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Summary

This thesis develops the AM dependency parser, a semantic parser for Abstract

Meaning Representation (AMR, Banarescu et al. (2013)) that owes its strong per-

formance to its e↵ective combination of neural and compositional methods. Neural

networks have proven to be enormously e↵ective machine learning tools for natural

language processing. Compositionality as a linguistic principle has a strong tradition

in semantic construction. However, both approaches have distinct challenges. Pure

neural models are data hungry, since they have no prior knowledge of the inherent

structure in language. Compositional approaches have robustness issues and su↵er

from the ambiguity of latent structural information in the training data.

This thesis combines the strengths of both worlds to address these challenges.

The AM dependency parser drops the restrictive syntactic constraints of classic

compositional approaches, instead relying only on semantic types and meaningful

semantic operations as structural guides. The ability of neural networks to encode

contextual information allows the parser to make correct decisions in the absence of

hard syntactic constraints.

Consequently, the thesis focuses on terms for semantic representations, which are

algebraic ‘building instructions’. The thesis first examines the suitability of the HR

algebra (a general tool for building graphs, Courcelle and Engelfriet (2012)) for this

purpose. It then develops the linguistically motivated AM algebra, that proves much

better suited for the purpose. Representing the terms over the AM algebra as de-

pendency trees further simplifies the semantic construction. In particular, the move

from the HR algebra to the AM algebra and then to AM dependency trees dras-

tically removes the ambiguity of latent structural information required for training

the model.

In conclusion, the AM dependency trees yield a simple semantic parser, where

neural tagging and dependency models predict interpretable, meaningful operations

that construct the AMR.
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Zusammenfassung

want-01

raven

ARG0

learn-01
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Abbildung 1: AMR für den

Satz The raven wants to learn.

Diese Arbeit befasst sich mit statistischem se-

mantischem Parsen unter Einbezug von linguis-

tischen Prinzipien. Semantisches Parsen bedeu-

tet, einen Satz in eine Bedeutungsrepräsentation

zu übersetzen.

Es gibt verschiedene Ansätze, wie eine solche

Bedeutungsrepräsentation aussehen kann. Diese

Arbeit nutzt als Repräsentation Abstract Mea-

ning Representation (AMR, Banarescu et al. (2013), auf deutsch: Abstrakte Bedeu-

tungsrepräsentation). AMR ist auf die englische Sprache ausgelegt, ein Beispiel für

den Satz The raven wants to learn (Der Rabe will lernen) ist in Abbildung 1 ge-

geben. In diesem Graphen stellen die Knoten Konzepte aus dem Satz dar und die

Kanten die Beziehungen zwischen den Konzepten. Hier geben die ARG0-Kanten

an, dass der Rabe sowohl der Wollende als auch der Lernende ist, und die ARG1-

Kante, dass das Lernen das Gewollte ist. Eine solche Repräsentation kann dann in

weiterführenden Anwendungen genutzt werden, z.B. um Informationen aus Texten

zu extrahieren (Wang et al. (2017)), Paraphrasen zu erkennen (Issa et al. (2018))

und Texte zusammenzufassen (Dohare et al. (2018)). AMR zeichnet sich dadurch

aus, dass es von der Syntax des Satzes abstrahiert ist und dass es große annotierte

Korpora gibt (über 39.000 Satz-AMR Paare).

AMR-Parsen ist eine herausfordernde Aufgabe. Die menschliche Sprache reich an

komplexen und vielfältigen Phänomen, Ambiguitäten und Ausnahmen. Die momen-

tan gängige Art mit dieser Komplexität umzugehen ist, mit statistischen Methoden

ein Parser-Modell auf einer großen Datenmenge zu trainieren (maschinelles Lernen).

Aber die Aufgabe bleibt trotz der verfügbaren Korpora schwierig.

Es ist ein verlockender Ansatz, dem maschinellen Lernen durch Erkenntnisse

aus der Linguistik unter die Arme zu greifen. Denn AMRs sind nicht nur Knoten

und Kanten, sondern haben eine innere Struktur und ein besonderes Verhältnis zum

Satz, den sie repräsentieren. Dieses Verhältnis lässt sich gut durch das Prinzip der

Kompositionalität beschreiben, ein klassisches Prinzip der Linguistik. Die funda-

mentale Annahme des Kompositionalitätsprinzips ist, dass es eine strukturell kon-

sistente Methode gibt, die syntaktische Struktur eines Satzes auf einen semantischen

Term abzubilden. Ein semantischer Term beschreibt eine Abfolge von Operationen,

die kleine Bedeutungsfragmente zu einem Ganzen kombinieren. Eine beispielhafte

syntaktische Struktur ist in Abbildung 2(a) abgebildet und ein semantischer Term
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The raven wants

to learn

(a) (Vereinfachte) syntaktische Struktur.

fgS
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(b) Term über die HR-Algebra der die
AMR in Abbildung 1 als Ergebnis hat.

want-01
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learn-01
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raven
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(c) Die Graphfragmente die in (b) benutzt werden.

Abbildung 2: Syntaktische Struktur und semantischer Term für den Satz The raven
wants to learn, wobei die Farben zueinandergehörende Teile angeben.

in Abbildung 2(b). Der semantische Term hier benutzt die Operationen der HR-

Algebra (Courcelle and Engelfriet (2012)). Er verbindet die Graphfragmente in

Abbildung 2(c), die jeweils zu einem Wort gehören, zu der AMR in Abbildung 1

(die HR-Algebra sowie die roten S und O Markierungen werden in der Dissertation

genauer erklärt). Dabei liegt die Idee, Kompositionalität und maschinelles Lernen

zu kombinieren, darin, dass solch ein linguistisch-strukturelles Umwandeln eines Sat-

zes in eine Bedeutungsrepräsentation möglicherweise einfacher zu lernen ist als ein

weniger strukturierter Prozess.

Diese Idee, einen AMR-Parser auf linguistische Prinzipien – insbesondere Kompo-

sitionalität – zu basieren, ist nicht neu. Zum Beispiel beschreiben Artzi et al. (2015)

und Peng et al. (2015) Grammatik-basierte Ansätze, die explizite Regeln lernen um
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syntaktische Strukturen zu bauen und diese in semantische Terme umzuwandeln.

Diese Ansätze haben mit zwei großen Herausforderungen zu kämpfen. Einerseits

ist es schwierig, diese Systeme robust zu machen, d.h. sie so zu gestalten, dass sie

flexibel mit Wörtern und Phänomenen umgehen können, die in den Trainingsdaten

nicht gesehen wurden. Wenn ein Satz geparst werden soll, der nicht zu den fixierten,

expliziten Regeln passt, die von den Trainingsdaten gelernt wurden, kann der Par-

ser den Satz nicht richtig analysieren. Aufgrund der Zipf’schen Eigenschaften von

Sprache (seltene Phänomene machen, zusammengezählt, einen großen Teil unserer

Sprache aus) hat diese Problematik große Auswirkungen.

Die zweite Herausforderung ist, dass die Grammatik-basierten Parser zum Trai-

nieren strukturelle Trainingsdaten benötigen (wie die syntaktische Struktur und der

semantische Term in Abbildung 2) – diese Trainingsdaten aber latent, d.h. nicht im

Korpus annotiert sind. Das heißt, man muss diese Strukturen entweder ‘hinzuer-

finden’ oder mit statistischen Methoden indirekt modellieren. Beides ist schwierig

– die Strukturen von Hand zu annotieren ist zu aufwendig, und automatisch die

richtige syntaktische Struktur und den passenden semantischen Term zu finden ist

nicht leicht. Auch statistische Methoden haben Probleme, wenn es zu viele mögli-

che Terme gibt – dann wird der Suchraum zu groß. Artzi et al. (2015) und Peng

et al. (2015) finden Wege, mit diesen Herausforderungen zumindest teilweise umzu-

gehen und erreichen respektable Ergebnisse – aber nicht die stärksten Ergebnisse im

AMR-Parsen.

Die stärksten Ergebnisse werden von Parsern erzielt, die flexiblere Modelle mit

weniger expliziter Struktur verwenden (Lyu and Titov (2018), Foland and Martin

(2017), van Noord and Bos (2017)). Dabei verlassen sich die Parser stark auf neuro-

nale Netze, eine besonders e↵ektive Methode des maschinellen Lernens. Ein extremer

Fall ist van Noord and Bos (2017), die einen Satz Buchstabe für Buchstabe mit einem

rekursiven neuronalen Netz einlesen, und dann eine Text-Repräsentation der AMR

Buchstabe für Buchstabe ausgeben. Lyu and Titov (2018) und Foland and Martin

(2017) sagen den Graphen Knoten für Knoten und Kante für Kante voraus, aber

benutzen keine tiefere linguistische Theorie. Trotz ihrer starken Performanz haben

diese Modelle auch Schwächen: Der Ansatz von van Noord and Bos (2017) benötigt

größere Datenmengen zum Trainieren, und bei all diesen Ansätzen ist es unklar, wie

man Ergebnisse aus der Linguistik in den Parser integrieren könnte, um sie noch

weiter zu verbessern.

Das Ziel dieser Arbeit ist es, das beste beider Seiten zusammenzubringen: Die

Herausforderungen des kompositionellen AMR-Parsen zu bewältigen und komposi-

tionelle Prinzipien mit neuronalen Netzen zu kombinieren. Das Ergebnis der Arbeit
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(c) G1 || G2

Abbildung 3: Die merge-Operation (geschrieben als “ || ”) ‘klebt’ die zwei Graphen
in (a) und (b) zusammen, mit Ergebnis in (c).

ist ein Modell fürs AMR-Parsen, das auf dem Prinzip der Kompositionalität basiert

und gleichzeitig robust ist und starke Ergebnisse in der Praxis erzielt. Dabei ver-

lassen wir etwas den strengen Zusammenhang zwischen syntaktischer Struktur und

semantischem Term wie er in Abbildung 2 dargestellt ist und entwickeln eine neue,

flexiblere Methode, um einen semantischen Term aus einem Satz zu erhalten.

In Kapiteln 1, 2 und 3 präzisieren wir zuerst die Problemstellung der Arbeit

und führen notwendiges Hintergrundwissen ein, insbesondere zu AMR-Parsen und

Kompositionalität.

Kapitel 4 unternimmt einen ersten Schritt zur Lösung des Problems der laten-

ten Trainingsdaten. Konkret geht es das Problem an, dass in den AMR-Korpora

keine semantischen Terme gegeben sind. Es ist nicht einmal klar, welcher Forma-

lismus am besten zu verwenden ist, um die AMR als Term darzustellen – hier ver-

wenden wir die HR-Algebra (Courcelle and Engelfriet (2012)), für die Koller (2015)

gezeigt hat, dass ihre Terme AMRs in Einklang mit kompositionellen Ideen dar-

stellen können. Die HR-Algebra ist eine Sammlung von drei Operationen, die ganz

allgemein Graphen aus kleineren Bestandteilen zusammenbauen können. Dazu be-

nutzt sie Source-Namen, das sind spezielle Markierungen an manchen Graphknoten

(Rot in Abbildung 3). Zentral ist dabei die merge-Operation, die zwei Graphen ‘zu-

sammenklebt’, indem sie Knoten mit identischen Source-Namen verschmelzt (siehe

Abbildung 3). Die anderen beiden Operationen benennen Source-Namen um oder

entfernen sie.

Es geht uns in diesem Kapitel zunächst nur darum, alle HR-Algebra-Terme,

welche eine gegebene AMR darstellen, e�zient aufzuzählen. Erkenntnisse aus die-

sem Prozess geben uns dann Hinweise dazu, wie wir mit dem Fehlen der Terme in
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den Trainingsdaten umgehen können. Da die Anzahl der Terme exponentiell in der

Graphgröße ist, repräsentieren wir die Menge der Terme kompakt durch Baumauto-

maten (Comon (1997)), in dem Spezialfall von Algebra-Termen auch Zerlegungsauto-

maten genannt. Wir entwickeln Methoden, welche die Zerlegungsautomaten bottom-

up (die Terme von unten nach oben zusammenbauend) oder top-down (die Terme

von oben nach unten expandierend) berechnen können.

Um die Zerlegungsautomaten zu berechnen, stellen wir Subgraphen, die als Zwis-

chenergebnisse in der Berechnung auftauchen, e�zient durch Repräsentationen dar,

die wir boundary representations oder s-component representations nennen. Eine sol-

che Repräsentation gibt jeweils nur Teile des Subgraphen an, aber so, dass wir den

gesamten Subgraphen rekonstruieren können. Die Idee der boundary representation

wurde auch schon von Chiang et al. (2013) für die verwandte Hyperedge Replacement

Grammar (HRG) verwendet. Die asymptotischen Laufzeiten, die wir erreichen, sind

auch konsistent mit den HRG-Ergebnissen von Chiang et al. (2013).

Wir evaluieren unsere Methoden zur Berechnung der Zerlegungsautomaten auf

bekannten AMR-Korpora und kommen zu folgenden Ergebnissen: Erstens ist der

bottom-up Algorithmus schneller als die top-down Variante. Zweitens sind unsere

Laufzeiten deutlich schneller als die von Chiang et al. (2013) für eine vergleichbare

Aufgabe. Aber drittens sind die Laufzeiten für große Graphen immer noch unprak-

tisch langsam und, noch wichtiger, gibt es so viele verschiedene Terme, dass auch die

kompakten Zerlegungsautomaten enorm groß und nur bedingt zum Weiterverwen-

den geeignet sind. Die große Anzahl möglicher Terme ist ein ernsthaftes Problem:

Je mehr Terme es gibt, desto ine�zienter sind etablierte Methoden, die mit laten-

ten Termen umgehen (z.B. Sampling). Dieses Problem ist der Startpunkt für eine

tiefergehende Erneuerung des Ansatzes im folgenden Teil der Dissertation.

Insgesamt bietet Kapitel 4 dem Leser (1) ein tiefgehendes Verständnis darüber,

wie man AMRs mit der HR-Algebra auseinandernehmen und wieder zusammenbauen

kann, (2) einen e�zienten Algorithmus zum Berechnen von HR-Zerlegungsautomaten

und (3) eine Quantifizierung der verbleibenden Probleme.

Kapitel 5 untersucht zunächst genauer, warum das Zerlegungsproblem der HR-

Algebra so komplex ist, warum es so viele HR-Terme für eine einzelne AMR gibt.

Es stellt sich heraus, dass die Terme der HR-Algebra feinste Unterschiede in der

Konstruktion einer AMR abbilden, die wir für das semantische Parsen gar nicht mo-

dellieren müssen. Dieses Kapitel führt daher die neue Apply-Modify-Algebra (AM-

Algebra) ein. Die Operationen der AM-Algebra fassen jeweils mehrere Operationen

der HR-Algebra in einer Operation zusammen und sind durch ein Typsystem ein-

geschränkt. Dadurch kann die AM-Algebra Graphen nur noch auf solche Weisen
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want-01
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learn-01
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(c) Teilergebnis von (a) nach appO.

Abbildung 4: (a) AM term für die AMR in Abbildung 1, (b) die verwendeten
Graphfragmente und (c) Teilergebnis nach appO.

zusammenbauen, die für eine linguistisch sinnvolle Konstruktion von AMRs nötig

sind. Eine Analyse verschiedener Beispiele zeigt, dass die AM-Algebra nicht nur

viele herausfordernde Phänomene der Englischen Sprache modellieren kann, sondern

dass ihre Analyse auch mit bisheriger Literatur zum Thema Kompositionalität kon-

sistent ist.

Die AM-Algebra hat zwei Sorten von Operationen: Applikation (kurz app) und

Modifikation (kurz mod). Abbildung 4 zeigt ein Beispiel für Applikation. In (a)

werden zunächst die Graphen Gwant und Glearn mit einer appO Operation kombi-

niert (Ergebnis in (c)). Dabei wird der learn-01 -Knoten in den mit O (in Rot)

markierten Knoten von Gwant eingesetzt. Zusätzlich verschmelzen, wie schon bei der

HR-Algebra, die mit S markierten Knoten. Dies spiegelt den Grundgedanken von

Unifikation wieder. Die folgende appS Operation setzt den raven-Knoten in den mit

S markierten Knoten des Teilergebnisses in (c) ein und hat als Ergebnis den Graphen

in Abbildung 1. Mit ihren Operationen verbindet die AM-Algebra die Allgemein-

heit und Flexibilität der HR-Algebra mit Grundprinzipien der Kompositionalität,

nämlich semantische Elemente mit ihren Argumenten (Applikation) und Adjunkten

(Modifikation) zu kombinieren (inklusive Unifikation).

Dieses Kapitel führt nicht nur die AM-Algebra ein, sondern zeigt auch, wie man

(auf der Grundlage von Kapitel 4) AM-Zerlegungsautomaten berechnen kann. In der
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Abbildung 5: AM-Dependenzbaum (mit den Graphfragmenten aus Abbil-
dung 4(b)).

Praxis bringt der Wechsel von der HR-Algebra zur AM-Algebra drastische Verbesse-

rungen mit sich: Laufzeiten sinken um mehrere Größenordnungen, die Zerlegungsau-

tomaten werden deutlich kleiner und die Anzahl der Terme verringert sich drastisch.

Schon für Graphen mit einstelliger Knotenzahl hat die HR-Algebra mehrere Billio-

nen Terme, wohingegen die AM-Algebra hier oft eine einstellige Anzahl Terme hat.

Trotz dieser starken Einschränkungen finden wir für fast alle Sätze mindestens eine

Analyse.

Kapitel 6 schließlich beschreibt den AMR-Parser dieser Arbeit. Der Parser sagt

AM-Operationen direkt in Form eines Dependenzbaums vorher; ein solcher Depen-

denzbaum ist in Abbildung 5 abgebildet. In diesem Dependenzbaum werden einigen

der Wörter Graphfragmente (hier Graven, Gwant und Glearn unterhalb des Satzes)

zugewiesen, und die Dependenzkanten (die Pfeile über dem Satz) geben an, welche

Operationen die Fragmente miteinander kombinieren. Ein solcher Dependenzbaum

unterspezifiziert einen AM-Term, da er zwar definiert, welche Operationen ausgeführt

werden, nicht jedoch deren Reihenfolge. Zum Beispiel gibt der Dependenzbaum hier

nicht an, ob zuerst die Operation appS oder appO ausgeführt wird. In dieser Ar-

beit zeige ich jedoch, dass jeder AM-Term, der zum gleichen AM-Dependenzbaum

passt, die gleiche AMR produziert – solange der AM-Term dem Typsystem der AM-

Algebra folgt. Das heißt, den AM-Dependenzbaum vorherzusagen reicht, um die

AMR vorherzusagen.

Diese Unterspezifikation hat einen großen Vorteil: Sie schränkt die Menge der

möglichen Terme (beziehungsweise jetzt Dependenzbäume) weiter ein, d.h. sie redu-

ziert das Problem der latenten Trainingsdaten weiter. Und zwar, wenn wir die fertige

AMR sowie die einzelnen Graphfragmente (hier Gwant etc.) kennen und wissen zu

welchem Wort die Fragmente jeweils gehören, scheint es immer nur einen passenden

AM-Dependenzbaum zu geben. Die AMR ist in den Trainingsdaten gegeben, und

den Rest können wir mit handgeschriebenen Heuristiken zufriedenstellend lösen.

Wir haben somit AM-Dependenzbäume für unsere Trainingsdaten und können

damit einen Parser trainieren, der AM-Dependenzbäume auf neuen Sätzen vor-
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hersagt. Wir trainieren dazu neuronale Modelle um die Dependenzkanten und

Graphfragmente vorherzusagen – dies entspricht den bereits gut verstandenden Auf-

gaben Dependenparsen (Kiperwasser and Goldberg (2016)) und Supertagging (Lewis

et al. (2016)). Wir entwickeln außerdem Dekodier-Systeme, die garantieren, dass das

Typsystem der AM-Algebra immer eingehalten wird.

In der Praxis liefert unser Parser starke Ergebnisse, vergleichbar mit den besten

bisher publizierten. Er erweist sich als robust und gibt deutlich bessere Ergebnisse als

die Grammatik-basierten Parser von Artzi et al. (2015) und Peng et al. (2015). Der

Parser überbietet auch ein neuronales Vergleichsmodell, das nicht die AM-Algebra

benutzt. Insbesondere zeigen wir, dass die Verbesserungen gegenüber dem Verglei-

chsmodell vor allem in der Struktur der AMRs stattfinden. Die Verbesserungen, die

zum Beispiel Lyu and Titov (2018) gegenüber unserem Vergleichsmodell aufweisen,

scheinen mit unserem Ansatz kombinierbar, was ein interessanter Ansatz für die

weitere Arbeit in der Zukunft ist.

Weitere Ideen diese Arbeit fortzusetzen sind, diesen Parser auf andere seman-

tische Repräsentationen als AMR anzuwenden, und die Heuristiken, mit denen wir

unsere Trainingsdaten erhalten, entweder von Hand weiter zu verbessern oder durch

statistische Methoden (wie Reinforcement Learning oder Sampling) zu ersetzen.

Insgesamt zeigt diese Arbeit, dass, wenn man neuronale Methoden mit klas-

sischen Ideen der Linguistik kombiniert, die Performanz eines Parsers verbessert

werden kann. Gleichzeitig trägt unsere Methode zur Lösung zweier verbreiteter

Probleme von Grammatik-basierten Parsen bei, nämlich Robustheitsprobleme und

latente Trainingsdaten. Somit bringen wir erfolgreich linguistische Struktur und

neuronale Methoden zusammen.
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The topic of this thesis is semantic parsing, more specifically AMR parsing. The

thesis combines ideas from traditional semantic construction with current neural

methods, developing a new, simple model that expresses operations over a semantic

algebra as dependencies on the sentence. The model yields state of the art parsing

performance in practice.

1.1 Semantic parsing

Semantic parsing is the task of translating a sentence into a meaning representation.

Such a meaning representation can take di↵erent forms, depending on what one

wants to do with it. The commonality is that the meaning representation captures

(at least some aspects of) the sentence’s meaning in a more abstract and structured

form than present in the sentence itself. Such a representation can then be further

processed in a downstream task, such as answering questions, extracting information

from a text, or analyzing the sentiment of a twitter message. This makes semantic

parsing an important part of the natural language processing toolkit.

At the same time, semantic parsing is a very challenging task. There is an infinite

number of possible sentences, varying greatly in content and structure, with a large

number of ambiguities, idiosyncrasies and inconsistencies. A common approach to

address this variance is to not create a full parser by hand, but instead use corpora

of sentences annotated with meaning representations to have the parser learn its

parameters from the corpus; this thesis follows in this tradition.

The semantic representation formalism that this thesis works with is Abstract

Meaning Representation (AMR, Banarescu et al. (2013)). AMR is a general purpose

meaning representation for the English language. It represents meanings as graphs,

such as the one in Figure 1.1 for the sentence The raven wants to learn. At its core,

1
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AMR represents the “who did what to whom” of a sentence, with nodes representing

concepts and edges the relations between them. In this example, the two ARG0

edges indicate that the raven is both the wanter and the learner, and the ARG1

edge indicates that the learning is what the raven wants. There are some semantic

phenomena that AMR does not encode, such as many aspects of quantification. This

makes it easier to annotate corpora with AMR and allows semantic parsing research

to focus on a more concentrated set of issues.

want-01

raven

ARG0

learn-01

ARG1

ARG0

Figure 1.1: AMR for the sen-
tence The raven wants to learn.

Due to the availability of large annotated cor-

pora, AMR has proven a fertile research ground

for semantic parsing. Applications of AMR in-

clude e.g. information extraction (Wang et al.

(2017)), paraphrase detection (Issa et al. (2018))

and summarization (Dohare et al. (2018)). But

maybe no less importantly, the general purpose

nature of AMR, combined with the fact that

AMR covers many common yet challenging phenomena (such as long distance se-

mantic dependencies, or normalizing paraphrases to the same meaning), means that

solutions for many problems in AMR parsing may well be applicable to parsing into

other semantic formalisms as well. Thus, advancing the state of AMR parsing is

likely to advance the state of semantic parsing as a whole.

1.2 Linguistic structure in AMR parsing

Since semantic parsing is all about understanding natural language, one might as-

sume that most semantic parsers draw heavily on the linguistic theory established

over the course of the past century. However, matching a current trend in computa-

tional linguistics, the most successful AMR parsers of recent years (e.g. Foland and

Martin (2017), van Noord and Bos (2017)) use essentially no linguistic theory, instead

relying on powerful machine learning techniques – specifically, neural networks. The

model of van Noord and Bos (2017) simply predicts a string representing the AMR

character by character, and Foland and Martin (2017) predict graph nodes first and

then draws edges between them, without making explicit use of e.g. the sentence’s

syntactic structure.

And yet, adding linguistic knowledge to guide the machine learning modules, to

give them a ‘head start’ in their training process, remains an attractive idea. After

all, AMRs are not just nodes and edges, or sequences of characters. Rather, they

relate to the sentence and its syntactic structure in often direct ways.
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The raven wants

to learn

(a) (Simplified) syntax structure.

fgS

||

fgO

||

Gwant ren{R$O}

Glearn

ren{R$S}

Graven

(b) Term over the HR algebra that eva-
luates to the AMR in Figure 1.1.

want-01

S

ARG0

O

ARG1

Gwant

learn-01

S

ARG0

Glearn

raven

Graven

(c) The graph fragments used in (b).

Figure 1.2: Syntax structure and semantic term for The raven wants to learn, with
colors indicating matching parts.
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The concept of compositionality captures this relation well. The fundamental

assumption of compositionality is that there is a structurally consistent map bet-

ween the syntactic surface structure of a sentence and the corresponding semantic

term. An example of the syntactic structure is the (simplified) constituent tree in Fi-

gure 1.2(a). A semantic term is a tree of operations such as the one in Figure 1.2(b).

Such a term is a ‘building instruction’ for the meaning representation, where opera-

tions combine smaller graph fragments, such as the ones in Figure 1.2(c), into the

final AMR. As we will see later, the term in Figure 1.2(b) evaluates to the AMR in

Figure 1.1. We will formally define terms in Chapter 2. The operations in this term

here, i.e. || , renR$O etc., are those of the HR algebra (Courcelle and Engelfriet

(2012)) which is a standard tool that plays a central role in this thesis.1 The red

markers S and O in the graph fragments in Figure 1.2(c) are part of the HR algebra,

and tell it where and how the graph fragments can combine. We give a detailed

introduction to the HR algebra in Chapter 2.

An example of a structurally consistent map between the syntax tree and the se-

mantic term, as assumed by compositionality, is indicated by the colors in Figure 1.2.

Then, if one knows the syntactic structure of a sentence, and how each part of it

maps to a piece of the semantic term, one can from that construct the full semantic

term and thus the meaning representation.

One classic compositional approach to semantic parsing is that of synchronous

grammars. A grammar can be characterized as a set of rules that describe the syntax

of a sentence, and a synchronous grammar for semantic parsing associates each rule

with a partial semantic term, building the full semantic term synchronously with

the syntax when parsing the sentence. There are many variants of synchronous

grammars, but they share common principles. Two example grammar rules could

look something like this:

NP ! the raven Graven

S ! NP VP fgS
�
x2 || ren{R$S} (x1)

�

The two rows each describe a rule and correspond to the green and yellow segments

in Figure 1.2 respectively. In the first row, the left column indicates that this rule

produces the string the raven, with syntactic category NP, i.e. a noun phrase. The

right column introduces the raven node Graven of Figure 1.2(c) into the semantic

term.

In the second row, the left column indicates that the rule takes two arguments

and concatenates them, with one argument having category NP such as the raven as

1The name is due to the close relation to Hyperedge Replacement Grammar (HRG, Drewes et al.
(1997)), as Courcelle and Engelfriet (2012) discuss.
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we just saw, and the other having the category VP. This second argument could be

the phrase want to learn, i.e. the result of the red and blue segments in Figure 1.2.

The right column corresponds to the yellow sequence of semantic operations in Fi-

gure 1.2(b). In conclusion, synchronous grammars have rules that represent pairs of

syntactic and semantic operations, and how the rules can be combined is typically

controlled with syntactic categories.

AMR parsers based on synchronous grammars already exist, for example, Artzi

et al. (2015) is based on Combinatory Categorial Grammar (CCG, Steedman (2000)),

and Peng et al. (2015) is based on Hyperedge Replacement Grammar (HRG, Drewes

et al. (1997)). While the parser of Artzi et al. (2015) outperformed other early AMR

parsers and Peng et al. (2015) also showed solid performance, these synchronous

grammar approaches did not produce much follow-up work and the state of the

art has been pushed quite significantly since then. As a result, there is no current

competitive AMR parser based on synchronous grammars.

To summarize, we have two kinds of existing approaches, one with minimal to no

linguistic structure, instead heavily relying on machine learning and neural networks.

The other kind are the heavily structured synchronous grammars. Both approaches

face distinct challenges. A useful perspective to understand those challenges is the

following. Several principles of how meanings of words combine have been observed

in language. However, there is much variance in the instantiations of these prin-

ciples, i.e. in how exactly e.g. word order and lexical information a↵ect semantic

construction in di↵erent contexts. Encoding these instantiations manually is very

labor intensive. Thus, the idea of adding linguistic structure to a semantic parser

is the following: to encode the general principles in the framework of our learning

algorithm, and learn the di↵erent instantiations and variations from data.

This observation that there are universal linguistic principles, distinct from their

specific instantiations within and across languages, has a long history in linguis-

tic theory – see for example the notion of Principles and Parameters in Universal

Grammar (e.g. Chomsky (1981)). The principle of compositionality is one of these

principles, and examining di↵erent compositional approaches reveals common mecha-

nisms that repeat throughout the English language. We will discuss these principles

in more detail in Chapter 3.

Under this perspective of encoding linguistic principles directly but learning their

instantiations, two challenges of the neural, less structured models become clear.

Challenge 1: Hunger for data. The neural approaches don’t encode these gene-

ral linguistic principles. Thus, they have to learn the principles too, often

making the models particularly data hungry. For example, the purely neural
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approach of van Noord and Bos (2017) requires the use of extra training data,

generated by other AMR parsers, to achieve good performance.

Challenge 2: Limited linguistic extensibility. Neural networks are a quite opa-

que formalism – they can be characterized as sequences of operations on high

dimensional vector spaces. Thus, it is unclear how to add these linguistic prin-

ciples into, say, a sequence-to-sequence neural approach like the one of van

Noord and Bos (2017).

Synchronous grammar based parsers do follow this idea of encoding principles

directly, and learning the instantiations from data. They do this by specifying the

general form of the grammar rules, but induce the specific rules themselves from the

data. Still, these parsers face two challenges of their own.

Challenge 3: Robustness. The mechanisms of synchronous grammars for buil-

ding AMRs are more complex and restrained when compared to the more

machine learning based models. Where van Noord and Bos (2017) simply pre-

dicts a linear representation of an AMR character by character, or Foland and

Martin (2017) predicts graph nodes first and then just draws edges between

them, the grammar based models use large sets of rules featuring many hard

constraints on how the rules can combine. In other words, the instantiations

of the general principles that synchronous grammars learn only apply to very

specific situations. This makes the systems susceptible to irregularities in the

data, such as grammar mistakes in a sentence, or rare syntactic phenomena and

rare words. While such irregularities often only cause one wrong node or edge

in the less structured models, for grammar based models they can completely

throw o↵ the delicate derivation process.

Challenge 4: Structural ambiguity in the training data. To train a synchro-

nous grammar on a corpus, one needs to know the syntax trees and semantic

terms for all training examples – after all, these are the structures a synchro-

nous grammar must learn to predict. However, the AMR corpora are not

annotated with these structures – the syntactic and semantic terms are la-

tent. To train a grammar then, one must come up with such structures for the

whole corpus. The problem is, as e.g. Peng et al. (2015) note, there are gigantic

numbers of terms that could produce any given AMR. Manually annotating

the corpus with terms and alignments would take enormous labor resources.

Artzi et al. (2015) and Peng et al. (2015) therefore use heuristic and statistical

methods to select the terms they use for training, but the problem is far from

solved.
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1.3 What this thesis is about

This thesis develops a new semantic parsing model for AMR that combines the

strengths of the existing neural and compositional approaches and addresses the

challenges listed above. A key insight is that many of the principles that compositi-

onal approaches encode lie not in the relation between the syntax and the semantic

terms, but in the semantic terms alone. We will see this in detail in Chapter 3 on

background in semantic parsing. As a consequence, we still face the training data

issue, i.e. Challenge 4 above. We address this issue first, and develop the new parser

later based on the insights we gained along the way.

HR decomposition automata. The above mentioned HR algebra is a general

tool for constructing graphs, and Koller (2015) suggests it as particularly suited for

semantic construction. The first contribution of this thesis is a method to compute

decomposition automata for the HR algebra, which are compact representations of

all terms over the HR algebra that evaluate to a given AMR. Such a compact repre-

sentation of the set of terms will be crucial for training any parser based on the HR

algebra: it allows generating terms for the AMR in the corpus, e.g. via statistical

methods as used by Peng et al. (2015). Examining these compact representations,

the decomposition automata, will also help us understand how much ambiguity there

is when expressing an AMR with an HR term, i.e. how much of a problem the above

mentioned Challenge 4 is for the HR algebra. Computing the decomposition auto-

mata turns out to be a complex task. Thus the technical challenge that we address

here is to compute the decomposition automata e�ciently. We find that in fact,

there are so many di↵erent HR terms for each AMR that finding consistent terms

for training is infeasible with purely statistical methods. That is, Challenge 4 applies

here as well. This is what we address next.

AM algebra. Examining the HR terms for AMR more closely, we find that since

the HR algebra is designed to create general graphs, it has many ways of building

an AMR that are undesirable when we consider the AMR as a semantic graph with

meaningful structure. In other words, there is much unnecessary ambiguity when

choosing an HR term for a given AMR. As a solution, this thesis presents the new

Apply-Modify (AM) algebra. Its operations wrap linguistically motivated sequences

of HR operations into single operations, and adds a simple type system that controls

which operations are allowed when.
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appS

appO

Gwant Glearn

Graven

(a) AM term.

want-01

S

ARG0

O[S]

ARG1

Gwant

learn-01

S

ARG0

Glearn

raven

Graven

(b) The graph fragments used in (a).

Figure 1.3: Term over the AM algebra that evaluates to the AMR for The raven
wants to learn in Figure 1.1. The colors indicate parts matching with the terms in
Figure 1.2.

want-01

S

ARG0

learn-01

ARG1

ARG0

Figure 1.4: Partial result of
the term in Figure 1.3(a), after
appO (Gwant, Glearn).

A term over the AM algebra that evaluates to

the AMR in Figure 1.1 is shown in Figure 1.3(a).

It uses the application operation app of the AM

algebra. The idea is that the graph fragments

have ‘slots’, marked with the red letters in Fi-

gure 1.3(b), and that the application operation

fills these slots.

For example, The appO operation in

appO (Gwant, Glearn) plugs the graph fragment

Glearn into the O slot of Gwant (marked with the red O[S] in Gwant in Figure 1.3(b)).

The result is shown in Figure 1.4. Both Gwant and Glearn have an S slot here, and

these S slots are unified into one during application, as shown in Figure 1.4. Thus,

the result of appO (Gwant, Glearn) has a single S slot, and the appS operation in the

term in Figure 1.3(a) fills this slot with the graph Graven, to obtain the complete

AMR in Figure 1.1.

This kind of argument application, filling and unifying ‘slots’, is a classic met-

hod in compositional semantic construction, used for example in Lexical Function

Grammar (LFG; Kaplan et al. (1982)) and the Minimal Recursion Semantics algebra

(MRS; Copestake et al. (2001)) for Head-driven Phrase Structure Grammar (HPSG;

Pollard and Sag (1994)).

We control when unification occurs with the type system. The “[S]” marker at

the O slot of Gwant (written as O[S] in Figure 1.3(b)) ensures that the argument that

fills the O slot, here Glearn, has an open S slot itself, guaranteeing that the unification

occurs.

The type system and the higher-level operations work together to e↵ectively

restrict the set of possible terms for a given AMR. We need to strike a careful
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balance here. If we restrict the algebra too much, then we get coverage problems,

i.e. there are too many AMRs for which we cannot find a good term at all. But if we

don’t restrict the algebra enough, we end up with the same complexity problems we

observed in the HR algebra. Qualitative and quantitative evaluations in this thesis

support the claim that the AM algebra successfully strikes that balance.

AM dependency trees. With this work done on the training data issue (Chal-

lenge 4) and the AM algebra at our disposal, we now introduce the new parsing

model. It predicts AM operations directly, in the form of a dependency tree like

the one in Figure 1.5. This dependency tree assigns graph fragments to some of the

words (here Graven, Gwant and Glearn, written below the sentence), and specifies which

operations occur between them (the arrows above the sentence). Such a dependency

tree is an underspecified representation of an AM term, because it specifies which

operations occur, but not the order. For example, the dependency tree here does

not specify whether the appS or the appO operation is executed first. We show that

although the AM term is underspecified, the AMR is not: that all well-typed terms

corresponding to one dependency tree evaluate to the same AMR. Thus, knowing

the dependency tree is enough to uniquely specify an AMR as evaluation result.

We now turn to the parsing pipeline. To predict the dependency trees, we use

standard neural techniques for supertagging (to predict the graph fragments, see

e.g. Lewis and Steedman (2014)) and for dependency parsing (see e.g. Kiperwasser

and Goldberg (2016)). The full pipeline has the following steps.

Training

1. Generate AM dependency trees for the AMRs in the training data. In

fact, there are now even fewer dependency trees describing an AMR than

there are AM terms, so few in fact that we can just pick an arbitrary

dependency tree and get consistent training data.

2. Train the neural supertagger and dependency models to predict the graph

fragments and edges of the dependency trees in the training data.

Prediction

1. Predict scored lists of potential graph fragments for each word, and scores

for all possible edges (i.e. between each pair of words) with the neural

models, see Figure 1.6 on the left.

2. Use a typed decoder to find the best well-typed dependency tree, accor-

ding to the scores of the neural models, see Figure 1.6 on the right.
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The raven

Graven

wants

Gwant

to learn

Glearn

appS
appO

Figure 1.5: AM dependency tree for the running example The raven wants to learn.

The

G1

G2

...

raven

G1

G2

...

wants

G1

G2

...

to

G1

G2

...

learn

G1

G2

...

decoder
The raven

Graven

wants

Gwant

to learn

Glearn

appS
appO

Figure 1.6: The neural model predicts scores for all possible edges and supertags,
i.e. for all blue edges and supertags on the left. The decoder then finds the best AM
dependency tree according to the scores.

3. Evaluate the dependency tree to get an AMR.

Since the dependency model predicts the semantic operations directly, it is sim-

pler, and more flexible and robust than a synchronous grammar. At the same time,

the linguistically motivated AM operations provide structure to the parser. We thus

still guide the parser with linguistic principles, just more gently.

The result is a parser that reaches 71.0 Smatch score on the LDC2017T10 dataset,

a state of the art result.

1.4 Plan of thesis and contributions

Chapter 2. Background: Semantic graphs. This thesis brings together a va-

riety of mathematical and formal notions as background. Chapter 2 descri-

bes AMR in more detail, introduces the HR algebra of Courcelle and Engelf-

riet (2012) whose operations we use to construct AMRs (c.f. the term in Fi-

gure 1.2(b)), and introduces decomposition automata (or, more generally, tree

automata), a compact representation of terms that will be useful throughout

the thesis. Chapter 2 also introduces the technical notations we use.
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Chapter 3. Background: Semantic parsing. Where Chapter 2 introduced

technical background, Chapter 3 gives an overview on previous work on se-

mantic parsing. We get to know methods from compositional semantic par-

sing, illustrated by the IRTG formalism combined with the HR algebra. These

methods will serve as inspiration throughout the thesis, and are very much the

foundation for the following chapters. Chapter 3 also discusses related work in

AMR parsing in more detail, and situates the work of this thesis within that

scope.

Chapter 4. S-Graph Decomposition. This chapter describes how to compute

the decomposition automata for the HR algebra e�ciently, and provides asymp-

totic and empirical evaluation. The content of this chapter is based on

Groschwitz et al. (ACL 2015).

Key contributions:

• Fast bottom-up and top-down algorithms for computing the HR decom-

position automata.

• Empirical runtimes on the related graph parsing task improved the state of

the art by orders of magnitude, and were further improved in Groschwitz

et al. (ACL 2016).

Chapter 5. The AM Algebra. This chapter introduces the AM algebra. The

AM algebra was first published in Groschwitz et al. (IWCS 2017). This chap-

ter is based on that publication, with several new ideas added.

Key contributions:

• The AM algebra, a linguistically motivated algebra for semantic graphs.

• A qualitative analysis of the AM algebra’s suitability for several language

phenomena.

• A method for computing the decomposition automata for the AM algebra,

including an evaluation on an AMR corpus.

Chapter 6. AM dependency parsing. This chapter introduces the AM depen-

dency trees, as well as the parser for this dependency model. The chapter is

based on Groschwitz et al. (ACL 2018).

Key contributions:
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• AM dependency trees as a simple, sound and flexible model for semantic

construction.

• The AM dependency parser, that combines the structure of the AM al-

gebra with neural machine learning techniques to yield state of the art

performance in AMR parsing.

1.5 Scope of the thesis

The goal of this thesis is to develop a competitive neural compositional AMR parser

that addresses the four challenges set out above. In particular, the thesis aims to

get the basics right. While throughout the thesis we will encounter related problems

that are complex research topics in their own right, solving these problems is beyond

the scope of this work. Such out-of scope topics are in particular coreference, ellipsis

and the Zipfian tail of more specific compositional phenomena.



In this chapter, we examine AMR in detail and introduce the HR algebra of Courcelle

and Engelfriet (2012) (henceforth C&E), whose terms we use to describe AMRs.

We also take a look at tree automata, that allow us to represent large sets of terms

compactly. The goal of this chapter is thus to familiarize the reader with the semantic

representation we are concerned with, and to establish foundational methods for

building these graphs from smaller pieces.

Section 2.1 introduces some basic notation. Section 2.2 formally defines graphs,

and Section 2.3 introduces AMR in more detail. We introduce the HR algebra, as

well as background on algebras and terms in general, in Section 2.4. The chapter

concludes with an introduction to tree automata.

2.1 Basics

Before we look at semantic graphs, let us get some basic notation down.

• For a set M , we denote its power set (the set of all subsets of M) as P (M).

• We write the identity function as id.

• For a function f : A ! B, we write its domain as D (f) = A, and its image

as image I (f) = B.

13



14

1:boy

2:live-01

ARG0

(a)

1 a:boy

2

c:ARG0

b:live-01

(b)

1:boy

2:live-01

c:ARG0

(c)

boy

live-01

ARG0

(d)

1:boy

2:live-01

a:ARG0b:ARG1

(e)

Figure 2.1: Example graphs.

• We restrict a function f to a set A ✓ D (f) by writing f |
A
; this is the function

identical to f , but with domain A.

• Given two functions f and g such that the image of g is in the domain of

f , i.e. I (g) ✓ D (f), we define their concatenation f � g element wise as

(f � g)(x) = f(g(x)).

• Given two functions f and g, we write their union as f[g. This is only defined

if f and g agree where their domains overlap, i.e. if for all x in D (f) \D (g),

we have f (x) = g (x). Then, the union f [ g is a function on the union of

domains, D (f) [D (g), with

(f [ g) (x) =

8
<

:
f (x) if x 2 D (f),

g (x) otherwise.

• Given an alphabet of symbols ⌃ we denote the set of all sequences (or strings)

over ⌃ with ⌃⇤, and the empty sequence with ✏.

2.2 Graphs

In this thesis, we work with graphs a lot. There are multiple ways of defining a

graph, and it will be necessary to strike a balance between flexibility and simplicity

here.

The most straightforward way of defining a labeled graph is the following:

Definition 2.1. A simply labeled directed simple graph for a set of node labels K

and edge labels ⇤ is a tuple G = (VG, EG,G,�G), where VG is a set of vertices,

EG ⇢ VG ⇥ VG is the set of edges, and G : VG ! K and �G : EG ! ⇤ are (partial)

node- and edge labeling functions.
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Such a graph is shown in Figure 2.1(a). In examples, such as Figure 2.1, we

generally denote nodes with blue numbers (we omit the colors when we refer to the

nodes in text). The black texts are the labels.

However, this formalization of graphs is suboptimal for this thesis. On the one

hand, AMRs do not use loops, so we can encode node labels as loops instead; see

Figure 2.1(b) for an example. This will simplify the reasoning in formal parts of

this thesis, since we then can reason about edges only. Further, we will need to

consider edges in multiplicity, i.e. multigraphs. This is for two reasons. One, AMRs

(which we introduce in more detail in Section 2.3) can be multigraphs, for example

Figure 2.1(e) shows an AMR for The wizard likes himself, where wizard is both the

ARG0 and ARG1 of like-01, i.e. both the liker and the object of a↵ection. The

second reason is that the graph merging operations of the HR algebra, which we will

use throughout the thesis, use multigraphs (see Section 2.4). We thus don’t define

edges just through their source and target node, but give them their own identities

(blue lowercase letters in examples, such as in Figure 2.1(b)). We use the following

definition of graphs throughout the thesis.

