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1 Introduction

For a long time, financial markets were only analyzed and investigated from a macroeconomic
point of view. Actual trading activities, like the arrival of buyer- and seller-initiated transac-
tions, the pricing process or the bid-ask spread were treated as a black box. However, in the last
decades, the focus of research has tended more and more to the microstructure of markets. The
strong interest in the trading process, inwhich amarketmaker sets bid and ask prices according
to his beliefs and interacts with market attendees by buying from and selling equities to them,
has led to many contributions (see Hasbrouck 1988). One can differentiate between two main
directions of research which are separated from each other. According to Hasbrouck (1988),
publications can be grouped into the topics of inventory-control and information-asymmetry
(adverse selection).

The first deals with the inventory of market markers, since this aspect of trading is likely to im-
pact security prices and liquidity (see Madhavan 2000). Whenmarket makers are holding more
(less) equities than desired, hence their inventory is too great (small), prices are reduced (in-
creased) to enhance trading activities and to ensure liquidity. These models assume that market
makers gain profits by buying shares at the bid and selling them at the ask price to compen-
sate their inventory risk (see Manaster and Mann 1996). However, since this work presents
and analyzes several approaches to calculate the probability of informed trading (PIN) which,
in general, can be specified as the expected proportion information-based trading occupies of
total trading, we concentrate on models dealing with information-asymmetry.

Adverse selection models analyze trading environments in which market makers and market
attendees do not exhibit identical levels of information (see Manaster and Mann 1996). These
models drop the efficient market hypothesis which states that information is universally shared
(e.g., see Roll 1984). General assumption is thatmarket participants can be split into two disjoint
groups, namely uninformed and informed traders.1 Uninformed traders are active on every
trading day and do not have access to private information. Informed traders have knowledge
of nonpublic information which gives them an advantage over market makers as well as noise
traders (see Copeland and Galai 1983). Hence, they can better anticipate the future security
price.

One of the first papers dealing with the market constellation of a market maker and the two

1We will use the terms uninformed traders and noise traders interchangeable for the remainder of this work.
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1 Introduction

groups of market participants, informed and uninformed, is the one by Bagehot (1971)2. In this
work, the competition between the market maker and attendees with knowledge of private,
price-relevant news is called a “heads I win, tails you lose” game in favor of the latter. The
market maker always loses against this group of traders but tries to compensate his losses
with bid-ask spreads (see Glosten and Milgrom 1985, Easley and O’Hara 1987).

If private information hits the trading process, revisions in beliefs about asset values do not
only incorporate the arrival of new information. Traders with private information exploit
their advantage and buy or sell securities as soon as their actual prices are below or above
the true ones. This leads to an increased amount of transactions with higher order size in the
corresponding trade direction. Hence, signed order flow plays a prominent role in this field of
research (see Madhavan 2000).

Capturing the extent of private information of transactions is essential for analyzing the trad-
ing process. Hence, the probability of informed trading plays an important role in models
which address information-asymmetry. By modeling the trading process on markets with het-
erogeneously informed groups of traders and the market maker’s adaptations of bid and ask
prices according to his beliefs, transaction data can be used to make inferences about PIN (see
Daley and Vere-Jones 2010).

The basic model for the probability of informed trading was established by Easley, Kiefer,
O’Hara, and Paperman (1996) (EKOP). It constitutes the baseline framework for several fur-
ther approaches which adapt its general assumptions. While the EKOP model only differenti-
ates between uninformed and informed transactions, one natural extension is to split the noise
trading rate to take account of different arrival rates of buyer- and seller-initiated orders (EHO
model, see Easley, Hvidkjaer, and O’Hara 2002).3 Arrival rates of buyer- and seller-initiated or-
ders of uninformed traders are assumed to follow homogeneous Poisson processes. Informed
traders initiate buy-orders only on good-news days and sell-orders only on bad-news days,
where the order arrivals also follows a homogeneous Poisson process. The state of a trading
day, either no-news, good-news or bad-news, is realized according to respective constant prob-
abilities. We assign the EKOP and EHOmodel to the class of static models with constant model
parameters and constant probability of informed trading. Hence, the probability of informed
trading does not change in the time span under consideration.

The PIN measure in models, which we label with the attribute static, represents the probability
that market participants which possess private information enter the market at the beginning
of a trading day. In other words, the probability of informed trading in these models can be
interpreted as the risk of the market maker that he has to face a counterpart in the trading
process which is even better informed than he is himself.

2 Walter Bagehot (1826-1877) was an economist, journalist, and editor of the journal The Economist. Following
The Economist’s weekly commentary title “Bagehot”, Jack Treynar used Bagehot as pen name; his 1971 analysis
was reprinted under his real name in the Financial Analysts Journal 1995.

3Consequently, a next step would be to allow for different rates of informed buys (in case of good-news) and
informed sells (in case of bad-news). However, to the best of our knowledge, this has not been done in the
literature so far.
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Research in the area of static models is still very active. Recently, new model extensions have
been published. Pöppe, Aitken, Schiereck, and Wiegand (2016) propose a modification of the
baseline EKOP model which allows to estimate the probability of informed trading even for
short horizons. A variation of the standard PIN measure called volume-synchronized probabil-
ity of informed trading (VPIN) was established by Easley, López de Prado, and O’Hara (2012). It
is applicable to high-frequency trading by splitting trading days by volume time. Hence, days
consist of short-term intraday volume buckets with constant amount of total size of transac-
tions.

The model by Easley, Engle, O’Hara, and Wu (2008) is the first which allows for time-varying
arrival rates of buys and sells and therefore time-varying estimates of the probability of in-
formed trading. However, parameters determining the state probabilities of trading days are
still not allowed to vary over time. Hidden Markov models were introduced for the first time
in the context of PIN by Yin and Zhao (2015). One can think of this model as an intermediate
step between the static approaches and the more advanced and complex settings which allow
to calculate varying estimates of PIN even for very short intraday intervals. We label the latter
as dynamic models.

While the EKOP model represents the baseline in terms of static models, the model by Tay,
Ting, Tse, and Warachka (2009) is its counterpart in the field of dynamic models. The general
assumptions from the EKOP model are still valid, but the modeling of the trading process is
much more advanced. High-frequency data is utilized in place of the aggregated number of
buys and sells in a predefined time interval4, interactions between consecutive buys and sells
are allowed and the trade durations and transaction sizes are taken into account. An extension
of the dynamic setup was introduced by Preve and Tse (2013) who generalized the possible
types of trading days. Instead of only no-news, good-news and bad-news, they refine each
state and distinguish between order-flow shock and non-order-flow shock conditions. Hence,
in total the authors double the total number of possible different states of trading days. This
constellation of possible conditions had already been established in terms of static models by
Duarte and Young (2009).

In the dynamic approaches, the probability of informed trading is modeled as the unobservable
realized proportion of transactions insiders occupy of the total number of buys and sells in a
unit time interval. Hence, the perspective and interpretation in static and dynamic models in
terms of the PIN measure are different. Nevertheless, we go along with the recent literature
in this field of research and do not introduce different symbols for the probability of informed
trading, but use PIN for both types of models.

Dynamicmodels comprise a very young field of research for the probability of informed trading
with a very limited number of empirical contributions. Hence, empirical applications of static
approaches are still predominant nowadays. Just to name a few, Henry (2006) investigates
the relationship between short selling and information-based trading, while the connection
between investor protection, adverse selection and PIN is analyzed by Brockman and Chung
(2008). In which way the probability of informed trading influences herding behavior is studied

4In literature, typically one trading day is defined as unit time interval.
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in the work by Zhou and Lai (2009). Aslan, Easley, Hvidkjaer, and O’Hara (2011) employ PIN to
investigate the linkage of microstructure, accounting and asset pricing and intend to determine
firms which have high information risk. Seasonality of PIN estimates are examined in the
work by Kang (2010). Additionally, various papers link the probability of informed trading
to illiquidity measures (e.g., Duarte and Young (2009) and Li, Wang, Wu, and He (2009)), and
bid-ask spreads (e.g., Lei and Wu (2005) and Chung and Li (2003)). Whether PIN is only a
substitute for liquidity or it really captures the asymmetry of information and therefore reflects
information-based trading is currently heavily discussed in the literature (e.g., see Aktas, de
Bodt, Declerck, and van Oppens 2007, Duarte and Young 2009, Mohanram and Rajgopal 2009,
Fuller, Van Ness, and Van Ness 2010). The VPIN measure gained attention for predicting the
flash crash on May 6, 2010 (e.g., see Andersen and Bondarenko 2014).5

At the beginning, empirical applications in the area of information-asymmetry were limited
and only data for short periods were utilized (e.g., see Glosten and Harris 1988). Estimations
were computationally expensive and very time-consuming. Since computing power increased
dramatically over the past decades, the number of empirical works has grown and it is nowa-
days even possible to apply models to high-frequency data over long periods with reasonable
effort.

Due to the widespread usage of the static PINmeasure in empirical literature, many researchers
focused on analyzing its technical (computational) properties. Recently, several papers were
published proposing improvements in the estimation procedure of model parameters and the
probability of informed trading. Typically, parameter estimation is conducted with the maxi-
mum-likelihood method, which tries to find the parameter values which maximize the corre-
sponding (log-)likelihood function. Since there are no closed-form solutions for this task in the
static PIN models, iterative optimization methods need to be utilized. However, there is the
chance that these methods do not converge, which means that they do not find a maximum at
all, or that they land in a local instead of a global maximum. Therefore, it is crucial to initialize
the iterative methods with appropriate starting values.

The original factorizations of likelihood functions in static PIN models are very inefficient in
terms of stability and execution time. Furthermore, due to the inability to handle moderate
or large values of aggregated daily buyer- and seller-initiated transactions, with the original
likelihood formulation PIN can only be estimated for ancient trading data or very infrequently
traded stocks. Easley, Hvidkjaer, and O’Hara (2010) present a more robust formulation of the
likelihood function which reduces the occurrence of over- and underflow errors for moderately
traded equities. Themost recent likelihood factorization for the PIN framework assuming static
arrival rates by Lin andKe (2011) can even handle daily buys and sells data of very heavily traded
stocks. In addition, Lin and Ke (2011) showed in their simulation study that if the factorization
by Easley, Hvidkjaer, and O’Hara (2010) is used in numerical maximizations, one is confronted
with floating-point exception (i.e., over- and underflow errors). Moreover, the authors state that
estimates of the probability of informed trading are downward-biased, especially for frequently
traded stocks.

5We will not delve any deeper into this direction of research in this work.
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As mentioned above, results and convergence of optimizations depend to a huge degree on the
chosen method for the generation of starting values. Yan and Zhang (2012), Gan, Chun, and
Johnstone (2015) and Ersan and Alıcı (2016) study the generation of initial values for maximiza-
tions in static PIN models. A brute force grid search technique which delivers several sets of
starting values is established by Yan and Zhang (2012). Despite its simplicity thismethod is very
time-consuming. Bothworks, Gan, Chun, and Johnstone (2015) and Ersan andAlıcı (2016), offer
more advancedmethods by harnessing hierarchical agglomerative clustering (HAC), which is a
bottom-up clustering technique starting with one cluster for each observation and sequentially
merging them to bigger ones6, to determine initial choices for the model parameters. While
the former delivers only one set of initial values, the latter returns several sets but still only a
small fraction of the amount delivered by grid search technique. Hence, both recent and more
sophisticated algorithms for the creation of starting values improve optimization procedures
at least in terms of computing time.

This thesis includes contributions to the literature of both types of PIN models, static and
dynamic. We introduce and empirically estimate posterior probabilities of the conditions of
trading days in static models which assume constant parameters. With this extension, we in-
troduce the understanding of the probability of informed trading in the dynamic approaches
to the static framework. Furthermore, we are the first to establish a confidence interval for the
probability of informed trading.

While these are extensions to yet existing models, we propose a new dynamic approach which
generalizes one of the central ideas of previous PIN models. Our new model for the probability
of informed trading is based on and extends the work by Tay, Ting, Tse, and Warachka (2009).
By utilizing hidden Markov chains for the modeling of trading days’ conditions, we are able to
model dependencies between consecutive days, but also include the independence of states as
a special case. Taking account of the time-consuming diffusion of information into the market,
allowing for dependencies is very reasonable, especially in terms of short intraday periods
where the condition of the current period highly likely may be influenced by its predecessor.
In addition, we relax the common assumption of Poisson processes for the arrivals of buys
and sells and, conditional on the past process trajectory, allow the usage of any distribution
with positive support for the interarrival times of buy and sell orders, while we concentrate on
Weibull distributions. Overall, we provide a general framework which can easily be extended
in several aspects. For example, the constellation of trading days’ conditions by Preve and Tse
(2013) could be incorporated or more generalized distributions could be utilized for waiting
times of buys and sells. We are not the first to incorporate hiddenMarkov chains in PINmodels,
but our modeling differs from the intention in Yin and Zhao (2015) where the hidden states of
the market are modeled as tuples of aggregated numbers of daily buys and sells, instead of
labeling the state of a trading day as either no-, good- or bad-news.

This dissertation is structured as follows:

Chapter 2 presents the general framework of all PIN models discussed in this work. Proposed
assumptions are valid for static as well as dynamic models.

6For a more detailed description of hierarchical agglomerative clustering see the beginning of section 4.3.2.
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1 Introduction

Chapter 3 gives in-depth explanations of the theoretical setting in the most prominent static
models for the probability of informed trading, namely the approaches by Easley, Kiefer, O’Hara,
and Paperman (1996) and Easley, Hvidkjaer, and O’Hara (2002). The last section of this chapter
introduces posterior probabilities of conditions of trading days in the context of the static PIN
models.

The fourth chapter concentrates on the numerical issues related with the models presented
in chapter 3. A brief introduction to the areas of floating-point representation and over- and
underflow errors is included. Factorizations of likelihood functions by Easley, Hvidkjaer, and
O’Hara (2010) and Lin and Ke (2011) are discussed and analyzed by applying them to different
synthetic datasets. Algorithms for initial values by Yan and Zhang (2012), Gan, Chun, and
Johnstone (2015) and Ersan and Alıcı (2016) are presented and the quality of starting values
provided by the different techniques is comparedwith the help of a simulation study. At the end
of the chapter, confidence intervals for the probability of informed trading are introduced.

The next chapter is dedicated to the pinbasic R package which offers fast and stable imple-
mentations of the theoretical constructs in the context of static models previously discussed,
as well as functions for visualizations of estimation results and posterior probabilities. Along
with the source code, we give detailed information about the usage of corresponding functions
in the pinbasic package.

The framework of dynamic models which use high-frequency transaction data to estimate the
probability of informed trading is founded in chapter 6. We explain the theory of the approach
by Tay, Ting, Tse, and Warachka (2009) and our new model utilizing hidden Markov chains for
the sequence of trading days’ conditions in detail. An intensive discussion of the much more
advanced and complex method of calculating the probability of informed trading is given. In
addition, we provide an introduction to (hidden) Markov chains and the forward-backward
algorithm7 which is used for optimization purposes in our new model.

Source code of all functions which are involved in the estimation of both dynamic models is
displayed in chapter 7. Each function comes with a detailed explanation of how it integrates
in the workflow for optimizations.

A description of our raw datasource used for estimations can be found in chapter 8. We show
in detail which steps are necessary to achieve prepared datasets for optimizations. Since all
symbols under consideration belong to the automobile industry, either as manufacturer or
supplier, time ranges of central interest in our analyses are placed around the beginnings of
scrappage programs in the United States and Germany.

Source code of implementations and explanations about the usage of functions concerning data
preparation steps can be found in the consecutive chapter.

Chapter 10 covers empirical applications of the static PIN models utilizing data of equities over
a range of four years (2007 - 2010), for nine stocks either listed on New York Stock Exchange
(NYSE) or Xetra. This chapter concludes with the results for posterior probabilities of trading

7A detailed description of the forward-backward algorithm can be found in section 6.2.2.
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days’ states and confidence intervals for PIN whose theory is explained in chapter 4. Results
of both newly introduced extensions to the literature of the probability of informed trading are
presented for a subset of symbols and time ranges.

The eleventh chapter presents empirical applications of the dynamic models which are covered
with this work. We also switch from the common unit time interval of trading days to very
short intraday periods. The behavior of the probability of informed trading is analyzed for very
special trading days. We choose General Motors from the NYSE-listed equities and investigate
the last two trading days before its delisting after June 1, 2009. From the stocks listed on Xetra
we pick Volkswagen AG and take a closer look on trading days around the price bubble in
October 2008.

We will conclude the introduction with some words about the computational aspects concern-
ing this work:

All calculations for which results are presented were conducted using the statistical program-
ming language R. Some parts which are critical in terms of execution time have been imple-
mented in C++ with the help of the Rcpp and RcppArmadillo packages (see Eddelbuettel and
François 2011, Eddelbuettel and Sanderson 2014). Hence, all code chunks display source code
or function calls which belong to the R or C++ programming language.

At the time of writing the statistical programming language R is available in version 3.5.2. Ad-
ditional packages used for computations are mentioned in the text and corresponding authors
are listed in the references.
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2 General Framework of
Models for the Probability
of Informed Trading

We distinguish between two different types of models for estimating the probability of in-
formed trading, static and dynamic. Static models assume parameters to be constant over the
whole range spanned by the underlying data, whereas they are supposed to be time-varying
in dynamic models. Furthermore, the PIN measure has a different intention in each model
type. In the static models, the probability of informed trading is the probability that insid-
ers with access to superior information enter the market, evaluated before the beginning of a
trading period, while it is the unobservable realized fraction of insider trading in the dynamic
approaches. Although the two groups of models have a different view of the probability of
informed trading, an a priori probability in the static ones and an a posteriori in the dynamic
approaches, we go with the literature and use the same notation in both cases.

In the sequential microstructure models for estimating the probability of informed trading,
the exchange of equities takes place over 𝑑 = 1, … , 𝐷 trading periods. The unit time interval is
usually specified as one trading day for both model types, but it can also be an intraday interval
of arbitrary length for dynamic models. Since we set trading days as reference for the majority
of analyses in dynamic setup but also deliver intraday estimates of the probability of informed
trading, the terms trading periods and trading days are used interchangeably.8

No market activities are permitted in which a risk-neutral and competitive market maker is
not involved. Hence, market participants can only trade with the market maker and it is not
possible for them to execute transactions among each other. The market maker determines
and updates bid and ask prices utilizing the information he gathered so far for a trading day.
Trading with the market maker is possible at every timestamp 𝑡 during regular market hours
starting at 𝑇𝑜,𝑚 and ending at 𝑇𝑐,𝑚: 𝑡 ∈ [𝑇𝑜,𝑚, 𝑇𝑐,𝑚] with finite 𝑇𝑐,𝑚, where the index 𝑚 rep-
resents the specific marketplace under consideration. The beginning of official trading may
vary depending on the chosen bourse 𝑚. For instance, the New York Stock Exchange starts

8Dynamic models introduced by Tay, Ting, Tse, and Warachka (2009) and Preve and Tse (2013) also specify the
unit time interval as one trading day.
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regular trading at 9:30 a.m., whereas the German electronic trading system XETRA opens ear-
lier at 9:00 am. Likewise, the upper bound 𝑇𝑐,𝑚 of the official trading interval may also vary
according to the marketplace under consideration.

Each trading day can reside in one of three possible states of the set 𝑄 = {𝒩 , 𝒢 ,ℬ}.9 The
elements of the set 𝑄, which represent the conditions of trading days, are no-news (𝒩 ), good-
news (𝒢 ) and bad-news (ℬ). They are unobservable and determined by nature before the
beginning of each trading period. Trading periods on which private information influence the
market activities are called information events.

Market participants are split in two disjoint groups, informed and uninformed traders. Traders
holding private information are solely active on information events. In addition, they are as-
sumed to be risk neutral and competitive. They buy (sell) if positive (negative) signals hit the
market, which is the case on good-news (bad-news) trading days, as visualized in figure 2.1.
The contrary group of traders, the uninformed market attendees, are active on every trading
day for various reasons (e.g., diversification, liquidity reasons).

Market Maker

No-News Day

Good-News Day Bad-News Day

unin
form

ed b
uys

+ inf
orm

ed b
uys

uni
nfo

rme
d se

lls

un
in
fo
rm

ed
bu
ys

uninform
ed

sells

uninformed buys

uninformed sells + informed sells

Figure 2.1: Trading activities on trading days in the static PIN framework with respect to their con-
ditions.

In general, the probability of informed trading (PIN) can be defined as the relation of the ex-
pected number of transactions due to private information to the expected total number of
trades,

PIN = Expected number of information-based transactions
Expected total number of transactions

. (2.1)

Although both types of models, static and dynamic, share the same structure of the formula
to calculate the probability of informed trading, the PIN variable has varying intentions in the
different approaches.

9Duarte and Young (2009) introduced an extended setting for static models. The number of possible conditions
for trading days is doubled due to order-flow shocks which can influence each state. Hence, there are no-news,
good-news and bad-news trading days, each with and without shocks. This setup was adopted by Preve and
Tse (2013) in terms of dynamic models.
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2 General Framework of Models for the Probability of Informed Trading

As mentioned before, in static models for the probability of informed trading PIN is interpreted
as the probability that insiders hit themarket at the beginning of trading periods and is constant
over the whole range of the underlying data. It also reflects the market maker’s initial beliefs
about conditions of trading periods, as explained in Easley, Kiefer, O’Hara, and Paperman (1996,
p.1421). Therefore the expected number of information-based transactions and the expected
total number of transactions in (2.1) are based on a priori information at the beginning of each
trading period.

For dynamic models, which aim to estimate the (latent) realized fraction of insider trading, PIN
varies over time and is typically reported on, but not restricted to, a daily basis.10 In contrast
to static models, corresponding (observed) high-frequency trading data in each trading period
is utilized to calculate the expectations in the numerator and denominator in equation (2.1).

10See section 11.5 for analyses of intraday estimates of the probability of informed trading.
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3 Static Models
This chapter deals with static models for estimating the probability of informed trading. The
word static takes into account that these models assume constant arrival rates for daily buys
and sells. Additionally, probability parameters are also assumed to be constant over the whole
range spanned by the data. Therefore these models do not enable to estimate the probability
of informed trading on a daily basis.

The static models have several assumptions in common. Firstly, the sequence of trading days is
assumed to be discrete and independent, whereas the time during a trading day is supposed to
be continuous. Conditions of trading days are not observable and determined by nature before
official market opening. Information events, days on which private, price-relevant information
enters the market, occur with probability 𝛼 . This is good information with probability 1 − 𝛿
and news with negative direction with probability 𝛿 . Hence, unconditional probabilities of
no-news, good-news and bad-news conditions are given by:

Pr(𝒩 ) = 1 − 𝛼 (3.1a)
Pr(𝒢 ) = 𝛼(1 − 𝛿) (3.1b)
Pr(ℬ) = 𝛼𝛿. (3.1c)

Furthermore, conditional on a given information state of a trading day, buys and sells are sup-
posed to follow latent independent homogeneous Poisson processes with constant intensities
in a unit time interval. A Poisson process is a point process which is often defined on the pos-
itive line. According to Daley and Vere-Jones (2003), “we shall understand by a point process
some method of randomly allocating points to the real line.” However, in terms of arrivals
of buys and sells, we assume the Poisson processes in static PIN models to be defined on the
positive half-line.

Before we give a formal definition of Poisson processes, we need to introduce another class of
stochastic processes, namely counting processes, which our definition of Poisson processes is
based on. According to Ross (1996), a stochastic process {𝑁 (𝑡), 𝑡 ≥ 0} is called a counting process
if it represents the total number of events that have occurred up to time 𝑡 and it satisfies:

1. 𝑁(𝑡) ≥ 0.
2. 𝑁(𝑡) is integer-valued.
3. if 𝑠 < 𝑡 then 𝑁(𝑠) ≤ 𝑁 (𝑡).
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3 Static Models

4. For 𝑠 < 𝑡 , 𝑁(𝑡) − 𝑁 (𝑠) equals the number of events that have occurred in the interval
(𝑠, 𝑡].

If the number of events that occur in disjoint time intervals are independent, the counting
process exhibits independent increments. Furthermore, a counting process has stationary in-
crements if the distribution of the number of events that happen in any time interval only
depend on its length.11

Hence a formal definition of homogeneous Poisson processes is given by (see Ross 1996):

Definition 3.1. The counting process {𝑁 (𝑡), 𝑡 ≥ 0} is said to be a homogeneous Poisson Process
having rate 𝜆, 𝜆 > 0, if:

1. 𝑁(0) = 0.
2. The process has independent increments.

3. The number of events in any interval of length 𝑡 is Poisson12 distributed with mean 𝜆𝑡 . That
is, for all 𝑠, 𝑡 ≥ 0,

Pr(𝑁 (𝑡 + 𝑠) − 𝑁 (𝑠) = 𝑛) = exp(−𝜆𝑡) (𝜆𝑡)
𝑛

𝑛! , 𝑛 = 0, 1, 2, … .

It follows from the third property of definition 3.1 that homogeneous Poisson processes have
stationary increments and that 𝔼(𝑁 (𝑡)) = 𝜆𝑡 . Let 𝑋𝑛, 𝑛 ≥ 1 denote the time between the
𝑛-th and (𝑛 − 1)-th event. It can be shown that the waiting times or interarrival times 𝑋𝑛
are independently and identically distributed (iid) exponentially distributed (for the two just
mentioned properties of Poisson processes see Ross 1996).13

In terms of models for the probability of informed trading, an event represents either the arrival
of a buy or sell. Therefore, we will use the terms transaction and event interchangeable for the
remainder of this thesis.
11Both properties are described in Ross (1996).
12Thediscrete Poisson distribution is defined by the following cumulative distribution function (cdf) and probability

mass function (pmf) (e.g., see Johnson, Kemp, and Kotz 2005, p. 156):

cdf: 𝐹 (𝜆; 𝑛) = exp(−𝜆)
𝑛
∑
𝑘=0

𝜆𝑘
𝑘! and pmf: 𝑓 (𝜆; 𝑛) = exp(−𝜆)𝜆

𝑛

𝑛! ,

with the number of arrivals 𝑛 ∈ ℕ0 and the intensity parameter/rate 𝜆 ∈ ℝ>0. Mean and variance of Poisson
distributions both equal 𝜆.

13The exponential distribution is a continuous distribution which has cdf and probability density function (pdf)
given by (e.g., see Johnson, Kotz, and Balakrishnan 1994, p. 494):

cdf: 𝐹 (𝜆; 𝑥) = 1 − exp(−𝑥𝜆 ) and pdf: 𝑓 (𝜆; 𝑥) = 1
𝜆 exp(−𝑥𝜆 ),

with waiting times 𝑥 ∈ ℝ≥0 and scale parameter 𝜆 ∈ ℝ>0.
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The arrivals of transactions, which are indeed observable, can be interpreted as a merging of
the latent arrivals of buys and sells, 𝑁𝐵 and 𝑁𝑆 , respectively. One can think of the observ-
able arrivals of transactions 𝑁𝑂 as the outcome of a competition between the latent Poisson
processes of buys and sells which is the first to arrive, whereat the waiting times of the latent
Poisson processes determine the next trade’s direction. Assuming that the current waiting
time of the buys’ point process is less than the sells’ interarrival time, the observed transaction
will be buyer-initiated and 𝑁𝐵 increases by 1 as well as 𝑁𝑂 , whereas 𝑁𝑆 remains unchanged,
as shown in figure 3.1.14 After observing a transaction the waiting times of both latent point
processes are reset and the race of buys and sells process begins anew.

𝑁𝑆

𝑁𝐵

𝑁𝑂

𝑡
Figure 3.1: Exemplary paths of the latent Poisson processes of buys and sells and the observable

(merged) Poisson process of transactions. The green-(red-)colored path represents the
latent counting measure for buys (sells). The counting measure for the observable point
process is displayed by the blue path. The combination of non-filled and filled circles are
drawn whenever a trade arrived, which means that either the counting measure for buys
or sells makes a jump. The non-filled squares are drawn when the waiting time of the
point process is reset which involves a jump of the opposite trade direction. 𝑁𝑂 increases
by 1 every time a trade is observed, 𝑁𝐵 and 𝑁𝑆 only if the competition of waiting times is
won.

The following theorem states that the merging of two homogeneous independent Poisson pro-
cesses again yields a homogeneous Poisson process.15

Theorem 3.1. (a) Suppose that {𝑁1(𝑡), 𝑡 ≥ 0} and {𝑁2(𝑡), 𝑡 ≥ 0} are independent Poisson pro-
cesses with respective rates 𝜆1 and 𝜆2, where the process {𝑁𝑖(𝑡), 𝑖 = 1, 2} corresponds to type
𝑖 arrivals. Let 𝑁(𝑡) = 𝑁1(𝑡)+𝑁2(𝑡), 𝑡 ≥ 0. Then the merged process {𝑁 (𝑡), 𝑡 ≥ 0} is a Poisson

14For most exchanges no data is available about the direction of transactions. Due to this reason algorithms like
Lee & Ready are used to try to detect if a transaction is buyer- or seller-initiated (see Lee and Ready (1991)).
More on this topic can be found in chapter 8.

15The theorem together with its proof can be found in Tijms (2003).
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3 Static Models

process with rate 𝜆 = 𝜆1 + 𝜆2. Denoting by 𝑍𝑘 the interarrival time between the (𝑘 − 1)-th
and 𝑘-th arrival in the merged process and letting 𝐼𝑘 = 𝑖 if the 𝑘-th arrival in the merged
process is a type 𝑖 arrival, then for any 𝑘 = 1, 2, ...,

Pr(𝐼𝑘 = 𝑖 ∣ 𝑍𝑘 = 𝑡) = 𝜆𝑖
𝜆1 + 𝜆2

, 𝑖 = 1, 2,

independently of 𝑡 .
(b) Let {𝑁 (𝑡), 𝑡 ≥ 0} be a Poisson process with rate 𝜆. Suppose that each arrival of the process is

classified as being a type 1 arrival or type 2 arrival with respective probabilities 𝑝1 and 𝑝2,
independently of all other arrivals. Let 𝑁𝑖(𝑡) be the number of type 𝑖 arrivals up to time 𝑡 .
Then {𝑁1(𝑡)} and {𝑁2(𝑡)} are two independent Poisson processes having respective rates 𝜆𝑝1
and 𝜆𝑝2.

Using theorem 3.1 we can write down the probabilities of observing a buyer- or seller-initiated
transaction for all three possible states of a trading day 𝑑 . For a no-news day the probabilities
of observing a buy or sell at each point in time can be written incorporating the corresponding
intensities of the point processes of buys and sells,

Pr(𝐼𝑘,𝑑 = Buy | 𝒩 ) = 𝜆uninf. Buys
𝜆uninf. Buys + 𝜆uninf. Sells

(3.2)

Pr(𝐼𝑘,𝑑 = Sell | 𝒩 ) = 𝜆uninf. Sells
𝜆uninf. Buys + 𝜆uninf. Sells

, (3.3)

where 𝜆uninf. Buys and 𝜆uninf. Sells denote the intensities of uninformed buys and sells, respec-
tively.

On a good-news day informed traders enter the market but only act as buyers. Therefore the
rate of the buys’ Poisson process is the sum of the intensities of uninformed and informed
buyers, 𝜆uninf. Buys and 𝜆inf. Buys, respectively,

Pr(𝐼𝑘,𝑑 = Buy | 𝒢 ) = 𝜆uninf. Buys + 𝜆inf. Buys
𝜆uninf. Buys + 𝜆uninf. Sells + 𝜆inf. Buys

(3.4)

Pr(𝐼𝑘,𝑑 = Sell | 𝒢 ) = 𝜆uninf. Sells
𝜆uninf. Buys + 𝜆uninf. Sells + 𝜆inf. Buys

. (3.5)

Informed sellers solely occur on a bad-news day. Similar to good-news days, the rate of in-
formed sells, 𝜆inf. Sells, must be incorporated in the probabilities,

Pr(𝐼𝑘,𝑑 = Buy | ℬ) = 𝜆uninf. Buys
𝜆uninf. Buys + 𝜆uninf. Sells + 𝜆inf. Sells

(3.6)

Pr(𝐼𝑘,𝑑 = Sell | ℬ) = 𝜆uninf. Sells + 𝜆inf. Sells
𝜆uninf. Buys + 𝜆uninf. Sells + 𝜆inf. Sells

. (3.7)

14



3.1 Model by Easley, Kiefer, O’Hara and Paperman (EKOP)

Further, according to equation (2.1), at the beginning of the trading day, the probability of
informed trading is given by

PIN = 𝛼(1 − 𝛿)𝜆inf. Buys + 𝛼𝛿𝜆inf. Sells
𝜆uninf. Buys + 𝜆uninf. Sells + 𝛼(1 − 𝛿)𝜆inf. Buys + 𝛼𝛿𝜆inf. Sells

. (3.8)

Following sections introduce the static models by Easley, Kiefer, O’Hara, and Paperman (1996)
and Easley, Hvidkjaer, and O’Hara (2002) for estimating the probability of informed trading.
Although the main focus of research does not lie on the PIN variable in these two papers, they
are very important milestones in the literature for the probability of informed trading. In fact,
they investigate information-based differences in spreads of transactions and asset returns.

3.1 Model by Easley, Kiefer, O’Hara and
Paperman (EKOP)

In the model developed by Easley, Kiefer, O’Hara, and Paperman (1996) arrival rates of buys and
sells are assumed to be identical. However, it distinguishes between uninformed and informed
transactions. Uninformed buys and sells each appear with rate 𝜖, informed buys and sells each
with rate 𝜇. Both parameters 𝜖 and 𝜇 are non-negative real numbers but no assumption is
made about their relation in magnitude. Hence, it is possible that 𝜇, describing the intensity of
informed traders, in certain cases can stride the rate of uninformed trading 𝜖.

The intensity for the observable merged Poisson process varies with the states of trading days.
For no-news days the rate of arrivals equals 2𝜖 and for days on which private news enter
the market, either positive or negative, 2𝜖 + 𝜇. The scenario tree in figure 3.2 illustrates the
probabilities for the potential states a trading day in the PIN framework can reside in. In
addition, the mapping of the sets of arrival rates for buys and sells to the different trading
days’ conditions can be read directly from the graph.

Using theorem 3.1 in combination with equations (3.2)–(3.7) we can immediately write down
the probabilities of observing a buy or sell for the 𝑘-th transaction on trading day 𝑑 , with
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3 Static Models

Market Opening

No Information Event

No-News

Buy rate: 𝜖
Sell rate: 𝜖

1 - 𝛼

Information Event
Bad-News

Buy rate: 𝜖
Sell rate: 𝜖 + 𝜇

𝛿

Good-News

Buy rate: 𝜖 + 𝜇
Sell rate: 𝜖1 − 𝛿

𝛼

Figure 3.2: Scenario tree for the EKOP model with equal arrival rates of (un)informed buys and sells.
Information events, days on which private information hit the market, occur with proba-
bility 𝛼 . These private information has a negative directionwith probability 𝛿 (Bad-News)
and a positive direction with probability 1 − 𝛿 (Good-News). On Bad-News (Good-News)
days, informed traders only sell (buy). Uninformed traders buy and sell with rate 𝜖, in-
formed traders with rate 𝜇.

respect to the condition of the trading day.

Pr(𝐼𝑘,𝑑 = Buy | 𝒩 ) = 𝜖
𝜖 + 𝜖 = 1

2 (3.9a)

Pr(𝐼𝑘,𝑑 = Sell | 𝒩 ) = 𝜖
𝜖 + 𝜖 = 1

2 (3.9b)

Pr(𝐼𝑘,𝑑 = Buy | 𝒢 ) = 𝜖 + 𝜇
𝜖 + 𝜖 + 𝜇 (3.9c)

Pr(𝐼𝑘,𝑑 = Sell | 𝒢 ) = 𝜖
𝜖 + 𝜖 + 𝜇 (3.9d)

Pr(𝐼𝑘,𝑑 = Buy | ℬ) = 𝜖
𝜖 + 𝜖 + 𝜇 (3.9e)

Pr(𝐼𝑘,𝑑 = Sell | ℬ) = 𝜖 + 𝜇
𝜖 + 𝜖 + 𝜇 . (3.9f)

According to equation (2.1) the probability of informed trading in the EKOP model can be
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3.1 Model by Easley, Kiefer, O’Hara and Paperman (EKOP)

calculated as

PIN = 𝛼𝛿𝜇 + 𝛼(1 − 𝛿)𝜇
2(1 − 𝛼)𝜖 + 2𝛼𝛿𝜖 + 2𝛼(1 − 𝛿)𝜖 + 𝛼𝛿𝜇 + 𝛼(1 − 𝛿)𝜇

= 𝛼𝜇
2𝜖 + 𝛼𝜇 , (3.10)

where PIN and the model parameters are constant over the range of the underlying data. We
can think of the arrivals of buys and sells on no-news days as flipping a (fair) coin with equal
probabilities for the two potential outcomes. Instead of seeing heads or tails when tossing the
coin, the result will be either the arrival of buys or sells.

On information events the probability for an arrival of buys or sells increases depending on the
direction of the private information. Informed buyers (sellers) enter the market if they receive
a positive (negative) signal. The intensity of the point process for buys (sells) increases by the
positive parameter 𝜇, whereas the rate for sells (buys) remains on the level for no-news days.
Therefore the probability of observing a transaction which is buyer- (seller-)initiated increases
which causes a decrease in the probability for sells (buys).

For deriving the (log) likelihood function in the EKOP setting we can utilize the first and third
property of Poisson processes in definition 3.1. Since in the PIN literature intensities of Poisson
processes for buys and sells, 𝜖 and 𝜇, represent expected arrivals per trading day, we can set
the variables 𝑠 and 𝑡 to 0 and 1, respectively, to achieve an interval of length 1. Now we can
adopt the equation in the third proportion of definition 3.1 for usage in the EKOP model for a
trading day 𝑑 ,

Pr(𝑁𝑑 (𝑡 + 𝑠) − 𝑁𝑑 (𝑠) = 𝑛) =

Pr(𝑁𝑑 (1) − 𝑁𝑑 (0) = 𝑛) =

Pr(𝑁𝑑 (1) = 𝑛) = 𝜆𝑛
𝑛! exp(−𝜆), (3.11)

with the buys and sells Poisson processes 𝑁𝑑 , respectively, arrival rate 𝜆 and the number of
occurrences 𝑛 ∈ ℕ0 on trading day 𝑑 .
The different types of trading days must be taken into account. If on trading day 𝑑 no private
information hit the market, it is free from information-based traders. Both point processes for
buys and sells have identical intensities which equal 𝜖. According to equation (3.11) the notation
of the separated probabilities of observing 𝐵𝑑 buys and 𝑆𝑑 sells on a no-news trading day 𝑑 is
straightforward. Using part b) of theorem 3.1 and equations (3.9a) and (3.9b), the probability of
observing a tuple of 𝐵𝑑 buys and 𝑆𝑑 sells can be written as

exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Buys

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Sells

. (3.12)
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3 Static Models

Similarly, equations (3.9c) – (3.9f) can be harnessed to get the probabilities of observing a tuple
of 𝐵𝑑 buys and 𝑆𝑑 sells for the two remaining conditions of trading days.

On a good-news day 𝑑 informed traders are active and buy equities which yields to an increase
in the arrivals of buyer-initiated transactions captured by parameter 𝜇,

exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝐵𝑑
𝐵𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Buys

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Sells

. (3.13)

Likewise to good-news days, the intensity of seller-initiated trades increase on a bad-news day
𝑑 ,

exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Buys

exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝑆𝑑
𝑆𝑑 !⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Sells

. (3.14)

For most marketplaces we cannot directly identify the direction of trades. There is no flag in
the data which tells us whether a trade is buyer- or seller-initiated. However, to distinguish
between buys and sells is crucial in the EKOP model and in the models for the probability
of informed trading in general. A well-established technique to classify transactions is the
algorithm by Lee and Ready (1991), which checks if the actual price of a trade is closer to the
corresponding bid or ask price.16 Therefore, classification and aggregation of raw transactions
data are essential steps in the workflow to get the daily number of buys and sells.

To receive estimates of themodel parameterswe utilizemaximum-likelihood estimation (MLE).17
Therefore, it is crucial to be able to calculate the (log-)likelihood function to perform numerical
optimizations.

The likelihood of 𝜃 given an observed sequence of 𝐵𝑑 buys and 𝑆𝑑 sells on a trading day 𝑑 can
now be formulated, using equations (3.12–3.14), as weighted sum of these condition-specific
probabilities,

ℒ(𝜃 | (𝐵𝑑 , 𝑆𝑑 )) = (1 − 𝛼)(exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !

)

+ 𝛼(1 − 𝛿)(exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝐵𝑑
𝐵𝑑 !

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !

)

+ 𝛼𝛿(exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !

exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝑆𝑑
𝑆𝑑 !

), (3.15)

with parameter vector 𝜃 ∶= (𝛼, 𝛿, 𝜖, 𝜇).
16For a detailed explanation of several classification algorithms see section 8.6.
17The maximum-likelihood method is used for all optimizations in this work.

18



3.1 Model by Easley, Kiefer, O’Hara and Paperman (EKOP)

Utilizing the independence of trading days, the probability of observing ℳ = (𝐵𝑑 , 𝑆𝑑 )𝐷𝑑=1 for
𝑑 = 1, … , 𝐷 trading days can be written as product of daily likelihoods,

ℒ(𝜃 | ℳ) =
𝐷
∏
𝑑=1

ℒ(𝜃 | (𝐵𝑑 , 𝑆𝑑 )). (3.16)

Hence, the log-likelihood function for a total of 𝐷 trading days can be formulated as

logℒ(𝜃 | ℳ) =
𝐷
∑
𝑑=1

logℒ(𝜃 | (𝐵𝑑 , 𝑆𝑑 )), (3.17)

which yields the more explicit notation,

logℒ(𝜃 | ℳ) =
𝐷
∑
𝑑=1

log((1 − 𝛼)(exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !

)

+ 𝛼(1 − 𝛿)(exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝐵𝑑
𝐵𝑑 !

exp(−𝜖)𝜖
𝑆𝑑
𝑆𝑑 !

)

+ 𝛼𝛿(exp(−𝜖)𝜖
𝐵𝑑
𝐵𝑑 !

exp(−(𝜖 + 𝜇))(𝜖 + 𝜇)𝑆𝑑
𝑆𝑑 !

)). (3.18)

In general, likelihood functions are very rarely used in maximum-likelihood estimation pro-
cedures compared to their logarithmic transformations. Therefore, for the remainder of this
work we will refer to the log-likelihood function as likelihood function.

For maximizations of the likelihood function, using the formulation shown in equation (3.18)
is very inefficient in terms of computation time and often raises overflow errors.18 In cal-
culations of equation (3.18) factorials of daily buys and sells need to be evaluated. Since the
number of daily buys and sells can easily exceed values of several hundreds or thousands, cal-
culations can easily get infeasible. Despite the fact that the likelihood function in equation
(3.18) is theoretically finite, it is not ensured that results are representable by a computer, even
if the number of daily buys or sells is small enough to get finite values for each single factorial
term.19 Additionally, the terms 𝜖𝐵𝑑 , 𝜖𝑆𝑑 , (𝜖 +𝜇)𝐵𝑑 and (𝜖 +𝜇)𝑆𝑑 are potential sources of overflow
errors. Furthermore, single terms may be finite but products of those may not. In contrast
to overflow errors induced by large values for daily buys and sells, the exponential terms in
the likelihood function may introduce underflow errors (i.e., exp(−𝜖) and exp(−(𝜖 + 𝜇))).20 We
will demonstrate and explain the numerical issues one may be confronted with by computing
or estimating the probability of informed trading in static models in section 4.1.2.

18Overflow errors occur if the calculated number is too big in magnitude so that it cannot be longer represented
by the machine/software.

19See section 4.1 for more details.
20Underflow errors occur if the number to represent is too small and vanishes to zero.
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3 Static Models

3.2 Model by Easley, Hvidkjaer and O’Hara
(EHO)

This model is based on and extends the EKOP model presented in the previous section. In
contrast to the simpler model, for the Poisson processes of uninformed buys and uninformed
sells each is assumed to have a unique intensity. The expected number of uninformed buys
equals 𝜖𝑏 , whereas the expected amount of uninformed sells is 𝜖𝑠 . The splitting of arrival rates
for noise traders results in an extended parameter vector 𝜃ext ∶= (𝛼, 𝛿, 𝜖𝑏 , 𝜖𝑠 , 𝜇). Hence, the
EKOP model is nested in the extended setting for the special case that 𝜖𝑏 = 𝜖𝑠 .

The scenario tree in figure 3.2 does no longer hold for the EHOmodel. Relaxing the assumption
of identical intensities for buys and sells initiated by noise traders implies an updated version
displayed in figure 3.3.

Market Opening

No Information Event

No-News

Buy rate: 𝜖𝑏
Sell rate: 𝜖𝑠

1 - 𝛼
Information Event

Bad-News

Buy rate: 𝜖𝑏
Sell rate: 𝜖𝑠 + 𝜇

𝛿

Good-News

Buy rate: 𝜖𝑏 + 𝜇
Sell rate: 𝜖𝑠1 − 𝛿

𝛼

Figure 3.3: Scenario tree for the EHO model with different arrival rates of uninformed buys and un-
informed sells. Information events, days on which private information hit the market,
occur with probability 𝛼 . These private information has a negative direction with prob-
ability 𝛿 (Bad-News) and a positive direction with probability 1 − 𝛿 (Good-News). On
Bad-News (Good-News) days, the informed traders only sell (buy). Uninformed traders
buy equities with rate 𝜖𝑏 , and sell them with rate 𝜖𝑠 . Information-based buys and sells
both have an intensity of 𝜇.

Since the new structure of model parameters needs to be incorporated, the formula for comput-
ing the probability of informed trading slightly differs from equation (3.10) and can be written
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3.2 Model by Easley, Hvidkjaer and O’Hara (EHO)

as

PIN = 𝛼𝛿𝜇 + 𝛼(1 − 𝛿)𝜇
(1 − 𝛼)(𝜖𝑏 + 𝜖𝑠) + 𝛼𝛿(𝜖𝑏 + 𝜖𝑠) + 𝛼(1 − 𝛿)(𝜖𝑏 + 𝜖𝑠) + 𝛼𝛿𝜇 + 𝛼(1 − 𝛿)𝜇

= 𝛼𝜇
𝜖𝑏 + 𝜖𝑠 + 𝛼𝜇 . (3.19)

We can generalize equation (3.18) for deriving the likelihood function in the extended EHO
setting. Hence, the likelihood of observing 𝐵𝑑 buys and 𝑆𝑑 sells on trading days 𝑑 with 𝑑 =
1, … , 𝐷 in the extended setting is given by

logℒ(𝜃ext | ℳ) =
𝐷
∑
𝑑=1

log((1 − 𝛼)(exp(−𝜖𝑏)
𝜖𝑏𝐵𝑑
𝐵𝑑 !

exp(−𝜖𝑠)
𝜖𝑠𝑆𝑑
𝑆𝑑 !

)

+ 𝛼(1 − 𝛿)(exp(−(𝜖𝑏 + 𝜇))(𝜖𝑏 + 𝜇)𝐵𝑑
𝐵𝑑 !

exp(−𝜖𝑠)
𝜖𝑠𝑆𝑑
𝑆𝑑 !

)

+ 𝛼𝛿(exp(−𝜖𝑏)
𝜖𝑏𝐵𝑑
𝐵𝑑 !

exp(−(𝜖𝑠 + 𝜇))(𝜖𝑠 + 𝜇)𝑆𝑑
𝑆𝑑 !

)). (3.20)

The probabilities that the 𝑘-th observed transaction on trading day 𝑑 , 𝐼𝑘,𝑑 , is buyer- or seller-
initiated, with respect to the trading day’s condition, are given by:

Pr(𝐼𝑘,𝑑 = Buy || No-News) = 𝜖𝑏
𝜖𝑏 + 𝜖𝑠

(3.21a)

Pr(𝐼𝑘,𝑑 = Sell || No-News) = 𝜖𝑠
𝜖𝑏 + 𝜖𝑠

(3.21b)

Pr(𝐼𝑘,𝑑 = Buy || Good-News) = 𝜖𝑏 + 𝜇
𝜖𝑏 + 𝜖𝑠 + 𝜇 (3.21c)

Pr(𝐼𝑘,𝑑 = Sell || Good-News) = 𝜖𝑠
𝜖𝑏 + 𝜖𝑠 + 𝜇 (3.21d)

Pr(𝐼𝑘,𝑑 = Buy || Bad-News) = 𝜖𝑏
𝜖𝑏 + 𝜖𝑠 + 𝜇 (3.21e)

Pr(𝐼𝑘,𝑑 = Sell || Bad-News) = 𝜖𝑠 + 𝜇
𝜖𝑏 + 𝜖𝑠 + 𝜇 . (3.21f)

Contrary to the simpler model, no-news days do no longer represent (fair) coin-flipping sce-
narios for the direction of transactions. Whether buyer- or seller-initiated transactions prevail
is determined by the relation of the parameters 𝜖𝑏 and 𝜖𝑠 . If 𝜖𝑏 > 𝜖𝑠 (𝜖𝑏 < 𝜖𝑠) we expect the
majority of observed trades to be buys (sells) on no-news days.

Optimizations may also suffer from overflow or underflow errors due to the same reasons
mentioned for the EKOP model. Terms potentially leading computations to overflow are 𝜖𝑏𝐵𝑑 ,
𝜖𝑠𝑆𝑑 , (𝜖𝑏 + 𝜇)𝐵𝑑 , (𝜖𝑠 + 𝜇)𝑆𝑑 and all terms in which the factorial function is involved. Underflow
errors can be caused by exponential functions if arguments are too small, as shown in section
4.1.
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3.3 Posterior Probabilities
A priori probabilities in static models allow to determine the proportions each state, either no-
news, good-news or bad-news, occupies of the total number of trading days. However, we do
not receive any information about the state of each single trading day. In other words, we know
how often the states occur on average, but we do not know the actual number of occurrences for
each condition. By harnessing Bayes’ theorem21 we can extend the scope of static PIN models
and introduce some aspects of the main research focus of dynamic models.

Utilizing the joint probability of observing 𝐵𝑑 buys and 𝑆𝑑 sells on trading day 𝑑 given in (3.15),
we can calculate the probability that a trading day 𝑑 resides in no-news state, given that we
have observed 𝐵𝑑 buys and 𝑆𝑑 sells. Since (3.15) fits the simpler EKOP model we need to apply
little modifications and split the intensity of uninformed trading 𝜖 into the two variables 𝜖𝑏
and 𝜖𝑠 for the extended EHO setting.22

The posterior probability for a no-news day can then be written as

Pr(𝒩 | (𝐵𝑑 , 𝑆𝑑 )) =
Pr(𝐵𝑑 | 𝒩 ) Pr(𝑆𝑑 | 𝒩 ) Pr(𝒩 )

Pr(𝐵𝑑 , 𝑆𝑑 )
= 1 − 𝛼

(1 − 𝛼) + exp(−𝜇)[𝛼(1 − 𝛿)(1 + 𝜇
𝜖𝑏
)
𝐵𝑑

+ 𝛼𝛿(1 + 𝜇
𝜖𝑠
)
𝑆𝑑
]
. (3.22)

Likewise, posterior probabilities for a good-news and bad-news trading day are given by

Pr(𝒢 | (𝐵𝑑 , 𝑆𝑑 )) =
Pr(𝐵𝑑 | 𝒢 ) Pr(𝑆𝑑 | 𝒢 ) Pr(𝒩 )

Pr(𝐵𝑑 , 𝑆𝑑 )

=
𝛼(1 − 𝛿) exp(−𝜇)(1 + 𝜇

𝜖𝑏
)
𝐵𝑑

(1 − 𝛼) + exp(−𝜇)[𝛼(1 − 𝛿)(1 + 𝜇
𝜖𝑏
)
𝐵𝑑

+ 𝛼𝛿(1 + 𝜇
𝜖𝑠
)
𝑆𝑑
]

(3.23)

and

Pr(ℬ | (𝐵𝑑 , 𝑆𝑑 )) =
Pr(𝐵𝑑 | ℬ) Pr(𝑆𝑑 | ℬ) Pr(𝒩 )

Pr(𝐵𝑑 , 𝑆𝑑 )

=
𝛼𝛿 exp(−𝜇)(1 + 𝜇

𝜖𝑠
)
𝑆𝑑

(1 − 𝛼) + exp(−𝜇)[𝛼(1 − 𝛿)(1 + 𝜇
𝜖𝑏
)
𝐵𝑑

+ 𝛼𝛿(1 + 𝜇
𝜖𝑠
)
𝑆𝑑
]
. (3.24)

21An introduction to Bayesian statistics can be found in the book by Lee (2012).
22Since the simpler EKOP model is nested in EHO model for 𝜖𝑏 = 𝜖𝑠 , formulas can easily be adapted.
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3.3 Posterior Probabilities

Exemplarily, assuming low probability parameters 𝛼 and 𝛿 , we can interpret this as few trading
days in the sample period on which insiders triggered by positive private information enter the
market. However, without posterior probabilities, we are not able to assign information events
to specific trading days in the datasource. Utilizing equations (3.22) - (3.24) we can identify
good-news days according to the magnitude of Pr(𝒢 | (𝐵𝑑 , 𝑆𝑑 )) for each trading day. Hence,
posterior probabilities deliver useful additional insights in the classification of trading days and
help to extend the scope of analyses of static PIN models.
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4 Maximum-Likelihood
Estimation in Static
Models

4.1 Numerical Issues
At the beginning of this chapter we explain and discuss the problems one would have to deal
with if the original representation of the likelihood functions in equations (3.18) and (3.20)
would be used.

Throughout the thesis we use the statistical programming language R for all calculations. In
this section we investigate in detail the over- and underflow errors in computations of the
likelihood function in the EKOP and EHO model mentioned in sections 3.1 and 3.2. Therefore,
we discuss how numbers are stored by R and their maximum precision in terms of decimal
places.23 Furthermore, we simulate a dataset which represents an infrequently traded equity
with low number of daily buys and sells. Finally, we inspect the results for the likelihood
functions in the EKOP and EHO model for the simulated dataset.

4.1.1 Floating-Point Representation in R

The statistical programming language R uses the IEEE 754 norm for floating-point arithmetic
(see IEEE (1985)). By default, R uses double-precision for numeric values unless user-inter-
action happens specifying numbers as integers manually. A floating-point number (double) 𝑥
is stored in binary64 format and consists of sign 𝑠, mantissa 𝑚 and exponent 𝑒

𝑥 = (−1)𝑠 ⋅ 𝑚 ⋅ 2𝑒 , (4.1)

As the name of the storing format suggests, double-precision floating numbers occupy 64 bits in
memory. Sign 𝑠 and mantissa (significand)𝑚 use 1 bit and 52 (+ 1 hidden) bits, respectively. The
23Explanations in section 4.1.1 hold for every programming language using double-precision for floats.
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most significant bit for a normalized number is always 1 if working in binary and therefore it is
sufficient to only store 52 bits explicitly. The remaining 11 bits are reserved for exponent 𝑒, as
visualized in figure 4.1. Real-valued normalized numbers with exponent 𝑒 and 52-bit mantissa
are represented by

(−1)𝑠 ⋅ (1.𝑚51𝑚50…𝑚0)2 ⋅ 2𝑒 ,
with 𝑚𝑖 ∈ {0, 1}, 𝑖 = 0, … , 51 (e.g., see Goldberg 1991).

Sign

1 bit

Exponent Mantissa

11 bits 52 bits

Figure 4.1: Floating-point representation in binary64 format.

Hence, floating-point numbers exhibit an accuracy of 53 bits or approximately 16 decimal
places. The conversion from base 2 to the decimal system leads to: 53𝑙𝑜𝑔10(2) ≈ 15.95 dig-
its.
Furthermore, the IEEE 754 standard distinguishes between normalized and denormal (subnor-
mal) floating-point numbers. For a better understanding of the difference between these two
types we take a look at some entries of the (invisible) .Machine24 variable in R. This variable
returns useful numerical characteristics of the machine R is currently running on.25

Code Chunk 4.1 (Machine characteristics):

# Print machine characteristics to console
.Machine[c(”double.eps”, ”double.neg.eps”,

”double.xmin”, ”double.xmax”, ”double.base”,
”double.min.exp”, ”double.max.exp”)]

$double.eps
[1] 2.22045e-16

$double.neg.eps
[1] 1.11022e-16

$double.xmin
[1] 2.22507e-308

$double.xmax

24The .Machine variable is shipped with the base package.
25Results of the code chunk were generated by R 3.5.2 using Linux and an Intel i5-4590 processor.
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[1] 1.79769e+308

$double.base
[1] 2

$double.min.exp
[1] -1022

$double.max.exp
[1] 1024

The list elements double.xmin and double.xmax provide information about the range of normalized
numbers. The largest normalized and smallest normalized non-zero floating-point number R
can represent are stored in double.xmax and double.xmin, respectively. Both depend on the used
base (radix) for floating-point representations which can be read from double.base. In addition,
double.neg.eps influences double.xmax. To be specific,

double.xmin = double.basedouble.min.exp

double.xmax = (1 − double.neg.eps) ⋅ double.basedouble.max.exp,

where double.min.exp is the largest in magnitude negative integer 𝑖 such that double.base𝑖 is
positive and normalized.26 The smallest positive power of double.basewhich overflows is given
in double.max.exp. The value for double.neg.eps gives the smallest positive floating-point number
x such that the difference 1 - x is not identical to 1, 1 - x ഁ 1. Likewise, the list element double.eps
represents the smallest positive floating-point number x such that the sum 1 + x does not equal
1, 1 + x ഁ 1.

Denormal numbers fill the gap between zero and the smallest non-zero normalized floating-
point number double.xmin, as shown in figure 4.2. They have the smallest possible exponent

0−2−1074 2−1074−2.22507 × 10−308 2.22507 × 10−308

Normalized numbers Denormal numbers 0 Denormal numbers Normalized numbers

Figure 4.2: Visualization of normalized and denormal numbers (IEEE-754). The value of the smallest
non-zero floating-point number can be read from the double.x.min value in code chunk
4.1. The smallest non-zero denormal number has an absolute value of 2−1074.

for normalized numbers (𝑒 = 1022, double.min.exp value in code chunk 4.1), but at least one
leading digit of the non-zero mantissa equals 0 (e.g., see Dooley and Kale 2006). The more
leading digits are zero for the mantissa, the more precision is lost. Hence, the absolute value
of the minimal non-zero denormal number is 2−1022−52 = 2−1074. In addition to the reduced
26The value of double.base𝑖 lies in the range from double.xmin to double.xmax.
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precision, computation time increases (e.g., see Dooley and Kale 2006). Therefore, it is best
to avoid computations in which denormal numbers are involved as long as full precision for
doubles is needed.27

There are additional R packages like Rmpfr that enable the user to increase the number of sig-
nificant bits for numeric values and some operations thereof. With the Rmpfr package values
can be stored with arbitrary precision (see Maechler (2015)). This can be useful in situations
where really high accuracy is essential but comes at the cost of speed. However, for evalu-
ations of the likelihood functions in static PIN models factorials and exponentials need to be
computed for (very) high numbers of buys and sells, if one is interested in frequently traded
stocks. Hence, using such high-precision libraries results in dramatic slowdowns due to the
(very) high precision which is required to avoid over- and underflows.

Since there is a fast and stable implementation of the likelihood function with which we can
circumvent numerical issues by still using double-precision, we will not delve deeper into the
field of arbitrary precision arithmetic. The most stable factorization of the model likelihood
function is presented in section 4.2.2.

4.1.2 Over- and Underflow Errors

As previouslymentioned, computations of factorials and exponentials is crucial for calculations
of the likelihood functions given in equations (3.18) and (3.20). We will shortly demonstrate
for which numbers these functions fail and either over- or underflow, before we simulate data,
which may represent an infrequently traded stock, and analyze corresponding intermediate
results of the likelihood functions in the EKOP and EHO model.

The statistical programming language R is equipped with the factorial function which relies on
the gamma function28 to evaluate the factorial of any positive real number.

Code Chunk 4.2 (Evaluation of factorial function):

# Define a vector 'x' with positive real-valued elements
x <- c(50, 100, 150, 170, 171)

# Compute the factorial for each element in 'x'
factorial(x)

Warning in factorial(x): value out of range in ’gammafn’

[1] 3.04141e+64 9.33262e+157 5.71338e+262 7.25742e+306 Inf

27Further numerical characteristics are listed on the help page of .Machine variable which can be accessed from the
R console by ?.Machine.

28The gamma function is defined as improper integral: Γ(𝑥) =
∞
∫
0
𝑠𝑥−1𝑒−𝑠𝑑𝑠.
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4 Maximum-Likelihood Estimation in Static Models

We can see that R is not capable of returning finite values for the factorial function of numbers
bigger than 170. This yields overflow errors for the factorial terms even for datasets of very
infrequently traded stocks.

Evaluation of exponential function can be represented for exponents in the range of [−745, 709].
Smaller exponents yield a value of zero while larger exponents return infinite values.

Code Chunk 4.3 (Evaluation of exponential function):

small_exponents <- -742:-746
exp(small_exponents)

[1] 5.43472e-323 1.97626e-323 9.88131e-324 4.94066e-324 0.00000e+00

large_exponents <- 706:710
exp(large_exponents)

[1] 4.09170e+306 1.11224e+307 3.02338e+307 8.21841e+307 Inf

Intensity parameters or the sum thereof need to be bigger in magnitude than the threshold of
745 to introduce underflow errors. This happens only for more frequently traded stocks. How-
ever, for such equities computations of factorials of daily buys and sells as well as computations
of terms where power operations are involved result in infinite values.

Below we will show how overflow errors strike the calculations of likelihood functions in the
EKOP and EHOmodel. Code chunk 4.4 specifiesmodel parameters for the EKOP and EHO case,
while in code chunk 4.5 the seed of the random number generator is set to ensure that results
are reproducible. Furthermore, a sequence of trading days’ conditions is sampled in code chunk
4.6 while the subsequent code chunk 4.7 simulates aggregated daily buys and sells data. We
set the length of the sequence of trading days to 60 which is a common recommendation in
the literature to ensure the convergence of the likelihood functions in optimizations (e.g., see
Easley, Kiefer, O’Hara, and Paperman 1996, Aktas, de Bodt, Declerck, and van Oppens 2007).

We simulate two sets of daily buys and sells. One set using the data generating process of the
EKOP model and one taking into account the assumption from the EHO model that buys and
sells initiated by uninformed traders differ in arrival rates. The intensities for noise traders
in the EHO setting 𝜖𝑏 and 𝜖𝑠 equal 135 and 125, respectively. On average, conditional on an
information event, we expect to observe 50 transactions driven by private information (𝜇 =
50).29 In the data simulating procedure for the simpler setting we do not change the portion
of informed traders, but use the mean of the values for 𝜖𝑏 and 𝜖𝑠 as intensity of noise trading.

29The simulated dataset for the EHO setting is shipped with the pinbasic package. To access it run
data(’BSinfrequent’) in the console with pinbasic loaded.
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Hence, the intensity of uninformed market attendees in the EKOP model is given by 𝜖 = 130.30

Code Chunk 4.4 (Specifying intensities of buys and sells):

# intensity of uninformed buys
epsilon_b <- 135

# intensity of uninformed sells
epsilon_s <- 125

# intensity of noise trading in EKOP model
epsilon <- mean(c(epsilon_b, epsilon_s))

# intensity of informed trading
mu <- 50

At first, we set the seed for the R internal pseudo-random number generator to ensure that
the results are reproducible.31 The default (pseudo) random number generator in R is set to
Mersenne-Twister developed by Matsumoto and Nishimura (1998), but there are various other
options available.32

Code Chunk 4.5 (Setting seed for RNG):

# Specify state of random number generator
set.seed(123)

In the next step we need to sample conditions for trading days. We set the probability of an
information event to 20% and assume that good-news and bad-news days are equally likely to
occur. With 𝛼 and 𝛿 fixed, the probabilities for the different types of trading days are given
by

Pr(𝒩 ) = 0.8
Pr(𝒢 ) = Pr(ℬ) = 0.1.

With the built-in sample function, we can now simulate a sequence of trading days’ states by
sampling with replacement and fetch the indices for each type.
30 The chosen intensities are very small and only appropriate for very infrequently traded stocks. However, the

goal of this section is to give the reader an insight into the numerical problems one can be confronted with
when trying to calculate the likelihood function.

31The term reproducible implies that if code chunks are copy & pasted to the R console, identical vectors for buys
and sells are sampled and therefore the results are equal to those presented in this work.

32More information about the available random number generators can be found on the help page of set.seed
function (?set.seed).
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Code Chunk 4.6 (Sampling a sequence of trading days):

# number of days
ndays <- 60

# probability parameters
alpha <- 0.2
delta <- 0.5

# actual sampling
states <- sample(c(”no”, ”good”, ”bad”),

size = ndays, replace = TRUE,
prob = c(1 - alpha,

alpha * (1 - delta),
alpha * delta))

# indices for no-, good- and bad-news days
ind_no <- which(states  ”no”)
ind_good <- which(states  ”good”)
ind_bad <- which(states  ”bad”)

Now that we are able to identify the state every simulated trading day resides in, we can start
to sample daily buys and sells data for both static models.33 For computations of likelihood
functions we incorporate the same parameters used for simulation, as can be seen in code
chunk 4.8.

Likelihood functions given in equations (3.18) and (3.20) are implemented with ll_issues func-
tion in code chunk 4.9.34 The values for model parameters can be passed with argument param,
arguments numbuys and numsells take daily buys and sells data and logical argument ext is a
switch between the simple and extended static model.

Code Chunk 4.7 (Sampling daily buys and sells data):

# initialize numeric vectors for buys and sells
buys_eho <-

buys_ekop <-
sells_eho <-
sells_ekop <- numeric(ndays)

33To generate random numbers from Poisson distributions we use the rpois function which is shipped with the
built-in stats package.

34This function is not included in the pinbasic package. However, the code is shown for better demonstration of
the problematic parts of likelihood computations.
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# drawing Poisson distributed random numbers for daily buys and sells
# according to the actual buy and sell intensities depending on the
# condition of the trading day
buys_eho[ind_no] <- rpois(length(ind_no), epsilon_b)
sells_eho[ind_no] <- rpois(length(ind_no), epsilon_s)
buys_ekop[ind_no] <- rpois(length(ind_no), epsilon)
sells_ekop[ind_no] <- rpois(length(ind_no), epsilon)

buys_eho[ind_good] <- rpois(length(ind_good), epsilon_b + mu)
sells_eho[ind_good] <- rpois(length(ind_good), epsilon_s)
buys_ekop[ind_good] <- rpois(length(ind_good), epsilon + mu)
sells_ekop[ind_good] <- rpois(length(ind_good), epsilon)

buys_eho[ind_bad] <- rpois(length(ind_bad), epsilon_b)
sells_eho[ind_bad] <- rpois(length(ind_bad), epsilon_s + mu)
buys_ekop[ind_bad] <- rpois(length(ind_bad), epsilon)
sells_ekop[ind_bad] <- rpois(length(ind_bad), epsilon + mu)

Code Chunk 4.8 (Specifying parameter vectors):

# parameter vector for EKOP model
pin_ekop_coef <- c(alpha, delta, epsilon, mu)

# parameter vector for EHO model
pin_eho_coef <- c(alpha, delta, epsilon_b, epsilon_s, mu)

# name the vector elements
names(pin_ekop_coef) <- c(”alpha”, ”delta”, ”epsilon”, ”mu”)
names(pin_eho_coef) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)

The ll_issues function returns a matrix with six columns. The first three columns contain the
results for the components associated with no-news, good-news and bad-news days, respec-
tively. The fourth column consists of daily likelihood values. The last two columns comprise
of aggregated daily buys and sells. In tables 4.1 and 4.2 a column displaying trading days’
conditions is added.

We evaluate the likelihood function in the simpler EKOP model with model parameters stored
in pin_ekop_coef as well as data vectors buys_ekop and sells_ekop. The corresponding results for
the first six days are displayed in table 4.1.

After computation we inspect the failure rate of daily likelihood values and assign the number
of infinite function values or NaN35 to total_fail_ekop (see code chunk 4.10).
35R returns NaN for some computations in which infinite values are involved: e.g., Inf - Inf, Inf/Inf, or for undefined

division 0/0.
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Code Chunk 4.9 (Implementation of inefficient and unstable likelihood in static models):

ll_issues <- function(param, numbuys, numsells, ext = TRUE){
if(!ext) param[”epsilon_b”] <- param[”epsilon_s”] <- param[”epsilon”]

no_news <- (1 - param[”alpha”]) *
exp(-param[”epsilon_b”]) *
(param[”epsilon_b”]) ^ numbuys/
factorial(numbuys) *
exp(-param[”epsilon_s”]) *
(param[”epsilon_s”]) ^ numsells/
factorial(numsells)

good_news <- param[”alpha”] * (1 - param[”delta”]) *
exp(-(param[”epsilon_b”] + param[”mu”])) *
(param[”epsilon_b”] + param[”mu”]) ^ numbuys/
factorial(numbuys) *
exp(-param[”epsilon_s”]) *
(param[”epsilon_s”]) ^ numsells/
factorial(numsells)

bad_news <- param[”alpha”] * param[”delta”] *
exp(-param[”epsilon_b”]) *
(param[”epsilon_b”]) ^ numbuys/factorial(numbuys) *
exp(-(param[”epsilon_s”] + param[”mu”])) *
((param[”epsilon_s”] + param[”mu”])) ^ numsells/
factorial(numsells)

ll_daily <- log(no_news + good_news + bad_news)

res <- matrix(c(no_news, good_news, bad_news,
ll_daily,
numbuys, numsells),

nrow = length(numbuys))

colnames(res) <- c(”No-News”, ”Good-News”, ”Bad-News”,
”ll_daily”,
”Buys”, ”Sells”)

res
}

Code Chunk 4.10 (EKOP likelihood evaluation):

# likelihood evaluation
ll_fail_ekop <- ll_issues(param = pin_ekop_coef, ext = FALSE,

numbuys = buys_ekop, numsells = sells_ekop)
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# inspecting infinite values and NaN
total_fail_ekop <- sum(is.infinite(ll_fail_ekop[,”ll_daily”]) |

is.nan(ll_fail_ekop[,”ll_daily”]))

total_fail_ekop

[1] 36

No-News Good-News Bad-News ll_daily Buys Sells State

2.81573e-04 8.56258e-10 8.77608e-11 -8.17511 121 114 no
7.38283e-04 4.30422e-09 5.95969e-09 -7.21117 123 124 no
4.97065e-04 Inf 2.04202e-08 Inf 143 129 no

NaN NaN NaN NaN 138 173 bad
NaN NaN NaN NaN 182 126 good

4.54247e-04 Inf 9.97647e-10 Inf 140 120 no

Table 4.1: First six rows of the returned matrix from a call to ll_issues function in which argument
ext is set to FALSE. Data vectors buys_ekop and sells_ekop as well as the parameter set stored
in pin_ekop_coef are used for computation.

