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Abstract: Techniques for estimating the plunger position have successfully proven to support
operation and monitoring of electromagnetic actuators without the necessity of additional sensors.
Sophisticated techniques in this field make use of an oversampled measurement of the rippled
driving current in order to reconstruct the position. However, oversampling algorithms place high
demands on AD converters and require significant computational effort which are not desirable
in low-cost actuation systems. Moreover, such low-cost actuators are affected by eddy currents
and parasitic capacitances, which influence the current ripple significantly. Therefore, in this
work, those current ripples are modeled and analyzed extensively taking into account those effects.
The Integrator-Based Direct Inductance Measurement (IDIM) technique, used for processing the
current ripples, is presented and compared experimentally to an oversampling technique in terms of
noise robustness and implementation effort. A practical use case scenario in terms of a sensorless
end-position detection for a switching solenoid is discussed and evaluated. The obtained results
prove that the IDIM technique outperforms oversampling algorithms under certain conditions in
terms of noise robustness, thereby requiring less sampling and calculation effort. The IDIM technique
is shown to provide a robust position estimation in low-cost applications as in the presented example
involving a end-position detection.

Keywords: electromagnetic actuators; position estimation; self-sensing; sensorless; solenoid

1. Introduction

Electromagnetic actuators are nowadays widely applied in industrial, automotive, and consumer
applications. In particular, single-phase reluctance actuators with proportional or switching positioning
characteristic, such as valves, relays, and solenoids, are used in high quantities due to their low price.
Such kinds of actuators are based on a simple and robust construction while high strokes and high
forces are obtained. In the last few years, there is an increasing interest in condition monitoring
and predictive maintenance mainly under the term of Industry 4.0. Such trends also involve the
reluctance actuators mentioned above with the aim of obtaining reliable position information for
various control and monitoring applications [1–3]. Most of the above-mentioned actuators do not
include a position sensor since sensors increase significantly the system cost, size, and complexity.
Only high-quality products include sensors such as encoders, linear variable differential transformers
(LVDTs) or mechanical switches used for end-position detection. Nevertheless, such solutions seem
inadequate in the field of low-cost actuators. Moreover, even high-quality applications with sensors
require redundant position information in case high functional safety is desired [4].

The problem of an inherent position sensing is addressed by the so-called sensorless techniques,
a field that is widely known for decades in the case of electrical machines [5–9]. Common approaches
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for machines make use of two physical effects: the evaluation of the back-induced electromotive
force (back-EMF) [5] and the exploitation of the position-dependent inductance [6–9]. Techniques
using back-EMF information mainly make use of observers and are applicable only for middle and
high-speed applications, thus making this approach unsuitable for solenoids used in positioning
applications. On the other hand, techniques using the inductance information allow position estimation
even in standstill conditions, making such kinds of techniques appropriate for solenoids. Remarkable
works in this field are based on the injection of voltage test signals in order to estimate the inductance
and then, in a further step, the position. In the field of rotating machines, a renowned work was made
by Schroedl on the so-called INdirect Flux detection by On-line Reactance Measurement (INFORM)
approach [6]. In this work, voltage test pulses are applied and the resulting current rise is measured.
From the evaluation of the current rise, a precise inductance and position estimation is possible. Other
techniques [7–9] go under the term of high frequency current injection (HFCI), since they are injecting a
high-frequency voltage carrier into the actuator. By measuring and demodulating the resulting current,
an inductance and, therefore, position estimation is possible.

Inspired by the success of sensorless control for rotating machines, similar approaches arose
also for solenoid actuators. In particular, the works [10,11] show the observer approach applied to
solenoids while the works [3,12] show the successful application of the injection-based approach.
Nevertheless, the injection-based techniques suffer from several disadvantages: due to the injection of
an harmonic signal into the actuator, a considerable acoustic noise as well as a force ripple is generated
while power losses inside the system are increased. Furthermore, the applicable driving voltage is
reduced by the superposition of an injection signal and the dynamic working range is reduced, since
the mechanical movement must be considerably slower than the frequency of the injection signal.
Hence, more sophisticated works exploit the current variation caused by the use of a switching power
electronics operated under Pulse Width Modulation (PWM). Such ripple is inherently present inside
the actuator, and no further signal injection is required.

Works exploiting and analyzing the current ripple in reluctance actuators are mainly divided
into three categories: derivative-based methods, oversampling methods, and analog signal processing
methods. Derivative-based works such as [13–17] measure the current ripple in order to calculate
numerically the current derivative, which is strictly linked to the inductance. By considering a 2nd
order derivative, a compensation of the resistive effect and the back-EMF is possible. Nevertheless,
a significant demerit of those techniques is the robustness and the signal-to-noise ratio (SNR) of
the obtained estimate, since the derivative of a current measurement, usually affected by noise,
is calculated. This becomes more significant in applications exhibiting small currents and small
inductance variations. Moreover, those techniques calculate the derivative by assuming a linear slope
of the current ripple, which is usually exponentially shaped. Due to its demerits, these kinds of
techniques are not considered here. In order to increase the SNR significantly, other works [18–22]
make use of an oversampled current measurement with a sampling rate significantly higher than
the PWM frequency. Based on the obtained data set, a regression or a curve fitting of the current
ripple allows the identification of the inductance. This leads to a precise and robust measurement of
the inductance with high SNR. Nevertheless, the oversampled measurement and the required data
processing, usually based on least-mean squares methods, require high computational and sampling
effort. For instance, the work [21] requires 10 k Samples per each PWM period. This makes the
implementation of such techniques expensive and, therefore, unacceptable in low-cost applications
like solenoids. The last category based on hardware signal processing tries to decrease computational
effort by pre-processing the signals through an analog electronics: the hysteresis amplifier in [23] offers
a simple method for estimating the inductance. Nevertheless, it requires a linear power electronics
instead of a switching power electronics, making this solution unsuitable in terms of energy efficiency.
The work [24] makes use of an analog demodulation unit consisting of a high-pass filter, a rectifier,
and a low-pass filter. This allows an estimate of inductance within analog electronics, with the demerit
of a limitation in dynamics.
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The above-mentioned techniques show that the use of a pre-processing hardware increases the
SNR while minimizing the computational effort. This inspired the works [25–27] introducing the
so-called Integrator-Based Direct Inductance Measurement (IDIM) technique, which makes use of
an analog integrator for inductance estimation: due to the concept of analog integration, the current
ripple can be amplified while the noise is rejected during integration. While [25,26] presented the basic
concept of the IDIM approach with several restrictions on the current dynamics, Ref. [27] proposed
an approach without any restriction on the dynamics. The IDIM technique is successfully applied
to electromagnetic reluctance actuators and its accuracy and applicability is successfully shown in
the above-mentioned works. In particular, the improved approach is verified on an electromagnetic
levitation system with closed-loop position control.