Definition 2.2. An edge-labeled directed multigraph for a set of edge labels ⇤ is a

quadruple G = (VG, EG, vertG,�G) where VG is a set of vertices, and EG is a set

of edges. The function vertG : EG ! VG ⇥ VG assigns a pair of vertices (u, v) to

each edge, the edge is then considered to go from u to v. The edge labeling function

�G : EG ! ⇤ assigns to each edge a label in ⇤.

Usually though, while we formally encode node labels as loops, in examples we

present them directly as node labels to improve readability. For example, we would

use the notation of Figure 2.1(c) rather than the one in Figure 2.1(b). We also

usually refer to them as node labels in text, to keep the language simple.

Since much of this thesis relies on the HR algebra of Courcelle and Engelfriet

(2012) (C&E), it is worth mentioning the graph definition from there (Definitions

2.9 and 2.11 of C&E, with minor changes):

Definition 2.3. A multi-labeled directed multigraph for a set of node labels K and

edge labels ⇤ is a quintuple G = (VG, EG, vertG,G,�G) where VG, EG,vertG :

EG ! VG ⇥ VG and �G : EG ! ⇤ are as in Definition 2.2. The node labeling

function G : V ! P (K) assigns to each node a (possibly empty) set of labels from

K.
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Remark 2.4. It is straightforward to translate between our definitions in some

cases. Take Definitions 2.1 and 2.3. For any simply labeled directed simple graph

G, let its canonical multigraph be the tuple G0 = (VG0 , EG0 , vertG0 ,G0 ,�G0) with

VG0 = VG

EG0 = EG

vertG0 = id

�G0 = �G

and with G0(v) = {G(v)} if G(v) is defined, and G0(v) = ; otherwise. Conversely,
let G be a multi-labeled directed multigraph without multiple edges (i.e. vertG is

injective) and where each node has at most one label. Then its canonical simple

graph is the tuple G0 = (VG0 , EG0 ,G0 ,�G0) with

VG0 = VG

EG0 = vertG (EG)

�G0 = �G � vert�1

G

and with G0(v) = a if G(v) = {a} for some a 2 K, and G0(v) undefined if

G(v) = ; (no other cases are possible).

Similarly, we can translate between Definitions 2.3 and 2.2 in some cases. Expres-

sing an edge-labeled directed multigraph as a multi-labeled graph is always possible:

for any edge-labeled directed multigraph G, let its canonical multi-labeled graph be

the tuple G0 = (VG0 , EG0 , vertG0 ,G0 ,�G0) with

VG0 = VG

EG0 = {e 2 EG | u 6= v for (u, v) = vertG(e)}

vertG0 = vertG|
E

G0

�G0 = �G|
E

G0

and with G0(v) = {�G(e) | vertG(e) = (v, v)} for all v 2 VG0 . In other words, we

simply interpret all loops as node labels instead.

However, inverting this procedure to express a multi-labeled graph G as an edge-

labeled directed multigraph is only possible if G has no loops. Let G be a multi-

labeled directed multigraph with node labels in K and without loops (i.e. for all
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(u, v) 2 I (vertG), u 6= v), and let

f : VG ⇥K

be injective to a set A that is disjoint to EG (f will create new edges for us). Then

a canonical edge-labeled graph for G is the tuple G0 = (VG0 , EG0 , vertG0 ,�G0) with

VG0 = VG

EG0 = EG [ {f (v, `) | v 2 VG, ` 2 G(v)}

and with �G0(e) = �G(e) if e is not a loop (i.e. e 2 EG) and �G0(e) = ` if e = f(v, `)

for some v 2 VG, ` 2 G(v), i.e. if e is one of the newly added loops.

Summary. Formally we use the edge-labeled multigraphs of Definition 2.2, with

node labels encoded as loops. Where this formal precision is not necessary, e.g. in

examples, we still write node labels inside the node, and use the simpler language

of Definition 2.1. There is a straightforward formal relationship to the definition of

graphs in C&E (here Definition 2.3), see Remark 2.4. This is important since much

of this thesis is based on the HR algebra of C&E (see Section 2.4).

We can now establish some further foundational concepts related to graphs.

Definition 2.5 (Subgraphs). Let G and H be graphs. We say that H is a subgraph

of G,written H ✓ G, if VH ✓ VG,EH ✓ EG, and both vertH(e) = vertG(e) and

�H(e) = �G(e) for all e 2 EH .

The subgraph of G induced by a vertex set U ✓ VG is the graph

H =
⇣
U,EH , vertG|

EH

,�G|
EH

⌘

where

EH = {e 2 EG | u, v 2 U where (u, v) = vertG(e)} .

We write G�U for the subgraph induced by VG \U . For a subset of edges F ✓ EG

we write G � F for the graph
⇣
VG, EG \ F, vertG|

EG\F
,�G|

EG\F

⌘
. For brevity, if

v 2 VG and e 2 EG are a single node and edge respectively, we sometimes write G\v
for G \ {v} and G \ e for G \ {e}.
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Another important concept in analyzing the structure of graphs is that of paths

and connectivity.

Definition 2.6 (Paths and connectivity). For two vertices u, v 2 VG, we write u
e$

v, or just u $ v if there is an edge e such that vertG (e) = (u, v) or vertG (e) = (v, u),

i.e. if there is an edge between the vertices no matter the direction. If we care about

the direction, we write more specifically u
e! v or just u ! v for the existence of an

edge e such that vertG (e) = (u, v).

A path from a vertex u 2 VG to a vertex v 2 VG is a sequence of vertices v0, v1, . . . , vk

such that v0 = u, vk = v and v0
e1$ v1

e2$ . . .
ek$ vk with all di↵erent edges, i.e. ei 6= ej

for i 6= j. If in fact v0
e1! v1

e2! . . .
ek! vk, then we call the path directed. Note that

we allow the case k = 0, i.e. u = v, we call this a trivial path.

We say two vertices u, v 2 VG are connected if there is a path from u to v. Note that

this is a reflexive, symmetric and transitive relation, and thus divides the graph into

equivalence classes called connected components. We call a graph connected if it has

a single connected component, i.e. any two vertices are connected.

Often in this thesis, we will work with graphs up to isomorphism. The following

definition, again from C&E, explains this concept.

Definition 2.7 (Isomorphism). Let G and H be graphs. An isomorphism h : G !
H is a pair of bijections (hV , hE) where hV : VG ! VH and hE : EG ! EH , such

that for every e 2 EG with (u, v) = vertH(e), vertH(hE(e)) = (hV (u), hV (v)) holds.

We denote by G ' H the existence of an isomorphism G ! H and say G and H are

isomorphic (note that this is an equivalence relation, i.e. reflexive, symmetric and

transitive).

By an abstract graph, we mean the equivalence class of a graph G, namely

[G]
iso

= {H | H ' G} .

In contrast, we call G itself a concrete graph. We say that a concrete graph G is

isomorphic to an abstract graph [H]
iso

if G ' H, i.e. G belongs to the isomorphism

class [H]
iso

; this is also written as G ' [H]
iso

.

Thus, when we speak of graphs ‘up to isomorphism’, we mean abstract graphs.

We talk about abstract graphs as we would about concrete graphs, except that

we don’t specify exact objects for the vertices and edges. Figure 2.1(d) shows an

abstract graph of which Figure 2.1(c) is a representative; simply the blue node and
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edge identities are dropped.

2.3 Abstract Meaning Representation

Abstract Meaning Representation (AMR) is a meaning representation in graph form.

But what does a sentence mean? A common distinction is the one between sentence

meaning and speaker meaning, where the former is the meaning inherent to the sen-

tence itself, while the latter is the meaning the speaker intends to convey. When

Mary says to Sue The baby is cold, then the sentence meaning is just the factual

statement that the baby experiences coldness. However, in context, Sue may under-

stand this as e.g. a request to close the window or turn up the heating. AMR focuses

on sentence meaning, i.e. semantics.

For example, the sentence The baby is cold is represented by the AMR in Fi-

gure 2.2(a). The nodes in an AMR represent the core concepts in the sentence, and

the edges their relations. The representations of the words are mostly simple – for

the noun baby, just the label baby is used. For predicates, such as cold, senses are

disambiguated using OntoNotes (Hovy et al. (2006); related to PropBank Kingsbury

and Palmer (2002)). For example, the ‘temperature’ meaning of cold is cold-01, and

disambiguated from cold-02 (unfriendly, emotionless) and cold-03 ((of a trail) no

longer being fresh). OntoNotes also provides argument roles for predicates, such as

the ARG1 edge label here. This denotes that cold-01 has an ARG1 role, defined in

OntoNotes as the thing being cold, and that baby has that role.

This allows AMR to encode the who did what to whom of a sentence. Take for

example the AMR for James loves Lily in Figure 2.2(b). Here James takes the ARG0

role of the lover, whereas Lily takes the ARG1 role as the object of a↵ection. To get

a better understanding and intuition of the task of building AMR, let us have a look

at some properties of these graphs.

Firstly, as the name suggests, AMR abstracts away from syntax. The sentences

James loves Lily, Lily is loved by James and even James’s love for Lily all have the

same AMR in Figure 2.2(b).

The AMR in Figure 2.2(c), representing the word baker, illustrates how AMRs

are decompositional, in the sense that they sometimes split the meaning of a word

into separate parts, allowing for more generalization. Here, baker is represented as ‘a

person who bakes’. Another example is shown in Figure 2.2(d), where a possession

is represented as ‘a thing that is possessed’.

Further, each AMR has a root, denoted in this thesis by the bold outline on the

node, that expresses the focus of the AMR. Usually this is the main predicate of
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the sentence.1 The di↵erence becomes clearer when looking at AMRs for fragments

without predicate: compare the root placement for the big owl and the owl is big in

Figures 2.2(e) and (f) respectively. These graphs are also examples for how AMR

displays modification.

In the examples we saw so far, the AMRs were actually all trees. But AMRs

can have more complex structure, with reentrancies as in the AMR for The raven

wants to learn in Figure 2.2(g). Here, raven is both the wanter and the learner,

and the additional ARG0 edge from learn-01 to raven results in an (undirected)

cycle, or reentrancy. In the linear notation for AMRs used e.g. in the published

corpora, this graph would be written as (w / want-01 :ARG0 (r / raven) :ARG1

(l / learn-01 :ARG0 r)). This notation uses node names such as here w, r and l

to identify nodes, allowing (l / learn-01 :ARG0 r) to unambiguously2 refer back

to the raven node as r. We will not use the linearized notation in this thesis, instead

working on the graphs directly. In fact, it is su�cient to represent AMRs as abstract

graphs, not specifying node names, since the node names are merely a tool to specify

reentrancies.3

Further, AMR represents no tense or aspect, e.g. the graph in Figure 2.2(b)

also represents the sentences James loved Lily, James will love Lily, and so on; si-

milarly, the AMRs for Lily casts spells and Lily is casting a spell are identical as

well (Figure 2.2(h)). Only when a specific time is mentioned in the sentence, then

that time is represented in the AMR, see the graph for Lily cast a spell yesterday

in Figure 2.2(i). In the same spirit, grammatical number and definiteness is

dropped (a spell, spells, the spell and the spells are each just a spell node), but expli-

cit numbers are represented; see Figure 2.2(j) for two spells. Negation is expressed

through a ‘-’ node and a polarity edge, and negation scope is somewhat represen-

ted by where the polarity edge attaches, note the di↵erence between Figure 2.2(k)

for The raven doesn’t have to leave and Figure 2.2(l) for The raven must not leave.

Quantifier scope is not encoded in AMR.

These simplifications make AMRs straightforward to read and understand, and

made the annotation of large corpora possible. The latest release LDC2017T104

contains over 39,260 sentence-AMR pairs. These contain real life sentences from

both newspaper and online discussion forums, that go far beyond the complexity

of the examples discussed here. AMR has been experimented with in some sys-

1We will discuss how we represent the root formally at the end of Section 2.4.
2This is relevant when there are multiple nodes with the same label, e.g. here multiple raven

nodes.
3In particular, the node names themselves are not taken into account by the o�cial Smatch

evaluation tool (Cai and Knight (2013)).
4https://catalog.ldc.upenn.edu/LDC2017T10
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tems that take the graphs as input for an application, e.g. Wang et al. (2017) and

Rao et al. (2017) for biomedical information extraction, and Dohare et al. (2018)

for summarization. But mostly, AMR’s ‘general purpose’ nature combined with a

balanced combination of simplicity and challenging phenomena has made AMR a

popular target representation for research in semantic parsing.

2.4 An algebra for building graphs

A core principle of this thesis is to build graphs step by step from smaller pieces.

This section introduces the HR algebra of Courcelle and Engelfriet (2012) (C&E), a

collection of simple, yet powerful operations to build graphs. This section has two

parts: first, we formalize how we talk about ‘operations’ by introducing algebras and

terms. Then we define the HR algebra.

2.4.1 Signatures, Terms and Algebras

This section mostly introduces standard notation, as used e.g. in Comon (1997) and

C&E. Several sections are taken verbatim from these sources.

A signature (or ranked alphabet) is a pair (⌃, ar) where ⌃ is a finite set and ar

is a mapping from ⌃ into the natural numbers N. The arity of a symbol f 2 ⌃ is

ar(f). The set of symbols of arity n is denoted by ⌃n. Elements of arity 0, 1, . . . n

are respectively called constant, unary, . . . , n-ary symbols.

An algebra gives a signature meaning. An algebra A consists of a signature ⌃

and a set of objects D called the domain, and interprets each n-ary symbol f in ⌃

as an n-place function f A : Dn ! D on the domain. Note how constant symbols

are interpreted as functions that do not take arguments, i.e. constants in D. We

also call the functions f A operations. A simple example is a string algebra, where

the signature contains the binary concatenation symbol ⇤ and words as constants,

e.g. the set of symbols could be

{⇤, James, loves, Lily} .

The domain is the set of strings. The word symbols evaluate to the words themselves,

e.g. JamesA = James, and ⇤A concatenates the words. For example, ⇤A (lovesA, LilyA)

yields the phrase loves Lily and

⇤A (JamesA, ⇤A (lovesA, LilyA)) (2.1)

yields the sentence James loves Lily. We sometimes drop the subscript A, using just
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⇤

⇤

James loves

Lily

(a)

✏

1

11 12

2

(b)

Figure 2.3: (a) A term t over the string algebra and (b) the positions in the term.

the symbol f to denote the operation f A if this is clear from context. We also often

use infix notation for binary operations such as ⇤. That is, we sometimes simplify

2.1 to

James ⇤ (loves ⇤ Lily) .

A very useful notion is that of a term. Terms are (ordered) trees of symbols, that

we can then evaluate in an algebra. Sometimes it will also be useful to have variable

symbols in a term that function as placeholders. Formally, let X be an ordered set

of constants called variables, usually we have X = {x1, x2, . . . , xn}. We assume that

the sets X and ⌃0 are disjoint.

Definition 2.8 (Term). The set T (⌃,X ) of terms over the ranked alphabet ⌃ and

the set of variables X is the smallest set defined by:

(i) ⌃0 ✓ T (⌃,X ) and

(ii) X ✓ T (⌃,X ) and

(iii) if p � 1, f 2 ⌃p and t1, . . . , tp 2 T (⌃,X ), then f(t1, . . . , tp) 2 T (⌃,X ).

If X = ; then T (⌃,X ) is also written T (⌃). Terms in T (⌃) are called ground terms.

A term t in T (⌃,X ) is linear if each variable occurs at most once in t.

Figure 2.3 shows a term over the string signature we just discussed. We can

evaluate a term t in an algebra A by interpreting each symbol with the operation A
assigns to it, and we write JtKA for the result of evaluating the operations bottom-up.

Formally, for t = f (t1, . . . , tn), we can define this recursively as

JtKA = f A (Jt1KA , . . . , JtnKA) .

For example, let t be the term in Figure 2.3 and A the string algebra from earlier,



24

then

JtKA = James loves Lily.

If the algebra is clear from the context, we sometimes just write JtK.
The depth (or height) of a term is again defined recursively. If a term t consists

of just a constant, then t has depth 0. Otherwise, t has the maximum depth of its

child terms plus one, i.e. if t = f (t1, . . . , tn) for n > 0, then the depth of t is

max
i=1,...,n

di + 1

where di is the depth of ti.

Sometimes it will be useful to talk about where exactly in a term a symbol

occurs. To this end, we can also define a term t 2 T (⌃,X ) as a partial function

t : N⇤ ! ⌃ [ X with domain pos (t) satisfying the following properties:

(i) pos (t) is nonempty and prefix-closed.

(ii) 8p 2 pos (t), if t(p) 2 ⌃n, n � 1, then {j | pj 2 pos (t)} = {1, . . . , n}.

(iii) 8p 2 pos (t), if t(p) 2 X [ ⌃0, then {j | pj 2 pos (t)} = ;.

In other words, pos (t) is a set of positions or ‘addresses’, and in this view, t assigns a

symbol from the signature (or a variable) to each position in pos (t). Conditions (ii)

and (iii) ensure that arities are respected. Figure 2.3(b) shows example positions.

Essentially, the purpose of using variables in a term is so that we can replace

them. We formalize this notion here.

Definition 2.9 (Context). Let Xn = {x1, . . . , xn} be an ordered set of n variables.

A linear term C 2 T (⌃,Xn) is called a context and the expression C[t1, . . . , tn] for

t1, . . . , tn 2 T (⌃) denotes the term in T (⌃) obtained from C by replacing variable

xi by ti for each 1  i  n. We denote by Cn(⌃) the set of contexts over (x1, . . . , xn)

and by C(⌃) the set of contexts containing a single variable (i.e. C(⌃) = C1(⌃)).

With this background established, we can now have a look at the graph operations

of the HR algebra.

2.4.2 The HR Algebra

In this section, we discuss the HR algebra of C&E, an algebra of simple and general

graph combining operations.5

5The name HR algebra stems from the algebra’s close relation to Hyperedge Replacement Gram-

mar (HRG, Drewes et al. (1997)); this relation is throughly examined in C&E. We will not discuss
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The definitions in this section are based on C&E (Definitions 2.24 to 2.32), but

also contain simplifications and minor changes for the context of this thesis. In

particular, the definitions are adapted to edge-labeled directed multigraphs.

At the core of the HR algebra are s-graphs, which are graphs with special, additi-

onal node labels called sources. Generally, we use capital letters for sources, printed

red in figures. For example, in G1 in Figure 2.4, the node 1 has an A source and

node 2 has a B source. These sources mark the nodes where the HR algebra can

‘glue’ graphs together, as we will see below. The formal definition of s-graphs is as

follows.

Definition 2.10 (Graphs with sources). Let S be a fixed set. A concrete graph with

sources, or a concrete s-graph for short, is a pair G = hG�,�Gi consisting of a concrete
edge-labeled directed mutigraph G� and a partial injective function �G : VG� ! S.
We will simplify the notation VG� into VG, and similarly for other notations. The

domain of �G is a set of vertices denoted by Src (G) and called the set of sources of

G. If �G(u) = a, then we say that u is the a-source of G.

In Figure 2.4 we have for example �G1 = {1 7! A, 2 7! B}. In G8, node 1 has no

source, i.e. �G8 is partial.

Before we proceed, let us transfer some terminology we established for graphs

to s-graphs. We extend the notion of an isomorphism (Definiton 2.7) to concrete

s-graphs in the obvious way, i.e. two concrete s-graphs G and H are isomorphic,

G ' H, if G� ' H� and the corresponding bijection hV : VG ! VH maps Src (G) to

Src (H) and that �H(hV (u)) = �G(u) for all u 2 Src (G). Similarly, we obtain the

notion of an abstract s-graph as the equivalence class of concrete s-graphs. The HR

algebra operates on abstract s-graphs.

We say that an s-graph H is a subgraph of an s-graph G, if H� ✓ G� and the

source assignments are identical, i.e. �H = �G|
VH

. But importantly, we say H is a

sub-s-graph of G if just H� ✓ G�, no matter what source assignments H has. These

sub-s-graphs will be crucial in analyzing the compositional structure of a graph.

We can now define the merge operation, the key operation of the HR algebra

that ‘glues’ graphs together. We first define it on concrete s-graphs, as an aide for

defining it on abstract s-graphs later.

Definition 2.11 (Merge of concrete s-graphs). Let G,H be concrete s-graphs. We

say that H is a subgraph of G, written H ✓ G, if H� ✓ G� and �H = �G|
VH

.

technical details of HRG in this thesis, but will look at related work based on HRG in Chapter 3.
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Figure 2.4: Example graphs.



27

Let G,H,K be concrete s-graphs. We write G = H || K, and we say that G is

the result of merging H and K, if and only if:

1. H ✓ G, K ✓ G, G� = H� [K�,

2. VH \ VK = Src (H) \ Src (K)

3. EH \ EK = ;

4. �G = �H [ �K .

The last condition implies that �H and �K agree. The intuition behind this

definition is thatG is essentially just the union of the graphs, with the conditions that

the graphs must overlap exactly where they have common sources, and everything

except vertices with common sources has to come from exactly one of the graphs.

In Figure 2.4, we have G3 = G1 || G2.

The merge for concrete s-graphs itself is of not much use for graph construction.

On the one hand, it is obvious from the definition that there are pairs of concrete

s-graphs that cannot be merged, i.e. that ‘||’ is only a partial function on concrete

s-graphs. But more importantly, the idea of the merge is to ‘glue’ graphs together

along their source names. But for concrete s-graphs, the nodes with the same source

names, i.e. the nodes that will be ‘glued’ together, must be the same nodes in the first

place. This pretty much defeats the purpose of marking them with an extra source

name. But for abstract s-graphs, where graphs are only defined up to isomorphism

and thus node identities are not accessible, the merge operation exactly matches the

intuition of “gluing graphs together along their common source names”.

Definition 2.12 (Merge). Let H and K be abstract s-graphs. The abstract s-graph

H || K, called the result of merging H and K, is the isomorphism class of H 0 || K 0

for any two concrete s-graphs H 0 and K 0 such that H 0 ' H, K 0 ' K and H 0 || K 0 is

defined. For any two pairs (H 0,K 0) satisfying these conditions, the resulting s-graphs

H 0 || K 0 are isomorphic. Hence H || K is well defined for any two s-graphs H and

K. Informally we will say that H and K are ‘glued at their sources with the same

name’.

C&E show that the merge operation is indeed defined for any pair of abstract

s-graphs. In Figure 2.4, the graphs G4, G5, G6 are abstract s-graphs, i.e. we do

not specify their node or edge identities, only the labels. Here, we have G6 =
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G4 || G5. Note that G2, G3 and G1 can play the roles of H 0,K 0 and H 0 || K 0 from

Definition 2.12, respectively.

The following operations allow us to manipulate sources of s-graphs, so that we

can control how two s-graphs merge.

Definition 2.13 (Forget). Let B ⇢ S be a finite set of source names and h : S ! S
be the partial injective function that is undefined on B and the identity everywhere

else. Let G be a concrete s-graph. Then let fgB(G) be the s-graph H such that

the base graphs are equal, H� = G�, and �H = h � �G, that is all sources in B are

removed.

In Figure 2.4, we have G8 = fg{A} (G1).

Definition 2.14 (Rename). Let h : S ! S be a permutation of source names that

is the identity outside a final set. Let G be a concrete s-graph. Then let renh(G) be

the s-graph H such that H� = G� and �H = h � �G.

Let {A $ C} be a permutation that swaps A and C, and is the identity apart

from that. In Figure 2.4, we then have G7 = ren{A$C} (G1).

Both rename and forget commute with isomorphisms, and can therefore be app-

lied to abstract s-graphs. These three types of operations form the basis of the HR

algebra. If we add some constant symbols for abstract s-graphs, we obtain a full HR

algebra.

Definition 2.15 (The HR algebra of s-graphs). Let S be a set of source names and

C be a set of constant symbols, each denoting an abstract s-graph with sources in S.
Then let

⌃S,C = { || , fgB, renh, c | B ✓ S finite, h : S ! S permutation, c 2 C} .

Further let DS be the set of all abstract s-graphs with sources in S. Then the HR

algebra with sources in S and constants in C is the algebra with domain DHR and

signature ⌃S,C.

C&E suggest the following types of ‘atomic’ constants and show that it is parti-

cularly well suited to describe a large variety of graphs.6

6Specifically, C&E show that if there are k sources in S, the HR algebra with the atomic constants
can describe all graphs of tree width k � 1.
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want-01

R
want-01

learn-01

R
learn-01

raven

R
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S
ARG0

RS
ARG0

OARG1

RO
ARG1

(c)

Figure 2.5: (a) An AMR for the sentence The raven wants to learn, (b) an HR
term t that builds it and (c) the constants used in the term. For readability we write
the node labels inside the nodes, even though we technically represent them as loops.

Definition 2.16 (Atomic s-graphs). Let ⇤ be a set of labels as before and S a set of

source names. For all a, b 2 S and � 2 ⇤ we define the following constant symbols.

Let a be the constant symbol denoting the abstract s-graph consisting of a single

node with an a source. Let a`
�
denote the s-graph with a single node with an a

source, at which there is a loop labeled �. Finally, let ab� denote the s-graph with

two nodes, one with an a source and one with a b source, and an edge from the

former to the latter labeled �.

C&E then use the constant set C =
�
a,a`

�
,ab� | a, b 2 S,� 2 ⇤

 
for some fixed

set of labels ⇤. We will deviate from that constant set in this thesis, and use constant

sets more tailored to AMRs. We will define these constant sets in the respective

chapters.

A side note on concrete graphs. We can also consider the partial concrete

HR algebra, with domain over concrete s-graphs, constants that are concrete graphs

and the other operations interpreted on the concrete graphs as defined above. As

mentioned, this not very useful in most cases, since e.g. the merge operation on

concrete graphs is only defined if nodes with the same source are the same node
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want-01

S

ARG0

O

ARG1

(a) Result Jt1K of

t1 =
�
R
want-01 || RSARG0

�
|| ROARG1

learn-01
O

S

ARG0

(b) Result Jt2K of

t2 = renR$O

�
R
learn-01 || RSARG0

�

want-01

S

ARG0

learn-01

ARG1

ARG0

(c) Result Jt3K of

t3 = fg{O} (t1 || t2)

Figure 2.6: Partial results for the term in Figure 2.5(b).

already before the merge, i.e. instead of freely merging nodes just based on sources,

the node identities would need to be set up correctly in advance, defeating the

purpose of the source names. In fact, the node identities of the constants in a term

would persist all the way through evaluation. Interestingly though, in some technical

contexts this property of being able to track nodes through the terms turns out to

be useful. We will make use of it throughout Chapter 4 and in a proof in Chapter 5.

But the intended graph combining power of the HR algebra shines when we use

abstract graphs, which also fits with us modeling AMRs as abstract graphs.

1:boy

2:live-01

a:ARG0

Figure 2.7: A concrete s-graph
with a root source at node 1.

The root in AMRs. In this thesis, we adapt

the source system to feature a special source

R, that we use to indicate the root of AMRs.

We write this R source not in red, but instead

mark the node where it is assigned with a bold

outline. Apart from this notation, the source

functions just as normal. For example, the

graph in Figure 2.7 has the source assignment

{1 7! R}.

Example. Figure 2.5 shows in (a) the AMR for the sentence The raven wants to

learn and in (b) an HR term t that evaluates to it; the atomic s-graphs are shown

in (c).7 Figure 2.6 shows partial results of the term. First, in the bottom left of

the term, the want-01 node R
want-01 is merged with the edges RSARG0 and RO

ARG1,

7Recall that while we technically represent node labels as loops, in examples we write the labels
inside the node for readability, and that we indicate the root source R in examples with a bold node
outline, instead of a red R.
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attaching them at the R source. The result of this subterm

t1 =
�
R
want-01 || RSARG0

�
|| ROARG1

is shown in Figure 2.6(a). In the sister term

t2 = renR$O

⇣
R
learn-01 || RSARG0

⌘
,

with the result shown in Figure 2.6(b), the learn-01 node R
learn is combined with

the ARG0 edge RS
ARG0, and its root R renamed to O. The term

t3 = fg{O} (t1 || t2)

combines these results, creating the graph in Figure 2.6(c). The learn-01 node, now

with the O source, gets plugged into the corresponding slot in the want-01 graph, and

the S sources merge, creating a joint subject slot. The O source is then forgotten

since we no longer need it, with the result in Figure 2.6(c). In the full term in

Figure 2.5, the raven node Graven has its root R renamed to S to fit into that slot,

we merge the graphs and forget the S source to obtain the final AMR.

This example highlights two important features of the HR algebra for semantic

construction:

1. how the HR algebra allows us to create reentrancies through merging sources;8

and

2. that we can use source names that are meaningful, i.e. R for root, S for subject

and O for object.

In conclusion, the HR algebra is a powerful, flexible formalism to build graphs,

with simple operations based on abstract graphs and source names.

2.5 Tree Automata

We have now seen the HR algebra and its graph building operations. But represen-

ting graphs through terms brings a challenge with it. For example, we might want

to run an algorithm that takes as input the set of all terms that evaluate to a given

graph. This could be to find the best term according to some scoring system, or

to find patterns within the terms when learning a parsing model. But this set of

8Similar to unification in e.g. lexical-functional grammar (LFG; Kaplan et al. (1982)) and head-
driven phrase structure grammar (HPSG; Pollard and Sag (1994)). More on that in Chapter 3.
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terms is large – in fact, since the HR algebra’s rename operation allows cycles, there

are infinitely many terms to describe one graph. Besides that, working with sets of

terms is cumbersome and ine�cient. In Chapter 4 we will show how tree automata

allow us to represent this infinite set of terms compactly (and in particular, finitely).

This section establishes the background on tree automata.

Definition 2.17 (Tree Automaton). A finite tree automaton over a signature ⌃ is

a tuple A = (Q,⌃, Qf ,�) where Q is a set of states, Qf 2 Q is a set of final states,

and � is a set of transition rules of the following type:

f(q1, . . . , qn) ! q,

where n � 0, f 2 ⌃n and q, q1, . . . , qn 2 Q. The state q is called the parent, and

q1, . . . , qn the children (if n = 0, there are no children).

Tree automata over ⌃ run on ground terms over ⌃. An automaton starts at the

leaves and moves upward. Along such a run, the automaton inductively assigns a

state to each subterm. If the direct subterms u1, . . . , un of t = f(u1, . . . , un) are

labeled with states q1, . . . , qn, then the term t will be labeled by some state q with

f(q1, . . . , qn) ! q 2 �. We now formally define the move relation defined by a tree

automaton. Let A = (Q,⌃, Qf ,�) be a tree automaton over ⌃. The move relation

�!
A

is defined by: let t, t0 2 T (⌃ [Q), then

t �!
A

t0 ,

8
<

:
9C 2 C(⌃ [Q), 9f(q1, . . . , qn) ! q 2 �,

such that t = C[f(q1, . . . , qn)] and t0 = C[q].

We write
⇤�!
A

for the reflexive and transitive closure of �!
A

.

A ground term t in T (⌃) is accepted by a finite tree automaton A = (Q,⌃, Qf ,�)

if

t
⇤�!
A

q

for some state q in Qf . The tree language L (A) recognized by A is the set of all

ground terms accepted by A. A set L of ground terms is recognizable if L = L (A)

for some tree automaton A. Two tree automata are said to be equivalent if they

recognize the same tree languages.

We can clarify the notion of how states participate in the process of how an

automaton accepts a term. Let t be a ground term and A be a tree automaton, then

a run r of A on t is a mapping r : pos (t) ! Q compatible with �, i.e. for every
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James ! [1, 2]

loves ! [2, 3]

Lily ! [3, 4]

⇤ ([1, 2], [2, 3]) ! [1, 3]

⇤ ([2, 3], [3, 4]) ! [2, 4]

⇤ ([1, 3], [3, 4]) ! [1, 4]

⇤ ([1, 2], [2, 4]) ! [1, 4]

Figure 2.8: A decomposition automaton D for the sentence James loves Lily with
respect to the string algebra. The states are pairs [i, j] of string positions, denoting
a span from i (inclusive) to j (exclusive) in the sentence. The final state is [1, 4],
covering the whole sentence.

position p in pos (t), if t(p) = f 2 ⌃n, r(p) = q, r(pi) = qi for each i 2 {1, . . . n},
then f(q1, . . . , qn) ! q must be in �. A run r of A on t is successful if r(✏) is a final

state. Note that a ground term t is accepted by a tree automaton A if there is a

successful run r of A on t.

Further, we call a state q 2 Q accessible if there is a ground term t 2 T (⌃) such

that t
⇤�!
A

q. We call a state q 2 Q extensible if there is a term t 2 T (⌃ [Q) and

a final state qf 2 Qf with t
⇤�!
A

qf , such that q is a leaf of t. Note that a state

q 2 Q can only participate in a successful run r, i.e. q 2 I (r), if q is both accessible

and extensible. (However, not every accessible and extensible state q necessarily

participates in a successful run, since the term used in proving the extensibility of q

may have inaccessible states at its leaves).

2.5.1 Decomposition automata

While tree automata are a very general concept, one type of tree automaton is of

particular importance here. For an algebra A over a signature ⌃ and an object c

in its domain, we say a tree automaton D is a decomposition automaton for c with

respect to A, if its language L (D) is exactly the set of all terms t in T (⌃) that

evaluate to d in A, i.e. if

L (D) = {t 2 T (⌃) | JtKA = d} .

Take for example our sentence James loves Lily as d and the string algebra to

decompose it. The automaton D in Figure 2.8 is a decomposition automaton for this

scenario. Its states are of the form [i, j], denoting a span from position i (inclusive)
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to j (exclusive). The first three rules denote at which positions the words occur.

The other four rules denote all possibilities to concatenate two adjacent spans. For

example, in the term

⇤

loves Lily

the automatonD assigns states [2, 3] and [3, 4] to the nodes loves and Lily respectively,

and then uses the rule

⇤ ([2, 3], [3, 4]) ! [2, 4]

to assign the state [2, 4] to the full term. It can then use the rules

James ! [1, 2]

and

⇤ ([1, 2], [2, 4]) ! [1, 4]

to assign the final state [1, 4] to the term

⇤

James ⇤

loves Lily

which indeed evaluates to our sentence.

Decomposition automata are useful as compact representations. For example,

for a sentence of length n, there are O
�
n3
�
rules in a decomposition automaton like

the one in Figure 2.89, whereas the number of terms is exponential in n.

2.5.2 Lazy automata

Sometimes, writing down the set of all rules in an automaton A can be undesirable,

for example if the set of rules is very large, and not all of them need to be known

to solve the given task. In other cases, just enumerating all rules may be di�cult,

since not all rules are known in advance. Lazy automata have their rule set not

9There is one constant rule per word in the sentence, i.e. O (n) many, and the concatenation rules
have the form ⇤ ([i, k], [k, j]) ! [i, j] with three variables i, j, k between 1 and n, yielding O

�
n3

�

rules.
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explicitly given, but answer queries instead. There are two types of queries for a

lazy representation of an automaton A.

Bottom-up: given states q1, . . . , qk and an algebra operation f , enumerate all the

rules q ! f (q1, . . . , qk) in A. This asks how a list of given states can be

combined into a new state q using the operation f .

Top-down: given a state q and an algebra operation f , enumerate all the rules

q ! f (q1, . . . , qk) in A. This asks how a state can be derived from other states

using the operation f .

For example, a string algebra decomposition automaton for a sentence of length

n can be described in bottom-up queries in the following way: If the symbol f is a

constant, return the rule

f ! [i, i+ 1]

for all i where the i-th word in the sentence is f . Further, if f is the concatenation

‘⇤’, and the children are [i, j] and [k, l], then return the rule

⇤ ([i, j], [j, l]) ! [i, l]

if j = k, and no rule otherwise. This is a very compact representation of the

automaton, and easily written as programming code.

There are algorithms that use lazy automata instead of explicit automata for

e�ciency, as we will see in Section 3.1. But we can also use these queries to enumerate

all rules in the automaton A, turning a lazy representation into an explicit one.

There is one algorithm each for bottom-up and top-down queries, which both use

the queries to iteratively explore new states and rules. Since these algorithms play

central roles in this thesis, we will look at them in some detail here, despite their

simplicity.

A simple way to describe these algorithms is with a deduction schema consisting

of rules of inference (Shieber et al. (1995)). The general form of a rule of inference

as we use it here is

A1, . . . , Ak

B1, . . . , Bk

hside conditions on A1, . . . , Ak, B1, . . . , Bki,

where we diverge from Shieber et al. (1995) in that we have multiple items below the

line. Here, A1, . . . , Ak are the antecedents and B1, . . . , Bk are the consequents. Es-

sentially, if we know all antecedents A1, . . . , Ak to be derived and the side conditions

hold, the rule of inference states that we can also derive the consequents B1, . . . , Bk.
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q
hq 2 Qf i

q
q1, . . . , qn

hf (q1, . . . , qn) ! q 2 �i

Figure 2.9: Deduction schema for top-down exploration

q1, . . . , qn
q

hf (q1, . . . , qn) ! q 2 �i

Figure 2.10: Deduction schema for bottom-up exploration

For example, in the top-down approach in Figure 2.9 the first rule initializes all

final states as derived. The second rule states that for any rule f (q1, . . . , qn) ! q in

the automaton, if we have the parent q derived, we obtain the children q1, . . . , qn as

consequents. Since we only need q already derived and not q1, . . . , qn, we can com-

plete this deduction schema using only top-down queries. Whenever we successfully

use the second of the two inference rules, we note the used rule as observed. Once all

possible inferences have been made, all automata rules have been seen – or rather,

all automata rules with extensible states, which is enough to get an automaton with

the correct language. Algorithm 1 makes this process explicit. Line 1 initializes a

set of seen (or derived) states and an agenda, as well as an empty rule set �. In

the following while loop, derived states q are continuously popped from the agenda,

and for each operation f , top-down queries for q and f are asked. If rules are found,

they are added to the rule set and the child states q1, . . . , qn are, if new, added to

the agenda and the set of seen states.

For the string decomposition automaton for James loves Lily in Figure 2.8, we

would start with the final state [1, 4], discovering first the rules

⇤ ([1, 3], [3, 4]) ! [1, 4],

⇤ ([1, 2], [2, 4]) ! [1, 4],

adding the states [1, 3], [3, 4], [1, 2] and [2, 4] to the agenda. Popping the states [1, 3]
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Algorithm 1 Top-down exploration

1: seen := Qf , agenda := Qf in arbitrary order,� := ;
2: while agenda 6= ; do
3: pop state q from agenda

4: for f 2 ⌃ do
5: for rule f (q1, . . . , qn) ! q given by top-down query do
6: add f (q1, . . . , qn) ! q to �
7: for i = 1, . . . , n do
8: if qi /2 seen then
9: add qi to seen

10: add qi to agenda

11: end if
12: end for
13: end for
14: end for
15: end while
16: return �

and [2, 4] from the agenda yields the rules

⇤ ([1, 2], [2, 3]) ! [1, 3],

⇤ ([2, 3], [3, 4]) ! [2, 4]

respectively. This adds [2, 3] to the agenda. The states [1, 2] and [3, 4] are there

already, leaving the agenda with those three single word spans. Popping them gives

us the last rules

James ! [1, 2]

loves ! [2, 3]

Lily ! [3, 4].

Figure 2.10 shows a deduction schema for the algorithm that uses bottom-up

queries. It has only one rule of inference: if all children of a rule are derived,

we can also derive the parent. This same rule also initializes the process, for all

constant symbols f where the list of children is empty. Since the child states are the

antecedents, we can perform all deductions with this rule of inference using bottom-

up queries only. This process finds all rules with reachable states – again enough to

get an automaton with the correct language.

Algorithm 2 describes this process in practice. It has an extra feature in order

to run e�ciently: a lookup structure keeps track of all previously derived states, and
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can be queried with lookup (f, q0, i) to return a list of derived states

�
q1, . . . , qi�1, qi+1, . . . , qar(f )

�

that are candidates for a rule of the form

f
�
q1, . . . , qi�1, q

0, qi+1, . . . , qar(f )
�
! q

to exist. That is, assuming that a state q0 is the i-th child in a query with symbol f ,

which previously derived states are good candidates for ‘siblings’ of q0. This type of

indexing structure greatly increases e�ciency, since not all possible combinations of

derived states need to be tried whenever a new state is pulled.

Lines 1 and 2 initiate our structures, and Lines 3 to 12 initialize the agenda with

all states obtained from constant rules, also noting those states as derived in seen and

lookup. Then, while new states q0 can be popped from the agenda, new applications

of the inference rule in Figure 2.10 are tested by getting candidate siblings to q0 from

the lookup structure (Line 17) and asking bottom-up queries (Line 18). All such

found rules are stored in �, and if the parent state q was not derived before, it is

added to the agenda and stored as derived in seen and lookup.

We can see the importance of the lookup structure in string decomposition. With-

out it, i.e. if we were to try to concatenate any pair of derived spans, we would

eventually try all span pairs [i, j], [k, l], even if j and k don’t match and we cannot

concatenate the spans. This yields a runtime of O
�
n4
�
– more than the O

�
n3
�

number of rules, because in the rules we always have j = k guaranteed. But we

can implement lookup to index derived spans by their start and end point, always

returning matching spans only. That is, lookup (⇤, [i, j], 1) would only return spans

starting on j so that [i, j] can be the left sibling, and lookup (⇤, [i, j], 2) would return

spans ending on i, so that [i, j] can be the right sibling. This way, only concatenations

⇤ ([i, j], [k, l]) are checked and the runtime goes down to the expected O
�
n3
�
.

In our example automaton of Figure 2.8, we first obtain the states [1, 2], [2, 3]

and [3, 4] from the constant rules, putting them on the agenda and into lookup. If

we then pull say [1, 2], the query lookup (⇤, [1, 2], 2) returns no sibling q1, since we

have seen no state ending on 1. The query lookup (⇤, [1, 2], 1) returns as candidate

sibling q2 the state [2, 3] starting at 2, but not [3, 4]. The query for children [1, 2]

and [2, 3] with operation ‘⇤’ then gives the rule

⇤ ([1, 2], [2, 3]) ! [1, 3].

We add the newly derived [1, 3] to agenda and lookup and continue popping states
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until the agenda is empty.

The sort of indexing described here is standard (and trivial in the string algebra

case), and often not even mentioned in the description of such algorithms. However,

in later chapters we will need to use non-trivial lookup structures that are worth

being mentioned and explained.
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Algorithm 2 Bottom-up exploration

1: seen := ;, agenda := () ,� := ;
2: lookup := new lookup structure
3: for c 2 ⌃, ar(c) = 0 do
4: for rule c ! q given by bottom-up query do
5: add c ! q to �
6: if q /2 seen then
7: add q to seen

8: add q to agenda

9: add q to lookup

10: end if
11: end for
12: end for
13: while agenda 6= ; do
14: pop state q0 from agenda

15: for f 2 ⌃, ar (f ) � 1 do
16: for i = 1, . . . , ar (f ) do
17: for

�
q1, . . . , qi�1, qi+1, . . . , qar(f )

�
2 lookup (f, q0, i) do

18: for rule r = f
�
q1, . . . , qi�1, q0, qi+1, . . . , qar(f )

�
! q given by

bottom-up query do
19: add rule r to �
20: if q /2 seen then
21: add q to seen

22: add q to agenda

23: add q to lookup

24: end if
25: end for
26: end for
27: end for
28: end for
29: end while
30: return �
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In the last chapter, we saw how we can build a graph from small, atomic units of

meaning with a graph algebra. But we don’t just want to build any graph, we want

graphs that represent the meaning of a sentence. That is, we want to do semantic

parsing, the process of computing a meaning representation for a given sentence.

We can define a semantic parser as an algorithm that takes a sentence as input

and produces a semantic representation. In this thesis, that representation is an

AMR. For clarification: while by parser we mean the fully implemented model,

parameters and all, by parsing formalism we mean the formal framework that defines

the mechanisms by which a parser can work. In this chapter, we discuss several

AMR parsers and parsing formalisms. We highlight the challenges described in the

introduction in more detail, and elaborate on the linguistic principles we will rely on

in this thesis.

Section 3.1 introduces Interpreted Regular Tree Grammar (IRTG) as a parsing

formalism that has a strong influence on this thesis. While its technical relation to

this work is limited, the ideas IRTG illustrates reverberate throughout the thesis.

