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Abstract: In the field of sensorless control of permanent magnet synchronous motors (PMSMs),
different techniques based on machine anisotropies have been studied and implemented successfully.
Nevertheless, most proposed approaches extract the rotor position information from the measured
machine currents, that, when applied to low-power machines, might require high-bandwidth current
sensors. An interesting alternative is given by sensorless techniques that exploit the star-point voltage
of PMSMs, such as the direct flux control technique. This work aims at analyzing the conditions of
applicability of such technique by considering a more thorough description of the machine inductance
matrix. After a comprehensive mathematical description of the technique and characterization of the
machine anisotropy information that is extracted from the star-point voltage, simulation as well as
experimental results conducted on a test machine are presented and discussed in order to validate
the proposed theory.

Keywords: synchronous motor; PMSM; sensorless technique; motor control; motor drive; inductance
matrix; direct flux control

1. Introduction

In the last decades, the demand for compact electrical machines and drives able to guarantee
high performance has been pushing towards the adoption of brushless synchronous motors (SMs)
in several application fields ranging from e-mobility to renewable energy production. In particular,
permanent magnet synchronous machines (PMSMs) are considered a good alternative to switched
reluctance or induction machines because they allow high torque densities as well as enhanced
dynamic performance [1].

PMSMs are usually operated under space vector control, therefore, a high resolution position
information is required to guarantee the control system performance [2]. Typically, the position
information is provided by encoders or resolvers, which increase costs and system complexity and
worsen the overall reliability. In order to overcome these issues, several authors have been investigating
control techniques able to avoid the mechanical position sensors by exploiting different physical effects
in order to estimate the rotor position. Sensorless techniques reported in the literature can be divided
into two groups, according to the physical effect on which they rely: induced back-EMF (electro motive
force) or machine magnetic anisotropy.

In the first case, since the rotor speed is proportional to the back-EMF amplitude, once the phase
voltages and currents are measured, an estimation of the angular position can be obtained by applying
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model reference adaptive system techniques or state observers. The main limitation of back-EMF
based sensorless techniques is their inapplicability at low speeds and/or standstill conditions. In the
second case, the rotor position can be estimated by exploiting its relation to the phase inductances due
to the machine magnetic anisotropy.

The first technique based on the machine anisotropies, referred to as INFORM, is proposed in [3]
and [4], where the motor reactances are obtained by injecting test pulse voltages through modified
PWM (Pulse Width Modulation) driving signals and measuring the current signals that are dependent
on the rotor position. A different approach is reported in [5], where sensorless operations are based on
the injection of a rotating carrier, which induces currents whose amplitude is modulated by the rotor
position. In this case, the extraction of the position information relies on the demodulation and the state
observation of these signals. In order to avoid the demodulation stage and reduce the computational
efforts, the injection of an alternating current in the estimated rotor reference frame is suggested in [6],
where a pulsating voltage vector along the q-axis of the estimated rotor reference frame is considered.
In this case, an observer is required to extract the position information. Due to the better performance
in terms of precision and robustness ensured by alternating current injection methods over the rotating
current ones, the former have been deeply investigated in the last decades [7], focusing on alternating
carrier or other arbitrary injection schemes [8–11].

All the aforementioned techniques extract the rotor position information from current
measurements. Nevertheless, sensorless operation can be performed by also relying on voltage
measurements. Indeed, when current information is not needed for performing torque control
or condition monitoring, the cost of the drive system decreases because of the removal of current
sensors. This is particularly relevant in embedded drive systems applications, where miniaturization
of electronics is a priority. Different works have shown the possibility of using the voltage at the
machine star-point in order to perform sensorless operation and several techniques have been applied
on different kind of motors. In [12], the zero-sequence voltage is used for sensorless control of
induction motors. In [13], the same authors suggest a technique for performing sensorless operation
on machines that do not have an accessible star-point. Other sensorless techniques exploiting the
zero-sequence voltage for induction motors have been proposed in [14], where a filter has been tuned
for distinguishing between the rotor bar and the magnetic saturation effects, in [15], where a technique
to reduce noise given by cables has been also proposed and in [16], where the author summarizes
and compares several sensorless techniques for induction motors, included a zero-sequence voltage
based one. These techniques have been successfully applied also to synchronous machines. In [17],
a zero-sequence voltage based approach has been used for the rotor position estimation in PMSMs as
an extension to the work [12]. A different technique exploiting the star-point voltage of synchronous
machines was proposed in [18] and, later on, was presented under different terminologies such as
VirtuHall, direct flux control (DFC) and direct flux observer (DFO). In [19] and in [20], a method to
excite the machine for the DFC technique in order to obtain signals that can be used for the estimation
of the rotor position has been proposed. In order to improve the quality of such measurements,
a Fast resettable integrator circuit (FRIC) was presented in [21–23]. Another interesting usage of
the zero-sequence voltage for sensorless operation of PMSMs is reported, firstly, in [24], where the
machine is operated by exciting two machine phases and by measuring the induced voltage caused
by magnetic saturation (IVMS) allowing for the estimation of the rotor position. This technique
presented the limitation of allowing only block-commutation so, in order to overcome this limitation,
this technique was further developed and proposed in [25]. This technique is capable of operating with
magnetically saturated machines and resembles the DFC technique, however the PWM pulse shifting
pattern differs. Also, both approaches rely on measurement electronics that can be tuned accordingly
to the machine properties, allowing, by adjusting the measurement gain, the machine to operate
successfully with machines that exhibit very little variation with respect to the rotor position. Also,
in [26], the neutral-point voltage has been modeled in order to allow for a prediction of its fluctuation.
The modeling was performed by taking into account the classical PMSM electrical equations and an
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asymmetric inductance matrix, showing a dependency between self and mutual inductances in the
neutral-point voltage. Finally, in order to enhance the accuracy and the robustness of the sensorless
control of PMSM drives, two novel techniques based on the utilization of the neutral-point voltage
are proposed in [27,28]. The first work deals with a pulsating carrier signal injection while the latter
utilizes a square-wave signal injection. Both methods rely on an estimated reference frame that rotates
counterclockwise with twice the estimated rotor electrical angular speed. Thus, they allow a simpler
demodulation strategy compared to conventional injection-based techniques.

