possible to measure the latency of a store to memory, i.e.,
the time until the data has been written to the L1 cache. We can, however,
measure the execution time of a chain with a load instruction. For the MOV
instruction, we could, e.g., measure the execution time of the sequence

MOV [RAX], RBX; MOV RBX, [RAX].

However, the execution time of this sequence might be lower than the sum
of the times for a load and for a store. One reason for this is “store to load
forwarding”, i.e., the load obtains the data directly from the store buffer
instead of through the cache. The second reason is that the address of the load
does not depend on the preceding store, and thus the address computation
might already begin before the store.

While the time of such a sequence does not directly correspond to the latency,
it still might provide valuable insights. We therefore measure the execution

56

3.5. ALGORITHMS

time in a chain with a suitable load instruction for all instructions that read
a register and store data to the memory.

In particular, we use the MOV instruction for general-purpose registers, the
MOVQ instruction for MMX registers, and the (V)MOVSS10, (V)MOVD11,
(V)MOVSD12, (V)MOVQ13, (V)MOVUPD14, and (V)MOVDQU 15 instruc-
tions for SSE and AVX registers.

Status Flags → Memory

If the source is a status flag, we use the TEST instruction instead of the
MOV instruction. The TEST instruction reads from a memory location and
writes all status flags (except the AF flag).

Memory → Memory

Almost all instructions that both read from and write to memory do so using
the same operand (and thus, the same address). Therefore, we can just chain
them with themselves. For instructions that use different operands, we make
sure that both operands use the same address.

Address → Memory

For instructions that store to memory, we can additionally consider the
dependency from when the address of the store is ready to when the data
is stored in memory. We do this by combining the approach described
under “Register→ Memory” with the double XOR technique described under
“Memory → Register”.

Register → Status Flags

If the source register is an 8-bit general-purpose register, we use the corre-
sponding variant of the SETcc16 instruction for the status flag to create a
dependency chain. If the source is a general-purpose register that is wider
than 8 bits, we use the CMOVcc17 instruction with the source register as first

10“Move or merge scalar single-precision floating-point value”
11“Move doubleword”
12“Move or merge scalar double-precision floating-point value”
13“Move quadword”
14“Move unaligned packed double-precision floating-point values”
15“Move unaligned packed integer values”
16“Set byte on condition”
17“Conditional move”

57

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

operand and an otherwise unused register as second operand. This distinction
is necessary to avoid partial register stalls.

If the source register is a vector register, we can obtain an upper bound on
the latency by taking the minimum execution time over the combination of
the CMOVcc instruction with all instructions that read a general-purpose
register and write to a vector register of the given type. Note that there is no
instruction that reads a status flag and writes to a vector register.

Memory → Status Flags

To create a dependency chain, we use the CMOVcc instruction using the base
register of the memory address for both operands.

Status Flags → Status Flags

If the instruction reads and writes the carry flag, we use the CMC 18 as chain
instruction. We currently do not consider dependencies between other status
flags.

Branch Instructions

For instructions that change the control flow (i.e., they write to the RIP
register), it would be possible to create a dependency chain by using the
LEA19 instruction, which can directly read the RIP register in 64-bit mode.
However, due to speculative execution, this would not be a true dependency.
We therefore do not consider such dependencies (we do, however, consider
any other dependencies such an instruction might have).

Divisions

For instructions that use the divider units, it is known that their latency
depends on the contents of their register (and memory, where applicable)
operands. We test these instructions both with values that lead to a high
latency, and with values that lead to a low latency (we obtained those values
from Agner Fog’s [Fog19] test scripts). As most of these instructions use one
operand both as input and output operand, and the output of a division with
a value that leads to a high latency is often a value that leads to a lower
latency, the techniques described in the previous sections for automatically
creating dependency chains cannot be used in this case. We therefore handle

18“Complement carry flag”
19“Load effective address”

58

3.5. ALGORITHMS

these instructions separately. If, e.g., R is a register that is both a source and
a destination register, and Rc contains a value that leads to a high latency,
we can use

AND R, Rc; OR R, Rc,

or the corresponding vector instructions, to create a dependency chain that
always sets R to the same value.

Latencies of the Chain Instructions

As chain instructions, we generally use instructions whose latencies can be
determined in isolation, i.e., without needing other chain instructions. For
example, the MOVSX instruction has only one input and one output operand,
and we can determine its latency by, e.g., executing

MOVSX RAX, EAX

multiple times and dividing the execution time by the number of repetitions
(here, EAX refers to the lower 32 bits of the RAX register).

There are a few exceptions. An example are the TEST and SETcc instructions
that we use to create a dependency chain from a general-purpose register to
the status flags and vice versa. While we cannot measure the latencies of
these two instructions in isolation, we can measure the time for a combination
of the two, for example with the code sequence

TEST AL, AL; SETC AL

On all CPUs we tested, this combination needs two cycles, and thus we know
that each of the instructions needs one cycle. If our test program measures a
different execution time for this combination, it would abort with an error
message and we would need to find a different approach for this case.

3.5.3 Throughput
As mentioned in Section 3.4.2, there are different ways of defining throughput.
We will now first describe how we can measure the throughput according
to Definition 3.2. Then, we will show how the throughput according to
Definition 3.1 can be computed from the port usage.

Measuring Throughput

To measure the throughput of an instruction, we first try to find a sequence
of independent instances of the instruction that avoids read-after-write de-
pendencies as much as possible. To this end, we select registers and memory

59

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

locations in a way such that they are not written by one instruction of the
sequence and read by a subsequent instruction. This is, however, not possible
for implicit operands that are both read and written.

We then measure the execution time over several repetitions of this sequence
and obtain the throughput by dividing this time by the total number of
instructions that have been executed.

We observed that sometimes longer sequences of independent instruction
instances can lead to higher execution times per instruction than shorter
sequences, in particular, when they use many different memory locations
or registers. We therefore perform measurements for sequences of different
lengths (we consider sequences with 1, 2, 4, and 8 elements).

For instructions with implicit operands that are both read and written,
we additionally consider sequences with dependency-breaking instructions.
However, as the dependency-breaking instructions also consume execution
resources, this does not necessarily lead to a lower execution time of the
sequence in all cases.

For instructions that use the divider units, the throughput can depend on the
value of their operands. We test these instructions both with values that lead
to a high throughput, and with values that lead to a low throughput. For
this, we use the same values that we used to measure the latencies of such
instructions.

Computing Throughput from Port Usage

Intel’s definition of throughput (Definition 3.1) assumes that the ports are
the only resource that limits the number of instructions that can be executed
per cycle, and that there are no implicit dependencies.

If we execute an instruction for which these requirements hold repeatedly, then
the average wait time until the next instruction can be executed corresponds
to the average usage (per instruction) of the port with the highest usage, and
the number of µops on this port will be equal to the execution time (however,
this is not true for instructions that use the divider unit, which is not fully
pipelined).

For instructions, for which the above requirements do not hold, it is not
possible to directly measure the throughput according to Intel’s definition.

However, for instructions that do not use the divider unit, it can be computed
from the port usage measured in Section 3.5.1. For 1-µop instructions, the

60

3.6. IMPLEMENTATION

throughput is 1
|P | , where P is the set of ports that the µop can use. More

generally, the throughput is the solution of the following optimization problem,
where PU is the result from Algorithm 3.1, and f(p, pc) are variables:

Minimize max
p∈Ports

∑
(pc,µ)∈PU

f(p, pc)

Subject to f(p, pc) = 0 p /∈ pc∑
p∈Ports

f(p, pc) = µ (pc, µ) ∈ PU

The variable f(p, pc) captures the share of the µops that map to the port combi-
nation pc that are scheduled on port p. A schedule maximizing the throughput
will minimize the maximum port load maxp∈Ports

∑
(pc,µ)∈PU f(p, pc).

We can reduce this optimization problem to a linear program by replacing
the maximum in the objective with a new variable z, and adding constraints
of the form ∑

(pc,µ)∈PU
f(p, pc) ≤ z

for all p ∈ Ports. The linear program can be solved using standard LP
solvers.

3.6 Implementation
In this section, we describe various aspects of our implementation of the
algorithms developed in Section 3.5.

3.6.1 Details of the x86 Instruction Set
The algorithms described in Section 3.5 require detailed information on the
x86 instruction set, including, e.g., the types and widths of (implicit and
explicit) operands. While this information is available in Intel’s Software
Developer’s Manual [Int19c], there was, until recently, no sufficiently precise
machine-readable description of the instruction set.

Fortunately, Intel recently published the source code of their x86 Encoder
Decoder (XED) [Intc] library. The build process of this library uses a set
of configuration files that contain a complete description of the syntax of
the x86 instruction set. While this description is very concise, it is not well
documented and quite complex to parse (collecting the information for a single
instruction requires reading multiple files). It also contains a lot of low-level
details, e.g., regarding the encoding, that are not needed for our purposes.

61

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

We therefore convert this format to a simpler XML representation that
contains enough information for automatically generating assembler code for
each instruction variant, and that also includes information on the operand
types and on whether they are explicit or implicit.

We then use this representation for the implementation of the algorithms
described in Section 3.5. The representation contains, for example, all the
information that is necessary to automatically pick the corresponding chain
instructions for each instruction variant from the list in Section 3.5.

3.6.2 Measurements on the Hardware
We use nanoBench (see Chapter 2) for evaluating the generated microbench-
marks using hardware performance counters. In particular, we measure the
number of µops on each port and the number of core clock cycles (which can
be different from reference cycles due to, e.g., frequency scaling). We use the
kernel-space version of nanoBench (see Section 2.3.4), which makes it possible
to benchmark privileged instructions, allows for more accurate measurements,
and provides access to the APERF counter on AMD CPUs for counting core
clock cycles.

We configure nanoBench to use unrolling (see Section 2.3.6). The unroll count
is chosen such that the code is small enough to fit in the instruction cache,
but large enough to allow for accurate results.

For measuring the throughput, we additionally perform an experiment with a
loop and a small unroll count, such that the code fits into the µop cache (see
Section 3.3). While the code for the loop introduces an additional overhead,
this can nonetheless lead to a higher throughput, as there are instructions for
which decoding is a bottleneck when only unrolling is used. On Intel CPUs,
this is for example the case for instructions that have a “Length-Changing
Prefix” (LCP, see Section 3.4.2.3 of [Int19b]); with such instructions, the CPU
uses a slower length-decoding algorithm. For measuring the port usage, this
is not an issue, as we do not use such instructions as blocking instructions.
For measuring latencies, this is also not an issue, as the chain instructions
introduce a sufficient amount of delay to hide such bottlenecks.

Some instructions require that registers or memory locations contain valid
values of a given type. Floating-point instructions, for example, require that
operands represent valid floating-point numbers (that are not denormal); oth-
erwise, delays and/or exceptions can occur. Before executing SSE instructions
on systems that support AVX (i.e., where parts of the XMM registers are
shared with YMM registers), the upper bits of the registers need to zeroed

62

3.7. EVALUATION

(using the VZEROUPPER20 or the VZEROALL21 instructions) to avoid false
dependencies. We implemented this using the initialization sequence feature
of nanoBench (see Section 2.3).

3.6.3 Analysis Using IACA
In addition to running the code sequences generated by our algorithms on the
actual hardware, we also implemented a variant of our tool that automatically
analyzes them with Intel’s IACA tool (see also Section 3.2.1). IACA treats
the code sequences as the body of a loop, and reports average throughput
and port usage values for multiple iterations of this loop. Thus, the results
should correspond to the measurements on the actual hardware, which are
also averages over executing the code sequences multiple times.

We consider the IACA versions 2.1, 2.2, 2.3, and 3.0. Intel added support for
more recent microarchitectures in the newer versions, but at the same time
dropped support for older ones. For microarchitectures that are supported by
multiple versions, we analyze the code sequences with all of these versions, as
we observed (undocumented) differences between the results from different
versions of IACA for the same instructions.

3.6.4 Machine-Readable Output
We store the results of our algorithms in a machine-readable XML file. The
file contains the results for all tested microarchitectures, both as measured
on the actual hardware and as obtained from running our microbenchmarks
on top of IACA.

3.7 Evaluation
In this section, we first describe the platforms on which we ran our tool.

Then, we compare our latency and throughput results for the Ice Lake
microarchitecture with Intel’s documentation. After that, we compare the
results obtained by running our microbenchmarks on the actual hardware
with those obtained by analyzing them with IACA.

Finally, we discuss several insights that we obtained from the measurement
results.

20“Zero upper bits of YMM and ZMM registers”
21“Zero XMM, YMM and ZMM registers”

63

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

Table 3.1: Tested microarchitectures and number of instruction variants for
which measurement results were obtained

Microarchitecture Processor Release Date # Instr.
Conroe Intel Core 2 Duo E6750 Q3’07 1946
Wolfdale Intel Core 2 Duo E8400 Q1’08 2042
Nehalem Intel Core i5-750 Q3’09 2076
Westmere Intel Core i5-650 Q1’10 2090
Sandy Bridge Intel Core i7-2600 Q1’11 2797
Ivy Bridge Intel Core i5-3470 Q2’12 2808
Haswell Intel Xeon E3-1225 v3 Q2’13 3366
Broadwell Intel Core i5-5200U Q1’15 3377
Skylake Intel Core i7-6500U Q3’15 3420
Kaby Lake Intel Core i7-7700 Q1’17 3420
Skylake-X Intel Core i9-7900X Q2’17 12523
Coffee Lake Intel Core i7-8700K Q4’17 3420
Cannon Lake Intel Core i3-8121U Q2’18 12673
Ice Lake Intel Core i5-1035G1 Q3’19 13326
Zen+ AMD Ryzen 5 2600 Q2’18 3399
Zen 2 AMD Ryzen 7 3700X Q3’19 3401

3.7.1 Experimental Setup
We ran our tool on the platforms described in Table 3.1, which includes
processors from most Intel microarchitectures released in the last 13 years, as
well as AMD Zen+ and Zen 2 processors. The last column in Table 3.1 shows
the number of instruction variants for which we obtained measurement results.
The numbers are higher for newer microarchitectures due to their larger
instruction sets. Figure 3.3 shows a subset of the actual machines we used.

All experiments were performed using Ubuntu 18.04. To reduce the risk of
interference, we disabled hyper-threading. The total run time of our tool
ranges from around 80 minutes (on the Coffee Lake system), to around 20
hours (on the Cannon Lake system).

3.7.2 Hardware Measurements vs. Documentation
For the Ice Lake microarchitecture, Intel has published a machine-readable
csv file with latency and throughput data for a relatively large number of
instruction variants [Int19a]. Moreover, the naming of the instruction variants

64

3.7. EVALUATION

Figure 3.3: Experimental setup

65

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

is based on Intel’s XED library (see Section 3.6.1), which makes a comparison
with our data relatively straightforward. However, we use a somewhat more
fine-grained definition of instruction variant, which means that in some cases,
an entry in Intel’s file corresponds to multiple variants in our file. For example,
we treat AVX-512 instructions with and without a zeroing modifier as two
separate variants, whereas Intel’s file considers them to be the same variant.

For the throughput, Intel provides data for 9789 instruction variants (accord-
ing to our definition). For 9723 of these variants (i.e., 99.33%), our throughput
results (as computed from the port usage according to Section 3.5.3) agree
with Intel’s data. For 16 of the remaining instruction variants, the differences
are due to rounding (0.67 vs 0.66). 24 of the remaining instruction variants
are move instructions that do not need execution ports (move elimination,
see Section 3.3.1), and hence, our approach could not compute a throughput
from the port usage. For 12 variants of the V(P)BLENDV* instructions, we
obtained a port usage of 2*p015, and thus, a throughput of 0.67; however,
Intel reports a throughput of 1. The remaining 14 instruction variants are
division instructions, for which the differences between our results and Intel’s
values are probably due to them not being fully pipelined (see Section 3.3.1).

We now compare the throughput in Intel’s file with the measured throughput
(see Section 3.5.3). This comparison might appear to not be very meaningful,
as the data in Intel’s file is based on Definition 3.1, whereas the measured
throughput data is based on Definition 3.2. However, the comparison can
provide some insights into how big the difference between the two definitions
actually is in practice. In 9594 cases (i.e., 98%), the throughput values are
the same. In 9762 cases (i.e., 99.72%), the throughput values differ by at most
0.1 cycles. Interestingly, for the V(P)BLENDV* and the division instruction
variants described above, the measured throughput does agree with Intel’s
throughput values.

If we compare the measured throughput values with the throughput values
computed from the port usage for all 13326 instruction variants, for which
we obtained measurement data, then in 7.03% of the cases, the values differ
by more than 0.1 cycles. This includes, in particular, division instruction,
GATHER/SCATTER instructions, instructions with a LOCK prefix, instruc-
tions that modify the control flow, and several system instructions; for these
instructions, factors other than the contention on execution ports, seem to
limit the measured throughput. For most of these instructions, no throughput
data is available in Intel’s file.

Finally, we compare our measured latency values with the data in Intel’s file.
The file contains latency data for 7655 instruction variants. This data is in the

66

3.7. EVALUATION

Table 3.2: Comparison of measurement results with IACA

Microarchitecture IACA # Instr. µops µops_RL Ports
Nehalem 2.1–2.2 1702 85.31% 92.49% 98.42%
Westmere 2.1–2.2 1714 85.30% 92.42% 98.02%
Sandy Bridge 2.1–2.3 2439 87.41% 93.46% 98.26%
Ivy Bridge 2.1–2.3 2447 85.82% 91.74% 96.62%
Haswell 2.1–3.0 3297 88.96% 93.18% 95.29%
Broadwell 2.2–3.0 3196 89.61% 92.39% 91.67%
Skylake 2.3–3.0 3188 89.05% 92.15% 90.21%
Skylake-X 2.3–3.0 12156 96.41% 97.26% 95.76%

form of a single value per instruction variant, whereas our approach obtains
a separate value for each pair of input/output operands. In the following, we
compare the value from Intel’s file with the maximum of the values that we
obtained with our tool.

As described in Section 3.5.2, in some cases, our approach cannot determine
exact values for the latency, but only upper bounds. For 3476 of the instruction
variants for which Intel’s file provides latency data, our approach was able to
determine exact values; for 3472 of these variants (i.e., 99.88%), our numbers
agree with Intel’s data. For the remaining 4179 instruction variants, the
maxima of the values obtained by our tool are upper bounds; in all of these
cases, our numbers are exactly one cycle larger than the values in Intel’s file.

3.7.3 Hardware Measurements vs. IACA
IACA supports the microarchitectures shown in Table 3.2; the second column
in this table shows which versions of IACA support the corresponding mi-
croarchitecture. The third column shows the number of instruction variants
for which we obtained results both from hardware measurements and by
executing our microbenchmarks using IACA.

For between 85.30% (Westmere) and 96.41% (Skylake-X) of these instruction
variants, IACA reports the same µop count as our measurements on the
hardware (see the “µops” column); we consider IACA to report the same
count if at least one IACA version reports this count. If we ignore instruction
variants with a REP prefix (which can have a variable number of µops), and
instructions with a LOCK prefix (for which IACA in most cases reports a
µop count that is different from our measurements), then the µop counts are
the same for the percentages in the “µops_RL” column of Table 3.2.

67

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

If we consider only the instruction variants for which IACA and our tool
report the same µop count, then in between 90.21% (Skylake) and 98.42%
(Nehalem) of the cases, the port usages as obtained from measurements on
the hardware and as obtained from running our microbenchmarks on top of
IACA, are also the same. The percentages for each microarchitecture are
shown in the last column of Table 3.2.

Differences Between Hardware Measurements and IACA While
some of the discrepancies might be due to measurement errors on the hardware,
in many cases we were able to conclude that the output of IACA was incorrect.

There are, for instance, several instructions that read from memory, but that
do not have a µop that can use a port with a load unit (e.g., the IMUL22

instruction on Nehalem). On the other hand, there are instructions (like the
TEST mem, R instruction on Nehalem) that have a store data and a store
address µop in IACA, even though they do not write to the memory. We also
found several cases where IACA is not aware that different variants of an
instruction have a different port usage. On the actual hardware, the 32-bit
variant of the BSWAP23 instruction on Skylake, for example, has just one µop,
whereas the 64-bit variant has two µops. In IACA, both variants have two
µops. In a number of cases, the sum of the µops on each of the ports does not
add up to the total number of µops reported by IACA. An example for this is
the VHADDPD24 instruction on Skylake. According to our measurements on
the hardware, the port usage of this instruction is 1 ∗ p01 + 2 ∗ p5. IACA also
reports that the instruction has three µops in total. However, the detailed
(per port) view only shows one µop.

Differences Between Different IACA Versions We found a number of
cases where different IACA versions reported different port usages for the
same instructions on the same microarchitecture.

Often, the results from the newer versions correspond to our measurements
on the hardware, so in these cases, the differences seem to be due to fixes of
(undocumented) bugs in earlier versions of IACA. One example for this is the
VMINPS25 instruction on the Skylake microarchitecture. In IACA 2.3, this
instruction can use the ports 0, 1, and 5, whereas in IACA 3.0 and on the
actual hardware, the instruction can only use ports 0 and 1. On the other

22“Signed multiply”
23“Byte swap”
24“Packed double-FP horizontal add”
25“Minimum of packed single-precision floating-point values”

68

3.7. EVALUATION

hand, we also found a few cases where the results of an older version of IACA
correspond to the measurements on the hardware. An example for this is the
SAHF 26 instruction on the Haswell microarchitecture. On the actual hardware
and in IACA 2.1, this instruction can use the ports 0 and 6. In IACA 2.2,
2.3, and 3.0, however, the instruction can additionally use the ports 1 and 5.

Latency/Throughput In many cases, it was not possible to obtain accu-
rate latency and throughput data from IACA. One reason for this is that
IACA ignores several dependencies between instructions. IACA 3.0, for
instance, ignores dependencies on status flags. The CMC instruction, for
example, which complements the carry flag, is reported to have a throughput
of 0.25 cycles by IACA, which is impossible in practice due to the dependency
on the carry flag; on the actual hardware, we measured a throughput of 1
cycle. IACA also completely ignores memory dependencies. For example, the
sequence

mov [RAX], RBX; mov RBX, [RAX]

is reported to have a throughput of 1 cycle; the measured throughput of this
sequence on the microarchitectures supported by IACA is at least 3 cycles.
Furthermore, based on our observations, IACA does not seem to model latency
differences between different pairs of input and output operands.

3.7.4 Interesting Results
AES Instructions

We first look at an example where our new approach for determining the
latencies of an instruction revealed undocumented performance differences
between successive microarchitectures. According to the manual [Int12], the

AESDEC XMM1, XMM2
27

instruction has a latency of 8 cycles on the Sandy Bridge architecture. Agner
Fog [Fog19] and AIDA64 [Ins] report the same latency. According to IACA
2.1 and the LLVM model, the latency is 7 cycles.

The instruction reads and writes the first operand, and reads the second
operand. Based on our measurements on the Sandy Bridge system, the latency
lat(XMM1,XMM1) is 8 cycles, while lat(XMM2,XMM1) is only 1 cycle. The
instruction uses 2 µops.

26“Store AH into flags”
27“Perform one round of an AES decryption flow”

69

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

According to Intel’s instruction set reference [Int19c], the instruction performs
the following operations:

1 STATE ← XMM1
2 RoundKey ← XMM2
3 STATE ← InvShiftRows(STATE)
4 STATE ← InvSubBytes(STATE)
5 STATE ← InvMixColumns(STATE)
6 DEST[127:0] ← STATE XOR RoundKey

We can see that the second operand is only needed in the last step (line 6).
So, our latency measurements suggest that one of the two µops probably
computes the XOR operation in the last step (which has a latency of 1 cycle).

We obtained the same result on the Ivy Bridge system (i.e., Sandy Bridge’s
successor). On the Haswell system (i.e., Ivy Bridge’s successor), on the other
hand, the instruction has just one µop, and the measured latency values for
both cases are 7 cycles. The same latency is reported in Intel’s manual, by
IACA, by the LLVM model, and by Agner Fog.

On the Westmere microarchitecture (i.e., Sandy Bridge’s predecessor), which
was the first microarchitecture to support the AES instruction set, the instruc-
tion has 3 µops, and we measured a latency of 6 cycles for both operand pairs.
The same latency is reported in the 2012 version of Intel’s manual [Int12]
(the current version contains no data for Westmere), by IACA 2.1, and by
AIDA64. Agner Fog did not analyze a Westmere system; there is also no
LLVM model for Westmere.

We observed the same behavior for the AESDECLAST, AESENC, and AES-
ENCLAST instructions. To the best of our knowledge, the behavior on Sandy
Bridge and Ivy Bridge has not been documented before.

There are also variants of these instructions where the second operand is a
memory operand instead of a register operand.

For these variants, our tool reports for the Sandy Bridge system a latency of 8
cycles for the register-to-register dependency (as before), and an upper bound
on the memory-to-register latency of 7 cycles. According to IACA 2.1 and the
LLVM model, the latency is 13 cycles (this value was probably obtained by
just adding the load latency to the latency of the register-to-register variants
of these instructions). Agner Fog and AIDA64 do not report the latency of
the memory variants.

70

3.7. EVALUATION

SHLD

We will now see an example that shows that our approach can explain
differences among previously published data for the same instruction on the
same microarchitecture.

According to the manual [Int12], as well as Granlund [Gra17], IACA, and
AIDA64, the

SHLD R1, R2, imm28

instruction has a latency of 4 cycles on the Nehalem microarchitecture. Agner
Fog reports a latency of 3 cycles.

The instruction reads and writes the first operand, and reads the second
operand. According to our measurements, lat(R1, R1) is 3 cycles, whereas
lat(R2, R1) is 4 cycles. Thus, lat(R1, R1) corresponds to Fog’s result, while
lat(R2, R1) corresponds to the latency the other approaches report.

On the Skylake microarchitecture, the same instruction is reported to have
a latency of 3 cycles by the manual [Int19b], by the LLVM model, and by
Agner Fog. According to Granlund and AIDA64, the latency is 1 cycle.

According to our results for the Skylake system, the latency is 3 cycles if
different registers are used for the two operands, but only 1 cycle if the same
register is used for both operands (the Nehalem system does not exhibit this
behavior). This suggests that Granlund and AIDA64 test the latency by
using the same register for both operands, while Fog uses different registers
for both operands and, thus, considers only the implicit dependency on the
first operand.

MOVQ2DQ

Next, we will show an example where the port usage is modeled inaccurately
by existing work.

According to Agner Fog’s instruction tables, the MOVQ2DQ29 instruction
has a port usage of 1 ∗ p0 + 1 ∗ p15. This is probably based on the observation
that if one executes the instruction repeatedly on its own, then, on average,
there is 1 µop on port 0, and there are about 0.5 µops on port 1 and 0.5 µops
on port 5.

However, our approach shows that the second µop can actually use port 0,
port 1, and port 5. If we execute the instruction together with a blocking

28“Double precision shift left”
29“Move quadword from MMX technology to XMM register”

71

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

instruction for port 1 and port 5, then all µops of the MOVQ2DQ instruction
will use port 0. According to IACA and to the LLVM model, both µops of
this instruction can only use port 5.

MOVDQ2Q

The following example shows a case where existing work reports an inaccurate
port usage on one microarchitecture and an imprecise usage on another
microarchitecture for the same instruction.

On Haswell, the MOVDQ2Q30 instruction has, according to our results, a
port usage of 1 ∗ p015 + 1 ∗ p5. IACA 2.1 reports the same result. However,
according to IACA 2.2, 2.3, 3.0, and the LLVM model, the port usage of this
instruction is 1 ∗ p01 + 1 ∗ p015. According to Agner Fog, the port usage is
1 ∗ p01 + 1 ∗ p5.

On Sandy Bridge, our measurements agree with both IACA and the LLVM
model for the same instruction (1 ∗ p015 + 1 ∗ p5). Agner Fog reports the
usage as 2 ∗ p015.

Instructions with Multiple Latencies

Apart from the examples already described, we also found latency differences
for different pairs of input and output operands for a number of other in-
structions. This includes most instructions that have a memory operand
and another input operand, where such differences can be expected. We
also found differences for the non-memory variants of the following instruc-
tions: ADC, CMOV(N)BE, (I)MUL, PSHUFB, ROL, ROR, SAR, SBB,
SHL, SHR, (V)MPSADBW, VPBLENDV(B/PD/PS), (V)PSLL(D/Q/W),
(V)PSRA(D/W), (V)PSRL(D/Q/W), XADD, and XCHG. For the (I)MUL,
ROL, and ROR instructions, this behavior is described in [Int19b]; for the
ADC and SBB instructions, the behavior has been observed by [Gra17]. For
the remaining instructions, the differences have, to the best of our knowledge,
so far been undocumented.

Zero Idioms

According to our results, the (V)PCMPGT(B/D/Q/W)31 instructions are
also dependency-breaking idioms, even though they are not in the list of
dependency-breaking idioms in Intel’s Optimization Manual [Int19b].

30“Move Quadword from XMM to MMX Technology Register”
31“Compare packed data for greater than”

72

3.7. EVALUATION

Shift Instructions on AMD CPUs

Consider the following code sequence, which is from one of microbenchmarks
used to measure the latency of the SHL32 instruction:

1 SHL RBX, CL
2 CMOVC RBX, RAX

The first line shifts the RBX register to the left by the number of bits specified
in the CL register. If the CL register is not 0, the instruction also modifies the
status flags; otherwise, it leaves them unchanged. The second line contains a
conditional move instruction that performs a move operation from the RAX to
the RBX register if the carry flag is set.

On both of our AMD CPUs, this code sequence has a (measured) throughput
of 2 cycles if the value in the CL register is not 0. However, if the CL register is 0,
the code needs more than 26 cycles. So there seems to be a significant penalty
for accessing a status flag that was left unchanged by the SHL instruction.
We observed the same behavior also with other shift instructions and with
other instructions that read status flags. On the Intel CPUs we tested, the
execution time of these instructions does not depend on the value of the CL
register.

To better understand this phenomenon, we performed several additional
experiments.

First, we considered a microbenchmark with only the first line. The through-
put of this benchmark is 1 cycle, independent of the value in CL.

Then, we added an instruction that writes (but does not read) the status flags,
and that has a dependency on the register output of the shift instruction:

1 SHL RBX, CL
2 TEST RBX, RBX
3 CMOVC RBX, RAX

This code sequence takes 3 cycles, independently of the value in CL. So the
delay only occurs when there is an instruction that reads the status flags,
and the last instruction that wrote the flags was executed before the shift
instruction.

32“Shift left”

73

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

Next, we added an instruction that breaks the dependencies on the flags and
the RBX register, which makes subsequent copies of the code independent of
each other:

1 XOR RBX, RBX
2 SHL RBX, CL
3 CMOVC RBX, RAX

The throughput is now about 0.75 cycles if CL is not 0, and more than 27
cycles otherwise. This suggests that reading a flag that was left unchanged
by the shift instruction does not just lead to an increase in the latency, but it
rather seems to stall the entire pipeline for several cycles.

If we add additional CMOVC instructions at the end, there are no additional
stalls. So the stall only occurs upon the first read of a flag that was left
unchanged by the shift instruction.

To analyze at which point in time the delay occurs, we performed the following
experiment. We inserted a sequence of 1000

MOVSX RBX, EBX

instructions between the shift and the conditional move instruction. The
length of the sequence is far larger than any of the buffers in the back end.
This ensures that by the time the shift instruction leaves the pipeline, the
processor does not know yet whether there will be an instruction that reads
the status flags at some point in the future.

The throughput of this sequence is 1002 cycles if CL is not 0, and over 1027
cycles otherwise. If we omit the CMOVC instruction, the execution time is
1001 cycles, independent of the value in CL. This shows that the stall occurs
when reading the status flags.

Next, we would like to test if the condition that triggers the stalls survives
serializing instructions. If we insert the CPUID or the MFENCE instruction
(which is a serializing instruction on AMD CPUs [AMD19], but not on Intel
CPUs [Int19c]) between the shift and the conditional move instruction, the
execution time is independent of the value in CL. On the other hand, if we
insert a move instruction to a debug register instead (which is also a serializing
instruction), the execution time is more than 34 cycles larger if CL is 0.

Finally, we would like to test if branches have an influence on the condition
that triggers the stalls. To do this, we use the following microbenchmark.

74

3.7. EVALUATION

1 SHL RBX, CL
2 MOV RDX, RCX
3 MOV RCX, <loopCount>
4 l: LOOP l
5 MOV RCX, RDX
6 CMOVC RBX, RAX

The LOOP instruction in line 4 decrements the RCX register, and jumps to
the label l if RCX is not 0; it does not modify status flags.

If the loop count is at least 10, but smaller than 27 on ZEN+ and smaller
than 92 on ZEN2, the execution time is about 4 cycles larger than the loop
count if CL is not 0, and about 30 cycles larger than the loop count otherwise.
If the loop count is larger, the execution times are independent of the initial
value in CL; however, they are at least about 25 cycles larger than the loop
count. A further analysis using performance counters showed that if the
loop counts are smaller than 27 (on ZEN+) and 92 (on ZEN2), there are no
mispredicted branches. If the loop count is larger, there is one mispredicted
branch (presumably the last branch of the loop). So, the handling of a
mispredicted branch seems to also clear the condition that leads to the delay
we observed. Moreover, since the penalty for a mispredicted branch is similar
to this delay, we think that it is possible that the processor might do something
similar in both cases.

Covert Channels On processors that support hyper-threading, the de-
scribed effect can be used to create a covert channel, i.e., a channel that is
not intended for information transfer and that is used by a trojan process to
deliberately leak sensitive information [Lam73, GYCH18].

The basic idea is as follows. In one thread, the sender would store the secret
in the CL register, execute a shift instruction, followed by an instruction that
reads the status flags, and multiple instances of an instruction I that can
only use a specific port B. In the other thread, the receiver would measure
the time for executing multiple instances of I. If the time is smaller than a
certain threshold, this would mean that there was less competition for port
B, which happens if the sender is stalled after executing a shift with CL set
to 0. On the other hand, if the measured time is larger than the threshold,
this means that there was competition for port B, which implies that CL is 1.

Initial experiments show that creating a covert channel on this basis is indeed
possible. However, a detailed analysis of this channel, for example with respect

75

CHAPTER 3. LATENCY, THROUGHPUT & PORT USAGE

to the bandwidth that can be achieved, is left as future work. It is also left
as future work to investigate whether existing software uses instructions
that read flags that were written by a shift instruction while the CL register
contained some secret. If this is the case, this might make a side channel
attack possible. In contrast to a covert channel, a side channel refers “to the
accidental leakage of sensitive data” [GYCH18].

Covert channels based on contention of functional units on processors with
hyper-threading were also described by [WL06, CV14, ABu+19, BSN+19]. In
contrast to the covert channel proposed in this paragraph, their work requires
branches that execute different instructions based on the secret.

3.8 Limitations
Our tool currently has the following limitations:

• We only support instructions that can be used in 64-bit mode.

• We do not support the mostly obsolete x87 floating-point instruction
set.

• A number of system instructions are not supported. This includes,
e.g., instructions that write to segment or control registers, instructions
that trigger interrupts, the VT-x instructions for virtual machines, and
instructions that use I/O ports. It also includes instructions like the
undefined instruction (UD) or the halt instruction (HLT), which cannot
be measured in a meaningful way.