Nevertheless, solenoid actuators usually exhibit significant parasitic effects such as eddy currents,
especially due to non-laminated ferromagnetic materials, and parasitic capacitances due to a high
number of windings. Such effects represent a major limitation in actuators since they significantly
influence the induced current ripple. Therefore, the following work offers a thorough analysis of
the current ripple inside an electromagnetic reluctance actuator including parasitic effects such
as iron losses, eddy currents, and capacitances as well as back-EMF voltages and improves the
mathematical description of the IDIM technique taking into account the presence of those effects.
Another important research aspect concerns noise rejection and computational effort of the discussed
techniques. In general, oversampling approaches guarantee a robust identification with high SNR
as long as a sufficiently large numbers of samples is given, thus leading to a significant increase
in measurement and computational effort. It is of interest to compare these kinds of techniques to
the IDIM technique in terms of noise robustness and needed measurement effort in order to find
the trade-off-point between oversampling approaches with different numbers of samples and the
IDIM technique. Therefore, an experimental set-up with an industrial solenoid actuator is used to
identify and compare the noise power of the estimated inductance in case the IDIM technique or an
oversampling algorithm is used. Finally, in order to prove the performance of the IDIM technique in
the case of a low-cost actuation system, the technique is applied to a practical use case scenario: the
position estimated by the sensorless technique is used for end-position detection in a solenoid actuator
with switching behavior in order to detect whether the actuator has opened or closed successfully.
The obtained sensorless position estimator is compared to the position measured by an high-precision
positioning table and conclusions concerning precision, noise robustness, and implementation effort
are drawn.

2. Mathematical Analysis of the Current Ripples inside Electromagnetic Actuators

A generic electromagnetic actuator and its parasitic effects can be modeled by the electrical
equivalent circuit shown in Figure 1, as proposed in the work [23]. In particular, the model contains a
series resistance Rs, due to the copper wire and connectors, as well as an inductance L. The parallel
resistance Rp represents dissipative elements in the actuator such as iron losses like eddy currents.
Additionally, a capacitive coupling between the actuator windings, housing, and plunger are modeled
by the parallel capacitance Cp. The voltage source uBEMF denotes the back-EMF induced inside the
actuator during motion. The voltage u is the driving voltage present at the actuator terminals while
the current is stands for the total current flowing through the actuator.
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Figure 1. Electrical equivalent circuit of a generic electromagnetic actuator.

In the particular case of reluctance-based electromagnetic actuators such as solenoids, where
no permanent magnets are present, the discussed electrical equivalent circuitry can be simplified
by making a consideration on the back-EMF voltage uBEMF. Thus, by considering the flux Ψ inside
the actuator:

u(t) =
dΨ(t)

dt
= uL(t) + uBEMF(t) = L · dis(t)

dt
+

dL
dt
· is(t) = L · dis(t)

dt
+

dL
dx
· dx

dt
· is(t), (1)

it can be seen that the back-EMF inside the actuator has a linear dependency on the current. Therefore,
the back-EMF can be represented as a resistive component, depending on the position x and the speed
v of the actuator. Therefore, the total resistance RΣ of the actuator can be defined as:

RΣ = Rs +
dL
dx
· v · is(t). (2)

Electromagnetic actuators are usually driven by switching power electronics such as H-bridges and,
therefore, are driven with a bipolar PWM voltage, which can be described mathematically as:

upwm(t) =

{
+UDC for 0 ≤ t ≤ α · tpwm

−UDC for α · tpwm ≤ t ≤ tpwm
, (3)

where UDC is the DC-link voltage of the used power electronics, tpwm is the PWM time period and α

denotes the applied duty cycle, which is limited to a value between 0 and 100%: α ε [0, 1]. The driving
of the actuator with such a bipolar PWM voltage inherently introduces a current ripple, which overlaps
the fundamental current of the actuator. This ripple can be seen as the periodic partial charging
and discharging of the inductor. Therefore, the current ripple excites the inductance in the small
signal range around its actual working point, leading to the presence of the so called differential
inductance Ld. Thus, together with the consideration on the back-EMF, the electrical equivalent circuit
of a reluctance-based actuator can be simplified, as shown in Figure 2.
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In the particular case of reluctance-based electromagnetic actuators such as solenoids, where
no permanent magnets are present, the discussed electrical equivalent circuitry can be simplified
by making a consideration on the back-EMF voltage uBEMF. Thus, by considering the flux Ψ inside
the actuator:

u(t) =
dΨ(t)

dt
= uL(t) + uBEMF(t) = L · dis(t)

dt
+

dL
dt
· is(t) = L · dis(t)

dt
+

dL
dx
· dx

dt
· is(t), (1)

it can be seen that the back-EMF inside the actuator has a linear dependency on the current. Therefore,
the back-EMF can be represented as a resistive component, depending on the position x and the speed
v of the actuator. Therefore, the total resistance RΣ of the actuator can be defined as:

RΣ = Rs +
dL
dx
· v · is(t). (2)

Electromagnetic actuators are usually driven by switching power electronics such as H-bridges
and, therefore, are driven with a bipolar PWM voltage, which can be described mathematically as:

upwm(t) =

{
+UDC for 0 ≤ t ≤ α · tpwm

−UDC for α · tpwm ≤ t ≤ tpwm
, (3)

where UDC is the DC-link voltage of the used power electronics, tpwm is the PWM time period and α

denotes the applied duty cycle, which is limited to a value between 0% and 100%: α ε [0, 1]. The driving
of the actuator with such a bipolar PWM voltage inherently introduces a current ripple, which overlaps
the fundamental current of the actuator. This ripple can be seen as the periodic partial charging
and discharging of the inductor. Therefore, the current ripple excites the inductance in the small
signal range around its actual working point, leading to the presence of the so called differential
inductance Ld. Thus, together with the consideration on the back-EMF, the electrical equivalent circuit
of a reluctance-based actuator can be simplified, as shown in Figure 2.
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Figure 2. Reduced electrical equivalent circuit in case of a reluctance-based actuator which is driven by
a PWM voltage.