For the computation of the likelihood function in the EKOP model many warnings of the form
Warning in factorial(): value out of range in ’gammafn’ arise.36 In total, for 36 days an in-
finite value or NaN is returned for ll_daily column. For more than half of the trading days in
the simulated dataset daily likelihood values raise overflow errors or floating point exceptions
(FPE) although the parameters of the simulation procedure are set very low tomimic daily buys
and sells data of very infrequently traded stocks. Obviously, calculations under the assump-
tion of identical trading intensities for noise trading are not feasible utilizing the likelihood
formulation given in equation (3.18), even for infrequently traded equities.

By switching from the restrictive assumption of identical noise trader intensities to the ex-
tended EHO setting in code chunk 4.11 we get similar results, table 4.2 shows them for the first
six days. The number of trading days for which daily likelihood values are not finite or NaN
even increases.

Only for 22 trading days a real number is returned for ll_daily. The evaluations of likelihood
functions in the EKOP and EHO model show that straightforward implementations of the for-
mulations in equation (3.18) and (3.20) cannot be used in applications which try to estimate the
probability of informed trading for any recent stock data.

36 By default R prints these warnings to the console, but they are suppressed in this thesis to reduce the size of the
output.
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Code Chunk 4.11 (EHO likelihood evaluation):

# likelihood evaluation
ll_fail_eho <- ll_issues(param = pin_eho_coef, ext = TRUE,

numbuys = buys_eho, numsells = sells_eho)

# inspecting infinite values and NaN
total_fail_eho <- sum(is.infinite(ll_fail_eho[,”ll_daily”]) |

is.nan(ll_fail_eho[,”ll_daily”]))

total_fail_eho

[1] 38

Thus we have developed the pinbasic R package whose functionalities are designed to offer
a fast and stable estimation of PIN in the static models presented and discussed in the pre-
vious chapter. The next chapter exhibits implemented functions together with an extensive
explanation of the underlying source code.

No-News Good-News Bad-News ll_daily Buys Sells State

8.40579e-04 Inf 1.43642e-07 Inf 139 129 no
8.91695e-04 1.81207e-08 1.03251e-08 -7.02235 131 121 no
9.48740e-04 3.62061e-08 8.27168e-08 -6.96025 133 127 no

Inf Inf Inf Inf 145 169 bad
NaN NaN NaN NaN 185 135 good
Inf Inf Inf Inf 145 119 no

Table 4.2: First six rows of the returned matrix from a call to ll_issues function in which argument
ext is set to TRUE. Data vectors buys_eho and sells_eho as well as the parameter set stored in
pin_eho_coef are used for computation.

4.2 Likelihood Factorizations
According to section 4.1.2, computation of equations (3.18) and (3.20) even fails for infrequently
traded stocks. Historical data which has its origin decades ago and therefore the aggregated
buys and sells data is very small may be an appropriate choice for these likelihood formulations.
However, for any recent dataset more stable implementations are essential to achieve finite
function values.

The PIN literature provides two widely used likelihood factorizations which try to minimize
over- and underflow errors. Since the EKOP model is nested in the extended EHO setting, we
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will concentrate on the latter for the remainder of this chapter.

4.2.1 EHO Factorization

Easley, Hvidkjaer, and O’Hara (2010) reformulated the likelihood function in the static model
with different intensities for uninformed buys and uninformed sells. The authors rearranged
the likelihood function and dropped the constant term − log(𝐵𝑑 !𝑆𝑑 !) so that an algebraically
equivalent but more stable and robust factorization can be maximized,

logℒ(𝜃ext | ℳ) =
𝐷
∑
𝑑=1

(−𝜖𝑏 − 𝜖𝑠 + 𝑀𝑑(log 𝑥𝑏 + log 𝑥𝑠) + 𝐵𝑑 log(𝜇 + 𝜖𝑏) + 𝑆𝑑 log(𝜇 + 𝜖𝑠))

+
𝐷
∑
𝑑=1

log((1 − 𝛼)𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥𝐵𝑑−𝑀𝑑𝑏 + 𝛼(1 − 𝛿) exp(−𝜇)𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥−𝑀𝑑𝑏

+ 𝛼𝛿 exp(−𝜇)𝑥𝐵𝑑−𝑀𝑑𝑏 𝑥−𝑀𝑑𝑠 ), (4.2)

where𝑀𝑑 = min(𝐵𝑑 , 𝑆𝑑 )+
max(𝐵𝑑 , 𝑆𝑑 )

2 , 𝑥𝑠 =
𝜖𝑠

𝜖𝑠 + 𝜇 and 𝑥𝑏 = 𝜖𝑏
𝜖𝑏 + 𝜇 . Technically speaking, due

to the dropping of the constant term, the expression in equation (4.2) is no longer a likelihood
function. However, we go with the literature and still use the term and do not introduce a new
symbol.

The maximum likelihood estimator, denoted as �̂�ext = (𝛼, �̂� , 𝜖𝑏 , 𝜖𝑠 , �̂�), is then obtained by max-
imizing the likelihood function in equation (4.2),

max
𝜃ext ∈ BFS

logℒ(𝜃ext | ℳ), (4.3)

where BFS = {𝜃ext = (𝛼, 𝛿, 𝜖𝑏 , 𝜖𝑠 , 𝜇) || 𝛼, 𝛿 ∈ [0, 1] and 𝜖𝑏 , 𝜖𝑠 , 𝜇 ∈ [0,∞)} denotes the set of basic
feasible solutions (see Lin and Ke 2011). Estimates of the probability of informed trading are
then calculated with (see equation (3.19))

P̂IN = 𝛼�̂�
𝜖𝑏 + 𝜖𝑠 + 𝛼�̂� . (4.4)

According to Easley, Hvidkjaer, and O’Hara (2010) the computation of the probability of in-
formed trading benefits due to two facts. The computing efficiency is increased and the trun-
cation errors (over- and underflow) are reduced. No evaluations of factorials are needed, addi-
tionally 𝑥𝑏 and 𝑥𝑠 are always weakly smaller than 1 which leads to more stable calculations of
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the terms involving power operations. Instead of a straightforward implementation of equation
(4.2), we exploit the relations

𝑥𝑦 = exp(log(𝑥) ∗ 𝑦) with 𝑥 > 0, 𝑦 ∈ ℝ and (4.5)

exp(𝑥 + 𝑦) = exp(𝑥) ⋅ exp(𝑦) with 𝑥, 𝑦 ∈ ℝ, (4.6)

which yield an increased stability of computations.

Applying only the first relation to equation (4.2), corresponding terms can be transformed as
follows:

𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥𝐵𝑑−𝑀𝑑𝑏 = exp((𝑆𝑑 − 𝑀𝑑 ) log 𝑥𝑠) exp((𝐵𝑑 − 𝑀𝑑 ) log 𝑥𝑏), (4.7a)

exp(−𝜇)𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥−𝑀𝑑𝑏 = exp(−𝜇) exp((𝑆𝑑 − 𝑀𝑑 ) log 𝑥𝑠) exp(−𝑀𝑑 log 𝑥𝑏), (4.7b)

exp(−𝜇)𝑥𝐵𝑑−𝑀𝑑𝑏 𝑥−𝑀𝑑𝑠 = exp(−𝜇) exp((𝐵𝑑 − 𝑀𝑑 ) log 𝑥𝑏) exp(−𝑀𝑑 log 𝑥𝑠). (4.7c)

Utilizing both relations for exponential terms, we finally get:

𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥𝐵𝑑−𝑀𝑑𝑏 = exp(𝐵𝑑 ∗ log(𝑥𝑏) + 𝑆𝑑 ∗ log(𝑥𝑠) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))), (4.8a)

exp(−𝜇)𝑥𝑆𝑑−𝑀𝑑𝑠 𝑥−𝑀𝑑𝑏 = exp(−𝜇 + 𝑆𝑑 ∗ log(𝑥𝑠) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))), (4.8b)

exp(−𝜇)𝑥𝐵𝑑−𝑀𝑑𝑏 𝑥−𝑀𝑑𝑠 = exp(−𝜇 + 𝐵𝑑 ∗ log(𝑥𝑏) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))). (4.8c)

There are still three clear-cut parts of the likelihood function which can be assigned to trading
days’ conditions. Using equations (4.8a) – (4.8c) we can write them as

(1 − 𝛼) exp(𝐵𝑑 ∗ log(𝑥𝑏) + 𝑆𝑑 ∗ log(𝑥𝑠) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))) (no-news),
𝛼(1 − 𝛿) exp(−𝜇 + 𝑆𝑑 ∗ log(𝑥𝑠) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))) (good-news) and

𝛼𝛿 exp(−𝜇 + 𝐵𝑑 ∗ log(𝑥𝑏) − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠))) (bad-news). (4.9)

In addition, we label the sum

𝐷
∑
𝑑=1

(−𝜖𝑏 − 𝜖𝑠 + 𝑀𝑑(log 𝑥𝑏 + log 𝑥𝑠) + 𝐵𝑑 log(𝜇 + 𝜖𝑏) + 𝑆𝑑 log(𝜇 + 𝜖𝑠)),

as General Part. The values for the constant, for maximization purposes irrelevant, component
log(𝐵𝑑 !𝑆𝑑 !) are not included in any tables presented in this section.

We get very detailed results of likelihood evaluations by ehofactr_mat37 function which returns
a matrix consisting of daily values for each of the likelihood parts. The param arguments takes
37The ehofactr_mat function is not included in pinbasic package. It is presented and used in this work for demon-

stration purposes only.
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4.2 Likelihood Factorizations

values for model parameters, numbuys and numsells expect vectors of daily buys and sells and ext
is again a logical which distinguishes between model settings.

To demonstrate how the reformulated likelihood functions handles data of infrequently traded
stocks we apply ehofactr_mat function to the simulated dataset from section 4.1.2. For evalua-
tions of equation (4.2) we utilize the sets of parameters whichwere already used for simulations
(see code chunks 4.4, 4.6 and 4.8).

Code Chunk 4.12 (Detailed output of computations utilizing EHO likelihood factorization):

ehofactr_mat <- function(param = NULL, numbuys = NULL, numsells = NULL) {
n <- length(numbuys)

m <- pmin.int(numbuys, numsells) + 0.5 * pmax.int(numbuys,numsells)
xs <- param[”epsilon_s”]/(param[”mu”] + param[”epsilon_s”])
xb <- param[”epsilon_b”]/(param[”mu”] + param[”epsilon_b”])
lxb <- log(xb)
lxs <- log(xs)

prob_no <- 1 - param[”alpha”]
prob_good <- param[”alpha”] * (1 - param[”delta”])
prob_bad <- param[”alpha”] * param[”delta”]

part1 <- -(param[”epsilon_b”] + param[”epsilon_s”]) +
(lxb + lxs) * m + log(param[”mu”] + param[”epsilon_b”]) *
numbuys + log(param[”mu”] + param[”epsilon_s”]) *
numsells

part2 <- log(prob_no * exp(lxb * numbuys + lxs * numsells - m * (lxb + lxs)) +
prob_good * exp(-param[”mu”] + numsells * lxs - m * (lxb + lxs)) +
prob_bad * exp(-param[”mu”] + numbuys * lxb - m * (lxb + lxs)))

ll <- cbind(part1,
prob_no * exp(lxb * numbuys + lxs * numsells - m * (lxb + lxs)),
prob_good * exp(-param[”mu”] + numsells * lxs - m * (lxb + lxs)),
prob_bad * exp(-param[”mu”] + numbuys * lxb - m * (lxb + lxs)),
part1 + part2,
numbuys,
numsells)

colnames(ll) <- c(”General Part”, ”No-News”, ”Good-News”, ”Bad-News”,
”ll_daily”, ”Buys”, ”Sells”)

ll
}

The intention of including tables 4.1, 4.2 and 4.3 in this work is to give the reader an idea of the
magnitude of values occurring in computations of likelihood functions in static PIN models.
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General Part No-News Good-News Bad-News ll_daily Buys Sells

1.00255e+03 1.58799e+18 4.01337e+14 2.71362e+14 1044.46295 139 129
9.27291e+02 1.17215e+17 2.38200e+12 1.35725e+12 966.59385 131 121
9.64160e+02 7.93051e+17 3.02646e+13 6.91429e+13 1005.37437 133 127
1.22027e+03 2.02602e+20 3.39105e+17 2.42364e+22 1271.81943 145 169
1.25478e+03 1.72007e+19 8.56555e+21 2.21318e+16 1305.28761 185 135
9.86789e+02 7.25000e+16 1.21347e+14 4.28312e+11 1025.61271 145 119

Table 4.3: First six rows of likelihood evaluation in the extended static model setting establishing
EHO factorization. Synthetic EHO data representing an infrequently traded stock from
section 4.1.2 is used for computation. We decided to stick with the layout and column
names of table 4.2, however, the values in the column ll_daily are not directly comparable
since the constant term − log(𝐵𝑑 !𝑆𝑑 !) is dropped.

For the simulated data, representing a (very) infrequent traded equity, EHO factorization is
sufficient. Each daily likelihood value is finite and they sum up to 63791.61.

The conclusion of this section so far is that we now have a more stable likelihood formula-
tion which enables us to estimate the probability of informed trading for equities with a small
amount of daily buys and sells. It remains to be seen whether it can handle datasets from mod-
erate or even very frequently traded stocks. The factorization by Easley, Hvidkjaer, and O’Hara
(2010) has similar drawbacks as equations (3.18) and (3.20) but they are not that distinct.

To shortly demonstrate the failure of the reformulated likelihood function we simulate a new,
more realistic, dataset of daily buys and sells representing a frequently traded equity according
to the EHO model setup. The simulation procedure does not change in comparison to section
4.1.2, but the intensities do. Conditions of trading days are not altered or sampled again. Hence,
we use the same type and order of trading days but set trading intensities to higher levels. We
now expect to observe 2200 uninformed buys and 2000 uninformed sells per trading day. The
amount of transactions due to private information on information events equals 800.38 Thus,
we get the parameter vector 𝜃ext = (0.2, 0.5, 2200, 2000, 800) which is used in the simulation of
the dataset as well as the evaluation of the likelihood function.39

We can observe infinite results in each part of the likelihood function which can be assigned to
either no-news, good-news or bad-news condition in table 4.4. Hence, for a (very) frequently
traded stock the factorization discussed in this chapter is infeasible.

There is a subset BFSEHO of BFS with

BFSEHO = {𝜃ext ∈ BFS || logℒ(𝜃ext | ℳ) do not lead to FPE}, (4.10)

38The simulated dataset is shipped with the pinbasic package. To access it run data(’BSfrequent’) in the console
with pinbasic package loaded.

39Before drawing random numbers from Poisson distributions for daily buys and sells we set the seed of the internal
random number generator with the set.seed function and the corresponding function call set.seed(321).
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4.2 Likelihood Factorizations

General Part No-News Good-News Bad-News ll_daily Buys Sells

2.79568e+04 3.43872e+283 1.49889e+242 5.87415e+228 28609.65850 2279 2009
2.74969e+04 2.71489e+290 7.11521e+233 7.07083e+243 28165.63701 2166 2065
2.71451e+04 1.06598e+282 2.14765e+227 1.72743e+226 27794.52713 2180 2002
3.47072e+04 Inf 1.19803e+266 Inf Inf 2248 2937
3.42059e+04 2.09597e+292 Inf 1.69836e+242 Inf 3062 2041
2.76391e+04 1.76514e+289 2.73385e+236 1.58934e+241 28305.12194 2194 2055

Table 4.4: First six rows of likelihood evaluation in the extended static model setting establishing
EHO factorization. Synthetic EHO data represents a frequently traded stock and is simu-
lated with parameter vector 𝜃ext = (0.2, 0.5, 2200, 2000, 800).

where logℒ(𝜃ext | ℳ) can be accurately calculated as a floating-point number. After applying
the transformations shown in equations (4.8a)-(4.8c) on the EHO factorization of the likelihood
function, we see that is crucial to calculate the exponential terms without overflow. According
to the results in code chunk 4.3, the exponential function does not overflow for values smaller
than 710. Therefore we can specify the set BFSEHO more precisely as

BFSEHO = {𝜃ext ∈ BFS
||||
max{

𝐵𝑑 ∗ log(𝑥𝑏) + 𝑆𝑑 ∗ log(𝑥𝑠)
−𝜇 + 𝑆𝑑 ∗ log(𝑥𝑠)
−𝜇 + 𝐵𝑑 ∗ log(𝑥𝑏)

} − 𝑀𝑑 ∗ (log(𝑥𝑏) + log(𝑥𝑠)) < 710},
(4.11)

where 𝑑 ∈ {1, 2, … , 𝐷}.
This set of basic feasible solutions for the EHO likelihood factorization slightly differs from the
one by Lin and Ke (2011), which only apply the first relation for the exponential function shown
in equation (4.5). Hence, the authors must ensure that each exponential term in equations (4.7a)
- (4.7c) does not overflow in evaluations of the likelihood function. This brings an additional
condition into their set of basic feasible solutions, namely that −𝑀𝑑 ⋅min(log(𝑥𝑏), log(𝑥𝑠)) needs
to be less than the upper bound 710 for every 𝑑 ∈ {1, 2, … , 𝐷}.
Computations of equations (4.8a) - (4.8c) are more stable than that of equations (4.7a) - (4.7c),
which allows us to calculate the likelihood function for more parameter constellations and
higher number of buys and sells.

At the end of this section we can summarize that the EHO factorization is sufficient for stocks
with relative small number of daily buys and sells but does not return finite results if the daily
number of transactions is large, as it is for the simulated dataset in this section.

4.2.2 Lin and Ke Factorization

A further alternative formulation of the likelihood function is presented in the work by Lin
and Ke (2011). The factorization is applicable even for heavily traded stocks. The effectiveness
and stability of the likelihood is caused by two principles (see Lin and Ke 2011, p. 629):
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4 Maximum-Likelihood Estimation in Static Models

• In computing
exp(𝑥) exp(𝑦) (or 𝑥 exp(𝑦)),

the expression of
exp(𝑥 + 𝑦) (or sgn(𝑥) exp(log(|𝑥|) + 𝑦))

is more stable than that of

exp(𝑥) exp(𝑦) (or 𝑥 exp(𝑦)).

• In the computer arithmetic process, the absolute computing error of a function 𝑓 (𝑥)
increases with the absolute value of its first-order derivative.

To fortify the usefulness of these two principles the authors give the following example. Say,
one intends to compute

log(exp(𝑥) exp(𝑦) + exp(𝑧))
with 𝑥 = 800, 𝑦 = −400 and 𝑧 = 900. A threshold for the inputs of exponential function lies at
710, meaning that any larger value gets the exponential function to overflow and return infinite
results (see code chunk 4.3).

At first, exp(𝑥) exp(𝑦) would lead to an overflow error due to the fact that one input for the
exponential is bigger than the threshold (800 > 710). Taking the first principle into account, we
can compute the expression with exp(𝑥 +𝑦)which gives 5.22147e+173. However, the expression
exp(𝑧) would still produce an infinite value and therefore the expression

log(exp(𝑥 + 𝑦) + exp(𝑧))
is not computable.

The second principle states that one should avoid large input values for the exponential and
small positive input values for the logarithmic function. Hence, the expression

𝑚 + log(exp(𝑥 + 𝑦 − 𝑚) + exp(𝑧 − 𝑚))
with 𝑚 = max(𝑥 + 𝑦, 𝑧) = 900 is more stable and accurate. Irrelevant of the specified values
for 𝑥, 𝑦 and 𝑧, one of the terms 𝑥 + 𝑦 − 𝑚 and 𝑧 − 𝑚 is always zero, whereas the remaining
term is always less than 0. This yields small input values for the exponential functions, which
in turn always sum up to a value greater than 1. Thus, we have no small positive input values
for the natural logarithm. Using 𝑥, 𝑦 and 𝑧 as specified before we can compute the expression
log(exp(𝑥) exp(𝑦) + exp(𝑧)) as40

𝑚 + log(exp(𝑥 + 𝑦 − 𝑚) + exp(𝑧 − 𝑚)) =
900 + log(exp(800 − 400 − 900) + exp(900 − 900)) =
900 + log(exp(−500) + 1) = 900 + 7.12458𝑒 − 218.

40We incorporate the built-in log1p function which computes log(1 + 𝑥) accurately even for |𝑥| ≪ 1.
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4.2 Likelihood Factorizations

Following the two principles mentioned by Lin and Ke (2011), a stable and efficient formulation
of the likelihood is given by

logℒ(𝜃ext ∣ ℳ) =
𝐷
∑
𝑑=1

(−𝜖𝑏 − 𝜖𝑠 + 𝐵𝑑 log(𝜇 + 𝜖𝑏) + 𝑆𝑑 log(𝜇 + 𝜖𝑠) + 𝑒max,𝑑)+

𝐷
∑
𝑑=1

log((1 − 𝛼) exp(𝑒1,𝑑 − 𝑒max,𝑑) + 𝛼(1 − 𝛿) exp(𝑒2,𝑑 − 𝑒max,𝑑)+

𝛼𝛿 exp(𝑒3,𝑑 − 𝑒max,𝑑)), (4.12)

where 𝑒1,𝑑 = −𝐵𝑑 log(1 + 𝜇
𝜖𝑏
)−𝑆𝑑 log(1 + 𝜇

𝜖𝑠
), 𝑒2,𝑑 = −𝜇−𝑆𝑑 log(1 + 𝜇

𝜖𝑠
), 𝑒3,𝑑 = −𝜇−𝐵𝑑 log(1 + 𝜇

𝜖𝑏
)

and 𝑒max,𝑑 = max(𝑒1,𝑑 , 𝑒2,𝑑 , 𝑒3,𝑑). Again, the constant term − log(𝐵!𝑆!) is dropped.
Similar to the preceding section dealing with the EHO factorization of the likelihood, it is es-
sential to compute the terms involving exponentials without overflow. Analogous to equation
(4.11), we can write the set of feasible solutions for the likelihood in equation (4.12) as

BFSLK = {𝜃ext ∈ BFS || max(𝑒1,𝑑 − 𝑒max,𝑑 , 𝑒2,𝑑 − 𝑒max,𝑑 , 𝑒3,𝑑 − 𝑒max,𝑑) < 710}, (4.13)

with 𝑑 = 1, 2, … , 𝐷. Since the three terms 𝑒1,𝑑 − 𝑒max,𝑑 , 𝑒2,𝑑 − 𝑒max,𝑑 and 𝑒3,𝑑 − 𝑒max,𝑑 are
always weakly smaller than 0, BFSLK is equal to BFS (see equation (4.3)) if the focus lies on the
exponential function. Therefore using the likelihood in equation (4.12) reduces floating point
exceptions in computations of the likelihood function.

An analogue of the ehofactr_mat function for EHO factorization is given by the linkefactr_mat
function in code chunk 4.13.41 Both functions for detailed output of likelihood function evalu-
ations share their arguments.

Code Chunk 4.13 (Detailed output of computations utilizing likelihood factorization by Lin and Ke):

linkefactr_mat <- function (param = NULL, numbuys = NULL, numsells = NULL) {
n <- length(numbuys)

rat1 <- param[”mu”]/param[”epsilon_s”]
rat2 <- param[”mu”]/param[”epsilon_b”]
rat1log1p <- log1p(rat1)
rat2log1p <- log1p(rat2)

const1 <- log(param[”mu”] + param[”epsilon_s”])

41Likewise to ehofactr_mat, the linkefactr_mat function is not part of our pinbasic package. It is presented and
used for demonstration purposes only. Chapter 5 deals with our package in detail.
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4 Maximum-Likelihood Estimation in Static Models

const2 <- log(param[”mu”] + param[”epsilon_b”])

prob_no <- 1 - param[”alpha”]
prob_good <- param[”alpha”] * (1 - param[”delta”])
prob_bad <- param[”alpha”] * param[”delta”]

e2 <- -param[”mu”] - numsells * rat1log1p
e3 <- -param[”mu”] - numbuys * rat2log1p
e1 <- e2 + e3 + 2 * param[”mu”]
e_max <- pmax.int(e1, e2, e3)

part1 <- -param[”epsilon_b”] - param[”epsilon_s”] +
numbuys * const2 + numsells * const1 + e_max

part2 <- log(prob_no * exp(e1 - e_max) + prob_good * exp(e2 - e_max) +
prob_bad * exp(e3 - e_max))

ll <- cbind(part1,
prob_no * exp(e1 - e_max),
prob_good * exp(e2 - e_max),
prob_bad * exp(e3 - e_max),
part1 + part2,
numbuys,
numsells)

colnames(ll) <- c(”General Part”, ”No-News”, ”Good-News”, ”Bad-News”,
”ll_daily”, ”Buys”, ”Sells”)

ll
}

Using the synthetic EHO dataset from section 4.2.1 which imitates a frequently traded eq-
uity, evaluation42 of Lin-Ke factorization results in all finite values for calculation and equals
1.75833e+06. Results for the first six days are displayed in table 4.5.

With Lin-Ke formulation we have a stable method to estimate PIN even for heavily traded
stocks. But the question remains if it is able to handle even very extreme trading data. Consider
a really heavily traded stock with trading days for which the total amount of transactions can
literally “explode” and easily exceeds 10,000 or more.

For this reason, we simulate new datasets which exhibits really large values for daily buys and
sells. The intensities used to simulate daily buys and sells data for an extraordinary frequently
traded equity in the EHO setting are 𝜖𝑏 ,extreme = 6600, 𝜖𝑠 ,extreme = 6000 and 𝜇extreme = 2400.43
The conditions of trading days do not differ from the ones in the previous simulation proce-
dures.
42Lin-Ke factorization is evaluated at the corresponding parameter vector which is already utilized in simulation.
43The simulated dataset for EHO setting is shipped with our pinbasic R package. To access it run data(’BSheavy’)

in the console with pinbasic package loaded.
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General Part No-News Good-News Bad-News ll_daily Buys Sells

2.86099e+04 8.00000e-01 3.48710e-42 1.36659e-55 28609.65850 2279 2009
2.81659e+04 8.00000e-01 2.09665e-57 2.08357e-47 28165.63701 2166 2065
2.77948e+04 8.00000e-01 1.61178e-55 1.29641e-56 27794.52713 2180 2002
3.56132e+04 1.44755e-82 4.21069e-128 1.00000e-01 35610.85291 2248 2937
3.50289e+04 7.79188e-66 1.00000e-01 6.31375e-116 35026.63683 3062 2041
2.83053e+04 8.00000e-01 1.23904e-53 7.20324e-49 28305.12194 2194 2055

Table 4.5: First six rows of likelihood evaluation in the extended static model setting establishing Lin-
Ke factorization. Synthetic EHO data representing a frequently traded stock from section
4.2.1 is used for computation.

General Part No-News Good-News Bad-News ll_daily Buys Sells

9.80362e+04 8.00000e-01 1.83275e-152 1.82300e-163 98035.99893 6619 6026
9.73620e+04 8.00000e-01 1.16673e-158 5.38043e-168 97361.75202 6573 5995
9.84504e+04 8.00000e-01 2.59391e-157 3.43195e-151 98450.14447 6583 6110
1.19090e+05 7.74864e-192 0.00000e+00 1.00000e-01 119087.40147 6575 8440
1.19998e+05 5.58503e-175 1.00000e-01 0.00000e+00 119996.02696 9031 6066
9.72588e+04 8.00000e-01 6.57735e-157 1.19568e-171 97258.59688 6586 5970

Table 4.6: First six rows of likelihood evaluation in the extended static model setting establishing Lin-
Ke factorization. Synthetic EHO data represents a heavily traded stock and is simulated
with parameter vector 𝜃ext = (0.2, 0.5, 6600, 6000, 2400).
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Computations do not return any NaN or infinite values, as can be read from table 4.6. The
final result for the likelihood function is given by 6.12494e+06. It is obvious that the Lin-Ke
factorization is feasible even for extremely high trading intensities.

4.3 Initial Values

The previous sections 4.2.1 and 4.2.2 give options to evaluate likelihood functions in the EHO
model in a stable and effective way. However, we did not have to care about initial values for
the evaluations beforehand because we knew the data generating process.

To get the maximum likelihood estimators of the EHO model parameters, the correspond-
ing likelihood function must be maximized. Since the maximum likelihood estimators cannot
be derived analytically, one needs to perform numerical optimization with iterative methods.
There are plenty of different optimizers available in the R language and the vast majority of
them demand a set of initial values from the user. Whether the optimizer converges as well
as the corresponding computing time depend to a high degree on the choice of initial values.
Moreover, if one uses a bad set of starting values, the optimizer may converge and find a max-
imum, but a local one instead of a global.

There is not one rule or algorithm delivering the best starting values which ensure the maxi-
mization to end in the global maximum for every optimization run. One possibility would be
to perform an appropriate number of maximization runs with different sets of random starting
values and then take the run with the highest final function value. This procedure can be cum-
bersome because it is unclear how many runs are really needed to reach the global maximum,
instead of hitting one of possibly several local maxima. Furthermore, running several hundred
or even thousands of optimizations can be very time-consuming.

4.3.1 Grid Search Algorithm

Yan and Zhang (2012) present an approach to generate initial values by grid search technique.
To determine initial values for the non-probability parameters, 𝜖𝑏 , 𝜖𝑠 and 𝜇, Yan and Zhang
(2012) make use of themarginal distributions of buys 𝐵 and sells 𝑆.44 Themarginal distributions
can be written as

44 More details are given in the appendix of Yan and Zhang (2012).
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Pr(𝐵 = 𝑁𝐵) = (1 − 𝛼)(exp(−𝜖𝑏)
𝜖𝑏𝑁𝐵

𝑁𝐵!
)

+ 𝛼(1 − 𝛿)(exp(−(𝜖𝑏 + 𝜇))(𝜖𝑏 + 𝜇)𝑁𝐵

𝑁𝐵!
)

+ 𝛼𝛿(exp(−𝜖𝑏)
𝜖𝑏𝑁𝐵

𝑁𝐵!
) (4.14)

and

Pr(𝑆 = 𝑁𝑆) = (1 − 𝛼)(exp(−𝜖𝑠)
𝜖𝑠𝑁𝑆

𝑁𝑆 !
)

+ 𝛼(1 − 𝛿)(exp(−𝜖𝑠)
𝜖𝑠𝑁𝑆

𝑁𝑆 !
)

+ 𝛼𝛿(exp(−(𝜖𝑠 + 𝜇))(𝜖𝑠 + 𝜇)𝑁𝑆

𝑁𝑆 !
), (4.15)

with𝑁𝐵, 𝑁𝑆 ∈ ℕ0. It is obvious that equations (4.14) and (4.15) are weighted sums of densities of
Poisson distributed random variables. We can utilize the linearity of the expectation operator
and write the expected values for the marginal distributions as

𝔼(𝐵) = 𝛼(1 − 𝛿)𝜇 + 𝜖𝑏 , (4.16)

𝔼(𝑆) = 𝛼𝛿𝜇 + 𝜖𝑠 . (4.17)

These moment conditions for the expected values are then incorporated in the procedure of
determining initial values for all five model parameters.

First step is to get initial values for the probabilities 𝛼 and 𝛿 . To prevent the initial guesses
for these two parameters to lie on the boundaries we go with Yan and Zhang (2012) and take a
sub-interval of [0, 1]. Starting values for 𝛼 and 𝛿 are limited to belong to a series of equidistant
real-valued numbers in the range of 0.1 to 0.9, beginning and ending with the minimum and
maximum, respectively.45 In the next step, the sample averages 𝐵 and 𝑆 of the series of daily
buys and sells replace the expectations 𝔼(𝐵) and 𝔼(𝑆) in equations (4.16) and (4.17). Since the
term 𝛼(1−𝛿)𝜇 in equation (4.16) is always positive, 𝜖𝑏 needs to be smaller than 𝐵. Analogously,
𝜖𝑠 must be smaller than 𝑆 in equation (4.17), since 𝛼𝛿𝜇 is always greater than zero.

The average daily number of buys 𝐵 is then multiplied by the same equally spaced series of
values which are chosen as initial values for 𝛼 and 𝛿 to generate starting values for the intensity
45 These bounds are chosen according to the work by Yan and Zhang (2012). In principle, any value reasonably

bigger than 0 can be chosen as lower bound and any value reasonably smaller than 1 as upper bound.
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4 Maximum-Likelihood Estimation in Static Models

of uninformed buyers 𝜖𝑏 . The last step is to receive initial values for the intensity of sells
initiated by noise traders 𝜖𝑠 and the intensity of transaction fulfilled by informed traders 𝜇.
Therefore, equations (4.16) and (4.17) are simultaneously solved.

A set of initial values for the EHOmodel, 𝜃0 = (𝛼0, 𝛿0, 𝜖𝑏0, 𝜖𝑠0, 𝜇0), can then be calculated as,

𝛼0 = 𝛼 𝑖 ,

𝛿0 = 𝛿 𝑗 ,

𝜖𝑏0 = 𝛾𝑘𝐵,

𝜇0 = 𝐵 − 𝜖𝑏0
𝛼0(1 − 𝛿0) ,

𝜖𝑠0 = 𝑆 − 𝛼0𝛿0𝜇0,

where each of the three parameters 𝛼 𝑖 , 𝛿 𝑗 and 𝛾𝑘 take on equally distanced values between 0.1
and 0.9, one at a time. Yan and Zhang (2012) choose the length of the series of initial values for
𝛼 𝑖 , 𝛿 𝑗 and 𝛾𝑘 to be five. Hence, the starting values for each of the three parameters are 0.1, 0.3,
0.5, 0.7 and 0.9. This results in a total of 53 = 125 potential sets of initial values.

However, not all combinations are feasible due to negative values for the intensity of unin-
formed sells 𝜖𝑠0. In addition, Ersan and Alıcı (2016) recommend to exclude sets of starting
values with irrelevant values for 𝜇0 which is the case if 𝜇0 exceeds the maximum number of
daily buys or sells (𝜇0 > max(𝐵𝑑 , 𝑆𝑑 ), 𝑑 = 1, … , 𝐷). Otherwise, one would pick a bad starting
value for the intensity of information-based transactions which lies above the largest amount
of transactions of one trade direction, either buys or sells, over all trading days under consid-
eration. Assuming that max(𝐵𝑑 , 𝑆𝑑 ) = 1000 and is realized for buys on a good-news day. Even
in the extreme situation that almost all buys are initiated by insiders, a starting value of 1500
for 𝜇 is not reasonable.

For demonstration purposes we generate sets of initial values for the synthetic dataset imitating
a frequently traded stock from section 4.2.1 with the initial_vals function from the pinbasic R
package and show six exemplary sets in table 4.7.46 Detailed explanations of the functions the
pinbasic package is equipped with as well as its source code can be found in chapter 5.

Code Chunk 4.14 (Initial values by grid search):

grid_init_demo <- initial_vals(numbuys = BSfrequent[,”Buys”], numsells = BSfrequent[,”Sells”],
method = ”Grid”)

46In the context of code chunk 5.2 in chapter 5 we give a detailed explanation of the function usage.
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𝛼0 𝛿0 𝜖𝑏0 𝜖𝑠0 𝜇0
0.90 0.10 228.99 1856.83 2544.30
0.70 0.10 686.96 1907.72 2544.30
0.90 0.10 686.96 1907.72 1978.90
0.90 0.30 686.96 1398.86 2544.30
0.50 0.10 1144.93 1958.60 2544.30
0.70 0.10 1144.93 1958.60 1817.35

Table 4.7: Six exemplary sets of initial values for BSfrequent data generated by grid search technique.
Infeasible sets of initial values have been deleted.

A total of 86 sets of initial values are removed due to negative starting values for the intensity
of uninformed sells or an intensity of transactions initiated by insiders which exceeds the max-
imum amount of buys or sells in the data. Hence, a small proportion of 31.20% of the potential
125 sets of starting values are feasible for estimating the probability of informed trading.

We can see a similar picture if we increase the number of possible values for 𝛼 𝑖 , 𝛿 𝑗 and 𝛾𝑘 . We
allow these initial guesses to take on ten different values which yields a maximum of 103 = 1000
sets of starting values. Only 309 sets of initial values are reasonable and could be used for
optimizations.

It seems that the majority of execution time of the grid search technique is dissipated in gen-
erating infeasible sets of initial guesses. We will examine this potential disadvantage of the
technique in section 4.3.4.

4.3.2 Hierarchical Agglomerative Clustering

A method which utilizes hierarchical agglomerative clustering (HAC) to generate starting val-
ues is proposed by Gan, Chun, and Johnstone (2015). Daily order imbalance OI𝑑 ∶= 𝐵𝑑 −𝑆𝑑 , 𝑑 =
1, … , 𝐷, serves as a criterion to assign trading days to three clusters representing no-news,
good-news and bad-news condition. HAC is a bottom-up clustering technique in which at the
beginning of the algorithm all order imbalances OI𝑑 illustrate a cluster of their own. For in-
stance, if trading data for a quarter of a year is used to estimate the probability of informed
trading, roughly 60 clusters exist when the algorithm is initialized.

Gan, Chun, and Johnstone (2015) use the complete-linkage clustering, which is one of several
methods ofHAC, to sequentiallymerge small clusters to bigger ones. In general, HAC combines
two clusters with the shortest distance, with the definition of shortest distance varying with the
chosen method.47

47Gan, Chun, and Johnstone (2015) mention that they tested different agglomerative clusteringmethods but that the
complete-linkage method performed marginally better than the others. For a description of the other available
methods, for example, single-linkage or centroid-linkage, see Everitt, Landau, Leese, and Stahl (2011).
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For complete-linkage clustering, the distance D(𝑋 , 𝑌 ) between two clusters 𝑋 and 𝑌 can be
written as

D(𝑋 , 𝑌 ) = max𝑥∈𝑋 ,𝑦∈𝑌𝑑(𝑥, 𝑦), (4.18)

where 𝑑(𝑥, 𝑦) is the distance between the cluster elements 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 . Gan, Chun, and
Johnstone (2015) use the euclidean norm as measure for 𝑑(𝑥, 𝑦).
The following is a step-by-step instruction how to use the clustering algorithm to generate ini-
tial values for the parameters in the EHOmodel (see Gan, Chun, and Johnstone 2015, p. 1809).

I. Calculate a series of daily order imbalances, OI𝑑 with 𝑑 = 1, …𝐷, and use the daily order
imbalances, buys and sells as inputs for the following steps.

II. Perform HAC on the daily order imbalances using the complete-linkage clustering.48
Stop the algorithm when there are three clusters left.

III. The mean of daily order imbalances of the clusters serve as a criterion to assign them to
no-news, good-news and bad-news. The cluster with the highest mean, 𝐶𝒢 , is assumed
to consist of good-news trading days. Likewise the cluster with the lowest mean, 𝐶ℬ ,
adheres bad-news trading days. The remaining cluster, 𝐶𝒩 , is then defined as the no-
news cluster.

IV. Compute the average daily buys 𝐵𝑐 and sells 𝑆𝑐 for 𝑐 ∈ {𝐶𝒩 , 𝐶𝒢 , 𝐶ℬ} as

𝐵𝑐 =
∑
𝑑∈𝑐

𝐵𝑑
card({𝑑 ∈ 𝑐}) and

𝑆𝑐 =
∑
𝑑∈𝑐

𝑆𝑑
card({𝑑 ∈ 𝑐}) ,

with 𝑑 = 1, 2, … , 𝐷 and the card function represents the cardinality of a set. Then, assign
each cluster a weight 𝑤𝑐 which is calculated as the proportion this cluster occupies of
the total number of trading days 𝐷. Hence, the cluster weights sum up to 1.

V. With the help of the classification of trading days and the cluster weights from the third
and fourth step, we are able to compute initial values for the intensities of uninformed
buys and sells as weighted sums of average buys 𝐵𝑐 and sells 𝑆𝑐 , respectively,

𝜖𝑏0 =
𝑤𝐶ℬ

𝑤𝐶ℬ + 𝑤𝐶𝒩
𝐵𝐶ℬ + 𝑤𝐶𝒩

𝑤𝐶ℬ + 𝑤𝐶𝒩
𝐵𝐶𝒩

𝜖𝑠0 =
𝑤𝐶𝒢

𝑤𝐶𝒢 + 𝑤𝐶𝒩
𝑆𝐶𝒢 + 𝑤𝐶𝒩

𝑤𝐶𝒢 + 𝑤𝐶𝒩
𝑆𝐶𝒩 .

48According to Gan, Chun, and Johnstone (2015), we use the hclust function to perform this task (see Müllner 2013).
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For 𝜖𝑏0 we only consider average buys of the no-news and bad-news cluster. On trad-
ing days which belong to one of both clusters, buys are solely initiated by uninformed
traders. The corresponding weights represent the proportion each cluster occupies of
the sum of no-news and bad-news trading days. Analogously, we calculate the initial
value 𝜖𝑠0 for the intensity of uninformed sells.

VI. The intensity of informed trading is then calculated as theweighted sum of the intensities
of informed buys 𝜇0𝑏 and sells 𝜇0𝑠 49 50

𝜇0𝑏 = 𝐵𝐶𝒢 − 𝜖𝑏0

𝜇0𝑠 = 𝑆𝐶ℬ − 𝜖𝑠0

𝜇0 = 𝑤𝐶𝒢
𝑤𝐶𝒢 + 𝑤𝐶ℬ

𝜇0𝑏 +
𝑤𝐶ℬ

𝑤𝐶𝒢 + 𝑤𝐶ℬ
𝜇0𝑠 ,

where 𝜇0𝑏 and 𝜇0𝑠 represent the buys and sells initiated by informed traders on good-news
and bad-news trading days, respectively. The weights in 𝜇0 are then set according to the
occurrence of these two trading states if concentrating on trading days on which private
information enters the market.

VII. Cluster sizes are utilized to compute starting values for the probability of an information
event 𝛼 and the probability of bad news given that private information enter the market
𝛿 ,

𝛼0 = 𝑤𝐶𝒢 + 𝑤𝐶ℬ

𝛿0 = 𝑤𝐶ℬ
𝛼0 .

VIII. An initial estimate of the probability of informed trading is given by

PIN = 𝛼0𝜇0
𝜖𝑏0 + 𝜖𝑠0 + 𝛼0𝜇0 .

In contrast to the brute force grid search method discussed in the previous section, the HAC
algorithm returns only a single vector of initial values. Furthermore, no computation time is
spent in generating infeasible sets of values which are then immediately discarded.

Likewise to the previous section, we generate the set of starting values with the help of our
initial_vals function using the identical dataset as we did for the grid search. The results are
show in table 4.8.
49A splitting of the intensity of informed trading is not present in the EHO model. However, one could extend the

existing model with this feature and already had a suitable technique for generating initial values.
50It is not ensured that 𝜇0𝑏 and 𝜇0𝑠 are positive. Hence, if 𝜇0𝑏 or 𝜇0𝑠 are negative we set them to 0.
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Code Chunk 4.15 (Initial values by HAC algorithm):

cluster_init_demo <- initial_vals(numbuys = BSfrequent[,”Buys”],
numsells = BSfrequent[,”Sells”],
method = ”HAC”)

The results of the complete-linkage clustering (Step II ) are visualized with a dendogram in
figure 4.3.51 Thegood-news and bad-news cluster each consist of 6 trading days. The remaining
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Figure 4.3: Dendogram of HAC complete-linkage clustering for BSfrequent data.

51To generate the dendogram plot, we utilize the object returned by the hclust function. The function stops if all
observations are merged into one big cluster. We then utilize the cutree function from the stats package to cut
the returned object from hclust into three groups representing no-news, good-news and bad-news clusters.
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48 trading days are marked as no-news days by the algorithm. Hence, the weights for the
no-news, good-news and bad-news cluster are given by 𝑤𝐶𝒩 = 0.80, 𝑤𝐶𝒢 = 𝑤𝐶ℬ = 0.10,
respectively.

𝛼0 𝛿0 𝜖𝑏0 𝜖𝑠0 𝜇0
0.20 0.50 2210.44 2001.96 816.38

Table 4.8: Set of initial values for BSfrequent data generated by HAC algorithm.

The results of the algorithm proposed by Gan, Chun, and Johnstone (2015) are pretty close to
the true parameters for every entry. The initial estimate of the probability of informed trading
equals 0.04 and the true probability of informed trading is given by 0.04. Hence, the starting
values generated by HAC algorithm seem to be a good choice for optimization. We will further
investigate the performance of the technique in section 4.3.4.

4.3.3 Refined HAC Algorithm

A third option for generating initial values for maximization of the likelihood function in the
EHO model was presented by Ersan and Alıcı (2016). Similar to the algorithm discussed in
section 4.3.2, hierarchical agglomerative clustering is utilized for generating starting values.
However, instead of stopping the HAC algorithm once three clusters are left, the number of
groups is not fixed. The refined HAC algorithm is stopped when 𝑗 + 1 clusters are left, whereat
𝑗 is a positive integer with 𝑗 ≤ 𝐷 − 152 and 𝐷 denotes the number of total trading days.

In contrast to the HAC algorithm by Gan, Chun, and Johnstone (2015), daily absolute order
imbalance is used to assign trading days to one of the 𝑗+1 groups. The clusters are then ordered
by their average absolute order imbalance and distributed to a no-event and event cluster. To
achieve multiple vectors of starting values instead of a single one, the two types of groups are
build as

𝐶𝐿𝒩𝑖 =
𝑖
⋃
𝑘=1

𝐶𝐿𝑘 ,

𝐶𝐿ℰ𝑖 =
𝑗+1
⋃
𝑘=𝑖+1

𝐶𝐿𝑘 ,

where 𝑖 = 1, … , 𝑗 and 𝐶𝐿𝒩𝑖 and 𝐶𝐿ℰ𝑖 represent the no-event cluster and event cluster. At this
point, we are able to obtain initial values 𝛼0 and 𝜇0. The initial guess for the probability of
an information event is calculated, in a very similar way to the HAC algorithm by Gan, Chun,
and Johnstone (2015), as the proportion the event cluster 𝐶𝐿ℰ𝑖 occupies of the total number of

52In the work by Ersan and Alıcı (2016) 𝑗 was chosen to be an integer in the range from 1 to 10.
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trading days 𝐷. The initial intensity of informed trading equals the difference in averages of
the absolute order imbalances of no-event and event group.53

In the next step, 𝐶𝐿ℰ𝑖 is split according to the signs of the average order imbalances of its
members in a good-news and bad-news group. The remaining starting values for the two
intensities 𝜖𝑏 and 𝜖𝑠 and the probability 𝛿 are calculated according to section 4.3.2.

Hence, we get a total of 𝑗 vectors of initial values. MLE is performed for each of the 𝑗 vectors
and the best result among all maximization runs is kept while discarding the remaining. Again,
we use the simulated dataset from section 4.2.1 for demonstration. According to the results in
the work by Ersan and Alıcı (2016) a value of 𝑗 = 5 is a good compromise between accuracy
and speed.

Again, we use the BSfrequent dataset and compute initial values by calling the initial_vals func-
tions from our pinbasic package. The results are shown in table 4.9.

Code Chunk 4.16 (Initial values by refined HAC algorithm):

# 'num_clust' arguments takes the number 'j' of clusters
hac_ref_demo <- initial_vals(numbuys = BSfrequent[,”Buys”],

numsells = BSfrequent[,”Sells”],
method = ”HAC_Ref”,
num_clust = 5)

𝛼0 𝛿0 𝜖𝑏0 𝜖𝑠0 𝜇0
0.83333 0.12000 2192.06250 2001.96296 237.66000
0.26667 0.37500 2204.94000 2001.96296 485.36932
0.20000 0.50000 2210.44444 2001.96296 594.06250
0.13333 0.25000 2210.44444 2056.03448 694.75962
0.10000 0.00000 2210.44444 2085.81667 741.94444

Table 4.9: Sets of initial values for BSfrequent data generated by refined HAC algorithm. MLE is
performed for each of the sets and best result is kept.

At the end of this section we want to mention a critical aspect in the design of this method.
Dividing trading periods in a no-event and an event cluster according to their absolute order
imbalance is a potential pitfall. Assuming a parameter constellation such that the intensity of
uninformed sellers is approximately equal to the sum of the intensity of uninformed buyers
and the intensity of informed traders, more precisely: 𝜖𝑠 ≈ 𝜖𝑏 + 𝜇. Trading days on which
53In the work by Ersan and Alıcı (2016) this relation is not directly mentioned. However, at this point in the

algorithm , we solely have information about the two groups of trading days and the absolute order imbalance
at hand. Since the EHO model does not separate informed buy rate from informed sell rate, the difference in
averages of the absolute order imbalances of no-event and event group is appropriate to capture the intensity
of trading due to private information.
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informed traders buy equities then show an absolute order imbalance, |𝐵 − 𝑆|, close to 0 and
will be erroneously assigned to the no-event cluster. Bad-news and no-news trading periods
exhibit absolute order imbalances of approximately 2𝜇 and 𝜇, respectively, and will belong to
the event cluster. Therefore we will get the boundary solution 𝛿 = 1 for the initial value of
the probability of bad-news days. The same problematic arises if the intensity of uninformed
buyers is very close to the sum of the intensity of uninformed sellers and the intensity of
transactions initiated by insiders. Following the argumentation just described, the algorithm
by Ersan and Alıcı (2016) will return the boundary solution of 0 as initial guess for 𝛿 .

4.3.4 Simulation Study

With our simulation study in this section we investigate the quality of the results of the algo-
rithms for generating initial values presented in the previous sections 4.3.1 – 4.3.3. This section
must not be misinterpreted that the grid search and HAC method are two different estimators
for the PIN variable. They are two methods to generate initial values for the optimization of
the same likelihood function.

The main question we want to answer with our simulation study is if it is necessary to conduct
several optimizations of the likelihood function with different sets of starting values as it is
done by the grid search and refined HAC methods, or if it sufficient to even use only one
set of starting values as proposed by the HAC approach. A possible decrease in the number
of optimization runs will reduce the execution time to estimate the probability of informed
trading.

At first, we explain the two simulation studies in the papers by Gan, Chun, and Johnstone (2015)
and Ersan and Alıcı (2016), which differ in several aspects from our simulation procedure. In
the former the five parameters of the EHOmodel are determined by four parameters 𝑎, 𝑏, 𝑐, 𝑑 ∈
(0, 1) according to:

𝛼 = 𝑎, 𝛿 = 𝑏,
𝜖𝑏 = (1 − 𝑐)𝑑𝑘, 𝜖𝑠 = (1 − 𝑐)(1 − 𝑑)𝑘, 𝜇 = 𝑐𝑘,

where 𝑘 represents the total trading activity, which is fixed at 2500 for each simulated dataset.
Overall, Gan, Chun, and Johnstone (2015) simulate 1000 datasets of daily buys and sells, whereas
each has a length of 60 trading days. The probability 𝑎 of an information event and the condi-
tional probability of bad-news 𝑏 are independent random variables following a standard uni-
form distribution. The remaining simulation parameters 𝑐 and 𝑑 are the percentage of informed
market participants and the percentage of buyer-initiated transactions among the trades initi-
ated by uninformed market attendees, respectively. Both parameters, 𝑐 and 𝑑 , are also drawn
independently from a standard uniform distribution. The results show that maximum likeli-
hood estimation utilizing the HAC algorithm offers the same accuracy as the brute force grid
search algorithm in terms of the mean absolute error. However, the HAC method is much
faster. This simulation incorporates different intensities for noise trading but allows for a very
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large difference in the trading rates. For real data, it is a reliable assumption that the frequen-
cies of buys and sells are relatively close to each other for the majority of trading days.

In the simulation study by Ersan and Alıcı (2016) the total trading intensity 𝑘 is also set to
2500 for all trading days. The number of total transactions is distributed to noise trading and
informed trading with the help of one parameter, 𝑝1, which again follows a standard uniform
distribution. The noise trading intensities, 𝜖𝑏 and 𝜖𝑠 , are assumed to be identical,

𝜇 = 𝑝1𝑘, 𝜖𝑏 = 𝜖𝑠 = (1 − 𝑝1)
𝑘
2 .

Ersan and Alıcı (2016) increase the number of simulation runs to 5000, whereas the amount
of trading days for each dataset is not changed in comparison to the simulation study by Gan,
Chun, and Johnstone (2015). According to Ersan and Alıcı (2016), conditions of trading days
are determined by using two sequences of binomial values, each with a length of 60. One de-
cides about the occurrence of an information event, the other about its direction. The actual
condition of a trading day is then given as the product of the corresponding values in both
series. There are no-news days with probability 𝑝2 and information events with probability
(1 − 𝑝2). Likewise, on information events, the direction of private news is negative with prob-
ability 𝑝3 and positive with probability (1 − 𝑝3). Similar to 𝑝1, the probabilities 𝑝2 and 𝑝3 are
independently drawn from a standard uniform distribution.

Due to the restrictive assumption for the intensity parameters of noise trading, the simulation
design by Ersan and Alıcı (2016) does reflect the setting in the simple EKOP model. However,
the restriction is not mentioned in the presentation of the concept, as can be seen in Ersan and
Alıcı (2016).

Our simulation study increases the total number of simulation runs dramatically. We simulate
100,000 datasets of daily buys and sells and stick to the common length of 60 trading days per
dataset. In contrast to the previous mentioned simulation procedures, we do not fix the total
trading intensity to a certain level over all datasets. We assume that it is uniformly distributed
in the range from 100 to 10,000. With this less restrictive assumption, we intend to capture the
performance and quality of the different algorithms for infrequently traded as well as for really
heavily traded stocks.

The determination of the intensity parameters is done in two steps. Firstly, we split the amount
of total transactions in a noise trading and an information-based part. Therefore, for simulation
run 𝑖, we uniformly draw a value which lies in the range from 10% to 90% of the total trading
intensity assigned to the 𝑖-th dataset (TT𝑖). This value is classified as the noise trading intensity
for the 𝑖-th run (NT𝑖). The intensity of the informed market participants is then given as the
difference between TT𝑖 and NT𝑖 . In the second step, we distribute the noise trading intensity
to uninformed buyers and uninformed sellers. We agree with Ersan and Alıcı (2016) that the
disparity between uninformed buys and sells should be limited and relatively small. To incor-
porate this into our simulation procedure we make use of a jitter parameter 𝛾 which is drawn
from a uniform distribution in the interval [−0.1, 0.1] in each simulation run. The 𝑖-th intensity
of uninformed buys 𝜖𝑏,𝑖 is set to NT𝑖 ⋅(0.5 + 𝛾) and accordingly the 𝑖-th intensity of uninformed
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sells 𝜖𝑠,𝑖 is computed as NT𝑖 −𝜖𝑏,𝑖 . This ensures that the proportion of noise trading each of
the intensities of uninformed traders occupies lies between 40% and 60%. The probability pa-
rameters 𝛼 and 𝛿 are determined the same way as in Gan, Chun, and Johnstone (2015) and are
drawn from a standard uniform distribution.

For certain constellations of the model parameters exists an identification problem. This is the
case if only one unique condition for all trading days in the run is drawn or if there are no
insiders in the market (𝜇 = 0). Assuming we have solely one trading state in simulation run 𝑖,
then the buys 𝐵𝑑 and sells 𝑆𝑑 are iid Poisson distributed with parameters 𝜖𝑏,𝑖 and 𝜖𝑠 ,𝑖 and only
these two distribution parameter are identifiable and not the set of model parameters and the
probability of informed trading.

As one can see, the following parameter sets could all generate identical distributions of daily
buys and sells:

Only no-news: {(𝛼 = 0, 𝛿, 𝜖𝑏 = 𝜖𝑏,𝑖 , 𝜖𝑠 = 𝜖𝑠 ,𝑖 , 𝜇 | 𝛿 ∈ [0, 1], 𝜇 > 0)} (4.19)

Only good-news: {(𝛼 = 1, 𝛿 = 0, 𝜖𝑏 = 𝜖𝑏,𝑖 − 𝜇, 𝜖𝑠 = 𝜖𝑠 ,𝑖 , 𝜇 | 𝜇 ∈ [0, 𝜖𝑏,𝑖])} (4.20)

Only bad-news: {(𝛼 = 1, 𝛿 = 1, 𝜖𝑏 = 𝜖𝑏,𝑖 , 𝜖𝑠 = 𝜖𝑠 ,𝑖 − 𝜇, 𝜇 | 𝜇 ∈ [0, 𝜖𝑠 ,𝑖])} (4.21)

No informed activity: {(𝛼, 𝛿, 𝜖𝑏 = 𝜖𝑏,𝑖 , 𝜖𝑠 = 𝜖𝑠 ,𝑖 , 𝜇 = 0 | 𝛼, 𝛿 ∈ [0, 1])} (4.22)

Due to the explanations above and the expressions in equations (4.19) – (4.22), we restrict the
range of true values of 𝛼 , 𝛿 and 𝜇 to prevent our simulation from identification problems.54
The two probability parameters are uniformly drawn from the interval [0.1, 0.9]. According to
the restricted range of noise trading in each simulation run mentioned above, the minimum
possible value for the intensity of informed trading equals 10% of the total trading intensity
and the maximum value cannot exceed 90% of the total trading intensity. If there is still only
one type of trading days in a simulation run, we discard this sequence of conditions. The states
of trading days are then simulated again until there are at least two different types of trading
days.

For each simulated dataset we run MLE with Lin-Ke factorization and initial values generated
by the different algorithms discussed in this work. We utilize the nlminb function from the stats
package for all likelihoodmaximizations in our simulation study which is a bounds constrained
quasi-Newton method, as Nash (2014) states. The optimizer is part of the PORT library by
Bell Laboratories (see Gay 1990). We implemented the pin_est_core function in the pinbasic
package which can be harnessed, in combination with the initial_vals function mentioned in
the previous sections, to perform the optimizations for the three methods for generating initial
values.55

54With the restricted range for the parameters 𝛼 , 𝛿 and 𝜇 there are no sets of parameter estimates which fit any of
the expressions in (4.19) – (4.22) for all approaches.

55A detailed description of the usage of the pin_est_core function is given in chapter 5. Its source code can be found
in code chunk 5.6.
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4 Maximum-Likelihood Estimation in Static Models

The refined HAC algorithm delivers 2395 sets of initial values for which an optimization is not
possible due to infinite likelihood function values. In such cases a warning is printed to the
console and nlminb returns the starting values as best set of parameters.

Exemplary, consider one simulated dataset with summary statistics given in table 4.10. Corre-
sponding sets of starting values which are returned by the refined HAC algorithm can be found
in table 4.11. The data for this simulation run is generated according to the parameter set given
in table 4.12.

Buys Sells

Min. 496 568
1st Qu. 515 628
Median 533 5320
Mean 937 3333
3rd Qu. 553 5427
Max. 5477 5576

Table 4.10: Summary statistics of a simulated dataset of daily buys and sells for which the refined
HAC algorithm returns only infeasible vectors of initial values. Evaluations of the likeli-
hood at those sets yield infinite function values.

𝛼 𝛿 𝜖𝑏 𝜖𝑠 𝜇
0.85000 1.00000 937.46667 598.77778 3679.99346
0.65000 1.00000 937.46667 622.90476 4762.16484
0.60000 1.00000 937.46667 1004.45833 4206.19444
0.41667 1.00000 937.46667 1961.25714 2942.00571
0.10000 1.00000 937.46667 3091.37037 1993.27778

Table 4.11: Sets of initial values achieved with refined HAC method for simulated dataset presented
in table 4.10.

𝛼 𝛿 𝜖𝑏 𝜖𝑠 𝜇
0.5937 0.8362 531 623 4813

Table 4.12: Parameter set which is used to simulate daily buys and sells data for which optimization
is not possible if initial values generated by the refined HAC algorithm are incorporated.

We will pick one trading day of the simulated dataset and demonstrate why starting values
displayed in table 4.11 yield infinite likelihood function values. On the sixth trading day buyer-
initiated transactions dominate the market with a total number of 5413 compared to a very
small amount of sells which equals 630. Values of 𝑒1, 𝑒2 and 𝑒3 in the Lin-Ke factorization are
shown in table 4.13.

Due to the initial guesses for 𝛿 equaling 1 in every vector of starting values the (numerical)
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4.3 Initial Values

e1 e2 e3

-7391.67509 -4918.90775 -12310.58284
-8411.42805 -6121.06972 -14532.49776
-8177.62026 -5243.33618 -13420.95643
-7110.66045 -3519.28429 -10629.94475
-5856.40758 -2306.77293 -8163.18052

Table 4.13: Values of 𝑒1, 𝑒2 and 𝑒3 in Lin-Ke likelihood factorization evaluated at initial values dis-
played in table 4.11. Data for buys and sells of the eighth trading day of the simulated
data is used. Maximum values are highlighted in red.

result of the expression

(1 − 𝛼) exp(𝑒1 − 𝑒max) + 𝛼(1 − 𝛿) exp(𝑒2 − 𝑒max) + 𝛼𝛿 exp(𝑒3 − 𝑒max)

is 0 for each row in table 4.11. Since 1 − 𝛿 is identical to 0, the term 𝛼(1 − 𝛿) exp(𝑒2 − 𝑒max) is
also 0 irrespective of 𝑒2 and 𝑒max. The two remaining expressions, (1 − 𝛼) exp(𝑒1 − 𝑒max) and
𝛼𝛿 exp(𝑒3 − 𝑒max) are 0 due to underflows of the exponential function. From table 4.13 we see
that values in the 𝑒2-column are the maximum in each row. Hence, to evaluate the likelihood,
we need to compute 𝑒1 − 𝑒max = 𝑒1 − 𝑒2 and 𝑒3 − 𝑒max = 𝑒3 − 𝑒2 with maximum values of
-2290.35833 and -5856.40758, respectively. Using this large negative values as arguments for
the exponential function lead to underflows. Therefore, computations of the term log(0) are
involved in likelihood function evaluations and induce infinite function values. The remaining
algorithms for generation of initial values do not suffer from infinite likelihood function values
and the amount of simulated datasets for which the refined HAC algorithm returns infeasible
starting values is not negligible. Additionally, there is the potential pitfall of this algorithm due
to dividing the trading days in no-event and event clusters according to their absolute order
imbalance as described in section 4.3.3. Therefore we decided to exclude this approach from
further analyses.

For two synthetic datasets the grid search technique generates 107 infeasible sets of starting
values so that only 18 out of 125 possible sets can be used for optimizations. In the remaining
simulation runs less sets must be deleted. The clustering method by Gan, Chun, and Johnstone
(2015) also produces feasible initial values for all simulated datasets of daily buys and sells
incorporated in our simulation study.

For the vast majority of optimizations, initial values delivered by grid search and HAC method
achieve very similar final likelihood function values and model parameter estimates. The for-
mer yields (slightly) higher likelihood values in 99596 simulation runs, the latter in 369, for 35
runs results are identical. However, by taking the maximum final likelihood function value in
each run and computing the mean difference for both algorithms, it is obvious that the overall
performance is very similar. Grid search and HAC algorithm gain values of 1.8372e-10 and
2.6874e-01, respectively.
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4 Maximum-Likelihood Estimation in Static Models

Furthermore, we calculate mean errors as well as mean absolute errors for the probability of
informed trading and the five model parameters. The results are shown in tables 4.14 and 4.15,
respectively. We use two-sided Student’s t-tests to check for the significance of (absolute) mean
errors.56

Grid Search HAC

𝛼 -0.00028 -0.00026
𝛿 0.00013 0.00013
𝜖𝑏 -0.02386 -0.01141
𝜖𝑠 -0.00837 -0.00543
𝜇 -0.01442 -0.29729⋆
PIN -0.00155⋆ -0.00156⋆

Table 4.14: Mean errors of algorithms for generating initial values in the EHO setup. Errors are
computed as the difference between parameter estimates, which are returned by MLE
incorporating Lin-Ke factorization and either grid search or HAC method, and actual
values. Significance is checked with two-sided t-tests, whereat ⋆ signals significance at
the 5% level.

The mean errors of 𝛼 and 𝛿 as well as those of the intensity of noise trading, 𝜖𝑏 and 𝜖𝑠 , do not
significantly differ from 0 for initial values by the grid search and HAC method. Additionally,
we see that all trading intensities are on average underestimated, with the mean error for the
intensity of informed trading being significant if initial guesses by HAC are utilized.

However, the focus lies on the quality of estimates of the probability of informed trading. Com-
paring the entries for the bias of the estimates of PIN shows that the mean error is significant
for all methods. Values are very small and nearly identical but the method by Yan and Zhang
(2012) performs little better. Further information we can extract from table 4.14 is that PIN
estimates are significantly lower than actual values for both approaches for generating sets of
initial values.

Mean absolute errors for all model parameters and the probability of informed trading display
significance, as can be seen from table 4.15. In addition, it is obvious that the values for the
mean absolute errors for both methods are on a very similar level. The comparison of HAC and
grid search in terms of mean absolute errors confirms the good performance of the clustering
algorithm.

Similar to the simulation study by Ersan andAlıcı (2016) we analyze the occurrence of estimates
with a large bias (see table 4.16). We assign a large bias to the estimates of the probability pa-
rameters 𝛼 and 𝛿 in the 𝑖-th simulation run if the magnitude of the difference between estimate
and true value exceeds 0.25.

|𝛼 𝑖 − 𝛼 𝑖 | > 0.25 and |𝛿 𝑖 − 𝛿 𝑖 | > 0.25
56For the various significance tests we use the built-in function t.test.
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Grid Search HAC

𝛼 0.04537⋆ 0.04539⋆
𝛿 0.07319⋆ 0.07319⋆
𝜖𝑏 3.88221⋆ 3.89756⋆
𝜖𝑠 3.87681⋆ 3.88366⋆
𝜇 10.31550⋆ 10.60065⋆
PIN 0.01956⋆ 0.01957⋆

Table 4.15: Mean absolute errors of algorithms for generating initial values in the EHO setup. Ab-
solute errors are computed as the magnitude of the difference between the parameter
estimates, which are returned by MLE incorporating Lin-Ke factorization and either grid
search or HACmethod, and actual values. Significance is checked with two-sided t-tests.
Likewise to table 4.14, ⋆ signals significance at the 5% level.

The noise trader intensity estimates have a large bias if the absolute difference is larger than
1% of the total trading intensity in the 𝑖-th run.

|𝜖𝑏,𝑖 − 𝜖𝑏,𝑖 | > 0.01 ⋅ TT𝑖 and |𝜖𝑠,𝑖 − 𝜖𝑠,𝑖 | > 0.01 ⋅ TT𝑖
Likewise, the intensity of informed trading has a large bias if the absolute difference is larger
than 2% of the total trading intensity in the 𝑖-th run.

|𝜇𝑖 − 𝜇𝑖 | > 0.02 ⋅ TT𝑖
Since PIN is a probability parameter like 𝛼 and 𝛿 , we apply the same rule for indicating esti-
mates with a large bias.

|P̂IN 𝑖 − PIN 𝑖 | > 0.25
By analyzing the results for large biases in table 4.16 we see again the similarity of the grid
search and HAC approach. The parameter for the probability of bad news exhibit the highest
rate of large bias for both approaches with littlemore than 2%. About 0.01% of the PIN estimates
deviatemore than 0.25 inmagnitude from the true values if initial values are generated by either
grid search or HAC.

Figures 4.4 and 4.5 display heatmap-like plots in which model parameter estimates as well as
the probability of informed trading, resulting fromMLEwith either initial values by grid search
or HAC, are plotted against their corresponding actual values. Darker areas represent higher
concentration of points. For the probability parameters 𝛼 and 𝛿 plots look very similar for grid
search and HAC method. We see higher concentration of estimates in a more or less thin band
around the hypothetical red line which represents points for which estimates are identical to
actual values. Furthermore, the graphs exhibit no systematic variation.

Estimates of the noise trading intensities exhibit high concentration around red lines for both
algorithms. We also see a high concentration of estimates around the red line in the plots
which belong to the intensity of informed trading. However, initial values by HAC yield in
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4 Maximum-Likelihood Estimation in Static Models

Grid Search HAC

𝛼 0.006 0.008
𝛿 2.197 2.197
𝜖𝑏 0.231 0.233
𝜖𝑠 0.242 0.242
𝜇 0.544 0.559
PIN 0.009 0.011

Table 4.16: Summary of frequencies (in %) of parameter estimates marked with large bias. The rules
for assigning a large bias to an estimate are: |𝛼 − 𝛼| > 0.25, |�̂� − 𝛿| > 0.25, |𝜖𝑏 − 𝜖𝑏 | >
0.01 ⋅ Total Trading Intensity,
|𝜖𝑠 − 𝜖𝑠 | > 0.01 ⋅ Total Trading Intensity, |�̂� − 𝜇| > 0.02 ⋅ Total Trading Intensity,
|P̂IN − PIN | > 0.25.

some simulation runs estimates of the intensity of informed trading which are far too low. The
estimates resulting from initial values by the grid search do not exhibit such behavior.