• Except for the division instructions, we currently do not consider per-
formance differences that might be due to different values in registers
or different immediate values. We do, however, consider immediates of
different lengths, e.g., 16-bit and 32-bit immediates.

• We do not consider differences due to different memory addressing
modes, e.g., with scale and offset. We only test instructions that only
use the base register.

• For the AMD CPUs, the port usage data is currently limited to one-µop
floating-point instructions, as there are no performance counters for the
integer pipes, and the performance counters for the floating-point pipes
returned incorrect results in several cases when combining different
floating-point instructions.

76

3.9. CONCLUSIONS AND FUTURE WORK

3.9 Conclusions and Future Work
We have presented novel algorithms and their implementations to charac-
terize the latency, throughput, and port usage of instructions on recent x86
microarchitectures, which we believe will prove useful to predict, explain, and
optimize the performance of software running on these microarchitectures, e.g.,
in performance-analysis tools like CQA [CRON+14], Kerncraft [HHEW15],
or llvm-mca [Bia18]. The experimental evaluation demonstrates that the ob-
tained instruction characterizations are both more accurate and more precise
than those obtained by prior work.

Our results are available on our website33 both in the form of of a human-
readable, interactive HTML table and as a machine-readable XML file.

In his Bachelor thesis [Mee18], Hendrik Meerkamp implemented SUACA, a
performance-prediction tool similar to Intel’s IACA, exploiting the results
obtained in the present work.

Future Work

Future work includes addressing the limitations described in the previous
section.

We would also like to extend our approach to characterize other undocumented
performance-relevant aspects of the pipeline, e.g., regarding micro and macro
fusion, or whether instructions use the simple decoder, the complex decoder,
or the Microcode-ROM.

Our approach currently infers the number of µops for each port combination,
but it does not provide information on the relative order in which they
are executed. It would be possible to obtain such information with the
extension to nanoBench proposed in Section 2.6 that provides cycle-by-cycle
performance data.

33https://www.uops.info

77

https://www.uops.info

4
Characterizing Cache Architectures

In this chapter, we develop several tools that generate microbenchmarks to
precisely characterize the cache architectures of recent processors. We focus, in
particular, on cache replacement policies, which are typically undocumented.
The generated microbenchmarks are evaluated using nanoBench.

We apply these tools to Intel CPUs with 13 different microarchitectures,
uncovering several previously undocumented replacement policy variants.

Parts of the material presented in this chapter have been published in [AR14]
and [AR20].

4.1 Introduction
To bridge the increasing latency gap between the processor and main memory,
modern microarchitectures employ memory hierarchies with multiple levels
of cache memory. These caches are small but fast memories that make use
of temporal and spatial locality. Typically, they have a big impact on the
execution time of computer programs; the penalty of a miss in the last-level
cache can be more than 200 cycles.

Detailed cache models are, for example, necessary to build cycle-accurate
simulators such as Zesto [LSX09], gem5 [BBB+11], McSim+ [ALOJ13], or
ZSim [SK13]. Similarly, such models are an essential part of worst-case execu-
tion time (WCET) analyzers for real-time systems [W+08, Rei08, LGR+16].
Information on cache properties is also required by self-optimizing software
systems like ATLAS [CWPD01], PHiPAC [BACD97], or FFTW [FJ05], as
well as platform-aware compilers, such as PACE [C+10]. Furthermore, cache
models are needed for devising or mitigating certain covert-channel and
side-channel attacks (see Section 4.5.3).

79

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

In this chapter, we develop techniques for creating such cache models. We
focus, in particular, on cache replacement policies, which are typically undoc-
umented for recent microarchitectures.

To this end, we first introduce the necessary background regarding caches
and replacement policies (Section 4.2). This includes a new naming scheme
for referring to different variants of the QLRU replacement policy, which is
used in many recent CPUs.

In Section 4.3, we propose several tools for determining cache parameters.
The first tool, cacheInfo, provides details on the structure of the caches, such
as the sizes, the associativities, the number of cache sets, or the number of
C-Boxes and slices.

The second tool, cacheSeq, makes it possible to analyze the behavior of the
caches by measuring the number of cache hits and misses when executing an
access sequence in one or more cache sets; the access sequence is supplied as
a parameter to the tool and can be specified using a convenient syntax. To
perform these measurements, the tool generates suitable microbenchmarks
that are evaluated using nanoBench (see Chapter 2).

Based on cacheSeq, we then develop several tools for identifying the replace-
ment policy. In particular, we implement a tool that can automatically infer
permutation policies, and a tool that can automatically determine whether
the policy belongs to a set of more than 300 variants of commonly used
policies, including policies like MRU and QLRU, which are not permutation
policies. These tools are precise enough to determine the policies used in
individual cache sets. In addition to that, we develop a tool that can find
out whether the cache uses an adaptive replacement policy. Furthermore, we
propose a tool that creates age graphs, which are helpful for analyzing caches
with nondeterministic replacement policies.

We have applied our tools to 13 different Intel microarchitectures, and we
provide detailed models of their replacement policies.

We have discovered several previously undocumented replacement policies. In
particular, we have discovered a new approximation to LRU that is used by
the L1 cache of the Ice Lake microarchitecture. In addition to that, we have
identified multiple previously undocumented variants of QLRU replacement
that are used by the L2 and L3 caches of several recent microarchitectures.
Furthermore, we have discovered two previously unknown randomized variants
of PLRU replacement that are used by the L2 caches of the Core 2 Duo E6750
and E8400 processors.

80

4.2. BACKGROUND

4.2 Background

4.2.1 Cache Organization
Caches are small but fast memories that store a subset of the main memory’s
contents to bridge the latency gap between the CPU and main memory.

To profit from spatial locality and to reduce management overhead, main
memory is logically partitioned into a set of memory blocks of a specific block
size. Blocks are cached as a whole in cache lines of the same size. Usually, the
block size is a power of two (on all recent x86 microarchitectures, the block
size is 64 Bytes). This way, the block number is determined by the most
significant bits of a memory address, i.e., block(addr) = baddr/blockSizec;
the remaining bits are known as the offset.

When accessing a memory block, the cache logic has to determine whether
the block is stored in the cache (“cache hit”) or not (“cache miss”). To enable
an efficient look-up, each block can only be stored in a small number of cache
lines. For this purpose, caches are partitioned into a number of equally-sized
cache sets. The size of a cache set is called the associativity A of the cache.
A cache with associativity A is often called A-way set-associative. It consists
of A ways, each of which consists of one cache line in each cache set. In the
context of a cache set, the term way thus refers to a single cache line. Usually,
also the number of cache sets is a power of two such that the set number, also
called index, is determined by the least significant bits of the block number,
i.e., index(addr) = block(addr) mod nSets. The remaining bits of the block
number are known as the tag. Tags are stored along with the data to decide
whether and where a block is cached within a set.

In Intel microarchitectures, starting with Sandy Bridge, the last-level cache
is divided into multiple slices. A hash function H is used to map block
numbers to slices, i.e. slice(addr) = H(block(addr)). Each of the slices has
nSetsPerSlice many cache sets and is organized as described in the previous
paragraph; in particular, the set index is determined by index(addr) =
block(addr) mod nSetsPerSlice. The slices are managed by so-called C-Boxes,
which provide the interface between the core and the last-level cache, and
which are responsible for maintaining cache coherence. Usually, there is
one C-Box per physical core. The first microarchitectures that used sliced
last-level caches (Sandy Bridge, Ivy Bridge, and Haswell) had one slice per
C-Box [HWH13, IES15, LYG+15, MSN+15, YGL+15, IGI+16, KAGPJ16].
Skylake and more recent microarchitectures can have multiple slices per
C-Box [DKPT17, FRMK19]; all C-Boxes of a given processor manage the

81

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

same number of slices. Each C-Box has several performance counters that
can, for example, count the number of lookup events for the corresponding
part of the last-level cache. These counters belong to the class of uncore
performance counters (see also Section 2.2.1).

The hash function that maps block numbers to slices is undocumented.
However, several paper have reverse-engineered this hash function for Sandy
Bridge, Ivy Bridge, and Haswell CPUs [HWH13, IES15, MSN+15, YGL+15,
IGI+16, KAGPJ16].

Addresses that map to the same cache set and to the same slice are commonly
called congruent.

4.2.2 Replacement Policies
Since the number of congruent memory blocks is usually far greater than the
associativity of the cache, a replacement policy must decide which memory
block to replace upon a cache miss. Most replacement policies try to exploit
temporal locality and base their decisions on the history of memory accesses.
Usually, cache sets are treated independently of each other such that accesses
to one cache set do not influence replacement decisions in other sets.

Permutation Policies

Many commonly used policies can be modeled as so-called permutation
policies [Abe12, AR13]. These policies have in common that

1. they maintain a total order of the elements in the cache,

2. upon a cache hit, the order is updated; the new order only depends on
the position of the accessed element in the order, and

3. upon a cache miss, the smallest element in the order is replaced.

Permutation policies can thus be fully specified by a permutation vector

Π = 〈Π0, . . . ,ΠA−1,Πmiss〉.

The permutation Πi determines how to update the order upon an access to
the ith element of the order. Πmiss determines how to update the order upon
a cache miss; it is typically fixed to be (A− 1, 0, 1, . . . , A− 2) [Abe12, AR13].

Among the replacement policies that can be modeled as permutation policies
are, for example, “first-in first-out” (FIFO), “least-recently used” (LRU), and
“tree-based pseudo-LRU” (PLRU). PLRU is an approximation to LRU that

82

4.2. BACKGROUND

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15

1 0 1 0 0 1 1 0

0 1 0 1

0 1

1

Figure 4.1: Possible PLRU state after an access to l4

maintains a binary search tree for each cache set. Upon a cache miss, the
element that the tree bits currently point to is replaced; however, if the cache
is not full, the new element is typically inserted into the leftmost empty line
instead. After each access to an element, all the bits on the path from the root
of the tree to the leaf that corresponds to the accessed element are set to point
away from this path. Figure 4.1 illustrates this policy. The policy requires
the associativity to be a power of two. Figure 4.2 shows the permutation
vectors for LRU, FIFO, and PLRU at associativity 8.

Permutation policies were introduced by [Abe12, AR13], along with an efficient
algorithm for inferring them automatically. This algorithm determines the
A+ 1 permutations of a permutation policy one at a time. This is achieved by
first establishing a particular cache state, accessing the element corresponding
to the permutation we want to determine, and finally reading out the resulting
cache state. Reading out a cache state means finding the position of each
element in the cache by determining the minimal number of additional misses
before the element gets replaced.

MRU/QLRU

However, not all popular policies can be modeled as permutation policies.
One example is the MRU policy [RGBW07]. This policy stores one status bit
for each cache line. Upon an access to a line, the corresponding bit is set to
zero; if it was the last bit that was set to one before, the bits for all other lines
are set to one. Upon a cache miss, the leftmost element whose bit is set to
one gets replaced. This policy is sometimes also called “bit-PLRU” [PJ15] or
“PLRUm” [AZMM04]. A variant of this replacement policy that only checks
upon a cache miss whether there is still a line whose status bit is one is called
“not-recently-used” (NRU) [JTSE10].

83

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

ΠLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠLRU
1 = (1, 0, 2, 3, 4, 5, 6, 7)

ΠLRU
2 = (2, 0, 1, 3, 4, 5, 6, 7)

ΠLRU
3 = (3, 0, 1, 2, 4, 5, 6, 7)

ΠLRU
4 = (4, 0, 1, 2, 3, 5, 6, 7)

ΠLRU
5 = (5, 0, 1, 2, 3, 4, 6, 7)

ΠLRU
6 = (6, 0, 1, 2, 3, 4, 5, 7)

ΠLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(a) LRU

ΠPLRU
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠPLRU
1 = (1, 0, 3, 2, 5, 4, 7, 6)

ΠPLRU
2 = (2, 1, 0, 3, 6, 5, 4, 7)

ΠPLRU
3 = (3, 0, 1, 2, 7, 4, 5, 6)

ΠPLRU
4 = (4, 1, 2, 3, 0, 5, 6, 7)

ΠPLRU
5 = (5, 0, 3, 2, 1, 4, 7, 6)

ΠPLRU
6 = (6, 1, 0, 3, 2, 5, 4, 7)

ΠPLRU
7 = (7, 0, 1, 2, 3, 4, 5, 6)

(b) PLRU

ΠFIFO
0 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
1 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
2 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
3 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
4 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
5 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
6 = (0, 1, 2, 3, 4, 5, 6, 7)

ΠFIFO
7 = (0, 1, 2, 3, 4, 5, 6, 7)

(c) FIFO

Figure 4.2: Permutation vectors for LRU, PLRU & FIFO at associativity 8
(Source: [Abe12])

Generalizations of this policy that use two status bits per cache line are
called “Quad-Age LRU” (QLRU) [JGSW12, BMME19] or “2-bit Re-reference
Interval Prediction” (RRIP) [JTSE10]. The two bits are supposed to represent
the age of a block.

During our experiments, we found out that some recent Intel CPUs use
variants of this policy that were not described in the literature so far. In
particular, the variants differ from each other in the hit promotion policy, in
the insertion age, in the location in the cache where a block is inserted upon
a miss, in how the bits are updated if there is no more block with age 3, and
in whether this update occurs only on a miss or also on a hit.

In the following, we will describe these parameters in detail, and we propose
a naming scheme for referring to the different variants.

The hit promotion policy describes how the age of a block is updated upon a
hit. We assume that the age is always reduced, unless it is already 0. Thus,
the hit promotion policy can be modeled by one of the following functions.

84

4.2. BACKGROUND

Let x ∈ {0, 1, 2}, and y ∈ {0, 1}.

Hxy(a) :=

x, if a = 3
y, if a = 2
0, otherwise

The insertion age is the age that will be assigned to a block upon a miss.
For x ∈ {0, 1, 2, 3}, we will use Mx to denote that the insertion age is x.
Furthermore, we will use MRpx to denote a policy that inserts new blocks with
age x with probability 1

p
, and with age 3 otherwise. Note that the insertion

age might be different if blocks are brought into the cache by prefetching. We
currently do not consider this scenario.

We consider the following three variants as to where a block will be inserted
upon a miss.

• R0: If the cache is not yet full (after executing theWBINVD instruction),
insert the new block in the leftmost empty location. Otherwise, replace
the block in the leftmost location whose status bits are 3. If there is no
such block, the behavior is undefined.

• R1: Like R0, but if there is no location whose status bits are 3, always
replace the leftmost block, independently of its status bits.

• R2: Like R0, but insert blocks in the rightmost empty location if the
cache is not yet full.

If after an access, there is no more block whose age is 3, the status bits of
potentially all blocks will be updated. Let i denote the location of the block
that was accessed. Let age(b) be the current age of block b, and let age′(b)
be the new age (after the update). Let M be the maximum (current) age of
any block. We consider the following variants for age′:

• U0: age′(b) := age(b) + (3−M)

• U1: age′(b) :=

age(b), if b = i

age(b) + (3−M), otherwise

• U2: age′(b) := age(b) + 1

• U3: age′(b) :=

age(b), if b = i

age(b) + 1, otherwise

We will use a name of the form QLRU_H11_M1_R1_U2 to refer to the
corresponding variant.

85

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

Some variants do not check after each access whether there is still a block
with age 3, as described above, but only upon a miss, before selecting the
block to replace. We will refer to such variants by adding the suffix UMO
(“update on miss only”) to the name.

Note that not all combinations are possible. For example, R0 cannot be
combined with U2 or U3, as it always requires at least one block with age 3.
Also, some combinations are observationally equivalent; this is, e.g., the case
for R0 and R1 in combination with U0.

The 2-bit SRRIP-HP policy proposed by Jaleel et al. [JTSE10] would be
named QLRU_H00_M2_R0_U0_UMO according to our naming scheme. The
corresponding “bimodal RRIP” (BRRIP) policy from the same paper would
be named QLRU_H00_MRp2_R0_U0_UMO.

Adaptive Policies

Some caches in recent CPUs use adaptive replacement policies that can
dynamically switch between two different policies. This can, for example, be
implemented via set dueling [QJP+07, JTSE10, Won13]: A number of sets
are dedicated to each policy, and the remaining sets are follower sets that
use the policy that is currently performing better.

4.3 Cache-Characterization Tools
Based on nanoBench (see Chapter 2), we have developed a set of tools for
analyzing undocumented properties of caches.

4.3.1 CacheInfo
This tool reports details on the structure of the caches of the system that it
is run on. This includes the sizes, the associativities, the number of sets, the
block sizes, and, for L3 caches, the number of C-Boxes and the number of
slices.

All of these properties, except the last two, are obtained with the CPUID in-
struction. Alternatively, it would also be possible to measure these properties
using microbenchmarks [SS95, MS96, LT98, TY00, BC00, CD01, DMM+04,
Man04, JB07, YPS05, BT09, GDTF+10, CS11, AR12, Abe12, DLM+13,
CX18]; however, this approach is not necessary for the processors that we
target.

86

4.3. CACHE-CHARACTERIZATION TOOLS

The number of C-Boxes is obtained by reading the model-specific register
(MSR) 0x396.

For obtaining the number of slices per C-Box, we use the microbenchmark-
based approach shown in Algorithm 4.1. The algorithm first searches for a
maximal set of addresses with the same set index that map to the same C-Box
and that do not cause cache misses when accessing them repeatedly. The
number of slices per C-Box then corresponds to the size of this set divided by
the associativity of the L3 cache.

Algorithm 4.2 shows the approach we use for finding such a maximal set. The
algorithm maintains a set of addresses (for a given index and C-Box) that do
not cause cache misses when accessing them repeatedly. In each iteration of
the loop, it tries to extend this set with an additional address. The algorithm
continues until it did not find any additional addresses for maxNotAdded
many steps. In practice, we set maxNotAdded to the associativity of the L3
cache.

Addresses that are separated by a multiple of nSetsPerSlice·blockSize have the
same set index (see Section 4.2.1). Let nAllL3Sets = (nSetsPerSlice · nSlices)
be the sum of the number of cache sets of all slices, as reported by the CPUID
instruction. We have that

nAllL3Sets
nCBoxes = nSetsPerSlice·nSlices

nCBoxes

= nSetsPerSlice·nCBoxes·nSlicesPerCBox
nCBoxes

= nSetsPerSlice · nSlicesPerCBox.

Thus, nAllL3Sets
nCBoxes · blockSize is a multiple of nSetsPerSlice · blockSize, and there-

fore, addresses that are separated by this stride have the same set index. Note
that we could also, for example, use a stride of nAllL3Sets · blockSize (or any
other multiple of nSetsPerSlice · blockSize); however, since we do not know
nSetsPerSlice at this point, nAllL3Sets

nCBoxes · blockSize is the smallest possible stride
that we can be sure to be a multiple of nSetsPerSlice · blockSize.

The function call getCBoxOfAddress(a) first generates a microbenchmark
that flushes address a from all caches (using the CLFLUSH instruction). To
determine the C-Box of address a, this microbenchmark is then evaluated
with the kernel-space version of nanoBench, measuring the number of accesses
to each C-Box using the corresponding uncore performance counters (see
Section 2.2.1). We use the option described in Section 2.4.4 to allocate a large
enough physically-contiguous memory area; baseAddr points to the beginning
of this area. Using the CLFLUSH instruction instead of loads or stores has
the advantage that the accesses are guaranteed to reach the L3 cache.

87

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

Algorithm 4.1: Measuring the number of slices per C-Box
1 Function getNumberofSlices()
2 return

⌈
|findMaxNonEvictingL3Addresses(0, 0)|/L3Assoc

⌉

Algorithm 4.2: Finding a maximal set of addresses (for a specific
C-Box and cache set) that do not cause evictions in the L3 cache
1 Function findMaxNonEvictingL3Addresses(cBox, cacheSet)
2 stride← (nAllL3Sets/nCBoxes) ∗ blockSize
3 addresses← ∅
4 curAddr← baseAddr + cacheSet ∗ blockSize
5 notAdded← 0
6 while notAdded < maxNotAdded do
7 curAddr← curAddr + stride
8 if getCBoxOfAddress(curAddr) = cBox then
9 newAddresses← addresses ∪ {curAddr}

10 if hasL3Conflicts(newAddresses) then
11 notAdded← notAdded + 1
12 else
13 addresses← newAddresses
14 notAdded← 0

15 return addresses

The function call hasL3Conflicts(addresses) creates and runs a microbench-
mark that checks whether accessing the supplied addresses multiple times
leads to cache misses. To make sure that the accesses reach the L3 cache, the
generated microbenchmark additionally contains accesses to addresses that
map to the same cache set (and hence, also to the same sets in higher-level
caches), but to different C-Boxes; these additional accesses are excluded from
the measurement results.

4.3.2 CacheSeq
This tool can be used to measure how many cache hits and misses executing
an access sequence (i.e., a sequence of congruent addresses) generates. To
this end, cacheSeq automatically generates a suitable microbenchmark that is
then evaluated using the kernel-space version of nanoBench.

88

4.3. CACHE-CHARACTERIZATION TOOLS

Access sequences can be specified using strings of the following form:

“A 〈wbinvd〉 B0 B1 B2 B3 B0? B1! X A?”

Elements of the sequence that end with a “?” will be included in the per-
formance counter measurements. The other elements will be accessed, but
the number of hits and misses that they generate will not be recorded; this
is implemented using the feature described in Section 2.3.9, that makes it
possible to temporarily pause performance counting. Elements that end
with a “!” will be flushed (using the CLFLUSH instruction) instead of being
accessed. “〈wbinvd〉” means that the WBINVD1 instruction will be executed
at the corresponding location in the access sequence. This instruction, which
is a privileged instruction, flushes all caches.

The following parameters can be specified via command-line options:

• The cache level in which the sequence should be accessed.

• The cache sets in which the sequence should be accessed. This can be a
list or a range of sets.

• The C-Box in which the sequence should be accessed. If there are
multiple slices per C-Box, all accesses will be to the same slice.

• The access sequence can be executed a configurable number of times in
a loop. Additionally, it is possible to specify an initialization sequence
that is executed once in the beginning.

• To make sure that the memory accesses reach the selected cache level,
the tool can automatically add additional accesses to higher-level caches
that evict the elements of the access sequence from these caches. These
additional accesses are excluded from the performance counter mea-
surements. The tool provides two options as to how the additional
addresses are selected. If the number of sets of the selected cache level
is larger than the number of sets of the higher-level caches, the tool can
choose addresses that map to the same set in the higher-level caches,
but to different sets in the selected level. For sliced caches, the tool
additionally provides the option to choose addresses that map to the
same set, but to a different slice.

• The number of times the generated microbenchmark is executed and the
aggregate function that is applied to the measurement results. These
two parameters are passed to nanoBench (see Section 2.3.3).

1“Write back and invalidate cache”

89

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

The syntax for specifying access sequences was inspired by an early version
of Vila et al.’s MemBlockLang (MBL) language [VGGK20].

We now describe how CacheSeq finds suitable addresses for the elements of
an access sequence, i.e., addresses that are congruent for the selected cache
level.

To this end, the tool first runs CacheInfo (Section 4.3.1) to obtain the basic
parameters of the caches. As in the implementation of CacheInfo, we use
nanoBench with the option of allocating physically-contiguous memory. Thus,
for non-sliced caches, finding congruent addresses is straightforward.

For sliced caches, we use the approach shown in Algorithm 4.3 to find a set of
n congruent addresses for a specific C-Box and cache set. Our approach does
not require knowledge of the undocumented hash function mapping addresses
to slices, which, thus far, has only been reverse-engineered for some of the
CPUs that we target. The algorithm first finds a minimal eviction set, i.e., a
set of associativity many congruent addresses. Then, it searches for further
addresses that have conflicts with the addresses in the eviction set, using the
hasL3Conflicts() function already described in Section 4.3.1.

For finding a minimal eviction set, we use the approach shown in Algorithm 4.4.
In the first step, the algorithm searches greedily for a set of addresses (for
the given index and C-Box) that have conflicts in the L3 cache. In the
second step, the algorithm removes all addresses from this set that are not
actually necessary for the conflict to occur. Vila et al. [VKM19] describe
more sophisticated techniques for finding eviction sets that also work if the
memory area is not physically-contiguous and if L3 performance counters
are not accessible. However, in our setting these techniques would likely not
provide a significant benefit over the proposed approach.

The tools described in the following sections are all based on cacheSeq.

4.3.3 Replacement Policies
We implemented two tools for automatically inferring deterministic replace-
ment policies.

The first tool implements the algorithm proposed in [Abe12, AR13] for in-
ferring permutation policies. In contrast to the previous implementation
described in [Abe12, AR13], our current implementation is able to determine
the policy in individual cache sets. The previous implementation assumed
that all cache sets use the same policy.

90

4.3. CACHE-CHARACTERIZATION TOOLS

Algorithm 4.3: Finding a set of n congruent L3 addresses
1 Function findCongruentL3Addresses(n, cBox, cacheSet)
2 stride← (nAllL3Sets/nCBoxes) ∗ blockSize
3 minEvictionSet← findMinimalL3EvictionSet(cBox, cacheSet)
4 addresses← ∅
5 curAddr← max(minEvictionSet)
6 while |addresses|+ |minEvictionSet| < n do
7 curAddr← curAddr + stride
8 if hasL3Conflicts(minEvictionSet ∪ {curAddr}) then
9 addresses← addresses ∪ {curAddr}

10 return minEvictionSet ∪ addresses

Algorithm 4.4: Finding a minimal L3 eviction set
1 Function findMinimalL3EvictionSet(cBox, cacheSet)
2 stride← (nAllL3Sets/nCBoxes) ∗ blockSize
3 minEvictionSet← ∅
4 curAddr← baseAddr + cacheSet ∗ blockSize
5 while ¬hasL3Conflicts(minEvictionSet) do
6 curAddr← curAddr + stride
7 if getCBoxOfAddress(curAddr) = cBox then
8 minEvictionSet← minEvictionSet ∪ {curAddr}

9 for a ∈ minEvictionSet do
10 if hasL3Conflicts(minEvictionSet \ {a}) then
11 minEvictionSet← minEvictionSet \ {a}

12 minEvictionSet← minEvictionSet \max(minEvictionSet)
13 return minEvictionSet

The second tool generates random access sequences and compares the number
of hits obtained by executing them with cacheSeq with the number of hits
in a simulation of different replacement policies, including common policies
like LRU, PLRU, and FIFO, as well as all meaningful QLRU variants, as
introduced in Section 4.2.2.

By default, the tool generates random sequences of length 50 (which is
significantly larger than the associativities of the caches that we consider).
The sequences are generated as follows. For position i of the sequence, the
tool chooses with probability 50% a fresh element and with probability 50%

91

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

an element that already occurs in the sequence. We found that typically a
relatively small number of such sequences suffices for identifying a policy that
is likely the correct one. In our experiments, evaluating 250 sequences always
produced multiple counterexamples for all but at most one policy.

Both of our tools for determining replacement policies clear the caches (using
the WBINVD instruction) at the start of each access sequence. However, for
some microarchitectures we tested, the behavior of the replacement policies
appeared to be nondeterministic after executing the WBINVD instruction;
this was also observed by Vila et al. [VGGK20]. We therefore added an
option to our tools that allows to specify a reset sequence, i.e., an access
sequence that is executed after the WBINVD instruction and that establishes
a fixed replacement policy state; the blocks occurring in the reset sequence
are not used again afterwards. We discuss suitable reset sequences and further
insights in Section 4.4.4.

4.3.4 Age Graphs
This tool takes as input an access sequence Seq, and list or range of cache
sets. For each block B that occurs in Seq, the tool generates a graph that
shows the number of cache hits for executing the access sequence

Seq + “F0 . . . Fn B?”

in the selected cache sets for increasing values of n. The blocks Fi are fresh
blocks that do not occur in Seq. Furthermore, we require that there is no “?”
in Seq.

These graphs can be considered to illustrate the “age” of a block, as they
show how many fresh blocks need to be accessed to evict the block from
the cache. The graphs are, in particular, useful for analyzing caches with
replacement policies that are nondeterministic and, thus, cannot be inferred
with the tools described in the previous section. Examples of such graphs are
discussed in Section 4.4.3.

4.3.5 Test for Adaptive Policies
For caches with adaptive policies, we implemented a tool that can identify
the cache sets that use a fixed policy and the sets that use a varying policy.

Algorithm 4.5 illustrates how our approach works. The algorithm iterates
repeatedly, in random order, over the cache sets of all slices. For each set,
it uses cacheSeq (see Section 4.3.2) to measure the number of L3 hits on

92

4.3. CACHE-CHARACTERIZATION TOOLS

Algorithm 4.5: Test for adaptive policies
1 allSets← [0, 1, . . . , nL3SetsPerSlice− 1]
2 for sl ∈ slices do
3 sets [sl]← copy(allSets)
4 for s ∈ allSets do
5 L3Hits [sl][s]← ∅

6

7 testSeq← “B1? B2? . . . BL3Assoc+1?”
8 hitSeq← “B1? B2? . . . BL3Assoc?”
9 missSeq← “B1? B2? . . . B3·L3Assoc?”

10

11 notChanged← 0
12 while notChanged < maxNotChanged do
13 notChanged← notChanged + 1
14 for hmSeq ∈ {hitSeq,missSeq} do
15 for sl ∈ slices do
16 for s ∈ random.shuffle(sets [sl]) do
17 m← cacheSeq(testSeq, sl, s, loopCount)
18 L3Hits [sl][s]← L3Hits [sl][s] ∪m
19 if max(L3Hits [sl][s])−min(L3Hits [sl][s]) > 1 then
20 sets [sl]← sets [sl] \ {s}
21 notChanged← 0
22 else
23 cacheSeq(hmSeq, sl, s, 100)

24 return (sets,L3Hits)

a sequence consisting of (associativity + 1) many different blocks that is
repeated a configurable number of times, using the loop option of cacheSeq
(by default, we use a loop count of 10). This sequence has a so-called thrashing
access pattern, i.e., a cyclic access pattern that is longer than the associativity
of the cache [JTSE10]. In caches with adaptive policies, usually one of the
policies is more thrashing-resistant than the other, and thus, the number of
hits on this sequence can be used to distinguish the policies.

Whenever the algorithm finds a cache set for which the maximum of the
number of L3 hits measured so far differs from the minimum, it assumes that
this is a set with a varying replacement policy and excludes it from further
iterations. Otherwise, it assumes that the set is potentially a set with a fixed

93

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

policy. The algorithm then runs cacheSeq again on this set using either (in
even iterations) a sequence that generates mostly hits, or (in odd iterations)
a sequence that generates mostly misses. For cache sets with a fixed policy,
we expect such a sequence to be able to influence the policy used in the
remaining cache sets.

All of these steps are repeated until the algorithm did not find any additional
cache sets with a varying policy for maxNotChanged many iterations (we use
10 as the default value for maxNotChanged). At the end, the variable sets
contains only the cache sets with a fixed policy.

Furthermore, our tool generates a graph that shows the maximum and
minimum number of L3 hits for all sets in all slices; we discuss examples of
such graphs in Section 4.4.3.

4.4 Results
We have applied our tools for determining the cache parameters to 13 out of
the 16 CPUs that we used for the evaluation in Chapter 3 (see Table 3.1).
On these CPUs, we disabled all but one core, and we also disabled cache
prefetching. We did not consider the two AMD CPUs, as we could not find a
way to disable their cache prefetchers. We also did not consider the server
variant of Skylake (Skylake-X), for which the uncore performance counter
configuration is significantly different from the other CPUs.

Our results for the L1, L2, and L3 caches are summarized in Tables 4.1 – 4.3.
We describe the most interesting results in Sections 4.4.1, 4.4.2, and 4.4.3,
respectively. In Section 4.4.4, we discuss how to reset the replacement policy
state. Finally, in Section 4.4.5, we analyze the implementation costs of the
discovered policies in terms of the number of status bits they require.

4.4.1 L1 Data Caches
The L1 data caches of all processor we considered, except for the Ice Lake
CPU, are 8-way set-associative and use the PLRU replacement policy.

The L1 data cache of the Ice Lake CPU is 12-way set-associative. It uses
a permutation policy; the corresponding permutation vectors are shown in
Figure 4.3. A possible intuitive explanation of this policy is illustrated in
Figure 4.4. It uses three PLRU trees with 4 elements each; the trees are
ordered by the recency of the last access to one of their elements. Upon a
cache miss, the element that the bits of the least-recently accessed tree point

94

4.4. RESULTS

Table 4.1: L1 data cache results

CPU (Microarchitecture) Size Assoc. Policy

Core 2 Duo E6750 (Conroe) 32 kB 8 PLRU
Core 2 Duo E8400 (Wolfdale) 32 kB 8 PLRU
Core i5-750 (Nehalem) 32 kB 8 PLRU
Core i5-650 (Westmere) 32 kB 8 PLRU
Core i7-2600 (Sandy Bridge) 32 kB 8 PLRU
Core i5-3470 (Ivy Bridge) 32 kB 8 PLRU
Xeon E3-1225 v3 (Haswell) 32 kB 8 PLRU
Core i5-5200U (Broadwell) 32 kB 8 PLRU
Core i7-6500U (Skylake) 32 kB 8 PLRU
Core i7-7700 (Kaby Lake) 32 kB 8 PLRU
Core i7-8700K (Coffee Lake) 32 kB 8 PLRU
Core i3-8121U (Cannon Lake) 32 kB 8 PLRU
Core i5-1035G1 (Ice Lake) 48 kB 12 LRU3PLRU4

Table 4.2: L2 cache results

CPU (Microarchitecture) Size Assoc. Policy

Core 2 Duo E6750 (Conroe) 4 MB 16 PLRU8Rand2
Core 2 Duo E8400 (Wolfdale) 6 MB 24 Rand3PLRU8
Core i5-750 (Nehalem) 256 kB 8 PLRU
Core i5-650 (Westmere) 256 kB 8 PLRU
Core i7-2600 (Sandy Bridge) 256 kB 8 PLRU
Core i5-3470 (Ivy Bridge) 256 kB 8 PLRU
Xeon E3-1225 v3 (Haswell) 256 kB 8 PLRU
Core i5-5200U (Broadwell) 256 kB 8 PLRU
Core i7-6500U (Skylake) 256 kB 4 QLRU_H00_M1_R2_U1
Core i7-7700 (Kaby Lake) 256 kB 4 QLRU_H00_M1_R2_U1
Core i7-8700K (Coffee Lake) 256 kB 4 QLRU_H00_M1_R2_U1
Core i3-8121U (Cannon Lake) 256 kB 4 QLRU_H00_M1_R0_U1
Core i5-1035G1 (Ice Lake) 512 kB 8 QLRU_H00_M1_R0_U1

Table 4.3: L3 cache results

CPU (Microarchitecture) Size Assoc. C-Boxes Slices Policy

Core i5-750 (Nehalem) 8 MB 16 - - MRU
Core i5-650 (Westmere) 4 MB 16 - - MRU
Core i7-2600 (Sandy Bridge) 8 MB 16 4 4 MRU*
Core i5-3470 (Ivy Bridge) 6 MB 12 4 4 see Section 4.4.3
Xeon E3-1225 v3 (Haswell) 8 MB 16 4 4 see Section 4.4.3
Core i5-5200U (Broadwell) 3 MB 12 2 2 see Section 4.4.3
Core i7-6500U (Skylake) 4 MB 16 2 4 see Section 4.4.3
Core i7-7700 (Kaby Lake) 8 MB 16 4 8 see Section 4.4.3
Core i7-8700K (Coffee Lake) 8 MB 16 6 12 see Section 4.4.3
Core i3-8121U (Cannon Lake) 4 MB 16 2 4 see Section 4.4.3
Core i5-1035G1 (Ice Lake) 6 MB 12 4 8 see Section 4.4.3

95

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

Π0 = (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
Π1 = (1, 0, 2, 4, 3, 5, 7, 6, 8, 10, 9, 11)
Π2 = (2, 0, 1, 5, 3, 4, 8, 6, 7, 11, 9, 10)
Π3 = (3, 1, 2, 0, 4, 5, 9, 7, 8, 6, 10, 11)
Π4 = (4, 0, 2, 1, 3, 5, 10, 6, 8, 7, 9, 11)
Π5 = (5, 0, 1, 2, 3, 4, 11, 6, 7, 8, 9, 10)
Π6 = (6, 1, 2, 3, 4, 5, 0, 7, 8, 9, 10, 11)
Π7 = (7, 0, 2, 4, 3, 5, 1, 6, 8, 10, 9, 11)
Π8 = (8, 0, 1, 5, 3, 4, 2, 6, 7, 11, 9, 10)
Π9 = (9, 1, 2, 0, 4, 5, 3, 7, 8, 6, 10, 11)

Π10 = (10, 0, 2, 1, 3, 5, 4, 6, 8, 7, 9, 11)
Π11 = (11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

Figure 4.3: Permutation vectors for the Ice Lake L1 policy, © 2020 IEEE

to is replaced. In the example in Figure 4.4, the next element to be replaced
would be l1. In the following, we will call this policy LRU3PLRU4. We are
unaware of any previous descriptions of this policy. However, it can be seen
as a generalization of the policy used by the 6-way set-associative L1 cache of
the Intel Atom D525, which we described in [AR13].