By applying Kirchhoff’s rules, the differential equation of the circuitry can be obtained:

u(t) +
Ld
Rp
· du(t)

dt
+ Ld · Cp ·

d2u(t)
dt

= RΣ · is(t) + Ld ·
(

1 +
RΣ

Rp

)
· dis(t)

dt
+ Cp · RΣ · Ld ·

d2is(t)
dt

. (4)

In particular, the differential equation contains the parameters RΣ(T, v), Ld(x), Rp(x) and Cp(x),
which usually vary over time due to mechanical movement or temperature change. Indeed, this work
exploits the position dependence of the differential inductance Ld. Nevertheless, those parameters can
be assumed constant over one PWM period tpwm in order to simplify the analytical solution of that
differential equation. This assumption holds for most actuators due to the fact that the mechanical
time constant and the thermal time constant are several orders of magnitude higher than the electrical
time constant and the applied PWM period.

2.1. Analysis of the Response of a RL Circuit Driven with a PWM Voltage

In the first step, only the resistive part RΣ as well as the inductance Ld will be considered in
the analysis of the ideal current response of an electromagnetic actuator under PWM operation. The
parasitics are neglected by setting Cp = 0 and Rp → ∞, thereby leading to the differential equation:

u(t) = RΣ · is(t) + Ld ·
dis(t)

dt
. (5)

The solution of the differential equation given an input u(t) equal to zero is:

is(t) = is(0) · e−
RΣ
Ld
·t

, (6)

where the initial current in the coil is denoted as is(0). Solving the differential Equation (5) for the
piecewise-defined PWM input shown in Equation (3), in particular where u(t) = upwm(t) and therefore
u(t) = UDC for 0 ≤ t ≤ α · tpwm and u(t) = −UDC for α · tpwm ≤ t ≤ tpwm, yields to:

is(t) =
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By applying Kirchhoff’s rules, the differential equation of the circuitry can be obtained:

u(t) +
Ld
Rp
· du(t)

dt
+ Ld · Cp ·

d2u(t)
dt

= RΣ · is(t) + Ld ·
(

1 +
RΣ

Rp

)
· dis(t)

dt
+ Cp · RΣ · Ld ·

d2is(t)
dt

. (4)

In particular, the differential equation contains the parameters RΣ(T, v), Ld(x), Rp(x) and Cp(x),
which usually vary over time due to mechanical movement or temperature change. Indeed, this work
exploits the position dependence of the differential inductance Ld. Nevertheless, those parameters can
be assumed constant over one PWM period tpwm in order to simplify the analytical solution of that
differential equation. This assumption holds for most actuators due to the fact that the mechanical
time constant and the thermal time constant are several orders of magnitude higher than the electrical
time constant and the applied PWM period.

2.1. Analysis of the Response of a RL Circuit Driven with a PWM Voltage

In the first step, only the resistive part RΣ as well as the inductance Ld will be considered in
the analysis of the ideal current response of an electromagnetic actuator under PWM operation. The
parasitics are neglected by setting Cp = 0 and Rp → ∞, thereby leading to the differential equation:

u(t) = RΣ · is(t) + Ld ·
dis(t)

dt
. (5)

The solution of the differential equation given an input u(t) equal to zero is:

is(t) = is(0) · e−
RΣ
Ld
·t

, (6)

where the initial current in the coil is denoted as is(0). Solving the differential Equation (5) for the
piecewise-defined PWM input shown in Equation (3), in particular where u(t) = upwm(t) and therefore
u(t) = UDC for 0 ≤ t ≤ α · tpwm and u(t) = −UDC for α · tpwm ≤ t ≤ tpwm, yields to:

is(t) =





1
RΣ

(
UDC + (RΣ · is(0)−UDC) · e−

RΣ
Ld

t
)

for 0 ≤ t ≤ α · tpwm

1
RΣ

(
−UDC + (RΣ · is(α · tpwm) + UDC) · e−

RΣ
Ld

(t−α·tpwm)
)

for α · tpwm ≤ t ≤ tpwm

, (7)

where

is(α · tpwm) =
1

RΣ

(
UDC + (RΣ · is(0)−UDC) · e−

RΣ
Ld
·α·tpwm

)
. (8)
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For better understanding, this equation can be transformed into:

is(t) =





is(0) + (UDC
RΣ
− is(0))

(
1− e

−RΣ ·t
Ld

)
for 0 ≤ t ≤ α · tpwm

is(α · tpwm) +
(
−UDC

RΣ
− is(α · tpwm)

)(
1− e

−RΣ ·(t−α·tpwm )
Ld

)
for α · tpwm ≤ t ≤ tpwm

, (9)

where the fundamental current is(0) as well as is(α · tpwm) can be clearly separated from the
current ripple.

2.2. Analysis of the Response of the Complete Circuit Driven with a PWM Voltage

In order to analyze the behavior of an electromagnetic actuator together with its parasitics, the
full differential Equation (4) including the parallel resistance Rp as well as the parasitic capacitance
Cp will be considered. For sake of brevity, we skip the analytical expression and show directly the
numerical solution of the differential equation. Because the numerical solver does not converge at
the PWM switching points due to the lack of differentiability, a PWM switching voltage with a ramp
instead of sharp edges is used for numerical simulation. The slope of this ramp is considered with
a rise time of 100 ns, allowing convergence of the solver and representing typical switching times in
power electronics made of field-effect transistors.

