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Abstract

While people process text, they make frequent use of information that is assumed to be com-
mon ground and left implicit in the text. One important type of such commonsense know-
ledge is script knowledge, which is the knowledge about the events and participants in ever-
yday activities such as visiting a restaurant. Due to its implicitness, it is hard for machines
to exploit such script knowledge for natural language processing (NLP). This dissertation
addresses the role of script knowledge in a central field of NLP, natural language understan-
ding (NLU).

In the first part of this thesis, we address script parsing. The idea of script parsing is to align
event and participant mentions in a text with an underlying script representation. This ma-
kes it possible for a system to leverage script knowledge for downstream tasks. We develop
the first script parsing model for events that can be trained on a large scale on crowdsour-
ced script data. The model is implemented as a linear-chain conditional random field and
trained on sequences of short event descriptions, implicitly exploiting the inherent event
ordering information. We show that this ordering information plays a crucial role for script
parsing. Our model provides an important first step towards facilitating the use of script

knowledge for NLU.

In the second part of the thesis, we move our focus to an actual application in the area of
NLU, i.e. machine comprehension. For the first time, we provide data sets for the systematic
evaluation of the contribution of script knowledge for machine comprehension. We create
MCScript, a corpus of narrations about everyday activities and questions on the texts. By
collecting questions based on a scenario rather than a text, we aimed at creating challenging
questions which require script knowledge for finding the correct answer. Based on the fin-
dings of a shared task carried out with the data set, which indicated that script knowledge
is not relevant for good performance on our corpus, we revised the data collection process

and created a second version of the data set.



Kurzzusammenfassung

Wenn Menschen Text verarbeiten, machen sie hdaufig Gebrauch von Information, die als
allgemeingiiltig angenommen und daher im Text nicht realisiert wird. Eine wichtige Art sol-
chen Allgemeinwissens ist das Skriptwissen, das heif$t das Wissen tiber die Ereignisse und
Partizipanten von Alltagsszenarien, wie z.B. ein Restaurantbesuch. Aufgrund seiner Implizit-
heit ist es fiir Maschinen anspruchsvoll, solches Wissen bei der Verarbeitung von Text zu
verwenden. Diese Dissertation behandelt die Rolle von Skriptwissen fiir einen wichtigen
Teilbereich der Computerlinguistik, namlich das automatische Verstehen natiirlicher Spra-

che (Natural Language Understanding, NLU).

Im ersten Teil der Dissertation behandeln wir das Skript-Parsing. Die Idee des Skript-Parsing
ist es, Ereignis- und Partizipant-Erwihnungen in einem Text mit einer zugrundeliegen-
den Skriptreprisentation zu alignieren, damit diese explizit fiir Anwendungen verfiigbar
gemacht werden kann. Wir stellen den ersten Skript-Parser fiir Ereignisse bereit, der im gro-
Ben Stil auf durch Crowdsourcing gewonnenen Skriptdaten trainiert werden kann. Imple-
mentiert wird das Modell als Linear-Chain Conditional Random Field, welches auf Sequen-
zen von kurzen Ereignisbeschreibungen trainiert wird und implizit die temporale Abfolge
dieser Ereignisse lernt. Wir zeigen, dass solche temporale Ordnungsinformation essentiell
fiir das Skript-Parsen ist. Unser Modell stellt einen wichtigen ersten Schritt zur Bereitstel-

lung von Skriptwissen fiir NLU dar.

Im zweiten Teil der Dissertation legen wir den Fokus auf eine Anwendung im Bereich NLU:
Machine Comprehension, eine Leseverstehensaufgabe, bei der Systeme einen Text verar-
beiten und Fragen zu dem Text beantworten miissen. Zum ersten Mal stellen wir Daten
zur systematischen Evaluierung des Einflusses von Skriptwissen auf Machine Comprehen-
sion bereit. Wir erstellen MCScript, ein Corpus aus narrativen Texten {iber Alltagsszenarien
und Fragen zu den Texten. Indem wir die Fragen auf Basis eines Szenarios statt eines Textes
sammeln, versuchen wir schwierige Fragen zu erzeugen, die Skriptwissen zum Finden einer
Antwort benétigen. Die Ergebnisse eines Shared Tasks, den wir auf den Daten durchgefiihrt
haben, legen jedoch nahe, dass Skriptwissen nicht vonnéten ist, um auf den Daten eine gute
Performanz zu erreichen. Infolgedessen revidieren wir den Datenerzeugungsprozess und

erstellen eine zweite Version des Datensatzes.



Ausfiihrliche Zusammenfassung

Wenn Menschen Text verarbeiten, machen sie hdaufig Gebrauch von Information, die als
allgemein giiltig angenommen und daher im Text nicht realisiert wird. Eine wichtige Art
solchen Allgemeinwissens ist das Skriptwissen. Skripte umfassen das Wissen iiber die Er-
eignisse und Partizipanten von Alltagsszenarien, wie z.B. Restaurantbesuch oder einen Kuchen

backen.

(1) Person A: ,Gestern bin ich zu diesem neuen argentinischen Restaurant zum Abend-
essen gegangen. Ich hatte ein leckeres Steak.”

Person B: ,,Was hast du bezahlt?*

Skriptwissen macht Alltagskommunikation zwischen Menschen erst moglich und gleichzei-
tig hocheffizient. Die Frage in dem Beispiel macht Sinn, obwohl Person A nie erwihnt hat,
dass sie bezahlt hat. B kann sowohl inferieren, dass A Essen bestellt und bekommen hat, als
auch dass sie vorm Verlassen des Restaurants gegessen und bezahlt hat, obwohl keines die-
ser Ereignisse erwihnt ist. Zusitzlich kann B folgern, welche Personen eine Rolle gespielt
haben: Ein Ober hat vermutlich das Essen gebracht, welches von einem Koch zubereitet
worden ist. A nimmt an, dass bestimmte Fakten allgemein fiir den Horer bekannt sind (com-
mon ground, Stalnaker (2002)), was zum Beispiel das Skriptwissen tiber das Szenario in ein
Restaurant gehen umfasst. Wenn sie die erste Auerung hort, wird Person B eine mentale Re-
prasentation dieses Skriptes aktivieren, welche die erwédhnte Information verfiighar macht.
Aufgrund der Implizitheit von Skriptwissen ist es fiir Maschinen nicht trivial, solches Wis-
sen bei der Verarbeitung von Text zu verwenden. Diese Dissertation behandelt die Rolle
von Skriptwissen fiir einen wichtigen Teilbereich der Computerlinguistik, das automatische

Verstehen natiirlicher Sprache (Natural Language Understanding, NLU).

Skriptwissen umfasst verschiedene Arten von Information:

+ Ereignisse (Events). Ereignisse sind die Hauptkomponenten eines Skriptes. Sie be-
schreiben die einzelnen Schritte, die bei der Durchfithrung eines Skripts ausgefiihrt
werden, wie zum Beispiel bestellen oder bezahlen im Kontext des ein Restaurant besuchen

- Skripts.



« Partizipanten. Skriptwissen beinhaltet Informationen iiber die Personen und Dinge,
die fiir ein Szenario eine Rolle spielen. Diese Rollen werden von konkreten Teilneh-
mern instanziiert, zum Beispiel von Personen wie dem Ober oder Koch, aber auch von

Gegenstinden wie Essen, Besteck oder Geld.

 Temporale Ordnungsinformation. Skriptereignisse sind temporal geordnet. Bestellen
passiert zum Beispiel in der Regel vor dem Essen, welches wiederum vor dem Ereignis

zahlen passiert.

Im Rahmen dieser Dissertation wird eine Skriptrepriasentation in der Form von Paraphra-
senmengen nach Regneri et al! (2010) zugrunde gelegt. In dieser Reprisentation werden
Skript-Ereignisse durch Mengen von kurzen Beschreibungen dargestellt, die Formulierungs-

alternativen fiir das Event bieten.

ORDER

Abbildung 1: Ein Beispiel-Graph fiir das ein Restaurant besuchen - Skript.

Abbildung [l| zeigt einen Beispiel-Graphen fiir das Restaurantbesuch - Skript. Ereignisse wer-
den durch die Knoten symbolisiert. Jedes Ereignis ist mit einer Paraphrasenmenge assoziiert:
Warten beispielsweise wird durch die Ereignisbeschreibungen wait for your food, wait for the
waiter to bring your food etc. dargestellt. Die Kanten zwischen den Knoten stellen die typische

temporale Abfolge dar: Bestellen passiert (iblicherweise) vor warten.

Im Rahmen dieser Arbeit benutzen wir ein spezielles Skript-Corpus: DeScript (Wanzare et al.,
2016) ist ein Corpus mit Skriptdaten zu einer groflen Anzahl unterschiedlicher Alltagsszena-
rien. Das Corpus enthilt sogenannte Eventsequenzbeschreibungen (Event Sequence Descripti-
on, ESD), d.h. kurze Sequenzen von einzelnen Eventbeschreibungen im Telegrammstil, die
einen ,,Durchlauf*“eines Skripts beschreiben. ESDs in DeScript wurden durch Webexperi-

mente erstellt, bei denen eine grofle Anzahl von Teilnehmern einfache Aufgaben fiir ein



geringes Entgelt erledigen. Diese Technik wird Crowdsourcing genannt und spielt auch fiir
diese Arbeit eine zentrale Rolle. Teilnehmer an Crowdsourcing-Experimenten werden im

Folgenden als Arbeiter (von engl. ,,worker*) bezeichnet.

Um eine Skriptrepriasentation aus Paraphrasenmengen auf Grundlage solcher ESDs zu er-
zeugen, konnen einzelne Eventbeschreibungen (EDs, d.h. Beschreibungen von einzelnen
»Schritten®) unter Zuhilfenahme von temporaler Ordnungsinformation automatisch zu Pa-
raphrasenmengen geclustert werden (Regneri et al., 2010; Wanzare et al., 2017). Fiir 10 der
Szenarien in DeScript wurden Gold-Paraphrasenmengen fiir Ereignisse hdandisch erstellt. Je-
de Paraphrasenmenge ist zudem mit einer sprechenden Bezeichnung versehen, welche den

Event-Typ indiziert.

Skript-Parsing in natiirlichen Texten. Im ersten Teil dieser Dissertation betrachten wir
die Aufgabe des Skript-Parsing, eine grundlegende Voraussetzung dafiir, Skriptwissen fiir
Anwendungen zugédnglich zu machen. Die Idee des Skript-Parsens ist es, die Ereignis- und
Partizipant-Labels eines Skripts auf den Text abzubilden, der verarbeitet werden soll. Durch
diese Alignierung kann Skriptwissen zuginglich gemacht werden, das nicht explizit im Text
realisiert wurde. Ein Skriptparser soll dabei nur auf der Skriptreprisentation trainiert wer-

den, um auf beliebigen Texten angewandt werden zu konnen.

ENTER
RESTAU
-RANT

[y

Andrea ent'ered;"[he restaurant and sat down at/a table near the window.

She ordered a nice sirloin steak and enjO)"ed it when it arrived.

Abbildung 2: Ein Beispiel fiir Ereignis-basiertes Skript-Parsing.

Abbildung P zeigt ein Beispiel fiir Skript-Parsing auf Ereignissen. Die gestrichelten Lini-
en stellen die Abbildung von Ereignissen auf ihre Instanzen in der Restaurant-Erzidhlung
dar. Wenn ein System imstande ist, enjoyed mit dem eat-Ereignis zu alignieren, kann es aus
Skriptwissen folgern und beispielsweise vorhersagen, dass das Ereignis waiting passiert ist,

auch wenn es im Text nicht realisiert ist.



Datensammlung. In einem ersten Schritt befassen wir uns damit, Evaluationsdaten fiir unser
spiter vorgestelltes Skript-Parsing-Modell bereitzustellen. Wir prisentieren InScript, ein
Corpus aus Geschichten zu Alltagsereignissen, wie z.B. Busfahren, einen Baum pflanzen oder
einen Kuchen backen. Jeder Text bezieht sich auf genau ein Szenario. Das Corpus wurde durch
Crowdsourcing gewonnen und enthilt 910 Texte zu den 10 Szenarien, zu denen es Gold-

Paraphrasenmengen in DeScript gibt.

Zusammen mit den Texten stellen wir eine volle Ereignis- und Partizipantentypannotation
bereit. Jedes Verb wurde hiandisch mit einem Eventtyplabel und jedes Substantiv mit einem
Partizipantentyplabel versehen. Die verwendeten Labels basieren auf manuell erzeugten,
szenario-spezifischen Templates. Die Labels sind identisch mit den Eventtyp-Labels in De-
Script, der dieser Arbeit zugrunde liegenden Skriptreprisentation. So kann jedem verwen-
deten Eventtyplabel in InScript eine Paraphrasenmenge in DeScript zugeordnet werden. Auf
diese Weise stellt die Annotation einen Goldstandard fiir unser Skriptparsing-Modell dar,

welches auf DeScript trainiert und auf InScript evaluiert werden kann.

Datenanalyse. Weil unsere Arbeit den ersten direkten Versuch des Skriptparsings darstellt,
war es zu Beginn weitgehend unklar, wie schwierig die Aufgabe ist, und welche Art der lingu-
istischen Information von Relevanz ist. Um dies abzuschétzen, prasentieren wir die Ergeb-
nisse einer weiteren Annotationsstudie. In dieser Studie wurden Paare von Event-Instanz
in InScript mit entsprechender Paraphrasenmenge in DeScript verglichen und mit einem
Label versehen, welches die semantische Beziehung zwischen den beiden darstellt, wie z.B.

Synonymie, Entailment oder Inferenz.

Eine Analyse der Resultate zeigt, dass Paraphrasenmengen die Schwierigkeit des Skriptpar-
sens massiv reduzieren. Mit steigender GrofRe dieser Mengen steigt die Wahrscheinlichkeit,
dass das gleiche Verb zum Beschreiben des Events im Text und in der Skriptreprésentation
benutzt wird, wodurch die Alignierung trivial ist.

Skriptparsing-Modell. Ein zentraler Bestandteil dieser Arbeit ist die Realisierung eines Mo-
dells zum Skriptparsing. Das prisentierte Modell ist der erste skalierbare Skriptparser, der
auf beliebigen Paraphrasenmengen trainiert werden kann. Das Modell ist als Linear-Chain
Conditional Random Field implementiert, welches auf ESDs trainiert wird. Das Modell be-

nutzt implizit die temporale Ordnungsinformation von Ereignissen.

Wir zeigen, dass die Ordnungsinformation einen essentiellen Beitrag zur Performanz un-



T  Iwanted to plant a tree. I went to the home and garden store and
picked a nice oak. Afterwards, I planted it in my garden.

Q1 What was used to dig the hole?
a. a shovel b. his bare hands

Q2 When did he plant the tree?

a. after watering it b. after taking it home

Abbildung 3: Ein Beispiel fiir einen kurzen Text mit zwei Leseverstehensfragen.

seres Modells liefert, und dass das Modell Baseline-Systemen ohne Ordnungsinformation
iiberlegen ist. Auf Grundlage der Entailment-Annotationen zeigen wir auflerdem, dass un-
ser Parser in der Tat von grofen Paraphrasenmengen profitiert, aber dass ein grofRer Teil
der Alignment-Fille komplexe Inferenz erfordert, die von unserem Parser nur teilweise mo-

delliert werden kann.

Skriptwissen fiir Maschinelles Leseverstehen. Im zweiten Teil der Dissertation legen wir
den Fokus auf eine konkrete Anwendung im Bereich NLU: Maschinelles Leseverstehen (eng.
Machine Comprehension). Maschinelles Leseverstehen ist eine Leseverstehensaufgabe, bei
der Systeme einen Text verarbeiten und Fragen zu dem Text beantworten miissen. Bisher
wurde Skriptwissen hauptsichlich in technischen Evaluierungen getestet, d.h. durch den
Vergleich mit einem Skript-Goldstandard. Wir stellen zum ersten Mal einen Evaluations-

rahmen fiir Skripte vor, der auf einer konkreten Aufgabe im Bereich NLU basiert.

Abbildung H illustriert die Idee. Gezeigt ist ein Textausschnitt mit zwei Leseverstehensfra-
gen und je zwei Antwortkandidaten. Fiir Menschen ist es trivial, die Antwort auf beide Fra-
gen zu finden: Eine Schaufel wird in der Regel dazu genutzt, Locher zu graben; und ein
Baum wird erst nach dem Wissern gepflanzt und nicht vor dem Kaufen. Diese Informatio-
nen sind nicht im Text gegeben, konnen aber aus dem Skriptwissen iiber das Szenario einen
Baum pflanzen erschlossen werden. Fiir ein System muss solche Information also aus Hinter-
grundwissen erschlossen werden, da sie nicht aus dem Text entnommen werden kann.

MCScript. Als Teil dieser Arbeit haben wir MCScript entwickelt, den ersten Datensatz, der
den Beitrag von Skriptwissen fiir Maschinelles Leseverstehen bewerten soll. MCScript ist

ein Corpus aus 2.100 narrativen Texten zu 110 Szenarien. Ahnlich wie in InScript sind Tex-



te in MCScript kurze Geschichten zu je einem spezifischen Szenario. Zu den Texten gibt es
insgesamt knapp 14.000 Fragen mit je zwei Antwortkandidaten. Ca. 27% der Fragen erfor-

dern die Benutzung von Skriptwissen (im Folgenden als Skript-basierte Fragen bezeichnet).

Der komplette Datensatz wurde mit dem Crowdsourcing-Verfahren gesammelt. Texte ha-
ben wir nach demselben Verfahren wie bei der Erstellung von InScript erzeugt. Anspruchs-
volle Fragen, die die Benutzung von Skriptwissen erfordern, wurden auf Basis einer neuen
Methode der Fragesammlung erzeugt. Wahrend der Fragesammlung haben wir den Arbei-
tern keinen konkreten Text gezeigt, sondern nur eine kurze Beschreibung des Szenarios. Die
Arbeiter wurden dann dazu angeleitet, zu typischen Ereignissen und Partizipanten eines
Szenarios Fragen zu stellen. Die so erzeugten Fragen wurden zufillig mit Texten des glei-
chen Szenarios gepaart. Anschliefend wurde in einem dritten Crowdsourcing-Experiment
eine Antwortsammlung durchgefiihrt. Hierbei sollten Arbeiter explizit annotieren, ob eine
Antwort aus dem Text ablesbar ist oder durch Hintergrundwissen inferiert werden muss.
Auflerdem wurde den Arbeitern die Moglichkeit gegeben, Fragen als nicht beantwortbar

zuriickzuweisen.

Experimente. Im Rahmen dieser Arbeit wurden verschiedene Baseline-Systeme implemen-
tiert und trainiert, um die Schwierigkeit des Corpus’ abzuschitzen. Auflerdem wurde MC-
Script von uns fiir einen Shared Task im Rahmen der SemEval-Workshopreihe benutzt, bei

dem den Teilnehmern auch Ressourcen fiir Skriptwissen zur Verfiigung gestellt wurden.

Die Resultate unserer Experimente und des Shared Tasks zeigen, dass die Fragen in MC-
Script besonders fiir die Baseline-Modelle schwierig zu beantworten sind und dass der Da-
tensatz generell anspruchsvoll ist. Allerdings kommen wir auch zu unerwarteten Erkennt-
nissen: Erstens finden wir, dass Skriptwissen nicht notig ist, um auf den Daten eine gute
Performanz zu erreichen. Zweitens ergeben unsere Untersuchungen, dass Skript-basierte

Fragen nicht schwieriger zu beantworten sind als andere Fragen.

Basierend auf der Analyse der Resultate eines der am besten abschneidenden Systeme des
Shared Tasks identifizieren wir zwei Griinde fiir diese unerwarteten Effekte: Erstens enthal-
ten die Daten eine groflere Anzahl an Fragen, die unabhéngig von einem Text immer diesel-
be Antwort haben. Dies ist vermutlich darauf zuriickzufiihren, dass Arbeiter die Texte nicht
gesehen haben und Fragen nur auf Basis eines Szenarios formuliert wurden. Zweitens gibt

es eine bestimme Anzahl an Fragen, die nach sehr generellen Informationen tiber ein Szena-



rio fragen, was wiederum Inferenz tiber eine generelle Art von Allgemeinwissen erfordert,
welches nicht von Skripten abgedeckt wird.

MCScript2.0. Basierend auf diesen Erkenntnissen haben wir eine Revision der Fragenerzeu-
gung vorgenommen und ein neues Corpus erstellt, MCScript2.0. In dem Experiment zur Fra-
geerzeugung wurde Arbeitern dieses Mal ein konkreter Text gezeigt. Arbeiter wurden dann
dazu angehalten, Fragen zu markierten Nominal- und Verbalphrasen zu formulieren. Der
komplette Satz, der die Phrasen beinhaltet, wurde danach aus dem Text geloscht. Arbeiter,
die sukzessive Antworten formulieren sollten, waren dadurch gezwungen, die entsprechen-
de Information aus Hintergrundwissen zu inferieren, weil sie diese nicht mehr aus dem Text
entnehmen konnten.

MCScript2.0 umfasst mehr als 3.400 Texte bei mehr als 19.000 Fragen. Die Anzahl an Skript-
basierten Fragen in MCScript.2.0 ist im Vergleich zu MCScript signifikant grofer, bei iiber
50%. Mit mehreren Modellen schitzen wir die Schwierigkeit von MCScript2.0 ab, unter an-
derem mit dem Gewinnermodell des Shared Task. Wir zeigen, dass Skript-basierte Fragen
nun fiir Modelle ohne Zugriff auf Skriptwissen schwieriger zu beantworten sind. Auflerdem
zeigen wir, dass selbst das Top-Modell, welches einen Wissensgraphen fiir Allgemeinwissen
(ohne Skriptwissen) verwendet, systematische Schwierigkeiten hat. Dies legt nahe, dass eine
wichtige Teilklasse von Leseverstehensfragen in MCScript2.0 Skriptwissen zur Beantwor-

tung erfordert.



Fiir meinen Vater.
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Chapter 1

Introduction

For ages, humanity has sought to find out what Intelligence is. In the first half of the twentieth
century, research had proven that the human brain is basically a network that fires electric
pulses between billions of neurons. Modeling such a network with a computing machine
seemed interesting, since it would be the first step for enabling a computer to “think” like
humans. Such ideas of an automated modeling of brain function were fueled by influential
works on computation theory (Turing, [1937) and information theory (Shannon, |1948): The
first steps towards modeling Artificial Intelligence began. At the time, these notions were
merely theoretical, since there were only a few computers available; and these lacked the
computing power to actually run and test neural models. Nevertheless, the interest in the
topic was sparked. Two main events helped to establish the field of Al:

First, Alan Turing proposed in the 1950’s, that a machine would be truly “intelligent” if it
could carry a conversation with a human counterpart that was natural enough to trick the
human into believing she was not talking to a computer (Turing, 1950), an idea known as the
Turing Test. At the time of publication, the thought of having a computer that was intelligent
enough to trick a human was futuristic and unachievable within decades.

Second, the Dartmouth Summer Research Project on Artificial Intelligence was held in 1956.
The summer school is nowadays often seen as a starting point for modern research on Al In

the meeting, John McCarthy and colleagues formally established the research field, gave it
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its name and built a first, small community of people interested in formalizing and modeling

AL

Since these early attempts on Al, the research field has emerged as one of the most impor-
tant areas of computer science. Research on Al has made rapid progress, fueled by an abun-
dance of computing resources: According to Moore’s law (Moore, 1965), computing power
doubles roughly every second yearﬂ, paving the way for complex software and learning al-
gorithms. Also, the advent of machine learning, and, more recently, deep learning and arti-
ficial neural networks, made it possible to use vast amounts of data for training intelligent

systems.

Very prominently, methods of Natural Language Processing (NLP) have benefited from this
trend: Personal assistants such as Siriﬁ and Google Assistantﬁ, that are able to communicate
with a user via natural language, are neatly integrated into our personal lives. Speech recog-
nition is integrated into many devices that we use every day (cf. e.g. McGraw et al. (2016)).
There has been a lot of progress in the area of question answering: Web search engines such
as WolframAlphaH enable a user to ask natural language questions and retrieve answers
from the web. The Watson AIH, another system that is able to answer natural questions by
looking up answers on the web, became famous because it was able to beat expert human

competitors in the quiz show ]eopardyH.

By design, such intelligent systems are highly specialized and tailored for the task at hand:
Text understanding systems are good at reading a text and answering special kinds of ques-
tions based on it, but often unable to answer questions that ask for details that are trivial
for humans, but that go beyond what is written in the text.

An example is shown in Figure , which shows a failed search query in WolframAlpha.
The search engine is unable to find an answer to the question Who prepared a drink for James
Bond at the bar? on the web, although this situation appears in the majority of James Bond

movies, and there are movie scripts available on the web. We as humans are able to find the

!Actually, the law predicts that the number of transistors in a dense integrated circuit doubles every two

years, which is no guarantee for a doubling of the computing power - but it still remains a rough estimate.
’https://www.apple.com/de/ios/siri/
Shttps://assistant.google.com/
‘http://www.wolframalpha.com/
Shttps://www.ibm.com/watson/
‘https://www.nytimes.com/2011/02/17/science/17jeopardy-watson. html


https://www.apple.com/de/ios/siri/
https://assistant.google.com/
http://www.wolframalpha.com/
https://www.ibm.com/watson/
https://www.nytimes.com/2011/02/17/science/17jeopardy-watson.html
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% Wolfram

Who prepared a drink for James Bond at the bar? =]

@© Wolfram|Alpha doesn't understand your query

Showing instead result for query: James Bond

Figure 1.1: A failed search query in WolframAlpha.

correct answer the bartender, since we have access to Commonsense Knowledge (van Holthoon
and Olson, [1987). It is defined as “the basic level of practical knowledge and judgment that
we all need to help us live in a reasonable and safe way” i and contains the information that

drinks in bars are prepared by bartenders.

Although these types of inference are very natural for humans, enabling computer programs
to perform such commonsense-based inferences remains a widely unsolved problem. The
reasons for this are two-fold: First, the acquisition and representation of commonsense
knowledge is an open problem and a topic of research. A system that is able to find an
answer for the question would need a representation of the fact that bartenders prepare
drinks. Second, making commonsense knowledge available for a computer system is chal-
lenging. A system does not only need a representation of the information that bartenders
prepare drinks, but it also needs to associate and align this information with the question in

order to make use of it.

The information that bartenders prepare drinks in bars is subsumed by Script Knowledge,
one of the most interesting types of commonsense knowledge and a focus of this disserta-
tion. Script knowledge is knowledge about everyday activities, such as going to a restaurant,
planting flowers, ordering pizza etc. Specifically, it is knowledge about the typical steps that
are performed in an activity, together with the persons and things that play a role in the ac-
tivity. In the example, script knowledge about the going to a bar activity would subsume the

fact that bartenders prepare drinks in bars.

The term script knowledge was first introduced by Schank and Abelson ([1975) and later re-

fined by Barr and Feigenbaum (1981)), who define Scripts as building blocks for knowledge

‘https://dictionary.cambridge.org/dictionary/english/common- sense


https://dictionary.cambridge.org/dictionary/english/common-sense

1. Introduction 5

about everyday procedures, stored in the human memory. The theory of script knowledge
is also grounded in cognitive psychology. Graesser et al. (1979) for example found evidence
that humans process everyday activities by recalling former instances of the same activity,
building script-like structures in their brain as a consequence. Adams and Worden (1986)
found that script knowledge is acquired at a very young age and refined over time: With
increasing age, humans get better at identifying atypical episodes in scripts. These findings
strongly suggest that scripts are notlearned at any one point in time, but by repeatedly being

exposed to standardized situations in a natural everyday environment.

1.1  Script Knowledge

In this section we lay formal basics for the concept of script knowledge. A more elaborate

discussion of different representations and related work can be found in Chapter H

1.1.1  Script Structure

Scripts contain commonsense knowledge about everyday activities. Since there are many
different types of such activities, there are as many different types of scripts that describe

them. There are several elements that make up a script:

Scenario. Scenarios are different types of everyday activities that are described by script
knowledge. In this thesis, we will use sMALL caPs for scenario names. Some examples are
VISITING A RESTAURANT, CLEANING THE FLOOR, OF TAKING A BUS . Scripts can describe various
aspects of everyday life: Some belong to the domain of leisure activities, such as GOING ON
VACATION, PLAYING TENNIS, GOING BOWLING, some describe household duties such as CLEAN-
ING THE KITCHEN, Or MAKING A BED, or transportation activities, such as GOING ON A BUS or

DRIVING A CAR, and so forth.

Often, there is no sharp line between scenarios, and there are scenarios that complement
or overlap each other: When going on vacation, one usually takes a plane, and a taxi to the
airport. The TAKING A TAXI script can thus be a part of FLYING IN A PLANE, which is a part
of GOING ON A VACATION, and so forth. Several scenarios — and as a consequence several

scripts — can be activated within a single narration.
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Figure 1.2: An example script graph for the GOING TO A RESTAURANT scenario.

Events. The main components of a script are events. Each event describes an action that
takes place in a scenario, such as ORDER Or EAT in the GOING TO A RESTAURANT script. Figure
shows events of the GOING TO A RESTAURANT scenario, such as the aforementioned ORDER
or EAT, and other events, such as FIND A SEAT Or GET SEATED. As for scenarios, we will use

SMALL CAPs for event types.

In natural language, there are many ways in which events can be expressed: The EAT event

for example can be referred to as in Examples H through H

(2) Andrea ate her steak.
(3) Andrea enjoyed her steak.

(4) Andrea gulped down her steak.

Although the verbs in the examples are different, they all describe the same event type within

the GOING TO A RESTAURANT SCENARIO.

Participants. Script knowledge contains knowledge about the participants of a scenario. Par-
ticipants are the roles of a script, which are instantiated by persons or things that play a role
in the script. Examples for participants in the GOING TO A RESTAURANT script are the GUEST,
the WAITER, MONEY etc. Typically, certain participants are associated with specific events.
GuEesT and wAITER will usually participate in the ORDER event, while the latter is normally
not involved in EAT. Still, each participant type is usually active and accessible throughout
the whole script. We will use sMALL caPs also for participant types.

Like events, participants can be referred to in various ways. There are two levels of varia-
tion. First, a participant role can be filled with completely different types of entities. Steak,
salad or pasta could all be instances of the Foop participant within one narration. Second,

the same participant can be referred to using expressions of differing granularity: Depend-
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ORDER

- tell the waiter what you want

|
1
1
- order steak E
1
1
1

Figure 1.3: Representing events as paraphrase sets.

ing on the narration, the FooD participant can be referred to as food, beef, tasty and juicy fillet

and so forth.

Event Structure and Temporal Order. Script events are temporally ordered. For example,
EAT typically comes after wait, and is followed by pay. To illustrate this temporal ordering
information, scripts can be portrayed as directed graphs, as shown in Figure . The vertices

stand for script events, the directed edges show the typical temporal ordering of the events.

It is assumed that scripts have a partial ordering (Regneri, 2013), rather than a strict temporal
ordering structure. Consider the GOING TO A RESTAURANT scenario: Usually, pay comes after
EAT, but it is also possible that PaY precedes EAT, for example in a fast food restaurant. Also,
there are events that are optional in a script scenario, such as GIVE A TIp, and some events

can be alternatives to others, such as WALK TO RESTAURANT and DRIVE TO RESTAURANT.

While the temporal order of events will be addressed in this dissertation, there are script
representations that additionally encode other relevant types of relational information not
covered in this work. An example is causality: The event EAT is only plausible if the guest
has received his or her food, and GET SEATED can only take place, if the restaurant was entered
before. Causality is usually encoded by means of pre- and post conditions (Arnold, 2016).
Preconditions are conditions that need to be fulfilled in order for an event to happen: A
precondition of the EAT event is that the food was brought to the table. A postcondition
defines a state of the world after an event is executed. A postcondition to EAT is for example

that the food is gone.

Representing Scripts. There have been several efforts to represent script knowledge in com-

putational linguistics research. In this thesis, we will follow Regneri et al, (2010) and rep-
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Name Commerce_Pay

Buyer
Goods
Frame Elements | Money
Rate
Seller

disburse.v, disbursement.n
Predicates pay.v, payer.n, payment.n

shell out.v

Figure 1.4: The Commerce_Pay frame, from FrameNet (Ruppenhofer et al., 2006)

resent scripts in terms of paraphrase sets. Here, each script event is represented as a set of
short, telegram-style phrases that describe the event in simple words. Figure shows
paraphrase sets for some events in the GOING TO A RESTAURANT script. Parallel to events, par-
ticipant types are represented as sets of noun phrases describing the respective type. Such
paraphrase sets provide important linguistic realization variants of both participants and
events, which can be utilized in applications that require script-based inference. We will

elaborate on paraphrase sets and other script representations in Chapter .

1.1.2  Scripts and Frames

The theory of Frame Semantics (Fillmore, 1982) is related to script knowledge. The frame
semantic theory assumes that a single word cannot be understood without knowing about
semantic concepts that are related to the word. All the concepts that are required to under-

stand the full meaning of a word are organized in so-called frames.

An example is the verb pay. Frame semantics defines that in order to understand the mean-
ing of the word pay, one needs the knowledge that there is for example an object that is paid
for, a person that pays, and a means of payment. These concepts, also referred to as roles,
are part of the frame that is associated with the verb pay. Figure [1.4 shows the frame that is
associated with pay, Commerce_Pay, taken from FrameNet (Ruppenhofer et al,, 2006), a large

database of common frames for English. The example lists all roles that are associated with
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Figure 1.5: Frame analysis (left) and Script analysis (right).

the frame (referred to as Frame Elements in FrameNet): In the Commerce_Pay frame, there is

for example a Goods role, i.e. the thing that is bought by the Buyer from the Seller.

FrameNet also lists predicates, which are frame-evoking elements, i.e. the verbs or nouns
that activate a frame. In the example, verbs like pay or disburse are listed as words that
evoke the Commerce_Pay frame. This information can be used to identify the most prominent

frame-evoking elements in a text.

Since frames usually describe single actions, they are similar to script events: A verb that
evokes the Commerce_Pay frame can instantiate the pAY event of the GOING TO A RESTAURANT
script, as shown in Figure . The nouns that fill the frame roles correspond to instances of
script participants: Andrea fills the Buyer role in the frame analysis, and it instantiates the
GUEST script participant. In general, an action that expresses a script event evokes a frame
at the same time. Parallel to events, an entity in a narration about some everyday activity

usually instantiates a script participant and fills a frame role.
However, scripts and frames are different in some important aspects:

First, script events are always specific to a scenario, while frames are defined irrespective
of a text genre, domain or topic. Figure also illustrates this: Andrea instantiates the
GUEST participant, but one could also imagine that the sentence takes place in a narration
about GOING TO THE GROCERY STORE, e.g. a situation in which she pays at the grocery store
counter. In this case, Andrea would not instantiate the GUEST participant, but the cUsTOMER
participant. As for the frame analysis, the entity fills the Buyer slot for the Commerce_Pay
frame in both cases.

Second, a central aspect of script knowledge is information about the temporal order of
events, which is not encoded in frames: A script describes a whole chain of actions, i.e. it
is a discourse-level model, whereas a frame only describes a single action. Frames can in

principle also be organized in a way that goes beyond single actions: In FrameNet for exam-
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ple, frames are linked with different relations (such as inheritance, a subsumption relation, or
using, where one frame is a presupposition to the other). FrameNet especially also defines
so-called scenario frames, which describe more complex actions that consist of several sub-
frames. In some respects, such scenario frames are similar to scripts, since they provide
a more structured representation of frame actions that typically occur together. However,

there are not many such frames available in the FrameNet database.

Due to the interrelations between frame and script knowledge, frame knowledge can pro-
vide important information for identifying script events and participants, an aspect that we

will more closely look at in Chapter H

1.2 Making Scripts Accessible for NLP

(5) Person A: “Yesterday, | went to this new Argentinian restaurant to have dinner. I
enjoyed a tasty steak.”

Person B: “What did you pay?”

Script knowledge enables everyday communication between people and makes it highly
efficient. In Example H, the question uttered by person B makes perfect sense, even though
person A never mentioned that he or she paid. While left unmentioned, person B can infer
that A ordered and received food, and that she ate and paid before leaving. Additionally,
B should know that a waiter probably brought the food, which was prepared by a chef. A
assumes a “common ground” (Stalnaker, 2002) with the listener, which in this case contains
script information about the GOING TO A RESTAURANT SCENARIO. Upon hearing the first
utterance, B will activate a mental representation of the GOING TO A RESTAURANT Script,
which makes the aforementioned information accessible.

The fact that this information is left unmentioned can be explained with the Gricean conver-
sational Maxim of Quantity (Grice, 1975), which states that a speaker tries to be as informa-
tive as possible, but just as informative as necessary. In this case, A tries to avoid providing

unnecessary details that are already known to B.

Script Acquisition While inter-human communication benefits from the fact that infor-

mation based on script knowledge is often left implicit, this poses a challenge for the auto-



1. Introduction 11

ENTER
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RANT ‘/
.

Andrea entered’ the restaurant and sat down at’a table near the window.

She ordered a nice sirloin steak and enjO};ed it when it arrived.

Figure 1.6: An example for script parsing.

matic acquisition of script knowledge on a large scale: Extracting script knowledge from
natural texts is difficult, since many events are mentioned very infrequently. One possibil-
ity to circumvent this difficulty is by asking crowd workers to write down explicitly which
steps are needed to conduct a given everyday activity (cf. Chapter H for details). Based on

these crowdsourced data, scripts can be represented as paraphrase sets, as described above.

Script Parsing A fundamental prerequisite to utilize script knowledge for natural language
understanding and inference on text, is to align the events and participants of a script with
the text that is to be processed, a task also known as script parsing, text-to-script mapping or

text-to-script alignment.

Figure IE illustrates the alignment of script events with a short narrative text. The dotted
lines indicate the mapping of events to their instantiations in the restaurant narration. If
a system is able to align enjoyed with the EAT event, it can draw inferences based on script
knowledge on the text and model expectations about what comes next. It can also infer that
the waIT event took place, even if it was not mentioned.

Script parsing is a non-trivial task, and an alignment model needs to be able to cover differ-
ent problems and challenges. First, as mentioned in the last section, there are many different
ways in which the same event can be instantiated. A system that tries to align a script with
a text should be able to recognize that each of eat, enjoy, and gulp down are used to express
the same type of event. This is especially challenging because of words such as enjoy, which
is no paraphrase of eat outside of the script context.

Also, events can be described in both a more and a less explicit way. Example H shows how

the EAT event can be instantiated very explicitly, by mentioning the movement of the fork
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Andrea was looking forwa rd <o enjoy her nice sirloin steak.

When the waiter came, she placed an order.

Figure 1.7: The narrative order of events can deviate from the order in which they actually

took place.

to the mouth and chewing. Both verbs together describe the EAT event.
(6) Andrea moved the fork to her mouth and chewed thoroughly.

Second, another key challenge in the automated alignment of scripts with text is the fact
that the narrative order of events doesn’t necessarily correspond to the order in which the
events actually take place. Figure E gives an example for this. Although the EAT event is
mentioned first, it takes place only after oRDER. A model that leverages script information

needs to abstract away from the textual order in this case.

In some cases, the order in which two events can happen is naturally exchangeable. Exam-

ples H and H are both plausible:

(7) Andrea checked the menu to decide on a main course. She then enjoyed a steak.

(8) After eating her steak, Andrea checked the menu again to choose a dessert.

The event CHECK THE MENU can happen both before or after EaT, with both possibilities being

plausible. A model that assumes a strict ordering of events will struggle with such cases.

Andrea ordered a steak.. Andrea called the waiter and told him that she wanted a steak. She added that

she likes it mediam rare.

Figure 1.8: The granularity of event mentions can differ a lot.
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I went to a restaurant with my friend. We | A customer ordered a cheesesteak from a
each ordered something we liked. The food | waiter with American cheese. The waiter
took forever to arrive. When it did arrive, | forget to tell the cook to use American in-
the waiter apologized for the wait. stead of cheddar. When the waiter realized

the mistake it was too late.