Section 3.2 discusses the notion of compositionality, which gives a more general look

on these ideas. On the basis of examples, and parallels to other parsing formalisms,

we carve out the linguistic principles to guide our parser. Section 3.4 reviews related

work in AMR parsing and Section 3.5 gives background on how parsers are induced

and trained. Finally, Section 3.6 discusses this thesis’ approach to semantic parsing.
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automaton AG graph homomorphism hg string homomorphism hs
james ! NP GJames James

lily ! NP GLily Lily

love ! VP (NP) fgO (Glove || renR$O (x1)) loves ⇤ x1
apply subj (NP,VP) ! S fgS (x2 || renR$S (x1)) x1 ⇤ x2

Figure 3.1: A small handwritten IRTG that can analyze the sentence James loves
Lily. The graph constants GX are shown in Figure 3.2. The final state of the
automaton AG is S.

3.1 Interpreted Regular Tree Grammars (IRTGs)

This section introduces Interpreted Regular Tree Grammars (IRTGs, Koller and

Kuhlmann (2011)) as an example formalism for AMR parsing. We mainly discuss

IRTG here to illustrate the general linguistic principles that form the foundation for

the AM algebra in Chapter 5 and our parser in Chapter 6. While there are many

di↵erent formalisms illustrating these principles (a key point of Section 3.2), IRTG

is convenient because it uses the technical tools we already introduced, namely alge-

bras, the HR algebra in particular, and tree automata. IRTG also has a few technical

applications in this thesis. Chapter 4 includes an application to graph parsing that

involves IRTG, and a part of the parser in Chapter 6 can be phrased as an IRTG.

IRTG is a general framework for (potentially synchronous) grammars. It is im-

plemented in Alto, available open source at bitbucket.org/tclup/alto; see also

Gontrum et al. (2017).

Koller (2015) shows how to use a synchronous string-graph grammar based on

the HR algebra for semantic construction. An example IRTG is shown in Figure 3.1.

At its core is a set of grammar rules, represented here as a tree automaton (left

column). Each rule is associated with a term over an algebra, here the HR algebra

(center column) and the string algebra (right column) – we discuss details below.

The flexibility of IRTG arises from the fact that in principle, any algebra can be used.

For example, Koller and Kuhlmann (2012) introduce algebras that allow IRTG to

model Tree Adjoining Grammar (TAG, Joshi and Schabes (1997)) with IRTG. Here,

we focus on the combination of string and HR algebra shown in Figure 3.1, since

this gives us a synchronous graph-string grammar, allowing us to translate strings

to graphs.

We can see the rules in an IRTG as instantiations of general linguistic principles.

We will highlight these principles in Section 3.2.
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person

name

name

James

op1

(a) GJames

person

name

name

Lily

op1

(b) GLily

love-01

S

ARG0

O

ARG1

(c) Glove

Figure 3.2: The graphs referenced in Figure 3.1.

3.1.1 IRTG in detail

At the core of an IRTG is a set of grammar rules, here represented as a tree automa-

ton AG.1 We call AG the grammar automaton, the symbols in the signature of AG

the rule labels, and the trees in the language of AG the derivation trees. The states

of the grammar automaton, here NP, VP and S, play the role of nonterminals in a

grammar, i.e. they restrict which derivation trees are allowed.

The second ingredient in an IRTG is interpretations. An interpretation consists

of an algebra A and a tree homomorphism h that maps rule labels to contexts (i.e.

terms with variables) over the signature of the algebra A. The IRTG in Figure 3.1

has two interpretations, one to the HR algebra (second column) and one to the string

algebra (third column).

We assume a homomorphism to map a rule label of arity k to a term with

variables x1, . . . , xk. For example, the homomorphism hg maps the rule label james

of arity 0 to the term GJames and maps the rule label apply subj of arity 2 to the term

fgS (x2 || renR 7!S (x1)). Such homomorphisms can map trees to trees, by recursively

plugging partial results into contexts bottom up; formally for a tree t = f (t1, . . . , tk)

we have h (t) = h (f ) [h (t1) , . . . h (tk)], where the square brackets indicate that we

replace each variable xi with h (ti), as introduced in Section 2.4.1. For example,

Figure 3.3(a) shows GLily as hg (lily) and Figure 3.3(c) shows hg (love). To get the

homomorphic image hg (love (lily)) of the combined tree, we simply plug in Glily into

the x1 slot of hg (love), obtaining the HR term in Figure 3.3(b). This term evaluates

to the s-graph in Figure 3.3(f): the root of GLily is renamed to O, this is merged

with Glove and the O source is forgotten.

1Often, the rules are represented in the form of a regular tree grammar (RTG), which are closely
related to tree automata, see e.g. Comon (1997).
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||
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(g) Evaluating
Jhg(apply subj(james, love(lily)))K

Figure 3.3: Several homomorphic images of the IRTG in Figure 3.1.
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Figure 3.3(d) shows the homomorphic image under hg of the full derivation tree

apply subj

james love

lily

we built in Figure 3.3. This HR term in Figure 3.3(d) evaluates to the AMR in (g).

Similar to how GLily was fit into the O slot of Glove, now GJames is fit into the S slot.

Its root R is renamed to S, the graphs merge and S is forgotten.

With a similar process, the other homomorphism hs to the string algebra maps

the derivation tree to the term in Figure 3.3(e). This term evaluates to the sentence

James loves Lily, matching the AMR. Thus, our IRTG can generate a derivation tree

that can be interpreted as generating both the sentence as well as the corresponding

AMR.

The rules in Figure 3.1 all have a purpose. The first two rules james and lily

simply introduce the respective constants as noun phrases. The third rule, love, is

more interesting. It introduces the constants Glove and loves, and combines them

with the object. On the string side, the object is simply concatenated to loves

according to SVO word order. On the graph side, the object x1 is filled into the

O slot of Glove, as we have just seen: first, the root R of x1 is renamed to O and

then the graphs are merged, fitting the original root of x1 into the O slot of Glove.

Then, the O source is forgotten: it is not needed anymore and removing it allows

re-using the O source elsewhere (if we were to build a more complex sentence). The

fourth rule, apply subj, combines a verb with its subject with the same mechanism

as the previous rule, using the S source. All these mechanisms are overt, observable

and understandable by a human looking at the grammar. In particular, the source

names S and O match the subject and object roles.

3.1.2 Parsing.

If we invert the generation process on one side, we can do semantic parsing, as

shown in Figure 3.4: Starting with the sentence (top left), we first obtain a term

over the string algebra that evaluates to it. We then need to compute the inverse

homomorphism h�1
s of this term, to obtain a derivation tree (top right) that generates

the sentence. At this point, we check whether the derivation tree is grammatical, i.e.

whether it is accepted by the grammar automaton AG. From there, we simply use
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the homomorphism hg to obtain an HR term (bottom left), that we can evaluate to

the AMR (bottom right).

The beauty of this process is that all this can be computed e�ciently with tree

automata. For this, we represent all terms over the string algebra that evaluate to

the input sentence in a decomposition automaton D. The set of all grammatical

derivation trees that evaluate to the input then is

L (AG) \ h�1

s (L (D)) , (3.1)

taking the inverse homomorphism h�1
s of all valid algebra terms and intersecting

with the grammars language to ensure grammaticality. These languages may be very

large or even infinite, and thus expensive - or impossible - to compute. However,

the languages of tree automata (which are the regular tree languages) are closed

under inverse homomorphism and intersection. That is, there is an automaton ID

whose language is the inverse homomorphism of the language of D, i.e. L (ID) =

h�1
s (L (D)). And, for any two tree automata B and C, there is an automaton

B \C whose language is the intersection of the languages of B and C, L (B \ C) =

L (B) \ L (C). Thus, we can write 3.1 as

L (AG) \ h�1

s (L (D)) = L (AG) \ L (I) = L (AG \ ID) .

The automaton AG\ID is also called the parse chart, because it is a generalization of

conventional chart parsing. Groschwitz et al. (2016) present algorithms that compute

the parse chart e�ciently in practice, using lazy automata to avoid computing the

decomposition and inverse homomorphism automata explicitly.

We can turn the IRTG into a statistical model by associating each rule of gram-

mar automaton AG with a weight. These weights propagate through intersection,

so the parse chart AG \ ID is weighted and we can use the Viterbi algorithm to find

the best derivation tree.

3.1.3 IRTG-related formalisms

A mechanism that is very closely related to IRTG with the HR algebra is Hyperedge

Replacement Grammar (HRG; Drewes et al. (1997)), or to be precise, synchronous

HRG (see e.g. Jones et al. (2012) and Peng et al. (2015)). Figure 3.5 shows an

example derivation of (non-synchronous) HRG. The principle in HRG is that hype-

redges labeled with nonterminals (in the example S,Y,. . . ) are replaced by rules with

graph fragments, that may themselves again contain nonterminals. Nodes on both

the hyperedges and the replacement graphs in the rules are indexed (here in red) to
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indicate how exactly to insert the replacement graph. For example, the S edge is

replaced with the want graph, that introduces nonterminals Y and Z. Subsequently,

Y is replaces with a graph for eat, using the red indices to correctly attach the no-

des; and so on. The derivation is finished when no nonterminals remain. When the

hyperedge rules are paired with string rules, one obtains a synchronous grammar for

strings and graphs, that can translate between sentences and AMRs.

A key di↵erence between the HR algebra and HRG is that the HR algebra denotes

the ‘slots’ along which graphs are combined with source names, whereas HRG uses

indices.2 While the source names of the HR algebra need extra management through

rename and forget operations, they are more easily interpretable by human eyes and

may help the model to generalize better.3 Most importantly for this thesis, the

source names will be crucial for the AM algebra of Chapter 5 and the parser in

Chapter 6.

In conclusion, the promise of Koller (2015) is the following: a system for seman-

tic construction that has transparent, interpretable rules that works e�ciently in

practice. However, in the paper this remains a promise, since Koller (2015) only des-

cribes the formalism, and leaves the problem of creating a working parser to future

work. This promise is one of the starting points for this thesis.

3.2 Compositionality

IRTG is a compositional parsing formalism. We introduce compositionality in this

section. Many formalisms for compositional semantic construction share similar met-

hods, which we discuss on the base of examples. These methods form the linguistic

principles we base our parsing model on.

So, what is compositionality? Compositionality ties together the syntax (i.e. the

surface structure) and semantics (i.e. the meaning) of a sentence. Specifically, the

principle of compositionality states (in the formulation of Kracht (2011)):

The meaning of a complex expression is a function of the meanings of its

parts and the mode of composition by which it has been obtained from these

parts.

2This di↵erence of using names versus indices as ‘addresses’ is a widespread phenomenon, dis-
cussed e.g. as the di↵erence between attribute-value and positional-value notations for grammars
(see e.g. Johnson (1987)).

3Specifically, Koller writes: “Copestake et al. (2001), in particular, conclude from their expe-
riences from designing large-scale HPSG grammars that explicitly named arguments simplify the
specification of the syntax-semantics interface and allow rules that generalize better over di↵erent
syntactic structures.”
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There are many slightly varying formulations of this, for example Szabó (2017)

formulates several variations, with the central one being:

The meaning of a complex expression is determined by its structure and the

meanings of its constituents.

Just as the exact formulations vary, the interpretations vary as well. I will use the

following interpretation, that I believe to be in line with Gamut (1991). The idea is

that the structure, or “mode of composition”, of a sentence (or any natural language

expression) is given by its syntax. Further, that the words (or more generally, the

minimal constituents) have meanings assigned to them. The meaning of the complex

expression can then be computed along the syntactic structure, where each operation

of syntactic composition has a semantic composition function associated with it.

That this is possible, determining the complex meaning only from the constituent

meanings and the syntax structure, and moreover, that the structure of semantic

composition follows the syntax, is the principle of compositionality.

What this also means is that a single notion of compositionality does not exist.

Whether a language is compositional is only defined with respect to what syntax

and what meaning representation we use. We can extend this idea to a semantic

parser (or parsing formalism) if the parser defines a syntax. We can then examine

whether the parser is compositional with respect to that syntax and with respect to

the meaning representation it uses.

For example, the string-HR IRTG we discussed above is compositional with re-

spect to the syntax defined by the derivation tree (related to the sentence via the

string interpretation), and with respect to AMR s-graphs as meaning representati-

ons.

3.2.1 Compositional formalisms

Of course, IRTG is by far not the only formalism for compositional semantic con-

struction. In fact, there is a long line of such formalisms – in particular the theory

put forth by Montague in e.g. Montague (1973); but also Minimal Recursion Seman-

tics (MRS, Copestake et al. (2005)) and Glue (Dalrymple et al. (1997)) for HPSG

(Pollard and Sag (1994)) and LFG (Kaplan et al. (1982)); as well as Combinatory

Categorial Grammar (CCG, Steedman (2000)).

We will not discuss all of these in detail, but instead look at methods and ex-

amples for compositional semantic construction through the eyes of IRTG. We then

illustrate the point that these methods are shared across formalisms with a brief
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Figure 3.7: The graph constants used in the IRTG in Figure 3.6
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introduction to CCG.

3.2.2 Application, modification and types

For all following examples, we use the extended IRTG in Figure 3.6. Let us first

discuss the mechanism of application. Consider again the sentence James loves Lily,

and its AMR in Figure 3.8(a). We just saw how the AMR can be built with IRTG,

using the derivation tree

apply subj

james love

lily

The relevant rules also exist in the IRTG in Figure 3.6. Now consider the s-graph

constants in Figure 3.7, in particular the graph Glove. This graph, used in the IRTG

approach, has two open sources S and O, indicating the two arguments subject and

object. We call these nodes the ‘argument slots’. We just saw in Section 3.1.1 how

IRTG fills these slots. For example, in the love rule, the argument (here GLily) is

inserted into the O slot with a sequence of rename, merge and forget operations of the

HR algebra. We call this ‘filling of slots’ argument application. The rule apply subj

then applies the subject, by filling the S slot with GJames, as seen above. In this

scenario, we call Glove the head and GLily and GJames the arguments.

Generally speaking, the left child of the apply subj rule, the argument, has a root

source R, and the right child, the head, has an S source; then the apply subj rule

fills that S slot of the head with the root of the argument. Note that this operation

only makes sense if the argument indeed has an R source, and the head an S source.

But then, at parsing time when we build a semantic term, how do we guarantee that

these conditions are met?

The grammar can guarantee this by connecting syntactic categories with seman-

tic types. We understand a semantic type here loosely as a summary of the unfilled

argument slots a semantic representation has. For s-graphs,we can e.g. use the set

of source names.4 The IRTG here uses syntactic categories like NP or VP as nonter-

minals in the grammar automaton. The idea is to correlate the semantic types and

syntactic categories: for example, the syntactic category VP corresponds to having

exactly an S and an R source, and NP corresponds to having just a root R. When

4Courcelle and Engelfriet (2012) too call the set of sources in an s-graph its type, although in a
di↵erent context.
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while

owl

(a) Derivation Tree

||

ren{M$R}

Gwhite

Gowl

(b) HR Term

Figure 3.9: IRTG derivation tree with HR term for the white owl.

parsing then, the syntactic categories restrict the set of possible derivation trees to

ones that produce well-typed terms, i.e. terms where all operations obtain a meaning

representation of adequate type.

The application mechanism is complemented by modification. Take for example

the sentence the white owl, with the AMR in Figure 3.8(b). A derivation tree and

HR term for this sentence can be found in Figure 3.9. The rule white takes an N

argument with just an R source, and the result also has category N as well as just an

R source. In particular, modification does not change the semantic type. This also

means that while application uses up an argument slot of the head, modification can

be repeated (take for example the fast white owl, the beautiful fast white owl and so

on). Modification also occurs for other types than just nouns; for example, adverbs

modify verb phrases (VP).

3.2.3 Unification

A more complex mechanism is what I will call in this thesis unification.5 The phe-

nomenon of subject control illustrates it well, as in The raven wants to learn with

the AMR in Figure 3.8(c) (we already saw this example in the introduction). Here,

something interesting happens: semantically, the raven is both the wanter and the

learner. But learn has no overt subject in the sentence, the meaning of the raven

being the learner is obtained implicitly through the control verb want.

How do compositional models handle this challenge? Figure 3.10 shows a deriva-

tion with the IRTG in Figure 3.6. Recall that when two graphs are merged in the HR

algebra, nodes with equal source names are fused together. Thus, when the graphs

Gwant and Glearn are merged, their nodes with S sources get unified automatically;

see Figure 3.10(c). Only then is Graven merged into that joint subject slot with the

apply subj rule. Figure 3.10(a) shows the derivation tree, and (b) the corresponding

HR term, where the lower merge operation combines Gwant and Glearn, and the upper

5I use the word in a broader sense as described in this section. I do not mean e.g. the technical
notion of unification in feature structures of HPSG.
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Figure 3.10: IRTG analysis of The raven wants to learn.
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(d) Final AMR for The lion persuades the snake to leave

Figure 3.11: IRTG analysis of The lion persuades the snake to leave.



58

apply subj

james and VP

twist shout

(a) Derivation tree

fg{S}

||

fg{op1,op2}

||

||

Gand ren{R$op1}

Gtwist

ren{R$op2}

Gshout

ren{R$S}

GJames

(b) HR term

and

twist-01

op1

shout-01

op2

S

ARG1 ARG0

(c) Intermediate results of
and VP(twist, shout), i.e. of
the HR term in (d)

fg{op1,op2}

||

||

Gand ren{R$op1}

Gtwist

ren{R$op2}

Gshout

(d) HR term for
and VP(twist, shout).

and

twist-01

op1

shout-01

op2

person

ARG1 ARG0

name

name

James

op1

(e) Final AMR for James
twists and shouts

Figure 3.12: IRTG analysis of James twists and shouts.
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merge fits Graven in the subject slot.

Note that this unification is encoded in the rule for want. The VP category of the

object argument (here Glearn) guarantees that this argument still has an open S slot,

as we saw in the discussion on types above. The merge operation in the want rule

then performs the unification. We will see below that encoding the unification as a

lexical property of a control verb like want is a common pattern in compositional

formalisms.

A similar case to subject control is object control, as in

(1) the lion persuaded the snake to leave

where the subject of leave is now equal to the object of persuaded ; see the AMR in

Figure 3.8(d) and derivation in Figure 3.11. Note how the IRTG rule for persuaded

achieves this by renaming the S source of leave to an O source with the renR 7!O2,S 7!O

operation (see the parent to Gleave in Figure 3.11(b)). This yields the partial result

in Figure 3.11(c), where afterwards Gsnake and Glion are fit into the O and S slots

respectively, in the usual manner.

Coordination combines two phrases of the same syntactic category into one. In

James twists and shouts (AMR in Figure 3.8(e); IRTG analysis in Figure 3.12), the

phrase twists and shouts combines the intransitive verbs twists and shouts, and acts

itself as if it were an intransitive verb again. The IRTG rule for and in Figure 3.6

reflects that, mapping two VP children to a VP result. Note in Figure 3.12(c) how

the S sources of the arguments merge, creating the reentrancy in the AMR.

One complication arising with coordination is that phrases that are not usually

considered constituents can be coordinated as well. For example in Lily married and

Severus detests James (AMR in Figure 3.8(f)), a case of right node raising, the

phrases Lily married and Severus detests are coordinated. Usually however, transi-

tive verbs are combined with their object first, and only then with their subject. For

example, the apply subj rule in our IRTG expects a VP argument, i.e. a verb phrase

only missing its subject, and the rule love immediately combines the intransitive

verb with its object. Koller (2015) does not discuss right node raising. This is an

example where the flexibility of the AM dependency approach of Chapter 6 will be

particularly useful. Constraints on the syntax and on application order are relaxed

there6, and thus it is no problem that we need to combine non-standard constituents

6While this relaxation can lead to over-generation, i.e. to allowing constructions that would
usually be considered ungrammatical, the subject of this thesis is not to develop a grammar for
English, but to develop an AMR parser. For parsing, we rely on the neural model described in
Chapter 6 to disambiguate between desired and undesired analyses. If the AM dependency approach
were to be used in a grammar for English, additional restrictions would be necessary to prevent
overgeneration.
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or that we need to add arguments in an unusual order.

3.2.4 Excursion: CCG

To get a broader understanding of mechanisms and challenges in compositional se-

mantic parsing, let us thus also consider CCG as a further representative. CCG

has shown both theoretical and computational success (see e.g. Steedman (2000),

Clark and Curran (2004), Lewis and Steedman (2014)), and has inspired much of

the work in this thesis.7 While CCG has no direct technical connection to this thesis,

it illustrates the broader background of the methods we use.

CCG parses sentences into the semantic representation of logical formula. For

example, the sentence James loves Lily has the logical formula love 0 (james 0, lily 0),

where love 0 is a two place function and james 0 and lily 0 its arguments. The primes

mark that e.g. love 0 is a fixed semantic object, such as a function, whose details are

of no immediate interest here.

Application and types. CCG build a logical formula by assigning to each word

both a syntactic category and a semantic interpretation. For example, James and

Lily would have syntactic category NP , paired with the semantic representati-

ons james 0 and lily 0 respectively. The verb loves however has a complex category

(S \NP) /NP paired with the lambda term �y.�x.love 0 (x, y). The category

(S \NP) /NP denotes a function with two arguments of type NP that returns type

S . The outer argument is expected to the right, denoted with the forward slash

‘/’. That is, when we combine the word loves with Lily to its right, we have the

phrase loves Lily of category S \NP . Simultaneously, lily 0 is entered as an argument

in the lambda expression, yielding �x.love 0 (x, lily 0) as the meaning of the phrase.

Now in S \ NP , the backslash ‘\’ indicates that the next argument NP is expected

on the left, so with the same principle we can form the sentence James loves Lily

with meaning love 0 (james 0, lily 0). Loosely speaking, the semantic type of a lambda

expression describes the number and type of its arguments, and CCG too has a close

relation between the syntactic categories and semantic types.

Modification. The logical form of the white owl is white 0 owl 0, where white 0 is

a one place function that returns an object of the same type as owl 0. The CCG

syntactic type for white is N /N , taking an N and returning an N . Thus, CCG too

uses modification that leaves syntactic categories and semantic types unchanged.

7In fact, the related work Artzi et al. (2015) describes an approach to AMR parsing that is
directly based on CCG. We will discuss it in Section 3.4.



61

Control and coordination. Consider again the sentence The raven wants to

learn. CCG uses the semantic representation

�p.�y.want 0
�
p
�
ana 0y

��
y

for the control verb want, where ana 0y represents an anaphor bound to y. Combining

this with the logical form for learn to fill the variable p, we obtain

�y.want 0
�
learn 0 �ana 0y

��
y

That is, instead of unifying the argument slots into one, the lambda expression

explicitly specifies that the argument of learn 0 and the argument of want 0 are to be

filled with the same variable. This has the same e↵ect as the unification described

for the IRTG above, that the raven is both the learner and wanter in the end. Again,

this information is encoded in the lexicon entry for want. Object control is modeled

similarly in CCG.

CCG uses a special category CONJ for the coordinator and that combines like

types. It combines the sequence

S \NP CONJ S \NP

into the single type S \NP . CCG also ensures that the two verbs share the subject,

returning for the phrase twists and shouts the interpretation

�x.and 0 �twist 0 x
� �

shout 0 x
�

(details of this process go beyond the scope of this thesis, and are given in e.g.

Steedman (2000)). CCG uses the special operations type raising and composition to

address right node raising, see Steedman (2000).

3.2.5 Additional phenomena

This sections presents some additional phenomena that often pose a challenge to

compositional approaches to semantic parsing. We will discuss how our formalisms

handle them – or, in some cases, fail to handle them – in Chapters 5 and 6.

One phenomenon in language that is often regarded as having non-compositional

aspects is coreference. Take the sentence Harry doesn’t want anyone to read his

books, and its AMR in Figure 3.13(a). The pronoun his can also refer to an expres-

sion outside the sentence, take for example Voldemort is a dangerous writer. Harry

doesn’t want anyone to read his books. Compare this to Some people are protective
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want-01

person

ARG0

read-01

ARG1

-

polarity

name

name

book

ARG1

anyone

ARG0poss

Harry

op1

(a)

want-01

person

ARG0

read-01

ARG1

-

polarity

name

name

book

ARG1

anyone

ARG0

he

poss

Harry

op1

(b)

Figure 3.13: Two possible AMRs for Harry doesn’t want anyone to read his books.
In (a), the coreference is resolved sentence-internally, in (b) the pronoun his is in-
terpreted as referring to someone outside the sentence.

about their belongings. Harry doesn’t want anyone to read his books, and it beco-

mes clear that who the pronoun his refers to depends on the context; the AMR in

Figure 3.13(a) is only correct in the second context, in the first context the AMR

in Figure 3.13(b) would be more appropriate. Generally, the context is not known

in the AMR corpora. Still, the AMRs in the annotated corpora tend to resolve

coreference whenever there is a viable antecedent in the sentence.

While binding theory describes syntactic constraints on who or what a pronoun

can refer to, often that question cannot be answered by syntax alone. This poses a

particular challenge to compositional models. In fact, as we will discuss in Chapter 5,

this is a challenge we will not tackle in this thesis.

In a relative clause, a whole phrase acts as a modifier, using a slot that is

usually used for argument application. For example in

(2) the boy who lived

boy is the subject of lived, but this is achieved through modification rather than

application. Figure 3.14 shows AMRs for (a) the boy who lived and (b) the boy lived.

Note that the di↵erence lies merely in the placement of the root (the bold outline).

Several phenomena can be understood as movement. For example in the ques-

tion

(3) a. Whoi do the parents love i?
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live-01

boy

ARG0

(a) The boy who lived

live-01

boy

ARG0

(b) The boy lived

love-01

parent

ARG0
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ARG1

(c) Who do the parents love?

leave-01 pay-01
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name

Mundungus

op1

(d) Mundungus left without paying

paper

file-01

ARG1
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time

i

ARG0

read-01

ARG1 ARG0

op1

(e) The paper I filed before reading

and

like-01

op1

like-01

op2

wizard

ARG0

hat

ARG1

witch

ARG0

book

ARG1

(f) Ellipsis: the wizard likes the hat
and the witch the book

Figure 3.14: More example AMRs.
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b. Whoi does Malfoy doubt the parents love i?

c. Whoi does Ron think Malfoy doubts the parents love i?

(AMR in Figure 3.14(c)), the meaning is straightforward (AMRs represent wh-words

through amr-unknown labels). But while the word who takes the role of the object,

it is not in the usual object position after the verb (marked with i). In fact, there

is quite some distance between the word who and that object position. This distance

is even greater in long-distance wh-movement as in (3-b) and (3-c). This presents a

challenge to the syntax-semantics interface. This sort of displacement also occurs in

e.g. raising, topicalization, and clefting.

Furthermore, control is not the only phenomenon with implicit arguments. The

sentence

(4) Mundungusi left without i paying

is an example of secondary predication, where John is the implicit subject of

paying (see Figure 3.14(d)). In contrast to control, the common subject of the two

verbs is a result of modification, not application. Similarly, a parasitic gap as in

(5) the paperk Ii filed k before i reading k

yields both a common subject and object, see Figure 3.14(e).

Finally, consider the ellipsis in

(6) The wizard likesi hats and the witch i books

and Figure 3.14(f). Here, the second occurrence of likes is omitted, indicated by

‘ i’. But in the AMR, there are two like-01 nodes, each with one ARG0 and one

ARG1 edge, to properly specify who likes what. This example can be interpreted

as both like-01 nodes in the AMR being generated by the first occurrence of likes.

In this interpretation the meaning of likes is duplicated, breaking the idea that each

word contributes at most one part of the meaning.

3.3 Neural parsing

In the last few years, neural networks have taken the world of computational linguis-

tics by storm. At their core, neural networks are very e↵ective function approxima-

tors in high dimensional vector spaces, based on sequences of linear and nonlinear

functions. I will give a technical discussion of neural networks in Chapter 6 when we

use them in our parser. By encoding words or characters as vectors, neural networks
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can be employed in language tasks. A particularly impactful early application was

Sutskever et al. (2014), who use a simple sequence-to-sequence (seq2seq) model: they

have a recurrent neural network called LSTM simply read a sentence word by word,

and produce a sentence in a di↵erent language again word by word. In between,

there are only vector operations, and no use of linguistic structure.

Many neural models in NLP, such as the seq2seq models, don’t make much

explicit use of linguistic principles. Nonetheless, neural networks learn well from

large amounts of data and perform language tasks surprisingly well. Seq2seq models

have been employed for e.g. constituency parsing (Vinyals et al. (2015)) and semantic

parsing (Dong and Lapata (2016)); seq2seq AMR parsers are discussed in Section 3.4

below. Some models combine neural networks with more structured decoding, such

as Kiperwasser and Goldberg (2016) for dependency parsing, the tree decoder of

Dong and Lapata (2016) for semantic parsing or Lewis and Steedman (2014) who

use neural supertagging for CCG parsing.

Neural networks are an extremely powerful and flexible machine learning tool

that yield simple yet e↵ective models, with lower implementation costs than more

traditional models such as synchronous grammars. However, they often require

large amounts of training data (see the discussion of van Noord and Bos (2017)

below). Further, their inner workings consisting of functions in high dimensional

vector spaces are di�cult to analyze and draw conclusions from.

3.4 Related work in AMR parsing

So far, we only discussed formalisms for semantic parsing. Now, let us look at some

published AMR parsers (see Table 6.1 in Chapter 6 for evaluation scores). There are

three groups of parsers that are particularly relevant for this thesis.

Synchronous grammars. First, there are the parsers based on synchronous gram-

mars, such as Artzi et al. (2015) and Peng et al. (2015) (continued in Peng and Gildea

(2016)). Artzi et al. (2015) pairs CCG rules on the syntax side with AMRs expressed

as logical forms, such as

S \NP : �x.�d.dance-01 (d) ^ARG0 (d, x) .

This example logical form means that there is a node d with label dance-01, and

an edge with label ARG0 from d to the NP argument x. Peng et al. (2015) uses

a synchronous HRG, which we previously discussed in Section 3.1.3. These models

are inherently compositional, and strongly structured. While they, in particular
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Artzi et al. (2015), performed strongly compared to other early AMR parsers, they

have since been significantly outperformed by newer parsers, and no strong grammar

based models have followed in their footsteps. As discussed in the introduction, the

key challenge for these models is robustness: the rules they learn are very specific,

and their strongly constrained derivation process is susceptible to irregularities and

unseen or rare phenomena in the data.

Neural seq2seq models. The currently best performing neural seq2seq AMR

parser, presented in van Noord and Bos (2017), is a simple yet e↵ective neural

sequence to sequence model. It reads the input sentence character by character, and

outputs a string representation of the AMR character by character again. Thus,

it makes virtually no assumptions on the relation between the sentence and the

graph, being able to output e↵ectively any string. Seq2seq models for AMR parsing

struggle with data sparsity (Peng et al. (2017)). It is only through the use of ‘silver’

data, additional training data created by other parsers, that van Noord and Bos

(2017) achieve competitive performance. Specifically, they pre-train their model on

100.000 sentence-graph pairs of silver data, in addition to the roughly 36.000 hand-

annotated sentence-graph pairs in the largest AMR bank8. A central limitation of

such an approach is that it relies on existing good parsers for the task that can

generate the silver data – although, as van Noord and Bos (2017) show, it can then

outperform those parsers.

Graph decoders. The second group use what I will call here a graph decoder. This

approach was pioneered by JAMR (Flanigan et al. (2014), Flanigan et al. (2016))

and further improved in Foland and Martin (2017) and Lyu and Titov (2018). These

models have been proven very successful, with Flanigan et al. (2014) being the state

of the art parser at the time when work on this thesis started, and Foland and

Martin (2017) and Lyu and Titov (2018) setting new state of the art performance

since through the addition of neural networks. As we will use this approach in a

baseline model for the parser presented in Chapter 6, let us examine it in more

detail here.

In a first concept prediction step, the graph decoder predicts a node or graph

fragment for each word in the sentence, as in Figure 3.15(a) (this may be the empty

graph for some words). These fragments represent the meaning of the word, but do

not contain e.g. the ARGx edges of predicates. Each graph fragment has a marked

root node (here again in bold) where the edges of the next steps attach, such as the

person node for the Mundungus graph fragment.

8LDC2017T10.
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(c) Step 3: Connecting the graph

Figure 3.15: A graph decoder predicts nodes and edges for Mundungus left without
paying.
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In a second step, all possible edges connecting the graph fragments are scored,

and all edges above a fixed threshold are added. Typically, graph decoders allow only

simple graphs, i.e. at most one edge between any two nodes. Further, every node is

restricted to have at most one outgoing edge of each kind of predicate relation (ARG0,

ARG1, . . . ); see e.g. Flanigan et al. (2014) and Foland and Martin (2017). This step

can create reentrancies; a possible result of this step is shown in Figure 3.15(b).

In a third step, repeatedly the best scoring edge that connects two components

is added until the graph is connected. Inherently, this step cannot add reentrant

edges. After this step, the graph is done and a root for the whole graph is chosen

(Figure 3.15(c)).

The graph decoder models have more structure than the seq2seq models: they

explicitly associate parts of the graph with the words in the sentence and can im-

plement some restrictions on the graph structure as discussed above. Some other

linguistically motivated ideas can be added; for example, Foland and Martin (2017)

use two di↵erent neural networks to predict argument edges and non-argument ed-

ges. And indeed, graph decoders do not rely on additional silver data to perform

well.

However, none of the published graph decoders for AMR have explicitly imple-

mented the compositional ideas from earlier in this chapter, e.g. by modeling control

or coordination with specialized mechanisms. While the models may well learn such

mechanisms implicitly, they must learn them on their own and are not pushed to-

wards them through a better inductive bias. And when such mechanisms are learned

by a graph decoder, they remain encoded in the parser’s learned parameters, i.e. in

large vectors and matrices, which are di�cult for humans to understand or interact

with. We show in this thesis that adding explicit linguistic structure indeed helps

with performance.

Others. CAMR (Wang et al. (2015), Wang et al. (2016)) transforms syntactic

dependency trees into AMRs by e.g. deleting, relabeling and adding edges. Damonte

et al. (2017), like the graph decoder models, predict graph fragments and edges

between them, but uses a modified shift reduce parser to predict the edges.

3.5 Training a parser

In the last section, we discussed several approaches to AMR parsing. But how are

these semantic parsers created in practice? Where do the grammar rules, the parame-

ters to score them, the graph fragment lexicons, the feature weights, the parameters

of the neural models come from? It is now widely believed in natural language pro-
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cessing that writing a complete broad-coverage model by hand is ine↵ective. Thus,

the models are created through a combination of hand-written heuristics and learning

from a set of annotated training data.

There are large AMR corpora available, building on each other, with the latest

release (LDC2017T10) containing nearly 40,000 sentence-AMR pairs. These corpora

contain sentences hand-annotated with their AMR (or more precisely, a linear repre-

sentation of the AMR as discussed in Section 2.3). However, there is no annotation

given as to how each AMR relates to its sentence, i.e. no compositional structure

that would generate the AMR is given, nor alignments that denote which parts of

the graph correspond to which word in the sentence.

While this lack of annotation is deliberate – the creators of the corpora did not

want to force assumptions concerning the AMR parsing process onto other resear-

chers – it poses a serious challenge to the learning of some models.

While this is no problem for the model of van Noord and Bos (2017) (it only

needs the sentence-AMR pairs for training), the graph decoder models need to know

which word creates which graph fragment in the training set. The models mostly

rely on alignments obtained with statistical methods (Pourdamghani et al. (2014))

or heuristic rules (Flanigan et al. (2014)); Lyu and Titov (2018) learns alignments

jointly with the parser parameters.

For compositional, grammar-based models, the problem is even more significant.

Let us take a look again at the IRTG in Figure 3.1. To build a parser, one would

need to have a large enough set of such rules to cover the large variety of sentences

one may encounter in practical use, and a model to choose the best derivation tree

for a sentence. A very simple version of such a model could be to associate each

rule with a fixed score, and then, among the possible derivation trees for a sentence,

choose the one with the highest sum of rule scores.

If the set of rules were given before training, and each sentence in the corpus

annotated with a gold derivation tree, the rule weights could then be chosen to

maximize the scores of the gold trees in the training data (while respecting some

normalization constraint on the weights). Such maximum likelihood methods are

standard for this task and well understood.

However, we would not want to write all rules for a broad-coverage grammar by

hand, and prefer to learn them during training. Furthermore, the AMR corpora are

not annotated with derivation trees. If we relax these conditions, and just assume

that the training data were annotated with HR terms for the AMR, we could attempt

to learn the rules automatically. The idea is to find repeating patterns in the terms

and use these to create rules that generalize across many corpus entries. This process
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of finding rules is often done at the same time as optimizing their scores to fit the

training data, so as to converge on a scored set of rules that explains the corpus well.

A method for this is e.g. the one described in Cohn et al. (2009).

However, in reality, not even HR terms (or derivational terms of any kind) are

given in the AMR corpora. The problem is that there are many possible terms

for each AMR, and it is often unclear which one is correct and should be used for

training. As we will see in Chapter 4, the number of possible terms in the HR

algebra is in fact gigantic. Peng et al. (2015) face a similar issue when considering

possible HRG terms. As a solution, they represent all such possible terms compactly

in a structure much like a decomposition automaton. This allows them to sample

terms from the compact representation, i.e. generate terms according to a probability

distribution. This distribution starts out mostly uninformed, but whenever a term

is generated, the probability distribution is adjusted to increase the likelihood of

generating this or similar terms again. This makes terms in the future more likely to

resemble previously generated terms, and the process is repeated several times over

the corpus. This eventually provides terms that are consistent with each other, for

all sentences in the training data.

Artzi et al. (2015) use a di↵erent, but also statistical method for inducing their

lexical items, based on Kwiatkowski et al. (2010).

Another challenge to robustness. The heuristically created training data pre-

sents another challenge to the robustness of approaches based on synchronous gram-

mars. They need to match syntactic structure to the terms that create the semantic

representation, while respecting the alignments. Since none of syntactic structure,

semantic terms or alignments are given in the corpora and thus all must be obtained

heuristically, they don’t always fit together. This complicates the training proce-

dure, and e.g. Peng et al. (2015) note that their model is particularly sensitive to

alignments. Artzi et al. (2015) employ an early update procedure if they cannot find

a correct derivation for a training example, which occurs in nearly 40% of their trai-

ning set. This robustness issue, paired with the fact that there are so many possible

terms and only limited training data, mean that the problem of latent structural

training data is far from solved.

3.6 This thesis’ approach to semantic parsing

Let us recap the challenges put forth in the introduction.

Challenge 1: Models without linguistic structure are data hungry.
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Challenge 2: It is not obvious how to add linguistic principles to neural networks.

Challenge 3: Synchronous grammars face robustness issues.

Challenge 4: Creating structural training data is a highly ambiguous process.

As we have seen, the principle of compositionality yields methods – in particular

application, modification and unification – that seem well suited for semantic par-

sing. The recent successful neural approaches to semantic parsing do not use these

principles, but could, a priori, benefit from them. Adding linguistic principles could

make neural models more e↵ective on the limited data we have (c.f. Challenge 1),

but it is not clear how to do this e↵ectively (Challenge 2). On the other hand, exis-

ting compositional parsers have problems with robustness and the lack of structural

information in the training data – the Challenges 3 and 4.

We address these issues with the AM dependency approach in Chapter 6. This

model uses dependency trees where each edge denotes an operation and words are

associated with graph fragments, such as in

The lion

Glion

persuades

Gpersuade

the snake

Gsnake

to leave

Gleave

appS

appO

appO2

The operations are those of the AM algebra which we introduce in Chapter 5. The

AM operations app↵ and mod↵ encode specific sequences of HR operations in one

operation, to model application and modification as seen in Section 3.2, including

unification mechanisms. Thus, the AM dependency parser uses methods based on

compositionality. However, it drops the explicit syntax side of compositionality, and

focuses purely on the semantic terms, using a flexible dependency approach. We still

guide the machine learning model with established principles from linguistics, just

more gently. As a result, we do not observe the same robustness issues a synchronous

grammar would have, addressing Challenge 3.

We make use of neural supertagging methods (Lewis and Steedman (2014)) and

neural dependency parsing methods (Kiperwasser and Goldberg (2016)) to predict

the AM dependency trees. With these methods, we don’t incorporate linguistic

principles inside the neural networks, but use neural networks to predict linguistic

structure. By not predicting the AMRs directly but using AM dependency trees
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as an in-between step, we give the neural models a target that is closer to the

surface structure of the sentence, addressing Challenges 1 and 2. The AM algebra’s

type system further structures our approach. We show that predicting the AM

dependency trees indeed improve performance, compared to a less structured graph

decoder baseline that predicts the AMRs directly.

The thesis starts by addressing the training data issue, Challenge 4. Chapter 4

describes how to compute decomposition automata for the HR algebra, and examines

whether they could be suitable for grammar induction via sampling, along the lines of

Peng et al. (2015) as discussed above. While we find that there is so much ambiguity

when describing an AMR with an HR term that the sampling approach is infeasible;

the insights we gain lead to the AM algebra in Chapter 5. The AM algebra is based

on the HR algebra and keeps many of its advantages, but while the HR algebra is a

general tool for building graphs, the AM algebra is designed specifically for semantic

graphs and draws on methods from compositional semantic parsing. In this manner,

the AM algebra successfully generates much fewer candidate terms for a given graph,

with only high quality terms remaining. Chapter 6 introduces the AM dependency

parser. The AM dependency trees reduce the ambiguity when creating structured

training data further, yielding only a single candidate dependency tree under certain

conditions. Thus, the combination of the linguistically motivated AM algebra and

the choice to predict semantic operations directly resolves Challenge 4 to the point

where we don’t even need to perform sampling any more.

The result is a parser that owes its strong performance to the e↵ective combina-

tion of neural and compositional methods.



In this chapter, we describe e�cient algorithms to compute decomposition automata

over the HR algebra (Courcelle and Engelfriet (2012), introduced in Section 2.4) for

AMR. These decomposition automata (as described in Section 2.5.1) are a compact

representation of all terms over the HR algebra that evaluate to a given AMR.

These decomposition automata have two key applications. First, we saw in

Section 3.5 that to train a parser based on the HR algebra, we need terms for

the AMRs in the training data; these terms are not given in the corpus, they are

latent. The compact nature of decomposition automata allows their use in sampling

techniques in the style of Peng et al. (2015), to obtain a consistent set of terms for the

corpus. Second, HR decomposition automata can also be used in the IRTG parsing

algorithm introduced in Section 3.1 to generate sentences from given AMRs. We will

discuss this application and some related work briefly in Section 4.7. Further, since

the HR algebra forms the backbone of the AM algebra we introduce in Chapter 5,

the automata described in this section are also relevant for the dependency based

model of Chapter 6, i.e. throughout the rest of this thesis.

The HR decomposition automata turn out to be complex objects, and we have

to put much e↵ort into computing them e�ciently. We provide theoretical upper

bounds and evaluate runtimes in practice. We also measure the size of their rule sets

and languages. We find that there are so many ways to express an AMR as an HR

term that even the compact decomposition automata become large and unwieldy

objects, making e.g. grammar induction through sampling infeasible. We address

that issue later in Chapter 5.

This chapter will provide the reader with (1) a thorough understanding of how the

HR algebra can take AMRs apart and put them back together, (2) an e�cient way

of computing the HR decomposition automata, and (3) a quantification of remaining
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boy
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live-01

(a)

1

a:boy

2c:ARG0

b:live-01

(b)

boy

live-01

AARG0

(c) Gboy, Glive, and GARG0

||

Gboy fg{A}

ren{A$B}

||

Glive GARG0

(d)

Figure 4.1: (a) An AMR [G0]iso for the phrase the boy who lived., (b) a concrete
representative G0, (c) atomic s-graphs and (d) an HR term that describes [G0]iso .

challenges to inducing a parsing model based on the HR algebra. We describe the

problem setting in technical detail in Section 4.1 and examine the structure of the

HR decomposition automata in Sections 4.2 and 4.3. We introduce our algorithms

in Sections 4.4 and 4.5, and provide an empirical evaluation in Section 4.6.

Much of this chapter’s content has been previously published in Groschwitz et al.

(2015), and the paper and this chapter share some segments of text literally. It should

also be mentioned that some content, mainly the idea of a boundary representation,

has been inspired by the related work of Chiang et al. (2013). A closer comparison

to Chiang et al. (2013) can be found in Section 4.7.

4.1 Problem setting

This section describes the task of this chapter in technical detail. Throughout this

thesis, we work with AMRs that we model as abstract s-graphs, i.e. isomorphism

classes such as [G0]iso in Figure 4.1(a) of concrete graphs such as G0 in Figure 4.1(b).

Recall from Section 2.2 that concrete graphs specify node and edge identities (blue

in the figures), while abstract graphs do not. This technical distinction is crucial in

the HR algebra (recall Section 2.4), and also in this chapter.