Equation (4) represents a second order system, which can be critically damped, underdamped, or
overdamped based on the conditions:

Ld = 4R2
ΣCp critically damped (10)

Ld < 4R2
ΣCp underdamped (11)

Ld > 4R2
ΣCp overdamped (12)

The simulated current is(t) inside the actuator is shown in Figure 3 for a parameter set representing
the overdamped case. Figure 4 illustrates is(t) for the case of a parameter set of an underdamped
circuit. In order to highlight the influence of the parasitics, the current response without each of
the parasitics is added in the figures. It must be denoted that the presented example exaggerates
the parasitic capacitance for better visibility. In common electromagnetic actuators, the parasitic
capacitance is usually so small [28] that, according to condition (12), the circuit can be considered
as overdamped. In the over- and underdamped case, it is clearly visible that the charging current
of the capacitor superimposes the classical response of the current ripple in a RL-circuit, especially
at the switching instants, where overshoots occur. This effect becomes more significant in case Cp is
increased. Additionally, the parallel resistance leads to a slight change in the slope of the current ripple
and to a voltage jump happening at the switching instant. The height of that jump strictly depends on
the value of Rp. This is due to the reason that the resistor bypasses the inductance at the switching
instant, allowing eddy currents to flow directly. In reality, currents cannot rise with such an infinite
slew rate due to the presence of inductances delaying those currents. Nevertheless, those inductances
are usually so small that this model still provides a sufficient approximation.
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Figure 3. Simulated current inside the actuator in case of an overdamped system: RΣ = 10 Ω, L = 20 mH,
Cp = 100 pF, Rp = 1000 Ω, fpwm = 1 kHz, α = 0.5.
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Figure 4. Simulated current inside the actuator in case of an underdamped system: RΣ = 10 Ω, L = 2 mH,
Cp = 5.01 µF, Rp = 1000 Ω, fpwm = 1 kHz, α = 0.5.

2.3. Approximation of the Model for Common Electromagnetic Reluctance Actuators

As seen above, parasitic components such as eddy currents and parasitic capacitances can play
a significant role in the obtained current ripple, especially at the switching instants of the PWM
voltage. Nevertheless, assumptions can be considered, which simplify the mathematical treatment
significantly and which still hold on most of the common electromagnetic reluctance actuators. In
the first step, the series resistance RΣ is considered being much smaller than the parallel resistance
Rp: RΣ � Rp. This is due to the reason that, in the particular case of reluctance actuators, the series
resistance consists of one side on the copper resistance and on the other side on the part dL

dx · v · is(t)
representing the back-EMF induced during movement. The first one is normally designed to be small
in order to decrease power dissipation. The latter one, indeed, does not predominate since such
actuators are made for positioning applications and not for high speed operation. In the next step,
considerations are made on the parasitic capacitance Cp. In particular, the capacitive coupling between
the windings as well as the housing and the plunger is so small that the system is overdamped and
so small that the eigenfrequency 1

2π
√

Ld ·Cp
is much higher than the PWM frequency. Therefore, the

following assumption can be made: Ld · Cp → 0. Indeed, many works such as [23,28] neglect the
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parasitic capacitances in solenoids completely. Nevertheless, the overshoot at the switching instant
still occurs in the overdamped case.

3. Inductance Estimation Approaches

In the following, inductance estimation techniques will be shown, which exploit the current
ripple that is derived mathematically in the previous section. Firstly, the IDIM technique is recalled
and adapted in such a way that it is not influenced by the presence of parasitics. Then, a simplified
IDIM technique is derived for applications that do not require high dynamics. Finally, a classical
oversampling approach discussed in the state-of-the-art is briefly shown for comparison.

3.1. Integrator-Based Direct Inductance Measurement (IDIM) Approach

Figure 5 shows the analog measurement circuitry that is necessary for the implementation of the
IDIM technique. The circuitry removes the fundamental current component from the sensed current
signal by means of a sample and hold (S/H) stage and integrates the offset-elimated current īs(t) over
defined integration windows. By removing the offset, the current ripple containing the inductance
information can be separated from the fundamental current, and, therefore, can be strongly amplified
while noise is rejected.
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The integration windows and their corresponding trigger signal r(t) can be chosen in such a
way that the switching instants of the PWM voltage can be avoided during integration. At these time
instants, not only the direct feed-through of the first and second voltage derivative caused by Rp and
Cp occur, but also nonlinear effects caused by the switching electronics such as dead-time insertion and
ringing as well as glitches occur. Moreover, most current sensors suffer from limited bandwidth and
slew rate in these time instants. Resetting the integrator in those time periods ensures that these effects
do not influence the inductance measurement with IDIM. The avoidance of acquiring measurements
in these areas is also considered in the oversampling approaches such as [21].

In order to avoid the switching instants, the trigger signal r(t) can be defined as:

r(t) =





0 for t+s ≤ t ≤ ·t+e
0 for t−s ≤ t ≤ ·t−e
1 else

, (13)

with
t+s = tr, t+e = α · tpwm, t−s = α · tpwm + tr, t−e = tpwm − tr. (14)

When r(t) is equal to 0, the S/H stage holds its actual value and the integration starts and when
r(t) is equal to 1, the integrator is reset and the S/H stage is sampling the input. The times t+s and
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t+e are the times of the start and the end of the integration window when the positive voltage pulse
is applied, hence the times t−s and t−e refer to the ones when a negative pulse is applied. The design
parameter tr should be chosen sufficiently long to ensure that the disturbances caused by the voltage
switching are decayed and the integrator is fully reset. The integrator stage with embedded reset
capability can be realized by a fully differential operational amplifier with electronic switches parallel
to the integrator capacitor Cint, as shown in Figure 6.
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Its transfer characteristics can be described analytically as follows:
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focus on the sensed current. The term 1