Figure 1.9: Two example stories form the ROC stories dataset (Mostafaza deh et al;, 2016).

Third, events can be instantiated in differing granularity. The sentences in Figure [1.8 both
describe the orRDER event. While the first one consists just of one word, the second mention
of the event is split up into several steps: calling, telling and adding. The problem here is that
the granularity of instantiations of the same event may differ, i.e. several smaller steps can
make up one event in a text. A script representation tries to simplify, by just assuming that
there is only one orRDER event. Such cases are difficult to process: The granularity of event
expressions in a text can differ from the event representation of the script.

In many cases, it is also difficult to tell if a verb in a text instantiates an event of a given
script at all. In Examples H and , the verb enjoy is used in different contexts. In the first
case, it describes an instance of the AT event. In the second case, the verb does not describe
a script event, since enjoying the weather is not a part of the GOING TO A RESTAURANT script.

For a model, this case is critical, since the exact same verb is used.

(9) Andrea went to the restaurant. She sat down and enjoyed a nice steak.

(10) Andrea went to the restaurant. She sat down and enjoyed the nice weather.

Aside from difficulties in recognizing events, there are some more general challenges for
leveraging script knowledge for language processing that go beyond the scope of this thesis
and that will be mentioned only briefly here.

For example, there are many ways in which script knowledge can be activated or evoked.
Figure [1.9 shows the beginning of two example stories from the ROC stories data set (Mos-
tafaza deh et al., 2016). This data set contains 100,000 crowdsourced narrative stories of 5
sentences each that talk about arbitrary everyday activities. Both stories in the example talk
about a restaurant visit, so the GOING TO A RESTAURANT script is activated. In the left story,

this happens very explicitly, using the phrase I went to a restaurant. In the second case however,
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Last night Michael and I went to the lovely Dr Meg’s for dinner . (...) As always when
invited to dinner or lunch or just anywhere that I have the opportunity I stuck my hand
up volunteered dessert, another chance to test the new oven . I tried out this upside down
cake from Bill Grangers, Simply Bill. As [ have mentioned before, [ love plums am always
trying out new recipes featuring them when they are in season . [ didn’t read the recipe
properly so was surprised when I came to make it that it was actually cooked much in
the same way as a tarte tartin , ie making a caramel with the fruit in a frying pan first,
then pouring over the cake mixture baking in the fry pan in the oven before turning out
onto a serving plate , the difference being that it was a cake mixture not pastry . (...) As
I made this very early in the morning when Miss Chloe was sleeping I couldn’t serve hot
out of the oven as suggested , instead serving at room temp with some double cream .
Everyone had 2 big helpings which I think was a pretty good indication that it was a hit,
the recipe is definitely a repeater. As always, Bill didn’t let me down with this cake , soft
cooked plums, sugary caramel on the top with a beautiful moist cake underneath mmm

of course I woke up wishing [ hadn’t left the rest of the cake with Megan, though my body

is thanking me . (...)

Figure 1.10: An example story from the Spinn3r data set (Burton et al., 2009) that talks about

the HAVING DINNER scenario (in blue), as well as BAKING A CAKE (in green).

the restaurant is not mentioned once, but the story starts right away with a mention of the
script event ORDER. A text understanding model that tries to access script knowledge needs

to be able to recognize both kinds of script evocation.

Another characteristic of script knowledge that makes it difficult to use in language process-

ing is the fact that in most narrations, several scripts are intertwined. Figure [1.10 shows a

fragment of a story from the Spinn3r blog story corpus (Burton et al., 2009), a large collec-

tion of blog posts crawled form the web. As can be seen, the story starts out with a HAVING
DINNER scenario (in blue), deviating to a narration about BAKING A CAKE (in green), only to
get back to HAVING DINNER. The fact that often, several scripts are activated throughout a
text, makes the automated alignment of scripts with the text difficult. A more elaborate

example can be found in Chapter H
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1.3 Possible Impact of Script Knowledge

Script knowledge is a fundamental prerequisite for human natural language understanding.
Consequently, there are also numerous NLP problems and applications that would greatly

benefit from the availability of script knowledge.

Question Answering

Text understanding models should in general benefit a lot from the incorporation of back-
ground knowledge in the form of scripts. One very prominent application for text under-
standing models is question answering (QA). The idea is simple: Given a text or a database,
a system has to find the correct answer to a question. In recent years, QA has become a
prominent application in NLP because of the availability of the aforementioned personal
assistants, such as Siri or Google Assistant, whose main purpose is to answer questions posed
by a user. There are various types of QA tasks: For example open QA, in which the answer
needs to be found from a large database, ontology, or the web, and reading comprehension
- based QA (also referred to as machine comprehension), in which a system needs to read a text
and find the answer in the text!.

Most current QA systems utilize complex architectures for reading the text, and finding con-
nections between text/knowledge base, question and answers. However, there are only few
attempts to incorporate external knowledge. One notable exception is Yang and Mitchell
(2017), who use WordNetH (Miller, 1995) and NELL[@ (Carlson et al., 2010; Mitchell et al.,
2015, 2018) to embed knowledge graph triples and enhance the text representation with
them. The knowledge that is used here is purely semantic (WordNet) or factual (NELL).

(11) Itwasalong day at work and I decided to stop at the gym before going home. I ran
on the treadmill and lifted some weights. Once I was done working out, [ went in

the locker room and stripped down and wrapped myself in a towel. I went into the

8For anice overview s. Hirschman and Gaizauskas (2001) or http: //matt -gardner.github.1i0/

paper-thoughts/2016/12/08/reading- comprehension-survey.html
’https://wordnet .princeton.edu/
Onttp://rtw.ml.cmu. edu/Ttw/Kbbrowser/


http://matt-gardner.github.io/paper-thoughts/2016/12/08/reading-comprehension-survey.html
http://matt-gardner.github.io/paper-thoughts/2016/12/08/reading-comprehension-survey.html
https://wordnet.princeton.edu/
http://rtw.ml.cmu.edu/rtw/kbbrowser/
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sauna and turned on the heat. I let it get nice and steamy. I sat down and relaxed. I
stayed in there for only about ten minutes because it was so hot and steamy.

Q1: Where did they sit inside the sauna?

a. On the floor. b. On a bench.

A multiple-choice QA example from MCScript (s. Chapter ), a reading comprehension cor-
pus with a focus on commonsense reasoning, that might benefit from the application of
script knowledge, is given in Example . Here, a human can find the answer to the question
easily: Usually, people sit on benches inside a sauna, and not on the floor. This information
is subsumed by script knowledge about GOING TO A saUNa, but not mentioned in the text.

Question answering and, more specifically, machine comprehension are a central focus of

this dissertation (s. Part [I] of the thesis).

Recognizing Textual Entailment

Textual Entailment is defined as a directed relation between a pair of statements, usually
called text (t) and hypothesis (h): “t entails h if, typically, a human reading t would infer that h
is most likely true.” (Dagan et al., 2006) The task of Recognizing Textual Entailment (RTE) is
to decide, given a text-hypothesis pair, whether the text entails the hypothesis, contradicts it,
or whether they are independent of each other. Similar to QA, RTE is a straightforward
application for text understanding models and thus an interesting area for the application
of script knowledge.

The Stanford Natural Language Inference data (Bowman et al,, 2015) is the largest dataset
for RTE. An example from the data set for an entailment pair that shows how RTE could

benefit from script knowledge from these data is given in :

(12) Text: A man wearing a blue and white plaid shirt is sitting at an outdoor restaurant
table, looking at a menu while a waiter waits to take his order.

Hypothesis: The man is deciding what to order.

"Note that there are also multiple other flavours of RTE with differing degrees of entailment relations:

Partial entailment, reverse entailment, etc.
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ORDER is not contained in the text, but a valid event in the GOING TO A RESTAURANT scenario.
Also, script knowledge would imply that Look AT A MENU is usually followed temporally by
DECIDE WHAT TO ORDER, which could help in recognizing the entailment between text and

hypothesis.

Coreference Resolution

A coreference resolution system tries to identify all expressions in a text that refer to the
same entity. Script knowledge provides important information that can be leveraged for

coreference resolution.

First I moved my soap and shampoo down to the side of the

tub instead of/on their normal shower shelf, then started the water running.

Once I got ithof, but not too hot, I closed the drain so the tub would start to fill up .

Figure 1.11: Script knowledge can improve coreference resolution systems.

The text in Figure [1.11 is taken from the InScript corpus (s. Chapter H) and illustrates the

idea. When running the Stanford CoreNLP coreference resolution system@ on the two sen-
tences, the system identifies my soap as antecedent of it, which is not correct. If the model
had access to script knowledge, this would help to find that in the TAKING A BATH script, the
water is usually heated up rather than the soap, which would in turn help to find the correct
antecedent.

Script knowledge has been successfully used to predict upcoming discourse referents, a task
that is highly related to coreference resolution. Modi et al. (2017) show that a discourse

referent prediction model can be improved with script-based features.

Phttps://corenlp.run/, CoreNLP version 3.9.2, as tested on Jun 17, 2019


https://corenlp.run/
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Text Generation

I decided to go to the grocery store and get in my car and drive to the shop and get a list
of things that I need to buy. I put my groceries in the cart, and then to took my cart to

UNK where [ would get the items on the list.

Figure 1.12: An example generated story from Shkadzko (2017).

In the area of narrative story generation, script knowledge has a major impact. Based on

script data, coherent narrative texts can be generated. Figure [1.12 shows a narrative story

from Shkadzko (2017) that is generated based on script data only.

The example illustrates that the task is feasible, but it also shows that there is space for im-
provement. There is a small inconsistency in the plot: The shopping cart is mentioned, al-
though it was never taken from the parking spot. Causal script information would help here,

a shopping cart needs to be taken before you can put the bought stuff into it.

1.4 Thesis Structure

In this section, we provide an overview of the structure of this dissertation.

Part I: Introduction and Background

In Part H of this thesis we provide basic background for the topics covered in this thesis. In
Chapter , we give a general introduction and motivation for the idea of aligning scripts
with narrative texts and highlight some of the challenges. We also cover NLP applications
that could benefit from the inclusion of script knowledge.

In Chapter , we present recent efforts on learning and representing script knowledge. We
present models that represent scripts as paraphrase sets and some alternatives to this repre-
sentation. We discuss differences and commonalities of the representations and give a brief

summary of efforts for representing other kinds of commonsense knowledge.

Part II: Identifying Scripts in Natural Texts

Part @ of this thesis presents data collection and annotations efforts, as well as models for the
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task of mapping scripts to texts, which is a central prerequisite for making script knowledge

available in NLP applications and a pivotal topic of this dissertation.

In Chapter H, we first introduce and motivate the task of script parsing, in which script events
are aligned with event mentions in narrative texts. We provide an overview of the single
sub-tasks that are part of script parsing, investigate potential challenges and give a short

overview of related work.

In Chapter H, we present the InScript corpus, a collection of 910 narrative texts with a full
annotation of script event and participant types. This corpus serves as a gold standard for
our script parsing models and annotations and provides an unique opportunity for investi-

gating script knowledge instantiations in narrative texts.

Chapter H describes an annotation project that was conducted on pairs of event mentions
in InScript and the corresponding script events in the DeScript corpus, a resource of script
knowledge in the form of event paraphrase sets. We annotated each pair of event mention
and corresponding event paraphrase set with an entailment label, indicating the kind of
semantic inferences that needs to be modeled to align the mention with the event. this an-
notation gives an insight on the types of semantic relations that need to be modeled in script
parsing.

Our script parsing model is described in Chapter H Together with similarity-based base-
lines, we present a conditional random field model which leverages temporal ordering in-
formation about script events for aligning event mentions in narrative texts with event para-

phrase clusters. We conduct a thorough analysis of the results and discuss possible problems.

Part III: Script Knowledge for Text Understanding
In Part [[I1 of this thesis, we shift the focus to an end-to-end application for evaluating the

contribution of script knowledge: Story understanding and machine comprehension.

In Chapter H, we give background information on the topic. Story understanding has been
proposed as an evaluation for script knowledge before, and we present a review of early sys-
tems and applications in this area. We also present machine comprehension corpora with a
focus on evaluating other types of commonsense knowledge inferences, as well as other tasks
for evaluating commonsense inference. Finally, we talk about the most common machine

comprehension corpora and system architectures (without a focus on commonsense-based
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inference).

Chapter H describes the data collection effort for MCScript, a multiple-choice machine com-
prehension corpus with a focus on challenging inferences based on commonsense knowl-
edge and, more specifically, script knowledge. We describe a novel question collection method

resulting in challenging questions and provide an exhaustive data analysis.

Experiments on the data are described in Chapter H We provide several benchmark models
and present the results of a shared task that was conducted using MCScript. One of the
central findings is that commonsense knowledge is not necessarily required to perform well

on MCScript, and that the possible contribution of script knowledge especially is restricted.

We thus revised the data collection process, in particular the question collection, which is
described in Chapter . We present MCScript2.0, a revision of MCScript focused on script
events and participants that are mentioned in the reading texts. We show that benchmark
models as well as a state-of-the art system that makes use of ConceptNet (Speer et al., 2017)
struggle on the new data, in particular on questions that require script-based inference. This
implies that the data provide more challenging test cases that require models to make use of

script knowledge.

Part IV: Future Work and Conclusions
Part @ concludes the thesis. In Chapter , we talk about possible improvements of our
script parsing models and discuss ways for incorporating script knowledge into machine

comprehension models. In Chapter |12 we recapitulate the basic contributions of this thesis.

1.5 Contributions of this Thesis

This thesis investigates how script knowledge is instantiated in narrative texts by providing
adata collection of script-instantiating texts, as well as annotations on the data. To the same
end, this thesis presents the first scalable script parsing model. Furthermore, we provide two
corpora for the end-to-end evaluation of script knowledge in a machine comprehension
setting, as well as benchmark experiments on the data. The detailed contributions are as

follows:
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1. The InScript corpus, the first collection of narrative texts that is fully annotated with
script event and participant type labels; joint work with Ashutosh Modi, Tatjana
Anikina Stefan Thater and Manfred Pinkal. The author of this dissertation contributed
especially during the second annotation round, where he modified and adapted the
annotation schemas and supervised the annotation procedure. He also contributed
significantly to write the paper and conducted additional analyses. Results of this
work have been published in Modi et al! (2016); parts of that paper have been taken

over literally into this thesis.

2. Anentailment type annotation on pairs of event mentions in InScript and their respec-
tive paraphrase clusters in DeScript, which illustrates the importance of large script
collections for script parsing; joint work with Hannah Seitz, Stefan Thater and Man-
fred Pinkal. The author of this dissertation advised Seitz in performing and planning
the annotation and conducted annotation revisions as well as additional experiments.

Results of this work have been published in Ostermann et al. (2018¢).

3. The first scalable script parsing model based on a conditional random field which
successfully leverages temporal ordering information about script event sequences;
joint work with Michael Roth, Stefan Thater and Manfred Pinkal. Results of this

work have been published in Ostermann et al. (2017).

4. The MCScript corpus, the first resource for an end-to end evaluation of script knowl-
edge in a machine comprehension setting, as well as a range of benchmark models;
joint work with Ashutosh Modi, Michael Roth, Stefan Thater and Manfred Pinkal.

Results of this work have been published in Ostermann et al. (2018a).

5. A report on the results of a shared task that was conducted on the MCScript corpus,
as well as a discussion about possible reasons for the restricted effectiveness of script
knowledge for machine comprehension models employed in the task; joint work with
Michael Roth, Ashutosh Modi, Stefan Thater and Manfred Pinkal. Results of this

work have been published in Ostermann et al| (2018b).

6. The MCScript2.0 corpus, a revision of MCScript that eliminates the aforementioned

restrictions, as well as experiments on the data which illustrate the complexity of the
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data and the need for more sophisticated models based on script knowledge; joint
work with Michael Roth and Manfred Pinkal. Results of this work have been pub-

lished in Ostermann et al! (2019).

The research leading to the aforementioned contributions 3-6 was mainly conducted by the
author of this thesis, from implementation and evaluation up to the design of annotations
and data collection efforts. Annotations and data collections were conducted by student
asisstants and crowdsourcing workers. The systems investigated for contribution 5 were

implemented by participants of the shared task.

Relevant Publications
The following publications report on parts of the research conducted in the scope of this

dissertation project.

1. Ashutosh Modi, Tatjana Anikina, Simon Ostermann, and Manfred Pinkal. InScript:

Narrative texts annotated with script information. In Proceedings of the Tenth In-

ternational Conference on Language Resources and Evaluation (LREC 2016), pages

3485-3493, Portoroz, Slovenia, May 2016. European Language Resources Associa-
tion (ELRA)

2. Simon Ostermann, Hannah Seitz, Stefan Thater, and Manfred Pinkal. Mapping Texts

to Scripts: An Entailment Study. In Proceedings of the Eleventh International Con-

ference on Language Resources and Evaluation (LREC-2018), Miyazaki, Japan, May

2018c. European Languages Resources Association (ELRA)

3. Simon Ostermann, Michael Roth, Stefan Thater, and Manfred Pinkal. Aligning Script

Events with Narrative Texts. In Proceedings of the 6th Joint Conference on Lexical

and Computational Semantics (*SEM 2017), pages 128-134, Vancouver, Canada, Au-

gust 2017. Association for Computational Linguistics

4. Simon Ostermann, Ashutosh Modi, Michael Roth, Stefan Thater, and Manfred Pinkal.
MCScript: A Novel Dataset for Assessing Machine Comprehension Using Script Knowl-

edge. In Proceedings of the Eleventh International Conference on Language Resources
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and Evaluation (LREC-2018), Miyazaki, Japan, May 2018a. European Languages Re-

sources Association (ELRA)

5. Simon Ostermann, Michael Roth, Ashutosh Modji, Stefan Thater, and Manfred Pinkal.
SemEval-2018 Task 11: Machine Comprehension Using Commonsense Knowledge.

In Proceedings of The 12th International Workshop on Semantic Evaluation, pages

747-757, New Orleans, Louisiana, June 2018b. Association for Computational Lin-

guistics

6. Simon Ostermann, Michael Roth, and Manfred Pinkal. MCScript2.0: A Machine
Comprehension Corpus Focused on Script Events and Participants. In Proceedings of

the Eighth Joint Conference on Lexical and Computational Semantics (*SEM 2019),

pages 103-117, Minneapolis, Minnesota, June 2019. Association for Computational

Linguistics



Chapter 2

Script Knowledge Representations

In this Chapter, we explain the basics for the computational representation of script knowl-
edge. Script knowledge has been of interest in computational linguistics for a long time.
Early script representations were based on handwritten rules for a number of test cases and
test scenarios. An example is the script knowledge representation used by the Script Ap-
plier Mechanism (SAM) (Cullingford, 1978), an early computer program. SAM used script
knowledge in the form of hard-coded, manually created rules and mapped this script repre-
sentation to a simple, hand-constructed text, in order to answer questions on the text. In this
spirit, there were successors to SAM that all used similar script knowledge representations
that were manually created and small in size (Dyer, [1982; Miikkulainen, [1993).

Recent years have seen a growing interest in representing script knowledge on a larger scale,
which makes scripts accessible for applications in Natural Language Understanding (NLU) for
the first time. Such script representations facilitate script parsing on a larger scale, which
plays an important role in this dissertation. Script parsing in turn is an important prereq-
uisite for leveraging the script information for NLU. In Chapter H of this thesis, we will use
one of the presented script representations as a basis for script parsing.

In the next sections, we introduce the most common representations: We first look at scripts
thatare represented as partially ordered paraphrase sets, (semi-)automatically induced from

manually crowdsourced data (Section ). Second, we introduce narrative chains, a repre-



2. Script Knowledge Representations 25

sentation that is automatically learned from large text collections (Section ). Third, we
introduce work on neural script representations that have become more popular in recent
years (Section E).

We present different approaches to induce script representations, show how the script rep-
resentations can be evaluated, and which differences and commonalities between the differ-
ent representations exist (Section @). Script knowledge is a special kind of commonsense
knowledge. More general commonsense knowledge is usually encoded in large knowledge
bases, which have been used in NLU research in recent years. In Section E, we look at such
more general commonsense knowledge representations and introduce the most commonly

used databases.
Table E gives an overview of recent work on representing script knowledge. The table con-
tains references to the publications, the underlying kind of data, some keywords to describe

the model and the evaluation setting that is looked at.



2. Script Knowledge Representations 26
Paper Data Method Evaluation
£ Regnerietal. (2010) Crowdsourced Multiple-Sequence o,P
Gg Alignment
% Frermann et al! (2014) Crowdsourced Bayesian Learning O,P
% Wanzare et al| (2017) Crowdsourced Semi-Supervised o,pP
E Clustering
Chambers and Jurafsky News PMI NC, O
(2008)
2 Jans et al. (2012) News n-Gram Probabilities NC
%‘ Pichotta and Mooney News n-Gram Probabilities + NC
E (2014) Multi-Argument Events
% Rudinger et al. (2015b) News Log-Bilinear Language NC
2 Model
Rudinger et al, (2015a) Restaurant n-Gram Probabilities NC
Stories
Modi and Titov (2014) News + Event Embeddings + O,P
4 Crowdsourced Ranking Function
% Granroth-Wilding and News Event Embeddings NC
% Clark (2016)
§ Pichotta and Mooney Wikipedia LSTMs NC
g“ (2016)
Z. Weber et al. (2018) News Variational NC
Autoencoders

Table 2.1: Overview of models of script knowledge. The evaluation tasks are narrative

cloze/event prediction (NC), event paraphrasing (P) and event ordering (O).
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2.1 Scripts as Paraphrase Sets

Clustering/MSA
I .
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Crowdsourced ESDs Event + Participant Sets

Figure 2.1: Representing scripts as paraphrase sets, based on crowdsourced event sequence

descriptions.

Representation. As mentioned in Chapter , script knowledge comprises several types of
information: Information about the events that take place in the scenario described by the
script, information about the participants that play a role in the scenario, and informa-
tion about the typical temporal order of events. In the representation of scripts in terms
of paraphrase sets, events are represented as clusters of short event descriptions (EDs), each
of which describes the event in question in telegram-style language. Likewise, participants
are represented as sets of noun phrases that describe the respective participant. The right
hand side of Figure 2.1 gives an example: The CHOOSE_RECIPE event is described by a clus-
ter containing the EDs look for R and find R online. The participant cluster that describes the
recipe, R, contains the realizations recipe and recipe book.

The basis for the (semi-)automatic induction of such script knowledge are event sequence de-
scriptions (ESDs). ESDs are short, telegram-style descriptions of a single execution of a given
script activity. The left side of Figure 2.1/ shows 4 example ESDs. Because writing ESDs is

a intuitive and straightforward task for humans, they can be acquired on a large scale via
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crowdsourcing, a fast and cheap method: Existing script collections provide up to 100 ESDs
per script scenario (Regneri et all, 2010; Wanzare et al,, 2016). ESDs are the basis for an

algorithmic induction of paraphrase clusters, as described below.

In the scope of this dissertation, we will assume an underlying representation of script knowl-

edge in terms of such paraphrase sets.

Models and Evaluation. Regneri et al|(2010) use Amazon Mechanical Turk to collect 25
ESDs for 22 different everyday scenarios each. They implement a multiple sequence align-
ment algorithm, which originates from bio informatics, where it is used to align DNA or
protein sequences. Regneri et al. (2010) use the algorithm to align several ESDs. They uti-
lize textual similarity and align EDs across their original ESDs that are (1) textually similar,
and that (2) appear at comparable positions in an activity. The EDs that are aligned by the
algorithm form an event paraphrase cluster. Several post-processing steps are conducted

subsequently in order to clean up the representation.

The typical temporal order of event clusters is read off the original ESDs: If an ED that is in
cluster a preceded an ED that is in cluster b in an ESD, it is assumed that a precedes b.

To evaluate paraphrasing, Regneri et al| (2010) sample pairs of EDs from the same scenario
and let MTurk workers annotate whether the two EDs describe the same event of not. For
evaluating their model, they compare the annotation to the clustering computed by the MSA

algorithm.

Likewise, to evaluate ordering information, they presented a sample of ED pairs to MTurk
workers and let them annotate if the first one would happen before or after the second one.

It can then be evaluated whether a system would predict the same order.

Frermann et al| (2014) implement a Bayesian learning approach that makes use of prior
word correlation information and semantic similarity to induce a predefined number of

clusters on ESDs. They employ the same evaluation method as Regneri et al. (2010).

Wanzare et al! (2017) follow a semi-supervised clustering approach to induce event para-
phrase sets. They use a small number of crowdsourced seeds of EDs that are annotated to
belong to the same cluster to inform an affinity propagation clustering algorithm. The al-
gorithm makes use of both meaning representation features and positional features, which

encode the typical positions of EDs inside an activity. To induce temporal order informa-
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Dependency Parsing + Coreference Analysis
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! \/
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I
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Text Collection Narrative Chains

Figure 2.2: Representing scripts as narrative chains, based on text collections.

tion, they adopt and extend the methodology of Regneri et al. (2010).

Wanzare etal. (2017) manually create gold clusters for a subset of the data from Regneri et al.
(2010) and Singh et al. (2002). This gold standard forms the basis for an even more system-
atic evaluation based on cluster evaluation measures such as B-Cubed (Bagga and Baldwin,

1998).

Likewise, script participant clusters can be induced automatically. Regneri et al. (2011) look
at unsupervised induction of script participant clusters from crowdsourced ESDs. They use
an integer linear program that makes use of semantic similarity and structural information
about which participants typically occur with which events to induce sets of noun phrases

that denote the same participant type.

2.2 Scripts as Narrative Chains

Representation. Another type of representation of script knowledge is based on narrative
chains. A narrative chain is a chain of events extracted from a text, in which the protagonist
of the text plays a role. In contrast to crowdsourced script knowledge, narrative chains are
extracted from large text collections such as news text or blog texts. The left hand side of

Figure 2.2 illustrates the induction of two narrative chains from two texts. As preparation,
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a dependency parser is run on the text. The protagonist for each text is identified based on
a coreference analysis (cf. next section): Peter for the upper text and Mary for the lower text.
A narrative chain is defined as the chain of verbs that have a direct dependency relation to
a mentioning of the protagonist. The chain consists of single events, each of which is a tuple
of the respective verb and the dependency label to the protagonist mention. The right side

of Figure 2.2/ shows the two chains that are extracted from the texts.

Models and Evaluation. The work by Chambers and Jurafsky (2008) established the idea
of narrative chains. They extract all coreference chains from Gigaword (Graff, 2002) and
define the protagonist of the text to be the discourse entity with the longest coreference
chain. Verbs are extracted based on a dependency parse and for each text in Gigaword, one

chain is extracted.

To evaluate their script model, they propose the narrative cloze task. One event in a narrative
chain, i.e. a (verb, dependency label) pair, is hidden and needs to be predicted from all possible
events. To evaluate their model, they rank all possible events with respect to PMI. To get co-
occurrence numbers for computing the PMI, they define that two events are co-occurring
if they appear within the same chain in the corpus. As a performance measure, they average

over the rank of the correct event for all test instances.

Chambers and Jurafsky (2009) generalize narrative chains by looking not only at the pro-
tagonist, but at all participants. A participant corresponds to a coreference chain and is
represented with the most common head noun of the chain. They extend their (verb, depen-
dency label) representation to encode information about such participants: Each event s rep-
resented by a verb and its argument slots (subject, object, and prepositional object), which

are filled with participants.

Jans et al| (2012) use the simple narrative chain representation employed by Chambers and
Jurafsky (2008), but extract narrative chains irrespective of a protagonist: They also extract
chains for discourse referents that do not belong to the longest coreference chain. Also,
they look at event bigrams and compute bigram probabilities of events, which they find to
perform better than PMI-based measures. They evaluate their model using the average rank

as Chambers and Jurafsky| (2008), but also report an evaluation based on recall@50.

Pichotta and Mooney (2014) follow Jans et al| (2012) in using bigram probabilities, but they
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change the event representation such that there is only one chain per text, similar to Cham-
bers and Jurafsky (2009). An event is represented as a tuple of verb, subject, object and
prepositional object. This richer representation contains more information but is also prone
to sparsity problems.

Rudinger et al. (2015b) look at the representation based on (verb, dependency) tuples, but ex-
tend the idea of using probability estimates instead of PMI. They utilize a log-bilinear lan-
guage model on sequences of events, which leads to large improvements as compared to

previous work.

2.3 Neural Script Representations

In recent years, neural script knowledge representations have gained considerable popular-
ity. What these models have in common is that they operate on a structure that is similar
to narrative chains: To our knowledge, all neural models to date use verbs and their argu-
ments, either in the form of narrative chains or directly extracted from a text. The evaluation
of neural script models depends on the exact model formulation and the task. Neural models

are trained both on crowdsourced texts and news texts.

Modiand Titov (2014) implement an event embedding model thatlearns embedding vectors
as event representations, based on verbs and their arguments. They use a linear ranker,
which learns typical event order from the textual order in both news texts and crowdsourced
ESD collections. They evaluate their model on the event ordering task and paraphrasing task
proposed by Regneri et al. (2010).

Granroth-Wilding and Clark (2016) use a similar event embedding model, which is based
on narrative chains and evaluated on the narrative cloze test. Different to previous work,
they introduce a multiple-choice version of the narrative cloze test, in which the correct
event needs to be picked from a number of choices.

Pichotta and Mooney (2016) employ LSTM modules to encode events in a narrative chain
and to predict the missing element in a narrative cloze test. By using a recurrent architec-
ture, their model is able to utilize longer context for the event prediction.

Weber et al. (2018) implement a hierarchical variational autoencoder and evaluate it on

an inverse multiple choice narrative cloze task, in which the complete chain needs to be



2. Script Knowledge Representations 32

identified from several choices, based on the first event. They show that the chains generated

by their model are more consistent as compared to previous efforts.

2.4 Differences and Commonalities

Narrative chains and paraphrase sets both aim to represent script knowledge but differ
in important aspects. These differences imply that narrative chains and paraphrase sets
cannot be used interchangeably and that they are for example not equally well suited for

applications in downstream tasks.

First, the most striking difference is the way in which script events and participants are rep-
resented. While narrative chains represent events based on their surface form - essentially
with verb lemmas and dependency relations - paraphrase sets provide realization variants
for an event and thus a much richer representation. Also, most narrative chain represen-
tations do not provide an explicit representation of script participants. While narrative
schemas represent participants, they restrict the representation to a single text, which pro-
vides less information than a diverse paraphrase set. This difference in representing events
and participants means that narrative chains provide less information for downstream ap-

plications, since they essentially only encode ordering information about verbs.

Second, paraphrase sets can only be learned from (monolingual) parallel standard texts,
while narrative chains can be extracted from text of any kind. Paraphrase sets are usually
induced from a range of texts that talk about a similar scenario and have a similar discourse
structure, such as crowdsourced event sequence descriptions (Regneri et al,, 2010; Wanzare
et al., 2016, 2017) or movie scripts (Regneri and Wang, 2012). This implies that paraphrase
sets are usually created on a smaller scale and only on a restricted number of scenarios,
while narrative chains do not have this restriction and can be extracted from any large text
collection. As a coarse estimation of the actual topical coverage of existing ESD collections,
Wanzare et al, (2017) found that three of the most common collections cover approx. 26%
of the stories in the ROC data set (Mostafaza deh et al}, 2016), a corpus of general everyday-
scenario narrations. This means that there is a large space of topics that is not covered by

paraphrase sets, and that would thus require further data collection efforts.

Third, however, the fact that narrative chains are often learned from news texts results in
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certain restrictions: Script knowledge is usually less apparent and only marginally promi-
nent in the news genre. Scripts address and describe everyday activities, while news texts
rarely cover such topics, but rather talk about politics, economics etc. This implies that the
genre that narrative chains have been learned on in previous work not always provides a
good basis for learning script knowledge: With regard to their discourse mode, news texts
are usually classified as reports and not as narrations (Palmer and Friedrich, 2014). Also,
Chambers (2017) note that many verbs in news texts actually don’t describe script events

at all.

Fourth, certain events are unlikely to be mentioned in texts, even if they naturally occur.
Gordon and Van Durme (2013) refer to this effect as reporting bias and show that certain
events are under-reported in natural texts. This can be attributed to the fact that according
to the Gricean maxim of quantity (Grice, [1975), communication should not provide more

information than necessary - obvious events are often left out.

Paraphrase sets avoid this restriction to a certain extent, since they are usually learned on
very explicit texts. By telling crowdsourcing workers to list all steps that are required for an
activity, the resulting texts are as explicit as possible. However, some cases still remain elu-
sive even in such explicit, crowdsourced texts: In DeScript for example, the event of putting
on the seat belt during a flight is mentioned more than 20 times, while the unbuckling is

mentioned only 7 times, although both events should take place equally often.

Lastly, it is hard to compare neural script representations to paraphrase sets or narrative
chains. Neural script models are always tailored to the task at hand. To date, to our knowl-
edge, there have been no efforts to evaluate neural script representations in an actual NLU

application such as question answering or text summarization.

2.5 Other Commonsense Knowledge Representations

In this thesis, the focus is on script knowledge, a specific kind of commonsense knowledge.
There has been some research on the wider field of commonsense knowledge, in particular
in learning, representing and applying different kinds of commonsense knowledge to var-
ious NLP problems. The focus of research on this topic is mainly on a more general kind

of knowledge about concepts and entities in the world, and their relations to each other,
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organized for example in knowledge graphs. In contrast to this, script knowledge is more
focused on temporal order information and event structure. Both general commonsense
knowledge in the form of knowledge graphs and script knowledge serve a similar purpose:
They both provide background information (of a different kind) and make it possible to draw

inferences that go beyond what is mentioned in a text.

Although this thesis focuses only on script knowledge, we provide an overview of recent
work on commonsense knowledge as organized in the form of large knowledge graphs in
this section because of its similarity to script knowledge. The presented datasets encode
different kinds of background knowledge, covering facts about our world (e.g. information
about presidents of the US), as well as more basic types of knowledge (water is wet) - or

mixtures thereof.

Cyc (Lenat, 1995) is a large, manually created commonsense knowledge database. It con-
tains over 300,000 entities, referred to as individuals, and collections, which are groups of
individuals. Cyc comprises of over 3 million relations, which correspond to predicates in
first-order predicate logic. Relations encode functions (e.g. capital-of), which map individuals
to other individuals, such as capital-of(Paris, France)ﬁl. Also, truth functions are encoded, which
map individuals to truth ValuesB, e.g. is-a(BillClinton, UnitedStatesPresident). Cyc encodes both
factual knowledge about our world (e.g. information about US presidents or information
about the capital of France) as well as more general assertions (“all trees are plants”). To-
gether with the knowledge base as such, parsing and querying tools are provided for a fast
access to the data base. Using the predicate-logic like structure of Cyc, such tools are able
to perform simple logical deduction on entities and relations. This predicate-logic based
structure of Cyc has however been the center of criticism, since it makes the extension of
Cyc complex and requires human workers for this task (Domingos, 2015). Also, the fact that

Cyc is not freely available hinders its usefulness for academic research.

ConceptNet (Speer et al,, 2017) is a large semantic graph that represents general common-

sense knowledge about the world. It encodes information about entities and their connec-

!Entities and relations actually follow certain syntactic patterns which are omitted here for reasons of

brevity.
Numbers are taken from http://www.dave-reed.com/csc550.803/Presentations/

CYC.ppt. Exact and up-to-date numbers are hard to find since the data base is copyrighted and not freely

accessible.
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Figure 2.3: A small excerpt of ConceptNet, taken from Speer and Havasi (2012).

tions to each other (cf. Figure , similar to WordNet (Fellbaum, 1998). It contains 21 mil-
lion edges, encoding the entities, and over 8 million nodes, encoding relations between the
entities. ConceptNet was mainly created automatically by extracting and parsing informa-
tion from various sources, such as the OMCS project (Singh et al,, 2002), Wiktionaryﬂ, Open
Multilingual WordNet (Bond and Foster, 2013), OpenCyc (Lenat, 1995) (a small subset of the
full database, cf. next paragraph) and DBPedia (Auer et al.,, 2007). As a consequence, it en-
codes very different types of knowledge. Since ConceptNet is mostly automatically created,
it is easily extendible, in contrast to Cyc. It does not allow precise predicate-logic based rea-
soning, but is better suited for statistical modeling and has thus been more popular recently.

Also, its free availability is a clear advantage compared to Cyc.

WebChild (Tandon et all, 2017) is a knowledge base that was automatically created from
web contents. It contains over 2 million adjectives and nouns that are mapped to WordNet
senses for disambiguation, and that are connected with over 18 million assertions based
on predicates such as hasShape or hasTaste. In contrast to other commonsense knowledge
databases, WebChild is tightly connected to WordNet, providing word sense disambigua-

tion for its terms. WebChild mostly encodes basic commonsense knowledge, such as the

Shttps://www.wiktionary.org/


https://www.wiktionary.org/
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fact that a die is a type of cube.

NELL (Carlson et al., 2010; Mitchell et all, 2015, 2018) is similar to WebChild in the sense
that it contains commonsense assertions collected from the web. Unlike WebChild, NELL
is based on a machine learning system that constantly scans the web and refines and extends

its knowledge base based on a manually created seed set.

DBPedia (Lehmann et al,, 2015) is a knowledge graph that was automatically extracted from
Wikipedia and contains 400 million facts describing 3.7 million entities. In contrast to other
data bases, DBPedia is multilingual, including information from 111 different language edi-
tions of Wikipedia and only focuses on factual knowledge about named entities that are

mentioned in Wikipedia.



Part I

Identifying Scripts in Natural Texts



Chapter 3

Script Parsing - Background

The focus of the second part of this thesis is on the task of analyzing text-level event struc-
ture. We address script parsing, the automatic mapping of narrative texts to scripts. Script
parsing is the most central prerequisite for leveraging script knowledge for end-to-end tasks
and applications of natural language understanding, since it links the script representation
to the text and makes paraphrase and ordering information of the script representation ac-
cessible. In Section , we explain the basic idea of script parsing and motivate the task by
showing application perspectives. In Section , we move our focus to a more naturalistic
example and illustrate the difficulty of the task with a blog story text. Since the task bears
major challenges, we simplify it for this dissertation. These simplifications and our resulting

contributions are described in Section . Lastly, we describe related work in Section @

3.1 Basic Idea and Motivation

Figure B.1 illustrates the basic idea of script parsing. A fragment of a story about BAKING A
CAKE is shown in the upper part of the figure; with a script fragment in the lower part. In this
dissertation, our script parser will utilize a script representation in the form of paraphrase
sets (cf. Section ), in which events and participants are represented as sets of short formu-

lation variants. The idea of script parsing is to identify verbs in a text that instantiate events
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[ was in the mood for something sweet, so [ decided to bake a cake. 1

looked up a recipe. In my kitchen, I mixed the ingredients for the

\

/
7 \
- \

\ cakeand putitinto the oven. ___---+----_ -
\ (\ - - - \ S~ ~
L \ \‘
CHOOSE_ L PUT_OVEN
RECIPE BUY_INGR. MIX_INGR.

- put cake into

- find recipe || - buy flour || - mix thoroughly ||

oven
- browse for recipe - go to store - use mixer

- bake batter

online

Figure 3.1: An example of script parsing with a story fragment and an excerpt of the BAKING

A CAKE script.

of a given script and align them with the respective event paraphrase sets. Script parsing

subsumes the task of identifying and labeling script participants in the text, which for better

readability is not shown in the figure.

In the example text, look up, mix and put mention script events that appear in the BAKING A
cAKE script. Therefore, they are aligned with the respective paraphrase sets (CHOOSE_RECIPE,
MIX_INGREDIENTS and PUT_OVEN). The auxiliary verb was does not describe an event, so a
script parsing model will not align it. Decide describes a specific action that can generally
appear in many scenarios. In contrast to the other events, it is independent of a concrete
script and is thus not aligned. Bake a cake plays a special role: Rather than describing a
concrete event, it evokes and activates the BAKING A CAKE script. A script parser can use

such script-evoking elements to identify the script that is addressed in the text.