Let now [G]
iso

be an AMR (or generally, a connected abstract s-graph). Throug-

hout this section we fix G as a concrete representative. The goal of this chapter is
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to describe, and e�ciently compute, the decomposition automaton for [G]
iso

with

respect to the HR algebra (Courcelle and Engelfriet (2012), for short C&E).

Recall from Section 2.2 that we encode node labels as loops, that is, all informa-

tion of the graph is encoded in its edges. We therefore choose an HR signature where

the constants are single loops and single edges, such as the ones in Figure 4.1(c).

This mirrors the approach of C&E. Further, recall that AMRs are rooted, and that

we represent the root with a source R. Throughout this section, we then work with

a finite set of source names S, such that R 2 S. As constants, we use the set

C[G]iso
=
n
a`
�
| a 2 S,� a label of a loop in [G]

iso

o

[ {ab� | a, b 2 S,� a label of a non-loop edge in [G]
iso

} ,

where a`
�
and ab� are the single loops and single edges, with sources on their incident

nodes, as described in Definition 2.16. Throughout this chapter we will use the

signature ⌃S,C[G]iso
as defined in Definition 2.15, with constants in CG and all other

HR operations (forget, rename and merge) with respect to the source set S. We

write the shorthand ⌃ for ⌃S,C[G]iso
. Finally note that all AMRs are connected, and

consequently we assume the graph [G]
iso

we decompose to be connected.

Let HR⌃ be the HR algebra with signature ⌃. An example term of HR⌃ that

evaluates to the graph [G0]iso of Figure 4.1(a) is shown in Figure 4.1(d). Our task

in this section then is to find a decomposition automaton D of [G]
iso

with respect

to HR⌃, i.e. an automaton D whose language consists of all terms that evaluate to

[G]
iso

, that is

L (D) =
n
t 2 T (⌃) | JtK

HR⌃
= [G]

iso

o
.

4.2 HR decomposition automata.

The question then is, given a connected abstract s-graph [G]
iso

, what does such an

HR decomposition automaton look like? We note a core idea of the string decom-

position automaton of Section 2.5.1, where the states were spans, i.e. smaller parts

of the full sentence. The analogue here is to use subgraphs as states, to keep track

of which parts of the final graph [G]
iso

a term has covered. To facilitate our re-

asoning about subgraphs, we work on an (arbitrary) concrete representative G of

our abstract graph [G]
iso

. Specifically, we use sub-s-graphs as states (recall from

Section 2.4 that sub-s-graphs are subgraphs, with potentially di↵erent source assign-

ments). Without further ado, let us consider the following definition as a candidate

for a decomposition automaton.
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Definition 4.1. Let G be a connected concrete s-graph, Sa finite set of sources. Let

⌃ be an HR signature over S, here specifically the signature as defined in Section

4.1. Then we define the automaton D = hQ,⌃, Qf ,�i where the set of states Q is

the set of sub-s-graphs of G, and the set of final states Qf = {G} contains only G.

� is the set of the following transition rules:

• || (H1, H2) ! H3 for all H1, H2, H3 2 Q with H3 = H1 || H2.

• renh (H1) ! H2 for every permutation h of S and all H1, H2 2 Q with H2 =

renh (H1).

• fgB (H1) ! H2 for every subset B ✓ S and allH1, H2 2 Q withH2 = fgB (H1).

• c ! H for every c 2 ⌃ of arity 0, and every H 2 Q with H ' c.

In other words, this automaton describes how concrete sub-s-graphs can combine

to the full graph G. Example rules of the decomposition automaton of the AMR in

Figure 4.1(a), that allow building the term in Figure 4.1(c), are shown in Figure 4.2.

For example, the rule

Glive ! ({2} , {b} , {2 7! R})

for Glive evaluates to the corresponding concrete subgraph of G0,

{2} , {b} , {2 7! R}

which is a triple of node set, edge set and source assignment function. The rule

GARG0 ! ({1, 2} , {c} , {1 7! A, 2 7! R})

works similarly. We can combine these graphs with the rule

|| (({2} , {b} , {2 7! R}) , ({1, 2} , {c} , {1 7! A, 2 7! R}))

! ({1, 2} , {b, c} , {1 7! A, 2 7! R}) .

This means the automaton assigns the state

({1, 2} , {b, c} , {1 7! A, 2 7! R}) ,

consisting of the live-01 and ARG0 edges with source A at node 1 and R at 2, to

the term Glive || GARG0. This correctly identifies a subgraph of G0 that matches the

term.



78

We now show that the automaton we just defined indeed defines the correct

language. First, we show this crucial proposition that relates the concrete subgraph

states of D to abstract graphs derived by the HR algebra.

Proposition 4.2. Let H be a sub-s-graph of G, D as defined in Definition 4.1 and

t 2 T (⌃), i.e. t is a term over the signature of D. Then

t
⇤�!
D

H , JtK
HR

= [H]
iso

Proof. We show that

t
⇤�!
D

H , JtK
HR

= [H]
iso

by induction over the height of t.

We first show that ‘)’ holds. So let us assume that t
⇤�!
D

H, i.e. D can assign H

to the top of t. Let first t have height 1, i.e. t = c for some constant c, then H ' c

by definition of D, and JtK
HR

= JcK
HR

= [H]
iso

holds.

Let us now assume that the statement holds for height n�1, and let t have height

n > 1. Consider the case t = || (t1, t2) for some terms t1, t2. Since t
⇤�!
D

H, there are

sub-s-graphs H1, H2 derived by these subterms, i.e. t1
⇤�!
D

H1, t2
⇤�!
D

H2, such that

H = H1 || H2 (the operation interpreted for concrete s-graphs). By induction then,

JtiKHR
= [Hi]iso for i = 1, 2. Therefore then

JtK
HR

= J|| (t1, t2)KHR

= Jt1KHR
|| Jt2KHR

= [H1]iso || [H2]iso

= [H]
iso

,

where the operations are evaluated on abstract s-graphs, and the last step follows

from H = H1 || H2. A similar argument can be made for the cases t = renh (t1) and

t = fgB (t1) for any rename and forget operations.

We now show that ‘(’ holds. We assume JtK
HR

= [H]
iso

, i.e. the term evaluates

to [H]
iso

in the HR algebra. Again, if t has height 1, i.e. t = c for some constant c,

we get t
⇤�!
D

H immediately from H ' c.

Again, we assume then that the statement holds for height n�1, let t have height

n > 1 and consider the case t = || (t1, t2) for some terms t1, t2. Then JtK
HR

= [H]
iso

plus the definition of || for abstract graphs gives us the existence of two concrete

s-graphs H1, H2 (not necessarily sub-s-graphs of G) such that JtiKHR = [Hi]iso for

i = 1, 2, and JtK
HR

= [H1 || H2]iso . In particular H ' H1 || H2, i.e. there is an

isomorphism f such that f (H1 || H2) = H. Then Hi ' f (Hi) ✓ H, i = 1, 2 (note
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that the restriction of f to Hi is still injective, and obviously surjective to f (Hi)).

Firstly then, we have JtiKHR
= [Hi]iso for i = 1, 2. Secondly, f (Hi) ✓ H, i = 1, 2

implies that the f (Hi) are sub-s-graphs of G, and by induction we obtain

ti
⇤�!
D

f (Hi) , i = 1, 2. (4.1)

Finally, it is easy to see that H = f (H1 || H2) = f (H1) || f (H2). Combined with

(4.1), this yields t
⇤�!
D

H, which we set out to prove. Again, a similar argument

works if t was built with rename or forget.

The following corollary states that Definition 4.1 is correct. It follows immedia-

tely from Proposition 4.2 for the case H = G.

Corollary 4.3. The automaton in Definition 4.1 is indeed a decomposition automa-

ton for [G]
iso

, i.e. for any [G]
iso

, G and D as in Definition 4.1,

L (D) = {t 2 T (⌃) | JtK
HR

= [G]
iso

}

4.2.1 Computing the decomposition automaton

In order to work with the HR decomposition automata, we need to compute them

first – unfortunately they don’t emerge from the graph G directly. This problem

spurs all work in the rest of this chapter.

Recall from Section 2.5.2 that in order to compute the full automaton, we only

need to be able to answer either of the following type of queries:

• Top-down: given a sub-s-graph H and an algebra operation f , enumerate all

the rules H ! f (H, . . . ,Hk) in D. This asks how a larger sub-s-graph can be

derived from other sub-s-graphs using the operation f .

• Bottom-up: given sub-s-graphs H1, . . . , Hk and an algebra operation f , enume-

rate all the rules H ! f (H1, . . . , Hk) in D. This asks how smaller sub-s-graphs

can be combined into a bigger one using the operation f . Note that here, if the

operation is not a constant, it is deterministic and, there can be at most one

such rule for the query (constants can evaluate to multiple di↵erent isomorphic

sub-s-graphs).

In Sections 4.4 and 4.5, we will describe how to answer these queries, and use

the e�cient bottom-up and top-down algorithms of Section 2.5.2 to compute the full

automaton. We evaluate the algorithms in practice in Section 4.6.
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But first, we need to better understand the inherent structure of sub-s-graphs,

the central objects of our compositional analysis, in the next Section 4.3.

4.3 Structure of sub-s-graphs

In this section, we will find that only a certain class of sub-s-graphs needs to be

considered as states in our decomposition automata. This observation leads to more

compact representations of the states, which will prove crucial in both practical

implementation and asymptotic runtime analysis.

Recall from Section 2.5 that for an automaton A over signature ⌃ with states Q,

we call a state q 2 Q accessible if there is a ground term t 2 T (⌃) such that t
⇤�!
A

q,

i.e. there is a term that derives the state q. We call a state q 2 Q extensible if there

is a term t 2 T (⌃ [Q) and a final state qf 2 Qf with t
⇤�!
A

qf , such that q is a leaf

of t. That is, if we start with q, we can use operations, and at leaves other states,

to reach a final state. For a state to participate in a successful run, i.e. for it to be

relevant to the automaton’s language, it must be both accessible and extensible.

Here, since we only need our automata to produce the right language, we focus

on reachable and extensible states. These classes of states turn out to have useful

properties.

First note that all reachable states of D are graphs that are induced by a set

of edges (i.e., there are no isolated nodes). This is because all the constants in

the signature have that property (single loops and edges, paired with their incident

nodes), and none of the HR operations can change that. We can therefore focus

mostly on just edges and source assignments, an insight that permeates this section

throughout.

We will first look at the s-components of a graph G, a new idea of this work.

Let U ✓ VG be a set of source nodes, i.e. U = D (�), for some source assignment �.

This set splits the edges of G into equivalence classes that are separated by U . We

say that two edges e, f 2 EG are equivalent with respect to U , e ⇠U f , if there is a

sequence

v1
e$ v2 $ . . . vk�1

f$ vk

with v2, . . . , vk�1 /2 U , i.e. if we can reach f from an endpoint of e without visiting a

node in U . We call the equivalence classes of EG with respect to ⇠U the s-components

of G and denote the s- component that contains an edge e with [e]⇠U
.

Consider for example the graph G in Figure 4.3, with sources A and B as in H5

in Figure 4.3(f). Here, the set of source nodes is U = {4, 5}. Starting at edge g, it

is impossible to reach another edge without crossing one of those nodes; the same
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Figure 4.3: (a) An s-graph G with (b-f) some sub-s-graphs.

holds for h. The other edges are however connected through non-source nodes, for

example one can get from d to f with the sequence

4
d$ 2

c$ 3
f$ 5

(the outer nodes of the path may be source nodes). Thus, the s-components of H5

in Figure 4.3(f) are {a, b, c, d, e, f}, {g} and {h}.
The notion of s-components is of particular importance due to the following

lemma.

Lemma 4.4. Let H a sub-s-graph of G that is a reachable state in D. Then H is an

extensible state in D if and only if its edge set is the union of a set of s-components

of G with respect to the source assignment �H of H, and all source nodes in G that

are nodes of H are also source nodes in H, i.e. Src (G) \ VH ✓ Src (H).

For example, the sub-s-graph H1 in Figure 4.3(b) is extensible. It fulfills the

conditions, and indeed, if we merge it with H2 (in (c) in the figure), forget the B

source and rename A to R, we obtain the full graph G in (a). In contrast, the sub-s-

graph H3 shown in Figure 4.3(d) is not extensible. The s-components of G with the

source assignment of H3 are {a, b, c, d}, {e} and {f, g, h}. In H3, the edge a from
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the s-component {a, b, c, d} is missing, and there is no way to add it without sources

at 1 and 2 (and no way to add sources there). The impossibility to add sources to a

node is also why H4 in Figure 4.3(e) is not extensible. We can merge it with H2 to

have all edges and nodes of G, but G has an R source at 4, and this can’t be added

to H4 with the HR algebra. A formal proof based on these ideas is presented in the

Appendix A.

Since every reachable state is a subgraph induced by its edge set, we can repre-

sent every reachable state via its edges and sources alone. We let an s-component

representation C = (C,�C) consist of a source assignment �C and a non-empty set

C of s-components of G with respect to the set D (�C) of source nodes of �C . We

require the domain D (�C) to be contained in the subgraph induced by the edges in

C. Then we can represent every extensible sub-s-graph H = (H�,�H) of G by the

s-component representation C = (C,�H) where C is the set of s-components of which

H consists. Conversely, we write T (C) for the unique reachable and extensible sub-

s-graph of G represented by the s-component representation C. I.e. for C = (C,�C),

the graph of T (C) is the one induced by the edges in C, and its sources are defined

by �C . The sub-s-graph H1 in Figure 4.3(b) has the s-component representation

({{a, b, c, d, e, f} , {g}} , {4 7! A, 5 7! B}).
In summary, every reachable and extensible state of AG,S can be uniquely repre-

sented by an s-component representation. Since only such states can participate in

a successful run of an automaton, we only consider these for the rest of this chap-

ter. These more compact representations allow us to see structural properties of

sub-s-graphs more clearly.

The main utility of s-component representations derives from the fact that merge

can be evaluated on these representations alone, as follows.

Lemma 4.5. Let C = (C,�C), C1 = (C1,�C1), C2 = (C2,�C2) be s-component repre-

sentations in the s-graph G. Then T (C) = T (C1) || T (C2) if and only if

(i) �C = �C1 [ �C2 (in particular, �C1 and �C2 must be compatible).

(ii) All sets in C1 and C2 are s-components with respect to D (�C).

(iii) C = C1 ] C2 (i.e., disjoint union).

We write C = C1 || C2. If there is no such C, then T (C1) || T (C2) is not defined.

Note that Condition (ii) is in fact implied by (iii) and C being an s-component

representation, but it appears important enough to mention it explicitly.

For example, take again the sub-s-graph H1 of Figure 4.3(b), with s-component

representation

({{a, b, c, d, e, f} , {g}} , {4 7! A, 5 7! B})
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as seen above. We can merge it with H2 from Figure 4.3(c), that we represent as

({{h}} , {5 7! B}) .

Now observe that choosing the boundary representation

({{a, b, c, d, e, f} , {g} , {h}} , {4 7! A, 5 7! B})

as the result C satisfies all conditions, and indeed represents the result of the merge,

H5 in Figure 4.3(f).

Trying to merge H1 with K1 of Figure 4.4 fails. We cannot merge these concrete

graphs because the sources at node 5 don’t match. And indeed, when considering

the s-component representation

({{h}} , {5 7! C})

of K1, we can see that Condition (i) of the lemma fails here, since �H1 and �K1 are

not compatible.

Merging H1 with K2 of Figure 4.4 doesn’t work either, simply because the graphs

overlap (both in edges, and in non-source nodes of H1). Condition (i) holds here:

the source assignments are compatible, and their union is

{4 7! A, 5 7! B, 2 7! C, 3 7! D} .

However, Condition (ii) fails. The s-component {a, b, c, d, e, f} of H1 is not an s-

component with respect to that new source assignment.

Finally, trying to merge H1 with K3 fails again due to overlap. In the lemma,

Conditions (i) and (ii) hold, but Condition (iii) fails: K3 is represented as

({{g}} , {4 7! A, 5 7! B})

and now both the representations for H1 and K3 contain the component {g}; the
union C = C1 [ C2 of the component sets is not disjoint.

In the Appendix A, we present a proof based on the ideas in the examples.

4.3.1 Boundary representations

In order to check the conditions of Lemma 4.5 e�ciently in the bottom-up algorithm

of Section 4.4, it will be useful to represent s-components via their boundary.

Consider an s-component representation C = (C,�C) in G and let EC be the
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Figure 4.4: More sub-s-graphs of G from Figure 4.3, that all cannot be merged
with H1.

set of all edges that are adjacent to a source node in D (�C) and contained in an s-

component in C. Then we let the boundary representation (boundary representation)

� of C in the s-graph G be the pair � = (EC ,�C). That is, � represents the s-

components through the in-boundary edges, i.e. those edges inside the s-components

(and thus the sub-s-graph) which are adjacent to a source. As an example, the

boundary representation of H1 is

�H1 = ({d, e, f, g} , {4 7! A, 5 7! B}) .

The boundary representation � specifies C uniquely and we can compute C from �,

as the following lemma shows. Thus we can write T (�) for T (C).

Lemma 4.6. Let C = (C,�C) be an s-component representation, and � = �(C) =

(E� ,�C) be its boundary representation. Then if �C is empty, C is just one s-

component spanning the whole graph G, and otherwise

C =

✓⇢
[e]⇠

D(�C)
| e 2 E�

�
,�C

◆
.

In other words, we can simply determine which s-components to use based on the

edges in �.

Proof. The case where �C is empty is trivial. In the other case, let us denote the

set

⇢
[e]⇠

D(�C)
| e 2 E�

�
with C� . It su�ces to show that C = C� . That ‘◆’holds is

obvious from the construction of boundary representations. To see that ‘✓’ holds,

note that since G is connected and �C non-empty, every s-component M in Cmust

touch a source node. Each such source node in turn must have an adjacent edge e in

one of the s-components in C, which implies that e is in the boundary representation,
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e 2 E� . But then M = [e]⇠
D(�C)

2 C� .

This means that we can freely translate between boundary representations, s-

component representations and (reachable and extensible) sub-s-graphs, without lo-

sing information.

The following lemma shows that the merge operation can be evaluated directly

on the boundary representations.

Lemma 4.7. Let G be an s-graph, let � = (E,�) ,�1 = (E1,��1) ,�2 = (E2,��2)

be boundary representations in G. Then T (�) = T (�1) || T (�2) if and only if the

following conditions hold:

(i) � = ��1 [ ��2;

(ii) for every source node v of �1 that is not a source node in �2, the last edge

on the shortest path in G from v to the closest source node of �2 is not an

in-boundary edge of �2, and vice versa;

(iii) E = E1 ] E2, i.e. the disjoint union.

We write � = �1 || �2. If no such � exists, T (�1) || T (�2) is undefined.

Intuitively, the conditions (ii) and (iii) guarantee that the component sets are

disjoint; the lemma then follows from Lemma 4.5 (with a formal proof in the Ap-

pendix A). We can again illustrate the conditions with the example graphs H1

(Figure 4.3(b)) and K1,K2,K3 (Figure 4.4). Merging H1 and K1 fails as before,

violating again Condition (i) for the source assignments.

The case of trying to merge H1 and K2 is more interesting. As seen above, we

have

�H1 = ({d, e, f, g} , {4 7! A, 5 7! B}) ,

and the boundary representation of K2 is

�K2 = ({c} , {2 7! C, 3 7! D}) .

Here, Condition (ii) is violated. For example, the node 2 is a source node in �K2 but

not in �H1 . The last edge on the shortest path from 2 to a source node of �H1 , i.e.

to 4 or 5, is the edge d to node 4. This edge d however is an in-boundary edge of

�H1 , and the condition fails.

The boundary representation for K3,

�K3 = ({g} , {4 7! A, 5 7! B})
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�
hThere is a constant c 2 ⌃ with T (�) ' JcKi

�
renh (�)

hh is a permutation of Si

�
fgB (�)

hB is a subset of Si

�1,�2
�1 || �2

h�1 || �2 is defined as by Lemma 4.7i

Figure 4.5: Deduction schema for bottom-up exploration

clearly violates Condition (iii) when combined with �H1 , since the sets of in-boundary

edges E�K3
= {g} and E�H1

= {d, e, f, g} overlap.

We can also evaluate the other HR operations directly on boundary representati-

ons. Constants are straightforward, and so are the rename operations, which only

change the source assignment �.

The forget operation changes the domain of �, so some in-boundary edges may

no longer be on the boundary afterwards. However, note that we can restrict our-

selves, to forget sources only on nodes where all incident edges are in the graph.

Otherwise, the result would not be extensible by Lemma 4.4. And in these cases,

we can simply first remove the sources in question from �, and then remove all

in-boundary edges that are no longer on the boundary.

We can thus interpret the operations of the HR algebra as (partial) functions

on boundary representations, leaving them undefined if the result would be non-

extensible and thus irrelevant for the decomposition automaton. Note how the boun-

dary representations are simpler than full graphs or even s-component representati-

ons, dropping the interior edges that we can easily reconstruct. This simplification

will allow us to make the bottom-up algorithm in the next section e�cient.

4.4 Bottom-up algorithm

With the work done in the previous section, we can now tackle computing the de-

composition automaton D e�ciently. We use the algorithm of Section 2.5.2, when we

originally discussed tree automata, to obtain the explicit automaton from bottom-up

queries. Recall the deduction schema of Figure 2.10, which is spelled out for the HR

algebra in Figure 4.5. We sequentially derive boundary representations, first using

constants as axioms to derive matching boundary representations in the graph, and
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then repeatedly applying HR operations to already derived boundary representati-

ons. Whenever we make a deduction, we add the corresponding rule to the explicit

automaton we build.

This approach comes with two challenges:

1. for each operation, test e�ciently whether the operation is allowed and if ap-

plicable which state, i.e. boundary representation it produces, and

2. for the merge operation, e�ciently look up which previously seen states a new

state can combine with.

We use the standard Algorithm 2 of Section 2.5.2 to run through the schema of

Figure 4.5, here spelled out as Algorithm 31. To recap, the general idea is to add

all states found by constants (the first inference rule in Figure 4.5) to an agenda

and a lookup structure. We then keep pulling states from the agenda, applying

the rename, forget and merge operations, and add new states to the agenda and

the lookup structure. For testing the merge operation, we find suitable previously

derived merge siblings in the lookup structure.

We show that this bottom-up algorithm has a total runtime of O
�
ns3dsds

�
, where

n is the number of nodes in G, d its maximal degree and s the number of sources in

the HR algebra we use. We describe details on how we execute each HR operation

in Section 4.4.2. But first, we describe the lookup structure for the merge operation.

4.4.1 Lookup

The lookup step for potential merge partners is crucial for the algorithm’s runtime.

First, observe that if we have a total of s = |S| sources, then there are O
�
ns2ds

�

boundary representations in G, where d is the maximum degree in G. This is because

there are O (ns) possible source assignments, and if there are s source nodes, for

each of them, each of the adjacent up to d edges can be in the in-boundary set

or not (depending on the structure of the graph). Now, if we would test every

pair of boundary representations for whether they can be merged, we would get

O
⇣�

ns2ds
�2⌘

such tests. However, there are much fewer actually possible merge

operations � = �1 || �2. We can see this by focusing on the resulting boundary

operation �. It too has a source assignment with up to s sources, of which there

are O (ns) many. Then every edge adjacent to a source node could have been in

either �1, or �2, or neither. This gives O
�
3ds

�
options. And in fact, the knowledge

of which boundary edges were in �1 and �2, paired with the source assignment of �,

1With a slight simplification, since lookup is only necessary for the merge operation, and that
operation is symmetrical.



88

Algorithm 3 Bottom-up exploration

1: seen := ;, agenda := () ,� := ;
2: lookup := new lookup structure for merge
3: for c 2 ⌃, ar(c) = 0 do
4: for � boundary representation in G, T (�) ' JcK do
5: add c ! T (�) to �
6: if � /2 seen then
7: add � to seen

8: add � to agenda

9: add � to lookup

10: end if
11: end for
12: end for
13: while agenda 6= ; do
14: pop � from agenda

15: for f 2 ⌃, ar(f ) = 1 do
16: if f (�) defined then
17: �0 := f (�)
18: add f (T (�)) ! T (�0) to �
19: if �0 /2 seen then
20: add �0 to seen

21: add �0 to agenda

22: add �0 to lookup

23: end if
24: end if
25: end for
26: for �0 2 lookup (�) do
27: if � || �0 defined then
28: �00 := � || �0

29: add || (T (�)T (�0)) ! T (�00) to �
30: add || (T (�0)T (�)) ! T (�00) to �
31: if �00 /2 seen then
32: add �00 to seen

33: add �00 to agenda

34: add �00 to lookup

35: end if
36: end if
37: end for
38: end while
39: return �

fully defines �1 and �2 and thus the operation. Therefore, there are only O
�
ns3ds

�

merge operations, much fewer than the O
⇣�

ns2ds
�2⌘

total pairings �1,�2.

We now describe a lookup structure that allows us to perform only O
�
ns3ds

�
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tests. The general structure of lookup is a tree as shown in Figure 4.6. At each

leaf, there is another simple lookup structure (e.g. a hash table) based on sets of

in-boundary edges. When a boundary representation � is entered into lookup, we

traverse the tree top-down until we find the right node to sort � into. When we do

a lookup (Line 26), we collect possible partners from all relevant nodes.

Sorting. When we enter a boundary representation � = (E� ,��) into lookup,

we start at the top of the tree tV in Figure 4.6. We then go through the sources

↵1, . . . ,↵s in S in order.2 If ��1

�
(↵1) = vj , i.e. if �� assigns to vj the source ↵1,

then we choose the branch vj . If �� leaves ↵1 unassigned, we choose the branch

?. We continue this way for all ↵i, i = 1, . . . , s. Once we reach a leaf of tV in this

fashion, the path to this leaf fully encodes the source assignment �� . Then, at the

leaf, we have a straightforward indexing structure (as said above, e.g. a hash table)

that maps sets of in-boundary edges to boundary representations. We simply enter

E� 7! � here.

Figure 4.7(a) shows the lookup tree tV for the graph G0 of Figure 4.1(a) with

sources S = {R,A}. The yellow path shows how the boundary representation

({c} , {1 7! A, 2 7! R}) obtained from evaluating the constant GARG0 is sorted in;

the blue path shows the process for the boundary representation ({b} , {2 7! R})
obtained from Glive

Partner lookup. While sorting was deterministic, when looking up potential part-

ners for merge, we need to be careful to find all of them. We do this the following

way. Given a boundary representation � = (E� ,��), to find all possible partners

�0 2 lookup (�), we first traverse the tree tV of Figure 4.6 to collect multiple leafs.

At each juncture, we now follow multiple paths. If �� assigns ↵i to a node vj , we

follow the paths labeled vj and ?. This mirrors the fact that we can merge � with a

boundary representation that has ↵i also assigned to vj or unassigned, but not with

one that has ↵i assigned to a di↵erent node. If however �� leaves ↵i unassigned,

we follow all branches downward, since all of them may contain a boundary repre-

sentation with which a merge is possible. Once we reach a leaf, note that this path

defines the set M of source nodes of a possible merge partner �0 (namely, exactly

the set of nodes we encountered along the path), and thus also the set of edges EM

incident to a vertex in M . None of the edges of � may be in �0, so in the table at

this leaf, we look up the boundary representations for each subset F ✓ EM \E. We

return all boundary representations found that way as possible partners �0.

2We can choose an arbitrary order at the start of decomposition



90

v1

v1 vk ?

vk

v1 vk ?

?

v1 vk ?

↵1

↵2

. . .

Figure 4.6: Node lookup tree tV

1

1 2

⇥
{c} 7! ({c} , {1 7! A, 2 7! R})

⇤

?

2

1 2 ?

?

1 2

⇥
{b} 7! ({b} , {2 7! R})

⇤

?

A

R

(a) Sorting

1

1 2

{{a} , {b} , {a, b}}

?

{{a}}

2

1 2 ?

?

1 2

{{b}}

?

–

A

R

(b) Lookup

Figure 4.7: Example lookup procedure when decomposing G0 of Figure 4.1(a) with
sources S = {R,A}.

Figure 4.7(b) shows all paths that the lookup for the case � = ({c} , {1 7! A, 2 7! R})
(again, the boundary representation obtained from evaluating the constant GARG0)

follows, as well as the sets F we use for lookup at every leaf. We have E� = {c},
and for example at path (A/1,R/2) – indicating that source A is at node 1 and R is

at node 2, we have M = {1, 2} and thus EM {a, b, c} and EM \ E = {a, b}, leaving
us with options {a}, {b} and {a, b} for F . Along the path (A/?,R/2) – indica-

ting that A is unassigned, and R is at 2, we can find the boundary representation

({b} , {2 7! R}) obtained from Glive; c.f. the blue path in Figure 4.7(a).

Note that each such pairing �,�0 is characterized by a consistent source function

� (the union of �� and the path we follow during lookup to obtain �0), and two sets

of edges that are disjoint and contain only edges incident to source nodes of �. By

the same reasoning we used to count merge operations, we obtain that in total there

can be at most O
�
ns3ds

�
such pairs.

Note that without the edge-set lookup tables at the leaves, the number of pairs

would be higher. The source assignments of any pair �,�0 would still be consistent,

but for each edge incident to a source node, there are now 4 options: in �, in �0, in

neither, or in both. That is, there would be O
�
ns4ds

�
pairs.

We have thus defined an e�cient lookup structure, and can move on to analyze

the runtime of the full algorithm.
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forget rename merge
I O

�
ns2ds2s

�
O
�
ns2dss!

�
O
�
ns3ds

�

T O (ds) O (s) O (ds)

Table 4.1: Rule counts I and amortized per-rule runtimes T for the di↵erent rule
types in the bottom-up algorithm.

4.4.2 Answering queries and runtime analysis

The runtime of Algorithm 3 is bounded by the number I of di↵erent operations (or

rules) we need to test (Lines 4, 16 and 27), multiplied by the per-rule runtime T

that we need to answer each query. The factor I is analogous to the number of rule

instances in schema-based parsing . The factor T is often ignored in the analysis

of such schema, because e.g. in parsing schemata for strings, we typically have

T = O(1). This is not the case here, however. Table 4.1 summarizes our results.

The merge operations dominate the runtime, bringing the total asymptotic runtime

to O
�
ns3dsds

�
. A closer discussion of each operation follows.

Forget and rename. Given a boundary representation � = (E,��), answering

the bottom-up forget query fgB (�0) ! � for a set of sources B amounts to verifying

that for every ↵ 2 B, all edges incident to ��(↵) are in-boundary in �, since otherwise

the result would not be extensible as discussed earlier. This takes time O (d). We

then let �0 = (E0,��0), where ��0 is like ��0 but undefined on ��1

�
(B), and E0 is the

set of edges in E that are still incident to a source in ��0 . Computing �0 thus takes

time O (d).

For a rename operation renh, we do not need to perform any checks, and simply

concatenate �� and h, yielding a per-rule runtime O (s).

We pull each of the O
��
n2d

�s�
di↵erent boundary representations from the

agenda once, and apply each of the O (s!) rename and O (2s) forget operations once

to it. Since the result of a forget or rename rule is determined by the child �0, this

is an upper bound for the number I of rule instances of forget or rename.

Merge. Now consider the bottom-up merge query for the boundary representations

�1 and �2. As we saw in Section 4.3.1, T (�1) || T (�2) is not always defined. But if it

is, we can answer the query with the rule (�1 || �2) ! || (�1,�2), with �1 || �2 defined
as in Section 4.3.1. Computing this boundary representation takes time O (ds).

We can check whether T (�1) || T (�2) is defined by going through the conditions

of Lemma 4.7. The only nontrivial condition is (ii). In order to check it e�ciently,

we precompute a data structure which contains, for any two nodes u, v 2 V , the
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length k of the shortest undirected path u = v1 $ . . .
e$ vk = v and the last edge e

on this path. This can be done in time O
�
n3
�
using the Floyd-Warshall algorithm

(Floyd (1962)). Checking (ii) for each source then takes time O (s) per rule.

Given that there are a total of O
�
ns3ds

�
merge rules, the runtime for checking

(ii) amortizes to O (s) per rule. The Floyd-Warshall step amortizes to O (1) per rule

for s � 3. Note that for s = 2, the HR algebra can only generate trees, and for

s = 1 only strings of edges. If G falls in these categories, the node table can be easily

computed in amortized O (1) using trivial algorithms3. This yields a total amortized

per-rule runtime T for bottom-up merge of O (ds).

We can also include the runtime for the lookup structure here. Note that the

tree tV has depth s, and a hash table lookup / addition is of cost O (1) on average.

Thus, we get a runtime of O
��
n2d

�s
s
�
for sorting, because we sort each graph once,

and each step has cost O (s). For the lookup, we saw in the previous section that it

returns, in total, O
�
ns3ds

�
pairings. Note that the reasoning of last section actually

applies to all lookups we try, not only the ones where actually a graph is found4.

Each lookup costs again at most O (s), which is subsumed in the per-rule runtime

O (ds) for merge we established above.

Constants. Since all the constants in ⌃ consist of single edges or loops, we can

find all pairs �, c such that T (�) ' JcK in one pass over the graph, taking time linear

in the size of G, i.e. O (nd).

We have now shown the operation specific asymptotic runtimes of Table 4.1, and

the total runtime of O
�
ns3dsds

�
follows for the bottom-up case. We now turn to the

top-down case.

4.5 Top-down algorithm

As seen back in Section 2.5.2, we can also explore the rules of the automaton the

other way around, in top-down direction. This circumvents the lookup problem,

since instead of having to find all possible partners in the merge operation, we

now know the result of the merge and need to ‘divide it up’ instead. As we will

show, this algorithm has the same asymptotic runtime as the bottom-up case; the

3If s is this small, but G is not a tree / string of edges, then the language L (D) of the decom-
position automaton is empty, and we can just leave the rule set �empty as well.

4Note that we perform the lookup twice for every pair of boundary representations �1,�2, once
when we pull �1 from the agenda, and another time when we pull �2; only the one we perform last
will be successful. However, this only adds a constant factor to the runtime and does not change
the asymptotic analysis.
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C hThere is a constant c 2 ⌃ with T (C) ' JcKi

C
C0 hC0 = renh (C) for a permutation h of Si

C
C0 hC0 = fgB (C) for a subset B of Si

C
C1, C2

hC = C1 || C2 as by Lemma 4.5i

Figure 4.8: Deduction schema for top-down exploration. Note that the first rule
for constants doesn’t actually derive any new state, but we can still check it and
infer the corresponding rule.

complexities broken down by operation are again as in Table 4.1 and the total runtime

is O
�
ns3dsds

�
.

We follow the standard Algorithm 1 for the deduction schema in Figure 2.9; the

schema for this case is spelled out in Figure 4.8. The idea is to start with the final

state (the full graph) and repeatedly discover new child states through top-down

queries. Again, whenever we make a deduction, we add the corresponding rule to

the explicit automaton we build. We do not use boundary representations here, but

s-component representations.

Crucial for the runtime here is to answer the queries e�ciently. We describe the

queries in the upcoming section, and analyze the asymptotic runtime after that.

4.5.1 Answering queries

Constants. Since the constants are single edges, this check is trivial.

Merge. Given an s-component representation C = (C,�C), by Lemma 4.5, we can

enumerate all s-component representations C1 and C2 that can be merged to yield C,
by using every distribution of the s-components in C over C1 and C2 and restricting

� accordingly.

Rename. Given an s-component representation C = (C,�C) and a rename opera-

tion renh, finding the s-component C0 such that renh (C0) = C is in fact the determi-

nistic process of simply concatenating �C with the inverse h�1 of the permutation

h.
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Figure 4.9: Examples to illustrate the ‘inverse’ forget procedure. We have H1 =
fg{C} (K) = fg{C} (L)

Forget. The challenging query to answer top-down is forget. We will first describe

the problem and introduce a data structure that supports e�cient top-down forget

queries.

Consider top-down forget queries on the sub-s-graph H1 in Figure 4.3(b) (reprin-

ted in Figure 4.9 for convenience); its s-component representation is

({{a, b, c, d, e, f} , {g}}, {4 7! A, 5 7! B}) .

A top-down forget might promote the node 3 to a C-source, yielding a sub-s-graph

K (that is, fg{C} (K) is the original s-graph H1; K is also shown in Figure 4.9). In

K, the edges a, e, and f are no longer equivalent; its s-component representation is

({{a, b, c, d} , {e} , {f} , {g}}, {4 7! A, 5 7! B, 3 7! C}) .

Thus, promoting 3 to a source splits the original s-component into smaller parts.

By contrast, the same top-down forget might instead promote the node 1 to a

C-source, yielding the sub-s-graph L in Figure 4.9; fg{C} (L) is also H1. However,

all edges in {a, b, c, d, e, f} are still equivalent in L; its s-component representation

is ({{a, b, c, d, e, f} , {g}}, {4 7! A, 5 7! B, 1 7! C}), having the same s-components as

H1.

An algorithm for top-down forget must be able to determine whether promotion

of a node splits an s-component or not. To do this, let G be the input graph. We

create an undirected auxiliary graph GU from G and a set U of (source) nodes. GU

contains all nodes in V \U , and for each edge e that is incident to a node u 2 U , it

contains a node (u, e). Furthermore, GU contains undirected versions of all edges in

G; if an edge e 2 E is incident to a node u 2 U , it becomes incident to (u, e) in GU

instead. The auxiliary graph G{4,5} for our example graph is shown in Fig. 4.10(b).
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Figure 4.10: (a) Our running example graph G, (b) the auxiliary graph G{4,5}, (c)
the block-cutpoint graph of G{4,5}, and (d) the auxiliary graph G{3,4,5}.
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Two edges are connected in GU if and only if they are equivalent with respect

to U in G – by ‘splitting’ the source nodes, paths actually cannot go through them

any more. In other words, the connected components of GU are the s-components

of G with respect to U . Therefore, promotion of u splits s-components i↵ u is a

cutpoint in GU , i.e. a node whose removal disconnects its connected component5. A

biconnected component (BCC) of GU is a maximal subgraph H such that any node

can be removed from H without disconnecting it. Two overlapping BCCs always

share just a single node, and that node is a cutpoint – otherwise, the BCCs would

not be maximal, they could be merged without losing their defining property. In

Fig. 4.10(b), the BCCs are indicated by the dotted boxes. Observe that 3 is a

cutpoint and 1 is not.

For any given U , we can represent the structure of the BCCs of GU in its block-

cutpoint graph. This is a bipartite graph whose nodes are the cutpoints and BCCs

of GU , and a cutpoint is connected to all the BCCs that contain it; see Fig. 4.10(c)

for the block-cutpoint graph of GU in the example (ignoring its edge labels for now).

Connectivity in a block-cutpoint graph mirrors connectivity in the original graph

(here GU ), and thus a block-cutpoint graph is always a forest: if there were a cycle,

everything in it could be contracted into a single BCC. The individual trees thus

represent the connected components of GU , i.e. the s-components of G.

This line of thought leads to a useful property of block-cutpoint graphs. At a

node that represents a cutpoint u, every incident edge leads to a subtree of the block-

cutpoint graph representing a new connected component that would emerge if we

were to remove u (or ‘split’ it). For example, if we were to promote the node 3 to a

source, it would be split into 3b, 3c, 3e, 3f in G{3,4,5} (see Figure 4.10(d)). Note that

the edges b and c are still connected, and part of the component {a, b, c, d}. This

component corresponds to the bi-connected components {a, b, c} and {d}, represen-
ted in the subtree of the block-cutpoint graph in Figure 4.10(c) that one obtains

when following the edge from node 3 upwards, i.e. the subtree consisting of the

nodes labeled {a, b, c}, 2 and {d}. We annotate this edge from node 3 upwards with

all edges we find in that direction, i.e. with {a, b, c, d}. We do the same for the other

edges, always annotating an edge from a cutpoint to a BCC with the set of all edges

we encounter in the subtree attached to the BCC (in the direction away from the

cutpoint). For example, for the other edges incident to 3, this yields the sets {e} and

{f}, so the edges incident to 3 are annotated with exactly the new s-components we

obtain when promoting 3 to a source.

We precompute the annotated block-cutpoint graphs for all relevant sets U ; de-

5Note that removing a node u disconnects a component of GU if and only if repeating our
‘splitting’ process for u disconnects the component.



97

tails are presented in the next section.

We can now answer a top-down forget query C ! fgBC0 e�ciently from the block-

cutpoint graph for the sources of C = (C,�). We start with some ↵ 2 B. We iterate

over all components c 2 C, and then over all internal nodes u of c. If u is not a

cutpoint, we simply let C0 = (C 0,�C0) by making u an ↵-source in �C0 and letting

C 0 = C. Otherwise, we also remove c from C and add the new s-components on

the edges adjacent to u in the block-cutpoint graph. We repeat the process for all

sources in B. The query returns rules for all s-component representations that can

be constructed like this.

4.5.2 Runtime analysis

Merge and rename. Since merge is so straightforwardly generated by distributing

the s-components of the parent on to the children, the cost lies essentially only in

the generation of the s-component representation data structures. This brings the

per-rule runtime to O(ds), the maximum number of s-components in C. The number

of merge rules is, by the same reasoning as in the bottom-up case, again O
�
ns3ds

�
.

For rename, the same analysis as in the bottom-up case applies.

Forget. Once the block-cutpoint graphs are precomputed, the runtime of top-down

forget fgB is O (ds), since the set B is of size O (s) and for each source, we may add

O (d) new s-components. We only need to precompute the block-cutpoint graphs

with respect to all sets U ✓ V of nodes with |U |  s � 1, since only in these cases

can another source be added. There are O
�
ns�1

�
such graphs. Each step of the

computation is at most a linear run through the graph, see e.g. Hopcroft and Tarjan

(1973) for computing the biconnected components. These linear runs can be upper-

bound as O (nd). The pre-computation thus takes O (nsd) time, which amortizes to

O (1) per rule.

Constants. Again, this check is trivial to perform.

In conclusion, we have shown that the asymptotic runtimes of Table 4.1 also hold

in the top-down case, and the total asymptotic runtime of O
�
ns3dsds

�
follows.

4.6 Evaluation

In this section, we evaluate the two algorithms introduced in this chapter in practice.

We examine runtimes, automata sizes, language sizes and coverage. Runtimes are
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Figure 4.11: AMR size distributions on the corpora we use.

measured for enumerating all rules in the automata with the given algorithms. We

use fixed finite source sets that contain the root source R, and arbitrary other sources

(we just use numbers here). We use a slight variation of the HR algebra here,

which simplified implementation. First, rename operations can only swap two source

names instead of performing arbitrary permutations. Any permutation can still be

performed through a sequence of swaps. Second, forget operations only forget one

source at a time. Again, sets of sources can be forgotten through sequences of rename

operations.

First, we experiment with di↵erent versions and parameters on the Little Prince

corpus (version 1.6), which is available at https://amr.isi.edu/download/amr-bank-v1.

6.txt. This is a small corpus of 1,562 sentences; we perform our experiments on the

1,271 sentences where the AMR has up to 10 nodes. The distribution of AMR sizes

is shown in Figure 4.11(a). At the end of this section, we will test the best versions

on the training section of the LDC2015E86 dataset, which has 16,833 sentences; we

use the 16,616 sentences where the AMR has up to 50 nodes (see Figure 4.11 for the

size distribution).

Bottom-up versus top-down. Figure 4.12 shows in (a) a runtime comparison of

the bottom-up and top-down algorithms, each using the HR algebra with 3 sources

and constants that are single edges or single labeled nodes. For these plots, we

use geometric means across all graphs with the same node count, and plot on log

scales. We can see that the top-down algorithm is a bit slower. Figure 4.12 shows a

possible reason. It shows all rules that the algorithms explore, and for comparison the

number of rules that participate in a successful run, i.e. the minimal number of rules
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Figure 4.12: Comparing the bottom-up and top-down runtimes, with 3 sources.

necessary to compute the correct language. It seems like the top-down algorithm

explores a few more rules that in the end cannot be used. The top-down algorithm

may still be useful for downstream applications of the decomposition automaton

that require the automaton to answer top-down queries lazily. That is for example

the case in some IRTG parsing algorithms. However, in this thesis we care mostly

about enumerating all rules. Thus, we will use bottom-up automata in the further

evaluation.

Source count. We evaluate the bottom-up algorithm with 2,3 and 4 sources, see

Figure 4.13. The asymptotic runtime O
�
ns3dsds

�
has the source count s in the

exponent, and it is thus no surprise that increasing the number of sources comes

at a great cost in terms of runtimes. As Figure 4.13(a) shows, just adding one

source increases the average time to decompose an AMR with 10 nodes by a factor

of over 100. For four sources, this means several minutes per graph. A similar

factor can be observed in the automata size, see (b), meaning that not only do the

runtimes increase drastically, but the automata also become larger. At 10 nodes with

4 sources, there are a whopping 100 million rules in an automaton. This size of the

automata would present a challenge to any downstream application. At the same

time, having access to more sources is crucial for coverage, as Figure 4.13(c) shows.