4.4.2 L2 Caches
The L2 caches of CPUs with the Nehalem, Westmere, Sandy Bridge, Ivy
Bridge, Haswell, and Broadwell microarchitectures use the PLRU policy. The
more recent generations use two variants of QLRU replacement.

Core 2 Duo E6750

Figure 4.7 shows an age graph for the access sequence “〈wbinvd〉 B0 . . . B15”
on a Core 2 Duo E6750 (i.e., an access sequence with associativity many
blocks). The sequence is accessed in all 4096 cache sets of this CPU, starting
with an empty cache. The graph shows that an access to Bi leads to hits
in all sets if fewer than 8 additional blocks (in all sets) have been accessed
since the previous access to Bi. If between 8 and 15 additional blocks have
been accessed, an access to Bi leads to hits in about 50% of the cache sets.
For each additional sequence of 8 blocks, the number of hits decreases by
about 50%.

Figure 4.8 shows an age graph for the sequence “〈wbinvd〉 B0 . . . B15 B10”.
We can see that the additional access to B10 changes the order in which the
blocks are evicted from the cache. More specifically, for the eight blocks

96

4.4. RESULTS

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11

1 0 1 0 0 1

0 1 0

...

LRU

M
R

U
Figure 4.4: Possible LRU3PLRU4 state after an access to l4, © 2020 IEEE

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15

RND RND RND RND RND RND RND RND

0 1 0 1

0 1

1

Figure 4.5: Possible PLRU8Rand2 state after an access to l4, © 2014 IEEE

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15 l16 l17 l18 l19 l20 l21 l22 l23

1 0 1 0 0 1 1 0 0 1 0 1

0 1 0 1 0 0

0 1 0

RND

Figure 4.6: Possible Rand3PLRU8 state after an access to l4, © 2014 IEEE

97

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

0 5 10 15 20 25 30 350

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

of fresh blocks

L2
H
its

B0 B8

B1 B9

B2 B10

B3 B11

B4 B12

B5 B13

B6 B14

B7 B15

Figure 4.7: Core 2 Duo E6750 age graph for the access sequence
“〈wbinvd〉 B0 . . . B15”

98

4.4. RESULTS

0 5 10 15 20 25 30 350

1,000

2,000

3,000

4,000

of fresh blocks

L2
H
its

Figure 4.8: Core 2 Duo E6750 age graph for the access sequence
“〈wbinvd〉 B0 . . . B15 B10”

0 5 10 15 20 25 30 350

1,000

2,000

3,000

4,000

of fresh blocks

H
its

Figure 4.9: Simulated age graph for PLRU8Rand2 for the access sequence
“〈wbinvd〉 B0 . . . B15 B10”

99

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

0 5 10 15 20 25 30 35 40 450

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

of fresh blocks

L2
H
its

B0 B8 B16

B1 B9 B17

B2 B10 B18

B3 B11 B19

B4 B12 B20

B5 B13 B21

B6 B14 B22

B7 B15 B23

Figure 4.10: Core 2 Duo E8400 age graph for the access sequence
“〈wbinvd〉 B0 . . . B23”

100

4.4. RESULTS

0 5 10 15 20 25 30 35 40 450

1,000

2,000

3,000

4,000

of fresh blocks

L2
H
its

Figure 4.11: Core 2 Duo E8400 age graph for the access sequence
“〈wbinvd〉 B0 . . . B23 B4”

0 5 10 15 20 25 30 35 40 450

1,000

2,000

3,000

4,000

of fresh blocks

H
its

Figure 4.12: Simulated age graph for Rand3PLRU8 for the access sequence
“〈wbinvd〉 B0 . . . B23 B4”

101

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

B8, . . . , B15, their relative order changes in the same way as in an 8-way
set-associative cache with the PLRU policy (this corresponds to permutation
ΠPLRU

5 in Figure 4.2). Furthermore, we can see that the access to B10 changes
the relative order of the eight blocks B0, . . . , B7 in the same manner.

The following model agrees with these observations. Consider a PLRU-like
policy in which the lowest bits (i.e., the bits that are closest to the leaves)
are replaced by (pseudo-)randomness. In the following, we will call this
policy PLRU8Rand2; Figure 4.5 illustrates the policy. Under this policy, one
of the two elements to which the tree bits point is replaced with a probability
of 50%. Furthermore, after every eight subsequent misses the tree bits point
to the same subtree.

Figure 4.9 shows the result of a simulation of the PLRU8Rand2 policy on
the same access sequence that was used for Figure 4.8. We can see that the
simulation matches the actual measurements very closely.

Core 2 Duo E8400

Figure 4.10 shows an age graph for the access sequence “〈wbinvd〉 B0 . . . B23”
on a Core 2 Duo E8400, which has a 24-way set-associative L2 cache. Similarly
as with the E6750, an access to Bi leads to hits in all sets if fewer than 8
additional blocks have been accessed since the previous access to Bi. However,
unlike with the E6750, the number of hits decreases more continuously if
more additional blocks are accessed.

Figure 4.11 shows the effect of an additional access to block B4. This block
is now the block that gets evicted last. The relative order of the other blocks
does not change significantly.

A possible model that leads to a similar behavior is the following. Consider
a PLRU-like policy in which the root node is replaced by (pseudo-)random-
ness, as illustrated in Figure 4.6; in the following, we will call this policy
Rand3PLRU8. Under this policy, the elements are separated into three groups
with eight elements each; within each group they are managed by the PLRU
policy. Upon a miss, one of the groups is chosen randomly.

Figure 4.12 shows the result of a simulation of the Rand3PLRU8 policy on
the same access sequence that was used for Figure 4.11. The results are quite
similar; however, the graph of the simulation has a more regular structure. A
possible cause for the differences could be that the simulation uses a different
random number generator than the actual hardware.

102

4.4. RESULTS

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

of fresh blocks

L3
H
its

B0 B2 B4 B6 B8 B10
B1 B3 B5 B7 B9 B11

Figure 4.13: Ivy Bridge age graph for the access sequence
“〈wbinvd〉 B0 . . . B11 B4”, © 2020 IEEE

0 20 40 60 80 100 120 140 160 180 2000

10

20

30

40

50

60

70

of fresh blocks

H
its

Figure 4.14: Simulated age graph for QLRU_H11_MR161_R1_U2 for the
access sequence “〈wbinvd〉 B0 . . . B11 B4”, © 2020 IEEE

103

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

4.4.3 L3 Caches
The Nehalem and Westmere CPUs use the MRU replacement policy in their
L3 caches. This was also reported by [ENBSH11]. The Sandy Bridge CPU
uses a variant of this policy that, upon clearing the cache with the WBINVD
instruction, sets all status bits to one, and does not update the status bits
until all lines are filled.

The more recent generations use adaptive policies with different variants of
QLRU replacement.

Ivy Bridge

For the Ivy Bridge machine, we found that the cache sets 512–575 and the
cache sets 768–831 (in all C-Boxes) use a fixed policy, whereas the other
sets are follower sets. Figure 4.15 shows the corresponding graph that was
generated by the tool for analyzing adaptive policies described in Section 4.3.5.

According to our results, the sets 512–575 use the QLRU_H11_M1_R1_U2
policy.

The policy used by the sets 768–831 appears to be nondeterministic. Fig-
ure 4.13 shows an age graph for the access sequence “〈wbinvd〉 B0 . . . B11 B4”
(note that the associativity of the cache is 12); the accesses of the sequence
were performed in all of these 64 sets.

We can see that the curves for Bi and Bi+1 (i > 0) are similar, but shifted by
about 16 (except for B4, which is accessed twice in the sequence). Furthermore,
for B0, about 15

16 of the blocks are evicted immediately when the first fresh
block is accessed, while the remaining 1

16 of the blocks remain in the cache
relatively long.

A policy that has a similar behavior for B0, and for which the corresponding
curves are also separated by about 16, is the QLRU_H11_MR161_R1_U2
policy, i.e., a variant of the policy used in sets 512–575 that inserts new blocks
with age 1 in 1

16th of the cases, and with age 3 otherwise.

Figure 4.14 shows an age graph for a simulation of this policy. The graph
is similar to Figure 4.13, though not identical. One explanation for the
differences could be that the hardware actually uses a different policy variant.
However, an alternative explanation could be that the differences are due to
the hardware and the simulation using different random number generators.
A more thorough investigation of the differences is left as future work.

104

4.4. RESULTS

Haswell, Broadwell

The Haswell and Broadwell CPUs use the same cache sets as the Ivy Bridge
processor as dedicated sets, but only in C-Box 0. All other cache sets are
follower sets.

Both CPUs use the QLRU_H11_M1_R0_U0 replacement policy in sets 512–
575 in C-Box 0. The policy in sets 768–831 in C-Box 0 might be the
QLRU_H11_MR161_R0_U0 policy.

Skylake, Kaby Lake, Coffee Lake, Cannon Lake

The Skylake, Kaby Lake, Coffee Lake, and Cannon Lake CPUs use the
QLRU_H11_M1_R0_U0 policy in 16 fixed cache sets2. These sets were first
discovered by Vila et al. [VKM19, VGGK20].

Figure 4.16 shows a graph created on the Kaby Lake machine using the tool
for analyzing adaptive policies described in Section 4.3.5. This graph was
created using cacheSeq’s option of not adding additional accesses for clearing
higher cache levels (see Section 4.3.2). The associativity of the L3 cache on
these CPUs is higher than the associativities of the higher-level caches; we
verified that the sequences used for generating the graph do not lead to hits
in the higher-level caches.

The graph shows that for the 16 sets mentioned above, the test sequences
always lead to 0 hits in the L3 cache. The policy in the remaining sets changes,
depending on the number of hits and misses in the sets with the fixed policy,
between this policy and a policy that is slightly more thrashing-resistant;
unlike with the adaptive policies used by previous generations, there appear
to be no sets that can only use the second policy.

We were not able to identify the second policy. Unlike the tool for analyzing
adaptive policies, the tools for determining the replacement policy (see Sec-
tion 4.3.3) require using cacheSeq’s default option that adds accesses to other
slices to clear higher-level caches on these machines. However, when using
this option, we did not observe any differences between the two policies. In
particular, for the thrashing sequence with (associativity+ 1) many elements
that the tool for analyzing adaptive policies uses, we always observed 0 hits
in all sets when using this option. A further investigation of this phenomenon
is left as future work.

2Sets 0, 33, 132, 165, 264, 297, 396, 429, 528, 561, 660, 693, 792, 825, 924, and 957

105

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

0

2

4

6

8

Set

L3
H
its

Max
Min

Figure 4.15: Test for adaptive policies on Ivy Bridge

0 100 200 300 400 500 600 700 800 900 1,000

0

0.5

1

1.5

Set

L3
H
its

Max
Min

Figure 4.16: Test for adaptive policies on Kaby Lake

106

4.4. RESULTS

0 100 200 300 400 500 600 700 800 900 1,000
4

5

6

7

8

9

Set

L3
H
its

Max
Min

Figure 4.17: Test for adaptive policies on Ice Lake

20 25 30 35 40 45 50 55 60
4

5

6

7

8

9

accesses to other slices

L3
H
its

Max
Min

Figure 4.18: Minimum and maximum number of L3 hits on Ice Lake in
cache set 1, depending on the number of accesses to other slices

107

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

Ice Lake

On Ice Lake, the same 16 cache sets described in the previous section use a
fixed replacement policy: they use the QLRU_H00_M1_R0_U1 policy (i.e.,
the same policy as the L2 cache).

Figure 4.17 shows a graph created using the tool for analyzing adaptive
policies described in Section 4.3.5. Unlike the graph in the previous section,
this graph was created with cacheSeq’s default option that adds accesses to
other slices to clear higher-level caches (this was also necessary here, as the
associativity of the L3 cache is not larger than the associativity of the L1
cache).

At first sight, the graph looks similar to the graph in Figure 4.16. However,
the minima and maxima of the number of L3 hits are significantly higher
than in the previous graph. Thus, the policy used in the fixed sets has
some thrashing resistance, unlike the policies in the fixed sets of previous
microarchitecture generations. The remaining sets can switch between this
policy and a second policy that is even more thrashing-resistant; which of the
two policies is used depends on the recent number of hits and misses in the
fixed sets.

However, further experiments showed that the exact behavior of the second
policy depends on the number of accesses to other slices.

Figure 4.18 shows a graph that was generated by varying the number n
of accesses to other slices; the y-axis shows the number of L3 hits in cache
set 1 for the same access sequence used for generating Figure 4.17 (i.e., an
access sequence with (associativity + 1) many elements that is repeated 10
times).

For values of n such that n + 1 is a multiple of 7, the number of L3 hits is
the same for both replacement policies that set 1 can use. The tool described
in Section 4.3.3 shows that the two policies are in fact the same for these
values of n (for this experiment, we used special initialization sequences that
produce a lot of hits and misses in the fixed sets, respectively, to trigger the
corresponding replacement policy in the remaining sets). For other values
of n, the second replacement policy is none of the variants that our tool
considers. However, the graph suggests that the second policy might be a
variant of the policy used in the fixed sets that inserts new blocks with age 3
instead of age 1 on every 7th access, where the corresponding access counter
takes all slices into account. A further investigation of this hypothesis is left
as future work.

108

4.4. RESULTS

I0 I1 I2 I3 I4 I5 I6 I7

0 1 1 0

0 1

0

Figure 4.19: Possible PLRU state after accessing “I0 . . . I7 I1 I2 I4”

4.4.4 Resetting the Replacement Policy State
As described in Section 4.3.3, the behavior after clearing the caches with the
WBINVD instruction appeared to be nondeterministic on several microarchi-
tectures. In particular, this was the case for the L1 caches of the Core 2 Duos,
the Sandy Bridge, Ivy Bridge, Haswell, and Broadwell CPUs, and the L2
caches of the Skylake, Kaby Lake, and Coffee Lake CPUs.

For the Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, Kaby Lake,
and Coffee Lake CPUs, we found out that the apparent nondeterminism is
actually due to a dependency on the previous replacement policy state (i.e.,
the state before the WBINVD instruction was executed). For Haswell and
Skylake, this was also discovered independently by Pepe Vila [Vil19].

For the L1 caches of the Sandy Bridge, Ivy Bridge, Haswell, and Broadwell
CPUs (which are 8-way set-associative and use the PLRU policy), the access
sequence

“I0 . . . I7 I1 I2 I4 〈wbinvd〉 B0 . . . B7 B8 B0?”

leads to a cache miss, whereas the sequence

“I0 . . . I7 I0 〈wbinvd〉 B0 . . . B7 B8 B0?”

leads to a cache hit.

This suggests that the PLRU tree bits are not updated when blocks are
inserted into an empty cache. If blocks are inserted from left to right into an
empty cache, then after executing the sequence “I0 . . . I7 I1 I2 I4”, the tree
bits will point to I0. This is illustrated in Figure 4.19. If the blocks after the
WBINVD instruction are inserted in the same order and the tree bits are not
updated, the access to B8 will evict B0, and hence, we get a cache miss when
accessing B0 again. On the other hand, after executing “I0 . . . I7 I0”, the
tree bits will point away from I0. Thus, the access to B8 will not evict B0.

109

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

For the L2 caches of the Skylake, Kaby Lake, and Coffee Lake CPUs (which
are 4-way set-associative and use the QLRU_H00_M1_R2_U1 policy), the
access sequence

“I0 I1 I2 I3 I0 I1 I2 I0 I1 I2 〈wbinvd〉 B0 B1 B2 B3 B4 B2?”

leads to a cache miss, whereas the sequence

“I0 I1 I2 I3 I0 I1 I3 I0 I1 I3 〈wbinvd〉 B0 B1 B2 B3 B4 B2?”

leads to a cache hit.

A possible explanation for this behavior is that the check whether there is
still a line with age 3 after an access uses the previous ages for lines that are
currently empty.

We observed the same differences when using CLFLUSH instructions instead
of the WBINVD instruction.

Reset Sequences

Based on these results, we identified the following reset sequences (see Sec-
tion 4.3.3) to established a fixed replacement policy state.

For the L1 caches of the CPUs mentioned above, we use the reset sequence

“I0 . . . I7”,

and for the L2 caches, we use the reset sequence

“I0 I1 I2 I3 I0 I1 I2 I0 I1 I2”.

After executing these reset sequences, the subsequent behavior was always
deterministic (note that the blocks of a reset sequence are not used again
later).

Covert/Side Channels

Clearing the cache using theWBINVD or CLFLUSH instructions is sometimes
recommended as a technique for mitigating covert channels and side channels
[ZBW17, GYLH16]. Ge et al. claim that after executing the WBINVD
instruction, “the caches are in a defined state” [GYLH16]. The experiments
in this section show that this is not the case for several recent processors.
Using the obtained insights to implement and evaluate covert channels is left
as future work.

110

4.5. RELATED WORK

Table 4.4: Number of status bits required for different replacement policies,
in terms of the associativity A.

Policy Number of Status Bits A=4 A=8 A=12 A=16 A=24

FIFO dlog2(A)e 2 3 4 4 5
LRU dlog2(A!)e 5 16 29 45 80
PLRU A− 1 3 7 - 15 -
LRU3PLRU4 A - - 12 - 24
PLRU8Rand2

A
2 − 1 1 3 - 7 -

Rand3PLRU8 A− 3 - - 9 - 21
MRU A 4 8 12 16 24
QLRU 2 ·A 8 16 24 32 48

4.4.5 Implementation Costs
The cost of implementing a particular replacement policy can be quantified
in terms of the minimal number of status bits that an implementation re-
quires [Rei08]. Table 4.4 shows these costs for different policies, including the
policies that we uncovered in this chapter.

4.5 Related Work

4.5.1 Microbenchmark-Based Cache Analysis
A number of papers have proposed microbenchmark-based techniques for
determining parameters of the memory hierarchy like the cache size, the asso-
ciativity, the block size, or the latency [SS95, MS96, LT98, TY00, BC00, CD01,
DMM+04, Man04, JB07, YPS05, YJS+06, BT09, MHSM09, WPSAM10,
GDTF+10, CS11, AR12, Abe12, DLM+13, HKP15, MC17, CX18].

While some of these approaches make assumptions as to the underlying
replacement policy (e.g. [SS95] and [TY00] assume that LRU is used), only a
few publications have also tried to determine the replacement policy.

The approaches described in [CD01] and [BC00] are able to detect LRU-based
policies but treat all other policies as random. John and Baumgartl’s [JB07]
approach is able to distinguish between LRU and several of its derivatives.

In [Abe12, AR13], we proposed an algorithm that can automatically infer
permutation policies (see Section 4.2.2). In the present work, we developed
an improved implementation of this algorithm that can infer the policies in

111

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

individual cache sets; the implementation in [Abe12, AR13] was based on the
assumption that all cache sets use the same policy.

Henry Wong [Won13] discovered that Ivy Bridge CPUs use set dueling to
switch between two different replacement policies. He identified the sets that
use fixed policies; however, he was not able to determine which two policies
are actually used. Similar work was described by Zhang et al. [ZGY14].

Briongos et al. [BMME19] present an approach for analyzing the replacement
policies used by the L3 caches in recent Intel CPUs. Similar to the technique
described in Section 4.3.3, their approach generates random access sequences
and compares their behavior to simulations of different policies. However,
unlike in our approach, they do not measure the total number of hits that
the sequence generates. Instead, they only determine the first element to be
evicted upon the first miss after executing the access sequence. Furthermore,
unlike in our approach, they rely on timing measurements instead of using
performance counters.

Briongos et al. applied their technique to CPUs with the Haswell, Broadwell,
Skylake, and Kaby Lake microarchitectures. Our results for these microarchi-
tectures disagree with their results. The policies they describe would be the
QLRU_H21_M2_R0_U0_UMO and QLRU_H21_M3_R0_U0_UMO variants
according to our naming scheme. Our tool found several counterexamples
for these policies on all of the tested CPUs. Briongos et al. also stated
that the two policies did not agree with all of their observations; however,
they assumed that “the errors were due to noise”. Furthermore, according to
Briongos et al., the dedicated sets on the Haswell and Broadwell CPUs are
distributed over different slices; according to our results, they are all in the
same slice. As, according to the paper, they use an approach from [LYG+15],
we assume that they also rely on a statement from that paper that “when
the number of cores in the processor is a power of two, the set index bits
are not used for determining the LLC slice.” This was, however, shown to
be incorrect in later work [MSN+15]. Thus, their observations rather seem
to be an artifact of the hash function used for determining the cache slices.
Briongos et al. did not find the sets with a varying policy on Skylake and
Kaby Lake, and thus incorrectly concluded that these CPUs do not use an
adaptive policy.

Rueda [RC13] developed a technique for learning replacement policies using
register automata. He was able to learn the FIFO and LRU policies for caches
with an associativity of at most 5, and the PLRU and MRU policies for caches
with an associativity of at most 4. He did not successfully apply his technique
to actual hardware.

112

4.5. RELATED WORK

In concurrent work, Vila et al. [VGGK20] describe an approach for inferring
replacement policies using automata learning, and an approach for automati-
cally generating human-readable representations of the learned policies. For
software-simulated caches, they were able to learn FIFO and PLRU up to
associativity 16, MRU up to associativity 12, and several other policies up
to associativity 6. Furthermore, Vila et al. also applied their techniques to
actual hardware with the Haswell, Skylake, and Kaby Lake microarchitectures.
They successfully learned the policies used by the L1 and L2 caches of these
three processors, as well as the policy used by the leader sets of the L3 caches
on Skylake and Kaby Lake. Their results agree with our results. Vila et al.’s
approach was, however, not able to learn the policies used by the L3 cache of
the Haswell CPU, as the associativity was too high for their approach, and
one of the policies is nondeterministic.

Vila et al.’s approach relies on a tool called CacheQuery, that is quite similar
to the CacheSeq tool proposed in Section 4.3.2. The main differences are the
following:

1. CacheQuery uses a more expressive syntax,

2. CacheQuery is based on timing measurements, whereas CacheSeq uses
performance counters, and

3. CacheQuery requires the parameters of the caches, such as the associa-
tivities or the number of cache sets, to be specified manually, whereas
CacheSeq determines them automatically using CacheInfo.

4.5.2 Influence of the Replacement Policy on Perfor-
mance Prediction Accuracy

Multiple works have identified the cache replacement policy as an important
factor for the accuracy of performance prediction techniques.

Grund et al. [GR08] describe an analytical method to estimate miss ratios
for a given cache configuration. They consider the replacement policy to
be an important component that “can have a significant influence on the
cache performance.” Guo et al. [GS06] present an analytical model for cache
replacement policy performance and claim that the “replacement policy is a
factor that should be taken into account in designing a cache and modeling
cache performance.” Tam et al. [TASS09] model the performance of a system
in terms of miss rate curves (MRCs) that plot the miss rate of an access
sequence as a function of the cache size. They state that “the MRC of a
Least Recently Used (LRU) policy may be significantly different from that of

113

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

a Most Recently Used (MRU) policy for the same memory access sequence.”
Furthermore, according to Kegley et al. [KPD+11], the replacement policy
“can substantially influence the performance of a system.”

Unfortunately, current performance modeling approaches often do not consider
different policies. Tam et al.’s approach [TASS09], for instance, only supports
LRU as they believe that “it is the most commonly used replacement policy.”
Similarly, Fraguela et al. [FDTZ04] claim that LRU “nowadays is by far the
most common” policy. As our work shows, this is not true for most current
microarchitectures.

4.5.3 Security Aspects of Replacement Policies
Caches are at the center of many covert-channel and side-channel attacks
[OST06, GBK11, YF14, LYG+15, GMWM16, DKPT17, MWK17, TLM18,
GYCH18, DXS19, vSMK+20, LHS+20].

Several papers show that knowledge of the replacement policy can be impor-
tant for devising or mitigating such attacks.

In [KMO12], Köpf et al. propose a technique for automatically deriving
upper bounds on the amount of information leakage through cache side
channels. They focus on the LRU replacement policy. CacheAudit [DKMR15,
BKMO14, DK17, CnKR17] improves upon this work by considering more
types of adversaries, by providing tighter bounds, and by considering different
replacement policies. In particular, their current implementation supports
caches that use the FIFO, LRU, and PLRU policies.

In [CnKR19], Cañones et al. present techniques for comparing caches with
different replacement policies with respect to their vulnerability to side-channel
attacks.

Accessing memory locations with a high frequency can lead to bit flips in
neighboring DRAM rows [KDK+14]; this phenomenon is commonly called the
Rowhammer bug. Gruss et al. [GMM16] describe a JavaScript-based attack
that exploits this bug to obtain unrestricted access to the systems of website
visitors. To this end, they require an efficient eviction strategy, i.e., an access
sequence that can be used instead of the CLFLUSH instruction, which is
not available in JavaScript. Whether an eviction strategy is efficient on a
specific CPU depends on the replacement policy. As Gruss et al. do not know
the replacement policies used in recent Intel CPUs, they go to great lengths
to find suitable eviction strategies; overall, they evaluate more than 18, 000
possible strategies.

114

4.6. CONCLUSIONS AND FUTURE WORK

Kim et al. describe StealthMem [KPMR12], a technique that manages a
set of locked lines which are never evicted from the last-level cache. Their
implementation is based on the assumption that the cache has the k-LRU
property, which means that the replacement policy will never evict the k
most-recently accessed blocks. To find a value for k for which their pro-
cessor with the Nehalem microarchitecture has the k-LRU property, they
propose the following experiment. They use access sequences of the form
“B0 B1 . . . Bk′ B0?” and evaluate them with increasing values for k′ between
1 and 16 (which corresponds to the associativity). They start seeing L3
misses at k′ = 15 and conclude that the cache has the 14-LRU property.
This is incorrect. According to the results in this chapter, and also accord-
ing to Eklov et al. [ENBSH11], the L3 caches of Nehalem-based processors
use the MRU replacement policy. Caches with this policy do not have the
k-LRU property for any k > 1. As an example, consider the access sequence
“〈wbinvd〉 B0 . . . B14 B0 B15 B16 B0?”. The access to B15 will flip the status
bits of all other blocks. Consequently, the access to B16 will evict B0, and
thus, the final access to B0 will lead to a cache miss. We verified that this is
indeed the case on our Nehalem system.

Kiriansky et al. [KLA+18] propose hardware modifications to defend against
cache timing attacks. In particular, they propose a cache partitioning tech-
nique that, unlike previous partitioning techniques, takes the state of the
replacement policy into account to ensure isolation. They describe implemen-
tations of this technique for PLRU, MRU, and SRRIP.

Briongos et al. [BMME19] present an attack that exploits the state of the
L3 replacement policy to extract information from a victim; their attack
is undetectable by countermeasures that rely on monitoring cache misses.
Xiong and Szefer [XS20] describe a related attack that uses the state of the
replacement policy in the L1 cache to leak information.

4.6 Conclusions and Future Work
We developed several tools that generate microbenchmarks for analyzing
properties of caches, focusing, in particular, on cache replacement policies.
We applied our tools to 13 recent Intel microarchitectures, and we identified
several previously undocumented replacement policies. Furthermore, we
discovered that, contrary to popular belief, flushing the cache does not
necessarily reset the state of the replacement policy; this might be used to
devise new covert-channel and side-channel attacks.

115

CHAPTER 4. CHARACTERIZING CACHE ARCHITECTURES

Future Work

There are multiple directions for future work. One goal is to increase the class
of policies that can be inferred fully automatically. Currently, our tools are able
to infer all permutation policies, as well as around 300 deterministic policies
that are not permutation policies. A promising approach is to use automata
learning techniques, as shown by Rueda [RC13] and Vila et al. [VGGK20].
Future work would include enhancing these approaches to support larger
associativities. Furthermore, it would be interesting to develop techniques
that can identify nondeterministic policies automatically.

Another direction for future work would be to add support for non-Intel
CPUs. For AMD CPUs, it would likely be sufficient to make our algorithms
robust against noise introduced by the prefetchers, which cannot be disabled
on these CPUs. A related goal would be to infer models of the prefetchers
themselves. To add support for non-x86 CPUs, we would need to extend
nanoBench, as proposed in Section 2.6.

Furthermore, we would like to extend our tools to also support instruction
and µop caches (see Section 3.3), which are typically only poorly documented.

116

5
Gray-Box Learning of Serial

Compositions of Mealy Machines

The techniques we proposed in the previous chapters can be seen as instances
of active learning approaches. Active learning (also called query learning)
refers to a class of machine-learning techniques in which the learning algorithm
is able to interact with the system to be learned.

The techniques described in the previous chapters were heavily targeted at the
specific problems. In this chapter, we look at more general techniques. Specif-
ically, we consider approaches for learning finite state machines, which are, in
principle, suitable abstractions for modeling the behavior of microarchitectural
components.

Most existing learning algorithms for finite state machines treat the system
to be learned as a black box. These algorithms often do not scale to complex
realistic systems, as the state space of such systems is typically too large.

In this chapter, we propose the concept of gray-box learning for dealing with
such systems. The main idea hereby is to use available information about the
system to focus the learning algorithms on the parts that are unknown.

As a first step toward solving this problem, we study one specific instance.
We consider the serial composition of two Mealy machines A and B, where
A is known and B is unknown, and we assume that we can only perform
queries on the composed machine. For this scenario, we develop an efficient
algorithm that learns a model of the unknown machine B.

This chapter is an extended version of [AR16]. We provide more details on
the SAT reduction (in Section 5.5.1), and proofs for the lemmas and theorems
(in Appendix 5.A), which were omitted from the original publication due to
space reasons.

117

CHAPTER 5. GRAY-BOX LEARNING

5.1 Introduction
Tools to analyze software or hardware systems, such as static analyzers or
model checkers, require accurate models as input. Third-party components,
however, are rarely specified at the level of detail required by such tools.

One approach to automatically obtain formal models of systems is active
learning [Set11]. Here, one commonly assumes an oracle, or teacher, that
admits two kinds of queries about the system: output queries return the result
of the system for a specific input, and equivalence queries check whether a
conjectured model is consistent with the system to be learned and return a
counterexample if not. Based on this setup, Angluin introduced the L∗ al-
gorithm [Ang87] for learning deterministic finite automata. L∗ has since
been extended to other modeling formalisms, such as Mealy machines [SG09],
register automata [HSJC12, BHLM13, AFBKV15], or symbolic automata
[MM14]. It is also at the heart of several model checking approaches, includ-
ing [CGP03, GPY02, VSVA05].

As the system is treated as a black box, no information about the internal
structure of the system can be taken into account by most existing learning
algorithms. In practice, however, systems are often composed of subcompo-
nents, for some of which models might be available, but it is not possible
to access the known and the unknown parts separately from the outside.
Partial information about the inner workings of a system may be inferred
from manuals or conjectured from similar, yet better documented systems.
This scenario is depicted in Figure 5.1.

While it is in theory possible to learn a model of the entire system using
existing black-box approaches, this is often not viable in practice because the
state space is too large. A problem, which has received little attention in the
literature so far, is how to use the available information about the system to
focus the learning algorithm on those parts that are unknown. This problem
could be termed gray-box learning.

In this chapter, as a first step toward solving this problem, we study one
specific instance: We assume that the system C is the serial composition of
two Mealy machines A and B, and that we have a model for the left machine
(A) and want to learn the right machine (B). We further assume that we can
perform output and equivalence queries only on C as a whole. This scenario
is shown in Figure 5.2.

While output queries can often be realized cheaply by measurements on the
actual system, equivalence queries can usually only be approximated by a

118

5.2. PROBLEM STATEMENT

I O

Figure 5.1: Mealy machine network

A BOA IBI O

C

Figure 5.2: Serial composition

large number of such measurements. Our primary focus is thus to minimize
the number of equivalence queries. We introduce an algorithm to exactly
learn B in the context of A that performs at most |B| equivalence queries,
where |B| denotes the number of states of B.

We evaluate our approach on compositions of randomly-generated machines
against an implementation of the classic L∗ algorithm in LearnLib [IHS15].
We show that our approach requires significantly fewer output and equivalence
queries on most benchmarks.

5.2 Problem Statement
In this section, we first formally define several concepts used throughout this
chapter. Then, we give a precise description of the problem that we address.

5.2.1 Basic Notions
Definition 5.1 (Completely Specified Mealy Machine). A completely speci-
fied Mealy machine is a tuple (Q, I,O, δ, qr), where

• Q 6= ∅ is a finite set of states

• I 6= ∅ is a finite set of input symbols

• O 6= ∅ is a finite set of output symbols

• δ : Q× I → Q×O is the transition function

• qr ∈ Q is the initial (reset) state.

In this chapter, we only consider completely specified Mealy machines; incom-
pletely specified Mealy machines are introduced in Chapter 6.

119

CHAPTER 5. GRAY-BOX LEARNING

We extend δ to sequences in the usual way. We use ε to denote the empty
sequence. Further, we use M(x) to denote the output sequence of a Mealy
machine M when reading x, and ML(x) to denote the last output of M when
reading x.

Given two Mealy machines A and B, we can compose them to a serial Mealy
machine C by using the output of A as the input for B. Formally:

Definition 5.2 ((Synchronous) Serial Composition of Mealy Machines).
Let A = (QA, IA, OA, δA, qr,A) and B = (QB, IB, OB, δB, qr,B) be two Mealy
machines such that OA ⊆ IB. The serial composition of A and B is a Mealy
machine C = (Q, I,O, δ, qr), where

• Q := QA ×QB

• I := IA

• O := OB

• δ((q
A
, q

B
), i) := ((q′

A
, q′

B
), o), where (q′

A
, o

A
) := δA(q

A
, i), and (q′

B
, o) :=

δB(q
B
, o

A
)

• qr := (qr,A , qr,B)

Given a composition of two Mealy machines A and B, we define a machine B′
to be right-equivalent to B in the context of A if the composition of A and B
describes a machine that is equivalent to the composition of A and B′.
Formally:

Definition 5.3 (Right-Equivalence). Let A,B, and B′ be Mealy machines.
Then, B′ is right-equivalent to B in the context of A iff

∀x ∈ I∗ : B(A(x)) = B′(A(x)).