The techniques presented up to this point divide between high-frequency injection methods and
zero-sequence voltage based techniques. In the first case, the electrical rotor position is estimated
by measuring the current response in the α- and β-axis given a certain excitation. In the second case,
instead, the estimation is performed by measuring the change of the zero-sequence voltage with respect
to the rotor position. An interesting and thorough comparison between these two technique categories is
given in [29]. In this work, a brief example is also presented in order to address this difference. Therefore,
because the source of information differs between these techniques, it is important to analyze which
synchronous machines can operate with high-frequency injection methods and which ones can operate
with zero-sequence voltage based techniques and give applicability conditions for the latter case.

By considering the mathematical description of the star-point voltage dynamic behavior presented
in [23], this work aims at presenting and discussing the applicability of star-point voltage exploiting
sensorless techniques to the case of PMSMs. In particular, with reference to the DFC technique, given
a mathematical description of a PMSM inductance matrix, similar to that of [26], this work aims at
modeling the information that can be extracted from the machine star-point voltage with a particular
focus on determining the conditions of the machine phase inductances under which no information
can be extracted from the zero-sequence voltage. It has to be remarked that the zero-sequence
voltage can be expressed as the virtual star-point voltage minus the machine star-point voltage. Thus,
the zero-sequence voltage and the star-point voltage are strictly related to each other. This work
aims at mathematically characterizing the position error that is expected when the DFC technique is
applied and how the error relates to the phase inductances. The rest of this paper is organized into two
main sections related to theory and experimental validation, respectively. In Section 2, the theoretical
framework for the mathematical description of the star-point voltage dynamic is recalled. Afterwards,
the first condition of applicability of star-point voltage exploiting techniques to SMs is introduced and
then particularized to PMSMs exhibiting rotor anisotropy and characterized by inductances, which
vary with the rotor position. Then, other applicability conditions are presented. Moreover, a thorough
analysis is performed by means of simulations in order to relate the reconstructed position error to the
machine inductances. Section 3 reports the results of the experimental investigations conducted on a
dedicated test PMSM. In order to validate the proposed mathematical derivation, the PMSM has been
coupled to a rotation stage unit to allow a precise measurement of the DFC signals over a full electrical
period. The sensorless information has been extracted and compared to the high-precision sensor
available in the rotation stage unit. Afterwards, the DFC signals have been measured and identified
according to the proposed mathematical model. Then, the proposed position error formula has been
validated by comparing the measured rotor position with the expected position from the identified
DFC signals. Moreover, the PMSM has also been controlled in an acceleration test both under no load
and load conditions, in order to evaluate the performance of the proposed technique under dynamic
operation. Finally, in the last part of the paper, the main findings are discussed and possible future
works are pointed out.

2. Theory

2.1. Analysis of the Star Point Voltage Dynamics in Synchronous Machines

The mathematical description of the star-point voltage dynamics in synchronous machines has
been presented extensively in [23]. In this work, after a brief recall of that mathematical framework,
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the theory is enhanced first by proposing a condition on the applicability of star-point voltage exploiting
techniques to SMs and then with considerations concerning the structure of the machine inductance
matrix Labc. Let us consider the electrical equation of an SM in the phase reference frame where the
speed is considered zero. This hypothesis does not limit the validity of this presentation as shown
in [23].

vabc(t) = Riabc(t) + Labc
diabc(t)

dt
(1)

In this work R is the phase resistance matrix, which is assumed to be diagonal, vabc(t) =[
vAN(t) vBN(t) vCN(t)

]T
and iabc(t) =

[
iA(t) iB(t) iC(t)

]T
are the phase voltage and current

vectors and Labc is the inductance matrix defined as:

Labc =

Laa Lab Lac

Lba Lbb Lbc
Lca Lcb Lcc

 . (2)

The matrix Labc is assumed to be a function of the electrical rotor position θ and invertible per each
value of θ. Also, this matrix is a function of the machine current because of the magnetic saturation
effect. Indeed, a loaded machine changes the magnetization status of the stator material leading to a
variation of the machine phase inductances. Although the inductance matrix Labc is time-dependent,
due to the dependency on the rotor position and on the machine currents, in this description it is
supposed to be constant over one PWM period. In fact, the intent is to analyze the behavior of the
star-point voltage within a PWM cycle. Therefore, one can assume the inductance matrix to be constant
during this time period. Moreover, the phase voltages can be expressed as the difference between the

terminal voltages and the star-point voltage vabc = vXO − vNOTT , where vXO =
[
vAO vBO vCO

]T
,

T = [1 1 1] and the subscript O indicates the ground reference.
Applying the Laplace transformation to Equation (1) one gets:

Vabc(s) = RIabc(s) + Labc[sIabc(s)− iabc(0
−)] (3)

The current vector Iabc can be calculated from Equation (3) and manipulated in order to obtain:

ZabcIabc = VXO −VNOTT + Labciabc(0
−) (4)

where Zabc = Labcs + R. Thus, (4) can be written as:

Iabc = Z−1
abcVXO − Z−1

abcVNOTT + Z−1
abcLabciabc(0

−) (5)

Let us define a row vector LΣabc as:

LΣabc = TL∗abc =
[

LΣa LΣb LΣc

]
, (6)

where each element represents the sum of the elements of each column of the adjoint matrix L∗abc
associated to Labc.