At 10 nodes, only about one third of the graphs can be parsed with two sources.

As mentioned before, Courcelle and Engelfriet (2012) show that with k sources, one

can parse graphs with tree width k � 1. Tree width is a measure of the complexity
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Figure 4.13: Experiment results for 2,3 and 4 sources, with the bottom-up algo-
rithm
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Figure 4.14: Restricting the bottom-up algorithm to only allow connected
subgraphs reduces runtimes and automata size.

love-01
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O2

ARG2

(b) A constant Gpersuade

Figure 4.15: Larger ‘blob’ constants, as used in the IRTG in Chapter 3.

of a graph. For two sources, this means tree width 1, which corresponds to trees,

i.e. graphs without reentrancies. Thus, the coverage in (c) for 2 sources shows the

percentage of trees in the corpus. With three sources, the coverage jumps up to

about 90%, and with four sources to nearly full coverage on this dataset.

Restricting to connected subgraphs. One idea to reduce the complexity of

these algorithms is to only allow connected subgraphs as states of the tree automata,

similar to how most string parsers only allow consecutive spans as partial results.

This removes some terms from the language of the automata, but the assumption is

a reasonable one. Disconnected subgraphs are unlikely to form meaningful subunits

in AMR. The performance increases, shown in Figure 4.14(a) are sizable, nearly an

order of magnitude for four sources. A similar decrease in size can be observed for

the automata, see (b).
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Larger constants. The IRTGs we saw in Chapter 3, based on Koller (2015), as

well as the HRG grammar of Peng et al. (2015), use larger constants with some edges

attached to nodes, such as in Figure 4.15. We experiment with this style of constant

here. We attach to a node all outgoing edges with ARGx, opx, sntx (x 2 N),
domain, poss or part labels, and all incoming edges with any other label. This

heuristic closely matches the heuristic of Peng et al. (2015), with minor di↵erences.

This method partitions the edge set of the graph. The constants each have one

labeled node, which we give the root source R, and unlabeled nodes, to which we

assign arbitrary other source names from our fixed sets.

These constants make sense, they form meaningful units and reflect the idea of

‘argument slots’ established in Chapter 3. However, they also need a lot of sources

just to write down. A graph likeGlove in Figure 4.15, for a transitive verb, needs three

sources (including the root), and Gpersuade already needs four. The empirical results

in Figure 4.16(c) indicate that using the blob constants requires adding one source to

achieve similar coverage. However, as (a) in the same figure shows, this trade-o↵ does

not reduce runtimes after all, nor does it significantly reduce automata sizes, as (b)

indicates. We will thus stick with the atomic single edge and single node constants

for the rest of this chapter. However, the blob constants will make a comeback with

the AM algebra in Chapter 5.
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Figure 4.17: Language sizes of the re-
stricted bottom-up automata.

Language size. The language of the

HR decomposition automata is always

infinite: since renames just swap sour-

ces, when one applies the same rename

operation twice, it just cancels out.

Thus, rename operations can occur in

arbitrarily long chains at any point in

the term, without changing the result.

This leads to an infinite set of terms

evaluating to the same graph. Howe-

ver, we can make an ad-hoc restriction

to make the languages finite, and me-

asure their size. We do this by anno-

tating the automata states with infor-

mation about which nodes have been

involved in a rename operation since the last forget or merge. We then prohibit

renaming the source on one node twice, without a forget or merge operation in be-

tween. This breaks the rename cycles, and makes the languages finite. Figure 4.17
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plots the language sizes. There are astonishingly many terms for even very small

graphs. For example, with three sources, even AMRs with just two nodes have over

10 million terms describing them. The plot caps at one billion terms, larger language

sizes couldn’t be measured for technical reasons.

Realistic data. Figure 4.18 shows results on the LDC2015E86 dataset. The plot

uses the bottom-up algorithm, restricted to connected subgraphs and using the ato-

mic constants, for 2, 3 and 4 sources. The plots reveal severe problems with this

approach. Coverage with two sources is unsatisfactory – it is clear that we must do

better than just parsing trees. With three sources, coverage is much better, but still

not perfect. At the same time, automaton sizes get impractically large, and runtimes

are a real concern. In this experiment, the full corpus couldn’t be covered for 3 or 4

sources, despite running the experiment for several days. These problems are even

more pronounced for four sources. We will address these issues in the next chapter,

introducing the AM algebra that improves the situation dramatically.

4.7 Application: Graph parsing

A further application of this chapter’s decomposition automata is graph parsing, i.e.

using the graph as the input for the parsing process of a grammar. If the grammar

is synchronous – as in the IRTG or synchronous HRG formalisms we discussed in

we discussed in Section 3.1 –, then this parsing process yields a string as output, i.e.

we could generate sentences from AMRs.

Groschwitz et al. (2015) demonstrates the feasibility of this application in the

context of IRTG. Recall from Section 3.1.1 that to parse an object, we compute the

parse chart

AG \ h�1

s (D) ,

the intersection of the IRTG’s grammar automaton AG and the inverse homomor-

phism h�1
s of the decomposition automaton D. The mechanisms for intersection and

inverse homomorphism of tree automata are very general, but the decomposition

automaton is a crucial ingredient for specifically the graph parsing process.

In fact, Teichmann et al. (2018) show that an IRTG can be brought into a

normal form where the asymptotic runtime complexity of the parsing algorithm is

determined by the complexity of computing the decomposition automaton. In other

words, the runtime complexity of O
�
ns3dsds

�
we showed in this chapter also holds

for graph parsing with IRTG.

This is interesting because in related work, Chiang et al. (2013) show that graph
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Figure 4.18: Evaluation on the LDC2015E86 dataset. This uses the bottom-up
algorithm, restricted to connected subgraphs and using atomic constants.
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parsing with HRG has runtime complexity O
�
nk+13d(k+1)d(k + 1)

�
, where k is a

parameter of the grammar called its treewidth.6 Groschwitz et al. (2015) extends the

equivalence results between the HR grammar and HRG of Courcelle and Engelfriet

(2012) by showing that an IRTG with an HR algebra with s sources is equivalent

to an HRG with treewidth k + 1. In other words, the complexities O
�
ns3dsds

�
and

O
�
nk+13d(k+1)d(k + 1)

�
match exactly.

While Groschwitz et al. (2015) does not work with a synchronous grammar, the

paper uses an IRTG with just an HR interpretation and provides empirical results

on runtimes for computing the parse chart from an AMR. This process is also the

bottleneck for parsing with a synchronous grammar, so the runtime results can be

assumed to generalize. Figure 4.19 shows the paper’s comparison with Bolinas7, an

implementation of the algorithm in Chiang et al. (2013), using equivalent grammars

for both. The graph shows drastic practical runtime improvements, which were

further improved in Groschwitz et al. (2016) where we describe faster algorithms for

tree automata inverse homomorphism and intersection.

4.8 Conclusion

In this chapter, we described algorithms for computing decomposition automata for

graphs with respect to the HR algebra, both in bottom-up and top-down fashion.

We examined runtimes both in theory and in practice on an AMR corpus, and also

looked at the application of graph parsing, where the runtime performance of this

approach compares well to related work.

While we showed that computing the automata is feasible in practice, some

problems remain if we want to use them to sample a consistent set of terms for

training a parser. Chief among these problems is the fact that the resulting automata

are huge, with millions of rules even for small graphs. And even with an ad-hoc

restriction to make the set of terms finite, there are still billions of terms describing

a single graph with just a couple of nodes.

In particular, we observed a trade-o↵ in terms of source count: a low source count

of two yields smaller automata and better runtimes, but has lower coverage and is

unable to model important phenomena such as control. A high source count of four

has unfeasible large automata and runtimes. And for three sources, instead of being

the best of both worlds, both types of problems persist.

6In the paper, Chiang et al. (2013) list O
⇣
nk+13d(k+1)

⌘
as their runtime, but they ignore the

per-rule runtime of O (d(k + 1)).
7https://www.isi.edu/licensed-sw/bolinas/
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In the next chapter, we will have a closer look at why there are so many terms over

the HR algebra, and why this makes it hard to generate a consistent set of terms

for training a parser. We will then introduce the AM algebra as a linguistically

motivated alternative.



In the last chapter, we saw that for any single AMR, there are enormously many

terms over the HR algebra, and even the decomposition automata as compact re-

presentations of the terms are huge and take long to compute. In this chapter, we

investigate the reasons for this ‘compositional complexity’ and why it is a problem

when generating terms to train a parser.

To resolve this problem, we introduce the Apply-Modify algebra (AM algebra),

a graph algebra based on the linguistic principles discussed in Chapter 3. The

AM algebra has its technical foundation in the HR algebra, but has a much lower

compositional complexity: we find that for any given AMR there are drastically fewer

terms over the AM algebra than over the HR algebra, and that the decomposition

automata are much smaller and faster to compute.

We first discuss the problems with the HR algebra in Section 5.1, before we de-

fine and formally examine the AM algebra in Sections 5.2 and 5.3. In Section 5.4

we discuss the capabilities and limitations of the AM algebra in modeling di↵erent

linguistic phenomena. Finally, Sections 5.5 and 5.6 show how to compute decompo-

sition automata for the AM algebra in practice.

5.1 Problem statement

In the last chapter, we saw that the decomposition automata for the HR algebra are

very big (millions of rules per AMR), take long to compute, and have a language that

is either infinite or, with an ad-hoc restriction, finite but huge (billions of terms even

for very small AMRs). Let us call this combination of automata size, computation

time and language size loosely the ‘compositional complexity’ of an algebra. In other

words then, we found that the HR algebra has a high compositional complexity.

We started Chapter 4 with the plan of using the decomposition automata of

109
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love-01

person

ARG0

person

ARG1

name

name

James

op1

name

name

Lily

op1

(a) James loves Lily.

love-01

woman

ARG0

ribbon

ARG1

hate-01

ARG0

child

ARG1

pink-01

ARG1

very

degree

(b) The woman who hates children loves very pink ribbons.

Figure 5.1: Two example AMRs that are structurally similar.

the HR algebra to sample terms for grammar induction, in the style of e.g. Peng

et al. (2015). We will now examine why the high compositional complexity of the

HR algebra is a problem for the sampling process, and what the causes of this

high complexity are. Recall that the idea of such a sampling-based method is to

randomly generate a term such as the one in Figure 5.2(a) for a given AMR, and

divide it into contiguous segments that can serve as HR terms in grammar rules.

Example segments are indicated with the di↵erent colors in Figure 5.2(a).

In fact, these colored term segments correspond to the rules in the IRTG of

Figure 3.1 (here reprinted in Figures 5.3 and 5.4 for convenience). The only dif-

ference is that the IRTG uses the large constants of Figure 5.4, whereas the term

in Figure 5.2(a) uses the constants made of single nodes or edges (we saw in the

last chapter that using the larger constants does not help with the issue, since they

require us to use more source names). For example, the subterm

||

||

R
love-01

RS
ARG0

RO
ARG1

of the yellow segment evaluates to the graph Glove in Figure 5.4 – recall from

Section 2.4 that e.g. R
love-01 denotes a single node with label love-01 and source

R, while RS
ARG0 denotes an edge with label ARG0 from an unlabeled node with

source R to an unlabeled node with source S. Thus, the yellow segment corresponds

to the love rule, the blue to the apply subj rule and the red and green segments to
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RTG rules graph homomorphism hg string homomorphism hs
NP ! james GJames James

NP ! lily GLily Lily

VP ! love (NP) fgO (Glove || renR 7!O (x1)) loves ⇤ x1
S ! apply subj (NP,VP) fgS (x2 || renR 7!S (x1)) x1 ⇤ x2

Figure 5.3: A small handwritten IRTG that can analyze the sentence James likes
Lily. The graph constants GX are shown in Figure 5.4. The start symbol of the
RTG is S.

person

name

name

James

op1

(a) GJames

person

name

name

Lily

op1

(b) GLily

love-01

S

ARG0

O

ARG1

(c) Glove

Figure 5.4: The graphs referenced in Figure 5.3.

the lily and james rules respectively.

During the sampling process, each sampled term segment influences the proba-

bilities in future sampling iterations across the corpus, increasing the probability of

sampling similar segments in the future. When this works well, the last round of

sampled terms share many similar segments that can be used for rules that generalize

well.

However, this was not the case when my colleague Christoph Teichmann ran

preliminary sampling experiments with the HR decomposition automata of the last

chapter (personal communication, 2016). These experiments used variations of the

Chinese restaurant process and Gibbs sampling on the LDC2015E86 dataset to find

repeating term segments. The sampling algorithm could not find enough patterns

in the sampled segments to converge on a consistent set of rules, instead generating

nearly completely di↵erent segments with each sample.

The challenge here lies with the high compositional complexity of the HR algebra.

On the one hand, term segments that do the same thing don’t necessarily look the

same on the surface. For the two terms in Figure 5.2, the parts with the same colors

are functionally equivalent, that is, at each of the ‘cut points’ between the colored

segments, the partial results are the same. Figure 5.5 shows the corresponding
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person

name

name

James

op1

(a)

person

name

name

Lily

op1

(b)

love-01

S

ARG0

person

ARG1

name

name

Lily

op1

(c)

love-01

person

ARG0

person

ARG1

name

name

James

op1

name

name

Lily

op1

(d)

Figure 5.5: Partial results of the terms in Figure 5.2. Results are after the graph
segment in (a) green, (b) red, (c) yellow, (d) blue.

fg{S}

||

x1 ren{R$S}

x2

fg{O}

||

ren{S$O}

x1

ren{R$O}

x2

Figure 5.6: Two contexts that are functionally equivalent, as long as x1 has exactly
sources R and S, and x2 just R.
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graphs. In fact, the functional equivalence goes so far that for e.g. both blue contexts

in Figure 5.6, the results are the same for any s-graphs entered into x1 and x2,

as long as x1 has exactly sources R and S, and x2 just R. This condition can

be guaranteed by the nonterminals of the IRTG. Thus, the two blue terms would

e↵ectively define the same IRTG rule; and similarly for the other colors. And yet,

the term segments themselves are not identical. This surface ambiguity, meaning

that functionally equivalent term segments can be di↵erent on their surface, makes it

hard for the sampling algorithm to find patterns: there may be many cases where we

find segments that are functionally equivalent, but the sampler does not recognize

them as such. There are many causes of surface ambiguity in the HR algebra:

• The merge operation is symmetric, i.e. the order of arguments can be swapped.

The merges of Rlove-01 and RS
ARG0 in the yellow segments are an example of

this. Further, the order of consecutive merges can often be swapped.

• Forget operations can often change order with other operations (see e.g. the

fg{S} operation in the red segment).

• Spurious renames can occur nearly everywhere. In fact, without the ad-hoc

restriction on consecutive renames we introduced in the last chapter, infinite

rename chains and thus infinite variations on the graph segments are possible.

But even when controlling consecutive renames, source names can be switched

around spuriously. For example, the blue segment in Figure 5.2(b) uses the O

source instead of the S source to merge the segments, with the same result;

something similar occurs in the green segment as well.

Typically, such surface ambiguities are addressed with normal forms, where for dif-

ferent equivalent surface structures, a default one is chosen. This is one aspect of

the AM algebra we present as a solution below.

On the other hand, there is also a functional ambiguity in the HR terms.

There are many di↵erent ways to divide a single term into segments, and there are

many terms for a single graph. This means that even for a single graph, there is a

gigantic number of term segments we can sample, even aside from surface ambiguity.

Consider for example the term in Figure 5.7(a), which also generates the graph

in Figure 5.1(a). Here, the purple segment adds the ARG0 edge to the love-01 node,

including the attached person and name nodes and the name edge, but not yet the

actual name James. The teal segment then adds the same parts for the ARG1 edge

of love-01. The result is shown in Figure 5.8(a). That is, first a part of the left side

of the AMR in Figure 5.1(a) is added, then a part of the right side. Only then is

the name James added on the left of the AMR (gray segment in Figure 5.7(a)), and
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love-01

person

ARG0

person

ARG1

name
S

name

name
O

name

(a) Result after teal and purple
subterms.

S

James

op1

(b) After gray subterm.

O

Lily

op1

(c) After orange subterm.

Figure 5.8: Partial results of the term in Figure 5.7(a).

then is Lily added on the right side of the graph (orange in the term). None of the

segments in Figure 5.7(a) is functionally equivalent to a segment in Figure 5.2(a).

(In fact, due to the alternating pattern, the term in Figure 5.7(a) cannot be divided

into contiguous segments that are functionally equivalent to the ones marked in

Figure 5.2(a)).

This sort of functional ambiguity sounds on the one hand like the exact thing

where we would want to o↵er the sampling algorithm all possibilities, such that it

can find the most useful term segments itself. That is, if we do not have prior know-

ledge about how to choose among the di↵erent terms and the functionally di↵erent

segments, the sampling procedure should choose the segments that explain the data

best, i.e. segments that encode repeating patterns. But when decomposing AMRs

with the HR algebra, there are too many functionally di↵erent terms and segmentati-

ons for a single graph. When sampling from them without strong prior assumptions,

we won’t find repeating segments very often. Fortunately, we do have some prior

knowledge about which of these terms and segments are desirable, and which are

not.

For example, in the graph in Figure 5.1(a), clearly the subgraphs corresponding

to GJames and GLily (c.f. Figure 5.4) are meaningful units and should be added

as arguments of love-01 as a whole. In the term in Figure 5.7(a) however, these

subgraphs are added each in two separate, non-contiguous term segments (purple

and gray, and teal and orange respectively). In other words, the purple segment

adds the person and name nodes of GJames as the subject of love-01 before the

meaningful subgraph GJames is complete. One may now object that GJames as a

named entity is a special case, and could e.g. be condensed into a single node
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in a preprocessing step. However, the same phenomenon occurs for the AMR in

Figure 5.1(b), corresponding to the sentence The woman who hates kids loves very

pink ribbons. This AMR is structurally the same (except for edge directions), and a

term analogous to Figure 5.7(a) is shown in Figure 5.7(b). Again, parts of the phrases

are added in alternating order, first adding the hate-01 and woman nodes, then the

pink-01 and ribbon nodes and only then are the nodes for child and very added.

That is, again, the object and subject of love-01 are added before the meaningful

subgraphs are complete. It would be desirable to instead build meaningful subgraphs

in single contiguous terms. The challenge in reducing functional ambiguity lies in the

fact that while we have some prior knowledge, we are far from knowing everything

about language. The question is thus, how do we encode that which we know, while

giving the statistical model enough leeway to learn what we don’t know?

As a separate issue, long runtimes for computing the HR decomposition auto-

mata are a real concern for sampling. While the empirical performance we saw in

the last chapter is reasonable on the smaller graphs of the Little Prince corpus, on

the larger LDC2015E86 corpus computation became memory and time intensive, to

the point of infeasibility.

All these problems get amplified when using more source names. In fact, as the

last chapter demonstrated, this e↵ect is rather drastic. Even at just three sources,

automata size and computation time become unpractical, and for four source na-

mes, automata become incredibly large and took infeasible amounts of resources to

compute. At the same time, however, it seems like at least four sources are needed

to achieve satisfying coverage.

Looking at the terms in Figure 5.2, one might think that using larger constants

would resolve many of the problems. However, as we saw in the last chapter, larger

constants require more sources to achieve reasonable coverage. Empirically, this

turned out not to be worth it as far as the trade-o↵ of coverage and compositional

complexity is concerned.

In summary, the HR algebra’s high compositional complexity presents a challenge

for statistical grammar induction via sampling. While there may be technical soluti-

ons to this, we take a di↵erent approach here. The insight is the following. The HR

algebra is a general-purpose algebra for building essentially any graph. But AMRs

are not just nodes and edges, they are semantic graphs, and we saw in Section 3.2

how they can be constructed with the methods of application, modification and uni-

fication, which are more specific to semantic construction. We saw that the HR

algebra can be used to model these operations, so that is not the problem. The pro-

blem is that the HR algebra can also do everything else. So how about an algebra
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that can perform exactly application, modification and unification? This is the idea

behind the AM algebra presented in this chapter.

Related work on normal forms. Ambiguities similar to the ones discussed here

also occur elsewhere in Computational Linguistics. Spurious ambiguities, for ex-

ample, occur when multiple syntactic derivations are semantically equivalent. If

spurious ambiguity is high, this can increase parsing cost drastically. Eisner (1996)

gives a precise definition of semantic equivalence in the context of CCG, and presents

a normal form algorithm that eliminates all spurious ambiguity for a specific version

of CCG. Hoyt and Baldridge (2008) present a reformulation of the approach, and

Hockenmaier and Bisk (2010) extend it to include e.g. type raising.

While both the approach of Eisner (1996) to spurious ambiguity and the AM

algebra presented here reduce ambiguities in term structures, there are major dif-

ferences. Spurious ambiguity concerns di↵erent syntactic derivations that yield the

same meaning, whereas here we have the ‘meaning’ given in the form of an AMR and

consider ambiguity on the level of fragments of semantic terms. Further, we do not

only want to condense equivalent term fragments into one (reduce surface ambiguity)

but also rule out undesirable term fragments (reduce functional ambiguity). Finally,

Eisner (1996) reduces spurious ambiguity by restricting when which rules can be

applied. While this is also a part of the AM algebra (due to its type system), a large

part of the reduction in ambiguity is because the AM algebra combines multiple HR

operations into a single operation.

5.2 The AM algebra

In this section, we define the apply-modify (AM) algebra, that has two types of ope-

rations, application and modification. Each combines a sequence of HR operations

into one higher level operation. Before we define the application and modification

operations formally below, let us have a look at some examples.

Application We first look at the apply operation app↵, where ↵ is a source name.

Let us take a look again at our running example, James loves Lily, in Figure 5.9.

The AMR in (a) is described by the term over the AM algebra in (b). The appO

operation corresponds to the HR term in (c): first, the operation renR$O renames

the root source R of GLily to O, the source in the slot we are filling; see Figure 5.2(e).

Then, this result is merged with Glove, see (f), and the O source is forgotten, see (g).

This e↵ectively plugged the root of the argument GLily into the O slot of the head

Glove. The appS operation similarly plugs the root of GJames into the S slot, to yield
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op1

(a) AMR

appS

appO

Glove Glily
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(b) AM term
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||

Glove renR$O

Glily

(c) HR term for
appO (Glove, GLily)
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S

ARG0
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James

op1
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name

Lily
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(d) Constants Glove,
GJames and GLily
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O
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op1

(e) Result of
renR$O (GLily)

love-01

S

ARG0

person
O

ARG1

name

name
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op1

(f) Result of
Glove || renR$O (GLily)

love-01

S

ARG0

person

ARG1

name

name

Lily

op1

(g) Result of
appO (Glove, GLily), i.e.
of the HR term in (c)

Figure 5.9: AMR and its analysis for James loves Lily.
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want-01

raven

ARG0

learn-01

ARG1

ARG0

(a) AMR

appS

appO

Gwant Glearn

Graven

(b) AM term

want-01

S

ARG0

O[S]

ARG1

learn-01

S

ARG0

raven

(c) Constants Gwant, Glearn and Graven

want-01

S

ARG0

learn-01

ARG1

ARG0

(d) Result of appO (Gwant, Glearn)

Figure 5.10: AMR and its analysis for The raven wants to learn.

the final AMR in (a). This pattern matches how we filled slots with the HR algebra

before, for example the top of the yellow term segment or the whole blue segment

in Figure 5.2(a); or in the IRTG in Figure 5.3 in the love and apply subj rules.

In this simple case, the graphs GLily and GJames were complete; their only source

was R. However, in certain cases, we want to combine a predicate with an ar-

gument that is itself still looking for arguments. Take for example the graph in

Figure 5.10(a), corresponding to the sentence The raven wants to learn, where, as

we saw in Section 3.2, the raven is both the wanter and the learner. For the subject

control verb want, we use the graph Gwant of Figure 5.10(c). Its O source is anno-

tated with the argument type [S] (written O[S]). This means that Gwant requires its

object argument to contain an S-source; during application this node is unified with

the S-source of Gwant itself, see Figure 5.10(d). We use the same HR term as in

Figure 5.9(c) – just with di↵erent constants–, which makes the unification happen

automatically in the HR merge operation. As seen in previous chapters, this unifica-

tion yields an (undirected) cycle, a reentrancy. Note that due to the annotation O[S],

this reentrancy was already encoded in the constant Gwant. In fact, all reentrancies

created by the AM algebra are encoded like this.1 In Section 5.2.2, we discuss a more

technical statement on how the AM algebra enforces that ‘promise’ of a reentrancy

made by the constant.

The fact that annotations encode restrictions on the argument makes the AM

1See the paragraph on coreference in Section 5.4.1 for a discussion on a type of reentrancy that
the AM algebra cannot encode well.
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snake lion

(c) Constants Gpersuade, Gleave, Gsnake and Glion

fgO

||

Ĝpersuade renR$O2

renS$O
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(d) HR term for
appO2 (Gpersuade, Gleave).

Ĝpersuade is Gpersuade

without the [S ! O]
annotation.

leave-01
O2

O

ARG0

(e) Result of renR$O2 (renS$O (Gleave))

persuade-01

S

ARG0

O

ARG1

leave-01

ARG2

ARG0

(f) Result of appO2 (Gpersuade, Gleave),
i.e. of the HR term in (d)

Figure 5.11: AMR and its analysis for The lion persuades the snake to leave.



122

spell

dangerous

mod

(a) AMR

modM

Gspell Gdangerous

(b) AM term

spell

dangerous

M

mod

(c) Constants Gspell, Gdangerous

||

Gspell renM$R

fgR

Gdangerous

(d) HR term

Figure 5.12: AMR and its analysis for a dangerous spell.

algebra a partial algebra, i.e. the operations are not always defined. For example,

we cannot fill the O slot of Gwant with Graven, because Graven does not have an S

source. This allows the annotations to guide the composition process.

We also define annotations for renaming sources, in order to model phenomena

such as object control verbs, as in the lion persuaded the snake to leave, see Fi-

gure 5.11. Here, the snake is both the leaver and the entity being persuaded. We

can handle this with the graph Gpersuade in Figure 5.11(c), that features an O2-

source which is annotated as O2[S ! O]. This O2 source must be filled by a graph

that still has an S-source, which is renamed to an O-source during application, and

thus merged with the O-source of persuade. This yields the structure shown in (f).

The appO2 operation here corresponds to an HR term with an additional rename

operation renS$O, as seen in (d). The result of the renames is shown in (e), and

the merge operation again makes the unification happen automatically. While this

renaming-annotation allows us flexibility in where reentrant edges should go, it is

encoded in the constant. This not only makes sense because the object control is a

property of the word persuade, but also binds all renaming operations to constants,

preventing spurious renames.

Modification The modify operation is similar in nature to the apply operation,

but is its inverse in terms of where the root ends up. A typical modifier isGdangerous of

Figure 5.12(c), having an M source to be filled. In the operation

modM (Gspell, Gdangerous), we first forget the root (i.e. the R-source) of the modifier

Gdangerous, rename then its M source to R and merge the graphs, see Figure 5.12(d).

This attaches Gdangerous to the root of the head Gspell with the original M slot, see

Figure 5.12(a) for the resulting AMR.

This is di↵erent to the apply operation in that if we were to evaluate

appM (Gdangerous, Gspell), the root R would be at the dangerous node, but here, the
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O S
S

(a) ⌧ (Gwant), ⌧ (Gseem)

S O2 O
S

(b) ⌧ (Gpersuade)

O S

(c) ⌧ (Glove)

seem-01

O[S]

ARG1

(d) Gseem

Figure 5.13: Source annotation auxiliary graphs for (a) Gwant of Figure 5.10(c),
(b) Gpersuade of Figure 5.11, (c) Glove of Figure 5.9. Also in (d) a graph Gseem that
has the same type as shown in (a).

spell node remains the root. We can interpret this as Gspell remaining the head of

the expression, being modified by the adjunct Gspell.

Note how the apply operation consumes a source of the head, whereas the modify

operation does not do that, it leaves the sources of the head unchanged. Thus, in

the AM algebra any head can be modified indefinitely often, mirroring the property

of language we observed in Section 3.2.

We thus saw the ideas behind the application and modification operations of the

AM algebra, and how source annotations control reentrancies. We can now define

the algebra formally.

5.2.1 Formal definition

Let us start with the source annotations. We define the source annotations as one

auxiliary graph per s-graph. For example, in Figure 5.13(a), the annotation ⌧ (Gwant)

of the graph Gwant of Figure 5.10(c) is shown. Its nodes are O and S, the sources of

Gwant. This is a shift of perspective, since in this auxiliary graph the source names

do not play the role of extra labels that unify nodes, but are themselves the nodes.

The arrow from O to S indicates that the O argument is required to have an S source,

i.e. what we write as O[S] in the constant. The fact that the edge to S is also labeled

S indicates that no rename occurs. It is worth pointing out that not all nodes in

the source annotation must be sources in the graph, for example the graph Gseem in

Figure 5.13(d) has the same type shown in (a), but no S source itself. Only later

will the appO operation introduce an S source, namely the S source of the argument.

We will discuss this construction for raising verbs like seem below in Section 5.4.1.

Figure 5.13(b) shows the annotation ⌧ (Gpersuade) of the graph Gpersuade of Fi-

gure 5.11(c). The S source is separate, indicating that the S source of Gpersuade will

not be part of any unification. The edge from O2 to O with label S indicates that
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A B C D E

A
C

D

C

E

(a)

B C D

C

E

(b)

A C D

C

E

(c)

Figure 5.14: (a) A DAG that is also a source annotation, (b) the subgraph domi-
nated by B and (c) the request at A

the O2 argument is required to have an S source, which will be renamed to (and thus

unified with) O.

The graph in (c) is the annotation for Glove of Figure 5.9, where neither the O

nor the S source is annotated. Thus, the annotation just contains the two sources,

with no edges.

We call an s-graph paired with such an auxiliary graph an annotated s-graph

or as-graph; a formal definition follows below. Defining the annotations through

auxiliary graphs like this causes a bit of technical overhead at first, but will yield

a clean and robust system in the end. Formally, we define the source annotations

as directed acyclic graphs (DAGs), with the sources as nodes, no node labels, and

sources as edge labels. First, the definition of DAGs.

Definition 5.1 (DAG). A directed acyclic graph, or DAG, with edge labels in ⇤ is

a tuple G = (VG, EG,�G) where

(i) VG is the set of nodes,

(ii) EG ✓ VG ⇥ VG is the set of directed edges,

(iii) �G : EG ! ⇤ labels each edge, and

(iv) there is no cycle, i.e. no directed path v0 !⇤
G
vk where k � 1 and v0 = vk.

Note that the last condition also excludes loops (with k = 1).

An example DAG is shown in Figure 5.14(a). We call a node v in a DAG G

an origin in G if it has no incoming edges.2 The origins in Figure 5.14(a) are A

and E. For a DAG G and a node v 2 VG, we say the graph dominated by v is the

subgraph induced by all nodes in G that can be reached from v, i.e. the nodes u to

2What we call “origin” here is often instead called the root, or source of the tree, but since this
thesis uses the words “root” and “source” so much in di↵erent contexts, we use “origin” here.
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which is a directed path from v (this includes v). The subgraph dominated by B in

Figure 5.14(a) is shown in (b).

We use the following type of DAG for our source annotations, and for related

notions later.

Definition 5.2 (Source annotation). Let S be a set of sources. A source annotation

over S is a directed acyclic graph (DAG) over S with edge labels in S, i.e. a tuple

⌧ = (V⌧ , E⌧ ,�⌧ ) where

(i) V⌧ ✓ S, i.e. the nodes are sources,

(ii) the edge labeling function �⌧ : E⌧ ! S labels each edge with a source,

such that additionally

(iii) every node has a direct edge to every node it dominates, i.e. if v, u 2 V⌧ such

that v !⇤ u, then (v, u) 2 EG, and

(iv) all edges leaving one node are uniquely labeled, i.e. for every node v 2 V⌧ , for

two edges (v, u) 6= (v, w) we have �⌧ (v, u) 6= �⌧ (v, w).

The DAG in Figure 5.14(a) is in fact a source annotation over {A,B,C,D,E}.
Also, all the auxiliary graphs in Figure 5.13 are source annotations according to this

definition.

Since it is rather inconvenient to draw the source annotations as graphs, given

that they are often rather simple structures, we linearize them in the following way.

Let ⌧ be a source annotation.

First, we define a helper function L that maps each source ↵ in ⌧ to a string. If

↵ is a leaf, we define L (↵) as the string “↵”. If ↵ is a non-leaf node with outgoing

edges e1, . . . , ek to sources ↵1, . . . ,↵k, we recursively define L (↵) as the string

L (↵) = ↵[�⌧ (e1) ! L (↵1) , . . . ,�⌧ (ek) ! L (↵k)].

That is, for each outgoing edge, we add “edge label! string for edge target”. To keep

the notation as short as possible, we follow the convention that if the edge label equals

the target node, i.e. �⌧ (ei) = ↵i, we write just L (↵i) instead of �⌧ (ei) ! L (↵i).

Furthermore, we observe that if not only �⌧ (ei) = ↵i but also there is a directed

path from another ↵j to ↵i, then L (↵i) is already described in L (↵j). In this case,

we omit �⌧ (ei) ! L (↵i) completely in L (↵).

Thus, for example for the source annotation ⌧ (Gwant) in Figure 5.13(a), we have

L (O) = O[S ! S] or for short O[S]. For ⌧ (Gpersuade) in Figure 5.13(b), we have
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L (O2) = O2[S ! O]. Note that this is also how we write the annotations in the

constants Gwant and Gpersuade in Figures 5.10(c) and 5.11(c).

For a more complex example, let us turn to the graph in Figure 5.14(a). Here,

L (B) = B[C,E ! D]. We could then write L (A) in long form as

L (A) = A[A ! B[C ! C,E ! D],C ! C,D ! D].

However, we can shorten C ! C to C and the same for D. Further, since C and D are

already mentioned in L (B), we can leave them out of the top level of L (A), leaving

us with

L (A) = A[A ! B[C,E ! D]].

For a full source annotation ⌧ , we then use the string

[L (↵1) , . . . , L (↵k)]

where ↵1, . . .↵k are the origins in ⌧ . For example, we write ⌧ (Gwant) as [O[S]] and

⌧ (Gpersuade) as [S,O2[S ! O]]. For the source annotation in Figure 5.14(a), we write

[A[A ! B[C,E ! D]],E].

We can now formally define annotated s-graphs.

Definition 5.3 (As-graph). An annotated s-graph or as-graph is a pairG =
⇣
Ĝ, ⌧ (G)

⌘

of an s-graph Ĝ =
⇣
Ĝ�,�

Ĝ

⌘
and a source annotation ⌧ (G) such that

(i) G has a root source, i.e. R 2 Src
⇣
Ĝ
⌘
and

(ii) all non-root sources ↵ 2 Src
⇣
Ĝ
⌘
\ {R} are nodes in ⌧ (G), and

(iii) every node in ⌧ (G) is dominated by a source in Src
⇣
Ĝ
⌘
.

To simplify notation, we write G� for Ĝ�, �G for �
Ĝ
, VG for V

Ĝ
, and so on.

The idea is that the annotation for a source ↵ 2 Src (G) is the subgraph domina-

ted by ↵ in ⌧ (G). We write ⌧ (G) (↵) for this subgraph. If for example ⌧ (G) is the

graph in Figure 5.14(a), then the annotation at source B is the DAG in (b) of the

same figure. In the annotation ⌧ (Gwant) in Figure 5.13(a), the annotation for O is

the whole graph ⌧ (Gwant) including the edge to S, representing the requirement that

the O argument have an S source. By contrast, the annotation for S in ⌧ (Gwant) is
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only the node S itself, indicating that no sources are required in the S argument of

Gwant.

Condition (ii) guarantees that such an annotation ⌧ (G) (↵) exists for every source

↵ in the graph, and Condition (iii) ensures that the source annotation ⌧ (G) is

minimal, i.e. only contains information about annotations of sources actually existing

in Ĝ. Note that Condition (iii) is equivalent to requiring that every origin of ⌧ (G) be

a source in Ĝ. The root source R plays a special role in the AM algebra, and is thus

required in every graph. A graph only containing a root source R, such as GJames of

Figure 5.9 or Graven of Figure 5.10 has the empty graph as its source annotation.

We also call ⌧ (G) the type of G, and discuss in what sense that turns the AM

algebra into a typed algebra in Section 5.3.

We can understand what the annotation ⌧ (G) (↵) on a source ↵ means for the

apply operation as follows. The labels on edges leaving ↵ describe what sources

are required to be in the argument, and the nodes in ⌧ (G) (↵) describe what these

sources will be unified with in the apply operation. For example, in ⌧ (Gpersuade) in

Figure 5.13, the O2 argument is required to have an S source (on the edge label)

which will be unified with the O source (edge target). The following definition

formalizes the notion of what is required from the argument, adding the condition

that the source annotations at the argument also need to match.

Definition 5.4 (Request). Let G be an as-graph and ↵ 2 Src (G) one of its sources.

Then the request of G at ↵ is the DAG reqG (↵) we obtain from ⌧ (G) (↵) by removing

↵ and replacing all other nodes u by the label on the edge (↵, u). Formally, we have

reqG (↵) =
�
Vreq

G
(↵), Ereq

G
(↵),�req

G
(↵)

�
, where

Vreq
G
(↵) =

�
�⌧(G) (↵, u) | u 2 V⌧(G)(↵) \ {↵}

 

Ereq
G
(↵) =

��
�⌧(G) (↵, v) ,�⌧(G) (↵, u)

�
| (v, u) 2 E⌧(G)(↵), v 6= ↵

 

�req
G
(↵) =

��
�⌧(G) (↵, v) ,�⌧(G) (↵, u)

�
7! �⌧(G) (v, u) | (v, u) 2 E⌧(G)(↵), v 6= ↵

 
.

Let us now move on to the definitions of the apply and modify operations. For a

source annotation ⌧ (G) (↵), we define the annotated renaming function R (⌧ (G) (↵))

as a permutation on S that for each edge e = (↵, v) in ⌧ (G) (↵) maps the edge label

�⌧(G)(↵) (e) to the edge target v, and maps R to R.3

3Note that such a permutation exists since each such edge e has a di↵erent label, and no two
edges go to the same source v; in other words, we simply need to extend an injective partial function
to a permutation. If there are multiple such permutations, we choose an arbitrary one; the choice
will not matter since we will only apply this renaming operation to graphs where the sources are
among the edge labels and R.
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Definition 5.5 (Apply operation app). Let G1 =
⇣
Ĝ1, ⌧ (G1)

⌘
, G2 =

⇣
Ĝ2, ⌧ (G2)

⌘

be as-graphs. Then we let app↵ (G1, G2) =
⇣
Ĝ, ⌧ (G)

⌘
such that

Ĝ = fg↵

⇣
Ĝ1 || ren{R$↵}

⇣
renR(⌧(G1)(↵))

⇣
Ĝ2

⌘⌘⌘

⌧ (G) = ⌧ (G1)� ↵

if and only if

(i) ↵ is an origin in ⌧ (G1) (in particular, ↵ is a source in Ĝ1), and

(ii) the source annotation of G2 matches the request of G1 at ↵, i.e. ⌧ (G2) =

reqG1
(↵).

Otherwise app↵ (G1, G2) is undefined.

That is, on the s-graph side, we first apply the annotated rename of G1’s ↵-

annotation, i.e. renR(⌧(G1)(↵))
, to Ĝ2, then rename the root R to ↵ with ren{R$↵}

and merge.4 Finally we forget ↵, i.e. the slot has been filled and ↵ consumed.

Accordingly, we remove the ↵-annotation from ⌧ (G1). Condition (i) formulates the

basic presupposition that ↵ exists as a source in G1, also guaranteeing that the

resulting graph will be connected (if G1 and G2 were connected). Furthermore,

Condition (i) makes sure that all ‘promises’ of a reentrancy (or unification, if you

will) given by the source annotation ⌧ (G1) will be kept. If ↵ is dominated by

another source ↵0 in ⌧ (G1), then this states that some source of the future argument

of ↵0 will be unified with ↵, and if we fill ↵ prematurely now, that unification can

no longer happen. Looking at the object control example in Figure 5.10 again, if

we were to allow appS (Gwant, Graven) first, then inserting Glearn in the O slot later

would no longer create a reentrancy since the S source of Gwant is already filled, but

would instead add a dangling S source; an undesirable result. We will prove a formal

statement of how exactly reentrancies are guaranteed in Section 5.2.2.

Condition (ii) reflects the idea that the annotation defines what graphs can be

arguments. We can understand the ideas behind Condition (ii) more clearly if we

break it down into more fundamental parts.

Lemma 5.6. Condition (ii) of Definition 5.5 holds if and only if

4Technically, renR$↵ does not just rename R to ↵, but swaps the two sources. However, the

operation renR(⌧(G1)(↵))

⇣
Ĝ2

⌘
renamed all sources in Ĝ2 to sources in ⌧ (G1) (↵) that are not ↵.

Thus, in the result of renR(⌧(G1)(↵))

⇣
Ĝ2

⌘
, there is no ↵ source and renR$↵ e↵ectively only renames

R to ↵.
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(i) all non-root sources in Src (G2) are nodes in reqG1
(↵),

(ii) for every source ↵0 in Src (G2), its annotation ⌧ (G2) (↵0) is equal to the subgraph

dominated by it in reqG1
(↵), and

(iii) any node in reqG1
(↵) is either a source in Src (G2), or dominated by a source

in Src (G2) in ⌧ (G2).

Proof. First, let us assume that Condition (ii) of Definition 5.5 holds, i.e. ⌧ (G2) =

reqG1
(↵). Then (i) follows from the fact that all non-root sources of G2 must be in

⌧ (G2) by the definition of an as-graph; (ii) from the definition of ⌧ (G2) (↵0), and

(iii) from Condition (iii) of the as-graph definition 5.3.

Conversely, if we assume that (i-iii) hold, we get ⌧ (G2) ✓ reqG1
(↵) directly from (i)

and (ii), and ⌧ (G2) ◆ reqG1
(↵) from (iii).

Interpreting the conditions of the lemma, (i) and (ii) ensure that G2 does not

bring anything unexpected to the table, and (iii) ensures that G2 has all sources and

annotations G1 requests. This concludes the definition of apply, and we can move

on to modification.

Definition 5.7 (Modify operation mod). Again, let G1 =
⇣
Ĝ1, ⌧ (G1)

⌘
, G2 =

⇣
Ĝ2, ⌧ (G2)

⌘
be as-graphs. Then we let mod↵ (G1, G2) =

⇣
Ĝ, ⌧ (G)

⌘
= G such that

Ĝ = Ĝ1 || ren{↵$R}

⇣
fgR

⇣
Ĝ2

⌘⌘

⌧ (G) = ⌧ (G1)

if and only if

(i) ↵ is an origin in ⌧ (G2), in particular G2 has an ↵ source,

(ii) reqG2
(↵) = (;, ;, ;), i.e. G2 does not have complex expectations at ↵, and

(iii) the unified annotations of G2 without ↵ are a subgraph of the unified annota-

tions of G1, in other words ⌧ (G2)� ↵ ✓ ⌧ (G1).

otherwise mod↵ (G1, G2) is undefined.

The modify operation is slightly simpler than apply, since no complex renames

occur. On the graph side, we first forget the root R of Ĝ2 and then rename ↵ to

R.5 We then merge the graphs, attaching Ĝ2 to the root of Ĝ1 where previously

5Again, technically ren{↵$R} swaps ↵ and R, but since we just forgot the R source, e↵ectively
only ↵ is renamed to R.
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Ĝ2 had its ↵ source. We simply keep the source annotation of G1, reflecting the

intuition that modification does not change the type of the head. Condition (iii)

ensures that no information is lost by us only keeping the source annotation of G1,

and that in fact for all sources in G2, we can still look up an annotation after the

modification. At this point, note how the formal definitions indeed match the earlier

informal discussion. It remains to show that nothing ‘breaks’ with these operations.

Lemma 5.8. Let G1, G2 be as-graphs and ↵ 2 S. Then, if the operation is defined,

H = app↵ (G1, G2) is a an as-graph. The same holds for K = mod↵ (G1, G2).

Proof. To show that H = app↵ (G1, G2) is an as-graph, we need to show Conditi-

ons (i-iii) of Definition 5.3, and that ⌧ (H) is a source annotation. Clearly, application

does not remove the root source R of G1, so Condition (i) of Definition 5.3 holds.

Now it is crucial to keep in mind that the annotation ⌧ (H) is the same as ⌧ (G1),

except with ↵ and the outgoing edges of ↵ removed. At the same time, ↵ is also not

a source in H, since the last HR operation that is executed to compute H is fg↵.