5.2.2 The Gray-Box Learning Problem
In this chapter, we address the following problem. We assume that we have a
serial composition C of two Mealy machines A and B. Further, we assume
that we have a model of A, but B is unknown. While we do not have a model
of C, we assume that we can determine the output of C on any input by an
output query, and we can test whether a machine is equivalent to C by an
equivalence query.

Using existing techniques, like Angluin’s L∗ algorithm [Ang87], one could
consider C to be a black box and learn a model of C. Such an approach would

120

5.3. PRELIMINARIES

in the worst case employ a polynomial number of output and equivalence
queries in the size of C, which can be up to |A| · |B|.

Instead, our goal is to exploit the knowledge we have about A, and to learn a
model of a minimum-size machine B′, such that B′ is right-equivalent to B in
the context of A. In particular, as we consider equivalence queries to be more
expensive than output queries, we want the number of equivalence queries to
be polynomial in the number of states of B′, independently of the size of A.

5.3 Preliminaries
Existing active learning approaches for Mealy machines (and related machine
types) are usually based on a Myhill-Nerode-like equivalence relation that
partitions the set of input words into classes such that the words that are in
the same class cannot be distinguished with respect to different suffixes:

Definition 5.4 (Equivalence of Input Words). Given a function F : I∗ → O,
two words x, y ∈ I∗ are equivalent, x ∼ y, iff

∀z ∈ I∗ : F (x · z) = F (y · z).

F can be modeled by a Mealy machine iff this relation has finitely many
equivalence classes. One can then construct a minimum-size Mealy machine
whose states are the equivalence classes of this relation. Existing approaches
compute the equivalence relation in a co-inductive fashion. In the beginning,
they consider all words to be equivalent. Then, in each round, this hypothesis
is refined by identifying at least one new equivalence class, until the equivalence
relation is fully determined.

If we consider the machine B in the serial composition with A, then it is
possible that not all input sequences for B can be produced by A. Let
tr(A) = {A(x) | x ∈ I∗} be the set of output sequences that A can produce.
For each output sequence x ∈ tr(A), there might be multiple input sequences
that produce this output. Let A−1 : tr(A) → I∗ be a function such that
A−1(x) returns one of these input sequences. In the following, it will not be
important which of the possibly multiple sequences is actually returned.

We have that every right-equivalent Mealy machine B′ for B in the context
of A has to agree with the partial function FP : I∗B ⇀ O such that

∀x ∈ tr(A) : FP (x) = BL(x).

Note that while we do not have immediate access to B, we can use output
queries on C to access B, as for all x ∈ tr(A), BL(x) = CL(A−1(x)).

121

CHAPTER 5. GRAY-BOX LEARNING

Similarly to Definition 5.4, we define two words to be right-compatible in the
context of A iff they cannot be distinguished with respect to different suffixes.

Definition 5.5 (Right-Compatibility). Two words x, y ∈ I∗B are right-com-
patible in the context of A, x ∼A y, iff

∀z ∈ I∗B : (xz /∈ tr(A) ∨ yz /∈ tr(A) ∨BL(xz) = BL(yz)).

Otherwise, x and y are incompatible, x �A y.

However, right-compatibility is, unlike equivalence, not transitive. Thus,
it is not an equivalence relation, which means we cannot directly use the
construction sketched above to build a minimum-size machine.

To see this, consider three output symbols a, b, c ∈ OA with

∀z ∈ I∗B : az, bz ∈ tr(A) ∧BL(az) = 0 ∧BL(bz) = 1

and
∀z ∈ I∗B : cz /∈ tr(A).

So B always outputs 0 if the first output of A was a, it always outputs 1 if
the first output of A was b, and A never outputs c as the first output.

This means that a ∼A c and b ∼A c, but a �A b. For this example, we can
build a machine with three states that is right-equivalent to B. From the
start state, a transition with c can go to any state. This also shows that
there can be multiple machines with the minimum number of states that are
right-equivalent to B.

5.4 Approach
Equivalence queries are typically assumed to be more expensive than output
queries. Many existing active learning techniques therefore focus on keeping
the number of required equivalence queries low.

At a high level, Angluin’s L∗ algorithm for instance, can be described as
follows. In each round, the algorithm first performs a sequence of output
queries in a systematic way, until there is exactly one machine of minimum
size that is consistent with the results from all output queries performed so
far. Only then, the algorithm performs an equivalence query. If this query
returns a counterexample, this implies that the correct machine must have
at least one additional state. Thus, Angluin’s algorithm performs at most n
equivalence queries, where n is the size of the minimal correct machine.

122

5.4. APPROACH

Unlike in Angluin’s setting, in general no unique machine of minimum size
that is consistent with a set of observations exists. The basic idea behind
our approach is to perform output queries until all machines of minimum
size that are consistent with these queries are right-equivalent in the context
of A. We then perform an equivalence query for one of these machines. If
this query results in a counterexample, this counterexample witnesses that
all of these machines are incorrect, and thus, the correct machine must have
at least one additional state.

One challenge is to find a suitable sequence of output queries that is guaran-
teed to reduce the number of machines that are consistent with all queries
performed so far. The basic idea is to iteratively construct all machines of
minimum size that agree with all of the previous queries. We can then check
whether each pair of these machines is right-equivalent. If they are not, we
use a distinguishing sequence as a counterexample, without performing an
equivalence query.

However, applying this approach naively would not be viable in many cases
because there can be an exponential number of machines of the same size that
are consistent with a set of observations, in particular in the beginning, when
only a small number of queries have been performed. Thus, we identify a
number of necessary conditions for candidate machines to be right-equivalent
which can be efficiently determined on observation tables. Some of these
conditions correspond to notions from Angluin’s algorithm, such as consistency
and closedness, while others, like input-completeness, are special to our
particular setting.

In the rest of this section, we describe our proposed algorithm in detail and
introduce the necessary theoretical concepts. In particular, we describe in
detail which output queries our algorithm performs to systematically reduce
the number of machines that are consistent with the observations made so far.

5.4.1 Observation Tables
The main data structure used in our approach is an observation table. The
rows of the table are indexed by a set of prefixes, the columns by a set of
suffixes, and the entries of the table store the last output symbol of an output
query for the concatenation of the corresponding prefix and suffix. If this
concatenation is not a possible output sequence of the left machine A, we
do not perform an output query but store ⊥ in this cell instead. In contrast
to most previous definitions, our observation tables do not consist of two
explicitly distinguished parts.

123

CHAPTER 5. GRAY-BOX LEARNING

Definition 5.6 (Observation Table). An observation table T = (S,E,Q)
consists of

• a finite non-empty prefix-closed set of prefixes S ⊆ tr(A)

• a finite suffix-closed set of suffixes E ⊆ I∗B (such that IB ⊆ E, and
ε /∈ E)

• a function Q : (S,E) → OB such that Q(x, e) = CL(A−1(xe)) iff
xe ∈ tr(A) and Q(x, e) = ⊥ otherwise.

For a set R ⊆ S and a ∈ IB, let SuccT (R, a) := {xa | x ∈ R ∧ xa ∈ S}, i.e.,
SuccT (R, a) is the set of successor rows for elements of R that are in the
table.

In the following, we will use the term row both for the prefixes and for the
entries of a row, when it is clear what is meant from the context.

We call two rows compatible if all columns that are not ⊥ are the same in
both rows.

Definition 5.7 (Compatibility). The rows for two prefixes x, y ∈ S are
compatible iff ∀e ∈ E : Q(x, e) = ⊥ ∨Q(y, e) = ⊥ ∨Q(x, e) = Q(y, e).

We call an observation table consistent if whenever two rows are compatible,
their successors are also compatible.

Definition 5.8 (Consistency). An observation table T is consistent iff for all
prefixes x, y ∈ S such that the rows for x and y are compatible, for all a ∈ IB
all rows in SuccT ({x, y}, a) are compatible.

If there is a suffix e ∈ E that shows that the successors of x and y under an
input a are not compatible, then ae is a suffix that shows that the rows for
x and y are also not compatible. Thus, we can add ae to E to resolve this
inconsistency.

We define a partition of the set of rows as follows.

Definition 5.9 (Partition). A partition for an observation table T=(S,E,Q)
is a partition P = {P1, ..., Pk} of S, such that

• for all x, y ∈ Pi: the rows for x and y are compatible,

• for each Pi and for all a ∈ IB, there is a Pj such that SuccT (Pi, a) ⊆ Pj .

Note that if SuccT (Pi, a) 6= ∅, then there is only one such Pj since all classes
of the partition are disjoint.

124

5.4. APPROACH

We will later show how we can use partitions to build candidate machines that
are consistent with the observations made so far. The words in the same class
of a partition will then lead to the same states in these candidate machines.

We call a partition closed if for each class of the partition and each input
symbol a, the observation table contains a successor row (under a) for at least
one word of this class, if we know from the observations made so far that
such a successor must exist. Our inference algorithm uses closedness as a way
to determine which additional rows should be added to the table.

Definition 5.10 (Closedness for Partitions). Let P = {P1, ..., Pk} be a
partition for T = (S,E,Q). P is closed if for all Pi ∈ P : if there is some
x ∈ Pi and some sequence az ∈ E with a ∈ IB and z ∈ I∗B such that
Q(x, az) 6= ⊥, then there must be some y ∈ Pi for which Q(y, az) 6= ⊥, and
ya ∈ S.

Given an observation table T , let Π(T, n) be the set of all partitions of size n.
Let Πmin(T) be the set of partitions of minimum size for an observation
table T , i.e., Πmin(T) = Π(T,m) where m = min{n | Π(T, n) 6= ∅}.

Definition 5.11 (Closedness). An observation table T = (S,E,Q) is closed
if all minimum-size partitions P ∈ Πmin(T) are closed.

Definition 5.12 (Partial Closedness). An observation table T is partially
closed (p-closed) iff for all prefixes x ∈ S and all sequences az ∈ E such that
Q(x, az) 6= ⊥, there is a prefix y ∈ S such that the rows for x and y are
compatible, Q(y, az) 6= ⊥ and ya ∈ S.

If a table is not p-closed, then no partition can be closed.

Definition 5.13 (Agreement). A Mealy machine M agrees with an observa-
tion table T = (S,E,Q) if for all x ∈ S and e ∈ E, Q(x, e) = ⊥ ∨Q(x, e) =
ML(xe).

For any closed partition P = {P1, ..., Pk} in Πmin(T), we can build the
following Mealy machine MP = (Q, I,O, δ, qr) with k + 1 states:

• Q := P ∪ {error}

• I := IB

• O := OB ∪ ⊥

• δ(Pi, a) := (error,⊥) if SuccT (Pi, a) = ∅, otherwise: δ(Pi, a) := (Pj, b)
such that for some x ∈ Pi: Q(x, a) = b 6= ⊥ and SuccT (Pi, a) ⊆ Pj

• qr := Pi such that ε ∈ Pi

125

CHAPTER 5. GRAY-BOX LEARNING

This machine enters a special error state if there is a class of the partition for
which the successor class is not defined.

In the following, we will use the notation πi(t) to denote the i-th component
of a tuple t, e.g., π2(qr, a) = a.

Lemma 5.1. Let P be a closed partition of an observation table T=(S,E,Q),
and let MP = (Q, I,O, δ, qr) be the Mealy machine constructed as described
above. Then for all words x ∈ S, x ∈ π1(δ∗(qr, x)).

Theorem 5.1. For a closed partition P of an observation table T , the machine
MP agrees with T .

Definition 5.14. Let γ(MP) be the set of machines with k states that can be
obtained from MP by removing the error state and replacing the transitions
to the error state by transitions with arbitrary outputs and successor states.

Theorem 5.2. Let T be a closed observation table. Then every minimum-size
machine M that agrees with T is isomorphic to an element of γ(MP) for
some P ∈ Πmin(T).

Theorem 5.3. If for a closed partition P the error state is not reachable in a
composition of A with MP , then all machines in γ(MP) are right-equivalent.

If the error state is reachable, we can use an input sequence that leads to the
error state to extend the observation table.

Definition 5.15 (Input-Completeness). An observation table T = (S,E,Q)
is input-complete if for all minimum-size partitions P ∈ Πmin(T), the error
state is not reachable in a composition of A with MP .

Definition 5.16 (Uniqueness). An observation table T = (S,E,Q) is unique
if for all pairs of minimum-size partitions P, P ′ ∈ Πmin(T), the machines MP

and MP ′ are right-equivalent in the context of A.

It follows that all machines of minimum-size size that agree with a consistent,
closed, input-complete, and unique observation table are right-equivalent, and
they can be obtained from the partitions.

5.4.2 Inference Algorithm
At a high level, our algorithm works as shown in Algorithm 5.1. In each
iteration of the main loop, we first make sure that the observation table is
consistent and p-closed (by adding additional rows and columns if necessary).
Then, we successively determine the partitions of minimum size for the
observation table. Whenever we find a partition that is not closed, we add

126

5.4. APPROACH

Algorithm 5.1: Main algorithm
Input: Machine A, OutputQuery OQ, EquivalenceQuery EQ

1 begin
2 ObservationTable OT ← empty table
3 addRow([ε])
4 curSize ← 1
5 while true do
6 while ¬consistent ∨ ¬p-closed do
7 makeConsistent() // consistency
8 makePClosed() // p-closedness

9 partitions ← ∅
10 prevMachine ← ⊥
11 while true do
12 partition ← findNextPartition(partitions, curSize)
13 if partition = ⊥ then
14 if prevMachine = ⊥ then
15 curSize ← curSize + 1
16 continue
17 else
18 counterexample ← EQ(prevMachine)
19 if counterexample = ⊥ then
20 removeErrorState(prevMachine)
21 return prevMachine
22 else
23 handleCounterexample(counterexample)
24 break

25 if ¬isClosed(partition) then
26 closePartition() // closedness
27 break
28 machine ← getMachineForPartition(partition)
29 errorPath ← getPathToErrorStateInComposition(A,machine)
30 if errorPath 6= ⊥ then
31 handleCounterexample(errorPath) // input-completeness
32 break
33 if prevMachine 6= ⊥ then
34 distInput ← checkRightEquivalence(A, machine, prevMachine)
35 if distInput 6= ⊥ then
36 handleCounterexample(distInput) // uniqueness
37 break

38 partitions ← partitions ∪ {partition}
39 prevMachine ← machine

127

CHAPTER 5. GRAY-BOX LEARNING

new rows to the table such that the partition becomes closed, and we continue
with the next iteration of the main loop. If we find a closed partition, we check
whether the error state is reachable in a composition of the corresponding
machine with A. If we find a sequence that leads to the error state, this means
that the table is not input-complete. Thus, we add this sequence (and its
prefixes) to the observation table and continue with the next iteration of the
main loop. If we find more than one closed and input-complete partition in the
same iteration of the main loop, we check whether the machines for these two
partitions are right-equivalent in the context of A. If we find a distinguishing
sequence, we extend the observation table accordingly, and continue with
the next iteration of the main loop. If finally the table is consistent, closed,
input-complete, and unique, we perform an equivalence query for the last
machine we found (which is right-equivalent to all machines of minimum size
that agree with the table). If the equivalence query is successful, we are done,
otherwise, we get a counterexample that we add to the table.

5.5 Implementation
In this section, we describe how our algorithm can be implemented. We also
propose some improvements that make the algorithm more usable in practice.

5.5.1 Computing the Partitions
We reduce the problem of finding the partitions for a given size n to a Boolean
satisfiability (SAT) problem. A related reduction was used by Heule and
Verwer [HV10] for finding DFAs that agree with a set of positive and negative
input samples. However, in contrast to our approach, their approach directly
computes one arbitrary machine that agrees with the samples. On the other
hand, our approach computes a partition which, in general, corresponds to a
machine, in which some transitions may be unspecified (if the partition is not
closed or input-complete). Thus, we can exploit this additional information
to determine which output queries should be performed.

SAT solvers typically require the problem to be in conjunctive normal form
(CNF). We first give a high-level description of each subproblem, and then
show how to translate it to CNF.

In the following, we will use literals of the form rx,i ∈ B to denote that row x
is in class i of the partition. We assume that the rows are numbered from 0
to |S| − 1.

128

5.5. IMPLEMENTATION

Covering Condition

All rows of the table must be in at least one class. We therefore add, for all
rows x, a clause of the form

rx,0 ∨ rx,1 ∨ · · · ∨ rx,n−1.

Disjointness

No row must be in more than one class. This can be expressed by adding, for
all rows x and classes i, the following implication:

rx,i =⇒
∧
j>i

¬rx,j

In CNF, this corresponds to the following set of clauses:∧
j>i

(¬rx,i ∨ ¬rx,j)

Compatibility

All rows that are in the same class must be pairwise compatible. For a row x,
let Inc(x) be the set of rows that are incompatible to x. To ensure that no
incompatible rows are in the same class, we add for each row x and each
class i the implication

rx,i =⇒
∧

y∈Inc(x)
y>x

¬ry,i.

In CNF, this corresponds to ∧
y∈Inc(x)
y>x

(¬rx,i ∨ ¬ry,i).

Common Successors

For all rows that are in the same class i and for which the observation table
also contains their successor rows for a given input a, there must be a class j
that contains all these successor rows. Thus, we have for each input symbol
a and each class i a clause of the form

∃j : ∀x : (rx,i =⇒ rx′,j),

where x′ is used to denote the successor row of x under input a. If the
observation table does not contain this successor row, the corresponding
implication is omitted.

129

CHAPTER 5. GRAY-BOX LEARNING

In the above formula, we can represent the existential quantifier as a dis-
junction, and the universal quantifier as a conjunction. The formula is thus
equivalent to ∨

0≤j<n
(
∧
x

(¬rx,i ∨ rx′,j)).

A direct conversion of this formula to CNF would lead to an exponential
increase in its size. To obtain a more compact representation, we introduce
an auxiliary literal for each input symbol and class of the form Za,i

j . The
following formula is then equisatisfiable to the formula above:

(
∨

0≤j<n
Za,i
j) ∧

∧
0≤j<n

∧
x

(¬Za,i
j ∨ ¬rx,i ∨ rx′,j)

Finding a Partial Solution

Since we are only interested in sets of classes, the ordering of the classes does
not matter. Thus, by assigning some rows to a fixed class, we can significantly
reduce the number of symmetrical cases the SAT solver has to consider.
We exploit this by precomputing a “partial solution”. More specifically, we
first compute a set R = {x0, . . . , xk} of pairwise incompatible rows. For all
solutions of the SAT problem, each of these rows must be in a separate class.
Thus, we can obtain an equisatisfiable formula by just assigning all elements
of R to arbitrary, different classes. To this end, we replace the covering clauses
of the rows in R by the clause

rx0,0 ∧ rx1,1 ∧ · · · ∧ rxk,k.

Furthermore, for a row xi ∈ R, we can remove all literals rxi,j such that j 6= i
from the SAT formulation and simplify the other constraints accordingly.

Moreover, we can also use the cardinality of R as a lower bound for the
required number of classes.

If we represent the compatibility relation on the rows as a graph (such that
there is an edge whenever two rows are compatible), the problem of finding
such a set R corresponds to finding an independent set in the graph. While
the problem of finding a maximum independent set is NP-hard, a heuristic
is sufficient for our purposes, since a non-maximal set would just lead to a
smaller reduction of symmetries, and to a smaller lower bound, but it would
still lead to a correct solution.

We use the following simple sequential greedy heuristic to find a set of pairwise
incompatible rows. We first create a list of all rows that is sorted in reverse

130

5.5. IMPLEMENTATION

order based on the number of incompatible rows for each row. The algorithm
maintains a set R of pairwise incompatible rows, where R is initially empty.
We then iterate over the sorted list of rows. Whenever we encounter a row that
is incompatible to all rows in R, we add this row to R. A similar approach
was used by [HV10].

Excluding Previously Discovered Partitions

Since our algorithm searches for multiple partitions for the same observation
table, we add for each previously found partition a disjunction of the negated
literals for this partition.

5.5.2 Reachability of the Error State
If the error state is reachable with an input a from a state in the composition
of the hypothesis machine with the left machine A, this means for no prefix p
in the observation table that leads to this state, the input pa is a possible
output of the left machine, however, there is another possible output sequence
that leads to the same state that has a corresponding successor. We can thus
use this sequence as a counterexample.

A straightforward way to check the reachability would be to build the com-
position, and then to perform a breadth-first search on the composition. A
necessary condition for the reachability of the error state in the composition is
that the error state is reachable in the hypothesis machine. We have observed
that in practice, if the error state is reachable in the hypothesis machine,
then in many cases, it is also reachable in the composition. Thus, we use
the following approach to find a corresponding sequence quickly: We first
determine for each state of the hypothesis machine the distance of the shortest
path to the error state. We then use this distance to guide the search in a
modified breadth-first search in the composed machine.

5.5.3 Checking if Two Machines are Right-Equivalent
A straightforward way to check whether two hypothesis machines B and B′
are equivalent in the context of A would be to compose both with A, and then
check the two compositions for equivalence, for example using Hopcroft-Karp’s
near-linear algorithm. However, this can be computationally expensive when
A is large compared to B and B′, as it requires building the composition
twice.

131

CHAPTER 5. GRAY-BOX LEARNING

Therefore, we take the following alternative approach. We build a new
machine D that outputs 1 iff the outputs of B and B′ differ on (a prefix
of) the corresponding input, and 0 otherwise. While the size of D can be
quadratic in the size of B, we have observed that, after minimization, in
practice the sizes are smaller or comparable to B. To check whether B and
B′ are right-equivalent we can then just check whether the composition of A
with the minimized version of D can output 1, using the search algorithm
described in the previous section.

5.5.4 Handling Counterexamples
Like in the original version of Angluin’s L∗ algorithm, we handle counterex-
amples by adding all prefixes of the counterexamples as rows to the table.
Since, in general, the length of a counterexample can depend on |C|, the
number of rows that are added (and hence the number of output queries that
need to be performed to determine their entries) is not independent of |A|.

Rivest and Schapire [RS93] described an improved approach to handle coun-
terexamples that needs to perform only a logarithmic number of membership
queries (in the length of the counterexample). However, it is not possible
to directly adapt this method to our setting, since it requires that there is
always a suffix of the counterexample that is a distinguishing suffix for two
compatible rows. It is future work to develop more advanced methods to deal
with counterexamples in our setting.

5.6 Evaluation
In this section, we compare two variants of our approach with the Mealy
machine version of Angluin’s L∗ algorithm. We use a set of randomly generated
compositional Mealy machines with between 1,000 and 1,000,000 states, and
an input and output alphabet of size 4.

The results are shown in Figure 5.3. GBLearning (“Gray-box Learning”)
is an implementation of the approach described in the previous sections.
GBLearning-Simple is a variant of our approach that does neither check
whether the error state is reachable, nor whether different machines that
are consistent with the observation table are right-equivalent. Instead, it
immediately performs an equivalence query upon finding a closed partition.
Thus, the number of equivalence queries of this variant is not independent of
the size of the right machine.

132

5.6. EVALUATION

GBLearning GBLearning-Simple LearnLib/Comp LearnLib/⊥

(1
000;1)

(1
00;10)

(1
0;100)

(1
;1000)

(1
0000;1)

(1
000;10)

(1
00;100)

(1
0;1000)

(1
;10000)

(1
00000;1)

(1
0000;10)

(1
000;100)

(1
00;1000)

(1
0;10000)

(1
;100000)

(1
000000;1)

(1
00000;10)

(1
0000;100)

(1
000;1000)

(1
00;10000)

(1
0;100000)

(1
;1000000)

100

102

104

106

#
O

Q

1
2
4
8

16
32

#
E

Q

0.1

1

10

100

T
im

e/
s

0
5

10

T
O

+
E

Figure 5.3: Evaluation on randomly-generated machines

We compare these implementations with two variants of Angluin’s L∗ algo-
rithm, as implemented in LearnLib [IHS15] (ExtensibleLStarMealy). Learn-
Lib/Comp treats the system as a black box and learns the composition.
Furthermore, we modified LearnLib (LearnLib/⊥) such that it uses L∗ on the
right machine; impossible inputs are assumed to result in a special output
symbol (⊥). Equivalence queries are performed by first composing the hy-
pothesis for the right machine with the left machine. Note that this variant
does not learn a minimum-size machine; in fact, the learned machine might
even be larger than the composition.

The columns of Figure 5.3 show the sizes of the randomly-generated machines
in the form (|QA|; |QB|). The rows show the number of output queries (#OQ),
equivalence queries (#EQ), and the execution time in seconds (averages,
minima and maxima for the successful runs of 10 different randomly-generated
machines of the same size). The row TO+E shows on how many of the 10 runs
a timeout (5 minutes), or an error occurred. For LearnLib/Comp we observed
one error, and for LearnLib/⊥ three errors due to an exception (“incompatible
output symbols”). All other entries in this row were timeouts. We used the
jar-Release of LearnLib in version 0.9.1-ase2013-tutorial-r1. Both our tool
and LearnLib use a query cache to avoid performing the same output query
multiple times.

133

CHAPTER 5. GRAY-BOX LEARNING

We observe that LearnLib/⊥ was only successful when A had 10 or fewer
states, or when B had just one state. It performed slightly better than
LearnLib/Comp in only a few cases where |QA| = 1 or |QB| = 1. LearnLib/
Comp was successful on almost all benchmarks with up to 100,000 states;
however, it could not solve any benchmark with more states.

The implementations of our tool could also handle composed machines of larger
sizes, in particular when B is relatively small. GBLearning was successful
on all benchmarks where B had up to 1,000 states, on several where B had
10,000 states, and on two where B had 100,000 states.

For those machines that our implementations and LearnLib/Comp could han-
dle, the number of output queries was much smaller for our implementations
if |QA| > 1. In this case, there was no significant difference in the number of
output queries between the two variants of our approach. Also, for |QA| > 1,
the number of output queries depends mainly on |QB| for both variants.

For GBLearning, the number of equivalence queries was mostly 1 or 2 even for
relatively large unknown machines; however, randomly-generated machines
might not be representative in this regard. GBLearning-Simple needed
significantly more equivalence queries than GBLearning for |QB| > 1, but
significantly fewer than LearnLib/Comp for |QA| > 10.

5.7 Related Work
The concept of actively learning DFAs using membership and equivalence
queries was introduced by Angluin in [Ang87]. Angluin developed a polyno-
mial-time learning algorithm, called L∗, for fully-specified DFAs. Rivest and
Schapire [RS93] later improved this algorithm and proposed a modification
that does not require the system to have a reset state.

Multiple studies [LN12, GL06, GLP06, PO99, HL11] considered scenarios in
which the teacher is unable to answer some output queries. In contrast to
our setting, where the input language is a known regular language, these
approaches assume that no information about the unspecified inputs is avail-
able a priori, so that whether a particular input is specified can only be
determined by performing an output query. In this scenario, the best bound
Leucker and Neider [LN12] could give for the number of required equivalence
queries is nO(n). Hsu and Lee [HL11] claimed that their approach is able
learn a minimum-size model for an incompletely specified FSM in polynomial
time. However, this approach is incorrect; it does, in general, not find a
minimum-size machine [Lee15].

134

5.8. CONCLUSIONS AND FUTURE WORK

The term “gray-box” has been used in relation with Angluin’s algorithm
before, but in different contexts. Babic et al. [BBS12] describe an approach
to learn an input-output relation for a program. They propose a symbolic
version of L∗ that is allowed to inspect the internal symbolic state of the
program. Henkler et al. [H+10] consider real-time statecharts that have
an additional interface for retrieving the current internal state. Elkind et
al. introduce grey-box checking [EGPQ06]. A grey-box system consists of
completely-specified (white boxes) and unknown components (black boxes).
The goal of grey-box checking is then to check whether the system satisfies
a property, given, e.g., by an LTL formula. The main problem studied by
Elkind et al. is to learn a model of the entire system given the knowledge
about the white boxes, which can then be used to model check the property.
In contrast to our setting, they consider finite automata that synchronize
on common letters in their alphabet, whereas we consider Mealy machines
with explicit inputs and outputs. Furthermore, they only use output queries;
equivalence queries are realized via a large number of output queries.

5.8 Conclusions and Future Work
We have introduced an algorithm for gray-box learning of serial compositions of
Mealy machines. Experimental results confirm that taking into account prior
knowledge about a system to be learned often yields significant performance
gains.

There are plenty of open problems left for future work: In this chapter, we
have considered the serial composition of two Mealy machines. In future work,
we would like to extend our approach to arbitrary composition topologies.

While we can precisely bound the number of equivalence queries, we lack such
knowledge about the number of output queries. More generally, we would like
to better understand the computational complexity of the problem at hand.

In our experimental evaluation, we realized equivalence queries by automata-
theoretic constructions, as we had precise knowledge of the system to be
learned. In real application scenarios, such knowledge is not available. In
those cases, it would be interesting to systematically perform measurements
in a way that focuses on the unknown parts.

135

CHAPTER 5. GRAY-BOX LEARNING

5.A Appendix: Proofs for Chapter 5
Lemma 5.1. Let P be a closed partition of an observation table T=(S,E,Q),
and let MP = (Q, I,O, δ, qr) be the Mealy machine constructed as described
above. Then for all words x ∈ S, x ∈ π1(δ∗(qr, x)).

Proof. By induction on the length of x.

Base Case:
For |x| = 0, i.e., x = ε, by construction ε ∈ qr = π1(δ∗(qr, ε)).

Induction step:
Let ya := x with a ∈ IB and y ∈ I∗B. Since S is prefix-closed, y ∈ S. We
have that π1(δ∗(qr, x)) = π1(δ(π1(δ∗(qr, y)), a)). Let Pi := π1(δ∗(qr, y)). By
the induction hypothesis, y ∈ Pi. Thus, ya ∈ SuccT (Pi, a). Since by construc-
tion SuccT (Pi, a) ⊆ π1(δ(Pi, a)), x = ya ∈ π1(δ(Pi, a)) = π1(δ∗(qr, ya)) =
π1(δ∗(qr, x)).

Theorem 5.1. For a closed partition P of an observation table T , the machine
MP agrees with T .

Proof. Let P be a closed partition of an observation table T = (S,E,Q),
and MP = (Q, I,O, δ, qr) the corresponding Mealy machine. Let x ∈ S,
e ∈ E and Q(x, e) 6= ⊥. We show by induction on the length of e that
Q(x, e) = MPL

(xe).

Base Case:
For |e| = 1, we have MPL

(xe) = π2(δ∗(qr, xe)) = π2(δ(π1(δ∗(qr, x)), e)). Let
Pi := π1(δ∗(qr, x)). By Lemma 5.1, x ∈ Pi. Since Q(x, e) 6= ⊥ and P
is closed, SuccT (Pi, e) 6= ∅. Thus, by the definition of MP we have that
π2(δ(Pi, e)) = Q(y, e) for some y ∈ Pi. Since x and y are in the same class of
the partition, they are compatible. Thus, Q(y, e) = Q(x, e).

Induction step:
Let az := e with a ∈ IB and z ∈ I+

B , and let Pi ∈ P s.t. x ∈ Pi. Since P
is closed, Q(x, e) = Q(x, az) = Q(y, az) for some y ∈ Pi, and since ya ∈ S
and E is suffix-closed, Q(y, az) = Q(ya, z). By the induction hypothesis,
we have that A(ya, z) = MPL

(yaz). By Lemma 5.1, x ∈ π1(δ∗(qr, x)) and
y ∈ π1(δ∗(qr, y)). Since the classes of P are disjoint and x, y ∈ Pi, we have
that π1(δ∗(qr, x)) = Pi = π1(δ∗(qr, y)). So the inputs x and y take the machine
MP to the same state, and thus MPL

(yaz) = MPL
(xaz) = MPL

(xe).

136

5.A. APPENDIX: PROOFS FOR CHAPTER 5

Theorem 5.2. Let T be a closed observation table. Then every minimum-size
machine M that agrees with T is isomorphic to an element of γ(MP) for
some P ∈ Πmin(T).

Proof.
Let T = (S,E,Q) be a closed observation table. Let M = (Q, I,O, δ, qr) be
a minimum-size machine that agrees with T . We have to show that there is a
P ∈ Πmin(T) s.t. M is isomorphic to some machine in γ(MP).

Let M ′ = (Q′, I, O, δ′, qr), with Q′ = Q ∪ {error}, be a machine obtained
from M by replacing all transitions that are not used by any input from
(S ∪ S ·E)∩ tr(A) with transitions to a new error-state with output ⊥. This
machine still agrees with T (but it has one state more than a minimum-size
machine).

For each q ∈ Q′, let Pq ⊆ S be the set of words s.t. M ′ reaches state q when
reading a word from Pq, formally: Pq = {x ∈ S | π1(δ′∗(qr, x)) = q} (note
that Perror = ∅).

We now show that P := {Pq | q ∈ Q′} \ {Perror} is a closed minimum-size
partition for T .

• Since M ′ is deterministic, all elements of P are disjoint.

• The rows for all words that are in the same class of P are pairwise
compatible. We prove this by contradiction. Assume there are x, y ∈ Pq
s.t. x and y are not compatible. This means there is some e ∈ E, s.t.
Q(x, e) 6= ⊥, Q(y, e) 6= ⊥, and Q(x, e) 6= Q(y, e). But then, by the
definition of agreement, M ′

L(xe) 6= M ′
L(ye). This is a contradiction

since x and y both lead to the same state q ∈ Q′ in M ′.

• Let Pq ∈ P and a ∈ IB. We have to show that there is some Pj ∈ P s.t.
SuccT (Pq, a) ⊆ Pj.

SuccT (Pq, a) = {xa ∈ S | x ∈ Pq}
= {xa ∈ S | x ∈ {y ∈ S | π1(δ′∗(qr, y)) = q}}
= {xa ∈ S | π1(δ′∗(qr, x)) = q}
⊆ {xa ∈ S | π1(δ′(π1(δ′∗(qr, x)), a)) = π1(δ′(q, a))}
= {xa ∈ S | π1(δ′∗(qr, xa)) = π1(δ′(q, a))}
⊆ {x ∈ S | π1(δ′∗(qr, x)) = π1(δ′(q, a))}
= Pπ1(δ′(q,a))

If Pπ1(δ′(q,a)) 6= Perror, then we can set Pj := Pπ1(δ′(q,a)). Otherwise,
SuccT (Pq, a) = ∅, and thus any Pj ∈ P satisfies SuccT (Pq, a) ⊆ Pj.

137

CHAPTER 5. GRAY-BOX LEARNING

• P is a minimum-size partition for T . We show this by contradiction.
Assume that there is a minimum-size partition P ′ that is smaller than
P . Since T is closed, P ′ is closed. The machines in γ(MP ′) agree with
T and have size |P ′| < |P | = |M |. Contradiction.

• Since P has minimum size and T is closed, P is closed.