By substituting Equation (5) in Equation (3), after some algebraic manipulations one obtains:

VNO

[
LΣabc (|Zabc| I− RZ∗abc)TT

]
= LΣabc [|Zabc| I− RZ∗abc]

[
VXO + Labciabc(0

−)
]

, (7)

where |Zabc| and Z∗abc are, respectively, the determinant and the adjoint matrix of Zabc.
Equation (7) can be rewritten as:

VNO =
1

D(s)
N(s)

[
VXO + Labciabc(0

−)
]

, (8)
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where
D(s) = LΣabc (|Zabc| I− RZ∗abc)TT , (9)

N(s) = LΣabc [|Zabc| I− RZ∗abc] =
[

N1(s) N2(s) N3(s)
]

. (10)

It can be observed that |Zabc| is a third degree polynomial and Z∗abc is made of second degree
polynomials in s. Moreover, LΣabc and R are constant matrixes. Thus, D(s) is a third degree polynomial.
Similar considerations can be made for N(s), which is a row vector of three third degree polynomials
in s. Therefore, the following vector of transfer functions can be defined:

G(s) =
1

D(s)
N(s) =

[
Ga(s) Gb(s) Gc(s)

]
. (11)

As shown in [23], it is possible to prove that these transfer functions are proper and of the
second order given that the numerator and denominator polynomials have a root in zero. In addition,
it is possible to calculate the coefficient of the maximum order of the numerator and denominator
polynomials in s. Thus, it follows that the ratio between the maximum coefficients in s of the transfer
functions G(s) is given by:

LΣi

∑j=a,b,c LΣj

i = a, b, c. (12)

Thus, the following matrix can be defined:

LkΣ =
1

∑j=a,b,c LΣj

LΣabc . (13)

Since the transfer functions G(s) are proper and of the second order, one can express them as
the sum of a constant (LkΣ ) and a strictly proper transfer function (W(s)) having the same poles and
one zero. This can be obtained by performing a polynomial long division of the numerator by the
denominator:

G(s) = LkΣ + W(s) =
[

LkΣa
+ Wa(s) LkΣb

+ Wb(s) LkΣc
+ Wc(s)

]
. (14)

Considering the case of an SM driven by a power inverter, one can obtain information about
the machine phase inductances by measuring the difference between the star-point of the machine
and the voltage of a virtual star-point during the transition between two excitation states. The virtual
star-point voltage vVO is obtained as shown in Figure 1 and it can be expressed as:

vVO =
1
3

TvXO. (15)

Figure 1. Virtual star point.
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Neglecting the initial conditions of the currents, Equation (8) can be written as:

VNO = G(s)VXO. (16)

Thus, the star point voltage VNO becomes:

VNO = LkΣ VXO + W(s)VXO. (17)

In this work, the case of the machine transitioning from the state excitation 0 to the state excitation
1 is exploited. During state excitation 0 all machine terminals are connected to ground, as shown in
Figure 2. A generic phase X, being one among the phases A, B and C, switches to the inverter bus
voltage vDC at a generic time t∗ > 0 bringing the machine to be in the excitation state 1. In Laplace
domain, the terminal voltage VXO could be defined as:

VXO(s) =
vDC

s
e−t∗s, X ∈ {A, B, C} . (18)

Figure 2. Transition between the machine state excitation 0 to 1. X, Y, and Z represent generic phases
belonging to the set {A, B, C}.

Evaluating now the value of vNV(t) = vNO(t)− vVO(t) for t → t∗ from the left (t = t∗− ) and
from the right (t = t∗+ ), the difference between the star-point voltage and the virtual star-point voltage
vNV is:

vNV(t∗−) = vNO(t∗−)− vVO(t∗−) = 0, (19)

vNV(t∗+) = vNO(t∗+)− vVO(t∗+) = LkΣX
vDC −

1
3

vDC. (20)

By measuring vNV right before and right after the time instant t∗ one obtains:

ΓX = vNV(t∗+)− vNV(t∗−) =
(

LkΣX
− 1

3

)
vDC. (21)

Finally, the measurements vector can be defined as:

Γabc =

(
LkΣ −

1
3

T
)

vDC (22)

As shown in [23], a modified edge-aligned PWM can be used to drive the machine in the excitation
states 0 and 1 at the beginning of each PWM time period allowing measurements of the vNV voltage
needed to obtain the vector Γabc. In order to extract the position information, it is convenient to
transform this vector into the stator reference system by applying the Clarke transformation. Thus,
one can define:

Γαβγ = TCΓabc, (23)
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where TC is the Clarke transformation matrix:

Tc =
2
3

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1
2

1
2

1
2

 . (24)

The reconstructed machine angle can be obtained by applying the arc-tangent function as:

χ = arctan
(Γβ

Γα

)
. (25)

A deeper analysis of the extraction of the rotor position in the case of PMSMs is given in Section 2.3.
By analyzing the inductance matrix, a general rule on the possibility of exploitation of the

star-point voltage for sensorless operation of different typologies of SMs can be derived. Using the
Clarke transformation, Equation (1) can be written in the αβγ reference system as:

vαβγ(t) = Riαβγ(t) + Lαβγ

diαβγ(t)
dt

, (26)

where the matrix Lαβγ can be obtained by applying the following transformation:

Lαβγ = TcLabcT−1
c =

Lαα Lαβ Lαγ

Lβα Lββ Lβγ

Lγα Lγβ Lγγ

 . (27)

Applying the Clarke transformation to the phase voltages vαβγ = Tcvabc, it is possible to show
that the component vγ, also referred to as zero-sequence voltage, is equal to the opposite of the
differential voltage between the machine star-point and the virtual star-point

vγ =
1
3
(vAN + vBN + vCN) =

1
3
(vAO + vBO + vCO − 3vNO) = vVO − vNO = −vNV . (28)

Therefore, it is possible to observe that Γabc, obtained by measuring vNV , are, in fact, measurements
of the vγ voltage with opposite sign. Thus, a necessary condition for the exploitation of the star-point
voltage for sensorless operation is that vγ 6= 0 at the time instants used for measurement. Following,
two conditions are exposed that must be respected in order to avoid vγ = 0 at all time instants.

The first condition is obtained by a straight-forward analysis of the equation of the component vγ.
In fact, since iγ and its time derivative are always zero, one can write:

vγ = Lγα
diα
dt

+ Lγβ

diβ

dt
. (29)

Thus, vγ = 0 as long as Lγα = Lγβ = 0. Therefore, the mutual inductances Lγα and Lγβ must be
different from zero in order to apply the DFC technique. This condition is derived by analyzing the
machine phase inductance matrix in the stator reference frame.