RintCint
represents the integration gain, which has to be chosen

carefully by the user in order to avoid saturation of this stage. For sake of brevity, this gain is set to 1 in
the following derivations. Due to the periodic reset, the integrator does not suffer from offsets or drifts.
The output of the integrator stage with respect to the given trigger signal r(t) is shown exemplarily in
Figure 7 for a current ripple caused by a PWM voltage with a duty cycle α of 0.5.
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Its transfer characteristics can be described analytically as follows:

uout(t) = −
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RintCint

∫

r(t) 6=1
uin(t)dt, (15)

where uin(t) is the output voltage of a current sensor. For better comprehension, the current sensor
and its transfer function will be not considered here and the mathematical description will directly
focus on the sensed current. The term 1

RintCint
represents the integration gain, which has to be chosen

carefully by the user in order to avoid saturation of this stage. For sake of brevity, this gain is set to 1 in
the following derivations. Due to the periodic reset, the integrator does not suffer from offsets or drifts.
The output of the integrator stage with respect to the given trigger signal r(t) is shown exemplarily in
Figure 7 for a current ripple caused by a PWM voltage with a duty cycle α of 0.5.
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exemplary shown for α = 0.5.
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Based on the illustrated integrator circuitry, the integral of the current ripple can be defined as:

I(t) =
∫

r(t) 6=1
īs(t)dt =

∫

r(t) 6=1
(is(t)− is(tx))dt, (16)

which can be rewritten by considering Equation (4) as

I(t) =
∫

r(t) 6=1
(

1
RΣ

(u(t) +
Ld
Rp
· du(t)

dt
+ Ld · Cp ·

d2u(t)
dt

− Ld ·
(

1 +
RΣ

Rp

)
· dis(t)

dt

−Cp · RΣ · Ld ·
d2is(t)

dt
)− is(tx))dt,

(17)

where tx represents the time where the S/H stage holds, in particular t+s for the positive voltage pulse
and t−s for the negative voltage pulse. This expression can be evaluated for the given voltage shown in
Equation (3), exemplary shown for the positive voltage pulse:

I(t+e )− I(t+s ) =
UDC
RΣ

(
t+e − t+s

)
+

Ld
RΣRp

(
u(t+e )− u(t+s )

)
+

LdCp

RΣ

(
du(t+e )

dt
− du(t+s )

dt

)

− Ld
RΣ

(
1 +

RΣ

Rp

)
(is(t+e )− is(t+s ))− CpLd

(
dis(t+e )

dt
− dis(t+s )

dt

)
− is(t+s )(t

+
e − t+s ).

(18)

This expression allows for calculating the output of the IDIM circuitry shown in Figure 5 taking
into account the presence of the parasitics. Since the integrator is reset at the start of the integration,
the initial value of the integral can be set to zero : I(t+s ) = 0. By using the approximations RΣ � Rp

and Ld · Cp → 0 mentioned in Section 2.3 and by evaluating the function values of the given input

voltage u(t+e ) = u(t+s ) = UDC and du(t+e )
dt = du(t+s )

dt = 0, the equations can be simplified to:

I(t+e ) ≈
UDC
RΣ

(t+e − t+s )−
Ld
RΣ

(is(t+e )− is(t+s ))− is(t+s )(t
+
e − t+s ). (19)

Analogically, the expression for the negative pulse can be obtained:

I(t−e ) ≈ −
UDC
RΣ

(t−e − t−s )−
Ld
RΣ

(is(t−e )− is(t−s ))− is(t−s )(t
−
e − t−s ). (20)

Equations (19) and (20) can be merged into a matrix form:

[
UDC(t+e − t+s )
−UDC(t−e − t−s )

]
≈
[

I(t+e ) + is(t+s )(t+e − t+s ) is(t+e )− is(t+s )
I(t−e ) + is(t−s )(t−e − t−s ) is(t−e )− is(t−s )

] [
RΣ

Ld

]
, (21)

[
UDC(t+e − t+s )
−UDC(t−e − t−s )

]
≈ A

[
RΣ

Ld

]
, (22)

allowing the calculation and analysis of the determinant of matrix A:

|A| = (I(t+e ) + is(t+s )(t
+
e − t+s ))(is(t−e )− is(t−s ))− (I(t−e ) + is(t−s )(t

−
e − t−s ))(is(t

+
e )− is(t+s )). (23)

The determinant must be always unequal to zero for determining the parameters of RΣ and Ld. It
can be shown that the determinant is equal to zero, e.g., when there is zero mean current. Without
a current in the coil, an identification of the resistance RΣ becomes impossible, thus Ld cannot be
identified correctly. In such cases, a pre-identified value of RΣ has to be used for the estimation of Ld.
In that situation, the mean current equals zero; therefore, according to Equation (2), no back-EMF is
present and RΣ equals the series resistance Rs, which can be pre-identified using standard resistance
measurement techniques, such as a recursive least squares (RLS) based identifier [29].
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In case the matrix A is invertible, the parameters RΣ and Ld can be estimated by the expressions:

RΣ ≈
UDC
|A| ((is(t

−
e )− is(t−s ))(t

+
e − t+s ) + (is(t+e )− is(t+s ))(t

−
e − t−s )), (24)

Ld ≈ −
UDC
|A| ((I(t−e ) + is(t−s )(t

−
e − t−s ))(t

+
e − t+s ) + (I(t+e ) + is(t+s )(t

+
e − t+s ))(t

−
e − t−s )). (25)

Since the resistance RΣ is actively identified and compensated in the estimation of the differential
inductance, a back-EMF or a change of the resistance due to heating can be compensated. Additionally,
it can be seen that this technique requires in total seven measurements per PWM period: one DC link
voltage measurement, measurements of the integrator at two time instants per each PWM period, and
current measurements at four time instants per each PWM period. The estimate of inductance and
resistance can be obtained by solving two closed equations. Nevertheless, those equations contain
current differences, whose calculation might increase the noise power of the estimate.

3.2. Simplified IDIM Approach

The simplified IDIM technique neglects the effect of the parallel resistance Rp as well as the
parallel capacitance Cp and assumes that the actuator is driven with a low current dynamic. This is
especially suitable for end-position detection for switching actuators, where the position is determined
after the switching in a quasi-static manner. The following derivation resembles the work [25].