As mentioned, a full script parser also identifies participant mentions in a text and labels
them with participant type labels. It should find that flour, chocolate and ingredients refer to
the INGREDIENTS participant type, while chocolate cake for example refers to the CAKE partic-

ipant.

Script parsing consists of five sub-tasks. These tasks are depicted in Figures 3.2/and , on
the same text as in Figure .
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Script

Database

Text Scenario

Segmentation Identification

After the meeting, [ answered some last emails and got into my car «|

to drive home. I was looking forward to my free evening!

I was in the mood for something sweet, so I decided to bake a cake. I «
looked up a recipe. In my kitchen, I mixed the ingredients for the

cake and put it into the oven.

Figure 3.2: Text Segmentation and Scenario identification based on a script database.

+ Text Segmentation. One important step of script parsing is to identify parts of a text
that talk about a specific scenario. In Figure , this step corresponds to identifying

that the blue and green parts address different scripts.

+ Scenario Identification. Identifying the relevant script scenario is closely connected
to the text segmentation step. A script parser should make use of script-evoking el-
ements such as bake a cake in the example to activate the BAKING A CAKE script and
make it accessible for script parsing. In Figure @, this step corresponds to assigning
different scenario labels to the blue and green parts (WORKING IN A JOB and BAKING A

CAKE, respectively).

+ Event Verb Identification. Given a text fragment that instantiates a specific script, the
next step is to identify verbs that denote script events. This corresponds to finding that

was and decided should not be aligned, and that looked up, mixed and put denote events,

in Figure E

+ Event Type Identification. The most central step is the identification of the event type
of verbs that were previously identified as denoting a script event, i.e. the actual align-

ment of verbs in the text with event paraphrase sets. This corresponds to assigning
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Event Verb Event Type

Identification Identification

I was inythe mood forSomething sweet, so/I decided to bake a cake. I

looked up , I mixed

a regipe.

1t into th€ oven.

/

the 1ngred1ents for the cake d put

Part1c1pant

Identification

Figure 3.3: Event Verb Identification, Event Type Identification and Participant Identifica-

tion.

the purple labels in Figure .

« Participant Identification. Script participant mentions and their participant type
should be identified. The participant type labels are not shown in the figure for better

readability.

In human language understanding, these five subtasks are integrated rather than performed
as single steps. The subtasks are thus not as strictly separable as indicated here. Information
from one task might be useful for other tasks, so ideally, a script parser is an integrated
system in which information can flow from one component to the other. An example is
that participant information is useful for scenario identification, since there are cases in
which the scenario is evoked only based on a participant or event mention (s. Section .

Knowing about a participant type can thus be helpful for finding the current scenario.

Script parsing only makes sense as a task if the underlying script representation is based on

event types: The alignment of narrative chain events with a text is trivial, since events are
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represented with verb lemmas rather than complex types in a narrative chain (cf. Chapter H)
Early script parsers (Cullingford, [1978) used a hand-coded event type representation, which
enabled script parsing. However, a small, hand-crafted script database does not allow script
parsingon alarger scale. In contrast, scalable script parsing is facilitated by a representation
based on paraphrase sets. Large paraphrase sets with a high coverage and a high linguistic
diversity make the parsing task easier, since they provide richer and more training material
for a parser (cf. Chapter H). Also, when the script is aligned with the text, the paraphrase
information on event and participant level is accessible for concrete text processing appli-
cations. Examples include question answering, textual entailment, coreference resolution,

text generation and others, as discussed in Chapter .

3.2 Script Parsing of Naturalistic Texts

The text in Figure B.1 illustrated the basic idea and intuition behind script parsing. In this

section, we look at challenges for script parsing that arise on more naturalistic texts.

The text in Figure @ is a story about everyday activities, taken from the Spinn3r corpus
(Burton et al., 2009), a large collection of blog stories crawled from various web pages. This
text illustrates some of the difficulties for script parsing on naturalistic texts, but does not
even show the most complex cases. As discussed in Chapter @, there are some genres, such
as newswire texts, which refer to scripts only briefly and infrequently, so parsing such a text

will be more challenging.

The text in Figure @ illustrates some of the challenges for text segmentation and scenario

identification:

+ Multiple Scenarios. There can be a large number of scenarios addressed in a single
text. Within one text, the scenario can change several times. In Figure @, at least
three scenarios are instantiated, as indicated by the different colours (VISITING A CON-
VENTION, HAVING LUNCH and TAKING A TOUR). There could also be cases in which a
short text chunk is an excursion into a different topic, such that the chunk that in-

stantiates a scenario is discontinuous.

+ Scenario Granularity. It is not clearly defined which events and participants belong
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Yesterday morning, we couldn’t wait to go over to the Salt Palace convention center to
pick up our new convention bags! Inside were plenty of goodies, including the brand-new
catalog and three new stamp sets! Then I spent almost three hours in line to get into Me-
mento Mall. This is where Stampin’ Up! sells souvenier type stuff. I bought a super cute
new shirt with trimming from the new Windsor Knot designer series papers, a CD-rom
with samples from convention classes, charms, cute chapsticks in our new Designer Se-
ries prints, and other fun things. Next, [ went to lunch with Robin and Dallas. [ really liked
the Coca-Cola pork loin sandwich I had for dinner Tuesday night, so I recommended we
go back to the Nauvoo Cafe for lunch. I'm talking real sandwiches. With real homemade

bread and they carve the meat for your sandwich right in front of you. Yum!

Figure 3.4: Example text from the Spinn3r blog stories corpus (Burton et al., 2009). Script

events are underlined, script-evoking events are marked in italics.

to a particular scenario and which do not. The granularity of scenarios depends on
the script data base. In the green text, the HAVING LUNCH scenario is addressed, so
a parser needs to know that a different script has to be activated. Alternatively, the
HAVING LUNCH script could be seen as a part of VISITING A CONVENTION, so the parser

has the options to either activate this script or not.

+ Script Activation. There are often no expressions that clearly evoke a script. In the
beginning of the text in Figure @, there is no expression that evokes the visiTiNG
A CONVENTION scenario, but the first action that is mentioned is an event from the
scenario: GOING TO THE CONVENTION CENTER. The parser will use the participant

CONVENTION CENTER (and some surrounding material) to activate the correct script.

+ Distractors. There can be distracting expressions, in which a script is clearly ad-
dressed and activated, but not referred to further. In the green segment in Figure

@, the expression had for dinner evokes the HAVING DINNER script, but there are no
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references to events or participants of the script in the text. In this case, the parser
should not activate a different script representation. Taking a tour is mentioned twice
in the orange part, so the TAKING A TOUR script is activated. However, no relevant

events from the script are mentioned.
For the identification of event verbs and event types, the following difficulties arise.

+ Sparse Event Mentions: From the text, it becomes apparent that there are usually only
few relevant events addressed, because most of what happens in a script is assumed
to be common ground and implicitly understood by the reader. This makes it hard to
use rich script information or material from the text, because the parts of a text that
actually address a script can be short and sparse. The green text for example describes
a full instance of the HAVING LUNCH script, but mentions only two events, instantiated

by recommend and carve, respectively.

+ The Role of Ordering Information. We generally assume that ordering information
is central to script parsing: The typical order of events in a script scenario should
guide the alignment process and inform the identification of event types. However,
the natural order of many events is very flexible, as can be seen in the blue text in
Figure @: spending time in a line, buying a shirt and get into a hall can all happen in

arbitrary order. It is thus difficult to utilize temporal information in this case.

+ Event Identification. There are many verbs that should not be aligned with the script
at all, for example could, wait or were. While auxiliaries usually don’t describe script
events, it is far from trivial to find out that wait in this case is not relevant for the
current script. WAIT is a plausible event when VISITING A CONVENTION, but in this

case, the verb does not describe the respective event but is used as a light verb.

3.3 Script Parsing in the Scope of this Thesis

In this thesis, we provide the first script parsing model trained on paraphrase sets. As shown
in Section @, aligning script structures with texts is a complex task. Providing a fully super-

vised, generally applicable script parser that tackles all of the aforementioned tasks as shown
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in Section 3.1/'would go beyond the scope of this dissertation. Thus, we simplify the task and
concentrate on some parts of the full task only. We find that even a simplified script parsing

task is a complex challenge and identify relevant problems.

+ As a first simplification, we work with a data set of narrative texts that instantiate a
single script only, i.e. that contain a story situated in a single scenario, described in
Chapter H This prevents the need to perform a text segmentation step. We concen-
trate on only 10 scenarios, so an automated scenario identification is not necessary.
However, there has been work on segmenting blog texts and identifying script sce-
narios in text segments (Wanzare et al,, 2019), which was conducted in the project

research group and which is described as related work in Section @

« In this dissertation, we will only cover event-based script parsing, and will not look
at participant identification. It is important to note that participant information is
central for the event alignment: Our script parser, presented in Chapter H, makes
use of participant information in the form of noun heads, but we do not perform an
explicit participant labeling step. There has been work on this task (Kampmann et al.,

2015), which is also described in Section @

+ We assume that event verb identification and the event type identification are sep-
arate steps and that the two steps do not inform each other. In our script parsing
model, we treat both tasks independently and implement two independent models -

one for each task - which are then combined for an end-to-end evaluation, in Chapter

4

As depicted in Figure , we assume that a script parsing model can be trained only on
paraphrase sets and does not need an alignment gold standard for training. As we will see in
Chapter H, the annotation of such a gold standard is time consuming, difficult and expensive:
It requires skilled and trained expert annotators and scenario-specific guidelines. Script
datain the form of paraphrase sets in contrast are relatively cheap to acquire on alarger scale
via crowdsourcing, and paraphrase clusters can be induced semi-automatically (Regneri

et al., 2010; Wanzare et al., 2017).



3. Script Parsing - Background 46

3.4 Related Work

Event structure is a prominent topic in NLP. Semantic role labelers (Gildea and Jurafsky,
2002; Palmer et al., 2010) are well-established tools for the analysis of the internal structure
of event descriptions: They are used to assign semantic frames to verbs and other phrases,
which makes frame semantic information available for natural language understanding ap-
plications.

In recent years, modeling relations between events has gained increasing attention. An ex-
ample is research on event coreference (Bejan and Harabagiu, 2010; Lee et al,, 2012). The
task is related to “classical” coreference resolution based on NPs, but with the aim to identify

mentions of events that refer to the same action in the real world.

Another example is temporal event ordering in texts (Ling and Weld, 2010), as well as cross-
document event ordering (Minard et al., 2015, inter alia), where temporal relations between
events are modeled. Systems take into account discourse structure in order to learn the

actual temporal order of events from the order of their mentioning in a newswire text.

Since this thesis provides the first actual script parsing model that is trained on scripts as
represented by crowdsourced paraphrase sets, there is no directly related work that we can
compare our work to.

Early script models such as SAM (Cullingford, 1978) included a script parsing module. SAM
was a computer program that was similar to the architecture proposed in Figures 3.2 and
. [t had script activation modules that could identify a script in a text based on an evoking
expression or a script event. It would incrementally process a text and assign entities to
predefined participant slots. Also, it could detect mentions of script events and map them
to an internal script representation. As mentioned earlier, SAM and its successors were
based on hand-written rules and worked only on a number of artificial texts. Therefore, a
direct comparison to our model, which is trained in a supervised fashion and which can in
principle be extended to any script domain, if crowdsourced paraphrase sets are available,
is not possible.

Kampmann et al, (2015) present a script parsing model for participants. They implement
several models for the automatic labeling of coreference chains and noun heads with par-

ticipant types. Their models use a script representation based on paraphrase sets and utilize
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different textual similarity measures to find matching participant type labels.

Wanzare et al, (2019) present a system for text segmentation and scenario identification.
They use topic models to segment blog stories from the Spinn3r collection (Burton et al.,
2009) and use a multilayer perceptron that is trained on texts from MCScript (s. Chapter
H) to assign scenario labels to the segments. These tasks corresponds to the text segmenta-
tion and scenario identification steps in Figure E Instead of using ESDs for the scenario

identification, they train their system on full narrative texts on predefined script scenarios.

As pointed out in the introduction, script knowledge is in some respects similar to frame
semantics. In Chapter H, we show for example that a frame analysis is beneficial for script
parsing. The idea of semantic role labeling is to assign predefined frame labels to verbs, with
the main difference being that script events are defined specific to a scenario, while frames
are defined irrespective of a scenario. Script parsing can inherently be understood as a
discourse-level task, because temporal ordering information about events beyond sentences
is an important information source. Recent work found that discourse information, and
thus, also script knowledge, is beneficial for semantic role labeling. This is exemplified e.g.
by Roth and Lapata (2015), who compute features based on the discourse context and show

that these improve a semantic role labeling model.



Chapter 4

Script Parsing Data - The InScript Corpus

In this chapter, we describe a data collection that was conducted in order to evaluate our
script parser (s. Chapter H). Figure ¥.1lagain illustrates the core idea of script parsing: Verbs
in a text that instantiate events of a given script are aligned with the script events, in order

to access information that is associated with the script.

In Chapter H, we illustrated the complexity of script parsing. Since in this dissertation
project, we provide the first scalable script parsing model, we simplify the task to make
it more tractable. In particular, we present InScript, a corpus of crowdsourced naturalistic
texts which only talk about a single scenario. This eliminates the need for text segmentation.
Additionally, we only concentrate on a small number of predefined scenarios, so a scenario
identification step is not necessary. InScript is used as the evaluation data set for our script
parsing model in the following chapters. Texts in InScript have certain properties that make

them interesting for the evaluation of script models:

Domain. Texts in InScript are narrations about everyday scenarios. Only one scenario is
addressed per text, so an evaluation of our script parsing model based on one single scenario

is possible.

Explicitness. Many events that take place during the everyday situation are mentioned, as

well as participants that play a role in the script. In other words, texts in InScript are explicit
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Yesterday was my sister's birthday. I decided to bake a cake.

[ looked up the recipe. In my kitchen, I mixed the ingredients.
\ 1

\ I
/ TAKE_INGR. |
\ . I
- take ing. from cupb.
¥ s ’ 4
CHOOSE - geteggs
- d S
RECIPE MIX_INGR. BAKE
- find recipe - mix thoroughly | ».| - put cake in oven
. ~a| BUY_INGR. Lw»| - use mixer - bake batter
- look for recipe b
- buy flour
- go to store

Figure 4.1: An example of script parsing with an excerpt of the BAKING A CAKE script and a

story snippet.

with regard to events and participants that appear in the script in question.

Linguistic Complexity. Textsin InScript are linguistically simple and yet naturalistic. Our
script parser therefore does not need to deal with syntactically and semantically complex

problems, but can focus on identifying script events.

Importantly, the scenarios of the texts in InScript also appear in DeScript, such that a
mapping of a script representation learned from DeScript to texts from InScript is possible.
Together with the crowdsourced texts, we provide an annotation of verbs and nouns with
event and participant type labels, respectively. The event type labels in DeScript are harmo-
nized with the ones used in the annotation on InScript: Script event type labels that are used
in the annotation on InScript correspond to clusters that are found in DeScript. This makes
it possible to associate each annotated event-denoting verb in InScript with a paraphrase
cluster in DeScript, as depicted in Figure E
InScript was collected as part of a larger research effort and also fulfilled other purposes in
the scope of the project. Modi et al|(2017) used InScript as an evaluation dataset for a refer-
ent cloze task, i.e. the task of predicting an upcoming discourse referent. For this task, they
required hand-annotated coreference chains on all noun heads of the corpus, which is why

we also conducted a full coreference annotation on all texts. In the scope of this thesis, we
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use these coreference annotations to resolve pronouns for our script parsing experiments
in Chapter H

The structure of this chapter is as follows:

+ We present InScript, a corpus of 910 crowdsourced narrative stories about 10 differ-
ent everyday scenarios. In the following section, we first describe the data collection

process of InScript via crowdsourcing and provide data statistics.

+ Together with the texts, we provide a full annotation of all verbs with script event type
labels and of all nouns with script participant type labels. We also labeled coreference

chains on all noun heads. In Section , we describe the annotation.

+ In the last section, we provide a thorough analysis of the annotation. We perform a
linguistic comparison of our data with DeScript in terms of the vocabulary and the

complexity of event descriptions.

4.1 Data Collection

4.1.1 Collection via Amazon Mechanical Turk

We selected 10 scenarios from different available scenario lists (e.g. Regneri et al. (2010),
Raisig et al. (2009), and the OMICS corpus Singh et al| (2002)), including scripts of different
complexity (TAKING A BATH vs. FLYING IN AN AIRPLANE) and specificity (RIDING A PUBLIC
BUS Vs. REPAIRING A FLAT BICYCLE TIRE). For the full scenario list see Table . The selected
scenarios are part of the scenarios of the script data given in DeScript, so an evaluation of
a script parsing system on the texts is possible.

Texts were collected via crowdsourcing on Amazon Mechanical Turk (MTurkH), which pro-
vides an opportunity to present an online task to humans. In order to gauge the effect of
different MTurk instructions on our task, we first conducted pilot experiments with differ-
ent variants of instructions explaining the task. We finalized the instructions for the full

data collection, asking the turkers to describe a scenario in form of a story as if explaining it

lwww . mturk . com


www.mturk.com
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to a child and to use a minimum of 150 words. The selected instruction variant resulted in

comparably simple and explicit scenario-related stories.

In total, 190 turkers participated. All turkers were living in the USA and native speakers of
English. We paid $0.50 per story to each turker. On average, the turkers took 9.37 minutes

per story with a maximum duration of 17.38 minutes.

4.1.2 Data Statistics

Statistics for the corpus are given in Table . On average, each story has a length of 12
sentences and 217 words with 98 word types on average. Stories are coherent and concen-
trate mainly on the corresponding scenario. Neglecting auxiliaries, modals and copulas, on
average each story has 32 verbs, out of which 58% denote events related to the respective sce-
nario. As can be seen in Table E, there is some variation in stories across scenarios: The
FLYING IN AN AIRPLANE scenario, for example, is the most complex in terms of the number

of sentences, tokens and word types that are used.

This is probably due to the inherent complexity of the scenario: Taking a flight, for example,
is more complicated and takes more steps than taking a bath. The average count of sentences,
tokens and types is also very high for the BAKING A CAKE scenario. Stories from the scenario
often resemble cake recipes, which usually contain very detailed steps, therefore people tend

to give more detailed descriptions.

For both FLYING IN AN AIRPLANE and BAKING A CAKE, the standard deviation is higher in
comparison to other scenarios. This indicates that different turkers described the scenario
with a varying degree of detail and can also be seen as an indicator for the complexity of
both scenarios.

In comparison, texts from the TAKING A BATH and PLANTING A TREE scenarios contain a
smaller number of sentences and fewer word types and tokens. Both planting a tree and
taking a bath are simpler activities, which results in generally less complex texts.

The average pairwise word type overlap can be seen as a measure of lexical variety among
stories: If it is high, the stories resemble each other more. We can see that stories in the

FLYING IN AN AIRPLANE and BAKING A CAKE scenarios have the highest values here, indicating
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Scenario Name #Sto- | Avg. Sen- Avg. Word Avg. Word Avg.
ries tences Per Types Per Count Per Word
Story Story Story Type
Overlap
RIDING IN A PUBLIC BUS 92 12.3 (4.1) 97.4(23.3) 215.1(69.7) 35.7(7.5)
(Bus)
BAKING A CAKE (CAKE) 97 13.6 (4.7) 102.7 (23.7) 235.5(78.5) 39.5(8.1)
TAKING A BATH (BATH) 94 11.5(2.6) 91.9(13.1) 197.5(34.5) 37.9(6.3)
GOING GROCERY SHOP- 95 13.1(3.7) 102.9 (19.9) 228.3(58.8) 38.6(7.8)
PING (GROCERY)
FLYING IN AN AIRPLANE 86 14.1 (5.6) 113.6 (30.9) 251.2(99.1) 40.9 (10.3)
(FLIGHT)
GETTING A HAIRCUT 88 13.3 (4.0) 100.6 (19.3) 227.2(63.4) 39.0(7.9)
(HatrcuT)
BORROWING A BOOK FROM | 93 11.2 (2.5) 88.0(14.1) 200.7 (43.5) 34.9 (5.5)
THE LIBRARY (LIBRARY)
GOING ON A TRAIN 87 12.3(3.4) 96.3(19.2) 210.3 (57.0) 35.3(6.9)
(TRAIN)
REPAIRING A FLAT BICYCLE | 87 11.4 (3.6) 88.9 (15.0) 203.0 (53.3) 33.8(5.2)
TIRE (BICYCLE)
PLANTING A TREE (TREE) 91 11.0(3.6) 93.3(19.2) 201.5(60.3) 34.0(6.6)
Average 91 12.4 97.6 216.9 37.0

Table 4.1: Corpus statistics for different scenarios (standard deviation given in parentheses).

The maximum per column is highlighted in boldface, the minimum in boldface

italics.

that most turkers used a similar vocabulary in their stories.

In general, the response quality was good. Only 9% of the stories were discarded as they

lacked the quality we required. This mainly affected stories that were ungrammatical or

contained many typos, as well as instructional texts, i.e. texts that were not narrative but

gave instructions. In total, we selected 910 stories for annotation.
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4.2 Annotation

This section deals with the annotation of the data. The annotation was an iterative process of
corpus annotation and required a refinement of the schema. This refinement was necessary
due to the complexity of the annotation. We will first describe the final annotation schema.
Then, we will describe the schema refinement. Both versions of the annotation schema are

given in the appendix, in Chapters @ and E

4.2.1 Annotation Schema

For each of the scenarios, we designed a specific annotation template. A script template con-
sists of scenario-specific event and participant labels. An example of a template is shown in
Table . All NP heads in the corpus were annotated with a participant label; all verbs were
annotated with an event label. For both participants and events, we also offered the label
UNCLEAR if the annotator could not assign another label. Coreference chains between NPs
were additionally annotated. Thus, the process resulted in three layers of annotation: event

types, participant types and coreference annotation. These are described in detail below.

All annotations were conducted by computational linguistics students. Figure 4.2 shows a

screenshot of a complete participant and event type annotation.

Event Type

As a first layer, we annotated event types. In Chapter H, we argued that there are three cate-
gories of verbs relevant to script parsing: Events that denote script events, evoking elements,
and verbs that do not denote script events. While we provide labels for the first two classes,

the class of non-events cannot be annotated as easily, as explained below.

Verbs that denote script events. In our annotation guideline, most labels for verbs that de-
note script events are scenario-specific. We listed script event types in the scenario-specific
templates. Such labels include for example SCREV_CLOSE_DRAIN in TAKING A BATH as in

Example [l (see Table 4.2 for a complete list for the TAKING A BATH scenario).
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Event types

Participant types

ScREV_TAKE_CLEAN_CLOTHES
SCREV_PREPARE_BATH
ScREV_ENTER_BATHROOM
SCREV_TURN_WATER_ON
ScrEV_CHECK_TEMP (temperature)
ScrREV_CLOSE_DRAIN
ScrEv_wailt
SCREV_TURN_WATER_OFF
ScREV_PUT_BUBBLE_BATH_SCENT
ScREV_UNDRESS
ScREV_SINK_WATER
ScrREV_RELAX

ScrREV_APPLY_SOAP

ScrEvV_wasH

ScREV_OPEN_DRAIN
ScREV_GET_OUT_BATH
ScrEv_get_towel

ScrEV_DRY
ScREV_PUT_AFTER_SHOWER
ScREV_GET_DRESSED

ScrREV_LEAVE

ScrREV_AIR_BATHROOM

ScrPart_bath

SCRPART_BATH_MEANS

SCRPART_BATHER

SCRPART_BATHROOM

SCRPART_BATHTUB

SCRPART_BODY_PART

SCRPART_CLOTHES

SCRPART_DRAIN

SCRPART_HAIR

SCRPART_HAMPER
SCRPART_IN-BATH_ENTERTAINMENT (candles, music, books)
ScrPart_plug

ScrPart_shower (as bath equipment)
SCRPART_TAP (KNOB)
SCRPART_TEMPERATURE

SCRPART_TOWEL

ScRPART_WASHING_TOOLS (washcloth, soap)

SCRPART_WATER

Table 4.2: Bath scenario template (labels added in the second phase of annotation are

marked in bold).

(1) Istart by closingscrev_crose_praiv the drain at the bottom of the tub.

Additionally, we have the label SCREV_OTHER across all scenarios. This is used for script

events that belong to the scenario, but have an event type that occurs very infrequently (for

details, see Section HU.2.4). We used the label “other” because the event classification would

become too fine-grained otherwise.

Example: After | am dried I put my new clothes on and clean upsczgy_orszr the bathroom.
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Verbs that evoke a script. 'To mark script-evoking expressions, we use the label Evoking,

. H
as shown in Example .

(2) Today I took a bathgyone in My new apartment.

Other verbs. In InScript, we found that it would not make sense to add a label for verbs
that do not denote script events, since there are only few such verbs in the very explicit
InScript texts. However, we found a larger number of verbs that describe script events that
are only loosely connected to the script scenario in question.

To properly label such events, additional templates on different scenarios would be required.
Since it is difficult to estimate which scenarios are relevant here, we simplified this case and

just used two additional labels, as listed below:

+ RELNScREv. Related non-script event. An event that can plausibly happen during the
execution of the script and is related to it, but is not part of the script.
Example: After finding what I wanted to wear,  went into the bathroom and shutgg; Nscrey

the door.

« UNRELEV. An event that is not related to the current script. This class also subsumes
verbs that do not denote events at all.

Example: 1 sank into the bubbles and tookyygs gy @ deep breath.

Participant Type

As in the case of the event type labels, there are two kinds of participant labels: general
labels and scenario-specific labels. The latter are part of the scenario-specific templates,

e.g. SCRPART_DRAIN in the TAKING A BATH scenario, as can be seen in Example H
(3) Istart by closing the draingcgparr_pramv @t the bottom of the tub.

The general labels used across all scenarios mark noun phrases with scenario-independent

features. These are the following general labels:
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» ScrRPART_OTHER. A participant that belongs to the scenario, but its participant type
occurs only infrequently.

Example: 1 find my bath matscgparr_orner @0d lay it on the floor to keep the floor dry.

+ NPaArT. Non-participant. A referential NP that does not belong to the scenario.

Example:  washed myself carefully because I did not want to spill water on the floornprr-

« SuppVCowmp. A support verb complement. For further discussion of this label, see

Section 4.2.5.

Example: 1 sank into the bubbles and took a deep breathgyppvcoms-

+ Heap_or_ParTITIVE. The head of a partitive or a partitive-like construction. For a

further discussion of this label see Section 4.2.5.

Example: 1 grabbed a baryg,p_or_parririve Of soap and lathered my body.

+ No_LABEL. A non-referential noun phrase that cannot be labeled with another label.
Example: 1 sat for a momentyo_ia5e1, relaxing, allowing the warm water to sooth my

skin.

All NPs labeled with one of the labels SuppPVComp, HEAD_OF_PARTITIVE or NO_LABEL are
considered to be non-referential. No_LABEL is used mainly in four cases in our data: non-
referential time expressions (in a while, a million times better), idioms (no matter what), the
non-referential “it” (it felt amazing, it is better) and other abstracta (a lot better, a little bit).

In the first annotation phase, annotators were asked to mark verbs and noun phrases that
have an event or participant type, that is not listed in the template, as MissScREv/ MissScr-

PART (missing script event or participant, resp.). These annotations were used as a basis for

extending the templates (see Section 4.2.4) and later replaced by newly introduced labels or

ScrREV_oTHER and SCRPART_OTHER respectively.

Coreference Annotations

All noun phrases were annotated with coreference information indicating which entities

denote the same discourse referent. The annotation was done by linking heads of NPs (see
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Example H, where the links are indicated by coindexing). As a rule, we assume that each

element of a coreference chain is marked with the same participant type label.

(4) Icorer1 Washed mycorer1 entire bodycoger, Starting with mycoger1 facecorsrs @and ending

with the toescorera- Icorer1 alWays wash mycorer1 t0€Scorsrs Very thoroughly ...

The assignment of an entity to a referent is not always trivial, as is shown in Example H There
are some cases in which two discourse referents are grouped in a plural NP. In the example,
those things refers to the group made up of shampoo, soap and sponge. In this case, we asked an-
notators to introduce a new coreference label, the name of which indicates which referents
are grouped together (COREF_GROUP_WASHING_TOOLS). All NPs are then connected to the

group phrase, resulting in an additional coreference chain.

(5) ICOREF] made sure that ICOREFI have MY Corerl ShamPOOCOREFZ + COREF_GROUP_WASHING_TOOLS?

S0AP Corer3 + COREF_GROUP_WASHING_TOOLS and SPONZECorEF4 + COREF_GROUP_WASHING_TOOLS ready to get

in. Once Icoper1 have those thingscorer_crour_wasnme_toors Icorer1 Sink into the bath. ..
Icorer1 applied some s0apcorers ON MYcorer1 DOdy and used the spongecorsrs to scrub a

bit. ... Icorer1 rinsed the shampoocoper:-

Example H thus contains the following coreference chains:

6) cormrt: [ > T —-my -1 —=1—=1—my—1
corer2: shampoo — shampoo
Corer3: SOAp — SOAp
Corerd: SpONGE — sponge

COREF_GROUP_WASHING_ TOOLS. shampoo — soap — sponge — things

4.2.2 Development of the Schema

The templates were carefully designed in an iterated process. For each scenario, we designed
preliminary versions of the template based on an inspection of some stories; for a subset of
the scenarios, preliminary templates developed at our department for a psycholinguistic

experiment on script knowledge were used as a starting point. Subsequently, we manually
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annotated 5 randomly selected texts for each of the scenarios based on the preliminary tem-
plate. Necessary extensions and changes in the templates were discussed and agreed upon.
Most of the cases of disagreement were related to the granularity of the event and partici-
pant types. We agreed on the script-specific functional equivalence as a guiding principle. For
example, reading a book, listening to music and having a conversation are subsumed under
the same event label in the FLIGHT scenario, because they have the common function of in-
flight entertainment in the scenario. In contrast, we assumed different labels for the cake
tin and other utensils (bowls etc.), since they have different functions in the BAKING A CAKE

scenario and accordingly occur with different script events.

Note that scripts and templates as such are not meant to describe an activity as exhaustively
as possible and to mention all steps that are logically necessary. Instead, scripts describe
cognitively prominent events in an activity. An example can be found in the FLIGHT scenario.
While more than a third of the turkers mentioned the event of fastening the seat belts in the
plane (BUCKLE_SEAT_BELT), nobody wrote about undoing their seat belts again, although in
reality both events appear equally often. Consequently, we added an event type label for

buckling up, but no label for undoing the seat belts.

4.2.3 First Annotation Phase

We used the WebAnno annotation tool (Yimam et al|, 2013) for the annotation. The sto-
ries from each scenario were distributed among four different annotators, undergraduate
students of computational linguistics. In a calibration phase, annotators were presented
with some sample texts for test annotations; the results were discussed with the authors.
Throughout the whole annotation phase, annotators could discuss any emerging issues with
the authors. Due to the complexity of the task, we decided for a single annotation mode. To

assess annotation quality, a small sample of texts was annotated by all four annotators and

their inter-annotator agreement was measured (see Section {4.3.1)).

Annotation of the corpus together with some pre- and post-processing of the data required
approximately 500 hours of work. All stories were annotated with event and participant
types (a total of 12,188 and 43,946 instances, respectively). On average there were 7 coref-

erence chains per story with an average length of 6 tokens.
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4.2.4 Modification of the Schema

Based on the results of the first annotation round, we extended and modified the templates.
As already mentioned, we used MissScrREv and MissScrPARrT labels to mark verbs and noun
phrases instantiating events and participants for which no appropriate labels were available
in the templates. Based on the instances with these labels (a total of 941 and 1717 instances,
respectively), we extended the guidelines to cover the most frequent cases.

In order to include new labels for event and participant types, we tried to estimate the num-
ber of instances that would fall under a certain label. We added new labels according to the

following conditions:

+ For the participant annotations, we added new labels for types that we expected to
appear at least 10 times in total in at least 5 different stories (i.e. in approximately 5%

of the stories).

« For the event annotations, we chose those new labels for event types that would ap-

pear in at least 5 different stories.

In order to avoid too fine a granularity of the templates, all other instances of MissScrEv
and MissScrPART were re-labeled with SCREv_oTHER and SCRPART_oTHER. We also rela-
beled participants and events from the first annotation phase with SCREv_oTHER and Scr-
PART_OTHER, if they did not meet the frequency requirements. The eventlabel AIR_BATHROOM
(the event of letting fresh air into the room after the bath), for example, was only used once

in the stories, so we relabeled that instance to SCREV_OTHER.

As mentioned above, we also looked at the DeScript corpus (Wanzare et al., 2016), which

contains manually clustered event paraphrase sets for the 10 scenarios that are also covered

by InScript (see Section {.3.3). We extended our templates with additional labels for these

events, if they were not yet part of the template.

4.2.5 Special Cases

Noun-Noun Compounds. Noun-noun compounds were annotated twice with the same la-
bel (whole span plus the head noun), as indicated in Example H This redundant double

annotation is motivated by potential processing requirements.
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(7) I get mY (waSh (Cl‘)th SCRPART_WASHING_TOOLS))I SCRPART_WASHING_TOOLS and PUt it under the water.

Support Verb Complements. A special treatment was given to support verb constructions
such as take time, get home or take a seat in Example . The semantics of the verb itself is
highly underspecified in such constructions; the event type is largely dependent on the object
NP. As shown in Example H, we annotate the head verb with the event type described by
the whole construction and label its object with SupPVComp (support verb complement),

indicating that it does not have a proper reference.

(8) Istep into the tub and takescrgy_sink_warer @ S€AtSuppVConme-

Head of Partitive. We used the HEAD_oF_PARTITIVE label for the heads in partitive con-
structions, assuming that the only referential part of the construction is the complement.
This is not exactly correct, since different partitive heads vary in their degree of concrete-
ness (cf. Examples H and ), but we could not see a way to make the distinction sufficiently

transparent to the annotators.

(9) Our seats were at the backyg.p_or parrirve Of the traingceparr tram-

(10) Inthelibraryyou canalways find a coupleggap_or pagrirve Of interesting booksscgparr_soox-

Mixed Participant Types. Group denoting NPs sometimes refer to groups whose members
are instances of different participant types. In Example , the first-person plural pronoun
refers to the group consisting of the passenger (I) and a non-participant (my friend). To avoid

a proliferation of event type labels, we labeled these cases as UNCLEAR.

(1 1) ISCRPART_PASSENGER wa nted to visit m_ySCRPART_PASSENGER friendNPART mn NCW YOI‘k. WeUNCLEAR

met at the train station.

We made an exception for the GETTING A HAIRCUT scenario, where the mixed participant
group consisting of the hairdresser and the customer occurs very often, as in Example .
Here, we introduced the additional ad-hoc participant label SCR_PART_HAIRDRESSER_CUS-

TOMER.
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(1 2) Whlle SusanSCRPART_HAIRDRESSER 18 CUttlng mySCRPART_CUSTOMER ha 1T WE€ScRr_PART_HAIRDRESSER_CUSTOMER

usually talk a bit.

4.3 Data Analysis

Average Fleiss’ Kappa
All Labels Script Labels

Scenario | Events | Participants | Events | Participants || Scenario | %Coref Agreement
Bus 0.68 0.74 0.76 0.74 Bus 88.9
CAKE 0.61 0.76 0.64 0.75 CAKE 94.7
FrLigHT 0.65 0.70 0.62 0.69 FLIGHT 93.6
GROCERY | 0.64 0.80 0.73 0.80 GROCERY 93.4
Haircut | 0.64 0.84 0.67 0.86 Haircut 94.3
TREE 0.59 0.76 0.63 0.76 TREE 78.3
Average 0.64 077 0.68 077 Average 90.5

(a) Average Fleiss’ Kappa. (b) Coreference agreement.

Figure 4.3: Inter-annotator agreement statistics.

4.3.1 Inter-Annotator Agreement

In order to calculate inter-annotator agreement, a total of 30 stories from 6 scenarios were
randomly chosen for parallel annotation by all 4 annotators after the firstannotation phaseB.

We checked the agreement on these data using Fleiss’ Kappa (Fleiss, 1971). The results are

shown in Figure 4.3a and indicate moderate to substantial agreement (Landis and Koch,

1977). Interestingly, if we calculate the Kappa only on the subset of cases that were anno-
tated with script-specific event and participant labels by all annotators, results are better
than those of the evaluation on all labeled instances (including also unrelated and related

non-script events). This indicates one of the challenges of the annotation task: In many

2We did not test for inter-annotator agreement after the second phase, since we did not expect the agree-

ment to change drastically due to the only slight changes in the annotation schema.
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cases it is difficult to decide whether a particular event should be considered a central script
event, or an event loosely related or unrelated to the script.
For the coreference chain annotation, we calculated the percentage of pairs which were

annotated by at least 3 annotators (qualified majority vote) compared to the set of those

pairs annotated by at least one person (see Figure B.3b). We take the result of 90.5% between

annotators to be a good agreement.

4.3.2 Annotated Corpus Statistics

Figure @ gives an overview of the number of event and participant types provided in the
templates. TAKING A FLIGHT and GETTING A HAIRCUT stand out with a large number of both
event and participant types. In contrast, PLANTING A TREE and GOING ON A TRAIN contain

the fewest labels. There are 19 event and participant types on average.

Scenario | Events | Participants
BATH 20 18
BICYCLE 16 16
BUS 17 17
CAKE 19 17
FLIGHT 29 26
GROCERY 19 18
HAIRCUT 26 24
LIBRARY 17 18
TRAIN 15 20
TREE 14 15
Average 192 18.9

Figure 4.4: The number of participants and events in the templates.

Figure E presents overview statistics about the usage of event labels, participant labels
and coreference chain annotations. As can be seen, there are usually many more mentions
of participants than events. For coreference chains, there are some chains that are really
long (which also results in a large scenario-wise standard deviation). Usually, these chains

describe the protagonist.
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avg | min | max

event annotations in a story 15.9 1 52

event types in a story 10.1 1 23

participant annotations ina story | 52.3 | 16 | 164

participant types in a story 109 | 2 25
coref chains 7.3 0 23
tokens per chain 6 2 52

Figure 4.5: Annotation statistics over all scenarios.
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Figure 4.6: The percentage of stories in the BAKING A CAKE scenario that contain a certain

participant label.

We also found that the FLYING IN AN AIRPLANE scenario stands out in terms of participant
mentions, event mentions and average number of coreference chains.

Figure @ shows for every participant label in the BAKING A CAKE scenario the number of
stories which they occurred in. This indicates how relevant a participant is for the script.
As can be seen, a small number of participants are highly prominent: COOK, INGREDIENTS
and cAKE are mentioned in every story. The fact that the protagonist appears most often
consistently holds for all other scenarios, where the acting person appears in every story,
and is mentioned most frequently.

Figure @ shows the distribution of participant/event type labels over all appearances over
all scenarios on average. The groups stand for the most frequently appearing label, the top

2 to 5 labels in terms of frequency and the top 6 to 10. SCREV_OTHER and SCRPART_OTHER
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39.0 %

34.3%

36.4 %

top 1 top2-5 @ top6-10 @ rest @ ScrPart/Ev_other

Figure 4.7: Distribution of participants (left) and events (right) for the first, the top 2 to 5
and the top 6 to 10 most frequently appearing events/participants, SCREvV/Scr-

ParT_OTHER and the rest.

20
10
21.93 5.61 2.55 3.72
0
top 1 top 2-5 top 6-10 all

Figure 4.8: Average number of participant mentions for a story, for the first, the top 2 to
5 and the top 6 to 10 most frequently appearing events/participants, and the

overall average.

are shown separately. As can be seen, the most frequently used participant label (the protag-
onist) makes up about 40% of the overall participant instances. The four labels that follow
the protagonist in terms of frequency appear in 37% of the cases. More than 66% of all par-
ticipant mentions refer to one of the top 5 labels.

In contrast, the distribution for events is more balanced. 13% of all event instances have the
most prominent event type.