Here another condition for vγ = 0 is derived by considering the machine phase inductance matrix
in the phase reference frame. By multiplying Equation (1) on the left for the row vector T, the following
stands:

Tvabc(t) = TRiabc(t) + TLabc
diabc(t)

dt
. (30)

Let us consider an SM whose phase resistances are all equal. In such case, TRiabc = 0. Therefore,
Equation (30) can be rewritten as:

vAN(t) + vBN(t) + vCN(t) = Lc1
dia(t)

dt
+ Lc2

dib(t)
dt

+ Lc3
dic(t)

dt
. (31)
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where Lci are the sum of the elements of the i-th column of the matrix Labc:

Lc = TLabc =
[

Lc1 Lc2 Lc3

]
. (32)

From Equation (28), vγ is equal to zero if the sum of the phase voltages is equal to zero.
In particular this condition is verified when Lc1 = Lc2 = Lc3 = Lc. In fact,

Lc

(
∑

i=a,b,c

dii(t)
dt

)
= 0, (33)

since in a star connected motor the sum of the currents is zero. Thus, one can conclude that the
amplitude of the measurement signals Γabc is zero when the elements of the vector Lc are equal to
each other.

2.2. Particularization to PMSMs

In this section, the specific case of permanent magnet synchronous machines (PMSMs) exhibiting
rotor anisotropy is considered. At this purpose, it is necessary to provide a more specific description of
the inductance matrix Labc. In this work, the description of Labc reported in [30] is considered. Such
formulation finds common adoption by many authors in this field. The expressions for the self and
mutual inductances is here reported.

Laa = L0 + L2 cos (2θ)

Lbb = L0 + L2 cos
(

2
(

θ − 2π

3

))
Lcc = L0 + L2 cos

(
2
(

θ − 4π

3

))
Lab = Lba = M0 + M2 cos

(
2
(

θ − 4π

3

))
Lbc = Lcb = M0 + M2 cos (2θ)

Lca = Lac = M0 + M2 cos
(

2
(

θ − 2π

3

))
,

(34)

where L0 and M0 are the mean values of the self and the mutual inductances, while L2 and M2 are the
amplitudes of the fluctuations of the self and mutual inductances.

This formulation of Labc is valid under the assumption of neglecting the presence of higher-order
harmonics and the effect of cross-coupling magnetic saturation. At the aim of finding applicability
conditions of the DFC technique for PMSMs, both these assumptions hold. Concerning the presence of
higher-order harmonics, it has to be remarked that the DFC technique extracts the position information
from the second harmonic component of the machine phase inductances. Therefore, higher-order
harmonics do not contribute to the capability of the technique to provide an estimation of the electrical
rotor position, but rather on the presence of higher-order oscillations on the estimated position. Thus,
at the aim of this work, the analysis of the effect of the second harmonic is sufficient to determine
an applicability condition. Concerning the effect of cross-coupling magnetic saturation, this usually
exhibits as a phase shift and a variation of the amplitude of the machine phase inductances. This
behavior is dependent on the presence of stator flux and it affects the estimated electrical rotor position.
The presented matrix in Equation (34) is valid only in absence of stator flux that is, anyway, a sufficient
condition for determining applicability conditions of the DFC technique to PMSMs. Moreover, it is well
known that machine-anisotropy based sensorless techniques exhibit a position error when stator flux
is present, as described originally in [3]. Nevertheless, this effect is typically compensated by means of
an offline identification of the influence of the stator flux on the estimated electrical rotor position.
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Typically, most scientific contributions set M2 = L2 and M0 = − L0
2 . In this case, given the

conditions discussed in the previous section, vγ is always null. Nevertheless, it must be stated that the
previous assumptions hold only for ideal sinusoidal armature current distributions, as also discussed
in more depth in [31]. Therefore, in this analysis, the influence of the self and mutual inductance
coefficients on the measured Γabc is addressed.

By applying Equation (27) to the matrix Labc, whose elements are presented in Equation (34), one
can find the expression of the elements of Lαβγ:

Lαα = L0 −M0 +
L2 cos(2θ)

2
+ M2 cos(2θ)

Lββ = L0 −M0 −
L2 cos(2θ)

2
−M2 cos(2θ)

Lγγ = L0 + 2M0

Lαβ = Lβα = (L2 + 2M2)
sin(2θ)

2
Lαγ = (L2 −M2) cos(2θ)

Lβγ = −(L2 −M2) sin(2θ)

Lγα = (L2 −M2)
cos(2θ)

2

Lγβ = −(L2 −M2)
sin(2θ)

2
.

(35)

One can now verify the conditions presented in the previous section that lead to vγ = 0.
For conveniency the quantity L∆ = L2 −M2 is defined. The first condition uses the stator reference
frame formulation of the machine phase inductances and is derived from the expressions of Lγα and
Lγβ in Equation (35). It is straightforward to notice that these quantities are equal to zero for L∆ = 0.
The second condition, instead, can be derived by calculating the quantities Lci that are obtained by
considering the formulation of the machine phase inductance in the phase reference frame. For sake
of brevity, the analytical expressions of these quantities are not reported here. Nevertheless, setting
L∆ = 0 results in Lc1 = Lc2 = Lc3 = L0 + 2M0. As expected, both conditions derived in the phase
and stator reference frames lead to the same condition of applicability for the DFC technique. Thus,
for machines whose fluctuation of the mutual inductances equals the fluctuation of the self inductance,
the vγ voltage is null for all time instants and, therefore, star-point voltage exploiting sensorless
techniques cannot be applied.