We now show that the machine MP = (QP , I, O, δP , qP,r) is isomorphic to M ′.
Let f : QP → Q′ s.t. f(Pq) = q and f(error) = error. f is an isomorphism
between MP and M ′:

• It is easy to see that f is bijective.

• f(qP,r) = qr, since ε ∈ Pqr .

• Assume that δP (Pi, a) = (error,⊥) for some class Pi and some input
a. We have that Succ(Pi, a) = ∅. Since P is closed, there is no x ∈ Pi
s.t. Q(x, a) 6= ⊥. Thus, there is no x ∈ Pi s.t. xa ∈ tr(A), and hence
δ′(f(Pi), a) = (error,⊥).

• Otherwise, δP (Pi, a) = (Pj, b). Since for some x ∈ Pi, Q(x, a) = b, by
agreement we have that π2(δ′(f(Pi))) = b. Further, since Succ(Pi, a) 6=
⊥ there is some x ∈ Pi s.t. xa ∈ S and xa ∈ Pj. Thus, π1(δ′(f(Pi))) =
π1(f(Pj)).

Since M ′ differs from M only in the transitions that lead to the error state,
M is isomorphic to some machine in γ(MP).

Theorem 5.3. If for a closed partition P the error state is not reachable in a
composition of A with MP , then all machines in γ(MP) are right-equivalent.

Proof. If the error state is not reachable in a composition with A, then there
is no x ∈ tr(A) s.t. MP takes any of the transitions to the error state when
reading x. Thus, modifying any of these transition does not change the
behavior of the machine for inputs from tr(A). Since right-equivalence only
requires two machines to behave in the same way for inputs from tr(A), all
machines in γ(MP) are right-equivalent.

138

6
MeMin:

SAT-Based Exact Minimization of
Incompletely Specified Mealy Machines

In this chapter, we take a fresh look at a well-known NP-complete problem—
the exact minimization of incompletely specified Mealy machines.

It turns out that this problem is closely related to the problem addressed
in the previous chapter. We develop an approach to minimize incompletely
specified Mealy machines by solving a series of Boolean satisfiability (SAT)
problems, similar to the SAT reduction described in Section 5.5.1.

We evaluate our implementation on the same set of benchmarks used pre-
viously in the literature. On a number of hard benchmarks, our approach
outperforms existing exact minimization techniques by several orders of mag-
nitude; it is even competitive with state-of-the-art heuristic approaches on
most benchmarks.

The work presented in this chapter has been published in [AR15].

6.1 Introduction
The minimization of Mealy machines is a fundamental problem with applica-
tions in many different areas. It is, for instance, an important part of many
approaches for logic synthesis, as it can reduce the complexity of the resulting
circuits. State reduction also plays an important role in fault-tolerant design
of sequential machines [Ahm01]. Another application is in the area of Model-
Based Testing (MBT), where an abstract model of a system can be used to

139

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

automatically derive test cases. Most approaches in this area require the
models to be minimized [AS09]. State minimization also has applications in
compiler design and language processing. Recently, it has been used as part
of a watermarking technique for copyright protection of IP cores [EMRCS14],
as it can reduce the threat of losing states from the signature during an
attack.

While the problem of minimizing Mealy machines is efficiently solvable for
fully specified machines [Hop71], it is NP-complete for incompletely specified
machines, i.e., machines where one or more outputs or next states might not
be specified [Pfl73]. Minimization of a machine M in this context means
finding a machine M ′ with the minimal number of states that has the same
input/output behavior on all input sequences, on which the behavior of M
is defined (but M ′ might be defined on additional input sequences on which
M is not defined). Unlike for fully specified machines, there is no canonical
minimal machine.

The problem has been extensively studied before, and a number of exact and
heuristic approaches have been proposed. The standard or classic technique is
a two-step approach, that was originally proposed by Paull and Unger [PU59],
and improved by Grasselli and Luccio [GL65]. With this approach, in a first
step, a number of sets of compatible states (i.e., states for which no input
sequence exists, such that their outputs are different) are determined. In the
second step, a subset of these sets is selected such that certain closure and
covering criteria are fulfilled.

Almost all exact methods and also many heuristic methods follow this two-step
approach. The disadvantage of all of these approaches is that, in particular,
the enumeration in the first step can be computationally expensive, as there
can be an exponential number of compatible classes.

In this chapter, we propose a new approach that is not based on the standard
approach, and that does not require the enumeration of a large number of
sets of compatible states. Instead, we propose a formulation of the problem
as a Boolean satisfiability (SAT) problem, similar to the SAT reduction
described in Section 5.5.1. Even though the search space of our method is
larger compared to methods based on the standard approach, we show that
current SAT solvers are powerful enough to efficiently solve these types of
problems.

More specifically, in a precomputation step, we determine a set of pairwise
incompatible states that are part of any solution, i.e., we compute some form
of a “partial solution”. The size of this partial solution also constitutes a lower

140

6.2. DEFINITIONS

bound on the number of states of the minimal machine. We then iteratively
call a Boolean satisfiability solver to check whether the partial solution can
be extended to a complete solution of the size of the lower bound. If this is
not the case, we increase the lower bound by one. This is repeated until a
solution is found. This solution is then guaranteed to correspond to a minimal
machine that covers the original machine.

We compare our method to several other approaches on two sets of stan-
dard benchmarks: the ISM benchmarks, used by, e.g., [KVBSV94, HM96,
PO99, GF07, AS13], and the MCNC benchmarks, used by, e.g., [KS91, PG93,
RHSJ94, SGL95, HM96, AD01, HXB04, KS13]. These benchmarks come
from several sources, e.g., logic synthesis, learning problems, and networks of
interacting FSMs.

Our approach outperforms the other exact approaches significantly, in partic-
ular on a number of hard benchmarks. In some cases, it is faster than existing
approaches by several orders of magnitude.

On most benchmarks, our approach is also competitive with state-of-the-art
heuristic methods. There are only two benchmarks on which a heuristic
approach is significantly faster. However, in these two cases, this heuristic
approach is not able to find the minimal result.

6.1.1 Outline
In Section 6.2, we introduce basic definitions used throughout the chapter,
and we formally define the problem addressed in this chapter. Section 6.3
introduces the most important related work. In Section 6.4, we describe
our new approach in detail, and in Section 6.5, we describe details of our
implementation. In Section 6.6, we evaluate our approach on a set of standard
benchmarks. Finally, Section 6.7 concludes.

6.2 Definitions
In this section, we formally define several concepts used throughout this
chapter.

6.2.1 Basic Definitions
We will use the following definition for Mealy machines, which is more general
than the definition we used in the previous chapter, where we only considered
completely specified Mealy machines.

141

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

Definition 6.1. A Mealy machine is a tuple (I, O,Q, qr, δ, λ), where

• I 6= ∅ is a finite set of input symbols

• O 6= ∅ is a finite set of output symbols

• Q 6= ∅ is a finite set of states

• qr ∈ Q ∪ {⊥} is the initial (reset) state

• δ : (Q, I)→ Q ∪ {φ} is the transition function

• λ : (Q, I)→ O ∪ {ε} is the output function.

φ denotes an unspecified state, ε denotes an unspecified output, and ⊥ denotes
an unspecified initial state.

Regarding the initial state, previous definitions in the literature are not
consistent. Some approaches assume that there is always a designated initial
state, while others assume that any state can be the initial state. With respect
to minimization this can make a difference if states are not reachable from
the initial state. Our definition is a generalization of the previous definitions.

A machine M is called completely specified if for all states, all next states and
outputs are defined, i.e., for all q ∈ Q and a ∈ I, δ(q, a) 6= φ and λ(q, a) 6= ε.
M is called incompletely specified if one or more next states or outputs may
be unspecified.

With this definition, a completely specified machine is a special case of
an incompletely specified machine. Previous approaches often defined an
incompletely specified machine as a machine where at least one transition
is unspecified. However, since our approach can also be used to minimize
completely specified machines, we choose this definition.

In the following, we will without loss of generality only consider machines M
that have no transition for which only the output is specified, i.e.,

∀q ∈ Q, a ∈ I : (δ(q, a) = φ) =⇒ (λ(q, a) = ε).

Note that any machine M can be transformed to such a machine M ′ by
adding an additional target state with no outgoing transitions.

We extend δ and λ to sequences in the usual way (where δ(φ, a) = φ and
λ(φ, a) = ε).

A state q is called a predecessor state of a state q′ under input a if δ(q, a) = q′.

An input sequence a0 . . . an ∈ I∗ is called applicable for a state q if there is a
sequence of states q0 . . . qn with q0 = q s.t. δ(qi, ai) = qi+1 and qi+1 6= φ for

142

6.2. DEFINITIONS

all 0 ≤ i < n. An input sequence is called applicable for a machine M if it is
applicable for its initial state. If the machine has no initial state (qr = ⊥),
the sequence is applicable if it is applicable for at least one of the states of
the machine.

Two outputs o1, o2 ∈ O ∪ {ε} are compatible iff o1 = ε, or o2 = ε, or o1 = o2.
Two output sequences o = o0 . . . on and o′ = o′0 . . . o

′
n are compatible if oi

and o′i are compatible for all 0 ≤ i ≤ n. An output sequence o = o0 . . . on
subsumes a sequence o′ = o′0 . . . o

′
n if for all 0 ≤ i ≤ n, o′i = ε ∨ oi = o′i.

Two states are compatible if for all applicable input sequences for both
states, the corresponding output sequences are compatible. Two states are
distinguishable if they are not compatible. In this case, there is a distinguishing
input sequence that is applicable for both states such that the corresponding
output sequences differ.

A Mealy machine M ′ = (I, O,Q′, q′r, δ′, λ′) covers a Mealy machine M =
(I, O,Q, qr, δ, λ), iff for all applicable input sequences s ∈ I∗ for M , λ′(q′r, s)
subsumes λ(qr, s). If the machine has no reset state, we require that for
all states q ∈ Q there is a state q′ ∈ Q′ such that for all applicable input
sequences s ∈ I∗ for M , λ′(q′, s) subsumes λ(q, s).

We are now ready to formally define the problem addressed in this chapter.

6.2.2 Problem Statement
Given a Mealy Machine M , our goal is to find a Mealy machine M ′ with the
minimum number of states, such that M ′ covers M .

6.2.3 General Approach
For a Mealy machineM = (I, O,Q, qr, δ, λ), a compatibility class (also called a
compatible) is a set C ⊆ Q, such that all elements of C are pairwise compatible.

For a compatibility class C = {q0, . . . , qn} and an input a, we define a
successor function

Succ(C, a) =
⋃

0≤j≤n
{δ(qj, a) | δ(qj, a) 6= φ}.

In previous work, the set Succ(C, a) was often called the implied set of C
under input a.

A set S = {C1, . . . , Cn} of compatibility classes is closed if for all Cj ∈ S and
all inputs a ∈ I, there exists a Ck ∈ S such that Succ(Cj) ⊆ Ck.

143

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

A closed set of compatibility classes covers a Mealy machine M if every state
of the machine is contained in at least one class of the set.

The following theorem is based on a theorem that was first proposed and
proven by Paull and Unger [PU59].

Theorem 6.1. From a closed set S = {C1, . . . , Cn} of compatibility classes
with the minimum number of classes that covers a Mealy machine M =
(I, O,Q, qr, δ, λ), one can derive a Mealy machine M ′ = (I, O,Q′, q′0, δ′, λ′)
with the minimal number of states that covers M as follows:

• Q′ := S

• q′r := Cj for some j s.t. qr ∈ Cj if qr 6= ⊥, and q′r := ⊥ otherwise

• δ′(Cj, a) = φ if Succ(Cj, a) = ∅, and otherwise δ′(Cj, a) = Ck for some
k s.t. Succ(Cj, a) ⊆ Ck

• λ′(Cj, a) = o if λ(q, a) = o for some q ∈ Cj and λ′(Cj, a) = ε otherwise

It is important to note that the elements of S can overlap, i.e., S is not
necessarily a partition of Q.

6.3 Related Work
The concept of Mealy machines was introduced by G. H. Mealy in 1955
[Mea55]. While it was initially believed that incompletely specified ma-
chines could be minimized by similar techniques as completely specified
machines [Auf58], Ginsburg [Gin59] discovered that there are examples for
which this is not possible. Pfleeger [Pfl73] proved in 1973 that the problem of
minimizing incompletely specified machines is NP-complete.

Paull and Unger [PU59] proposed an approach for exact state minimization
based on their general theory that was introduced in the previous section.
The approach consists of two steps:

1. Enumeration of all compatibility classes.

2. Solution of a covering problem, i.e., choosing a set of compatibility
classes (from step 1) of minimum size that satisfies the closure and
covering conditions.

Grasselli and Luccio [GL65] discovered that only some compatibility classes
(prime compatibles) need to be considered. Prime compatibles are those
compatibles that are not included in any larger compatible with the same or

144

6.3. RELATED WORK

fewer closure constraints. They proved that for any Mealy machine, there is
at least one covering of minimal size that consists only of prime compatibles.

This approach is often called the “standard” [PO99] or “classic” [AS13]
approach, and has also been described in textbooks [KVBSV10]. Almost all
subsequently proposed exact minimization techniques are based on various
improvements of this standard method. Rho et al. [RHSJ94] presented a
tool called STAMINA which implements Grasselli and Lucio’s method, as
well as an extension of their method based on compatible pairs that was first
proposed by Sarkar et al. [DSBC69]. Kam et al. developed an approach that
represents prime compatibles implicitly as Binary Decision Diagrams (BDDs)
and is, thus, able to handle significantly larger sets of prime compatibles.
Several approaches proposed improvements of either the identification of
compatibility classes [Ben71, HM95, Ahm01], or for solving the corresponding
covering problem [PG93, LD97, VKBSV97].

The downside of all of these approaches is that the generation of all com-
patibility classes can be computationally very expensive, as the number of
compatibility classes can be exponential in the number of states [Rub75]. This
is also an issue for the implicit approaches, as not all sets of compatibility
classes can be efficiently represented as BDDs.

Pena and Oliveira [PO99] presented the tool BICA, which implements a
method that is not based on the classic approach. Instead, it is based on
a modification of Angluin’s algorithm [Ang87] for learning Mealy machines.
They generate a sequence of tree-FSMs (i.e., an FSM for which the corre-
sponding graph is a tree with the initial state as the root). Each TFSM is
reduced to a minimal consistent Mealy machine using a variant of Bierman’s
search algorithm [BF72] until a solution that covers the original machine is
found. Grinchtein and Leucker [GL06] later modified BICA by replacing
Bierman’s algorithm with a SAT-based approach. This lead to significantly
better results on two benchmarks, for which the TFSM reduction time was
the dominating factor before.

In addition to the exact approaches, a number of heuristic methods have
been proposed. Some of these are also based on the classic two-step approach.
Rho et al. [RHSJ94] described a method that uses a restricted subset of the
prime compatibles, but solves the covering step exactly. On the other hand,
Ahmad and Das [AD01] proposed a technique that requires the enumeration
of all prime compatibles, but uses a heuristic for the second step. Several
approaches use both a subset of the prime compatibles (typically the maximal
compatibles), and heuristics for the covering step [BWL72, KS91, SGL95,
HM96, HXB04].

145

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

A few heuristic techniques are not based on the classic approach. Avedillo
et al. [AQH90] described a method that reduces the number of states of a
machine through a sequence of transformations on a symbolic description of
the machine. Gören and Ferguson [GF07] presented an approach that is based
on a checking sequence generation technique. Klimowicz and Solov’ev [KS13]
proposed a method based on merging pairs of compatible states. Alberto
and Simao [AS13] described a technique that selects compatible states using
maximum cliques on the distinction graph.

6.4 Approach
Unlike almost all previous exact minimization techniques, our technique does
not require the enumeration of compatibility classes. Instead, we first compute
a partial solution that is part of any solution. The size of this partial solution
also corresponds to a lower bound on the number of states of the minimized
machine. Then, we use a SAT solver to determine if there is a machine that
covers the original machine with the size of the lower bound. If the SAT
solver cannot find a satisfying assignment, we increase the lower bound by
one.

So, at a high level, our algorithm works as follows.

Algorithm 6.1: Main algorithm
Input: M = (I, O,Q, qr, δ, λ)

1 begin
2 m ← computeIncompatibilityMatrix(M)
3 P ← computePartialSolution(m)
4 lowerBound ← |P |
5 for nClasses ← lowerBound to |Q| do
6 clauses ← createSATProblem(nClasses, M, m, P)
7 (satisfiable, model) ← runSATSolver(clauses)
8 if satisfiable then
9 return buildMachine(model, M)

In the following subsections, we describe our approach in more detail. We
assume that we want to minimize a machine with |Q| states, and that the
states are numbered from 0 to |Q| − 1.

146

6.4. APPROACH

6.4.1 Incompatibility Matrix
The first step of our algorithm is to determine which pairs of states are
compatible, and which pairs are incompatible. Similar to previous approaches,
we store this information in a matrix m, such that m[i][j] = 1 if states i and
j are incompatible, and m[i][j] = 0 if they are compatible.

However, to compute this matrix, we use a slightly different approach from
the classic approach [GL65]. Our algorithm works as follows:

• Initialize all entries of the matrix with 0.

• Iterate over all state pairs (i, j). If m[i][j] is not already set to 1, check
whether there is an input symbol a such that the outputs of i and j
differ. If this is the case, set this entry of the matrix to 1.

• Whenever an entry (i, j) of the matrix changes its value from 0 to 1, we
set the value of all predecessor state pairs under the same inputs to 1
as well.

The last step is executed at most |Q|2 times. To determine the predecessor
state pairs efficiently, we can compute a list of predecessor state pairs for
each state pair by iterating over all state pairs and inputs once. Thus, these
|Q|2 lists have at most |Q|2 · |I| elements in total. Since the last step iterates
over each of the lists at most once, the overall complexity of our algorithm is
in O(|Q|2 · |I|).

The classic algorithm does not perform the update upon a change. Instead,
it repeatedly iterates over all state pairs (i, j) and sets m[i][j] to 1 if one of
their successor pairs is set to 1. The algorithm terminates upon reaching a
fixed point. Thus, its complexity is in O(|Q|3 · |I|).

6.4.2 Encoding as a SAT Problem
In this section, we describe, how we encode the problem “Is there a closed
set of compatibility classes of size n that covers the machine?” as a Boolean
satisfiability problem; this is similar to the encoding described in Section 5.5.1.
It is straightforward to show that if the problem is unsatisfiable for n classes,
but satisfiable for n+ 1 classes, a satisfying assignment for n+ 1 classes fulfills
the conditions of Theorem 6.1.

SAT solvers typically require the problem to be in conjunctive normal form
(CNF). In this section, we will provide high level-descriptions for each sub-
problem; the translations to CNF are analogous to the translations described
in Section 5.5.1.

147

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

In the following, we will use literals of the form sx,i ∈ B to denote that state
x is in compatibility class i.

Covering Condition

All states of the original machine must be in at least one compatibility class.
We therefore add, for all states x, a clause of the form

sx,0 ∨ sx,1 ∨ · · · ∨ sx,n−1.

Compatibility

All states that are in the same class must be pairwise compatible. For a
state x, let Inc(x) ⊆ Q be the set of states that are incompatible to x. To
ensure that no incompatible states are in the same class, we add for each
state x and each class i the implication

sx,i =⇒
∧

y∈Inc(x)
y>x

¬sy,i.

Incompatibility is symmetric. However, it suffices to have one constraint for
each pair of states. This is ensured by y > x.

Closure

For all states that are in the same class, there must be another class that
contains all of their successor states. Thus, we have for each input symbol
a ∈ I and each class i a clause of the form

∃j : ∀x : (sx,i =⇒ sx′,j),

where x′ is used to denote the successor state of x under input a. If the
successor state is undefined, the corresponding implication is omitted.

Note that to fulfill the closure property, it is not sufficient to require that for
all pairs of states that are in the same class, their successor pairs must be in
the same class. This is because the classes are not disjoint. So it is possible
that for three states s1, s2, s3, there is a class i that contains the successors of
s1 and s2, a class j that contains the successors of s2 and s3, and a class k
that contains the successors of s1 and s3, but there might not be a single class
that contains the successors of all three states.

148

6.5. IMPLEMENTATION

6.4.3 Computing a Partial Solution
In this section, we present an approach to reduce the number of symmetrical
cases the SAT solver has to consider by precomputing a “partial solution”.
More specifically, we first compute a set S = {x0, . . . , xk} of pairwise incom-
patible states, using the heuristic technique proposed in Section 5.5.1. For all
solutions of the SAT problem, each of these states must be in at least one
class, but no pair of these states may be in the same class. However, since
we are only interested in sets of compatibility classes, the ordering of the
classes does not matter. Thus, we can obtain an equisatisfiable formula by
just assigning all elements of S to arbitrary, different classes. To this end, we
add a clause of the form

sx0,0 ∧ sx1,1 ∧ · · · ∧ sxk,k.

Moreover, we can use the cardinality of S as a lower bound for the required
number of classes.

6.5 Implementation
We have implemented our approach in a tool called MeMin. MeMin is
available for download from our website1. The tool is written in C++, and
it uses MiniSat [ES04] as SAT solver. MiniSat is an open-source SAT solver
that can be used as a library and that provides a simple API.

Like many previous tools, MeMin accepts inputs in the widely used KISS2
input format [SSL+92]. In this format, Mealy machines are described by a
set of 4-tuples of the form (input, currentState, nextState, output). input and
output are sequences of {0, 1,−}, where − means that the corresponding bit
is not specified. In the following paragraphs, we describe how we deal with
some of the implications of using this specification format.

6.5.1 Dealing with Partially Specified Outputs
The KISS2 format allows for partially specified outputs, i.e., outputs in which
a subset of the bits are undefined. A machine M covers such a partially
specified machine M ′ iff the set of possible outputs of M is a (non-empty)
subset of the set of possible outputs of M ′.

We incorporate this generalization into our framework in a similar way as
the authors of [PO99]. We define two outputs to be compatible if all of their

1http://embedded.cs.uni-saarland.de/MeMin.php

149

http://embedded.cs.uni-saarland.de/MeMin.php

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

bits at the same position are either the same, or at least one of the bits is
undefined. We then use this definition of the compatibility of outputs in the
definition of the compatibility of states.

6.5.2 Dealing with Partially Specified Inputs
Partially specified inputs are used as a shorthand for sets of inputs. One
straightforward way to deal with this would be to just add transitions for all
concrete inputs that are described by a partially specified input. However,
this approach is only viable when the number of unspecified bits is small.

Instead, we use the following approach. We first partition the set of states
into equivalence classes such that two states are in the same class if they are
transitively compatible. For each equivalence classes C we then compute a set
of disjoint partially specified inputsD such that all intersections of inputs from
C can be expressed by a combination of inputs from D. Finally, we replace
all transitions of states in C with transitions that have the corresponding
inputs from D.

Furthermore, for the closure constraints in Section 6.4.2, if there are multiple
inputs that have exactly the same output/next state behavior, we only need
to consider one of these inputs.

6.5.3 Undefined Reset States
The KISS2 format allows for the optional definition of a reset state. According
to the specification [SSL+92], if no reset state is specified, the first state
encountered in the transition list is implicitly assumed to be the reset state.
However, several of the benchmarks we use in the evaluation would not make
much sense with this specification, as for example in rubin2250, only three
(out of 2250) states are reachable from the first state. We therefore added
a command line parameter to our tool that controls whether the first state
should be the reset state, or any state might be a reset state if no explicit
reset state is specified.

6.6 Evaluation
In this section, we first evaluate our approach on two sets of standard bench-
marks against two other exact and two heuristic techniques. We then investi-
gate how the precomputation of a partial solution, as described in Section 6.4.3,
influences the execution time.

150

6.6. EVALUATION

6.6.1 Benchmarks
We compare the performance of our implementation with BICA [PO99],
which is based on Angluin’s learning algorithm, and STAMINA (exact
mode) [RHSJ94], which is a popular implementation of the explicit version
of the two-step standard approach. Furthermore, we also compare our tool
with STAMINA (heuristic mode), and COSME [AS13], which is another,
recently proposed, heuristic technique.

There are two standard sets of benchmarks that were used in the evaluations of
previous techniques: The ISM benchmarks, used by, e.g., [KVBSV94, HM96,
PO99, GF07, AS13], and the MCNC benchmarks, used by, e.g., [KS91, PG93,
RHSJ94, SGL95, HM96, AD01, HXB04, KS13].

The ISM benchmarks contain several examples that exhibit a very large
number of prime compatibles, and are therefore not solvable by techniques
that are based on the explicit enumeration of prime compatibles, such as
STAMINA. The machines after minimization are, however, rather small (at
most 14 states), which makes them amenable to the learning-based approach.

Most benchmarks from the MCNC suite, on the other hand, can be easily
solved by the standard approach. However, some of the minimized machines
are significantly larger (up to 135 states), which makes these benchmarks
harder for the learning-based technique, as well as for the technique based on
implicit enumeration, where “the representation becomes inefficient”, “when
there are many states and few compatibles” [KVBSV94].

The scatter plots in Figure 6.1 and 6.2 show the results of the different tools on
both sets of benchmarks. MeMin reported a correct result on all benchmarks.
Cases where the other tool did not return a correct result are indicated with
orange and red (for the exact approaches, a non-minimal result is considered
to be incorrect). The reported runtimes are the averages over five runs; the
timeout was set to five minutes. The standard deviations of the runtimes
were in all cases smaller than 4.5%. Detailed tables with all results can be
found in Appendix 6.A.

ISM Benchmarks

This set of benchmarks was compiled by the authors [KVBSV94] of the
ISM tool. The benchmarks come from a variety of sources, including asyn-
chronous synthesis procedures, FSMs constructed to be compatible with a
given collection of examples of input/output behavior, FSMs that are part
of a surrounding network of FSMs, FSMs contructed to have an exponential
number (up to 21500) of prime compatibles, and randomly generated machines.

151

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

ISM MCNC
Correct result

Incorrect result Timeout Other errors

100 101 102 103 104 105

100

101

102

103

104

105

BICA [ms]

M
eM

in
[m

s]

100 101 102 103 104 105

100

101

102

103

104

105

STAMINA (exact mode) [ms]

M
eM

in
[m

s]

Figure 6.1: Benchmark results — exact approaches, © 2015 IEEE

152

6.6. EVALUATION

ISM MCNC
Correct result Result not minimal

Incorrect result Timeout Other errors

100 101 102 103 104 105

100

101

102

103

104

105

COSME [ms]

M
eM

in
[m

s]

100 101 102 103 104 105

100

101

102

103

104

105

STAMINA (heuristic mode) [ms]

M
eM

in
[m

s]

Figure 6.2: Benchmark results — heuristic approaches, © 2015 IEEE

153

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

MeMin was able to solve all 34 benchmarks in under 0.2 s, and 30 of them
even in less than 10ms. BICA was on all benchmarks at least 16 times slower;
it could solve only one benchmark in less than 10ms. 16 benchmarks took
more than 100ms, seven more than 1 s, and one could not finish within a
timeout of five minutes.

STAMINA (exact mode) was not able to solve 13 benchmarks on our machine.
This mostly corresponds to what was also reported in previous publications,
except for ifsm1, for which [PO99] reported a time about twice as high as
for ifsm2, and fo.20 and th.30, for which [AS13] reported around 36 s and
84 s, respectively, though it is not clear whether they used the exact or the
heuristic mode of STAMINA. Furthermore, for five benchmarks, the results
of STAMINA (exact mode) were not minimal.

The execution time of the heuristic mode of STAMINA was in only one
case significantly different from the exact mode. 15 benchmarks lead to error
messages on our machine. [HM96] reported results for the heuristic mode of
STAMINA for these cases. For the fo.* and th.* benchmarks, the resulting
machines were in many cases significantly larger than the minimal machines
(e.g., 24 states instead of 8 for th.55, or 14 instead of 7 for fo.70).

COSME was in two cases (fo.60 and fo.70) significantly faster than MeMin,
however, the minimized machines had three and two additional states, re-
spectively. In seven cases, COSME was more than ten times slower than
MeMin, and in 12 cases, the resulting machines did not have the minimal
number of states.

MCNC Benchmarks

Benchmarks from the MCNC suite [Yan91] are widely used in logic synthesis.
Both MeMin and STAMINA were able to solve almost all benchmarks in
less than 10ms. However, STAMINA was unable to solve three cases and
reported non-minimal results in four cases.

BICA, on the other hand, needed more than 100ms in 17 cases, and more
than 1 s in eight cases. On one benchmark, BICA did not terminate within
a timeout of five minutes. On two benchmarks, it ran out of memory.

COSME reported invalid results on a large number of these benchmarks. We
assume that this might be due to a bug in handling partially specified inputs,
which are used by many MCNC benchmarks. We noticed that the resulting
machines sometimes had multiple transitions for the same inputs.

154

6.6. EVALUATION

6.6.2 Evaluation of MeMin
In this section, we analyze our approach in detail. Tables 6.1 and 6.2 show
the results for several experiments.

The column “SAT only” shows the execution time for a naive implementation
that does not precompute a partial solution and uses 1 as the lower bound.
The column “SAT+LB” gives the time for an implementation that uses the
size of the partial solution as the lower bound, but does not add the constraints
from Section 6.4.3 to the SAT problem. The column “SAT+LB+PS” shows
the time for the implementation that also adds these constraints (i.e., the
same implementation that was also used for the scatter plots). For this imple-
mentation, the column “SAT share” displays the time the SAT solver needed
in relation to the total execution time. The column |Q| shows the number
of states before minimization, |Qm| the number of states after minimization,
and |P | the size of the partial solution.

All benchmarks for which the minimized machines have more than nine states
could not be solved by the naive implementation within a timeout of five
minutes. On the other hand, the solution that uses the lower bound was
able to solve all but one benchmark in under five minutes (and all but five in
under one second). We observed that the SAT solver typically needs much
more time to determine that there is no solution for |Qm| − 1 than to find a
solution of size |Qm|. For many benchmarks, the size of the partial solution
already corresponds to the size of the minimal solution; thus the second
implementation often does not need to consider the |Qm| − 1 case.

The additional constraints used in the third implementation were in par-
ticular helpful for larger machines (e.g., s298 and scf), as well as those
machines, where |P | < |Qm|. The most noticeable speed-up was on fo.60
and fo.70 (more than 600 times faster), and on ifsm1, for which the first and
second implementation did not terminate within five minutes, while the final
implementation was able to solve the benchmark in 1.6ms.

6.6.3 Other Tools
A number of other state minimization tools have been described in the
literature. Unfortunately, for the approaches described in [KVBSV94, HM96,
AD01, HXB04, KS13], we were unable to obtain working implementations.

For the ISM tool [KVBSV94], which implements the implicit enumeration
approach based on BDDs, there is no public release available [Vil15]. However,
the authors of BICA compared their tool with ISM on the same set of

155

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

Table 6.1: Evaluation of MeMin (ISM benchmarks), © 2015 IEEE

Solution times [ms]
Benchmark |Q| |Qm| |P | SAT only SAT+LB SAT+LB+PS SAT share

IS
M

be
nc
hm

ar
ks

alex1 42 6 6 5.9 2.9 1.1 35%
intel edge.dummy 28 4 3 1.7 1.6 .8 36%
isend 40 4 4 2.1 1.6 1.0 35%
pe-rcv-ifc.fc 46 2 2 1.4 1.3 .8 19%
pe-rcv-ifc.fc.m 27 2 2 1.3 1.2 .7 17%
pe-send-ifc.fc 70 2 2 1.9 1.7 1.1 23%
pe-send-ifc.fc.m 26 2 2 1.5 1.3 .8 16%
vbe4a 58 3 3 2.2 1.8 1.2 32%
vmebus.master.m 32 2 2 2.7 2.5 2.0 14%
fo.16 17 3 2 1.1 1.1 .6 30%
fo.20 21 3 3 1.1 1.0 .5 20%
fo.30 31 3 2 1.2 1.2 .7 38%
fo.40 41 4 4 3.2 2.9 1.5 66%
fo.50 51 6 5 16.0 15.1 4.3 87%
fo.60 61 7 6 116423.5 117156.3 169.2 99%
fo.70 71 7 4 116371.3 114812.6 189.4 99%
th.20 21 4 3 1.4 1.3 .7 42%
th.25 26 4 3 1.3 1.2 .7 40%
th.30 31 5 5 2.2 1.7 .6 31%
th.35 36 7 7 8.1 2.0 .8 42%
th.40 41 8 8 40.1 2.2 .9 45%
th.55 55 8 8 94.1 8.5 1.5 63%
ifsm0 38 3 3 2.2 1.9 .9 9%
ifsm1 74 14 13 timeout timeout 1.6 54%
ifsm2 48 9 9 1616.7 7.2 1.5 35%
rubin1200 1200 3 3 39.6 37.8 37.4 13%
rubin18 18 3 3 1.0 1.0 .5 17%
rubin2250 2250 3 3 163.9 159.3 160.1 8%
rubin600 600 3 3 10.1 9.3 8.8 20%
e271 19 2 2 1.1 1.1 .5 15%
e285 19 2 2 1.1 1.0 .6 15%
e304 19 2 2 1.3 1.0 .6 17%
e423 19 2 2 1.1 1.0 .5 14%
e680 19 2 2 1.1 1.0 .5 15%

156

6.6. EVALUATION

Table 6.2: Evaluation of MeMin (MCNC benchmarks), © 2015 IEEE

Solution times [ms]
Benchmark |Q| |Qm| |P | SAT only SAT+LB SAT+LB+PS SAT share

M
C
N
C

be
nc
hm

ar
ks

bbara 10 7 7 7.8 1.4 .5 9%
bbsse 16 13 13 timeout 8.1 .9 14%
bbtas 6 6 6 2.2 1.2 .5 8%
beecount 7 4 4 1.3 1.2 .5 11%
cse 16 16 16 timeout 4.2 .8 13%
dk14 7 7 7 10.1 1.6 .6 9%
dk15 4 4 4 1.3 1.1 .5 8%
dk16 27 27 27 timeout 32.7 .9 16%
dk17 8 8 8 30.9 1.6 .5 9%
dk27 7 7 7 5.8 1.3 .4 9%
dk512 15 15 15 timeout 3.4 .5 12%
donfile 24 1 1 1.0 1.0 .5 8%
ex1 20 18 18 timeout 9.3 1.0 12%
ex2 19 5 4 3.8 3.5 .9 48%
ex3 10 4 2 1.6 1.6 .8 47%
ex4 14 14 14 timeout 3.0 .5 13%
ex5 9 3 2 1.1 1.0 .5 22%
ex6 8 8 8 39.3 1.6 .5 11%
ex7 10 3 3 1.1 1.0 .5 16%
keyb 19 19 19 timeout 6.9 1.1 13%
kirkman 16 16 16 timeout 5.9 2.1 9%
lion9 9 4 4 1.2 1.0 .4 11%
lion 4 4 4 1.2 1.0 .4 8%
mark1 15 12 12 timeout 9.5 1.0 35%
mc 4 4 4 1.2 1.0 .4 8%
modulo12 12 1 1 1.0 .9 .4 8%
opus 10 9 9 265.3 1.7 .5 10%
planet1 48 48 48 timeout 78.7 1.4 26%
planet 48 48 48 timeout 78.3 1.4 26%
pma 24 24 24 timeout 8.1 .8 17%
s1488 48 48 48 timeout 137.7 2.0 22%
s1494 48 48 48 timeout 134.0 2.0 23%
s1a 20 1 1 3.3 3.2 2.7 8%
s1 20 20 20 timeout 8.3 1.0 15%
s208 18 18 18 timeout 7.6 1.0 13%
s27 6 5 5 1.7 1.2 .5 9%
s298 218 135 135 timeout 5273.0 9.7 36%
s386 13 13 13 timeout 3.0 .7 13%
s420 18 18 18 timeout 8.7 1.0 13%
s510 47 47 47 timeout 89.6 1.2 30%
s820 25 24 24 timeout 16.6 1.5 15%
s832 25 24 24 timeout 18.9 1.6 15%
s8 5 1 1 .9 .9 .4 7%
sand 32 32 32 timeout 32.9 1.5 18%
scf 121 97 97 timeout 1492.3 3.3 45%
shiftreg 8 8 8 37.6 1.7 .4 9%
sse 16 13 13 timeout 8.2 .9 14%
styr 30 30 30 timeout 29.4 1.2 17%
tav 4 4 4 1.2 1.1 .5 7%
tbk 32 16 16 timeout 35.5 3.5 6%
tma 20 18 18 timeout 4.7 .7 20%
train11 11 4 4 1.2 1.1 .5 12%
train4 4 4 4 1.1 1.0 .4 8%

157

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

benchmarks that we used in Section 6.6.1. ISM was slightly faster than BICA
on only one benchmark (ifsm1). It was more than 100 times slower than
BICA on five benchmarks, and was unable to solve seven benchmarks that
BICA was able to solve.