Trading days are always clustered in three groups representing the possible conditions, 𝒩 ,𝒢
and ℬ, by HAC. However, there are 2252 simulation runs in which only two types of trading
days are realized and therefore there are actually only two clusters. The HACmethod will then
randomly split one into two sub-clusters. Hence, the initial value for the intensity of informed
trading, which is calculated as the weighted sum of the intensity of informed buys on days in
the good-news cluster and informed sells in the bad-news cluster57, is (far) too low. However,
the optimizer used in this work, nlminb, seems to be able to handle such starting values for 𝜇
in most situations.

To give an example, in one simulation run the true values for 𝛼 and 𝛿 are about 0.17 and 0.16,
respectively. The sequence of states in the corresponding simulation run solely consists of 50
no-news and 10 good-news trading days. The actual value for the intensity of informed trading
equals 456. The approach by Gan, Chun, and Johnstone (2015) returns initial values for the two
probability parameters 𝛼 and 𝛿 of about 0.95 and 0.87, respectively. The two initial values
represent a high occurrence of bad-news trading days. Hence, good-news days are split in a
good-news and no-news cluster and the actual no-news days are labelled as bad-news. This
results in a starting value for 𝜇 which equals 60. The estimates returned by the nlminb function
for 𝛼 , 𝛿 and 𝜇 are 0.16, 0 and 437, respectively.
The plots for the probability of informed trading look very similar again. One can think of
a funnel which is wider for mid-ranged actual values of PIN and gets thinner in the corners.
Optimizations with initial values by HAC yield some more estimates of PIN which are far too
low (e.g., we can see estimates around 0 when the true value lies around 0.25). As described
above the method by Gan, Chun, and Johnstone (2015) struggles to generate good initial values
for 𝜇 if there are only two different labels in the sequence of trading days’ conditions in a

57See section 4.3.2 for the corresponding expressions.
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Figure 4.4: Estimates of all model parameters and the probability of informed trading, received by
MLE + brute force grid search, plotted against actual values. Red lines represent hypo-
thetical points for which estimates are identical to actual values. Darker areas display
higher concentration of points. Binwidths are 0.025 in vertical and horizontal direction
for parameters 𝛼 , 𝛿 and PIN and 250 for the remaining intensity parameters.

simulation run. If the optimizer is not able to find solution with a substantially increased value
for �̂�, estimates of the probability of informed trading are in consequence also too low.

In summary, the various results in our simulation study show that the performance of both
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Figure 4.5: Estimates of all model parameters and the probability of informed trading, received by
MLE + HAC algorithm, plotted against actual values. Red lines represent hypothetical
points for which estimates are identical to actual values. Darker areas display higher
concentration of points. Binwidths are 0.025 in vertical and horizontal direction for pa-
rameters 𝛼 , 𝛿 and PIN and 250 for the remaining intensity parameters.

algorithms for the generation of starting values is very similar. Due to the nearly identical
values of the (absolute) mean error for the probability of informed trading and the tremendous
reduction in computing time (one set of initial values and one optimization run vs at most 125
sets of initial values and optimizations), we suggest the clustering algorithm by Gan, Chun,
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and Johnstone (2015) as reference. The results in this section show that it is sufficient to use
only one set of initial values.

Hence, themost stable and efficientmethod for estimating PIN in static models is a combination
of the likelihood factorization by Lin and Ke (2011) and the HAC algorithm to generate sets of
starting values by Gan, Chun, and Johnstone (2015).

Furthermore, as mentioned earlier in section 4.3.1, we investigate the frequency of non-feasible
combinations of initial values generated by brute force grid search algorithm by calculating
sets of initial values for 100,000 simulated datasets. We assume that the parameters 𝛼 𝑖 , 𝛿 𝑗
and 𝛾𝑘 can each take on five different values, 0.1, 0.3, 0.5, 0.7, 0.9, which is common practice
in the literature. The results of the simulation fortify our previous suggestion. On average,
68.22 combinations of starting values exhibit a negative value for 𝜖𝑠 or possess an intensity of
informed trading which is too large to be reasonable for the underlying data. Only 45.42% of
calculated sets are feasible for optimization purposes.

4.4 Confidence Intervals
To the best of our knowledge, we are the first to present confidence intervals for the probabil-
ity of informed trading. We conduct calculations of those confidence intervals with the help
of Monte-Carlo simulation techniques by utilizing model parameter estimates to simulate 𝑛
datasets of daily buys and sells according to the procedure presented in code chunks 4.6 and
4.7 in section 4.1.2.

We then perform optimizations for every simulated dataset to receive parameter estimates and
use the results to compute P̂IN. Hence, finally we receive a sequence of 𝑛 PIN estimates for
whose empirical distribution we can calculate any quantile and therefore are in the position
to return confidence intervals with any desired level. This procedure is similar to the type 2
Monte Carlo intervals as described in the work by Buckland (1983).

The computation of confidence intervals benefits to a huge degree from the computing effi-
ciency in estimations of the probability of informed trading. On the hand, there is a very stable
factorization of the likelihood function by Lin and Ke (2011) which we described in section
4.2.2, on the other hand computation times can be considerably reduced by incorporation the
initial value algorithm by Gan, Chun, and Johnstone (2015).
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5 R Package: pinbasic
In the pinbasic packagewe have implemented utilities for fast and stable estimation of the prob-
ability of informed trading. Since the EKOP model is nested in the EHO model, functionalities
can also be be applied to this simpler model structure, if needed. State-of-the-art factorization
of the model likelihood function as well as hierarchical agglomerative clustering algorithm for
generating initial values for optimizations are provided. In total, two different likelihood fac-
torizations and three methods for generating sets of starting values are implemented according
to chapter 4.

The probability of informed trading can be estimated for arbitrary length of daily buys and sells
data with pin_est in code chunk 5.1. Since pin_est and its underlying functions share many
arguments, we will not discuss same arguments separately for each function but highlight
arguments which are unique for different functions.

Code Chunk 5.1 (Source code of function pin_est in the pinbasic package):

function(numbuys = NULL, numsells = NULL, nlminb_control = list(), confint = FALSE,
ci_control = list(), posterior = TRUE) {
if (is.null(numbuys))

stop(”Missing data for 'numbuys'”)
if (is.null(numsells))

stop(”Missing data for 'numsells'”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
init_vals <- initial_vals(numbuys = numbuys, numsells = numsells, method = ”HAC”)
res <- pin_est_core(numbuys = numbuys, numsells = numsells, factorization = ”Lin_Ke”,

init_vals = init_vals, nlminb_control = nlminb_control, confint = confint,
ci_control = ci_control, posterior = posterior)

res
}

The arguments numbuys and numsells take vectors of daily buys and sells. Fine-tuning of the
optimizer, nlminb, is possible via the nlminb_control argument.58 With the logical argument
confint one can specify if confidence intervals for the probability of informed trading should be
58For details see the help page of the nlminb function in the stats package.
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computed according to section 4.4. The ci_control list specifies further details of calculations of
confidence intervals which wewill explain later in the context of code chunk 5.15. The posterior
flag switches the calculation of posterior probabilities of the conditions of tradings either on
or off.

A call to the pin_est function involves evaluations of the initial_vals and pin_est_core functions.
The corresponding source code of these functions is shown in code chunks 5.2 and 5.6, respec-
tively. If pin_est is called initial values for optimization are generated by the HAC algorithm
which has proven to be the best choice for this task (see section 4.3.4). Furthermore, Lin-Ke
likelihood factorization is utilized since it is themost stable known in PIN literature. The pinba-
sic package harnesses the built-in nlminb function from the stats package for all optimization
purposes.

Code Chunk 5.2 (Source code of function initial_vals in the pinbasic package):

function(numbuys = NULL, numsells = NULL, method = ”HAC”, length = 5, num_clust = 5,
details = FALSE) {
if (is.null(numbuys))

stop(”Missing data for 'numbuys'”)
if (is.null(numsells))

stop(”Missing data for 'numsells'”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
meth <- match.arg(method, choices = c(”HAC”, ”HAC_Ref”, ”Grid”))
res <- switch(meth, Grid = {

init_grid_search(numbuys = numbuys, numsells = numsells, length = length,
details = details)

}, HAC = {
init_hac(numbuys = numbuys, numsells = numsells)

}, HAC_Ref = {
init_hac_ref(numbuys = numbuys, numsells = numsells, j = num_clust)

})
res

}

The pinbasic package offers the initial_vals function for generating set(s) of starting values
which can be used in optimization routines estimating the probability of informed trading.
The algorithm for calculating initial values can be specified via the method argument by which
the user can choose one of the three discussed methods from section 4.3. Brute force grid
search algorithm can be chosen via ’Grid’, for HAC or refined HAC algorithm method needs to
equal ”HAC” or ”HAC_Ref”, respectively. According to the specified string for the method argument,
one of the specialized functions init_grid_search, init_hac or init_hac_ref is internally called.
The source codes for each of the functions are presented in code chunks 5.3, 5.4 and 5.5. By
default, initial_vals uses the HAC algorithm and therefore calls init_hac.
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Code Chunk 5.3 (Source code of function init_grid_search in the pinbasic package):

function(numbuys = NULL, numsells = NULL, length = 5, details = FALSE) {
max_obs <- max(c(numbuys, numsells))
avg_buys <- mean(numbuys)
avg_sells <- mean(numsells)
alpha <- seq(from = 0.1, to = 0.9, length.out = length)
delta <- alpha
gamma <- alpha
epsilon_b <- gamma * avg_buys
mat <- expand.grid(alpha, delta, epsilon_b)
colnames(mat) <- c(”alpha”, ”delta”, ”epsilon_b”)
mu <- (avg_buys - mat[, ”epsilon_b”])/(mat[, ”alpha”] * (1 - mat[, ”delta”]))
epsilon_s <- avg_sells - mat[, ”alpha”] * mat[, ”delta”] * mu
mat <- cbind(mat, epsilon_s, mu)
neg_eps <- which(mat[, ”epsilon_s”] < 0)
irrelevant_mu <- which(mat[, ”mu”] > max_obs)
rem_lines <- unique(c(neg_eps, irrelevant_mu))
if (length(rem_lines) > 0) {

mat <- mat[-rem_lines, ]
}
res <- data.matrix(mat)
if (details) {

res_list <- vector(”list”, 4)
names(res_list) <- c(”inits”, ”neg_eps”, ”irr_mu”, ”rem”)
res_list[[”inits”]] <- res
res_list[[”neg_eps”]] <- length(neg_eps)
res_list[[”irr_mu”]] <- length(irrelevant_mu)
res_list[[”rem”]] <- length(rem_lines)
return(res_list)

} else return(res)
}

Code Chunk 5.4 (Source code of function init_hac in the pinbasic package):

function(numbuys = NULL, numsells = NULL) {
N <- length(numbuys)
order_imb <- numbuys - numsells
clust <- hclust(dist(order_imb), method = ”complete”)
clust3 <- cutree(clust, k = 3)
cluster_means <- numeric(3)
for (k in 1:3) {

cluster_means[k] <- mean(order_imb[clust3  k])
}
max_ind <- which.max(cluster_means)
min_ind <- which.min(cluster_means)
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no_ind <- (1:3)[(!((1:3) %in% c(max_ind, min_ind)))]
cluster_bad_ind <- which(clust3  min_ind)
cluster_good_ind <- which(clust3  max_ind)
cluster_no_ind <- which(clust3  no_ind)
cluster_bad <- cbind(numbuys[cluster_bad_ind], numsells[cluster_bad_ind])
cluster_good <- cbind(numbuys[cluster_good_ind], numsells[cluster_good_ind])
cluster_no <- cbind(numbuys[cluster_no_ind], numsells[cluster_no_ind])
weights <- c(nrow(cluster_bad)/N, nrow(cluster_good)/N, nrow(cluster_no)/N)
clusters <- vector(”list”, 3)
clusters[[1]] <- cluster_bad
clusters[[2]] <- cluster_good
clusters[[3]] <- cluster_no
mean_daily_buys <- sapply(clusters, function(x) mean(x[, 1]))
mean_daily_sells <- sapply(clusters, function(x) mean(x[, 2]))
mat <- cbind(mean_daily_buys, mean_daily_sells, weights)
colnames(mat) <- c(”mean_daily_buys”, ”mean_daily_sells”, ”weight”)
rownames(mat) <- c(”BadNews”, ”GoodNews”, ”NoNews”)
mat[which(is.nan(mat))] <- 0
if (mat[”BadNews”, ”weight”]  0)

mu_s <- 0
if (mat[”GoodNews”, ”weight”]  0)

mu_b <- 0
alpha <- mat[”GoodNews”, ”weight”] + mat[”BadNews”, ”weight”]
delta <- mat[”BadNews”, ”weight”]/alpha
eps_b_helper <- mat[”BadNews”, ”weight”] + mat[”NoNews”, ”weight”]
eps_s_helper <- mat[”GoodNews”, ”weight”] + mat[”NoNews”, ”weight”]
eps_b <- (mat[”BadNews”, ”weight”]/eps_b_helper) * mat[”BadNews”, ”mean_daily_buys”] +

(mat[”NoNews”, ”weight”]/eps_b_helper) * mat[”NoNews”, ”mean_daily_buys”]
eps_s <- (mat[”GoodNews”, ”weight”]/eps_s_helper) * mat[”GoodNews”, ”mean_daily_sells”] +

(mat[”NoNews”, ”weight”]/eps_s_helper) * mat[”NoNews”, ”mean_daily_sells”]
if (mat[”GoodNews”, ”weight”] > 0)

mu_b <- mat[”GoodNews”, ”mean_daily_buys”] - eps_b
if (mat[”BadNews”, ”weight”] > 0)

mu_s <- mat[”BadNews”, ”mean_daily_sells”] - eps_s
if (mu_b < 0)

mu_b <- 0
if (mu_s < 0)

mu_s <- 0
mu <- (mat[”GoodNews”, ”weight”]/alpha) * mu_b + (mat[”BadNews”, ”weight”]/alpha) *

mu_s
res <- matrix(data = c(alpha, delta, eps_b, eps_s, mu), nrow = 1, ncol = 5)
colnames(res) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)
res

}
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Code Chunk 5.5 (Source code of function init_hac_ref in the pinbasic package):

function(numbuys = NULL, numsells = NULL, j = 5) {
N <- length(numbuys)
ordered_clusters <- vector(”list”, j + 1)
order_imb <- numbuys - numsells
abs_order_imb <- abs(order_imb)
res <- matrix(data = NA, nrow = j, ncol = 5)
colnames(res) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)
clust <- hclust(dist(abs_order_imb), method = ”complete”)
clustj <- cutree(clust, k = j + 1)
cluster_means <- numeric(j + 1)
for (k in 1:(j + 1)) {

cluster_means[k] <- mean(abs_order_imb[clustj  k])
}
cluster_means_ord_ind <- order(cluster_means, decreasing = FALSE)
for (k in 1:j) {

no_event_ind <- clustj %in% cluster_means_ord_ind[1:k]
event_ind <- clustj %in% cluster_means_ord_ind[(k + 1):(j + 1)]
alpha <- sum(event_ind)/N
mu <- mean(abs_order_imb[event_ind]) - mean(abs_order_imb[no_event_ind])
good_ind <- bad_ind <- numeric()
for (l in cluster_means_ord_ind[(k + 1):(j + 1)]) {

mean_event_cluster <- mean(order_imb[clustj  l])
if (mean_event_cluster > 0)

good_ind <- c(good_ind, l) else bad_ind <- c(bad_ind, l)
}
good_news_ind <- clustj %in% good_ind
bad_news_ind <- clustj %in% bad_ind
cluster_no <- cbind(numbuys[no_event_ind], numsells[no_event_ind])
cluster_good <- cbind(numbuys[good_news_ind], numsells[good_news_ind])
cluster_bad <- cbind(numbuys[bad_news_ind], numsells[bad_news_ind])
weights <- c(nrow(cluster_bad)/N, nrow(cluster_good)/N, nrow(cluster_no)/N)
clusters <- vector(”list”, 3)
clusters[[1]] <- cluster_bad
clusters[[2]] <- cluster_good
clusters[[3]] <- cluster_no
mean_daily_buys <- sapply(clusters, function(x) mean(x[, 1]))
mean_daily_sells <- sapply(clusters, function(x) mean(x[, 2]))
mat <- cbind(mean_daily_buys, mean_daily_sells, weights)
colnames(mat) <- c(”mean_daily_buys”, ”mean_daily_sells”, ”weight”)
rownames(mat) <- c(”BadNews”, ”GoodNews”, ”NoNews”)
mat[which(is.nan(mat))] <- 0
if (mat[”BadNews”, ”weight”]  0) {

mu_s <- 0
}
if (mat[”GoodNews”, ”weight”]  0) {

mu_b <- 0
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}
delta <- mat[”BadNews”, ”weight”]/alpha
eps_b_helper <- mat[”BadNews”, ”weight”] + mat[”NoNews”, ”weight”]
eps_s_helper <- mat[”GoodNews”, ”weight”] + mat[”NoNews”, ”weight”]
eps_b <- (mat[”BadNews”, ”weight”]/eps_b_helper) * mat[”BadNews”, ”mean_daily_buys”] +

(mat[”NoNews”, ”weight”]/eps_b_helper) * mat[”NoNews”, ”mean_daily_buys”]
eps_s <- (mat[”GoodNews”, ”weight”]/eps_s_helper) * mat[”GoodNews”,

”mean_daily_sells”] + (mat[”NoNews”, ”weight”]/eps_s_helper) * mat[”NoNews”,
”mean_daily_sells”]

if (mat[”GoodNews”, ”weight”] > 0)
mu_b <- mat[”GoodNews”, ”mean_daily_buys”] - eps_b

if (mat[”BadNews”, ”weight”] > 0)
mu_s <- mat[”BadNews”, ”mean_daily_sells”] - eps_s

res[k, 1:5] <- c(alpha, delta, eps_b, eps_s, mu)
}
return(res)

}

In addition, there are method-specific arguments length, num_clust and details. The length ar-
gument is relevant for grid search in which length determines the grid width of the interval
[0.1, 0.9]. This influences the amount of possible initial values for the probability parameters 𝛼
and 𝛿 as well as 𝛾 . If details is set to TRUE and method = ’Grid’ a list is returned with elements
representing a matrix with sets of starting values, the number of sets removed due to negative
values for the intensity of uninformed sells and guesses for the intensity of informed trading
that are larger than the highest values of aggregated buy or sell orders in the data. Other-
wise, solely a matrix of initial values is returned. Function argument num_clust determines the
number of clusters trading data is grouped into if method = ”HAC_Ref”.

The pin_est function is a user-friendlywrapper around the real workhorse function, pin_est_core,
presented in code chunk 5.6.

Code Chunk 5.6 (Source code of function pin_est_core in the pinbasic package):

function(numbuys = NULL, numsells = NULL, factorization = ”Lin_Ke”, init_vals = NULL,
lower = rep(0, 5), upper = c(1, 1, rep(Inf, 3)), num_best_res = 1, only_converged = TRUE,
nlminb_control = list(), confint = FALSE, ci_control = list(), posterior = TRUE) {
if (is.null(init_vals))

stop(”No initial values provided!”)
if (is.null(lower) || is.null(upper))

stop(”Lower or upper bounds missing!”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
factr <- match.arg(factorization, choices = c(”Lin_Ke”, ”EHO”))
mat <- matrix(data = NA, nrow = nrow(init_vals), ncol = ncol(init_vals) +

4)
colnames(mat) <- c(colnames(init_vals), ”loglike”, ”PIN”, ”Convergence”,
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”Iterations”)
opt_message <- numeric(nrow(init_vals))
fn <- function(x) pin_ll(param = x, numbuys = numbuys, numsells = numsells,

factorization = factr)
par_names <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)
if (nrow(mat)  1)

num_best_res <- 1
ci_con <- list(n = 10000, seed = NULL, level = 0.95, ncores = 1)
names_ci <- names(ci_con)
ci_con[(nam_ci <- names(ci_control))] <- ci_control
if (length(noNms <- nam_ci[!nam_ci %in% names_ci]))

warning(”unknown names in control: ”, paste(noNms, collapse = ”, ”))
if (ci_con$ncores < 1)

stop(”Set valid number of cpu cores for 'ncores'”)
nlminb_con <- list(eval.max = 1000, iter.max = 500, trace = 0, abs.tol = 0,

rel.tol = 1e-10, x.tol = 1.5e-08, xf.tol = 2.2e-14, step.min = 1, step.max = 1,
sing.tol = 1e-10)

names_nlminb <- names(nlminb_con)
nlminb_con[(nam_nlminb <- names(nlminb_control))] <- nlminb_control
if (length(noNms_nlminb <- nam_nlminb[!nam_nlminb %in% names_nlminb]))

warning(”unknown names in control: ”, paste(noNms_nlminb, collapse = ”, ”))
for (i in 1:nrow(mat)) {

tmp <- nlminb(start = init_vals[i, ], objective = function(x) -fn(x),
lower = lower, upper = upper, control = nlminb_con)

mat[i, par_names] <- tmp$par
mat[i, ”loglike”] <- -tmp$objective
mat[i, ”PIN”] <- pin_calc(param = tmp$par)
mat[i, ”Convergence”] <- as.integer(tmp$convergence)
mat[i, ”Iterations”] <- as.integer(tmp$iterations)
opt_message[i] <- tmp$message

}
if (nrow(mat) > 1) {

mat <- mat[order(mat[, ”loglike”], decreasing = TRUE), ]
start_vals <- init_vals[order(mat[, ”loglike”], decreasing = TRUE),

]
if (only_converged) {

converged <- as.logical(!mat[, ”Convergence”])
mat <- mat[converged, ]
start_vals <- start_vals[converged, ]

}
} else start_vals <- matrix(init_vals[1, ], nrow = 1)
if (num_best_res  ”all”)

num_best_res <- nrow(mat)
if (num_best_res > 1) {

mat_list <- vector(”list”, num_best_res)
names(mat_list) <- paste0(”Best”, 1:num_best_res)
for (i in 1:num_best_res) {

mat_list[[paste0(”Best”, i)]] <- vector(”list”, 7)
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names(mat_list[[paste0(”Best”, i)]]) <- c(”Results”, ”ll”, ”pin”,
”conv”, ”message”, ”iterations”, ”init_vals”)

if (confint)
mat_list[[paste0(”Best”, i)]][[”confint”]] <- numeric(2)

tmp_res <- summary_car(param = mat[i, par_names], numbuys = numbuys,
numsells = numsells, factorization = factorization, lower = lower,
upper = upper)

if (!is.null(tmp_res)) {
mat_list[[paste0(”Best”, i)]][[”Results”]] <- tmp_res

} else {
mat_list[[paste0(”Best”, i)]][[”Results”]] <- matrix(data = NA,

ncol = 4, nrow = 5)
colnames(mat_list[[paste0(”Best”, i)]][[”Results”]]) <- c(”Estimate”,

”Std. error”, ”t value”, ”Pr(> t)”)
rownames(mat_list[[paste0(”Best”, i)]][[”Results”]]) <- c(”alpha”,

”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)
mat_list[[paste0(”Best”, i)]][[”Results”]][, ”Estimate”] <- mat[i,

par_names]
}
mat_list[[paste0(”Best”, i)]][[”ll”]] <- mat[i, ”loglike”]
mat_list[[paste0(”Best”, i)]][[”pin”]] <- mat[i, ”PIN”]
mat_list[[paste0(”Best”, i)]][[”conv”]] <- mat[i, ”Convergence”]
mat_list[[paste0(”Best”, i)]][[”message”]] <- opt_message[i]
mat_list[[paste0(”Best”, i)]][[”iterations”]] <- mat[i, ”Iterations”]
mat_list[[paste0(”Best”, i)]][[”init_vals”]] <- start_vals[i, ]
if (confint) {

mat_list[[paste0(”Best”, i)]][[”confint”]] <- pin_confint(param = mat[i,
par_names], numbuys = numbuys, numsells = numsells, lower = lower,
upper = upper, n = ci_con$n, seed = ci_con$seed, level = ci_con$level,
ncores = ci_con$ncores)

}
if (posterior) {

mat_list[[paste0(”Best”, i)]][[”posterior”]] <- posterior(param = mat[i,
par_names], numbuys = numbuys, numsells = numsells)

}
}

} else {
mat_list <- vector(”list”, 7)
names(mat_list) <- c(”Results”, ”ll”, ”pin”, ”conv”, ”message”, ”iterations”,

”init_vals”)
if (confint)

mat_list[[”confint”]] <- numeric(2)
tmp_res <- summary_car(param = mat[1, par_names], numbuys = numbuys,

numsells = numsells, factorization = factorization, lower = lower,
upper = upper)

if (!is.null(tmp_res)) {
mat_list[[”Results”]] <- tmp_res

} else {
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mat_list[[”Results”]] <- matrix(data = NA, ncol = 4, nrow = 5)
colnames(mat_list[[”Results”]]) <- c(”Estimate”, ”Std. error”, ”t value”,

”Pr(> t)”)
rownames(mat_list[[”Results”]]) <- c(”alpha”, ”delta”, ”epsilon_b”,

”epsilon_s”, ”mu”)
mat_list[[”Results”]][, ”Estimate”] <- mat[i, par_names]

}
mat_list[[”ll”]] <- mat[1, ”loglike”]
mat_list[[”pin”]] <- mat[1, ”PIN”]
mat_list[[”conv”]] <- mat[1, ”Convergence”]
mat_list[[”message”]] <- opt_message[1]
mat_list[[”iterations”]] <- mat[1, ”Iterations”]
mat_list[[”init_vals”]] <- start_vals[1, ]
names(mat_list[[”init_vals”]]) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”,

”mu”)
if (confint) {

mat_list[[”confint”]] <- pin_confint(param = mat[1, par_names],
numbuys = numbuys, numsells = numsells, lower = lower, upper = upper,
n = ci_con$n, seed = ci_con$seed, level = ci_con$level, ncores = ci_con$ncores)

}
if (posterior) {

mat_list[[”posterior”]] <- posterior(param = mat[1, par_names],
numbuys = numbuys, numsells = numsells)

}
}
mat_list

}

The pin_est_core function is much more flexible than pin_est. The user is able to specify addi-
tional arguments and change the settings of optimization runs. The init_vals argument takes
matrices of initial values which were produced by initial_vals function. It is also possible to
provide a user-defined matrix of starting values in which each column consists of one or more
choices for each model parameter. The ordering of the columns needs to be 𝛼 , 𝛿 , 𝜖𝑏 , 𝜖𝑠 , 𝜇 or the
matrix needs column names which equal the internally used names for the model parameters,
”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s” and ”mu”. Factorization of the likelihood function can
be specified by the factorization argument which offers two choices, ”Lin_Ke” and ”EHO”. This
argument is passed to the pin_ll function which then calls either linke or eho. By default, Lin-
Ke factorization is utilized. The two latter functions are both implemented in the C++ language
with the help of the Rcpp package to increase computing speed and therefore reduce execution
time.59 The corresponding R and C++ source codes can be found in the code chunks 5.7, 5.8
and 5.9. Whether the given parameter vector param is valid is checked with the param_check
function in code chunk 5.10.

Lower and upper bounds for maximizations can be set via the lower and upper arguments of the
pin_est_core function. The standard is that the smallest value allowed for all model parameters
59An introduction to the Rcpp package and its syntax is given in Eddelbuettel and François (2011).
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is 0. Probability parameters must not be larger than 1, whereas the upper bound for the intensi-
ties is set to infinity. The amount of output is controlled by the num_best_res and only_converged
arguments. Only the results for the best optimization run are returned if num_best_res = 1.
If one is interested in the results for every maximization, whether it has converged or not,
num_best_res should be specified as the string ”all” while only_converged is set to FALSE, so that
no results of runs are dismissed.

Code Chunk 5.7 (Source code of function pin_ll in the pinbasic package):

function(param = NULL, numbuys = NULL, numsells = NULL, factorization = ”Lin_Ke”) {
if (is.null(numbuys))

stop(”No number of daily buys given!”)
if (is.null(numsells))

stop(”No number of daily sells given!”)
if (length(numbuys)  length(numsells))

stop(”Buys and Sells length differ!”)
param <- param_check(param)
factr <- match.arg(factorization, choices = c(”Lin_Ke”, ”EHO”))
switch(factr, Lin_Ke = {

linke(param = param, numbuys = numbuys, numsells = numsells)
}, EHO = {

eho(param = param, numbuys = numbuys, numsells = numsells)
})

}

Code Chunk 5.8 (Source code of C++ function linke in the pinbasic package):

double linke(NumericVector param, NumericVector numbuys, NumericVector numsells) {
double n_par = -numbuys.length() * (param[2] + param[3]);

double rat1 = param[4]/param[3];
double rat2 = param[4]/param[2];

double rat1log1p = log1p(rat1);
double rat2log1p = log1p(rat2);

double const1 = log(param[4] + param[3]);
double const2 = log(param[4] + param[2]);

double prob_no = 1.0 - param[0];
double prob_good = param[0] * (1.0 - param[1]);
double prob_bad = param[0] * param[1];
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NumericVector e1 = -param[4] - numsells * rat1log1p;
NumericVector e2 = -param[4] - numbuys * rat2log1p;
NumericVector e3 = e2 + e1 + 2.0 * param[4];

NumericVector e_max0 = pmax(e1, e2);
NumericVector e_max = pmax(e_max0, e3);

double part1 = n_par + sum(numbuys) * const2 +
sum(numsells) * const1 + sum(e_max);

double part2 = sum(log(prob_no * exp(e3-e_max) + prob_good * exp(e1 - e_max) +
prob_bad * exp(e2 - e_max)));

double ll = part1 + part2;

return(ll);
}

Code Chunk 5.9 (Source code of C++ function eho in the pinbasic package):

double eho(NumericVector param , NumericVector numbuys, NumericVector numsells) {
double n_par = -numbuys.length() * (param[3] + param[2]);

NumericVector m = pmin(numbuys, numsells) + 0.5 * pmax(numbuys, numsells);

double helper_sum1 = param[4] + param[3];
double helper_sum2 = param[4] + param[2];

double xs = param[3]/helper_sum1;
double xb = param[2]/helper_sum2;
double log_xs = log(xs);
double log_xb = log(xb);

double exp_mu = exp(-param[4]);
NumericVector xs_helper = exp((numsells - m) * log_xs);
NumericVector xb_helper = exp((numbuys - m) * log_xb);

double prob_no = 1.0 - param[0];
double prob_good = param[0] * (1.0 - param[1]);
double prob_bad = param[0] * param[1];
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double part1 = n_par + (log_xb + log_xs) * sum(m) +
log(param[4] + param[2]) * sum(numbuys) +
log(param[4] + param[3]) * sum(numsells);

double part2 = sum(log(prob_no * xs_helper * xb_helper +
prob_good * exp_mu * xs_helper * exp(-m * log_xb) +
prob_bad * exp_mu * xb_helper * exp(-m * log_xs)));

double ll = part1 + part2;
return(ll);

}

Code Chunk 5.10 (Source code of function param_check in the pinbasic package):

function(param = NULL) {
if (is.null(param))

stop(”No parameter vector provided!”)
if (!(length(param)  5))

stop(”Parameter vector need to have 5 elements)!”)
if (is.null(names(param))) {

names(param) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)
}
if (!is.null(names(param)) && !all(names(param) %in% c(”alpha”, ”delta”,

”epsilon_b”, ”epsilon_s”, ”mu”))) {
names(param) <- c(”alpha”, ”delta”, ”epsilon_b”, ”epsilon_s”, ”mu”)

}
param

}

A list with seven to nine elements is returned by pin_est and pin_est_core, if the num_best_res
argument equals 1, depending on the confint and posterior flags. If num_best_res is larger than 1 a
list of list is returned where the first layer represents optimization runs. For each of them a list
with seven to nine elements is returned. The names of the list elements of the first layer begin
with the string Best and end with an integer in the range from 1 to the value of num_best_res.
Those list elements are returned in descending order according to the final values of the like-
lihood function.

The Results slot provides a summary including parameter estimates, standard errors, t-values
and corresponding p-values for significance tests which is computed with the help of the aux-
iliary function summary_car with the corresponding source code in code chunk 5.11. The
bound_hit function (see code chunk 5.12) checks for estimates which either hit lower or up-
per bounds or are so close to them that they are ignored for summary statistics to circumvent
numerical instabilities in the computation of the Hessian matrix.
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Code Chunk 5.11 (Source code of function summary_car in the pinbasic package):

function(param = NULL, numbuys = NULL, numsells = NULL, factorization = NULL,
lower = NULL, upper = NULL, eigentol = 1e-12) {
boundary <- bound_hit(param, lower, upper)
vcov <- vcov_car(param = param, numbuys = numbuys, numsells = numsells,

factorization = factorization, lower = lower, upper = upper, eigentol = eigentol)
if (is.null(vcov))

return(NULL)
if (any(diag(vcov) < 0) | any(is.infinite(vcov))) {

warning(”Infeasible Variance-Covariance Matrix with negative variances or infinite entries!”)
return(NULL)

}
std_err <- t_vals <- p_vals <- numeric(length(param))
std_err[!boundary] <- sqrt(diag(vcov))
std_err[boundary] <- NA
t_vals[!boundary] <- param[!boundary]/std_err[!boundary]
p_vals[!boundary] <- 2 * statsೋೌpnorm(-abs(t_vals[!boundary]))
t_vals[boundary] <- NA
p_vals[boundary] <- NA
results <- cbind(Estimate = param, `Std. error` = std_err, `t value` = t_vals,

`Pr(> t)` = p_vals)
results

}

Code Chunk 5.12 (Source code of function bound_hit in the pinbasic package):

function(param = NULL, lower = NULL, upper = NULL) {
low.hit <- abs(lower - param) < 1e-10
upper.hit <- abs(upper - param) < 1e-10
bound.hit <- (low.hit | upper.hit)
bound.hit

}

Standard deviations of parameter estimates are calculated as diagonal elements of the corre-
sponding covariance matrix returned by the vcov_car function in code chunk 5.13. The Hessian
matrix, which is essential to receive the covariancematrix, is returned by the built-in optimHess
function from the stats package. The vcov_car function introduces the eigentol argumentwhich
sets the eigenvalue tolerance for the Hessian matrix. It controls when the Hessian is treated as
numerically singular.
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Code Chunk 5.13 (Source code of function vcov_car in the pinbasic package):

function(param = NULL, numbuys = NULL, numsells = NULL, factorization = NULL,
lower = NULL, upper = NULL, eigentol = 1e-12) {
fun <- function(par) {

pin_ll(par, numbuys = numbuys, numsells = numsells, factorization = factorization)
}
bound.hit <- bound_hit(param, lower, upper)
names.param <- names(param)
param.bound <- param[bound.hit]
join_param <- function(x) c(param.bound, x)[names.param]
hess <- tryCatch(statsೋೌoptimHess(fn = function(x) fun(join_param(x)), par = param[!bound.hit]),

error = function(e) e)
if (is.matrix(hess)) {

if (any(is.nan(hess)) | any(is.na(hess)) | any(is.infinite(hess))) {
warning(”NaN, NA or infinite values in Hesse matrix”)
return(NULL)

}
} else return(NULL)
hess_eigen <- abs(eigen(hess, symmetric = TRUE, only.values = TRUE)$values)
vcov_mat <- matrix(0, length(param[!bound.hit]), length(param[!bound.hit]))
rownames(vcov_mat) <- colnames(vcov_mat) <- names(param[!bound.hit])
if (min(hess_eigen) > (eigentol * max(hess_eigen))) {

vcov_mat <- solve(-hess)
vcov_mat <- (vcov_mat + t(vcov_mat))/2

} else {
vcov_mat <- NULL
warning(”Singular Hesse matrix”)

}
vcov_mat

}

The list returned by pin_est_core and pin_est exhibit the likelihood function value and estimated
probability of informed trading in the ll and pin slots, respectively. The calculation of PIN is
implemented with the pin_calc function in code chunk 5.14.

Code Chunk 5.14 (Source code of function pin_calc in the pinbasic package):

function(param = NULL) {
param <- param_check(param)
res <- (param[”alpha”] * param[”mu”])/(param[”alpha”] * param[”mu”] + param[”epsilon_b”] +

param[”epsilon_s”])
names(res) <- NULL
res

}
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Some information about nlminb-specific results can be gathered from conv, message and itera-
tions list elements which deliver the convergence code, additional convergence messages and
the number of necessary iterations of the optimizer. The help page of the nlminb function is
a good starting point for more information about the meaning of the additional messages of
the optimizer. However, if one wants to delve deep into the details, then the documentation
by Gay (1990) is the recommended lecture. The initial values used for optimization are stored
in init_vals slot.

If the confint flag is set to TRUE for calls of either pin_est or pin_est_core, results are stored in
the confint slot of the returned list. Confidence intervals for PIN can be computed with the
pin_confint function. Its source code is shown in code chunk 5.15.

Code Chunk 5.15 (Source code of function pin_confint in the pinbasic package):

function(param = NULL, numbuys = NULL, numsells = NULL, method = ”HAC”, lower = rep(0,
5), upper = c(1, 1, rep(Inf, 3)), n = 10000, seed = NULL, level = 0.95,
ncores = 1) {
param <- param_check(param)
if (!is.numeric(ncores) && ncores < 1)

stop(”No valid 'ncores' argument!”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
meth <- match.arg(method, choices = c(”HAC”, ”HAC_Ref”, ”Grid”))
set.seed(seed)
sim_pin <- numeric(n)
ndays <- length(numbuys)
fn <- function(par, buys, sells) {

pin_ll(param = par, numbuys = buys, numsells = sells, factorization = ”Lin_Ke”)
}
if (is.null(param)) {

init_vals <- initial_vals(numbuys = numbuys, numsells = numsells, method = ”HAC”)
param_dat <- nlminb(start = init_vals[1, ], objective = function(x) -fn(x,

numbuys, numsells), lower = lower, upper = upper)$par
} else param_dat <- param
sim_dat <- replicate(n = n, simulateBS(param = param_dat, ndays = ndays),

simplify = FALSE)
initial_mat <- lapply(sim_dat, function(x) {

initial_vals(numbuys = x[, ”Buys”], numsells = x[, ”Sells”], method = meth)
})
if (ncores  1) {

par_est <- Map(function(x, y) nlminb(start = y[1, ], objective = function(par) -fn(par,
x[, ”Buys”], x[, ”Sells”]), lower = lower, upper = upper)$par, x = sim_dat,
y = initial_mat)

} else {
cl <- makeCluster(getOption(”cl.cores”, ncores))
split_ind <- split(seq_len(n), seq_len(ncores))
cl_export(cl, sim_dat, initial_mat, split_ind)
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par_est <- clusterCall(cl, fun = ci_mc_helper, fn = fn, lower = lower,
upper = upper)

par_est <- do.call(c, par_est)
on.exit(stopCluster(cl))

}
sim_pin <- sapply(par_est, function(x) pin_calc(x))
conf <- quantile(sim_pin, probs = c((1 - level)/2, 1 - (1 - level)/2))
conf

}

The number of simulation runs, the seed of the default Mersenne-Twister random number gen-
erator, the confidence level and the number of utilized CPU cores can be set via arguments
n, seed, level and ncores, respectively. If confidence intervals should be returned by a call to
either pin_est or pin_est_core the settings can be controlled via the ci_control argument of both
functions. Names of ci_control elements need to match argument names of the pin_confint
function or are ignored otherwise. The pin_confint function harnesses the C++ function sim-
ulateBS to simulate datasets of daily buys and sells whose source code can be read from code
chunk 5.16.

Code Chunk 5.16 (Source code of C++ function simulateBS in the pinbasic package):

NumericMatrix simulateBS(NumericVector param, int ndays) {
NumericMatrix res(ndays,2);
IntegerVector states_ind = IntegerVectorೋೌcreate(0,1,2);
NumericVector state_probs(3);
state_probs[0] = 1.0 - param[0];
state_probs[1] = param[0] * (1.0 - param[1]);
state_probs[2] = param[0] * param[1];

NumericVector buys(ndays);
NumericVector sells(ndays);

IntegerVector states = sample(states_ind, ndays, true, state_probs);

// indices for no-, good- and bad-news days
LogicalVector ind_no = states  0;
LogicalVector ind_good = states  1;
LogicalVector ind_bad = states  2;

int len_no = sum(ind_no);
int len_good = sum(ind_good);
int len_bad = sum(ind_bad);
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// drawing Poisson distributed random numbers for daily buys and sells
// according to the actual buy and sell intensities depending on the
// condition of the trading day

buys[ind_no] = rpois(len_no, param[2]);
sells[ind_no] = rpois(len_no, param[3]);

buys[ind_good] = rpois(len_good, param[2] + param[4]);
sells[ind_good] = rpois(len_good, param[3]);

buys[ind_bad] = rpois(len_bad, param[2]);
sells[ind_bad] = rpois(len_bad, param[3] + param[4]);

res(_,0) = buys;
res(_,1) = sells;

colnames(res) = CharacterVectorೋೌcreate(”Buys”, ”Sells”);

return(res);
}

The cl_export, assign_to_global and ci_mc_helper functions are auxiliary functions to enable
computations of confidence intervals in parallel. Corresponding source codes are presented
in code chunks 5.17, 5.18 and 5.19. While cl_export uses assign_to_global to export appropriate
parts of the complete data to the global environment of each involved CPU core, ci_mc_helper
ensures that optimizations are performed on each of the workers.

Code Chunk 5.17 (Source code of function cl_export in the pinbasic package):

function(cl = NULL, sim_data = NULL, init_mat = NULL, split_ind = NULL) {
for (i in seq_along(cl)) {

clusterCall(cl[i], function(data, init) {
assign_to_global(”data_sub”, data)
assign_to_global(”init_sub”, init)
NULL

}, data = sim_data[split_ind[[i]]], init = init_mat[split_ind[[i]]])
}

}

Code Chunk 5.18 (Source code of function assign_to_global in the pinbasic package):

function(string, object, pos = 1) {
assign(string, object, envir = as.environment(pos))

}
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Code Chunk 5.19 (Source code of function ci_mc_helper in the pinbasic package):

function(fn = NULL, lower = NULL, upper = NULL) {
Map(function(x, y) nlminb(start = y[1, ], objective = function(par) -fn(par,

x[, ”Buys”], x[, ”Sells”]), lower = lower, upper = upper)$par, x = get(”data_sub”,
envir = .GlobalEnv), y = get(”init_sub”, envir = .GlobalEnv))

}

Posterior probabilities for the conditions of trading days as described in section 3.3 can be
computed with the posterior function in code chunk 5.20. Similar to confidence intervals, if
the posterior flag is set to TRUE when calling one of pin_est or pin_est_core, a matrix with prob-
abilities of no-news, good-news and bad-news for each trading day is stored in the posterior
element of the returned list.

Code Chunk 5.20 (Source code of function posterior in the pinbasic package):

function(param = NULL, numbuys = NULL, numsells = NULL) {
param <- param_check(param)
if (is.null(numbuys))

stop(”Missing data for 'numbuys'”)
if (is.null(numsells))

stop(”Missing data for 'numsells'”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
rat1 <- param[”mu”]/param[”epsilon_s”]
rat2 <- param[”mu”]/param[”epsilon_b”]
rat1log1p <- log1p(rat1)
rat2log1p <- log1p(rat2)
prob_no <- 1 - param[”alpha”]
prob_good <- param[”alpha”] * (1 - param[”delta”])
prob_bad <- param[”alpha”] * param[”delta”]
e1 <- -param[”mu”] + numsells * rat1log1p
e2 <- -param[”mu”] + numbuys * rat2log1p
e_max <- pmax.int(e1, e2, 0)
denom_helper <- e_max + log(prob_no * exp(-e_max) + prob_good * exp(e2 -

e_max) + prob_bad * exp(e1 - e_max))
no_prob <- log(prob_no) - denom_helper
good_prob <- log(prob_good) + e2 - denom_helper
bad_prob <- log(prob_bad) + e1 - denom_helper
res <- cbind(exp(no_prob), exp(good_prob), exp(bad_prob))
colnames(res) <- c(”no”, ”good”, ”bad”)
class(res) <- c(”matrix”, ”posterior”)
res

}
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We implemented the plotting method ggplot.posterior for the results of the posterior function
in the pinbasic package utilizing the ggplot2 package byWickham (2009). Objects returned by
posterior possess the additional class posterior. The ggplot2 package automatically detects the
available plotting method for objects with class posterior. Therefore calling the ggplot func-
tion from the ggplot2 package with the object returned by posterior as the only argument is
sufficient to generate a plot of daily posterior probabilities.

Code Chunk 5.21 (Source code of function ggplot.posterior in the pinbasic package):

function(x) {
if (is.null(rownames(x))) {

df <- data.frame(bs_date = 1:nrow(x), no = x[, ”no”], good = x[, ”good”],
bad = x[, ”bad”])

} else {
check_rows <- check_bs_dates(rownames(x))
if (!all(is.na(check_rows))) {

df <- data.frame(bs_date = as.Date(rownames(x)), no = x[, ”no”],
good = x[, ”good”], bad = x[, ”bad”])

}
if (!is.null(rownames(x)) && is.na(check_rows)) {

df <- data.frame(bs_date = rownames(x), no = x[, ”no”], good = x[,
”good”], bad = x[, ”bad”])

}
}
df_melt <- melt(df, id = ”bs_date”)
dp_plot <- ggplot(df_melt, aes(x = bs_date, y = value, fill = variable)) +
geom_bar(stat = ”identity”, position = ”fill”, width = 0.5) + ylab(”Posterior Probabilities \n of Trad-

ing Days' Conditions”) +
scale_fill_discrete(breaks = c(”no”, ”good”, ”bad”), labels = c(”no-news”,

”good-news”, ”bad-news”), guide = guide_legend(nrow = 1, keywidth = 0.5,
keyheight = 0.5, title = NULL, label.position = ”right”)) + theme(axis.title.x = element_blank(),

legend.position = ”bottom”)
dp_plot

}

The previous code chunks show the dependencies of functions in the pinbasic package. They
also generate insights about what happens internally if pin_est or pin_est_core is called. In most
cases, the user do not want to modify the internal structures of the package and will use the
main functions, but we decided to include the complete source code of the pinbasic package
for the sake of completeness.

In summary, it gets clear that the user is grantedmore control about the optimization procedure
by using pin_est_core directly. However, the settings used in pin_est will be sufficient for most
applications, which uses the fixed combination of Lin-Ke factorization and HAC algorithm.

No information about the time span of the underlying data is needed to perform optimizations
with pin_est and pin_est_core. Since it is common practice in the literature to use a range of
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the underlying data of about 60 trading days to estimate the probability of informed trading,
we implemented the qpin function which delivers quarterly estimates (see code chunk 5.22).
The corresponding dates for buys and sells data can be set via the dates argument. The number
of available quarters in the data are detected utilizing functions from the lubridate package.

Code Chunk 5.22 (Source code of function qpin in the pinbasic package):

function(numbuys = NULL, numsells = NULL, dates = NULL, nlminb_control = list(),
confint = FALSE, ci_control = list(), posterior = TRUE) {
if (is.null(numbuys))

stop(”Missing data for 'numbuys'”)
if (is.null(numsells))

stop(”Missing data for 'numsells'”)
if (is.null(dates))

stop(”Missing 'dates'”)
if (length(numbuys)  length(numsells))

stop(”Unequal lengths for 'numbuys' and 'numsells'”)
quarters <- lubridateೋೌquarter(dates, with_year = TRUE)
quarters_char <- as.character(quarters)
quarter_num <- length(unique(quarters))
quarter_list <- vector(”list”, quarter_num)
data_years <- unique(lubridateೋೌyear(dates))
data_years_char <- as.character(data_years)
quarters_per_year <- numeric(length(data_years))
names(quarters_per_year) <- data_years_char
quarter_names <- character(0)
for (i in data_years_char) {

quarters_per_year[i] <- max(as.numeric(substring(quarters_char[grepl(i,
quarters_char)], first = 6)))

quarter_names <- c(quarter_names, paste0(i, ”.”, 1:quarters_per_year[i]))
}
names(quarter_list) <- quarter_names
BS_data <- cbind(numbuys, numsells)
for (i in data_years_char) {

for (j in 1:quarters_per_year[i]) {
quarter_list[[paste0(i, ”.”, j)]] <- BS_data[quarters_char  paste0(i,

”.”, j), ]
}

}
res <- lapply(quarter_list, function(x) pin_est(numbuys = x[, 1], numsells = x[,

2], nlminb_control = nlminb_control, confint = confint, ci_control = ci_control,
posterior = posterior))

class(res) <- c(”list”, ”qpin”)
res

}

A plotting method for ggplot in the ggplot2 package for the quarterly estimates returned by
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qpin is implemented with the ggplot.qpin function in code chunk 5.23. Similar to the visualiza-
tion of posterior probabilities, it is therefore sufficient to call the ggplot function which detects
the qpin class of the object and harnesses the style provided by the pinbasic function.

Code Chunk 5.23 (Source code of function ggplot.qpin in the pinbasic package):

function(x) {
if (!requireNamespace(”ggplot2”, quietly = TRUE)) {

stop(”ggplot2 is required for this function to work. Please install it.”,
call. = FALSE)

}
if (!requireNamespace(”reshape2”, quietly = TRUE)) {

stop(”reshape2 is required for this function to work. Please install it.”,
call. = FALSE)

}
alpha <- delta <- epsilon_b <- epsilon_s <- mu <- pin <- numeric()
quat <- names(x)
alpha <- sapply(x, function(x) x$Results[”alpha”, ”Estimate”])
delta <- sapply(x, function(x) x$Results[”delta”, ”Estimate”])
epsilon_b <- sapply(x, function(x) x$Results[”epsilon_b”, ”Estimate”])
epsilon_s <- sapply(x, function(x) x$Results[”epsilon_s”, ”Estimate”])
mu <- sapply(x, function(x) x$Results[”mu”, ”Estimate”])
pin <- sapply(x, function(x) x$pin)
qpin_df <- data.frame(Quarter = quat, alpha = alpha, delta = delta, epsilon_b = epsilon_b,

epsilon_s = epsilon_s, mu = mu, PIN = pin)
qpin_df <- melt(qpin_df, id.vars = ”Quarter”)
ID <- character(nrow(qpin_df))
ID[qpin_df[, ”variable”] %in% c(”alpha”, ”delta”)] <- ”Probability Parameters”
ID[qpin_df[, ”variable”] %in% c(”epsilon_b”, ”epsilon_s”, ”mu”)] <- ”Intensity Parameters”
ID[qpin_df[, ”variable”] %in% c(”PIN”)] <- ”Prob. of Informed Trading”
qpin_df <- transform(qpin_df, facet = ID)
qpin_df$facet_ordered <- factor(qpin_df$facet, levels = c(”Probability Parameters”,

”Intensity Parameters”, ”Prob. of Informed Trading”))
p <- ggplot(data = qpin_df, aes_string(x = ”Quarter”, y = ”value”, group = ”variable”)) +

facet_grid(facet_ordered ~ ., scales = ”free_y”) + geom_line(aes_string(colour = ”variable”,
x = ”Quarter”, y = ”value”)) + geom_point(shape = 19, size = 1.25, aes_string(colour = ”variable”)) +
scale_y_continuous(breaks = pretty_breaks(n = 3)) + theme(legend.position = ”right”,
axis.title.y = element_blank(), axis.title.x = element_blank(), legend.title = element_blank())

p
}

Three synthetic datasets are included, namely BSinfrequent, BSfrequent and BSheavy which repre-
sent infrequently, frequently and heavily traded equities, respectively.60

At the time of writing, version 1.2.2 of pinbasic is available on the Comprehensive R Archive

60The simulated datasets were already discussed in chapter 4.

84



Network (CRAN)61 and is listed in the CRAN Task View: Empirical Finance62. Development
version of the package can be found at and installed from https://github.com/anre005/pinbasic.

61Package sources and binaries for Windows and Mac can be found at https://cran.r-project.org/web/packages/
pinbasic/index.html.

62https://cran.r-project.org/web/views/Finance.html
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6 Dynamic Models using
High-Frequency Data

The dynamic models we will present in this chapter differ from the EHO model in terms of
research focus. While the information risk is the key measure of interest in the latter, the
former try to capture the variation of the unobservable fraction of market transactions based
on private information.

One major point of criticism for static models is that the explanatory power of transaction
size is ignored. Hence, transactions with very little volume are treated exactly the same way
as trades in which a huge number of shares are involved. No attention is given to additional
information which is often available at no cost and is already available in the data. This may
lead to PIN not being an appropriate indicator for trading based on private information and
being insensitive to market-wide trends as Aktas, de Bodt, Declerck, and van Oppens (2007)
argue. In the context of dynamic models for the probability of informed trading, the (signed)
volume of transactions is a crucial feature and therefore mitigates this point of criticism.

Posterior probabilities for conditions of trading days are not relevant for the original research
question of the authors of the static PIN models (Easley, Kiefer, O’Hara, and Paperman (1996)
and Easley, Hvidkjaer, and O’Hara (2002)). However with the expressions in section 3.3 we can
shift it in the direction of the models utilizing high-frequency data to estimate the probability
of informed trading.

According to static models, the parameters for trading intensities are constant over the whole
time range under consideration and informed traders are only active on information events.
Therefore the noise trading intensities do not differ on non-information events and trading
days with private information. Hence, in the static models the increased market activity on
information events induced by private information with either positive or negative direction
is completely assigned to informed market participants. However, in the dynamic setting the
trading intensity is modeled with an autoregressive approach. Therefore, dynamic approaches
are able to distribute the increased trading intensity on information events to both types of
traders, informed and uninformed. One can think of a response or feedback of the noise traders
to the increased trading activities. Hence, the amount of insider trading in the dynamic models
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should be lower than in the static ones.63

Our dynamic approach for the probability of informed trading (PIN-HMM) is based on the
model introduced by Tay, Ting, Tse, and Warachka (2009) (PIN-ALACD) but extends it in sev-
eral aspects. The major difference lies in the modelling of conditions of trading days. Instead
of an approach similar to logistic regression used by Tay, Ting, Tse, and Warachka (2009), we
think of the sequence of trading days’ conditions as a Markov chain with latent states. Such
a Markov chain is called hidden Markov model (HMM). Therefore dependencies in the series
of trading days’ states are introduced since the current state depends on its predecessor due to
the Markov property. However, we begin with a description of the general setup of dynamic
models presented in this work and introduce several essential variables before we delve into
the details of each approach.

The relatively restrictive assumption of latent homogeneous Poisson processes with exponen-
tially distributed waiting times for buys and sells in static models is relaxed so that buys and
sells are yet latent Poisson processes but with time-varying intensities.64 Letℱ𝑖−1,𝑑 denote the
information set upon the (𝑖 − 1)-th trade on trading day 𝑑 which may include prior trade di-
rections, transaction volumes and lagged durations. Specifically, given ℱ𝑖−1,𝑑 , upcoming buys
and sells are assumed to follow independent latent stochastic point processes whose interar-
rival times may follow any distribution with positive support and have common starting time
𝑡𝑖−1. Since each recorded arrival comes with several characteristics like transaction price or
volume etc. , the point processes for buys and sells are so-called marked point processes (see
Engle and Russell 1998). Furthermore, buys’ and sells’ processes are assumed to evolve with
after-effects and to be conditionally orderly. Following Snyder and Miller (1991), the first char-
acteristic describes that for any timestamp 𝑡 > 𝑡1 arrivals of both trade directions in the interval
[𝑡, 𝑡ℐ𝑑 ], with the total number of transactions on trading day 𝑑 ℐ𝑑 , do depend on the sequence
of arrivals in the range [𝑡1, 𝑡)with 𝑡1 < 𝑡 . With conditionally orderly point processes we ensure
that we can determine which process was the first to arrive at any time 𝑡 of the trading day
since for each process the probability of observing two or more arrivals in a sufficiently short
time interval conditional on its history is infinitesimal relative to the probability of observ-
ing one arrival as described in equation (6.2).65 According to Engle and Russell (1998), such
a stochastic process is completely described by its conditional intensity function (or equiva-
lently conditional hazard function) for timestamp 𝑡 given the information about the past of the
process.

Similarly to Basu and Rigdon (2001), a general form of the (conditional) intensity functions of
non-homogeneous Poisson processes is given by

𝜆(𝑡 | ℱ𝑖−1,𝑑) = limΔ𝑡→0
Pr(𝑁 (𝑡 + Δ𝑡) − 𝑁 (𝑡) = 1 | ℱ𝑖−1,𝑑)

Δ𝑡 . (6.1)

63See sections 11.1 and 11.2 for a comparison of the fraction of informed buys or sells on corresponding information
events in the static EHO model and our dynamic PIN-HMM approach.

64A formal definition of non-homogeneous Poisson processes can be found in Ross (1996). It differs from definition
3.1 in chapter 3 by little modifications.

65For more details about general characteristics of point processes see Snyder and Miller (1991).
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The authors also state that the following relations holds:

limΔ𝑡→0
Pr(𝑁 (𝑡 + Δ𝑡) − 𝑁 (𝑡) ≥ 2 | ℱ𝑖−1,𝑑)

Δ𝑡 = 0, (6.2)

which precludes the occurrence of multiple trades at a single timestamp.

The 𝑖-th duration on trading day 𝑑 is defined as the difference between timestamps of two
consecutive transactions,

𝑥𝑖,𝑑 = 𝑡𝑖,𝑑 − 𝑡𝑖−1,𝑑 , (6.3)

where 𝑡𝑖,𝑑 and 𝑡𝑖−1,𝑑 are the recorded timestamps of the 𝑖-th and (𝑖 − 1)-th transactions on
trading day 𝑑 and 𝑖 = 1, … ,ℐ𝑑 .

According to Tay, Ting, Tse, and Warachka (2009) we model trade directions with a two-state
ALACDmodel. Let 𝑦𝑞𝑖,𝑑 denote the trade direction of the 𝑖-th transaction on trading day 𝑑 with
condition 𝑞 which takes on values 𝑗 = 1 or −1 representing a buy or sell, respectively. Once an
arrival occurs, either from the point process of buys or sells, both waiting times are reset and
start anew. We can think of each realized trade direction as outcome of a duel of both trade
directions which is the first to arrive.

States of trading days are indicated by 𝑞 with 𝑞 ∈ 𝑄 = {𝒩 , 𝒢 ,ℬ}. Since the conditions of
trading days are unobservable, we need to introduce variables to capture the different settings
for each state. Let 𝑇 𝑞

1,𝑖,𝑑 and 𝑇 𝑞
−1,𝑖,𝑑 denote the random variables for the next potential waiting

times up to the next buy or sell on trading day 𝑑 which resides in state 𝑞, respectively. Hence,
conditional on ℱ𝑖−1,𝑑 , 𝑖-th observed duration is the minimum of the corresponding waiting
times of buys’ and sells’ point processes (see Preve and Tse 2013),

𝑥𝑖,𝑑 = min(𝑇 𝑞
1,𝑖,𝑑 , 𝑇

𝑞
−1,𝑖,𝑑). (6.4)

The trade direction of the 𝑖-th transaction, 𝑦𝑞𝑖,𝑑 , is then given by

𝑦𝑞𝑖,𝑑 = argmin
𝑗=−1,1

(𝑇 𝑞
𝑗,𝑖,𝑑). (6.5)

Latent waiting times of buys and sells are modeled with logarithmic autoregressive conditional
duration (LACD) models (e.g., see Bauwens and Giot 2000). However, asymmetry is introduced
in the specifications (ALACD) to allow for interactions between the waiting times of buys’ and
sells’ point processes (e.g., see Bauwens and Giot 2003).

The durations of buys and sells on a no-news trading day 𝑑 are modeled with

𝑇𝒩
1,𝑖,𝑑 = exp(𝜓𝒩

1,𝑖,𝑑 )𝜌1,𝑖,𝑑 and (6.6)

𝑇𝒩
−1,𝑖,𝑑 = exp(𝜓𝒩

−1,𝑖,𝑑 )𝜌−1,𝑖,𝑑 , (6.7)
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where 𝜌1,𝑖,𝑑 and 𝜌−1,𝑖,𝑑 are iid multiplicative innovations with

𝔼(𝜌1,𝑖,𝑑) = 1 and (6.8)

𝔼(𝜌−1,𝑖,𝑑) = 1, (6.9)

such that the conditional expected waiting times for buys and sells are given by

𝔼(𝑇𝒩
1,𝑖,𝑑 || ℱ𝑖−1,𝑑) = exp(𝜓𝒩

1,𝑖,𝑑) and (6.10)

𝔼(𝑇𝒩
−1,𝑖,𝑑 || ℱ𝑖−1,𝑑) = exp(𝜓𝒩

−1,𝑖,𝑑). (6.11)

The idea behind the class of autoregressive models is that the time dependence of durations

can be subsumed in their conditional expectations so that standardized durations
𝑇𝒩
1,𝑖,𝑑

exp(𝜓𝒩
1,𝑖,𝑑)

and
𝑇𝒩
−1,𝑖,𝑑

exp(𝜓𝒩
−1,𝑖,𝑑)

are iid (e. g. see Bauwens and Giot 2000).

ALACD models can be augmented in such a way that additional exogenous variables 𝑋𝑚,𝑖 are
included, dependencies in the processes are introduced by specifying them in an autoregressive
manner. Thus, general formulations for baseline 𝜓𝒩

1,𝑖,𝑑 and 𝜓𝒩
−1,𝑖,𝑑 on no-news trading days are

given by

𝜓𝒩
1,𝑖,𝑑 = 𝜈1,−1 1{yi-1=-1} +𝜈1,1 1{yi-1=1} +

𝑝
∑
𝑘=1

𝛼1,𝑘𝜓𝒩
1,𝑖−𝑘,𝑑 +

𝑟
∑
𝑙=1

𝛽1,𝑙 log 𝑥𝑖−𝑙,𝑑 +

𝑜
∑
𝑚=1

𝜁1,𝑚𝑋𝑚,𝑖 , (6.12)

𝜓𝒩
−1,𝑖,𝑑 = 𝜈−1,−1 1{yi-1=-1} +𝜈−1,1 1{yi-1=1} +

𝑝
∑
𝑘=1

𝛼−1,𝑘𝜓𝒩
−1,𝑖−𝑘,𝑑 +

𝑟
∑
𝑙=1

𝛽−1,𝑙 log 𝑥𝑖−𝑙,𝑑 +

𝑜
∑
𝑚=1

𝜁−1,𝑚𝑋𝑚,𝑖 , (6.13)

where the indicator function is represented by 1.66 The coefficients 𝜈1,−1, 𝜈1,1 and 𝜈−1,−1, 𝜈−1,1
constitute the intercepts in the equations for buys and sells, respectively. Hence, the waiting
times of buys can influence the durations of sells and vice versa. Coefficients 𝛼1,𝑘 and 𝛼−1,𝑘
correspond to lag 𝑘 of the logarithmic conditional expected duration of buys and sells, coef-
ficients 𝛽1,𝑙 and 𝛽−1,𝑙 describe the influence of the logarithm of the observed durations in the
buys and sells equations. respectively. Additional exogenous variables enter the equations of
waiting times of buys and sells via 𝜁1,𝑚 and 𝜁−1,𝑚. Notice that equations (6.12) and (6.13) are also
assumed to hold for the activity of noise traders when private information induce additional
trading activities by informed market participants.
66How the ALACD recursions are initialized is described in section 8.5.
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6 Dynamic Models using High-Frequency Data

We assume that conditional expected durations of buys on good-news days and sells on bad-
news days decrease in comparison with their no-news counterparts due to the occurrence of
insiders. The reductions of waiting times are not allowed to vary over time and transactions,
they rather represent a decline in the overall level of times between two consecutive buys and
sells. Hence, the autoregressive approaches for buys on good-news days and sells on bad-news
days differ from their equivalents on no-news days by positive constant parameters 𝜏1 and 𝜏−1,
respectively:

𝜓𝒢
1,𝑖,𝑑 = 𝜓𝒩

1,𝑖,𝑑 − 𝜏1, (6.14)

𝜓ℬ
−1,𝑖,𝑑 = 𝜓𝒩

−1,𝑖,𝑑 − 𝜏−1. (6.15)

The conditional expected waiting times for buys on good-news days and sells on bad-news
days are therefore given by

𝔼(𝑇𝒢
1,𝑖,𝑑 || ℱ𝑖−1,𝑑) =

exp(𝜓𝒩
1,𝑖,𝑑)

exp(𝜏1)
= 𝔼(𝑇𝒩

1,𝑖,𝑑 || ℱ𝑖−1,𝑑)
exp(𝜏1)

and (6.16)

𝔼(𝑇ℬ
−1,𝑖,𝑑 || ℱ𝑖−1,𝑑) =

exp(𝜓𝒩
−1,𝑖,𝑑)

exp(𝜏−1)
= 𝔼(𝑇𝒩

−1,𝑖,𝑑 || ℱ𝑖−1,𝑑)
exp(𝜏−1)

. (6.17)

We can see in equations (6.16) and (6.17) that the conditional expected waiting times for buys
(sells) on good-news (bad-news) trading days are proportional to their counterparts on no-news
days. The baseline waiting times of buys and sells on the corresponding information events

are multiplied by the constant factors
1

exp(𝜏1)
≤ 1 and

1
exp(𝜏−1)

≤ 1, respectively. The amount
of buys or sells initiated by insiders relative to the total number of buys or sells on information
events with positive or negative direction of private information is constant.67 But in contrast
to static models, the trading intensity is allowed to vary over trading days.

Since informed traders only buy (sell) on good-news (bad-news) trading days, logarithms of
conditional expected durations of sells (buys) on good-news (bad-news) trading days do not
differ from their baseline specification.

𝜓𝒢
−1,𝑖,𝑑 = 𝜓𝒩

−1,𝑖,𝑑 , (6.18)

𝜓ℬ
1,𝑖,𝑑 = 𝜓𝒩

1,𝑖,𝑑 . (6.19)

Given ℱ𝑖−1,𝑑 , we can utilize equations (6.4) and (6.5) to derive the conditional joint density of

67We explain this more detailed in section 6.3.
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(𝑦𝑞𝑖,𝑑 , 𝑥𝑖,𝑑 ):

𝑦𝑞𝑖,𝑑 = 𝑗 ∧ 𝑥𝑖,𝑑 = 𝜅
⟺ argmin

𝑘=−1,1
(𝑇 𝑞

𝑘,𝑖,𝑑 ) = 𝑗 ∧ min𝑘=−1,1(𝑇
𝑞
𝑘,𝑖,𝑑 ) = 𝜅

⟺ 𝑇 𝑞
𝑗,𝑖,𝑑 = 𝜅 ∧ 𝑇 𝑞

−𝑗,𝑖,𝑑 > 𝜅

Hence, the conditional joint pdf of (𝑦𝑞𝑖,𝑑 , 𝑥𝑖,𝑑 ) for state 𝑞 on trading day 𝑑 can be written as

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(𝑗, 𝜅 | ℱ𝑖−1,𝑑) = 𝑓𝑇 𝑞
𝑗,𝑖,𝑑

(𝜅 | ℱ𝑖−1,𝑑) ⋅ 𝑆𝑇 𝑞
−𝑗,𝑖,𝑑

(𝜅 | ℱ𝑖−1,𝑑) (6.20)

with 𝑗 ∈ {−1, 1}, 𝜅 > 0 and 𝑓𝑇 𝑞
𝑗,𝑖,𝑑

and 𝑆𝑇 𝑞
−𝑗,𝑖,𝑑

denote the pdf and survivor function of 𝑇 𝑞
𝑗,𝑖,𝑑 and

𝑇 𝑞
−𝑗,𝑖,𝑑 , respectively.

Let 𝒪𝑑 denote the observation set for trading day 𝑑 which contains information about waiting
times, trade directions, exogenous variables as well as initial values for the autoregressive spec-
ifications in the processes of waiting times of buys and sells. Hence, 𝒪 = {𝒪𝑑 ∶ 𝑑 = 1, … , 𝐷}
represents the complete sequence of observation sets for trading days under consideration.
Given 𝒪𝑑 , the joint density of durations and trade directions for trading day 𝑑 with state 𝑞 ∈ 𝑄
is given by

𝑝𝑞𝑑 ∶= 𝑝𝑞𝑑(𝜃dyn || 𝒪𝑑) =
ℐ𝑑
∏
𝑖=1

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(𝑗𝑖 , 𝜅𝑖 | ℱ𝑖−1,𝑑)

= ∏
{𝑖∶𝑗𝑖=1}

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(1, 𝜅𝑖 | ℱ𝑖−1,𝑑) ⋅ ∏
{𝑖∶𝑗𝑖=−1}

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(−1, 𝜅𝑖 | ℱ𝑖−1,𝑑), (6.21)

with observed trade direction 𝑗𝑖 and observed durations 𝜅𝑖 > 0.
The vector of model parameters, 𝜃dyn, depends on parameters of the ALACD specifications for
buys and sells and possibly additional time-invariant parameters of the waiting times’ distri-
butions.

Since point processes for buys and sells after theℐ𝑑 -th transaction do not arrive before official
closing of the market, we cannot determine the initiator of the trade nor can we observe the
corresponding duration. Taking this into account, we incorporate the additional factor

𝑆𝑇 𝑞
1,𝑖,𝑑

(RTℐ𝑑+1,𝑑 | ℱ𝑖−1,𝑑)𝑆𝑇 𝑞
−1,𝑖,𝑑

(RTℐ𝑑+1,𝑑 | ℱ𝑖−1,𝑑) (6.22)

into the joint density in equation (6.21). The remaining trading time after theℐ𝑑 -th transaction
is represented by RTℐ𝑑+1,𝑑 = TT𝑑 −∑ℐ𝑑

𝑖=1 𝑥𝑖,𝑑 with total trading time TT𝑑 .