Under the given approximations, the reset can be simplified to a single reset pulse at the beginning
of the PWM period:

r(t) =

{
1 for 0 ≤ t ≤ tr

0 else
, (26)

and with a narrow timing tr → 0. In particular, Figure 8 shows the trigger signal and the output of the
integrator stage.

In the simplified approach, the effect of the resistance RΣ is considered small compared to the
inductive component [25]. Under this consideration, the ratio between RΣ and Ld can be considered
small and therefore Equation (9) can be linearized by applying the Taylor expression and truncating it
at the first term:

e−
RΣ
Ld

t ≈ 1− RΣ

Ld
t. (27)

By applying assumption (27) on the current ripple Equation (9) (For sake of brevity, only the rising
part of the current ripple is shown, the falling part can be derived in a similar way.)

is(t) ≈ is(t+s ) + (
UDC
RΣ
− is(t+s ))

RΣ · t
Ld

for 0 ≤ t ≤ α · tpwm, (28)

the current ripple is considered linear instead of being exponentially shaped. The offset removing
stage removes the fundamental component from the sensed current:

īs(t) ≈ (
UDC
RΣ
− is(t+s ))

RΣ · t
Ld

for 0 ≤ t ≤ α · tpwm. (29)

In order to simplify the mathematical treatment and implementation effort, it is assumed that
the current ripple has low contribution to the total current. This is usually desired in practical
implementations in order to avoid significant perturbations of the produced force caused by current
ripples. Therefore, it can be written that the current ripple has negligible influence on the mean value
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of the current: is(t+s ) ≈ is,m. Furthermore, by limiting the current dynamic under the assumption of a
linear relationship between mean current is,m and mean voltage um [25]:

is(t+s ) ≈ is,m ≈
um

RΣ
=

2UDC(α− 0.5)
RΣ

, (30)

the expression of the current ripple shown in Equation (28) can be simplified:

īs(t) ≈
2UDC

Ld
· (1− α) · t. (31)

It is visible that the influence of the resistance RΣ disappears. The maximum amplitude of the
current ripple occurs at the time tpwm · α and therefore the function value of Equation (31) at this time
instant can be expressed as:

īs(tpwm · α) ≈
2UDC

Ld
· (1− α) · tpwm · α. (32)

The current ripple with its first order approximation shown in Equation (27) resembles a triangle,
whose integral value at the time t−e can be calculated as [25]:

I(t−e ) ≈
1
2
· tpwm · īs(tpwm · α) =

UDC
Ld
· α(1− α) · t2

pwm. (33)

t
s

+
t
e

+
t
s

-
t
e

-

Integral signal I(t)

Trigger signal r(t)

Figure 8. Integral obtained by the IDIM circuit for the simplified IDIM technique (blue), trigger signal
r(t) (red) as well as time instants, exemplary shown for α = 0.5.

Finally, the inductance can be estimated by:

Ld ≈
UDC

I(t−e )
t2

pwm · α · (1− α). (34)

It is visible that this technique requires one DC link voltage measurement and one measurement of
the integrator circuit per each PWM period. Moreover, the inductance can be estimated by solving one
closed equation. Thus, it can be considered that this method requires less sampling and computational
effort with respect to the oversampling approaches. Nevertheless, the assumptions made during the
mathematical derivation do not allow high dynamic operation.
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3.3. Oversampling Approach

As mentioned earlier, many works [18–22] make use of an oversampled current and voltage
measurement in order to estimate the inductance with a high noise robustness. Those methods take a
number of N samples per each PWM period and obtain a data set of time, voltages, and currents:

t = [t+s ...t+e t−s ...t−e ], (35)

u = [u(t+s )...u(t
+
e ) u(t−s )...u(t

−
e )], (36)

is = [is(t+s )...is(t+e ) is(t−s )...is(t
−
e )]︸ ︷︷ ︸

N Samples

. (37)

Taking the measurements after a short time tr after a switching instant ensures that transients
coming from parasitic components and from the current sensor are not considered during the
estimation process [21,22]. Based on the obtained data set, the techniques either calculate numerically
the flux, from which the inductance can be obtained [18,19], or identify the actuator inductance by
means of least-mean squares (LMS) approaches [21,22]. For sake of brevity, those techniques will not
be explained here in detail. In the following sections, the approach from [22] is used for inductance
estimation. This work uses a LMS approach for the robust identification of the current ripple slopes,
from which the inductance is estimated, with a number of 1600 samples per PWM period at a PWM
frequency of 500 Hz. It therefore serves as a good representative method in this work. For further
details, reference is made to [22].

4. Experimental Results

In order to evaluate the performance of the discussed approaches in terms of noise robustness and
accuracy, an experimental test-bench consisting of a high precision linear positioning table, a dedicated
electronics from the Laboratory of Actuation Technology and a mechanical coupling to the actuator is
used, as shown in Figure 9. The working principle of the solenoid actuator is shown in Figure 10.

Electronics

Positioning Table Actuator

Figure 9. Experimental test-bench including positioning table, electronics, and test solenoid.
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X X X X X

x

Fm

Back iron

Plunger

Coil

Figure 10. Schematic figure of the solenoid actuator consisting of plunger, coil and back-iron.
The reluctance force generated in the actuator is denoted by Fm.

In particular, the positioning table M403.4DG from Physics Instruments [30] allows the positioning
of the actuator and the measurement of the actuator position within a range of 10 cm with a minimum
step size of 200 nm. The table is able to block the actuator at a certain position with forces up to
50 N. This table is connected to a dedicated electronics that consists of a switching power electronics,
a STM32H7 microcontroller with 16 bit AD converters and a dedicated electronics for the IDIM
technique. In particular, an AD8418 current sensor from Analog devices [31] with 250 kHz bandwidth
is used for current measurement. The discussed inductance estimation approaches are implemented
in the microcontroller using floating-point arithmetic. Moreover, a current controller is tuned and
implemented accordingly, guaranteeing a constant current even under variable DC link voltage and
increasing resistance RΣ due to self-heating or due to the presence of a back-EMF. The actuator under
test is an industrial switching solenoid from the type GTC A 40 from Magnet-Schulz Memmingen [32].
Its parameters and nominal values are listed along with the used settings of the IDIM technique in
Table 1.