Slim [HM96] is not available because it is Fujitsu’s proprietary [Hig15]. Also,
the source code of VOID [AD01] is not available anymore [Ahm15]. While
we were able to obtain a copy of CHESMIN [GF07] from the authors, unfor-
tunately, on our machine, the version we obtained yields segmentation faults
on most benchmarks.

6.6.4 Experimental Setup
All experiments were run on an Intel Core i5-4590 (3.3GHz) with 4GB of
RAM. We disabled dynamic frequency scaling, and copied all executables and
benchmark files to a RAM disk, to minimize timing variations due to hard
drive accesses. The execution times were measured using the perf tool [per].

We used BICA in version 5.0.3. We specified a hash table of size 100,000
(parameter “-h 100,000”). With the default size of 10,000 some benchmarks
failed with the error message “Too many collisions. Specify a large hash table.”
We used the version of STAMINA that is included in SIS 1.3.6 [Cho05]. For
the exact mode, we specified the parameter “-s 0”, and for the heuristic mode
“-s 3” (which combines the “tight upper bound” and “isomorphic” heuristics).
We used a version of COSME (as of Aug. 2010) that was provided to us by
one of the authors. We specified the same parameters as in the evaluation
in [AS13] (“--comparemode --shownum --xincha”).

6.7 Conclusions and Future Work
With respect to the set of benchmarks used to evaluate previous approaches,
one can consider the problem of minimizing incompletely specified Mealy
machines to be solved: Our method can solve all of these benchmarks in less
than 0.2 seconds, and all but four in less than 10ms.

To evaluate the limits of our approach, one problem that future work will
need to address is to identify a new set of challenging, realistic benchmarks.

158

6.A. APPENDIX: COMPLETE BENCHMARK RESULTS

6.A Appendix: Complete Benchmark Results

159

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

Table 6.3: ISM-benchmark results (exact approaches)

MeMin (M) Bica (B) Stamina (SE)

Benchmark |Q| |Q| Time stdev |Q| Time stdev B/M |Q| Time stdev SE/M

alex1 42 6 .0011 2.95% 6 .2870 0.27% 260.90 6 .1291 0.16% 117.36
intel edge.dummy 28 4 .0008 2.21% 4 .0396 0.29% 49.50 51 .0033 0.30% 4.12
isend 40 4 .0010 1.59% 4 .1594 0.07% 159.40 4 .0103 0.11% 10.30
pe-rcv-ifc.fc 46 2 .0008 2.43% 2 .1469 0.16% 183.62 2 .0021 0.51% 2.62
pe-rcv-ifc.fc.m 27 2 .0007 2.91% 2 .0837 0.23% 119.57 2 .0009 0.82% 1.28
pe-send-ifc.fc 70 2 .0011 1.52% 2 .4558 0.47% 414.36 2 .0089 0.09% 8.09
pe-send-ifc.fc.m 26 2 .0008 2.34% 2 .1729 0.27% 216.12 2 .0009 1.37% 1.12
vbe4a 58 3 .0012 1.29% 3 .3702 0.08% 308.50 3 1.6005 0.02% 1333.75
vmebus.master.m 32 2 .0020 2.37% 2 13.3897 0.09% 6694.85 2 .0048 0.33% 2.40
fo.16 17 3 .0006 4.05% 3 .0188 0.60% 31.33 3 2.9122 0.08% 4853.66
fo.20 21 3 .0005 3.28% 3 .0225 0.65% 45.00 —4 2.0142 0.01% 4028.40
fo.30 31 3 .0007 2.47% 3 .0304 0.28% 43.42 —3 3.8240 0.01% 5462.85
fo.40 41 4 .0015 1.71% 4 .1389 0.21% 92.60 —3 11.5049 0.01% 7669.93
fo.50 51 6 .0043 1.01% 6 .0999 0.07% 23.23 —3 7.2752 0.09% 1691.90
fo.60 61 7 .1692 0.13% 7 149.9053 0.70% 885.96 —3 9.8675 0.06% 58.31
fo.70 71 7 .1894 0.18% —2 — — — —3 9.1619 0.09% 48.37
th.20 21 4 .0007 2.45% 4 .0227 0.79% 32.42 61 4.3983 0.05% 6283.28
th.25 26 4 .0007 3.26% 4 .0264 0.23% 37.71 —4 2.0331 0.02% 2904.42
th.30 31 5 .0006 3.31% 5 .0343 0.12% 57.16 —4 12.2109 0.03% 20351.50
th.35 36 7 .0008 2.01% 7 .0410 0.10% 51.25 —3 9.5360 0.01% 11920.00
th.40 41 8 .0009 2.03% 8 .0481 0.07% 53.44 —3 4.5429 0.06% 5047.66
th.55 55 8 .0015 1.22% 8 25.1838 0.17% 16789.20 —3 7.2665 0.00% 4844.33
ifsm0 38 3 .0009 1.81% 3 .0520 0.07% 57.77 3 .0012 0.72% 1.33
ifsm1 74 14 .0016 1.38% 14 .1488 0.05% 93.00 —4 1.4877 0.03% 929.81
ifsm2 48 9 .0015 1.10% 9 3.0301 0.21% 2020.06 9 5.2103 0.05% 3473.53
rubin1200 1200 3 .0374 0.15% 3 1.9400 0.03% 51.87 12001 .4046 1.10% 10.81
rubin18 18 3 .0005 3.53% 3 .0083 0.50% 16.60 3 .0051 0.35% 10.20
rubin2250 2250 3 .1601 0.11% 3 11.9879 0.04% 74.87 22501 2.6435 0.71% 16.51
rubin600 600 3 .0088 0.27% 3 .2803 0.07% 31.85 6001 .0542 0.79% 6.15
e271 19 2 .0005 3.01% 2 .0580 0.08% 116.00 2 .0005 1.65% 1.00
e285 19 2 .0006 2.69% 2 .0240 0.16% 40.00 2 .0005 1.72% .83
e304 19 2 .0006 2.93% 2 .0231 0.14% 38.50 2 .0005 1.84% .83
e423 19 2 .0005 2.80% 2 .0331 0.10% 66.20 —3 3.5725 0.03% 7145.00
e680 19 2 .0005 2.93% 2 .0271 0.18% 54.20 2 .0005 1.58% 1.00

1Invalid result 2Timeout 3Segmentation fault 4*** glibc detected *** ./stamina: double free or corruption

160

6.A. APPENDIX: COMPLETE BENCHMARK RESULTS

Table 6.4: ISM-benchmark results (heuristic approaches)

Cosme (C) Stamina (SH)

Benchmark |Q| |Q| Time stdev C/M |Q| Time stdev SH/M

alex1 42 6 .0072 1.67% 6.54 6 .1361 0.09% 123.72
intel edge.dummy 28 55 .0032 0.25% 4.00 55 .0048 0.25% 6.00
isend 40 4 .0072 1.51% 7.20 4 .0125 0.19% 12.50
pe-rcv-ifc.fc 46 2 .0083 0.33% 10.37 2 .0025 0.46% 3.12
pe-rcv-ifc.fc.m 27 2 .0039 0.67% 5.57 2 .0010 0.57% 1.42
pe-send-ifc.fc 70 2 .0224 0.42% 20.36 2 .0098 2.34% 8.90
pe-send-ifc.fc.m 26 2 .0040 0.15% 5.00 2 .0009 0.80% 1.12
vbe4a 58 3 .0163 0.36% 13.58 3 1.6815 0.02% 1401.25
vmebus.master.m 32 2 .0113 0.65% 5.65 2 .0049 0.17% 2.45
fo.16 17 3 .0015 0.88% 2.50 3 .0005 1.96% .83
fo.20 21 3 .0018 0.26% 3.60 —6 .0009 1.64% 1.80
fo.30 31 3 .0027 0.36% 3.85 —6 .0048 0.56% 6.85
fo.40 41 65 .0040 0.32% 2.66 —6 .1386 0.05% 92.40
fo.50 51 6 .0052 1.09% 1.20 —6 .0336 0.32% 7.81
fo.60 61 105 .0093 2.15% .05 —6 .0864 1.23% .51
fo.70 71 95 .0100 0.29% .05 —6 .1259 0.11% .66
th.20 21 4 .0018 0.34% 2.57 —6 .0014 0.73% 2.00
th.25 26 4 .0025 0.71% 3.57 —6 .0011 1.68% 1.57
th.30 31 65 .0029 0.21% 4.83 —6 .0024 0.40% 4.00
th.35 36 7 .0036 0.39% 4.50 —6 .0026 0.57% 3.25
th.40 41 8 .0042 0.53% 4.66 —6 .0048 0.87% 5.33
th.55 55 105 .0066 0.13% 4.40 —6 .0293 0.45% 19.53
ifsm0 38 3 .0098 0.27% 10.88 3 .0012 0.81% 1.33
ifsm1 74 14 .0140 0.12% 8.75 —6 .0026 0.31% 1.62
ifsm2 48 31 .0058 0.41% 3.86 —6 .0024 0.37% 1.60
rubin1200 1200 155 2.0928 0.05% 55.95 12005 .4101 1.43% 10.96
rubin18 18 3 .0014 0.26% 2.80 3 .0004 2.01% .80
rubin2250 2250 155 4.0188 0.06% 25.10 22505 2.6564 0.63% 16.59
rubin600 600 155 1.1732 0.67% 133.31 6005 .0532 1.26% 6.04
e271 19 2 .0020 0.41% 4.00 2 .0005 1.57% 1.00
e285 19 2 .0019 0.27% 3.16 2 .0005 1.64% .83
e304 19 195 .0021 0.35% 3.50 2 .0005 1.91% .83
e423 19 195 .1175 0.04% 235.00 —6 .0017 0.58% 3.40
e680 19 195 .0044 0.29% 8.80 2 .0005 1.69% 1.00

1Invalid result 5Result not minimal 6Other error

161

CHAPTER 6. MINIMIZATION OF MEALY MACHINES

Table 6.5: MCNC-benchmark results (exact approaches)

MeMin (M) Bica (B) Stamina (SE)

Benchmark |Q| |Q| Time stdev |Q| Time stdev B/M |Q| Time stdev SE/M

bbara 10 7 .0005 2.83% 7 .0252 0.14% 50.40 7 .0005 1.59% 1.00
bbsse 16 13 .0009 1.73% 13 4.2474 0.03% 4719.33 13 .0006 1.30% .66
bbtas 6 6 .0005 3.74% 6 .0015 0.87% 3.00 6 .0004 2.05% .80
beecount 7 4 .0005 3.41% 4 .4787 0.11% 957.40 4 .0005 2.91% 1.00
cse 16 16 .0008 2.03% 16 .0075 0.35% 9.37 16 .0005 1.71% .62
dk14 7 7 .0006 2.82% 7 .0017 1.09% 2.83 7 .0004 2.06% .66
dk15 4 4 .0005 3.22% 4 .0016 0.80% 3.20 4 .0004 2.65% .80
dk16 27 27 .0009 2.09% 27 .0021 0.97% 2.33 27 .0005 1.24% .55
dk17 8 8 .0005 3.34% 8 .0016 1.23% 3.20 8 .0004 4.12% .80
dk27 7 7 .0004 3.44% 7 .0015 0.86% 3.75 7 .0004 1.83% 1.00
dk512 15 15 .0005 2.81% 15 .0016 0.97% 3.20 15 .0004 1.65% .80
donfile 24 1 .0005 3.92% 1 .0058 0.27% 11.60 1 .0006 2.64% 1.20
ex1 20 18 .0010 1.82% 18 6.4799 0.03% 6479.90 18 .0008 1.63% .80
ex2 19 5 .0009 2.00% 5 .1767 0.03% 196.33 141 .6162 0.15% 684.66
ex3 10 4 .0008 2.24% 4 .0864 0.10% 108.00 51 .0028 0.50% 3.50
ex4 14 14 .0005 2.57% 14 .0030 0.54% 6.00 14 .0004 1.90% .80
ex5 9 3 .0005 3.09% 3 .0213 0.30% 42.60 41 .0008 0.92% 1.60
ex6 8 8 .0005 3.28% 8 .0025 1.57% 5.00 8 .0004 2.13% .80
ex7 10 3 .0005 3.45% 3 .0138 0.35% 27.60 41 .0013 0.42% 2.60
keyb 19 19 .0011 1.64% 19 .0796 0.35% 72.36 19 .0008 2.97% .72
kirkman 16 16 .0021 0.67% —7 .0007 1.24 .33 16 .0014 0.45% .66
lion9 9 4 .0004 3.81% 4 .0156 0.61% 39.00 4 .0004 1.26% 1.00
lion 4 4 .0004 3.91% 4 .0015 1.10% 3.75 4 .0004 1.77% 1.00
mark1 15 12 .0010 1.72% 01 .0008 1.38% .80 12 .0006 1.44% .60
mc 4 4 .0004 4.40% 4 .0015 0.52% 3.75 4 .0004 2.21% 1.00
modulo12 12 1 .0004 4.27% 1 .0053 0.45% 13.25 —3 .0489 0.40% 122.25
opus 10 9 .0005 3.07% 01 .0008 1.27% 1.60 9 .0004 1.60% .80
planet1 48 48 .0014 1.49% 48 .3190 0.04% 227.85 48 .0006 1.40% .42
planet 48 48 .0014 1.30% 48 .3190 0.01% 227.85 48 .0006 0.91% .42
pma 24 24 .0008 2.20% 24 .0287 0.13% 35.87 —3 .0482 0.16% 60.25
s1488 48 48 .0020 0.76% 48 .9242 0.08% 462.10 48 .0007 1.05% .35
s1494 48 48 .0020 1.03% 48 .9369 2.64% 468.45 48 .0007 1.22% .35
s1a 20 1 .0027 0.81% 1 .0558 0.06% 20.66 1 .0019 0.38% .70
s1 20 20 .0010 1.50% 20 .1329 0.07% 132.90 20 .0005 2.48% .50
s208 18 18 .0010 1.41% 18 .0462 0.05% 46.20 18 .0006 2.27% .60
s27 6 5 .0005 3.32% 5 .0305 0.07% 61.00 5 .0004 2.12% .80
s298 218 135 .0097 0.42% 135 34.2797 0.08% 3533.98 135 .0066 0.59% .68
s386 13 13 .0007 2.24% 13 .0264 0.09% 37.71 13 .0004 1.85% .57
s420 18 18 .0010 1.56% 18 .0642 0.04% 64.20 18 .0006 1.54% .60
s510 47 47 .0012 1.47% —2 — — — 47 .0005 1.66% .41
s820 25 24 .0015 2.02% —8 74.5850 0.70 49723.33 24 .0009 2.43% .60
s832 25 24 .0016 1.37% —8 75.4407 1.01 47150.43 24 .0009 2.04% .56
s8 5 1 .0004 3.90% 1 .0054 0.19% 13.50 1 .0004 1.64% 1.00
sand 32 32 .0015 1.18% 32 19.4550 0.02% 12970.00 32 .0006 1.61% .40
scf 121 97 .0033 0.72% —7 .0010 0.91 .30 97 .0027 0.34% .81
shiftreg 8 8 .0004 3.90% 8 .0015 0.89% 3.75 8 .0004 2.15% 1.00
sse 16 13 .0009 2.08% 13 4.2638 0.14% 4737.55 13 .0006 1.77% .66
styr 30 30 .0012 1.39% 30 .2308 0.02% 192.33 30 .0006 1.78% .50
tav 4 4 .0005 3.03% 4 .0020 1.21% 4.00 4 .0004 1.68% .80
tbk 32 16 .0035 0.62% 16 .3170 0.06% 90.57 16 .0132 0.29% 3.77
tma 20 18 .0007 2.51% 18 .0639 0.12% 91.28 —3 .0486 0.22% 69.42
train11 11 4 .0005 3.91% 4 .0163 0.26% 32.60 4 .0004 2.60% .80
train4 4 4 .0004 3.55% 4 .0016 1.38% 4.00 4 .0004 3.66% 1.00

1Invalid result 2Timeout 3Segmentation fault 7*Inconsistent machine detected. 8Out of memory

162

6.A. APPENDIX: COMPLETE BENCHMARK RESULTS

Table 6.6: MCNC-benchmark results (heuristic approaches)

Cosme (C) Stamina (SH)

Benchmark |Q| |Q| Time stdev C/M |Q| Time stdev SH/M

bbara 10 7 .0009 0.78% 1.80 7 .0005 1.81% 1.00
bbsse 16 41 .0018 0.28% 2.00 13 .0007 1.06% .77
bbtas 6 6 .0006 0.88% 1.20 6 .0004 2.04% .80
beecount 7 31 .0008 0.94% 1.60 4 .0005 1.79% 1.00
cse 16 51 .0020 0.38% 2.50 16 .0005 0.97% .62
dk14 7 7 .0007 0.98% 1.16 7 .0004 2.22% .66
dk15 4 4 .0006 1.11% 1.20 4 .0004 2.43% .80
dk16 27 27 .0012 0.58% 1.33 27 .0005 1.56% .55
dk17 8 8 .0006 0.60% 1.20 8 .0004 1.71% .80
dk27 7 7 .0006 1.29% 1.50 7 .0004 1.32% 1.00
dk512 15 15 .0027 0.39% 5.40 15 .0004 1.77% .80
donfile 24 —8 287.4346 0.44 574869.20 1 .0006 3.21% 1.20
ex1 20 61 .0033 0.41% 3.30 18 .0008 1.82% .80
ex2 19 95 .0020 0.61% 2.22 —6 .0024 1.72% 2.66
ex3 10 95 .0019 0.37% 2.37 —6 .0006 2.82% .75
ex4 14 51 .0012 0.95% 2.40 14 .0004 1.66% .80
ex5 9 85 .0009 1.13% 1.80 —6 .0005 1.65% 1.00
ex6 8 21 .0010 0.58% 2.00 8 .0004 2.09% .80
ex7 10 95 .0010 0.48% 2.00 —6 .0005 1.64% 1.00
keyb 19 31 .0032 0.38% 2.90 19 .0008 1.12% .72
kirkman 16 81 .0043 0.34% 2.04 16 .0014 0.25% .66
lion9 9 4 .0010 0.72% 2.50 4 .0004 2.50% 1.00
lion 4 21 .0006 0.72% 1.50 4 .0004 2.46% 1.00
mark1 15 91 .0013 0.60% 1.30 12 .0006 1.36% .60
mc 4 21 .0006 1.19% 1.50 4 .0004 3.48% 1.00
modulo12 12 —8 207.9701 1.10 519925.25 —3 .0483 0.40% 120.75
opus 10 41 .0011 0.59% 2.20 9 .0004 1.48% .80
planet1 48 121 .0107 0.15% 7.64 48 .0006 1.97% .42
planet 48 121 .0107 0.25% 7.64 48 .0006 1.33% .42
pma 24 111 .0962 0.24% 120.25 —3 .0481 0.11% 60.12
s1488 48 151 .0223 0.20% 11.15 48 .0007 1.17% .35
s1494 48 141 .0227 0.12% 11.35 48 .0007 1.79% .35
s1a 20 —2 — — — 1 .0020 0.43% .74
s1 20 31 .0033 0.19% 3.30 20 .0005 1.34% .50
s208 18 —2 — — — 18 .0006 3.40% .60
s27 6 21 .0008 1.26% 1.60 5 .0004 1.40% .80
s298 218 —2 — — — 135 .0066 0.34% .68
s386 13 31 .0015 0.25% 2.14 13 .0004 1.51% .57
s420 18 21 .0026 0.36% 2.60 18 .0006 1.58% .60
s510 47 91 .0061 0.57% 5.08 47 .0005 1.34% .41
s820 25 51 .0059 0.22% 3.93 24 .0009 1.36% .60
s832 25 51 .0065 2.24% 4.06 24 .0009 0.69% .56
s8 5 —8 144.1141 1.00 360285.25 1 .0004 3.78% 1.00
sand 32 31 .0089 0.29% 5.93 32 .0006 1.67% .40
scf 121 401 .0403 0.08% 12.21 97 .0028 0.40% .84
shiftreg 8 8 .0007 1.80% 1.75 8 .0004 1.39% 1.00
sse 16 41 .0018 0.28% 2.00 13 .0007 1.41% .77
styr 30 111 .0057 0.23% 4.75 30 .0006 1.00% .50
tav 4 —8 148.3782 0.23 296756.40 4 .0004 4.23% .80
tbk 32 16 .0271 0.05% 7.74 16 .0133 0.16% 3.80
tma 20 121 .0877 0.17% 125.28 —3 .0481 0.39% 68.71
train11 11 4 .0012 0.57% 2.40 4 .0004 1.85% .80
train4 4 4 .0005 0.41% 1.25 4 .0004 2.05% 1.00

1Invalid result 2Timeout 3Segmentation fault 5Result not minimal 6Other Error 8Out of memory

163

7
Summary, Conclusions,

and Future Work

In this thesis, we have developed techniques to automatically generate models
of microarchitectural components. Such models are, for example, important
for building performance prediction tools, compilers, cycle-accurate simulators,
and for showing the presence or absence of microarchitectural security issues.
Previous approaches for obtaining microarchitectural models typically required
a significant amount of manual work, and the models were often not very
accurate and precise.

7.1 Summary and Conclusions

7.1.1 Models of Recent Microarchitectures
In the first part of the thesis, we focused on recent x86 microarchitectures.

nanoBench

We have developed a general tool for evaluating small microbenchmarks using
hardware performance counters. Unlike previous tools, our tool can execute
microbenchmarks directly in kernel space. This makes it possible to benchmark
privileged instructions, and it allows for more accurate measurements by
disabling interrupts and preemptions. The reading of the performance counters
is implemented with minimal overhead, avoiding function calls and branches.
Our tool is precise enough to measure individual memory accesses.

On top of nanoBench, we then developed techniques to automatically generate
microbenchmarks for characterizing the performance of individual instructions
and for inferring properties of the cache architecture.

165

CHAPTER 7. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Instruction Characterizations

We have presented an approach to automatically characterize the latency,
throughput, and port usage of more than 13,000 instruction variants. For
the latency, we have introduced a more precise definition that, in contrast to
previous definitions, considers dependencies between different pairs of input
and output operands. We have applied our approach to 16 different Intel and
AMD microarchitectures. Our experimental evaluation demonstrates that
the obtained instruction characterizations are both more accurate and more
precise than those obtained by prior work.

Characterizing Cache Architectures

We have developed tools to analyze undocumented properties of caches. In
particular, we have implemented two tools that can fully automatically infer
a large class of deterministic cache replacement policies. Furthermore, for
caches with nondeterministic policies, we have proposed tools that can help to
identify their policies manually. We have applied our techniques to 13 different
Intel microarchitectures, and we have found several previously undocumented
replacement policies. Furthermore, we have discovered that flushing the cache
does not necessarily reset the state of the replacement policy; this could be
exploited to leak information in covert-channel or side-channel attacks.

7.1.2 General Models
In the second part of the thesis, we looked at more general techniques for
obtaining models of hardware components. In particular, we have proposed
the problem of gray-box learning, in which learning algorithms can exploit
known information about the system to be learned. As a first step toward
solving this problem, we have developed an efficient learning algorithm for
the serial composition of two Mealy machines, in which the left machine is
known and the right machine is unknown.

While this was only a first step—applications to real-world systems will
require support for more complex composition topologies—we were able to
adapt a central idea of our learning algorithm to the problem of minimizing
incompletely specified Mealy machines. We have implemented an exact
minimization tool that outperforms previous exact approaches by several
orders of magnitude on a number of hard benchmarks and is even competitive
with state-of-the-art heuristic techniques.

166

7.2. FUTURE WORK

7.2 Future Work
There are multiple directions for future work.

One direction is to develop microbenchmarks to build models of other per-
formance-relevant components of microarchitectures, such as instruction
decoders, branch predictors, or translation lookaside buffers. Like the mi-
crobenchmarks described in Chapters 3 and 4, these microbenchmarks could
be evaluated using nanoBench.

Another direction is to adapt our techniques to non-x86 architectures, such
as ARM, MIPS, or RISC-V.

Furthermore, we would like to build tools that use the models we generated
in the first part of the thesis to predict or explain the performance of software
running on the corresponding microarchitectures. We would also like to
integrate our models into existing tools, such as simulators like gem5 [BBB+11],
or compilers like GCC [GCC] and LLVM [LA04].

In addition to that, we would like to implement and analyze microarchitectural
covert-channel and side-channel attacks, in particular regarding the issues
discovered in Section 3.7.4 and Section 4.4.4.

Finally, we would like to close the gap between theory and practice by
extending our gray-box learning approach to more complex composition
topologies so that it can be applied to real-world systems.

167

Bibliography

[Abe12] Andreas Abel. Measurement-based inference of the cache
hierarchy. Master’s thesis, Universität des Saarlandes, De-
cember 2012. URL: http://embedded.cs.uni-saarland.de/
literature/AndreasAbelMastersThesis.pdf. (Cited on
pages 82, 83, 84, 86, 90, 111, and 112).

[ABu+19] A. C. Aldaya, B. B. Brumley, S. ul Hassan, C. Pereida García,
and N. Tuveri. Port contention for fun and profit. In 2019
IEEE Symposium on Security and Privacy (SP), pages 870–887,
May 2019. doi:10.1109/SP.2019.00066. (Cited on page 76).

[AD01] Imtiaz Ahmad and A. Shoba Das. A heuristic algorithm for
the minimization of incompletely specified finite state machines.
Computers & Electrical Engineering, 27(2):159–172, 2001. doi:
10.1016/S0045-7906(00)00016-1. (Cited on pages 141, 145,
151, 155, and 158).

[AFBKV15] Fides Aarts, Paul Fiterau-Brostean, Harco Kuppens, and Frits
Vaandrager. Learning register automata with fresh value gener-
ation. In Proceedings of the 12th International Colloquium on
Theoretical Aspects of Computing (ICTAC 2015), pages 165–183.
Springer-Verlag, 2015. doi:10.1007/978-3-319-25150-9_11.
(Cited on pages 17 and 118).

[Ahm01] Imtiaz Ahmad. A distributed algorithm for finding prime
compatibles on network of workstations. Microprocessors
and Microsystems, 25(4):195–202, 2001. doi:10.1016/S0141-
9331(01)00112-0. (Cited on pages 139 and 145).

[Ahm15] Imtiaz Ahmad. Personal communication, March 2015. (Cited
on page 158).

[ALOJ13] Jung Ho Ahn, Sheng Li, Seongil O, and Norman P. Jouppi.
McSimA+: A manycore simulator with application-level+ sim-
ulation and detailed microarchitecture modeling. In 2013 IEEE
International Symposium on Performance Analysis of Systems
and Software, Austin, TX, USA, pages 74–85, 2013. doi:
10.1109/ISPASS.2013.6557148. (Cited on pages 40 and 79).

[AMD17] AMD. Software optimization guide for AMD family 17h
processors. Publication No. 55723, Revision 3.00, June

169

http://embedded.cs.uni-saarland.de/literature/AndreasAbelMastersThesis.pdf
http://embedded.cs.uni-saarland.de/literature/AndreasAbelMastersThesis.pdf
https://doi.org/10.1109/SP.2019.00066
https://doi.org/10.1016/S0045-7906(00)00016-1
https://doi.org/10.1016/S0045-7906(00)00016-1
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1016/S0141-9331(01)00112-0
https://doi.org/10.1016/S0141-9331(01)00112-0
https://doi.org/10.1109/ISPASS.2013.6557148
https://doi.org/10.1109/ISPASS.2013.6557148

BIBLIOGRAPHY

2017. URL: https://developer.amd.com/wordpress/media/
2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf. (Cited
on pages 43 and 46).

[AMD19] AMD. AMD64 architecture programmer’s manual volume 2:
System programming. Publication No. 24593, Revision 3.32,
October 2019. URL: https://www.amd.com/system/files/
TechDocs/24593.pdf. (Cited on page 74).

[Ang87] Dana Angluin. Learning regular sets from queries and counterex-
amples. Information and computation, 75(2):87–106, Novem-
ber 1987. doi:10.1016/0890-5401(87)90052-6. (Cited on
pages 17, 118, 120, 134, and 145).

[AQH90] M. J. Avedillo, J. M. Quintana, and J. L. Huertas. New approach
to the state reduction in incompletely specified sequential ma-
chines. In IEEE International Symposium on Circuits and Sys-
tems, pages 440–443, 1990. doi:10.1109/ISCAS.1990.112075.
(Cited on page 146).

[AR12] Andreas Abel and Jan Reineke. Automatic cache modeling by
measurements. In 6th Junior Researcher Workshop on Real-
Time Computing (in conjunction with RTNS), November 2012.
URL: http://embedded.cs.uni-saarland.de/publications/
CacheModelingJRWRTC.pdf. (Cited on pages 86 and 111).

[AR13] Andreas Abel and Jan Reineke. Measurement-based modeling
of the cache replacement policy. In 19th IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS),
Philadelphia, PA, USA, April 9-11, 2013, pages 65–74, 2013.
doi:10.1109/RTAS.2013.6531080. (Cited on pages 82, 83, 90,
96, 111, and 112).

[AR14] Andreas Abel and Jan Reineke. Reverse engineering of cache
replacement policies in Intel microprocessors and their eval-
uation. In 2014 IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), Monterey,
CA, USA, March 23-25, 2014, pages 141–142, 2014. doi:
10.1109/ISPASS.2014.6844475. (Cited on pages 19 and 79).

[AR15] Andreas Abel and Jan Reineke. MeMin: SAT-based exact
minimization of incompletely specified Mealy machines. In
Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Austin, TX, USA, November

170

https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://developer.amd.com/wordpress/media/2013/12/55723_SOG_Fam_17h_Processors_3.00.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://www.amd.com/system/files/TechDocs/24593.pdf
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1109/ISCAS.1990.112075
http://embedded.cs.uni-saarland.de/publications/CacheModelingJRWRTC.pdf
http://embedded.cs.uni-saarland.de/publications/CacheModelingJRWRTC.pdf
https://doi.org/10.1109/RTAS.2013.6531080
https://doi.org/10.1109/ISPASS.2014.6844475
https://doi.org/10.1109/ISPASS.2014.6844475

BIBLIOGRAPHY

2-6, 2015, ICCAD ’15, pages 94–101. IEEE Press, 2015. doi:
10.1109/ICCAD.2015.7372555. (Cited on pages 19 and 139).

[AR16] Andreas Abel and Jan Reineke. Gray-box learning of serial
compositions of Mealy machines. In NASA Formal Methods—
Proceedings of the 8th International Symposium, Minneapo-
lis, MN, USA, June 7-9, 2016, NFM 2016, pages 272–287.
Springer-Verlag, June 2016. doi:10.1007/978-3-319-40648-
0_21. (Cited on pages 19 and 117).

[AR19] Andreas Abel and Jan Reineke. uops.info: Characterizing
latency, throughput, and port usage of instructions on Intel
microarchitectures. In Proceedings of the Twenty-Fourth Inter-
national Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), Providence, RI,
USA, April 13-17, 2019, ASPLOS ’19, pages 673–686. ACM,
2019. doi:10.1145/3297858.3304062. (Cited on pages 19
and 39).

[AR20] Andreas Abel and Jan Reineke. nanoBench: A low-overhead
tool for running microbenchmarks on x86 systems. In IEEE
International Symposium on Performance Analysis of Systems
and Software (ISPASS), Boston, MA, USA, August 23–25, 2020,
August 2020. To appear. (Cited on pages 19, 21, and 79).

[AS09] A. Alberto and A. Simao. Minimization of incompletely specified
finite state machines based on distinction graphs. In 10th Latin
American Test Workshop (LATW ’09), pages 1–6, March 2009.
doi:10.1109/LATW.2009.4813796. (Cited on page 140).

[AS13] Alex D. B. Alberto and Adenilso Simao. Iterative minimization
of partial finite state machines. Central European Journal of
Computer Science, 3(2):91–103, 2013. doi:10.2478/s13537-
013-0106-0. (Cited on pages 141, 145, 146, 151, 154, and 158).

[Auf58] D. D. Aufenkamp. Analysis of sequential machines II. IRE
Transactions on Electronic Computers, EC-7(4):299–306, 1958.
doi:10.1109/TEC.1958.5222663. (Cited on page 144).

[AZMM04] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena
Milenkovic. Performance evaluation of cache replacement poli-
cies for the SPEC CPU2000 benchmark suite. In Proceedings of
the 42nd annual Southeast regional conference, pages 267–272.
ACM, 2004. doi:10.1145/986537.986601. (Cited on page 83).

171

https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1109/ICCAD.2015.7372555
https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1007/978-3-319-40648-0_21
https://doi.org/10.1145/3297858.3304062
https://doi.org/10.1109/LATW.2009.4813796
https://doi.org/10.2478/s13537-013-0106-0
https://doi.org/10.2478/s13537-013-0106-0
https://doi.org/10.1109/TEC.1958.5222663
https://doi.org/10.1145/986537.986601

BIBLIOGRAPHY

[BACD97] Jeff Bilmes, Krste Asanovic, Chee-Whye Chin, and Jim Demmel.
Optimizing matrix multiply using PHiPAC: a portable, high-
performance, ANSI C coding methodology. In Proceedings of
the 11th International Conference on Supercomputing, ICS ’97,
pages 340–347. Association for Computing Machinery, 1997.
doi:10.1145/263580.263662. (Cited on page 79).

[BBB+11] Nathan L. Binkert, Bradford M. Beckmann, Gabriel Black,
Steven K. Reinhardt, Ali G. Saidi, Arkaprava Basu, Joel Hest-
ness, Derek Hower, Tushar Krishna, Somayeh Sardashti, Rathi-
jit Sen, Korey Sewell, Muhammad Shoaib Bin Altaf, Nilay
Vaish, Mark D. Hill, and David A. Wood. The gem5 sim-
ulator. SIGARCH Computer Architecture News, 39(2):1–7,
2011. doi:10.1145/2024716.2024718. (Cited on pages 40, 79,
and 167).