We will conclude this introductory section about dynamic models for the probability of in-
formed trading with a more useful notation of the general conditional intensity function in
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6 Dynamic Models using High-Frequency Data

equation (6.1). According to Engle and Russell (1998), we can rewrite the conditional intensity
function as

𝜆𝑇 𝑞
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = 𝜆𝜌𝑗,𝑖,𝑑(
𝑥

exp(𝜓 𝑞
𝑗,𝑖,𝑑)

) 1
exp(𝜓 𝑞

𝑗,𝑖,𝑑)
(6.23)

with duration 𝑥 = (𝑡 − 𝑡𝑖−1) > 0.
As we will see later, equation (6.23) is essential for calculating the probability of informed
trading in the dynamic setup.

6.1 Model by Tay, Ting, Tse and Warachka
(PIN-ALACD)

Tay, Ting, Tse, and Warachka (2009) assume that buys and sells follow latent stochastic point
processes with time-varying intensities whose waiting times are exponentially distributed. Ac-
cording to equations (6.10) and (6.11), conditional expectations of 𝑇 𝑞

𝑗,𝑖,𝑑 are given by exp(𝜓 𝑞
𝑗,𝑖,𝑑).

Since the first moment of the exponential distribution is identical to its scale parameter68, given
the information set ℱ𝑖−1,𝑑 , the pdf and survivor function of 𝑇 𝑞

𝑗,𝑖,𝑑 can be written as

𝑓𝑇 𝑞
𝑗,𝑖,𝑑

(𝑥; exp(𝜓 𝑞
𝑗,𝑖,𝑑) || ℱ𝑖−1,𝑑) =

1
exp(𝜓 𝑞

𝑗,𝑖,𝑑)
exp(− 𝑥

exp(𝜓 𝑞
𝑗,𝑖,𝑑)

) and (6.24)

𝑆𝑇 𝑞
𝑗,𝑖,𝑑

(𝑥; exp(𝜓 𝑞
𝑗,𝑖,𝑑) || ℱ𝑖−1,𝑑) = exp(− 𝑥

exp(𝜓 𝑞
𝑗,𝑖,𝑑)

). (6.25)

with 𝑥 > 0. Since the mean of an exponential distribution is identical to its scale parameter,
ALACD models are applied to the logarithmic scale parameters of buys’ and sells’ interarrival
times distributions.

An ALACD(1,1,1) model is utilized in which the lagged signed logarithm of the volume assigned
to each transaction record acts as sole exogenous variable. According to the formulations of
the conditional expected durations on no-news days in equations (6.12) and (6.13), lagged log-
arithmic conditional expected durations 𝜓𝒩

𝑗,𝑖−1,𝑑 and lagged logarithmic observed durations
log 𝑥𝑖−1,𝑑 are included. Hence, the specifications for the logarithmic conditional expected du-
rations on a no-news trading day 𝑑 are given by

𝜓𝒩
𝑗,𝑖,𝑑 = 𝜈𝑗,−1 1{yi-1=-1} +𝜈𝑗,1 1{yi-1=1} +𝛼𝑗𝜓

𝒩
𝑗,𝑖−1,𝑑 + 𝛽𝑗 log 𝑥𝑖−1,𝑑 + 𝜁𝑗𝑦𝑖−1,𝑑 log 𝑣𝑖−1,𝑑 , (6.26)

where 𝑦𝑖−1,𝑑 log 𝑣𝑖−1,𝑑 denotes the lagged signed logarithmic volume.
68The exponential distribution is defined in many introductory statistical textbooks (e.g., see Johnson, Kotz, and

Balakrishnan 1994).
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6.1 Model by Tay, Ting, Tse and Warachka (PIN-ALACD)

According to equations (6.14) – (6.15), specifications on good-news and bad-news trading days
are based on equation (6.26). Influence on durations induced by information-based trading is
captured by a single parameter 𝜏 = 𝜏1 = 𝜏−1. Hence, we can write the ALACD specification for
buys and sells on a good-news trading day 𝑑 as

𝜓𝒢
1,𝑖,𝑑 =𝜓𝒩

1,𝑖,𝑑 − 𝜏
=𝜈1,−1 1{yi-1=-1} +𝜈1,1 1{yi-1=1} −(1 − 𝛼1)𝜏 + 𝛼1𝜓𝒢

1,𝑖−1,𝑑 + 𝛽1 log 𝑥𝑖−1,𝑑+
𝜁1𝑦𝑖−1,𝑑 log 𝑣𝑖−1,𝑑 and (6.27)

𝜓𝒢
−1,𝑖,𝑑 =𝜓𝒩

−1,𝑖,𝑑 . (6.28)

Likewise, for a bad-news trading day 𝑑 they are given by

𝜓ℬ
1,𝑖,𝑑 =𝜓𝒩

1,𝑖,𝑑 and (6.29)

𝜓ℬ
−1,𝑖,𝑑 =𝜓𝒩

−1,𝑖,𝑑 − 𝜏
=𝜈−1,−1 1{yi-1=-1} +𝜈−1,1 1{yi-1=1} −(1 − 𝛼−1)𝜏 + 𝛼−1𝜓ℬ

−1,𝑖−1,𝑑 + 𝛽−1 log 𝑥𝑖−1,𝑑+
𝜁−1𝑦𝑖−1,𝑑 log 𝑣𝑖−1,𝑑 . (6.30)

Since the waiting times for both trade directions are supposed to follow exponential distribu-
tions, we can rewrite equation (6.20) as

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(𝑗, 𝜅
|| ℱ𝑖−1,𝑑) =

1
exp(𝜓 𝑞

𝑗,𝑖,𝑑)
exp(− 𝜅

exp(𝜓 𝑞
𝑗,𝑖,𝑑)

) exp(− 𝜅
exp(𝜓 𝑞

−𝑗,𝑖,𝑑)
). (6.31)

It can be shown that duration and trade direction are independent, given information until
(𝑖 − 1)-th transaction ℱ𝑖−1,𝑑 (see Tay, Ting, Tse, and Warachka 2009).

State probabilities 𝜋𝑞,𝑑 for trading days are modeled using an approach similar to logistic re-
gression. Let 𝑉 𝐵𝑑 and 𝑉 𝑆

𝑑 denote the daily aggregated volume of buyer- and seller-initiated
transactions, respectively. Average volumes of buys and sells over all underlying trading days
are given by ̄𝑉 𝐵 and ̄𝑉 𝑆 . State probability 𝜋𝒩 ,𝑑 that trading day 𝑑 resides in no-news condition
compares daily total aggregated volume, 𝑉 𝐵𝑑 + 𝑉 𝑆

𝑑 , with its average value, ̄𝑉 𝐵 + ̄𝑉 𝑆 ,

𝜋𝒩 ,𝑑 = 1
1 + exp(𝛿1 + 𝛿2(log(𝑉 𝐵𝑑 + 𝑉 𝑆

𝑑 ) − log( ̄𝑉 𝐵 + ̄𝑉 𝑆))) , (6.32)

where the parameter 𝛿2 is expected to be positive and 𝛿1 can be interpreted as intercept or
scaling parameter and underlies no sign restriction. The conditional probability of good-news
trading days given an information event, 𝜋𝒢 ,𝑑,cond., is calculated incorporating the relation
between daily aggregated volume of buys and sells and their averages,

𝜋𝒢 ,𝑑,cond. =
1

1 + exp(𝛿3(log(𝑉 𝑆
𝑑 ) − log( ̄𝑉 𝑆)) − 𝛿4(log(𝑉 𝐵𝑑 ) − log( ̄𝑉 𝐵))) , (6.33)
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6 Dynamic Models using High-Frequency Data

where both coefficients 𝛿3 and 𝛿4 are expected to be positive. Thus, unconditional probability
of private information with positive direction entering the market on trading day 𝑑 is given
by

𝜋𝒢 ,𝑑 = (1 − 𝜋𝒩 ,𝑑)𝜋𝒢 ,𝑑,cond.. (6.34)

Finally, the probability of a bad-news trading day 𝑑 calculates as

𝜋ℬ,𝑑 = (1 − 𝜋𝒩 ,𝑑)(1 − 𝜋𝒢 ,𝑑,cond.). (6.35)

At this point, we need to explain potential shortcomings of the approach for state probabilities
by Tay, Ting, Tse, and Warachka (2009). The ad-hoc specifications of probabilities in their
model only utilize daily aggregated volumes of buys and sells and averages thereof. These
measures are not endogenously modeled and do not have any impact on the autoregressive
setting of interarrival times. Trading days with a small number of trades with a large volume
can already trigger an increase in equations (6.34) or (6.35). Similarly, this can be induced by
trading days with slightly higher trading activities and ordinary volume of trades. While one
expects a higher volume of trades or a higher number of transactions on trading days on which
insiders enter the market, this can also be caused by noise traders. Therefore the probability
modeling by Tay, Ting, Tse, and Warachka (2009) is prone to overreacting to trading activities
by non-informed traders.

For the PIN-ALACD model to be confident about labeling a trading day as non-information
event the total aggregated volume for this day may vary only little from the corresponding
average value over the total time span of the underlying data. Depending on the length of the
time range and the marketplace the equities under consideration are traded such constellations
are rare. To achieve a (very) high probability for an information event, the aggregated volume
of the corresponding trade direction needs be (very) high while the opposite trading direction
is close to its overall average. This together leads to the situation that the PIN-ALACDmodel is
unsure about the condition for almost every single trading. Furthermore, the volumes of buys
and sells are treated as exogenous variables which implies the knowledge of the winner of the
sprint between the durations of buys and sells over all trading days. This does not match the
dynamic approaches for the probability of informed trading and leads to circular reasoning.

Harnessing equation (6.21) we can write the likelihood function for a total of 𝐷 trading days
as

ℒ(𝜃dyn || 𝒪) =
𝐷
∑
𝑑=1

log(∑
𝑞∈𝑄

𝜋𝑞,𝑑 ⋅ 𝑝𝑞𝑑), (6.36)

where the length of the parameter vector 𝜃dyn equals 15. It consists of four parameters which
are involved in the modelling of state probabilities 𝜋𝑞,𝑑 (𝛿1, 𝛿2, 𝛿3, 𝛿4), five parameters of the
ALACD specification for each trade direction (𝜈𝑗,−1, 𝜈𝑗,1, 𝛼𝑗 , 𝛽𝑗 , 𝜈𝑗 ) and the adjustment parame-
ter 𝜏 to control for insider trading.
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6.2 PIN-HMMModel

In the original work by Tay, Ting, Tse, and Warachka (2009), the additional factor in equation
(6.22) is not incorporated in the joint density of trade directions and durations on trading day
𝑑 . This can be interpreted as setting the remaining trading time after the ℐ𝑑 -th transaction to
zero and therefore artificially shorten total trading time. To exactly reproduce their approach,
we also do not utilize equation (6.22) in optimizations. However, remaining trading times are
usually not larger than several seconds and therefore the effects of ignoring this information
should be limited.

The calculation of the probability of informed trading in the context of the dynamic models is
elaborated in section 6.3. The section is based on themethod described in thework by Tay, Ting,
Tse, andWarachka (2009) but we generalize it to differentiate between PIN driven by good and
bad news. Since the empirical results and graphics in chapter 11 rely on our generalized PIN
estimators, we refrain to describe the baseline method by Tay, Ting, Tse, and Warachka (2009)
in this section of the thesis.

6.2 PIN-HMMModel
Our model for the probability of informed trading is based on and extends the model intro-
duced by Tay, Ting, Tse, and Warachka (2009) which was discussed in the previous section.
However, we choose a completely different approach for modelling state probabilities. In the
PIN-ALACD model, states of trading days are assumed to be independent. We relax this as-
sumption by utilizing hidden Markov models for the state probabilities of trading days which
yields dependencies in the sequence of trading days’ conditions in such a way that the cur-
rent state depends on its predecessor. This considers that information events may last for
several trading periods or that private news are not instantaneously available to the entity
of information-based market participants. Private information diffuses among the group of
insiders so that they are heterogeneously informed for a certain amount of time.

Furthermore, we gain additional insights by transition probabilities which show the most prob-
able state of the next trading day if the current resides in state 𝑞. To the best of our knowledge,
we are the first introducing hidden Markov models in the context of dynamic models for esti-
mating the probability of informed trading.69

While Tay, Ting, Tse, and Warachka (2009) assume buys and sells to follow latent stochastic
point processes whose interarrival times are exponentially distributed, our empirical results
show that this distribution is not an appropriate choice for the durations of buys and sells (see
chapter 11). To fortify our findings, several publications which reject the assumption of an
exponential distribution for ACD models are mentioned in the work by Pacurar (2008). The
flat conditional intensity function is often not sufficient, especially in financial applications (see
Pacurar 2008).
69The work by Yin and Zhao (2015) utilizes hidden Markov chains in the context of static PIN models but instead

of modelling the sequence of trading days’ conditions, they model the aggregated number of buys and sells per
day.
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We assume the durations of both trade directions to follow a two-parameter Weibull distribu-
tion with pdf 𝑓𝑇 𝑞

𝑗,𝑖,𝑑
and survivor function 𝑆𝑇 𝑞

𝑗,𝑖,𝑑
which are given by70

𝑓𝑇 𝑞
𝑗,𝑖,𝑑

(𝑥; 𝑘𝑗 , exp(𝜙𝑞𝑗,𝑖,𝑑)) =
𝑘𝑗

exp(𝜙𝑞𝑗,𝑖,𝑑)
( 𝑥
exp(𝜙𝑞𝑗,𝑖,𝑑)

)
𝑘𝑗−1

exp(−( 𝑥
exp(𝜙𝑞𝑗,𝑖,𝑑)

)
𝑘𝑗
), (6.37)

𝑆𝑇 𝑞
𝑗,𝑖,𝑑

(𝑥; 𝑘𝑗 , exp(𝜙𝑞𝑗,𝑖,𝑑)) = exp(−( 𝑥
exp(𝜙𝑞𝑗,𝑖,𝑑)

)
𝑘𝑗
), (6.38)

with 𝑥 > 0, shape parameter 𝑘𝑗 > 0 and scale parameter exp(𝜙𝑞𝑗,𝑖,𝑑). It can easily be seen that the
Weibull distribution encompasses the exponential distribution for the special case that 𝑘𝑗 = 1.
We do not impose a restriction on the shape parameters of buys and sells to be identical.

The expected conditional durations of buys and sells are proportional to the scale parameters
of corresponding Weibull distributions:

𝔼(𝑇 𝑞
1,𝑖,𝑑 || ℱ𝑖−1) = exp(𝜓 𝑞

1,𝑖,𝑑) = exp(𝜙𝑞1,𝑖,𝑑)Γ(1 +
1
𝑘1

), (6.39)

𝔼(𝑇 𝑞
−1,𝑖,𝑑 || ℱ𝑖−1) = exp(𝜓 𝑞

−1,𝑖,𝑑) = exp(𝜙𝑞−1,𝑖,𝑑)Γ(1 +
1
𝑘−1

). (6.40)

Both shape parameters, 𝑘1 and 𝑘−1, are assumed to be time-invariant.

Baseline specifications for buys and sells on no-news trading days are identical to those in
the PIN-ALACD model and can be read from equation (6.26). According to equations (6.14) –
(6.15), specifications for the logarithms of the conditional expected durations of buys on good-
news days and sells on trading days which reside in bad-news state are given by the baseline
specifications reduced by the constant positive parameters 𝜏1 and 𝜏−1, respectively.
In the Weibull case, we can rewrite equation (6.20) as

𝑝𝑞(𝑦𝑞𝑖,𝑑 ,𝑥𝑖,𝑑)(𝑗, 𝜅 | ℱ𝑖−1,𝑑) =
𝑘𝑗

exp(𝜙𝑞𝑗,𝑖,𝑑)
( 𝜅
exp(𝜙𝑞𝑗,𝑖,𝑑)

)
𝑘𝑗−1

exp(−( 𝜅
exp(𝜙𝑞𝑗,𝑖,𝑑)

)
𝑘𝑗
)⋅

exp(−( 𝜅
exp(𝜙𝑞−𝑗,𝑖,𝑑)

)
𝑘−𝑗

). (6.41)

Conditional onℱ𝑖−1,𝑑 , duration and trade direction are no longer independent in our approach
if 𝑘1 ≠ 𝑘−1.
70Tay, Ting, Tse, and Warachka (2007) and Tay, Ting, Tse, and Warachka (2009) give some key results for the

Weibull distribution used for ACD residuals but report that results are similar to the exponential distribution
and therefore use the simpler one. Furthermore, they assume the shape parameters of distributions for buys’
and sells’ waiting times to be identical.
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6.2.1 Hidden Markov Models (HMM)

We model the sequence of trading days’ conditions with a Markov chain, which introduces
dependencies between the current state and its predecessor. An information event may highly
likely be followed by another trading day on which private information enter the market. This
may be the case, especially, if we switch from a daily basis to (very) short intraday intervals.

However, states of trading days are not observable, we only can observe observation set 𝒪𝑑
which depends on the underlying condition. Hence, this leads us to hidden Markov models
(HMM). This section intends to give a brief introduction to (hidden) Markov chains and to il-
lustrate the general idea of our approach.71 Furthermore, in the subsequent section, we give a
compact description of the forward-backward algorithm which we utilize for estimation pur-
poses.

A stochastic process in discrete time with a finite or countable set of states and which satisfies
the Markov property is called a Markov Chain. A definition of the Markov property is given
below (similar to Isaacson and Madsen 1976):

Definition 6.1. A stochastic process {𝑋𝑑 }, with 𝑑 = 1, 2, … , 𝐷, with finite or countable state space
𝑄 = {1, 2, …} is said to satisfy the Markov property if for every 𝑑 ≥ 2 and all states 𝑞1, 𝑞2, … , 𝑞𝑑 it
is true that

Pr(𝑋𝑑 = 𝑞𝑑 || 𝑋𝑑−1 = 𝑞𝑑−1, 𝑋𝑑−2 = 𝑞𝑑−2, … , 𝑋1 = 𝑞1) = Pr(𝑋𝑑 = 𝑞𝑑 || 𝑋𝑑−1 = 𝑞𝑑−1) (6.42)

Markov Chains are often supposed to be time-homogeneous which means that the conditional
probability of being in state 𝑞𝑑 ∈ 𝑄 = {𝒩 , 𝒢 ,ℬ} at trading day 𝑑 , given that the condition of
its predecessor is known, is time-invariant. Thus, a general definition can be written as (similar
to Isaacson and Madsen 1976):

Definition 6.2. A discrete-time Markov chain is said to be homogeneous in time if the probability
of going from one state to another is independent of the time at which the step is being made. That
is, for all states 𝑚 and 𝑛 with 𝑚, 𝑛 ∈ 𝑄,

Pr(𝑋𝑑 = 𝑚 | 𝑋𝑑−1 = 𝑛) = Pr(𝑋𝑑+𝑙 = 𝑚 | 𝑋𝑑+𝑙−1 = 𝑛), (6.43)

for 𝑙 = −(𝑑 − 2), −(𝑑 − 3), … , −1, 0, 1, 2, … , 𝐷 − 𝑑 and 𝑑 = 1, 2, … , 𝐷.

The conditional probabilities in equation (6.43) are typically called transition probabilities and
stored in a square matrix (transition matrix) with the pre-transition state as the row and the
post-transition state as the column. This matrix is row-stochastic which means all elements
are non-negative and do not exceed a value of 1. In addition, row-sums of the transition matrix
are always identical to unity.
71 For instance, the works by Couvreur (1996) or Zucchini and MacDonald (2009) provide much more detailed

descriptions of (hidden) Markov chains and their extensions.
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Let 𝜔𝑑 = (𝜔𝒩 ,𝑑 , 𝜔𝒢 ,𝑑 , 𝜔ℬ,𝑑) denote the probability distribution of states for trading day 𝑑
with 𝜔𝑞,𝑑 = Pr(𝑋𝑑 = 𝑞) and ∑𝑞∈𝑄 𝜔𝑞,𝑑 = 1. Due to the time-homogeneous property of the
Markov Chain, probability distribution of states for trading day 𝑑 can be expressed by initial
state probabilities 𝜔0 and 𝑑-fold multiplication of the transition matrix 𝐴:

𝜔1 = 𝜔0𝐴
𝜔2 = 𝜔0𝐴2

⋮
𝜔𝑑 = 𝜔0𝐴𝑑 (6.44)

We suppose the Markov chain to be stationary which implies that the probability distribution
for states is identical on each trading day 𝑑 . The following proposition together with its proof
can be found in Konstantopoulos (2009).

Proposition 6.1. A discrete-time Markov chain (𝑋𝑑 , 𝑑 = 1, 2, … , 𝐷) is stationary if and only if it
is time-homogeneous and 𝑋𝑑 has the same distribution as 𝑋𝑙 for all 𝑑 and 𝑙.

This means that a time-homogeneous Markov chain is stationary if and only if the distribution
of states does not change over trading days. According to equation (6.44) 𝜔𝑑 depends on the
initial state probabilities in such a way that the Markov chain is stationary if and only if the
following relation holds for 𝜔0:

𝜔0 = 𝜔0𝐴. (6.45)

For the remainder of this work 𝜔 = (𝜔𝒩 , 𝜔𝒢 , 𝜔ℬ) denotes the stationary distribution of the
Markov chain and is calculated according to equation (6.45). Similarly to previously presented
approaches we differentiate between three states: namely no-news, good-news, bad-news.
Hence, the finite state space for our Markov Chain of trading days’ conditions is given by
𝑄 = {𝒩 , 𝒢 ,ℬ}. This yields a transition matrix 𝐴 ∈ ℝ3×3 with

𝐴 =
⎛
⎜⎜
⎝

𝑎𝒩 𝒩 𝑎𝒩 𝒢 𝑎𝒩ℬ
𝑎𝒢𝒩 𝑎𝒢𝒢 𝑎𝒢ℬ
𝑎ℬ𝒩 𝑎ℬ𝒢 𝑎ℬℬ

⎞
⎟⎟
⎠
, (6.46)

where 𝑎𝑚𝑛 = Pr(𝑋𝑑 = 𝑛 | 𝑋𝑑−1 = 𝑚) with 𝑚, 𝑛 ∈ 𝑄. The corresponding state diagram is shown
in figure 6.1. A Markov chain is fully described by the transition matrix 𝐴 and the stationary
distribution 𝜔.

The case that trading days’ conditions are independent is also nested in the HMM approach.
If all rows of the matrix 𝐴 in equation (6.46) are identical (i.e., 𝑎𝒩 𝒩 = 𝑎𝒢𝒩 = 𝑎ℬ𝒩 , … ),
irrelevant of the condition of the current trading day the probability that the next day resides
in state 𝑞 ∈ 𝑄 is the same in all three possible scenarios.

HMM differ from standard Markov chains by assuming that states are not observable. Rabiner
and Juang (1986) give a compact but suitable description of the class of HMM:
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no-news

good-news bad-news

𝑎𝒩 𝒢

𝑎𝒢𝒩

𝑎𝒢ℬ

𝑎ℬ𝒩

𝑎ℬ𝒢
𝑎𝒩ℬ

𝑎𝒩 𝒩

𝑎𝒢𝒢 𝑎ℬℬ

Figure 6.1: Transition probabilities for Markov chain of trading days’ conditions.

An HMM is a doubly stochastic process with an underlying stochastic process that
is not observable (it is hidden), but can only be observed through another set of
stochastic processes that produce the sequence of observed symbols.

Thus, in our setting the underlying non-observable stochastic process is represented by the
sequence of trading days’ conditions. On each trading day we observe realizations of the latent
stochastic point processes for buys and sells.72 In addition, prices, quotes and volumes are
observable. However, we do not make any assumption about the data generating process for
these measures and treat them as exogenous variables as they enter the model.

Beside the stationary distribution and transitionmatrix of theMarkov chain, so-called emission
densities are required to fully describe theHMM.Given the state of trading day 𝑑 , durations and
trade directions are emitted according to their conditional joint density for which the general
structure is given in equation (6.21). Hence, the HMM is fully described by the setℋ = (𝜔, 𝐴, 𝐵)
with 3 × 𝐷 matrix of conditional emission densities 𝐵 = {𝑝𝑞𝑑 }.

72For the markets under consideration in this work we need to utilize a classification algorithm to assign trade
direction to each record in our dataset (see section 8.6).
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6.2.2 Forward-Backward Algorithm

Parameters of our HMM are estimated by utilizing the forward-backward algorithm (e. g. see
Baum, Petrie, Soules, andWeiss 1970, Couvreur 1996) which intends tomaximize the probability
of the observation sequence 𝒪 given the parameters of our HMM approach,

Pr(𝒪 | ℋ), (6.47)

where ℋ consists of transition probabilities as well as parameters controlling the densities
of buys’ and sells’ interarrival times. The ALACD models for buys and sells each have five
parameters for specifying the baseline conditional duration recursion for a no-news trading
day. Both trade directions exhibit one parameter for adjustment of conditional durations due
to information-based trading. Finally, six entries of the transition matrix are sufficient to de-
termine the switching between states.73 Therefore, we have a total of 20 parameters which
influence the probability in equation (6.47) and need to be estimated.

As the name suggests the estimation algorithm consists of two parts, whereas one directs for-
ward in time and the other backwards. The algorithm delivers likelihood function values and
so-called smoothed probabilities 𝜋𝑞,𝑑 , where 𝜋𝑞,𝑑 is the probability of trading day 𝑑 residing in
state 𝑞 ∈ 𝑄 = {𝒩 , 𝒢 ,ℬ} given the complete sequence of observation sets 𝒪 .

Define the forward term 𝛼𝑞(𝑑) as the joint probability of observing the first 𝑑 days’ data and
being in state 𝑞 on trading day 𝑑 ,

𝛼𝑞(𝑑) = Pr(𝒪1, 𝒪2, … , 𝒪𝑑 ; 𝑞𝑑 = 𝑞 || ℋ), 𝑞 ∈ 𝑄. (6.48)

Equation (6.48) depends on lagged forward probabilities of all states and corresponding ele-
ments of the transition matrix. It can be evaluated according to the recursion

𝛼𝑞(𝑑) = 𝑝𝑞𝑑 ⋅ ∑
𝑘∈𝑄

𝛼𝑘(𝑑 − 1)𝑎𝑘,𝑞 , ∀𝑞 ∈ 𝑄. (6.49)

The recursion is initialized with

𝛼𝑞(1) = 𝜔𝑞𝑝𝑞1 , ∀𝑞 ∈ 𝑄 = {𝒩 , 𝒢 ,ℬ}. (6.50)

Let the backward term 𝛽𝑞(𝑑) be the joint probability of the partial observation sequence after
trading day 𝑑 given the state of day 𝑑 is 𝑞,

𝛽𝑞(𝑑) = Pr(𝒪𝑑+1, 𝒪𝑑+2, … , 𝒪𝐷 || 𝑞𝑑 = 𝑞,ℋ), 𝑞 ∈ 𝑄. (6.51)

Recursion of backward probabilities is initialized with

𝛽𝑞(𝐷) = 1, ∀𝑞 ∈ 𝑄. (6.52)
73We can harness the fact that the transition matrix is row-stochastic. Hence, only two elements of each row need

to be estimated.
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Backward terms for the remaining trading days 𝑑 = 𝐷 − 1,… , 1 can be calculated with the
following formula

𝛽𝑞(𝑑) = ∑
𝑘∈𝑄

𝑎𝑞,𝑘𝑝𝑘𝑑+1𝛽𝑘(𝑑 + 1), ∀𝑞 ∈ 𝑄. (6.53)

The joint probability of the complete observation sequence 𝒪 and state 𝑞 on trading day 𝑑 can
be written as

Pr(𝒪, 𝑞𝑑 = 𝑞 || ℋ) = Pr(𝒪1, … , 𝒪𝑑 ; 𝑞𝑑 = 𝑞 || ℋ) ⋅ Pr(𝒪𝑑+1, … , 𝒪𝐷 || 𝒪1, … , 𝒪𝑑 ; 𝑞𝑑 = 𝑞,ℋ)
= Pr(𝒪1, … , 𝒪𝑑 ; 𝑞𝑑 = 𝑞 || ℋ) ⋅ Pr(𝒪𝑑+1, … , 𝒪𝐷 || 𝑞𝑑 = 𝑞,ℋ)
= 𝛼𝑞(𝑑)𝛽𝑞(𝑑), (6.54)

since the conditional probability of observing 𝒪𝑑+1, … , 𝒪𝐷 , given that we know the condition
of trading day 𝑑 , is independent of the observation sets of the preceding trading days𝒪1, … , 𝒪𝑑 .
Hence the probability of the complete observation sequence is given as the sum of equation
(6.54) over all possible states of a trading day, namely no-news, good-news and bad-news,

Pr(𝒪 | ℋ) = ∑
𝑘∈𝑄

Pr(𝒪, 𝑞𝑑 = 𝑘 || ℋ)

= ∑
𝑘∈𝑄

𝛼𝑘(𝑑)𝛽𝑘(𝑑). (6.55)

This relation holds for any trading day 𝑑 , so by letting 𝑑 = 𝐷 and incorporating equation (6.52)
the likelihood function can be written as

Pr(𝒪 | ℋ) = ∑
𝑘∈𝑄

𝛼𝑘(𝐷). (6.56)

Finally, the (conditional) smoothed probability 𝜋𝑞,𝑑 that trading day 𝑑 resides in state 𝑞 can be
calculated with

𝜋𝑞,𝑑 = Pr(𝑞𝑑 = 𝑞 || 𝒪,ℋ) = 𝛼𝑞(𝑑)𝛽𝑞(𝑑)
∑
𝑘∈𝑄

𝛼𝑘(𝐷)
, 𝑞 ∈ 𝑄. (6.57)

Exemplarily, forward- and backward-probabilities involved in computing the joint probability
that the Markov chain spends trading day 𝑑 in a no-news state and observing 𝒪 are displayed
in figure 6.2.

Similar to static models, floating point exceptions are a potential problem in optimizations in
the context of the dynamic models for the probability of informed trading. Our stable imple-
mentations of all involved functions, which minimize the occurrence of them, are described in
chapter 7. In addition, to even further stabilize the estimation procedure, we decided to repa-
rameterize the transition probabilities. The corresponding expression can be found in equations
(7.1) - (7.6).
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no-news no-news

trading day 𝑑

no-news

𝛼𝒩 (𝑑)𝛽𝒩 (𝑑)

good-news

trading day 𝑑 − 1

good-news

trading day 𝑑 + 1

bad-news

𝛼𝑞(𝑑 − 1)

bad-news

𝛽𝑞(𝑑 + 1)

𝑎𝒩 𝒩

𝑎𝒢𝒩

𝑎ℬ𝒩

𝑎𝒩 𝒩

𝑎𝒩 𝒢

𝑎𝒩ℬ

Figure 6.2: Visualization of forward- and backward-probabilities involved in computing the joint
probability that the Markov chain spends trading day 𝑑 in a no-news state and observing
𝒪 .

At the time of writing, there are no equivalents to the algorithms for generating sets of initial
values in static PIN models. Therefore, we follow Tay, Ting, Tse, and Warachka (2009) and
generate multiple, randomly drawn, sets of initial values for optimization purposes and utilize
the best result to calculate the probability of informed trading and all related measures.

6.3 Computation of the Probability of
Informed Trading

The probability of informed trading in the dynamic model setup can be calculated harnessing
the conditional intensity function of the point processes for buys and sells in equation (6.23).
According to Basu and Rigdon (2001), the non-homogeneous Poisson processes for buys and
sells have the property that the conditional expected number of transactions in the interval
(𝑡𝑖−1, 𝑡], with 𝑡 > 𝑡𝑖−1, on trading day 𝑑 which resides in state 𝑞 is equal to the conditional
cumulative intensity function given by

𝔼(𝑁(𝑡𝑖−1,𝑡] | ℱ𝑖−1,𝑑) = Λ𝑇 𝑞
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) =
𝑡

∫
𝑡𝑖−1

𝜆𝑇 𝑞
𝑗,𝑖,𝑑

(𝑟 | ℱ𝑖−1,𝑑) d𝑟 . (6.58)
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In the PIN-ALACD model waiting times of buys and sells are supposed to follow exponential
distributions. To fulfill the assumption that 𝔼(𝜌𝑗,𝑖,𝑑) = 1, we need to set the scale parameter
for the distribution of ALACD error terms to unity. According to equation (6.23) and since the
hazard function of an exponential distribution is identical to its scale parameter, the hazard
function of 𝜌𝑗,𝑖,𝑑 is constant and identical to 1.

The conditional intensity function for trade direction 𝑗 at timestamp 𝑡 > 𝑡𝑖−1 on trading day 𝑑
which resides in no-news state is then given by

𝜆𝑇𝒩
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = 𝜆𝜌𝑗,𝑖,𝑑(
𝑡 − 𝑡𝑖−1

exp(𝜓𝒩
𝑗,𝑖,𝑑)

) 1
exp(𝜓𝒩

𝑗,𝑖,𝑑)
= 1

exp(𝜓𝒩
𝑗,𝑖,𝑑)

. (6.59)

Utilizing the relation in equation (6.58), the expected number of buyer- or seller-initiated trans-
actions in the half-open interval (𝑡𝑖−1, 𝑡𝑖] on a no-news trading day 𝑑 can be calculated as the
corresponding conditional cumulative intensity function,

Λ𝑇𝒩
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) =
𝑡

∫
𝑡𝑖−1

1
exp(𝜓𝒩

𝑗,𝑖,𝑑)
d𝑟

= 𝑡 − 𝑡𝑖−1
exp(𝜓𝒩

𝑗,𝑖,𝑑)
. (6.60)

According to equations (6.27) and (6.29) the expected numbers of buys and sells on good-news
and bad-news days can be computed with

Λ𝑇𝒢
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = exp(𝜏)Λ𝑇𝒩
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), Λ𝑇𝒢
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = Λ𝑇𝒩
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) (6.61)

Λ𝑇ℬ
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = Λ𝑇𝒩
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), Λ𝑇ℬ
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = exp(𝜏)Λ𝑇𝒩
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), (6.62)

respectively.

For the Weibull distribution in the PIN-HMM model, the scale parameter exp(𝜙𝑞𝑗,𝑖,𝑑) is pro-
portional to the conditional expected duration. This procedure yields modified ALACD error
terms ̃𝜌𝑗,𝑖,𝑑 = Γ(1 + 1

𝑘𝑗
)𝜌𝑗,𝑖,𝑑 with 𝔼( ̃𝜌𝑗,𝑖,𝑑) = Γ(1 + 1

𝑘𝑗
). The corresponding hazard function

is therefore given by 𝜆 ̃𝜌𝑗,𝑖,𝑑 (𝑥) = 𝑘𝑗𝑥𝑘𝑗−1 with shape parameter 𝑘𝑗 and unitary scale parame-
ter. Again utilizing equation (6.23), the conditional intensity function of trade direction 𝑗 on
trading day 𝑑 with no-news state is given by

𝜆𝑇𝒩
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = 𝜆𝜌𝑗,𝑖,𝑑(
𝑡 − 𝑡𝑖−1

exp(𝜙𝒩𝑗,𝑖,𝑑)
) 1
exp(𝜙𝒩𝑗,𝑖,𝑑)

= 𝑘𝑗(𝑡 − 𝑡𝑖−1)𝑘𝑗−1

exp(𝜙𝒩1,𝑖,𝑑)
𝑘𝑗 . (6.63)
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6 Dynamic Models using High-Frequency Data

Therefore the corresponding conditional cumulative intensity functions of buys and sells in the
PIN-HMM model can be written as

Λ𝑇𝒩
𝑗,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = ( 𝑡 − 𝑡𝑖−1
exp(𝜙𝒩𝑗,𝑖,𝑑)

)
𝑘𝑗
. (6.64)

Similarly to the PIN-ALACD model, we can express the expected number of buys and sells on
good-news and bad-news trading days in terms of expected amounts of corresponding trans-
actions on no-news days by utilizing equations (6.14) and (6.15),

Λ𝑇𝒢
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = exp(𝜏1𝑘1)Λ𝑇𝒩
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), Λ𝑇𝒢
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = Λ𝑇𝒩
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) (6.65)

Λ𝑇ℬ
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = Λ𝑇𝒩
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), Λ𝑇ℬ
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑) = exp(𝜏−1𝑘−1)Λ𝑇𝒩
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑).
(6.66)

The aggregated expected total numbers of buys and sells for trading day 𝑑 depending on its
condition 𝑞 can be calculated by summing the corresponding conditional cumulative intensity
function over all transactions, and the time window starting from the timestamp of the last
observable trade until official market closing, which yield

Λ𝑞
1,𝑑 =

ℐ𝑑+1
∑
𝑖=1

Λ𝑇 𝑞
1,𝑖,𝑑

(𝑡𝑖 | ℱ𝑖−1,𝑑) and Λ𝑞
−1,𝑑 =

ℐ𝑑+1
∑
𝑖=1

Λ𝑇 𝑞
−1,𝑖,𝑑

(𝑡𝑖 | ℱ𝑖−1,𝑑), (6.67)

where 𝑡𝑖 is the corresponding timestamp of 𝑖-th transaction, 𝑡0 = 0 and 𝑡ℐ𝑑+1 denotes the time
of official market closing.

We know that informed traders only enter the market if they are triggered by private news ei-
ther of positive or negative direction. Although sells (buys) on an information event 𝑑 driven by
good-news (bad-news) are initiated by noise traders, the expected number of sells (buys) varies
from the amount on no-news days. There are typically more trading activities (noise trading
plus informed trading) on information events which yield smaller durations and therefore the
total number of transactions is higher. Hence, on a trading day 𝑑 , on which private information
enter the market, the expressions in equation (6.67) are updated more often. Assuming shape
parameters smaller than unity for the Weibull distributions of both trade directions74, this in-
duces that the amount of noise trading is higher on information events than it is on trading
days without private information. Uninformed traders are infected by the increased trading
activities on information events and in contrast to the static models, the additional number
of transactions is distributed over both types of market attendees, informed and uninformed.
This shows that it is crucial to correctly classify the conditions of trading days.

74The results in chapter 11 show that the shape parameters for buys and sells for all equities under consideration
in this work are smaller than unity.

104



6.3 Computation of the Probability of Informed Trading

The expected number of buys (sells) on good-news (bad-news) trading days consists of trans-
actions by noise traders as well as insiders. We can readily calculate the expected total number
of transactions by informed traders on good-news and bad-news trading days as

Λ𝒢 ,inf
1,𝑑 = Λ𝒢

1,𝑑 − Λ𝒩
1,𝑑 and Λℬ,inf

−1,𝑑 = Λℬ
−1,𝑑 − Λ𝒩

−1,𝑑 . (6.68)

In the PIN-ALACD model we can rewrite the expressions in equation (6.68) as

Λ𝒢
1,𝑑 = exp(𝜏)Λ𝒩

1,𝑑 ⇒ Λ𝒢 ,inf
1,𝑑 = (exp(𝜏) − 1)Λ𝒩

1,𝑑 and

Λℬ
−1,𝑑 = exp(𝜏)Λ𝒩

−1,𝑑 ⇒ Λℬ,inf
−1,𝑑 = (exp(𝜏) − 1)Λ𝒩

−1,𝑑 . (6.69)

And similar in the context of our PIN-HMM model as

Λ𝒢
1,𝑑 = exp(𝜏1𝑘1)Λ𝒩

1,𝑑 ⇒ Λ𝒢 ,inf
1,𝑑 = (exp(𝜏1𝑘1) − 1)Λ𝒩

1,𝑑 and

Λℬ
−1,𝑑 = exp(𝜏−1𝑘−1)Λ𝒩

−1,𝑑 ⇒ Λℬ,inf
−1,𝑑 = (exp(𝜏−1𝑘−1) − 1)Λ𝒩

−1,𝑑 . (6.70)

As mentioned earlier, we see that the expected number of buys (sells) on good-news (bad-
news) trading days are scaled expected numbers of noise trading with scaling factors (weakly)
larger than unity. While the PIN-ALACD model assumes the identical scaling factors for buys
and sells on the corresponding information events, our new approach allows to assign each
scenario a different scaling factor. Hence, with our model we are able to capture different
impacts depending on the direction of private information.

The constant fraction of informed buys or sells on good-news or bad-news trading days are
given by

Λ𝒢 ,inf
1,𝑑

Λ𝒢 ,inf
1,𝑑 + Λ𝒩

1,𝑑
and

Λℬ,inf
−1,𝑑

Λℬ,inf
−1,𝑑 + Λ𝒩

−1,𝑑
, (6.71)

respectively.

In the PIN-ALACD model the expressions in equation (6.71) translate to

1 − exp(−𝜏) (6.72)

for the fraction of informed buys as well as for the fraction of informed sells.

In our dynamic approach they can be written as

1 − exp(−𝜏1𝑘1) and 1 − exp(−𝜏−1𝑘−1) (6.73)

for informed buys and informed sells, respectively.75

75The corresponding fractions in the context of the static EHO model are given by
𝜇

𝜇 + 𝜖𝑏
and

𝜇
𝜇 + 𝜖𝑠

.
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6 Dynamic Models using High-Frequency Data

The expected total number of trades for trading day 𝑑 consists of three parts, whereas each
is weighted with the according smoothed probability: the expected total number of buys and
sells for no-news, good-news and bad-news condition. Therefore, using equation (6.68), we can
calculate the expected total number of trades as

𝜋𝒩 ,𝑑(Λ𝒩
1,𝑑 + Λ𝒩

−1,𝑑) + 𝜋𝒢 ,𝑑(Λ𝒢
1,𝑑 + Λ𝒢

−1,𝑑) + 𝜋ℬ,𝑑(Λℬ
1,𝑑 + Λℬ

−1,𝑑)
=𝜋𝒩 ,𝑑(Λ𝒩

1,𝑑 + Λ𝒩
−1,𝑑) + 𝜋𝒢 ,𝑑(Λ𝒢 ,inf

1,𝑑 + Λ𝒩
1,𝑑 + Λ𝒩

−1,𝑑) + 𝜋ℬ,𝑑(Λ𝒩
1,𝑑 + Λℬ,inf

−1,𝑑 + Λ𝒩
−1,𝑑)

=Λ𝒩
1,𝑑(𝜋𝒩 ,𝑑 + 𝜋𝒢 ,𝑑 + 𝜋ℬ,𝑑) + Λ𝒩

−1,𝑑(𝜋𝒩 ,𝑑 + 𝜋𝒢 ,𝑑 + 𝜋ℬ,𝑑) + 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf

−1,𝑑
=Λ𝒩

1,𝑑 + Λ𝒩
−1,𝑑 + 𝜋𝒢 ,𝑑Λ𝒢 ,inf

1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf
−1,𝑑 . (6.74)

The expected number of transactions initiated by informed traders consists of informed buys
and sells, again each part is weighted with the corresponding smoothed probability. Hence,
according to the general definition of the probability of informed trading as relation of expected
number of information-based trades to expected total number of transactions, PIN for trading
day 𝑑 calculates as

PIN𝑑 = 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf

−1,𝑑
Λ𝒩
1,𝑑 + Λ𝒩

−1,𝑑 + 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf

−1,𝑑
. (6.75)

Equation (6.75) is utilized in the model by Tay, Ting, Tse, and Warachka (2009) to compute
PIN𝑑 and of course can also be applied in our PIN-HMM setting. However, we decided to split
daily PIN𝑑 estimates up into PIN𝒢 ,𝑑 , the probability of informed trading driven by positive
private information, and PINℬ,𝑑 , the probability of informed trading driven by negative private
information, which has not been done in literature before. The PIN estimates for good-news
and bad-news trading days can be written as

PIN𝒢 ,𝑑 = 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑

Λ𝒩
1,𝑑 + Λ𝒩

−1,𝑑 + 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf

−1,𝑑
, (6.76)

PINℬ,𝑑 = 𝜋ℬ,𝑑Λℬ,inf
−1,𝑑

Λ𝒩
1,𝑑 + Λ𝒩

−1,𝑑 + 𝜋𝒢 ,𝑑Λ𝒢 ,inf
1,𝑑 + 𝜋ℬ,𝑑Λℬ,inf

−1,𝑑
. (6.77)

Hence, we can write the probability of informed trading on trading day 𝑑 as

PIN𝑑 = PIN𝒢 ,𝑑 + PINℬ,𝑑 . (6.78)

We apply the generalized setting of PIN estimators for the empirical results in chapter 11 to
receive comparable results for both presented dynamic models in this thesis.

As mentioned before, estimates of the probabilities of informed trading are not fixed to a daily
basis. They can also be computed for intraday intervals of arbitrary length as long as sufficient
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6.3 Computation of the Probability of Informed Trading

data exists in every interval and convergence of the optimization routine is ensured. See section
11.5 for intraday estimates of the probabilities of informed trading computed for trading days
around the delisting of GM in June 2009 and the period of extremely high prices of VOW in
October 2008.
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7 Source Code of
Implementations for
High-Frequency Models

In contrast to the context of static models for PIN, we have not released a package for the
dynamic models on CRAN yet. However, in this chapter we will present and shortly discuss
the source code of functions we used for computations in which the PIN-ALACD and PIN-
HMM approaches are involved.

More precisely, this chapter deals with the source code of our optimization routines and calcu-
lations of the probability of informed trading for the dynamic models presented in this work.
The core functions are implemented in the C++ programming language to speed up computa-
tions.

Since there are no algorithms to find sets of good starting values which ensure a fast conver-
gence of the optimizer to an (ideally global) maximum, we are forced to perform a huge amount
of maximization runs with changing starting values and finally pick the set of parameter es-
timates which yield the highest likelihood function value. Hence evaluations of likelihood
functions are a potential bottleneck of optimizations, and therefore we spent a lot of time in
tuning especially those functions and we decided to not implement them in pure R language.
Likelihood functions of the dynamic models are implemented in the C++ language with the
help of the excellent Rcpp and RcppArmadillo packages by Eddelbuettel and François (2011)
and Eddelbuettel and Sanderson (2014), respectively.

Therefore, the actual R functions which are called by the user are small in terms of number of
lines and act in most cases as wrappers for the underlying C++ implementations. In addition,
it is possible to evaluate the likelihood functions in parallel, which is especially useful for big
data.

The main function in the context of optimization routines of dynamic models is the pin_est
function in code chunk 7.1. It can be seen as the equivalent of the pin_est function from the
pinbasic package. In most cases it is sufficient to only call this function because it can handle
the creation of sets of initial values and the actual maximization of the chosen model’s likeli-
hood function. It returns information about the optimization results, PIN estimates as well as
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the corresponding state probabilities for trading days. We tested several different optimizers
in advance, but the nlminb function from the stats packages delivered the best results for our
purposes. We already introduced the optimizer in chapter 5 which is dedicated to the pinbasic
package. Hence, we exclusively use the nlminb function for estimations of PIN.

Similar to the pinbasic package, pin_est shares many arguments with its underlying functions.
The init_mat argument can be used to specify sets of initial values and data specifies the high-
frequency data which should be used in optimizations.76 Maximum number of iterations for
the optimizer and how often the intermediate results should be printed to the console can be
controlled by limit and print_level. The scaling_iter argument is explained in the context of
the calc_d function in code chunk 7.15. Whether the results of all maximization runs should be
returned can be specified via all_res. If the computations should be performed in parallel, the
object of the already existing cluster can be passed to cluster_name.77 The logical close_con ar-
gument decides whether the specified cluster should be closed after computations are finished.
Lower and upper bounds for the optimization can be set via the lower and upper arguments,
respectively. If those two arguments remain unchanged, default lower and upper bounds are
specified immediately at the beginning of the pin_est function with respect to the chosen dy-
namic approach, either PIN-ALACD or PIN-HMM.78 The type of dynamic approach can be
chosen via the logical flag HMM. The number of optimization runs can be set via nopts. However,
this argument is only active if init_mat = NULL, otherwise it is overridden with the number of
rows of the matrix passed to init_mat.

Code Chunk 7.1 (Source code of function pin_est):

function(init_mat = NULL, data = NULL, cluster_name = NULL, HMM = TRUE, limit = 500,
print_level = 25, scaling_iter = 50, lower = NULL, upper = NULL, nopts = 100,
all_res = FALSE, close_con = FALSE) {
if (close_con) {

if (!is.null(cluster_name))
on.exit(stopCluster(cluster_name))

}
if (is.null(lower)) {

if (!HMM) {
lower = c(-5, rep(0, 3), rep(-3, 2), rep(0, 2), -0.2, rep(-3, 2),

rep(0, 2), -0.2, 0)
} else {

lower = c(rep(0, 6), rep(-3, 2), rep(0, 2), -0.2, rep(-3, 2), rep(0,
2), -0.2, rep(0, 2), rep(1e-10, 2))

}

76In chapter 9 the functions are presented and explained which are necessary to prepare raw data so that the pin_est
function is able to handle it.

77See chapter 9 for an explanation of the cluster_prep function, which can be harnessed to create a cluster which
can then be passed to the pin_est function.

78We set the default values for lower and upper bounds according to experiences we made in optimizations with
the datasets we use in this work and which are explained in chapter 8. Therefore, for other datasources or time
ranges, the default vectors for lower and upper may not be appropriate.
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7 Source Code of Implementations for High-Frequency Models

}
if (is.null(upper)) {

if (!HMM) {
upper = c(rep(10, 4), rep(3, 2), 1, 0.3, 0.2, rep(3, 2), 1, 0.3,

0.2, 2)
} else {

upper = c(rep(1, 6), rep(3, 2), 1, 0.3, 0.2, rep(3, 2), 1, 0.3,
0.2, rep(2, 4))

}
}
if (is.null(init_mat)) {

init_mat <- initial_vals(HMM = HMM, n = nopts, lower = lower, upper = upper)
} else {

nopts <- nrow(init_mat)
}
coef_mat <- matrix(data = NA, ncol = ncol(init_mat), nrow = nopts)
colnames(coef_mat) <- par_names(HMM = HMM, parameterization_prob_names = FALSE)
if (HMM) {

fun <- function(par_est) loglik(par = trans_prob_stab(par_est), data = data,
cluster_name = cluster_name, HMM = TRUE)

} else {
fun <- function(par_est) loglik(par = par_est, data = data, cluster_name = cluster_name,

HMM = FALSE)
}
loglik_vals <- conv_codes <- numeric(nopts)
stat_dist_mat <- matrix(data = NA, ncol = 3, nrow = nopts)
colnames(stat_dist_mat) <- c(”Bad”, ”Good”, ”No”)
pin_calc_res <- vector(”list”, nopts)
state_probs_res <- vector(”list”, nopts)
pit_res <- vector(”list”, nopts)
for (i in seq_len(nopts)) {

if (!(i%%(nopts * 0.1)))
message(paste0(”Starting Run ”, i))

feas_init <- FALSE
while (!feas_init) {

tmp_par <- init_mat[i, ]
steps <- 0
while (steps < limit) {

d <- calc_d(tmp_par, h = 1e-04, FUN = fun, lower = lower, upper = upper)
est_res <- nlminb(start = tmp_par * d, objective = function(x) -fun(x/d),

lower = lower * d, upper = upper * d, control = list(iter.max = scaling_iter,
trace = print_level))

if (is.infinite(est_res$objective))
steps <- limit

tmp_par <- est_res$par/d
if (est_res$convergence)

steps <- steps + scaling_iter else steps <- limit
}
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feas_init <- is.finite(est_res$objective)
if (!feas_init) {

message(”Optimization has not converged. Generating new set of initial values.”)
init_mat[i, ] <- initial_vals(HMM = HMM, lower = lower, upper = upper,

n = 1)[1, ]
}

}
if (HMM) {

tmp_par <- trans_prob_stab(tmp_par)
coef_mat[i, ] <- tmp_par
loglik_vals[i] <- -est_res$objective
conv_codes[i] <- est_res$convergence
stat_dist_mat[i, ] <- p_stat(tmp_par, warn = TRUE)

} else {
coef_mat[i, ] <- tmp_par
loglik_vals[i] <- -est_res$objective
conv_codes[i] <- est_res$convergence

}
pin_calc_res[[i]] <- pin_calc(par = tmp_par, data = data, HMM = HMM,

cluster_name = cluster_name, close_con = FALSE)
state_probs_res[[i]] <- state_probs(par = tmp_par, data = data, HMM = HMM,

cluster_name = cluster_name, close_con = FALSE)
pit_res[[i]] <- pit(par = tmp_par, data = data, HMM = HMM, cluster_name = cluster_name,

close_con = FALSE)
}
if (all_res) {

order_highest_ll <- order(loglik_vals, decreasing = TRUE)
if (HMM) {

res <- list(coef = coef_mat[order_highest_ll, ], loglik = loglik_vals[order_highest_ll],
conv_code = conv_codes[order_highest_ll], stat_dist = stat_dist_mat[order_highest_ll,

], lower = lower, upper = upper, pin = pin_calc_res[order_highest_ll],
state_probs = state_probs_res[order_highest_ll], pit = pit_res[order_highest_ll])

} else {
res <- list(coef = coef_mat[order_highest_ll, ], loglik = loglik_vals[order_highest_ll],

conv_code = conv_codes[order_highest_ll], lower = lower, upper = upper,
pin = pin_calc_res[order_highest_ll], state_probs = state_probs_res[order_highest_ll],
pit = pit_res[order_highest_ll])

}
} else {

max_ll <- which.max(loglik_vals)
if (HMM) {

res <- list(coef = coef_mat[max_ll, ], loglik = loglik_vals[max_ll],
conv_code = conv_codes[max_ll], stat_dist = stat_dist_mat[max_ll,

], lower = lower, upper = upper, pin = pin_calc_res[[max_ll]],
state_probs = state_probs_res[[max_ll]], pit = pit_res[[max_ll]])

} else {
res <- list(coef = coef_mat[max_ll, ], loglik = loglik_vals[max_ll],

conv_code = conv_codes[max_ll], lower = lower, upper = upper,
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pin = pin_calc_res[[max_ll]], state_probs = state_probs_res[[max_ll]],
pit = pit_res[[max_ll]])

}
}
res

}

If init_mat = NULL, values of lower and upper are used in the initial_vals function in code chunk
7.2, which returns sets of starting values. They are drawn from uniform distributions whose
minimum and maximum depend on the corresponding entries in lower and upper. It is also
ensured that the sums of the parameters 𝛼1, 𝛽1 and 𝛼−1, 𝛽−1 are both smaller than unity. With
n the total number of sets of initial values is specified.

Code Chunk 7.2 (Source code of function initial_vals):

function(HMM = TRUE, lower = NULL, upper = NULL, n = 100) {
if (HMM) {

if (length(lower)  20 || length(upper)  20) {
stop(”Length of 'lower' and/or 'upper' does not match HMM Weibull (20)”)

}
st <- t(replicate(n, runif(20, min = lower, max = upper)))

}
if (!HMM) {

if (length(lower)  15 || length(upper)  15) {
stop(”Length of 'lower' and/or 'upper' does not match 3TW (15)”)

}
st <- t(replicate(n, runif(15, min = lower, max = upper)))

}
colnames(st) <- par_names(HMM = HMM)
non_stat1 <- which(st[, ”alpha_B”] + st[, ”beta_B”]  1)
if (length(non_stat1) > 0) {

st[non_stat1, ”beta_B”] <- 1 - st[non_stat1, ”alpha_B”] - 1e-06
}
non_stat2 <- which(st[, ”alpha_S”] + st[, ”beta_S”]  1)
if (length(non_stat2) > 0) {

st[non_stat1, ”beta_S”] <- 1 - st[non_stat1, ”alpha_S”] - 1e-06
}
st

}

Column names of the matrix of initial values are set with the help of the par_names func-
tion whose source code is shown in code chunk 7.3. Names of the parameters involved in the
ALACD recursion do not differ by model choice. If the logical argument HMM is set to TRUE,
the parameterization_prob_names may influence the nomenclature of the parameters which are
responsible for conditions of trading days.
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Code Chunk 7.3 (Source code of function par_names):

function(HMM = TRUE, parameterization_prob_names = TRUE) {
if (HMM) {

coef_names <- c(”nu_BB”, ”nu_BS”, ”alpha_B”, ”beta_B”, ”zeta_B”, ”nu_SB”,
”nu_SS”, ”alpha_S”, ”beta_S”, ”zeta_S”, ”mu_G”, ”mu_B”, ”k_B”, ”k_S”)

if (!parameterization_prob_names) {
prob_names <- c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”)

} else {
prob_names <- c(”p_BB”, ”p_BG|C”, ”p_GG”, ”p_GB|C”, ”p_NN”, ”p_NB|C”)

}
} else {

coef_names <- c(”nu_BB”, ”nu_BS”, ”alpha_B”, ”beta_B”, ”zeta_B”, ”nu_SB”,
”nu_SS”, ”alpha_S”, ”beta_S”, ”zeta_S”, ”mu”)

prob_names <- paste(”theta”, 1:4, sep = ””)
}
full_names <- c(prob_names, coef_names)
full_names

}

To stabilize optimizations we decided to reparameterize transition probabilities as follows:

𝑎ℬ𝒢 = 𝑎ℬ𝒢|𝐶 ⋅ (1 − 𝑎ℬℬ) (7.1)

𝑎ℬ𝒩 = (1 − 𝑎ℬ𝒢|𝐶) ⋅ (1 − 𝑎ℬℬ) (7.2)

𝑎𝒢ℬ = 𝑎𝒢ℬ|𝐶 ⋅ (1 − 𝑎𝒢𝒢 ) (7.3)

𝑎𝒢𝒩 = (1 − 𝑎𝒢ℬ|𝐶) ⋅ (1 − 𝑎𝒢𝒢 ) (7.4)

𝑎𝒩ℬ = 𝑎𝒩ℬ|𝐶 ⋅ (1 − 𝑎𝒩 𝒩 ) (7.5)

𝑎𝒩 𝒢 = (1 − 𝑎𝒩ℬ|𝐶) ⋅ (1 − 𝑎𝒩 𝒩 ), (7.6)

where the indices ∗ ∗ |𝐶 symbolize a switch in states of trading days given that a change hap-
pened, e. g. 𝑎ℬ𝒢|𝐶 is the probability that the state of the current trading day is bad-news and
the state of the next is good-news given that the condition changes from the current to the next
day. Hence, the initial values for the transition probabilities in our optimization routine refer to
𝑎ℬ𝒢|𝐶 , 𝑎ℬℬ , 𝑎𝒢ℬ|𝐶 , 𝑎𝒢𝒢 , 𝑎𝒩ℬ|𝐶 and 𝑎𝒩 𝒩 if the logical argument parameterization_prob_names
is active.79

79See the function trans_prob_stab in code chunk 7.14.
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7 Source Code of Implementations for High-Frequency Models

The loglik function is called by pin_est to define the function to be maximized, where the pa-
rameter values are passed to the par argument. Its source code is presented in code chunk
7.4.

Code Chunk 7.4 (Source code of function loglik):

function(par = NULL, data = NULL, cluster_name = NULL, HMM = TRUE) {
if (is.null(par))

stop(”No parameter vector found”)
if (is.null(names(par)))

stop(”'par' has no names! See function 'par_names'”)
if (any(is.nan(par)))

return(-Inf)
if ((par[”alpha_B”] + par[”beta_B”])  1)

return(-Inf)
if ((par[”alpha_S”] + par[”beta_S”])  1)

return(-Inf)
if (!HMM) {

if (length(par)  15)
stop(”Length of 'par' does not match 3TW model”)

llexp3TW(par, data = data, cluster_name = cluster_name)
} else {

if ((par[”p_BG”] + par[”p_BN”]) > 1)
return(-Inf)

if ((par[”p_GB”] + par[”p_GN”]) > 1)
return(-Inf)

if ((par[”p_NB”] + par[”p_NG”]) > 1)
return(-Inf)

if (length(par)  20)
stop(”Length of 'par' does not match HMM Weibull model”)

res <- llwei(par, data = data, cluster_name = cluster_name)
mat_trans <- trans_mat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”,

”p_NG”)])
p_init <- p_stat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”)])
fb_ll(res, p_init, mat_trans)

}
}

It acts as wrapper for the llexp3TW function in case the PIN-ALACD model is chosen, and
calls a bundle of functions for the PIN-HMM model, namely llwei, trans_mat, p_stat and fb_ll.
For the PIN-ALACD model the llexp3TW function in code chunk 7.5 is a wrapper for the C++
code in code chunk 7.6 where the actual computation of the likelihood happens. We need the
llexp3TW_helper function in code chunk 7.7 to enable computations of the likelihood in parallel.
If computations should be performed on a cluster, this function is a wrapper for the underlying
C++ code which expects that a list called data_sub with slots Intraday and Daily is available on
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each node.80 The naming of this list containing the required data for optimizations is identical
on each node, but the content will vary depending on the specified number of CPU cores.

Code Chunk 7.5 (Source code of function llexp3TW):

function(par, data = NULL, cluster_name = NULL) {
if (is.null(cluster_name) || length(cl)  1) {

ret <- llexp3TW_cpp(par, data[[”IntraDay”]], data[[”Daily”]][, ”initial_buys”],
data[[”Daily”]][, ”initial_sells”], data[[”Daily”]][, ”log_mean_dura”],
data[[”Daily”]][, ”log_mean_sa”], data[[”Daily”]][, ”tn_helper”],
data[[”Daily”]][, ”tg_helper1”], data[[”Daily”]][, ”tg_helper2”])

ret
} else {

ret <- clusterCall(cluster_name, fun = llexp3TW_helper, par = par)
do.call(sum, ret)

}
}

Code Chunk 7.6 (Source code of C++ function llexp3TW_cpp):

double llexp3TW_cpp(const NumericVector & param,
const List & DATAMAT,
const NumericVector & initbuys, const NumericVector & initsells,
const NumericVector & meandura, const NumericVector & meansa,
const NumericVector & tnhelper,
const NumericVector & tghelper1, const NumericVector & tghelper2){

int ni = 0, i = 0, j = 0, ni_full = 0;
const int n = DATAMAT.size();

double mue = param[14],
helper3 = exp(mue), helper3m1 = helper3 - 1.0,
const_buys_sa = param[6] + param[7], const_buys = const_buys_sa - 1.0,
const_sells_sa = param[11] + param[12], const_sells = const_sells_sa - 1.0,
meandiff = 0.0;

double expsumbuys = 0.0, expsumsells = 0.0, ans1 = 0.0, ans2 = 0.0,
sumcondbuys = 0.0, sumcondsells = 0.0;

NumericVector ll_vec(3);
NumericVector ll_vec_stab(3);
double ll_max = 0.0;

80See the source code of the function data_prep and cluster_prep in chapter 9.
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NumericVector prob_no_helper = no_init(n);
NumericVector prob_good_helper = no_init(n);
NumericVector log_prob_no = no_init(n);
NumericVector log_prob_event = no_init(n);
NumericVector log_prob_good = no_init(n);
NumericVector log_prob_bad = no_init(n);
NumericVector res(n);

prob_no_helper = exp(param[0] + param[1] * tnhelper);
prob_good_helper = exp(param[2] * tghelper1 - param[3] * tghelper2);

log_prob_no = -log1p(prob_no_helper);
log_prob_good = -log1p(prob_good_helper);
log_prob_event = log(prob_no_helper) + log_prob_no;
log_prob_bad = log(prob_good_helper) + log_prob_good;

for(i = 0; i < n; i೫೮){
NumericMatrix mat_full = DATAMAT[i];
ni_full = mat_full.nrow();
ni = ni_full - 1;

SubMatrix<REALSXP> mat_sub = mat_full(Range(0, ni_full - 2), _);
NumericMatrix mat = mat_sub;
NumericVector ans4 = no_init(ni);
NumericVector ans5 = no_init(ni);
LogicalVector td_ind = no_init(ni);
NumericVector ans4_td = no_init(ni);
NumericVector ans5_ntd = no_init(ni);
NumericVector psi1n = no_init(ni);
NumericVector psim1n = no_init(ni);

psi1n[0] = initbuys[i];
psim1n[0] = initsells[i];
meandiff = meandura[i] - meansa[i];

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +

param[4] * mat(j-1,1) + param[5] * mat(j-1,2) + param[6] * psi1n[j-1] +
param[7] * mat(j-1,0) + param[8] * mat(j-1,5);

psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[9] * mat(j-1,1) + param[10] * mat(j-1,2) + param[11] * psim1n[j-1] +
param[12] * mat(j-1,0) + param[13] * mat(j-1,5);
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}

ans4 = mat(_,0) - psi1n;
ans5 = mat(_,0) - psim1n;

td_ind = mat(_,2)  1;

ans4_td = ans4[td_ind];
ans5_ntd = ans5[!td_ind];

expsumbuys = sum(exp(ans4));
expsumsells = sum(exp(ans5));
sumcondbuys = sum(ans4_td);
sumcondsells = sum(ans5_ntd);

ans1 = mue * sum(td_ind) - helper3m1 * expsumbuys;
ans2 = mue * sum(!td_ind) - helper3m1 * expsumsells;

ll_vec(2) = sumcondbuys + sumcondsells - sum(mat(_,0)) - expsumsells - expsumbuys; //no-news
ll_vec(1) = ll_vec(2) + ans1; //good-news
ll_vec(0) = ll_vec(2) + ans2; //bad-news

ll_max = max(ll_vec);
ll_vec_stab = ll_vec - ll_max;

res(i) = ll_max +
log(exp(log_prob_no(i) + ll_vec_stab(2)) +

exp(log_prob_event(i) + log_prob_good(i) + ll_vec_stab(1)) +
exp(log_prob_event(i) + log_prob_bad(i) + ll_vec_stab(0)));

}
return sum(res);

}

Code Chunk 7.7 (Source code of function llexp3TW_helper):

function(par) {
llexp3TW_cpp(par, data_sub[[”IntraDay”]], data_sub[[”Daily”]][, ”initial_buys”],

data_sub[[”Daily”]][, ”initial_sells”], data_sub[[”Daily”]][, ”log_mean_dura”],
data_sub[[”Daily”]][, ”log_mean_sa”], data_sub[[”Daily”]][, ”tn_helper”],
data_sub[[”Daily”]][, ”tg_helper1”], data_sub[[”Daily”]][, ”tg_helper2”])

}
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The structure for the functions involved in evaluations of the likelihood of the PIN-HMMmodel
is very similar to the PIN-ALACD case by calling the llwei, llwei_cpp and llwei_helper functions.
The corresponding source codes can be found in code chunks 7.8, 7.9 and 7.10.