Based on the formulation of the inductance matrix Labc of Equation (34), one can calculate the
mathematical expressions of the elements of Γαβγ, that can be written as follows:

Γα = −a cos 2θ + b cos 4θ, (36)

Γβ = a sin 2θ + b sin 4θ, (37)

Γγ = 0, (38)

where:
a = −4L∆ (L0 −M0) /d, (39)

b = −2L∆ (L2 + 2M2) /d, (40)

d = 3
(
(L2 + 2M2)

2 − (2L0 + 2M0)
2
)

. (41)

Although the inductance matrix Labc is composed of inductances having only a 2nd harmonic
with respect to θ, the quantities Γα and Γβ exhibit a 4th harmonic component summed to the 2nd
one. The presence of the 4th harmonic depends on the definition of the adjoint matrix L∗abc whose
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elements are given by the product of inductances in Labc. Both harmonic components are modulated
in amplitude by L∆. Thus, L∆ does not only provide a condition on the measurability of vγ, but it is
also responsible for the amplitude of the measured Γα and Γβ. It is therefore desirable to maximize this
quantity. The validity of these considerations has been confirmed through numerical simulations of
the inductance matrix previously proposed. Table 1 reports the chosen values of the self and mutual
inductances used in the simulations. In particular, a fluctuation amplitude for the self inductances L2

equal to the 25% of its mean value L0 has been considered, while the mutual inductances fluctuations
have been chosen in order to highlight the effect of L∆ on the amplitude of the measured Γabc and Γαβγ

that, as shown in Figure 3, decreases with the value of L∆.
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Figure 3. Comparison between Γabc and Γαβγ signals in dependence of L∆ variations.

Table 1. Simulation values expressed in µH.

Case L0 M0 L2 M2 L∆

1 100 −50 25 1 24
2 100 −50 25 24 1

2.3. Rotor Position Estimation

In this section, the influence of the coefficients of the machine inductances on the reconstructed
electrical position is studied. The reconstructed position χ obtained by applying Equation (25) to Γα

and Γβ from the previous simulation are shown in Figure 4. One can notice the presence of oscillations
summed to the real position value that stem from the 4th harmonic component of Γα and Γβ.

By considering the complex number Γα + jΓβ, expressed in polar coordinates, after some algebraic

manipulation, one can write that Γα + jΓβ = ae−j2θ
(
−1 + b

a ej6θ
)

. Thus, Equation (25) can be
rewritten as:

χ = arctan
(Γβ

Γα

)
= 6

(
Γα + jΓβ

)
= 6

(
ae−j2θ

)
+ 6

(
−1 +

b
a

ej6θ

)
. (42)

After some algebraic manipulations, Equation (42) can be expressed as:

χ = arctan
(Γβ

Γα

)
=

{
π − 2θ − f (θ) a > 0

−2θ − f (θ) a < 0
, (43)
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where, under the hypothesis that | ba | ≤ 1, one can write:

f (θ) = arcsin

 b
a

sin 6θ√
1 + b2

a2 − 2b
a cos 6θ

 . (44)

Therefore, χ is twice the electrical rotor position in the opposite direction plus a superimposed
oscillation f (θ), which is a nonlinear function of the 6th harmonic component of the rotor position.
According to the sign of a, one might need to compensate for a phase shift of π. While the latter
compensation is trivial, compensating for f (θ) is not and, therefore, f (θ) is considered a position
reconstruction error. Nevertheless, it is easy to prove that f (θ) is limited in the range ± arcsin b

a , so the
position error is machine dependent given that a and b depend on the machine inductances. Also, it is
easy to prove that f (θ) = 0 for θ = k π

6 , thus, at these angles, Equation (43) can be used to obtain the
real angle θ. More in general, by neglecting the presence of f (θ), the estimated electrical rotor angle
(θ̂) can be obtained according to:

θ̂ =

{
π−χ

2 a > 0

− 1
2 χ a < 0

. (45)

It is worth noting that the 4th harmonic present in Γαβγ results into a nonlinearly modulated 6th
harmonic present in the reconstructed rotor position.
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Figure 4. Comparison of the estimated rotor position to the real angle θ in dependence of L∆ variations.

From Equations (39), (40) and (43), it can be noted that the position error can be completely
canceled out either when (L2 −M2) = 0 or when (L2 + 2M2) = 0. The first condition is meaningless
for this purpose, because it would imply that Γαβγ = 0. On the contrary, the second condition (i.e.,
M2 = − L2

2 ) allows us to eliminate only the fourth harmonic component in Γα and Γβ and, consequently,
f (θ) = 0. For machines where M2 = − L2

2 , not only is the position error is null but also L∆ is relatively
large since it results L∆ = 3L2. The last condition provides a practical guideline for the design of
electrical machines that are well suited for sensorless operation by star-point voltage exploitation.

In order to validate the improvement in rotor position estimation related to the chosen values of
L2 and M2, a second simulation was performed. Therefore, the previous simulation was reformulated
considering L2 = 25µH and M2 = −12.5µH. Simulation results are shown in Figures 5 and 6, where
one can see that Γα and Γβ present only the second harmonic contribution since the fourth harmonics
have zero amplitude. As Figure 6 shows, in this case the reconstructed rotor position does not exhibit
the presence of any oscillation.
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Figure 5. Γα and Γβ signals for M2 = − L2
2 .

0 60 120 180 240 300 360
-360

-270

-180

-90

0

90

180

270

360

0 60 120 180 240 300 360
Electrical Rotor Position in deg

-15

-10

-5

0

5

10

15

Figure 6. Comparison of the estimated rotor position to the real angle θ for M2 = − L2
2 .

2.4. Comparison between the DFC Technique and High-Frequency Injection Techniques

Since the DFC technique requires a modified PWM excitation, it can be regarded as an injection
method, such as the well studied high-frequency injection techniques. Nevertheless, the information
exploited in order to estimate the electrical rotor position differs between these two approaches,
as extensively documented in [29]. Let us consider the machine phase inductance matrix Lαβγ described
in Equation (35). As discussed above, the DFC technique exploits the mutual inductances Lγα and Lγβ

in order to estimate the electrical rotor position, whereas high-frequency injection techniques exploit
the self-inductances in the stator reference frame Lαα and Lββ. Indeed, the DFC technique is based
on measuring the zero-sequence voltage vγ while high-frequency injection techniques inject carriers
along the α-β axis.