Table 1. Parameters of the used test solenoid as well as settings of the IDIM technique.

Parameter Value

Nominal Voltage 24 V
Nominal Power 12.9 W

Nominal Resistance Rs 44.6 Ω
Nominal Stroke 8 mm

Max. Force 34.8 N
PWM frequency 500 Hz

Reset time tr 50 µs
Integration gain 0.015 1/µs

Based on the mean electrical time constant of the actuator τel = 8.34 ms, a PWM frequency
of 500 Hz is chosen in order to produce a measurable current ripple and avoid saturation of the
inductance over frequency. Figure 11 shows the experimental measurement of the analog signals
in the IDIM circuitry. The applied PWM voltage causes a considerable current ripple, which has
significant disturbances at the PWM switching instants due to the limited bandwidth of the current
sensor and due to parasitic capacitances. Two different settings of the trigger signal r(t) as well as the
corresponding integrator outputs are shown: the trigger signal of the IDIM technique expressed by
Equation (13) and the trigger signal of the simplified IDIM technique shown in Equation (26).
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Figure 11. Measurements of the analog signals of the IDIM circuitry, (a) sensed current signal, (b) trigger
signal r(t) in case of the IDIM approach, (c) trigger signal r(t) in case of the simplified IDIM approach,
(d) resulting output of the integrator circuit in case of the IDIM approach (blue) and the simplified
IDIM approach (red).

4.1. Noise Power of the Discussed Approaches

As mentioned before, most state-of-the art works increase the signal-to-noise ratio significantly
by making an oversampled current measurement and by using least-mean squares algorithms with
the demerit of increased computational effort and increased sampling effort. The IDIM technique
aims to avoid an oversampled current measurement by reducing the noise level before sampling,
thereby decreasing the sampling and computational effort. In the following, the inductance estimation
performance of the IDIM approaches will be compared to an oversampling approach (OS) in terms of
convergence and noise power. Note that no reference inductance value is available for comparison
due to the lack of a general approach of exciting and estimating differential inductances at different
working points. The noise power Pn is defined as follows:

Pn =
1
L

ΣL
i=1n(i)2 (38)

where L is the length of the signal vector and n(i) is the noise of the actual signal value. The noise is
obtained by subtracting the actual signal value from the mean value of the entire signal vector [33].

Figure 12 shows the estimated inductance in case the actuator is at zero mean current and is fully
opened (x = 8 mm). The noise power of the IDIM technique, the simplified IDIM technique as well
as the oversampling approach with different numbers of samples per PWM period are shown and
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compared. Oversampling approaches exceeding 1000 samples per PWM period are not considered
here, since the microcontroller reaches it computational limits. Moreover, an experiment with the
oversampling method with 50 samples per PWM period failed due to the divergence of the algorithm.
It can be seen that the simplified IDIM technique achieves with −48.5 dB a slightly lower noise power
than the oversampling approach with 100 samples per PWM period. The IDIM technique shows a
lower noise power with −51.7 dB. Oversampling approaches with more samples per PWM period
achieve considerably smaller noise powers. Nevertheless, the techniques are affected by biases, which
change significantly depending on the number of used samples. This might be due to the fact that
the oversampling approaches are not converging properly when a sufficient number of samples is not
given. In particular, the simplified IDIM technique shows a remarkable bias in the inductance estimate.
This is due to the assumption of a linearized current ripple made by Equation (27).
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Figure 12. Comparison of the noise power obtained by the different approaches when the actuator is
fully opened and under zero mean current conditions.

The experiment is repeated in the case the actuator is driven with full mean current and is closed
(x = 0 mm), as shown in Figure 13. In this experiment, the IDIM technique shows a noise power in
the range of −59.1 dB, outperforming the oversampling approach with 250 samples. The simplified
IDIM technique performs slightly better with a noise power of −60.8 dB. Nevertheless, oversampling
approaches with more than 250 samples exhibit a lower noise power. Similarly to the results of
Figure 12, all estimates differ in their bias. In the case of the oversampling techniques, the bias is strictly
dependent on the number of samples, which indicates that those techniques need a sufficient number
of samples in order to converge. In the case of the actuator under full mean current, this dependence
gets more significant. This is due to the fact that the contribution of the current ripple to the total
current inside the actuator decreases with increasing mean current. Thus, its processing is more likely
to be influenced by biases during the estimation processes. The bias between the IDIM technique and
its simplified implementation can be explained by the linear assumption made by Equation (27).

It can be seen that the IDIM technique has less noise power compared to the oversampling
approaches with a number of up to 100 samples in case of the actuator without current and up to
250 samples in case of the driven actuator. Given the sampling effort and computational effort, which
is needed for obtaining a good noise power with the oversampling approaches, the IDIM technique
shows a good trade-off between noise power and needed effort.
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Figure 13. Comparison of the noise power obtained by the different approaches when the actuator is
fully closed and full mean current is flowing.

4.2. Inductance Characteristic of the Actuator under Testing

In the following, the inductance characteristic of the actuator under test will be identified using
the IDIM technique. With the help of the above-mentioned test-bench, it is possible to obtain the
differential inductance of the actuator in the entire position and current range. Those measurements
are shown in Figure 14 and for better visibility in Figure 15 for fixed positions at varying currents and
in Figure 16 for fixed currents at varying positions. The measurements are obtained by averaging
the inductance estimate over 200 values at each working point in order to increase visibility and
comprehension of the measurements.

Figure 14. Obtained inductance characteristic when the IDIM approach is used. Inductance
characteristic is shown over the entire position and current range. The yellow dots indicate the
measured data points while the blue surface illustrates the interpolated data.
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Figure 15. Identified inductance variation over changing current at three different fixed positions.
The dependency is strongly hysteretic.
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Figure 16. Identified inductance variation over changing position at three different fixed currents.
The dependency is slightly hysteretic, in particular for middle range currents.

The identified inductance characteristic exhibits a remarkable hysteresis over position and current
due to the presence of a hysteretic plunger and back-iron material [34] (p. 32). At higher currents,
the material shows no hysteresis anymore and goes into saturation [34] (p. 21). This resembles the
B–H-curve of the plunger material. Indeed, removing the plunger from the coil effectively increases
the inductance at higher currents [34] (p. 21).