Code Chunk 7.8 (Source code of function llwei):

function(par = NULL, data = NULL, cluster_name = NULL) {
if (is.null(cluster_name) || length(cl)  1) {

ret <- llwei_cpp(par, data[[”IntraDay”]], data[[”Daily”]][, ”initial_buys”],
data[[”Daily”]][, ”initial_sells”], data[[”Daily”]][, ”log_mean_dura”],
data[[”Daily”]][, ”log_mean_sa”])

ret
} else {

ret <- clusterCall(cluster_name, fun = llwei_helper, par = par)
do.call(rbind, ret)

}
}

Code Chunk 7.9 (Source code of C++ function llwei_cpp):

NumericMatrix llwei_cpp(const NumericVector & param,
const List & DATAMAT,
const NumericVector & initbuys, const NumericVector & initsells,
const NumericVector & meandura, const NumericVector & meansa) {

int ni = 0, i, j = 0, ni_full = 0;
int n = DATAMAT.size();

double mue_buys = param[16], mue_sells = param[17], bbuys=param[18], bsells=param[19],
lbbuys = log(bbuys),lbsells = log(bsells),
helper1 = bbuys * mue_buys, helper2 = bsells * mue_sells,
helper3 = exp(helper1), helper4 = exp(helper2),
helper3m1 = helper3 - 1.0, helper4m1 = helper4 - 1.0,
const_buys_sa = param[8] + param[9], const_buys = const_buys_sa - 1.0,
const_sells_sa = param[13] + param[14],
const_sells = const_sells_sa - 1.0, meandiff = 0.0,
psi_buys_adjust = lgamma(1.0 + 1.0/bbuys),
psi_sells_adjust = lgamma(1.0 + 1.0/bsells);

double expsumbuys = 0.0, expsumsells = 0.0, ans1 = 0.0, ans2 = 0.0,
sumcondbuys = 0.0, sumcondsells = 0.0,
last_psi1n = 0.0, last_psim1n = 0.0,
last_no = 0.0, last_good = 0.0, last_bad = 0.0;
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NumericMatrix ll_vec(n, 3);

for(i = 0; i < n; i೫೮){
NumericMatrix mat_full = DATAMAT[i];
ni_full = mat_full.nrow();

SubMatrix<REALSXP> mat_sub = mat_full(Range(0, ni_full - 2), _);
NumericMatrix mat = mat_sub;

ni = ni_full - 1;

NumericVector ans4 = no_init(ni);
NumericVector ans5 = no_init(ni);
LogicalVector td_ind = no_init(ni);
NumericVector ans4_td = no_init(ni);
NumericVector ans5_ntd = no_init(ni);
NumericVector psi1n = no_init(ni);
NumericVector psim1n = no_init(ni);

psi1n[0] = initbuys[i];
psim1n[0] = initsells[i];

meandiff = meandura[i] - meansa[i];

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +
param[6] * mat(j-1,1) + param[7] * mat(j-1,2) + param[8] * psi1n[j-1] +
param[9] * mat(j-1,0) + param[10] * mat(j-1,5) - psi_buys_adjust;

psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[11] * mat(j-1,1) + param[12] * mat(j-1,2) + param[13] * psim1n[j-1] +
param[14] * mat(j-1,0) + param[15] * mat(j-1,5) - psi_sells_adjust;

}

ans4 = mat(_,0) - psi1n;
ans5 = mat(_,0) - psim1n;

td_ind = mat(_,1)  1;

ans4_td = ans4[td_ind];
ans5_ntd = ans5[!td_ind];

expsumbuys = sum(exp(bbuys * ans4));
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expsumsells = sum(exp(bsells * ans5));

sumcondbuys = sum(ans4_td);
sumcondsells = sum(ans5_ntd);

if(mat_full(ni, 0)  0) {
last_psi1n = const_buys * meandiff + mat_full(ni,3) - (const_buys_sa * mat_full(ni-1,3)) +

param[6] * mat_full(ni-1,1) + param[7] * mat_full(ni-1,2) + param[8] * psi1n[ni-1] +
param[9] * mat_full(ni-1,0) + param[10] * mat_full(ni-1,5) - psi_buys_adjust;

last_psim1n = const_sells * meandiff + mat_full(ni,3) - (const_sells_sa * mat_full(ni-1,3)) +
param[11] * mat_full(ni-1,1) + param[12] * mat_full(ni-1,2) + param[13] * psim1n[ni-1] +
param[14] * mat_full(ni-1,0) + param[15] * mat_full(ni-1,5) - psi_sells_adjust;

last_no = -exp(bbuys * (mat_full(ni,4) - last_psi1n)) -
exp(bsells * (mat_full(ni,4) - last_psim1n));

last_good = -exp(bbuys * (mat_full(ni,4) - last_psi1n - mue_buys)) -
exp(bsells * (mat_full(ni,4) - last_psim1n));

last_bad = -exp(bbuys * (mat_full(ni,4) - last_psi1n)) -
exp(bsells * (mat_full(ni,4) - last_psim1n - mue_sells));

}

ans1 = helper1 * sum(td_ind) - helper3m1 * expsumbuys + last_good - last_no;
ans2 = helper2 * sum(!td_ind) - helper4m1 * expsumsells + last_bad - last_no;

ll_vec(i, 2) = lbbuys * sum(td_ind) + lbsells * sum(!td_ind) + bbuys * sumcondbuys +
bsells * sumcondsells - sum(mat(_,0)) - expsumsells -
expsumbuys + last_no; //no-news

ll_vec(i, 1) = ll_vec(i, 2) + ans1; //good-news
ll_vec(i, 0) = ll_vec(i, 2) + ans2; //bad-news

}
colnames(ll_vec) = CharacterVectorೋೌcreate(”Bad”, ”Good”, ”No”);
return ll_vec;

}

Code Chunk 7.10 (Source code of function llwei_helper):

function(par) {
llwei_cpp(par, data_sub[[”IntraDay”]], data_sub[[”Daily”]][, ”initial_buys”],

data_sub[[”Daily”]][, ”initial_sells”], data_sub[[”Daily”]][, ”log_mean_dura”],
data_sub[[”Daily”]][, ”log_mean_sa”])

}
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The llwei function returns values of emission densities for each unit time interval and all po-
tential conditions of trading days.81 These results are then processed by the forward-backward
algorithm implemented with the C++ function fb_ll in code chunk 7.11.82

Code Chunk 7.11 (Source code of C++ function fb_ll):

double fb_ll(armaೋೌmat daily_ll, armaೋೌrowvec pInit, armaೋೌmat transmat) {
int nrow = daily_ll.n_rows, ncol = daily_ll.n_cols, i = 0;

armaೋೌcolvec ll_max = armaೋೌmax(daily_ll, 1);
armaೋೌmat ll_max_mat(nrow, ncol);
armaೋೌmat ll_stab(nrow, ncol);
armaೋೌmat logalpha(nrow, ncol);
armaೋೌrowvec alpha(3);

ll_max_mat.col(0) = ll_max;
ll_max_mat.col(1) = ll_max;
ll_max_mat.col(2) = ll_max;

ll_stab = daily_ll - ll_max_mat;

logalpha.row(0) = log(pInit) + ll_stab.row(0);

for(i = 1; i < nrow; i೫೮) {
alpha = exp(logalpha.row(i-1));
logalpha.row(i) = ll_stab.row(i) + log(alpha * transmat);

}
double K = max(logalpha.row(nrow-1));
return sum(ll_max) + K + log(sum(exp(logalpha.row(nrow-1) - K)));

}

To apply the forward-backward algorithm to the results from the llwei function, results for the
transition matrix as well as the stationary distribution of conditions of trading days must be
available which are then passed to the pInit and transmat arguments of fb_ll. Transition ma-
trices and stationary distributions can be computed with the trans_mat and p_stat functions,
respectively. The trans_mat function has the additional logical argument hessian which initiates
further checks and computations if one intends to compute Hessian matrices. The p_stat func-
tions prints a warning to the console if warn is set to true and the computation of the stationary
distribution of states is not reasonable. Moreover, each element in the vector of the stationary

81For the definition of emission densities see equation (6.21).
82While most other C++ functions rely only on the Rcpp package, fb_ll makes use of the RcppArmadillo package.

An introduction to the RcppArmadillo package and its syntax is given in Eddelbuettel and Sanderson (2014).
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distribution of states is then set to 1
3 . The source code for both functions is given in code chunks

7.12 and 7.13, respectively.

Code Chunk 7.12 (Source code of function trans_mat):

function(par, hessian = FALSE) {
mat_trans <- matrix(c(1 - (par[”p_BG”] + par[”p_BN”]), par[”p_BG”], par[”p_BN”],

par[”p_GB”], 1 - (par[”p_GB”] + par[”p_GN”]), par[”p_GN”], par[”p_NB”], par[”p_NG”],
1 - (par[”p_NB”] + par[”p_NG”])), nrow = 3, byrow = TRUE)

if (hessian) {
neg_entries <- apply(mat_trans, MARGIN = 1, FUN = function(x) which(x < 0))
for (i in seq_along(neg_entries)) {

if (length(neg_entries[[i]]) > 0) {
mat_trans[i, neg_entries[[i]]] <- 0
mat_trans[i, -neg_entries[[i]]] <- mat_trans[i, -neg_entries[[i]]]/sum(mat_trans[i,

-neg_entries[[i]]])
}

}
}
colnames(mat_trans) <- rownames(mat_trans) <- c(”Bad”, ”Good”, ”No”)
mat_trans

}

Code Chunk 7.13 (Source code of function p_stat):

function(par, warn = FALSE) {
if (any(is.nan(par))) {

erg <- rep(1/3, 3)
names(erg) <- c(”Bad”, ”Good”, ”No”)
return(erg)

}
erg <- numeric(3)
names(erg) <- c(”Bad”, ”Good”, ”No”)
erg[”Bad”] <- par[”p_NB”] * (par[”p_GB”] + par[”p_GN”]) + par[”p_NG”] *

par[”p_GB”]
erg[”Good”] <- par[”p_BG”] * (par[”p_NB”] + par[”p_NG”]) + par[”p_BN”] *

par[”p_NG”]
erg[”No”] <- par[”p_GN”] * (par[”p_BG”] + par[”p_BN”]) + par[”p_GB”] * par[”p_BN”]
summe <- sum(erg)
if (summe > 0) {

erg/summe
} else {

if (warn) {
warning(”No unique stationary distribution!”)

}
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erg <- rep(1/3, 3)
erg

}
}

For the PIN-HMMmodel one further function is involved in the specification of the function to
be maximized, namely trans_prob_stab in code chunk 7.14, which transforms reparameterized
transition probabilities back into the form shown by the results of the empirical applications
in section 11.1 and 11.2.

Code Chunk 7.14 (Source code of function trans_prob_stab):

function(par) {
if (all(names(par)[1:6] %in% c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”))) {

return(par)
} else {

par_trans <- numeric(6)
names(par_trans) <- c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”)
par_trans[”p_BG”] <- par[”p_BG|C”] * (1 - par[”p_BB”])
par_trans[”p_BN”] <- (1 - par[”p_BG|C”]) * (1 - par[”p_BB”])
par_trans[”p_GB”] <- par[”p_GB|C”] * (1 - par[”p_GG”])
par_trans[”p_GN”] <- (1 - par[”p_GB|C”]) * (1 - par[”p_GG”])
par_trans[”p_NB”] <- par[”p_NB|C”] * (1 - par[”p_NN”])
par_trans[”p_NG”] <- (1 - par[”p_NB|C”]) * (1 - par[”p_NN”])
return(c(par_trans, par[!(names(par) %in% c(”p_BB”, ”p_BG|C”, ”p_GG”,

”p_GB|C”, ”p_NN”, ”p_NB|C”))]))
}

}

For optimizations we use the nlmimb function from the stats package, as we already did in the
context of static models. To increase the stability of maximizations and improve convergence,
we scale parameters with the help of the calc_d function presented in code chunk 7.15.

Code Chunk 7.15 (Source code of function calc_d):

function(par = NULL, h = 1e-04, FUN = NULL, lower = rep(-Inf, length(par)),
upper = rep(Inf, length(par))) {
fun <- FUN
npar <- length(par)
low.hit <- (lower > (par - h))
upper.hit <- (upper < (par + h))
bound.hit <- low.hit | upper.hit
gr <- matrix(0, nrow = npar, ncol = 3)
loglik <- fun(par)
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for (i in seq_len(npar)) {
if (!bound.hit[i]) {

gr[i, 1] <- fun(par - h * (i  1:npar))
gr[i, 2] <- fun(par + h * (i  1:npar))

}
}
gr[, 1] <- (loglik - gr[, 1])/h
gr[, 2] <- (gr[, 2] - loglik)/h
res <- sqrt(abs(gr[, 2] - gr[, 1])/h)
res[res  0] <- 1
res_na <- is.na(res)
res[res_na] <- 1
return(res)

}

This function returns approximations of the square root of diagonal elements of the Hessian
matrix of a function FUN at each parameter value par by using second symmetric derivatives83.
The value of argument h is used to check which estimates hit their lower or upper bound or
are too close to them and as step size in approximations. These approximations are then used
to scale the parameters similar to the sensitivity-based scaling method proposed by Yang and
Lee (2010). Parameters for which the calc_d function would have returned a scaling factor of
either 0 or NA are assigned a scaling factor of 1 so that actually those parameters are excluded
from scaling. The intention to use this scaling method is to reduce the condition number of the
Hessian matrix. The condition number of symmetric positive definite matrices is given be the
ratio of the largest to the smallest eigenvalue (see Quarteroni, Sacco, and Saleri 2007, p. 61).
Ill-conditioned matrices with high condition numbers are almost singular and therefore calcu-
lations of their inverses, if they are invertible at all, lead to large numerical errors which also
influences the convergence rate of the optimizer. Ideally, diagonal elements of the Hessian ma-
trix equal unity while off-diagonal elements are smaller than unity. According to Yang and Lee
(2010), condition numbers of such scaled matrices are typically lower than that of the original
ones. How often the scaling is updated can be controlled with the scaling_iter argument of the
pin_est function.84 We set this argument to 50 to receive the parameter estimates presented in
the sections 11.1 and 11.2.

After each optimization run we compute estimates of the probability of informed trading as
well as the state probabilities of trading days according to the chosen dynamic model. The
latter are calculated with the help of the state_probs function whose source code can be found
in code chunk 7.16.

Code Chunk 7.16 (Source code of function state_probs):

function(par = NULL, data = NULL, cluster_name = NULL, HMM = TRUE, close_con = FALSE) {

83Explanations about the second symmetric derivative can be found in Zygmund and Fefferman (2003, p. 22).
84See code chunk 7.1.
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if (close_con) {
if (!is.null(cluster_name))

on.exit(stopCluster(cluster_name))
}
if (is.null(par))

stop(”No parameter vector found”)
if (!HMM) {

if (length(par)  15)
stop(”Length of 'par' does not match 3TW model”)

probs3TW(par, data = data, cluster_name = cluster_name)
} else {

if (length(par)  20)
stop(”Length of 'par' does not match HMM Weibull model”)

res <- llwei(par, data = data, cluster_name = cluster_name)
mat_trans <- trans_mat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”,

”p_NG”)])
p_init <- p_stat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”)])
probs <- fb_smooth(res, p_init, mat_trans)
colnames(probs) <- c(”Bad”, ”Good”, ”No”)
probs

}
}

To calculate the state probabilities of trading days in the PIN-ALACDmodelwe use the probs3TW
function from code chunk 7.17.

Code Chunk 7.17 (Source code of function probs3TW):

function(par, data = NULL, cluster_name = NULL) {
if (is.null(cluster_name) || length(cl)  1) {

ret <- state_probs_3TW(par, data[[”Daily”]][, ”tn_helper”], data[[”Daily”]][,
”tg_helper1”], data[[”Daily”]][, ”tg_helper2”])

ret
} else {

ret <- clusterCall(cluster_name, fun = probs3TW_helper, para = par)
do.call(rbind, ret)

}
}

This function depends on the C++ function state_probs_3TW and probs3TW_helper which is
utilized to execute function calls in parallel where each worker expects that a sublist data_sub
of the whole dataset is available. The source code of both functions can be read from code
chunks 7.18 and 7.19.
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Code Chunk 7.18 (Source code of C++ function state_probs_3TW):

NumericMatrix state_probs_3TW(const NumericVector & param,
const NumericVector & tnhelper,
const NumericVector & tghelper1, const NumericVector & tghelper2) {

int i = 0, n = tnhelper.size();

NumericVector prob_no_helper = no_init(n);
NumericVector prob_good_helper = no_init(n);
NumericVector log_prob_no = no_init(n);
NumericVector log_prob_event = no_init(n);
NumericVector log_prob_good = no_init(n);
NumericVector log_prob_bad = no_init(n);
NumericMatrix res(n,3);

prob_no_helper = exp(param[0] + param[1] * tnhelper);
prob_good_helper = exp(param[2] * tghelper1 - param[3] * tghelper2);

log_prob_no = -log1p(prob_no_helper);
log_prob_good = -log1p(prob_good_helper);
log_prob_event = log(prob_no_helper) + log_prob_no;
log_prob_bad = log(prob_good_helper) + log_prob_good;

for(i = 0; i < n; i೫೮) {
res(i,2) = exp(log_prob_no(i));
res(i,1) = exp(log_prob_event(i) + log_prob_good(i));
res(i,0) = exp(log_prob_event(i) + log_prob_bad(i));

}
colnames(res) = CharacterVectorೋೌcreate(”Bad”, ”Good”, ”No”);
return res;

}

Code Chunk 7.19 (Source code of function probs3TW_helper):

function(para) {
state_probs_3TW(para, data_sub[[”Daily”]][, ”tn_helper”], data_sub[[”Daily”]][,

”tg_helper1”], data_sub[[”Daily”]][, ”tg_helper2”])
}

In the PIN-HMM case, most involved function were already mentioned before, except the
fb_smooth85 function in code chunk 7.20 which calculates smoothed probabilities according
85Similar to the fb_ll function, fb_smooth is using functionality from the RcppArmadillo package.
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to equation (6.57) in section 6.2.2. This function expects an object returned by the llwei func-
tion as its first argument.

Code Chunk 7.20 (Source code of C++ function fb_smooth):

armaೋೌmat fb_smooth(armaೋೌmat daily_ll, armaೋೌrowvec pInit, armaೋೌmat transmat) {
int nrow = daily_ll.n_rows, ncol = daily_ll.n_cols, i = 0;

armaೋೌcolvec ll_max = armaೋೌmax(daily_ll, 1);
armaೋೌrowvec tmp(3);
armaೋೌmat ll_max_mat(nrow, ncol);
armaೋೌmat ll_stab(nrow, ncol);
armaೋೌmat logalpha(nrow, ncol);
armaೋೌmat logbeta(nrow, ncol, armaೋೌfillೋೌzeros);

armaೋೌrowvec alpha(3);
armaೋೌmat res(nrow, ncol);

ll_max_mat.col(0) = ll_max;
ll_max_mat.col(1) = ll_max;
ll_max_mat.col(2) = ll_max;

ll_stab = daily_ll - ll_max_mat;

logalpha.row(0) = log(pInit) + ll_stab.row(0);

for(i = 1; i < nrow; i೫೮) {
alpha = exp(logalpha.row(i-1));
tmp = exp(ll_stab.row(nrow-i) + logbeta.row(nrow-i));
logalpha.row(i) = ll_stab.row(i) + log(alpha * transmat);
logbeta.row(nrow-i-1) = log(transmat * tmp.t()).t();

}
double K = max(logalpha.row(nrow-1));
double loglik = K + log(sum(exp(logalpha.row(nrow-1) - K)));
res = logalpha + logbeta - loglik;
return exp(res);

}

The probability of informed trading for every unit time interval is calculated with the pin_calc
function in code chunk 7.21. It depends on the just explained state_probs function as well as
the cum_intens function to calculate cumulative intensities as described in section 6.3. The
source code of the cum_intens function is shown in code chunk 7.22. The cum_intens function
relies on the C++ function cum_intens_cpp and the cum_intens_helper function. The latter
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exhibits the already known structure for helper function for function evaluations in parallel.
Corresponding source codes are given in code chunks 7.23 and 7.24, respectively.

Code Chunk 7.21 (Source code of function pin_calc):

function(par = NULL, data = NULL, HMM = TRUE, cluster_name = NULL, close_con = FALSE) {
if (close_con) {

if (!is.null(cluster_name))
on.exit(stopCluster(cluster_name))

}
if (is.null(par))

stop(”'par' is NULL”)
state_probs_mat <- state_probs(par = par, data = data, cluster_name = cluster_name,

HMM = HMM)
cum_intens_mat <- cum_intens(par = par, data = data, cluster_name = cl,

HMM = HMM)
informed_trading_good <- state_probs_mat[, ”Good”] * (cum_intens_mat[, ”cond_intens_goodnews_buys”] -

cum_intens_mat[, ”cond_intens_nonews_buys”])
informed_trading_bad <- state_probs_mat[, ”Bad”] * (cum_intens_mat[, ”cond_intens_badnews_sells”] -

cum_intens_mat[, ”cond_intens_nonews_sells”])
informed_trading <- informed_trading_good + informed_trading_bad
noise_trading <- cum_intens_mat[, ”cond_intens_nonews_buys”] + cum_intens_mat[,

”cond_intens_nonews_sells”]
total_trading <- noise_trading + informed_trading
pin <- informed_trading/total_trading
pin_good <- informed_trading_good/total_trading
pin_bad <- informed_trading_bad/total_trading
res <- cbind(pin, pin_good, pin_bad)
colnames(res) <- c(”pin”, ”pin_good”, ”pin_bad”)
res

}

Code Chunk 7.22 (Source code of function cum_intens):

function(par = NULL, data = NULL, cluster_name = NULL, HMM = TRUE, close_con = FALSE) {
if (close_con) {

if (!is.null(cluster_name))
on.exit(stopCluster(cluster_name))

}
if (is.null(cluster_name) || length(cl)  1) {

ret <- cum_intens_cpp(par, data[[”IntraDay”]], data[[”Daily”]][, ”initial_buys”],
data[[”Daily”]][, ”initial_sells”], data[[”Daily”]][, ”log_mean_dura”],
data[[”Daily”]][, ”log_mean_sa”], HMM)

ret
} else {

ret <- clusterCall(cluster_name, fun = cum_intens_helper, para = par,
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HMM = HMM)
do.call(rbind, ret)

}
}

Code Chunk 7.23 (Source code of C++ function cum_intens_cpp):

NumericMatrix cum_intens_cpp(const NumericVector & param,
const List & DATAMAT,
const NumericVector & initbuys, const NumericVector & initsells,
const NumericVector & meandura, const NumericVector & meansa,
bool HMM) {

int ni = 0, i, j = 0, ni_full = 0;
int n = DATAMAT.size();

double const_buys_sa = param[”alpha_B”] + param[”beta_B”],
const_buys = const_buys_sa - 1.0,
const_sells_sa = param[”alpha_S”] + param[”beta_S”],
const_sells = const_sells_sa - 1.0, meandiff = 0.0,
last_non_observed_dura = 0.0, inf_corr = 0.0;

NumericMatrix res(n,4);

for(i = 0; i < n; i೫೮){
NumericMatrix mat_full = DATAMAT[i];
ni = mat_full.nrow();

SubMatrix<REALSXP> mat_sub = mat_full(Range(0, ni - 1), _);
NumericMatrix mat = mat_sub;

NumericVector dura = mat(_,0);
NumericVector psi1n = no_init(ni);
NumericVector psim1n = no_init(ni);
NumericVector psi1g = no_init(ni);
NumericVector psim1b = no_init(ni);

NumericVector psi1n_helper = no_init(ni);
NumericVector psim1n_helper = no_init(ni);
NumericVector psi1g_helper = no_init(ni);
NumericVector psim1b_helper = no_init(ni);

NumericVector psi1n_intens = no_init(ni);
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NumericVector psim1n_intens = no_init(ni);
NumericVector psi1g_intens = no_init(ni);
NumericVector psim1b_intens = no_init(ni);

psi1n[0] = initbuys[i];
psim1n[0] = initsells[i];

meandiff = meandura[i] - meansa[i];

if(HMM) {
double bbuys=param[18], bsells=param[19],
psi_buys_adjust = lgamma(1.0 + 1.0/bbuys),
psi_sells_adjust = lgamma(1.0 + 1.0/bsells);

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +

param[6] * mat(j-1,1) + param[7] * mat(j-1,2) + param[8] * psi1n[j-1] +
param[9] * mat(j-1,0) + param[10] * mat(j-1,5) - psi_buys_adjust;

psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[11] * mat(j-1,1) + param[12] * mat(j-1,2) + param[13] * psim1n[j-1] +
param[14] * mat(j-1,0) + param[15] * mat(j-1,5) - psi_sells_adjust;

}
} else {

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +

param[4] * mat(j-1,1) + param[5] * mat(j-1,2) + param[6] * psi1n[j-1] +
param[7] * mat(j-1,0) + param[8] * mat(j-1,5);

psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[9] * mat(j-1,1) + param[10] * mat(j-1,2) + param[11] * psim1n[j-1] +
param[12] * mat(j-1,0) + param[13] * mat(j-1,5);

}
}

if(HMM) {
psi1n_intens = exp(param[18] * (dura - psi1n));
psim1n_intens = exp(param[19] * (dura - psim1n));

res(i,0) = sum(psi1n_intens);
res(i,1) = sum(psim1n_intens);
res(i,2) = exp(param[16] * param[18]) * res(i,0);
res(i,3) = exp(param[17] * param[19]) * res(i,1);
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} else {
psi1n_intens = exp(dura - psi1n);
psim1n_intens = exp(dura - psim1n);

inf_corr = exp(param[14]);

res(i,0) = sum(psi1n_intens);
res(i,1) = sum(psim1n_intens);
res(i,2) = inf_corr * res(i,0);
res(i,3) = inf_corr * res(i,1);

}
}
colnames(res) = CharacterVectorೋೌcreate(”cond_intens_nonews_buys”, ”cond_intens_nonews_sells”,

”cond_intens_goodnews_buys”, ”cond_intens_badnews_sells”);
return res;

}

Code Chunk 7.24 (Source code of function cum_intens_helper):

function(para, HMM = TRUE) {
cum_intens_cpp(para, data_sub[[”IntraDay”]], data_sub[[”Daily”]][, ”initial_buys”],

data_sub[[”Daily”]][, ”initial_sells”], data_sub[[”Daily”]][, ”log_mean_dura”],
data_sub[[”Daily”]][, ”log_mean_sa”], HMM)

}

Probability integral transforms, as described in section 11.4, are returned by the pit function
with the source code of the function shown in code chunk 7.25. The cdf of durations, shown
in equation (11.6), is implemented with the dura_cdf function which calls the C++ function
dura_cdf_cpp and the helper function dura_cdf_helper. Source codes of the three functions are
presented in the code chunks 7.26, 7.27 and 7.28.

Code Chunk 7.25 (Source code of function pit):

function(par = NULL, data = NULL, HMM = TRUE, cluster_name = NULL, close_con = FALSE) {
if (close_con) {

if (!is.null(cluster_name))
on.exit(stopCluster(cluster_name))

}
if (is.null(par))

stop(”'par' is NULL”)
state_probs_mat <- state_probs(par = par, data = data, cluster_name = cluster_name,

HMM = HMM)
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dura_cdf_list <- dura_cdf(par = par, cluster_name = cl, data = data, HMM = HMM)
res <- vector(”list”, length(dura_cdf_list))
for (i in seq_along(dura_cdf_list)) {

res[[i]] <- state_probs_mat[i, ”No”] * dura_cdf_list[[i]][, ”No”] +
state_probs_mat[i, ”Good”] * dura_cdf_list[[i]][, ”Good”] + state_probs_mat[i,
”Bad”] * dura_cdf_list[[i]][, ”Bad”]

}
res <- do.call(c, res)
res

}

Code Chunk 7.26 (Source code of function dura_cdf):

function(par = NULL, data = NULL, cluster_name = NULL, HMM = TRUE) {
if (is.null(cluster_name) || length(cl)  1) {

ret <- dura_cdf_cpp(par, data[[”IntraDay”]], data[[”Daily”]][, ”initial_buys”],
data[[”Daily”]][, ”initial_sells”], data[[”Daily”]][, ”log_mean_dura”],
data[[”Daily”]][, ”log_mean_sa”], HMM)

ret
} else {

ret <- clusterCall(cluster_name, fun = dura_cdf_helper, para = par,
HMM = HMM)

do.call(c, ret)
}

}

The two functions, cum_intens and dura_cdf, share its structure. The actual core function is
implemented in the C++ language due to performance reasons and then called by a wrapper
written in R. Moreover, in both cases helper functions are utilized to allow for executions in
parallel.

Code Chunk 7.27 (Source code of C++ function dura_cdf_cpp):

List dura_cdf_cpp(const NumericVector & param,
const List & DATAMAT,
const NumericVector & initbuys, const NumericVector & initsells,
const NumericVector & meandura, const NumericVector & meansa,
bool HMM) {

int ni = 0, i, j = 0, ni_full = 0;
int n = DATAMAT.size();

double const_buys_sa = param[”alpha_B”] + param[”beta_B”],
const_buys = const_buys_sa - 1.0,
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const_sells_sa = param[”alpha_S”] + param[”beta_S”],
const_sells = const_sells_sa - 1.0, meandiff = 0.0;

List res(n);

for(i = 0; i < n; i೫೮){
NumericMatrix mat_full = DATAMAT[i];
ni_full = mat_full.nrow();

SubMatrix<REALSXP> mat_sub = mat_full(Range(0, ni_full - 2), _);
NumericMatrix mat = mat_sub;

ni = ni_full - 1;

NumericMatrix tmp_res(ni,3);

NumericVector dura = mat(_,0);
NumericVector rt = mat(_,4);
NumericVector psi1n = no_init(ni);
NumericVector psim1n = no_init(ni);
NumericVector psi1g = no_init(ni);
NumericVector psim1b = no_init(ni);

NumericVector psi1n_helper = no_init(ni);
NumericVector psim1n_helper = no_init(ni);
NumericVector psi1g_helper = no_init(ni);
NumericVector psim1b_helper = no_init(ni);

psi1n[0] = initbuys[i];
psim1n[0] = initsells[i];

meandiff = meandura[i] - meansa[i];

if(HMM) {
double bbuys=param[18], bsells=param[19],
psi_buys_adjust = lgamma(1.0 + 1.0/bbuys),
psi_sells_adjust = lgamma(1.0 + 1.0/bsells);

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +

param[6] * mat(j-1,1) + param[7] * mat(j-1,2) + param[8] * psi1n[j-1] +
param[9] * mat(j-1,0) + param[10] * mat(j-1,5) - psi_buys_adjust;
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psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[11] * mat(j-1,1) + param[12] * mat(j-1,2) + param[13] * psim1n[j-1] +
param[14] * mat(j-1,0) + param[15] * mat(j-1,5) - psi_sells_adjust;

}
} else {

for(j = 1; j < ni; j೫೮){
psi1n[j] = const_buys * meandiff + mat(j,3) - (const_buys_sa * mat(j-1,3)) +

param[4] * mat(j-1,1) + param[5] * mat(j-1,2) + param[6] * psi1n[j-1] +
param[7] * mat(j-1,0) + param[8] * mat(j-1,5);

psim1n[j] = const_sells * meandiff + mat(j,3) - (const_sells_sa * mat(j-1,3)) +
param[9] * mat(j-1,1) + param[10] * mat(j-1,2) + param[11] * psim1n[j-1] +
param[12] * mat(j-1,0) + param[13] * mat(j-1,5);

}
}

if(HMM) {
NumericVector rt_buys_no_helper = no_init(ni);
NumericVector rt_sells_no_helper = no_init(ni);
NumericVector rt_buys_good_helper = no_init(ni);
NumericVector rt_sells_bad_helper = no_init(ni);

psi1g = psi1n - param[”mu_G”];
psim1b = psim1n - param[”mu_B”];

psi1n_helper = exp(param[”k_B”] * (dura - psi1n));
psim1n_helper = exp(param[”k_S”] * (dura - psim1n));
psi1g_helper = exp(param[”k_B”] * (dura - psi1g));
psim1b_helper = exp(param[”k_S”] * (dura - psim1b));

rt_buys_no_helper = exp(param[”k_B”] * (rt - psi1n));
rt_sells_no_helper = exp(param[”k_S”] * (rt - psim1n));
rt_buys_good_helper = exp(param[”k_B”] * (rt - psi1g));
rt_sells_bad_helper = exp(param[”k_S”] * (rt - psim1b));

tmp_res(_,2) = exp(log1p(-exp(-psi1n_helper - psim1n_helper)) -
log1p(-exp(-rt_buys_no_helper - rt_sells_no_helper)));

tmp_res(_,1) = exp(log1p(-exp(-psi1g_helper - psim1n_helper)) -
log1p(-exp(-rt_buys_good_helper - rt_sells_no_helper)));

tmp_res(_,0) = exp(log1p(-exp(-psi1n_helper - psim1b_helper)) -
log1p(-exp(-rt_buys_no_helper - rt_sells_bad_helper)));

} else {
NumericVector surv_buys_no = no_init(ni);
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NumericVector surv_sells_no = no_init(ni);
NumericVector surv_buys_good = no_init(ni);
NumericVector surv_sells_bad = no_init(ni);

psi1g = psi1n - param[”mu”];
psim1b = psim1n - param[”mu”];

psi1n_helper = exp(dura - psi1n);
psim1n_helper = exp(dura - psim1n);
psi1g_helper = exp(dura - psi1g);
psim1b_helper = exp(dura - psim1b);

surv_buys_no = exp(-psi1n_helper);
surv_sells_no = exp(-psim1n_helper);
surv_buys_good = exp(-psi1g_helper);
surv_sells_bad = exp(-psim1b_helper);

tmp_res(_,2) = 1.0 - surv_buys_no * surv_sells_no;
tmp_res(_,1) = 1.0 - surv_buys_good * surv_sells_no;
tmp_res(_,0) = 1.0 - surv_buys_no * surv_sells_bad;

}
colnames(tmp_res) = CharacterVectorೋೌcreate(”Bad”, ”Good”, ”No”);

res[i] = tmp_res;
}
return res;

}

Code Chunk 7.28 (Source code of function dura_cdf_helper):

function(para, HMM = TRUE) {
dura_cdf_cpp(para, data_sub[[”IntraDay”]], data_sub[[”Daily”]][, ”initial_buys”],

data_sub[[”Daily”]][, ”initial_sells”], data_sub[[”Daily”]][, ”log_mean_dura”],
data_sub[[”Daily”]][, ”log_mean_sa”], HMM)

}

The summary_opt function return summaries in a similar style of the summary function from
the stats package for regression models estimated with the built-in lm function.86 Hence, we
get standard deviations, the test statistic of a t-test for significance and the corresponding p-
value for each parameter. Standard deviations are calculated as square roots of the diagonal
86The lm function is also shipped with the stats package.
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elements of the Hessian matrix. The summary_opt function shares the control argument with
the optimHess function in the stats package which is used for computations of Hessian matri-
ces.87

Code Chunk 7.29 (Source code of function summary_opt):

function(par, data = NULL, cluster_name = NULL, HMM = TRUE, lower = NULL, upper = NULL,
control = list(), close_con = FALSE, return_cov_mat = FALSE) {
if (close_con) {

if (!is.null(cluster_name))
on.exit(stopCluster(cluster_name))

}
if (is.null(lower)) {

if (!HMM) {
lower = c(-10, rep(0, 3), rep(-3, 2), rep(0, 2), -0.2, rep(-3, 2),

rep(0, 2), -0.2, 0)
} else {

lower = c(rep(0, 6), rep(-3, 2), rep(0, 2), -0.2, rep(-3, 2), rep(0,
2), -0.2, rep(0, 2), rep(1e-10, 2))

}
}
if (is.null(upper)) {

if (!HMM) {
upper = c(rep(100, 4), rep(3, 2), 1, 0.3, 0.2, rep(3, 2), 1, 0.3,

0.2, 2)
} else {

upper = c(rep(1, 6), rep(3, 2), 1, 0.3, 0.2, rep(3, 2), 1, 0.3,
0.2, rep(2, 4))

}
}
if (HMM) {

fun <- function(par_est) loglik_hessian(par = trans_prob_stab(par_est),
data = data, cluster_name = cluster_name, HMM = TRUE)

} else {
fun <- function(par_est) loglik_hessian(par = par_est, data = data,

cluster_name = cluster_name, HMM = FALSE)
}
low_hit <- abs(lower - par) < 1e-08
upper_hit <- abs(upper - par) < 1e-08
bound_hit <- (low_hit | upper_hit)
par_bound <- par[bound_hit]
join_par <- function(x) c(par_bound, x)[names(par)]
d <- calc_d(par, h = 1e-04, FUN = fun, lower = lower, upper = upper)
con <- list(fnscale = 1, parscale = rep.int(1, length(par[!bound_hit])),

ndeps = rep.int(0.001, length(par[!bound_hit])))

87A detailed explanation of the various options of the control argument is given on the help page of the optimHess
function (call ?optimHess from the R console).
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if (!(is.null(control$parscale))) {
control$parscale <- control$parscale[!bound_hit]

}
if (!(is.null(control$ndeps))) {

control$ndeps <- control$ndeps[!bound_hit]
}
con[(names(control))] <- control
comp_hess <- FALSE
comp_hess <- is.matrix(try(hessian1 <- optimHess(par = (par * d)[!bound_hit],

fn = function(x) -fun(join_par(x/d[!bound_hit])), control = con), silent = FALSE))
if (!comp_hess) {

d <- rep(1, length(par))
comp_hess <- is.matrix(try(hessian1 <- optimHess(par = (par * d)[!bound_hit],

fn = function(x) -fun(join_par(x/d[!bound_hit])), control = con),
silent = FALSE))

if (!comp_hess)
stop(paste0(”Error in 'optimHess'.”, ”Hessian can not be computed for given parameter and/or con-

trol settings.”))
}
hessian <- diag(d[!bound_hit]) %*% hessian1 %*% diag(d[!bound_hit])
eigen_vals <- eigen(hessian, symmetric = TRUE, only.values = TRUE)$values
if (any(eigen_vals < 0))

warning(”Hessian Matrix is not positive definite”)
var_cov <- try(solve(hessian), silent = FALSE)
inv_hess <- is.matrix(var_cov)
if (!inv_hess) {

stop(”Can't invert negative hessian matrix!”)
}
if (return_cov_mat) {

return(var_cov)
}
st.dev <- sqrt(diag(var_cov))
t.val <- par[!bound_hit]/st.dev
p.val <- 2 * (1 - pnorm(abs(t.val)))
res <- data.frame(cbind(Estimate = par[!bound_hit], Std.Error = st.dev,

t.value = t.val, p.value = p.val), row.names = names(par[!bound_hit]))
newdat <- matrix(nrow = length(par), ncol = ncol(res))
rownames(newdat) <- names(par)
colnames(newdat) <- colnames(res)
newdat[, ”Estimate”] <- par
newdat[rownames(res), ] <- as.matrix(res)
res <- newdat
res

}

The source code of summary_opt introduces the yet unknown loglik_hessian function, which
is a modification of the already explained loglik function by removing the checks if the sums
of the parameters 𝛼1, 𝛽1 and 𝛼−1, 𝛽−1 are larger than unity.
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7 Source Code of Implementations for High-Frequency Models

Code Chunk 7.30 (Source code of function loglik_hessian):

function(par = NULL, data = NULL, cluster_name = NULL, HMM = TRUE) {
if (is.null(par))

stop(”No parameter vector found”)
if (is.null(names(par)))

stop(”'par' has no names! See function 'par_names'”)
if (any(is.nan(par)))

return(-Inf)
if (!HMM) {

if (length(par)  15)
stop(”Length of 'par' does not match 3TW model”)

llexp3TW(par, data = data, cluster_name = cluster_name)
} else {

if (length(par)  20)
stop(”Length of 'par' does not match HMM Weibull model”)

res <- llwei(par, data = data, cluster_name = cluster_name)
mat_trans <- trans_mat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”,

”p_NG”)], hessian = TRUE)
p_init <- p_stat(par[c(”p_BG”, ”p_BN”, ”p_GB”, ”p_GN”, ”p_NB”, ”p_NG”)])
fb_ll(res, p_init, mat_trans)

}
}

It is obvious that the majority of presented functions in this chapter do not need to be called
by the user directly. In most cases it will be sufficient to call the pin_est function and even-
tually post-process the returned results or utilize them in further analyses. However, for the
sake of completeness, this chapter contains the complete source code of each function used to
receive the results for the dynamic approaches to estimate the probability of informed trading
displayed in chapter 11.
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8 Data

8.1 High-Frequency Data

Before we begin to present and explain our data source, matching of trades and quotes, data
preparation and rules we apply for detecting outliers in the data, we will shortly describe some
general properties of high-frequency data.

The literature is not consistent in terminology for this type of datasets. Often used synonyms
are (intraday) transaction data, ultra-high-frequency data or tick data (e.g see Hautsch 2011,
p. 27). Every trade or quote occurring in the market is typically recorded. According to the
level of details a high-frequency dataset exhibits, we can distinguish between five major levels
(see Hautsch 2011, p. 28):

Trade data The transaction level is associated with information on individual trades consist-
ing of

• the time stamp of trades,

• the price at which a trade was executed and the corresponding

• trade volume.

Trade and quote data Information on trades and quotes provides the most common form of
transaction data containing

• the time stamp of trades and best ask/bid quote updates,

• the underlying best ask/bid quotes,

• the price at which a trade was executed,

• the traded volume,

• the trade direction (can be reconstructed with trade classification algorithms which
we will describe later)

• the indicative depth associated with best ask and bid quotes
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8 Data

Fixed level order book data If the underlying trading system is a fully computerized sys-
tem, often also (at least partial) information on the depth behind the market is available.
This type of data contains the same information as above but provides also information
on limit order activities behind the market. Based on such data it is possible to recon-
struct the limit order book up to a fixed level.

Messages on all limit order activities Such data provide full information on any limit order
activities, including time stamps, (limit) prices, sizes and specific attributes of limit order
submissions, executions, cancellations and amendments. It allows to fully reproduce
the trading flow and to reconstruct the limit order book at any point in time during
continuous trading and allows for an exact identification of buyer-initiated or seller-
initiated trades.

Data on order book snapshots Some datasets provide snapshots of the limit order book at
equidistant time intervals avoiding the need for order book reconstructions. However,
as they are recorded on an equidistant grid, the matching with the corresponding under-
lying trading process is difficult. Therefore, this data is only useful to study limit order
book dynamics but is of limited use to analyze interactions between the order book and
the trading process.

The last three mentioned types of high-frequency datasets allow to reconstruct the limit order
book. Despite the availability of data containing full information, it is still a difficult under-
taking. Transactions happening outside the regular trading hours including opening auctions,
closing auctions and overnight market activities have to be taken into account, as Hautsch
(2011) states. Since our primary goal is not the accurate rebuilding of order books, we will not
delve any deeper in this specific field and proceed with the description of our data.

8.2 Data Source

We use trade and quote data over four years for all applications of models for the probability of
informed trading. Data is available from January 1, 2007 to December 31, 2010 and covers two
marketplaces.88 All nine equities under consideration belong to the automobile industry.89

New York Stock Exchange (NYSE): Ford Motor Company (F), General Motors Company
(GM), Honda Motor Co. Ltd (HMC), Johnson Controls International (JCI) and Toyota
Motor Corp. (TM)

Xetra: Bayerische Motorenwerke AG (BMW), Continental AG (CON), Daimler AG (DAI) and
Volkswagen AG (VOW)

88GM was delisted after June 1, 2009.
89We receive our raw data from Tick Data, LLC. (2019).
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8.2 Data Source

Official market opening for NYSE and Xetra are at 9:30 am and 9 am, while regular trading
ends at 4 pm and 5:30 pm, respectively. Trade and quote databases are separated from each
other and contain different additional market-specific information.

Trade files for the US equities offer the following information: Date, Time, Price, Volume, Ex-
change Code, Sales Condition, Correction Indicator, Sequence Number, Trade Stop Indicator, Source
of Trade, MDS 127/TRF90, Exclude Record Flag and Filtered Price.91 Exemplary records from the
raw trade data for NYSE are shown in table 8.1.

01/03/2007 08:33:11.093 39.81 100 D T 0 2936 N C — — —
01/03/2007 09:30:31.040 39.81 100 D — 0 12204 N C — — —
01/03/2007 09:30:32.593 39.82 200 D — 0 12430 N C — — —
01/03/2007 09:30:47.381 39.54 20200 N — 0 14756 N C — — —
01/03/2007 09:30:47.840 39.60 800 N E 0 14903 N C — — —
01/03/2007 09:30:48.491 39.60 400 N E 0 15035 N C — — —
01/03/2007 09:30:48.491 39.54 100 M — 0 15036 N C — — —
01/03/2007 09:30:48.491 39.54 200 M — 0 15037 N C — — —
01/03/2007 09:30:48.491 39.54 200 M — 0 15038 N C — — —
01/03/2007 09:30:48.491 39.60 500 N E 0 15039 N C — — —

Table 8.1: Exemplary raw trade data for HMC on January 3rd, 2007. Blank fields are marked with
“—”.

The first transaction on NYSE (Exchange Code = N) in table 8.1 occurs at 09:30:47.381 at a price
of 39.54 and consists of 20200 shares. According to the manual by Nexa Technologies Inc.
(2011), a value of 0 for the Correction Indicator states that it is a ”regular trade that was not
corrected, changed, or signified as cancel or error”. The trade was not indicated as stop stock
(Stop Indicator = 0) and stems from the Consolidated Tape System (CTS).

Information delivered by quote files are: Date, Time, Exchange, Bid Price, Ask Price, Bid Size,
Ask Size, Quote Condition, Market Maker ID, Sequence Number, Bid Exchange, Ask Exchange,
National BBO Indicator92, NASDAQ BBO Indicator, Quote Cancel/Correction, Quote Source93.
Exemplary records from the raw quote data for NYSE are shown in table 8.2.

The first record of quotes file from table 8.2 has timestamp 04:15:01.554 and bid and ask prices of
35.64 and 0, respectively. It belongs to the NYSE Arcamarketplace (Exchange = P, Bid Exchange
= P, Ask Exchange = P) which is an electronic trading platform, and is labelled as regular (Quote
Condition = R). Bid and ask sizes are given in number of round lots (100 share units) and equal
2 and 0, respectively. The source of the quote is Consolidated Quote System (CQS). Although
90TRF = Trade Reporting Facility
91 The fields forMDS 127/TRF, Exclude Record Flag and Filtered Price are very often empty like in the excerpt of raw

trade data shown in table 8.1.
92NBBO = National Best Bid and Offer
93 For detailed explanation of trade and quote file fields see the manual for US equities by Nexa Technologies Inc.

(2011).
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01/03/2007 04:15:01.554 P 35.64 0.00 2 0 R — 558 P P 1 2 — C
01/03/2007 04:15:01.554 P 37.52 39.81 1 1 R — 560 P P 1 2 — C
01/03/2007 04:33:45.492 P 39.25 39.81 1 1 R — 2401 P P 1 2 — C
01/03/2007 07:20:58.677 P 39.25 0.00 1 0 R — 17154 P P 1 2 — C
01/03/2007 07:47:57.105 P 39.25 41.44 1 1 R — 21441 P P 1 2 — C
01/03/2007 08:14:00.817 P 39.25 39.54 1 4 R — 27333 P P 1 2 — C
01/03/2007 08:30:06.967 D 0.00 0.00 0 0 R AUTO 43874 D D 0 2 A C
01/03/2007 08:30:06.967 D 0.01 2000.00 2 2 R NAQS 43876 D D 0 2 A C
01/03/2007 08:30:06.967 D 0.00 0.00 0 0 R BTRD 43879 D D 0 2 A C
01/03/2007 08:30:06.967 D 0.00 0.00 0 0 R CDRG 43881 D D 0 2 A C

Table 8.2: Exemplary raw quote data for HMC on January 3rd, 2007. Blank fields are marked with
“—”.

the two fields about BBO indicators are included for the sake of completeness, it is not recom-
mended to use them and therefore we will not give any explanation (see Nexa Technologies
Inc. 2011).

Trade data as well as quote data for the German stocks are less informative. Trade files contain
the following fields: Trade Date, Trade Time, Trade Price, Trade Volume, Trade Exchange, Price
Adjustment, Filtered Price. Exemplary records from the raw trade data for Xetra are shown in
table 8.3.

01/02/2007 09:02:31.400 47.15000 6231 FRA 72.46719 —
01/02/2007 09:02:44.000 47.20000 77829 ETR 72.54404 —
01/02/2007 09:02:44.790 47.20000 3000 ETR 72.54404 —
01/02/2007 09:02:47.480 47.20000 4000 ETR 72.54404 —
01/02/2007 09:02:49.000 47.20000 2783 ETR 72.54404 —
01/02/2007 09:02:50.400 47.20000 2500 ETR 72.54404 —
01/02/2007 09:02:57.440 47.20000 1000 ETR 72.54404 —
01/02/2007 09:03:02.340 47.20000 5000 ETR 72.54404 —
01/02/2007 09:03:02.660 47.20000 375 ETR 72.54404 —
01/02/2007 09:03:02.660 47.24000 454 ETR 72.60552 —

Table 8.3: Exemplary raw trade data for DAI on January 2nd, 2007. Blank fields are marked with “—”.

The first trade on Xetra (Exchange = ETR) in table 8.3 happens at 09:02:44.000 with a price of
47.20 and 77829 traded shares. According to the manual for German equities data, Price Adjust-
ment comes with no supporting documentation by Xetra. We ignore this field, and additionally,
filtered prices due to the many blanks for the preparation or our datasets.

Following information are available in the quote data files: Date, Time Stamp, Exchange, Quote,
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8.3 Data Preparation

Quote Size, Bid Ask Flag94. Exemplary records from the raw quote data for Xetra are shown in
table 8.4.

01/02/2007 08:50:04.290 ETR 47.73000 45546 I
01/02/2007 08:50:07.910 ETR 47.73000 45886 I
01/02/2007 08:51:00.110 ETR 47.73000 50446 I
01/02/2007 08:51:47.630 ETR 47.73000 50526 I
01/02/2007 08:51:58.650 ETR 47.80000 54029 I
01/02/2007 08:52:05.670 ETR 47.73000 50526 I
01/02/2007 08:52:35.440 ETR 47.73000 51526 I
01/02/2007 08:53:11.110 ETR 47.73000 52526 I
01/02/2007 08:53:22.840 ETR 47.73000 53526 I
01/02/2007 08:53:34.360 ETR 47.73000 54526 I

Table 8.4: Exemplary raw quote data for DAI on January 2nd, 2007. Blank fields are marked with
“—”.

The first record of quotes file from table 8.4 has timestamp 08:50:04.290 and a quote of 47.73.
Quote size equals 45546, while the last field labels the quote as indicative price.95

Before the actual data preparation we exclude transactions occurring outside regular market
trading hours. These orders are typically ignored in models for the probability of informed
trading and would substantially increase file sizes of trade and quote data.96 We make use of
the RSQLite R package, which offers an easy-to-use SQLite interface for R, to store complete
trade and quote data (see Wickham, James, and Falcon 2014).

8.3 Data Preparation

Since available raw data exhibit varying levels of information about the trading activities de-
pending on the marketplace, we need to apply different data preparation strategies for NYSE
and Xetra. Raw files for US equities contain information about several marketplaces (e.g., NAS-
DAQ and AMEX97), whereas the German raw files only distinguish between floor and elec-
tronic trading. For US stocks we will concentrate on transactions occurring at NYSE, which
have to fulfill several constraints, for German symbols we will discard floor trading.

94 For detailed explanation of trade and quote file fields see the manual for German equities by Nexa Technologies
Inc. (2007).

95At the given time Xetra marketplace resides in pre-trading phase.
96We utilize the TickWrite program for pre-preparation of data files. The user guide by Tick Data, LLC. (2011) gives

detailed explanations.
97NASDAQ = National Association of Securities Dealers Automated Quotations and AMEX = American Stock

Exchange
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8 Data

8.3.1 New York Stock Exchange (NYSE)

We extract date, timestamp, price and volume information from the trade database incorporat-
ing the following conditions (see Vergote 2005)):

• trades have to be executed at NYSE
Exchange Code = N

• trades need to be regular way or NYSE Direct+ trades; 98
Sales Condition = “E” or Sales Condition = “” or Sales Condition = “@” or
Sales Condition = “*”

• source of trades must be Consolidated Tape System (CTS)
Source of Trade = “C” or Source of Trade = “”

• trades must not be indicated as Stop Stock
Trade Stop Indicator = “N”

• Tick Data LLC offers a recommendation that trades should be excluded due to condition
code(s)
Exclude Record Flag ഁ “X”

We gather date, timestamp, bid price, ask price, bids size and ask size fields for transactions
from quote database if they meet the following constraints (see Vergote 2005)):

• exchange that issued the quote is NYSE
Exchange = “N”

• exchange where the bid and ask prices originated from is NYSE
Bid Exchange = “N” and Ask Exchange = “N”

• we consider only quotes which have its origin in normal trading (i.e., regular quotes,
opening quotes and closing quotes)
Quote Condition = “R” or Quote Condition = “O” or Quote Condition = “C”

• quote source needs to be Consolidated Quote System (CQS)
Quote Source = “C”

• only non-corrected quotes are kept in database
Quote Cancel Correction = “” or Quote Cancel Correction = “A”

98The high-speed electronic connection for immediate automatic execution of limit orders up to 1,099 shares (see
Nexa Technologies Inc. (2011)).
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8.4 Matching of Trades andQuotes

8.3.2 Xetra Germany

Raw files for the German equities display information about orders originating from floor
(Frankfurt) and electronic trading system (Xetra). We select the same fields in raw data as
for NYSE but narrow our analysis to data from the Xetra system. Hence, we only need to
check the Exchange field entries for keeping transactions in database:
Exchange = “ETR” or Exchange = “ETE”.

8.4 Matching of Trades andQuotes
Both exchanges, NYSE and Xetra, deliver data for trades and quotes in separate files which
raises the problem of appropriate matching. Lee and Ready (1991) established the prominent
“5-Second-Rule” which intends to reduce the mismatching of trade and quote data. This rule
takes into account that quotes are posted more quickly and trades are recorded with some
delay. Hence, the “5-Second-Rule” gives the recommendation to match trades with quote data
which was posted at least five seconds earlier. However, it is not appropriate for any recent
data since it was developed by analyzing trade and quote data from the late eighties. Henker
and Wang (2006) show that the delay for NYSE stocks is rather one second than five seconds.
Hautsch (2011) state that this is in line with most recent studies linking each trade arrival to
the most recent quote.

For matching our trade and quote datasets we do not use any data-driven algorithm (e.g., see
Hautsch 2011, p. 30), but use the most recent posted quote as the relevant one for each order.
We compute year-wise average differences in timestamps of transactions and corresponding
quote records for all stocks in our study. The results displayed in table 8.5 show that for the
majority of US stocks yearly average delays are substantially lower than one second. Only
HMC and TM exhibits delay times which are considerable higher than one second in 2008 and
2010.

German stocks present substantially higher delays than equities traded on NYSE. Only average
differences in trade and corresponding quote timestamps for BMW and DAI are lower than one
second in 2009 and 2010, CON equity suffers from the highest delay times which are more than
three seconds in 2008 and nearly 10 seconds in 2009.

Table 8.6 offers summary statistics for matched datasets including information about average
duration, average trade size, average number of transactions per day and the total number
of records for all stocks over the range from 2007 to 2010. HMC and TM can be labelled as
less-frequently traded stocks with average waiting times of almost 30 seconds, whereas the
average durations for the remaining equities are at most 10 seconds. The average number of
orders per day in our matched datasets is higher than 5000 for almost all stocks. Hence, we see
a tremendously high number of observations for the nine equities under consideration. Even
for HMC and TM the total amount of matched transactions is close to one million, maximum
value is shown for DAI which equals almost 10 million.
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2007 2008 2009 2010

F 0.32917 0.52323 0.14389 0.32195
GM 0.27756 0.59960 0.23142
HMC 0.57407 1.89123 0.37644 1.57884
JCI 0.38104 0.75234 0.19316 0.32347
TM 0.52561 1.34746 0.69363 1.47848
BMW 2.06983 1.60170 1.22111 0.61925
CON 2.08280 3.00380 9.72654 1.39777
DAI 1.36974 1.23455 0.88366 0.49265
VOW 1.81722 1.49404 1.84066 1.58838

Table 8.5: Average delay times for stocks traded on NYSE and Xetra (measured in seconds).

F GM HMC JCI TM BMW CON DAI VOW

∅ Dura. 4.11 3.26 29.55 6.81 24.73 5.97 10.32 3.19 5.35
∅ Volume 1683.01 616.50 243.46 237.62 196.05 614.31 367.17 759.26 233.84
∅ Daily Trades 5675.98 7147.82 788.01 3424.25 941.87 5117.23 2958.61 9572.50 5707.86
# Obs. 5721386 4338728 794314 3451643 949401 5199102 3005951 9725655 5799188

Table 8.6: Summary statistics for matched datasets in the range from 2007 to 2010 including aver-
age duration, average trade size, average number of trades per day and the number of
observation.

8.5 Data Cleaning
After matching trade and quote files we can begin to prepare the newly created datasets for
estimation. To suppress effects bymorning auctionswhich differ from regular tradingwe delete
the first 20 minutes after the official market opening for each trading day which is common
in recent PIN literature (e.g., see Tay, Ting, Tse, and Warachka 2009, Preve and Tse 2013).
Therefore, timestamps in the matched data for NYSE-listed stocks starts at 9:50 am and for
German stocks at 9:20 am. Buys’ and Sells’ ALACD processes in chapter 6 are initialized using
the next ten minutes of data. Trading days which exhibit less than three records in this time
span are removed. For the less-frequently traded US stocks HMC and TM 44 and 23 trading
days offer insufficient number of trade records for initialization, CON and VOW are the only
German equities for which trading days must be removed due to this condition. After deletion
of affected days from the database, logarithmic mean duration of buys and sells in this ten
minute time-window is set as start value for the corresponding ALACD recursions.99 Data
entries with execution times lying in this ten minute window are only utilized for initialization
of ALACD processes and are deleted from datasets intended for estimation of PIN. Hence,
trading begins at 10 am for US stocks and at 9:30 am for German equities in our cleaned data.

Trading days with special closings are excluded. For instance, on days around holidays market
99Classification of transactions is described in section 8.6.
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8.5 Data Cleaning

attendees can place orders until 1 pm (NYSE)100 or 2 pm (Xetra)101 with a subsequent closing
auction. Furthermore, if no market activities are recorded for the last 15 minutes of a trading
day it is removed. This condition, however, is only active for one trading day over all nine
equities and four years and deletes a trading day from the database for HMC. An overview
about the number of removed transactions is given in table 8.7.

F GM HMC JCI TM BMW CON DAI VOW

Morning Data 563298 402106 59228 209555 74190 281128 141472 506221 283689
Special Closing 10 6 10 10 10 4 4 4 4
Early Closing 0 0 1 0 0 0 0 0 0

#Obs. ALACD Init. 0 0 44 0 23 0 13 0 4

Table 8.7: Number of transactions removed to avoid morning effects (Morning Data), number of
trading days removed due to special closing (Special Closing), number of trading days
removed due to no market activities in the last 15 minutes of regular trading hours (Early
Closing), number of trading days removed due to insufficient observations for initialization
of ALACD processes (# Obs. ALACD Init.). Whole time range of the underlying data is
taken into account.

Further filtering of matched data is performed utilizing rules similar to those presented in
Hautsch (2011, p. 33) and Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009, p. C7):

1. Delete transactions with a quote or transaction price equal to zero or being negative.

2. Delete transactions with a quote or transaction volume equal to zero or being negative.

3. Delete transactions with crossed prices for which bid price is higher than ask price and
therefore exhibit negative spreads.

4. Delete entries whenever the price lies outside the interval

[bid − 2 ⋅ spread; ask + 2 ⋅ spread].

5. Delete all entries with the spread being weakly greater than 50 times the median spread
of that trading day.

6. Delete all entries with the price being weakly higher than five times the median mid-
quote of that trading day.

7. Delete entries for which the mid-quote deviate by more than 10 mean absolute deviations
from a rolling centered median (excluding the observation under consideration)

8. Delete entries for which the price deviate by more than 10 mean absolute deviations from
a rolling centered median (excluding the observation under consideration)

100NYSE offers a very detailed list about all special closings since 1885 which can is available online at http://s3.
amazonaws.com/armstrongeconomics-wp/2013/07/NYSE-Closings.pdf

101Special closings for Xetra are all occurring on trading days before New Year’s Eve.
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Weuse 25 transaction before and after the current order to compute the local medianmid-quote
for rules 7 and 8. In general, the interval length in rule 4, thresholds in rules 5 and 6 as well as
neighborhood size in the last two rules can be altered and adopted to specific data, whereat the
chosen values are similar or equal to those in other publications. Barndorff-Nielsen, Hansen,
Lunde, and Shephard (2009) and Hautsch, Kyj, and Oomen (2012) set an amount of 50 transac-
tions as neighborhood size, Brownlees and Gallo (2006) report that choosing 30 orders before
and after the current trade yields the best results applying their rule of outlier detection.

F GM HMC JCI TM BMW CON DAI VOW

Rule 1 0 0 0 0 0 0 0 0 0
Rule 2 0 0 0 0 0 0 0 0 0
Rule 3 0 0 0 0 0 589 493 713 606
Rule 4 0 2 2 2 0 0 1 1 6
Rule 5 0 0 0 0 0 0 0 3 0
Rule 6 0 0 0 0 0 0 0 0 0
Rule 7 0 0 0 0 0 0 0 0 0
Rule 8 0 0 0 0 0 0 0 0 0

Table 8.8: Number of transaction records deleted due to violating Rule 1 to 8 after deletion of morning
data, trading days with special closing and more than 15 minutes without any market
activities as well as trading days with insufficient number of records for initialization of
ALACD processes. Whole time range of the underlying data is taken into account.

Summarizing table 8.8, outliers are not a big problem our raw data files suffer from. For US
stocks solely the fourth rule claims that records in the matched datasets should be excluded.
Comparing the tremendous small number of “dangerous” entries to the remaining several mil-
lions of “clean” transactions in the range from 2007 to 2010, estimation results would probably
not change if we were neglecting the outlier aspect for NYSE. For German equities, beside
prices lying far away either from the bid or ask price and very large spreads, every stock suf-
fers from crossed prices. Each of the German shares display transactions for which the bid
price exceeds the ask price. However, this number of outliers detected by the third rule is still
very small in relation to the total number of transaction records.

8.6 Filtering of Zero-Durations and Trade
Classification

Zero durations occur if two or more consecutive transaction records have identical timestamps
and are a typical characteristic of electronic trading systems. Estimation of the probability of
informed trading is not possible for data including such special durations, since they consti-
tute a severe problem in the dynamic models incorporating ALACD specifications to capture
the dynamics of buys’ and sells’ waiting times. Simultaneous trades can be interpreted as one
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large order broken into smaller pieces (split-transactions), for example, due to removing one
or more levels of depth. The most common method for handling zero durations is an aggrega-
tion of the corresponding data entries (see Pacurar 2008).102 We group sequences of matched
transaction records with zero durations and compute volume-weighted prices as well as quotes.
Order sizes and bid and ask volumes are aggregated. These newly calculated values replace the
corresponding fields of the first element of the sequence, whereas remaining transactions are
discarded. Figure 8.1 summarizes the frequencies of zero durations for all nine equities.
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Figure 8.1: Frequency of zero durations for all equities after data cleaning. Timestamps and therefore
durations are measured up to milliseconds.

For classification of transactions into buys and sells various algorithms can be utilized. The LR-
method by Lee and Ready (1991) as well as the quote test requires trade and quote data, whereas
the tick test (e.g., see Holthausen, Leftwich, and Mayers 1987) can be applied if only trade data
is available. Likewise to LR, the EMO algorithm by Ellis, Michaely, and O’Hara (2000) requires
trade and quote data.

Tick test marks transactions as buyer- (seller-)initiated if the current price is higher (lower)
than the preceding. If both prices are identical, the most recent price change is relevant. Quote
rule classifies transactions according to the distance of the current transaction price to the cor-
responding bid and ask price. For prices lying above (below) the mid-quote trades are identified
as buyer- (seller-)initiated. Trades with prices equaling the mean of quotes cannot be classified
with quote rule.

In literature, the LR-algorithm is most commonly used and states a combination of quote rule
and tick test. For transactions with a price identical to the mid-quote the tick test is utilized.
All other trades are classified according to the quote rule. Orders with values identical to ask
102Sometimes not only simultaneous orders are considered as split-transactions. For instance, the threshold for the

difference in timestamps of trades which are potential parts of a split-transaction is set to one second in Hautsch
(2004).
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8 Data

(bid) prices are identified as buys (sells) by EMO method (direct classification), for remaining
transactions the tick test is utilized.

Several studies inspect the accuracy of the different classification approaches on varying mar-
ketplaces. Theissen (2000) investigates the performance on German stock markets, Odders-
White (2000) studies the accuracy for equities traded on NYSE and Chakrabarty, Li, Nguyen,
and Ness (2007) test algorithms for identification of the originator of transactions in electronic
trading systems. Furthermore, Boehmer, Grammig, and Theissen (2007) analyze how misclas-
sification influences the estimation of the probability of informed trading in the EKOP setting
and come to the result that PIN is downward-biased if not all transactions are correctly labelled
as either buys or sells. The magnitude of bias depends on model parameter constellation and
the rate of false assigning.

We employ an approach similar to the EMO strategy to classify transactions in our data. Direct
classification is active for trades with prices identical to either bid or ask, orders for which their
transaction price differs from the quotes and their mean are processed by LR-algorithm and tick
test decides about trade direction for orders happening at the mid-quote.103
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Figure 8.2: Summary of proportions which different classification rules occupy. By direct classifi-
cation we check if transaction prices are identical either to bid or ask prices, remaining
transactions are either classified by LR-algorithm or tick test.

103More sophisticated methods for modelling trade directions are available (e.g., see Rosenthal 2012). However, the
improvement in accuracy is in the range from 1% to 2%.

150



8.6 Filtering of Zero-Durations and Trade Classification

The proportion of orders which we are able to directly classify varies across US stocks, as can
be seen from figure 8.2. Almost 90% of trade prices of F equal bid or ask prices, whereas only
little more than the half of all transactions of TM can immediately be identified as buyer- or
seller-initiated. All German shares display nearly identical proportions for classification rules,
roughly 77% of all orders allow a direct classification, 22% can be identified with LR-method and
only 1% of all transactions display prices which are equal to the corresponding mid-quote.

The accuracy of LR-algorithm and tick test reported in the literature lies around 75% or above
(see Chakrabarty, Li, Nguyen, and Ness (2007), Theissen (2000), Odders-White (2000)). Lee
and Radhakrishna (2000) attest the LR classification approach even a rate of 93% for correctly
identifying trade direction for NYSE stocks. Due to the huge number of records in our datasets
which allow us to receive the trade initiator by comparisons of transaction prices and quotes
we achieve a very high accuracy for all stocks. Hence, we are able to minimize the bias in our
studies and estimation results induced by misclassification of trade direction.

Some summary statistics for cleaned datasets for which zero durations are filtered and trade
directions are assigned for each record are presented in table 8.9. We see slightly higher average
durations compared to table 8.6 and waiting times between two consecutive buyer- or seller-
initiated orders are nearly identical for all stocks. Proportions of buys and sells are very similar.
For the majority of US stocks the number of buys is slightly higher, whereas more sells are
identified for all German equities. The TD Switches row offers information about the frequency
of trade direction switches, either from buy to sell or vice versa. We see very similar rates
for almost all equities and across markets. The lowest rate is shown by F with 26.31% which
indicates longer series of consecutive buys and sells. Furthermore, there is no big difference in
trade sizes of buyer- or seller-initiated transactions. The number of observations is still very
high with a minimum of more than 600,000 transactions for HMC and a maximum of nearly
8,000,000 entries for DAI.

F GM HMC JCI TM BMW CON DAI VOW

∅ Dura. 5.20 4.34 32.90 7.94 27.77 6.89 11.94 3.76 6.53
∅ Dura. (Buys) 10.25 8.53 65.70 15.87 55.02 13.79 24.05 7.52 13.31
∅ Dura. (Sells) 10.55 8.83 65.57 15.88 55.80 13.76 23.63 7.51 12.80
Freq. Buys (%) 50.72 50.88 49.95 50.01 50.34 49.93 49.56 49.98 49.03
Freq. Sells (%) 49.28 49.12 50.05 49.99 49.66 50.07 50.44 50.02 50.97
∅ Volume 1935.04 710.44 256.41 265.82 207.34 685.06 418.03 865.38 280.66
∅ Volume (Buys) 1961.14 718.42 259.66 265.38 209.65 684.01 417.68 859.86 268.56
∅ Volume (Sells) 1908.17 702.17 253.17 266.25 205.01 686.11 418.37 870.90 292.29
∅ Daily Trades 4154.36 4977.86 656.09 2720.52 777.33 4177.32 2409.01 7658.85 4405.47
∅ Daily Buys 2107.23 2532.71 327.73 1360.59 391.34 2085.75 1194.01 3827.68 2159.85
∅ Daily Sells 2047.13 2445.15 328.36 1359.92 385.99 2091.57 1215.00 3831.17 2245.62
TD Switches (%) 26.31 38.18 38.99 38.26 37.76 38.07 37.46 38.13 37.98
# Obs. 4146047 2991691 625253 2715074 757115 4227446 2406598 7750755 4440716

Table 8.9: Summary statistics for matched datasets in the range from 2007 to 2010 after cleaning rules
are applied, zero durations are filtered and trade directions are identified. Table contains
information about average durations, average trade sizes, average number of trades per
day, frequency of switching trade direction and the number of observation.
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After assigning trade direction to each record in our datasets we are able to calculate the ag-
gregated number of daily buys and sells for every stock. These datasets are then utilized in
estimations of the EHO model in chapter 10. One could argue that trading days with insuffi-
cient amount of data entries for initialization of buys’ and sells’ ALACD processes should be
included in underlying datasets for optimizations in the static PINmodel. This would be appro-
priate if solely likelihood function maximizations are conducted which require identical data
structure. However, we estimate several models to receive the probability of informed trading.
Static EHO model only needs the sequences of daily buys and sells but therefore drops a lot of
information from the datasource. Models using high-frequency data incorporate much more
information but the complexity of the data is therefore substantially higher. Since we want es-
timation results for the different approaches to be comparable in terms of the underlying data,
we decide not to include the trading days removed due to ALACD initialization restriction in
the datasets incorporated in EHO model optimizations.

8.7 Diurnally Adjustment
One of the empirical characteristics of high-frequency transaction data is the existence of intra-
day patterns of durations (see Tsay 2010, p. 238). Heavier trading activities and therefore
lower durations can be observed in the hours shortly after market opening and before clos-
ing, whereas the number of orders reduces around lunch time. This leads to a reverted U- or
bathtub-shape of seasonal figures.

According to Engle and Russell (1998) duration series are split into two parts, a deterministic
(seasonal) component and a stochastic part. Furthermore, the seasonal component is assumed
to act multiplicatively which allows to write the 𝑖-th observed duration on trading day 𝑑 as
product of corresponding diurnally-adjusted duration ̆𝑥𝑖,𝑑 and diurnal factor 𝜙𝑖(𝑡𝑖−1) which
depends on the timestamp of the preceding trade 𝑡𝑖−1,

𝑥𝑖,𝑑 = ̆𝑥𝑖,𝑑 ⋅ 𝜙𝑖(𝑡𝑖−1). (8.1)

Thus, the sequence of diurnally adjusted durations is given by the ratio of observed durations
and diurnal factors,

̆𝑥𝑖,𝑑 = 𝑥𝑖,𝑑
𝜙𝑖(𝑡𝑖−1)

. (8.2)

As it is common practice in literature, after determination of seasonal figures we scale the
adjusted duration series such that its sample mean is identical to the sample mean of the non-
adjusted series for each trading day in our datasource (see Tay, Ting, Tse, andWarachka (2009)
and Kwok, Li, and Yu (2009)),

̆𝑥𝑖,𝑑 scaled = ̆𝑥𝑖,𝑑
̄𝑥𝑑
̄̆𝑥𝑑
, (8.3)
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8.7 Diurnally Adjustment

with mean of adjusted durations ̄̆𝑥𝑑 and mean of non-adjusted durations ̄𝑥𝑑 on trading day
𝑑 .

There are various methods available in literature to compute the deterministic components
𝜙𝑖(𝑡𝑖−1) (e.g., see Hautsch 2011, Tsay 2010, Bauwens and Giot 2000). We use a common approach
which employs a cubic spline function to imitate the run of the intra-day pattern curve.104
Knots of the spline function are set at each full hour during regular trading as well as at the first
and last possible timestamp of a trading day in cleaned datasets.105 Using higher rates for the
placement of knots is possible but should be done carefully to avoid overfitting.106 We assume
the seasonal pattern to be constant over trading days and the time range under consideration for
each of the stocks in our database. Other approaches like splitting trading days in morning and
afternoon session (e.g., see Kwok, Li, and Yu 2009) or calculation of weekday-specific seasonal
figures (e.g., see Meitz and Teräsvirta 2006) are also utilized in literature.