Let us now consider the case of a machine that is not suitable for the DFC technique, i.e., L∆ =

0 → L2 = M2. Under this condition, the following machine phase inductance matrix in the stator
reference frame is obtained:

Lαβγ|L2=M2 =

L0 −M0 +
3
2 L2 cos (2θ) 3

2 L2 sin (2θ) 0
3
2 L2 sin (2θ) L0 −M0 − 3

2 L2 cos (2θ) 0
0 0 L0 + 2M0

 , (46)
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whereas, in the rotor reference frame d-q-o, the machine inductance matrix can be expressed as:

Ldqo|L2=M2 =

L0 −M0 +
3
2 L2 0 0

0 L0 −M0 − 3
2 L2 0

0 0 L0 + 2M0

 , (47)

leading to Ldd− Lqq = 3L2. In this case, a salient machine that is not suitable of operating with the DFC
technique since L∆ = 0 can be successfully operated by means of high-frequency injection techniques
since Lαα and Lββ are position-dependent.

Let us now consider the case of a machine that can operate with the DFC technique, in particular
a machine that does not exhibit any harmonic oscillation on the estimated electrical rotor position,
i.e., M2 = − L2

2 as shown in the section before. In this case, the machine phase inductances in the stator
and rotor reference frames are:

Lαβγ|M2=−
L2
2
=

 L0 −M0 0 3
2 L2 cos (2θ)

0 L0 −M0 − 3
2 L2 sin (2θ)

3
4 L2 cos (2θ) − 3

4 L2 sin (2θ) L0 + 2M0

 , (48)

Ldqo|M2=−
L2
2
=

 L0 −M0 0 3
2 L2 cos (3θ)

0 L0 −M0 − 3
2 L2 sin (3θ)

3
4 L2 cos (3θ) − 3

4 L2 sin (3θ) L0 + 2M0

 , (49)

leading to Ldd − Lqq = 0. Since Lαα and Lββ are constant and not position-dependent, high-frequency
injection techniques would not be applicable. In fact, this machine presents no saliency. Nevertheless,
the DFC technique can be applied optimally (no harmonic oscillations would be present on the
estimated electrical rotor position).

It can be finally concluded that, although the DFC technique can be considered as an injection
technique, the measured quantity, i.e., the zero-sequence voltage, is modulated differently from the
electrical rotor position with respect to the stator reference currents that are exploited for the application
of high-frequency injection techniques. Thus, machine saliency defined as the difference between the d-
and q-axis inductances is not a sufficient condition for the applicability of the DFC technique. For this
reason, machines that are capable of operating with either technique might not be as suitable with the
other one.

2.5. The Direct Flux Control Technique

The direct flux control technique stems from the mathematical analysis presented in the previous
section. As discussed, it is necessary to measure the differential voltage vNV between the star-point
voltage vNO and the virtual star-point voltage vVO before and after the transition of the machine
between the two excitation states shown in Figure 2. For this reason, a modified edge-aligned PWM
was used, as shown in Figure 7. In particular, the PWM time period TPWM starts at time t0. One
phase was then switched to the bus voltage at the time instant t1 and, finally, the driving excitation
according to standard edge-aligned PWM started at the time instant t2. During these two states of
excitation, measurements can be performed. In order to obtain the Γabc, two measurements were
performed, one per each excitation state, at the time instants tm0 and tm1, as shown in Figure 8, where
the response of the star-point voltage, the virtual star-point voltage, and their difference is shown
and the measuring time instants are indicated. The difference between these two quantities was then
calculated, therefore, a new measurement of the quantities Γabc was obtained for each PWM period.
Measurements can be performed by means of standard electronics consisting of voltage dividers and
operational amplifiers-based voltage followers.
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Figure 7. Modified edge-aligned PWM pattern used for measurement of the vNV voltage for the
DFC technique.
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Figure 8. Simulated response of the star-point voltages during the machine excitation states 0 and I.

3. Experimental Validation

In the previous section, conditions on the existence of extractable rotor position information
in the Γαβγ signals have been given. Moreover, it has been shown how a typical PMSM having
inductances fluctuating twice with the rotor position, (see Equation (35)), provides measured signals
characterized by a second and a fourth harmonic, (Equations (36) and (37)). The obtained position
error was also modeled in relation to the amplitudes a and b of the second and fourth harmonics of
Γα and Γβ, respectively. In this section, two different experimental validations are conducted. Firstly,
in order to verify the proposed model, the Γabc signals over a full electrical period of a test machine
driven by means of external high-precision rotation stage were measured by means of the direct
voltage measurement (DVM) technique presented in [23]. Thus, Γαβγ was calculated and, by means of
the FFT (Fast Fourier Transform), the amplitudes a and b of the second and fourth harmonics were
obtained. By means of these values, the position error was predicted and compared to the measured
one. Secondly, in order to test the dynamic behavior of the proposed technique, a field oriented control
was implemented and the test machine was driven under both no load and load condition to its
nominal speed.
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3.1. Measurement and Validation of Γabc

The test bench used for this experimental validation was composed of a custom PMSM whose
rotor was coupled to a precision rotation stage driven by a servo controller as shown in Figure 9.
The rotation stage had a resolution of 6.3 µrad and a maximum rotation speed of 16 deg

s . In order to
perform the measurement of Γabc, an electronic board based on a 32-bit microcontroller, a three-phase
inverter, and the necessary sensing circuitry was developed. The acquired measurements were
transmitted to a PC over USB communication and recorded.

Figure 9. Test bench used for experimental validation.

The machine under test was a low-power outer rotor PMSM whose main parameters are listed in
Table 2. A cross-section of the machine is shown in Figure 10. The machine had an outer diameter of
42 mm, a stacklength of 30 mm and an airgap of 0.4 mm. Moreover, it was made of 18 stator slots and
16 poles and was equipped with three phase single layer concentrated windings in a star configuration.
Finally, the permanent magnets were made of neodymium (NdFeB) and were 90% embedded into the
laminated rotor core.

Figure 10. Cross-section of the permanent magnet synchronous machine (PMSM) under test.
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Table 2. Parameters of the custom PMSM.

Motor Parameters Values

Phase resistance 1.1 Ω
d-axis inductance 394 µH
q-axis inductance 475 µH

Pole pairs 8
Torque constant 0.1186 Nm

A
Nominal voltage 24 V
Nominal current 1.5 A
Nominal speed 500 rp
Nominal torque 200 mNm

In order to measure Γabc over a full electrical period, the PMSM under test was rotated by the
rotation stage at a speed of 0.125 mechanical degrees per second that corresponds to 1 electrical
degree per second given that the number of pole pairs is 8. A dedicated electronics implementing
direct voltage measurement, [23], was used by applying 50% dutycycles, thus no average torque was
produced by the PMSM. At the top part of Figure 11 the obtained measurements are shown, while at
the bottom part the calculated Γαβγ are displayed over the reference electrical position provided by the
high-precision rotation stage encoder. It must be noted that Γabc was normalized.
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Figure 11. Measured and normalized Γabc and Γαβγ.