ScrEv_oTHER and SCRPART_OTHER both appear as labels in at most 5% of all event and
participant instantiations: The specific event and participant type labels in our templates
cover by far most of the instances.

In Figure , we grouped participants similarly into the first, the top 2 to 5 and the top 6 to
10 most frequently appearing participant types. The figure shows for each of these groups

the average frequency per story, and in the rightmost column the overall average. The results
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Figure 4.9: MTLD values for DeScript and InScript, per scenario.

correspond to the findings from the last paragraph.

4.3.3 Comparison to the DeScript Corpus

Since both InScript and DeScript will be used for the script parsing, it is interesting to com-
pare both resources. The InScript corpus exhibits much more lexical variation than De-
Script. Many approaches use the type-token ratio to measure this variance. However, this
measure is known to be sensitive to text length (see e.g. Tweedie and Baayen (1998)), which
would result in very small values for InScript and relatively large ones for DeScript, given
the large average difference of text lengths between the corpora. Instead, we decided to
use the Measure of Textual Lexical Diversity (MTLD) (McCarthy and Jarvis, 2010; McCarthy,
2005), which is familiar in corpus linguistics. This metric measures the average number of
tokens in a text that are needed to retain a type-token ratio above a certain threshold. If the
MTLD for a text is high, many tokens are needed to lower the type-token ratio under the
threshold, so the text is lexically diverse. In contrast, a low MTLD indicates that only a few
words are needed to make the type-token ratio drop, so the lexical diversity is smaller. We
use the threshold of 0.71, which is proposed by the authors as a well-proven value.

Figure compares the lexical diversity of both resources. As can be seen, the InScript
corpus with its narrative texts is generally much more diverse than the DeScript corpus
with its short event descriptions, across all scenarios. For both resources, the FLYING IN
AN AIRPLANE scenario is most diverse (as was also indicated above by the mean word type
overlap). However, the difference in the variation of lexical variance of scenarios is larger
for DeScript than for InScript. Thus, the properties of a scenario apparently influence the

lexical variance of the event descriptions more than the variance of the narrative texts.

We used entropy (Shannon, 1948) over lemmas to measure the variance of lexical realiza-



4. Script Parsing Data - The InScript Corpus 67

tions for events. We excluded events for which there were less than 10 occurrences in De-
Script or InScript. Since there is only an event annotation for 50 ESDs per scenario in De-
Script, we randomly sampled 50 texts from InScript for computing the entropy to make the

numbers more comparable.
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Figure 4.10: Entropy over verb lemmas for events (left y-axis, H (z)) in the GOING ON A TRAIN
SCENARIO. Bars in the background indicate the absolute number of occurrence
of instances (right y-axis, N (x)).

Figure #.10 shows an example of the entropy values (abbreviated as H) for the event types

in the GOING ON A TRAIN scenario. As can be seen in the graph, the entropy for InScript
is in general higher than for DeScript. In the stories, a wider variety of verbs is used to
describe events. There are also large differences between events: While warT has a very low
entropy, SPEND_TIME_TRAIN has an extremely high entropy value. This event type covers

many different activities such as reading, sleeping etc.

4.4 Conclusion

In this chapter, we described the InScript corpus, a corpus of narrative texts annotated with
script structure and coreference information, which forms a unique resource for studying
the role of script knowledge in NLP. We described the annotation process, various diffi-
culties encountered during annotation and different remedies that were taken to overcome

them.
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In the following sections, we will use InScript as evaluation data for our script parser. In
Chapter H, we will first perform a thorough analysis and a further annotation of the data
to find out about the linguistic complexity of the script parsing task. In Chapter H, we will

present our script parsing model that is trained on DeScript and evaluated on InScript.



Chapter 5

Analysis of the Script Parsing Data

Since there has been no previous work on the task of script parsing, it is unclear how chal-
lenging the task actually is, and which kind of linguistic information and knowledge is re-
quired when aligning a text with a script. In this section, we try to estimate the difficulty of
the script parsing task by means of an annotation study.

As in the rest of this thesis, we assume an underlying script structure in the form of para-
phrase sets. Each paraphrase sets contains a number of short, telegram-style Event Descrip-
tions (ED) that describe the event in simple words.

I looked up the recipe. In my kitchen, I mixed the ingredients.
\ I

I
\
‘ i
! TAKE_INGR. .
| - take ing. from cupb. !
Y ¢ P v
CHOOSE. - geteggs
- e Al
RECIPE MIX_INGR. BAKE
- find recipe - mix thoroughly | 5| - put cake in oven
. ta| BUY_INGR. {w»| - use mixer - bake batter
- look for recipe b
- buy flour
/‘ - go to store X
/ \
/ \

/ \
/ \

/ \
I opened the recipe in my internet browser. (...) [ stirred everything in a bowl.

Figure 5.1: Aligning two text snippets of varying difficulty with the BAKING A CAKE script.

Consider the two example text fragments in Figure E Both the upper and the lower text

fragment instantiate the CHOOSE_RECIPE and the MIX_INGREDIENTS events. Mapping the
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event mentions in the upper part to the script is straightforward. Both verbs, look and mix,
are mentioned in the respective paraphrase sets, so the mapping is trivial and just requires
a simple word lookup. In contrast, the lower event mentions are more challenging. A script
parsing model has to infer that open the recipe in this context describes the same event as the
EDs in the paraphrase set, find recipe and look for recipe. Likewise, stir is a synonym of mix,

which needs to be inferred to align the second event mention.

In this chapter, we investigate on a larger scale which types of knowledge and inference
are required to assign correct event types to event mentions in text. We also want to find
out to which degree crowdsourced script representations help to facilitate text-to-script
mapping, i.e. how often the alignment is trivial, as in the upper part of Figure E We do
so by annotating the type of semantic relations between pairs of an event mention and the

paraphrase set representing the corresponding event type.

The structure of this chapter is as follows:

« We provide a manual annotation of word-level entailment types on verbs/events and
nouns/participants (e.g. Synonymy, Hypernymy, Inference etc., Section based on
InScript and DeScript.

+ In a second step, we compositionally derive clause-level entailment types (e.g. Equal-
ity, Entailment, etc., Section E) that illustrate the types of inference that need to be

modeled for the alignment of the clause with an event paraphrase set.

¢ In Section @, we provide a detailed analysis of our annotation. We show that para-
phrase sets as a constitutive part of script representations massively reduce the dif-
ficulty of automatic text-to-script mapping and increase its accuracy. We also find
that a substantial sub-class of cases cannot be handled using just identity checks or

shallow semantic modeling, but require deeper inference methods.

In the next section, we briefly introduce the datasets that were used for our annotation and
describe an additional participant type annotation that was a prerequisite for the entailment

annotations.
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DIG -
- buy a tree - get a shovel - dig hole - plant the tree
- geta tree - take the - use your shovel - put the tree S DeScript
from the store shovel - use shovel for a hole into the hole

-

.

After a very deep and theltree|inside } InScript

GET_TOOLS SHOVEL GARDENER DIG HOLE PLANT TREE

Figure 5.2: An example annotation in InScript (lower part), and the corresponding para-

phrase sets from DeScript (upper part), for the PLANTING A TREE scenario.

5.1 Data

For our study, we use two existing resources that form the basis for evaluating text-to-script
mapping: InScript, described in Chapter H, and DeScript (Wanzare et al;, 2016), a resource of

structured script knowledge in the form of paraphrase sets, covering the same 10 scenarios.

As can be seen in the upper part of Figure , each verb that is labeled in InScript has a
corresponding paraphrase set in DeScript. This provides a gold standard alignment between
textual event mentions and paraphrase sets, as indicated by the dotted lines, which is the
basis for our annotation. The paraphrase sets in this kind of representation contain not
only lexical synonyms, but also scenario-specific paraphrases of the same event: use your
shovel and dig hole are not synonyms in a narrow sense, but in the context of PLANTING A

TREE, they both describe the p1G event.

While DeScript provides manually created gold event paraphrase sets, the corresponding
information on participant level is missing. Since we need entailment relations on the noun
phrase/participant level for our compositional derivation of clause-level entailment (see
Section , we extended DeScript with paraphrase sets for participant descriptions. For
this purpose, we annotated all nouns in the 10 scenario subset of DeScript with labels from
the InScript inventory of participant types. Data from the TAKING A BUs and PLANTING A
TREE scenarios were annotated by two annotators to assess the inter-annotator agreement,

which was almost perfect (Landis and Koch (1977), k = 0.91).

From this annotation, paraphrase sets for participants were derived, i.e. the sets of all nouns
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- kitchen, ...
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Figure 5.3: A full script with participant paraphrase sets.

describing the same participant. In the BAKING A CAKE scenario for example, all different
ingredients such as eggs, flour, milk etc. are members of the INGREDIENT paraphrase set.
Figure 5.3 shows a full script for the BAKING A CAKE scenario, with participant paraphrase
sets in the lower right corner.

For our study, we selected 3 out of the 10 scenarios that differ with respect to their complex-
ity: TAKING THE BUS, BAKING A CAKE and PLANTING A TREE. We annotated script-relevant

verb instances and participant instances in every story of these 3 scenarios.

5.2 Lexical Entailment: Annotation Study

To identify the type of semantic relations that need to be modeled in order to align an event-
denoting clause in the text with a paraphrase set representing the same event, the most
straightforward way would be to conduct a clause-level entailment annotation between the
clause and EDs in the paraphrase set, e.g. with a set of clausal entailment types similar to
the ones used in MacCartney and Manning (2009).

We found, however, that the assessment of entailment types is time-consuming and unreli-
able, when based on a direct comparison of complex text clauses and paraphrase sets. We
therefore simplified the task, breaking it down into two steps: First, annotators were asked

to assign semantic relations between the event descriptions in the paraphrase sets and their



5. Analysis of the Script Parsing Data 73

DIG
. make a very deep hole use shovel for making a paraphrase
dig hole make deep hole hole set
dig hole with shovel make hole with shovel use shovel for a hole

- - - — . patterns (simplified
dig HOLE (with TOOL) || make HOLE (with TOOL) | | use TOOL for HOLE |
paraphrase sets)

Identity } annotation
...After finding a shovel, I made a very deep ditch and put the tree inside...
DIG

Figure 5.4: Combining the EDs in the pIG event into patterns (upper part) and the actual

verb annotation (lower part).

instantiations in narrative texts on the lexical level only, labeling the event-denoting verbs
and the participant-denoting noun phrases, as described in this section. Second, we auto-
matically derive an approximate clause-level entailment type from the lexical-level labels

in a quasi-compositional way from the manually annotated lexical entailment relations, as

addressed in Section .

In the following subsections, we describe the lexical entailment annotation we conducted

on the DeScript and InScript data for events/verbs (Section 5.2.1|) and participants/nouns

(Section 5.2.2). Annotation guidelines are given in the appendix, in Sections E and @

5.2.1 Events

To prepare the data for the event annotation, we made use of the gold alignment (cf. Figure
: Each event-denoting verb in InScript was presented with the corresponding paraphrase

set in DeScript.

Comparing every ED in the paraphrase set to the clause in the text is cumbersome due to
the number of EDs (up to 76) in each paraphrase set. We therefore simplified the event
paraphrase sets by building equivalence classes of EDs that use the same head verb, which
we call event patterns. They are derived semi-automatically by summarizing EDs that contain

the same main verb, and replacing noun phrases with their participant type label (upper part

'Due to a technical error, a small part of the data were not annotated (approx. 4 —5%). Because the original
annotators were not available anymore, we decided to not annotate these instances to avoid inconsistencies.

A manual inspection of the instances revealed no systematic differences to the rest of the data.



5. Analysis of the Script Parsing Data 74

of Figure @) Also, participants that do notappear in every ED are marked as optional (with

brackets).

In the annotation process, annotators were only shown the patterns instead of the full para-
phrase set. In the lower part of Figure E, the verb labeled as p1G is compared to the event
patterns extracted from the pic paraphrase set. Verbs were presented in their sentential

context and highlighted.

Instead of annotating each pattern, the guidelines required annotators to select only the
most similar pattern for the event-denoting verb, and to do the annotation only for this pat-
tern. While this selection results in a non-exhaustive annotation, no important information
is lost: The procedure of selecting the most similar pattern retains the minimal inference

steps required for the alignment.

After selecting a pattern, annotators were instructed to assess the relation between the verb
in DeScript and the verb in InScript and use the context only for lexical disambiguation, i.e.

not to assess clause-level entailment. In our annotation schema, we include the following

labels:

« Identity, Synonymy, Hyponymy, Hypernymy. Defined as in WordNet (Fellbaum, [1998).
Hyponymy describes the case in which the verb in the text is more specific than in the

pattern, Hypernymy is the opposite.

« Incorporation. One verb includes a participant, which is explicitly mentioned with the
other verb.

Example: I sprinkled flour in the pan. — flour CAKE_TIN

« Diathesis. This covers active/passive alternation (Ex. 1) and verbs that are conceptually
equivalent but have different syntactic realizations. In FrameNet (Ruppenhofer et al.,
2006), these verbs would typically be associated with the same frame (Ex. 2).
Example 1: The cake was cut. — cut CAKE

Example 2: The cake went in the preheated oven — put (CAKE) in OVEN

s Phrasal Verb. One of the verbs is a particle verb that has the same meaning as the other
verb.

Example: I went out to the grocery store. — go to STORE
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I made a very deep ::Iitch. ditch

! [THOLE:

make HOLE (with TOOL) | !

2 | hole <} - -,

M ! ; \ Hyponym
Identity . | cavity r Hyponymy

) I N
|
|

Figure 5.5: Aligning participants with a pattern (left), selecting a noun from the participant

paraphrase set and labeling (right).

* Inference. A complex inference is needed to associate the verbs with the same eventt.
Example 1: I put the decorations on the cake. - use DECORATION

Example 2: I made sure that I had all the ingredients that I needed. - gather INGREDIENTS

» NoMatch. No match is possible. This is typically the case when annotation errors

occurred in InScript.

5.2.2 Participants

Associating verbs in a textual mention with the ED verb is straightforward, since there is
only one head verb on each side. Linking participants in contrast requires additional anno-
tation effort: They can be left out or appear more than once in one clause. We thus divided

the participant annotation into two steps:

Participant Alignment. In order to distinguish missing from realized participants, anno-
tators had to align all participants that are relevant to the event in question in the text with
their counterparts in the pattern, i.e. with the participant type labels. In Figure , this step
corresponds to the dotted arrow on the left hand side. Participants that were mentioned
in the text and that play a role in the event, but that do not have a counterpart in the ED,
were marked as Additional. Required participants in the pattern that were not aligned were
afterwards automatically labeled as Missing.ﬁ As an example for this label, consider the text
clause I used a shovel, with the matching pattern use TOOL for HOLE. The participant HOLE

is omitted, but mentioned as mandatory in the pattern, i.e. it appears in every ED of the

2In the original guidelines, there were two labels indicating a complex inference: Context-Relatedness for a
weaker type of inference, and Inference for the rest. During the annotation, we found that both labels were

used interchangeably and inconsistently, so we decided to merge them.

3The protagonist of the story, being very rarely mentioned in the EDs, was excluded from the alignment.
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respective paraphrase set (use shovel for making a hole and use shovel for hole). Therefore, it is

marked as Missing in the patternH.

Lexical Entailment Annotation. To find the appropriate type of lexical entailment for the
realized participants, annotators were shown the participant paraphrase sets from DeScript
for all aligned participants. Just as for event patterns, annotators had to choose the best

matching, most similar noun from the set and assign a lexical entailment label.

As for verbs, the annotation schema includes the relation types, Identity, Synonymy, Hyponymy,

Hypernymy, Meronymy and Holonymy and the additional labels Co-Hyponomy, Inference and

NoMatch, as defined in Section 5.2.1. We add the label Instance, which is used when the noun

in InScript is a proper noun or entity mention of the type expressed by the DeScript noun

(e.g. number 77 - bus).
The right hand side of Figure 5.5 illustrates this part of the annotation: The noun “ditch”

(which was previously aligned with the pattern) is compared to all participant descriptions
for HOLE, linked to the lexical description “hole” and labeled with Hyponymy. Figure

shows the fully labeled instance with participant and event annotations.

To simplify the annotation, we make the assumption that each noun has only one sense per
scenario: In the PLANTING A TREE scenario, the polysemous word stem e.g. always describes a
part of atree. In order to reduce the annotation effort, we presented all different noun types
per participant type only once, rather than every single mentioned token in its sentential
context. This on sense per scenario assumption is similar to the one sense per discourse hypothesis,

which is often used in word sense disambiguation models (Gale et all, 1992).

5.3 Clause-Level Entailment: Composition

In the previous section, we described the lexical entailment annotation on verbs and nouns,
i.e. on a sub-event level. In this section, we now explain a method for an automatic, quasi-
compositional computation of clausal-level entailment types. We compose the types from

the lexical-level entailment labels of the verb and all its annotated noun dependents.

“4These labels correspond to the participant labels listed in @ The labels Shared Participant and Label Incon-

sistency were not used by the annotators and ignored.
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Entailment Type Labels

Identity = Identity

Equality = Synonymy, Phrasal Verb, Diathesis
Entailment Hyponymy, Instance, Additional
Reverse ent. 1 Hypernymy, Missing

Partial Entailment co Inference, Incorporation, Meronymy, Holonymy, Co-

Hyponymy
Non-Entailment # NoMatch

Figure 5.6: Entailment types.

Inspired by the textual inference method used in MacCartney and Manning (2007) and
MacCartney and Manning (2009), we compute the type of clause-level entailment between
InScript event mentions and DeScript patterns from the manually annotated word-level
entailment labels. Following MacCartney, we group these labels according to their truth-
conditional effects, and associate each group with one of six entailment types, shown in
Figure . We adopt four entailment types from the schema of MacCartney and Man-
ning (2009) and add two new types: We extend the schema with Identity, which is logically
speaking a sub-case of Equality. We also use Partial Entailment to cover all cases of semantic
relatedness which do not correspond to a direct entailment type; most prominent are the
Inference cases. Cases of Additional and Missing participants are deletions and insertions in
MacCartney’s terminology, and therefore have entailment and reverse entailment effects,

respectively.

To compute the clausal entailment type, we combine the word-level entailment labels for
verbs and nouns, according to the composition table in Figure E The result of combining
two lexical labels is in general the weaker entailment relation of the twoll. The only excep-
tion is the pair {Z, J}, which results in Partial Entailment. The application of the binary
computation is commutative, so the clausal entailment type can be read off the set of lexical

labelsH.

>The list =, =, {Z, 3}, 0o, # orders the labels from strongest to weakest.
®Qur composition step disregards non-affirmative verbs or other words with a negative polarity, such as

avoid or prohibit, which would reverse the composed entailment type. Due to the simple language and straight-
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= = C _ o0 #

= C | oo #

= = = [ | oo #
C C C [ oo oo #
| | | oo I oo #
00O |00 00O 00 00 00 #
# # # # # # #

Figure 5.7: Combination table for lexical entailment classes.

Figure shows the running example with all lexical entailment annotations. The set of
word-level entailmentlabels is {=, [}, given the lexical entailment labels {Identity, Hyponymy}.

The clausal entailment type is the weakest lexical type, i.e., _ (Reverse Entailment).

make HO#E (with TOOL)

- ‘. C C

.

meeehoaececehhecaacacacoacaocoaosoe
Identity * . Hyponymy } Reverse Entailment
I made a very deep ditch.

Figure 5.8: One fully labeled event instance, with compositionally derived clausal entail-

ment label (Reverse Entailment).

5.4 Annotation Statistics

The annotation was performed on all 280 texts of the InScript corpus addressing one of
the three selected scenarios. Annotation was done by two native speakers of German with
a good command of English. A total of 3,427 verb mentions and 1,248 noun types were

annotated, respectivelyﬁ. We used SWANH Giihring et al. (2016) for the annotation.

forward formulations in InScript, such expressions however occur only rarely, if ever.

"Event verbs of type SCREV_oTHER were excluded from the annotation, since they have no consistent coun-

terpart in DeScript.
8https://github.com/annefried/swan
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Label Events Participants
Identity 58% 76%
Synonymy 5% 6%
Hyponymy 5% 5%

Phrasal Verb 5% -

Inference 13% 1%
NoMatch 7% 7%
Other 7% 5%

Table 5.1: Distribution of lexical labels on events and participants.

5.4.1 Lexical Level

Inter-Annotator Agreement For both verb and participant annotation, agreement is com-
puted on two levels: First, we report how often the same pattern or head noun was selected.
Second, in cases where the same pattern/noun was selected, we report the label agreement.
For the verb annotation, annotators chose the same pattern in 82.4% of cases. For partici-

pants, the annotators chose the same realization from DeScript in 74.3% of cases.

On verbs, the annotators agreed on the label with k = 0.72 (substantial agreement, Landis

and Koch (1977)). On participants, they agreed with x = 0.742 (substantial agreement).

Not every case of disagreement is critical: In many cases there is more than one plausible
solution. In the PLANTING A TREE scenario, for example, the word shovel could be interpreted
either as a Synonym or Co-Hyponym of spade. There are also no sharp boundaries between
classes. In particular, annotators had difficulties with annotating Inference cases. Therefore,
we decided not to adjudicate the annotation, but average over the distributions for evalua-

tion.

Label Distribution Table 5.1| gives label distributions for participants and events on the
lexical level, averaged over both annotations. As mentioned before, we annotated each noun
type only once per participant type rather than annotating every mention of a noun sepa-

rately. To compute the numbers depicted in Table , we transfer the type-level annotation
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Figure 5.9: Distribution of composed labels.

to every single appearance of the noun, to give a better idea of the actual distribution.
For both verbs and participants, the most frequent relation chosen by both annotators is
Identity. Among the lexical relations, Hyponymy is more frequent than Hypernymy, which is

consistent with the expectation that concrete event/participant mentions use more specific

verbs/nouns than the abstract descriptions in the script knowledge base (cf. Modi (2016)).

Diathesis, Incorporation and Hypernymy for verbs, and Meronymy, Hypernymy, Holonymy, In-
stance and Co-Hyponymy for participants appear only very rarely and are subsumed under

Other in the table.

5.4.2 Clausal Level

Figure @ shows the distribution of the resulting clausal entailment labels for both anno-
tators. Identity makes up for the largest part of cases (38 %), illustrating the high lexical
coverage of crowdsourced script representations.

Entailment cases are significantly more frequent than Reverse Entailment, which is in line with
the leading assumption that an event mention should entail a description of its event type,
and with the observation that event-denoting clauses usually use longer sentences and more
specific vocabulary than event descriptions given by the script knowledge base.

Both Entailment and Reverse Entailment mainly contain cases in which the participant is not

realized on one side, and are only rarely composed from Hypernymy or Hyponymy cases. A
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typical example from the TAKING A BUS scenario is the text clause wait for several minutes. The
most similar ED in the scenario is just wait, so the time expression is an additional partici-

pant and thus results in a clause-level entailment.

There is a large number of Partial Entailment cases (20%), which are in many cases composed
of one or several Inference labels. One typical example of such a case from the TAKING A BUS
scenario is the text clause the driver pulled over. The paraphrase sets only contain phrases like
bus stops or arrive at destination. In this case, a system would need to know that pull over in the
bus context is a paraphrase for stop, which requires contextual inference. These cases also
appear in other scenarios, e.g. in the PLANTING A TREE scenario: look at trees is a contextual
paraphrase of choose a tree. This can be seen as an indicator for the difficulty of the text-to-
script mapping task, but it also indicates that the script resource is not exhaustive enough

to contain all possible formulation variants for events.

Lastly, we found that a large number of Non-Entailment cases are derived from annotation

errors in InScript.

5.5 Conclusion

In this chapter, we annotated event mentions in narrative texts with semantic relations that
need to be modeled when mapping the mentions to script events that are represented as
paraphrase sets. We provided a lexical-level entailment annotation between event-denoting
verbs and participant-denoting nouns of narrative texts on the one side, and event and par-
ticipant descriptions of a script on the other side. We then derived clause-level entailment
labels that highlight the coverage of crowdsourced paraphrase sets associated with event
types, as compared to the textual variation in naturalistic texts.

Our most important finding is that script representations in the form of paraphrase sets can
cover a large number of description variants of an event in a text, which is indicated by the
large number of Identity cases in the data. However, the alignment of a substantial amount

of event mentions requires a deeper inference of multiple semantic relations.



Chapter 6

A Script Parsing Model

In this chapter, we describe our script parsing model. This forms a central part of this disser-
tation: Our model is the first scalable script parser, that can be trained on arbitrary event
sequences from a limited set of scenarios. We implement the script parser by fitting a linear-
chain conditional random field on sequences of event descriptions. The model implicitly

captures typical ordering information about events by learning a sequential feature.

As before, we use the DeScript dataset (Wanzare et al., 2016) as a script knowledge database.
To evaluate our script parser, we use texts from the InScript collection (s. Chapter E]). In-
Script can be used as a gold standard for script parsing due to the annotated verbs: Every
event-denoting verb in the texts in InScript can be associated with an event paraphrase set
in DeScript.

Our script parsing model is trained only on ESDs, i.e. the InScript gold standard is used for
evaluation purposes only. This makes sense, since ESDs are cheap and easy to acquire via
crowdsourcing, while a full alignment annotation is highly complex (as seen in Chapter H).
The fact that the genres of training and test set differ between the bullet-point style ESDs
and the naturalistic texts in InScript poses a challenge, but the model still shows convincing

results.

Script parsing is a complex task, as stated in Chapter H We assumed that it consists of 5

subtasks: (1) Segmenting the text, (2) identifying segment scenarios, (3) identifying event
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Figure 6.1: Structure of the proposed parser.

verbs, (4) identifying event types, and (5) identifying participants. However, writing a script
parser that is generally applicable on every kind of text and that implements all these steps

would go beyond the scope of this thesis, so we simplified the task:

+ First, using the InScript corpus eliminates the need for text segmentation: Each text

talks about one single scenario only.

+ Second, InScript contains only texts for 10 different scenarios. The scenario identi-
fication is a trivial task, since the 10 used scenarios differ topically, and identifying
the relevant script of a text comes down to spotting one or two key words. For the
TAKING A TRAIN scenario, such key words may be train or ticket; for the TAKING A BATH
scenario, key words are e.g. bath or soap. We therefore skip the scenario identification

step and only perform a simple lookup to associate texts with the scenario.

+ Lastly, our model only performs script parsing on events. We shall leave participant

labeling for future work.

Consequently, our script parser consists of two modules corresponding to the remaining
two tasks: The first module is an event verb identification module, which identifies verbs
that denote script events of the given script. The second module is the event type identifi-
cation module, the central component of the system. It identifies event types of verbs, i.e. it

carries out the actual alignment task.
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Figure 6.1 shows the structure of the model proposed in this section.

The structure of this chapter is as follows:

+ In Section , we describe the first scalable script parsing model. It is based on condi-
tional random fields for the identification of script event types on verbs in a text. The
model is trained purely on ESD collections and can thus be scaled up to an arbitrary

number of scenarios.

« In Section E, we describe a model to identify event-denoting verbs in a text, which
is trained in a cross-validation setting. We outline the importance of scenario and
frame information and show thatboth types of information are crucial for identifying

event mentions in texts.

+ We evaluate both models separately. We also combine the models by integrating the
event type identification after the event verb identification model and provide an end-

to-end evaluation. We demonstrate that ordering information is in general beneficial

for script parsing (Sections E and @).

+ On basis of the annotations from Chapter H, we conduct a fine-grained evaluation

which is described in Section 6.4.2. We show that the parser greatly benefits from the

availability of many formulation variants, emphasizing the need for linguistically rich
script databases. We also show that a substantial amount of alignment cases requires

more complex inference steps.

6.1 Event Verb Identification

We make another technical simplification that affects the event verb identification step. As
mentioned in Chapter H, we assume that a script parser is only trained on script data that
are acquired via crowdsourcing.

However, DeScript does not allow us to train a supervised event verb identification model.
Due to the design of the data collection process of DeScript, it contains only descriptions of
events of the scenario in question. A supervised event verb identification model however

needs both negative and positive cases: Together with descriptions of events that belong to
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the script scenario, it needs to have access to descriptions of non-events or events that do

not belong to the scenario.

We tried unsupervised approaches, rule-based systems and several methods to artificially
generate non-events for training, but found that all trials resulted in bad performance. In-
stead, we use InScript directly to learn the event verb identification model, since it con-
tains both script-relevant verbs and non-script relevant verbs. The event verb identification

model is then trained and evaluated on InScript via cross-validation.

We use a decision tree classifier for identifying script-relevant verbs (/48 from the Weka
toolkit, (Frank et al}, 2016)). As presented in Chapter H, annotations on InScript contain four
classes of event type labels: A class for verbs that denote specific script events (i.e. scenario-
specific labels plus SCREv_OTHER), EvOKING for script-evoking elements, RELNScREV for
related events that are not part of the script, and UNRELEV for verbs that denote events
that are too general or not relevant to the current script, as well as verbs that do not denote

events at all.

At test time, we merge EvokiNG, RELNScREvV and UNRELEV into one non-script event class,
since these three classes all contain verbs that do not denote events of the current script. At
training time, in contrast, the classifier takes into account all four classes, since we found

this to be helpful for the performance.

We use the following feature types:

« Syntactic Features. To detect verbs that do not denote script events atall (i.e. a part of
the UNRELEV class), we employ syntactic features: a feature for auxiliaries; for verbs
that govern an adverbial phrase (mostly if-clauses); a feature indicating the number
of direct and indirect objects; and a lexical feature that checks if the verb belongs to
a predefined list of non-action verbs, taken from an online lexicon for English learn-

eI‘S.I-II.

« Script Features. For finding verbs that describe only very general events (such as de-
cide), or for verbs that do not denote events of the current script (i.e. the UNRELEV

and RELNScREV classes), we employ a set of script features: a binary feature indicat-

be, seem, appear, look, sound, smell, taste, feel, like, want, prefer, love, have, own, possess, think, believe, consider,

fromhttps://eslgold.com/grammar/nonaction verbs/


https://eslgold.com/grammar/nonaction_verbs/
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ing whether the verb is used in the ESDs for the given scenario; and a scenario-specific

tf—idf score that is computed by treating all ESDs from a scenario as one document,

summed over the verb and its dependents. In Section 6.3.2, we compare models with

and without script features, to test the impact of scenario-specific information.

+ Frame Feature. We further employ frame-semantic information. Frame information
can on the one hand help to identify verbs that do not denote events at all: the Feeling
frame will for example rarely denote a script event. On the other hand, it should help

to abstract away from different event realizations within a scenario.

We use a state-of-the-art semantic role labeller (Roth and Lapata, 2016) based on
FrameNet (Ruppenhofer et al., 2006) to predict frames for all verbs, encoding the frame
as a feature. We address sparsity of too specific frames by mapping frames to higher-

level super frames using the framenet querying packageﬁ.

We also assumed that there is a relation between the aspectual verb class and whether it
describes a script event or not. We thus performed alternative experiments with a verb as-
pect classifier (Friedrich et al., 2016). This classifier assigns situation entity types to verb
instances, containing categories such as state (a verb that describes a property), generic (a
statement about the property of a category) or event (an actual action that happened). The
vast majority of verbs in InScript were classified as event or state. Most verbs labeled as event
were indeed verbs that instantiate script events, but there were also many script event verbs

that were classified as state verbs, such as fill in Example :
(13) Ilet the tub fill up to about a hand ’s height from the top.

Features computed based on verb aspect were not found to be helpful and excluded from
further experiments.

6.2 Event Type Identification

In this section, we describe the core of our script parsing system, the event type identification

model. We start out with a baseline model that is solely based on textual similarity. We then

’github.com/icsi-berkeley/framenet
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describe a model that uses the temporal structure of a script, by fitting a sequence labeling

model on sequences of script events.

6.2.1 Baseline: Similarity-Based Model

CHOOSE RECIPE GET INGREDIENTS

| .
| - browse for recipe

|- look for a recipe

|- select recipe

maximal textual maximal textual

similarity similarity

found

Figure 6.2: An event type identification model based on textual similarity.

Figure 6.2 shows a simple model that employs textual similarity for the event type identifi-
cation step. The idea is to use a textual similarity measure to compare the event mention in
the text with all EDs in the script knowledge resource. Then, the event type label of the para-
phrase set with the most similar ED is assigned. We also tried selecting the event type label
of the paraphrase set with the highest average similarity, but found this to perform worse.
This was most likely due to the fact that in most paraphrase cluster, there is one ED that
is mentioned very often. Computing the average biases models towards this most common
ED, such that less common formulation variants are no longer recognized.

We use two similarity measures. The first measure is based on lemma equality. Let 7" denote
the lemmas of the event-denoting verb in the text together with all its dependency children.
Let E denote the lemmas of the verb and its dependency children of a event description.
The similarity is defined as the average of (1) the proportion of lemmas in the textual event
mention that are also mentioned in the ED and (2), vice versa, the proportion of lemmas in

the ED that are also mentioned in the textual event mention:

ITNE| | |TNE|
7| |E]

2

SUMiemma (T, E) = (61)

The second similarity measure we use is based on word 2vec word embeddings (Mikolov et al.,

2013a,b). Let t be the centroid of the word vectors of lemmas in T, and let e be the centroid of
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the word vectors of lemmas in E¥. The word2vec simila rity is defined as the cosine similarity
oftande:
t-e

) t = — 6.2
simuz(t€) = RrTelh ©2)

We also experimented with other similarity measures based on WordNet (Fellbaum, 1998),
such as the Lin (Lin, 1998) or Resnik (Resnik, [1995) similarity. We found the word2vec

similarity to generally outperform WordNet-based measures.

6.2.2 Sequence Labeling Model

training

/\<\ CRF model

: look for recipe
| gather ingredients
! mix ingredients

! find recipe online

1

I

| | prepare dough
[

. preheat oven

| ’ !
1 . L

7 N . .
+ labeling + labeling
| get ingredients . .
Mgeting
| mix eggs and

: | preheat oven
1
: flour |
1
1
I

| stir ingredients

1

I

1

! found [find,recipe]

: 4
I

L R S, 3 tOOk[geLingredien(s]

Figure 6.3: A CRF-based script parser.

One of the most important aspects of script knowledge is knowledge about the typical tem-
poral order of events in an everyday situation. The textual similarity models proposed in
the last section do not make use of such temporal information. In order to capture temporal
order, the second model we propose is based on a conditional random field (CRF, Lafferty
et al| (2001)). A CREF is a discriminative model that is used for sequence labeling tasks. By
design, it makes use of ordering information, by considering a chain of observations and

labels rather than a single observation/label.

In our case, the task is to predict a chain of event type labels on a narrative text. The model

is trained on ESDs only, as shown in Figure E Each single training instance, i.e. each ESD,

*To emphasize the importance of the verb, its word vector is counted twice when computing the centroid.
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consists of a sequence of single EDs (the observations) with respective event type labels (the
labels). During test/prediction time, the CRF outputs event type labels on the event-relevant
verbs in a narrative text. The observations thus correspond to the script-relevant verbs in

the text at prediction time.

In a CREF, the probability of a label sequence 7 of length 7" given an observation sequence
2, P(Y/| @) is defined as follows:

1 T m
Z( ) g 22:1: t—1 t t

Here, f;... f,, are feature functions for a given combination of an observation x;, which is
labeled as y;, and the previous label y;_;. Z (7) is a normalization factor, and J; is the
weight of the feature function f; thatis learned during training. In a CRF, feature functions

are usually indicative, i.e. they return 1 if a given feature combination is in the data.

In our case, the observations x; during training are the single EDs of one ESD. The labels y;
correspond to event type labels. The feature function in this case only considers the previous
label, although in general, there is no such restriction for CRFs. This kind of CRF is also
referred to as linear-chain CRF. The fact that the feature functions can access the previous
label means that the model has access to context information - in our case, information

about the previous event.

Feature Types

For identifying the correct event type given a script-relevant verb, we leverage two types of
information: We require a representation for the meaning and content of the event mention,
which takes into account not only the verb, but also the persons and objects involved in an
event, i.e. the script participants. In addition, we take event ordering information into account,
which helps to disambiguate event mentions based on their local context.

Our implementation is based on the CRF++ toolkittl. In CRF++, feature categories are defined
rather than single feature functionstl. In simple words, feature categories are sets of similar

feature functions. An example feature category for an ED would be the verb lemma. From

“taku910.github.io/cripp/
5In CRF++, feature categories are just referred to as features.
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the feature category verb lemma, the toolkit computes all possible feature functions: For each
verb lemma in the training data, CRF++ compiles a feature function that returns 1 if the verb

lemma is in the ED and 0 if not.
We employ two types of feature categories:

Sequential Feature Category. Our CRF model utilizes event ordering information in the form
of binary indicator features that encode the co-occurrence of two event type labels in se-

quence.

Meaning Representation Feature Categories. 'Two feature categories encode the meaning of a
textual event mention. One is a shallow form of representation derived from precomputed
word embeddings (word 2vec, (Mikolov et al,, 2013a,b)). This feature category captures distri-
butional information of the verb and its direct nominal dependentsH, which we assume to
denote script participants, and is computed by averaging over the respective word vector

representations, as for the computation of sim,s9,.

As a more explicit but sparse form of content representation, we additionally use the lemma

of the verb, its indirect object and its direct object as feature categories.

6.2.3 Alternative: Hidden Markov Model

An alternative to using a CRF would be to employ a Hidden Markov Model (HMM). Unlike
a CRF, a HMM is a generative sequence labeling model that models the joint probability of
observation and label sequence (P (7, ?)) This probability is defined as:

T

(o) [ [ p(wlvr-0)p(xelye) (6.4)

Here, p(y;|y;_1) is the transition probability of moving from label y;_; to y;, and p(x;|y;) is
the emission probability that y; generates the observation x;.

Notably, probabilities are usually not estimated via feature functions. Transition and emis-
sion probabilities can be read off a database in a supervised fashion, or estimated with an
expectation maximization (EM) algorithm. On the script data that are used, this step is
straightforward for the transition probabilities, since event label sequences can be read off

the ESDs. For the emission probabilities, HMMs usually assume a fixed set of observations,

%For EDs, we use all mentioned head nouns.
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which is a problem for a script parser: The number of phrases that can describe a specific
event is arbitrarily large. We thus tried to approximate the emission probabilities with tex-
tual similarity measures (as for the similarity model), which would be normalized over all
events.

We found that such an HMM model performs worse than a similarity-based model. One of
the main reasons for this is that the transition probabilities are too restrictive. The script
database we use is relatively small, with only 50 sequences per scenario. This means that
there are plausible event sequences that are not covered. Such sequences would get a total
probability of 0 in the HMM, given that one of the multipliers is ofl,

Together with the fact that HMMs don’t allow richer features representations, we found

CRFs to perform better by a large margin.

6.3 Experiments and Results

6.3.1 Experimental Setup

We evaluate our model for text-to-script mapping based on InScript and DeScript. We pro-
cess the InScript and DeScript data sets using the Stanford Parser (Klein and Manning,
2003)B. We further resolve pronouns in InScript using annotated coreference chains from
the gold standard. We individually test the two components, i.e. the identification of script-

relevant verbs and event classification. Experiments on the first task are described in Sec-

tion [6.3.2 Sections [6.3.3 and p.3.4 present results on the latter task and a combination of

both tasks, respectively. We split the InScript data into 810 texts for testing and 100 texts for
tuning the CRF model threshold. All presented results are computed on the test part only.
For all models, we use pretrained 300-dimensional embeddings that are trained on the

Google News corpus.H

"We also tried smoothing methods to counteract or at least weaken the effect, but this was not successful.

8To improve performance on the simplistic sentences from DeScript, we follow Regneri (2013) and re-train

the parser
’Because our CRF model only supports nominal features, we discretize embeddings from

code.google.com/archive/p/word2vec/ by binning the component values into three inter-

vals [—00, —¢€], [—¢, €], [¢, 00]. The hyperparameter € is determined on a held-out development set.
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P R F,
Lemma 0.365 0.949 0.526
Decision Tree 0.628 0.817 0.709

Decision Tree (scenario independent) 0.513  0.877  0.645

Table 6.1: Identification of script-relevant verbs within a scenario and independent of the

scenario. The maximum per column is printed in bold.