Values of fixed points of the cubic spline functions are calculated by averaging durations hap-
pening in a certain time span around each knot’s timestamp. Furthermore, spline functions
can be interpreted as expected durations depending on the time of day. Therefore the mean
of the non-scaled adjusted durations from equation (8.2) should be close to 1. We investigate
the performance of five different time ranges, utilizing intervals covering duration data from
one to five minutes around each fixed timestamp.107 Full hours are set as midpoint of the cor-
responding intervals, first and last possible timestamp of a trading day represent the left and
right bound, respectively.

1 min. 2 min. 3 min. 4 min. 5 min.

2007 1.06366 1.04375 1.03273 1.02651 1.01167
2008 1.08297 1.06273 1.04437 1.03562 1.01629
2009 1.11154 1.07619 1.05851 1.04245 1.02583
2010 1.10181 1.06742 1.05199 1.03703 1.02208

Table 8.10: Mean of diurnally adjusted durations from equation (8.2) averaged over all stocks. Inter-
val lengths from one to five minutes are used to compute average durations for knots of
cubic spline functions. GM is not included in computations for 2010.

Table 8.10 displays the means of non-scaled adjusted durations averaged over all stocks. An
interval length of five minutes is a good choice over the range of years from 2007 to 2010 and
achieves values which are closer to 1 in comparison with shorter time spans.

104We use the splinefun function from stats package. For more details see Forsythe, Malcolm, and Moler (1979).
105As mentioned before, trading days start at 10 am and end at 4pm for NYSE-listed stocks in our cleaned datasets,

whereas trading for German shares starts at 9:30 am and ends at 5:30 pm.
106Knots are also often set every 30 minutes of a trading day (e.g., see Bauwens and Giot 2000).
107We think that the chosen interval lengths on the one hand are reasonably short to concentrate on the dura-

tion dynamics around fixed points of the spline functions and on the other hand cover enough durations for
meaningful calculation of the average value.
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Since we split the datasource for estimation by years108 in the models utilizing high-frequency
data (similar to Tay, Ting, Tse, and Warachka 2009), we need to compute diurnal patterns for
each of the four years under consideration which are displayed in figures 8.3 and 8.4.

The seasonal figures for all stocks show the typical picture with lower durations in the first and
last hours of a trading day with a period of higher durations and therefore less trading activities
around lunch time. However, the reverted bathtub shape can much clearer be recognized for
NYSE-listed than for Xetra-listed stocks. The peak for the German equities, which lies for all
years and stocks around 1 pm, is much more pronounced.

The level of seasonal figures does not vary much in the range from 2007 to 2010 for most
of the stocks in our study. GM shows a considerably increased magnitude of durations in
the diurnal pattern of 2009 which may be induced by the delisting from NYSE in June. Two
German equities, CON and VOW, also display increased levels of durations in 2009 and 2010,
respectively.

108See the beginning of chapter 6.
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Figure 8.3: Seasonal figures for all NYSE equities from 2007 to 2010. Knots are placed at each full
hour as well as at the first and last possible timestamp of a trading day.
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Figure 8.4: Seasonal figures for all Xetra equities from 2007 to 2010. Knots are placed at each full
hour as well as at the beginning and end of a trading day.

8.8 Data for Static Models
When the raw data has undergone cleansing and most of the preparation steps, it is trivial to
receive data in the structure needed for estimations of parameters in the static models. Since
only the aggregated number of buys and sells per unit time interval is needed, classified datasets
are sufficient. Hence, the operations described in sections 8.3 – 8.6 are mandatory, while the
process of diurnally adjustment of durations does not influence the amount of buys and sells
on trading days. Once zero durations are filtered and trade directions (buy or sell) are assigned
to transactions, one can simply count the number of buys and sells for each trading day.
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9 Source Code for Data
Preparation

In order to get data which we can use in optimizations routines and subsequent computa-
tions presented in the previous chapter, raw data which is typically purchased by commercial
providers needs to be prepared and cleaned in advance.109 These preliminary steps are essen-
tial for the quality of results of maximization runs, since messy datasets can influence them to
a huge degree. To speed up the data preparation we use the C++ language for time-consuming
parts of the procedure. This chapter displays the source code of all functions which are involved
in data preparation of the raw data. Furthermore, we briefly discuss their usage.

As already explained in chapter 8, we get trade and quote data in two different datasources
and need to match them according to section 8.4. We utilize the match_trades_quotes function
for this task which is presented in code chunk 9.1.110 Lists of daily trade data and quote data
can be passed to the trades_day and quotes_day arguments, respectively. The delay for matching
can be specified with delay. This argument is set to zero by default, as explained in section 8.4.
The marketplace can be chosen via market. Since we only consider equities from the NYSE and
Xetra in this work, the only options for this function are ”US” and ”DE”.

Code Chunk 9.1 (Source code of function data_prep):

match_trades_quotes <- function(trades, quotes, delay = 0, market = c(”DE”,
”US”)) {
if (length(trades)  length(quotes)) {

stop(”Different length of trades and quotes data”)
}

start <- switch(market, DE = 32400, US = 34200)

tmp <- vector(”list”, length(trades))

for (i in 1:length(tmp)) {

109We received our high-frequency transaction data from Tick Data, Inc..
110This function is customized to fit the characteristics of our raw data. If one purchased high-frequency data from

a different vendor or different market or time horizon, this function must be adopted.
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9 Source Code for Data Preparation

tmp[[i]] <- trades[[i]]

tmp[[i]] <- cbind(tmp, Bid = NA, `B-Vol` = NA, Ask = NA, `A-Vol` = NA,
Dura = NA)

time <- findInterval(trades[[i]][, ”Timestamp”] - delay, quotes[[i]][,
”Timestamp”], all.inside = TRUE)

if (market  ”DE”) {
tmp[[i]][, ”Bid”] <- quotes[time, ”Bid”]
tmp[[i]][, ”B-Vol”] <- quotes[time, ”Bid.Vol”]
tmp[[i]][, ”Ask”] <- quotes[time, ”Ask”]
tmp[[i]][, ”A-Vol”] <- quotes[time, ”Ask.Vol”]

}

if (market  ”US”) {
tmp[[i]][, ”Bid”] <- quotes[time, ”Bid”]
tmp[[i]][, ”B-Vol”] <- quotes[time, ”Bid.Vol”] * 100
tmp[[i]][, ”Ask”] <- quotes[time, ”Ask”]
tmp[[i]][, ”A-Vol”] <- quotes[time, ”Ask.Vol”] * 100

}

tmp[[i]][, ”Dura”] <- as.integer(diff(as.integer(c(start, tmp[[i]][,
”Timestamp”]) * 1000)))

tmp[[i]][, ”Dura”] <- tmp[[i]][, ”Dura”]/1000L
}
return(tmp)

}

To bring the matched raw data in a format that is expected by our estimation routines, we
use the user-friendly wrapper function data_prep in code chunk 9.2. One could tag it with a
label like one-for-all. Its main purposes are the filtering of the original high-frequency trans-
actions, the classification of trades either as buys or sells111, the calculation of initial values
for the autoregressive specifications of the conditional expected durations112 and finally the
computation of diurnal factors for the series of observed durations.113 Moreover, it computes
the aggregated volumes which are needed to receive the probabilities of conditions of trading
days in the PIN-ALACD model.

This very handy function expects the data argument to be a list of matched trades and quotes
data. Each list element needs to exhibit observations for one trading day. Ideally, names of
list elements are set to the date of the trading day so that these dates can be used to visualize
optimization results afterwards. Observations for each trading day can be stored in data frames
or matrices which need to have column names Timestamp, Price, Volume, Bid, B-Vol, Ask and A-Vol
111Both approaches, the filtering and the classification of trades, are explained in section 8.6.
112See section 8.5 for more details about how the initial values are calculated.
113The calculation of diurnal factors is described in section 8.7.
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(in this order). The columns should contain data for the timestamps, the actual prices and the
sizes of the transactions as well as for the bid and ask prices and their corresponding volumes.
The start and end arguments can be used to define the time window of a trading day for which
transactions are included in the computation of the probability of informed trading. Typically,
start is set to to the official opening with a delay of 30 minutes and end is identical to the
official closing of the underlying market. Both arguments expect integer values representing
the chosen time of day in seconds after midnight. The range argument specifies the time range
(in seconds) which is used in the computation of diurnal factors and defaults to five minutes.
Hence, if the value of the range argument remains unchanged, averages of durations in five-
minute intervals around each full hour as well as the start and end timestamp are assigned to the
knots of the cubic spline function. If it is intended to set the unit time interval to one trading day
for PIN estimations, the intraday_interval argument must be set to NULL which is also its default
value. To prepare datasets for PIN estimations for intraday time intervals, intraday_interval can
be specified as the length of the intraday unit time interval in seconds. The last argument of the
function, ncores, takes a positive integer according to which the results are split for subsequent
optimizations to run in parallel. By default, the value for this argument equals the number of
available cores.

Code Chunk 9.2 (Source code of function data_prep):

function(data, start = NULL, end = NULL, range = 300, intraday_interval = NULL,
ncores = detectCores()) {
if (!is.list(data))

stop(”'data' needs to be a list!”)
check_colnames <- sapply(data, function(x) !colnames(x) %in% c(”Timestamp”,

”Price”, ”Volume”, ”Bid”, ”B-Vol”, ”Ask”, ”A-Vol”))
if (sum(check_colnames)  1)

stop(paste0(”Please check colnames of elements of \”data\” argument.”,
”They need to be: Timestamp, Price, Volume, Bid, B-Vol, Ask, A-Vol.”))

data <- clean_raw_data(data)
data <- lapply(data, function(x) {

x <- cbind(x, NA)
colnames(x)[ncol(x)] <- ”Dura”
x

})
data <- lapply(data, function(x) {

x[-1, ”Dura”] <- diff(x[, ”Timestamp”])
x

})
data_filtered <- filtering(data)
data_td <- trade_class(data_filtered)
data_init <- lapply(data_td, function(x) subset(x, subset = x[, ”Timestamp”] 

start))
acd_obs_min <- sapply(data_init, function(x) nrow(x)  3)
data_init <- data_init[acd_obs_min]
inits <- initial_values_alacd(data_init, start = start - 10 * 60, end = start)
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data_reg <- lapply(data_td[acd_obs_min], function(x) subset(x, subset = x[,
”Timestamp”] > start))

data_reg <- lapply(data_reg, function(x) {
x[1, ”Dura”] <- x[1, ”Timestamp”] - start
x

})
diurnal_factors <- diurnal_factors_spline(data_reg, start = start, end = end,

range = range)
trading_time <- end - start
rawdura <- lapply(data_reg, function(x) x[, ”Dura”])
cumsum.rawdura <- lapply(rawdura, function(x) c(0, cumsum(x)))
remain_time <- lapply(cumsum.rawdura, function(x) log(trading_time - x))
if (!(is.null(intraday_interval))) {

n_days <- length(data_reg)
intervals <- seq(from = start, to = end, by = intraday_interval)
n_iv <- length(intervals) - 1
interval_ind <- lapply(data_reg, function(x) findInterval(x[, ”Timestamp”],

intervals))
data_reg_intraday <- Map(function(x, y) split(as.data.frame(x), y),

data_reg, interval_ind)
data_reg <- unlist(data_reg_intraday, recursive = FALSE)
if (length(data_reg) < (n_days * n_iv)) {

stop(paste0(”Length of ”, intraday_interval, ” seconds is not sufficient. ”,
”Could not find data for every intraday interval.”))

}
diurnal_factors_split <- unlist(Map(function(x, y) split(x[-length(x)],

y), diurnal_factors, interval_ind), recursive = FALSE)
remain_time_split <- unlist(Map(function(x, y) split(x[-length(x)],

y), remain_time, interval_ind), recursive = FALSE)
k <- 1
for (i in seq_along(diurnal_factors_split)) {

if (!(i%%n_iv)) {
diurnal_factors_split[[i]] <- c(diurnal_factors_split[[i]],

diurnal_factors[[k]][length(diurnal_factors[[k]])])
remain_time_split[[i]] <- c(remain_time_split[[i]], remain_time[[k]][length(remain_time[[k]])])

k <- k + 1
}

}
diurnal_factors <- diurnal_factors_split
remain_time <- remain_time_split

}
cumsum_trades <- cumsum_tr(data_reg)
split_ind <- data_split(cumsum_trades, ncores = ncores)
BSda <- BSday(data_reg)
mean.buy <- mean(BSda[, 1])
mean.sell <- mean(BSda[, 2])
tn_helper <- log(BSda[, 1] + BSda[, 2]) - log(mean.buy + mean.sell)
tg_helper1 <- log(BSda[, 2]) - log(mean.sell)
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tg_helper2 <- log(BSda[, 1]) - log(mean.buy)
log_mean_sa <- numeric(length(data_reg))
if (is.null(intraday_interval)) {

for (j in 1:length(data_reg)) {
rm <- length(diurnal_factors[[j]])
log_mean_sa[j] <- log(mean(data_reg[[j]][, ”Dura”]/diurnal_factors[[j]][-rm]))

}
} else {

for (j in seq_along(data_reg)) {
if (!(j%%n_iv)) {

rm <- length(diurnal_factors[[j]])
log_mean_sa[j] <- log(mean(data_reg[[j]][, ”Dura”]/diurnal_factors[[j]][-rm]))

} else {
log_mean_sa[j] <- log(mean(data_reg[[j]][, ”Dura”]/diurnal_factors[[j]]))

}
}

}
log_diurnal_factors <- lapply(diurnal_factors, function(x) log(x))
log_dura <- lapply(data_reg, function(x) log(x[, ”Dura”]))
log_mean_dura <- sapply(log_dura, function(x) mean(x))
volumen <- lapply(data_reg, function(x) log(x[, ”Volume”]))
td <- lapply(data_reg, function(x) as.integer(x[, ”Td”]))
ntd <- lapply(data_reg, function(x) as.integer(!(x[, ”Td”])))
signed_vol <- Map(function(vol, td) ifelse(td, vol, -vol), volumen, td)
if (is.null(intraday_interval)) {

log_dura <- lapply(log_dura, function(x) c(x, 0))
signed_vol <- lapply(signed_vol, function(x) c(x, 0))
td <- lapply(td, function(x) c(x, 0))
ntd <- lapply(ntd, function(x) c(x, 0))

} else {
for (i in seq_along(log_dura)) {

if (!(i%%n_iv)) {
log_dura[[i]] <- c(log_dura[[i]], 0)
signed_vol[[i]] <- c(signed_vol[[i]], 0)
td[[i]] <- c(td[[i]], 0)
ntd[[i]] <- c(ntd[[i]], 0)

}
}

}
tmp_data <- Map(cbind, log_dura, td, ntd, log_diurnal_factors, remain_time,

signed_vol)
tmp_data <- lapply(tmp_data, function(x) {

colnames(x) <- c(”log_dura”, ”td”, ”ntd”, ”log_diurnal_factor”, ”log_remain_time”,
”log_signed_vol”)

x
})
if (is.null(intraday_interval)) {

daily_vals <- cbind(log_mean_dura, log_mean_sa, inits, tn_helper, tg_helper1,
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tg_helper2)
} else {

inits_intraday_buys <- inits_intraday_sells <- numeric(length(data_reg))
for (i in seq_len(n_days)) {

inits_intraday_buys[1 + (i - 1) * n_iv] <- inits[i, ”initial_buys”]
inits_intraday_sells[1 + (i - 1) * n_iv] <- inits[i, ”initial_sells”]
inits_intraday_buys[(2 + (i - 1) * n_iv):(i * n_iv)] <- sapply(tmp_data[(1 +

(i - 1) * n_iv):(i * n_iv - 1)], function(x) {
td_ind <- which(x[, ”td”]  1)
subset <- x[td_ind, ]
if (is.null(nrow(subset))) {

subset[”log_dura”]
} else {

subset[nrow(subset), ”log_dura”]
}

})
inits_intraday_sells[(2 + (i - 1) * n_iv):(i * n_iv)] <- sapply(tmp_data[(1 +

(i - 1) * n_iv):(i * n_iv - 1)], function(x) {
ntd_ind <- which(x[, ”ntd”]  1)
subset <- x[ntd_ind, ]
if (is.null(nrow(subset))) {

subset[”log_dura”]
} else {

subset[nrow(subset), ”log_dura”]
}

})
}
daily_vals <- cbind(log_mean_dura, log_mean_sa, unlist(inits_intraday_buys),

unlist(inits_intraday_sells), tn_helper, tg_helper1, tg_helper2)
colnames(daily_vals)[3:4] <- c(”initial_buys”, ”initial_sells”)

}
if (length(split_ind)  1) {

res <- list(IntraDay = tmp_data, Daily = daily_vals)
return(res)

} else {
res <- list(length(split_ind))
for (i in seq_along(split_ind)) {

res[[i]] <- vector(”list”, 2)
names(res[[i]]) <- c(”IntraDay”, ”Daily”)
res[[i]][[”IntraDay”]] <- tmp_data[split_ind[[i]]]
res[[i]][[”Daily”]] <- daily_vals[split_ind[[i]], ]

}
return(res)

}
}

By calling the data_prep function several helper functions are invoked. The first step is to clean
the matched data according to the rules in section 8.5 with the clean_raw_data function whose
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source code is given in code chunk 9.3.

Code Chunk 9.3 (Source code of function clean_raw_data):

function(matchedtq = NULL) {
res <- vector(”list”, length(matchedtq))
for (i in seq_along(matchedtq)) {

bid <- matchedtq[[i]][, ”Bid”]
ask <- matchedtq[[i]][, ”Ask”]
bid_size <- matchedtq[[i]][, ”B-Vol”]
ask_size <- matchedtq[[i]][, ”A-Vol”]
price <- matchedtq[[i]][, ”Price”]
vol <- matchedtq[[i]][, ”Volume”]
spread <- ask - bid
spread_median <- median(spread)
mid_quote <- (bid + ask)/2
mid_quote_median <- median(mid_quote)
run_med_mid_quote <- runmed(mid_quote, k = 51)
mean_abs_dev_mid <- mean(abs(mid_quote - mean(mid_quote)))
run_med_prices <- runmed(price, k = 51)
mean_abs_dev_prc <- mean(abs(price - mean(price)))
zero_neg_bid_ind <- which(bid  0)
zero_neg_ask_ind <- which(ask  0)
zero_neg_bid_size_ind <- which(bid_size  0)
zero_neg_ask_size_ind <- which(ask_size  0)
zero_price_ind <- which(price  0)
zero_vol_ind <- which(vol  0)
crossed_prices_ind <- which(bid  ask)
large_spread_ind <- which(spread > (50 * spread_median))
large_diff_prc_mid_ind <- which(price  5 * mid_quote_median)
prc_outside_spread_ind <- which(price < (bid - 2 * spread) || price >

(ask + 2 * spread))
run_med_mid_ind <- which((mid_quote - run_med_mid_quote)  10 * mean_abs_dev_mid)
run_med_prc_ind <- which((price - run_med_prices)  10 * mean_abs_dev_prc)
rm_total <- c(zero_neg_bid_ind, zero_neg_ask_ind, zero_neg_bid_size_ind,

zero_neg_ask_size_ind, zero_price_ind, zero_vol_ind, crossed_prices_ind,
large_spread_ind, large_diff_prc_mid_ind, prc_outside_spread_ind,
run_med_mid_ind, run_med_prc_ind)

if (length(rm_total) > 0) {
res[[i]] <- matchedtq[[i]][-unique(rm_total), ]

} else {
res[[i]] <- matchedtq[[i]]

}
}
res

}

In the next step the raw data is filtered to eliminate zero durations which is performed by
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the filtering function with the corresponding source code given in code chunk 9.4. To speed
up filtering, especially for big datasets, the core part is implemented with the C++ function
filtering_cpp in code chunk 9.5 while pre-processing is done in R.

Code Chunk 9.4 (Source code of function filtering):

function(data) {
for (i in seq_along(data)) {

tmp <- data[[i]]
remove <- numeric()
zero_duras <- which(tmp[, ”Dura”]  0)
if (length(zero_duras) > 0) {

start_zero_seq <- zero_duras[diff(c(-Inf, zero_duras))  1] - 1
end_zero_seq <- zero_duras[diff(c(zero_duras, Inf))  1]
zero_seqs <- zero_seqs_cpp <- vector(”list”, length(start_zero_seq))
for (j in seq_along(start_zero_seq)) {

zero_seqs[[j]] <- start_zero_seq[j]:end_zero_seq[j]
zero_seqs_cpp[[j]] <- (start_zero_seq[j] - 1):(end_zero_seq[j] -

1)
if (-1 %in% zero_seqs_cpp[[j]]) {

zero_seqs_cpp[[j]] <- NULL
}
remove <- c(remove, zero_seqs[[j]][-1])

}
zero_seqs_cpp <- zero_seqs_cpp[!sapply(zero_seqs_cpp, is.null)]
tmp <- filtering_cpp(as.matrix(tmp), zero_seqs_cpp)

}
if (length(remove) > 0)

data[[i]] <- tmp[-remove, ]
}
return(data)

}

Code Chunk 9.5 (Source code of C++ function filtering_cpp):

NumericMatrix filtering_cpp(NumericMatrix & data, List zero_seq_list) {
int i = 0, n = zero_seq_list.size(), first = 0;

NumericVector price = data(_,1);
NumericVector vol = data(_,2);
NumericVector bid = data(_,3);
NumericVector bid_size = data(_,4);
NumericVector ask = data(_,5);
NumericVector ask_size = data(_,6);
IntegerVector zero_seq;
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NumericVector vol_tmp;
NumericVector bidsize_tmp;
NumericVector bid_tmp;
NumericVector asksize_tmp;
NumericVector ask_tmp;
NumericVector price_tmp;

int agg_vol = 0, agg_b_vol = 0, agg_a_vol = 0;

for(i = 0; i < n; i೫೮) {
zero_seq = zero_seq_list[i];
first = zero_seq[0];
vol_tmp = vol[zero_seq];
bidsize_tmp = bid_size[zero_seq];
bid_tmp = bid[zero_seq];
asksize_tmp = ask_size[zero_seq];
ask_tmp = ask[zero_seq];
price_tmp = price[zero_seq];

agg_vol = sum(vol_tmp);
agg_b_vol = sum(bidsize_tmp);
agg_a_vol = sum(asksize_tmp);
data(first,1) = sum(vol_tmp * price_tmp)/(agg_vol);
data(first,4) = sum(vol_tmp * bid_tmp)/(agg_vol);
data(first,5) = sum(vol_tmp * ask_tmp)/(agg_vol);
data(first,2) = agg_vol;
data(first,4) = agg_b_vol;
data(first,6) = agg_a_vol;

}
return data;

}

After filtering, the direction of transactions need to be identifiedwhich is done by the trade_class
function in code chunk 9.6. Like for the filtering function, only the data argument can be spec-
ified for trade_class, which typically should be a result returned by the former function. Again,
we implemented the actual classification algorithm in C++with the trade_class_cpp function in
code chunk 9.7 and do some post-processing of the results in R.

Code Chunk 9.6 (Source code of function trade_class):

function(data = NULL) {
td_list <- lapply(data, function(x) trade_class_cpp(as.matrix(x)))
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res <- Map(function(x, y) {
cbind(x, Td = y)

}, data, td_list)
res <- lapply(res, function(x) {

rem <- which(is.na(x[, ”Td”]))
if (length(rem > 0))

x[-rem, ] else x
})
res

}

Code Chunk 9.7 (Source code of C++ function trade_class_cpp):

IntegerVector trade_class_cpp(NumericMatrix & data) {
int i = 0, j = 0, n = data.nrow();

NumericVector price = round(data(_,1), 10);
NumericVector bid = round(data(_,3), 10);
NumericVector ask = round(data(_,5), 10);
NumericVector midpoints = 0.5 * (bid + ask);
IntegerVector td(n, IntegerVectorೋೌget_na());

for(i = 0; i < n; i೫೮) {
// direct classification
if(price(i)  ask(i)) {

td(i) = 1;
}
if(price(i)  bid(i)) {

td(i) = 0;
}

// LR algorithm
if((price(i)  ask(i)) && (price(i)  bid(i)) && (price(i) > midpoints(i))) {

td(i) = 1;
}
if((price(i)  ask(i)) && (price(i)  bid(i)) && (price(i) < midpoints(i))) {

td(i) = 0;
}

// tick test
if(price(i)  midpoints(i)){

if(i  0) continue;

166



j = 1;
while(IntegerVectorೋೌis_na(td(i))) {
if((i-j) < 0) break;
if(price(i) > price(i - j)) {

td(i) = 1; //uptick
}
if(price(i) < price(i - j)) {

td(i) = 0; //downtick
}
if(price(i)  price(i - j)) {

j೫೮; //zerotick
}

}
}

}
return td;

}

The initial values for the autoregressive specifications of the conditional expected durations
can be calculated with initial_values_alacd. In addition to the data argument, the beginning
and the end of the used time interval for computations can be specified with arguments start
and end, respectively. The source code of the function is displayed in code chunk 9.8.

Code Chunk 9.8 (Source code of function initial_values_alacd):

function(data = NULL, start = NULL, end = NULL) {
init.buys <- numeric(length(data))
init.sells <- numeric(length(data))
morning.buys <- lapply(data, function(x) x[which(x[, ”Td”]  TRUE), ”Timestamp”])
morning.sells <- lapply(data, function(x) x[which(x[, ”Td”]  FALSE), ”Timestamp”])
morning.buys <- lapply(morning.buys, function(x) c(start, x, end))
morning.sells <- lapply(morning.sells, function(x) c(start, x, end))
for (i in 1:length(data)) {

init.buys[i] <- log(mean(diff(morning.buys[[i]])))
init.sells[i] <- log(mean(diff(morning.sells[[i]])))
if (is.na(init.buys[i]))

init.buys[i] <- init.sells[i]
if (is.na(init.sells[i]))

init.sells[i] <- init.buys[i]
}
res <- cbind(init.buys, init.sells)
colnames(res) <- c(”initial_buys”, ”initial_sells”)
return(res)

}
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The diurnal_factors_spline function in code chunk 9.9 which computes diurnal factors for du-
rations shares its arguments with initial_values_alacd but has one additional range argument.
The extra argument specifies the range for timestamps around each knot of the spline func-
tion. Each full hour acts as center of the symmetric interval with length range which covers
durations for the corresponding knot. For start and end, durations which occur range minutes
after and before the specified timestamps are considered, respectively. Values of the knots are
calculated as average duration in the corresponding interval and are returned by the aver_dura
function which is internally called by diurnal_factors_spline. The source code of the aver_dura
function is given in code chunk 9.10.

Code Chunk 9.9 (Source code of function diurnal_factors_spline):

function(data = NULL, start = NULL, end = NULL, range = NULL) {
if (!(start%%3600)) {

full_hour_start <- start + 3600
} else {

full_hour_start <- start + start%%3600
}
num_x_points <- (end - full_hour_start)/3600
if (num_x_points%%1) {

x_points <- numeric(ceiling(num_x_points))
} else {

x_points <- numeric(num_x_points)
}
for (i in 1:length(x_points)) {

x_points[i] <- full_hour_start + 3600 * (i - 1)
}
x_points_total <- c(start, x_points, end)
fixed_points <- aver_dura(data = data, start = start, end = end, range = range)
cubic <- splinefun(x = x_points_total, y = fixed_points, method = ”fmm”)
tmp.sa <- eval(expression(z), envir = environment(cubic))
diurnal_factors <- lapply(data, function(x) cubic(c(start, x[, ”Timestamp”])))
return(diurnal_factors)

}

Code Chunk 9.10 (Source code of function aver_dura):

function(data = NULL, start = NULL, end = NULL, range = NULL) {
helper0 <- lapply(data, function(x) subset(x, x[, ”Timestamp”]  start &

x[, ”Timestamp”]  start + range)[, ”Dura”])
p0 <- mean(unlist(helper0))
if (start%%3600) {

full_hour_start <- start + start%%3600
} else {

full_hour_start <- start + 3600
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}
num_spline_points <- (end - full_hour_start)/3600
if (num_spline_points%%1) {

spline_points <- numeric(ceiling(num_spline_points))
} else {

spline_points <- numeric(num_spline_points)
}
for (i in 1:length(spline_points)) {

helper <- lapply(data, function(x) {
subset(x, x[, ”Timestamp”]  full_hour_start + (i - 1) * 3600 -

range/2 & x[, ”Timestamp”]  full_hour_start + (i - 1) * 3600 +
range/2)[, ”Dura”]

})
spline_points[i] <- mean(unlist(helper))

}
helper.end <- lapply(data, function(x) subset(x, x[, ”Timestamp”]  end -

range & x[, ”Timestamp”]  end)[, ”Dura”])
pend <- mean(unlist(helper.end))
res <- c(p0, spline_points, pend)
return(res)

}

The data_split function in code chunk 9.11 is crucial for optimization routines to run in paral-
lel. It ensures that the dataset is split so that each involved CPU core receives a very similar
amount of transactions. By default, the dataset is split according to the maximum number of
available CPU cores. The cumsum_tr function in code chunk 9.12 is a helper function which
returns the cumulative sum of the number of total trades per day for the dataset. Those re-
sults should then be used to populate the cumsumtrades argument of the data_split function. The
auxiliary argument cur_max, which saves the current maximum of entries of objects returned
by the cumsum_tr function which belong to a specific CPU core, is needed to recursively call
the data_split function for each worker. We utilize the built-in Recall function for recursive
function calls.

Code Chunk 9.11 (Source code of function data_split):

function(cumsumtrades, ncores = detectCores(), cur_max = 0) {
if (ncores  1)

return(list(1:length(cumsumtrades)))
res <- list(ncores)
anz <- cumsumtrades[length(cumsumtrades)]
left <- max(which(cumsumtrades  anz/ncores))
if (cumsumtrades[left + 1] < max((anz - cumsumtrades[left])/(ncores - 1),

cur_max)) {
res[[1]] <- 1:(left + 1)
cur_max <- max(cur_max, cumsumtrades[left + 1])
res[2:ncores] <- lapply(Recall(cumsumtrades[-res[[1]]] - cumsumtrades[left +

169



9 Source Code for Data Preparation

1], ncores = ncores - 1, cur_max = cur_max), function(x) x + left +
1)

} else {
res[[1]] <- 1:left
cur_max <- max(cur_max, (anz - cumsumtrades[left])/(ncores - 1))
res[2:ncores] <- lapply(Recall(cumsumtrades[-res[[1]]] - cumsumtrades[left],

ncores = ncores - 1, cur_max = cur_max), function(x) x + left)
}
res

}

Code Chunk 9.12 (Source code of function cumsum_tr):

function(data = NULL) {
res <- sapply(data, function(x) nrow(x))
res <- cumsum(res)
res

}

The daily aggregated volumes of buys and sells which are involved in the computation of the
probabilities of trading days’ conditions in the PIN-ALACD model are returned by the BSday
function in code chunk 9.13.

Code Chunk 9.13 (Source code of function BSday):

function(data) {
ldata <- length(data)
av.vol.b <- numeric(ldata)
av.vol.s <- numeric(ldata)
y <- lapply(data, function(z) as.integer(z[, ”Td”]))
for (i in 1:ldata) {

av.vol.b[i] <- sum(data[[i]][, ”Volume”][y[[i]]  1])
av.vol.s[i] <- sum(data[[i]][, ”Volume”][!(y[[i]])])

}
result <- cbind(av.vol.b, av.vol.s)
return(result)

}

If one intends to call the initial_values_alacd andBSday functions outside the scope of data_prep,
it must be ensured that each list element has a column named Td, hence the dataframe should
be classified in advance with trade_class.

Finally, there is the cluster_prep functionwhose data argument expects a list returned by data_prep.
By the structure of the list, cluster_prep detects how many CPU cores should be utilized for the
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optimization routines and sends portions of the list to each node of the newly created cluster.
Its source code is given in code chunk 9.14.

Code Chunk 9.14 (Source code of function cluster_prep):

function(data = NULL, type = ”PSOCK”) {
if (length(data)  2 && all(names(data) %in% c(”IntraDay”, ”Daily”))) {

ncores <- 1
} else {

ncores <- length(data)
}
cl <- makeCluster(getOption(”cl.cores”, ncores), type = type)
for (i in seq_along(cl)) {

clusterCall(cl[i], function(d) {
assign(”data_sub”, d, pos = .GlobalEnv)
NULL

}, data[[i]])
}
cl

}

Although we show every auxiliary function which is involved by a call to the main function
data_prep, usually one does not have to call them directly. For the very most use cases it is
sufficient to match raw trades and quotes data, call the data_prep function and then distribute
the prepared data over a cluster with cluster_prep. After the cluster is created and each node
exhibits its corresponding sub-dataset we are ready to use our functions for optimizations of
both high-frequency models which we already explained in section chapter 7.

As already described in section 8.8, once the data is prepared, it is easy to obtain datasets
which can be used for optimizations in the context of the static EHO model with functions
provided by our pinbasic package presented in chapter 5. Hence, after the matched raw data
has been successfully modified by our data_prep function, the returned object can be passed to
the prep_data argument of the agg_buys_sells function in code chunk 9.15 to receive a matrix of
daily aggregated buys and sells.

Code Chunk 9.15 (Source code of function agg_buys_sells):

function(prep_data = NULL) {
if (is.null(data_prep))

stop(”No dataset provided. 'prep_data' is NULL.”)
if (is.null(names(prep_data))) {

prep_data_intern <- lapply(prep_data, function(x) x[[”IntraDay”]])
prep_data_intern <- do.call(”c”, prep_data_intern)

} else {
prep_data_intern <- prep_data[[”IntraDay”]]
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}
mat <- matrix(data = NA, ncol = 2, nrow = length(prep_data_intern))
colnames(mat) <- c(”Buys”, ”Sells”)
for (i in seq_along(prep_data_intern)) {

mat[i, ”Buys”] <- sum(prep_data_intern[[i]][, ”td”])
mat[i, ”Sells”] <- sum(prep_data_intern[[i]][, ”ntd”])

}
mat

}
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10 Empirical Applications
(Static Models)

We apply the static model for the probability of informed trading by Easley, Hvidkjaer, and
O’Hara (2002) on four years of data for nine equities from two different marketplaces. Times-
tamps of our data range from January 1, 2007 to December 31, 2010. We estimate model param-
eters and the probability of informed trading on a quarterly basis for equities which all belong
to the automobile industry.

Ford Motor Company (F), General Motors Company (GM), Honda Motor Co. Ltd (HMC), John-
son Controls International (JCI) and Toyota Motor Corp. (TM) are traded on NYSE, while
Bayerische Motorenwerke AG (BMW), Continental AG (CON), Daimler AG (DAI) and Volk-
swagen AG (VOW) are listed on the German electronic trading system Xetra. In section 10.1
we discuss the estimation results of the EHO model for the five securities listed on the NYSE,
the parameter estimates for the German equities are presented in section 10.2.

In these two sections the focus lies on the EHO model which belongs to the static models for
the probability of informed trading. As mentioned earlier, the PIN measure in this context can
be interpreted as the a priori risk that a market maker has to face a trader which has access
to private information. In the following section 10.3 we analyze outcomes for the posterior
probabilities established in section 3.3 which shift the scope of the EHO model towards that of
the dynamic models and the latent fraction of insider trading.

To improve the readability of sections 10.1 and 10.2, we place corresponding tables of estimation
results as well as visualizations thereof at the end of each section.

10.1 Estimation Results (NYSE)
The MLE for US stocks yield estimates of 𝛼 that have their maximum around the 50% level.
The lowest and highest value for the probability of an information event are displayed for F in
the third quarter of 2008 and JCI in the fourth quarter of 2007, respectively. No clear trend can
be identified in the graphs for any stock. Each one contains several, more or less pronounced,
ups and downs. For instance, F sees a strong decrease during 2007 from 47.5% to around 8%,
whereas the estimate for JCI increases at the end of 2007 by more than 30% from about 17.5%
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to 50%. In 2010, an increasing curve for all manufacturers can be observed, with F constituting
an exception due to a huge decline of the probability of an information event from the first to
the second quarter. The estimates for the supplier, JCI, do not behave in a similar way in 2010.
The values of 𝛼 reside in a quite small interval which ranges from 31.7% to 36.1%. Furthermore,
we do not obtain any corner solutions for 𝛼 for any US equity.

The range of the estimates of the conditional probability of bad-news trading days, �̂� , spreads
wider than it does for 𝛼 . Every manufacturer has at least one boundary solution (e.g., �̂� hits
the upper bound of 1 for GM in the second quarter of 2009 and for TM in the third quarter of
2007). Hence, according to the static EHO model, these corner cases represent trading periods
in which, if private information enters the market, solely informed sellers will be triggered to
participate in the trading activities. For the supplier, JCI, the values for �̂� neither reach the
lower bound of 0 nor are they equal to unity over the complete time span of four years. The
estimates of 𝛿 for JCI lie in the range from about 13% to 80%. Again, we see several (extreme)
jumps in the plots for �̂� for every equity.

We observe an overall negative trend for noise trading for almost all stocks from 2007 to 2010.
Only F exhibits a slight increase in the market participation of uninformed traders. Exemplary,
the estimated noise trading intensities, 𝜖𝑏 and 𝜖𝑠 steadily decrease since 2008 for GM. The
delisting of GM in 2009 may be an explanation for this behavior. According to the estimation
results, we also see some large positive jumps in the amount of transactions by uninformed
traders for the equities under consideration in this work. However, these positive jumps are
almost always directly followed by a movement in the opposite direction. A good example is
the TM stock in 2010, which has its overall highest level of noise trading at the beginning of
2010 but suffers from a huge decline ending in the overall lowest level at the end of the year.
The expected amount of transactions initiated by uninformed buyers sinks from 743 in the first
quarter to 135 per day in the fourth quarter. The shrinkage of the intensity of uninformed sells
is also remarkable. In the fourth quarter only less than one third of the amount of sells initiated
by noise traders are expected compared to the beginning of the year.

The estimates of the intensity of informed trading, �̂�, show that for the stocks under consid-
eration periods with large amount of transactions due to private information correspond with
those of high noise trading activities. However, GM states an exception. While the noise trad-
ing is at its lowest level in the second quarter of 2009, the number of transactions initiated by
insiders almost reaches its maximum. Hence, in the last quarter before the delisting of GM,
according to the estimates of the EHO model, insiders clearly dominate the market activities.
Likewise to the graphs for the noise trading intensities, we see large jumps in both directions
for every stock. In the third quarter of 2008, the number of information-based transactions for
F is substantially higher than in the surrounding quarters. A similar behavior can be found
around the second quarter of 2010. Another example is the infrequently traded stock of TM in
the beginning of 2010. At first, we see an outstanding increase followed by a similar decrease
of �̂�. The PIN model expects a more than thirteen times higher rate of transactions initiated by
insiders for TM which equals nearly 1776 insider transactions per day and then drops to a little
more than 300 trades.
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10.1 Estimation Results (NYSE)

The probability of informed trading of NYSE-listed stocks lies in a relative small band spanning
from about 10% to 20% for most quarters in the time from 2007 to 2010. Smallest and highest
values are given by 0.06716 for JCI in the second quarter of 2007 and 0.21991 for HMC in the
first quarter of 2009. For GM we see an overall higher insider trading probability after the first
half of 2008 compared to the previous periods. The equity was delisted on NYSE in June 2009
since the company filed its bankruptcy and temporary had a price as low as 27 cents. Figure
10.1 shows the price crash in the time span from January 2008 to June 2009.
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Figure 10.1: Daily close prices (in US $) of GM since 2008.

As mentioned before, the level of noise trading signals a downward-movement since 2008 for
GM, whereas the activity of informed traders is relative high in 2008 with a peak in the fourth
quarter and showing another peak in the second quarter of 2009. This parameter constellation
may be a consequence of the EHO model assumption discussed at the beginning of chapter
6. The ratio of informed buys (sells) to the total number of buys (sells) on a good-news (bad-
news) trading day is constant, as well as the intensity of noise trading. Therefore the EHO
model labels the additional number of buys or sells on the corresponding information events
completely as informed, neglecting the possibility that there is also higher activity by noise
traders due to increased market activities.

The estimates of 𝛼 are on low level and the estimates of 𝛿 exhibit a boundary solution. Hence,
the static PIN model classifies all information-based trading as driven by private news with
negative direction in the second quarter of 2009. There are only few days for which price-
relevant information influence the market but we expect a high intensity of insiders selling on
these days in the last period before the delisting.114

JCI exhibits the smallest variation in the estimates of the probability of informed trading. The
difference between the lowest and highest value of P̂IN is smaller than 7%. For the majority of
114Intraday prices for the last two trading days before the delisting of GM are displayed by figure 11.47 in section

11.5.
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10 Empirical Applications (Static Models)

quarters the values lie between 8% and 10%. The biggest quarter-to-quarter movement happens
from first to second quarter in 2009. The US scrappage program CARS (Car Allowance Rebate
System) officially started on July 1, 2009. All US equities may be influenced by this federal
program or rather by traders possessing private information about it. F displays relative high
PIN estimates in 2009, but the value drops in the third quarter. HMC has ups and downs in
2009 with the highest estimate at the beginning, moreover TM exhibits relative low estimates
from the end of 2008 until the third quarter of 2009 with an increasing probability of informed
trading afterwards. The probability of informed trading for the supplier, JCI, shows an upward
movement in the beginning of 2009 followed by a negative trend.

The empirical results displayed in this section show that the estimations of the probability of
informed trading according to the EHO model do not suffer from the identification problem
explained in section 4.3.4 for the US equities. For each quarter in the years from 2007 to 2010,
at least two different types of trading are reflected by the parameter estimates and the intensity
of informed traders 𝜇 is never small relative to the intensities of noise traders, 𝜖𝑏 and 𝜖𝑠 .

176



10.1 Estimation Results (NYSE)

Quarter F GM HMC JCI TM

2007(Q1) 0.47556 0.32789 0.39897 0.29505 0.27867
(0.06397) (0.06011) (0.06339) (0.05839) (0.05740)

2007(Q2) 0.41261 0.38095 0.33426 0.17454 0.49998
(0.06204) (0.06118) (0.05956) (0.04784) (0.06351)

2007(Q3) 0.08063 0.45161 0.32641 0.32259 0.31146
(0.03457) (0.06320) (0.06032) (0.05937) (0.05929)

2007(Q4) 0.14516 0.30560 0.45418 0.50025 0.41776
(0.04474) (0.05846) (0.06469) (0.06353) (0.06289)

2008(Q1) 0.42620 0.40984 0.40249 0.31153 0.29483
(0.06332) (0.06297) (0.06860) (0.05930) (0.05853)

2008(Q2) 0.34375 0.28123 0.33916 0.40641 0.36666
(0.05937) (0.05620) (0.06019) (0.06141) (0.06221)

2008(Q3) 0.06350 0.36508 0.40302 0.36505 0.32644
(0.03072) (0.06066) (0.06232) (0.06066) (0.06101)

2008(Q4) 0.38712 0.33882 0.17743 0.45161 0.35441
(0.06186) (0.06011) (0.04852) (0.06320) (0.06087)

2009(Q1) 0.29507 0.32787 0.45904 0.24590 0.32774
(0.05839) (0.06010) (0.06380) (0.05513) (0.06011)

2009(Q2) 0.42839 0.16669 0.35572 0.33334 0.25417
(0.06237) (0.05751) (0.06236) (0.05939) (0.05488)

2009(Q3) 0.14288 — — — 0.29242 0.49206 0.11290
(0.04409) — — — (0.05986) (0.06299) (0.04019)

2009(Q4) 0.45151 — — — 0.32741 0.38705 0.46230
(0.06320) — — — (0.06330) (0.06186) (0.06552)

2010(Q1) 0.34426 — — — 0.06897 0.36072 0.15529
(0.06083) — — — (0.03327) (0.06149) (0.04757)

2010(Q2) 0.07936 — — — 0.38341 0.31747 0.36476
(0.03405) — — — (0.06278) (0.05865) (0.06259)

2010(Q3) 0.25000 — — — 0.45802 0.34375 0.39683
(0.05413) — — — (0.06494) (0.05937) (0.06164)

2010(Q4) 0.31750 — — — 0.46106 0.33311 0.40125
(0.05865) — — — (0.06853) (0.05942) (0.06870)

Table 10.1: Quarterly estimates of the probability of an information event 𝛼 for all NYSE equities.
Figures in parentheses denote standard errors.
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Quarter F GM HMC JCI TM

2007(Q1) 0.62045 0.05002 0.50052 0.72225 0.47056
(0.09013) (0.04873) (0.10236) (0.10556) (0.12106)

2007(Q2) 0.73092 0.83325 0.23755 0.54565 0.61283
(0.08701) (0.07610) (0.09283) (0.15020) (0.08750)

2007(Q3) 1.00000 0.07142 0.89955 0.54995 1.00000
(— — —) (0.04865) (0.06739) (0.11125) (— — —)

2007(Q4) 0.44445 0.47441 0.60322 0.22570 0.30506
(0.16563) (0.12058) (0.09355) (0.07512) (0.09096)

2008(Q1) 0.26932 0.95999 0.28866 0.80489 0.50157
(0.08701) (0.03918) (0.09655) (0.11266) (0.11810)

2008(Q2) 0.36363 0.38876 0.47690 0.73075 0.50007
(0.10256) (0.11489) (0.10901) (0.08701) (0.10660)

2008(Q3) 0.75050 0.52172 0.60026 0.13038 0.10551
(0.21621) (0.10416) (0.09803) (0.07023) (0.07078)

2008(Q4) 0.33364 0.14273 0.72725 0.64286 0.58506
(0.09627) (0.07630) (0.13429) (0.09055) (0.10953)

2009(Q1) 0.88889 0.25002 1.00000 0.46686 0.65007
(0.07407) (0.09683) (— — —) (0.12882) (0.10671)

2009(Q2) 0.70397 1.00000 0.19016 0.33334 0.48237
(0.08792) (— — —) (0.08576) (0.10287) (0.12426)

2009(Q3) 0.88887 — — — 0.53073 0.67742 0.71427
(0.10476) — — — (0.12139) (0.08396) (0.17075)

2009(Q4) 0.42871 — — — 0.16639 0.50132 0.80782
(0.09353) — — — (0.08783) (0.10245) (0.07677)

2010(Q1) 0.61905 — — — 0.74996 0.54715 1.00000
(0.10597) — — — (0.21652) (0.10675) (— — —)

2010(Q2) 0.39898 — — — 0.95653 0.35001 0.82583
(0.21890) — — — (0.04250) (0.10665) (0.07947)

2010(Q3) 0.12487 — — — 0.18481 0.27273 0.04088
(0.08260) — — — (0.07472) (0.09495) (0.04010)

2010(Q4) 0.75001 — — — 0.32131 0.52365 0.24938
(0.09682) — — — (0.09383) (0.10920) (0.09676)

Table 10.2: Quarterly estimates of the conditional probability of bad-news trading days 𝛿 for all NYSE
equities. Figures in parentheses denote standard errors.
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Quarter F GM HMC JCI TM

2007(Q1) 1755.81463 2658.15696 540.68703 1086.56334 593.96231
(5.77432) (7.92034) (3.30287) (4.31337) (3.28969)

2007(Q2) 1428.93400 2734.78976 411.27067 895.23394 496.77911
(4.98560) (6.70174) (2.93662) (3.93789) (3.04256)

2007(Q3) 2155.01601 2474.42657 381.56218 1076.17469 371.04951
(5.88590) (8.19442) (2.52016) (4.40700) (2.46626)

2007(Q4) 1949.03348 2785.90729 254.31181 1264.67637 342.58348
(5.74379) (7.92242) (2.20540) (5.62409) (2.73377)

2008(Q1) 1978.33319 3597.34805 328.47003 1628.70558 472.13702
(6.62705) (7.75134) (3.70913) (5.19613) (3.06658)

2008(Q2) 2052.60206 2591.20169 276.55128 1326.99175 286.36690
(6.29294) (6.82730) (2.27495) (4.71175) (2.34085)

2008(Q3) 2220.42187 1835.09086 268.39437 1059.69840 213.47505
(5.98423) (5.75314) (2.23294) (4.92658) (2.45189)

2008(Q4) 1511.47801 1314.24753 372.22256 1344.98903 291.71590
(5.58833) (5.33956) (2.49847) (4.92387) (3.24635)

2009(Q1) 1107.62645 646.97691 399.77071 1926.04908 400.26486
(4.29093) (3.72193) (2.55985) (5.88044) (2.67570)

2009(Q2) 2009.21995 895.73761 209.93560 1309.83771 319.54983
(6.15204) (4.61898) (2.21807) (5.06580) (2.35290)

2009(Q3) 1739.35763 — — — 148.82974 1322.63233 188.13397
(5.30121) — — — (1.82575) (4.84433) (1.76512)

2009(Q4) 1725.03996 — — — 149.74482 1092.50513 162.68903
(5.87413) — — — (1.93018) (4.97493) (2.01814)

2010(Q1) 2421.20099 — — — 235.83671 984.59476 743.34570
(6.63836) — — — (2.03592) (5.01329) (3.58062)

2010(Q2) 2782.33953 — — — 340.30298 1477.57639 421.66846
(6.74985) — — — (2.38927) (5.31474) (2.63378)

2010(Q3) 1427.63466 — — — 154.88140 917.42007 161.02610
(5.35659) — — — (2.05045) (4.26954) (2.12813)

2010(Q4) 1790.39607 — — — 113.93090 836.12991 134.81503
(5.47328) — — — (1.99828) (3.98489) (1.93576)

Table 10.3: Quarterly estimates of the intensity of uninformed buys 𝜖𝑏 for all NYSE equities. Figures
in parentheses denote standard errors.
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Quarter F GM HMC JCI TM

2007(Q1) 1375.73999 2505.90446 293.61349 1005.41229 474.19293
(5.44524) (6.43116) (2.48186) (4.49637) (2.95408)

2007(Q2) 1259.02486 2112.12524 260.15514 898.37945 325.76516
(5.27598) (6.85206) (2.10767) (3.89323) (2.62628)

2007(Q3) 2217.38374 3416.13456 314.06583 1094.45789 294.04751
(6.27790) (7.49335) (2.97993) (4.51207) (2.64563)

2007(Q4) 1891.99318 3279.10286 265.46824 1456.97260 451.94894
(5.74465) (7.28306) (2.76609) (5.04916) (3.07319)

2008(Q1) 2298.46039 3026.16209 402.42553 1455.27732 487.24764
(6.35728) (9.04513) (3.47594) (5.71108) (3.05501)

2008(Q2) 2232.90292 2850.21048 352.18229 1256.99889 270.83812
(6.12668) (6.88343) (2.56874) (5.15922) (2.30774)

2008(Q3) 2097.64406 1598.72993 309.95711 1245.27911 217.64963
(6.11294) (5.46106) (2.52770) (4.50732) (2.08668)

2008(Q4) 1369.66328 1694.28038 451.09830 1348.17323 316.98663
(4.93527) (5.30438) (2.85942) (5.25214) (3.46206)

2009(Q1) 790.07258 807.17780 300.42415 2005.96820 362.40106
(4.18878) (3.71286) (3.01654) (6.00857) (2.70483)

2009(Q2) 1656.96085 613.88561 211.31473 1368.71935 335.13610
(5.90219) (4.18962) (1.94290) (4.83029) (2.46786)

2009(Q3) 1450.47478 — — — 145.33722 1056.98380 189.66490
(5.11626) — — — (1.68389) (4.74551) (1.81681)

2009(Q4) 1452.97565 — — — 220.86008 1011.22973 139.20155
(5.22549) — — — (2.04902) (4.84468) (2.06070)

2010(Q1) 2085.33074 — — — 226.55725 967.69002 501.69466
(6.46631) — — — (2.01884) (5.12906) (3.19761)

2010(Q2) 2979.85404 — — — 246.85920 1620.07791 330.58244
(6.96267) — — — (2.55728) (5.26054) (4.19902)

2010(Q3) 1524.91437 — — — 200.90216 1051.21457 241.60655
(4.93083) — — — (1.89156) (4.17764) (2.02301)

2010(Q4) 1315.79833 — — — 139.40389 775.82530 148.52725
(5.18208) — — — (1.69089) (3.85179) (2.08481)

Table 10.4: Quarterly estimates of the intensity of uninformed sells 𝜖𝑠 for all NYSE equities. Figures
in parentheses denote standard errors.
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Quarter F GM HMC JCI TM

2007(Q1) 853.98790 1782.06864 273.86763 621.14515 464.63534
(9.98121) (17.27236) (5.77629) (10.19705) (7.97376)

2007(Q2) 978.58313 1285.38334 246.87026 739.87276 261.56879
(10.46062) (13.31546) (5.86382) (12.64807) (5.03341)

2007(Q3) 3973.66563 1927.07313 332.86343 751.11793 448.42533
(33.44268) (14.97564) (6.57647) (10.14700) (6.78748)

2007(Q4) 2818.72337 1989.96370 171.75441 577.44495 291.18265
(23.56042) (17.55935) (4.53417) (9.06519) (5.75775)

2008(Q1) 1232.64878 1754.67793 219.57047 930.70830 370.51005
(12.35580) (16.78211) (7.34994) (12.40308) (7.60414)

2008(Q2) 1789.80346 1577.90026 234.33177 729.53133 283.84383
(13.79079) (16.06256) (5.44528) (9.67353) (5.32935)

2008(Q3) 8380.20406 1374.35625 322.58466 849.90682 194.87375
(96.07541) (12.21875) (5.34785) (10.23153) (5.75406)

2008(Q4) 1523.01424 1675.36128 530.26602 586.42866 230.51791
(11.95092) (12.77002) (9.60614) (9.17201) (5.43805)

2009(Q1) 1088.13319 676.47718 430.00369 1309.38739 342.67937
(11.01866) (8.78142) (5.92919) (15.36041) (6.37352)

2009(Q2) 1322.85320 1709.40124 197.41057 1243.52482 369.84419
(11.88267) (18.78680) (4.82247) (11.65185) (6.87153)

2009(Q3) 2315.72932 — — — 262.71373 683.00855 457.78041
(21.39051) — — — (5.34378) (8.48999) (9.70734)

2009(Q4) 1178.32464 — — — 209.73307 662.81951 135.48208
(10.81341) — — — (4.85033) (9.06684) (3.99091)

2010(Q1) 2248.88480 — — — 610.54808 754.93535 1775.99211
(15.68463) — — — (14.55299) (9.39993) (16.20178)

2010(Q2) 7643.03916 — — — 299.90807 1117.25504 303.57386
(41.59035) — — — (5.48671) (12.27625) (7.35022)

2010(Q3) 2621.73297 — — — 155.26591 821.29334 244.16563
(16.90493) — — — (3.86340) (9.60032) (4.51288)

2010(Q4) 2493.28099 — — — 148.92801 476.44721 129.87164
(14.49065) — — — (3.72122) (8.40326) (4.44211)

Table 10.5: Quarterly estimates of the intensity of informed trading 𝜇 for all NYSE equities. Figures
in parentheses denote standard errors.
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Quarter F GM HMC JCI TM

2007(Q1) 0.11480 0.10165 0.11580 0.08055 0.10811
2007(Q2) 0.13060 0.09176 0.10945 0.06716 0.13718
2007(Q3) 0.06827 0.12873 0.13509 0.10042 0.17355
2007(Q4) 0.09627 0.09113 0.13049 0.09595 0.13277
2008(Q1) 0.10940 0.09794 0.10787 0.08594 0.10222
2008(Q2) 0.12554 0.07540 0.11222 0.10293 0.15738
2008(Q3) 0.10971 0.12749 0.18354 0.11864 0.12858
2008(Q4) 0.16987 0.15873 0.10255 0.08953 0.11833
2009(Q1) 0.14471 0.13234 0.21991 0.07569 0.12836
2009(Q2) 0.13388 0.15878 0.14288 0.13401 0.12556
2009(Q3) 0.09398 — — — 0.20707 0.12376 0.12034
2009(Q4) 0.14340 — — — 0.15632 0.10869 0.17182
2010(Q1) 0.14661 — — — 0.08346 0.12241 0.18135
2010(Q2) 0.09524 — — — 0.16377 0.10274 0.12831
2010(Q3) 0.18166 — — — 0.16658 0.12542 0.19397
2010(Q4) 0.20309 — — — 0.21325 0.08963 0.15534

Table 10.6: Quarterly estimates of the probability of informed trading PIN for all NYSE equities.
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Figure 10.2: Quarterly estimates of the probability of an information event 𝛼 for all NYSE equities.
Detailed results can be found in table 10.1.
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Figure 10.3: Quarterly estimates of the probability of bad-news trading days 𝛿 for all NYSE equities.
Detailed results can be found in table 10.2.
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Figure 10.4: Quarterly estimates of the intensity of uninformed buys 𝜖𝑏 for all NYSE equities. De-
tailed results can be found in table 10.3.
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Figure 10.5: Quarterly estimates of the intensity of uninformed sells 𝜖𝑠 for all NYSE equities. Detailed
results can be found in table 10.4.
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Figure 10.6: Quarterly estimates of the intensity of informed trading 𝜇 for all NYSE equities. Detailed
results can be found in table 10.5.
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Figure 10.7: Quarterly estimates of the probability of informed trading PIN for all NYSE equities.
Detailed results can be found in table 10.6.

185



10 Empirical Applications (Static Models)

10.2 Estimation Results (Xetra)

The estimates of 𝛼 for equities traded on Xetra have a similar range like the US stocks. The
values reach nearly 55% for BMW in the second quarter of 2008, whereas 𝛼 is as low as 11% for
VOW in the first quarter of 2008. Mostly, small ups and downs dictate the behavior of the plots
for the estimates of the probability of an information event for all German stocks. However,
there are outstanding high jumps for the estimates of 𝛼 in the first half of 2008 for BMW and
during 2010 for VOW. Furthermore, the graph of CON displays a period with an increased
proportion of information events from the end of 2007 to the first half of 2008 compared with
the remaining values of 𝛼 for this equity.

Likewise to the NYSE equities, the estimates of the conditional probability of bad-news trading
days exhibit several boundary solutions. Hence, the EHO model offers a (pseudo-)sureness
about the direction of private information for specific quarters of the underlying data. Each of
the manufacturers, BMW, DAI and VOW, has at least one value of �̂� which equals either the
lower or upper limit, while the estimates for CON never hit 0 and 1. The estimates of 𝛿 for CON
lie in an interval from about 33% to 88%. According to the EHO model, all insider information
in the fourth quarter of 2008 for the VOW stock have negative direction and attract solely
informed sellers to be active on the market. Due to the price bubble in autumn of 2008, VOW
is somewhat special compared to the other German equities. At the end of the section, we
will analyze and explain the estimation results of all model parameters for the corresponding
periods.

Both noise trading estimates 𝜖𝑏 and 𝜖𝑠 exhibit a positive trend for all manufacturers in the first
two years, while an overall decline is observable in the last two years. Estimates for the supplier,
CON, steadily increase in 2007 with the overall maximum at the beginning of 2008, followed
by a decrease of both intensities of uninformed trading over the remaining time range. Highest
values of uninformed trading activities for the manufacturers can be found in the second half
of 2008. Furthermore, plots for BMW, DAI and VOW have in common that a positive jump is
displayed from the end of 2007 to the first quarter of 2008 followed by a decline of 𝜖𝑏 and 𝜖𝑠 .
The highest level of insider trading is visible in the second half of 2008 for all stocks. Intensity
of informed trading for VOW even exceeds 10,000 transactions in the last quarter and reaches
almost 7000 in the third. It is more than eight times and five times higher compared to the sec-
ond quarter of the year, respectively. In the first quarter of 2009 the estimated insider intensity
decreases by about 9000, compared to the fourth quarter of 2008. The supplier, CON, has the
biggest amount of transactions initiated by insiders in the third quarter of 2008 followed by a
huge decline. For the remaining quarters the estimated intensity of informed trading �̂� resides
on a typical level.

There is not much movement in the plots of the estimates of the probability of informed trad-
ing for BMW, CON and DAI. The difference between the minimum and maximum values is
less than 8% for all three stocks, but we see little upward movements at the end of 2008. The
high values of the PIN estimates in the second half of 2008 may be induced (to a high degree)
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by insiders harnessing their advantage in information. But, similar to the GM equity, as ex-
plained in the previous section, the high estimate for the intensity of informed trading may
be caused by a feedback of noise traders to the increased market activities due to prominent
events. For instance, we can think of the German scrappage program for old cars. This program
was introduced on January 13, 2009.

The graph of the PIN estimates for VOW stands out from the other plots and is a real eye-
catcher. The fourth quarter of 2008 displays the maximum value for estimate of the probability
of informed trading, which is higher than 20%. The other three German stocks do not show
values for P̂IN that are higher than 15%. As for the other stocks, the scrappage program may
play an important role for the increased estimates but there were some special trading days
during the fourth quarter of 2008 which probably add another impact. In October 2008 the
price for VOW shares literally exploded and went beyond 1000 EUR as shown in figure 10.8.
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Figure 10.8: Daily high prices (in EUR) of the VOW stock in the third and fourth quarter of 2008.

Only a small amount of shares were available on the market and the majority of short sellers
were obliged to buy shares in order to fulfill their contracts. Porsche Holding announced to
hold more than 74% of VOW options and shares. The state of Niedersachsen also had a holding
in VOW with more than 20%. Due to this market situation the price dramatically increased.
After few trading days the situation on the market relaxed and the price dropped down. The
probability of an information event is nearly twice as high as the estimate for the preceding
quarter. The static EHOmodel constitutes a rate of trading days with private information in the
fourth quarter of 25%. One might interpret the value of the estimate in a way that information
events could be concentrated around the price-bubble in the fourth quarter.

We see an overall increase in trading activities in the second half of the year for VOW. The
estimates of the intensities of noise trading (𝜖𝑏 + 𝜖𝑠) and information-based trading are on a
similar level in the third quarter but differ by more than 1500 expected transactions per day
in the fourth quarter. Hence, in the third quarter, on information events the market is split in
nearly equal parts for noise traders and insiders, whereas the transactions initiated by informed
traders clearly dominate those special trading days at the end of the year. The parameters of
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the EHO model react to the few extreme trading days in October 2008 and the substantially
increased trading activity in this time range.115 Asmentioned in the beginning of chapter 6, one
may argue if the increased trading activity on such special trading days should be completely
assigned to the group of informed traders. There might be a significant number of (wrongly
labeled) informed transactions initiated by uninformed traders responding to the higher market
activities.

Similar to the empirical results for the US symbols, the parameter estimates for the German
equities exhibit that the identification problem discussed in section 4.3.4 is not present for the
underlying data in the years from 2007 to 2010.

115The initiator for the extreme rush in the price for VOW equities was an announcement from Porsche Holding
in which they published to hold 74% of VOW shares and options. However, Porsche Holding repudiated cases
against them to deliberately influence the market price.