[BBG+12] Ramon Bertran, Alper Buyuktosunoglu, Meeta S. Gupta, Marc
Gonzalez, and Pradip Bose. Systematic energy characteriza-
tion of CMP/SMT processor systems via automated micro-
benchmarks. In Proceedings of the 45th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO-45, pages
199–211, Washington, DC, USA, 2012. IEEE Computer Society.
doi:10.1109/MICRO.2012.27. (Cited on page 40).

[BBS12] Domagoj Babic, Matko Botincan, and Dawn Song. Symbolic
grey-box learning of input-output relations. Technical Report
UCB/EECS-2012-59, University of California, Berkeley, May
2012. URL: http://www.eecs.berkeley.edu/Pubs/TechRpts/
2012/EECS-2012-59.html. (Cited on page 135).

[BC00] Josep M. Blanquer and Robert C. Chalmers. MOB: A
memory organization benchmark. Technical report, Uni-
versity of California, Santa Barbara, October 2000. URL:
http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/
devel/mob/work/mob-0.1.0/doc/mob.ps. (Cited on pages 86
and 111).

[Ben71] R. G. Bennetts. An improved method of prime C-class derivation
in the state reduction of sequential networks. IEEE Transactions
on Computers, 20(2):229–231, February 1971. doi:10.1109/T-
C.1971.223221. (Cited on page 145).

[BF72] Alan W. Biermann and Jerome A. Feldman. On the synthesis
of finite-state machines from samples of their behavior. IEEE

172

https://doi.org/10.1145/263580.263662
https://doi.org/10.1145/2024716.2024718
https://doi.org/10.1109/MICRO.2012.27
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-59.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-59.html
http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.ps
http://www.gnu-darwin.org/www001/ports-1.5a-CURRENT/devel/mob/work/mob-0.1.0/doc/mob.ps
https://doi.org/10.1109/T-C.1971.223221
https://doi.org/10.1109/T-C.1971.223221

BIBLIOGRAPHY

Transactions on Computers, 21(6):592–597, June 1972. doi:
10.1109/TC.1972.5009015. (Cited on page 145).

[BHLM13] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Ben-
jamin Monmege. A fresh approach to learning register au-
tomata. In Proceedings of the 17th International Conference on
Developments in Language Theory (DLT), pages 118–130, 2013.
doi:10.1007/978-3-642-38771-5_12. (Cited on pages 17
and 118).

[Bia18] Andrea Di Biagio. llvm-mca: a static performance analysis
tool, 2018. URL: http://lists.llvm.org/pipermail/llvm-
dev/2018-March/121490.html. (Cited on pages 40 and 77).

[Bil] Olexa Bilaniuk. libpfc. URL: https://github.com/obilaniu/
libpfc. (Cited on pages 22, 31, and 35).

[BKMO14] Gilles Barthe, Boris Köpf, Laurent Mauborgne, and Martín
Ochoa. Leakage resilience against concurrent cache attacks. In
Principles of Security and Trust—Third International Confer-
ence, POST 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, pages 140–158, April 2014. doi:10.1007/
978-3-642-54792-8_8. (Cited on page 114).

[BMME19] Samira Briongos, Pedro Malagón, José M. Moya, and Thomas
Eisenbarth. RELOAD+REFRESH: Abusing cache replacement
policies to perform stealthy cache attacks, April 2019. arXiv:
1904.06278. (Cited on pages 84, 112, and 115).

[BSN+19] Atri Bhattacharyya, Alexandra Sandulescu, Matthias
Neugschwandtner, Alessandro Sorniotti, Babak Falsafi, Mathias
Payer, and Anil Kurmus. SMoTherSpectre: Exploiting
speculative execution through port contention. In Proceedings
of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’19, pages 785–800, New York,
NY, USA, 2019. ACM. doi:10.1145/3319535.3363194. (Cited
on page 76).

[BT09] Vlastimil Babka and Petr Tůma. Investigating cache parameters
of x86 family processors. In Proceedings of the 2009 SPEC
benchmark workshop, pages 77–96. Springer, 2009. doi:10.1007/
978-3-540-93799-9_5. (Cited on pages 86 and 111).

173

https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1109/TC.1972.5009015
https://doi.org/10.1007/978-3-642-38771-5_12
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
http://lists.llvm.org/pipermail/llvm-dev/2018-March/121490.html
https://github.com/obilaniu/libpfc
https://github.com/obilaniu/libpfc
https://doi.org/10.1007/978-3-642-54792-8_8
https://doi.org/10.1007/978-3-642-54792-8_8
http://arxiv.org/abs/1904.06278
http://arxiv.org/abs/1904.06278
https://doi.org/10.1145/3319535.3363194
https://doi.org/10.1007/978-3-540-93799-9_5
https://doi.org/10.1007/978-3-540-93799-9_5

BIBLIOGRAPHY

[BWL72] R. G. Bennetts, J. L. Washington, and D. W. Lewin. A
computer algorithm for state table reduction. Radio and
Electronic Engineer, 42(11):513–520, November 1972. doi:
10.1049/ree.1972.0088. (Cited on page 145).

[C+10] Keith Cooper et al. The platform-aware compilation environ-
ment, preliminary design document. Technical report, Depart-
ment of Computer Science, Rice University, September 2010.
URL: http://pace.rice.edu/uploadedFiles/Publications/
PACEDesignDocument.pdf. (Cited on page 79).

[CBM+19] Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex
Renda, Eric Atkinson, Ondrej Sykora, Saman Amarasinghe,
and Michael Carbin. BHive: A benchmark suite and mea-
surement framework for validating x86-64 basic block per-
formance models. In 2019 IEEE International Symposium
on Workload Characterization (IISWC). IEEE, November
2019. URL: http://groups.csail.mit.edu/commit/papers/
19/ithemal-measurement.pdf. (Cited on page 36).

[CD01] C. L. Coleman and J. W. Davidson. Automatic memory hier-
archy characterization. In IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), pages
103–110, November 2001. doi:10.1109/ISPASS.2001.990684.
(Cited on pages 86 and 111).

[CGP03] Jamieson M. Cobleigh, Dimitra Giannakopoulou, and Corina S.
Păsăreanu. Learning assumptions for compositional verification.
In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), volume 2619 of Lecture Notes in Computer
Science, pages 331–346. Springer, 2003. doi:10.1007/3-540-
36577-X_24. (Cited on page 118).

[Cho05] Philip Chong. SIS 1.3 unofficial distribution, November 2005.
URL: https://ptolemy.berkeley.edu/projects/embedded/
Alumni/pchong/sis.html. (Cited on page 158).

[CnKR17] Pablo Cañones, Boris Köpf, and Jan Reineke. Security anal-
ysis of cache replacement policies. In Proceedings of the 6th
International Conference on Principles of Security and Trust
(POST), volume 10204, pages 189–209, Berlin, Heidelberg, 2017.
Springer-Verlag. doi:10.1007/978-3-662-54455-6_9. (Cited
on page 114).

174

https://doi.org/10.1049/ree.1972.0088
https://doi.org/10.1049/ree.1972.0088
http://pace.rice.edu/uploadedFiles/Publications/PACEDesignDocument.pdf
http://pace.rice.edu/uploadedFiles/Publications/PACEDesignDocument.pdf
http://groups.csail.mit.edu/commit/papers/19/ithemal-measurement.pdf
http://groups.csail.mit.edu/commit/papers/19/ithemal-measurement.pdf
https://doi.org/10.1109/ISPASS.2001.990684
https://doi.org/10.1007/3-540-36577-X_24
https://doi.org/10.1007/3-540-36577-X_24
https://ptolemy.berkeley.edu/projects/embedded/Alumni/pchong/sis.html
https://ptolemy.berkeley.edu/projects/embedded/Alumni/pchong/sis.html
https://doi.org/10.1007/978-3-662-54455-6_9

BIBLIOGRAPHY

[CnKR19] Pablo Cañones, Boris Köpf, and Jan Reineke. On the incompa-
rability of cache algorithms in terms of timing leakage. Logical
Methods in Computer Science, Volume 15, Issue 1, March 2019.
doi:10.23638/LMCS-15(1:21)2019. (Cited on page 114).

[CRON+14] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby,
and G. Lartigue. CQA: A code quality analyzer tool at bi-
nary level. In 21st International Conference on High Per-
formance Computing (HiPC), pages 1–10, December 2014.
URL: http://www.maqao.org/publications/papers/CQA.pdf,
doi:10.1109/HiPC.2014.7116904. (Cited on pages 40, 43,
and 77).

[CS11] Keith Cooper and Jeffrey Sandoval. Portable techniques to find
effective memory hierarchy parameters. Technical report, Rice
University, 2011. URL: https://hdl.handle.net/1911/96399.
(Cited on pages 86 and 111).

[CV14] Jie Chen and Guru Venkataramani. CC-Hunter: Uncov-
ering covert timing channels on shared processor hardware.
In Proceedings of the 47th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-47, pages 216–228,
Washington, DC, USA, 2014. IEEE Computer Society. doi:
10.1109/MICRO.2014.42. (Cited on page 76).

[CWPD01] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra. Au-
tomated empirical optimizations of software and the ATLAS
project. In Parallel Computing, volume 27, pages 3–35. Else-
vier, 2001. doi:10.1016/S0167-8191(00)00087-9. (Cited on
page 79).

[CX18] Keith Cooper and Xiaoran Xu. Efficient characterization of
hidden processor memory hierarchies. In Proceedings of the 18th
International Conference on Computational Science (ICCS),
Part III, pages 335–349, June 2018. doi:10.1007/978-3-319-
93713-7_27. (Cited on pages 86 and 111).

[DK17] Goran Doychev and Boris Köpf. Rigorous analysis of software
countermeasures against cache attacks. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 406–421, New York,
NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3062341.3062388. (Cited on page 114).

175

https://doi.org/10.23638/LMCS-15(1:21)2019
http://www.maqao.org/publications/papers/CQA.pdf
https://doi.org/10.1109/HiPC.2014.7116904
https://hdl.handle.net/1911/96399
https://doi.org/10.1109/MICRO.2014.42
https://doi.org/10.1109/MICRO.2014.42
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1007/978-3-319-93713-7_27
https://doi.org/10.1007/978-3-319-93713-7_27
https://doi.org/10.1145/3062341.3062388
https://doi.org/10.1145/3062341.3062388

BIBLIOGRAPHY

[DKMR15] Goran Doychev, Boris Köpf, Laurent Mauborgne, and Jan
Reineke. CacheAudit: A tool for the static analysis of cache
side channels. ACM Transactions on Information and System
Security (TISSEC), 18(1), June 2015. doi:10.1145/2756550.
(Cited on page 114).

[DKPT17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean
Tullsen. PRIME+ABORT: A timer-free high-precision L3 cache
attack using Intel TSX. In Proceedings of the 26th USENIX
Conference on Security Symposium, SEC ’17, pages 51–67,
Berkeley, CA, USA, 2017. USENIX Association. URL: http:
//dl.acm.org/citation.cfm?id=3241189.3241195. (Cited on
pages 81 and 114).

[DLM+13] Anthony Danalis, Piotr Luszczek, Gabriel Marin, Jeffrey S. Vet-
ter, and Jack Dongarra. BlackjackBench: Portable hardware
characterization with automated results’ analysis. The Com-
puter Journal, 57(7):1002–1016, 06 2013. doi:10.1093/comjnl/
bxt057. (Cited on pages 86 and 111).

[DMM+04] Jack J. Dongarra, Shirley Moore, Philip Mucci, Keith Seymour,
and Haihang You. Accurate cache and TLB characterization
using hardware counters. In Computational Science—ICCS
2004, pages 432–439, 2004. doi:10.1007/978-3-540-24688-
6_57. (Cited on pages 86 and 111).

[DSBC69] S. C. De Sarkar, A. K. Basu, and A. K. Choudhury. Simplifica-
tion of incompletely specified flow tables with the help of prime
closed sets. IEEE Transactions on Computers, C-18(10):953–
956, October 1969. doi:10.1109/T-C.1969.222552. (Cited on
page 145).

[DXS19] Shuwen Deng, Wenjie Xiong, and Jakub Szefer. A bench-
mark suite for evaluating caches’ vulnerability to timing attacks.
CoRR, abs/1911.08619, November 2019. arXiv:1911.08619.
(Cited on page 114).

[EGPQ06] Edith Elkind, Blaise Genest, Doron Peled, and Hongyang
Qu. Grey-box checking. In Formal Techniques for Net-
worked and Distributed Systems (FORTE), pages 420–435, 2006.
doi:10.1007/11888116_30. (Cited on page 135).

[EMRCS14] J. Echavarria, A. Morales-Reyes, R. Cumplido, and M. A. Salido.
FSM merging and reduction for IP cores watermarking using

176

https://doi.org/10.1145/2756550
http://dl.acm.org/citation.cfm?id=3241189.3241195
http://dl.acm.org/citation.cfm?id=3241189.3241195
https://doi.org/10.1093/comjnl/bxt057
https://doi.org/10.1093/comjnl/bxt057
https://doi.org/10.1007/978-3-540-24688-6_57
https://doi.org/10.1007/978-3-540-24688-6_57
https://doi.org/10.1109/T-C.1969.222552
http://arxiv.org/abs/1911.08619
https://doi.org/10.1007/11888116_30

BIBLIOGRAPHY

genetic algorithms. In International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), pages 1–7. IEEE,
December 2014. doi:10.1109/ReConFig.2014.7032525. (Cited
on page 140).

[ENBSH11] David Eklov, Nikos Nikoleris, David Black-Schaffer, and Erik
Hagersten. Cache pirating: Measuring the curse of the shared
cache. In Proceedings of the 2011 International Conference
on Parallel Processing, ICPP ’11, pages 165–175, Washing-
ton, DC, USA, 2011. IEEE Computer Society. doi:10.1109/
ICPP.2011.15. (Cited on pages 104 and 115).

[ES04] Niklas Eén and Niklas Sörensson. An extensible SAT-solver.
In Theory and Applications of Satisfiability Testing, volume
2919 of Lecture Notes in Computer Science, pages 502–518.
Springer, 2004. doi:10.1007/978-3-540-24605-3_37. (Cited
on page 149).

[Fal19] Brandon Falk. Sushi Roll: A CPU research kernel with minimal
noise for cycle-by-cycle micro-architectural introspection, Au-
gust 2019. URL: https://gamozolabs.github.io/metrology/
2019/08/19/sushi_roll.html. (Cited on page 37).

[FDTZ04] Basilio B. Fraguela, Ramon Doallo, Juan Tourino, and Emilio L.
Zapata. A compiler tool to predict memory hierarchy perfor-
mance of scientific codes. Parallel Computing, 30(2):225–248,
2004. doi:10.1016/j.parco.2003.09.004. (Cited on page 114).

[Fin] FinalWire Ltd. AIDA64. URL: https://www.aida64.com/.
(Cited on page 43).

[FJ05] M. Frigo and S. G. Johnson. The design and implementation
of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.
doi:10.1109/JPROC.2004.840301. (Cited on page 79).

[Fog] Agner Fog. Test programs for measuring clock cycles and perfor-
mance monitoring. URL: https://www.agner.org/optimize/.
(Cited on pages 32 and 35).

[Fog19] Agner Fog. Instruction tables: Lists of instruction laten-
cies, throughputs and micro-operation breakdowns for In-
tel, AMD and VIA CPUs. Technical University of Den-
mark, August 2019. URL: http://www.agner.org/optimize/
instruction_tables.pdf. (Cited on pages 15, 40, 43, 48, 49,
58, and 69).

177

https://doi.org/10.1109/ReConFig.2014.7032525
https://doi.org/10.1109/ICPP.2011.15
https://doi.org/10.1109/ICPP.2011.15
https://doi.org/10.1007/978-3-540-24605-3_37
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://gamozolabs.github.io/metrology/2019/08/19/sushi_roll.html
https://doi.org/10.1016/j.parco.2003.09.004
https://www.aida64.com/
https://doi.org/10.1109/JPROC.2004.840301
https://www.agner.org/optimize/
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf

BIBLIOGRAPHY

[FRMK19] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, Jr., and
Dejan Kostić. Make the most out of last level cache in Intel
processors. In Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, pages 8:1–8:17, New York, NY, USA, 2019.
ACM. doi:10.1145/3302424.3303977. (Cited on page 81).

[GBK11] David Gullasch, Endre Bangerter, and Stephan Krenn. Cache
games – bringing access-based cache attacks on aes to practice.
In Proceedings of the 2011 IEEE Symposium on Security and
Privacy, SP ’11, pages 490–505, USA, 2011. IEEE Computer
Society. doi:10.1109/SP.2011.22. (Cited on page 114).

[GCC] GCC, the GNU compiler collection. URL: https://
gcc.gnu.org/. (Cited on pages 40 and 167).

[GDTF+10] Jorge González-Domínguez, Guillermo L. Taboada, Basilio B.
Fraguela, María J. Martín, and Juan Touriño. Servet: A bench-
mark suite for autotuning on multicore clusters. In IPDPS, pages
1–9. IEEE, 2010. doi:10.1109/IPDPS.2010.5470358. (Cited on
pages 86 and 111).

[GF07] Sezer Gören and F. Joel Ferguson. On state reduction of in-
completely specified finite state machines. Computers & Elec-
trical Engineering, 33(1):58–69, January 2007. doi:10.1016/
j.compeleceng.2006.06.001. (Cited on pages 141, 146, 151,
and 158).

[Gin59] Seymour Ginsburg. On the reduction of superfluous states
in a sequential machine. J. ACM, 6(2):259–282, April 1959.
doi:10.1145/320964.320983. (Cited on page 144).

[GJ11] Karthik Ganesan and Lizy K. John. MAximum Multicore
POwer (MAMPO): An automatic multithreaded synthetic
power virus generation framework for multicore systems. In
Proceedings of 2011 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, SC ’11,
pages 53:1–53:12, New York, NY, USA, 2011. ACM. doi:
10.1145/2063384.2063455. (Cited on page 40).

[GJB+10] Karthik Ganesan, Jungho Jo, W. Lloyd Bircher, Dimitris
Kaseridis, Zhibin Yu, and Lizy K. John. System-level max power
(SYMPO): A systematic approach for escalating system-level
power consumption using synthetic benchmarks. In Proceedings
of the 19th International Conference on Parallel Architectures

178

https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1109/SP.2011.22
https://gcc.gnu.org/
https://gcc.gnu.org/
https://doi.org/10.1109/IPDPS.2010.5470358
https://doi.org/10.1016/j.compeleceng.2006.06.001
https://doi.org/10.1016/j.compeleceng.2006.06.001
https://doi.org/10.1145/320964.320983
https://doi.org/10.1145/2063384.2063455
https://doi.org/10.1145/2063384.2063455

BIBLIOGRAPHY

and Compilation Techniques, PACT ’10, pages 19–28, New York,
NY, USA, 2010. ACM. doi:10.1145/1854273.1854282. (Cited
on page 40).

[GL65] A. Grasselli and F. Luccio. A method for minimizing the number
of internal states in incompletely specified sequential networks.
IEEE Transactions on Electronic Computers, EC-14(3):350–
359, June 1965. doi:10.1109/PGEC.1965.264140. (Cited on
pages 140, 144, and 147).

[GL06] Olga Grinchtein and Martin Leucker. Learning finite-state
machines from inexperienced teachers. In Proceedings of the 8th
International Conference on Grammatical Inference: Algorithms
and Applications, pages 344–345. Springer, 2006. doi:10.1007/
11872436_30. (Cited on pages 134 and 145).

[GLP06] Olga Grinchtein, Martin Leucker, and Nir Piterman. Inferring
network invariants automatically. In Automated Reasoning,
volume 4130 of Lecture Notes in Computer Science, pages 483–
497. Springer, 2006. doi:10.1007/11814771_40. (Cited on
page 134).

[GMM16] Daniel Gruss, Clémentine Maurice, and Stefan Mangard.
Rowhammer.js: A remote software-induced fault attack in
JavaScript. In Proceedings of the 13th International Conference
on Detection of Intrusions and Malware, and Vulnerability As-
sessment, DIMVA 2016, pages 300–321. Springer-Verlag, 2016.
doi:10.1007/978-3-319-40667-1_15. (Cited on page 114).

[GMWM16] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan
Mangard. Flush+Flush: A fast and stealthy cache attack. In
Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment, DIMVA
2016, pages 279–299, Berlin, Heidelberg, 2016. Springer-Verlag.
doi:10.1007/978-3-319-40667-1_14. (Cited on page 114).

[Goo] Google. EXEgesis. URL: https://github.com/google/
EXEgesis. (Cited on page 43).

[GPY02] Alex Groce, Doron Peled, and Mihalis Yannakakis. Adaptive
model checking. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 2280 of Lecture
Notes in Computer Science, pages 357–370. Springer, 2002.
doi:10.1007/3-540-46002-0_25. (Cited on page 118).

179

https://doi.org/10.1145/1854273.1854282
https://doi.org/10.1109/PGEC.1965.264140
https://doi.org/10.1007/11872436_30
https://doi.org/10.1007/11872436_30
https://doi.org/10.1007/11814771_40
https://doi.org/10.1007/978-3-319-40667-1_15
https://doi.org/10.1007/978-3-319-40667-1_14
https://github.com/google/EXEgesis
https://github.com/google/EXEgesis
https://doi.org/10.1007/3-540-46002-0_25

BIBLIOGRAPHY

[GR08] Daniel Grund and Jan Reineke. Estimating the performance
of cache replacement policies. In Proceedings of the Sixth
ACM/IEEE International Conference on Formal Methods and
Models for Co-Design (MEMOCODE), pages 101–112. IEEE,
2008. doi:10.1109/MEMCOD.2008.4547695. (Cited on page 113).

[Gra17] Torbjörn Granlund. Instruction latencies and throughput for
AMD and Intel x86 processors, April 2017. URL: https://
gmplib.org/~tege/x86-timing.pdf. (Cited on pages 40, 43,
48, 71, and 72).

[GS06] Fei Guo and Yan Solihin. An analytical model for cache re-
placement policy performance. In Proceedings of the Joint
International Conference on Measurement and Modeling of
Computer Systems, SIGMETRICS ’06/Performance ’06, pages
228–239, New York, NY, USA, 2006. ACM. doi:10.1145/
1140277.1140304. (Cited on page 113).

[GYCH18] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A sur-
vey of microarchitectural timing attacks and countermeasures
on contemporary hardware. Journal of Cryptographic Engineer-
ing, 8(1):1–27, April 2018. doi:10.1007/s13389-016-0141-6.
(Cited on pages 75, 76, and 114).

[GYLH16] Qian Ge, Yuval Yarom, Frank Li, and Gernot Heiser. Your
processor leaks information—and there’s nothing you can do
about it, 2016. arXiv:1612.04474. (Cited on page 110).

[H+10] Stefan Henkler et al. Legacy component integration by the
Fujaba real-time tool suite. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering,
ICSE ’10, pages 267–270, New York, NY, USA, 2010. ACM.
doi:10.1145/1810295.1810349. (Cited on page 135).

[HHEW15] Julian Hammer, Georg Hager, Jan Eitzinger, and Gerhard
Wellein. Automatic loop kernel analysis and performance
modeling with Kerncraft. In Proceedings of the 6th Inter-
national Workshop on Performance Modeling, Benchmark-
ing, and Simulation of High Performance Computing Systems,
PMBS ’15, pages 4:1–4:11, New York, NY, USA, 2015. ACM.
doi:10.1145/2832087.2832092. (Cited on pages 40 and 77).

[Hig15] Hiroyuki Higuchi. Personal communication, March 2015. (Cited
on page 158).

180

https://doi.org/10.1109/MEMCOD.2008.4547695
https://gmplib.org/~tege/x86-timing.pdf
https://gmplib.org/~tege/x86-timing.pdf
https://doi.org/10.1145/1140277.1140304
https://doi.org/10.1145/1140277.1140304
https://doi.org/10.1007/s13389-016-0141-6
http://arxiv.org/abs/1612.04474
https://doi.org/10.1145/1810295.1810349
https://doi.org/10.1145/2832087.2832092

BIBLIOGRAPHY

[HKP15] Mohamed Hassan, Anirudh M. Kaushik, and Hiren D. Pa-
tel. Reverse-engineering embedded memory controllers through
latency-based analysis. In 21st IEEE Real-Time and Embedded
Technology and Applications Symposium, Seattle, WA, USA,
pages 297–306, 2015. doi:10.1109/RTAS.2015.7108453. (Cited
on page 111).

[HL11] Yating Hsu and David Lee. Machine learning for implanted
malicious code detection with incompletely specified system
implementations. In IEEE International Conference on Network
Protocols, pages 31–36, Washington, DC, USA, 2011. doi:
10.1109/ICNP.2011.6089070. (Cited on page 134).

[HM95] Hiroyuki Higuchi and Yusuke Matsunaga. Implicit prime com-
patible generation for minimizing incompletely specified finite
state machines. In Proceedings of the Asia and South Pacific
Design Automation Conference, ASP-DAC ’95, New York, NY,
USA, 1995. ACM. doi:10.1145/224818.224903. (Cited on
page 145).

[HM96] Hiroyuki Higuchi and Yusuke Matsunaga. A fast state reduction
algorithm for incompletely specified finite state machines. In
Proceedings of the 33rd Annual Design Automation Conference,
DAC ’96, pages 463–466, New York, NY, USA, 1996. ACM.
doi:10.1145/240518.240606. (Cited on pages 141, 145, 151,
154, 155, and 158).

[Hop71] John Hopcroft. An n log n algorithm for minimizing states in
a finite automaton. In Theory of Machines and Computations,
pages 189–196. Academic Press, New York, 1971. doi:10.1016/
B978-0-12-417750-5.50022-1. (Cited on pages 18 and 140).

[HSJC12] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel.
Inferring canonical register automata. In Verification, Model
Checking, and Abstract Interpretation, volume 7148 of Lecture
Notes in Computer Science, pages 251–266. Springer, 2012. doi:
10.1007/978-3-642-27940-9_17. (Cited on pages 17 and 118).

[HV10] Marijn J. H. Heule and Sicco Verwer. Exact DFA identifica-
tion using SAT solvers. In Grammatical Inference: Theoret-
ical Results and Applications, volume 6339 of Lecture Notes
in Computer Science, pages 66–79. Springer, 2010. doi:
10.1007/978-3-642-15488-1_7. (Cited on pages 128 and 131).

181

https://doi.org/10.1109/RTAS.2015.7108453
https://doi.org/10.1109/ICNP.2011.6089070
https://doi.org/10.1109/ICNP.2011.6089070
https://doi.org/10.1145/224818.224903
https://doi.org/10.1145/240518.240606
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1016/B978-0-12-417750-5.50022-1
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-27940-9_17
https://doi.org/10.1007/978-3-642-15488-1_7
https://doi.org/10.1007/978-3-642-15488-1_7

BIBLIOGRAPHY

[HWH13] Ralf Hund, Carsten Willems, and Thorsten Holz. Practical
timing side channel attacks against kernel space ASLR. In
2013 IEEE Symposium on Security and Privacy, pages 191–
205. IEEE, 2013. doi:10.1109/SP.2013.23. (Cited on pages 81
and 82).

[HXB04] Heng Hu, Hong-Xi Xue, and Ji-Nian Bian. HSM2: A new heuris-
tic state minimization algorithm for finite state machine. Jour-
nal of Computer Science and Technology, 19(5):729–733, Septem-
ber 2004. doi:10.1007/BF02945600. (Cited on pages 141, 145,
151, and 155).

[IES15] Gorka Irazoqui, Thomas Eisenbarth, and Berk Sunar. Sys-
tematic reverse engineering of cache slice selection in Intel
processors. In Proceedings of the 2015 Euromicro Confer-
ence on Digital System Design, pages 629–636. IEEE, 2015.
doi:10.1109/DSD.2015.56. (Cited on pages 81 and 82).

[IGI+16] Mehmet Sinan Inci, Berk Gulmezoglu, Gorka Irazoqui, Thomas
Eisenbarth, and Berk Sunar. Cache attacks enable bulk key
recovery on the cloud. In International Conference on Cryp-
tographic Hardware and Embedded Systems, pages 368–388.
Springer, 2016. doi:10.1007/978-3-662-53140-2_18. (Cited
on pages 81 and 82).

[IHS15] Malte Isberner, Falk Howar, and Bernhard Steffen. The open-
source LearnLib. In Computer Aided Verification, pages 487–495.
Springer, 2015. doi:10.1007/978-3-319-21690-4_32. (Cited
on pages 17, 119, and 133).

[Ins] InstLatx64. x86, x64 instruction latency, memory latency and
CPUID dumps. URL: http://instlatx64.atw.hu/. (Cited on
pages 40, 43, and 69).

[Inta] Intel Corporation. Intel architecture code analyzer.
URL: https://software.intel.com/en-us/articles/intel-
architecture-code-analyzer. (Cited on pages 15, 41, 42,
and 48).

[Intb] Intel Corporation. Intel VTune Amplifier. URL: https://
software.intel.com/vtune. (Cited on pages 22 and 35).

[Intc] Intel Corporation. X86 Encoder Decoder (XED). URL: https:
//intelxed.github.io/. (Cited on pages 15, 41, and 61).

182

https://doi.org/10.1109/SP.2013.23
https://doi.org/10.1007/BF02945600
https://doi.org/10.1109/DSD.2015.56
https://doi.org/10.1007/978-3-662-53140-2_18
https://doi.org/10.1007/978-3-319-21690-4_32
http://instlatx64.atw.hu/
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/en-us/articles/intel-architecture-code-analyzer
https://software.intel.com/vtune
https://software.intel.com/vtune
https://intelxed.github.io/
https://intelxed.github.io/

BIBLIOGRAPHY

[Int12] Intel Corporation. Intel 64 and IA-32 Architectures Optimiza-
tion Reference Manual, April 2012. Order Number: 248966-026.
URL: https://www.intel.com/content/dam/doc/manual/64-
ia-32-architectures-optimization-manual.pdf. (Cited on
pages 14, 40, 42, 47, 69, 70, and 71).

[Int19a] Intel Corporation. 10th generation Intel Core Processor—
instruction throughput and latency README, September
2019. URL: https://software.intel.com/en-us/download/
10th-generation-intel-core-processor-instruction-
throughput-and-latency-docs. (Cited on pages 42 and 64).

[Int19b] Intel Corporation. Intel 64 and IA-32 Architectures Opti-
mization Reference Manual, September 2019. Order Number:
248966-042b. URL: https://software.intel.com/sites/
default/files/managed/9e/bc/64-ia-32-architectures-
optimization-manual.pdf. (Cited on pages 14, 27, 40, 42, 44,
47, 48, 53, 54, 62, 71, and 72).

[Int19c] Intel Corporation. Intel 64 and IA-32 Architectures Software De-
veloper’s Manual, October 2019. Order Number: 325462-071US.
URL: https://software.intel.com/sites/default/files/
managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf.
(Cited on pages 33, 43, 61, 70, and 74).

[JB07] Tobias John and Robert Baumgartl. Exact cache charac-
terization by experimental parameter extraction. In Pro-
ceedings of the 15th International Conference on Real-Time
and Network Systems (RTNS), pages 65–74, Nancy, France,
2007. URL: https://hal.inria.fr/inria-00168530/file/
actes.pdf#page=66. (Cited on pages 86 and 111).

[JEJI08] Ajay Joshi, Lieven Eeckhout, Lizy K. John, and Ciji Isen. Au-
tomated microprocessor stressmark generation. In Interna-
tional Symposium on High-Performance Computer Architecture-
Proceedings, pages 209–219. IEEE Computer Society, February
2008. doi:10.1109/HPCA.2008.4658642. (Cited on page 40).

[JGSW12] Sanjeev Jahagirdar, Varghese George, Inder Sodhi, and Ryan
Wells. Power management of the third generation Intel Core
micro architecture formerly codenamed Ivy Bridge. 2012 IEEE
Hot Chips 24 Symposium (HCS), August 2012. doi:10.1109/
hotchips.2012.7476478. (Cited on page 84).

183

https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/en-us/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs
https://software.intel.com/en-us/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs
https://software.intel.com/en-us/download/10th-generation-intel-core-processor-instruction-throughput-and-latency-docs
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/9e/bc/64-ia-32-architectures-optimization-manual.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://hal.inria.fr/inria-00168530/file/actes.pdf#page=66
https://hal.inria.fr/inria-00168530/file/actes.pdf#page=66
https://doi.org/10.1109/HPCA.2008.4658642
https://doi.org/10.1109/hotchips.2012.7476478
https://doi.org/10.1109/hotchips.2012.7476478

BIBLIOGRAPHY

[JTSE10] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely, Jr., and Joel
Emer. High performance cache replacement using re-reference
interval prediction (RRIP). In Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA ’10,
pages 60–71, New York, NY, USA, 2010. ACM. doi:10.1145/
1815961.1815971. (Cited on pages 83, 84, 86, and 93).

[KAGPJ16] Mehmet Kayaalp, Nael Abu-Ghazaleh, Dmitry Ponomarev, and
Aamer Jaleel. A high-resolution side-channel attack on last-
level cache. In Proceedings of the 53rd Annual Design Automa-
tion Conference. ACM, 2016. doi:10.1145/2897937.2897962.
(Cited on pages 81 and 82).

[KDK+14] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilk-
erson, K. Lai, and O. Mutlu. Flipping bits in memory with-
out accessing them: An experimental study of DRAM distur-
bance errors. In ACM/IEEE 41st International Symposium
on Computer Architecture (ISCA), pages 361–372, June 2014.
doi:10.1109/ISCA.2014.6853210. (Cited on page 114).

[KHF+19] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas,
M. Hamburg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom. Spectre attacks: Exploiting speculative execu-
tion. 2019 IEEE Symposium on Security and Privacy (SP),
May 2019. doi:10.1109/sp.2019.00002. (Cited on pages 13
and 22).

[KLA+18] Vladimir Kiriansky, Ilia Lebedev, Saman Amarasinghe, Srinivas
Devadas, and Joel Emer. DAWG: A defense against cache timing
attacks in speculative execution processors. In Proceedings
of the 51st Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-51, pages 974–987. IEEE Press, 2018.
doi:10.1109/MICRO.2018.00083. (Cited on page 115).

[KMO12] Boris Köpf, Laurent Mauborgne, and Martín Ochoa. Auto-
matic quantification of cache side-channels. In Proceedings of
the 24th International Conference on Computer Aided Veri-
fication, CAV ’12, pages 564–580, Berlin, Heidelberg, 2012.
Springer-Verlag. doi:10.1007/978-3-642-31424-7_40. (Cited
on page 114).

[KPD+11] Russell Kegley, Jonathan Preston, Brian Dougherty, Jules
White, and Anirudda Gokhale. Predictive cache modeling
and analysis. Technical report, Lockheed Martin Aeronautics

184

https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/1815961.1815971
https://doi.org/10.1145/2897937.2897962
https://doi.org/10.1109/ISCA.2014.6853210
https://doi.org/10.1109/sp.2019.00002
https://doi.org/10.1109/MICRO.2018.00083
https://doi.org/10.1007/978-3-642-31424-7_40

BIBLIOGRAPHY

Corporation, November 2011. URL: https://apps.dtic.mil/
dtic/tr/fulltext/u2/a552968.pdf. (Cited on page 114).