For the purpose of sensorless end-position detection in a switching actuator, only the red curve,
indicating the case of zero mean current, and the black curve, representing full mean current, are of
particular interest in Figure 16. The curve representing the zero mean current condition shows no
hysteresis and can be considered anhysteretic. The curve describing the full mean current condition
shows a slight hysteresis, which is going to be neglected for a simplified modeling. The obtained
pre-filtered measurement curves are inverted for means of position estimation and the measurement
points are fitted with polynomials of the 4th order.

4.3. Validation of the Use Case Scenario: Sensorless End-Position Detection for Switching Actuators

In the following, the discussed approaches are validated in the use case scenario of a sensorless
end-position detection for switching actuators. The fitted polynomials mentioned in the section
above are implemented for the purpose of position estimation. During the validation experiment, the
positioning table is used to move the plunger in a quasi-static manner over the entire position range
of the actuator. For the application of sensorless end-position detection in a switching application,
two cases are shown: the actuator is without current (i = 0 A), shown in Figure 17, and the actuator is
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under full mean current (i = 350 mA), illustrated in Figure 18. In those figures, the position estimation
obtained by the IDIM method, the simplified IDIM method, and the oversampling methods with 100
and 250 samples are compared to the position measurement of the high-precision position table. For the
sake of brevity, only the oversampling approaches with 100 and 250 samples are shown since their
noise power resembles the ones of the IDIM techniques. Note that, in this experiment, no low-pass
filtering is applied to the measurements, allowing to compare the estimation performance directly.
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Figure 17. Performance of the obtained sensorless end-position estimator: results are obtained by the
IDIM (black), the simplified IDIM approach (blue) and the oversampling approaches with 100 samples
(magenta) and 250 samples (green) compared to the position obtained by the high resolution positioning
table (red). Results are shown when the actuator has a zero mean current (i = 0).

2 4 6 8 10 12 14 16

Time in s

0

2

4

6

8

10

E
st

. 
P

o
si

ti
o

n
 i

n
 m

m

OS, N = 100

OS, N = 250

IDIM

simpl. IDIM

measured

Figure 18. Performance of the obtained sensorless end-position estimator: results are obtained by the
IDIM (black), the simplified IDIM approach (blue) and the oversampling approaches with 100 samples
(magenta) and 250 samples (green) compared to the position obtained by the high resolution positioning
table (red). Results are shown when the actuator is driven with full mean current (i = 350 mA).
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From both experiments, it can be seen that the position estimated by the (simplified) IDIM method
follows the measured position in a clear way. In the case of the actuator without mean current,
shown in Figure 17, the oversampling approaches show similar performance as the IDIM approaches.
The oversampling approach with 250 sample tracks the measured position, but with estimation errors
at positions smaller than 1.5 mm. In the case of the actuator under full mean current, shown in
Figure 18, the oversampling approach with 100 samples fails to converge to the measured position
while the approach with 250 samples converges and tracks the position. All techniques present a
considerable estimation error in the case that the actuator is driven with full mean current due to the
negligence of the actuator hysteresis, as shown in Figure 18.

Because of that hysteretic behavior, whose modeling is not within the scope of this work, only
the results from Figure 17 are discussed. The position estimates of the different techniques are
affected by noise, whose amplitude changes according to the used estimation technique: the simplified
implementation of the IDIM technique shows a lower noise amplitude than the IDIM technique and
the oversampling approach with 100 samples. The oversampling approach with 250 samples shows
the lowest noise amplitude due to a high number of used samples. Table 2 quantifies and compares
the mean and maximum errors of the techniques with the result that the simplified IDIM technique
achieves the lowest mean and absolute error for the purpose of sensorless end-position detection.
The good performance of the simplified IDIM technique in terms of measurement noise is due to
the fact that its estimation Equation (34) does not need to calculate current differences, unlike the
estimation Equation (25) of the IDIM technique. Calculating differences of noisy signals increases the
noise level of the result.

Table 2. Mean and maximum absolute error of the estimated position obtained by different techniques
in case the actuator has zero mean current.

Technique Mean Error Max. Absolute Error

IDIM approach 0.13 mm 2.11 mm
simplified IDIM approach −0.02 mm 1.28 mm

OS approach, N = 100 −0.07 mm 1.34 mm
OS approach, N = 250 −0.20 mm 1.78 mm

5. Conclusions

In this work, a thorough mathematical analysis of current ripples inside electromagnetic actuators
when driven with switching electronics is conducted taking into account the presence of eddy currents
and parasitic capacitances. The results of this analytical as well as numerical analysis prove that the
presence of these effects has a significant influence on the current ripple especially at the switching
time instants of the PWM driving voltage.

The presented Integrator-Based Direct Inductance Measurement (IDIM) technique is improved
with respect to its previous formulations by exploiting the preceding analysis on the current ripples and
compared to oversampling approaches. The comparative study conducted on an industrial solenoid
actuator has shown that the IDIM technique provides, under certain conditions, similar performance
in terms of noise as oversampling techniques, while requiring a much lower number of measured
samples. Thus, both measurement and computational efforts are reduced, making the IDIM technique
more suitable for application to low-cost electromagnetic actuators, where high-speed AD converters
and high performance computation units, such as FPGAs, would considerably increase costs.

Finally, a use case scenario involving sensorless end-position detection is considered. This is,
indeed, a typical application for switching valves, relays, and solenoid actuators. The experimental
validation of a position estimator based on the IDIM technique shows good noise robustness and
position tracking performance. Nevertheless, the position estimator shows a remaining deviation of
the estimated position when the actuator operates at high currents. This is due to the negligence of
hysteresis in the mathematical model of the inductance characteristic. This limitation is common to



Actuators 2020, 9, 17 21 of 23

all the techniques considered in this work and, therefore, the identification and compensation of the
hysteretic behavior of such actuators represent an important aspect for future research activities.

6. Patents

The IDIM method has been submitted for patenting and references can be found in [26].
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