188



10.2 Estimation Results (Xetra)

Quarter BMW CON DAI VOW

2007(Q1) 0.29673 0.37500 0.31251 0.40625
(0.05712) (0.06052) (0.05794) (0.06139)

2007(Q2) 0.27846 0.26229 0.29503 0.45941
(0.05738) (0.05632) (0.05839) (0.06386)

2007(Q3) 0.24615 0.36896 0.18462 0.30768
(0.05343) (0.05989) (0.04812) (0.05725)

2007(Q4) 0.27852 0.50815 0.37705 0.32777
(0.05742) (0.06402) (0.06205) (0.06010)

2008(Q1) 0.25807 0.43539 0.41933 0.11293
(0.05557) (0.06298) (0.06267) (0.04020)

2008(Q2) 0.54692 0.34374 0.42187 0.31250
(0.06224) (0.05937) (0.06173) (0.05794)

2008(Q3) 0.25721 0.21210 0.34867 0.13639
(0.05378) (0.05032) (0.05867) (0.04225)

2008(Q4) 0.42619 0.31148 0.27951 0.24590
(0.06332) (0.05929) (0.05751) (0.05513)

2009(Q1) 0.22222 0.24537 0.39682 0.22222
(0.05238) (0.05519) (0.06164) (0.05238)

2009(Q2) 0.25789 0.28342 0.30635 0.29043
(0.05560) (0.05820) (0.05854) (0.05766)

2009(Q3) 0.37849 0.22221 0.36350 0.12133
(0.05975) (0.05238) (0.05920) (0.04020)

2009(Q4) 0.22580 0.33804 0.30645 0.25807
(0.05310) (0.06176) (0.05855) (0.05557)

2010(Q1) 0.35125 0.24195 0.22224 0.24192
(0.06107) (0.05439) (0.05238) (0.05439)

2010(Q2) 0.30157 0.32258 0.42859 0.40935
(0.05782) (0.05937) (0.06235) (0.06277)

2010(Q3) 0.30304 0.30396 0.33370 0.12697
(0.05657) (0.05678) (0.05810) (0.04194)

2010(Q4) 0.36507 0.43549 0.38096 0.36508
(0.06066) (0.06297) (0.06118) (0.06066)

Table 10.7: Quarterly estimates of the probability of an information event 𝛼 for all Xetra equities.
Figures in parentheses denote standard errors.
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Quarter BMW CON DAI VOW

2007(Q1) 0.15760 0.66660 0.00000 1.00000
(0.08371) (0.09624) (— — —) (— — —)

2007(Q2) 0.64662 0.49982 0.83333 0.24925
(0.11598) (0.12500) (0.08784) (0.08167)

2007(Q3) 0.18751 0.87490 0.74999 0.64999
(0.09758) (0.06756) (0.12500) (0.10666)

2007(Q4) 0.64685 0.41929 0.47826 0.45022
(0.11597) (0.08864) (0.10416) (0.11125)

2008(Q1) 0.12500 0.74091 0.07881 0.71447
(0.08267) (0.08436) (0.07245) (0.17068)

2008(Q2) 0.59994 0.72727 0.11112 0.35002
(0.08282) (0.09495) (0.06048) (0.10666)

2008(Q3) 0.48540 0.49978 0.18865 0.41068
(0.12347) (0.13363) (0.10654) (0.16198)

2008(Q4) 0.03855 0.57895 0.04143 1.00000
(0.03778) (0.11327) (0.23248) (— — —)

2009(Q1) 1.00000 0.33372 0.36009 0.50001
(— — —) (0.12199) (0.09603) (0.13363)

2009(Q2) 0.18769 0.64678 0.57955 0.72285
(0.09767) (0.11595) (0.11322) (0.10542)

2009(Q3) 0.43953 0.71418 0.20851 0.37473
(0.09937) (0.12077) (0.08297) (0.17111)

2009(Q4) 0.92860 0.49870 0.94729 0.56250
(0.06879) (0.11217) (0.05128) (0.12402)

2010(Q1) 0.40534 0.39996 0.07964 0.66652
(0.10511) (0.12649) (0.03234) (0.12174)

2010(Q2) 0.42101 0.39991 0.11100 0.53706
(0.11327) (0.10954) (0.06043) (0.09877)

2010(Q3) 0.24970 0.70081 0.68215 0.15719
(0.09688) (0.10235) (0.09925) (0.29798)

2010(Q4) 0.43485 0.70372 0.16667 0.30434
(0.10337) (0.08787) (0.07607) (0.09594)

Table 10.8: Quarterly estimates of the conditional probability of bad-news trading days 𝛿 for all Xetra
equities. Figures in parentheses denote standard errors.
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Quarter BMW CON DAI VOW

2007(Q1) 1150.58402 1195.50901 1963.83666 1901.81209
(4.86234) (4.53615) (6.67149) (5.45203)

2007(Q2) 1466.63894 1242.45243 3099.99536 1363.26855
(5.05215) (4.71264) (7.24815) (5.74996)

2007(Q3) 1547.11981 1572.36810 3659.10653 1874.55481
(5.38595) (4.98559) (7.60279) (5.61022)

2007(Q4) 1619.37842 1648.45981 3399.72551 2473.44370
(5.31427) (5.89961) (8.02659) (6.86278)

2008(Q1) 2104.51895 2560.44281 3700.31637 3231.12794
(6.56666) (6.72539) (9.69125) (7.29467)

2008(Q2) 1844.16401 2034.19871 2934.17377 2198.75308
(5.81834) (5.77919) (8.58078) (6.41259)

2008(Q3) 2140.88127 1731.23810 3481.43221 3689.21124
(6.32036) (5.38188) (8.72623) (7.60977)

2008(Q4) 2522.38788 725.09892 4903.30094 5938.83366
(8.29353) (3.63763) (10.78575) (9.71580)

2009(Q1) 2411.09528 274.07273 3744.28396 2061.04583
(6.22058) (2.39679) (8.76841) (5.95062)

2009(Q2) 1839.42664 275.39308 4031.13118 1821.12269
(6.30987) (2.24379) (8.45419) (5.57317)

2009(Q3) 1508.71394 383.01481 2962.78116 1795.63137
(5.20720) (2.53710) (7.84003) (5.39842)

2009(Q4) 1684.69745 345.45881 3243.07563 1079.46554
(5.23166) (2.59299) (7.22744) (4.32529)

2010(Q1) 1489.20194 839.11047 2925.91429 774.67248
(7.24223) (3.90427) (7.27856) (3.62626)

2010(Q2) 1954.54617 871.61437 3459.08105 512.35129
(5.99874) (4.09330) (9.24810) (3.34588)

2010(Q3) 2087.47671 726.84310 3213.16944 492.52758
(6.51291) (3.43198) (7.22161) (2.99246)

2010(Q4) 2300.16506 775.96509 2596.85614 681.09310
(6.49458) (3.66818) (7.53856) (3.76897)

Table 10.9: Quarterly estimates of the intensity of uninformed buys 𝜖𝑏 for all Xetra equities. Figures
in parentheses denote standard errors.
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Quarter BMW CON DAI VOW

2007(Q1) 1425.89042 1250.51022 3119.91896 1786.29514
(4.83695) (4.88089) (6.96699) (6.88914)

2007(Q2) 1524.21544 1320.30810 3242.16532 1784.40577
(5.41547) (4.90113) (8.34842) (5.54598)

2007(Q3) 1765.97021 1235.27458 3548.74900 1867.13792
(5.31515) (5.47038) (7.80413) (5.81235)

2007(Q4) 1524.44608 1693.84204 3607.90630 2474.17041
(5.52509) (5.69858) (8.22655) (6.78852)

2008(Q1) 2457.76592 2291.18681 4989.94410 3392.47654
(6.40180) (7.05764) (8.94157) (7.75434)

2008(Q2) 1762.58870 2026.97691 3407.15809 2620.86169
(6.02543) (6.30920) (7.41533) (6.66779)

2008(Q3) 2311.29587 1989.61588 4033.98940 3802.75368
(5.98652) (5.67032) (7.89551) (7.82079)

2008(Q4) 3049.03441 644.57493 5319.15758 3345.36829
(7.08948) (3.49765) (9.29154) (8.24735)

2009(Q1) 2119.00408 301.06927 3566.37948 2091.59118
(6.57839) (2.29342) (7.96642) (6.01328)

2009(Q2) 2151.97345 246.41769 3825.23144 1805.04650
(5.99998) (2.19266) (8.46979) (5.95581)

2009(Q3) 1576.16594 311.04080 3331.92094 1759.17933
(5.38472) (2.38205) (7.25059) (5.25084)

2009(Q4) 1461.68265 326.65977 2786.59724 896.09122
(5.45286) (2.73483) (7.95341) (4.05777)

2010(Q1) 1512.25807 857.54993 3005.95297 662.29066
(5.41197) (3.87159) (7.13708) (3.52908)

2010(Q2) 2071.80233 968.05731 4285.95452 428.73101
(5.97258) (4.11162) (8.41179) (3.34486)

2010(Q3) 2259.55548 643.14294 3073.26115 411.88895
(6.20251) (3.65935) (7.88882) (2.55705)

2010(Q4) 2292.63471 692.06529 3071.80191 576.68529
(6.35746) (3.93443) (7.06324) (3.12367)

Table 10.10: Quarterly estimates of the intensity of uninformed sells 𝜖𝑠 for all Xetra equities. Figures
in parentheses denote standard errors.
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Quarter BMW CON DAI VOW

2007(Q1) 760.79904 684.89650 2223.36113 2127.42367
(11.10619) (9.62753) (16.10280) (13.98460)

2007(Q2) 800.53575 724.85032 2265.69484 615.77826
(12.40576) (11.72447) (18.62717) (9.79156)

2007(Q3) 1530.07151 1099.29982 3052.03198 1742.26206
(15.03609) (11.18050) (23.20216) (14.03581)

2007(Q4) 931.57364 887.57015 1530.05755 1766.39756
(13.10711) (10.00217) (16.21947) (15.51254)

2008(Q1) 1591.71208 1219.79839 2556.23491 4594.82492
(16.34480) (12.70866) (17.39867) (35.71557)

2008(Q2) 690.84775 1131.89657 1596.57836 1306.51885
(9.55687) (12.75756) (15.46976) (14.89345)

2008(Q3) 1887.87198 2719.20597 2626.35500 6813.46469
(16.39304) (17.56017) (18.79196) (29.73289)

2008(Q4) 1899.38560 683.20435 5936.57765 10843.96131
(15.33918) (8.85845) (27.07387) (22.26821)

2009(Q1) 1479.93853 359.27069 1538.77213 1865.92947
(17.65543) (7.13004) (16.00921) (17.15499)

2009(Q2) 1529.95657 273.16866 1728.36051 1210.49999
(16.42825) (5.86284) (19.13381) (13.99583)

2009(Q3) 824.81622 479.72979 1224.88820 2684.16709
(10.66151) (7.85901) (15.14728) (24.25545)

2009(Q4) 1315.32420 341.25411 1893.24550 897.65631
(15.06354) (6.45705) (17.29990) (11.13843)

2010(Q1) 674.61155 1069.88787 2137.90253 737.35675
(13.33752) (11.57553) (19.78107) (10.14171)

2010(Q2) 1227.50881 626.27083 1916.68847 322.88099
(13.90898) (9.26877) (16.74539) (6.76448)

2010(Q3) 1293.83291 442.54045 1258.85128 1838.72596
(13.85829) (8.35876) (15.79756) (17.36135)

2010(Q4) 1184.03542 565.11344 1401.90015 729.08785
(13.01905) (7.56520) (14.28604) (8.26269)

Table 10.11: Quarterly estimates of the intensity of informed trading 𝜇 for all Xetra equities. Figures
in parentheses denote standard errors.
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Quarter BMW CON DAI VOW

2007(Q1) 0.08056 0.09502 0.12024 0.18985
2007(Q2) 0.06936 0.06906 0.09535 0.08246
2007(Q3) 0.10208 0.12623 0.07250 0.12531
2007(Q4) 0.07624 0.11890 0.07606 0.10476
2008(Q1) 0.08260 0.09866 0.10980 0.07265
2008(Q2) 0.09482 0.08743 0.09602 0.07810
2008(Q3) 0.09834 0.13420 0.10861 0.11035
2008(Q4) 0.12686 0.13447 0.13965 0.22312
2009(Q1) 0.06768 0.13290 0.07709 0.09079
2009(Q2) 0.08996 0.12920 0.06314 0.08838
2009(Q3) 0.09190 0.13314 0.06606 0.08392
2009(Q4) 0.08625 0.14649 0.08778 0.10495
2010(Q1) 0.07317 0.13238 0.07416 0.11043
2010(Q2) 0.08420 0.09895 0.09589 0.12315
2010(Q3) 0.08273 0.08941 0.06264 0.20518
2010(Q4) 0.08602 0.14357 0.08610 0.17466

Table 10.12: Quarterly estimates of the probability of informed trading PIN for all Xetra equities.
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Figure 10.9: Quarterly estimates of the probability of an information event 𝛼 for all Xetra equities.
Detailed results can be found in table 10.7.
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Figure 10.10: Quarterly estimates of the probability of bad-news trading days 𝛿 for all Xetra equities.
Detailed results can be found in table 10.8.
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Figure 10.11: Quarterly estimates of the intensity of uninformed buys 𝜖𝑏 for all Xetra equities. De-
tailed results can be found in table 10.9.
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Figure 10.12: Quarterly estimates of the intensity of uninformed sells 𝜖𝑠 for all Xetra equities. De-
tailed results can be found in table 10.10.
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Figure 10.13: Quarterly estimates of the intensity of informed trading 𝜇 for all Xetra equities. De-
tailed results can be found in table 10.11.
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Figure 10.14: Quarterly estimates of the probability of informed trading PIN for all Xetra equities.
Detailed results can be found in table 10.12.
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10.3 Posterior Probabilities and Tests for
Independence of Trading Days’ States

To reduce the amount of graphs, we will not display posterior probabilities for all nine equities
and the total range of four years. Instead, we concentrate on the periods which were already
emphasized in the previous sections, the second quarter of 2009 for GM (delisting) and the
third and fourth quarter of 2008 for VOW (price temporarily over 1000 EUR).
The model parameter estimates for GM in the second quarter of 2009 can be interpreted that
informed sellers are only active on few trading days but act with high intensity (see tables 10.1
and 10.2).
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Figure 10.15: Posterior probabilities for conditions of trading days for GM in the last months before
its delisting.

According to figure 10.15 two single days in the last half of April and five out of the last six
trading days are bad-news days with probability 1. Hence, we see high concentration of days
with negative private information shortly before delisting. Furthermore, posteriors are able to
clearly classify each trading day as no-news or bad-news trading day.116

Figure 10.16 visualize posterior probabilities of trading days’ conditions of VOW in the third and
fourth quarter of 2008. We can see a clustering of bad-news days in the middle of September
and a series of subsequent information events in the last week of October. EHOmodel classifies
October 28, on which the price exceeded 1000 EUR, as bad-news day. One can think of insiders
holding VOW shares which anticipate the peaks in the price series (see figure 10.8). Similar to
GM, posterior probabilities can clearly identify the conditions of trading days.117

In figures 10.15 and 10.16 clustering of information events, either with positive or negative direc-
tion of news, is visible. Posterior probabilities for the remaining symbols and trading periods
fortify this finding. We create dichotomous series of non-information and information events
116Since �̂� = 1, there are no good-news days.
117Likewise to the GM case, �̂� lies on the upper boundary in the fourth quarter of 2008 and therefore only no-news

and bad-news trading days occur.
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Figure 10.16: Posterior probabilities for conditions of trading days for VOW in the third and fourth
quarter of 2008.

for each symbol and quarter. A Run-Test (e.g., see Wald and Wolfowitz 1940), which checks
for randomness, is then conducted for each series. Almost 70% of the resulting p-values are
smaller than 0.05 as shown in table 10.13. This indicates that the assumption of independence of
trading days may not always be appropriate and should be relaxed to allow for dependencies.
The PIN-HMM model, which is introduced in section 6.2, considers dependencies in the series
of trading days’ conditions by modeling them with hidden Markov chains.

F GM HMC JCI TM BMW CON DAI VOW
2007(Q1) 0.91214 0.02060 0.03960 0.00908 0.24594 0.00117 0.01720 0.00001 0.00000
2007(Q2) 0.00573 0.01587 0.00419 0.06358 0.04621 0.03537 0.42224 0.09401 0.26409
2007(Q3) 0.00406 0.00034 0.00000 0.00002 0.00024 0.00200 0.00000 0.61851 0.00000
2007(Q4) 0.21019 0.00471 0.16858 0.51757 0.00101 0.41556 0.02827 0.01111 0.00031
2008(Q1) 0.01963 0.00031 0.02619 0.00215 0.06093 0.00733 0.24275 0.02432 0.00000
2008(Q2) 0.27832 0.78428 0.00203 0.00986 0.00001 0.45243 0.00235 0.04379 0.30344
2008(Q3) 0.56632 0.00511 0.19764 0.00003 0.04321 0.00007 0.00001 0.00637 0.00004
2008(Q4) 0.00204 0.00013 0.00679 0.48353 0.03688 0.00000 0.00177 0.00000 0.00000
2009(Q1) 0.02159 0.04321 0.00139 0.20156 0.15145 0.00399 0.00005 0.11592 0.00030
2009(Q2) 0.01056 0.00739 0.24518 0.00419 0.33300 0.00926 0.04042 0.10568 0.62917
2009(Q3) 0.07039 0.10622 0.38267 0.35192 0.10980 0.08575 0.22251 0.00031
2009(Q4) 0.65844 0.00316 0.00489 0.89556 0.00002 0.00557 0.00008 0.00755
2010(Q1) 0.00253 0.00017 0.00450 0.00021 0.03380 0.79440 0.16200 0.00489
2010(Q2) 0.00124 0.43926 0.40163 0.00009 0.00001 0.00755 0.00486 0.00039
2010(Q3) 0.01804 0.00649 0.00001 0.00048 0.06581 0.31777 0.35124 0.33198
2010(Q4) 0.00003 0.03004 0.02196 0.32983 0.00150 0.00016 0.01882 0.04805

Table 10.13: P-values of Run-Tests for each equity and quarter in our datasource. Values lower than
0.05 indicate that the null hypothesis of independence is rejected.
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10.4 Confidence Intervals
In the results for our datasets, shown in tables 10.14 (NYSE) and 10.15 (Xetra), we see that
the smallest range of confidence intervals for NYSE-listed stocks can be found for JCI in the
fourth quarter of 2007 (0.043), whereas TM exhibits the widest range in the early months of
2010 (0.241). The average difference between lower and upper limit of the confidence intervals
lies below 0.1 for the US stocks. However, the range seems to be driven by the intensity of
transactions initiated by informed traders or moreover by the relation of information-based
trading to noise trading. The more insiders dominate the market the wider are the ranges of
PIN confidence intervals. This behavior is visualized in figure 10.17.

The confidence intervals of the German stocks traded on the electronic Xetra marketplace show
similar properties. The mean range is also less than 0.1 for all stocks (e.g., for BMW and DAI
it is about 0.06). The confidence interval for BMW in the second quarter of 2008 shows the
smallest difference between lower and upper limit (0.038), whereas the range is highest in the
fourth quarter of 2008 for VOW (0.28). Likewise to the symbols listed on NYSE, high levels of
information-based trading compared to the intensities of liquidity traders span the confidence
intervals wider, as displayed in figure 10.18.
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F GM HMC JCI TM
2007(Q1) [0.087, 0.141] [0.059, 0.134] [0.083, 0.147] [0.052, 0.109] [0.067, 0.147]
2007(Q2) [0.096, 0.163] [0.065, 0.117] [0.075, 0.143] [0.033, 0.101] [0.106, 0.166]
2007(Q3) [0.006, 0.126] [0.095, 0.159] [0.088, 0.177] [0.068, 0.132] [0.026, 0.224]
2007(Q4) [0.045, 0.151] [0.060, 0.122] [0.098, 0.162] [0.074, 0.117] [0.097, 0.166]
2008(Q1) [0.081, 0.137] [0.063, 0.124] [0.076, 0.137] [0.056, 0.115] [0.065, 0.138]
2008(Q2) [0.089, 0.163] [0.048, 0.102] [0.077, 0.147] [0.075, 0.129] [0.112, 0.200]
2008(Q3) [0.003, 0.198] [0.091, 0.163] [0.135, 0.228] [0.082, 0.152] [0.082, 0.169]
2008(Q4) [0.125, 0.213] [0.111, 0.203] [0.057, 0.151] [0.066, 0.112] [0.082, 0.153]
2009(Q1) [0.093, 0.191] [0.090, 0.173] [0.039, 0.264] [0.046, 0.106] [0.087, 0.167]
2009(Q2) [0.099, 0.167] [0.019, 0.243] [0.097, 0.183] [0.093, 0.174] [0.078, 0.172]
2009(Q3) [0.035, 0.147] [0.137, 0.271] [0.095, 0.150] [0.038, 0.192]
2009(Q4) [0.107, 0.177] [0.104, 0.205] [0.078, 0.138] [0.131, 0.209]
2010(Q1) [0.103, 0.191] [0.011, 0.156] [0.086, 0.158] [0.019, 0.260]
2010(Q2) [0.008, 0.173] [0.042, 0.206] [0.069, 0.136] [0.090, 0.164]
2010(Q3) [0.111, 0.242] [0.125, 0.204] [0.088, 0.162] [0.066, 0.240]
2010(Q4) [0.142, 0.258] [0.161, 0.261] [0.061, 0.118] [0.109, 0.198]

Table 10.14: Quarterly 95% confidence intervals for the probability of informed trading PIN for all
NYSE equities.

BMW CON DAI VOW
2007(Q1) [0.052, 0.108] [0.068, 0.122] [0.012, 0.157] [0.019, 0.234]
2007(Q2) [0.043, 0.096] [0.043, 0.097] [0.060, 0.129] [0.062, 0.103]
2007(Q3) [0.064, 0.140] [0.089, 0.161] [0.038, 0.106] [0.085, 0.164]
2007(Q4) [0.047, 0.104] [0.092, 0.144] [0.054, 0.098] [0.071, 0.137]
2008(Q1) [0.048, 0.115] [0.073, 0.124] [0.079, 0.138] [0.022, 0.119]
2008(Q2) [0.075, 0.113] [0.060, 0.114] [0.070, 0.121] [0.052, 0.104]
2008(Q3) [0.061, 0.134] [0.081, 0.188] [0.077, 0.140] [0.052, 0.171]
2008(Q4) [0.081, 0.158] [0.089, 0.177] [0.079, 0.186] [0.016, 0.296]
2009(Q1) [0.017, 0.097] [0.083, 0.182] [0.056, 0.099] [0.054, 0.130]
2009(Q2) [0.054, 0.125] [0.082, 0.174] [0.041, 0.085] [0.056, 0.119]
2009(Q3) [0.065, 0.117] [0.080, 0.186] [0.046, 0.086] [0.033, 0.137]
2009(Q4) [0.045, 0.120] [0.099, 0.190] [0.052, 0.117] [0.065, 0.143]
2010(Q1) [0.050, 0.096] [0.083, 0.182] [0.039, 0.106] [0.068, 0.154]
2010(Q2) [0.055, 0.113] [0.066, 0.131] [0.070, 0.120] [0.090, 0.154]
2010(Q3) [0.055, 0.111] [0.059, 0.119] [0.043, 0.082] [0.060, 0.299]
2010(Q4) [0.060, 0.111] [0.107, 0.178] [0.062, 0.111] [0.126, 0.220]

Table 10.15: Quarterly 95% confidence intervals for the probability of informed trading PIN for all
Xetra equities.
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Figure 10.17: Relation of information-based trading to noise trading plotted against the range of cor-
responding confidence intervals for the probability of informed trading of US equities.
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Figure 10.18: Relation of information-based trading to noise trading plotted against the range of
corresponding confidence intervals for the probability of informed trading of German
equities.
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11 Empirical Applications
(Dynamic Models)

We apply the previously presented PIN-HMM and PIN-ALACD models to the same equities
mentioned in the previous chapter. Hence, we have a total of nine symbols listed on two
different marketplaces.118 For optimization purposes we split datasets by years.119 By calcu-
lating confidence intervals for model parameters in every year and inspecting the intersection
thereof, we see that the null hypothesis of constant parameters over the complete time span of
four years does not hold.120

Initially, probabilities of informed trading and conditions of trading periods are calculated on
a daily basis. However, we also offer intraday estimates for five minute intervals in section
11.5. In contrast to the EHO and EKOP model no algorithms for generating good sets of initial
values exist. Therefore we are forced to use random sets of starting values which are drawn
form uniform distributions whose minimum and maximum values correspond to lower and
upper bounds for model parameters we incorporate in optimization runs (see section 11.1).

In total, we create 50 sets of randomly drawn initial values121 and therefore perform 50 opti-
mization runs for each equity and year. Our estimation results show that it may be dangerous
to utilize too few maximizations due to the potential finding of only local maxima. For each
symbol, we take the set of estimates which yields the highest likelihood function value into
account for further computations and analyses.

Before we begin with in-depth explanations of the estimation results for both dynamic ap-
proaches, we will shortly discuss some findings about the estimates of the shape parameters of
Weibull distributions and the parameters which are responsible for adjusting for information-
based trading in the PIN-HMM approach, which are displayed in tables 11.1 and 11.2. They
fortify the assumptions of separate shape parameters for the conditional distributions of buys’
118A detailed description of the underlying datasource can be found in chapter 8.
119Estimating the probability of informed trading on a daily basis incorporating a shorter time range of the under-

lying data is possible. However, we are in line with the work by Tay, Ting, Tse, and Warachka (2009) in which
datasets also covered trading days for one year.

120To save some space, we do not explicitly display the results in this work. However, they are available upon
request.

121See code chunk 7.2 for the implementation of how sets of initial values are drawn from uniform distributions.
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11 Empirical Applications (Dynamic Models)

and sells’ waiting times as well as unique parameters for the adjustment of insider trading
triggered by either positive or negative signals.

In the working paper by Tay, Ting, Tse, andWarachka (2007) Weibull distributions with identi-
cal shape parameters for durations of buys and sells are investigated. Table 11.1 shows p-values
which belong to t-tests for the significance of the difference of both trade directions’ shape
parameters. The vast majority of entries are lower than any commonly used significance level
which means that the assumption of unique shape parameters in the PIN-HMM model is ap-
propriate and improves the quality of results. Only 7 out of 35 p-values122 are higher than the
typically used significance level of 5%.

2007 2008 2009 2010

F 0.50864 0.00000 0.00000 0.00000
GM 0.00000 0.00000 0.00000 – – –
HMC 0.00000 0.00000 0.00000 0.00001
JCI 0.00000 0.12229 0.10020 0.00166
TM 0.00000 0.23857 0.00117 0.02330
BMW 0.00000 0.00000 0.17982 0.27494
CON 0.00000 0.03218 0.00001 0.00000
DAI 0.09558 0.00000 0.00000 0.00000
VOW 0.00000 0.00000 0.00000 0.00580

Table 11.1: Table of p-values of t-tests with null hypotheses that the difference of shape parameters
of buys’ and sells’ interarrival times’ distributions in the PIN-HMM model is 0.

Our PIN-HMMmodel is also more flexible than PIN-ALACD in terms of adjusting for informed
trading. While one parameter controls for both directions of private information in the latter,
the former distinguishes between adjustment for positive and negative private news.123

Likewise to 11.1, most values in table 11.2 are very small and the null hypothesis of identical
parameters adjusting for insider trading is rejected in those cases. Hence, the setting of the
PIN-ALACD model seems not sufficient. Only in 2 out of 35 possible cases the restrictive
assumption is acceptable if the significance level is assumed to be 5%. To summarize the results
in both tables, we can see that the PIN-ALACDmodel may probably lack some flexibility if any
recent dataset is utilized.

Similar to sections 10.1 and 10.2, which offer estimation results for the static model, we place
corresponding tables of estimation results at the ends of sections 11.1 and 11.2.

122GM was not listed on NYSE in 2010.
123Tay, Ting, Tse, and Warachka (2009) mention this possibility to extend their model in a footnote but do not

investigate it any further.
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11.1 Estimation Results (NYSE)

2007 2008 2009 2010

F 0.00000 0.00000 0.00000 0.00000
GM 0.00000 0.00000 0.00000 – – –
HMC 0.00000 0.00000 0.00000 0.00000
JCI 0.00001 0.00000 0.00104 0.00000
TM 0.00000 0.00000 0.42350 0.00000
BMW 0.00001 0.00000 0.00000 0.00000
CON 0.00000 0.00719 0.00000 0.00000
DAI 0.00000 0.00000 0.99959 0.00000
VOW 0.00000 0.00000 0.00000 0.00000

Table 11.2: Table of p-values of t-tests with null hypotheses that the difference of parameters adjust-
ing for informed trading in the PIN-HMM model is 0.

11.1 Estimation Results (NYSE)

In this section we will discuss and interpret the estimation results for the PIN-ALACD as well
as the PIN-HMM model for the US equities in our datasource. Firstly, we mention some con-
straints we impose on model parameters or linear combinations thereof in optimization runs.
Restrictions concerning ALACD specifications are valid for both dynamic approaches. There-
fore imposed boundaries only differ in terms of parameters which are part of the modeling of
probabilities of trading days’ conditions and the additional shape parameters of Weibull distri-
butions.

According to Tay, Ting, Tse, and Warachka (2009), we expect the parameters 𝛿2, 𝛿3 and 𝛿4,
which are involved in the calculation of state probabilities in the PIN-ALACD model, to be
positive. Hence, a high value for the aggregated total volume for trading day 𝑑 in compar-
ison with its average yields a low probability of no-news condition. Similar, values for the
aggregated volume of buyer- or seller-initiated transactions which exceed their means induce
higher probabilities of good- or bad-news, respectively. There is no positivity restriction for the
intercept 𝛿1. The assumptions for 𝛿2, 𝛿3 and 𝛿4 translate to lower bounds of 0 in optimization.

All transition probabilities in the PIN-HMM model have lower and upper bounds of 0 and 1,
respectively. In addition, each sum of 𝑎𝑞𝒩 , 𝑎𝑞𝒢 and 𝑎𝑞ℬ with 𝑞 ∈ 𝑄 must be identical to unity.
Therefore one can easily build transition matrices for each equity and year from the estimation
results in tables 11.7 – 11.10 by calculating the missing diagonal elements of the matrices. Due
to brevity reasons, we will not explicitly display any transition matrix but will exemplarily
reconstruct one later.

The constraints we impose on ALACD specifications concern the autoregressive parameters
𝛼1 and 𝛼−1 and the coefficients of lagged observed durations 𝛽1 and 𝛽−1. To ensure covariance
stationarity of the durations processes of buys and sells, sums of the parameters 𝛼1 and 𝛽1
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as well as 𝛼−1 and 𝛽−1 need to be less than unity as stated in the work by Bauwens and Giot
(2000).

Finally, we expect parameters adjusting for informed trading, 𝜏 in the PIN-ALACD model and
𝜏1 and 𝜏−1 in the PIN-HMM model, to be positive. We can see from section 6.3 that these
restrictions are necessary to ensure that the number of buys on good-news days and sells on
bad-news days is at least as large as their counterparts on non-information events. Information
events with a lower intensity of buys or sells, depending on the direction of private information,
are not reasonable in the context of estimation of the probability of informed trading. The shape
parameters of Weibull distributions in our PIN-HMM model, which also influence the scaling
of the intensity of buys or sells on the corresponding information events, as shown in equation
(6.70), are positive by definition.

A remarkable finding is the high number of boundary solutions for estimates of 𝛿3 and 𝛿4 in
the PIN-ALACD model. Every symbol in our datasource exhibits at least one coefficient which
equals 0.

Exemplarily, the coefficient of the comparison between aggregated volume of sells with its av-
erage equals 0 for F in 2007. Hence, aggregated volume of sells does not influence the decision
between good- and bad-news condition, given an information event. This means that the ag-
gregated transaction volume on day 𝑑 of only one trade direction decides about two possible
types of information events. If the aggregated volume of buys on trading day 𝑑 is larger than
its average the conditional probability of a good-news day is larger than 0.5, if it is lower the
same holds for the conditional probability of a bad-news day. If the aggregated volume of buys
is identical to its average both conditional probabilities equal 0.5.
Estimates of 𝛿3 and 𝛿4 lie both on the lower boundary for HMC in 2007 and 2008. Therefore,
neither aggregated volume of buys nor aggregated volume of sells impacts in any way the
probabilities of good- and bad-news states. They are identical for every trading day 𝑑 and
cannot exceed a value of 0.5. In this special constellation, probabilities of good- and bad-news
for trading day 𝑑 are given by

𝜋𝒢 ,𝑑 = 𝜋ℬ,𝑑 = 1
2 − 𝜋𝒩 ,𝑑

2 (11.1)

The empirical results show that the modeling of states’ conditions is problematic in the context
of the approach by Tay, Ting, Tse, andWarachka (2009). While the parameter estimates in their
original work are reasonable, they are often not for equities in our data. These findings may be
fortified due to the recent time range of our underlying tick data, however, the shortcomings
of the approach, in addition to those explained in section 6.1, are clearly revealed.

In contrast to Tay, Ting, Tse, and Warachka (2009) the reasonable relations ̂𝜈1,1 < ̂𝜈1,−1 and
̂𝜈−1,−1 < ̂𝜈−1,1 do not hold for most symbols and years in our estimation results for the PIN-

ALACD model. This can be interpreted that consecutive buys or sells introduce larger values
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for the intercepts in the corresponding ALACD specifications and thus lead to higher values
of the conditional expected durations than switching from the opposite trade direction.

Furthermore, Tay, Ting, Tse, and Warachka (2009) report that the relations ̂𝜁1 < 0 and ̂𝜁−1 > 0
are valid for all equities under consideration in their work. Hence, buyer-initiated transactions
with large size would substantially reduce the conditional expected duration for subsequent
buys but increase it for sells. The opposite is true for seller-initiated transactions with high
volume. Our findings are somewhat contrary since for the majority of equities and years it
holds that ̂𝜁1 > 0 and ̂𝜁−1 < 0. This means that our estimates of the coefficients of signed
volume suggest that large sell orders lead to a decrease of conditional expected durations of
subsequent buys and vice versa. Both sums �̂�1 + ̂𝛽1 and �̂�−1 + ̂𝛽−1 are below and not close to
1.

Estimation results of ALACD parameters in the context of the PIN-HMMmodel are muchmore
reasonable compared to the parameter estimates for the PIN-ALACD model. The majority of
them satisfy the intuitive assumptions about relations of intercepts and signs of coefficients of
signed volume.

Estimates of shape parameters of Weibull distributions for interarrival times are less than 1
for all symbols and years. Therefore the exponential distribution, which is a special case of
the Weibull distribution in case the shape parameter equals unity, is rejected for every equity
and year. This reflects that the distributional assumption for waiting times in the PIN-ALACD
model does not match the characteristics of waiting times in our data sufficiently.

Small shape parameters for the Weibull distribution of waiting times of buys and sells induce
decreasing conditional intensity functions for both trade directions. Although the values are
similar for buys and sells across all equities and years their differences are statistically signif-
icant in most cases (see table 11.1). Therefore an assumption of equal shape parameters would
not be appropriate.

We also see boundary solutions of the transition probabilities for PIN-HMM. Exemplary, we
will shortly explain the results for TM in 2008 which exhibit estimates on the boundary of the
parameter space for 𝑎ℬ𝒢 , 𝑎𝒢ℬ and 𝑎𝒢𝒩 . If trading day 𝑑 is an information event on which
negative private information enters the market, the next trading day will not be an information
event with positive private news (�̂�ℬ𝒢 = 0). Since �̂�ℬ𝒩 = 0.28291, the probability that it will
remain in bad-news state is �̂�ℬℬ = 0.71709. Additionally, if insiders are triggered to buy
on trading day 𝑑 , they will neither buy nor sell on 𝑑 + 1 because �̂�𝒢ℬ = 0 and �̂�𝒢𝒩 = 1 and
therefore �̂�𝒢𝒢 = 0. The last missing diagonal element is then given by �̂�𝒩 𝒩 = 1−�̂�𝒩 𝒢 −�̂�𝒩ℬ =
0.77879. Hence, if the Markov chain resides in no-news state for the current trading day it is
very likely that subsequent trading days are also non-information events.

It is obvious from the estimation results that the rows of the transition matrix are not identical
for every symbol and year. Hence, this shows that the independence of conditions of trading
days, which is nested in the HMM approach, is inappropriate for our data.

In addition to the transition probabilities we gain stationary probability distributions of trading
days (see section 6.2.1) which are presented in tables 11.11 – 11.14. These probabilities give an
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overview about the proportion of trading days each state occupies. Hence, stationary proba-
bility distribution for F in 2007 suggests that approximately 2% of all trading days reside in a
bad-news state and that on roughly 32% of trading days there are market attendees which are
triggered by positive private news. For the remaining 66% of trading days only noise traders
are active. The elements of the stationary probability distribution can be interpreted as coun-
terparts of the probabilities 1 − 𝛼 (no-news), 𝛼(1 − 𝛿) (good-news) and 𝛼𝛿 (bad-news) from the
static EKOP/EHO model.

We can see in tables 11.11 - 11.14 that non-information events are dominating for almost every
equity and year. Only TM in 2007 exhibits a slightly higher proportion of trading days on
which private information enter the market, 50.1% vs. 49.9%. The same security display the
highest value for the proportion of no-news day in 2010 with about 87%.
The PIN-HMMmodel sections information events to good-news and bad-news conditions very
differently depending on the underlying time range and equity. However, we can often iden-
tify a similar ranking of types of information events over years for each security. The results
show that the proportion of good-news day is always higher than that of bad-news days from
2007 to 2010 for F. In 2007 and 2008 there is a difference of more than 30% between the two
types of information events. For the remaining equities, in most years the probability of bad-
news trading days exhibits higher values than the probability of information events driven by
positive private information.

Compared with the results in section 10.1, we see that the proportions of trading days’ condi-
tions diverge in the static model approach and the PIN-HMM model. Exemplary, we compare
the results of both models for TM in 2007. For the EHO model we receive quarterly estimates
of the proportion of bad-news days, by calculating 𝛼�̂� , which equal 13.11%, 30.64%, 31.15% and
12.74% for the first to the fourth quarter of 2007. Hence, the EHO model assigns on average
a bad-news condition to 21.91% of all trading days. The proportion of bad-news days in our
dynamic approach is about 38% and therefore almost two times higher.

The amount of information eventswith positive direction also differs among the two approaches.
In the EHO model we receive estimated proportions with 𝛼(1 − �̂�) as 14.75%, 19.36%, 0% and
29.03% which means that the model on average sees 15.79% of all trading days as good-news
days. This is nearly 4% higher as the proportion returned by the PIN-HMMmodel which equals
11.99%. In two out of four quarters in 2007, the parameter estimates for the static model repre-
sent that if private information enter the market it has more likely a positive direction. In the
third quarter 𝛼(1− �̂�) equals 0 and therefore the model identifies all information events as bad-
news days. This is contradictory to the findings in the PIN-HMM model where the proportion
of bad-news day is more than three times higher than that of good-news days.

The proportion of no-news days in the EHO model is substantially higher than in our dynamic
model. The estimates of 1 − 𝛼 for the four quarters of 2007 are given by 72.13%, 50%, 68.85%
and 58.22%, which means that 62.30% of all trading days in 2007 are non-information events
for TM according to the static model. As mentioned before, the proportion of no-news days is
even slightly lower than 50% in the PIN-HMM model.
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We can also compare the amount of informed buys or sells on good-news or bad-news trading
days relative to the total number of transactions belonging to the corresponding trade direc-
tion in our dynamic model and the static EHO model, respectively.124 Each yearly series of
quarterly estimates of the involved parameters in the EHO model (𝜖𝑏 , 𝜖𝑠 , 𝜇) is summed up to
be comparable, in terms of the underlying time range, to the results of the PIN-HMM model.
We decided to exclude the PIN-ALACD approach in this comparison due to the previously
discussed spurious findings for the parameter estimates and the fact that one is not able to
differentiate between the fraction of informed buys and informed sells. According to equation
(6.69) in section 6.3, the proportions are identical due to the design of the approach.

It is obvious from tables 11.15 and 11.17 that the fraction of informed buys on good-news days
is substantially lower for almost all equities and years in our dynamic model than it is in the
EHO model. Only for TM in 2008 the former exhibit a higher value. The remaining entries
in table 11.15 are in the range from about 0.14 to 0.25, which can be interpreted that at most a
quarter of all buys on a good-news trading day is initiated by insiders (TM in 2009).

The minimum and maximum values in table 11.17 are about 0.36 and 0.64. The results for the
EHOmodel tell us that more than 60% of all buys on information events with positive direction
for TM in 2010, F in 2008 and 2010 and GM in 2009 belong to the group of information-based
trading. To stick with the GM symbol in 2009, we can read a more than two times higher value
from table 11.17 compared to the corresponding entry in table 11.15 for the PIN-HMM model.
This year, and especially the second quarter of it, had some very special trading days for GM,
with very high market activity, as discussed in section 10.1. Since the static model assumes a
constant trading rate for noise traders, the increased trading intensity on these trading days
is assigned solely to the informed traders. The results in tables 11.15 and 11.17 indicate that the
static EHO model seems to overestimate the fraction of informed buys of the total number of
buys on information events driven by positive private news.

Tables 11.16 and 11.18 display the percentage of sells initiated by informed traders relative to the
total number of sells on bad-news trading days. Entries in table 11.18 do not vary much from
the ones in table 11.17 which results from similar estimates for the intensity of uninformed
buys and uninformed sells in the EHO model, 𝜖𝑏 and 𝜖𝑠 . For the PIN-HMM model we see a
overall increase of the proportion of information-based transactions. Following the estimation
results of our dynamic approach, there are noticeable more informed sellers active on bad-news
trading days than informed buyers on good-news trading days.

Again, we exemplarily pick the entries for GM in 2009 in tables 11.16 and 11.18. Values are higher
than their counterparts on good-news trading days for both models. We see about 0.07 increase
for the PIN-HMM model and 0.02 for the static EHO model. Similar to the number of informed
buys on good-news trading days, the estimation results show that the static EHO model seem
to overestimate the fraction of informed sells of the total amount of sells on bad-news days.

124The corresponding expressions can be found in section 6.3.
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11 Empirical Applications (Dynamic Models)

Param. F GM HMC JCI TM

State Probabilities

Intercept 𝛿1 -2.15933 -0.32914 -0.81641 -0.32043 -0.84784
(0.24905) (0.16287) (0.20863) (0.21360) (0.22868)

Cmp. total volumes 𝛿2 3.94772 4.27192 5.37413 7.29462 6.84656
(0.66458) (0.56619) (0.72990) (0.96071) (0.94355)

Cmp. sell volumes 𝛿3 0 0 0 0 0
— — — — — — — — — — — — — — —

Cmp. buy volumes 𝛿4 0.79432 1.02764 0 3.49313 0
(0.81372) (0.49725) — — — (0.78016) — — —

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.60117 0.40789 0.50163 0.28742 0.39830
(0.00492) (0.00494) (0.01726) (0.01001) (0.01481)

Intercept (Buy after Sell) 𝜈1,−1 0.39170 0.31344 0.51220 0.29826 0.43103
(0.00490) (0.00478) (0.01886) (0.01084) (0.01717)

Cond. Duration (Buys) 𝛼1 0.68509 0.74261 0.80078 0.84529 0.82255
(0.00187) (0.00193) (0.00483) (0.00385) (0.00441)

Lagged Duration (Buys) 𝛽1 0.15250 0.12863 0.08557 0.07290 0.07773
(0.00079) (0.00070) (0.00161) (0.00120) (0.00131)

Signed Volume (Buys) 𝜁1 0.01782 0.01245 0.02249 0.01390 0.02153
(0.00063) (0.00071) (0.00237) (0.00141) (0.00236)

Intercept (Sell after Buy) 𝜈−1,1 0.53469 0.28073 0.29984 0.09187 0.21211
(0.00509) (0.00449) (0.01329) (0.00595) (0.01069)

Intercept (Sell after Sell) 𝜈−1,−1 0.46048 0.20164 0.29857 0.13400 0.25093
(0.00464) (0.00368) (0.01098) (0.00572) (0.01050)

Cond. Duration (Sells) 𝛼−1 0.68381 0.81301 0.87221 0.93387 0.89541
(0.00179) (0.00163) (0.00350) (0.00146) (0.00290)

Lagged Duration (Sells) 𝛽−1 0.15225 0.11192 0.06164 0.04465 0.05563
(0.00077) (0.00073) (0.00135) (0.00078) (0.00114)

Signed Volume (Sells) 𝜁−1 -0.03916 -0.02218 -0.01102 -0.00308 -0.00619
(0.00064) (0.00065) (0.00165) (0.00103) (0.00161)

Adj. informed trading 𝜏 0.39904 0.28767 0.35902 0.30955 0.35061
(0.00303) (0.00237) (0.00605) (0.00402) (0.00510)

Table 11.3: Estimation results for the PIN-ALACD model for all US stocks in 2007. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11.1 Estimation Results (NYSE)

Param. F GM HMC JCI TM

State Probabilities

Intercept 𝛿1 -0.79968 -0.46281 -1.47829 0.01149 -1.25316
(0.18221) (0.18027) (0.25948) (0.18323) (0.30503)

Cmp. total volumes 𝛿2 4.96020 5.17025 6.19418 6.58751 9.37939
(0.68550) (0.66851) (0.93451) (0.83171) (1.46119)

Cmp. sell volumes 𝛿3 2.39595 0 0 0 0
(0.67187) — — — — — — — — — — — —

Cmp. buy volumes 𝛿4 0 3.87484 0 2.07227 5.76414
— — — (0.86024) — — — (0.63694) (1.41118)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.68016 0.37317 0.33832 0.32778 0.63113
(0.00389) (0.00441) (0.01026) (0.00741) (0.02029)

Intercept (Buy after Sell) 𝜈1,−1 0.05859 0.19909 0.24493 0.26482 0.54429
(0.00309) (0.00379) (0.01097) (0.00723) (0.02169)

Cond. Duration (Buys) 𝛼1 0.76576 0.81208 0.86969 0.82744 0.77105
(0.00107) (0.00147) (0.00245) (0.00239) (0.00516)

Lagged Duration (Buys) 𝛽1 0.15016 0.09988 0.06999 0.07579 0.07995
(0.00061) (0.00059) (0.00113) (0.00075) (0.00134)

Signed Volume (Buys) 𝜁1 -0.01532 0.00554 0.00677 0.01271 0.01759
(0.00048) (0.00061) (0.00178) (0.00118) (0.00320)

Intercept (Sell after Buy) 𝜈−1,1 0.34762 0.12758 0.45405 0.19428 0.22419
(0.00413) (0.00306) (0.01645) (0.00691) (0.01412)

Intercept (Sell after Sell) 𝜈−1,−1 0.71623 0.30006 0.60662 0.25323 0.41182
(0.00461) (0.00354) (0.01609) (0.00677) (0.01447)

Cond. Duration (Sells) 𝛼−1 0.67182 0.84951 0.78388 0.86269 0.86192
(0.00140) (0.00118) (0.00358) (0.00183) (0.00326)

Lagged Duration (Sells) 𝛽−1 0.15388 0.09299 0.09241 0.07001 0.06540
(0.00063) (0.00056) (0.00130) (0.00072) (0.00120)

Signed Volume (Sells) 𝜁−1 -0.01400 -0.00249 -0.01194 -0.01012 0.00164
(0.00060) (0.00051) (0.00262) (0.00122) (0.00240)

Adj. informed trading 𝜏 0.44299 0.34832 0.41660 0.25927 0.53154
(0.00248) (0.00251) (0.00679) (0.00333) (0.00723)

Table 11.4: Estimation results for the PIN-ALACD model for all US stocks in 2008. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11 Empirical Applications (Dynamic Models)

Param. F GM HMC JCI TM

State Probabilities

Intercept 𝛿1 -0.47821 -1.40319 -1.82512 -0.45538 -1.97365
(0.17104) (0.31487) (0.30399) (0.18258) (0.37159)

Cmp. total volumes 𝛿2 3.98386 1.72313 5.61854 5.49744 8.10310
(0.53794) (0.41932) (0.84390) (0.71285) (1.27871)

Cmp. sell volumes 𝛿3 0.82378 0 0 0 0
(0.43867) — — — — — — — — — — — —

Cmp. buy volumes 𝛿4 0 0.99807 1.97490 0 1.11973
— — — (0.59346) (0.59396) — — — (0.44653)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.92732 0.57468 0.56000 0.36017 0.65085
(0.00566) (0.01039) (0.01622) (0.00545) (0.01758)

Intercept (Buy after Sell) 𝜈1,−1 0.16409 0.31579 0.38598 0.06375 0.29303
(0.00446) (0.00818) (0.01697) (0.00483) (0.01707)

Cond. Duration (Buys) 𝛼1 0.65806 0.78017 0.81730 0.87183 0.81242
(0.00147) (0.00297) (0.00314) (0.00156) (0.00324)

Lagged Duration (Buys) 𝛽1 0.14011 0.10598 0.08526 0.06018 0.07857
(0.00057) (0.00117) (0.00127) (0.00055) (0.00110)

Signed Volume (Buys) 𝜁1 -0.00877 0.00675 0.00715 -0.00974 -0.00968
(0.00068) (0.00111) (0.00284) (0.00087) (0.00300)

Intercept (Sell after Buy) 𝜈−1,1 0.17846 0.14070 0.25896 0.13161 0.34811
(0.00428) (0.00625) (0.01192) (0.00436) (0.01504)

Intercept (Sell after Sell) 𝜈−1,−1 0.97357 0.38678 0.30776 0.25511 0.39662
(0.00568) (0.00857) (0.01223) (0.00482) (0.01492)

Cond. Duration (Sells) 𝛼−1 0.64452 0.86251 0.88107 0.88102 0.84505
(0.00145) (0.00262) (0.00219) (0.00137) (0.00246)

Lagged Duration (Sells) 𝛽−1 0.14181 0.08039 0.06840 0.06012 0.07579
(0.00055) (0.00120) (0.00112) (0.00053) (0.00103)

Signed Volume (Sells) 𝜁−1 0.01006 -0.00055 -0.01376 -0.00515 -0.01973
(0.00066) (0.00086) (0.00213) (0.00079) (0.00273)

Adj. informed trading 𝜏 0.41035 0.56449 0.56908 0.29995 0.50314
(0.00259) (0.00731) (0.00799) (0.00280) (0.00722)

Table 11.5: Estimation results for the PIN-ALACD model for all US stocks in 2009. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11.1 Estimation Results (NYSE)

Param. F JCI HMC TM

State Probabilities

Intercept 𝛿1 -0.55512 -0.47733 -1.86455 -5.98879
(0.19425) (0.20587) (0.31767) (1.37735)

Cmp. total volumes 𝛿2 5.31255 6.43511 7.30427 6.58533
(0.70469) (0.81189) (1.13780) (1.71508)

Cmp. sell volumes 𝛿3 2.36186 0 0 0
(0.56516) — — — — — — — — —

Cmp. buy volumes 𝛿4 0 4.35375 8.70362 34.43828
— — — (0.88469) (2.55144) (1379.92554)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.85286 0.40554 0.50449 0.21879
(0.00449) (0.00951) (0.02099) (0.00933)

Intercept (Buy after Sell) 𝜈1,−1 -0.26158 0.40107 0.43555 0.04898
(0.00393) (0.00890) (0.02156) (0.00769)

Cond. Duration (Buys) 𝛼1 0.63147 0.74563 0.83029 0.94218
(0.00133) (0.00325) (0.00429) (0.00173)

Lagged Duration (Buys) 𝛽1 0.10555 0.05889 0.05252 0.02999
(0.00034) (0.00051) (0.00105) (0.00073)

Signed Volume (Buys) 𝜁1 -0.02941 0.03199 0.01576 -0.00749
(0.00063) (0.00153) (0.00351) (0.00149)

Intercept (Sell after Buy) 𝜈−1,1 -0.12341 0.08795 0.04749 0.01404
(0.00409) (0.00490) (0.00906) (0.00292)

Intercept (Sell after Sell) 𝜈−1,−1 0.93930 0.21386 0.20171 0.05287
(0.00480) (0.00526) (0.00993) (0.00305)

Cond. Duration (Sells) 𝛼−1 0.58438 0.90460 0.94906 0.98500
(0.00139) (0.00171) (0.00176) (0.00036)

Lagged Duration (Sells) 𝛽−1 0.10797 0.03895 0.02564 0.01090
(0.00035) (0.00049) (0.00074) (0.00025)

Signed Volume (Sells) 𝜁−1 0.02177 -0.00240 0.00758 0.00131
(0.00066) (0.00088) (0.00169) (0.00058)

Adj. informed trading 𝜏 0.71168 0.58304 0.68140 0.84320
(0.00236) (0.00384) (0.00965) (0.01029)

Table 11.6: Estimation results for the PIN-ALACD model for all US stocks in 2010. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11 Empirical Applications (Dynamic Models)

Param. F GM HMC JCI TM
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.60159 0.02666 0.11398 0.39970 0.04162
(0.21822) (0.01837) (0.04298) (0.08079) (0.02199)

ℬ → 𝒩 𝑎ℬ𝒩 0 0.33072 0.39995 0.26802 0.32209
— — — (0.05291) (0.06411) (0.07381) (0.05006)

𝒢 → ℬ 𝑎𝒢ℬ 0.02464 0.05629 0.14985 0.24408 0.08459
(0.01722) (0.05483) (0.05478) (0.06481) (0.05587)

𝒢 → 𝒩 𝑎𝒢𝒩 0.46603 0.57992 0.35281 0.38326 0.41759
(0.05710) (0.12235) (0.08537) (0.07715) (0.09941)

𝒩 → ℬ 𝑎𝒩ℬ 0.00610 0.18737 0.22031 0.09313 0.25747
(0.00608) (0.03254) (0.03901) (0.02417) (0.04123)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.22251 0.06071 0.11631 0.09367 0.08886
(0.03438) (0.02016) (0.03180) (0.02402) (0.02781)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.65129 0.44555 0.51402 0.50818 0.67640
(0.00616) (0.00487) (0.01890) (0.01740) (0.02554)

Intercept (Buy after Sell) 𝜈1,−1 0.63725 0.38036 0.52942 0.50579 0.72617
(0.00604) (0.00486) (0.01580) (0.01448) (0.02067)

Cond. Duration (Buys) 𝛼1 0.67551 0.77631 0.86816 0.82389 0.83624
(0.00198) (0.00195) (0.00488) (0.00635) (0.00625)

Lagged Duration (Buys) 𝛽1 0.15697 0.12912 0.07042 0.08286 0.08220
(0.00091) (0.00085) (0.00201) (0.00183) (0.00220)

Signed Volume (Buys) 𝜁1 -0.04183 -0.02684 -0.01454 -0.01839 -0.01758
(0.00078) (0.00073) (0.00240) (0.00199) (0.00356)

Intercept (Sell after Buy) 𝜈−1,1 0.72936 0.61310 1.01478 0.49440 1.12725
(0.00593) (0.00629) (0.03049) (0.01251) (0.03302)

Intercept (Sell after Sell) 𝜈−1,−1 0.51309 0.49077 1.05435 0.49193 1.27078
(0.00586) (0.00620) (0.03624) (0.01596) (0.03727)

Cond. Duration (Sells) 𝛼−1 0.67449 0.70202 0.72834 0.83118 0.67607
(0.00208) (0.00240) (0.00816) (0.00537) (0.00848)

Lagged Duration (Sells) 𝛽−1 0.16396 0.14447 0.11466 0.08815 0.12024
(0.00094) (0.00087) (0.00258) (0.00178) (0.00214)

Signed Volume (Sells) 𝜁−1 0.02391 0.01741 0.04051 0.01787 0.05640
(0.00076) (0.00090) (0.00420) (0.00202) (0.00515)

Adjustment (good news) 𝜏1 0.24402 0.18818 0.28606 0.29197 0.32701
(0.00377) (0.00567) (0.01218) (0.00656) (0.01254)

Adjustment (bad news) 𝜏−1 0.67373 0.30711 0.53025 0.24996 0.50256
(0.00644) (0.00319) (0.01252) (0.00681) (0.01051)

Shape Parameters

Buys 𝑘1 0.83112 0.80766 0.71420 0.74811 0.63932
(0.00089) (0.00068) (0.00170) (0.00104) (0.00141)

Sells 𝑘−1 0.83028 0.80251 0.67250 0.74095 0.62547
(0.00089) (0.00070) (0.00183) (0.00103) (0.00143)

Table 11.7: Estimation results for the PIN-HMM model for all US stocks in 2007. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11.1 Estimation Results (NYSE)

Param. F GM HMC JCI TM
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.33119 0.01223 0.47662 0.32786 0
(0.15453) (0.01215) (0.13568) (0.08372) — — —

ℬ → 𝒩 𝑎ℬ𝒩 0.66881 0.41850 0.52338 0.40675 0.27631
(0.15454) (0.05508) (0.13568) (0.08341) (0.04570)

𝒢 → ℬ 𝑎𝒢ℬ 0 0.22062 0.10128 0.21640 0
— — — (0.13795) (0.04245) (0.05669) — — —

𝒢 → 𝒩 𝑎𝒢𝒩 0.41791 0.44802 0.49349 0.31420 1
(0.05252) (0.16556) (0.07132) (0.05885) — — —

𝒩 → ℬ 𝑎𝒩ℬ 0.01925 0.20613 0.03647 0.11345 0.21614
(0.01101) (0.03216) (0.01432) (0.02895) (0.03644)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.23444 0.03135 0.14422 0.15990 0.00732
(0.03419) (0.01380) (0.02910) (0.03179) (0.00730)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.51057 0.37977 0.91883 0.56529 1.00520
(0.00573) (0.00542) (0.02749) (0.01207) (0.03489)

Intercept (Buy after Sell) 𝜈1,−1 1.02859 0.70040 1.10009 0.70012 1.26153
(0.00642) (0.00622) (0.02717) (0.01277) (0.03391)

Cond. Duration (Buys) 𝛼1 0.66487 0.77699 0.75393 0.77234 0.74069
(0.00163) (0.00191) (0.00500) (0.00359) (0.00612)

Lagged Duration (Buys) 𝛽1 0.17165 0.12737 0.12078 0.09846 0.12092
(0.00084) (0.00083) (0.00215) (0.00111) (0.00221)

Signed Volume (Buys) 𝜁1 -0.01773 -0.00473 -0.02857 -0.01871 -0.02389
(0.00082) (0.00089) (0.00457) (0.00203) (0.00612)

Intercept (Sell after Buy) 𝜈−1,1 1.03479 0.74050 0.77394 0.62691 1.43615
(0.00577) (0.00681) (0.01786) (0.01111) (0.03905)

Intercept (Sell after Sell) 𝜈−1,−1 0.31732 0.44114 0.65936 0.49639 1.33601
(0.00471) (0.00599) (0.01993) (0.01055) (0.04101)

Cond. Duration (Sells) 𝛼−1 0.71574 0.75070 0.83618 0.80317 0.67870
(0.00141) (0.00211) (0.00379) (0.00290) (0.00726)

Lagged Duration (Sells) 𝛽−1 0.17829 0.12666 0.09636 0.09472 0.12382
(0.00083) (0.00082) (0.00191) (0.00105) (0.00225)

Signed Volume (Sells) 𝜁−1 -0.00375 0.00877 0.01779 0.01625 0.04644
(0.00071) (0.00096) (0.00328) (0.00185) (0.00672)

Adjustment (good news) 𝜏1 0.34873 0.30885 0.42624 0.29319 1.48118
(0.00379) (0.00785) (0.01317) (0.00544) (0.06849)

Adjustment (bad news) 𝜏−1 1.11377 0.34986 0.60044 0.18999 0.59531
(0.00871) (0.00360) (0.01787) (0.00636) (0.01357)

Shape Parameters

Buys 𝑘1 0.73201 0.71628 0.61456 0.70491 0.55782
(0.00073) (0.00068) (0.00164) (0.00091) (0.00147)

Sells 𝑘−1 0.72457 0.72492 0.63172 0.70688 0.56028
(0.00072) (0.00069) (0.00152) (0.00090) (0.00148)

Table 11.8: Estimation results for the PIN-HMM model for all US stocks in 2008. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11 Empirical Applications (Dynamic Models)

Param. F GM HMC JCI TM
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.04762 0 0.02004 0.11395 0.11395
(0.04173) — — — (0.01985) (0.04445) (0.04227)

ℬ → 𝒩 𝑎ℬ𝒩 0.55225 0.34550 0.33481 0.41383 0.35730
(0.08817) (0.26815) (0.06868) (0.06923) (0.06313)

𝒢 → ℬ 𝑎𝒢ℬ 0.14113 0 0.18899 0.13902 0.40644
(0.04655) — — — (0.12110) (0.05781) (0.14451)

𝒢 → 𝒩 𝑎𝒢𝒩 0.34402 0.67436 0.52505 0.46305 0.35597
(0.06353) (0.10119) (0.15643) (0.08303) (0.14440)

𝒩 → ℬ 𝑎𝒩ℬ 0.07395 0.02531 0.09537 0.14299 0.15132
(0.02159) (0.01770) (0.02285) (0.02897) (0.02896)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.16413 0.20004 0.03757 0.09920 0.01221
(0.03014) (0.04679) (0.01498) (0.02402) (0.00859)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.46582 0.60163 0.78793 0.47486 0.94353
(0.00768) (0.01428) (0.02528) (0.00922) (0.03040)

Intercept (Buy after Sell) 𝜈1,−1 1.79008 1.15820 0.96329 0.76118 1.20655
(0.01021) (0.01928) (0.02565) (0.01075) (0.03106)

Cond. Duration (Buys) 𝛼1 0.60915 0.75661 0.83395 0.82778 0.79522
(0.00187) (0.00429) (0.00389) (0.00246) (0.00424)

Lagged Duration (Buys) 𝛽1 0.19020 0.12579 0.10777 0.08421 0.11490
(0.00093) (0.00188) (0.00225) (0.00093) (0.00207)

Signed Volume (Buys) 𝜁1 0.01506 -0.00314 -0.02359 -0.00599 -0.02808
(0.00118) (0.00200) (0.00453) (0.00170) (0.00564)

Intercept (Sell after Buy) 𝜈−1,1 1.80710 1.19963 1.13708 0.86620 1.37778
(0.01037) (0.01815) (0.02966) (0.01064) (0.03475)

Intercept (Sell after Sell) 𝜈−1,−1 0.48111 0.68052 0.91140 0.41849 1.00013
(0.00799) (0.01371) (0.03134) (0.00926) (0.03512)

Cond. Duration (Sells) 𝛼−1 0.61395 0.73731 0.77553 0.81903 0.75390
(0.00189) (0.00397) (0.00520) (0.00260) (0.00538)

Lagged Duration (Sells) 𝛽−1 0.19074 0.14442 0.11896 0.08441 0.11569
(0.00097) (0.00190) (0.00232) (0.00092) (0.00211)

Signed Volume (Sells) 𝜁−1 -0.01224 0.00940 0.02288 -0.00687 0.01850
(0.00122) (0.00200) (0.00526) (0.00167) (0.00625)

Adjustment (good news) 𝜏1 0.43301 0.42876 0.44880 0.35768 0.52783
(0.00561) (0.01215) (0.02688) (0.00680) (0.02408)

Adjustment (bad news) 𝜏−1 0.32558 0.60004 0.63591 0.32801 0.55021
(0.00726) (0.01758) (0.01574) (0.00597) (0.01448)

Shape Parameters

Buys 𝑘1 0.59999 0.62335 0.57472 0.64314 0.53948
(0.00067) (0.00162) (0.00179) (0.00080) (0.00155)

Sells 𝑘−1 0.59006 0.60511 0.59143 0.64127 0.54656
(0.00069) (0.00156) (0.00177) (0.00082) (0.00153)

Table 11.9: Estimation results for the PIN-HMM model for all US stocks in 2009. Figures in paren-
theses denote standard errors. Boundary solutions are marked with red color.
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11.1 Estimation Results (NYSE)

Param. F JCI HMC TM
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.48592 0.42286 0.11663 0.18174
(0.16273) (0.08424) (0.07022) (0.11634)

ℬ → 𝒩 𝑎ℬ𝒩 0.21525 0.00000 0.58670 0.36563
(0.13585) (0.00000) (0.10079) (0.14506)

𝒢 → ℬ 𝑎𝒢ℬ 0.06215 0.32869 0.16707 0.04871
(0.03012) (0.11939) (0.07782) (0.04767)

𝒢 → 𝒩 𝑎𝒢𝒩 0.40626 0.59047 0.68000 0.50262
(0.06285) (0.12284) (0.10257) (0.12287)

𝒩 → ℬ 𝑎𝒩ℬ 0.01685 0.11650 0.07903 0.02419
(0.00965) (0.02476) (0.02164) (0.01070)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.14054 0.03318 0.10727 0.04472
(0.02643) (0.01340) (0.02878) (0.01533)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.67172 0.96222 0.99353 0.97065
(0.01031) (0.01711) (0.04216) (0.02715)

Intercept (Buy after Sell) 𝜈1,−1 2.89956 1.48154 1.20329 1.10808
(0.01263) (0.02057) (0.04074) (0.02613)

Cond. Duration (Buys) 𝛼1 0.53455 0.66325 0.80428 0.85599
(0.00175) (0.00501) (0.00771) (0.00452)

Lagged Duration (Buys) 𝛽1 0.20198 0.09929 0.08069 0.08486
(0.00083) (0.00100) (0.00225) (0.00205)

Signed Volume (Buys) 𝜁1 0.02273 -0.02184 -0.01936 -0.02191
(0.00162) (0.00319) (0.00698) (0.00487)

Intercept (Sell after Buy) 𝜈−1,1 2.90406 1.51120 1.41874 1.37538
(0.01282) (0.02200) (0.04582) (0.03202)

Intercept (Sell after Sell) 𝜈−1,−1 0.53726 1.21037 1.22793 1.09948
(0.01058) (0.01849) (0.04673) (0.03237)

Cond. Duration (Sells) 𝛼−1 0.53724 0.61833 0.74490 0.78573
(0.00175) (0.00467) (0.00742) (0.00527)

Lagged Duration (Sells) 𝛽−1 0.19559 0.10212 0.09144 0.10001
(0.00083) (0.00105) (0.00213) (0.00190)

Signed Volume (Sells) 𝜁−1 -0.03033 0.05255 0.03365 0.02530
(0.00165) (0.00344) (0.00811) (0.00589)

Adjustment (good news) 𝜏1 0.54638 0.47120 0.48410 0.33062
(0.00644) (0.01603) (0.02691) (0.01964)

Adjustment (bad news) 𝜏−1 1.03469 0.62769 0.84790 1.12550
(0.00946) (0.00873) (0.02094) (0.01856)

Shape Parameters

Buys 𝑘1 0.42847 0.50492 0.53908 0.49973
(0.00042) (0.00075) (0.00186) (0.00131)

Sells 𝑘−1 0.43207 0.50155 0.52733 0.49554
(0.00043) (0.00075) (0.00181) (0.00130)

Table 11.10: Estimation results for the PIN-HMM model for all US stocks in 2010. Figures in paren-
theses denote standard errors.
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11 Empirical Applications (Dynamic Models)

F GM HMC JCI TM

Bad 0.01988 0.32684 0.28212 0.16181 0.38111
Good 0.32256 0.07114 0.18685 0.19859 0.11988
No 0.65756 0.60202 0.53103 0.63960 0.49900

Table 11.11: Stationary distribution of trading days’ conditions for US equities in 2007.

F GM HMC JCI TM

Bad 0.01207 0.32448 0.04876 0.16681 0.43710
Good 0.36117 0.03592 0.21709 0.27215 0.00409
No 0.62676 0.63959 0.73415 0.56104 0.55880

Table 11.12: Stationary distribution of trading days’ conditions for US equities in 2008.

F GM HMC JCI TM

Bad 0.13258 0.05348 0.22116 0.21231 0.26371
Good 0.22899 0.21654 0.04483 0.14593 0.05040
No 0.63842 0.72998 0.73402 0.64177 0.68589

Table 11.13: Stationary distribution of trading days’ conditions for US equities in 2009.

F HMC JCI TM

Bad 0.03944 0.11379 0.27377 0.04600
Good 0.25317 0.11352 0.14686 0.08561
No 0.70739 0.77269 0.57937 0.86839

Table 11.14: Stationary distribution of trading days’ conditions for US equities in 2010.
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11.1 Estimation Results (NYSE)

2007 2008 2009 2010
F 0.18357 0.22530 0.22880 0.20873
GM 0.14100 0.19846 0.23453
HMC 0.18478 0.23045 0.22736 0.22970
JCI 0.19622 0.18671 0.20550 0.21173
TM 0.18866 0.56231 0.24780 0.15229

Table 11.15: Proportion informed buys occupy of the total number of buys on information events
driven by positive private news in the context of our dynamic PIN-HMM model (US
equities).

2007 2008 2009 2010
F 0.42844 0.55381 0.17479 0.36050
GM 0.21843 0.22401 0.30448
HMC 0.29994 0.31567 0.31346 0.36054
JCI 0.16907 0.12568 0.18969 0.27008
TM 0.26973 0.28361 0.25972 0.42749

Table 11.16: Proportion informed sells occupy of the total number of sells on information events
driven by negative private news in the context of our dynamic PIN-HMM model (US
equities).

2007 2008 2009 2010
F 0.54198 0.62478 0.47292 0.64054
GM 0.39600 0.40599 0.60731
HMC 0.39238 0.51197 0.54770 0.58975
JCI 0.38356 0.36616 0.40826 0.42920
TM 0.44824 0.46075 0.54948 0.62681

Table 11.17: Proportion informed buys occupy of the total number of buys on information events
driven by positive private news in the context of the static EHO model (US equities).
Yearly series of quarterly estimates of 𝜖𝑏 and 𝜇 are summed up to achieve a better com-
parability with the estimates in table 11.15.

2007 2008 2009 2010
F 0.56119 0.61773 0.52463 0.65496
GM 0.38171 0.41039 0.62672
HMC 0.47500 0.46299 0.55610 0.59883
JCI 0.37644 0.36854 0.41735 0.41794
TM 0.48670 0.45511 0.55990 0.66746

Table 11.18: Proportion informed sells occupy of the total number of sells on information events
driven by negative private news in the context of the static EHO model (US equities).
Yearly series of quarterly estimates of 𝜖𝑠 and 𝜇 are summed up to achieve a better com-
parability with the estimates in table 11.16.
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11 Empirical Applications (Dynamic Models)

11.2 Estimation Results (Xetra)
This section covers estimation results for the German equities (BMW, CON, DAI and VOW)
listed on the electronic trading systemXetra. The structure of the results prettymuch resembles
those for the US stocks presented and discussed in the previous section.

For most symbols and years we see that ̂𝜈1,1 > ̂𝜈1,−1 and ̂𝜈−1,−1 > ̂𝜈−1,1 for PIN-ALACD. Again,
this means that sells induce lower subsequent conditional expected durations for buys’ process
and vice versa. In combination with the findings of positive ̂𝜁1 and negative ̂𝜁−1 for the majority
of symbols and years, it seems problematic for the ALACD recursion in the PIN-ALACDmodel
to determine trade directions (winner of the race between conditional expected durations of
buys and sells to be the first to arrive) in a meaningful way.

Likewise to the results for NYSE-listed equities there is at least one boundary solution for
every equity and year for the parameters ̂𝛿3 or ̂𝛿4 which are involved in the calculation of
probabilities of states of trading days. We are faced with the situation that both estimates
equal 0 for BMW in 2007 and VOW in 2009. Hence, total aggregated volume influences the
decision about information events but given that private news hit the market, the model is
indifferent about its direction. There is no chance to clearly mark trading days with good- or
bad-news condition.

As for the US symbols, PIN-HMM applied on the data of the German equities shows much
more intuitive and reasonable results. The relations ̂𝜈1,1 < ̂𝜈1,−1 and ̂𝜈−1,−1 < ̂𝜈−1,1 hold for the
majority of equities and years, ̂𝜁1 < 0 and ̂𝜁−1 > 0 is valid for all cases. Similar to the findings
in section 11.1, �̂�1 + ̂𝛽1 and �̂�−1 + ̂𝛽−1 are not close to 1. Estimates of shape parameters of Weibull
distribution are all less than unity which yield decreasing conditional intensity functions, as
it is the case for NYSE stocks, and signal that large durations are less probable than short
durations. Similar to the estimation results in section 11.1, this indicates that the exponential
distribution, which is applied in the PIN-ALACD model, is not flexible enough for the German
symbols.

To summarize the estimation results for the PIN-ALACD and PIN-HMM model, it seems that
the general structure of results or relations between certain estimates are independent of the
marketplace under consideration. Applying the former on our datasets results in estimates that
are counterintuitive, as explained above. A reason for this may be the big difference in origins
of the datasources utilized by Tay, Ting, Tse, and Warachka (2009) and in this work. Datasets
covering the time span from July 1, 1994 to June 30, 1995 were used by the former. Therefore
datasets utilized in this work consist of much higher proportion of (very) short durations which
were already reported to be somewhat problematic for PIN-ALACD (see Tay, Ting, Tse, and
Warachka 2009).

The stationary distributions of conditions of trading days in tables 11.27 - 11.30 display that
the proportion of no-news days is always above 50% for the German equities. Its minimum
and maximum value equals 57.8% for CON in 2008 and 83.25% for VOW in 2008, respectively.
The results of our dynamic model exhibit that there are always more good-news days than
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11.2 Estimation Results (Xetra)

bad-news days from 2007 to 2010 for BMW. The same is valid for CON, except in 2009 where
the proportion of bad-news days is almost three times higher than that of information events
driven by positive news. For the remaining two securities, DAI and VOW, the majority of years
show a higher proportion of information events on which only informed sellers are active.

Likewise to the previous section, the results for the stationary distribution of trading days‘
states for one equity and year are compared with the outcomes of the EHO model. We decided
to consider DAI in 2010, since the PIN-HMMmodel almost exclusively assigns a bad-news label
to information events in this time span. Only 0.4% of all trading days in this year belong to the
group of good-news days, while there are about 37% of bad-news days.

Calculating the probability of good-news days in the EHO model with 𝛼(1 − �̂�), we receive
20.45%, 38.10%, 10.61% and 31.75% for the first to the fourth quarter. Hence, the static approach
on average sees 25.23% of good-news days in 2010. In each of the four quarters the probability
of good-news days is substantially higher than that in the PIN-HMM model.

For the probability of bad-news days, 𝛼�̂� , we get the values 1.77%, 4.76%, 22.76% and 6.35% for
DAI in 2010. Therefore the average proportion of bad-news trading days equals 8.91% according
to the EHOmodel. It is obvious that the static approach returns proportions of good-news days
which are higher than their equivalents for bad-news trading days for three out of four quarters
in 2010. These findings are the complete opposite of the results of our dynamic approach.

Finally, the estimates for the proportion of non-information events in the EHO model, (1 − 𝛼),
are given by 77.78%, 57.14%, 66.63% and 61.90%which yield an average of 65.86%. The estimates
in the third and fourth quarter and the average value are on a similar level as for the PIN-HMM
model. Hence, the proportions of no-news days do not differ that much, but the two approaches
return totally different relations of types of information events.

Similar to section 11.1, we compare the fraction of informed buys on good-news trading days
and informed sells on bad-news trading days in our dynamic PIN-HMM model and the static
EHO model. Again, each yearly series of quarterly estimates of the intensity parameters in the
EHO model is summed up. Likewise to the comparison for the symbols listed on the NYSE, we
decided to exclude the PIN-ALACD model.

Tables 11.31 and 11.33 display the proportion the buyer-initiated, information-based transactions
occupy of the total number of buys on information events triggered by positive private news
in the PIN-HMM and EHO model. Analogously, tables 11.32 and 11.34 consist of proportions of
sells initiated by insiders on bad-news trading days.

The results pretty much resemble the findings already discussed in the context of the NYSE-
listed symbols. All percentages of informed buys on good-news days are substantially lower
in our dynamic model than they are in the EHO model. For sells initiated by informed traders
our model reports values that are higher than their counterparts in the EHOmodel for Conti in
2007 and 2010. Similar to section 11.1, we see an overall higher level of the fraction of informed
sells compared to the fraction of insiders triggered by positive private news, in terms of the
PIN-HMM model. In addition, the levels of reported fractions of informed buys and sells for
the German equities are akin to those of the US symbols for both approaches. However, the
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11 Empirical Applications (Dynamic Models)

results of both models show us that there is on average a slightly higher activity of insiders on
the NYSE.