[KPMR12] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz.
STEALTHMEM: System-level protection against cache-based
side channel attacks in the cloud. In Proceedings of the
21st USENIX Security Symposium (USENIX Security 12),
pages 189–204, USA, 2012. USENIX Association. URL:
https://www.usenix.org/conference/usenixsecurity12/
technical-sessions/presentation/kim. (Cited on
page 115).

[KS91] L. N. Kannan and D. Sarma. Fast heuristic algorithms for finite
state machine minimization. In Proceedings of the European
Conference on Design Automation., EURO-DAC ’91, pages
192–196, Los Alamitos, CA, USA, February 1991. IEEE Com-
puter Society Press. doi:10.1109/EDAC.1991.206388. (Cited
on pages 141, 145, and 151).

[KS13] A. S. Klimowicz and V. V. Solov’ev. Minimization of incom-
pletely specified Mealy finite-state machines by merging two
internal states. J. Comput. Syst. Sci. Int., 52(3):400–409, May
2013. doi:10.1134/S106423071303009X. (Cited on pages 141,
146, 151, and 155).

[KVBSV94] T. Kam, T. Villa, R. Brayton, and A. Sangiovanni-Vincentelli.
A fully implicit algorithm for exact state minimization. In
31st Conference on Design Automation, pages 684–690, June
1994. doi:10.1109/DAC.1994.204189. (Cited on pages 141, 151,
and 155).

[KVBSV10] Timothy Kam, Tiziano Villa, Robert K. Brayton, and Alberto L.
Sangiovanni-Vincentelli. Synthesis of Finite State Machines:
Functional Optimization. Springer Publishing Company, 1st
edition, 2010. (Cited on page 145).

[LA04] Chris Lattner and Vikram Adve. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In Pro-
ceedings of the International Symposium on Code Generation
and Optimization: Feedback-directed and Runtime Optimization,
CGO ’04, pages 75–86, Washington, DC, USA, 2004. IEEE
Computer Society. doi:10.1109/CGO.2004.1281665. (Cited on
pages 40, 42, and 167).

185

https://apps.dtic.mil/dtic/tr/fulltext/u2/a552968.pdf
https://apps.dtic.mil/dtic/tr/fulltext/u2/a552968.pdf
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://doi.org/10.1109/EDAC.1991.206388
https://doi.org/10.1134/S106423071303009X
https://doi.org/10.1109/DAC.1994.204189
https://doi.org/10.1109/CGO.2004.1281665

BIBLIOGRAPHY

[Lam73] Butler W. Lampson. A note on the confinement problem.
Commun. ACM, 16(10):613–615, October 1973. doi:10.1145/
362375.362389. (Cited on page 75).

[LD97] Stan Liao and Srinivas Devadas. Solving covering problems using
LPR-based lower bounds. In Proceedings of the 34th Annual
Design Automation Conference (DAC), pages 117–120. ACM,
June 1997. doi:10.1145/266021.266046. (Cited on page 145).

[Lee15] David Lee. Personal communication, January 2015. (Cited on
page 134).

[LGR+16] Mingsong Lv, Nan Guan, Jan Reineke, Reinhard Wilhelm,
and Wang Yi. A survey on static cache analysis for real-time
systems. Leibniz Transactions on Embedded Systems, 3(1):05–1–
05:48, 2016. doi:10.4230/LITES-v003-i001-a005. (Cited on
page 79).

[LHH+18] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and
G. Wellein. Automated instruction stream throughput predic-
tion for Intel and AMD microarchitectures. In 2018 IEEE/ACM
Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), pages 121–131, Los
Alamitos, CA, USA, November 2018. IEEE Computer Society.
doi:10.1109/PMBS.2018.8641578. (Cited on page 40).

[LHHW19] Jan Laukemann, Julian Hammer, Georg Hager, and Gerhard
Wellein. Automatic throughput and critical path analysis of x86
and ARM assembly kernels. CoRR, abs/1910.00214, October
2019. arXiv:1910.00214. (Cited on page 40).

[LHS+20] Moritz Lipp, Vedad Hadžić, Michael Schwarz, Arthur Perais,
Clémentine Maurice, and Daniel Gruss. Take a way: Exploring
the security implications of AMD’s cache way predictors. In
Proceedings of the 15th ACM Asia Conference on Computer and
Communications Security (ASIA CCS). ACM, June 2020. To
appear. doi:10.1145/3320269.3384746. (Cited on page 114).

[LN12] Martin Leucker and Daniel Neider. Learning minimal determin-
istic automata from inexperienced teachers. In ISoLA, pages
524–538, 2012. doi:10.1007/978-3-642-34026-0_39. (Cited
on page 134).

[LSG+18] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin,

186

https://doi.org/10.1145/362375.362389
https://doi.org/10.1145/362375.362389
https://doi.org/10.1145/266021.266046
https://doi.org/10.4230/LITES-v003-i001-a005
https://doi.org/10.1109/PMBS.2018.8641578
http://arxiv.org/abs/1910.00214
https://doi.org/10.1145/3320269.3384746
https://doi.org/10.1007/978-3-642-34026-0_39

BIBLIOGRAPHY

Yuval Yarom, and Mike Hamburg. Meltdown. CoRR, 2018.
arXiv:1801.01207. (Cited on pages 13 and 22).

[LSX09] Gabriel H. Loh, Samantika Subramaniam, and Yuejian Xie.
Zesto: A cycle-level simulator for highly detailed microarchitec-
ture exploration. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software (IS-
PASS), pages 53–64, 2009. doi:10.1109/ISPASS.2009.4919638.
(Cited on pages 40 and 79).

[LT98] Enyou Li and Clark Thomborson. Data cache parameter mea-
surements. In Proceedings of the International Conference on
Computer Design: VLSI in Computers and Processors (ICCD),
pages 376–383, Los Alamitos, CA, USA, October 1998. IEEE.
doi:10.1109/ICCD.1998.727077. (Cited on pages 86 and 111).

[LYG+15] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B.
Lee. Last-level cache side-channel attacks are practical. In IEEE
Symposium on Security and Privacy, pages 605–622. IEEE, 2015.
doi:10.1109/SP.2015.43. (Cited on pages 81, 112, and 114).

[Man04] Stefan Manegold. The calibrator (v0.9e), a cache-memory and
TLB calibration tool. http://homepages.cwi.nl/~manegold/
Calibrator/, June 2004. (Cited on pages 86 and 111).

[MC17] Xinxin Mei and Xiaowen Chu. Dissecting GPU memory hier-
archy through microbenchmarking. IEEE Trans. Parallel Dis-
trib. Syst., 28(1):72–86, 2017. doi:10.1109/TPDS.2016.2549523.
(Cited on page 111).

[McC18] John D. McCalpin. Comments on timing short
code sections on Intel processors, July 2018. URL:
https://sites.utexas.edu/jdm4372/2018/07/23/comments-
on-timing-short-code-sections-on-intel-processors/.
(Cited on page 33).

[Mea55] George H. Mealy. A method for synthesizing sequential circuits.
The Bell System Technical Journal, 34(5):1045–1079, 1955. doi:
10.1002/j.1538-7305.1955.tb03788.x. (Cited on page 144).

[Mee18] Hendrik Meerkamp. SUACA: A tool for performance
analysis of machine programs. Bachelor thesis, Saarland
University, July 2018. URL: http://compilers.cs.uni-
saarland.de/publications/theses/meerkamp_bsc.pdf.
(Cited on page 77).

187

http://arxiv.org/abs/1801.01207
https://doi.org/10.1109/ISPASS.2009.4919638
https://doi.org/10.1109/ICCD.1998.727077
https://doi.org/10.1109/SP.2015.43
http://homepages.cwi.nl/~manegold/Calibrator/
http://homepages.cwi.nl/~manegold/Calibrator/
https://doi.org/10.1109/TPDS.2016.2549523
https://sites.utexas.edu/jdm4372/2018/07/23/comments-on-timing-short-code-sections-on-intel-processors/
https://sites.utexas.edu/jdm4372/2018/07/23/comments-on-timing-short-code-sections-on-intel-processors/
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
http://compilers.cs.uni-saarland.de/publications/theses/meerkamp_bsc.pdf
http://compilers.cs.uni-saarland.de/publications/theses/meerkamp_bsc.pdf

BIBLIOGRAPHY

[MHSM09] Daniel Molka, Daniel Hackenberg, Robert Schöne, and
Matthias S. Müller. Memory performance and cache coherency
effects on an Intel Nehalem multiprocessor system. In Pro-
ceedings of the 2009 18th International Conference on Par-
allel Architectures and Compilation Techniques, PACT ’09,
pages 261–270, Washington, DC, USA, 2009. IEEE. doi:
10.1109/PACT.2009.22. (Cited on page 111).

[MM14] Oded Maler and Irini-Eleftheria Mens. Learning regular lan-
guages over large alphabets. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), volume
8413 of Lecture Notes in Computer Science, pages 485–499.
Springer, 2014. doi:10.1007/978-3-642-54862-8_41. (Cited
on pages 17 and 118).

[MRAC19] Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael
Carbin. Ithemal: Accurate, portable and fast basic block
throughput estimation using deep neural networks. In Pro-
ceedings of the 36th International Conference on Machine
Learning, volume 97 of Proceedings of Machine Learning Re-
search, pages 4505–4515, Long Beach, California, USA, June
2019. PMLR. URL: http://proceedings.mlr.press/v97/
mendis19a.html. (Cited on page 36).

[MS96] Larry McVoy and Carl Staelin. lmbench: portable tools for
performance analysis. In USENIX Annual Technical Confer-
ence, pages 23–23, Berkeley, CA, USA, 1996. URL: http:
//dl.acm.org/citation.cfm?id=1268299.1268322. (Cited on
pages 86 and 111).

[MSN+15] Clémentine Maurice, Nicolas Scouarnec, Christoph Neumann,
Olivier Heen, and Aurélien Francillon. Reverse engineering Intel
last-level cache complex addressing using performance counters.
In Proceedings of the 18th International Symposium on Research
in Attacks, Intrusions, and Defenses, RAID 2015, pages 48–65,
New York, NY, USA, 2015. Springer-Verlag New York, Inc.
doi:10.1007/978-3-319-26362-5_3. (Cited on pages 81, 82,
and 112).

[MWK17] Heiko Mantel, Alexandra Weber, and Boris Köpf. A systematic
study of cache side channels across AES implementations. In
Proceedings of the 9th International Symposium on Engineering
Secure Software and Systems (ESSoS), pages 213–230. Springer,

188

https://doi.org/10.1109/PACT.2009.22
https://doi.org/10.1109/PACT.2009.22
https://doi.org/10.1007/978-3-642-54862-8_41
http://proceedings.mlr.press/v97/mendis19a.html
http://proceedings.mlr.press/v97/mendis19a.html
http://dl.acm.org/citation.cfm?id=1268299.1268322
http://dl.acm.org/citation.cfm?id=1268299.1268322
https://doi.org/10.1007/978-3-319-26362-5_3

BIBLIOGRAPHY

July 2017. doi:10.1007/978-3-319-62105-0_14. (Cited on
page 114).

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks
and countermeasures: The case of AES. In Proceedings of the
2006 The Cryptographers’ Track at the RSA Conference on Top-
ics in Cryptology, CT-RSA ’06, pages 1–20, Berlin, Heidelberg,
2006. Springer-Verlag. doi:10.1007/11605805_1. (Cited on
page 114).

[Pao10] Gabriele Paoloni. How to benchmark code execution times on In-
tel IA-32 and IA-64 instruction set architectures. Intel Corpora-
tion, September 2010. URL: https://www.intel.com/content/
dam/www/public/us/en/documents/white-papers/ia-32-
ia-64-benchmark-code-execution-paper.pdf. (Cited on
page 32).

[per] perf: Linux profiling with performance counters. URL: https:
//perf.wiki.kernel.org. (Cited on pages 22, 35, and 158).

[Pfl73] C. P. Pfleeger. State reduction in incompletely speci-
fied finite-state machines. IEEE Transactions on Comput-
ers, C-22(12):1099–1102, December 1973. doi:10.1109/T-
C.1973.223655. (Cited on pages 18, 140, and 144).

[PG93] R. Puri and Jun Gu. An efficient algorithm to search for mini-
mal closed covers in sequential machines. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
12(6):737–745, June 1993. doi:10.1109/43.229748. (Cited on
pages 141, 145, and 151).

[PJ15] Xiaoyue Pan and Bengt Jonsson. A modeling framework for
reuse distance-based estimation of cache performance. In 2015
IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS), pages 62–71. IEEE, March
2015. doi:10.1109/ISPASS.2015.7095785. (Cited on page 83).

[PO99] J. M. Pena and A. L. Oliveira. A new algorithm for ex-
act reduction of incompletely specified finite state machines.
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 18(11):1619–1632, November 1999. doi:
10.1109/43.806807. (Cited on pages 134, 141, 145, 149, 151,
and 154).

189

https://doi.org/10.1007/978-3-319-62105-0_14
https://doi.org/10.1007/11605805_1
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf
https://perf.wiki.kernel.org
https://perf.wiki.kernel.org
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/T-C.1973.223655
https://doi.org/10.1109/43.229748
https://doi.org/10.1109/ISPASS.2015.7095785
https://doi.org/10.1109/43.806807
https://doi.org/10.1109/43.806807

BIBLIOGRAPHY

[PU59] M. C. Paull and S. H. Unger. Minimizing the number of
states in incompletely specified sequential switching functions.
IRE Transactions on Electronic Computers, EC-8(3):356–367,
September 1959. doi:10.1109/TEC.1959.5222697. (Cited on
pages 140 and 144).

[PWKJ16] Vincent Palomares, David C. Wong, David J. Kuck, and William
Jalby. Evaluating out-of-order engine limitations using uop
flow simulation. In Tools for High Performance Computing
2015, pages 161–181. Springer International Publishing, 2016.
doi:10.1007/978-3-319-39589-0_13. (Cited on page 40).

[QJP+07] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt, Simon C.
Steely, and Joel Emer. Adaptive insertion policies for high
performance caching. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, ISCA ’07,
pages 381–391, New York, NY, USA, 2007. Association for
Computing Machinery. doi:10.1145/1250662.1250709. (Cited
on page 86).

[RC13] Guillem Rueda Cebollero. Learning cache replacement poli-
cies using register automata. Master’s thesis, Uppsala Uni-
versity, Department of Information Technology, December
2013. URL: http://www.diva-portal.org/smash/get/diva2:
678847/FULLTEXT01.pdf. (Cited on pages 112 and 116).

[Rei08] Jan Reineke. Caches in WCET Analysis. PhD the-
sis, Universität des Saarlandes, November 2008. URL:
http://embedded.cs.uni-saarland.de/publications/
DissertationCachesInWCETAnalysis.pdf. (Cited on pages 79
and 111).

[RGBW07] Jan Reineke, Daniel Grund, Christoph Berg, and Reinhard
Wilhelm. Timing predictability of cache replacement poli-
cies. Real-Time Systems, 37(2):99–122, November 2007. doi:
10.1007/s11241-007-9032-3. (Cited on page 83).

[RHSJ94] June-Kyung Rho, G. D. Hachtel, F. Somenzi, and R. M. Ja-
coby. Exact and heuristic algorithms for the minimization
of incompletely specified state machines. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems,
13(2):167–177, February 1994. doi:10.1109/43.259940. (Cited
on pages 141, 145, and 151).

190

https://doi.org/10.1109/TEC.1959.5222697
https://doi.org/10.1007/978-3-319-39589-0_13
https://doi.org/10.1145/1250662.1250709
http://www.diva-portal.org/smash/get/diva2:678847/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:678847/FULLTEXT01.pdf
http://embedded.cs.uni-saarland.de/publications/DissertationCachesInWCETAnalysis.pdf
http://embedded.cs.uni-saarland.de/publications/DissertationCachesInWCETAnalysis.pdf
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1007/s11241-007-9032-3
https://doi.org/10.1109/43.259940

BIBLIOGRAPHY

[RS93] Ronald L. Rivest and Robert E. Schapire. Inference of finite au-
tomata using homing sequences. Information and Computation,
103(2):299–347, 1993. doi:10.1006/inco.1993.1021. (Cited on
pages 132 and 134).

[RTHW14] T. Roehl, J. Treibig, G. Hager, and G. Wellein. Overhead analy-
sis of performance counter measurements. In 43rd International
Conference on Parallel Processing Workshops (ICCPW), pages
176–185, September 2014. doi:10.1109/ICPPW.2014.34. (Cited
on page 35).

[Rub75] Frank Rubin. Worst case bounds for maximal compatible sub-
sets. IEEE Transactions on Computers, C-24(8):830–831, Au-
gust 1975. doi:10.1109/T-C.1975.224315. (Cited on page 145).

[Set11] Burr Settles. From theories to queries: Active learning in
practice. In Active Learning and Experimental Design work-
shop, in conjunction with AISTATS 2010, volume 16 of Pro-
ceedings of Machine Learning Research, pages 1–18, Sardinia,
Italy, 2011. PMLR. URL: http://proceedings.mlr.press/
v16/settles11a.html. (Cited on page 118).

[SG09] Muzammil Shahbaz and Roland Groz. Inferring Mealy ma-
chines. In Proceedings of the 2nd World Congress on Formal
Methods, pages 207–222. Springer, 2009. doi:10.1007/978-3-
642-05089-3_14. (Cited on pages 17 and 118).

[SGL95] J.M. Sanchez, A.O. Garnica, and J. Lanchares. A genetic algo-
rithm for reducing the number of states in incompletely speci-
fied finite state machines. Microelectronics journal, 26(5):463–
470, 1995. doi:10.1016/0026-2692(95)98948-Q. (Cited on
pages 141, 145, and 151).

[SK13] Daniel Sanchez and Christos Kozyrakis. ZSim: Fast and ac-
curate microarchitectural simulation of thousand-core systems.
In Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, pages 475–486, New York,
NY, USA, 2013. ACM. doi:10.1145/2485922.2485963. (Cited
on pages 40 and 79).

[SS95] Rafael H. Saavedra and Alan Jay Smith. Measuring cache
and TLB performance and their effect on benchmark runtimes.
IEEE Transactions on Computers, 44(10):1223–1235, 1995. doi:
10.1109/12.467697. (Cited on pages 86 and 111).

191

https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1109/ICPPW.2014.34
https://doi.org/10.1109/T-C.1975.224315
http://proceedings.mlr.press/v16/settles11a.html
http://proceedings.mlr.press/v16/settles11a.html
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.1016/0026-2692(95)98948-Q
https://doi.org/10.1145/2485922.2485963
https://doi.org/10.1109/12.467697
https://doi.org/10.1109/12.467697

BIBLIOGRAPHY

[SSL+92] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Mur-
gai, A. Saldanha, H. Savoj, P. R. Stephan, Robert K.
Brayton, and Alberto L. Sangiovanni-Vincentelli. SIS: A
system for sequential circuit synthesis. Technical Report
UCB/ERL M92/41, EECS Department, University of California,
Berkeley, 1992. URL: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/1992/2010.html. (Cited on pages 149 and 150).

[TASS09] David K. Tam, Reza Azimi, Livio B. Soares, and Michael
Stumm. RapidMRC: approximating L2 miss rate curves on
commodity systems for online optimizations. In Proceedings
of the 14th international conference on Architectural support
for programming languages and operating systems, ASPLOS
XIV, pages 121–132, New York, NY, USA, 2009. ACM. doi:
10.1145/1508244.1508259. (Cited on pages 113 and 114).

[THW10] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A
lightweight performance-oriented tool suite for x86 multicore
environments. In Proceedings of the International Conference
on Parallel Processing Workshops, pages 207–216, Washington,
DC, USA, 2010. IEEE. doi:10.1109/ICPPW.2010.38. (Cited on
page 35).

[TJYD10] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra.
Collecting performance data with PAPI-C. In Tools for High
Performance Computing 2009, pages 157–173. Springer, 2010.
doi:10.1007/978-3-642-11261-4_11. (Cited on pages 22
and 35).

[TLM18] Caroline Trippel, Daniel Lustig, and Margaret Martonosi. Melt-
downPrime and SpectrePrime: Automatically-synthesized at-
tacks exploiting invalidation-based coherence protocols. CoRR,
abs/1802.03802, 2018. arXiv:1802.03802. (Cited on page 114).

[TY00] Clark Thomborson and Yuanhua Yu. Measuring data
cache and TLB parameters under Linux. In Proceed-
ings of the Symposium on Performance Evaluation of
Computer and Telecommunication Systems, pages 383–390,
July 2000. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.36.1427. (Cited on pages 86 and 111).

[VGGK20] Pepe Vila, Pierre Ganty, Marco Guarnieri, and Boris Köpf.
CacheQuery: Learning replacement policies from hardware
caches. In Proceedings of the 41st ACM SIGPLAN Conference

192

http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1992/2010.html
https://doi.org/10.1145/1508244.1508259
https://doi.org/10.1145/1508244.1508259
https://doi.org/10.1109/ICPPW.2010.38
https://doi.org/10.1007/978-3-642-11261-4_11
http://arxiv.org/abs/1802.03802
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1427
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.1427

BIBLIOGRAPHY

on Programming Language Design and Implementation (PLDI).
Association for Computing Machinery, June 2020. To appear.
(Cited on pages 90, 92, 105, 113, and 116).

[Vil15] Tiziano Villa. Personal communication, March 2015. (Cited on
page 155).

[Vil19] Pepe Vila. Personal communication, December 2019. (Cited on
page 109).

[VKBSV97] T. Villa, T. Kam, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli. Explicit and implicit algorithms for binate cov-
ering problems. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 16(7):677–691, July 1997.
doi:10.1109/43.644030. (Cited on page 145).

[VKM19] Pepe Vila, Boris Köpf, and José F. Morales. Theory and
practice of finding eviction sets. In 2019 IEEE Symposium
on Security and Privacy (SP), pages 39–54, May 2019. doi:
10.1109/SP.2019.00042. (Cited on pages 90 and 105).

[vSMK+20] Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel
Genkin, and Yuval Yarom. CacheOut: Leaking data on In-
tel CPUs via cache evictions. https://cacheoutattack.com/,
January 2020. (Cited on page 114).

[VSVA05] Abhay Vardhan, Koushik Sen, Mahesh Viswanathan, and
Gul Agha. Using language inference to verify omega-regular
properties. In Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), volume 3440 of Lecture
Notes in Computer Science, pages 45–60. Springer, 2005. doi:
10.1007/978-3-540-31980-1_4. (Cited on page 118).

[W+08] Reinhard Wilhelm et al. The worst-case execution time
problem—overview of methods and survey of tools. ACM Trans-
actions on Embedded Computing Systems (TECS), 7(3), 2008.
doi:10.1145/1347375.1347389. (Cited on page 79).

[Wika] Skylake (client) - Microarchitectures - Intel. URL: https:
//en.wikichip.org/wiki/intel/microarchitectures/
skylake_(client). (Cited on page 44).

[Wikb] Zen - Microarchitectures - AMD. URL: https:
//en.wikichip.org/wiki/amd/microarchitectures/zen.
(Cited on page 46).

193

https://doi.org/10.1109/43.644030
https://doi.org/10.1109/SP.2019.00042
https://doi.org/10.1109/SP.2019.00042
https://cacheoutattack.com/
https://doi.org/10.1007/978-3-540-31980-1_4
https://doi.org/10.1007/978-3-540-31980-1_4
https://doi.org/10.1145/1347375.1347389
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(client)
https://en.wikichip.org/wiki/amd/microarchitectures/zen
https://en.wikichip.org/wiki/amd/microarchitectures/zen

BIBLIOGRAPHY

[WL06] Zhenghong Wang and Ruby B. Lee. Covert and side chan-
nels due to processor architecture. In Proceedings of the 22nd
Annual Computer Security Applications Conference (ACSAC),
pages 473–482, Washington, DC, USA, December 2006. IEEE
Computer Society. doi:10.1109/ACSAC.2006.20. (Cited on
page 76).

[WLPA14] Andrew Waterman, Yunsup Lee, David A. Patterson, and Krste
Asanović. The RISC-V instruction set manual, Volume I:
User-level ISA, version 2.0. Technical Report UCB/EECS-
2014-54, EECS Department, University of California, Berke-
ley, May 2014. URL: http://www2.eecs.berkeley.edu/Pubs/
TechRpts/2014/EECS-2014-54.html. (Cited on page 37).

[WM08] Vincent M. Weaver and Sally A. McKee. Can hardware per-
formance counters be trusted? In 2008 IEEE International
Symposium on Workload Characterization, pages 141–150. IEEE,
September 2008. doi:10.1109/IISWC.2008.4636099. (Cited on
page 33).

[Won13] Henry Wong. Intel Ivy Bridge cache replacement policy, Jan-
uary 2013. URL: http://blog.stuffedcow.net/2013/01/ivb-
cache-replacement/. (Cited on pages 86 and 112).

[WPSAM10] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos. Demystifying GPU microarchitecture through mi-
crobenchmarking. In IEEE International Symposium on Perfor-
mance Analysis of Systems and Software (ISPASS), pages 235–
246, March 2010. doi:10.1109/ISPASS.2010.5452013. (Cited
on page 111).

[WTM13] Vincent M. Weaver, Dan Terpstra, and Shirley Moore. Non-
determinism and overcount on modern hardware performance
counter implementations. In IEEE International Sympo-
sium on Performance Analysis of Systems and Software (IS-
PASS), pages 215–224. IEEE, April 2013. doi:10.1109/
ISPASS.2013.6557172. (Cited on page 33).

[XS20] Wenjie Xiong and Jakub Szefer. Leaking information through
cache LRU states. CoRR, abs/1905.08348v2, January 2020.
arXiv:1905.08348v2. (Cited on page 115).

[Yan91] Saeyang Yang. Logic synthesis and optimization bench-
marks user guide, Version 3.0. Technical report, Mi-

194

https://doi.org/10.1109/ACSAC.2006.20
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2014/EECS-2014-54.html
https://doi.org/10.1109/IISWC.2008.4636099
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
http://blog.stuffedcow.net/2013/01/ivb-cache-replacement/
https://doi.org/10.1109/ISPASS.2010.5452013
https://doi.org/10.1109/ISPASS.2013.6557172
https://doi.org/10.1109/ISPASS.2013.6557172
http://arxiv.org/abs/1905.08348v2

BIBLIOGRAPHY

croelectronics Center of North Carolina (MCNC), Jan-
uary 1991. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.49.591&rank=1. (Cited on page 154).

[YF14] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high
resolution, low noise, L3 cache side-channel attack. In 23rd
USENIX Security Symposium (USENIX Security 14), SEC ’14,
pages 719–732, USA, 2014. USENIX Association. URL:
https://www.usenix.org/conference/usenixsecurity14/
technical-sessions/presentation/yarom. (Cited on
page 114).

[YGL+15] Yuval Yarom, Qian Ge, Fangfei Liu, Ruby B. Lee, and Ger-
not Heiser. Mapping the Intel last-level cache. Cryptol-
ogy ePrint Archive, Report 2015/905, 2015. URL: https:
//eprint.iacr.org/2015/905. (Cited on pages 81 and 82).

[YJS+06] Kamen Yotov, Sandra Jackson, Tyler Steele, Keshav Pingali,
and Paul Stodghill. Automatic measurement of instruction cache
capacity. In Proceedings of the 18th International Workshop on
Languages and Compilers for Parallel Computing, pages 230–
243. Springer, 2006. doi:10.1007/978-3-540-69330-7_16.
(Cited on page 111).

[YPS05] Kamen Yotov, Keshav Pingali, and Paul Stodghill. Auto-
matic measurement of memory hierarchy parameters. In SIG-
METRICS, pages 181–192, New York, NY, USA, 2005. ACM.
doi:10.1145/1064212.1064233. (Cited on pages 86 and 111).

[ZBW17] M. Zeiser, J. Betz, and D. Westhoff. Cache covert-channel
mitigation in cloud virtualization with XEN’s credit scheduler.
In IEEE Global Communications Conference, GLOBECOM
2017, Singapore, pages 1–7, December 2017. doi:10.1109/
GLOCOM.2017.8253984. (Cited on page 110).

[ZGY14] Yi Zhang, Nan Guan, and Wang Yi. Understanding the dynamic
caches on Intel processors: Methods and applications. In Pro-
ceedings of the 12th IEEE International Conference on Embedded
and Ubiquitous Computing, EUC ’14, pages 58–64, USA, Au-
gust 2014. IEEE Computer Society. doi:10.1109/EUC.2014.18.
(Cited on page 112).

195

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.591&rank=1
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.49.591&rank=1
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://eprint.iacr.org/2015/905
https://eprint.iacr.org/2015/905
https://doi.org/10.1007/978-3-540-69330-7_16
https://doi.org/10.1145/1064212.1064233
https://doi.org/10.1109/GLOCOM.2017.8253984
https://doi.org/10.1109/GLOCOM.2017.8253984
https://doi.org/10.1109/EUC.2014.18

Index

µops, 45

active learning, 117, 118
AES instructions, 69
age graph, 92
Angluin’s algorithm, 118, 145
assembler, 25

black box, 118
branch instructions, 58

cache, 79–116
µop cache, 45
associativity, 81
block size, 81
C-Box, 81
cache set, 81
congruent addresses, 82
hash function, 81, 82
hit, 81
index, 81
miss, 81
organization, 81–82
prefetching, 33
slice, 81
way, 81

cacheInfo, 86
cacheSeq, 88
chain instruction, 52
CLFLUSH instruction, 89, 110
closure, 148
CNF, 128
compatibility

rows, 124, 129
states, 143, 148
words, 122

covert channel, 75, 110, 114
CPUID instruction, 32

decoder, 45
dependency chain, 52

division, 46, 58

encoding, 25
equivalence query, 118
error state, 126, 131
eviction set, 90
execution port, see port
explicit operand, 25

functional unit, 46

gray-box learning, 117–138

hardware performance counters, see
performance counters

hyper-threading, 33, 75

IACA, 42, 63
implicit operand, 25, 62
incompatibility matrix, 147
initialization sequence, 89
instruction variant, 62
interference, 33
ISM benchmarks, 151

L∗ algorithm, 118, 145
latency

algorithm, 52–59
definition, 47

LFENCE instruction, 32
LLVM, 42
loop unrolling, 29

MCNC benchmarks, 151, 154
Mealy machine

completely specified, 119, 142
definition, 119, 142
incompletely specified, 142
minimization, 139–164
serial composition, 118, 120

measurements, 62
MeMin, 139–164

197

INDEX

memory operand, 25
micro-operation, 45
microbenchmark, 22
move elimination, 45

nanoBench, 21–37
features, 25–32
implementation, 32–34
kernel mode, 29
noMem mode, 30
user mode, 29

observation table, 123
closed, 125
consistent, 124
input-complete, 126
p-closed, 125
unique, 126

out-of-order execution, 46
output query, 118

partial solution, 130, 149
partition, 124, 128

closed, 125
performance counters, 23–24

APERF/MPERF, 24
core, 24
fixed-function, 24
programmable, 24
uncore, 24, 82

permutation policy, 82, 90
physically-contiguous memory, 34
pipe, 46
pipeline, 44–46

AMD, 46
Intel, 44–46

port, 46
combination, 48
usage
algorithm, 49–51
definition, 48

RDMSR instruction, 24
RDPMC instruction, 24
renamer, 45
reorder buffer, 45
replacement policy, 82

LRU3PLRU4, 96
PLRU8Rand2, 102
Rand3PLRU8, 102
adaptive, 86, 92
FIFO, 82
LRU, 82
MRU, 83
NRU, 83
permutation policy, 82, 90
PLRU, 82
QLRU, 83, 96, 104
RRIP, 83

reservation station, 46
reset sequence, 92, 110
reset state, 142, 150
right-equivalence, 120, 131

SAT, 128, 147
scheduler, 46
serializing instructions, 32
SHL instruction, 73
side channel, 75, 110, 114
SIMD, 54
status flags, 25, 56–58, 73

throughput
algorithm, 59–61
definition, 47

uops.info, 39–77

WBINVD instruction, 89, 109

x86
assembler, 25
instruction set, 61

XML file, 63

zero idiom, 45, 54, 72

198

	Introduction
	Contributions and Structure of This Thesis
	Publications

	nanoBench: A Low-Overhead Tool for Running Microbenchmarks on x86 Systems
	Introduction
	Background
	Hardware Performance Counters
	Assembler Instructions

	Features
	Example
	Generated Code
	Running the Generated Code
	Kernel/User Mode
	Interface
	Loops vs. Unrolling
	Accessing Memory
	Warm-Up Runs
	noMem Mode
	Performance Counter Configurations
	Execution Time of nanoBench
	Supported Platforms

	Implementation
	Accurate Performance Counter Measurements
	Generating Code
	Kernel Module
	Allocating Physically-Contiguous Memory

	Related Work
	Conclusions and Future Work

	uops.info: Characterizing the Latency, Throughput, and Port Usage of Instructions on x86 Microarchitectures
	Introduction
	Related Work
	Information Provided by the Manufacturers
	Measurement-Based Approaches

	Background
	Pipeline of Intel Core CPUs
	Pipeline of AMD Ryzen CPUs

	Definitions
	Latency
	Throughput
	Port Usage

	Algorithms
	Port Usage
	Latency
	Throughput

	Implementation
	Details of the x86 Instruction Set
	Measurements on the Hardware
	Analysis Using IACA
	Machine-Readable Output

	Evaluation
	Experimental Setup
	Hardware Measurements vs. Documentation
	Hardware Measurements vs. IACA
	Interesting Results

	Limitations
	Conclusions and Future Work

	Characterizing Cache Architectures
	Introduction
	Background
	Cache Organization
	Replacement Policies

	Cache-Characterization Tools
	CacheInfo
	CacheSeq
	Replacement Policies
	Age Graphs
	Test for Adaptive Policies

	Results
	L1 Data Caches
	L2 Caches
	L3 Caches
	Resetting the Replacement Policy State
	Implementation Costs

	Related Work
	Microbenchmark-Based Cache Analysis
	Influence of the Replacement Policy on Performance Prediction Accuracy
	Security Aspects of Replacement Policies

	Conclusions and Future Work

	Gray-Box Learning of Serial Compositions of Mealy Machines
	Introduction
	Problem Statement
	Basic Notions
	The Gray-Box Learning Problem

	Preliminaries
	Approach
	Observation Tables
	Inference Algorithm

	Implementation
	Computing the Partitions
	Reachability of the Error State
	Checking if Two Machines are Right-Equivalent
	Handling Counterexamples

	Evaluation
	Related Work
	Conclusions and Future Work
	Appendix: Proofs for Chapter 5

	MeMin: SAT-Based Exact Minimization of Incompletely Specified Mealy Machines
	Introduction
	Outline

	Definitions
	Basic Definitions
	Problem Statement
	General Approach

	Related Work
	Approach
	Incompatibility Matrix
	Encoding as a SAT Problem
	Computing a Partial Solution

	Implementation
	Dealing with Partially Specified Outputs
	Dealing with Partially Specified Inputs
	Undefined Reset States

	Evaluation
	Benchmarks
	Evaluation of MeMin
	Other Tools
	Experimental Setup

	Conclusions and Future Work
	Appendix: Complete Benchmark Results

	Summary, Conclusions, and Future Work
	Summary and Conclusions
	Models of Recent Microarchitectures
	General Models

	Future Work

	Bibliography
	Index