6.3.2 Event Verb Identification

In this evaluation, we test the ability of our model to identify verbs in narrative texts that
instantiate script events. Our experiments make use of a 10-fold cross-validation setting
within all texts of one scenario. To test the model in a scenario independent setting, we per-
form additional experiments based on a cross-validation with the 10 scenarios as one fold
each and exclude the script features. That is, we repeatedly train our model on 9 scenar-
ios and evaluate on the remaining scenario, without using any information about the test
scenario. We compare the decision tree model to a baseline (Lemma) that always assigns
the event class if the verb lemma is mentioned in DeScript. We report precision, recall and

F1-score on event verbs, averaged over all scenarios.

Table .1 gives an overview of the results based on 10-fold cross-validation. Our scenario
specific model is capable of identifying more than 81% of script-relevant verbs at a precision
of about 63%. This is a notable improvement over the baseline, which identifies 94.9% of the
event verbs, but at a precision of only 36.5%. The table also gives numbers for the scenario
independent setting: Precision drops to around 51% if only training data from other sce-
narios is available. One of the main difficulties here lies in classifying different non-script
event verb classes in a way that generalizes across scenarios: Verbs that do not denote script
events at all are usually easy to identify, since they are often just auxiliaries. Verbs marked as
ReLNScrEvare hard to identify in contrast, because they often describe events that are very
close to events of the scenario in question. Modi et al| (2016) also found that distinguishing

specific types of non-script events from script events can be difficult even for humans.



6. A Script Parsing Model 93

6.3.3 Event Type Identification

P R F,

Lemma 0.516 0.442 0.475
Word2Vec 0.538 0.480 0.507
CRF model  0.623 0.485 0.543
CRF, no seq.  0.608 0.475 0.531

Table 6.2: Event Type Classification performance, for the similarity models (simye;mq, based
on lemma similarity, and sim,,,, based on word2vec); and for the CRF model,

with and without sequential features. The maximum per column is printed in bold.

In this section, we describe experiments on the event type identification task based on the
subset of event instances from InScript that are annotated as script-related. As training
data, we use the ESDs and the event type annotations from the DeScript gold standardld.
The evaluation task is to classify individual event mentions in InScript based on their verbal
realization in the narrative text. We evaluate against the gold-standard annotations from
InScript. Since event type annotations are used for evaluation purposes only, this task comes
close to a realistic setup, in which script knowledge is available for specific scenarios but no
training data in the form of event-type annotated narrative texts exists. We report precision,
recall and F1-scores, macro-averaged over all script-event types and scenarios.

Results for all models are presented in Table . Our CRF model achieves a F1-score of
0.543, a considerably higher performance in comparison to the baseline models. As can be
seen from excluding the sequential feature, ordering information improves the result. The
rather small difference is due to the fact that ordering information can also be misleading
(cf. Section @) We found, however, that including the sequential feature accounts for an
improvement of up to 4% in F1 score.

Table E shows F; scores for each individual scenario, for the CRF model with and without

the sequential feature. As can be seen, ordering information increases the F; up to 4%, in

101 DeScript, there are some rare cases of EDs that do not describe a script event, but that are labeled as

non-script event. We exclude these from the training data.
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Scenario F; (no ordering info) F; (ordering info) Improvement
HAIRCUT 0.532 0.521 -0.011
BICYCLE  0.540 0.554 0.014
BATH 0.658 0.694 0.037
BUS 0.445 0.462 0.017
TREE 0.504 0.514 0.011
TRAIN 0.555 0.563 0.009
FLIGHT 0.476 0.478 0.003
CAKE 0.617 0.623 0.005
GROCERY 0.527 0.555 0.027
LIBRARY  0.460 0.465 0.005
Average 0.531 0.543 0.012

Table 6.3: The influence of the sequential feature per scenario.

the TAKING A BATH scenario. Only for GETTING A HAIRCUT, ordering information decreases

performance. In this scenario, plausible event sequences are not covered by the script data

(cf. Section @). In general, ordering information is beneficial.

6.3.4 Full Script Parsing Task

P R F;
Ident. model+Lemma 0.388 0.475 0.426
Ident. model+Word2vec 0.393 0.511 0.442
Ident. model+CRF model 0.458 0.505 0.478

Table 6.4: Full text-to-script mapping results. The maximum per column is printed in bold.

We now address the full text-to-script mapping task, a combination of the identification of

relevant verbs and event type classification. This setup allows us to assess whether the gen-

eral task of a fully automatic mapping of verbs in narrative texts to script events is feasible.
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We compare the similarity models and the CRF model, but use them on top of our model

for identifying script-relevant verbs instead of using the gold standard for identification.

On the full text-to-script mapping task, our combined identification and CRF model achieves
a precision and recall of 0.458 and 0.505, resp. (cf. Table @). This reflects an absolute im-
provement over the baselines of 0.036 and 0.052 in terms of Fy-score. The results reflect the
general difficulty of this task but are promising overall. As found in Chapter H, even human

annotators only achieve an agreement of 0.64 in terms of Fleiss’ Kappa (Fleiss, [1971).

6.4 Discussion

6.4.1 Error Analysis

In this Section, we look in more detail at typical errors. We identified three major error

sources.

+ Lexical Coverage. We found that although DeScript is a small resource, training a
model purely on ESDs works reasonably well. Coverage problems can be seen in cases
of events for which only few EDs exist. An example is the CHOOSE_TREE event (the
event of picking a tree at the shop) in the PLANTING A TREE scenario. There are only 3
EDs describing the event, each of which uses the event verb “choose”. In contrast, we
find that “choose” is used in less than 10% of the event mentions in InScript. Because
of this mismatch, which can be attributed to the small training data size, more fre-
quently used verbs for this event in InScript, such as “pick” and “decide”, are labeled
incorrectly. We observe that our meaning representation might be insufficient for
finding synonyms for about 30% of observed verb tokens. This specifically includes
scenario-specific and uncommon verbs, such as “squirt” in the context of the BAKING
A CAKE scenario (squirt the frosting onto the cake). Problems may also arise from
the fact that about 23% of the verb types occur in multiple paraphrase clusters of a

scenario.

+ Misleading Ordering Information. We found that ordering information is in general

beneficial for text-to-script alignment. We however also identified cases for which it
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can be misleading, by comparing the output of our full model to the model that does
not use sequential features. As another result of the small size of DeScript, there are
plausible event sequences that appear rarely or never at all in the training data. For
the misclassifications due to misleading ordering information, this error accounts for
approx. 60-70% of cases. An example is the wasH event in the GETTING A HAIRCUT
scenario: It never appears directly after the MOVE_IN_sALON event (i.e. walking from
the counter to the chair) in DeScript, but it is a plausible sequence that is misclassified
by our model. In almost 15% of the observed errors, an event type is mentioned more
than once, leading to misclassifications whenever ordering information is used. One
reason for this might be that events in InScript are described in a more exhaustive or
fine-grained way. For example, the wasH event in the TAKING A BATH scenario is often
broken up into three mentions: wetting the hair, applying shampoo, and washing it
again. However, because there is only one event type for the three mentions, this se-
quence is never observed in DeScript. Events with an interchangeable natural order
lead to errors in a number of cases: In the BAKING A CAKE scenario, a few misclassi-
fications occur because the order in which e.g. ingredients are prepared, the pan is
greased and the oven is preheated is very flexible, but the model overfits to what it
observed from the training. As last, there are also a few cases in which an event is
mentioned, even before it actually takes place. In the case of the BORROWING A BOOK
scenario, there are cases in InScript that mention in the first sentence that the purpose
of the visit is to return a book. In DeScript in contrast, the RETURN event always takes

place at the very end.

+ Near Misses. For many verbs, it is also difficult for humans to come up with one
correct event label. By inspecting confusion matrices for single scenarios, we found
that for at least 3-5% of script event verbs in the test set, our model predicted an
“incorrect” label for such verbs, but that label might still be plausible. In the BAkING
A CAKE scenario, for example, there is little if any difference between mentions of
making the dough and preparing ingredients. As a consequence, these two events are
often confused: Approximately 50% of the instances labeled as PREPARE_INGREDIENTS

are actually instances of MAKE_DOUGH.
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6.4.2 Entailment Type and System Performance

dense
—
Partial Ent.

0% 25% 50 % 75 % 100 %

Reverse Ent.

Figure 6.4: Accuracy of the CRF model on clausal entailment classes.

As additional analysis, we look at the accuracy of our event type identification model on
the part of the data with annotated entailment classes from Chapter Hl——‘l: The results on all

annotated clauses are shown in Figure @

Identity (verb and all head nouns are lemma-identical) is easiest to model, and so the model
performs best on these cases. That the accuracy is not 100% is due to the fact that sometimes
the same verb lemma occurs in different paraphrase sets. This holds in particular for light
verbs such as get, which can be used to instantiate many different events throughout a sce-
nario. In the BAKING A CAKE scenario, for example, get appears in the CHOOSE_RECIPE para-
phrase set (get your recipe), as well as in GET_INGREDIENTS (get a box of cake mix), GET_UTENSILS
(get a pan), etc.

In general, the important result is not the accuracy on the identity cases in itself, but rather
that the high number of realization variants for event mentions contained in the paraphrase

sets (38% Identity cases) help a lot with the mapping task.

Toillustrate the positive effect of alarge paraphrase set on system performance, we compare
the result on Identity cases with a situation in which there is only one ED per paraphrase set.
To this end, we picked one ED randomly from the paraphrase sets (average size is 25, using
a token-based count), as representative(s) of the event type, and computed the number of
verb identity cases automatically: They would drop from 58% to 26.9%. With a similar drop

for participant identity cases, the resulting clause-based percentage of identity cases would

UThe numbers don’t exactly correspond to bstermann et al. (|2017‘), since there, the CRF model did not

predict SCREV_OTHER because it does not appear in the entailment data.
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Figure 6.5: Accuracy of the baseline models on the entailment classes: sim,z, (left) and

SIMyepnme (right).

be below 20% (instead of 38%), probably leading to a dramatic drop in labeling accuracy.

The cases we identified as complex are indeed most challenging for the model: Events in
the partial entailment class are most difficult to map. This result provides a complementary
message about the script knowledge base. About 80% of the clause-level Partial Entailment
cases contain a word-level Inference relation, which is a strong indicator of the need for meth-
ods that are able to handle more complex inference: Crowdsourced collections of linguistic
realization variants help to avoid complex inference in many cases, but cannot completely
replace it. This emphasizes the need for larger script data collections that cover even more
description variants for events and participants. The low performance on the Equality cases
is mainly due to the fact that it subsumes the difficult Diathesis and Phrasal Verb relations. In
contrast, the results for Reverse Entailment are better than one would expect: This is mostly
due to the fact that most Reverse Entailment cases (approx. 85%) consist of combinations of
Equality or Identity with an Unrealized participant. Even if one participant is unrealized, the
correct label is mostly identified. For the text clause I placed the tree, hole is a required partici-
pant, occurring in every ED, but nevertheless the overlap is high enough to select the correct
label. The more difficult Hypernymy cases make up only 15% of the Reverse Entailment cases.
The situation is similar for the Entailment cases. Here, Additional participant cases make up

50%.

Finally, the model has low accuracy for the Non-Entailment cases. However, it is substantially
above the random baseline. A possible reason is that the compositional computation of the
clause-level entailment type amounts to a generalization to the worst case. Thus a number of

pairs end up in the Non-Entailment class although there is only a minor local incompatibility.
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As comparison, Figure 6.5 shows the accuracy of the baseline models on the annotated event
verbs, which show a similar overall picture. The fact that the CRF outperforms sim,,5, on
Equality cases might be due to the fact that ordering information is beneficial in sorting out
false positives: If two event types are equally plausible because two EDs are very similar,
ordering information might help to pick the correct label. In contrast, ordering information
can also be misleading in some cases, as we found before: Sim,,5, even outperforms the CRF

on Equality, Entailment and Reverse Entailment in terms of accuracy.

Simyeme performs almost at par with the sim,,5, on the Equality cases. An explanation for

this is that these cases just require a lemma equality lookup.

6.5 Summary

In this chapter, we addressed the task of automatically mapping event denoting expressions
in narrative texts to script events, based on an explicit script representation that is learned

from crowdsourced data.

We present the first supervised script parsing model that is trained on crowdsourced data
and thus applicable on a larger scale. We show that a model of script knowledge can be

successfully trained on crowdsourced data, even if the number of training examples is small.

We find that our similarity-based baseline models already perform well given the high num-
ber of event labels, although they are not trained in a supervised fashion. Although the sim-
ilarity models provide strong baselines, using a CRF, we are able to outperform them. We
find that ordering information is especially helpful and that it improves the parsing perfor-

mance.

We also closely inspected the performance of our parsing models, using the annotations of
Chapter H as a diagnostic tool. Our main finding is that the size of the script database is
crucial for the performance of a script parser: The larger the database is, the more formu-
lation variants it provides - which improves the performance of a script parser trained on

the script data.
Script parsing is a basic prerequisite for leveraging script knowledge in an actual natural
language understanding application. Until now, script knowledge has only been evaluated

in technical evaluation settings. In the next part of this dissertation, we present the first end-
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to-end evaluation task for script knowledge, based on a machine comprehension corpus that
requires systems to model script knowledge.

The findings of this chapter provide an important basis for leveraging script knowledge in
NLU applications, and they provide an important outlook on the challenges that need to be

taken to make script knowledge available for NLU models.
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Chapter 7

Background and Motivation

In this part of the thesis, we will look at a new evaluation setting for script knowledge: Ma-
chine comprehension. In the past, script knowledge has mostly been tested in technical eval-
uations, i.e. by evaluating how complete or elaborate script representations are in compari-
son to a gold standard. While these evaluation efforts disclose the quality of the underlying

script structure, they lack a connection to downstream tasks and actual applications.

We motivate the task of machine comprehension as an evaluation environment for script
knowledge and commonsense knowledge. In the first part (Section , we take a closer
look at story understanding, a special subtask of machine comprehension, in which a sys-
tem has to process a narrative text and has to answer questions on it. Story understanding
is closely tied with script knowledge inference, since a system needs to have certain com-
monsense inference capabilities about the narrative scenario to truly understand a text. We
present both early and more recent story understanding models and corpora. While early
systems explicitly focused on scripts, newer approaches rather concentrated on more gen-
eral commonsense knowledge, such as knowledge about physical facts.

In Section , we look at evaluation methods that are focused on assessing how good mod-
els can draw commonsense inferences. In contrast to story understanding, the evaluation
methods presented here do not correspond to actual applications and are less natural, but

more focused on commonsense inference.
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In the last part of Chapter H we look at related work in the area of machine comprehension
in general. We look at standard machine comprehension corpora that focus on evaluating
a systems’ capability to process text, irrespective of its capability to perform commonsense
reasoning. We also present standard machine reading models for the processing of such

texts.

7.1 Machine Comprehension and Story Understanding

In this section, we lay some of the theoretical and methodological basics for understanding
the idea of machine comprehension evaluations. In particular, we try to situate machine

comprehension into the larger research landscape.lﬂ

An overarching goal of research in computational linguistics is to make a computer “under-
stand” natural texts, a field that is referred to as Natural Language Understanding (NLU).
One central challenge is to determine, given a text understanding model, whether the com-
puter really “understands” a text or not. A good way to test human text understanding is to
ask questions on a reading text, i.e. a reading comprehension task. The idea is adapted for com-
puters: If a computer is able to correctly answer questions on a reading text, it is assumed
that it understands the text. This task is also referred to as machine comprehension. Machine
comprehension can be seen as a special kind of question answering on a reading text, as op-
posed to open question answering from large text collections, which is more connected to

information retrieval.

There are several “flavours” of machine comprehension. For example, there are machine
comprehension datasets on newswire texts, which require a system to model complex word
meaning, or to look into different parts of atext at once in order to find an answer (Khashabi

et al.,, 2018).

A different, particularly interesting case is story understanding, where the reading texts are
narrative stories. Example (13 shows a snippet of a narrative text from the InScript corpus
(s. Chapter H) for illustration, together with two reading comprehension questions. A story

understanding system that has processed the text should be able to find the correct answer

'Unfortunately, the terms of machine comprehension, questions answering and natural language understanding

are often used interchangeably. The disposition presented here is thus subjective to some extent.
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to both questions in order to show that it has truly understood the text.

(13) Text: 1like to ride on trains because you can see lots of countryside without having
to worry about driving. One time, when I lived in Alaska, I rode on a train from
Fairbanks to Denali park. Just like with all train rides, I had to buy a ticket first and
then [ had to stand in line to wait for the train to stop at the station. Then I climbed
onto the train and picked a seat. After the train started moving, a train attendant
walked through to check our tickets and then I stood up to walk around. I saw lots
of interesting things including a moose and we arrived at Denali right after that.
Question 1: Who checked his ticket?

a. a ticket inspector

b. the conductor

Question 2: Where did the person buy a ticket?
a. at the bord restaurant

b. at a ticket machine

Questions 1 and 2 illustrate two major challenges that need to be tackled for automated
story understanding. A first challenge is the representation of words and their meaning in
the text: To find an answer to the first question, a system needs to model word meaning, in
order to find that a ticket inspector is a paraphrase of a train attendant, which is mentioned in
the text. Similarly, the ability to resolve pronouns is beneficial, if the system can determine
that his in Question 1 refers to the person riding the train. As mentioned above, modeling
lexical meaning is a central aspect in most machine comprehension systems: This challenge
is not specific to story understanding, but also to the wider field. Since understanding the
meaning of words within a text usually does not require a system to perform reasoning over
facts that are not mentioned in the text, we will henceforth refer to the inferences that a

system needs to draw in order to answer such questions as text-based inferences.

Question 2 illustrates another challenge, namely the inference over facts that are not men-
tioned in the text, i.e. that go beyond the text. While a person is easily able to tell that at a ticket
machine is the correct answer, this is challenging for a computer system, since neither ticket
machine nor board restaurant are mentioned in the text. Information that goes beyond the

text is needed in order to find the answer, in this case information that tickets are usually
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bought at ticket machines rather than in bord restaurants. For narrative texts about every-
day situations, these missing pieces of information can be events that are not mentioned
but that are by default assumed to have happened; likewise participants of the activity that
are not explicitly mentioned in the text, but that usually play a role in the scenario. In op-
position to text-based inferences, we will henceforth refer to these kinds of inferences as

commonsense-based inferences.

The commonsense knowledge that is needed to deeply understand such narratives is usually
knowledge about everyday scenarios. This type of commonsense knowledge about everyday
activities is script knowledge. Story understanding is thus an ideal evaluation ground for
scriptknowledge. A text understanding system that has access to script knowledge should be
able to answer question 2, while a system that has no access to such knowledge will struggle
with the question. Unlike the script knowledge evaluation methods presented in Section
@, story understanding is a task-oriented kind of evaluation, i.e. it shows the usefulness of

script knowledge in an actual application, namely machine comprehension.

7.1.1 Early Story Understanding Systems

In story understanding and general machine comprehension research, the focus in recent
years has mostly been on text-based inferences, i.e. on finding ways to leverage lexical mean-
ing, rather than on drawing inferences that go beyond the text content, which is a much
harder problem. Most machine comprehension data sets that have been released in recent
years (e.g. SQuAD, RACE, CNN/DailyMail, BAbI, CBT etc.) are large, i.e. they contain
many questions in total, but only a small fraction of the questions requires commonsense-
based inferences. (For a more elaborate overview, we refer to Section E.)

Early work on story understanding tried to handle the problem of modeling commonsense-
based inferences, but used only a small number of prepared demo texts. Most of the early
approaches were based on a underlying, rule-based and scenario-specific script representa-
tion that was used to enhance text understandingﬂ.

SAM (Script Applier Mechanism, Cullingford (1978)) is an example for such a system. SAM

is a pattern-based script parser that uses script knowledge to understand stories in a re-

2The following paragraphs are based on Mueller| (2006), a comprehensive review of older story understand-

ing systems.
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stricted number of domains. It is able to recognize when a script is activated by an event
mention or a script-denoting expression. Over the text, it identifies participants and keeps
track of their current states. It also recognizes events and which participants take part in
events, building a script-augmented representation of the text. To answer questions about
events and participants, it identifies a common event in text and question and uses informa-
tion that is associated with this event. SAM works on a range of invented restaurant stories

and some pre-edited newspaper texts.

Another example for an early system is the BORIS program (Dyer, 1982), which builds an
“episodic memory representation of the story” containing facets of the story (e.g. scenario in-
formation, thematic information etc.) that are connected to hard-coded world knowledge.

Like SAM, BORIS works only on a restricted set of texts of very restricted domains.

Miikkulainen (1993) proposed DISCERN, a neural network that can read and answer ques-
tions about script-based stories. The program uses memory models to store different aspects
of script knowledge (causal event chains and role bindings of participants), and works on

artificially created texts for 3 script scenarios (restaurant, shopping and travel).

Mueller (2004) presents an extension to the SAM program. Based on SAM, event calculus
methods are used to learn a model of the text that can be used to answer questions. They
especially focus on inferences involving time and space in a restricted number of domains.
Unlike earlier approaches, their system does not rely on hand-written demo texts, but is the

first script model that is applicable to arbitrary texts of the given scenario.

The earlier approaches on commonsense-based story understanding have in common that
they only work on manually constructed test cases and were made for demonstration pur-
poses rather than for actual applications. The used scenarios are predefined, and solely infer-
ences on these narrow domains are modeled. Moreover, most of the systems encode script
knowledge in a rule based or pattern based fashion, which means that they do not work well
on new texts. This restriction is critical particularly in comparison to newer machine com-
prehension systems for text-based inference: Such systems work on large text collections

and many domains, while early approaches are not applicable to real-world tasks.
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7.1.2  Machine Comprehension Datasets with a Focus on Commonsense

Reasoning

Only in the last 2-3 years, efforts have been made to provide evaluation data for commonsense-
based machine comprehension on a wider range of scenarios. While the corpora described
below contain more natural texts than early evaluation data, they are not story understand-
ing evaluation methods in the narrow sense: They don’t focus on the impact of script knowl-
edge reasoning and their genre is usually not narrative texts. They still require a system to
infer information that is not mentioned in the reading text explicitly, but usually assume a
broader notion of commonsense knowledge, as it is for example encoded in commonsense
knowledge databases such as WebChild (Tandon et al., 2017) or ConceptNet (Speer et al.,
2017) (cf. Chapter ). Note that the majority of the introduced data sets was created after

the publication of our MCScript data, which is described in Chapter H

News Domain. Two recently published machine comprehension data sets that require
commonsense-based inference are based on news texts. First, NewsQA (Trischler et al., 2017)
is a dataset of newswire texts from CNN with questions and answers written by crowd
workers. During data collection, full texts were not shown to workers as a basis for ques-
tion formulation, but only the text’s title and a short summary, to avoid literal repetitions
and support the generation of non-trivial questions requiring background knowledge. The
task is the identification of document passages containing the answer. Knowledge required
to answer the questions is mostly factual knowledge.

Figure [/.1 gives an example text from NewsQA with a question. Both green text spans are
possible answers to the question. To find the answers, a system needs to infer that challenging
a law can result in slamming it.

Second, ReCoRD (Zhang et al,, 2018) is a gap-filling task on newswire texts. The gap-filling
tests were not crowdsourced, but automatically created, by hiding a named entity in alarger
passage from the text. The passage serves as “question”, and the hidden entity needs to be
predicted. The authors show that commonsense inference is needed for a major part of the
questions, since the deleted paragraphs are usually quite long, such that machine compre-

hension systems will have to make many successive inference steps.
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Text: (CNN) - Four groups that advocate for immigrant rights said
Thursday they will challenge Arizona’s new immigration law, which
allows police to ask anyone for proof of legal U.S. residency.

The Mexican American Legal Defense and Educational Fund, the
American Civil Liberties Union, the ACLU of Arizona and the National
Immigration Law Center held a news conference Thursday in Phoenix

to announce the legal challenge. ...

Question: Who slammed the law?

Figure 7.1: Example text fragment from NewsQA

Text: ... Back then, Salameh had no expedition experience, little money
and couldn’t have pointed to Mount everest on a map. Fast forward to
2017, and he has become the first Jordanian to complete the “Explor-
ers Grand Slam”, which entails climbing the Seven Summits, including

Mount Everest, and reaching the North and South poles. ...

Question: Almost immediately afterward, Salameh stopped partying,

smoking and began training for the X.

Figure 7.2: Example text fragment from ReCoRD

Figure E gives an example text fragment from ReCoRD with a question. To find the cor-
rect answer, a system has to infer long and complicated chain of commonsense facts: The
Explorers Grand Slam will require lots of training, which will require a healthy lifestyle, with-

out partying and smoking.

Web Texts. Other corporadon’t use texts in the news domain, but web documents. They in-
clude for example TriviaQA (Joshi et al}, 2017), a corpus that contains automatically collected
question-answer pairs from 14 trivia and quiz-league websites, together with web-crawled
evidence documents from Wikipedia and Bing. While a majority of questions require world
knowledge for finding the correct answer, it is mostly factual knowledge. In addition, the
genre of the evidence documents is unrestricted, i.e. different types of texts are used. Fig-

ure E gives an example question from TriviaQA along with an evidence document snippet
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Text (from Wikipedia): ... Eliza is a Cockney flower girl, who comes to
Professor Henry Higgins asking for elocution lessons, after a chance
encounter at Covent Garden. Higgins goes along with it for the pur-
poses of a wager: That he can turn her into the toast of elite London

society. ...

Question: Who taught Eliza Dolittle to be a lady? - Professor Henry

Higgins.

Figure 7.3: Example text fragment from TriviaQA

from Wikipedia. The challenges here are two-fold: (1) A system needs to draw the compli-
cated commonsense inference that Prof. Higgins gives elocution lessons and turns Eliza
“into the toast of elite society”, means that he teaches her to be a lady. (2) The system needs
to find this relevant text part from a large text, namely a whole Wikipedia article or a web
document, which has in some respects more resemblance to an information retrieval task

than machine comprehension.

CommonsenseQA (Talmor et all, 2019) contains a total of over 9000 multiple-choice ques-
tions that were crowdsourced based on triples of (entity,, relation, entity,) in Concept-
Net: Workers had to formulate a question about entity, that could be answered with entity,,
requiring a system to model the relation between the entities. To generate wrong answers,
triples (entity,, relation, entity?) were extracted from ConceptNet, and entity? was as-
sumed to be an incorrect answer that is semantically similar to entity, due to the same
relation to entity,. Texts were only added post-hoc, by querying a web search engine based
on the formulated question, and by adding the retrieved evidence texts to the questions and

ansSwers.

Fiction. NarrativeQA is a reading comprehension dataset that largely differs from other
corpora in terms of text length. Instead of providing short reading texts, systems have to
process complete novels or movie scripts and answer very complex questions. About 30
questions per novel were crowdsourced based on book summaries, together with match-
ing answers. Two tasks are addressed: (1) predicting answers and (2) finding the correct

answer for each question from the 30 possible answers per novel. Answering questions in
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NarrativeQA doesn’t necessarily require world knowledge, but systems need to be able to
spot relevant passages in large, coherent collections of text. The task is similar to an infor-
mation retrieval task: Once the relevant passages or chapters in the novel are identified, the

information needed to find the answer can usually be extracted from them.

Story understanding is an ideal end-to-end evaluation ground for script knowledge. Ear-
lier approaches provided only demonstrator cases and no proper evaluation methods. More
recent tasks and corpora handle different domains, which results in the fact that they eval-
uate a much broader notion of commonsense inference, including e.g. physical knowledge

(for trivia texts) and knowledge about politics (for newswire texts).

What is missing, is a story understanding task based on everyday texts, which goes beyond
early demonstrator tasks and allows for a reliable assessment of the impact of script knowl-
edge. To provide such an evaluation, we created the MCScript and MCScript2.0 corpora,
described in Chapter H and Chapter . Unlike previous works, our corpora provide a
range of narrative texts from a large number of everyday scenarios together with multiple-
choice questions, a large proportion of which require reasoning over everyday common-
sense knowledge. Our resources are thus the first actual evaluation data sets for this kind of

knowledge in the area of story understanding.

In the following sections, we will give short overviews of two areas that are related to story
understanding: First, we give a short overview of data sets and systems for purely text-based
machine comprehension, which do not explicitly require systems to perform commonsense-
based reasoning. Second, we look at other evaluation paradigms for commonsense infer-
ence, i.e. tasks that test a system’s capability to draw commonsense inferences, but not in a

reading comprehension setting.

7.2 Text-Based Machine Comprehension Tasks and Systems

In this section, we look at related work in the area of general machine comprehension, with-
out a focus on commonsense inferences. We introduce the most common corpora and mod-
els for purely text-based inference, i.e. with no special focus on including external knowl-

edge.
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7.2.1 Data Sets

In recent years, a number of reading comprehension datasets for text-based understanding
have been proposed, which differ with respect to text type (Wikipedia texts, examination
texts, etc.), mode of answer selection (span-based, multiple choice, etc.) and test systems
with regard to different aspects of language understanding, without explicitly addressing

commonsense knowledge.

Multiple-Choice Questions. MCTest (Richardson et al.,, 2013) was one of the first machine
comprehension data sets with a focus purely on text-based understanding. Based on crowd-
sourced fictional stories, a larger portion of the questions requires methods for combining
information from various sentences in order to find the correct answer to multiple choice
questions.

In the same spirit, MultiRC contains multiple-choice questions that require a system to pro-
cess several text sentences in order to identify one or more correct answer from a set of
several multiple-choice answers. The dataset comprises of reading passages from 7 differ-
ent genres.

RACE (Lai et al}, 2017) is based on examination tests, and provides candidate answers to the

multiple-choice questions. It is similar to MCTest in style, but larger in size.

Gap Filling Tasks. The Children’s Book Test (CBT, Hill et al. (2015)) contains gap-filing ques-
tions on children’s books. Systems are required to process larger parts of a text and to infer
anamed entity that is missing from a target sentence.

CNN/Daily Mail (Hermann et all, 2015) is a large corpus of news texts, that also contains

cloze tests for named entities.

Other Data Sets. The Stanford Question Answering Dataset (SQuAD, Rajpurkar et al, (2016))
is a large machine comprehension dataset based on Wikipedia texts. The task is to predict a
span in the text that answers the questions.

BAbI (Weston et al., 2015) is an artificial machine comprehension framework containing

20 different toy tasks that each test a single aspect of machine comprehension, such as the
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ability to resolve pronouns, the ability to count, or the ability to extract single or multiple

supporting facts from a text.

7.2.2 Systems

Since a large number of reading comprehension systems has been developed in the past few

years, we will only very briefly highlight some of the more prominent systems here.

Many recent machine comprehension systems are based on recurrent neural networks (RNN).
The Attentive Reader is such a model, and a generalization of memory networks (Weston et al.,
2014) to reading comprehension. It was one of the first reading comprehension models that
utilizes an attention mechanism. As such, many recent machine comprehension models are
built on its basic architecture, which is why we describe it here in greater detaill. The model
consists of two recursive bi-directional long short-term memory readers (henceforth LSTM,
(Hochreiter and Schmidhuber, 1997)) that process text and question, respectively. The text
is represented as a weighted average of the hidden states of the text LSTM. The weights for
each token are learned by combining the respective hidden state at the token position with
the question representation, which is just the last hidden state of the question LSTM. In other
words, the question is used to attend to the text tokens, and to decide which of the tokens is
more important. Text and question representation are then combined for classification. In
the original model, a named entity is predicted, but there exist other variants (e.g. Lai et al.
(2017), who use the model to choose one of several answer candidates). Chen et al. (2016)

present an extension of the model, using bilinear attention computations and GRUs instead

of LSTMs.

The Gated-Attention Reader (Dhingra et all, 2017) follows the paradigm of using recursive
neural network modules to process text and question. It employs several layers of attention
that are built on top of each other (multi-hop architecture), i.e. the question does not attend
to the text only once, but in each layer, based on the previous attended representation. Also,
the attention computation is slightly modified. The multi-hop architecture is intended to
encode deeper kinds of relations between the word than the shallow attention formulation

of the Attentive Reader.

3For a formal description of the model, s. Chapter H
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Transformers have been proposed as an alternative to RNN-based models, because the lat-
ter usually require a long training time due to their complexity. Vaswani et al. (2017) use
feed-forward networks and self attention layers to replace RNN reader components in ma-
chine translation. Self attention is a simplification of the previously described attention
formalisms: The idea is to use the text itself to compute attention weights. The weights thus
no longer highlight words that are important for a question, but just generally prominent
tokensH. Yu et al. (2018) extend this transformer model with convolution layers and adapt it
to the reading comprehension task. Their model, called QANet, reached the state of the art
on SQuAD at the time of publication.

7.3 Other NLU Tasks for Evaluating Commonsense

Inference

In this section, we widen the focus again, moving away from machine comprehension and
question answering as evaluation method for commonsense reasoning. There have been
other tasks in natural language understanding that are used to evaluate the commonsense

reasoning capabilities of a system, which we will briefly introduce here.

The ROCStories corpus (Mostafaza deh et al,, 2016) is an example for an alternative story
understanding evaluation. It contains 100,000 crowdsourced narrations about everyday
scenarios. All stories consist of 5 sentences. Mostafaza deh et al! (2016) propose the Story
Cloze test on their data set: The last sentence is left out, and a (new) plausible and an im-
plausible ending are crowdsourced in an additional experiment. Systems have to decide
between the two endings. The authors provide more than 3,500 gap-filling tasks for test-
ing. For training models, the remaining full texts can be used, which means there are no
negative examples for training. Due to its domain and setup, the story cloze test requires a
system to use commonsense knowledge about everyday scenarios. However, the texts are
topically unrestricted and very short (i.e. mentioning only one or two concrete events per
text), which makes it difficult to evaluate the relevance of script knowledge specifically. It

has been shown that simple models that just use stylistic features on the endings, ignoring

4Self attention can thus be seen as a sort of filter mechanism, that sorts out tokens that are not important,

or stop words.
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the preceding sentences, work well on the data.

Text: Karen was assigned a roommate her first year of college. Her
roommate asked her to go to a nearby city for a concert. Karen agreed

happily. The show was absolutely exhilarating.

Right Ending: Karen became good friends with her roommate.

Wrong Ending: Karen hated her roommate.

Figure 7.4: Example text fragment from TriviaQA

Figure @ shows an example item from the story cloze test. The story talks about a girl that
attends college and visits a concert with a roommate. To find the correct ending, a system
should have the reasoning capability to know that it is very unlikely that Karen does not
like her roommate after visiting an “exhilarating” concert with her. A very general kind
of commonsense knowledge is required: If two persons experience something exhilarating

together, it is probable that they like each other.

SWAG (Zellers et al., 2018) is a natural language inference corpus requiring the use of com-
monsense knowledge. It contains 113,000 cloze-style multiple choice test items in the form
of short video descriptions missing the last verb phrase. The task is to predict the missing
verb phrase from a range of possibilities. The possible answers consist of the original verb
phrase and 3 alternative verb phrases that are generated with a language model by massive
oversampling and then filtering the samples with a method called adversarial filtering. The
video descriptions that are used to generate the test instances were taken from video cor-
pora about different everyday activities, thus the domain requires systems to know about
everyday commonsense knowledge. Similar to CommonsenseQA, SWAG however does not

contain reading texts, and no textual material is used apart form the cloze-style question.

Another evaluation methodology for everyday commonsense knowledge is the Winograd
Schema Challenge (Levesque et al,, 2012). A Winograd schema always consist of a sentence
with several discourse referents and a single binary question that has one of the referents as
an answer. The kind of commonsense knowledge that is required to answer the question is
usually specific to the nouns in question, and is only needed to support referent resolution

to find the answer. No full text is used to support the inference.



7. Background and Motivation 116

Text: The trophy would not fit in the brown suitcase because it was too

big. What was too big?

Right Answer: the trophy

Wrong Ending: the suitcase

Figure 7.5: Example item from the Winograd schema challenge

Figure [7.5 shows an example item from the Winograd schema challenge. The task is to find

which discourse referent is too big, which requires physical knowledge.

The COPA corpus contains 1000 handcrafted short premises, followed by two alternative
continuations. The premises and endings are based on personal stories from the web and
require a system to have causal world knowledge, e.g. the fact that losing balance on a ladder

causes falling off the ladder.

7.4 Summary

In this chapter, we motivated the task of machine comprehension for the evaluation of script

knowledge.

We first looked at the task of story understanding. While early work on story understanding
concentrated on evaluating script knowledge, the data and systems developed were mere
demonstrators and not actually applicable in an end-to-end application. Recent work on
story understanding has focused on other genres than narratives, such as news texts and
web texts. The kind of commonsense knowledge that is investigated here is thus more gen-
eral and reaches from knowledge about politics to physical knowledge up to facts about the

world.
Second, we presented general text-based machine comprehension data sets and models.

Third, we looked at alternative evaluation tasks for commonsense knowledge reasoning.
While there exist several approaches to evaluate commonsense inference in a textual entail-
ment or coreferent resolution task, none of them explicitly addresses script knowledge.

To sum up, we find that recent work on machine comprehension concentrates on a very gen-

eral type of commonsense knowledge inferences, or often is not focused on such inferences
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at all. This leaves open the important question to what extent script knowledge is helpful
for text understanding. In contrast, early work on the topic was more focused on scripts,

but provided only a small number of demonstrator cases.

In the next chapters, we attempt to close this gap by providing data and models for the fo-
cused evaluation of the contribution of script knowledge for natural language understand-
ing. We present MCScript and MCScript2.0, the first datasets focused on evaluating the
contribution of script knowledge for natural language understanding in an actual applica-

tion.



Chapter 8

MCScript: A Dataset for Assessing the
Contribution of Script Knowledge for

Machine Comprehension

In Chapter , we introduced the most common evaluation tasks for script knowledge rep-
resentations. What these evaluations all have in common is that they intrinsically evaluate
the script structure, without proving its usefulness in an application. As found in Chapter H,
story understanding would be such an application, providing an ideal evaluation for models
of script knowledge. However, there exists no corpus for the end-to-end evaluation of the
contribution of script knowledge for story understanding models. In this chapter, we close
this gap and describe a research effort aimed at assessing the usefulness of script knowledge
for a natural language understanding application, namely machine comprehension. We in-
troduce MCScript, a dataset to evaluate natural language understanding approaches with
a focus on interpretation processes requiring inference based on script knowledge. Our
framework makes it possible to assess system performance in a multiple-choice question

answering setting, without imposing any specific structural or methodical requirements.

MCScriptis a collection of (1) narrative texts, (2) questions of various types referring to these

texts, and (3) pairs of answer candidates for each question. It comprises approx. 2,100 texts
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T  Iwanted to plantatree. [ went to the home and garden store and
picked a nice oak. Afterwards, I planted it in my garden.

Q1 What was used to dig the hole?
a. a shovel b. his bare hands

Q2 When did he plant the tree?

a. after watering it b. after taking it home

Figure 8.1: An example for a text snippet with two reading comprehension questions.

and a total of approximately 14,000 questions. Answering a substantial subset of questions
requires knowledge beyond the facts mentioned in the text, i.e. it requires inference using
commonsense knowledge about everyday activities. An example is given in Figure . For
both questions, the correct choice for an answer requires knowledge about the activity of
planting a tree, which goes beyond what is mentioned in the text. Texts, questions, and an-
swers were obtained through crowdsourcing. In order to ensure high quality, we validated
and filtered the dataset. Due to our design of the data acquisition process, we ended up with

a substantial subset of questions that require commonsense inference (27.4%).

The corpus was used as a basis for a shared task on machine comprehension using com-
monsense knowledge, that was co-organized at SemEval 2018 by the author of this disser-
tation. Participants of the task were explicitly encouraged to use commonsense knowledge
resources in addition to the training data. We provided script data collections (DeScript and
OMCS), but also explicitly pointed to other script representations and data sets, such as nar-
rative chains or event embeddings (Modi and Titov, 2014). The systems that participated in

the shared task are presented and discussed in Chapter H

The structure of this chapter is as follows:

« We first present a series of pilot studies that we conducted in order to collect com-

monsense inference questions (Section ).