Thus, all other non-root sources from G1 are in ⌧ (H). Furthermore, the rename

R (⌧ (G1) (↵)) applied to G2 guarantees that all sources coming from the G2 side are

in ⌧ (H) as well, which means that Condition (ii) of Definition 5.3 holds as well.

Let us now show Condition (iii), that every node in ⌧ (H) is dominated by a source

in Src (H). Since this was the case before for G1, we only need to consider the des-

cendants of ↵, since only ↵ gets removed from the annotation. However, all direct

descendants of ↵ correspond to origins in the request reqG1
(↵), which equals the type

of G2. All the origins of reqG1
(↵) must thus be sources of G2 by Condition (iii) of

the as-graph definition 5.3, applied to G2. Therefore, all sources directly dominated

by ↵ in ⌧ (G1) come in from the G2 side in the HR term, and are thus sources in H.

This is enough to satisfy Condition (iii) of Definition 5.3.

It is clear to see that ⌧ (H) is a source annotation, since only the node ↵ gets removed

from ⌧ (G1), and removing a node cannot interfere with any of the Conditions (i-iv)

of Definition 5.2.

The case for K = mod↵ (G1, G2) is simpler, since here the source annotations do not

change, ⌧ (K) = ⌧ (G1). Conditions (i) and (iii) of Definition 5.3 are thus immedia-

tely clear, and also that ⌧ (K) is a source annotation. The Condition (ii) of Defini-

tion 5.3, that all non-root sources � 2 Src (K) are nodes in ⌧ (H), follows immedia-

tely from Condition (iii) in Definition 5.7 of mod↵, that ⌧ (G2)�↵ ✓ ⌧ (G1) = ⌧ (K).

That is, all non-root sources of G2, except ↵ which is renamed to R in the modifica-

tion process, are in ⌧ (H). All non-root sources of G1 are of course in ⌧ (G1) = ⌧ (K).

Thus, all non-root sources of K are in ⌧ (K), which concludes the proof.
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We can now define the AM algebra.

Definition 5.9. Let S be a finite set of sources and let C be a finite set of constant

symbols that each denote an as-graph over S. Consider the signature

⌃ = C [ {app↵,mod↵ | ↵ 2 S} .

Then the AM algebra with constants in C and sources in S is the algebra with

signature ⌃, with domain the set of as-graphs over S, and evaluating the operations

as described in this section. The constants in C each evaluate to the as-graph they

denote.

It is worth emphasizing that the AM algebra is a partial algebra, that is, there

can be arguments for which the binary operations are not defined. This is because

the definitions of app↵ and mod↵ contain conditions on the arguments, and if these

conditions are not met, the operation fails and is undefined. Thus, other than for

the HR algebra, not all terms over the AM algebra evaluate to a result. Section 5.3

establishes a type system that allows to easily check whether a term will evaluate

or not. But first we can prove a first formal result about the AM algebra, that

reentrancies are indeed guaranteed by the annotations in the constants.

5.2.2 Reentrancy guarantees

When discussing e.g. the constant for the control verb want, i.e. Gwant of Figure 5.10,

here reprinted in Figure 5.15, we can say that the annotation O[S] encodes the

reentrancy we observe in the resulting AMR. In this section, we will prove that such

a reentrancy is in fact guaranteed.

That is, we want to show that for a constant like Gwant, in the final result of

any term it occurs in, there will be a path from the node marked with O to the one

marked with S. To achieve this, we need to be able to track these nodes through the

term, that is, we need to know which nodes of Gwant end up where in the final graph.

We use a concrete version of the AM algebra for this, that is, a version where the

domain is the concrete as-graphs, and thus the constants are concrete as-graphs as

well (recall the distinction between concrete and abstract graphs of Section 2.2). The

app and mod operations stay mostly the same, except that they use the concrete

versions of the HR operations inside. Recall that for the concrete merge operation,

as described in Section 2.4, nodes that get merged together due to their sources

must be identical nodes (as objects) in both graphs in the first place. In particular if

the merge operation does not change any node identities, the set of nodes after the
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(d) Result of appO (Gwant, Glearn)

Figure 5.15: Reprint of Figure 5.10. AMR and its analysis for The raven wants to
learn.

merge is simply the union of the nodes in both merged graphs. Furthermore, if the

nodes don’t fulfill this identity condition, the merge can fail. Thus, in the concrete

AM algebra, operations can fail even if they are well typed.

As mentioned in earlier chapters, such a concrete algebra is not particularly

useful for constructing graphs from scratch – the constants need to know where their

nodes will end up in the final result, but this should really instead be defined by

the term’s structure and operations. However, for a theoretical result such as this,

it is still useful. One way to think about this is the following. We can take a term,

and evaluate it in the abstract AM algebra as usual. Then we can choose a concrete

representative G of the evaluation result. We then trace back through the term

which constants created which part of G, and choose concrete constants accordingly.

The resulting concrete AM term is then guaranteed to evaluate, and evaluates to

G. This allows us to post-hoc associate constants with parts of the evaluation result

and keep track of these parts throughout evaluation, even though we started with

an abstract AM term. We can now state the reentrancy guarantee as follows.

Proposition 5.10. Let t be a term over the concrete AM algebra that only uses

connected graph constants and that evaluates to an as-graph with empty source an-

notation (i.e. no non-root sources). Let c be a constant in t, i.e. c is a concrete

as-graph, such that there is a node v with source ↵, a node w with source � and an

edge from ↵ to � in the source annotation of c. Then in the evaluation result JtK,
there is a (undirected) path from v to w that does not use any edges of c.
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Proof. First note that the source at v starts out as ↵, but may be renamed to other

sources before being removed. Since the source at v has a non-trivial annotation (it

has an edge to the source at w), it cannot be consumed by modification; thus, it can

only be renamed to non-root sources. Then it must at some point be removed, since

the result of t has no non-root sources. Thus, the source at v must be consumed by

an application operation.

To be precise, there must be a position p in t where the left child (call it H1) has a

source (call it ↵0) at v, but the result (call it K) does not have a source at v. To be

precise, we define K as the evaluation result of the subterm starting at p, and H1

as the result of the subterm starting at p1. These are concrete as-graphs; also note

that the graph c must be a subgraph of H1. Additionally, we call the right child H2,

this is the result of the subterm starting at p2.

H1 also has a source �0 at w; because the source at w existed in c ✓ H1 and cannot

have been removed yet since there is an edge from the source at v to the source at

w, thus the source at w can’t have been an origin in the source annotation yet, and

only origins can get removed.

Further, the source annotation for ↵0 in H1 contains �0, and thus the request of ↵0

in H1, reqH1
(↵0), has a source � that will be renamed to �0 during application. In

fact, � is an origin in reqH1
(↵0) since there is a direct edge from ↵0 to �0 in ⌧ (H1).

Thus, � must be a source in H2, and since it will be unified with �0, and we work

with concrete s-graphs here, � must also be on the node w. Furthermore, the root

(i.e. the R source) of H2 will be unified with ↵0 in H1 during application, which

means that the root node of H2 must be v. Since H2 is connected (all the constants

start out connected, and no HR operations disconnect graphs), there must be a

(undirected) path P in H2 from v to w. For the concrete merge operation, the edges

of the children must be disjoint (c.f. 2.11), and thus the edges of this path P cannot

be in H1 , and thus also not in c. However, P will exist in JtK, which concludes the

proof.

5.3 Types

In this section, we show how we can check whether an AM term evaluates without

actually running through the whole process, by just looking at the types.

Definition 5.11. Let G =
⇣
Ĝ, ⌧ (G)

⌘
be an as-graph. We define its type to be its

source annotation ⌧ (G).

We can define the apply and modify operations on types only, with slight mo-
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difications. We add a special type FAIL to our domain, as a result for operations

that are undefined in the AM algebra. Note that Definition 5.4 only depends on

the graph’s type, and we can therefore extend the definition naturally to all source

annotations.

Definition 5.12. Let ⌧1, ⌧2 be source annotations or FAIL, and ↵ a source. Then

we define the result of app↵ (⌧1, ⌧2) to be the source annotation ⌧1 � ↵ if

(i) ⌧1, ⌧2 are source annotations, i.e. ⌧1, ⌧2 6= FAIL.

(ii) ↵ is a root in ⌧1, and

(iii) ⌧2 matches the request of ⌧1 at ↵, i.e. ⌧2 = req⌧1 (↵).

Otherwise, the result is FAIL.

Definition 5.13 (Modify operation (mod)). Let ⌧1, ⌧2 be source annotations or

FAIL, and ↵ a source. Then we define the result of mod↵ (⌧1, ⌧2) to be ⌧1 if

(i) ↵ is a root in ⌧2,

(ii) req⌧2 (↵) = (;, ;, ;), i.e. ⌧2 does not have complex expectations at ↵, and

(iii) ⌧2 without ↵ is a subgraph of ⌧1.

Otherwise the result is FAIL.

Definition 5.14. We define the algebra of AM types to have as domain the source

annotations over some source set S plus the special object FAIL. The algebra’s

signature is ⌃C of Definition 5.9. The as-graph constants evaluate to the graph’s

type, and the other operations evaluate as just described.

We say a term is well-typed if it evaluates to a type di↵erent from FAIL in the algebra

of AM types.

Theorem 5.15. A term t evaluates to an as-graph over the AM algebra if and only

if it is well-typed.

Proof. This follows inductively (over the depth of t) from the fact that the conditions

for the operations on types precisely mirror the conditions for the operations on AM

graphs, and same for the operation results.
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5.4 Discussion

At the start of this chapter, we set out to reduce both functional and surface ambigui-

ties of the HR algebra, by designing an algebra that is capable of exactly application,

modification and unification. And indeed, the AM algebra supports these mecha-

nisms, and since the merge, rename and forget operations of the HR algebra all have

a fixed place inside the apply and modify operations of the AM algebra, most causes

of surface ambiguities should be addressed. But how much ambiguity remains? Or

did we maybe restrict the operations too much, such that many graphs might have no

derivation anymore? And are the derivations we get consistent with the mechanisms

we saw for the compositional formalisms in Section 3.2? In this section, we look at

several examples to answer these questions, and give a qualitative examination of

the AM algebra. An empirical, quantitative evaluation follows in Section 5.6.

We will discuss the examples of Section 3.2, and the reader is invited to recall

that section. Some of these examples are interesting mostly because of their relation

to the syntax of the sentence. Since we only talk about semantic terms here – we

will discuss how we relate AM terms to sentences in the next chapter – we will not

go into detail about the syntax heavy examples here; we will do that in the next

chapter instead.

5.4.1 Examples

Figure 5.16 shows examples of simple application (a-c) and modification (d-f), just

as we saw earlier. At each operation in the terms (b) and (e), the type of the local

result is written in red. For the application example, there are just two terms, the

one in (b) and one with the order of applications swapped. For the modification

example, the term in (e) is the only one describing the AMR with these constants.

Thus, for these two graphs, ambiguity is drastically reduced. At the same time,

the available terms are very close to how the IRTG of Koller (2015) handles these

phenomena, i.e. these are desirable terms. We discuss how we obtain constants like

this in practice in Section 5.5.

Control and raising. Recall now the subject control example of earlier, namely

the sentence

(1) The raven wants to learn.

here printed in Figure 5.17. The AMR in (a) is created by the term (b) – again, the

only term given these constants –, where the subject source S of Glearn is expected by



136

love-01

person

ARG0

person

ARG1

name

name

James

op1

name

name

Lily

op1

(a) AMR for James lo-
ves Lily.

appS

[ ]

appO

[S]

Glove

[S,O]
GJames

[ ]

GLily

[ ]

(b) AM term for the
graph in (a).

love-01

S

ARG0

O

ARG1

Glove

person

name

name

James

op1

GJames

person

name

name

Lily

op1

GLily

(c) Constants used in (b).

owl

white-03

ARG1

(d) AMR for a white owl.

modM

[ ]

Gwhite

[ ]
Gowl

[M]

(e) AM term for the graph
in (b).

white-03

M

ARG1

Gwhite

owl

Gowl

(f) Constants used in (e).

Figure 5.16: Example analyses of (a-c) The raven learns and (d-f) dangerous spell,
illustrating application and modification.
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want-01

raven

ARG0

learn-01

ARG1

ARG0

(a) AMR

appS

[ ]

appO

[S]

Gwant

[O[S]]
Glearn

[S]

Graven

[ ]

(b) AM term

want-01

S

ARG0

learn-01

ARG1

ARG0

(c) Result of appO (Gwant, Glearn)

want-01

S

ARG0

O[S]

ARG1

learn-01

S

ARG0

raven

(d) Constants Gwant, Glearn and Graven

Figure 5.17: Subject control in The raven wants to learn.

seem-01

lie-02

ARG0

snake
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(a) AMR

appS

[ ]

appO

[S]

Gseem

[O[S]]
Glie

[S]

Gsnake

[ ]

(b) AM term

seem-01

lie-02

ARG0

S

ARG0

(c) Result of
appO (Gseem, Glie)

seem-01

O[S]

ARG1

lie-02

S

ARG0

snake

(d) Constants Gseem, Glie

and Gsnake

Figure 5.18: Raising in The snake seems to be lying.
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Gwant (see the constants in (d)). The two subjects get automatically unified to give

the as-graph in (c), and Graven is fit into that common subject slot with the appS

operation at the top in (b). In particular, this reentrancy is encoded in the constant

for the control verb want, as is typical for the compositional formalisms we saw in

3.2. The reader is invited to also recall the object control example in Figure 5.11 –

the same observations hold there.

It is interesting to compare the control phenomenon to raising. Figure 5.18(a)

shows an AMR for the sentence

(2) The snake seems to be lying.

On the surface, this sentence looks a lot like the control case, but the AMR is

di↵erent: semantically, the snake is not a direct argument of the raising verb seem-

01. However, we can construct an AM term, namely the one in Figure 5.18(b), that

has the same structure as in the control case (Figure 5.17(b)). In this derivation,

Gseem combines with Glie first to give the result in Figure 5.18(c). Only then is the

subject added. This makes the construction of the AMR in Figure 5.18(a) consistent

with both the standard syntax of the sentence, and the derivation in the control case.

In fact, the graphs Gwant and Gseem have the same type, despite Gseem not having

an overt S source.

Coordination. The constant Gand:[S] in Figure 5.19(e) coordinates two graphs of

type [S], i.e. two verbs still missing their subjects. This creates an AMR such as the

one in Figure 5.19(a) for James screams and shouts, with term in (b). Here, first

Gscream is added into the op1 slot, yielding the graph in (c). Then, Gshout is added

as op2 and the S sources of the two verbs merge, see (d). The subject GJames is

then added as usual. The order in which Gscream and Gshout are added is arbitrary,

such that there are two terms possible here. Coordination for any other type works

similarly.6

Again, this mechanism mirrors the coordination of like types we saw in compositi-

onal formalisms, such as in CCG. While technically, we could use constants with

node label and (or any other coordination) that expect di↵erent types at their

opx arguments, in practice, we will only allow constants that coordinate like types

(c.f. Section 5.5).

Relative clauses. Recall that relative clauses are di↵erent in AMR only through

placement of the root source R. For example, compare Figure 5.20(a) for

6as long as the coordinated type does not contain opx sources, which would accidentally merge
with the opx sources of the coordinating graph.
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and

scream-01

op1

shout-01

op2

person

ARG0 ARG0

name

name

James

op1

(a) AMR

appS

[ ]

appop2

[S]

appop1

op2[S]

Gand,S

[op1[S], op2[S]]
Gscream

[S]

Gshout

[S]

Gjames

[ ]

(b) AM term

and

op1[S]

op1

op2[S]

op2

person

name

name

James

op1

scream-01

S

ARG0

shout-01

S

ARG0

(c) Constants Gand,S, Gjames,
Gscream and Gshout

and

scream-01

op1

op2[S]

op2

S

ARG0

(d) Result of appop1 (Gand,S, Gscream)

and

scream-01

op1

shout-01

op2

S

ARG0 ARG0

(e) Result of
appop2 (appop1 (Gand,S, Gscream) , Gshout)

Figure 5.19: Verb coordination in James screams and shouts.

live-01

boy

ARG0

(a) AMR

modS

[ ]

Gboy

[ ]
Glive

[S]

(b) AM term

live-01

S

ARG0

boy

(c) Constants Glive, Gboy

live-01

boy

ARG0

(d) AMR for The boy lives.

Figure 5.20: (a-c) A relative clause in the boy who lives, and (d) the AMR of The
boy lives for contrast.
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doubt-01

person

ARG0

love-01

ARG1

name

name

Malfoy

op1

parents

ARG0

amr-unknown

ARG1

(a) Who does Malfoy doubt the parents love?

and

marry-01

op1

detest-01

op2

person

ARG2

person

ARG1 ARG1

person

ARG0

name

name

James

op1

name

name

Lily

op1

name

name

Severus

op1

(b) Lily married and Severus detests James

Figure 5.21: AMRs for wh-movement and right node raising.

(3) The boy who lives

and (d) for

(4) The boy lives.

The AM algebra handles relative clauses simply through using modification instead

of application on the subject (or object) slot, as shown in the term in Figure 5.20(b).

Wh-movement and non-constituent coordination. These phenomena are mos-

tly di�cult because of properties of the syntax. For example, in the long-distance

wh-movement in

(5) Whoi does Malfoy doubt the parents love i?

the distance between the verb love and its object who is big, since who has moved to

the start of the sentence (the usual object position is indicated with i). However,

in the corresponding AMR in Figure 5.21(a), the distance between the love-01 node

and the amr-unknown node representing who is minimal, and the AM algebra has a

term for this AMR with just basic application operations.

Similarly, non-constituent coordination such as the right node raising in
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arrive-01 whistle-01
manner

person

ARG0 ARG0

name
name

James
op1

(a) AMR

appS

[ ]

modM

[S]

Garrive

[S]
Gwhistling

[M, S]

Gjames

[ ]

(b) AM term

whistle-01

M

manner

S

ARG0

arrive-01

S

ARG0

person

name

name

James

op1

(c) Constants Gwhistling, Garrive and Gjames

arrive-01 whistle-01
manner

S

ARG0 ARG0

(d) ‘arrives whistling ’: result of
modM (Garrive, Gwhistling)

Figure 5.22: Secondary predication in the sentence James arrives whistling.

(6) Lily married and Severus detests James

is only a problem with respect to syntax (The phrases Lily married and Severus

detests that get coordinated are not usually considered constituents). The graph,

shown in Figure 5.21(b) can be built similarly to the subject coordination above

(here, the subject applications occur first for the verbs separately, and then the O

sources are coordinated).

We will discuss how our parser can produce these graphs from a sentence in the

next chapter.

Secondary predication and parasitic gaps. In (7), whistling is a secondary

predicate that shares its subject with the main verb arrives.

(7) James arrives whistling

The corresponding AMR is shown in Figure 5.22(a). The AM algebra can build this

AMR with modification, see Figure 5.22(b). At the modM operation, the modifier

Gwhistling still has its S source, which merges with the S source of Garrive, yielding
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file-01

I

ARG0

paper

ARG1

before

time

read-01

ARG0 ARG1 op1

(a) AMR

modO

[ ]

Gpaper

[ ]
appS

[O]

modM

[O,S]

Gfile

[O,S]
appop1

[M,O, S]

Gbefore

[M, op1[O, S]]
Gread

[O, S]
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[ ]

(b) AM term

file-01

S

ARG0

O

ARG1

read-01

S

ARG0

O

ARG1
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M

time

op1[O,S]

op1

I paper

(c) Constants Gfile, Gread, Gbefore, GI and Gpaper

M

before

time

S

read-01

ARG0

O

ARG1 op1

(d) ‘before reading ’: result of
appop1 (Gbefore, Gread)

file-01

S

ARG0

O

ARG1

before

time

read-01

ARG0 ARG1 op1

(e) ‘filed before reading ’: result of
modM (Gfile,appop1 (Gbefore, Gread))

Figure 5.23: A parasitic gap in the paper I filed before reading.
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the graph in (d). Then, appS fills this slot as usual.

An extension of this is parasitic gaps as in

(8) The paper I filed before reading

where the secondary predicate reading not only shares its subject with the main verb

filed, but also the object; see the AMR in Figure 5.23(a). In the term in (b), first

Gbefore is combined with Gread via the appop1 operation, passing along the S and

O sources of Gread to yield the graph in (d). This construct then modifies Gfile as

in the secondary predication in (7) above, now unifying both the S and O sources

respectively. Recall that this modification is in fact only allowed because Gfile has

an S and O source itself. The joint S and O slots are then filled as usual.

Coreference. This is a phenomenon that the AM algebra cannot properly handle.

Take for example the sentence

(9) Harryi thinks someone is reading hisi books.

where the i in the index indicates the coreference; with the AMR in Figure 5.24(a).

For these constants in (c), Gbook has a poss slot7, which somehow needs to be uni-

fied with the subject slot of Gthink before that is filled with GHarry. There is a

technical solution shown in (b), where the poss slot is passed through Gread via the

O[poss] annotation, c.f. (d), and then unified in Gthink via the O[poss ! S] annota-

tion. However, this solution puts the responsibility of resolving the coreference with

the constants Gthink and Gread, which is not good: to be properly reusable, these

constants should be the same (i.e. without special annotations on their O sources)

regardless of whether there is coreference in the rest of the sentence.

There may be solutions to this using e.g. a separate indexing mechanism such as the

Skolem IDs used in Artzi et al. (2015). However, this thesis will focus on phenomena

that can be handled more straightforwardly in a compositional framework, and sim-

ply delete coreferent edges before decomposition when necessary. This is described

in more detail in Section 5.5.3.

Completing meaningful subgraphs. In the problem statement at the start of

this chapter, we looked at the AMR in Figure 5.25(a), illustrating the problem that

the HR algebra does not have to complete meaningful subgraphs before it combines

them further. This is di↵erent for the AM algebra. Since application arguments may

not have any sources besides what the head requests, and their roots R get removed

7One might also consider introducing the book node and the poss edge in separate constants.
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think-01
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ARG1
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ARG0

book

ARG1
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op1

(a) AMR

appS
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appO

[S]
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[S,O[poss ! S]]
appO
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[O[poss]]
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read-01

S

ARG0
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ARG1
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(c) Constants Gthink, Gread, Gsomeone, Gbook and GHarry

read-01

book

ARG1

someone

ARG0

poss

poss

(d) ‘someone is reading his book ’: result of
appO (appS (Gread, Gsomeone) , Gbook)

Figure 5.24: (a) An AMR for Harry thinks someone is reading his books. The
analysis in (b-d) is undesirable.
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love-01
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ARG0

ribbon

ARG1

hate-01

ARG0
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pink-01
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very

degree

(a) AMR

appS

appO

Glove modM
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Ghate Gchild

(b) First AM term

appO
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Glove modS
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modM
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(c) Second AM term
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hate-01

S
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O
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M

ARG1

very

M
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(d) Constants Glove, Ghate, Gpink, Gvery, Gwoman, Gribbon and Gchild

Figure 5.25: (a) AMR for The woman who hates children loves very pink ribbons,
and (b-c) the only two AM terms describing it given the constants in (d).
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in the process such that nothing can attach there later, arguments must be complete

before application. Here “complete” means that it should not contain any sources

besides the ones the head specifically asks for in its annotation. For the AMR in

Figure 5.25(a), using the constants in (d), there are thus just the two terms in (b)

and (c), di↵ering only in whether the object or subject of Glove is added first.

5.4.2 Conclusion

For most of the discussed phenomena, we found analyses that are consistent with

the methods used in other compositional formalisms as discussed in Section 3.2.

Furthermore, the analyses are consistent with each other, for example the constants

for intransitive verbs have the same shape in simple sentences (Glearn in Figure 5.16),

in control sentences (Glearn in Figure 5.17) and in coordination (Gscream and Gshout

in Figure 5.19).

Furthermore, surface ambiguities and undesirable functional ambiguities have

been reduced drastically, often only allowing one or two terms for these small exam-

ples where with the HR algebra there were billions of billions of terms. The apply

and modify operations serve as normal forms of HR operations to reduce surface am-

biguities, and reduce functional ambiguities with the help of the type system. This

allows us (as demonstrated below in Section 5.6) to use more source names, and in

particular to use meaningful source names across the board, as we had originally set

out to do (how we find those source names in practice is discussed in Section 5.5.1).

We are also back to using the larger, more meaningful constants that were typical

of the compositional formalisms in Section 3.2.

5.5 Decomposing AMRs with the AM algebra

At this point, we have seen that the AM algebra is built on simple intuitions, but also

has a formal foundation that allows supporting the intuitions with technical proofs,

such as the reentrancy guarantee in Section 5.2.2. Further, we showed that a range

of non-trivial phenomena are analyzed satisfactorily (with some limitations leaving

room for growth). With the theory covered, we now tackle the task of computing

decomposition automata for the AM algebra in practice.

The decomposition automata follow similar principles as the HR decomposition

automata in Chapter 4; in fact, we will re-use much of that method for the s-graph

part of as-graphs. But we deal with one new challenge first: when decomposing

with the HR algebra, the constants were simple, just single loops and edges that we

could read o↵ of the graph. Here, by contrast, we need more complex constants,
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want-01

raven

ARG0

learn-01

ARG1

ARG0

(a) AMR G

raven

(b) Blob for raven

learn-01

ARG0

(c) Blob for learn-01

want-01

ARG0 ARG1

(d) Blob for want-01

Figure 5.26: (a) An AMR G for The raven wants to learn; (b)-(d) the blobs we
obtain

with edges attached to nodes already, and we aim for meaningful source names with

annotations. We need to obtain all of this automatically from the complete AMR.

In the following, we describe heuristic methods to extract candidate constants from

a given AMR G. Throughout, we will use a fixed set of sources

S = {R, S,O,O2, . . . ,O9,mod, poss, domain}

[ {opx | x 2 N, opx edge label occurs in the corpus} .

We will often treat G as a concrete graph in this section, so that we can refer to

specific nodes and edges conveniently.

5.5.1 Constants and their types

We start by cutting G up into the subgraphs that will serve as graph backbones of the

constants. We use the same graph fragments as we used for the larger constants in

Section 4.6, and we refer to these fragments here as blobs. To recall, a blob consists

of a main labeled node and the node’s outgoing edges with an ARGx, opx, sntx

(x 2 N), domain, poss or part label, and its incoming edges with any other label.

We call these edges the blob edges. Blobs defined in this way uniquely partition an

AMR’s edge set. Take the graph in Figure 5.26(a), the blobs are shown in (b-d) with

the ARGx edges attached to the predicates they belong to. Peng et al. (2015) use a

very similar heuristic to segment a graph into pieces.

Note that the unlabeled endpoints of the blob edges are included in the blobs. We

call these unlabeled endpoints of the blob edges the blob-targets. We will construct

a set of constants for each blob, such that the value of each constant is an as-graph

whose graph component is the blob. The main node of the blob will be the R-source.

It remains to assign source names and annotations to the blob-targets. The di↵erent

choices of annotated source names then constitute the di↵erent constants for this

blob.
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love-01

S

ARG0

O

ARG1

(a) active

love-01

O

ARG0

S

ARG1

(b) passive

Figure 5.27: Active and passive versions of the constant for a transitive verb.

Source names

We heuristically assign (syntactic) source names from S to the blob-target nodes

based on the edge label of their adjacent edge in the blob. Let v be a node in

our graph G, and let us now determine the source names used in the blob of v.

Canonically, we use the following edge-to-source mapping E2S to determine sources

for v’s blob-targets: For most nodes v, E2S maps ARG0 to S; ARG1 to O and other

ARGx to O[x]; poss and part to poss; sntx, opx and domain to themselves; and all

other edges to mod. Exceptionally, if v has a node label that is a conjunction8 and at

least two outgoing ARGx edges, we map ARGx to opx instead. E2S determines the

canonical target-to-source mapping bv, which assigns a source to each blob-target

u: if the edge between v and u has label e, then we have bv(u) = E2S(e). For

example, for the want-01 node in Figure 5.26, this mapping gives us the constant in

Figure 5.28(a).

A given blob may generate more than one constant, each with di↵erent sources

on di↵erent nodes; accordingly, for each node v in G, we collect a set B(v) of such

target-to-source mappings. B(v) contains the canonical mapping bv, and we generate

further target-to-source mappings by applying a fixed set of lexical rules to bv. The

passive rule switches S with any O, and object promotion maps Oi to O(i-1) (let

O0=O). We allow all results of such mappings with at most one use of passive,

that have no duplicate source names. For example, the constant in Figure 5.27(b)

is a result of the passive rule; Figure 5.27(a) shows the canonical mapping bv for

v the love-01 node. Having this flexibility in the source names will help when we

handle coordination below. For each mapping in B(v), we create a constant with

the respective sources and no further source annotations.
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want-01

S

ARG0

O

ARG1

(a) trivial annotations

want-01

S

ARG0

O[S]

ARG1

(b) non-trivial annotations

Figure 5.28: Possible source annotations for the want-01 constant for the graph in
Figure 5.26(a).

Annotations

We can also use these target-to-source mappings to extract constants that have

sources with non-trivial argument types and renaming functions. Consider the

subject-control AMR in Figure 5.26(a) above. So far, we obtain the constant in

Figure 5.28(a), but we also want to generate the constant Gwant in Figure 5.28(b);

i.e. determine the edge from O to S in the source annotation O[S]. Writing vwant,

vraven, and vlearn for the want-01, raven, and learn-01 nodes of the graph in 5.26(a),

note that it is the ARG0 edge from vlearn to vraven that signals the control structure.

That is, vwant has a blob-target vlearn, and the two share a common blob-target

vraven. For such a triangle structure, we consider any target-to-source mappings

mw 2 B(vwant) and ml 2 B(vlearn). We then add a constant for vwant which as

before uses the source names of mw, but now in the source annotation of the want

constant there is an edge from mw(vlearn) to mw(vraven) with edge label ml (vraven).

This anticipates the open source ml (vraven) coming from the vlearn constant and en-

sures unification with the source mw(vraven), renaming from ml (vraven) to mw(vraven)

if necessary. In other words, we set up the annotation in the vwant constant such

that when we apply it to a vlearn constant that has sources according to ml, we

obtain the structure we found in the graph. Let us consider the canonical example

here, with mw = {vlearn 7! O, vraven 7! S} and ml = {vraven 7! S}. In this case,

mw(vraven) = mr(vraven) = S, therefore no rename is necessary and we obtain the

constant of Figure 5.28(b). If we choose ml = {vraven 7! O} instead, we obtain a

constant for the vwant blob where the O source is annotated O[O ! S]. In this graph,

this is not particularly meaningful from a linguistic perspective, but in other graphs

this principle allows us to generate e.g. the object control structure of persuade. To

ensure that we recover the correct constant, we simply add constants for all choices

of mw 2 B(vwant) and ml 2 B(vlearn).

8According to the AMR documentation, these are and, or, contrast-01, either and neither.
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and

scream-01

op1

disappear-01

op2

raven

ARG0 ARG1

(a) AMR for The raven screams
and disappears.

appS

appop2

appop1

Gand Gscream

Gdisappear

Graven

(b) AM term for the AMR in (a)

and

op1[S]

op1

op2[S]

op2

(c) Matching con-
stant Gand.

Figure 5.29: An example of coordination.

disappear-01

O

ARG1

(a) canonical source name

disappear-01

S

ARG1

(b) passive source name

Figure 5.30: Possible source names for the disappear-01 constant for the graph in
Figure 5.29(a).
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Let us now find the constants for the and node in Figure 5.29(a). The AMR

corresponds to the sentence The raven screams and disappears. The algorithm used

here restricts constants to coordination of like types, as we observed as a common

pattern in Chapter 3. In the intended AM term, shown in Figure 5.29(b), we first

coordinate scream and disappear before we apply the result to the common argument

raven. To generate the constant for and, we consider maps ms 2 B(vscream) and

md 2 B(vdis), where vscream and vdis are the nodes labeled scream-01 and disappear-

01 respectively. The raven node vraven is a blob-target of both vscream and vdis.

If additionally the target-to-source maps agree, e.g. ms(vraven) = md(vraven) = S,

we add a new constant for the and blob where both op1 and op2 have an edge to

S in the source annotation (using S also as the edge label, since we don’t want a

rename here). This yields Gand as depicted in Figure 5.29(c). Here, the passive

operation for assigning alternative source names comes in handy. The canonical

source assignment would produce an O source for md(vraven), as in Figure 5.30(a).

But with the passive rule, we also allow the constant in Figure 5.30(b), allowing

md(vraven) = S. This allows us to have like types for both coordinated verbs, and

also makes sense linguistically. The unaccusative verb disappear-01 has a semantic

object (indicated by the ARG1 edge) that is syntactically a subject. Thus, using the

S source here is justified. For the case where ms(vraven) = S but md(vraven) = O, we

do not create a new constant. Again, we take all combinations of choices for ms and

mr into account.

want-01 and
ARG1

raven

ARG0 scream-01

op1

disappear-01

op2

ARG0 ARG1

Figure 5.31: AMR for The raven wants
to scream and disappear.

Similar patterns allow us to find

possible raised subjects for raising con-

structions, and to handle coordination

of control verbs. Using these pat-

terns recursively, we can handle nested

control, coordination and raising con-

structions. For example in Figure 5.31,

finding the raven node as a common

target in coordination allows us to ge-

nerate Gwant analogously to the previ-

ous example based on Figure 5.26(a).

In sum, we obtain types and rena-

ming functions that cover a variety of phenomena, in particular the ones described

in Section 5.4.
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5.5.2 Obtaining the set of terms

We define the AM decomposition automaton similarly to the HR case, also using

concrete sub-s-graphs to model the behavior of abstract graphs. The correctness of

this automaton follows with the same argument as in Chapter 4.

Definition 5.16. Let G be a connected concrete s-graph with only source R. Let

⌃G be the signature described earlier in this section. Then let the decomposition

automaton AG = (Q,⌃G, Qf ,�) where the set of states Q is the set of concrete

as-graphs whose s-graphs are sub-s-graphs of G, and the set of final states Qf =

{(G, [ ])} contains only G with the empty type. � is the set of the following transition

rules:

• app↵ (H1, H2) ! H3 for all H1, H2, H3 2 Q with H3 = app↵ (H1, H2).

• mod↵ (H1, H2) ! H3 for all H1, H2, H3 2 Q with H3 = mod↵ (H1, H2).

• c ! H for every c 2 ⌃G of arity 0, and every sub-s-graph H of G with H ' ĉ.

We can enumerate the rules of this automaton with the standard bottom-up

algorithm of Section 2.5. We can check the type constraints on apply and modify

straightforwardly, and check the HR rules on the concrete sub-s-graphs in the same

way as in Chapter 4.

relax-01

S

ARG1

Figure 5.32: We prefer
this constant for relax-01,
using S over O.

Source name preferences. In Section 5.5.1, we al-

lowed some flexibility in the source names we assign to

blob targets. For example, the passive version of a con-

stant has the S and O sources swapped. This allows us

e.g. to coordinate verbs in active and passive. However,

this flexibility also adds ambiguity to the terms. Using

weighted tree automata, to describe the terms allows us

to add a preference to the source assignments, giving us

more consistent terms, while keeping the flexibility. In

a weighted tree automaton, each rule has a weight, and

the score of a term is the sum of the weights of the rules used in it. We increase

the weights of constants that satisfy our preferences. We prefer active over passive,

except when there is no ARG0 edge – for example, the presence of an ARG1 edge

without an ARG0 edge in a constant often indicates an unaccusative subject, where

the verb has a syntactic subject that is a semantic object. For example for the sen-

tence The lion relaxes, we would find a constant as in Figure 5.32.
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There is room for improvement here. For example, one could try to make these

decisions on a case by case basis, taking the sentence syntax into account. But this

goes beyond this thesis. Here, this source name preference is a simple and practical

way to reduce the number of terms without losing coverage (see Section 5.6). In

Section 6.8.5 we will see that the source name preferences have a considerable e↵ect

on parsing performance.

Lookup. We use a simplified lookup here, using just types and the ‘central node’

of the operation. That is, for app↵, for the left argument G1 we use reqG1
(↵) and

the ↵ node of G1, while for the right argument G2 we use ⌧ (G2) and its root source.

Note that these need to match for the application to be successful. For mod↵, since

the types are not exactly specified here, we only index with the ↵ source of the right

argument G2 and the Rsource of the left argument G1.

A note on the asymptotic runtime. With a more thorough lookup structure,

the asymptotic runtime bounds we established for the HR algebra in Chapter 4

could apply here as well; that is, O
�
ns3dsds

�
. However, since we use so many source

names here, the bounds would be very high (the number of source names is in the

exponent), and in stark contrast to the fast runtimes we achieve in practice (see

Section 5.6 below). Combined with the strong type restrictions the AM algebra

employs, this hints at the existence of better theoretical runtime bounds for the AM

algebra specifically. But at the time of writing, no such improved upper bound is

known to the author of this work.

5.5.3 Removing edges

want-01

raven

ARG0

learn-01

ARG1

ARG0

Figure 5.34: AMR for The ra-
ven wants to learn.

As we saw in the discussion in Section 5.4, there

are some graphs where we cannot find a satis-

factory analysis with the AM algebra. Largely,

these are due to coreference. Given the con-

stant set we defined in this section, we usually

cannot obtain an analysis for these graphs at

all, for example we do not obtain the constants

used in Figure 5.24 in practice – which is a good

thing, since that analysis was undesirable. There are many AMRs we cannot straight

up parse with the AM algebra, about 34% of graphs in the LDC2015E86 training

set (see the evaluation section below). We take a pragmatic approach here and sim-

ply remove all edges that cause a graph to have no AM term with the constants of
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have-concession-91

wish-01

ARG1

we

ARG0

peace

ARG1

good

mod

only

mod

aspire-01

ARG0ARG1

(a) Nevertheless, the peace we aspire to will be only our good wish.

have-concession-91

survive-01

ARG1

he

ARG0

rescue-01

ARG1

prompt

manner

doctor

ARG0

cause-01

ARG1 ARG0

(b) However, with prompt rescue given by a doctor, he survived.

have-condition-91

obligate-01

ARG2

conclude-01

ARG1

have-03

ARG1

you

ARG0

something
ARG0ARG1

demonstrate-01

ARG1

ARG0

(c) To make a conclusion, you must have something to demonstrate it.

Figure 5.33: Example graphs from the corpus where we remove an edges to cope
with coreference and related problems (first five with seven nodes).
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Section 5.5.1. This way, we can still use the rest of each graph for training.

We use the following algorithm for a given AMR. First, we check whether we can

find an AM term with the algorithm defined in this section (i.e. whether the AM

decomposition automaton we build has a non-empty language). If yes, we keep the

graph unchanged. Otherwise, we use the linear representation of the AMR (as it

is given in the original corpus) to find reentrant edges. For example, the graph in

Figure 5.34 would have the representation

(w / want-0 :ARG0 (r / raven) :ARG1 (l/learn-01 :ARG0 r)).

Here, the second mention of the raven node (r / raven) in (l/learn-01 :ARG0

r) only uses the variable name r. This way of referring to a previously introduced

edge with only its variable name is the indicator that the ARG0 edge from learn-01

to raven is a reentrant edge.

At this point, we remove all reentrant edges from the graph, obtaining a tree.

Then, we try to re-add all removed edges, one by one. Whenever we add an edge,

we build a new decomposition automaton for the current graph. If its language is

empty we discard the edge, otherwise we keep it.

This process gives us graphs that the AM algebra can analyze, in a reasonable

amount of time. In the training set of the LDC2015E86 corpus, there is a total of

about 290.000 edges in about 17.000 graphs. Of those edges, about 20.000 (ca. 7%)

are reentrant. We remove about 12.000 edges with this procedure, i.e. ca. 60% of

reentrant edges, or 4% of all edges.

Let us look at a few examples to get an idea of the e↵ect of this in practice.

Figure 5.33 shows three graphs from the corpus, where we removed edges with this

procedure (the graphs are the first three of the graphs in the corpus with seven nodes

and where we removed edges). The removed edges are printed in red. The graph in

(a) indeed corresponds to a sentence with coreference:

(10) Nevertheless, the peace wei aspire to will be only ouri good wish.

The removed edge, from aspire-01 to we, corresponds to the first occurrence wei in

the sentence.

The removed reentrancy in AMR (b) corresponding to

(11) However, with prompt rescue given by a doctor, he survived.
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cause-01

op1[O->S]

ARG0

op2

ARG1

Figure 5.35: A constant
to handle the graph in Fi-
gure 5.33(b).

is not due to coreference, but due to secon-

dary predication. We could find a proper term

for this with the constant in Figure 5.35. Ho-

wever, our heuristics do not extract this con-

stant, and it is unclear how to extend them to

do this without obtaining too many undesirable

terms elsewhere. In Figure 5.33(c), the ARG1

edge from demonstrate-01 and conclude-01 is

again due to coreference, whereas the ARG1

edge from have-03 to you is due to the conditional, again a phenomenon the AM

algebra could model, assuming the right constants.

This brief examination indicates that indeed, coreference is a significant cause of

trouble to the AM algebra. But it also shows that a closer look at the phenomena in

AMR and at our heuristics to extract the constants could be helpful in the future.

However, many of these problematic cases are di�cult and rare, lying on the Zipfian

tail of language. Using a statistical approach to replace our heuristics for sources

and annotations in the constants might be an approach to cover a larger range of

phenomena without too much manual work. Finding a working method to handle

coreference would also be desirable. But this is beyond the scope of this thesis. Here,

this simple solution has good results: instead of losing 34% of the training instances,

we only remove 4% of the edges.

5.6 Evaluation

We conclude by analyzing whether the AM algebra achieves our goal of reducing the

compositional complexity for a given AMR compared to the HR algebra, i.e. reducing

the number of terms, automata sizes, and runtimes. Like in the previous chapter, we

use all graphs of the LDC2015E86 training corpus with up to 50 nodes, for a total

of 16616 graphs. We reuse the data from the final experiments of Chapter 4 for the

comparison to the HR algebra. For the AM algebra, we use the method described

in Section 5.5.

Automata size, and number of terms. The plots (a) and (b) of Figure 5.36

compare the automata sizes and language sizes for the AM algebra with the HR

algebra with two and three sources. We find that the AM algebra achieves a dramatic

reduction in both measures. For example, for the graphs with 15 nodes, the HR

decomposition automata with three sources has automata with over a million rules,

whereas the AM decomposition automata only have around 100 rules. Even for
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(d) Coverage

Figure 5.36: Evaluation on the LDC2015E86 dataset. For the HR algebra, this
again uses the bottom-up algorithm, restricted to connected subgraphs and using
atomic constants.
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graphs with 50 nodes, the AM automata sizes are in the low hundreds. The di↵erence

in the number of terms in Figure 5.36(b) is even more drastic. Both HR algebra

versions reach more than a billion terms for graph sizes in the single digits. The AM

algebra, by contrast, has single digit language sizes there, and the averages remain

below 10,000 across the dataset. The blue line shows the number of terms that

achieve a maximal score according to our source preference model of Section 5.5.2.

This gives another noticeable decrease in the number of terms, with now only about

10 terms remaining on average throughout the corpus.

These reductions have multiple reasons: we can use larger constants in the AM

algebra, and the graph-combining operations of the AM algebra are much more

constrained. Further, the type system and carefully chosen set of constants restrict

application and modification.

Runtime. We also find significant improvements in terms of runtime. While

the HR algebra with three sources couldn’t finish the run through the dataset in

several days, the AM algebra decomposed all graphs in a total of about two minutes.

This makes a big di↵erence when working with the method in practice. With two

sources, the HR algebra can keep up a bit better than with three, but we saw before

that a two source HR algebra is undesirable due to coverage issues, since it can only

decompose trees.
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Figure 5.37: Coverage with edges remo-
ved according to Section 5.5.3.

Coverage. Consider now the co-

verage of the di↵erent graph algebras,

i.e. the proportion of graphs of a given

size for which we find at least one term,

shown in Fig. 5.5.2(d). This reveals

the problem discussed in Section 5.5.3:

while the AM algebra’s coverage is lar-

ger than that of the HR algebra with

two sources – i.e. it can decompose

some graphs that are not trees–, overall

coverage is low at 66%. However, re-

moving some (4%) of the reentrant ed-

ges as described in Section 5.5.3 chan-

ges the picture dramatically, see Fi-

gure 5.37. Coverage for the HR algebras increases slightly, but more importantly,

the AM algebra now has nearly full coverage. The graphs that still cannot be decom-

posed mostly have a node in them, where our source assignment is forced to assign

the same source to di↵erent nodes, which is illegal in the AM algebra. For example,
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when a node has two mod edges in its blob, both their blob targets get assigned the

M source. A solution to this could be interesting future work, but the phenomenon

is rare enough that we do not address it here. Overall, the AM algebra achieves a

satisfying 98% coverage here.