It is obvious from the entries in tables 11.31 – 11.34 that they fortify the assumption that the static
EHO model overestimates the amount of information-based trading due to the fixed activity of
noise traders.

As for GM in 2009, there were some really special trading days for the VOW symbol in 2008.
We already explained the circumstances in section 10.2. Values in tables 11.33 and 11.34 exhibit
that the EHOmodel assigns more than 60% of buys and sells on the corresponding information
events to the informed traders. Those entries state the maximum values over the complete
time span under consideration, from 2007 to 2010. The entries in tables 11.33 and 11.34 for the
PIN-HMM model are by far lower. Our dynamic approach labels about 34% of all sells on bad-
news trading days and 16% of all buys on good-news trading days as information-based. Those
values are the highest and lowest for VOW over the years from 2007 to 2010, respectively. We
can identify a switching of the preferred trade direction by the group of insiders for the VOW
equity, compared with the years 2007 and 2009.
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11.2 Estimation Results (Xetra)

Param. BMW CON DAI VOW

State Probabilities

Intercept 𝛿1 -1.55576 -0.86965 -1.41037 -0.72681
(0.23233) (0.21872) (0.24299) (0.18776)

Cmp. total volumes 𝛿2 6.12298 6.98146 7.72351 3.34667
(0.90298) (0.91591) (1.11589) (0.43801)

Cmp. sell volumes 𝛿3 0 4.92129 0 0
— — — (1.07013) — — — — — —

Cmp. buy volumes 𝛿4 0 0 2.46592 1.87939
— — — — — — (0.75816) (0.51554)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.35431 0.35001 0.25130 0.31373
(0.00468) (0.00381) (0.00262) (0.00292)

Intercept (Buy after Sell) 𝜈1,−1 0.30918 0.16476 0.23895 0.22116
(0.00579) (0.00345) (0.00283) (0.00274)

Cond. Duration (Buys) 𝛼1 0.80822 0.85546 0.82688 0.83869
(0.00188) (0.00128) (0.00111) (0.00119)

Lagged Duration (Buys) 𝛽1 0.08918 0.07989 0.09257 0.08690
(0.00063) (0.00057) (0.00046) (0.00051)

Signed Volume (Buys) 𝜁1 0.01431 0.00053 0.01420 0.00886
(0.00069) (0.00053) (0.00038) (0.00039)

Intercept (Sell after Buy) 𝜈−1,1 0.26267 0.24879 0.14844 0.12592
(0.00531) (0.00474) (0.00226) (0.00242)

Intercept (Sell after Sell) 𝜈−1,−1 0.26341 0.40339 0.19137 0.32556
(0.00401) (0.00479) (0.00226) (0.00302)

Cond. Duration (Sells) 𝛼−1 0.85066 0.82483 0.88458 0.86397
(0.00182) (0.00184) (0.00091) (0.00109)

Lagged Duration (Sells) 𝛽−1 0.07369 0.08091 0.07121 0.07666
(0.00063) (0.00064) (0.00045) (0.00050)

Signed Volume (Sells) 𝜁−1 -0.01404 -0.00612 -0.00907 0.00163
(0.00061) (0.00063) (0.00031) (0.00038)

Adj. informed trading 𝜏 0.29527 0.33449 0.29014 0.33976
(0.00392) (0.00331) (0.00215) (0.00238)

Table 11.19: Estimation results for the PIN-ALACD model for all German stocks in 2007. Figures in
parentheses denote standard errors.

223



11 Empirical Applications (Dynamic Models)

Param. BMW CON DAI VOW

State Probabilities

Intercept 𝛿1 -0.90127 0.50675 -3.33287 -3.06998
(0.20501) (0.22567) (0.48688) (0.45627)

Cmp. total volumes 𝛿2 6.86164 7.00464 7.66290 5.01874
(0.88442) (1.02235) (1.23858) (0.82660)

Cmp. sell volumes 𝛿3 4.91246 0 1.86391 0
(1.03839) — — — (0.72658) — — —

Cmp. buy volumes 𝛿4 0 5.14298 0 5.04521
— — — (1.01659) — — — (1.95192)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.26292 0.36148 0.24899 0.25368
(0.00308) (0.00369) (0.00235) (0.00206)

Intercept (Buy after Sell) 𝜈1,−1 0.21874 0.26825 0.26106 0.16579
(0.00305) (0.00354) (0.00246) (0.00195)

Cond. Duration (Buys) 𝛼1 0.84172 0.83144 0.78941 0.85395
(0.00118) (0.00119) (0.00101) (0.00098)

Lagged Duration (Buys) 𝛽1 0.08194 0.08488 0.10430 0.07607
(0.00046) (0.00047) (0.00038) (0.00038)

Signed Volume (Buys) 𝜁1 0.01328 0.01335 0.02246 0.01260
(0.00044) (0.00054) (0.00036) (0.00036)

Intercept (Sell after Buy) 𝜈−1,1 0.26711 0.19906 0.24635 0.12244
(0.00359) (0.00304) (0.00262) (0.00154)

Intercept (Sell after Sell) 𝜈−1,−1 0.30957 0.22698 0.23314 0.19325
(0.00346) (0.00281) (0.00245) (0.00191)

Cond. Duration (Sells) 𝛼−1 0.81293 0.87523 0.79605 0.89748
(0.00144) (0.00105) (0.00108) (0.00092)

Lagged Duration (Sells) 𝛽−1 0.08368 0.07240 0.09547 0.06724
(0.00047) (0.00046) (0.00038) (0.00045)

Signed Volume (Sells) 𝜁−1 -0.01456 -0.01358 -0.02110 -0.00729
(0.00050) (0.00047) (0.00039) (0.00028)

Adj. informed trading 𝜏 0.34098 0.44710 0.40176 0.64122
(0.00258) (0.00315) (0.00200) (0.00218)

Table 11.20: Estimation results for the PIN-ALACD model for all German stocks in 2008. Figures in
parentheses denote standard errors.
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11.2 Estimation Results (Xetra)

Param. BMW CON DAI VOW

State Probabilities

Intercept 𝛿1 -0.59903 -1.90370 -0.46395 -0.83888
(0.18708) (0.26878) (0.16602) (0.19039)

Cmp. total volumes 𝛿2 5.34024 4.00074 4.95678 4.27126
(0.70554) (0.61677) (0.69254) (0.58314)

Cmp. sell volumes 𝛿3 0 2.20418 0 0
— — — (0.69666) — — — — — —

Cmp. buy volumes 𝛿4 3.49544 0 0.37099 0
(0.82893) — — — (0.51265) — — —

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.42619 0.26961 0.25098 0.40621
(0.00480) (0.00605) (0.00340) (0.00379)

Intercept (Buy after Sell) 𝜈1,−1 0.33395 0.15134 0.39848 0.27887
(0.00477) (0.00506) (0.00374) (0.00350)

Cond. Duration (Buys) 𝛼1 0.72487 0.91535 0.69400 0.77459
(0.00207) (0.00159) (0.00147) (0.00192)

Lagged Duration (Buys) 𝛽1 0.09148 0.04355 0.11092 0.07933
(0.00048) (0.00071) (0.00039) (0.00048)

Signed Volume (Buys) 𝜁1 0.02007 0.00157 0.04298 0.02364
(0.00074) (0.00079) (0.00058) (0.00069)

Intercept (Sell after Buy) 𝜈−1,1 0.33871 0.29782 0.37416 0.17376
(0.00481) (0.00758) (0.00374) (0.00317)

Intercept (Sell after Sell) 𝜈−1,−1 0.34328 0.38395 0.24046 0.34804
(0.00449) (0.00812) (0.00352) (0.00371)

Cond. Duration (Sells) 𝛼−1 0.73396 0.86643 0.68461 0.82813
(0.00205) (0.00229) (0.00150) (0.00207)

Lagged Duration (Sells) 𝛽−1 0.09116 0.05632 0.11368 0.07067
(0.00049) (0.00080) (0.00039) (0.00056)

Signed Volume (Sells) 𝜁−1 -0.02740 -0.00854 -0.04243 -0.00464
(0.00076) (0.00105) (0.00060) (0.00059)

Adj. informed trading 𝜏 0.34147 0.57941 0.23460 0.42987
(0.00284) (0.00783) (0.00193) (0.00272)

Table 11.21: Estimation results for the PIN-ALACD model for all German stocks in 2009. Figures in
parentheses denote standard errors.
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11 Empirical Applications (Dynamic Models)

Param. BMW CON DAI VOW

State Probabilities

Intercept 𝛿1 -0.33886 -0.85287 0.34178 -0.65300
(0.18192) (0.18083) (0.22004) (0.21846)

Cmp. total volumes 𝛿2 7.62558 3.83331 9.07680 6.91315
(1.00073) (0.50918) (1.25656) (0.94238)

Cmp. sell volumes 𝛿3 4.50058 0.05283 4.58747 0
(1.00700) (0.41644) (0.94139) — — —

Cmp. buy volumes 𝛿4 0 0 0 1.05199
— — — — — — — — — (0.43730)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.35160 0.69898 0.21276 0.44689
(0.00408) (0.00757) (0.00276) (0.00886)

Intercept (Buy after Sell) 𝜈1,−1 0.31669 0.27166 0.29437 0.28551
(0.00440) (0.00711) (0.00304) (0.00742)

Cond. Duration (Buys) 𝛼1 0.73144 0.72428 0.78891 0.83707
(0.00200) (0.00326) (0.00130) (0.00323)

Lagged Duration (Buys) 𝛽1 0.08943 0.08401 0.09489 0.05883
(0.00045) (0.00065) (0.00042) (0.00076)

Signed Volume (Buys) 𝜁1 0.02643 -0.00369 0.02974 0.00792
(0.00072) (0.00114) (0.00049) (0.00098)

Intercept (Sell after Buy) 𝜈−1,1 0.37696 0.48223 0.37627 0.12224
(0.00459) (0.00736) (0.00388) (0.00316)

Intercept (Sell after Sell) 𝜈−1,−1 0.39770 0.50329 0.34041 0.41274
(0.00428) (0.00731) (0.00347) (0.00573)

Cond. Duration (Sells) 𝛼−1 0.71212 0.71595 0.70203 0.87657
(0.00206) (0.00311) (0.00163) (0.00170)

Lagged Duration (Sells) 𝛽−1 0.08966 0.08115 0.10739 0.05719
(0.00044) (0.00062) (0.00040) (0.00060)

Signed Volume (Sells) 𝜁−1 -0.03081 -0.03499 -0.03488 0.00862
(0.00072) (0.00117) (0.00060) (0.00060)

Adj. informed trading 𝜏 0.33192 0.40668 0.35313 0.51152
(0.00261) (0.00371) (0.00225) (0.00452)

Table 11.22: Estimation results for the PIN-ALACD model for all German stocks in 2010. Figures in
parentheses denote standard errors.
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11.2 Estimation Results (Xetra)

Param. BMW CON DAI VOW
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.43182 0 0.30070 0.14017
(0.10682) — — — (0.09041) (0.04806)

ℬ → 𝒩 𝑎ℬ𝒩 0.39304 1 0.43781 0.34437
(0.10676) — — — (0.09869) (0.06604)

𝒢 → ℬ 𝑎𝒢ℬ 0.11647 0 0.16081 0.42634
(0.04531) — — — (0.05113) (0.11414)

𝒢 → 𝒩 𝑎𝒢𝒩 0.55453 0.36070 0.47907 0.21055
(0.07033) (0.05133) (0.06989) (0.09338)

𝒩 → ℬ 𝑎𝒩ℬ 0.07174 0.00639 0.06410 0.09892
(0.01988) (0.00637) (0.02021) (0.02331)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.14436 0.21642 0.15594 0.02573
(0.02789) (0.03379) (0.02865) (0.01272)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.81929 0.76536 0.52767 0.54661
(0.00922) (0.00881) (0.00442) (0.00510)

Intercept (Buy after Sell) 𝜈1,−1 0.81510 1.00095 0.59228 0.89868
(0.00818) (0.00886) (0.00429) (0.00607)

Cond. Duration (Buys) 𝛼1 0.77838 0.75318 0.82836 0.81055
(0.00263) (0.00267) (0.00149) (0.00192)

Lagged Duration (Buys) 𝛽1 0.10906 0.11490 0.10199 0.10907
(0.00102) (0.00100) (0.00070) (0.00088)

Signed Volume (Buys) 𝜁1 -0.03103 -0.02041 -0.01934 -0.00267
(0.00118) (0.00127) (0.00059) (0.00077)

Intercept (Sell after Buy) 𝜈−1,1 0.90694 0.99664 0.61898 0.81969
(0.00835) (0.00790) (0.00427) (0.00534)

Intercept (Sell after Sell) 𝜈−1,−1 0.84403 0.64243 0.58924 0.58805
(0.00932) (0.00711) (0.00501) (0.00508)

Cond. Duration (Sells) 𝛼−1 0.74557 0.78901 0.78590 0.79930
(0.00262) (0.00214) (0.00161) (0.00175)

Lagged Duration (Sells) 𝛽−1 0.12495 0.11848 0.11971 0.11460
(0.00104) (0.00099) (0.00071) (0.00082)

Signed Volume (Sells) 𝜁−1 0.03025 0.00626 0.02435 0.01052
(0.00123) (0.00112) (0.00067) (0.00077)

Adjustment (good news) 𝜏1 0.29686 0.35872 0.19971 0.41672
(0.00617) (0.00570) (0.00380) (0.00705)

Adjustment (bad news) 𝜏−1 0.34032 1.26957 0.33702 0.29943
(0.00777) (0.03440) (0.00510) (0.00466)

Shape Parameters

Buys 𝑘1 0.60204 0.60420 0.66345 0.61017
(0.00073) (0.00074) (0.00056) (0.00064)

Sells 𝑘−1 0.59558 0.59056 0.66216 0.62174
(0.00071) (0.00073) (0.00053) (0.00062)

Table 11.23: Estimation results for the PIN-HMM model for all German stocks in 2007. Figures in
parentheses denote standard errors.
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11 Empirical Applications (Dynamic Models)

Param. BMW CON DAI VOW
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.17874 0.40193 0.20418 0.30664
(0.08171) (0.15598) (0.06284) (0.12786)

ℬ → 𝒩 𝑎ℬ𝒩 0.64213 0.20237 0.49978 0.23360
(0.10345) (0.12790) (0.07916) (0.11741)

𝒢 → ℬ 𝑎𝒢ℬ 0.16429 0.04075 0.15243 0.19894
(0.05785) (0.01998) (0.06350) (0.07276)

𝒢 → 𝒩 𝑎𝒢𝒩 0.31109 0.38056 0.39177 0.33620
(0.07035) (0.04957) (0.08406) (0.08598)

𝒩 → ℬ 𝑎𝒩ℬ 0.05868 0.01371 0.13912 0.00472
(0.01810) (0.00964) (0.02651) (0.00471)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.09204 0.25242 0.05851 0.05673
(0.02138) (0.03624) (0.01802) (0.01593)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.88515 0.94459 0.74891 0.71708
(0.00787) (0.00823) (0.00485) (0.00412)

Intercept (Buy after Sell) 𝜈1,−1 0.97717 1.06670 0.73102 1.00472
(0.00763) (0.00822) (0.00476) (0.00485)

Cond. Duration (Buys) 𝛼1 0.72058 0.74241 0.71663 0.75346
(0.00235) (0.00233) (0.00162) (0.00161)

Lagged Duration (Buys) 𝛽1 0.12749 0.12651 0.13277 0.13293
(0.00084) (0.00089) (0.00061) (0.00067)

Signed Volume (Buys) 𝜁1 -0.03425 -0.03931 -0.04173 -0.02425
(0.00116) (0.00128) (0.00073) (0.00080)

Intercept (Sell after Buy) 𝜈−1,1 1.00762 1.04698 0.88945 0.85629
(0.00768) (0.00735) (0.00506) (0.00395)

Intercept (Sell after Sell) 𝜈−1,−1 0.86296 0.81985 0.78397 0.61168
(0.00768) (0.00741) (0.00513) (0.00349)

Cond. Duration (Sells) 𝛼−1 0.73273 0.76932 0.70610 0.77900
(0.00217) (0.00198) (0.00153) (0.00148)

Lagged Duration (Sells) 𝛽−1 0.13190 0.12904 0.14799 0.11385
(0.00085) (0.00089) (0.00065) (0.00060)

Signed Volume (Sells) 𝜁−1 0.03114 0.02665 0.03767 0.02111
(0.00114) (0.00119) (0.00075) (0.00066)

Adjustment (good news) 𝜏1 0.37853 0.38353 0.41662 0.31387
(0.00519) (0.00571) (0.00354) (0.00439)

Adjustment (bad news) 𝜏−1 0.27443 0.41521 0.20973 0.71561
(0.00763) (0.01037) (0.00441) (0.00439)

Shape Parameters

Buys 𝑘1 0.56258 0.55125 0.60824 0.55894
(0.00054) (0.00061) (0.00042) (0.00043)

Sells 𝑘−1 0.55727 0.54943 0.58440 0.58894
(0.00054) (0.00059) (0.00043) (0.00043)

Table 11.24: Estimation results for the PIN-HMM model for all German stocks in 2008. Figures in
parentheses denote standard errors.
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11.2 Estimation Results (Xetra)

Param. BMW CON DAI VOW
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.17253 0.06108 0.08408 0.12277
(0.06001) (0.04032) (0.03138) (0.04751)

ℬ → 𝒩 𝑎ℬ𝒩 0.47208 0.47191 0.50491 0.42310
(0.07850) (0.07717) (0.05669) (0.07568)

𝒢 → ℬ 𝑎𝒢ℬ 0.23216 0.34109 0.40317 0.25285
(0.06835) (0.12564) (0.10661) (0.09306)

𝒢 → 𝒩 𝑎𝒢𝒩 0.49692 0.53393 0.24181 0.51429
(0.07917) (0.13076) (0.09389) (0.10793)

𝒩 → ℬ 𝑎𝒩ℬ 0.10785 0.10584 0.25507 0.11325
(0.02567) (0.02411) (0.03726) (0.02402)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.14765 0.06442 0.04867 0.06630
(0.02994) (0.01945) (0.01974) (0.01851)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 1.27291 1.17698 1.20097 1.03030
(0.01141) (0.01716) (0.00773) (0.00813)

Intercept (Buy after Sell) 𝜈1,−1 1.43564 1.47757 1.05743 1.51429
(0.01160) (0.01913) (0.00756) (0.00924)

Cond. Duration (Buys) 𝛼1 0.58390 0.83083 0.56158 0.62630
(0.00317) (0.00410) (0.00214) (0.00358)

Lagged Duration (Buys) 𝛽1 0.15037 0.09836 0.17147 0.13141
(0.00101) (0.00194) (0.00076) (0.00098)

Signed Volume (Buys) 𝜁1 -0.06027 -0.01296 -0.08446 -0.03610
(0.00185) (0.00260) (0.00121) (0.00170)

Intercept (Sell after Buy) 𝜈−1,1 1.49497 1.81258 1.04696 1.53416
(0.01140) (0.02931) (0.00777) (0.00951)

Intercept (Sell after Sell) 𝜈−1,−1 1.20659 1.38978 1.19655 1.10389
(0.01119) (0.02462) (0.00797) (0.00861)

Cond. Duration (Sells) 𝛼−1 0.59057 0.75252 0.57885 0.64012
(0.00312) (0.00665) (0.00211) (0.00324)

Lagged Duration (Sells) 𝛽−1 0.14920 0.10174 0.16537 0.13459
(0.00100) (0.00205) (0.00075) (0.00098)

Signed Volume (Sells) 𝜁−1 0.04799 0.01766 0.08236 0.05165
(0.00180) (0.00356) (0.00125) (0.00175)

Adjustment (good news) 𝜏1 0.24190 0.45588 0.25916 0.56170
(0.00829) (0.02243) (0.00871) (0.00876)

Adjustment (bad news) 𝜏−1 0.43404 0.73885 0.25916 0.42716
(0.00728) (0.02008) (0.00421) (0.00798)

Shape Parameters

Buys 𝑘1 0.47977 0.45472 0.51266 0.49629
(0.00052) (0.00122) (0.00041) (0.00058)

Sells 𝑘−1 0.48076 0.44699 0.52008 0.48745
(0.00052) (0.00124) (0.00042) (0.00057)

Table 11.25: Estimation results for the PIN-HMM model for all German stocks in 2009. Figures in
parentheses denote standard errors.
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11 Empirical Applications (Dynamic Models)

Param. BMW CON DAI VOW
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0.87526 1 0 0.08176
(0.11665) — — — — — — (0.03519)

ℬ → 𝒩 𝑎ℬ𝒩 0 0 0.40294 0.46552
— — — — — — (0.05041) (0.06913)

𝒢 → ℬ 𝑎𝒢ℬ 0.04812 0 1 0.07457
(0.02369) — — — — — — (0.05065)

𝒢 → 𝒩 𝑎𝒢𝒩 0.49539 0.57259 0 0.48084
(0.05814) (0.05688) — — — (0.09307)

𝒩 → ℬ 𝑎𝒩ℬ 0.01830 0.00588 0.23243 0.19156
(0.01053) (0.00586) (0.03359) (0.03161)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.24026 0.26745 0.00619 0.06833
(0.05007) (0.03932) (0.00617) (0.01998)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 1.28803 1.56902 1.14212 1.18730
(0.01120) (0.01716) (0.00803) (0.01351)

Intercept (Buy after Sell) 𝜈1,−1 1.39081 1.92768 1.10702 1.89979
(0.01022) (0.01828) (0.00780) (0.01691)

Cond. Duration (Buys) 𝛼1 0.56994 0.58141 0.59782 0.69012
(0.00294) (0.00439) (0.00212) (0.00438)

Lagged Duration (Buys) 𝛽1 0.14005 0.13365 0.16596 0.12348
(0.00089) (0.00137) (0.00074) (0.00139)

Signed Volume (Buys) 𝜁1 -0.07406 -0.06912 -0.07430 -0.01129
(0.00169) (0.00306) (0.00132) (0.00248)

Intercept (Sell after Buy) 𝜈−1,1 1.36323 2.22185 1.02409 2.14798
(0.00990) (0.01761) (0.00757) (0.02282)

Intercept (Sell after Sell) 𝜈−1,−1 1.24294 1.24331 1.20999 1.34792
(0.00974) (0.01557) (0.00781) (0.01932)

Cond. Duration (Sells) 𝛼−1 0.57851 0.60009 0.60444 0.64030
(0.00286) (0.00415) (0.00220) (0.00572)

Lagged Duration (Sells) 𝛽−1 0.14424 0.14594 0.15547 0.11045
(0.00089) (0.00138) (0.00073) (0.00150)

Signed Volume (Sells) 𝜁−1 0.06952 0.01360 0.08175 0.01587
(0.00164) (0.00291) (0.00126) (0.00327)

Adjustment (good news) 𝜏1 0.31726 0.45941 0.71607 0.84885
(0.00591) (0.00990) (0.01725) (0.01367)

Adjustment (bad news) 𝜏−1 0.45106 1.97225 0.36385 0.62284
(0.01203) (0.04076) (0.00415) (0.01300)

Shape Parameters

Buys 𝑘1 0.49041 0.44398 0.51762 0.45725
(0.00051) (0.00073) (0.00043) (0.00083)

Sells 𝑘−1 0.48962 0.43424 0.52688 0.45379
(0.00051) (0.00071) (0.00044) (0.00094)

Table 11.26: Estimation results for the PIN-HMM model for all German stocks in 2010. Figures in
parentheses denote standard errors.
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11.2 Estimation Results (Xetra)

BMW CON DAI VOW

Bad 0.09044 0.00398 0.10580 0.21187
Good 0.20894 0.37350 0.21519 0.07543
No 0.70062 0.62252 0.67902 0.71270

Table 11.27: Stationary distribution of trading days’ conditions for German equities in 2007.

BMW CON DAI VOW

Bad 0.08781 0.03895 0.16719 0.05041
Good 0.17563 0.38331 0.13748 0.11713
No 0.73657 0.57774 0.69533 0.83246

Table 11.28: Stationary distribution of trading days’ conditions for German equities in 2008.

BMW CON DAI VOW

Bad 0.17196 0.19068 0.31735 0.19142
Good 0.17329 0.06789 0.08636 0.09252
No 0.65475 0.74143 0.59629 0.71606

Table 11.29: Stationary distribution of trading days’ conditions for German equities in 2009.

BMW CON DAI VOW

Bad 0.03156 0.00396 0.37050 0.24110
Good 0.33212 0.32184 0.00387 0.11474
No 0.63632 0.67420 0.62563 0.64416

Table 11.30: Stationary distribution of trading days’ conditions for German equities in 2010.
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11 Empirical Applications (Dynamic Models)

2007 2008 2009 2010
BMW 0.16366 0.19180 0.10958 0.14409
CON 0.19486 0.19056 0.18722 0.18451
DAI 0.12409 0.22384 0.12441 0.30972
VOW 0.22452 0.16091 0.24329 0.32168

Table 11.31: Proportion informed buys occupy of the total number of buys on information events
driven by positive private news in the context of our dynamic PIN-HMMmodel (German
equities).

2007 2008 2009 2010
BMW 0.18347 0.14181 0.18834 0.19816
CON 0.52752 0.20398 0.28126 0.57532
DAI 0.20001 0.11535 0.12609 0.17445
VOW 0.16987 0.34391 0.18797 0.24621

Table 11.32: Proportion informed sells occupy of the total number of sells on information events
driven by negative private news in the context of our dynamic PIN-HMM model (Ger-
man equities).

2007 2008 2009 2010
BMW 0.41023 0.41343 0.40893 0.35868
CON 0.37509 0.44936 0.53212 0.45693
DAI 0.42801 0.45847 0.31352 0.35511
VOW 0.45091 0.61007 0.49631 0.59587

Table 11.33: Proportion informed buys occupy of the total number of buys on information events
driven by positive private news in the context of the static EHO model (German equi-
ties). Yearly series of quarterly estimates of 𝜖𝑏 and 𝜇 are summed up to achieve a better
comparability with the estimates in table 11.31.

2007 2008 2009 2010
BMW 0.39197 0.38784 0.41336 0.34994
CON 0.38179 0.45285 0.55083 0.46104
DAI 0.40156 0.41738 0.32094 0.33323
VOW 0.44139 0.64157 0.50403 0.63565

Table 11.34: Proportion informed sells occupy of the total number of sells on information events
driven by negative private news in the context of the static EHO model (German equi-
ties). Yearly series of quarterly estimates of 𝜖𝑠 and 𝜇 are summed up to achieve a better
comparability with the estimates in table 11.32.
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11.3 Probability of Informed Trading

11.3 Probability of Informed Trading
This section offers plots of the probabilities of informed trading driven by positive and neg-
ative private news in combination with corresponding state probabilities.125 126 Despite the
counterintuitive results for the parameters incorporated in the autoregressive specification for
the conditional expected waiting times of buys and sells in the approach by Tay, Ting, Tse, and
Warachka (2009), we decided to include the corresponding plots for the probability of informed
trading and conditions of trading days for the sake of completeness. Moreover, the problems
in the modeling of probabilities of trading days’ states become even clearer by visualization in
direct comparison with the results of the Hidden Markov method in our dynamic model.

All figures have in common that the state probabilities which belong to the PIN-ALACDmodel
scatter by far more than their counterparts from the PIN-HMM model do.127 As explained in
section 6.1, for most trading days of all symbols and year, the model by Tay, Ting, Tse, and
Warachka (2009) is not sure about their conditions. We see probabilities for good-news and
bad-news trading days which are both substantial higher than 0. Hence, for the majority of
information events the model is not sure about the direction of private information.

The overall picture for our PIN-HMM model is contrary. For most equities and years the
state probabilities are reminiscent of visualizations of binary variables. Therefore, our hidden
Markov approach grants high (pseudo-)sureness about the conditions of trading days. This
yields separated measures of the probability of informed trading, PIN𝒢 ,𝑑 and PINℬ,𝑑 , being
very close or even identical to PIN𝑑 on most information events because state probabilities
clearly identify directions of private news.

Most estimates of PIN𝒢 ,𝑑 and PINℬ,𝑑 in the dynamic models do not exceed a value of 20%.
However, the PIN-HMM model reports also some very high estimates for both probabilities
of informed trading. Exemplary, on April 30, 2008 the estimate of PIN𝒢 ,𝑑 is close to 45% for
TM. This means that according to our dynamic model nearly every second transaction on this
trading day was initiated by an insider driven by positive private information. Only three
information events are labelled as bad-news trading days for F in 2008 but the estimates of
PINℬ,𝑑 lie above 40% on each of them. Furthermore, the average expected number of orders by
informedmarket participants on information events seems to be independent of the year under
consideration for most equities. There is no substantial change in the level of the probability
of informed trading over the time range from 2007 to 2010.

Interesting dates for analyzing the behavior of the probabilities of informed trading, we already
mentioned in sections 10.1 and 10.2, are the beginnings of the car scrappage programs in the
125The commonly used measure for PIN𝑑 as relation of expected number of trades initiated by insiders to the ex-

pected number of total trades on trading day 𝑑 (see equation (2.1)) can be obtained by summing PIN𝒢 ,𝑑 and
PINℬ,𝑑 (see equation (6.78)).

126Since the sum of all three potential trading day conditions always equals unity, it is sufficient to plot only prob-
abilities of good- and bad-news conditions.

127This section contains a large number of figures. To improve the readability, all figures are placed near the end of
the section after their interpretation.
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11 Empirical Applications (Dynamic Models)

United States and Germany. The American CARS program started on July 1, 2009, whereas the
German program was introduced on January 13, 2009. Results for the US equities in 2009 are
shown in figures 11.19 – 11.23, whereas we have data for GM only until June 1, 2009. Figures
11.15 – 11.18 and 11.24 – 11.27 display estimates of PIN𝒢 ,𝑑 and PINℬ,𝑑 as well as the probabilities
of good- and bad-news states for the German symbols in 2008 and 2009, respectively.

We can see a clustering of information events from April to early August for F in 2009 in the
PIN-HMM panel. The direction of private information switches multiple times in this time
span. Most corresponding values of P̂IN𝒢 ,𝑑 and P̂INℬ,𝑑 returned by the PIN-ALACD model
are smaller than in our dynamic approach. As we can see in table 11.5, there is a boundary
solution for the estimate of 𝛿4. This implies that the volume of buys is ignored in decisions
about the direction of private information. It is arguable whether to rely on results returned
by the PIN-ALACD model for such constellations of estimates.

The remaining US symbols, HMC, JCI and TM, show an increased level of insider trading in the
first half of 2009 for both dynamic models. From the figures belonging to the hidden Markov
approach we can see a surplus of trading days on which insiders participate in market activities
and solely fulfill sell orders. The magnitudes of P̂IN𝒢 ,𝑑 and P̂INℬ,𝑑 are similar on information
events initiated by either positive or negative private news.

The PIN-ALACD model is not able to the clearly identify the direction of private information
and therefore shows estimates of the probabilities of informed trading driven by good- and
bad-news which both differ from 0. For the manufacturers HMC and TM we see higher values
of P̂IN𝒢 ,𝑑 throughout the whole year. The supplier JCI offers values of P̂INℬ,𝑑 and P̂IN𝒢 ,𝑑
which are very similar.

German manufacturers BMW, DAI and VOW exhibit high proportions of information events
from September to the end of the year 2008 for both approaches. However, the amount of
information events decreases towards the end of the year. All have in common that December
consists of only very few trading days which reside in either good- or bad-news condition.
To be more precise, the insider trading for the VOW equity is negligible in December for the
PIN-HMM model, and in November and December for the PIN-ALACD model. In the time
range from September to November, PIN-ALACD delivers higher values of P̂INℬ,𝑑 for BMW
and DAI which is contradictory to the results of the PIN-HMM model where the probability of
informed trading driven by good news is often the preferred type of information event. The
results of both models also diverge for the VOW equity. While P̂IN𝒢 ,𝑑 dominates throughout
the whole year of 2008 and the probability of bad-news trading is always extremely small, we
see both types of information events in the PIN-HMM panel and P̂INℬ,𝑑 is substantially higher
than P̂IN𝒢 ,𝑑 . CON, which is a supplier for the automobile industry, shows only a few dates
labelled as information events by both dynamic approaches from September to December.

In the beginning of 2009, which covers the official introduction of the German scrappage pro-
gram, we only see a high amount of trading days identified as information events by PIN-HMM
for VOW.The remaining manufacturers, BMW and DAI, show increased insider training in the
second quarter of the year, while CON exhibits high proportions of insiders since September.
Relative high levels of PIN𝒢 ,𝑑 for BMW and PINℬ,𝑑 for CON in the first months of 2009 are
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reported by the PIN-ALACDmodel. The small estimates of PIN𝒢 ,𝑑 and PINℬ,𝑑 for DAI in 2009
are remarkable. Those values are always smaller than 10% in both dynamic models. For VOW,
the estimates for the parameters 𝛿3 and 𝛿4 in the PIN-ALACDmodel equal 0 in 2009 and there-
fore the probabilities of good-news and bad-news states are identical on each trading day as
shown in equation (11.1).

The results of both models in the context of the scrappage programs can be interpreted in a
way that one can think of insiders anticipating the influences of the releases. However, the
two programs may have been one of several factors triggering informed traders to become ac-
tive market attendees. Thinking of the scrappage programs as the only relevant events would
be too narrow. There are much more special events in the automobile industry which may
influence the decisions of insiders and for which it may be interesting to analyze the proba-
bilities of informed trading and conditions of trading days around corresponding dates. For
example, the five biggest auto shows in the US: Chicago Auto Show, North American Interna-
tional Auto Show, San Francisco International Auto Show, New York International Auto Show and
Grand National Roadster Show may also have a huge impact on the price of a symbol. There-
fore information-based trading can happen due to private news concerning these events. Also
during the German counterpart, International Motor Show (IAA), new cars are often shown to
the public for the first time which can influence the price of an equity to a huge degree. Hence,
such conventions state good opportunities for insiders to anticipate and harness their private
information for profit. Additional interesting trading periods were already mentioned and dis-
cussed in chapter 10. Beside the introduction of the scrappage programs in the United States in
Germany, there is the price bubble for VOW in October 2008 and the delisting of GM in June
2009. Further typical events which may be preferred by information-based traders are M&A’s
or earning announcements.

However, we cannot match all of those events with estimates of the probabilities of informed
trading and trading days’ states in this work. To reach this goal is too ambitious and would
go beyond the scope of this thesis. The main focus lies on the theory and the fast and stable
implementation of estimation routines for the probability of informed trading as well as the
introduction of our new dynamic approach. However, analyses of the behavior of estimates of
the probability of informed trading utilizing the new PIN-HMM model around certain market
events of interest may be conducted in subsequent works.
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Figure 11.1: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for F in 2007.
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Figure 11.2: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for GM in 2007.
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Figure 11.3: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for HMC in 2007.
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Figure 11.4: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for JCI in 2007.
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Figure 11.5: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for TM in 2007.
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Figure 11.6: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for BMW in 2007.
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Figure 11.7: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for CON in 2007.
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Figure 11.8: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for DAI in 2007.
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Figure 11.9: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for VOW in 2007.
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Figure 11.10: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for F in 2008.
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Figure 11.11: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for GM in 2008.
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Figure 11.12: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for HMC in 2008.
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Figure 11.13: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for JCI in 2008.
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Figure 11.14: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for TM in 2008.
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Figure 11.15: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for BMW in 2008.
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Figure 11.16: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for CON in 2008.
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Figure 11.17: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for DAI in 2008.

244



11.3 Probability of Informed Trading

PIN
-A

LA
C

D
PIN

-H
M

M

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Bad-news Good-news PIN (good news) PIN (bad news)

Figure 11.18: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for VOW in 2008.
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Figure 11.19: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for F in 2009.
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Figure 11.20: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for GM in 2009.
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Figure 11.21: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for HMC in 2009.
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Figure 11.22: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for JCI in 2009.
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Figure 11.23: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for TM in 2009.
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Figure 11.24: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for BMW in 2009.
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Figure 11.25: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for CON in 2009.
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Figure 11.26: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for DAI in 2009.
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Figure 11.27: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for VOW in 2009.
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Figure 11.28: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for F in 2010.
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Figure 11.29: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for HMC in 2010.
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Figure 11.30: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for JCI in 2010.
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Figure 11.31: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for TM in 2010.
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Figure 11.32: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for BMW in 2010.
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Figure 11.33: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for CON in 2010.
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Figure 11.34: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for DAI in 2010.
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Figure 11.35: Daily estimates of the probabilities of informed trading driven by good and bad news
and good- and bad-news state probabilities for VOW in 2010.
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The estimates of the probability of informed trading for the dynamic models are not directly
comparable with the ones for the static EHO model. As explained earlier, the latter models the
PIN variable as the a priori risk the market maker has to face at the beginning of each trading
day. In the approach by Tay, Ting, Tse, and Warachka (2009) and our PIN-HMM model, the
probability of informed trading displays the relation of the expected total number of transac-
tions initiated by informed traders to the total number of trades.

While a comparison of PIN estimates from static and dynamic models is not reasonable, the
expression

𝜇
𝜖𝑏 + 𝜖𝑠 + 𝜇 from the EHO model is similar to the probability of informed trading in

the dynamic setting. It incorporates the intensity of insiders on information events (𝜇) in its
nominator and the total trading intensity (𝜖𝑏 + 𝜖𝑠 + 𝜇) in its denominator (see figure 3.3).

We calculate averages of the probability of informed trading PIN on information events on
a yearly basis for our PIN-HMM model. We label trading days as information events if the
smoothed probability for a no-news condition is less than 1%. The results can be found in table
11.35. To achieve a better comparability in terms of the underlying time range for estimation
results of the static and dynamic model, we sum up the yearly series of quarterly estimates
from the EHO model and then calculate PIN. The fraction of information-based trading to
total trading activities for each symbol and year are shown in table 11.36. Likewise to the
comparisons of estimation results for static and dynamic models in section 11.1 and 11.2, we
exclude the approach by Tay, Ting, Tse, and Warachka (2009).

It is obvious from tables 11.35 and 11.36 that the activity of insiders reported by the EHO model
is substantially higher than their counterparts in the PIN-HMM approach. The results for the
static model in table 11.36 range from about 18% to about 47%, with the majority of entries
displaying values between 25% and 35%. The maximum yearly average of estimates of the
probability of informed trading in table 11.35 equals 19.3% for HMC in 2010, while DAI exhibits
the minimum of 6.7% in 2009. The difference between values in table 11.36 and 11.35 are larger
than 0.1 for every symbol and year, irrespective of the marketplace under consideration.

In section 11.1 and 11.2 we explain that the static EHO model is overestimating the fraction of
informed buys on good-news days and informed sells on bad-news days. As a consequence,
the activity of market attendees which possess private information is also overestimated if we
set our PIN-HMM model as reference.

In addition to the comparative analysis of the probability of informed trading in the EHO and
PIN-HMM model, we exemplarily compare estimates of the posterior probabilities returned
by both models. Since we do not want to overload this section with additional plots for each
equity and year, we concentrate on previously highlighted trading periods. We investigate the
first half of 2009 for GM and the year of 2008 for VOW. The corresponding graphics for the
NYSE-listed symbol of GM can be found in figure 11.36 and for the German equity of VOW in
figure 11.37, respectively.

A strong (pseudo)-sureness about the condition of trading days is displayed for our dynamic
approach and the EHOmodel. For many trading days, on which both models see insider enter-
ing the market, they agree about the direction of private news for GM. There are information
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events in every month with an increased amount from late February to late March. In May,
the PIN-HMM model sees more trading days on which insiders are active. The estimates of the
posterior probabilities for the EHO model tell us that there are only bad-news days at the end
of the month. Our dynamic approach is in line with those results but returns high probabilities
for information events triggered by positive direction of private news for early May.

Similar to figure 11.36 for GM it is obvious from figure 11.37 that the static EHO model and our
PIN-HMM model are sure about the conditions of trading days in 2008 for the VOW symbol.
However, the approach by Easley, Hvidkjaer, and O’Hara (2002) labels more trading days as
information events. From April to August, the model exhibit high probabilities of information
events, either with positive or negative private direction. Our dynamic approach displays only
a few good-news trading days in themiddle of July. Bothmodels identify a clustering of trading
days with active insiders from September to early November. While there are solely bad-news
trading days in the EHO panel for this time range, we see amixture of good-news and bad-news
conditions in the panel for the PIN-HMM model.
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2007 2008 2009 2010

F 0.11596 0.13427 0.12583 0.14914
GM 0.10991 0.12290 0.12298
HMC 0.14852 0.14639 0.18145 0.19377
JCI 0.11477 0.09730 0.11476 0.14973
TM 0.14208 0.15628 0.15267 0.16848
BMW 0.09513 0.09873 0.08600 0.08058
CON 0.10591 0.11170 0.14712 0.10437
DAI 0.08372 0.09465 0.06751 0.09407
VOW 0.10885 0.12712 0.11953 0.16802

Table 11.35: Average proportion informed transaction occupy of the total number of trades on in-
formation events in the context of the dynamic PIN-HMM model (average of the PIN 𝑑
variable on information events). Trading days are labeled as information events if the
smoothed probability for a no-news condition is less than 1%.

2007 2008 2009 2010

F 0.38066 0.45057 0.33106 0.47893
GM 0.24125 0.25642 0.44599
HMC 0.27368 0.32122 0.38109 0.42273
JCI 0.23454 0.22500 0.26004 0.26863
TM 0.30435 0.29695 0.38374 0.47765
BMW 0.25070 0.25017 0.25876 0.21526
CON 0.23336 0.29124 0.37110 0.29784
DAI 0.26132 0.27956 0.18849 0.20760
VOW 0.28709 0.45499 0.33346 0.44416

Table 11.36: Proportion informed transaction occupy of the total number of trades on information
events in the context of the static EHO model. Yearly series of quarterly estimates of
𝜖𝑏 , 𝜖𝑠 and 𝜇 are summed up to achieve a better comparability with the estimates in table
11.35.
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11.3 Probability of Informed Trading
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Figure 11.36: Comparison of posterior probabilities of conditions of trading days returned by the
static EHO model with state probabilities reported by the dynamic PIN-HMM model
for GM in the first half of 2009. The probabilities displayed in the second row of the
plot can also be found in figure 11.20.
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Figure 11.37: Comparison of posterior probabilities of conditions of trading days returned by the
static EHO model with state probabilities reported by the dynamic PIN-HMM model
for VOW in 2008. The probabilities displayed in the second row of the plot can also be
found in figure 11.18.
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11.4 Goodness of Fit
We can gain insights into the goodness of fit for both dynamic approaches by inspecting how
well they capture the dynamics of the observed durations. Therefore we utilize probability
integral transforms 𝑧𝑞𝑖 = 𝐹 𝑞𝑥𝑖,𝑑 (𝑥𝑖,𝑑 | ℱ𝑖−1,𝑑) of observed durations. Under the assumption that
the true distributions of 𝑥𝑖,𝑑 are incorporated in the dynamic approaches, the probability inte-
gral transforms follow a standard uniform distribution (see Rosenblatt 1952). This result was
extended by Diebold, Gunther, and Tay (1998) who have proven that the sequence of 𝑧𝑖’s is iid
standard uniform distributed if the true distribution is known.

According to equation (6.4) the observed duration for 𝑖-th transaction on trading day 𝑑 is the
minimum of waiting times of buys’ and sells’ latent point processes. Therefore we can write
the cdf of the 𝑖-th duration on trading day 𝑑 which resides in state 𝑞 as

𝐹 𝑞𝑥𝑖,𝑑 (𝑡) = Pr(min(𝑇 𝑞
1,𝑖,𝑑 , 𝑇

𝑞
−1,𝑖,𝑑) ≤ 𝑡 || ℱ𝑖−1,𝑑) (11.2)

This implies that at least one of 𝑇 𝑞
1,𝑖,𝑑 and 𝑇 𝑞

−1,𝑖,𝑑 is weakly smaller than 𝑡 .

𝐹 𝑞𝑥𝑖,𝑑 (𝑡) = Pr(𝑇 𝑞
1,𝑖,𝑑 ≤ 𝑡 ∨ 𝑇 𝑞

−1,𝑖,𝑑 ≤ 𝑡 || ℱ𝑖−1,𝑑) (11.3)

The probability in equation (11.3) can be rewritten as one minus the probability that both, 𝑇 𝑞
1,𝑖,𝑑

and 𝑇 𝑞
−1,𝑖,𝑑 , are larger than 𝑡 .

𝐹 𝑞𝑥𝑖,𝑑 (𝑡) = 1 − Pr(𝑇 𝑞
1,𝑖,𝑑 > 𝑡 ∧ 𝑇 𝑞

−1,𝑖,𝑑 > 𝑡 || ℱ𝑖−1,𝑑) (11.4)

Since waiting times of buys’ and sells’ processes are independent given we know about the
history ℱ𝑖−1,𝑑 , the cdf for 𝑥𝑖,𝑑 on trading day 𝑑 which resides in state 𝑞 for PIN-ALACD model
is given by

𝐹 𝑞𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑) = 1 − 𝑆𝑇 𝑞
1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑)𝑆𝑇 𝑞
−1,𝑖,𝑑

(𝑡 | ℱ𝑖−1,𝑑), (11.5)

where 𝑆 𝑇 𝑞
1,𝑖,𝑑

and 𝑆 𝑇 𝑞
−1,𝑖,𝑑

represent survivor functions belonging to the interarrival times of
buys’ and sells’ point processes, respectively. The product of both survivor functions can be
interpreted as probability that neither the point process of buys nor the one for sells has arrived
yet and that they do not signal the occurrence of a transaction.

Durations are only observable during official opening hours which tends to result in lower
amount of large durations, especially at the end of a trading day. Therefore, we have censored
datasets for which each transaction fulfills the constraint that its durations is (weakly) lower
than the remaining trading time. The last duration on each trading day begins before official
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11.4 Goodness of Fit

closing and ends afterwards. Hence, it is not observable. Taken this censoring into account
in our PIN-HMM approach, we need to incorporate the remaining trading time in equation
(11.5),

∼𝐹 𝑞𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑) =
1 − 𝑆𝑇 𝑞

1,𝑖,𝑑
(𝑡 | ℱ𝑖−1,𝑑)𝑆𝑇 𝑞

−1,𝑖,𝑑
(𝑡 | ℱ𝑖−1,𝑑)

1 − 𝑆𝑇 𝑞
1,𝑖,𝑑

(RT𝑖,𝑑 | ℱ𝑖−1,𝑑)𝑆𝑇 𝑞
−1,𝑖,𝑑

(RT𝑖,𝑑 | ℱ𝑖−1,𝑑)
, (11.6)

where RT𝑖,𝑑 is the upper bound for 𝑖-th transaction on trading day 𝑑 (see equation (6.22) in
chapter 6).

The probability integral transform for the 𝑖-th duration on trading day 𝑑 is then given as

∼𝐹 𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑) = Pr(𝑞𝑑 = 𝒩 | ℱ𝑖−1,𝑑)⋅
∼𝐹 𝒩𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑)

+ Pr(𝑞𝑑 = 𝒢 | ℱ𝑖−1,𝑑)⋅
∼𝐹 𝒢𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑)

+ Pr(𝑞𝑑 = ℬ | ℱ𝑖−1,𝑑)⋅
∼𝐹 ℬ𝑥𝑖,𝑑 (𝑡 | ℱ𝑖−1,𝑑), (11.7)

with the condition of trading day 𝑑 , 𝑞𝑑 . However, equation (11.7) is not operational, since we
cannot observe the evolution of the probabilities Pr(𝑞𝑑 = 𝒩 | ℱ𝑖−1,𝑑), Pr(𝑞𝑑 = 𝒢 | ℱ𝑖−1,𝑑) and
Pr(𝑞𝑑 = ℬ | ℱ𝑖−1,𝑑) over a trading day 𝑑 .
Therefore, we simplify the analysis by further conditioning the cdf of the durations in equa-
tion (11.7) on the state of trading day 𝑑 . We then incorporate estimates of daily smoothed
probabilities from section 6.2.2 for the PIN-HMM model and state probabilities of trading days
introduced in section 6.1 for the PIN-ALACD approach.

Furthermore, one could think of transforming the estimates of daily state probabilities in a
way that they only take on values in {0, 1}. For each trading day the highest estimated state
probability is identified and set to unity, while the two remaining probabilities are set to zero.
Since the HMM approach exhibits are very high (pseudo)-sureness about conditions for almost
every trading day, there would only be very little difference to the results presented in this
section. However, the PIN-ALACD model is very often unsure about the states of trading days
and this transformation would influence the results to a huge degree. Therefore, we decided
against this additional step to keep the results representative also for the model by Tay, Ting,
Tse, and Warachka (2009).

Both dynamic models have problems with adequately capturing the dynamics of (very) short
durations.128 This findingwas alreadymentioned in the works by Tay, Ting, Tse, andWarachka
(2009) and Bauwens, Giot, Grammig, and Veredas (2004). Estimates of shape parameters of
Weibull distributions for the PIN-HMM model are less than one for all equities and years.
Densities therefore tend to infinity as durations tend to zero. Hence, there are not enough very
128Similar to section 11.3, we place all figures at the end of the section.
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small durations compared with the amount predicted by the Weibull distributions. Neverthe-
less, the fit of PIN-HMM is much better than for PIN-ALACD. In addition, we inspected auto-
correlations and find them to be reasonable small. However, the majority of values lie outside
the confidence bands due to the tremendous sample size for all equities in our datasets.129

All kernel densities for probability integral transforms of PIN-ALACD have in common that
they are more or less bathtub-shaped. Especially the PIN-HMM plots for the German stocks
mimic the behavior of the density of a standard uniform distribution very well, extremely short
durations excluded.
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Figure 11.38: Kernel density estimations of the probability integral transforms of the transaction
durations for F. Area under the standard uniform pdf is coloured in grey.

129To save space, we do not include results for the autocorrelation functions in this work. However, they can be
found at https://anre.shinyapps.io/AdvancedPIN/.
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Figure 11.39: Kernel density estimations of the probability integral transforms of the transaction
durations for GM. Area under the standard uniform pdf is coloured in grey.
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Figure 11.40: Kernel density estimations of the probability integral transforms of the transaction
durations for HMC. Area under the standard uniform pdf is coloured in grey.
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Figure 11.41: Kernel density estimations of the probability integral transforms of the transaction
durations for JCI. Area under the standard uniform pdf is coloured in grey.
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Figure 11.42: Kernel density estimations of the probability integral transforms of the transaction
durations for TM. Area under the standard uniform pdf is coloured in grey.
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Figure 11.43: Kernel density estimations of the probability integral transforms of the transaction
durations for BMW. Area under the standard uniform pdf is coloured in grey.
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Figure 11.44: Kernel density estimations of the probability integral transforms of the transaction
durations for CON. Area under the standard uniform pdf is coloured in grey.
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Figure 11.45: Kernel density estimations of the probability integral transforms of the transaction
durations for DAI. Area under the standard uniform pdf is coloured in grey.
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Figure 11.46: Kernel density estimations of the probability integral transforms of the transaction
durations for VOW. Area under the standard uniform pdf is coloured in grey.
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11.5 Intraday Estimation Results
Utilizing intraday time intervals in the context of the dynamic models for the probability of
informed trading offer an alternative for the typically used unit time interval of one trading
day. We apply this alternative setting to short trading periods of two of the equities under
consideration in this work. This section can be seen as a proof of concept for intraday analyses
of PIN, where in-depth analyses of this specific topic are open for further research.

We exemplarily investigate the behavior of the PIN measures for the last two trading days
before the delisting of GM and trading days around the dramatic price increase for VOW on
Xetra. The special circumstances for both equities on these trading days were already discussed
in sections 11.1 and 11.2. In addition, we included the intraday prices for GM and VOW in figures
11.47 and 11.48, respectively.

In this section we provide intraday estimates of the probabilities of informed trading driven
by good and bad news as well as estimates of good- and bad-news state probabilities. Trading
periods of five minutes length are chosen as unit time interval.

As mentioned in section 6.3, the main focus in this thesis lies on the models for estimating
the probability of informed trading. To the best of our knowledge, the behavior of the PIN
variable was not analyzed around certain important market events (e.g., M&A’s or earning
announcements) on an intraday level yet. This can be a very interesting aspect for future
research but goes far beyond the scope of this work.

The approach by Tay, Ting, Tse, and Warachka (2009) is included for the sake of completeness,
but, similar to the estimations on a daily basis, fails to return reasonable results. As we can see
in table 11.37130 there are boundary solutions for estimates of 𝛿3 and 𝛿4 for both equities in the
PIN-ALACD model. Hence, the model is not able to distinguish between good- and bad-news
conditions for trading periods at all. Therefore, we concentrate on the results of our hidden
Markov approach and exclude any plot for the former.131

Table 11.38 displays that the assumptions about the intercepts of the ALACD recursions men-
tioned in sections 11.1 and 11.2 are valid for buys’ processes of both equities and the process
of sells for GM. However, intercepts in the sells’ ALACD recursion for VOW are very similar.
Assumptions of coefficients belonging to signed volume are fulfilled for VOW but signs are
switched in the GM case. Again, sums of �̂�1 and ̂𝛽1 as wells as �̂�−1 and ̂𝛽−1 are not close to
one. Estimates of shape parameters of Weibull distributions are all smaller than unity, leading
to long durations being less probable. Hence, the goodness of fit plots display similar behavior
for (very) short durations as already explained in section 11.4.

OnMay 29, 2009 there are only a small number of information events for GM. Informed traders
enter the market in the morning hours to act as sellers, while they enter the market just before
the market closing to buy shares. Alternating occurrences of good- and bad-news periods can
130Tables of estimation results, plots of state probabilities and probabilities of informed trading as well as the prob-

ability integral transform graph are placed at the end of the section.
131Visualizations of the results can be found at https://anre.shinyapps.io/AdvancedPIN/.
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11 Empirical Applications (Dynamic Models)

be observed for the last trading day before the delisting of GM. PIN-HMMmodel clearly identi-
fies the direction of private news for the majority of intervals. We see clustering of information
events from 10 am to 11 am in figure 11.50 and again an increased activity of informed buyers
in the afternoon.
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Figure 11.47: Intraday prices (in US $) of GM on May 29, 2009 and June 1, 2009. We do not display
the first 30 minutes of each trading day, since they are not included in our datasets we
utilize for estimation purposes (see chapter 8).

Likewise to the results for GM, the PIN-HMM model offers high (pseudo-)sureness about the
condition of most trading periods for VOW. In figure 11.51, a clustering of information events
can be found on each trading day under consideration. We see informed market participants
buying shares for several trading periods around 5 pm on October 27, 2008 and act as sellers
afterwards shortly before the official closing of the marketplace. The trading hours until lunch
time are dominated by information events with negative direction of private news on October
28, 2008, with a short period of insiders driven by good news enter the market before 11 am. On
October 29, 2008, we see high probabilities for bad-news conditions from 9:30 am to 10 am and
high probabilities for periods with informed traders triggered by positive private news from
1 pm to 2 pm. In comparison with the results for GM, the PIN-HMM identifies substantially
more information events for VOW.

On the one hand, we see from our analysis of the probability of informed trading on a intraday
level that there is often a clustering of information events of the same direction. On the other
hand, figures 11.50 and 11.51 display many hours of relevant trading days for which no insider
is reported to be active by our dynamic model. This might be due to the fact that there were no
price-relevant private information in the run-up of the trading days under consideration.

The field of intraday analyses is very new in the context of the probability of informed trad-
ing. At the time of writing, we are the first to use very short intervals of five minutes as unit
time intervals. To give the PIN measure a chance to correctly capture market characteristics
and the behavior of traders at the beginning of a trading day, it is necessary not to exclude
any transaction data. Moreover, over-night effects of the specific marketplaces should be in-
corporated. This would yield completely different datasets compared to those we used for our
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Figure 11.48: Intraday prices (in EUR) of VOW from October 27, 2008 to October 29, 2008. We do
not display the first 30 minutes of each trading day, since they are not included in our
datasets we utilize for estimation purposes (see chapter 8).

analyses. These steps of data preprocessing are out of scope for this work but are very interest-
ing and important points for future research to further improve the quality of the probability
of informed trading.

Nevertheless, intraday analyses seem to work well for our dynamic approach which models
state probabilities by hidden Markov chains, aside from the potential problems in the very
beginning of trading days mentioned above. The densities of probability integral transforms
shown in figure 11.49 also struggle with very short durations as explained in section 11.4 but
look overall reasonable. However, we only applied intraday estimation on two special time
periods in this work. It needs further applications and testing to verify the good overall per-
formance of the PIN-HMM model in terms of estimating the probabilities of informed trading
and trading days’ conditions for (very) short time ranges.
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Figure 11.49: Kernel density estimations of the probability integral transforms of intraday estimation
results for GM and VOW. Area under the standard uniform pdf is coloured in grey.
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Param. GM VOW

State Probabilities

Intercept 𝛿1 -2.01980 -1.85450
(0.37395) (0.24254)

Cmp. total volumes 𝛿2 3.31791 2.45829
(0.72325) (0.38994)

Cmp. sell volumes 𝛿3 0 0
— — — — — —

Cmp. buy volumes 𝛿4 0 0
— — — — — —

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.97871 0.01942
(0.04154) (0.00796)

Intercept (Buy after Sell) 𝜈1,−1 0.10205 0.12813
(0.03409) (0.00764)

Cond. Duration (Buys) 𝛼1 0.63232 0.73766
(0.00907) (0.00392)

Lagged Duration (Buys) 𝛽1 0.23170 0.12540
(0.00529) (0.00155)

Signed Volume (Buys) 𝜁1 -0.02702 0.03906
(0.00504) (0.00164)

Intercept (Sell after Buy) 𝜈−1,1 0.04356 0.07926
(0.04460) (0.00903)

Intercept (Sell after Sell) 𝜈−1,−1 1.33753 0.13705
(0.05812) (0.00868)

Cond. Duration (Sells) 𝛼−1 0.57200 0.72278
(0.01369) (0.00453)

Lagged Duration (Sells) 𝛽−1 0.19608 0.12959
(0.00677) (0.00189)

Signed Volume (Sells) 𝜁−1 0.04599 -0.02535
(0.00630) (0.00183)

Adj. informed trading 𝜏 0.75017 0.37139
(0.02770) (0.00932)

Table 11.37: Intraday estimation results for the PIN-ALACD model. Unit time interval is set to five
minutes. Dates included in the datasource are May 29, 2009 and June 1, 2009 for GM and
trading days fromOctober 27, 2008 to October 29, 2008 for VOW. Figures in parentheses
denote standard errors.
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Param. GM VOW
Transistion Probabilities

ℬ → 𝒢 𝑎ℬ𝒢 0 0.11460
— — — (0.05505)

ℬ → 𝒩 𝑎ℬ𝒩 0.81119 0.10587
(0.17304) (0.05276)

𝒢 → ℬ 𝑎𝒢ℬ 0.09281 0.07967
(0.08912) (0.05800)

𝒢 → 𝒩 𝑎𝒢𝒩 0.22483 0.33999
(0.12968) (0.10383)

𝒩 → ℬ 𝑎𝒩ℬ 0.02487 0.03224
(0.01557) (0.01376)

𝒩 → 𝒢 𝑎𝒩 𝒢 0.03886 0.04444
(0.01815) (0.01681)

ALACD Specifications

Intercept (Buy after Buy) 𝜈1,1 0.33051 0.58305
(0.06812) (0.01413)

Intercept (Buy after Sell) 𝜈1,−1 1.86792 0.67061
(0.09088) (0.01372)

Cond. Duration (Buys) 𝛼1 0.58167 0.76856
(0.01773) (0.00485)

Lagged Duration (Buys) 𝛽1 0.20762 0.14878
(0.01026) (0.00281)

Signed Volume (Buys) 𝜁1 0.03853 -0.03978
(0.00957) (0.00275)

Intercept (Sell after Buy) 𝜈−1,1 1.12660 0.44671
(0.05598) (0.01022)

Intercept (Sell after Sell) 𝜈−1,−1 0.29657 0.50000
(0.04367) (0.00972)

Cond. Duration (Sells) 𝛼−1 0.70685 0.82824
(0.01128) (0.00382)

Lagged Duration (Sells) 𝛽−1 0.20698 0.11139
(0.00756) (0.00214)

Signed Volume (Sells) 𝜁−1 -0.01676 0.03667
(0.00633) (0.00206)

Adjustment (good news) 𝜏1 0.78128 0.27592
(0.05925) (0.02241)

Adjustment (bad news) 𝜏−1 0.66886 0.40297
(0.05874) (0.01443)

Shape Parameters

Buys 𝑘1 0.64184 0.60637
(0.00606) (0.00137)

Sells 𝑘−1 0.69136 0.63901
(0.00538) (0.00126)

Table 11.38: Intraday estimation results for the PIN-HMM model. Unit time interval is set to five
minutes. Dates included in the datasource are May 29, 2009 and June 1, 2009 for GM and
trading days fromOctober 27, 2008 to October 29, 2008 for VOW. Figures in parentheses
denote standard errors.

269



11 Empirical Applications (Dynamic Models)
05/29/09

06/01/09

10:00 10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30 16:00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Prob. bad-news Prob. good-news PIN (good news) PIN (bad news)

Figure 11.50: Intraday probabilities of informed trading (driven by good and bad news) and daily
probabilities of good- and bad-news trading day conditions for GM at the last two
trading days before its delisting. Length of intraday intervals is set to five minutes.
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Figure 11.51: Intraday probabilities of informed trading (driven by good and bad news) and daily
probabilities of good- and bad-news trading day conditions for VOW from October 27,
2008 to October 29, 2008. Length of intraday intervals is set to five minutes.
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12 Conclusion
We cover the most prominent static as well as dynamic models for the probability of informed
trading in this work. Chapters 3 and 4 deal with the theory of the well-known EKOP and EHO
models and give in-depth explanations of various (numerical) aspects related to optimization
routines in the setup of constant model parameters.

We introduce well-established statistical techniques to the context of static models for esti-
mating the probability of informed trading. With posterior probabilities of trading days’ con-
ditions and confidence intervals for estimates of the PIN measure, we offer tools which can
help to improve analyses of future empirical applications. Furthermore, posterior probabilities
in the context of static PIN models shift the research focus in the direction of the dynamic
approaches.

Posterior probabilities can clearly identify states of themajority of trading days for our datasets.
They help to get more detailed information about activities of insiders than it is possible with
only the knowledge of a priori probabilities of a good-news or bad-news information event.
Only the proportion each trading day condition may occupy of the total number of trading
days could be reported by past publications, while prospective works are able to display the
distribution of states for each single trading day.

We also conduct a simulation study in chapter 4 to investigate the performance and quality
of the initial value algorithms currently available in the literature related to static PIN models.
We break with the simulation designs which were already presented in the literature of the
probability of informed trading. Our procedure to create synthetic datasets of daily aggregated
buys and sells is more flexible and fits better to the characteristics of the EHO model compared
with the settings of simulations in the works by Gan, Chun, and Johnstone (2015) and Ersan
and Alıcı (2016). While the former uses only 1000 simulation runs, the latter is more appro-
priate for the simpler EKOP model, which is a simplification of the EHO model. By utilizing
a total number of 100,000 runs and a simulation procedure which takes into account (very)
infrequently as well as heavily traded equities, we see that the HAC algorithm performs best.
Although the overall results are similar for all tested algorithms, the approach utilizing hier-
archical clustering is the best compromise in terms of runtime and goodness of the resulting
maximum likelihood estimators of the model parameters.

We use the HAC algorithm for all optimizations in the chapter of empirical applications of the
static EHO model to receive sets of initial values. As shown in section 4.2.2, the likelihood
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factorization by Lin and Ke (2011) is very stable even for heavily traded equities and outper-
forms the alternative representation of the likelihood by Easley, Hvidkjaer, and O’Hara (2002).
Hence, solely the former is included in our simulation study and the workflow of estimating the
model parameters of the EHOmodel applied to our transaction data for NYSE- and Xetra-listed
stocks.

Chapter 10 displays the empirical results of the static models as well as interpretations thereof.
We apply the static EHOmodel to high-frequency transaction data, which covers the years from
2007 to 2010, of several firms from the automobile branch which are listed either on the New
York Stock Exchange or the German electronic Xetra marketplace. Since all symbols belong
to the automobile sector, potential dates of interest are the releases of scrappage programs in
the United States and Germany. We briefly discuss the behavior of the probability of informed
trading around those prominent events. Moreover, the PIN estimates are also analyzed around
the two special trading periods of the delisting of GM on NYSE in June 2009 and the days when
the price of VOW on Xetra literally exploded in October 2008.132

We released the pinbasic package for the statistical programming language R on CRAN. The
intention of the package is to offer user-friendly functions for fast and stable estimations of
the probability of informed trading.133 Details about the functionalities and usage of functions
including their complete source code can be found in chapter 5.

The very young field of dynamic models using high-frequency transaction data to estimate
the probability of informed trading is introduced in chapter 6. Major advantages of these ap-
proaches are that time-varying model parameters are allowed and therefore PIN can vary over
unit time intervals. Also order sizes are taken into account which is a major point of criticism
of static models. The focus of research in these models is no longer the a priori probability
that the market marker is confronted with market participants which possess private infor-
mation, as it is in the static models. The probability of informed trading is interpreted as the
unobservable fraction of insiders in the dynamic models.

We discuss the PIN-ALACD model by Tay, Ting, Tse, and Warachka (2009) and our new PIN-
HMM approach utilizing hidden Markov chains for modeling conditions of trading days. Our
model generalizes the PIN-ALACD method in several points. While the autoregressive specifi-
cations of conditional waiting times of buys and sells are similar, our distributional assumption
for the observed durations are much more flexible. We assume the durations of buys and sells
to follow independent Weibull distributions with different shape parameters, but more general
distributions can be incorporated with reasonable effort. Moreover, our approach of modeling
states of trading days relaxes the independence assumption and differs completely from the lo-
gistic regression in the PIN-ALACDmodel. In the context of the PIN-HMM approach so-called
smoothed probabilities, which are conditional probabilities given the complete data, for each
state and unit time interval are returned. Therefore those probabilities are closely related to
132We do not conduct an in-depth investigation of the estimates of the probability of informed trading around these

special events. The focus of this work lies on the theory of PINmodels and their fast and stable implementations.
However, detailed analyses might be interesting for future research.

133The pinbasic package can be downloaded and installed from CRAN and runs on all popular operating systems.
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posterior probabilities in the context of static models. A comparison of the outcomes of this
three different techniques for two exemplary stocks is given in section 11.3.

Results of empirical applications of the dynamic models are presented in chapter 11. A major
problem of the PIN-ALACDmodel is the occurrence of corner solutions of coefficients involved
in the determination of state probabilities. Results for some equities yield probabilities of good-
and bad-news conditions which are identical over the complete time range under considera-
tion (e.g., HMC in 2007 and 2008). Contrary, empirical applications show that our PIN-HMM
model is very often able to clearly assign a state to each trading period, even if we switch from
days as unit time interval to the alternative of short-ranged intraday intervals. Especially for
intraday analyses134 conducted in this work, the approach by Tay, Ting, Tse, and Warachka
(2009) exhibits severe problems since it cannot distinguish between the potential directions
of information events at all. Hence, intraday estimation results of the PIN-ALACD model are
not reasonable. Also relations of the intercepts in ALACD specifications and estimates of co-
efficients of lagged signed logarithmic volume are counterintuitive and do not match the hy-
potheses about their relations proposed in the work by Tay, Ting, Tse, and Warachka (2009).
This behavior may be due to the fact that there is a time difference of more than ten years
in the utilized datasets. It can also be interpreted that marketplaces evolved in a way that the
PIN-ALACDmodel is not appropriate anymore. In contrast, our new PIN-HMMmodel delivers
reasonable results for almost all symbols and years. It also allows to estimate the proportion
of private information in intraday-analyses in a meaningful way. We can read from the rela-
tion of estimated intercepts of the ALACD specifications in the PIN-HMMmodel that buyer- or
seller-initiated transactions induce lower conditional expected durations of subsequent buys or
sells, respectively. In addition, buys or sells with large order sizes substantially reduce subse-
quent conditional expected durations of identical trade direction. Both findings appropriately
capture characteristics of the prepared datasets we use for estimation purposes.

Despite all the improvements we gain by using the PIN-HMMmodel to receive estimates of the
probability of informed trading, we see by inspecting the goodness-of-fit plots that very short
durations still cause problems. A potential starting-point for future research may be to incor-
porate more general distributions for the conditional interarrival times of buys and sells, e. g.
(generalized) gamma, generalized F or Burr distribution, just to name a few candidates. Like-
wise one could think of generalized ALACD specifications. However, the required computing
time should always be kept in mind. Since no algorithm delivering good sets of initial values
exists in literature, several maximizations with different (random) starting values should be un-
dertaken to increase the chance of reaching the global maximum. Hence, optimization routines
of PIN-HMM models with more flexible distribution and more complex ALACD specifications
can readily last several days or even longer.

Another interesting point for future research could be the inclusion of overnight-effects in
marketplaces. Currently, the first 30 minutes of each trading day are removed from the data
to explicitly exclude such effects. However, they may be a very interesting factor, especially
134As mentioned in section 11.5, the intraday analyses presented in this work can be understood as proof of concept

that it is reasonable to apply our dynamic model also to this alternative setting. This specific field of research
in the context of the probability of informed trading may be very interesting for future research.
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for intraday analyses. This potential sub-field of the forthcoming literature for the probability
of informed trading needs investigation in two aspects. On the one side models need to be
modified to be able to accurately handle such effects and on the other side the data preparation
steps need to be revised.

At the time of writing, no R package with functionalities for estimating the probability of in-
formed trading in terms of dynamic models is officially available. However, we plan to package
and publicly release the source codes for model estimation and data preparation presented in
chapters 7 and 9, respectively.
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