+ In Section , we discuss the data collection of the three main components required
for a machine comprehension data set: Questions, texts and answers. The data were

collected via crowdsourcing on Amazon Mechanical Turkﬁl (henceforth MTurk).

lww . mturk . con


www.mturk.com
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« We provide a thorough analysis of MCScript and give various statistics in Section .

8.1 Pilot Study

As a starting point for our pilots, we made use of texts from InScript, which provides sto-

ries centered around everyday situations (see Section 8.2.2). We conducted three different

pilot studies to determine the best way of collecting questions that require inference over
commonsense knowledge:

The most intuitive way of collecting reading comprehension questions is to show texts to
workers and let them formulate questions and answers on the texts, which is what we tried
internally in a first pilot. Since our focus is to provide an evaluation framework for inference
over commonsense knowledge, we manually assessed the number of questions that indeed
require common sense knowledge. We found too many questions and answers collected in

this manner to be lexically close to the text.

In a second pilot, we investigated the option to take the questions collected for one text and
show them as questions for another text of the same scenario. While this method resulted in
alarger number of questions that required inference, we found that the majority of questions
made no sense at all when paired with another text. Many questions were specific to a text

(and not to a scenario), requiring details that could not be answered from other texts.

Since the two previous pilot setups resulted in questions that centered around the texts them-
selves, we decided on a third pilot and not to show workers any specific texts at all. Instead,
we asked for questions that centered around a specific script scenario (e.g. EATING IN A
RESTAURANT). We found this mode of collection to result in questions that have the right
level of specificity for our purposes: namely, questions that are related to a scenario and
that can be answered from different texts (about that scenario), but for which a text does

not need to provide the answer explicitly.

The next section will describe the mode of collection chosen for the final dataset, based on

the third pilot, in more detail.



8. MCScript: A Dataset for Assessing the Contribution of Script Knowledge for Machine
Comprehension 121

8.2 Data Collection

8.2.1 Scenario Selection

As mentioned in the previous section, we decided to base the question collection on script
scenarios rather than specific texts. As a starting point for our data collection, we use sce-
narios from three script data collections (Regneri et al., 2010; Singh et al., 2002; Wanzare
et all, 2016). Together, these resources contain more than 200 scenarios. To make sure that
scenarios have different complexity and content, we selected 80 of them and came up with
20 new scenarios. Together with the 10 scenarios from InScript, we ended up with a total

of 110 scenarios.

8.2.2 Texts

For the collection of texts, we followed the collection process of InScript, where workers
were asked to write a story about a given activity “as if explaining it to a child”. This results
in elaborate and explicit texts that are centered around a single scenario. Consequently,
the texts are syntactically simple, facilitating machine comprehension models to focus on
semantic challenges and inference. We collected 20 texts for each scenario. Each participant
was allowed to write only one story per scenario, but could work on as many scenarios as
they liked. For each of the 10 scenarios from InScript, we randomly selected 20 existing

texts from that resource.

8.2.3 Questions

For collecting questions, workers were instructed to “imagine they told a story about a cer-
tain scenario to a child and want to test if the child understood everything correctly”. This
instruction ensured that questions are linguistically simple, elaborate and explicit. Work-
ers were asked to formulate questions about details of such a situation, i.e. independent of a
concrete narrative. This resulted in questions, where the answer is not literally mentioned

in the text.
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To cover a broad range of question types, we asked participants to write 3 temporal ques-
tions (asking about time points and event order), 3 content questions (asking about persons
or details in the scenario) and 3 reasoning questions (asking how or why something hap-
pened). They were also asked to formulate 6 free questions, which resulted in a total of 15
questions. Asking each worker for a high number of questions enforced that more creative

questions were formulated, which go beyond obvious questions for a scenario.

Since participants were not shown a concrete story, we asked them to use the neutral pro-
noun “they” to address the protagonist of the story. We permitted participants to work on

as many scenarios as desired and we collected questions from 10 participants per scenario.

8.2.4 Answers

Our mode of question collection results in questions that are not associated with specific
texts. For each text, we collected answers for 15 questions that were randomly selected
from the same scenario. Since questions and texts were collected independently, answering
arandom question is not always possible for a given text. Therefore, we carried out answer
collection in two steps. In the first step, we asked participants to assign a category to each

text—question pair.

We distinguish two categories of answerable questions: The category text-based was assigned
to questions that can be answered from the text directly. If the answer could only be inferred
by using commonsense knowledge, the category script-based was assigned. Making this dis-
tinction is interesting for evaluation purposes, since it enables us to estimate the number of
commonsense inference questions. For questions that did not make sense at all given a text,
unfitting was assigned. If a question made sense for a text, but it was impossible to find an
answer, the label unknown was used.

In a second step, we asked participants to formulate a plausible correct and a plausible in-
correct answer candidate to answerable questions (text-based or script-based). To level out
the effort between answerable and non-answerable questions, participants had to write a
new question when selecting unknown or unfitting.

In order to get reliable judgments about whether or not a question can be answered, we

collected data from 5 participants for each question and decided on the final category via



8. MCScript: A Dataset for Assessing the Contribution of Script Knowledge for Machine
Comprehension 123

majority vote (at least 3 out of 5). Consequently, for each question with a majority vote on
either text-based or script-based, there are 3 to 5 correct and incorrect answer candidates, one
from each participant who agreed on the category. Questions without a clear majority vote

or with ties were not included in the dataset.

8.2.5 Data Post-Processing

We performed four post-processing steps on the collected data.

+ We manually filtered out texts that were instructional rather than narrative.

+ All texts, questions and answers were spellchecked by running aSpellH and manually

inspecting all corrections proposed by the spellchecker.

+ We found that some participants did not use “they” when referring to the protagonist.
We identified “T”, “you”, “he”, “she”, “my”, “your”, “his”, “her” and “the person” as most
common alternatives and replaced each appearance manually with “they” or “their”,

if appropriate.

+ We manually filtered out invalid questions, e.g. questions that are suggestive (“Should
you ask an adult before using a knife?”) or that ask for the personal opinion of the

reader (“Do you think going to the museum was a good idea?”).

8.2.6 Answer Selection and Validation

We finalized the dataset by selecting one correct and one incorrect answer for each question—
text pair. To increase the proportion of non-trivial inference cases, we chose the candidate
with the lowest lexical overlap with the text from the set of correct answer candidates as cor-
rect answer. Using this principle also for incorrect answers leads to problems. We found
that many incorrect candidates were not plausible answers to a given question. Instead
of selecting a candidate based on overlap, we hence decided to rely on majority vote and

selected the candidate from the set of incorrect answers that was most often mentioned.

’http://aspell.net/
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For this step, we normalized each candidate by lowercasing, deleting punctuation and stop
words (articles, and, to and or), and transforming all number words into digits, using tethnumH.
We merged all answers that were string-identical, contained another answer, or had a Lev-
enshtein distance (Levenshtein, 1966) of 3 or less to another answer. The “most frequent
answer” was then selected based on how many other answers it was merged with. Only if
there was no majority, we selected the candidate with the highest overlap with the text as a

fallback.

Due to annotation mistakes, we found a small number of chosen correct and incorrect an-
swers to be inappropriate, that is, some “correct” answers were actually incorrect and vice
versa. Therefore, we manually validated the complete dataset in a final step. We asked an-
notators to read all texts, questions, and answers, and to mark for each question whether
the correct and incorrect answers were appropriate. If an answer was inappropriate or
contained any errors, they selected a different answer from the set of collected candidates.
For approximately 11.5% of the questions, at least one answer was replaced. 135 questions
(approx. 1%) were excluded from the dataset because no appropriate correct or incorrect

answer could be found.

8.3 Data Statistics and Analysis

For all experiments, we admitted only experienced MTurk workers who are based in the
US. One HITH consisted of writing one text for the text collection, formulating 15 questions
for the question collection, or finding 15 pairs of answers for the answer collection. We
paid $0.50 per HIT for the text and question collection, and $0.60 per HIT for the answer
collection.

More than 2,100 texts were paired with 15 questions each, resulting in a total number of
approx. 32,000 annotated questions. For 13% of the questions, the workers did not agree on
one of the 4 categories with a 3 out of 5 majority, so we did not include these questions in

our dataset.

The distribution of category labels on the remaining 87% is shown in Table . 14,074

Shttps://github. com/ghewgill/textZnum
4A Human Intelligence Task (HIT) is one single experimental item in MTurk.
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answerable not answerable

text-based script-based || unknown unfitting

10,160 3,914 9,974 3,172

14,074 13,246

Table 8.1: Distribution of question categories
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Figure 8.2: Distribution of question types in the data.

(52%) questions could be answered. Out of the answerable questions, 10,160 could be an-
swered from the text directly (text-based) and 3,914 questions required the use of common-
sense knowledge (script-based). After removing 135 questions during the validation, the fi-
nal dataset comprises 13,939 questions, 3,827 of which require commonsense knowledge
(i.e. 27.4%). This ratio was manually verified based on a random sample of questions.

We split the dataset into training (9,731 questions on 1,470 texts), development (1,411 ques-
tions on 219 texts), and test set (2,797 questions on 430 texts). Each text appears only in one
of the three sets. The complete set of texts for 5 scenarios was held out for the test set.

The average text, question, and answer length is 196.0 words, 7.8 words, and 3.6 words,
respectively. On average, there are 6.7 questions per text.

Figure @ shows the distribution of question types in the dataset, which we identified using

simple heuristics based on the first words of a question: Yes/no questions were identified as
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T It was time to prepare for the picnic that we had plans for the last couple
weeks. ...I needed to set up the cooler, which included bottles of water,
soda and juice to keep everyone hydrated. Then I needed to ensure that
we had all the food we intended to bring or cook. So at home, I prepared
baked beans, green beans and macaroni and cheese. ...But in a cooler, I
packed chicken, hotdogs, hamburgers and rots that were to be cooked
on the grill once we were at the picnic location.

Q1 What did they bring to drink?

a. Water, soda and juice. b. Water, wine coolers and sports
drinks.

Q2 What type of food did they pack?

a. Meat, drinks and side dishes. b. Pasta salad only.

Figure 8.3: An example text with 2 questions from MCScript

questions starting with an auxiliary or modal verb, all other question types were determined
based on the question word.

We found that 29% of all questions are yes/no questions. Questions about details of a situ-
ation (such as what/ which and who) form the second most frequent question category. Tem-
poral questions (when and how long/often) form approx. 11% of all questions. We leave a more
detailed analysis of question types for future work.

As can be seen from the data statistics, our mode of collection leads to a substantial propor-
tion of questions that require inference using commonsense knowledge. Still, the dataset
contains a large number of questions in which the answer is explicitly contained or implied
by the text: Figure 8.3 shows passages from an example text of the dataset together with
two such questions. For question Q1, the answer is given literally in the text. Answering
question Q2 is not as simple; it can be solved, however, via standard semantic relatedness

information (chicken and hotdogs are meat; water, soda and juice are drinks).

The following cases require commonsense inference to be decided. In all these cases, the
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answers are not overtly contained nor easily derivable from the respective texts. We do not

show the full texts, but only the scenario names for each question.

(14) BORROWING A BOOK FROM THE LIBRARY
Did they have to pay anything to borrow the book?
a. yes

b. no

(15) CHANGING A BABY DIAPER
Did they throw away the old diaper?
a. Yes, they put it into the bin.
b. No, they kept it for a while.

(16) CLEANING THE TABLE
When did they clean the table?
a. After a meal

b. Before they ate

(17) PREPARING A PICNIC
Who is packing the picnic?
a. the children

b. the parents

(18) TAKING A SHOWER
How long did the shower take?
a. a few hours

b. a few minutes

Example |14 refers to a library setting. Script knowledge helps in assessing that usually, pAY
is not an event when borrowing a book, which answers the question. Similarly, event infor-
mation helps in answering the questions in Examples |l 5and . In Example , knowledge
about the typical role of parents in the preparation of a picnic will enable a plausibility de-
cision. Similarly, in Example , it is commonsense knowledge that showers usually take a

few minutes rather than hours.
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(19) MAKING BREAKFAST
What time of the day is breakfast eaten?
a. at night

b. in the morning

There are also cases in which the answer can be inferred from the text, but where common-
sense knowledge is still beneficial: The text for example |19 does not contain the information
that breakfast is eaten in the morning, but it could still be inferred from many pointers in

the text (e.g. phrases such as I woke up), or from commonsense knowledge.

These few examples illustrate that our dataset covers questions with a wide spectrum of
difficulty, from rather simple questions that can be answered from the text to challenging

inference problems.

8.4 Conclusion

In this chapter, we presented MCScript, the first corpus for an end-to-end evaluation of
script knowledge. MCScript makes it possible to evaluate script knowledge representations
in a naturalistic application, which is an advantage as compared to the intrinsic script knowl-

edge evaluations conducted in prior work.

The texts that are used for the corpus are narrations about 110 everyday scenarios. Ques-
tions for the data set were collected based on script scenarios, rather than individual texts,
which resulted in question - answer pairs that explicitly require reasoning over script knowl-
edge. Previous evaluation tasks were more focused on text-based inferences, or on more
general commonsense knowledge. Our data collection instead provides a setup that is in-
tended to assess the contribution of script knowledge for computational models of language
understanding in a real world evaluation scenario, for the first time.

In the next chapter, we look at the performance of various benchmark models on the data.
We will also look at the performance of a range of models that were proposed in a shared

task which used MCScript as underlying evaluation data.



Chapter 9

Experiments on MCScript

In the last chapter, we presented MCScript, a dataset for evaluating script knowledge in a
machine comprehension setting. MCScript is meant to test a system'’s capability to perform
inference steps over script knowledge. Consequently, one would expect that a machine com-
prehension system that has access to script knowledge should perform better than a system
that has no such access. One would also expect that questions which are annotated as script

knowledge-based are more difficult to answer than questions that are annotated as text-

based.

To test these hypotheses, we first present a range of standard baseline models that have
no access to script knowledge, and discuss their performance, in order to assess the gen-
eral difficulty of the task. Next, we report on the results of a SemEval shared task that was
conducted using the MCScript corpus, attracting a total of more than 250 registrations and
11 submissions. We present the results of systems that were submitted for the task, which
includes systems that made use of ConceptNet as a resource for commonsense knowledge,
and discuss their performance.

Unfortunately, the central results of our evaluation do not verify our hypotheses: While
our baselines struggle with the general difficulty of the data, we find that questions that
are annotated as script-based are not necessarily harder to answer than text-based ques-

tions. Second, in contrast to our expectations, we find that the use of script knowledge is
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not helpful for the systems that participated in the shared task. The effect of using a large
commonsense knowledge graph like ConceptNet was found to be positive, but small. For

humans, the task is nevertheless trivial.

We take a closer look at one of the participating systems that performed very well without
using any additional commonsense knowledge for training. We inspect cases that were mis-
classified by this system and try to assess to what extent script knowledge should potentially
be able to improve the results. This helps us to get an idea to which extent the data collection
can fulfill its purpose to prove the applicability of script knowledge for natural language un-
derstanding. We find two reasons for the lack of contribution of script knowledge, which
go back to the question collection procedure of MCScript: First, questions were collected
irrespective of a concrete text but on the scenario only, which results in the problem that a
number of questions has the same answer for any text within the scenario. Such answers can
easily be memorized by the systems. Second, a number of questions ask about very general
information in a scenario, requiring inference over more general commonsense knowledge,
which is not supported by script knowledge.

We conclude from this that the MCScript corpus is appropriate for testing inference over
a broader type of commonsense knowledge than script knowledge. This conclusion lead us

to a repetition of the data collection process, in which we eliminated the aforementioned

weaknesses (Chapter ).

The structure of this chapter is as follows:

+ In Section E, we present baseline experiments on MCScript. We introduce several

models and evaluate their performance on the data.

+ Section .2 gives an overview of the systems that participated in the shared task based
on MCScript. We briefly introduce and explain the participating systems and analyze

their performance.

+ Since we find that a range of systems performs well on MCScript without using script
knowledge or even more general commonsense knowledge, we present a thorough
analysis of our data in Section E This analysis reveals properties of the data col-

lection process which delimit the usefulness of script knowledge for systems that are
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tested on MCScript, but indicate that more general commonsense knowledge is re-

quired.

9.1 Baseline Experiments

In this section, we assess the performance of baseline models on MCScript, using accuracy
as the evaluation measure. We employ models of differing complexity in order to assess the
general difficulty of the data set: two unsupervised models using only word information
and distributional information, respectively, and two supervised neural models. We assess
performance on two dimensions: One, we show how well the models perform on text-based
questions as compared to questions that require common sense for finding the correct an-

swer. Two, we evaluate each model for each different question type.

9.1.1 Models

Word Matching Baseline

We first use a simple word matching baseline, by selecting the answer that has the highest

literal overlap with the text. In case of a tie, we randomly select one of the answers.

Sliding Window

The second baseline is a sliding window approach that looks at windows of w tokens on
the text. Each text and each answer are represented as a sequence of word embeddings. The
embeddings for each window of size w and each answer are then averaged to derive window
and answer representations, respectively. The answer with the lowest cosine distance to one

of the windows of the text is then selected as correct.

Bilinear Model

We employ a simple neural model as a third baseline. In this model, each text, question, and
answer is represented by a vector. For a given sequence of words w; ... w,, we compute
this representation by averaging over the components of the word embeddings w; that cor-

respond to a word w;, and then apply a linear transformation using a weight matrix. This
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procedure is applied to each answer a to derive an answer representation a. The represen-
tation of a text t and of a question q are computed in the same way. We use different weight
matrices for a, t and q, respectively. A combined representation p for the text—question pair

is then constructed using a bilinear transformation matrix W:
p=t'"Wq (9.1)

We compute a score for each answer by using the dot product and pass the scores for both
answers through a softmax layer for prediction. The probability p for an answer a to be

correct is thus defined as:

p(alt,q) = softmazx(p'a) 9.2)

Attentive Reader

The attentive reader is a well-established machine comprehension model that reaches good
performance e.g. on the CNN/Daily Mail corpus (Hermann et al, 2015; Chen et al}, 2016). We
use the model formulation by Chen et al. (2016) and Lai et al. (2017), who employ bilinear
weight functions to compute both attention and answer-text fit. Bi-directional GRUs are
used to encode questions, texts and answers into hidden representations. For a question ¢
and an answer q, the last state of the GRUs, q and a, are used as representations, while the
text is encoded as a sequence of hidden states t;...t,. We then compute an attention score
s; for each hidden state t; using the question representation q, a weight matrix W,, and an
attention bias b. Last, a text representation tis computed as a weighted average of the hidden

representations:

s; =softmaz; (t;Waq +0b)
9.3
t= Z Sjtj ( )
J

The probability p of answer a being correct is then predicted using another bilinear weight
matrix Wy, followed by an application of the softmax function over both answer options for
the question:

p(alt,q) = softmaz(t' W,a) (9.4)
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Implementation Details

Texts, questions and answers were tokenized using NLTKH and lowercased. We used 100-
dimensional GloVe Vectorsﬁ (Pennington et al|, 2014) to embed each token. For the neural
models, the embeddings are used to initialize the token representations, and are refined

during training. For the sliding similarity window approach, we set w = 10.

The vocabulary of the neural models was extracted from training and development data. For
optimizing the bilinear model and the attentive reader, we used vanilla stochastic gradient
descent with gradient clipping, if the norm of gradients exceeds 10. The size of the hidden
layers was tuned to 64, with a learning rate of 0.2, for both models. We apply a dropout
of 0.5 to the word embeddings. Batch size was set to 25 and all models were trained for
150 epochs. During training, we measured performance on the development set, and we

selected the model from the best performing epoch for testing.

9.1.2 Results and Evaluation

Human Upper Bound

As an upper bound for model performance, we assess how well humans can solve our task.
Two trained annotators labeled the correct answer on all instances of the test set. They
agreed with the gold standard in 98.2 % of cases. This result shows that humans have no

difficulty in finding the correct answer, irrespective of the question type.

Performance of the Baseline Models

Table E shows the performance of the baseline models as compared to the human upper
bound and a random baseline. As can be seen, neural models have a clear advantage over
the pure word overlap baseline, which performs worst, with an accuracy of 54.4%.

The low accuracy is mostly due to the nature of correct answers in our data: Each correct
answer has a low overlap with the text by design. Since the overlap model selects the answer

with a high overlap to the text, it does not perform well. In particular, this also explains

nttp://www.nltk.org/
’https://nlp.stantord.edu/projects/glove/
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Model Text CS Total
Chance 50.0 50.0 50.0
Word Overlap 41.8 59.0 544
Sliding Window 55.7 53.1 55.0
Bilinear Model 69.8 714 702
Attentive Reader 70.9 752 720
Human Performance 98.2

Table 9.1: Accuracy of the baseline systems on text-based (Text), on commonsense-based

questions (CS), and on the whole test set (Total). All numbers are percentages.

the very bad result on text-based questions. The sliding similarity window model does not
outperform the simple word overlap model by a large margin: Distributional information

alone is insufficient to handle complex questions in the dataset.

Both neural models outperform the unsupervised baselines by a large margin. When com-
paring the two models, the attentive reader is able to beat the bilinear model by only 1.8%.
A possible explanation for this is that the attentive reader only attends to the text. Since
many questions cannot be directly answered from the text, the attentive reader is not able

to perform significantly better than a simpler neural model.

What is surprising is that the attentive reader works better on commonsense-based ques-
tions than on text questions. This can be explained by the fact that many commonsense
questions do have prototypical answers within a scenario, irrespective of the text. The at-
tentive reader is apparently able to just memorize these prototypical answers, thus achieving
higher accuracy.

Inspecting attention values of the attentive reader, we found that in most cases, the model
is unable to properly attend to the relevant parts of the text, even when the answer is lit-
erally given in the text. A possible explanation is that the model is confused by the large
amount of questions that cannot be answered from the text directly, which might confound

the computation of attention values.

Also, the attentive reader was originally constructed for reconstructing literal text spans
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Figure 9.1: Accuracy values of the baseline models on question types appearing > 25 times.

as answers. Our mode of answer collection, however, results in many correct answers that

cannot be found verbatim in the text. This presents difficulties for the attention mechanism.

The fact that an attention model outperforms a simple bilinear baseline only marginally
shows that MCScript poses a new challenge to machine comprehension systems. Models

concentrating solely on the text are insufficient to perform well on the data.

Performance on Question Types

Figure 9.1| gives accuracy values of all baseline systems on the most frequent question types
(appearing >25 times in the test data), as determined based on the question words (see Sec-
tion ). The numbers depicted on the left-hand side of the y-axis represent model accuracy.
The right-hand side of the y-axis indicates the number of times a question type appears in

the test data.

The neural models unsurprisingly outperform the other models in most cases, and the dif-
ference for who questions is largest. A large number of these questions ask for the narrator
of the story, who is usually not mentioned literally in the text, since most stories are written
in the first person.

It is also apparent that all models perform rather badly on yes/no questions. Each model
basically compares the answer to some representation of the text. For yes/no questions,
this makes sense for less than half of all cases. For the majority of yes/no questions, however,

answers consist only of yes or no, without further content words.
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9.2 Shared Task

In this section, we summarize the results of a shared task on the basis of the MCScript data.
We briefly explain all systems that participated and discuss which techniques seemed to
work well. In particular, we look at which kinds of commonsense knowledge were used

and found to be beneficial.

9.2.1 Participants

In total, 11 teams participated in the shared task: 8 teams from China, and one team each
from Spain, Russia and the US. Except for one team, all participating models rely on recur-
rent neural network techniques to encode texts, questions and/or answers. The one team
that did not apply neural methods proposed an alternative approach based on clustering

techniques and scoring word overlap.

Only 3 of the 11 teams made explicit use of commonsense knowledge: Two approaches used
ConceptNet, either in the form of features extracted from ConceptNet relations or in the
form of pretrained Numberbatch embeddings (Speer et al., 2017). One participating system
made use of script knowledge in the form of event sequence descriptions.

Other resources commonly used by participants include pretrained word embeddings such
as GloVe (Pennington et al., 2014) or word2vec (Mikolov et al,, 2013a,b), and preprocessing
pipelines such as NLTKH, In the following, we provide short summaries of the participants’

systems and we give an overview of models and resources used by them (Table ).

Shttps://www.nltk.org/


https://www.nltk.org/
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Non-neural methods [UCM (Reznikova and Derczynski, 2018) applied an unsupervised
approach that assigns the correct answer to a question based on text overlap. Text overlap
is computed based on the given passage and text sources of the same topic. Different cluster-
ing and topic modeling techniques are used to identify such text sources in MCScript and

DeScript.

Neural-network based models Apart from I[UCM, all participating systems are neural end-
to-end models that employ recurrent and/or convolutional neural network architectures.
Systems mainly differ with respect to details of the architecture and in the form of how

words are represented.

Yuanfudao (Wang et al., 2018) applies a three-way attention mechanism to model inter-
actions between the text, question and answers, on top of BiLSTMs. Each word in a text,
question, and answer is represented by a vector of GloVe embeddings and additional infor-
mation from part-of-speech tagging, name entity recognition, and relation extraction (based
on ConceptNet). The model is pretrained on another large machine comprehension dataset,

namely the RACE corpus.

MITRE (Merkhofer et al., 2018) use a combination of 3 systems - two LSTMs with atten-
tion mechanisms, and one logistic regression model using patterns based on the vocabulary
of the training set. The two neural models use different word embeddings - one trained on
GoogleNews, and the other trained on Twitter, which were enriched with word overlap fea-
tures. Interestingly, the simple logistic regression model achieves competitive performance

and would have ranked 4th as an individual system.

Jiangnan (Xia, 2018) applies a BILSTM over GloVe and CoVe embeddings (McCann et al},
2017) with an additional attention mechanism. The attention mechanism computes soft
word alignment between words in the question and the text or answer. Manual features,
including part-of-speech tags, named entity types, and term frequencies, are employed to

enrich word token representations.
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ELiRF-UPV (Gonzilez et al,, 2018) employ a BiLSTM with attention for finding similar-
ities between texts, questions, and answers. Each word is represented based on Number-

batch embeddings, which encode information from ConceptNet.

YNU_Deep (Ding and Zhou, 2018) test different LSTMs and BiLSTMs variants to encode
questions, answers and texts. A simple attention mechanism is applied between question—

answer and text-answer pairs. The final submission is an ensemble of five model instances.

ZMU (Li and Zhou, 2018) consider a wide variety of neural models, ranging from CNNs,
LSTMs and BiLSTMs with attention, together with pretrained word2vec and GloVe em-
beddings. They also employ data augmentation methods typically used in image processing.
Their best performing model is a BILSTM with attention mechanism and combined GloVe

and word2vec embeddings.

ECNU (Sheng et al,, 2018) use BiGRUs and BiLSTMs to encode questions, answers and
texts. They implement a multi-hop attention mechanism from question to text (a Gated

Attention Reader (Dhingra et al., 2017)).

YNU_AI1799 (Liu et al,, 2018) submitted an ensemble of neural network models based on
LSTMs, RNNs, and BiLSTM/CNN combinations, with attention mechanisms. In addition
to word2vec embeddings, positional embeddings are used that are generated based on word

embeddings.

YNU-HPCC (Yuan et al), 2018) use an ensemble of neural networks with stacked CNN

and LSTM layers and attention.

CSReader (Jiang and Sun, 2018) use GRUs to encode questions and texts. Answer and text
are combined by using an attention mechanism that models soft word alignments, inspired
by work on Natural Language Inference (Bowman et al}, 2015). Two answer classifiers based

on these representations are ensembled for prediction.
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9.2.2 Results

Tables P.3 and @ give detailed results for all participating systems. We performed pair-
wise significance tests using an approximate randomization test (Yeh, 2000) over texts. At
an accuracy of 84%, the best participating team Yuanfudao performed significantly better

(p<0.05) than the second best system, MITRE (82%).
p y )

Rank Team name Total Commonsense Text Outof Domain
1 Yuanfudao 0.84* 0.82 0.85 0.79
2 MITRE 0.82 0.79 0.83* 0.78
3 Jiangnan 0.81* 0.80 0.81* 0.75*
4 ELiRF-UVP 0.75 0.82 0.73 0.70
5 YNU_Deep 0.75 0.79 0.73 0.66
6 ZMU 0.74 0.80 0.72 0.66
7 ECNU 0.73 0.77 0.72 0.69
8 YNU_AI1799 0.72 0.76 0.71 0.67
9 YNU_HPCC 0.71% 0.78* 0.69* 0.64*
10 CSReader 0.63 0.64* 0.63 0.59
11 IUCM 0.61 0.54 0.64 0.58
- Attentive Reader 0.72 0.75 0.71 0.69
- Sliding Window 0.55 0.53 0.56 0.52

- Human Performance 0.98

Table 9.3: The accuracy of participating systems and the two baselines in total, on
commonsense-based questions, text-based questions and on out-of-domain ques-
tions (from the 5 held-out testing scenarios). The best performance for each col-
umn is marked in bold print. Significant differences in results between two ad-
jacent lines are marked by an asterisk (* p<0.05) in the upper line. The last line

shows the human upper bound on MCScript as comparison.
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Rank Team name y/n  what why who where when

1 Yuanfudao 0.76 087 0.85 0.93 0.88 0.81

2 MITRE 076 083 082 091 0.85 0.77
3 Jiangnan 0.75* 0.80* 0.80 0.88 0.84* 0.82*
4 ELiRF-UVP 072 0.68 0.79 086 0.69 0.74
5 YNU_Deep 073 066 075 086 0.71 0.72
6 ZMU 073 0.65 0.77 0.81 0.72 0.75
7 ECNU 071 0.66 0.75 082 0.73 0.68
8 YNU_AI1799 0.70 0.68 0.78* 0.80  0.67 0.72
9 YNU_HPCC 0.72* 0.66* 0.71 0.83* 0.65 0.66

10 CSReader 0.54 0.59* 0.68 0.76* 0.62* 0.63
11 IUCM 054 075 066 045 077 0.61

— Attentive Reader 0.67 066 0.75 0.84 0.73 0.71
- Sliding Window 0.47 0.69 0.56 0.48 0.61 0.51

Table 9.4: Accuracy of participating systems and the baselines on the six most frequent ques-
tion types. The best performance for each column is marked in bold print. Signif-
icant differences in results between two adjacent lines are marked by an asterisk

(* p<0.05) in the upper line.

Except for when questions, Yuanfudao also achieved the best performance at each question
type. However, individual differences in results over the 2nd place system were not found
to be significant. The top three participating teams, Yuanfudao, MITRE and Jiangnan, all
significantly outperform the remaining teams on text-based questions (>80% vs. <74%) as
well as on yes/no, what, where and when questions.

In comparison to our baselines, all teams but [UCM significantly outperform Sliding Win-
dow. Results of the Attentive Reader are in line with those of the participating systems
ranked 7-9: ECNU, YNU_AI1799 and YNU_HPCC. The six top-ranked systems all sig-
nificantly outperform both of our baselines. On out-of-domain questions, only the top 3
performing models significantly outperform the Attentive Reader baseline, while all models

significantly outperform the Sliding Window approach.
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For commonsense-based questions as well as for questions on why and who, results are
considerably less consistent: While the top ranked system significantly outperforms teams
ranked 7th or lower, most pairwise differences between the top teams are not statistically
significant. This implies that the set of correctly answered questions considerably varies be-
tween systems, either due to randomness or because they excel at different inference prob-

lems.

We found that 19.3 % of the questions in the test set were answered correctly by each partic-
ipating system. These questions mainly contain text-based questions with an answer that is
literally given in the text. Also, there are many commonsense-based questions with a stan-
dardized correct answer, as shown in Example @ Only few of the stories in MCScript

cover a long time span, so the answer to such questions is always similar.

(20) Q: How long did it take to pump up the tires?

a. just a few minutes b. a few hours

In contrast, only 1% of questions could not be answered by any of the participating models.
Answering these questions mainly requires complicated inference steps, such as counting or

plausibility judgments.

9.2.3 Discussion

We briefly highlight some of the findings by the shared task participants.

Commonsense knowledge sources. One of the main goals of this shared task was to pro-
vide an extrinsic evaluation framework for models of commonsense knowledge. However,
only three participants actually made use of resources of commonsense knowledge.

Most prominent is the use of ConceptNet, a large-scale knowledge graph that is built from
several handcrafted and crowdsourced sources. It was employed by two of the top 5 scor-
ing models: Yuanfudao use it to learn their own ConceptNet-based relation embeddings.
ELiRF-UPV make use of Numberbatch word embeddings, which are learned based on Con-
ceptNet data. Ablation analyses conducted by Yuanfudao indicate that the addition of Con-

ceptNet increases overall accuracy by almost 1% absolute.
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In contrast, only one participant used crowdsourced script data from the DeScript corpus
in their final submission, [UCM. They found that the use of script data, instead of or in addi-
tion to texts, improved performance by up to 0.3% absolute. CSReader tried to extend their
neural model with script data from OMCS, but report that it did not result in an improve-
ment. These results indicate that enhancing models with script knowledge seems to only
marginally influence the results. In Section Q, we take a closer look at this observation

and try to identify reasons for the limited usefulness of script knowledge.

No participant made use of narrative chains or other forms of structured/learned represen-

tations of scripts or events (such as event embeddings).

Pretraining. Most participants made use of pretraining in the form of word embeddings
such as word2vec or GloVe, that were build on large data collections. Yuanfudao used the
RACE dataset, which is the largest available multiple-choice machine comprehension cor-
pus, for pretraining the complete model for several epochs. In their ablation analysis, they
found pretraining to have the largest effect on model performance, with improvements in
accuracy of up to 1.4% absolute. This result underlines that the comparably small size of
MCScript naturally restricts how much neural approaches can learn from the data without

overfitting.

Word representations. For representing tokens, most participants used word2vec embed-
dings, GloVe embeddings, or combinations thereof. The participating teams used different
dimensionality sizes, and some of them refitted the vectors while others did not, leading to
differing outcomes for both embedding types. In summary, none of the two representations

seems to clearly outperform the other.

In contrast, participants consistently found that extending word representations with ad-
ditional features improves results: For example, Yuanfudao and Jiangnan use predicted
part-of-speech tags and named entity information, as well as term frequency, and report
improvements of up to 1% absolute in accuracy. Also, some participants report the use of
word overlap features. Most notably, MITRE found that alogistic regression classifier based

on overlap features can achieve performance competitive with neural approaches.

In general, additional features seem to be beneficial, since they provide more explicit or
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additional information that can be leveraged by neural networks and other classifiers.

Preprocessing. Several participants reported that lemmatizing and stop word removal
further improved their results. A prominent example is the submission by MITRE, who use
astemmer to derive root forms for all words, in order to compute overlap and co-occurrence

statistics between answers and text/questions.

9.3 Assessing the Contribution of Script Knowledge

Important findings of the last two sections were that (1) commonsense knowledge (and par-
ticularly, script knowledge) are not necessarily required to perform well on MCScript and
(2) script-based questions are not necessarily more difficult for a system than text-based
questions. In this section, we try to find the reasons for these two unexpected features of the
data. To do so, we take a closer look at one of the participating systems. Although initially
planned as a baseline system by one of the participants (Merkhofer et al), 2018), it reached
the top 5, outperforming most neural models. Notably, no commonsense or script knowl-
edge is used in the model, and all features are based on the overlap of answer, question and

text only.

We choose to analyze the results of this model, because it provides an interesting analysis
opportunity: The modelis alogistic regression classifier, so it is possible to look at the feature
weights that are learned during training and to directly interpret the importance of specific
features, which is alot harder with neural models. Also, in spite of its simplicity, the model is
able to handle many questions that we expected to require commonsense inference. To get
an additional estimate of how much using script knowledge can potentially help to answer
questions, we take a closer look at the questions which are not correctly classified by the

system.

We find that for most of these cases, using script knowledge as additional resource would
help only marginally if at all for the classification. Most questions for which one would ex-
pect script knowledge to be beneficial are already classified correctly without the usage of
additional resources. The remaining questions require inference over more general com-

monsense knowledge.
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9.3.1 Logistic Model

The benchmark model proposed by Merkhofer et al. (2018) is a logistic regression classifier

using 3 types of features:

+ Length features (6 features). These features numerically encode the length of text,
answer and questions on word and character level, encoding for example the infor-

mation whether longer or shorter answers are in general favorable.

+ Overlap features (3 features). Similar to the overlap baseline presented in Section
E, they encode the amount of overlap between the elements of the data set. The
three features encode the token overlap between (1) the text and the answer, (2) the
question and the answer, and (3) the text and the question. While the first two features
encode information about whether the answer is mentioned in the text or question,
the third feature should mainly be beneficial for decision questions, checking whether

the question is supported by material in the text, or not.

+ Lexical patterns. (108,900 features) The large majority of features that are used are
binary patterns that encode the presence or absence of words or combinations of
words in answer, text and question. These pattern features are a very explicit way
of encoding content. The first group of features encode the presence of all possible
words in the answer (3,400 features). The second group encodes the presence of words
that are both in text and answer (2,000 features). The third, largest group of features

encodes possible combinations of words in question and answer (103,500 features).

During training, each text-question-answer pair is treated as one single training instance,
i.e. correct and incorrect answer are treated separately. During testing time, the answer
with the higher probability of being correct is taken as the correct answer. All texts, an-
swers and questions are stemmed using the Porter stemmer (Porter, 1980), and articles are
removed. LibLinear (Fan et al., 2008) is used for training the regression classifier. A bias term

and L2 regularization with standard parameters were used for training.
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Figure 9.2: The importance of features, with the top 10 lexicalized patterns on the left and

overlap/length features on the right. w is the actual feature weight. The product

of the weights magnitude with the standard deviation (o|w|) balances rare and

more common features and is used for ranking the features. Both tables taken

from Merkhofer et al. (2018).

9.3.2 Discussion

Importance of Features. The tables in figure E (taken from Merkhofer et al! (2018)) il-

lustrate which features were found to be most important for the classifier. The left table

indicates that the classifier has learned that answers starting with ye(s) are very likely to

be true, as well as answers that contain the words friend, narrat(or) or they. The ranking in

the right table indicates that answer length is a strong indicator for the correctness of an

answer.

Examples P21 and 22 give 2 texts and questions as illustrating examples. Both questions ask

about the protagonist, so the correct answer is in both cases “the narrator”. We found many

such cases in the data, which are easy to answer for a system.

(21)  Text: (...) I use a bread knife which makes cutting it easier, and cut off just what I

need for the toast, leaving the rest whole. I wrap and store the remaining loaf for

next time. (...) I unplug it immediately but let it cool down before putting it away

as it is very hot. I butter the bread using a knife and then put away the knives and

butter.

Question: Who is toasting the bread?

(22)  Text: (...) So, we decided to order a pizza. I looked in the telephone book and found

several pizza restaurants that would deliver. We all talked it over and settled on a
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pizza from Domino’s. Then we discussed what we would like on our pizza and what
size we should get. (...)

Question: Who ordered the pizza?

Examples @ and E‘l show other cases of standardized answers. For both questions, the
correct answer would be “a few minutes”, which appears often in the data. Although both
questions were labeled as commonsense-based, the correct answer is identical across differ-

ent texts, which makes it very easy for systems to memorize it.

(23) Text: My family and I decided that the evening was beautiful so we wanted to have a
bonfire. First, my husband went to our shed and gathered some dry wood. I placed
camp chairs around our fire pit. Then my husband placed the dry wood in a pyramid
shape inside the fire pit. (...) We ate our S'mores as we joked, laughed and told stories
around our beautiful fire. (...)

Question: How long did it take to build the fire?

(24)  Text: Last night after dinner, I had “dishwasher duty”; That means that it was my
turn to do the dishes and unload the dishwasher. After the dishwasher had washed
the dishes, I first opened the door to the dishwasher. I unloaded the bottom rack
first. That way, if any water drips or leftover food were stuck on the dishes still, they
wouldn'’t trickle down to my clean dishes. The bottom drawer usually has my plates
init. (...)