5.7 Conclusion.

In this section we introduced the AM algebra, a typed graph algebra based on linguis-

tic principles. It follows in the tradition of ‘filling slots with arguments’ we discussed

in Chapter 3, using the mechanisms of application, modification and unification.

We saw how the AM algebra can describe graphs resulting from complex linguistic

phenomena, and at the same time simplifies the compositional analysis of a given

graph. In the next section, we will use the AM algebra to build a compositional

neural model for AMR parsing, yielding excellent results.

Future work. The need to remove edges as described in Section 5.5.3 is an im-

portant open problem. The examples given in that section illustrate that there is a

variety of causes for removed edges, and a first step to resolving the problem would

be a quantitative analysis of the causes. Possible steps in such an analysis include

first to divide the causes into categories by looking at several examples, and then

sorting a large amount of examples into these categories. The latter could be done

manually or possibly by automatically matching patterns in the graphs. The di↵e-

rences between the categories may however depend on the string or be too subtle

for automatic pattern matching to pick up, possibly making significant amounts of

manual annotation necessary.
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In the previous chapter, we introduced the AM algebra and saw how it decreases the

compositional complexity compared to the HR algebra. For a given AMR, we obtain

much fewer AM terms than HR terms. At the same time, the AM algebra provides

large coverage and linguistically reasonable terms. Now, we use the AM algebra to

build an AMR parser.

We could at this point try to induce a grammar, such as an IRTG as seen in Chap-

ter 2, using e.g. the sampling methods of Peng et al. (2015). However, this would pro-

bably lead to similar robustness and performance issues as for previous synchronous

grammar models. Instead, we present a simpler and more robust AM dependency

model. An AM dependency tree looks like this:

The raven

Graven

wants

Gwant

to learn

Glearn

appS
appO

Some words in the sentence are associated with as-graph constants (written below

the sentence), and a dependency tree describes the operations between them. AM

dependency trees underspecify AM terms, and thus there are even fewer dependency

trees describing an AMR than there are AM terms, further helping with obtaining

consistent training data. At the same time, AM dependency trees do not underspe-

cify the AMR. That is, when we obtain an AM term from the dependency tree and

evaluate it to an AMR, that AMR is uniquely defined.

Further, and crucially, we can frame the prediction of an AM dependency tree as

a supertagging plus a dependency parsing task. For both, we can use standard neural

methods. This allows us to obtain a parser that has the best of both worlds: the

161



162

The

G1

G2

...

raven

G1

G2

...

wants

G1

G2

...

to

G1

G2

...

learn

G1

G2

...

decoder
The raven

Graven

wants

Gwant

to learn

Glearn

appS
appO

Figure 6.1: The neural model predicts scores for all possible edges and supertags,
i.e. for all blue edges and supertags on the left. The decoder then finds the best AM
dependency tree according to the scores.

linguistically motivated structure of the AM algebra to guide the model, combined

with the robustness and e↵ectiveness of neural networks.

We present the parsing model in Sections 6.1 to 6.7, with Section 6.1 giving an

overview. Section 6.8 presents the evaluation results. In particular will we see that

the AM dependency parser is competitive with the state of the art, and significantly

outperforms a graph decoder baseline that has a near-identical neural network model,

but lacks the structure of the AM algebra. To round o↵ the chapter, Section 6.9

discusses limitations and strengths of the dependency approach, and ties back to the

discussion in Chapter 3.

This chapter is based on the paper Groschwitz et al. (2018), and as in previous

chapters, some text of that previous publication is reused here.

6.1 Model overview

We assume an edge and supertag factored model for the AM dependency parser

(technical details in Section 6.3). That is, a neural network scores all possible edges

(i.e. between each pair of words), and all supertags for each word. That is, scores

for all blue edges and supertags in Figure 6.1 on the left. We then use a decoding

step to find the best AM dependency tree according to these scores, under AM type

constraints. The full pipeline has the following steps.

Training

1. Generate AM dependency trees for the AMRs in the training data. The

AM dependency trees are described in Section 6.2, with implementation

details on how we generate them in Section 6.7.
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2. Train the neural supertagger and dependency models to predict the graph

fragments and edges of the dependency trees in the training data (Section 6.4).

Prediction

1. Predict scored lists of potential graph fragments for each word, and scores

for all possible edges with the neural models, see Figure 6.1 on the left.

2. Use a typed decoder (Section 6.5) to find the best well-typed dependency

tree, according to the scores of the neural models, see Figure 1.6 on the

right. We use a decoder with projectivity constraints, to make typed

decoding tractable.

3. Evaluate the dependency tree to get an AMR, by first translating the

dependency tree to an AM term, and evaluating that. Section 6.2 contains

a proof that even though the AM term is underspecified, this evaluation

process is well defined. Section 6.5 gives practical details.

6.2 AM dependency trees

This section introduces AM dependency trees. We first discuss the intuition behind

them as underspecifications of AM terms. Then, we provide a formal definition and

prove that the dependency trees do in fact have a tree structure. A large part of

this section is dedicated to the crucial proof that an AM dependency tree can be

evaluated to a unique AMR, that is it does not underspecify the AMR, even though

it underspecifies the AM term. We also discuss how underspecifying the AM term

helps when obtaining structured training data.

Figure 6.2(a) shows an AMR for The witch tries to cast a dangerous spell. In

the corresponding AM term in (b), colors mark chains of operations that always

follow the left child. Note that these chains start with a constant on the bottom

left that creates a graph. Then the chains continue with operations that either fill

argument slots of that graph or modify it. For example, the yellow modM operation

modifies Gspell, and the green appO and appS operations fill the argument slots of

Gtry. We call these chains of operations maximal projections, alluding to the related

concept in X-bar theory. Essentially, the maximal projections track the head of the

current subterm. On a technical level, this comes down to the fact that during such

a maximal projection, the root source R remains at the same place, at the root of the

head. That such a maximal projection follows the left child, i.e. is left-branching,

fits with us calling the left child the head in both the apply and modify operations

before.
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The AM dependency tree in (c) reflects that structure. Its nodes are labeled with

the constants of the term, and the edges show the operations as relations between

the heads. For example, the green appO operation has head Gtry, while the head of

the argument is Gcast. Such a dependency tree underspecifies the order of operations

in the AM term, for example here, the dependency tree does not specify which of the

green appS and appO operations should come first. We will see below that this is

not a problem, that while there may be many terms corresponding to a dependency

tree, we can still assign a unique AMR to each dependency tree. But first, let us

capture this intuition of heads and dependencies formally.

6.2.1 Definition

To define the AM dependency properly, we need to formalize the notion of the

maximal projections, and we need to be able to follow each constant through the

term for as long as it is the head. To keep track of each constant, we will associate

the constants with indices that we track through the term, to obtain an indexed

AM term as in Figure 6.2(d), with the indices in square brackets. These indices

can be any natural number, but we will often use them to relate graph constants

to word positions in the sentence. To formally define the indexing function, recall

from Section 2.4.1 that we can view a term t as a function that assigns symbols to

a set of positions pos (t). For example in Figure 6.2(b), the green appS operation is

at position ✏, the green appO at position 1, Gtry at 11 and so on; the positions are

shown in (f). We define an indexing function ind
0 on the leaves to be an injective

function from the leaves of t to the natural numbers,

ind
0 : {p 2 pos (t) | p is a leaf in t} ! N.

The injectivity here ensures that no two leaves have the same index assigned to them.

In Figure 6.2(d), the indices are written at the leaves in square brackets.

We can then track the constants through the term by percolating their indices

upwards. That is, we extend ind
0 to a function ind that is defined on all positions

p 2 pos (t). If p is a leaf, then simply ind (p) = ind
0 (p). Otherwise, ind assigns to p a

pair of indices (i, j); in Figure 6.2(d) again noted with square brackets next to the

operations. In the pair (i, j), we call i the head index and j the argument index ; at

the leaves, we call the single number ind0 (p) the head index. The idea is that if p is

not a leaf, it must be a binary operation, and then we take the pair (i, j) where for

i we use the head index assigned the left child, and for j the head index of the right

child. This way, the index of a constant percolates along its maximal projection as
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the head index on the left. For example, the green maximal projection in (d) has the

sequence (Gtry[3],appO[3, 5],appS[3, 2]), keeping the index 3 on the left to indicate

that Gtry remains the head. Then, e.g. appO[3, 5] indicates that the argument head

is the graph associated with index 5, namely Gcast.

Formally, we define a function head to be the identity on N and to map pairs

(i, j) to i. That is, head maps a single index or a pair of indices to the head index.

Then, given a term t and an indexing function ind
0 on its leaves, we define recursively,

bottom-up, for all p 2 pos (t),

ind (p) =

8
<

:
ind

0 (p) if p is a leaf in t

(head (ind (p1)) , head (ind (p2))) otherwise.
(6.1)

Because ind0 is injective, ind is injective too: observe that every index assigned to

a constant can be the right index in a pair, i.e. the argument index, only once. Then

it stops being the head and is not percolated upward any further. Thus, ind cannot

map two non-leaf positions to the same pair; injectivity on the leaves is inherited

directly from ind
0.

This concludes our definition of indexed AM terms:

Definition 6.1. Let t be an AM term and ind as in (6.1). Then we call the pair

(t, ind) an indexed AM term.

We can now map indexed terms to dependency trees. In the dependency tree, we

use the indices as nodes, label them with constants and obtain edges corresponding

to the operations in the term. The percolated indices define the nodes for each edge.

More precisely, using the square bracket notation of Figure 6.2(d), for every leaf c[i]

in the term we get a node i with label c in the dependency tree. For every operation

f [i, j] with head index i and argument index j, we get an edge from i to j with

label f in the dependency tree. This way, the term in Figure 6.2(d) produces exactly

the tree in (c) (the node identities in (c) are in blue). For example, the leaf Gtry[3]

creates the node 3 with label Gtry in the dependency tree, whereas the operation

appO[3,5] creates an edge from 3 to 5 with label appO. The following definition

describes this mapping from indexed terms to dependency trees formally.

Definition 6.2 (Mapping to dependency trees). Let (t, ind) be an indexed AM term.

Then let dep (t, ind) be the simple graph T where for each position p, if p is a leaf,

the index ind (p) is a node in T with label t (p), i.e. the constant at p.

Otherwise, we have ind (p) = (i, j) for some indices i and j. Then there is an edge
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c

dep (t1, ind1)

. . .

dep (ti, indi)

. . .

dep (tk, indk)

f 1
f i

f k

Figure 6.3: The recursive structure of a dependency tree dep (t, ind).

from i to j in T with label t (p), i.e. from the head index to the argument index,

with the operation that combines them as a label.

Formally and succinctly, we have T = (VT , ET ,T ,�T ) (recall Definition 2.1 of simple

graphs) with

VT = I
�
ind

0�

ET = I (ind) \ I
�
ind

0�

T = t � ind�1|
VT

�T = t � ind�1|
ET

where we interpret t as a function from pos (t) to the signature.

We can take a recursive perspective on dependency trees that will be useful

throughout this section. That is, we can characterize a dependency as a single node

with edges going to nested dependency trees, as shown in Figure 6.3. To obtain this

recursive structure, we first write a term t as

f k

f k�1

. . .

f 1

c t1

. . .

tk�1

tk

(6.2)

that is, we expand the topmost maximal projection. If we then apply the mapping

dep to all the subterms t1, . . . , tk, we can make the following observation. The index
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mc assigned to the position of c by the indexing function ind is the head index

throughout this left-branching term, this maximal projection. That is, at each f i,

the indexing function assigns a pair (mc, ji) for some index ji. Visualized, we obtain

the indices

f k [mc, jk]

f k�1 [mc, jk�1]

. . .

f 1 [mc, j1]

c [mc] t1

. . .

tk�1

tk

Furthermore, these ji must be assigned to a leaf in ti, and must thus be a node in

the dependency tree for ti. We can write the dependency tree for ti as dep (ti, indi)

where indi is an indexing function corresponding to ind but defined on ti only. We

thus obtain the recursive structure for dep (t, ind) as shown in Figure 6.3. We obtain

this structure because each index pair (mc, ji) corresponds to an edge from mc to ji

with label f i, and mc has label c.

There is a technical issue with these indexing functions indi. To apply the function

dep to the subterms ti, we need to pair the ti with indexing functions. But the

indexing function ind is defined on the positions in t, not the positions in ti. For

example, the position ✏ of tk is actually at the position 2 in t, the position ✏ of tk�1

is at 12 in t, ✏ of tk�2 is at 112 and so on. Thus, to get the appropriate indexing

functions for the ti we define 1i to be the sequence of i ones. Then the position ✏

in ti corresponds to the position 1k�i2 in t, and more generally, any position p in ti

corresponds to 1k�i2p in t. We can then for each i define an indexing function indi

that is consistent with ind but relative to ti, by letting

indi (p) = ind (1k�i2p) .

With these indexing functions indi we obtain the the recursive structure in Fi-

gure 6.3 properly, and can make the following formal statement to justify the figure.

Lemma 6.3. Let t be as in 6.2, and ind an indexing function for t. Further let

the indi be the just defined indexing structures on the ti. Let mc = ind (1k) and
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(ji, `i) = indi (✏). Then

ind (1k�i) = (mc, ji)

and dep (t, ind) has the following structure.

(i) The node mc has label c.

(ii) All dep (ti, indi) are disjoint subgraphs of dep (t, ind) and there are no edges

between them.

(iii) For every i = 1, . . . , k, there is an edge from mc to ji with label fi, and ji is a

node in dep (ti, indi). There are no other edges incident to mc.

Proof. First, note that the statement ind (1k�i) = (mc, ji) for all i follows directly

from the facts that mc = ind (1k), (ji, `i) = indi (✏) = ind (1k�i2) and the left head

always percolates up. The statements (i-iii) follow immediately: Statement (i) is

trivial. In (ii), that the dep (ti, indi) are subgraphs of dep (t, ind) is a consequence of

the definition of the indi, that they correspond to ind but relative to the subterms

ti. The disjointness in (ii) follows from the fact that ind is injective. That there

are no edges between the subgraphs is because the subterms ti are not directly

connected in t, but only through the f i. Finally, (iii) follows immediately from

ind (1k�i) = (mc, ji).

6.2.2 Tree structure

We referred to the graphs created by dep as dependency trees, and they indeed seem

to be trees. But what exactly does that mean, being a tree? The following definition

follows the standard definition of trees as connected, acyclic graphs. We also transfer

the notion of an origin that we saw for DAGs in the previous chapter.

Definition 6.4 (Tree). A (simple) graph T = (VT , ET ,T ,�T ) is a tree if it is

connected and has no undirected cycle, i.e. no non-trivial path u0 $ u2 $ . . . $ uk

with u0 = uk. Here “non-trivial” means k � 1; also recall that a path may not use

the same edge twice.

A node v 2 VT is an origin1 of a tree T if for every node u 6= v, there is a directed

path from v to u, v ! u1 ! . . . ! u.

A tree can be equivalently defined as a graph where between any two nodes, there

is exactly one path (see e.g. Diestel (2018)). For an origin v then, the condition can

1As was the case for origins in DAGs: what I call origin here is often called a root or a source
elsewhere.
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be formulated as the unique path from v to each other node u being directed. This

insight also implies that there can be only one origin. One can also easily see that

a node v is the origin of a tree T if and only if v has no incoming edges, and any

other node u 6= v has exactly one incoming edge. We can use similar language for

trees with origin as for terms, for example we can define a leaf as a node without

outgoing edges, and the depth of a tree with origin as the longest directed path in

it, i.e. the longest path from the origin to a leaf.

It seems indeed like the graphs created by dep are trees according to this defini-

tion, at least the graph in Figure 6.2 is. The recursive structure of Lemma 6.3 fits

with this impression. Furthermore, in the example in Figure 6.2 the origin is the

head index at the top of the term. Let us prove that these observations are always

true.

Lemma 6.5. For any indexed AM term (t, ind), the dependency tree dep (t, ind) is

indeed a tree, with origin the head index at ✏, i.e. head (ind (✏)).

Proof. We show this via induction on the depth of t. If t is only a constant, then

the statement is trivially true.

Otherwise, we again write t as

f k

f k�1

. . .

f 1

c t1

. . .

tk�1

tk

Each subterm ti has lower depth than t, and with the indexing functions indi each

pair (ti, indi) is a proper indexed AM term. This means, we can conclude by induction

that the dependency tree dep (ti, indi) is a tree with origin the head index of indi (✏),

i.e. the head index is ji if (ji, `i) = indi (✏). Further, let m0 be the head index

at the top of t. Then, in fact m0 = mc with mc the index at c as in Lemma 6.3.

This is because the left index always gets percolated upwards as the head. Then, by

Lemma 6.3, there is one edge from m0 to each ji, and no further edges at m0.

We can now see that dep (t, ind) is a tree. Firstly, it is clearly connected. Further, all

dep (ti, indi) are acyclic by induction and since all dep (ti, indi) have pairwise disjoint

vertex sets and no direct edges between each other by Lemma 6.3, dep (t, ind) cannot
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(a) AM dependency tree
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GLily
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(b) Both possible AM terms

person
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James

op1
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S
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O
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love-01

person
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name
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James

op1

name

name

Lily

op1

(d) AMR

Figure 6.4: An AM dependency tree in (a), where both terms in (b) evaluate to
the AMR in (d).

contain an undirected cycle either. Since we added exactly one incoming edge to

the origin of each dep (ti, indi), and m0 has no incoming edge, m0 is the origin of

dep (t, ind).

From Lemma 6.3 and Lemma 6.5 we in particular obtain that the ji are the heads

of the subtrees dep (ti, indi). Thus we have edges from the head of dep (t, ind) to the

heads of the subtrees, labeled with the operations f i. This gives a more complete

understanding to the intuition shown in Figure 6.3.

6.2.3 Evaluating dependency trees

So far, we only described how to get an AM dependency tree from an AM term.

But if our model predicts dependency trees, we also need to know how to evaluate

them. So, let us consider a dependency tree T , i.e. T is a tree with origin, with AM

constants as node labels and operations as edge labels. Firstly, we call a dependency

tree T well-typed if there is a well-typed indexed term (t, ind) with dep (t, ind) = T .
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We can then evaluate the term t to evaluate the dependency tree T . However, there

may be many such well-typed terms t: the dependency trees define the operations,

heads and arguments in a term, but underspecify the order of the operations.

For example, the dependency tree in Figure 6.4(a) states that there is an appS

operation with head Glove and argument GJames, and an appO operation with head

Glove and argument GLily, but it does not specify in which order they occur. Fi-

gure 6.4(b) shows both terms that satisfy these constraints, i.e. both terms that

correspond to the dependency tree in (a). The dependency tree does not specify

which of these terms to use, but here is the crucial observation that makes the de-

pendency trees work: both terms in (b) evaluate to the same AMR in Figure 6.4(d).

The graph GJames fills the S slot of Glove and GLily the O slot, no matter in which

order.

The case is a bit di↵erent for the dependency tree in Figure 6.5(a). Here, the

two possible terms in Figure 6.5(c) and (e) evaluate to di↵erent AMRs, shown in (d)

and (f). However, only the term in (c) is well-typed (and it yields the correct AMR

for the sentence). In the term in (e), the operation appS (Gwant, Graven) violates

Condition (i) of Definition 5.5, that S must be an origin in the type of the head (at

this point in (e), S still has an incoming edge from O in ⌧ (Gwant)). In other words,

this fills the S slot of Gwant while it is still waiting for the unification from O[S],

which is not well-typed in the AM algebra. Since we only consider well-typed terms,

the AM dependency tree describes a unique AMR in this case also.

What we do next is to show that these two examples correctly represent the

general case, namely that given any well-typed dependency tree T , all corresponding

well-typed terms t evaluate to the same AMR.

The idea of the proof is the following. We will see that if two terms t and s

correspond to the same dependency tree, then they must be the same except for

a possible reordering of operations inside maximal projections. We first show that

such a reordering does not a↵ect the evaluation result of the term as long as the

term remains well-typed. We then conclude the proof below in Theorem 6.8.

First, we need to take a closer look at some properties of reordering maximal
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projections. Let (t, ind) be a well-typed indexed AM term such that

t =

f k

f k�1

. . .

f 1

c t1

. . .

tk�1

tk

We define a partial ordering �c on the pairs (f i, ti). The order depends on the

constant c. We let

(f i, ti) �c (f j , tj)

hold in the following cases.

(a) If f i = app↵ and f j = app� , and there is a directed path from ↵ to � in the

type of c, ⌧ (JcK).

(b) If f i = mod↵ and f j = app� , ↵ 6= �, and � is in the type of JtiK.

The idea is that reordering the operations and their right-hand side terms is OK

as long as the partial order is respected. Essentially, Case (a) ensures that � is an

origin in the type of the head when app� occurs. Case (b) ensures that when the

modifier in mod↵ has an additional source �, then this � is still in the type of the

head when mod↵ occurs. The other conditions on apply and modify are not a↵ected

by the reordering. The following lemma formalizes this.

Lemma 6.6. Let t be a well-typed AM term such that

t =

fk

fk�1

. . .

f1

c t1

. . .

tk�1

tk
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and let � be a permutation on {1, . . . , k}. Further, let

s =

f�(k)

f�(k�1)

. . .

f�(1)

c t�(1)

. . .

t�(k�1)

t�(k)

Then s is well-typed if and only if for all i, j with (fi, ti) �c (fj , tj), we have � (i) <

� (j).

Proof. (: Let us first assume that the condition on the partial order holds, and

show that s is well-typed. Recall the result from Section 5.3, that we can check

well-typedness by looking only at the types, not the as-graphs themselves. Since all

the subterms ti are given as well-typed, we only need to check the operations f �(i).

Now consider how the type of the head changes as we go along the operations f i. We

start with the type of c itself, and at each app↵ operation, the source ↵ is removed.

Modify operations leave the type unchanged.

In Section 5.3, we in particular saw that an operation app↵ (⌧1, ⌧2) succeeds if and

only if

(i) ⌧1, ⌧2 are source dependency structures, i.e. ⌧1, ⌧2 6= FAIL.

(ii) ↵ is an origin in ⌧1, and

(iii) ⌧2 matches the request of ⌧1 at ↵, i.e. ⌧2 = req⌧1 (↵).

Condition (i) is equivalent to the subterms below the operation being well-typed.

We can guarantee this recursively, making our way up through s from f �(1) to f �(k).

Condition (ii) means that ↵ may not have incoming edges, which we guarantee with

Case (a) of �c. That is because, if there is a source � with a directed path to ↵ in

the type of c, respecting the partial order ensures that app� has consumed the �

source before app↵ occurs. Condition (iii) is not a↵ected by �.

Similarly, Section 5.3 states that a modify operation mod↵ (⌧1, ⌧2) is well-typed if

and only if

(i) ↵ is a root in ⌧2,

(ii) req⌧2 (↵) = (;, ;, ;), i.e. ⌧2 does not have complex expectations at ↵, and
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(iii) ⌧2 without ↵ is a subgraph of ⌧1.

Conditions (i) and (ii) are not a↵ected by �. Since the only change to the type of

the head (which here plays the role of ⌧1) along the f i operations is that sources are

removed by application, we need to ensure that all sources in ⌧2, minus ↵, are still

there. If the mod↵ operation is f i, then ⌧2 = ⌧ (JtiK) and this condition is guaranteed

if Case (b) of �c being respected.

): Conversely, let us assume that s is well-typed. If we assume that Case (a) of �c

is violated in s, then the above Condition (ii) of app↵ fails and s is not well-typed.

If we assume that Case (b) of �c is violated, then Condition (iii) of the mod↵ does

not hold, and s is ill-typed again.

The next lemma will allow us to reduce the case of general permutations to just

the case of swapping two neighboring operations. It is a variation on the classic result

that any permutation � on a sequence of numbers 1, . . . , k can be expressed through

a sequence of adjacent transpositions, i.e. permutations on 1, . . . , k that each only

swaps a pair of neighboring numbers. That is, that there are adjacent transpositions

µ1, . . . , µm such that � = µm � . . . � µ1. We show the proof in the appendix on

page 234.

Lemma 6.7. Let �c be a partial order on a finite set x1, . . . , xk and � a permutation

on 1, . . . , k, such that both the sequences x1, . . . , xk and x�(1), . . . , x�(k) respect the

partial order �c; i.e. if xi �c xj, then i < j and � (i) < � (j). Then there is a

sequence of adjacent transpositions µ1, . . . , µm such that � = µm � . . . � µ1 and for

every ` = 1, . . . ,M, the intermediate sequence x(µ`�...�µ1)(1)
, . . . , x(µi�...�µ1)(k)

respects

�c; i.e. if xi �c xj then (µ` � . . . � µ1) (i) < (µ` � . . . � µ1) (j).

We can now show the central theorem of this section, that every well-typed

dependency tree evaluates to a unique AMR.

Theorem 6.8. Let T be a well-typed AM dependency tree and
�
t, indt

�
and (s, inds)

be well-typed indexed AM terms such that

dep
�
t, indt

�
= dep (s, inds) = T.

Then t and s evaluate to the same as-graph, JtK = JsK.

Proof. We show the statement via induction on the depth of T .

We write t as
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f k

f k�1

. . .

f 1

c t1

. . .

tk�1

tk

and s as

f s
k

f s
k�1

. . .

f s
1

cs s1

. . .

sk0�1

sk0

Since
�
t, indt

�
and (s, inds) define the same dependency tree T , by Lemma 6.5 they

must have the same head index at their top (the origin of T ), let us call it i0. Since

the label of i0 in T must be equal to c, but also equal to cs, in particular we must

have c = cs.

Further, by Lemma 6.3 we know that the operations f i and f si correspond to the

outgoing edges of i0 in T . More precisely, these edges are defined by the indices

ind
t (1i) and ind

s (1j) in the two terms respectively. In particular, those sets of

indices must overall be equal, and thus there is a permutation �0 such that for

every i = 1, . . . , k we have ind
s (1i) = ind

t
�
1�0(i)

�
. Then, since f i = t (1k�i) and

f si = s (1k�i), we get

f si = s (1k�i) = t
�
1�0(k�i)

�
= f k��0(k�i).

In the middle step, we used that the positions 1k�i in t and 1�(k�i) in s correspond

to the same edge in T , as we just saw, and must thus be identically labeled. To not

get confused about the term k � �0 (k � i) in the end, let us simply define a new
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permutation � via � (i) = k � �0 (k � i). We thus have f si = f �(i) and can write

s =

f �(k)

f �(k�1)

. . .

f �(1)

c s1

. . .

sk�1

sk

Further, using the method to create indi above to obtain indexing functions indti and

ind
s

i , Corollary 6.3 implies that the dependency trees dep (si, ind
s

i ) and dep

⇣
t�(i), ind

t

�(i)

⌘

are actually the same subtree of T . This is because we set up � to be consistent

with the indices in the terms, which determine the edge in T , which determine the

subtree in T .

Now, in fact, these subtrees dep (si, ind
s

i ) = dep

⇣
t�(i), ind

t

�(i)

⌘
have a lower depth

than T , and therefore we can use the induction hypothesis to conclude that the

terms si and t�(i) must evaluate to the same as-graph, JsiK =
q
t�(i)

y
. Let us write

Hi = JtiK =
q
s��1(i)

y
for this as-graph; in particular we have JsiK = H� (i).

All together, we now know that the following term2 evaluates to the same graph as

t:

f k

f k�1

. . .

f 1

c H1

. . .

Hk�1

Hk

and the following term evaluates to the same graph as s:

2Technically, we need to change our algebra here, by adding H1, . . . , Hk as constants. However,
when adding constants to an algebra A to obtain an algebra A0, the new algebra A0 still evaluates
old terms over A to the same values. Thus, we can simply add constant symbols for H1, . . . , Hk to
our algebra here, without invalidating the proof.
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f �(k)

f �(k�1)

. . .

f �(1)

c H�(1)

. . .

H�(k�1)

H�(k)

Using Lemmas 6.6 and 6.7 together, we can then see that there is a sequence of

adjacent transpositions µ1, . . . , µm that together form �, i.e. µm � . . . � µ1 = �,

and at each step in between, the intermediary result, i.e. applying µ` � . . . � µ1 for

any `, gives a well-typed term. It is thus su�cient to show that any such adjacent

transposition between two well-typed terms leaves the result unchanged. Then, if

none of the adjacent transpositions change the evaluation result, neither will the full

permutation.

That is, we can reduce the theorem to the case where s evaluates to the same graph

as the term

f k

f k�1

. . .

f i+2

f i

f i+1

f i�1

. . .

f 1

c H1

. . .

Hi�1

Hi+1

Hi

Hi+2

. . .

Hk�1

Hk

that is, just the order of i and i+ 1 is switched.
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If we now write z for the context

z =

f k

f k�1

. . .

f i+2

x1 Hi+2

. . .

Hk�1

Hk

and write H for the evaluation result

H =

u
wwwwwwwwwwwwwwv

f i�1

. . .

f 1

c H1

. . .

Hi�1

}
��������������~

then we only need to consider the case where t is

z

f i+1

f i

H Hi

Hi+1

and s is

z

f i

f i+1

H Hi+1

Hi
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Since the context z is the same in both cases, we only have to show that

Jf i+1 (f i (H,Hi) , Hi+1)K = Jf i+1 (f i (H,Hi+1) , Hi)K

We need to check this for the three cases where both of the operations f i, f i + 1 are

application, both are modification, or there is one of each. It is easy to see that

changing the order of operations (as long as both are well-typed) does not change

the type of the outcome. What remains is to check what happens to the s-graphs

involved. Simply using the HR term from the definition of the apply operation, we

obtain t in the case where fi = app↵ and fi+1 = app� the term

fg
�

||

fg
↵

||

Ĥ ren{R$↵}

renR(⌧(Hi)(↵))

Ĥi

ren{R$�}

ren
R(⌧(H)i+1(�))

ˆHi+1

with some colors added so we can refer to the subterms conveniently. From how the

source annotations are designed, the sources in the s-graph produced by the blue

subterm are all among the sources to which there is a directed path from ↵ in ⌧ (H).

Similarly, the sources in the s-graph produced by the yellow subterm are all among

the sources reachable from � in ⌧ (H). Since both orderings of app↵ and app� are

allowed, we know that there is no directed path from ↵ to � in ⌧ (H) nor the other

way around. In conclusion, the s-graph produced by the blue term does not contain

a � source, and the s-graph produced by the yellow term does not contain an ↵

source.

We can therefore delay the fg↵ operation until after the topmost merge – since the

right-hand child of the merge does not contain a ↵ source, this does not change the

outcome. We obtain the term
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fg
�

fg
↵

||

||

Ĥ ren{R$↵}

renR(⌧(Hi)(↵))

Ĥi

ren{R$�}

renR(⌧(Hi+1)(�))

Ĥi+1

We can now swap the order of the merge operations (Courcelle and Engelfriet (2012)

rightly note that the merge operation is associative) to obtain

fg
�

fg
↵

||

||

Ĥ ren{R$�}

renR(⌧(Hi+1)(�))

Ĥi+1

ren{R$↵}

renR(⌧(Hi)(↵))

Ĥi

Finally, with the same argument as delaying the fg↵ operation earlier we can move

the fg� operation downwards, obtaining the term
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fg
↵

||

fg
�

||

Ĥ ren{R$�}

renR(⌧(Hi+1)(�))

Ĥi+1

ren{R$↵}

renR(⌧(Hi)(↵))

Ĥi

which indeed corresponds to s in this case. The cases for two modify operations,

and one apply and one forget, can be treated similarly.

With this proof of Theorem 6.8 complete, we now know that every well-typed AM

dependency tree evaluates to a unique, well-defined AMR. Thus, predicting an AM

dependency tree is a valid approach to an AMR parser. We will discuss the model

in Section 6.3. But first, we have a look at how the dependency trees contribute to

solving the training data issue we worked on in the previous two chapters.

6.2.4 Reduced ambiguity in obtaining AM dependency trees

We saw in the last chapter how the AM algebra reduces the set of possible terms

for a given AMR G drastically compared to the HR algebra. Now, multiple AM

terms map to the same AM dependency tree, which means that there are even fewer

AM dependency trees that describe G. In fact, observations made when working on

the dataset lead me to make the following conjecture: that if we fix which as-graph

constants we use for which parts of G, and fix the indexing function ind, then there

is at most one AM dependency tree remaining. That is, the only ambiguity left is

what constants we choose.

To formalize this, we can again use concrete as-graphs – this allows us to properly

express the part of “which as-graph constants are used for which parts of G”. Recall

the concrete AM algebra we used in Section 5.2.2, with domain the concrete as-

graphs. Each constant in a concrete AM term describing a concrete representative
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The raven

Graven

wants

Gwant

to learn

Glearn

appS
appO

Figure 6.6: AM dependency tree for The raven wants to learn.

The

?

raven

Graven

wants

Gwant

to

?

learn

Glearn

appS
appO

Figure 6.7: AM dependency tree for The raven wants to learn, including empty
supertags ?.

of G is a subgraph of that representative; in fact the constants in such a term

partition the representative’s edge set. We can straightforwardly extend the notion

of an indexed AM term, and thus an AM dependency tree, to the concrete AM

algebra. Each such concrete term or dependency tree can in turn be translated back

to the standard (i.e. abstract) version by replacing each concrete constant with its

equivalence class under isomorphism. I conjecture the following statement.

Conjecture 6.9. Let (t1, ind1) and (t2, ind2) be concrete indexed AM terms, such

that Jt1K = Jt2K, t1 and t2 use the same (concrete) constants, and ind1 and ind2

map leaves with the same constants to the same indices. Then the dependency trees

dep (t1, ind1) and dep (t2, ind2) are the same.

This concludes our formal examination of AM dependency trees. The next chap-

ter introduces the AM dependency parsing model.

6.3 The parsing model

In the previous section, we established that an AM dependency tree uniquely des-

cribes an AMR. Now, we describe an AMR parsing model that translates a sentence

to an AM dependency tree, and evaluates that to an AMR.

First, we connect an AM dependency tree T = (VT , ET ,T ,�T ) to a sentence

w = w1w2 . . . wn, by interpreting the indices that are the nodes in VT as word
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want-01

S

ARG0

O[S]

ARG1

(a) Gwant

LEX

S

ARG0

O[S]

ARG1

(b) Gwant delexicalized

person

bake-01

ARG0

(c) Gbaker

person

LEX

ARG0

(d) Gbaker delexicalized

Figure 6.8: Two graph constants (a,c) and their delexicalized versions (b,d)

positions in the sentence w, an example is shown in Figure 6.6. Thus, we can

interpret the node labeling function T as a function that assigns a constant symbol,

i.e. a graph fragment, to some words in w. We call these graph fragments supertags,

in reference to the supertagging technique for grammars that predicts lexicalized

rules for each word. The supertags are written below the sentence in Figure 6.6.

The edges of T form a dependency tree over parts of the sentence.

Our model predicts supertags for each word. Since not every word has a constant

symbol associated with it (e.g. The and to in Figure 6.6), we allow the supertagger

to also predict the empty tag ?, see Figure 6.7.

We can now formulate the task of AMR parsing as the task of predicting the

highest scoring AM dependency tree T with nodes in {1, . . . , n}, according to some

scoring function !. Here we assume a node-factored (i.e. supertag-factored) and

edge-factored model for the score ! (T ) of the AM dependency tree T :

! (T ) =
X

i2VT

![i] (T (i)) +
X

i2{1,...,n}\VT

![i] (?) +
X

(i,j)2ET

![i!j] (�T ((i, j))) , (6.3)

where ![i] are scoring functions at each word position, and ![i!j] are scoring functions

for each possible edge. The sum
P

i2{1,...,n}\VT
![i] (?) computes the scores of empty

supertags for all word positions not used in the dependency tree. We decompose the

edge weight further into the sum ![i!j] (f ) = !ex

[i!j]
+ !lbl

[i!j]
(f ) of a score !ex

[i!j]
for

the presence of an edge from i to j and a score !lbl

[i!j]
(f ) for this edge having label

f .

We further assume that every graph constant corresponding to a word has a

unique ‘lexicalized’ node whose label corresponds most closely to the word. For

example, in Figure 6.8(a), we have the graph Gwant corresponding to word want,

where the want-01 node matches the word. In Gbaker in Figure 6.8(c), the graph

corresponding to the word baker, that node is the bake-01 node. We will see in

Section 6.7 that this holds up in practice. We can thus interpret a graph constant

as a pair of a ‘delexicalized’ graph fragment where the lexicalized node label is
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replaced with a LEXmarker (see Figure 6.8(b,d)), and the replaced label. E.g. instead

of Gwant in Figure 6.8(a), we predict the delexicalized graph in Figure 6.8(b) and

the label want-01. We factor the node weight such that the delexicalized graph

and the lexical label are predicted separately by weights !g

[i]
and !lbl

[i]
respectively,

i.e. ![i] (c) = !g

[i]
(c) + !lbl

[i]
(c). Splitting the constants in labels and delexicalized

graph fragments greatly reduces the vocabulary size for the supertagger (from 28730

lexicalized graph fragments to 2370 delexicalized graph fragments) and allows it to

generalize the use of graph fragments over lexicon entries. This is particularly helpful

when dealing with rare or unseen words at evaluation time, see Section 6.7 below.

To recap, our aim is now to compute the well-typed tree T with the highest score

! (T ). The next section describes how we obtain the scoring function ! in practice.

6.4 Training

We use recurrent neural networks to compute the scoring function !. I present a short

technical introduction to neural network first, and then our neural AM dependency

model.

6.4.1 Neural network background

The idea of a neural network is to combine layers of linear and non-linear functions

on real-valued vectors. A typical linear function is an a�ne transformation

A (~x) = W~x+~b

where the matrix W and the bias vector ~b are parameters of A. Typical non-linear

functions are applied to a vector element-wise, and include

• tanh, which takes values between �1 (for input approaching negative infinity)

and 1 (for input approaching infinity),

• the sigmoid function � (x) = 1

1+e�x , which is shaped similarly to tanh but

takes values between 0 and 1, and

• the rectified linear unit ReLU with ReLU (x) = max (0, x).

A classic neural network layer would then have e.g the shape tanh (A (~x)) for some

a�ne transformation A. Such layers can be stacked on top of each other to obtain

more powerful networks. For computing the output of a layer, one often uses the

softmax function with

softmax (~x)
i
=

exi

P
K

k=1
exk

.
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These entries of the softmax function sum to 1 and are non-negative. Thus, using

a softmax layer with a K-dimensional input ~x allows computing a probability dis-

tribution for K discrete choices. A neural network is then trained using the back-

propagation algorithm, using gradient descent to minimize a chosen loss function.

The loss function is defined at the output layer, and the gradient is propagated back

through the network.

LSTM. A Long Short-Term Memory recurrent neural network, or LSTM, is a re-

current network to encode sequences of vectors. These sequences here are sentences,

with the words represented as vectors (details on that below). At each step t through

the sequence, the LSTM makes several computations. It uses the input ~xt to com-

pute a hidden state ~ht and a cell state ~ct, also using the hidden state ~ht�1 and (to

a lesser extend) the cell state ~ct�1 of the previous step. The cell state ~ct serves as a

more long term memory, whereas the hidden state ~ht is more localized, and is also

used as the output at step t. We always initiate ~h0 and ~c0 as all zeros.

To compute the new states ~ht and ~ct, the LSTM first combines the input and the

last hidden state into a new vector:

~gt = tanh
⇣
Axg (~xt) +Ahg

⇣
~ht�1

⌘⌘

where Aig and Ahg are a�ne transformations. The LSTM then computes several

gates, which are vectors that will control the flow of information through the LSTM.

~it = �
⇣
Axi (~xt) +Ahi

⇣
~ht�1

⌘⌘

~ft = �
⇣
Axf (~xt) +Ahf

⇣
~ht�1

⌘⌘

~ot = �
⇣
Axo (~xt) +Aho

⇣
~ht�1

⌘⌘

Here ~it is called the input gate, ~ft the forget gate and ~ot the output gate, note that

these all take values between 0 and 1 due to the sigmoid function. This allows

computing the new cell and hidden states:

~ct = ~ft~ct�1 +~it~gt

(using the element-wise product), that is the forget gate ~ft determines which entries

of the old cell state ~ct�1 are carried over, and the input gate ~it determines which

entries of the new information ~gt are committed to memory. The new hidden state

is then
~ht = ~ot~ct,
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that is the output gate ~ot controls which entries of ~ct are pulled out of memory to

be used as the local output, and as the context for the next LSTM step.

For a sequence of vectors ~x = (~x1, . . . , ~xn), and a fixed LSTM, we write LSTM(~x)
t

for the output of the LSTM at step t, i.e. the hidden state ht.

BiLSTM. For a sequence of vectors ~x = (~x1, . . . , ~xn), let the forward sequence

~x+ be the original sequence ~x, and let the backward sequence ~x� be the sequence

in reverse order. By combining an LSTM on the forward sequence with an LSTM

on the backward sequence, we obtain a bidirectional LSTM, or BiLSTM, that takes

context from both sides into account. Let us denote the two LSTMs with LSTM+

and LSTM�, then we have

BiLSTM(~x, t) = LSTM+
�
~x+, t

�
� LSTM� �~x�, n+ 1� t

�

Note that by reversing the sequence and having 1-based indices for the step t, the

result of LSTM� (~x�, n+ 1� t) in fact corresponds to the t-th entry of the original

sequence.

We can also stack these BiLSTMs, computing a first BiLSTM1 as normal on the

input sequence ~x, and then using the sequence (BiLSTM1 (~x, t))t=1,...,n
as input for

a second BiLSTM2. We can interpret this as follows. The first BiLSTM1 gets as

input the general, out-of-context meaning of the words. It then contextualizes this

meaning. When the stacked BiLSTM2 then computes the desired output, it has

access to contextualized word meanings. Additionally, using two stacked BiLSTMs

simply allows for learning more complex interactions. Kiperwasser and Goldberg

(2016) for example use this architecture for syntactic dependency parsing, and we

follow their lead here.

6.4.2 The neural AM dependency model

We present two models for !: one for the graph scores ![i] and one for the edge

scores ![i!j]. All of these are based on the two-layer BiLSTM,3 which reads a

sequence of input vectors ~x = (~x1, . . . , ~xn) and produces vector representations

~vi = BiLSTM2 (~x, i) for the individual input tokens (see Fig. 6.9). The two mo-

dels di↵er in the inputs ~x and the way they predict scores from the vi. The PyTorch

implementation of this model is open source, and can be found at bitbucket.org/

tclup/amr-dependency.

3In using a two-layer BiLSTM, we follow Kiperwasser and Goldberg (2016).
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~v1 ~v2 ~vn

~x1 ~x2 ~xn

!g
[1] !lbl

[1]
!g
[2] !lbl

[2]
!g
[n] !lbl

[n]

Figure 6.9: Architecture of the supertagger.

Supertagging Our supertagging model is a straightforward tagging model, and

in its overall structure is similar to the approach of e.g. Lewis et al. (2016) for CCG

supertagging.

Since we have finite lexicons for both the delexicalized constants and the lexical

node labels (we use the constants observed in the training data to generate the

lexicons), the domains of the supertag scoring functions !g

[i]
and !lbl

[i]
are finite. We

can thus represent them as vectors, with each vector entry corresponding to one

element in the domain, i.e. to a delexicalized constant for !g

[i]
and to a lexical node

label for !lbl

[i]
. To predict the scores, we add output layers on top of the BiLSTM as

follows (see Figure 6.9):

!g

[i]
= log softmax (Ag (~vi))

!lbl

[i]
= log softmax

⇣
Albl (~vi)

⌘

where the output dimension of the a�ne transformation Ag is the size of the delex-

icalized constants lexicon, and the output dimension of Albl is the size of the lexical

node label lexicon. We train the neural network using a cross-entropy loss function.

This maximizes the likelihood of the supertags in the training data.

The supertagger reads inputs xi = (wi, pi, ci), where wi is an embedding of the

word token, pi an embedding of its POS tag,4 and ci is a character-based LSTM

encoding of the word. We use pretrained GloVe embeddings (Pennington et al.

(2014)) concatenated with learned embeddings for wi, and learned embeddings for

pi.

4Adding POS tags to the training data has been shown to improve dependency parsing (Kiper-
wasser and Goldberg (2016)) as well as AMR parsing (van Noord and Bos (2017)). We obtain POS
tags from Stanford CoreNLP (Manning et al. (2014)), using the Penn Treebank tag set.
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~v1 ~v2 ~vn

~x1 ~x2 ~xn

~vnull !ex
[null!1] !ex

[2!k] !lbl
[2!k]

Figure 6.10: Architecture of the edge model.

Edge model For the edge model, we follow the approach of Kiperwasser and

Goldberg (2016), except that we use a di↵erent loss function. We use the fact that

every node in a dependency tree has at most one incoming edge, and train the model

to score the correct incoming edge as high as possible. This model takes inputs

xi = (wi, pi), where wi and pi are as above. The model is visualized in Figure 6.10.