The measured Γabc was composed of three signals whose amplitudes were similar (1.744, 1.774,
1.765 for Γa, Γb, and Γc, respectively) but with different mean values (−0.052, 0.028, 0.034). This can be
observed in Figure 11, where Γa clearly shows a lower mean value than the other two signals. This
can be explained by asymmetries of the machine. In Equation (34), all self and mutual inductances
are considered as having the same mean value and fluctuation amplitude. This is not always the case,
especially for small-sized machines. It must be remarked that the PMSM under test was a low-power
prototype machine, thus technological tolerances are to be expected.

In order to verify the accuracy of the mathematical description in Equations (36) and (37), the FFT
of Γα and Γβ was calculated. Figure 12 reports the obtained amplitudes and phases for both signals.
As one can easily observe, the obtained results match closely with those expected from the mathematical
description. In fact, the presence of the 2nd and 4th harmonics is evident, as well as the presence of a
few higher order harmonics. Moreover, one can see that a variation can be observed in the amplitudes
of the 2nd and 4th harmonics. In detail, the mismatch between the amplitude of the 2nd harmonic
between Γα and Γβ is 3.5%, while the mismatch related to the 4th harmonic is 17%. Such deviations can
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be justified by the non-perfect symmetry of the machine under test, due to the manufacturing process.
It has to be remarked, in fact, that the proposed mathematical model has been developed assuming a
symmetric inductance matrix.

The obtained FFT allows the determination, per inspection, of the values of a and b used in
Equations (36) and (37). Since there is a deviation in the amplitude of the 2nd and 4th harmonics
for Γα and Γβ, a was determined as the mean value between the amplitudes of the 2nd harmonics of
Γα and Γβ while b was determined as the mean value between the amplitudes of the 4th harmonics.
The obtained values are a = −0.832 and b = 0.074. Based on these values, Γα and Γβ were numerically
calculated. Figure 13 shows a comparison between the measured Γα and Γβ and their model. As one
can see, the mathematical description and the identified parameters match the measured data with a
maximum percentage error of 5.8% for Γα and of 5.3% for Γβ.
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Figure 12. FFT amplitudes and phases of the measured and normalized Γα and Γβ.
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Figure 13. Comparison between measured and normalized Γα and Γβ and the model.

After measuring Γαβγ, Equation (25) was used to obtain the measured angle χ. As described
by Equation (43), considered that a < 0 according to identification, the electrical position was as
expected, i.e., it is equal to −2θ − f (θ). The measured DFC position, θ̂, can be evaluated by means of
Equation (45). Moreover, based on the identified values of a and b performed on the signals Γαβγ, it is
possible to calculate, according to the model, the angles χ and θ̂ as well as the term f (θ). Figure 14
shows a comparison between the measured angles χ and θ̂ and the calculated ones with respect to
the position given by the high-precision encoder of the rotating stage. At the bottom of the figure,
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the divergence between the measured error and the calculated error is shown. As one can observe,
both measured and calculated position errors ( f (θ)) are zero at angles multiple of π

6 . Moreover,
the measured f (θ) is limited within the range −3.7 to 3.9 degrees. The calculated f (θ), instead, is
limited within ±5.1 degrees. The deviation between the measured and the calculated f (θ) is in the
range of ±4 degrees and that can be explained by considering the fact that the measured Γαβγ also
present the harmonics of a higher order and a slight deviation from its mathematical description.
Thus, such higher order harmonics would need to be considered in order to provide a more accurate
description of f (θ). Nevertheless, such accuracy goes out of the scope of this work and it is, therefore,
not considered here.
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Figure 14. Measured position and calculated position with respect to the high-precision encoder
represented on the x-axis. From top to bottom: Measured and calculated angle χ. Measured and
calculated angle θ̂. Measured and calculated position error. Difference between the measured position
and the calculated position.

A decrease in performance of the dynamic behavior of the controlled PMSM has to be expected
when an error in the electrical position error is present and it is dependent on the particular machine.
More in detail, the controlled current in the machine, when no flux-weakening is desired, requires only
the current along the q-axis to be controlled for torque generation. An error in the electrical position
will result in a lower current along the q-axis, thus less generated torque, but also a component along
the d-axis, having the effect of flux-weakening. A deeper and extensive investigation on this topic can
be found in [32]. Nevertheless, for the particular machine under test, the obtained position error does
not limit the control of the machine within the range of operation defined by its nominal speed and
torque, as shown in the next section.

3.2. Validation of the Proposed Technique under Dynamic Conditions

In order to verify the proposed technique under dynamic conditions, a different test-bench
has been utilized. In this case, the same machine as in the previous section has been coupled to a
servo-motor used for application of load-torques and to a high-precision 18-bit encoder as shown in
Figure 15. The test machine has been controlled in current and speed by using a standard field oriented
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control technique and the estimated position obtained by the DFC technique is used. The encoder has
been used for validation of the results.

Figure 15. Test bench used for experimental validation.

In order to have an estimation of the cross-coupling magnetic saturation effect, the rotor of the
PMSM under test was locked to zero degrees and a −-axis current ranging between −1.5 A and
1.5 A was driven in order to observe the error in the estimated DFC position given by the stator flux.
The result is shown in Figure 16, where one can observe that the error is confined within ±3 degrees
and is almost linearly dependent on the q-axis current.
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Figure 16. Estimated electrical position error over q-axis current.