Question: How long did it take them to unload the dishwasher?

These findings indicate that models are able to exploit special features of the data in order
to find the correct answer. The data seems to be skewed in a way such that answers that
talk about the narrator, i.e. the protagonist of the story, are more likely to be true. The most
probable reason for this skewness lies in the way of question collection. Since the questions
were not collected based on stories, but rather on a very general description of a scenario, the
same type of question appears frequently across different participants and especially across
scenarios. Questions about the main acting person in the scenario, i.e. the protagonist, seem
to be one such problematic type, because they are asked across all scenarios: It is an obvious
choice to ask for the protagonist in any scenario, such as Who planted the tree? in the PLANTING

A TREE scenario, or Who took the train? in the TAKING A TRAIN SCENARIO. Also, questions about
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central events (Who dug the hole? or Who entered the train?) in the scenarios usually have the
same answer, irrespective of a text.

Also, the fact that decision questions are often answered with yes does not come surprising:
The turkers tend to ask for events in the scenario, knowing that they must have happened

(Did they dig a hole? or Did they pay the fare?).

Possible Improvements through Script Knowledge. In order to estimate how much script
knowledge could improve the classification, we sampled 50 questions from the development
set that were misclassified by the logistic model and manually looked for cases where partic-
ipant or event information could help. We found that in approximately 10% of cases, script

knowledge could possibly improve the classification.

ES] shows one such example, where script knowledge could help in finding that in the vis-
ITING A SAUNA script, people usually sit on benches rather than on the floor. Similarly, in
Example @, knowledge about the PLANTING A TREE script would help in finding that saplings

are usually used rather than old trees.

(25) Text: It was along day at work and I decided to stop at the gym before going home. I
ran on the treadmill and lifted some weights. [ decided I would also swim a few laps
in the pool. Once I was done working out, I went in the locker room and stripped
down and wrapped myself in a towel. [ went into the sauna and turned on the heat. I
let it get nice and steamy. [ sat down and relaxed. Ilet my mind think about nothing
but peaceful, happy thoughts. I stayed in there for only about ten minutes because
it was so hot and steamy. When I got out, I turned the sauna off to save energy and
took a cool shower. I got out of the shower and dried off. After that, [ put on my
extra set of clean clothes I brought with me, and got in my car and drove home.
Question: Where did they sit inside the sauna?

Correct Answer: on a bench

Incorrect Answer: on the floor

(26)  Text: Before you plant a tree, you must contact the utility company. They will come
to your property and mark out utility lines. Without doing this, you may dig down
and hit a line, which can be lethal! Once you know where to dig, select what type of

tree you want. Take things into consideration such as how much sun it gets, what
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(27)

zone you are in, and how quickly you want it to grow. Dig a hole large enough for
the tree and roots. Place the tree in the hole and then fill the hole back up with dirt.
Many small trees will need support until they are bigger. This will ensure they grow
tall and straight. It is crucial to keep the tree watered! It will need a lot of water
at first. Mulch is helpful to keep the soil moist. It’s also important to wait until the
threat of a frost has passed or is not in the near future. Giving care to your new tree
will ensure that it will grow big and strong!

Question: Were they saplings or old trees?

Correct Answer: saplings

Incorrect Answer: old trees

Question: Would it have been easier to plant the tree if they had help?
Correct Answer: yes

Incorrect Answer: no

Cases such as Example @ and @ were rare and hard to find in the data. To the largest

extent, the misclassified questions would require generic inference over a more general type

of commonsense knowledge that is typically not part of script knowledge.

Examples @ and 2§ illustrate this: The simple fact that planting a tree gets easier if you have

help is hard to infer for a machine, as well as the fact that one takes driving lessons in order

to get a driver’s license.

This problem can also be attributed to the mode of question collection: Turkers were not

guided to ask about participants and events of a story specifically, which would result in a

better focus of the questions on script knowledge. Instead, many questions are asked in a

very open way, and do not address information that is encoded in scripts.

(28)

Text: My mom is teaching me to drive. First thing, we check to make sure the blinkers
are working. I flipped the lever on the left side of the steering column up for the right
blinker and down for the left. Both arrows under the speedometer blinked and on
the outside of the car in the front and back. Next we gotin and fastened our seat belts,
then I checked the side mirrors and rear view to make sure I could see. I inserted
the keys into the ignition and using my thumb and first finger pushed the switch

forward. I checked the mirrors again to make sure all people, animals, and objects
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where out of the way. I pulled the gear shift towards me and pulled down one click
going from P (park) to R (reverse). I check the mirrors once more and turned my
head to the right to look over my shoulder to back out of the driveway. At the end
of the driveway, I pushed the turn signal lever down to signal I was turning left. I
looked to the right and to the left to check for traffic twice and pulled out.

Question: Why did they want to take driving lessons?

Correct Answer: To get their license.

Incorrect Answer: To apply for a job.

To alleviate these problems, we created a second corpus, based on a revised version of the

question collection experiment, as described in Chapter .

9.4 Conclusion

In this chapter, we described baselines models to assess the general difficulty of our MC-
Script corpus. We also reported on the results of a SemEval shared task that we conducted

based on the corpus.

We find that baselines models struggle on the data, while the task is trivial for humans, illus-
trating that the task is generally challenging. Surprisingly, script-based questions are gen-
erally not harder to answer than text-based questions for our baseline models. While we
expected that models which have access to script knowledge should perform better on the
data, no participant of the shared task found notable effects when including script knowl-
edge data into their models. The best-performing system instead made use of ConceptNet

which lead to small but notable improvements.

Since two of our main expectations were not fulfilled, namely that script knowledge should
help systems, and that script-based questions are harder to answer, we decided to perform a
more rigorous investigation of the performance of one of the best performing models in the
shared task. Merkhofer et al. (2018) use a simple logistic model that makes no use of com-
monsense knowledge, but performs very well on our data. By an analysis of the model’s
output and feature weights, as well as a manual inspection of the data, we identified two

main problems: (1) the answers to many script-based questions can be memorized by sys-
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tems based on the training data and (2) many of the remaining questions require inference

over more generic commonsense knowledge as encoded by scripts.

Our analysis yields an instructive opportunity for a revision of the data collection process.

Based on such a revision, we repeated the data collection and created a second dataset, as

described in Chapter .



Chapter 10

MCScript2.0: A Revised Machine

Comprehension Dataset

An important finding in Chapter Hwas that script knowledge is not necessarily required for

performing well on MCScript.

In short, we found that this can be attributed to the way in which questions were collected.
During the collection process, workers were not shown a text, but only a very short descrip-
tion of the scenario that the text refers to. As a result, many questions ask about general
aspects of the scenario, without referring to actual details. This has the effect that there are
many questions with standardized answers, i.e. questions that can be answered irrespec-
tive of a concrete reading text. Merkhofer et al. (2018) found that such information can
essentially be learned from only the training data without external background informa-
tion, using a simple logistic regression classifier and surface features regarding words in the
text, question and answer candidates. Also, many questions require inference over general
commonsense knowledge rather than script knowledge.

In this chapter, we present a new corpus, based on a new data collection method that results
in a larger number of challenging questions that require script knowledge. In particular,
we define a revised question collection procedure, which ensures a large proportion of com-

monsense questions, whose answering requires non-trivial inference. In the new question
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T  (...) Weputour ingredients together to make sure they were at the right temperature,
preheated the oven, and pulled out the proper utensils. We then prepared the batter
using eggs and some other materials we purchased and then poured them into a pan.
After baking the cake in the oven for the time the recipe told us to, we then double
checked to make sure it was done by pushing a knife into the center. We saw some
crumbs sticking to the knife when we pulled it out so we knew it was ready to eat !

Q1 When did they put the pan in the oven and bake it according to the instructions?

After eating the cake. X
After mixing the batter. v/

Q2 What did they put in the oven?

The cake mix. v/
Utensils. X

Figure 10.1: Example text fragment from MCScript2.0

collection procedure, we focus exclusively on questions about participants and events. The
questions are formulated based on a concrete text, and the sentence containing the infor-
mation is subsequently hidden in the text, such that for finding an answer, the required

information needs to be inferred from background knowledge.

Based on the new method, we create MCScript2.0, a reading comprehension corpus focused
on script events and participants. It contains more than 3,400 texts about everyday sce-
narios, together with more than 19,000 multiple-choice questions on these texts. All data
were collected via crowdsourcing. Based on a crowdsourced reasoning type annotation, we
find that about half of the questions require the use of commonsense and script knowledge
for finding the correct answer, a notably higher number than in MCScript. Moreover, we
show that in comparison to MCScript, commonsense-based questions in MCScript2.0 are

also harder to answer, even for a system that makes use of a commonsense database.

Figure [10.1 shows a text snippet from a text in MCScript2.0, together with two questions

with answer alternatives. To find an answer for question 1, information about the temporal
order of the steps for baking a cake is required: The cake is put in the oven after mixing

the batter, and not after eating it—a piece of information not given in the text, since the
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event of putting the cake in the oven is not explicitly mentioned. Similarly, one needs script
knowledge about which participants are typically involved in which events to know that
the cake mix rather than the utensils is put into the oven. Both incorrect answer candidates
are distractors: The utensils as well as the action of eating the cake are mentioned in the text,

but incorrect answers to the question.

The structure of this chapter is as follows:

+ In Section [10.1, we present a new collecting method for challenging questions whose

answers require commonsense knowledge and in particular script knowledge, as well

as a new machine comprehension dataset that was created with this method.

+ We compare MCScript2.0 to MCScript, our first machine comprehension resource
for evaluating models of script knowledge. We show that in comparison to MCScript,

the number of questions that require script knowledge is increased by a large margin

(Section [10.2).

+ In Section [10.3, we show that the task is simple for humans, but that existing bench-

mark models, including a top-scoring machine comprehension model that utilizes
a resource for commonsense knowledge, struggle on the questions in MCScript2.0.
This holds in particular for questions that require commonsense knowledge, which
are most difficult. Consequently, we argue that our dataset provides a more robust

basis for future research on text understanding models based on script knowledge.

10.1 Corpus Creation

Texts, questions, and answer candidates are required for a multiple choice machine compre-
hension dataset. Our data collection process for texts and answers is based on the MCScript
data and the methods developed there, but with several crucial differences. We create the
data set via crowdsourcing, as for the creation of MCScript (Chapter H). The question col-
lection is revised to account for the shortcomings found with MCScript.

Similarly to MCScript, we are interested in questions that require inference over script
knowledge for finding a correct answer. Creating such questions is challenging: When ques-

tions are collected by showing a reading text and asking crowdsourcing workers to write
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questions, their answer can usually be read off the text. For MCScript, we thus decided to
not show a reading text at all, but only a short summary of the text scenario. This resulted
in too general questions, so we decided for a third option: We identified a number of target
sentences in the reading text and guided workers to formulate questions about script-related
details in these sentences. The target sentences were then hidden from the text, meaning
that relevant information would have to be inferred from common sense during the answer
collection and also in the task itself. In the following sections, we describe the three data

collection steps in detail.

10.1.1 Text Collection

As a starting point, we reused all texts from MCScript (2,119 texts on 110 scenarios) for our
data set. To increase the topical coverage and diversity, we added texts for 90 new scenarios
to our collection. As for MCScript, we selected topically different and plausible everyday
scenarios of varying complexity, which were not too fine-grained (such as opening a window).
The scenarios were taken from 3 sources: First, we extracted scenarios from several script
collections (Wanzare et al, 2016; Regneri et al;, 2010; Singh et al), 2002) that are not part of
MCScript. Second, we inspected the Spinn3r blog story corpus (Burton et al., 2009), a large
corpus of narrative blog stories and identified additional scenarios in these stories. Third,

we added new scenarios that are related to existing ones or that extend them.

We collected 20 texts per new scenario, using the same text collection method as for MC-
Script: We asked workers to tell a story about a certain everyday scenario “as if talking
to a child”. This instruction ensures that the resulting stories are simple in language and
clearly structured. Texts collected this way have been found to explicitly mention many
script events and participants (s. Chapter H and Chapter H). They are thus ideal to evaluate

script-based inference.

10.1.2 Question Collection

For the question collection, we follow the creation of MCScript in telling workers that the
dataare collected for a reading comprehension task for children, in order to get linguistically

simple and explicit questions. However, as mentioned above, we guide workers towards



10. MCScript2.0: A Revised Machine Comprehension Dataset 156

What did they pitch first?

What did they set in order to make dinner?

Ask for: the next morning!
When did they stake the fire?
Ask for: the fire!
What did they N

N

The next morning we awoke early to stoke the fire.

Figure 10.2: Screenshot of an item in the participant question collection experiment.

asking questions about target sentences rather than a complete text.

As target sentences, we selected every fourth sentence in a text. In order to avoid selecting
target sentences with too much or too little content, we only considered sentences with less

than 20 tokens, but that contained 2 or more noun phrases.

In a series of pilot studies, we showed the texts with highlighted target sentences to workers
and asked them to write questions about these sentences. We however found, that in many

cases, the written questions were too general or nonsensical.

We concluded that an even more structured task was required and decided to concentrate on
questions of two types: (1) questions that ask about participants, and (2) questions about the
temporal event structure of ascenario. Participants are usually instantiated by noun phrases
(NPs), while events are described by verb phrases (VPs). We thus used Stanford CoreNLP
(Manning et al}, 2014) to extract both NPs and VPs in the target sentences and split up the

experiment into two parts: In the first part, workers were required to write questions that

ask about the given noun phrase. Figure [10.2/ shows a screenshot of an item from the first part.

The first column shows the reading text with the target sentence highlighted. The second
columns shows all extracted phrases with a field for one question per phrase.ﬂ Full details

of the experiment instructions are given in the Supplemental Material.

In the second part, we asked workers to write a temporal question (when, how long, etc.) us-

'All parameters were selected empirically, by testing different values and analyzing samples of the resulting

data.
21f the noun phrase was part of a prepositional phrase or a construction of the form “NP of NP”, we took the

whole phrase instead, because it is more natural to ask for the complete phrase. In order to avoid redundancy,
we only looked at NPs that had no other NPs as parents. We also excluded noun phrases that referred to the

narrator (I, me etc.).
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ing the given verb phrase. We found that an exact repetition of the NP instructions for the sec-
ond part (“ask about the given verb phrase”) resulted in unnatural questions, so we adapted

the instructions. A screenshot of the VP experiment is given in the Supplemental Material.

We showed each text to two workers and asked them to write one question per VP or NP.
Workers were only allowed to work on either the VP or the NP part, since the instructions
could easily be confused. In order to exclude yes/no questions, we did not accept inputs
starting with an auxiliary or modal verb. Also, all questions needed to contain at least 4
words. We asked workers to use they to refer to the protagonist of the story and other types

of mentions (e.g. pronouns like I, you, we or the word narrator) were not accepted.

10.1.3 Answer Collection

For collecting answer candidates we hid the target sentences from the texts and showed
them with up to 12 questions, to keep the workload at an acceptable level. If there were

more questions for a text, we selected 12 questions at random.

Since the target sentences are hidden in the texts, it can be expected that some questions
cannot be answered from the text anymore. However, the necessary information for finding
an answer might be inferred from script knowledge, so workers were explicitly told that
they might need commonsense to find an answer. Some answers can still be read off the
text, if other parts of the texts contain the same information as the hidden target sentences.
For other questions, neither the text nor script knowledge provides sufficient information

for finding an answer.

As for the creation of MCScript, workers first had to conduct a 4-way classification for each
question to account for these cases: text-based (answer is in the text), script-based (answer can
be inferred from script knowledge), unfitting (question doesn’t make sense), unknown (answer
is not known). Having such class annotations is not only useful for evaluation, but it also

sensitizes workers for the fact that they are explicitly allowed to use background knowledge.

In the experiment, workers were also instructed to write both a correct and a plausible in-
correct answer for questions labeled as text-based of script-based. We follow the creation of
MCScript and require workers to write an alternative question if the labels unfitting or un-

known are used, in order to level out the workload.
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We presented each question to 5 workers, resulting in 5 judgments and up to 5 incorrect and
correct answer candidates per question. For the final data set, we considered questions with
a majority vote (3 out of 5) on text-based or script-based. We also included questions without
a majority vote, but for which at least 3 workers assigned one of text-based or script-based. In
that case, we assigned the new label text-or-script and also accepted the question for the final
data set. This seemed reasonable, since at least 3 workers wrote answers for the question,
meaning it could still be used in the final data collection. The remaining questions were

discarded.

10.1.4 Answer Candidate Selection

In alast step, we selected one correct and one incorrect answer from all possible candidates
per question for the data set. To choose the most plausible correct answer candidate, we
adapt the procedure from MCScript: We normalize all correct answers (lowercasing, nor-
malizing numbersH, deleting stopwordsH) and merge candidates that are contained in an-
other candidate, and candidate pairs with a Levenshtein (1966) distance of less than 3. The
most frequent candidate is selected as correct answer. If there was no clear majority, we

selected a candidate at random.

To select an incorrect answer candidate, we adapt the adversarial filtering algorithm from
Zellers et al. (2018). Our implementation uses a simple classifier that utilizes shallow sur-
face features. The algorithm selects the incorrect answer candidate from the set of possible
candidates that is most difficult for the classifier, i.e. an incorrect answer that is hard to tell

apart from the correct answer (e.g. the incorrect answers in Figure [10.1: eating and utensils

are also mentioned in the text). By picking incorrect answers with the adversarial filtering

method, the dataset becomes robust against surface-oriented methods.

Practically, the algorithm starts with a random assignment, i.e. a random incorrect answer
candidate per question. This assignment is refined iteratively, such that the most difficult
candidate is selected. In each iteration, the algorithm splits the data into a random training
part and a test part. The classifier is trained on the training part and then used to classify

all possible candidates in the test part. The assignment of answer candidates in the test

3We used text2num, https: //github . com/ghewgill/text2num.

4and, or, to, the, a


https://github.com/ghewgill/text2num
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data is then changed such that the most difficult incorrect answer candidate per question is
picked as incorrect answer. After several iterations through the entire dataset, the number
of changed answer candidates usually stagnates and the algorithm converges.

For MCScript2.0, we use the logistic classifier mentioned in Section , which only uses

surface features and is thus well suited for the filtering algorithm.

Formalization

Data: data set D, a randomly initialized assignment S, and a classifier C'

Result: S

repeat
split the data into test batches of size b, such that each batch contains all

questions for b texts;
for D, in batches do
Dtrain S D\Dtest;

Dtrain — Campile ( Dtrain ) ’
train C' on Dy,qin;

for all instances < T}, Q;, a; , < a;y...a;; >in D, do

use C' to classify all incorrect answer candidates a; ..., ;;

set s; ; to the index of the answer candidate with the highest probability

of being correct;

end

end

until number of changed assignments stagnates or increases;
Algorithm 1: Adversarial Filtering for MCScript2.0

Algorithm [l gives pseudo-code for the adversarial filtering algorithm on MCScript2.0. For-
Jr

mally, let a dataset be defined as a list of tuples (t;, ¢i, a;", (a;...a; ;)), where ¢; is a reading

text, ¢; is a question on the text, a; is the correct answer (as selected via majority vote, s.

Section [10.1.4) and (a; ...a; ;) is a list of 3 to 5 incorrect answer candidatestl. The aim of

the algorithm is to find an assignment S = {0,0---5i;}, where each s; ; is the index of the

most difficult answer candidate in (a;...a; ;).

>Note that since there are several questions per text, the value of ¢; may appear in several instances.
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text-based ‘ script-based ‘ text-or-script H unfitting ‘ unknown
9,357 ‘ 12,433 ‘ 2,403 H 3,240 ‘ 6,457
total answerable: 24,193 total not answerable: 9,397

Table 10.1: Distribution of question labels, before validation.

',i_a,_

10

A dataset that is compiled with the assignment S is a list of instances < ¢;, ¢;, a >, such
that there is only one incorrect answer candidate per question, according to the indices
given by S.

Once the algorithm converges, Sis used to compile the final version of the dataset, 25, which

contains incorrect answer candidates that are most likely to be correct.

For the batch size we tried values in {50, 100, 250, 500}, but we found that for all values, the
performance of the classifier would drop close to chance level after only one iteration. We
set b = 250, since the performance was closest to chance after convergence with that setting.
Also, we defined that the algorithm converges if the number of changed assignments since

the last iteration is < 50.

10.2 Corpus Analysis

10.2.1 General Statistics

In total, MCScript2.0 comprises 19,821 questions on 3,487 texts, i.e. 5.7 questions on aver-
age per text. The average length of texts, questions and answers is 164.4 tokens, 8.2 tokens
and 3.4 tokens, respectively. In the data collection process, we crowdsourced 1,800 new
texts, resulting in a total of 3,919 texts for 200 scenarios. On average, there are 1.98 target
sentences per text. In the question collection, we gathered 42,132 questions that were used

for the answer collection. For 8,242 questions, there was no clear majority on the question

label. Table [10.1 shows the label distribution on the remaining 33,890 questions. 24,193 of

these could be answered, i.e. 71%.

To increase data quality, we conducted a manual validation of the data. Four student as-

sistants replaced erroneous answers and deleted nonsensical questions, question duplicates
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what when where @ who @ how @ Rest

28%

42% 8%
Yo

6%

Figure 10.3: Distribution of question types

and incoherent texts.

During validation, 152 texts were found to be incoherent and discarded (along with all ques-
tions). Additionally, 3,388 questions were deleted because they were nonsensical or dupli-
cates. 1,620 correctand 2,977 incorrect answers were exchanged, respectively, because they
were inappropriate. If a question deletion resulted in texts without any questions, or if a text
did not have any answerable questions, the text was also discarded.

After question validation, the final dataset comprises 9,935 questions that are labeled as

script-based, 7,908 as text-based, and 1,978 as text-or-script.

10.2.2 Questions

Figure [10.3 gives the distribution over question types, which we extracted by looking at the

first word in the question. The largest number of questions are what questions, most of which
ask about participants of a script. When questions make up the second largest group, asking
for temporal event structure. During the VP question experiment, some workers ignored the

fact that we asked for temporal questions only, which resulted in a number of how questions.

MCScript2.0 contains 50% questions labeled as script-based, which is a notably larger amount
as compared to the approximately 27% of questions in MCScript labeled as script-based. The
number of script-based questions varies between the question types, as can be seen in Figure

10.4. While when and how questions require script knowledge for finding an answer in more

than 60% of cases, less than half of what questions do so. A simple explanation for this could
be that when or how questions typically ask for events, while what questions ask for partici-
pants. Events are usually referred only once in a text, i.e. with the hiding of the respective

event mention, the needed information has to be inferred. Participants in contrast tend to
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Figure 10.4: Proportion of labels per question type.

appear more often throughout a story.

Example @ below illustrates this. Question 1 was originally asked about a sentence in which
the plates are set for the dinner guests. The guests still appear in another sentence, so the an-
swer can be inferred from the text. For question 2, in contrast, script knowledge is required
for finding an answer: The event of bringing the items to the table is no longer mentioned, so
the information that this happens typically after counting plates and silverware needs to be

inferred.

(29) T:(...) I was told that there would be 13 or 14 guests. First I counted out 14 spoons,
then the same number of salad forks, dinner forks, and knives. (...) I set each place
with one napkin, one dinner fork, one salad fork, one spoon, and one knife. (...)

Q1: Who are the plate and cup for?

dinner guests v©  the neighbor X

Q2: When did they bring the items over to the table?
after counting them v/

after placing them on the table X

10.3 Experiments

We test three benchmark models on MCScript2.0 that were also evaluated on MCScript, so
a direct comparison is possible. For the experiments, we split the data into a training set

(14,191 questions on 2,500 texts), a development set (2,020 questions on 355 texts) and a test
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set (3,610 questions on 632 texts). All texts of 5 randomly chosen scenarios were assigned

completely to the test set, so a part of the test scenarios are unseen during training.

10.3.1 Models

Logistic Regression Classifier

As first model, we reimplemented the logistic regression classifier proposed by Merkhofer
etal. (2018), which was also used in the adversarial filtering algorithm. The classifier employs
3 types of features: (1) Length features, encoding the length of the text, answer and questions
on the word and character level, (2) overlap features, encoding the amount of literal overlap
between text, question, and answers, and (3) binary lexical patterns encoding the presence

or absence of words or combinations of words in answer, text and question.

Attentive Reader

As second model, we again employ an attentive reader (Hermann et all, 2015). As for MC-
Script, we adopt the formulation by Chen et al. (2016) (s. also Chapter E). All tokens in text,
question and answers are represented with word embeddings. Bi-directional gated recur-
rent units (GRUs, Cho et al. (2014)) process the text, question and answers and transform
them into sequences of contextualized hidden states. The text is represented as a weighted av-
erage of the hidden states with a bilinear attention formulation, and another bilinear weight

matrix is used to compute a scalar as score for each answer.

Three-way Attentive Network (TriAN)

As third model, we use a three-way attentive network (Wang et all, 2018), the best-scoring
model of the shared task on MCScriptH. Various types of information are employed to
represent tokens: Word embeddings, part of speech tags, named entity embeddings, and
word count/overlap features, similar to the logistic classifier. Three bidirectional LSTM
(Hochreiter and Schmidhuber, |1997) modules are used to encode text, question and answers.
The resulting hidden representations are reweighted with three attention matrices and then

summed into vectors using three self-attention layers.

®Code available at HEtps: //github. com/intf loat/commonsense-rc


https://github.com/intfloat/commonsense-rc
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aCC  aCCgypp ACCiys aCC  aCCgpp ACCips
Logistic Model 0.61 0.56 0.67 Logistic Model 0.79 0.76 0.81
Attentive Reader 0.65 0.63 0.68 Attentive Reader 0.72 0.75 0.71
TriAN 0.72 0.67 0.78 TriAN 0.80 0.79 0.81
Humans 0.97 Humans 0.98

Table 10.2: Accuracy on test set, and on script/text-based questions (accy,, accy,;) on MC-
Script2.0 (left) and MCScript (right). The maximum per column is printed in
bold.

Additionally, token representations are enhanced with ConceptNet (Speer et al;, 2017) rela-
tions as a form of induced commonsense knowledge. ConceptNet is a large database of
commonsense facts, represented as triples of two entities with a predicate. Relevant Con-
ceptNet relations between words in the answer and the text are queried from the database
and represented with relation embeddings, which are learned end-to-end during training
and appended to the text token representations.

In contrast to Wang et al. (2018), we use the non-ensemble version of TriAN without pre-

training on RACE (Lai et al}, 2017), for better comparability to the other models.

10.3.2 Human Upper Bound

To assess human performance, 5 student assistants performed the reading comprehension
task on 60 texts each. To assess agreement, 20 texts were annotated by all students. The
annotators reached averaged pairwise agreement of 96.3% and an average accuracy of 97.4%,

which shows that this is a simple task for humans.

10.3.3 Results

Overall Performance. The left hand side of Table [10.2 gives details on the performance

of the three benchmark models on the test set, and on script-based (acc,.,) and text-based
(accyyy) questions in the test set. As can be seen, the logistic model scores worst, presum-

ably because it has been used for the adversarial filtering algorithm and the data are thus
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Figure 10.5: Performance of the models on question types.

most challenging for this model. TriAN performs best, clearly outperforming the attentive
reader. TriAN is apparently superior in its way of text processing, since it employs a richer
text representation and exploits attention mechanisms on more levels, which is reflected
by a higher accuracy on text-based questions. In contrast, script-based questions seem to
be challenging for TriAN. This is interesting, because it shows that ConceptNet alone can-
not provide sufficient information for answering the kind of questions that can be found in

MCScript2.0.

Comparison to MCScript. Since the same models were used for MCScript, a comparison of

their performance on both datasets is possible. Results on MCScript are given on the right

hand side of Table 10.2.ﬁ As canbe seen, the performance of all three models is worse on MC-

Script2.0, showing that the dataset is generally more challenging. In contrast to MCScript,
script-based questions in MCScript2.0 are clearly harder to answer than text-based ques-
tions: All models perform worse on script-based questions compared to text-based ques-
tions. In comparison to MCScript, the performance of TriAN is 12% lower. This indicates
that the new mode of question collection and the answer selection via adversarial filtering
resolve some of the difficulties with MCScript.

To assess whether the performance difference to MCScript is due to the 90 new scenarios
being more challenging, we additionally evaluated the models on these scenarios only. We
found no performance difference on the new vs. old scenarios.

Influence of Adversarial Filtering. To find out how large the influence of the new ques-
tion collection method and the answer selection via adversarial filtering is, we conducted

an additional experiment: We applied the original answer selection method of MCScript

7All models except the attentive reader were retrained (and in the case of the logistic model re-

implemented), since no exact numbers on script/text-based questions were published.
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to MCScript2.0 to create an alternative version of the data that is not based on adversarial
filtering. Correct answers were selected to have the lowest possible overlap with the read-

ing text. Incorrect answers were selected using the majority voting technique described in

Section [10.1.4,

We found that the adversarial filtering accounts for around two thirds of the total accuracy
difference of TriAN as compared to MCScript, i.e. one third of the difference can be at-
tributed to the new question collection. This means that both modifications together add to

the larger difficulty of MCScript2.0.

Question Types. Figure[10.5 shows the performance of the models on single question types,

as identified in Section 4. It is clear that when questions are most challenging for all models.
The logistic classifier performs almost at chance level. As far as TriAN is concerned, we
found that many cases of errors ask for the typical temporal order of events, as Example @

illustrates:

(30) Q: When did they put the nozzle in their tank?
before filling up with gas. v/
after filling up with gas. X

The event of put the nozzle in the tank is not mentioned in the shown version of the text, so it

is not possible to read off the text when the event actually took place.

How questions are the least difficult questions. This can be explained with the fact that many
how questions ask for numbers that are mentioned in the text (e.g. How long did they stay in
the sauna? or How many slices did they place onto the paper plate?). The answer to such questions
can often be found with a simple text lookup. Another part of how questions asks for the
typical duration of an activity. These questions often have similar answers irrespective of
the scenario, since most of the narrations in MCScript2.0 span a rather short time period.
Such answers can easily be memorized by the models.

Especially for TriAN, what and who questions seem to be easy. This could be explained
with the fact that ConceptNet contains lots of information about entities and their relations
to each other, apparently also covering some information about script participants, which

seems to be useful for these question types.
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10.4 Conclusion

In this chapter, we presented MCScript2.0, a new machine comprehension dataset with a
focus on challenging inference questions that require script knowledge or commonsense
knowledge for finding the correct answer. Our new question collection procedure, which is
focused on questions, the answer to which is hidden in the text and thus needs to be inferred
from background knowledge, results in about half of the questions in MCScript2.0 requiring

such inference, which is a much larger amount compared to MCScript.

By altering the question collection procedure and combining this with an adversarial filter-
ing algorithm for collecting challenging answer candidates, we create questions that elimi-
nate two undesired features of MCScript: First, questions are based on specific texts rather
than a general scenario, which means that they are less repetitive within texts of the same
scenario. Second, our focus on noun and verb phrase within the text naturally result on a
larger focus on participants and events in the text, narrowing the focus of our evaluation
paradigm on script knowledge.

We evaluate several benchmark models on MCScript2.0 and show that even a state-of-the-
art model, which makes use of ConceptNet as a source for commonsense knowledge, but
does not utilize script knowledge, struggles to answer many question in our corpus. We
find that the script-based questions in MCScript2.0 are harder to answer than text-based
questions, which indicates that a more complex inference over background knowledge is
required for finding an answer for these questions. In particular, we expect that models
which utilize script knowledge will perform superior on the data, since our data are focused

on script events and participants.






Part IV

Future Work and Conclusion



Chapter 11

Outlook

This dissertation provides important building blocks in the field of script parsing and appli-
cations of script knowledge. However, there are many open problems and tasks that require
further research. In this chapter, we give a brief overview of promising future directions for

applications and models of script knowledge in natural language understanding. |

Script Parsing. In this dissertation, we focused only on some of the most central subtasks
of script parsing. For example, we only concentrated on script parsing based on events.
However, for a full-scale script parsing model, it is necessary to also address participant
labeling. A participant labeling model should predict the participant types of noun phrases
in a text based on an underlying participant representation. We also restricted ourselves
to a single scenario per text. Usually in naturally occurring texts, multiple script scenarios
are addressed (cf. the examples from the Spinn3r data (Burton et al., 2009), e.g. in Chapter
H). This means that a full-scale parsing model also needs to address several different script
scenarios per text. A first step towards this direction has been done by Wanzare et al| (2019),
who propose an approach to segment texts into parts that talk about a specific scenario.
Each text segment is then assigned a script scenario label. A first step for script parsing with

multiple scripts is to apply our script parser on segments identified by Wanzare’s model,

!Parts of the following sections follow a confidential proposal for a continuation of the project in the con-

text of which this dissertation was written. The author of this dissertation has contributed to this proposal.
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after training the parser on ESDs of the respective scenario.

Methods. We think it is important to not just look at such tasks in isolation, but to implement
integrated approaches, where information from one subtask can be used for other subtasks.
Neural networks excel at such integration of several subtasks, so an important direction for
future research is the application of deep learning techniques to script parsing: A neural
network can for example be trained to simultaneously predict event and participant labels.
Script parsing based on deep learning was not in the focus of this thesis. One of the main
reasons for this is that available script resources are too small to train deep models with
many parameters. There are several options to generate more training data, one being boot-
strapping. The idea is to start out with a small, but clean crowdsourced script database. In
each iteration of the bootstrapping algorithm, a number of texts is parsed. The parsed events

are then added to the training data for the next iteration.

Non-Discrete Event Representations. One central advantage of using a neural network
for script parsing is that it is possible for such a network to learn interesting new event rep-
resentations that are continuous rather than discrete. So-called event embeddings form an
important alternative script representation, as opposed to discrete labeled paraphrase setst
The idea is related to Modi and Titov (2014), who learn event embeddings for a temporal
ordering model. Event embeddings are similar to word embeddings based on pretrained
language models, which have shown great success in a wide range of NLP tasks recently
(Peters et ali, 2018; Devlin et al., 2019). It can thus be assumed that pretrained event embed-

dings can also successfully be utilized for downstream tasks.

Pretrained language models are trained to predict missing words. Correspondingly, event
embeddings could be computed as part of an event prediction model. The idea is to train
a network to predict missing events based on a chain of given events, i.e. a narrative cloze
task. Events are composed out of their verbs and arguments, and represented as continuous
vectors. Similar to word embeddings, the resulting event embeddings can then be used to
augment sentence representations for various downstream tasks, under the assumption that

they encode information about the surrounding script structure.

2Since a neural script parser would learn such an internal event representation, it can thus also be seen as

a model for script induction.
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A similar idea was proposed by Hong et al. (2018), who learned event embeddings in a multi-
task setting, based on a role filler task, and utilized them for SRL and participant prediction.
They mostly assume an event representation that is close to frame semantics, but learning

continuous script event representations works in a similar fashion.

Generative Script Models. There are other kinds of script representations beyond para-
phrase sets and event embeddings that can be explored, such as generative latent variable
models. One option for learning such a latent script model is Bayesian learning. In such
an approach, events are not represented as clusters, but as latent variables that are used to
generate text. The generation step of the Bayesian model can be seen as an inverse parsing
step: While in script parsing, an event type is assigned based on a text snippet, here, a text

that describes the latent event is generated from the latent event representation.

Similarly, neural latent variable models have been shown to be effective for a range of tasks,
including the script domain: Weber et al. (2018) use variational autoencoders (Kingma and
Welling, 2013) for a narrative cloze model based on news texts. They argue that the learned
latent variables represent different states of a news script. Applied to a script parsing task
with everyday narrations, the latent variables would no longer necessarily correspond to
event types, but rather represent a script in terms of the current “state” of the story and its

participants.

Semantic Role Labeling and Implicit Argument Prediction. Frame semantics and script
knowledge are highly interconnected. We thus believe that script knowledge helps in the
area of semantic role labeling (SRL). Roth and Lapata (2015) for example have successfully
used discourse features for improving a SRL model. Since script knowledge contains also

discourse-level information, this indicates that script knowledge is important for SRL.

Another interesting related task is implicit argument induction, which could benefit from
the use of script knowledge. The task is to predict non-realized verbal arguments. For this,
script knowledge is highly relevant, for example in a case in which a participant is not re-
alized explicitly. The simplest way to approach the problem would be to use a script parser
on a text and feed the event information into an implicit argument prediction model. Modi

et al. (2017) have looked at a similar problem, namely discourse referent prediction, i.e. the
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prediction of explicitly realized upcoming referents. They use a range of script-based fea-

tures, which can also be utilized to predict implicit arguments.

Modeling Temporal Event Order in Machine Comprehension. As addressed in this thesis,
machine comprehension is an application that could benefit from the use of script knowl-
edge. For example, we found that existing models struggle with questions that ask for the

typical temporal ordering of events.

Script knowledge could be used to improve machine comprehension models, such that they
are capable of modeling temporal order. As mentioned earlier, the event embeddings com-
puted by Modi and Titov (2014) encode temporal order, so they could be utilized for a ma-

chine comprehension model.

Modi’s model outputs scores for each event that could be used directly, as preliminary ex-
periments have indicated. Example B 1| shows the output of a simple re-implementation of
Modi’s model that was trained on ESDs for a total of over 200 scenarios. The model was
used to score the events in question and both answers. As can be seen, the model correctly

orders the events of crack eggs, put into pan and cook, as is indicated by the descending scores.

(31) Q. When did they crack 4 eggs one by one? 5.6
a. Before putting them in the pan 5.4

b. After cooking in the pan 5.2

There are at least two options to use such a model. First, it can be part of an ensemble: One
component of the ensemble model would be the vanilla machine comprehension model, and
the other component could use the predicted ordering scores exclusively to make a predic-
tionf. Second, the learned event embeddings can also be used directly, since they encode
ordering information. For example, they can be appended or combined with the question
and answer representations of a machine comprehension model. This will leverage the in-

herent ordering information for the answer prediction.

30f course, the model should know how to handle before and after, which should be taken into account for

making the prediction.
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Scripts in Real World Applications. This dissertation looked at scripts from a more theo-
retical perspective. In the future, it will be desirable to carry these theoretical considerations
into actual applications and technologies in the area of NLU that are used daily by humans,
such as more intelligent personal assistants. Script knowledge is for example relevant for
some aspects of information retrieval and question answering as conducted by programs as
Google Assistant. The work on machine comprehension with scripts conducted in this disser-
tation is a first step towards this direction. Another example would be a personal assistant
with access to the various scripts involved when a user is taking a vacation: It first directs
the user in getting a flight, then recommends restaurants at the goal destination, helps the

user with the check-in at the hotel, and guides her to the nearest beach afterwards.

Script Knowledge and Pretrained Transformer Models. Recent developments in compu-
tational linguistics and natural language processing have shown thatlarge, pretrained trans-
former language models such as ELMo (Peters et al,, 2018), BERT (Devlin et al., 2019) or
XLNet (Yang et al, 2019) perform extremely successful in a wide range of tasks, covering
various question answering tasks, natural language inference, and others. Due to their out-
standing performance, such models replace many technologies that have been developed
over decades. This especially also affects knowledge-based systems that use hard-coded re-
sources, which has been a standard for a long time. In our work, we use script knowledge
in terms of a symbolic knowledge base. Thus, the question arises to what extent phenomena
that require a model to use script knowledge are already covered by pretrained transformers.
It can be expected that such models perform well even on challenging commonsense infer-
ence data, but we expect that a subset of cases cannot be modeled without taking explicit
script knowledge into consideration. This is due to the fact that many aspects of scripts are

not realized in texts and thus cannot be learned by a model that is purely trained on texts.
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Conclusion

The field of natural language understanding includes a range of tasks and approaches around
the automated comprehension of text. Script knowledge is an important component for
NLU systems. In human text comprehension, scripts are common ground, and thus they
are rarely made explicit in texts. This makes it hard for NLU systems to leverage such
knowledge. This dissertation project addressed some central questions about how script

knowledge can be used for NLU. The main contributions of this work are the following:

1. Script parsing is an important prerequisite for leveraging script knowledge in NLU
applications. The aim of script parsing is to detect the events and participants of a
script that are mentioned in a text. This allows a model to anchor the text with the
script and to then leverage script information that is unmentioned. We have established
the first script parsing model that can be scaled up to large script collections. It is imple-
mented as a conditional random field that is trained on ESDs and that makes essential
use of the inherent ordering information of such event sequences. Thus, we have shown

that ordering information plays an important role for script parsing.