The PMSM under test has been driven up to its nominal speed of 500 rpm in both directions
without any load applied to the machine. Figure 17 shows the speeds measured by the encoder and by
the DFC technique as well as the controlled currents along the d- and q-axis. The d-axis current was
controlled to zero while the q-axis current was controlled for torque generation. One can observe how
the speed measured by means of the DFC technique exhibits oscillations. This is due to the presence of
the harmonic error in the estimated position described in the previous section, Equation (44). Figure 18
shows a zoom during the speed reversal. The presence of this oscillation in the estimated electrical
rotor position is visible in Figure 19, where Γabc and Γαβγ were shown during the inversion of the speed
direction. Moreover, one can observe that also the controlled currents oscillate since the estimated
rotor position is used for control.
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Figure 17. Acceleration test at no load of the PMSM to nominal speed.
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Figure 18. Acceleration test at no load of the PMSM to nominal speed with zoom on the speed inversion.
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Figure 19. Γabc, Γαβγ, and comparison of the estimated electrical rotor position to the measured one
during inversion at no load.

Since the analysis in this work does not consider the effect of magnetic saturation, the same
experiment was conducted by applying two load-torques to the test machine of 150 and 200 mNm,
respectively. Figures 20 and 21 show the machine speed measured with the DFC technique as well as
with the encoder together with the controlled d- and q-axis currents under loaded conditions. Γabc,
Γαβγ, and a comparison between the estimated rotor position and the measured one are shown in
Figures 22 and 23. Figures 24 and 25 show a zoom on the speed reversal operation. In this case,
the technique was capable of driving the machine up to its nominal speed and magnetic saturation
had little effect on the obtained performance. Moreover, the presence of the estimation error induces
oscillations on the electrical speed obtained with the proposed technique as well as on the measured
currents. The amplitude of the speed oscillation was constant among the conducted experiments,
as this is given by the amplitude of the ripple f (θ) present on the estimated position that was
constant at a given speed. In particular, the obtained oscillation amplitude is ±50 RPM. The presence
of this oscillation tendentially degrades the performance of the dynamic behavior of the machine.
Nevertheless, the machine was controlled by means of two standard PI controllers, both for the speed
and the current control loops. Due to the integral action, such controllers have a low-pass filter
effect on the error signal. The experiments, in fact, demonstrated that the implemented field-oriented
control is still capable, in front of such oscillations, to control the machine under test to nominal speed
and current.



Energies 2020, 13, 1453 22 of 27

0 5 10 15 20 25

-500

0

500

A
ng

ul
ar

 s
pe

ed
 in

 r
pm Speed reference

DFC speed
Encoder speed

0 5 10 15 20 25
-2

-1

0

1

2

C
ur

re
nt

 in
 A

Current i
d

Current i
q

0 5 10 15 20 25

-1000

0

1000

An
gu

la
r s

pe
ed

 in
 rp

m DFC-Reference speed error
Encoder-Reference speed error

0 5 10 15 20 25
-100

-50

0

50

100

An
gu

la
r s

pe
ed

 in
 rp

m DFC-Encoder speed error

Figure 20. Acceleration test of the PMSM to nominal speed at 150 mNm load-torque.
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Figure 21. Acceleration test of the PMSM to nominal speed at 200 mNm load-torque.
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Figure 22. Γabc, Γαβγ, and comparison of the estimated electrical rotor position to the measured one
during inversion at 150 mNm load-torque.
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Figure 23. Γabc, Γαβγ, and comparison of the estimated electrical rotor position to the measured one
during inversion at 200 mNm load-torque.
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Figure 24. Acceleration test of the PMSM to nominal speed at 150 mNm load-torque with zoom on the
speed inversion.
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Figure 25. Acceleration test of the PMSM to nominal speed at 200 mNm load-torque with zoom on the
speed inversion.
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From the experiments, it is evident that, notwithstanding the presence of an electrical position
error, the controllers are capable of driving the machine under test in the nominal speed and load range.
Nevertheless, the electrical rotor position error increases with respect to what has been measured in
the experiment shown in Figure 16, passing from ±3 degrees at zero speed to ±4.5 degrees at 500 RPM.
The reason lies in the dependency of the machine phase inductances on the driven current and its
derivative, that, in a synchronous machine increases with its rotational speed, due to the nonlinear
nature of the magnetic stator material. Thus, rotational speed affects the estimated rotor position
because of a variation of the matrix Labc. It has to be remarked that the back-EMF is not responsible
of the observed behavior since it is eliminated inherently by the DFC technique that, in this case,
is based on measurements couples that are taken within an interval of 1 µs during which the back-EMF
can be considered constant. Therefore, when subtracting the first measurement from the second one,
the back-EMF is eliminated.

4. Conclusions and Outlooks

This work proposes an analysis for the application of the direct flux control technique to PMSMs.
Although this technique is based on the exploitation of machine anisotropies, it differs from standard
high-frequency injection methods by the fact that does not rely on the measured currents but rather
on the measurement of the star-point voltage. As discussed, these approaches are fundamentally
different in the information that is used to extract the electrical rotor position. For this reason, this
work has shown under which condition the DFC technique can be used successfully. In particular,
two equivalent conditions have been demonstrated, one derived in the stator reference frame and one
in the rotor reference frame. In the particular case of PMSMs, this leads to the condition L2 6= M2.
Moreover, an analysis of the signals measured by the DFC technique (Γabc) and of the estimated
electrical position (χ) was conducted. In particular, it was shown that the measured signals Γαβγ in
the stator reference frame introduce a 4th harmonic that induces a position error that is affected by a
6th nonlinear harmonic, whose bounds have been analytically determined. Moreover, the condition
that leads to canceling this error was found and presented, i.e., L2 = −M2

2 . Such condition can be
used during the design of a PMSM that is intended to be driven by such technique. Experimental
investigations have validated the proposed mathematical model and proven the capability of this
technique to operate up to the nominal speed and load of a test machine. Nevertheless, due to the
electrical position error, oscillations in the estimated speed are present. The presented analysis has
not considered the effect of cross-coupling magnetic saturation effect or the presence of higher-order
harmonics of the machine phase inductances. In future works, a deeper investigation on their effect
on the estimated rotor position will be conducted by means of field distribution simulations and by
elaborating a more complete mathematical description. It is also of interest to investigate techniques
capable of compensating for the position error in order to obtain a more precise estimated electrical
rotor position and speed.
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