2. We have provided the first data set for the systematic evaluation of script parsing models. In-
Script is a corpus of narrative texts that is fully annotated with script event types and
script participant types. We also provided a thorough analysis of the linguistic phe-

nomena that need to be modeled when applying a script parsing model to our texts.
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Our analyses and annotations show the importance of representing events in terms of large para-
phrase sets. We show that paraphrase sets massively reduce the difficulty of automatic

text-to-script mapping and increase its accuracy.

3. We have established an end-to-end task in NLU to asses the contribution of script knowledge
for machine comprehension. To this end, we have created MCScript, a dataset of narra-
tive texts and questions on the texts. By collecting the questions based on a scenario
rather than a text, we aimed at creating challenging inference questions, which re-
quire a system to use script knowledge for finding an answer. We conducted a shared
task on the data, which has shown that script knowledge is not required to perform
well. Analyses showed that this could be attributed to the mode of question collection.
We consequentially revised the question collection and created a second data set, MC-
Script2.0. First experiments with state-of-the art models show that MCScript2.0 is
much more challenging than MCScript and that models that don’t use script knowl-

edge perform poorly.

This work provides the first steps for making script knowledge accessible for NLU. Yet,

many complex problems are left open that need to be solved.

To this end, we pointed out possible directions for future work, ranging from new script
parsing methods to diverse applications of scripts in the field of computational linguistic-
s/NLU and in the real world. We feel that although we restricted ourselves to central ques-
tions in the area of script-based NLU, we achieved some substantial results and build a solid
foundation for future work. We hope that our research efforts will raise important aware-
ness for the question on how script knowledge can be utilized in NLU in general, and that it
highlights the possible contribution of script knowledge for intelligent text processing sys-

tems.
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Appendices



A First Version of Event and Participant Annotation for

InScript

Event annotation:

1. Select the script scenario and look at the attached template.

2. Read the text.

3. For each verb in the text except for modal and auxiliary verbs assign the label accord-

ing to the rules in Table . Note: the examples in the table below show only the result

of event annotation, participant annotation will be explained in the next section.

label

condition

example (restaurant scenario)

Evoking

Evoking = script evoking ele-
ment. It activates the script
without explicitly referring to
any event from the script tem-
plate. Note: there can be more

than one script evoking ele-

ment in text.

1. My friend and I have a nice
tradition of going to the restau-
rantg,oking ONCe a month.

2. Let me tell you about our last

restaurant visit gy oking-

ScrEv_(event_type)

ScrEv = script event, there
should be direct correspon-
dence between the verb and

the script event from the

attached template.

3. Three friends and I

ordereds., Ev_order some
sandwiches and soft drinks.

4. The waiter

CamMeSer Ev_waiter_comes to
our table. 5. I'leftse, gv_icave_tip

no tip.
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MissScrEv

MissScrEv = missing script
event. The verb refers to a
script event but you don’ t find

it in the template event list.

6. The hostess tooksissserEv
my coat.

7. They were cookings;ssserEv
our pizzas for more than one

hour.

ReINScrEv

ReINScrEv = related non script
event, the verb depicts an event
which can happen in the script
and semantically related to it.
Note: the verb “rang” in (ex.
13) is not a script related event
since it's not specific to the
restaurant scenario and can
happen anywhere. In contrast
the verb “spilt” in (ex. 9) or
“burnt” in (ex. 10) are script re-

lated.

8. I had been dyingy,,eizv
to try geiNser By that restaurant
for years.

9. 'The waitress accidentally
spiltgeiNserEy the soup on my
dress.

10. It was so hot that I

burntpge;nsergy My tongue.

UnrelEv

UnrelEv = unrelated event, the

verb is not related to the script.

11. I had been dyingy, eipn
to try geiNSer By that restaurant
for years.

12. I was wonderingy e gy if |
should goscrEv_get_restaurant tO
that restaurant.

13. I was waitingsergo_wait

for my order when my phone

rangunrelEv-

27?7

You don’t know.

Table 1: Event Annotation.
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Participant annotation:

1. Annotate all arguments of the verbs with ScrEv, MissScrEv or ReINScrEv labels ac-
cording to the rules in the table below. Important: type of the verb doesn’t determine
type of the argument. It means that verbs can combine with different types of partic-

ipants. Compare ex. (10) and (13) in Table .

2. Arguments/modifiers of Evoking elements should be annotated as ScrPart_(participant

type) or MissScrPart (ex. 4).

3. Note all annotated script participants (ScrPart, MissScrPart or ReINScrPart) and
read the text one more time, annotating all occurrences of these participants (also

if the verb is not a script event). Look at the examples (5) and (6) in Table 2.

label condition example (restaurant scenario)

ScrPart_ ScrPart = script participant, | 1. Wege part_customer DadserEo_cat
(participant_type) | there is a direct correspon- | our seafood mealss. pari_food and
dence with a participant | créme bruleess., port_food-

from the list in the attached | 2. The waitressg., part waiter
template. This label can also | broughty;;ssser o our
be assigned to the argument | drinksgs., part_drink-

of the non script event (ex. | 3. IscrPart_customer 1eftser Bv_teave_tip

4'6)- no tipSchart_tip-
4. LetUnrelEv mMeScr Part_customer
tellyr el Eo you about

OUrSer Part_customer last restau-
rant Visitp,oking-

5. ISchart_Customer liveUnrelEv n

New York. .. ISchart_customer or-

deredScrEv_order SteakSchart_food-
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6. A small Italian restau-
rantse, part_restaurant iSUnTelEv
not SO far from my
house. Lser Part_customer

WentScrEU_get_restaurant

thereSchart_restaurant yester-
daYMissSchart*

MissScrPart MissScrPart =  missing | 7. The ownery issSerPart
script participant. It’s | thanked greiNser B USSer Part_customer
relevant for the script but is | for choosingg.nserpy his restau-
missing in the participant | rants., part_restaurant-
list. This label can also be | 8.  Iscrpart_customer EOtiissSerEw
assigned to the argument | a couponjjissserpart for a free
of the non script event (ex. | mealg., pari_food at that restau-
9- 10) rantge; part_restaurant-

9. ISchart_customer could S€CyUnrel Ev
the cookyyissserpart through the
window.

10. The diShMissSchart WaSynrel Ev
dirty.

SuppVComp SuppVComp = support verb | 11. The restaurantg., py,t restaurant

complement is a nominal el-
ement in such constructions
as: take time, be in a rush,

give explanation.

hadRelNScrEv some

problems g,y comp with  air-
conditioningy py;¢-

12. The

manager \sissScrPart

gaAVESyuppV Comp USScrPart_customer
no explanationsg,,,vcomp for the

incident.
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NPart NPart = unrelated referring | 13. The waiterg., port waiter
expression, no relation to | camegs.,py_waiter_comes to
the script. USSerPart_customer ~ With an  an-

gry expressiony p,,+ on his face.

14. ISchart_custome'r
8aAVEScr Fu_give_tip the
S€IVerger Part_waiter some
CaShSchm't_tip and

mYyScr Part_customer visit CardNPart-

?7? You don’t know.

Table 2: Participant Annotation.

Annotation span:
For events:

Annotate phrasal verbs as a whole (ex. 1-2).

1. Then ISchart_customer waited forScrEv_wait the WaiterSchart_waiter to

COMEScr Bv_waiter_comes with our billSchart_bill-

2. WeSchart_customer lOOkedScrEv_look_menu through the menuscrPart_menu-

For participants:
Annotate only heads in noun phrases. If they are complex (embedded) noun phrases, anno-

tate the constituents with participant roles separately (ex. 3-4).

3. One of the WaItresses scr Part_waiter WorklngRelNScrEv thereSchart_restaurant

CalledRelNScrEv the manager \yissScrPart-

4. MY fatherSchart_customer was hOIdingRelNScrEv a glassMissSchart of

WaterSchart_drink~

The compounds should be annotated as a whole.
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5.

6.

Being a vegetarian Ig. part_customer cOuldn’t orderse,gy_order

lasagne bologneses., part_food-

ISCTPart_customer intendedUnrelEv to PaYScrEv_pay_bill with the

credit CardS crPart_payment_method-

General Notes:

Try to be consistent in your annotation. Annotate the synonyms and words with the same

semantic role identically (ex. 7-10).

7.

10.

(event annotation: went/drove)
crPart_customer crEv_get_restaurant crPart_restaurant .
Iserp wentg., g to the restaurantg,,.p on foot

MYSchart_customer daughterNPart droveScrEv_get_restaurant MEeScr Part_customer

to the restaurants., port_restaurant-

(event annotation: give/receive)

ISchart_customer 8aVEScr Eu_leave_tip herSchart_waiter a gOOd tlpSchart_tip~

The waitresssc, part_waiter T€C€IVedserBy_teave_tip @ §00d tipser Part_tip from

mMescr Part_customer-

(participant annotation: waiter/man)
The WaiterSchart_waiter appearedScrEv_waiter_comes-
The bald mang., part_waiter cOmpletely dressedy 15, in black was apparently

annoyed/,,c1Eo-

(participant annotation: Karen/wife, cheesecake/dessert)

MYSchart_customer WlfeSchart_customer orderedScrEv_order a

cheesecakes  part_food-

, ..
Karen SScrPart_customer dessertSchart_food WaSynrel Ev delicious.
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Coreference annotation:
General notes:

Annotate all participants (nouns + pronouns) in text which refer to the same object. Note:
annotate only if there is a chain (more than one mention in text). You should assign the label
only to the head in NP (ex. 12). There are also some cases like (ex. 13) when the whole NP
(my wife and I) represents a coreference chain and its constituents build their own coref-
erence chains (my wife and I correspondingly). In such cases you should annotate them
separately. If there are script participants in the coreference chain make sure that all core-

ferring elements have the same role (ex. 17-18).

Coreference chain:

waiter = the bald man completely dressed in black (coref_1)

11. The [WaiterS'chart_waiter] appearedScrEv_waiter_comes~

12. The bald [mang., part_waiter) completely dressedy i g, in black was apparently

annoyedUnrelEv-

Coreference chains:
wife = she (coref_1)
my = [ (coref_2)

wife and I = we (coref_3)

13. [MYSchart_customer]coref_2 [[WifeSchart_customer]coref_l and

[ISchart_customer]coref_Z]coref_S went to the reStaurantEvoking-
14. [SheSchart_customer]coref_l orderedScrEv_order the dessertSchart_customer-

15. [ISchart_customer]coref_Z was SurprisedUm"elEv with the service.

16. [WeSchart_customer]coref_3 deCidedUnrelEv not to leaveScrEv_lecwe_tip a tipSchart_tip-



Coreference chains:
waiter = his (coref_1)

me = [ = a waitress = myself (coref_2)

17. That [WaiterSchart_waiter]coref_l WaSynrelEy VEIY rude to

[meSchart_customer] coref_2-

18. [ISchart_customer]coref_? haveUnrelEv an experience as WorkingUnrelEv as

a [WaltressSchaTt_customer]coref_2 [myselfSchart_customer]coref_2 and was reaHY

irritatedUnrelEv bY [hiSSchart_waiter]coref_l behaviour.

Example of the scenario template: restaurant visit

Events:

Script Event

WebAnno Label

get to restaurant

get_restaurant

take a seat

take_seat

look at menu

look_menu

waiter comes

waliter_comes

order

order

wait for food

wait

spend time at the restaurant

spend_time_rest

eat eat

pay bill pay
leave tip leave_tip
leave restaurant leave

Participants:
restaurant customer
table menu
food bill

receipt tip

waiter
drink

payment method
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B Final Version of Event and Participant Annotation

Guidelines for InScript

Event annotation:

This section explains the event annotation.

1. Select the script scenario and look at the attached template.
2. Read the text.

3. For each verb in the text except for auxiliary verbs assign the label according to the
rules in Table 1. Note: the examples in the table below show only the result of the

event annotation, participant annotation will be explained in the next section.

Note: In the following examples, all annotations for events and participants are given.

The actually relevant labeled parts are highlighted in bold red.

label condition example

(restaurant scenario)

Evoking Evoking = script evoking ele- | 1. My friend and I have a nice
ment. [t activates the script | tradition of going to the restau-
without explicitly referring to | rantgyoking OnCe a month.

any event from the script tem- | 2. Let me tell you about our
plate. Evoking elements may | last restaurant visitgyoking.

also be expressed by event-
denoting nouns (ex. @) Note:
there can be more than one
script evoking element in the

text.
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ScrEv_

(event_type)

ScrEv = script event. There
should be a direct correspon-
dence between the verb and a

script event from the attached

template.

3. Three friends and
I ordereds. gy order SOmMe sand-
wiches and soft drinks.
4, The waiter
CAMEScrEv_waiter_comes to our

table.

5.1 leftScrEv_leave_tip no tlp

ScrEv_other

ScrEv_other = other script
event.  The verb refers to
a script event which is not
included in the template event
list. ~ This means that the
event is too fine-grained or
infrequent to have its own

label. However, it still clearly

belongs to the script.

6. The hostess tooks. gy other
my coat.

7. They were cookingsc gy other
our pizzas for more than one

hour.

ReINScrEv

RelNScrEv = related non script
event. The verb depicts an
event which can happen in the
script and is semantically re-
lated to it. Note: the verb
“rang” in (ex. D is not a script

related event since it’s not spe-

cific to the restaurant scenario

8. I had been dyingypregy to
tryreNseEv that restaurant for
years.

9.  The waitress accidentally
spilledgeinscey the soup on my
dress.

10. It was so hot that I

burntgeNscgy My tongue.
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and can happen anywhere. In
contrast the verb “spilled” in
(ex. H)or “burnt” in (ex. ) are
script related.

UnrelEv UnrelEv = unrelated event.| 11. Ihad been dyingyyesy to
The verb is not related to the | trygenscey that restaurant for
script. years.

12. I was wonderingyprelgy
if I should 80ScrEv_get_restaurant tO
that restaurant.

13. [ was waitingscrgy_wait
for my order when my phone
rangunrelEy.

Unclear You don’t know.

Table 1. Event annotation.




214

Participant annotation:

This section explains the participant annotation.

1. Annotate all heads of noun phrases, personal and possessive pronouns according to
the rules in the table below. Note that verbs can combine with different types of

participants.

2. Arguments/modifiers of Evoking elements should be annotated as ScrPart_(participant

type) or ScrPart_other (ex. H).

(participant_type)

There is a direct correspon-
dence with a participant from
the list in the attached tem-

plate.

label condition example
(restaurant scenario)
ScrPart_ ScrPart = script participant. | 1. Wescpart customer NadscrEy eat

OUrgcrPart_customer seafood

and créme

mealSscrpart_food
erIéeSSchart_food-
2. The waitressscrpart_waiter
broughtScrEv_other
OUTScrPart_customer
drinksscrpart_drink-

3. ISchart_customer leftScrEV_leave_tip
no tipSchart_tip~

4. LetUnrelEv MEgcrPart_customer

about

tellUnrelEV YOUNPart

OUTscrPart_customer 1aSt restaurant

VISItEvoking, ScrPart_other-
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5. ISchart_customer hveUnreIEv

in  New Yorknpart.

ISchart_customer OrderedScrEv_order
a SteakSchart_food-

6. A small Italian restau-
rantgerpart_restaurant isUnrelEv not
so far from MYScrPart_customer

housenpast.

IScha rt_ustomer
we ntScrEv_get_restaura nt
thereSchart_restaura nt

YeSterdaYSchart,other-

ScrPart_other

ScrPart_other = other script
participant. This participant
is relevant for the script but is
not in the participant list. This
means that the participant is
too fine-grained or infrequent
to have its own label. How-

ever, it still clearly belongs to

the script.

7. The OWNETScrPart_other
thankedRelNScrEV USScrPart_customer
for choosinggeinscrEy his
restaurantspar_restaurant-

8. ISchart_customer gOtScrEV_other
A COupONgcrpart_other for a
free meals,part food at that
restaurantscrpart_restaurant-

9. ISchart_customer could
S€CUnrelEv the COOkSchart_other
through the windownp,.t.

10. The diShSchart_other

WaSunrelEv dll‘tY~
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SuppVComp

SuppVComp = support verb
complement. This is a nominal
argument in support verb con-
structions as: take time, be in
a rush, give explanation. Im-
portant Note: The support verb
should in this case get a mean-
ingful eventlabel that describes
the event spanned by the com-
plete construction. This is the

only case in which auxiliaries

and modals are labeled.

11. The

restaura ntScha rt_restaurant

hadRelNScrEV some pI'Ob-
lemsgyppvComp with air-
conditioningnpart.

12. The Mmanagerscrpart_other

gaVe ReINScrEv USScrPart_customer 1O

explanationgyypvcomp for the

Head_of_Partitive

Head_of_Partitive = head of
a partitive-like construction.
This label marks the noun head

in a partitive phrase.

incidentypayt.

13. J ANEScrPart_customer
OrderedScrEv_order a
glaSSHead_of_Pa rtitive of

WINES rPart_drink-

14. ISchart_customer re-

ally likedReiNserEv that
kindpead_of_Ppartititve of

breadSchart_food .

No_label

No_label. No_label is used for
non - referential time expres-

sions, expletive it (ex. ), id-

ioms (ex. ) and some other

abstracta (ex. {15 and .

15. Every timeng_jabel

ISchart_customer €a tScrEv_eat

thereSchart_resta urant

ISchart_customer leaveScrEV_leave_tip

a big for the

t1pSv:rPa rt_tip

Walterserpart_waiter-
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16. ItNo_label  Was

MYScrPart_customer turnNo_la bel

to paYScrEv_pay the biHSchart_bill-

17. This
restaurantscrpart_restaurant

was a lotyg jabel Detter since
itSchart_restaurant wasn't that ex-

pensive and had very friendly

staff, ScrPart_other -

NPart NPart = non-participant. This | 18. The waiters.part waiter
is a referring expression with- | cames. gy _waiter_comes to
out any relation to the script. USScrPart_customer With an  an-

gry eXPressionNo_label on
hisSchart_waiter faceNPart-

1 9 ISchart_custOmer
8aAVEScrEv_give_tip the
S€YVEeIScrPart_waiter some
CaShScha rt_tip and
mYSchart_customer bUSiness
CardNPart'

Unclear You don’t know.

Table 2. Participant annotation.
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Annotation span

In this section, we explain some special cases for annotation spans.

For events:

Annotate phrasal verbs as a whole (ex. -). If this is not possible because the verb and

particle are not next to each other, just annotate the main verb.

1. Then ISchart_customer waited f()rScrEv_wait the WalterSchart_waiter to COMEScrEv_waiter_comes with
OUIScrPart_customer blHSchart_bilI-

2. WeSchart_customer looked thr0ughScrEv_look_menu the MENUScrPart_menu-

For Evoking elements, annotate the complete phrase that evokes the script. Note that there

can be other events and participants within the evoking element. (cf.ex. H)

3 . WeSchart_customer 1"’enlLScrEv,get,restaurant to the res taurantSchart,restaurantEvoking that daY

For participants:

+ For complex (embedded) noun phrases, annotate the constituents with participant

roles separately (ex. H—H)

4. One of the WaltressesSchart_waiter WorklngRelNScrEv thereSchart_restaurant CalledRelNScrEV

the managerscpart_other-

5. MY fatherSchart_customer was hOIdlngReINScrEv a glaSSchart_other of WaterSchart_drink~

+ Compounds should be annotated as a whole (ex. H—H). In general, you don’t need to do
nested annotations (e.g. in H, you don’t need to annotate card separately). However,
for some foreign noun compounds, in which the last word is not the semantic head,

please annotate twice (ex. H)!
6. IScrl’art_customer lntendedUnrelEV to PaYScrEv_pay_bill with the credit CardSchart_payment_method'

. . )
7. Being a vegetarian Is.part customer cOUldN’t OTderse gy order [125agNe€s part fo0a POlOg-

nese] ScrPart_food-
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« Enumerations are annotated twice. You should annotate both the elements of the

enumeration and the whole enumeration with a participant type label, if possible.

8. 1 Ordered [a SteakSchart,foodrfrleSSchart,food’ and a COkeSchart,food]Schart,food-

General notes:

Try to be consistent in your annotation. Annotate synonyms and words with the same

semantic role identically (ex. H-).
9. (event annotation: went/drove)

ISchart_customer WentScrEv_get_restaurant to the restaura NtscrPart_restaurant ONL foot.

MYSchart_customer daughterNPart droveScrEv_get_restaurant MEScrPart_customer

to the restaurants.pare restaurant-

10. (event annotation: give/receive)

ISchart_customer gaveScrEv_leave_tip herSchart_waiter a gOOd tipSchart_tip-

The WaitressSchart_waiter I'eCeivedSv:rEv_leave_tip a gOOd tipSchart_tip fI'OITl MEScrPart_customer-

11. (participant annotation: waiter/man)

The WaiterSchart_Waiter a—PpearedSc:rEv_waiter_comes-

The bald mangpart_waiter cOmpletely dressedyyregy in black was apparently annoyeduyyrelgy-
12. (participant annotation: Karen/wife, cheesecake/dessert)

MYSchart,customer WifeSchart,customer OrderedScrEV,order a CheeseCakeSchart,food-

) . .
Karen SScrPart_customer dessertSchart_food WaSynrelEv delicious.
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Coreference annotation

Annotate all participants (nouns + pronouns) in the text which refer to the same object. An-

notate only if there is a chain (more than one mention in the text).
waiter = the bald man completely dressed in black (coref_1)
13. The [WaiterSchart_waiter]coref_l appearedScrEv_waiter_cornes-

14. The bald [mangpare_waiterJcoref_1 cOmpletely dressedypeiey in black was apparently

annoyedynprelgy-

In some cases, there are group referents that contain several single entities. In the annota-
tion tool, you will find 2 coreference labels for this case: single and group. An example is given
in —. We must be connected to both wife and I. These two links should then be labeled
with group, i.e. coref_3 is a group chain. Note that the direction of the link is of importance!
You have to draw a link from the members to the group entity, not vice versa.

If you cannot find a single participant label for the group entity, use the Unclear label. i
wife = she (coref_1); my = I (coref_2); wife = I = we (coref_3)

15, [Myscrpart_customer)coref 2 [Wif€scrpart_customer)coref 1 Orderedscrpy orderthe dessertserpar food af-
ter

[SheSchart_customer]coref_l IOOked at the menu.

16. [Iscrpart_customer)coref 2 Was surprisedyyresy With the really bad service.

17. [WeSchart_customer]coref_3 deCldedUnrelEv not to 1eaveScrEv_leave_tip a tlpSchart_tip'

There are also complex group entities as in ex. |18 in which the whole NP ("my wife and I”)
represents a coreference chain and its constituents build their own chains, too. In such cases
you should annotate them separately.

wife = she (coref_1); my = I (coref_2); wife = I = we (coref_3)

18. [Myscrpart_customercoref_2 [Wif€scrpart_customer)coref 1 @ [Iscrpart_customer)core 2 Went to the

restaurantgyoking.

"However, there are scenarios in which we added a heterogeneous participant label. An example is the
haircut scenario. There, the group entity "I and the hairdresser” is mentioned very often, so we introduced a

participant label for it.
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19. [SheSchart_customer]coref_l OrderedScrEv_order the dessertSchart_food-
20. [Iscrpart_customerlcoref 2 Was surprisedyyrepy With the service.

21. [WeSchart_customer]coref_3 deCldedUnrelEv not to leaVeScrEV_leave_tip a tlpSchart_tip-
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Example of the scenario template: restaurant visit

Events:

Script event

WebAnno label

get to restaurant

get_restaurant

take a seat

take_seat

[ook at menu

lIook_menu

waiter comes

waiter_comes

order

order

wait for food

wait

spend time at the restaurant

spend_time_rest

eat eat

pay bill pay
leave tip leave_tip
leave restaurant leave

Participants:

restaurant
customer
waiter

table
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menu

drink

food

bill

payment method

receipt

tip



C Lexical Entailment Annotation Guidelines - Events

C.1 Task

In this study, we want to investigate how abstract script structures are realized and instan-
tiated in narrative texts. To do so, we are going to look at pairs of sentences from narrative
texts (Sentence) and abstract descriptions of script events, so called patterns (P).

A pattern is a summary of several single short descriptions of the event (event descriptions,
ED). A pattern usually consists of a verb and zero or more placeholders for participants. We
will call the head verb of the pattern and any verb in the sentence that describes an event
event verb.

Participants describe persons, objects or concepts that are involved in a script, the partici-
pant placeholders start with p_. Optional participants are marked with round brackets “()”.

An example pattern is set p_oven (to p_temperature) (according to p_baking-instructions).

[t subsumes for example the following EDs:

+ set oven to 360 degrees
« set oven to correct temperature according to box directions

¢ set oven

In this study, you will compare event verbs and participants between patterns and sentences.
To do so, you first have to select the matching pattern, i.e. the one that is most similar to the
sentence. Then you have to align event verb and participants between sentence and pattern

and assign a label to that alignment.

C.2 Annotation Material

During the annotation, you are shown one sentence at a time together with the patterns for
the corresponding event (as shown in Figure .

Colored boxes represent participants and event verbs. The colors can vary from item to
item and the same color can be used for several types, so in the beginning make sure you

know which colors represent which types.
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The set of patterns is sorted and grouped to represent its inner structure:

« Patterns that describe the event in different ways, e.g. from different points of view,

are separated in blocks (e.g. lines 04-06, 10-12).

+ Patterns that have the same meaning and argument structure are written in consec-

utive lines (e.g. lines 04, 05, 06).

+ Within a block, patterns that are not equivalent are separated by a blank line and
sorted according to their specificity with the most specific patterns at the top (e.g.

lines 10-12).

(SciPIfSc] [S1 M [sel [ ScrPaft |

0
01 | followed the recipe which told me to preheat the oven to 400 degrees.

#HH preheat ###
let p_oven preheat
preheat p_oven (to p_temperature ) (according to p_baking_instructions )

N
heat p_oven (to p_temperature )

I . 1 ) o !
set ( p_oven ) (to p_temperature ) (according to p_baking_instructions )

I
12 turnon p_oven ( to p_temperature )

Figure 1: Annotation view for an instance of the event preheat oven from the cake-scenario.

The sentence has to be aligned to line 05.

C.3 Guidelines for the Manual Annotation

There are two subtasks for this annotation: You first have to select a single pattern that you
think matches the sentence best. Then, you have to draw alignment links between matching

chunks of a pattern and chunks of a sentence. As sentences are usually much longer than
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pattern, in most cases there exists no simple one-to-one alignment. So, you only have to

concentrate on the event verb and the participants.

Note that in the sentence, only one event verb is marked at a time. You only have to look at

the marked verb and all of its syntactic dependents, nothing else.

Task I: Find the Best Pattern for a Text Sentence

In order to select the most suitable pattern (from a list as in figure 1), first select a block. The
blocks describe rather different actions (e.g. the action of turning on the oven vs. waiting
until it gets hot or eating vs. cutting vs. serving a cake), so this selection should be unam-

biguous. Many events even have only one block.

Within a block, check the patterns top down and stop as soon as you have found a matching
pattern/group of patterns. A pattern matches a sentence if it is as least as general as the

sentence.

When several patterns are equivalent (which typically implies that they have synonymous
verbs), pick the one that has the same verb as the sentence. If none of the patterns contains
the verb take the one that best matches the participants (or the first pattern if there is no

difference).

As the verb is the head of a sentence, start by comparing the verbs and then look at the

participants.
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Sentence 1: I purchased all of the ingredients including cake mix, eggs, and strawberries.
Sentence 2: I grabbed some eggs and butter out the fridge.

Pattern 1: enter p_store

Pattern 2: go to p_store

Pattern 3: purchase p_ingredients

Pattern 4: buy p_ingredients

Pattern 5: get out p_ingredients

Pattern 6: take out p_ingredients (from p_cabinet)

Pattern 7: gather p_ingredients (according to p_baking_instructions)
Pattern 8: assemble p_ingredients

Pattern 9: set p_ingredients

Pattern 10: get p_ingredients from p_cabinet

Pattern 11: prepare p_ingredients according to p_baking_instructions

In this example, sentence 1 gets aligned to pattern 3, sentence 2 gets aligned to pattern 6.
Sentence 1 describes buying ingredients, so it has to be part of the second block. As pattern 3
contains the same verb, it is aligned to this pattern. Sentence 1 describes getting ingredients
from the cabinet, so it has to be part of the third block. No pattern contains the same verb,
but get out and take out are the first verbs of which grab is a Hyponym. As the two patterns
are in consecutive lines, they are equivalent for the verb. As pattern 6 contains the same

participants as the sentence, we pick this pattern.
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Task II: Find Pairs and Label them

After you have decided for a pattern, align matching verb-verb and participant-participant-

pairs. In most situations this should be unambiguous. One simple example is:

(32) Sentence: I added milk to the cake batter

Pattern: add p_ingredients to p_dough

» o« .

In this example, align “added” to “add”, “milk” to “p_ingredients” and “batter” to “p_dough”.

There are also cases in which one participant type occurs several times. In this case, make

sure to connect the participants based on their role to the verb. One example is:

(33) Sentence: I added milk to the eggs

Pattern: add p_ingredients to p_ingredients

» o« .

In this example, you have to align “add” with “added”, “milk” with the first “p_ingredients”

and “eggs” with the second “p_ingredients”.

Note that you only need to align participants that are dependents of the event verb. In the
next example, imagine we look at the “add” event verb. You do not have to align “batter” to

the pattern.

(34) Sentence: I added milk and stirred the batter well.

Pattern: add p_ingredients

After drawing the alignment links, you have to label every link. We will explain the labels

in the next section.

C.4 Annotation Labels

Label Overview

In this section you can find an overview over all labels that are used together with short
descriptions. Examples and more elaborate explanations can be found in the next two sec-

tions.
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Verb Labels
Label Short Description
Synonym The two verbs are synonyms.
Hyponym The verb in the text is more specific.
Hypernym The verb in the pattern is more specific (rare case!).
Incorporation One verb has the combined meaning of another verb and a partici-
pant.
Diathesis The verbs describe the same action from different perspectives.
Phrasal Verb One of the verbs is a particle verb with the same meaning.

Context-Relatedness  The verbs are only related when looking at the context.

Inference A higher order inference is necessary to link the verbs.
NoMatch No match is possible.

Participant Labels
Label Short Description
Instantiation A noun in the text instantiates a participant placeholder.
Anaphora A pronoun in the text instantiates a participant placeholder.
Shared Participant A participant is shared between two verbs.
Label Inconsistency Two different participant types fill the same role for the verb.

Additional Participant A participant in the sentence that is not mentioned in the pattern.

Verb Labels

Synonym The same (= includes identity) or a very similar verb is used.

(35) Sentence: Next they slowly added the wet ingredients to the dry.

Pattern: Add p_ingredients

(36) Sentence: The toothpick came out dry, so I took the cake out and put it on a rack to
cool.

Pattern: Place (p_cake) on p_utensil to cool



230

Incorporation [ Two Links ] A verb has the combined meaning of a verb and one of its
participants (typically the direct object). Draw a link from both words to the verb and assign

the label Incorporation to both.

(37) Sentence: I sprinkled flour in the pan so that the cake would not stick to it.

Pattern: Flour p_cake-tin

Attention: For the label Incorporation you have to draw two links to the verb in

the pattern.

) | 3 1 ) [
)1 | I sprinkled flour inthe pan so that the cake would not stick to it.

2|
| ##Hgrease_cake_tin ##

. —
4] flour p_cake_tin

Hyponym (Text) The verb in the text is more specific than the verb in the most specific

matching pattern.

(38) Sentence: I then melted 1/2 cup of butter and 1 ounce of chocolate in a small pan.

Pattern: Prepare p_ingredients
Hypernym (Text) The verb in the text is less specific than the verb in the pattern (and no
more general pattern is matching).

(39) Sentence: I then prepared 1/2 cup of butter and 1 ounce of chocolate in a small pan.

Pattern: melt p_ingredients

IAttention: Don’t confuse Hypernym and Hyponym! We expect Hypernym to

occur only very rarely.

Diathesis The two verbs describe the same action from a different view. The most common

example is passivization, or verb pairs as give-receive, borrow-lend.
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(40) Sentence: Once the oven was preheated, I put the cake in.

Pattern: Preheat p_oven

(41) Sentence: I received the cake from a friend

Pattern: Give p_cake to friend

Phrasal Verb The verbs are identical and only differ by a particle that doesn’t change the
meaning essentially. Note that if the particle changes the meaning of the verb completely

(as look, look up, look after) you should probably choose another pattern.

(42) Sentence: I gathered up the butter, eggs and sugar.

Pattern: Gather p_ingredients

Context-Relatedness The two verbs are related in the context of the script, i.e. they de-
scribe exactly the same action, but there is no clear relation between theml. In the example,
use and put are unrelated without context, but they describe the same action when looking

at the direct context: “use frosting” and “put frosting on cake” are clearly related.

(43) Sentence: I put the frosting on the cake

Pattern: Use p_frosting

Inference A higher order inference is needed to align the verbs. The verbs describe the
same event, but cannot be labeled with any of the other labels. If you use this label on verbs,

you do not need to align any participants.

(44) Sentence: I looked at the clock in my kitchen

Pattern: set p_timer (according to p_baking_instructions)

NoMatch Only choose in case absolutely no match is possible (i.e. the wrong event is
marked). Link the event verb from the sentence to the first pattern event verb and link

nothing else.

(45) Sentence: I wanted to make a chocolate cake for my niece’s birthday, so I looked
through my kitchen cupboards to make sure I had all the ingredients Pattern: get

p_baking_instructions

?More concrete: There is presumably no WordNet relation between “put” and "use”.
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Participant Labels

Instantiation A noun is an instance of a participant marker. If a participant is realized

several times, align all of them.

(46) Pattern: Add p_ingredients
Sentence: [ added two eggs.

Sentence: I added milk, eggs and sugar.

Anaphora A pronoun is an instance of a participant marker. If this occurs with another

relation (e.g. shared participant) mark both.

(47) Sentence: After sitting and waiting for several minutes for the bathtub to fill,  turned
it off and got in

Pattern: Turn off p_water

Shared Participant The participant is shared between two verbs. In the example them is

labeled “Anaphora + Shared Participant” because it is the direct object of frost and of decorate.

(48) Sentence: After the cakes have baked and cooled , I frost and decorate them.

Pattern: frost (p_cake)

Label Inconsistency Another type of participant is realized in the text instead of the type
from the pattern, as in the example where large bowl is labeled as a p_utensil. This mainly

occurs with unspecific participant sets (utensils, tools...)

(49) Sentence: I took out a large bowl.

Pattern: take out p_cake_tin

Additional Participant [ Span-Label] Thislabel applies to participants that are mentioned
in the text but missing in the pattern. Note that you only need to look at participants that

are syntactic dependents of the verb. Mark only the heads of noun/prepositional phrases.

So the label applies to rack in the first example, but not to cake batter in the second example.
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(50) Sentence: Then I let it cool on a rack on the counter

Pattern: Let cool (p_cake/p_cake tin) (for p_time)

(51) Sentence: While beating the cake batter, I preheated the oven.

Pattern: Preheat p_oven (to p_temperature) (according to p_baking_instructions)

Attention: The label Additional Participant is a Span label, not a link label (e.g.

“time” in the example)!

time

C.5 Some Additional Remarks

» Using Head Nouns. When aligning participants, you generally always take the head of
anoun phrase for alignment, not the complete phrase (Example 52 below). Possessive
pronouns don’t have to be aligned (example 1 below). You can also ignore nouns la-
beled as Head_of_Partitive (“kind” in Example @) and take their dependents instead.
Prepositional phrases that are used as attributes to the actual participant can also be

ignored (“colour” in Example Ell below).

(52) Sentence: Then I let my cake tin cool.

Pattern: Let cool (p_cake/p_cake_tin) (for p_time)

(53) Sentence: I took out an especially large kind of cake tin.

Pattern: take out p_cake_tin

(54) Sentence: I took out a cake tin with a nice green colour.

Pattern: take out p_cake_tin

* Multi-Verb Expressions. Only look at the head verb of a multi-verb expression in a pat-

tern. In the example the verb of the sentence is cool, so you should choose pattern 2
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for alignment, not pattern 1. Pattern 1 comes first and also contains cool, but that is

not the head of the pattern.

(55) Sentence: Then I cooled my cake.
Pattern 1: Allow (p_cake) to cool

Pattern 2: Cool (p_cake)

Label Inconsistency vs. Additional Participant. There are some cases for which the distinc-
tion between these two labels is not trivial. In general, you only need to use Additional
Participant if the participant in the sentence fills a semantic role that is not filled in the
pattern. Label Inconsistency should be used if the same role is filled by different partici-
pants. In the example below, “degrees” will have to be marked as Additional Participant
and not as Label Inconsistency: “p_time” and “degrees” fill different roles (here time span

vs modality).

(56) Sentence: I preheated the oven to 200 degrees.

Pattern: Preheat p_oven for p_time
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C.6 Additional Material

Example Participants - Baking a Cake

p_baking_instructions p_oven p_cake_tin p_time

cake recipe microwave oven cake pan minimum time
instructions oven baking tin minutes

box directions stove cake ring hour

p_cake p_kitchen/location p_beneficiary p_timer
cake kitchen family timer

cakes friends

p_utensil p_ingredients p—decoration p—dough
mixing bowl mil decoration cake batter
electric beater flour frosting cake mixture
cooling rack cake mix sprinkles cake dough
spoon cake ingredients glaze

oven mitts eggs icing

p_store p_cabinet p_temperature p—cook
supermarket pantry oven temperature you

grocery store cabinet degrees

shelf
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D Lexical Entailment Annotation Guidelines - Participants

These annotations guidelines were originally given to the annotators in German and translated for the

purpose of this thesis. The annotations were done via Google Docs.

Goal: Map participants from the texts to participants in the EDs.

Examples: ScrPart_timer

in the EDs: “timer”

» o«

in the text: “timer”, “clock”, “it”, “alarm”

ScrPart_root

in the EDs: “ball”, “roots”

» o« » o«

in the text: “ball”, “bottom”, “bulb”, “root”, “tip”, “roots”, “room”, “base”

2 Tasks: Choose the matching participant and assign a respective label.

Labels:
+ Identity (flour - flour, egg - eggs)
+ Synonymy (mixer - beater, extract - essence)
« Hyponymy (rake - tools, magnolia - tree, teaspoon - spoon)
+ Hypernymy (food - cake, person - friends)
+ Meronym (afternoon - day, white - egg)
+ Holonym (house - kitchen)
+ Co-Hyponym (confection - cake, knife - fork)
« Inference (result - cake, website - schedule)

« Instance (“number 77” for “bus”, “8:30” for time or “Paul” for “friend”)



— This is similar to Hyponymy, but you should use it if not a complete class of

objects is mentioned, but rather a single object.
+ Pronoun (leave participant field empty - it, which, that, he...)

+ Error (leave participant field empty)

incomprehensible or incomplete without context (“places” or “area” for “bus stop”)

typos (recipie or over)

wrong labels (“cake batter” labeled as ingredient)

incomplete participants (“dry”, instead of “dry ingredients”)

Approach: For each listed participant, choose the matching participant from the EDs and

a label from the dropdown menu.

Attention: There are often several possibilities to choose a participant. The word relations
should then be used in the order that is given above. For example, if it is possible to choose
between “egg” (Co-Hyponymy) and “ingredient” (Hyponymy) for the noun “salt”, you should

pick “ingredient”. If there are several equivalent options, just pick the first one.

If you are not sure about the meaning of a word, you are allowed to consult a dictionary. If

this doesn’t help, pick Error as a label.
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