We define the edge-existence and edge label scores as

MLP✓ (~x) = A✓,1 (ReLU (A✓,2 (~x))) (6.4)

!ex

[i!k]
= MLPex(~vi � ~vk) (6.5)

!lbl

[i!k]
= MLPlbl(~vi � ~vk) (6.6)

We further add a learned parameter ~vnull to allow for the possibility that a word has

no incoming edge. With Equation 6.5, we thus obtain scores !ex

[null!i]
for i having

no incoming edge. While this score itself plays no further part in the model, during

training it allows us to use the following loss function: To train the scores !ex

[k!i]
, we

collect all scores for edges ending at the same node i into a vector !ex

[•!i]
, including

the score !ex

[null!i]
for no edge. At each position during training, exactly one entry of

this vector is true. This allows us to minimize the cross-entropy loss for the vector

softmax(!ex

[•!k]
), maximizing the likelihood of the gold edges. To train the labels

!lbl

[i!k]
(f ), we simply minimize the cross-entropy loss of the actual edge labels f of

the edges which are present in the gold AM dependency trees.

6.5 Decoding

Given learned estimates for the graph and edge scores, we now tackle the challenge

of computing the best well-typed dependency tree t for the input string w, under the



191

s = ![i] (c) c 6= ? c 2 ⌃0

([i, i+ 1], i, ⌧ (c)) : s
hIniti

([i, k], r, ⌧) : s s0 = ![k] (?)
([i, k + 1], r, ⌧) : s+ s0

hSkip-Ri

([i, k], r, ⌧) : s s0 = ![i�1] (?)
([i� 1, k], r, ⌧) : s+ s0

hSkip-Li

([i, j], r1, ⌧1) : s1 ([j, k], r2, ⌧2) : s2
⌧ = f (⌧1, ⌧2) 6= FAIL s = ![r1!r2]

(f ) f 2 ⌃2

Arc-R
([i, k], r1, ⌧) : s1 + s2 + s

([i, j], r1, ⌧1) : s1 ([j, k], r2, ⌧2) : s2
⌧ = f (⌧2, ⌧1) 6= FAIL s = ![r2!r1]

(f ) f 2 ⌃2

Arc-L
([i, k], r2, ⌧) : s1 + s2 + s

Figure 6.11: Rules for the projective decoder.

score model (Equation (6.3)). The requirement that the term t must be well-typed

is crucial to ensure that it can be evaluated to an AMR graph. But requiring well-

typedness can also guide the decoding process, since it forces the resulting term to

be globally consistent.

As shown in Appendix D, exact typed decoding is NP-complete. Thus, an exact

algorithm is not practical. In this section, we develop an approximation algorithm for

AM dependency parsing which assumes that the AM dependency tree is projective.

6.5.1 Projective decoder

The idea of the projective decoder is to build a well-typed dependency tree step

by step, by combining adjacent substrings (i.e. spans). The decoder thus adds one

operation at a time, type checking at each step. This adds a strong projectivity

constraint discussed further below. The decoder uses dynamic programming to find

the best tree under these restrictions.

The algorithm is shown in Figure 6.11 as a parsing schema, which derives items

of the form ([i, k], r, ⌧) with scores s. Such an item represents a well-typed derivation

of the substring from i to k with head index r, and which evaluates to an as-graph

of type ⌧ . As we saw in Section 5.3, keeping track of the types is su�cient to ensure

well-typedness. The head indices of the items allow us to apply edge scores ![i!j]

correctly, and with the spans we can track how much of the string we have covered,

akin to plain CKY parsing with context free grammars.
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The parsing schema consists of three types of rules. First, the Init rule generates

at each position i an item for each constant c predicted for the token wi, along with

the score and type of that graph fragment. Second, the Skip rules allow us to extend

a substring such that it covers tokens which do not correspond to a graph fragment

(i.e., their supertag is ?). Finally, given items for adjacent substrings [i, j] and [j, k],

the Arc rules apply an operation f to combine the indexed AM terms for the two

substrings, with Arc-R making the left-hand substring the head and the right-hand

substring the argument or modifier, and Arc-L the other way around. We ensure

that the result is well-typed by requiring that the types can be combined with f .

After all possible items have been derived, we extract the best well-typed tree from

the items with the highest score that span the whole sentence and have the empty

type, i.e. items of the form ([1, n], r, [ ]) for any r.

It is easy to see that the Arc-R and Arc-L rules have the highest parsing complex-

ity, having parameters i, j, k, r1, r2, which yields a runtime of O
�
n5
�
(we interpret

the complexity added by the parameters ⌧1 and ⌧2 as a grammar constant, since the

number of possible types is fixed with a fixed lexicon). This parsing complexity is

shared with other bilexical algorithms such as the Collins parser (Collins (1997)).

It could potentially be improved to a complexity of O(n4) using the algorithm of

Eisner and Satta (1999).

These rules allow us to associate each item ([i, k], r, ⌧) with a partial dependency

tree (covering all indices from i to k � 1) in the following way. For the Init rule, we

simply obtain a constant paired with the index. For the Skip-R and Skip-L rules, we

just pass the partial dependency tree of the argument along. When combining two

partial dependency trees with an Arc rule for operation f , we simply take the union

of the two partial trees (they do not overlap, since the spans are disjoint), and add

an f -labeled edge between r1 and r2 (from r1 to r2 for Arc-R, and the other way for

Arc-L). Since we build this dependency tree operation by operation, we ensure that

there is in fact a well-typed term for the dependency tree.

IRTG perspective. In fact, from a certain perspective this algorithm builds a

term rather than a dependency tree. We can see this by interpreting the given par-

sing schema as an IRTG. The idea5 is to replace the i-th word wi in the sentence

with the number i itself. This allows us to anchor string constants at fixed positions,

such that supertagger- and edge predictions can be interpreted correctly. So the

sentence The witch casts a spell would be simply the sequence 1 2 3 4 5. We then

use the IRTG of Figure 6.12. For example, the Initc,i rule uses the literal string i,

5Inspired by a method originally used by Henning (2017)
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grammar automaton weight hS hAM

Initc,i ! (i, ⌧ (c)) ![i] (c) i c

Skip-Rk ((r, ⌧)) ! (r, ⌧) ![k] (?) ⇤ (x1, k) x1

Skip-Li ((r, ⌧)) ! (r, ⌧) ![i�1] (?) ⇤ (i� 1, x1) x1

Arc-Rf ,⌧1,⌧2 ((r1, ⌧1) , (r2, ⌧2)) ! (r1, ⌧) ![r1!r2]
(f ) ⇤ (x1, x2) f (x1, x2)

if ⌧ = Jf (⌧1, ⌧2)K 6= FAIL

Arc-Lf ,⌧1,⌧2 ((r1, ⌧1) , (r2, ⌧2)) ! (r1, ⌧) ![r2!r1]
(f ) ⇤ (x1, x2) f (x2, x1)

if ⌧ = Jf (⌧2, ⌧1)K 6= FAIL

Figure 6.12: IRTG for the projective decoder; rules are defined for all c 2 ⌃0,
i, j, k, r, r1, r2 = 1 . . . , n, f 2 ⌃2 and types ⌧, ⌧1, ⌧2. Final states are (r, [ ]) for any
r. The homomorphism hS is to the string interpretation, where ⇤ is simple conca-
tenation; hAM is the homomorphism to the AM interpretation. (Each label of the
grammar occurs in only one row, so this table properly defines the homomorphisms).

thus being able to parse exactly the word position i. The rule then associates the

supertag c with that position. We allow multiple such rules per word, so that the

decoder can consider multiple supertags per word when searching for the best parse

(see Section 6.8 for details). During parsing, this IRTG is combined with the string

decomposition automaton we discussed back in Chapter 2. That decomposition au-

tomaton also uses pairs [i, j] to represent string spans, and combining it with the

IRTG rules in Figure 6.12 yields exactly the parsing schema in Figure 6.11. Thus,

in a way, this algorithm builds a grammar custom made for a specific sentence, with

weights obtained from the neural models. The nonterminals of this grammar are

pairs (r, ⌧) of head indices and types, where the types ensure well-typedness and the

indices allow us to apply the contextualized probabilities correctly.

Note that, while especially the formulation as an IRTG gives an AM term rather

than a dependency tree, this term is arbitrarily chosen among the ones representing

the highest scoring dependency tree. That is, while we technically directly obtain

an AM term, we still rely on the work of Section 6.2 to know that we obtain the

optimal AMR.

Projectivity constraint. In fact, the constraint here is a bit stronger than just

projectivity. The parser can only build consecutive spans, and must perform the type

checking at every step. For example, the dependency tree in Figure 6.13 is projective.

However, the appO2 operation with argument leave must be performed before the

appO operation with argument snake, to resolve the unification at O before that

slot is filled. This is not possible with this decoder, since it must combine persuade
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The lion

Glion

[ ]

persuades

Gpersuade

[S,O2[S ! O]]

the snake

Gsnake

[ ]

to leave

Gleave

[S]

appS
appO

appO2

Figure 6.13: A dependency tree that the projective parser cannot obtain.

with snake first, and can only then combine it with leave. Implications and possible

solutions to this issue are discussed in Section 6.9.

6.6 The related fixed tree model

This section briefly reviews an alternative approach to training the edge model, which

we will call the Kiperwasser & Goldberg edge model (or K&G edge model) and an

alternative approach to decoding, the fixed tree decoder. These approaches are also

part of the original Groschwitz et al. (2018) paper, but were developed by Matthias

Lindemann and are presented in more detail in his bachelor’s thesis (Lindemann

(2018)).

These approaches are closer to classic syntactic dependency parsing. They use

additional edges in the AM dependency trees, labeled “IGNORE”, such that all words

in the sentence are covered. See Figure 6.14(b) for an example.

6.6.1 Alternate edge model

To train the edges, the K&G edge model follows the approach of Kiperwasser

and Goldberg (2016) more closely. The di↵erence to the edge model presented in

Section 6.4 here is mostly that the K&G model uses a hinge loss, which compares

the best predicted tree to the gold tree and computes a loss based on the di↵erences

found. This means that a tree needs to be predicted for every training iteration.

The model developed by Lindemann for Groschwitz et al. (2018) uses the Chu-

Liu-Edmonds algorithm (Chu (1965), Edmonds (1967)) for predicting these trees

at training time, to account for the fact that the AM dependency trees are often

non-projective (Kiperwasser and Goldberg (2016) predicts only projective trees).
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The raven wants to learn

(a) Step 1: Fix an unlabeled tree.

The

?

raven

Graven

wants

Gwant

to

?

learn

Glearn

appS
appO

IGNORE
IGNORE

(b) Step 2: Typed decoding on the fixed tree
structure.

Figure 6.14: The two steps of the fixed tree decoder.

6.6.2 Alternate decoder

The fixed tree decoder has a two step process, see Figure 6.14. First, it uses the

Chu-Liu-Edmonds algorithm to obtain an unlabeled dependency tree spanning the

whole sentence. Here it is particularly handy that we factored the edge scores into

scores !ex

[i!k]
for edge existence, and scores !lbl

[i!k]
for the edge labels. This first step

computing the unlabeled tree only uses the edge existence scores. The decoder then

fixes this unlabeled tree structure.

In a second step, the decoder then performs exact typed decoding on the fixed

tree structure, exploring di↵erent combinations of edge labels and graph fragment

supertags with dynamic programming. The fixed tree can have parts that corre-

spond to words not contributing to the AMR, or parts that cannot participate in a

high scoring and well-typed dependency tree. The second step can assign IGNORE

labels and empty supertags, which will be ignored during evaluation, to ‘prune’ away

these parts of the fixed tree. The fixed tree structure allows for e�cient dynamic

programming, and makes the typed decoding task tractable. The typed decoding

algorithm on the fixed tree has a runtime of O
�
n · 2d · d

�
, where n is the sentence

length and d is the maximal arity of the nodes in the fixed tree. The algorithm

returns the best well-typed dependency tree that follows the fixed tree structure.

Thus, this decoder can obtain non-projective dependency trees and also the tree in

Figure 6.13, at the cost of fixing the tree structure before checking type constraints.
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(a) Before preprocessing

NAME

person

na
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e

(b) After preprocessing

Figure 6.16: AMR representation of Agatha Christie, before and after preproces-
sing.

6.7 Data preparation

We have now fully established the AM dependency model in theory. To make the

system work in practice, we need to add some pre- and post-processing steps con-

cerning alignments, named entities, etc.

6.7.1 Training data

whistle-01

person

ARG0

bake-01

ARG0

Figure 6.15: AMR for
The baker whistles.

Alignments. We use a heuristic process to ge-

nerate alignments between graph nodes and words.

The process is described in Appendix B, and

the code of the aligner is available open source

at bitbucket.org/tclup/alto, in the class

de.saar.coli.amrtools.aligner.Aligner. The alig-

ner aligns every node in the graph to a single word6, but

multiple nodes can be aligned to the same word. For ex-

ample in Figure 6.15, the aligner would align the whistle-

01 node to whistles and both the bake-01 and person

nodes to baker. Combined with the blob approach of

attaching edges to nodes, as discussed in Section 5.5,

these alignments partition the graph.

Names, dates and numbers. We use simple pre- and postprocessing steps to

handle named entities, dates and numbers. In AMRs, named entities follow a pattern

shown in Figure 6.16(a). Here the named entity is of type person, has a name edge

to a name node whose children spell out the tokens of “Agatha Christie”, and a link

6Or a span of words for named entities.
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and

like-01

op1

like-01

op2

wizard

ARG0

hat

ARG1

witch

ARG0

book

ARG1

Figure 6.17: AMR for The wizard likes hats and the witch books.

to a wiki entry. Before training, we replace each name node, its children, and the

corresponding span in the sentence with a special NAME token, and we completely

remove wiki edges. In this example, this leaves us with only a person and a NAME

node, see Figure 6.16(b). Further, we replace numbers and some date patterns with

NUMBER and DATE tokens. On the training data this is straightforward, since names

and dates are explicitly annotated in the AMR.

Obtaining the training data. We obtain AM terms as described in Chapter 5.

The only di↵erence is that the constants are slightly larger here: all nodes of one

alignment are in the same constant, together with all their blob edges. We also em-

ploy the preferential source assignment model described in Section 5.6, i.e. preferring

active over passive in the source assignments etc. Among the terms achieving the

highest preference score, we then choose an arbitrary term t, and compute the de-

pendency tree dep (t, ind) as described above, where the indexing function ind is given

by the alignments. We did not find much variance in the dependency tree based on

what term t we choose – compare this also to Conjecture 6.9. Note that we thus

restricted the space of possible derivational structures for the AMR so much now,

that we do not need statistical methods to find a consistent set of such structures.7

We use Stanford CoreNLP (Manning et al. (2014)) for our POS tags to complete the

training data.

Unusable graphs. Despite the edge deletion method to find AM terms for all the

graphs, about 10% of the graphs (in the LDC2015E86 training set) cannot be turned

into AM dependency trees. In a few cases because a graph was too large, but mostly

because the aligner sometimes groups nodes together in a way that is not consistent

7That being said, some of the heuristic methods used here, like the aligner or the source assign-
ment in the constants, could be replaced – and maybe improved – by statistical methods.
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with our model. For example, the AMR in Figure 6.17 corresponding to the sentence

(1) The wizard likesi hats and the witch i books

features ellipsis, i.e. the second occurrence of likes is omitted. Here then, both like-

01 nodes are aligned to the first occurrence of likes (the gap and reference notation

‘ i’ is not given in the corpus; we therefore cannot align one of the like-01 nodes

to the gap). In such a situation, we get more than one supertag for a single word

position, which is not compatible with our model and we discard the sentence. This

situation where multiple graph fragments get aligned to a single word are not only

due to ellipsis, but also due to some AMR idiosyncrasies. The phenomenon occurs in

about 7% of the graphs. We saw in Chapter 5 that about 2% of the graphs cannot be

analyzed with the AM algebra using our heuristic constants. Together, this explains

most of the unusable graphs.

We don’t remove any graphs from the test data.

6.7.2 Evaluation data

For the evaluation data, we must first preprocess the sentence to replace names,

dates and numbers with the corresponding tokens. Here, as opposed to the training

data, we cannot look at the AMRs, but must use other methods. We detect dates

and numbers with regular expressions, and names with Stanford CoreNLP.

Recall that we predict delexicalized graph fragments and their lexical labels se-

parately. We find that just using the predicted lexical labels is suboptimal. Instead,

we only use the supertagger’s label prediction for words that were frequent in the

training data (at least 10 times). For rarer words, we use simple heuristics, such as

stemming and adding -01 for verbs, explained in more detail in Appendix C.

For names, we look up name nodes with their children and wiki entries observed

for the name string in the training data, and for unseen names use the literal tokens

as the name, and no wiki entry. Similarly, we collect the type for each encountered

name (e.g. person for “Agatha Christie”), and correct it in the output if the tagger

made a di↵erent prediction. We recover dates and numbers straightforwardly.

6.8 Evaluation

We evaluate the AM dependency parser on the LDC2015E86 dataset, containing

16833 training instances, 1368 graphs in the development set and 1371 graphs in

the test set, for a total of 19572 sentence-AMR pairs. We also use the LDC2017T10
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dataset (also known as LDC2016E25), with 36521 training instances and the same

development and test sets, for a total of 39260 sentence-AMR pairs. For brevity, I

will refer to these datasets as “the 2015 dataset” and “the 2017 dataset” respectively.

We obtain AM dependency trees for the training and the development sets as

described in Section 6.7. We then train the neural models for up to 100 epochs,

choosing the epoch with highest supertagging accuracy on the development set. For

evaluation, we predict supertag and edge scores on the test set and decode to obtain

an AM dependency tree, which we evaluate to an AMR.

Implementation details. We trained the supertagging and edge scoring models

of Section 6.4 separately; joint training (i.e. training the same BiLSTM module for

both tasks) did not help significantly as seen below. We use 256 hidden dimensions

in the BiLSTM and the MLPs, and employ dropout to prevent overfitting. Further

details and hyperparameters can be found in Appendix E. We prune the set of

supertags and edges we give to the decoder, for e�ciency. The projective decoder is

given 4 supertags per word, and only edges with a score over �4.6. We found this

pruning to not hurt performance; supertags and edges with lower score seem to not

participate in the best trees frequently.

6.8.1 Supertagger accuracy

We evaluate the accuracy of the neural supertagger on the development set of the

2015 dataset. Since the ‘gold’ supertags in the development set are also created

heuristically (based on the aligner, heuristic source names and annotations, etc.),

the presented accuracies are to be taken with a grain of salt.

Overall, the supertagger achieves an accuracy of 73%. The correct supertag is

within the supertagger’s 4 best predictions for 90% of the tokens, and within the 10

best for 95%.

Supertags that introduce grammatical reentrancies are predicted quite reliably,

although they are relatively rare in the training data. The elementary as-graph

for subject control verbs (see Gwant in Figure 6.18(a)) accounts for only 0.8% of

supertags in the training data, yet 58% of its occurrences in the development data

are predicted correctly (84% in 4-best). The supertag for VP coordination (with type

⌧op1[s], op2[s]) makes up for 0.4% of the training data, but 74% of its occurrences

are recognized correctly (92% in 4-best). Thus the prediction of informative types

for individual words is feasible.
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6.8.2 Baselines

We compare the AM dependency parser against two baselines.

Type-unaware fixed-tree baseline. We perform typed decoding, that is, our

decoder ensures that the resulting AM dependency tree is well-typed. To investigate

to what extent this is required, we consider a baseline which just predicts the best

dependency tree, not taking types or projectivity into account (we use the fixed tree

decoder of Section 6.6 for this). This leads to AM dependency trees which are not

well-typed for 75% of the sentences (for the Smatch score evaluation below, we fall

back to the largest well-typed subtree in these cases). Thus, the neural model does

not automatically predict well-typed dependency trees, typed decoding is indeed

necessary.

want-01

S

ARG0

O[S]

ARG1

(a)

want-01

(b)

Figure 6.18: Graph fragments for
want in (a) the AM dependency mo-
del and (b) a graph decoder.

Graph decoder baseline. The AM de-

pendency model has a close technical rela-

tion to the graph decoder parsers we des-

cribed in Chapter 3, such as Flanigan et al.

(2014) and Lyu and Titov (2018). Both

parser formalisms predict graph fragments

for each word, and predict edge scores be-

tween them. However, while we predict

as-graphs and AM operations and decode

into a tree, the graph decoders predict

plain graphs and AMR edges, decoding into

graphs.

We adapt our model to obtain a graph decoder baseline. Since a graph decoder

predicts the edges which connect the constants separately from the constants, we

remove outgoing blob-edges from our graph fragments, using the fragment in Fi-

gure 6.18(b) rather than the one in (a). That is, we also do not need our source

name heuristics. Furthermore, we do not need to remove any edges in the training

data to obtain su�cient coverage, and can use the original graphs.

We then train our neural model to directly predict AMR edges between these

graphs. Since the assumption for the original edge model, that each word has only

one incoming edge, does not apply here, we use a di↵erent loss function. Instead of

using cross-entropy loss over the set of all incoming edges for a word, we use binary

cross-entropy to predict the existence of each word separately.

When parsing a string, we choose the highest-scoring supertag for each word;
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Model 2015 2017
AM dependency
main model (projective decoder) 70.2±0.3 71.0±0.5

main edge model + fixed-tree decoder 69.4±0.6 70.2±0.5

K&G edge model + projective decoder 68.6±0.7 69.4±0.4

K&G edge model + fixed-tree decoder 69.6±0.4 70.2±0.2

Baselines
fixed-tree (type-unaware) 26.0±0.6 27.9±0.6

graph decoder 66.1 66.2
Previous work
Grammar-based
Peng and Gildea (2016) 55 -
Neural sequence to sequence
van Noord and Bos (2017) 68.5 71.0
Graph decoder
JAMR Flanigan et al. (2016) 67 -
Foland and Martin (2017) 70.7 -
Lyu and Titov (2018) 73.7 74.4
Other
Damonte et al. (2017) 64 -
Wang et al. (2015) 66.5 -

Table 6.1: LDC2015E86 & LDC2017T10 test set Smatch scores

there are only 628 di↵erent (delexicalized) supertags for the graph decoder, and

1-best supertagging accuracy is high at 88%. We then follow the graph decoding

algorithm by selecting all edges whose score is over a threshold (we found -0.02 to

be optimal; for log-probabilities as scores) and then adding edges until the graph

is connected. Because we do not predict which node is the root of the AMR, we

evaluated this model as if it always predicted the root correctly, overestimating its

score slightly.

6.8.3 Results

Metric. We use Smatch score (Cai and Knight (2013)), the standard metric to

measure similarity of AMRs, to evaluate our parser. Smatch score is based on

triples of two forms. The first form is instance (u, l) for a node u and a node label

l, indicating that node u has label l. The second form is el (u, v) for an edge label

el and two nodes u and v, indicating that there is an edge with label el from u to

v. Given a one-to-one map h between nodes of two graphs G and H, one can then

compute precision, recall and f-score of these triples. For example, given a triple

instance (u, love-01) in G, is there also a triple instance (h (u) , love-01) in H? Or

given a triple ARG0 (u, v) in G, is there also a triple ARG0 (h (u) , h (v)) in H? The

Smatch score between two graphs G and H is then defined as the highest f-score of

triples that can be obtained by any one-to-one map h between their nodes. Since the
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number of such maps is exponential in the size of the graphs, Cai and Knight (2013)

introduce an approximate method to compute Smatch, which, while not exact, is

shown to be reliable.

Results. Table 6.1 shows the Smatch scores of our model, compared to the base-

lines and a selection of previously published results. Our results are averages over 4

runs with 95% confidence intervals (graph decoder baselines are single runs). On the

2015 dataset, the AM dependency model as described here (results in first line) out-

performs all previous work, with the exception of the Foland and Martin (2017) and

Lyu and Titov (2018) models; on the 2017 set only Lyu and Titov (2018) outperforms

the AM dependency model, the van Noord and Bos (2017) model ties.8

Switching out one or both of the edge model and decoder for the ones described

in Section 6.6 does not improve results. Apparently, fixing the tree structure before

typed decoding comes at a higher cost than only allowing projective trees.

As expected, the type-unaware baseline has low scores, due to its inability to

produce well-typed trees. The fact that our models outperform the graph decoder

baseline so clearly is an indication that they indeed gain some of their accuracy from

the type information in the elementary as-graphs, confirming our hypothesis that an

explicit model of the compositional structure of the AMR can help the parser learn

an accurate model. While two graph decoder models (Foland and Martin (2017)

and Lyu and Titov (2018)) outperform the AM dependency system, they use more

elaborate training procedures and di↵erent pre- and post-processing. Thus, when

comparing the AM dependency approach to the graph decoder approach, the com-

parison to our graph decoder baseline is more direct. Integrating the contributions

made by Foland and Martin (2017), and especially Lyu and Titov (2018), with the

AM dependency approach is a promising direction for improving parser performance

further.

We clearly outperform the synchronous grammar approaches. Peng and Gildea

(2016) obtain a smatch score of 55 on the 2015 dataset, 15 points below ours. The

LDC2015E86 corpus was presumably not yet available for evaluation for Artzi et al.

(2015); they only report a Smatch score of 66.3 on an earlier dataset (presumably

LDC2014T10), where Smatch scores were in general a bit higher than on the newer

datasets.

Table 6.2 analyzes the performance of our parser (AM) and the fixed-tree variant

(FTD) in more detail, using the subtasks described in Damonte et al. (2017), and

compares them to Wang’s, Flanigan’s, and Damonte’s AMR parsers on the 2015 set,

8At the time of submission of Groschwitz et al. (2018), Lyu and Titov (2018) was not published
yet, and the model tied for the best performing model on LDC2017T10.
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2015 2017
Metric W’15 F’16 D’17 L’18 AM FTD vN’17 L’18 AM FTD
Smatch 67 67 64 74 70 70 71 74 71 70
Unlabeled 69 69 69 76 73 73 74 77 74 74
No WSD 64 68 65 76 71 70 72 76 72 70
Named Ent. 75 79 83 85 79 78 79 86 78 77
Wikification 0 75 64 76 71 72 65 76 71 71
Negations 18 45 48 57 52 52 62 58 57 55
Concepts 80 83 83 86 83 84 82 86 84 84
Reentrancies 41 42 41 51 46 44 52 52 49 46
SRL 60 60 56 69 63 61 66 67 64 62

Table 6.2: Details for the LDC2015E86 and LDC2017T10 test sets. AM is the AM
dependency model of this thesis, FTD the alternate version of Section 6.6. W’15 is
Wang et al. (2015), F’16 is Flanigan et al. (2016), D’17 is Damonte et al. (2017),
L’18 is Lyu and Titov (2018) and vN’17 is van Noord and Bos (2017).

and van Noord and Bos (2017) for the 2017 dataset; we compare to Lyu and Titov

(2018) on both datasets (Foland and Martin (2017) did not publish such results.)

Mostly, the scores mirror overall parser performance. The still good scores we achieve

on reentrancy identification, despite removing 60% of reentrant edges from the trai-

ning data, indicates that we are particularly good at predicting the reentrancies we

can model, such as control and coordination.

6.8.4 Structural evaluation

Metric BL L’18 AM

Label R 81.1 83.2 78.9

P 82.1 85.2 84.5

F 81.6 84.2 81.6

Blob R 71.0 78.7 77.6

P 71.9 80.5 83.1

F 71.5 79.6 80.3

Triangle R 15.1 27.7 20.2

P 17.4 36.6 43.4

F 16.2 31.5 27.5

Conjunction R 7.0 38.1 28.1

P 43.2 68.9 67.3

F 12.1 49.0 39.7

Table 6.3: Results of structural evalua-
tion on the LDC2017T10 test set. BL is
baseline, L’18 is Lyu and Titov (2018) and
AM is the main AM dependency model.

In this section, we examine where the

gains of the main AM dependency mo-

del compared to the baseline come

from, and also compare the AM mo-

del more closely to the current state of

the art (Lyu and Titov (2018); abbrevi-

ated L’18 here). In particular, we will

quantitatively evaluate performance on

reentrancy structures that are created

by control and coordination.

Smatch score relies on a node map-

ping between the graphs, which is in-

fluenced by several properties of the

graphs, in particular by both structural

properties and node labels. Since many

of the more detailed metrics shown in
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Table 6.2 also rely on Smatch score, this applies there as well (a notable exception is

the Negations metric). In this section, we will disentangle node labels and structural

properties by using metrics that do not rely on a node mapping.

The results of the evaluation on the 2017 test set are shown in Table 6.3. All

metrics are recall (R), precision (P) and f-score (F) on multisets of local phenomena.

The first metric Label simply compares the multiset of all node labels in the

gold graph against the respective multiset of the predicted graph; i.e. this is a ‘bag

of node labels’ metric. The AM parser does not improve over the baseline here,

which means its improvements are entirely structural, i.e. in the way the nodes are

connected. In contrast, L’18 performs noticeably stronger in this metric, showcasing

improvements orthogonal to the ones developed here. The AM parser has relatively

low recall and high precision, meaning that it predicts smaller graphs on average;

this may be due to the parser being more restrictive.

The second metric Blobs considers the multiset of blobs in the graph. Recall

that the blob of a node is the collection of incident edges that ‘belong’ to it, such as

outgoing argument edges of a predicate or incoming mod edges of a modifier. We

can thus model a blob as a multiset of edge labels, that is, we describe the blob of

a node as the multiset of the edge labels of the node’s blob edges. For example, the

try-01 node in the AMR in Figure 6.19 has the blob {ARG01,ARG11}, where the

indices indicate multiplicity. The AMR then has the blob multiset

{{ARG01,ARG11}2 , {mod1}1 , ;2} .

In this metric, the AM dependency parser improves thoroughly on the baseline

and even outperforms L’18. This is most likely because the AM parser predicts

supertags that already contain meaningful combinations of edges in the blobs.

Label Count

feel-01 21

want-01 20

have-org-role-91 15

say-01 15

try-01 14

Table 6.4: Top ‘blue’ nodel
labels of the Triangle pattern
on the LDC2017T10 test set.

The third Triangle metric measures the ability

to predict triangles of edges where two edges be-

long to the blob of one of the nodes. An example is

shown in Figure 6.19(b), where both blue edges are

in the want-01 blob. Such short range reentran-

cies are captured by one of the source annotation

heuristics and are often created by compositional

phenomena such as control. When such a pattern

is caused by control, the node label indicated blue in

Figure 6.19(b) is the control verb. Table 6.4 shows

the top five node labels in the 2017 test set that

occur as the blue node in this pattern. The node labels want-01 and try-01 indicate
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try-01 cast-01
ARG1

witch

ARG0 ARG0

spell

ARG1

dangerous

mod

(a) An AMR.

want-01

raven

ARG0

learn-01

ARG1

ARG0

(b) Pattern for triangle me-
tric. Only blue labels need
to match.

and

scream-01

op1

disappear-01

op2

raven

ARG0 ARG1

(c) Pattern for coordina-
tion metric. Only blue la-
bels need to match.

Figure 6.19: An AMR and evaluation metric patterns

control, and a triangle with feel-01 can occur in constructions such as I feel happy.

Triangles for have-org-role-91 and say-01 may be due to coreference.

The Triangle metric then compares the multisets of such triangle structures for

the gold and the predicted graph. For two triangle structures to count as equal in the

Triangle metric, only the blue edge and node labels need to match. The idea behind

this decision is to decouple the structural evaluation as much as possible from node

and edge label prediction, while still capturing the essence of a control structure

when one occurs. For the Triangle metric, the AM parser again improves strongly

over the baseline and is close to L’18 in f-score. Accuracy for the AM parser is

particularly high while recall is low. This may be because the AM algebra captures

some phenomena that cause triangles well (such as control), and others less well

(such as coreference).

Conjunction patterns are matched by the eponymous Conjunction metric. Like

the triangle metric it matches graph patterns, namely those conjunction patterns

where the conjuncts have a common argument, like the conjunction shown in Fi-

gure 6.19(c). Again, only the blue node labels and the graph structure need to

match. That is, the conjunction label itself needs to match, and the number of

conjuncts, as well the number of joint arguments of the conjuncts. This metric is

where the AM algebra has the largest improvements over the baseline, although L’18

performs even stronger.

Overall we find that the AM algebra strongly improves over the graph decoder

baseline in structural terms, including two important reentrancy patterns, but not

in terms of node labels. The Label metric is also one where the di↵erence to Lyu

and Titov (2018) is especially pronounced. These results, in particular those of the

Blob metric, are evidence for the hypothesis that the compositional approach of the
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AM parser has structural benefits over the graph decoder method.

6.8.5 Model variations

Model variant Smatch

non-joint full 71.3

joint full 71.4

- char 71.2

- POS 70.5

- learned 70.2

512 71.7

128 69.4

Table 6.5: Scores of model vari-
ations on the LDC2015E86 deve-
lopment set

Table 6.5 shows results for di↵erent neural mo-

del variations of the main AM dependency par-

ser on the development set of LDC2015E86.

First we test whether joint training, i.e. training

one BiLSTM as input to both the supertagger

and the edge model, makes a di↵erence. Re-

call that the supertagger presented above uses

as word vectors a concatenation both (fixed)

pretrained word embeddings and learned word

embeddings, as well as POS tag embeddings

and an LSTM-based character-by-character en-

coding of the word. The edge model uses the

same vectors, except the character-by-character encoding.

Since the joint model (joint-full in Table 6.5) uses one fixed configuration for

both supertag and edge predictions, we compare it to a non-joint model where the

edge model also uses the character-by-character encoding, to get a fair comparison

(non-joint full in Table 6.5). The two models vary only by 0.1 Smatch score, not a

meaningful di↵erence given the error margins we saw in Table 6.1.

For the further ablation studies, we use the joint model since it was more conve-

nient to use. We first do some ablation studies. Removing the character-by-character

encoding from the input vectors costs about 0.2 points of Smatch score (“- char” in

the table), although this may not be significant. Removing also the part of speech

encodings (“- POS”) costs 0.7 points, and removing the learned word embeddings

as well, leaving only the fixed pretrained embeddings, costs another 0.3 points (“-

learned”). In total, using only the pretrained embeddings yields a Smatch score of

70.2 on the development set, costing more than a full point in performance.

We also experiment with the number of hidden states. Increasing the number

of hidden states from 256 to 512 increases the development Smatch score to 71.7,

a minor 0.3 increase (in the range of random variation). Decreasing the number of

states to 128 costs 2 full points of Smatch score. That is, the number of hidden states

we use is necessary for good performance, but increasing it further (which increases

training runtimes) does not give much additional benefit.

Further, we evaluated the e↵ect of the source name preferences described in

Section 5.5.2. This performed this evaluation with the full neural main model on



207

the LDC2017T10 test set, achieving a Smatch score of 68.0 without the source name

preferences, compared to the 71.0 with the preferences. This illustrates how making

the training data more consistent can have a considerable impact on performance.

6.9 Discussion

We have now seen the AM dependency parser and its empirical evaluation. In this

section, we look at two more examples, discuss the impact of compositionality on

the parser, and take stock of how we addressed the challenges put forth in the

introduction.

6.9.1 Examples

Throughout this chapter we have already seen many examples of AM dependency

trees. We also analyzed properties of the AM algebra in Section 5.4, most of the

examples discussed there translate directly to dependency trees. Further, we saw

that ellipsis and coreference are clear limitations of the current model. There are

however two phenomena we described in Chapter 3 that we did not discuss yet:

right node raising and wh-movement. The two phenomena highlight strengths of the

dependency approach, and a limitation of the projective decoder.

Right node raising Recall right node raising, as in

(2) Lily married and Severus detests James

where the segments Lily married and Severus detests are coordinated, even though

they are not usually considered constituents. However, the AM dependency parser

considers only the semantic types, and no presupposed notion of syntax, to determine

which dependency trees are allowed. Thus, the dependency tree

Lily

GLily

[ ]

married

Gmarry

[S,O]

and

Gand[O]

[op1[O], op2[O]]

Severus

GSeverus

[ ]

detests

Gdetest

[S,O]

James

GJames

[ ]

appop1

appop2

appO

appS appS
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is perfectly acceptable for the AM dependency parser, and provides a simple solution

to the right node raising problem.

Wh-movement The problem with wh-movement is the unusual position of the

wh-word indicated by the gap i in

(3) Whoi do the parents love i?

Again, this no problem in the AM dependency model as illustrated by this depen-

dency tree:

Who

Gunk

[ ]

do the parents

Gparent

[ ]

love

Glove

[S,O]

?

appO

appS

Now consider the following dependency tree for long-distance wh-movement:

Who

Gunk

[ ]

does Malfoy

Gmalfoy

[ ]

doubt

Gdoubt

[S,O]

the parents

Gparent

[ ]

love

Glove

[S,O]

?

appO

appO

appS appS

This is a non-projective tree: the long distance appO edge from love to Who crosses

from one side of the root (i.e. origin) of the dependency tree to the other. This is no

problem for the AM dependency model as a whole, but the approximate projective

decoder cannot obtain this: it would need to combine love andWho before combining

love further as the object of doubt, which would cover a non-consecutive part of the

sentence. Earlier in Section 6.5, we saw a similar problem occurring with object

control.
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We can look to mildly context-sensitive grammars for solutions that relax the

projectivity constraint while keeping computational complexity manageable. Many

mildly context-sensitive formalisms, for example CCG, allow an unfilled argument

slot to be ‘passed along’ via function composition and be filled only later. That is,

Malfoy, doubt, parents and love would combine first, and only then would Who be

added as the object of love. Tree Adjoining Grammar (TAG, Joshi and Schabes

(1997)) uses a di↵erent approach during parsing. Here, non-consecutive sentence

segments, specifically pairs of spans, are allowed as states in the parsing process.

In fact, Koller and Kuhlmann (2012) introduce a string algebra that models TAG,

which we could plug into the IRTG perspective of the projective decoder.

In conclusion, the AM dependency model handles many phenomena with ease

that often pose a challenge to compositional models. Projectivity constraints are

an issue, but could be relaxed in the future. To obtain this flexibility, the AM

dependency model gives up on the tight connection to traditional syntax that is

characteristic of compositional models. We discuss this in the following section.

6.9.2 Compositionality

In Section 3.2, we established the principle of compositionality as

The meaning of a complex expression is a function of the meanings of its

parts and the mode of composition by which it has been obtained from these

parts.

Here, we understand the “mode of composition” to refer to the syntax of a sentence.

Also in Section 3.2, we said that we call a parser compositional if it defines a syntax

and constructs the meaning representation along the syntax structure. So, is the

model discussed here compositional?

Dependency model. For the (somewhat hypothetical) dependency model with

exact typed decoding, as described in Section 6.3, the answer is: it depends. If we

project the edges of an AM dependency tree onto the sentence, such as in

The lion persuades the snake to leave

appS

appO

appO2

(6.7)



210

Rule hS hAM

Initw,c ! ⌧ (c) w c

Skip-Rw (⌧) ! ⌧ ⇤ (x1, w) x1

Skip-Lw (⌧) ! ⌧ ⇤ (w, x1) x1

Arc-Rf ,⌧1,⌧2 (⌧1, ⌧2) ! ⌧ ⇤ (x1, x2) f (x1, x2)
if ⌧ = Jf (⌧1, ⌧2)K 6= FAIL

Arc-Lf ,⌧1,⌧2 (⌧1, ⌧2) ! ⌧ ⇤ (x1, x2) f (x2, x1)
if ⌧ = Jf (⌧2, ⌧1)K 6= FAIL

Figure 6.20: A ‘global’ IRTG inspired by the projective decoder. Rules are defined
for all observed as-graph fragments c, all observed words w, all AM operations f 2 ⌃2

and possible types ⌧, ⌧1, ⌧2. The final state is the empty type.

then this defines a dependency structure on the sentence. We can interpret this as a

form of “syntax” on the sentence. This “syntax” then, combined with the meanings

(i.e. the as-graphs) of the single words, determines an AM dependency tree, and as

we have seen in Theorem 6.8, this fully determines the resulting AMR, which in this

context is the ‘meaning’ of the sentence.

However, calling this dependency structure a syntax may be a bit of a stretch.

The principle of compositionality refers to “the mode of composition by which [the

complex expression] has been obtained”, and quite clearly, the dependency structure

in (6.7) does not fully describe how the sentence has been obtained. To obtain a

more traditional syntax, one could add the IGNORE edges of Section 6.6.2 to cover

all words in the sentence, and use a dependency grammar as a syntactic model.

However, this might add some of the harder restrictions back in that we explicitly

tried to avoid.

Projective decoder. If we take the projective decoder into account, we can obtain

another, di↵erent perspective on compositionality. As we saw in Section 6.5, we can

interpret the projective decoder for a specific sentence as an IRTG (see Figure 6.12).

We can interpret that ‘local’ IRTG as a version of a ‘global’ IRTG, shown in Fi-

gure 6.20, with contextualized probabilities and a pruned rule set. The (hypothe-

tical) process is as follows: The ‘global’ IRTG in Figure 6.20 uses AM types as

nonterminals, and contains the following types of rules:

• Initw,c that maps any word w to any graph fragment c.

• Skip-Rw and Skip-Lw that skip any word w, leaving the as-graph representation

unchanged.
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Arc-LappS,[ ],[S]

Skip-Lthe

Initraven,Graven Arc-RappO,[O[S]],[S]

Skip-Rto

Initwants,Gwant

Initlearn,Glearn

(a) IRTG term

The raven wants to learn

appS
appO

(b) AM dependency tree

Figure 6.21: A term over the IRTG in Figure 6.20 for the sentence The raven wants
to learn, and a matching AM dependency tree.

• Arc-Rf ,⌧1,⌧2 and Arc-Lf ,⌧1,⌧2 that apply an operation f to two arguments of

types ⌧1 and ⌧2.

For example, the sentence

(4) The raven wants to learn

can be described with the term in Figure 6.21(a); the term corresponds to the AM

dependency tree in (b). To obtain the ‘local’ IRTG of Section 6.5, we add the pro-

babilities as given by the dependency model, replace words with indices and add

nonterminals as indicated in Section 6.5, to be able to score the rules properly in

the local context. Replacing the words with indices is only a trick to get the right

contextualized probabilities. We then prune the IRTG, by only keeping the few best

constants for each word position (i.e. only keeping a small set of supertags) and only

keeping edge rules with probabilities over some threshold.

From this perspective then, the model is fully compositional, with a probability

model that factors in a specific way such that all terms corresponding to the same

dependency tree have the same total score. Since we designed the application and

modification operation manually, from some perspective we actually ‘handwrote’

large parts of this grammar.

An interesting di↵erence to a more classical synchronous grammar approach is that

this grammar here is very permissive. The nonterminals only track semantic well-

typedness, and otherwise operations can combine freely. To some extent, this mirrors

ideas present in e.g. Hall et al. (2014), that less information is encoded in the non-

terminals, and more in the probabilities. This makes the grammar more flexible,
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allowing it to consider more options and putting more focus on the probability mo-

del to disambiguate between them.

Conclusion Technically compositional or not, the AM dependency model uses

many ideas present in more traditionally compositional models. These ideas are

encoded in the AM terms. Solutions to remaining problems will quite likely also

draw from this tradition, see e.g. the possible solutions to the projectivity constraint

discussed above. Thus, the AM dependency model clearly lies in the tradition of

compositionality.

6.9.3 Comparison to other AMR parsers

Let us compare the AM dependency approach to other high performing approaches to

AMR parsing, namely the neural seq2seq approach (e.g. van Noord and Bos (2017))

and the graph decoder approach (e.g. Lyu and Titov (2018)).

Data hunger. The neural seq2seq approach of van Noord and Bos (2017) relies

heavily on silver data. This may be because a seq2seq model must not only learn to

generate good graphs, but must also learn to generate a string that actually represents

a graph. It may be that pre-training on the silver data allows the seq2seq model

to learn more basic aspects of the task (that other approaches have already built

in), and then refine its predictions on the gold data. Since existing parsers (that are

at least reasonably good) are required to generate silver data, this approach seems

less appealing for newly emerging semantic formalisms where no parser has been

developed yet.

Both the graph decoder models and the AM dependency approach do well with-

out additional silver data. In future research, it would be interesting to see whether

the additional structure in the AM dependency trees helps to generalize from li-

mited training data. Experiments to test this hypothesis could include parsing on

particularly small sets of training data, seeing whether additional silver data helps

one approach more than the other, or evaluating on test data of a di↵erent domain.

Possible data for such experiments could include manually restricted training sets of

the AMR corpora used here, the Little Prince AMR corpus, the Bio AMR corpus,

and the silver data used by van Noord and Bos (2017).

Incorporating linguistic principles. Graph decoders select the edges for a graph

largely independently. While we have discussed in Section 3.4 some ways in which

already predicted edges can influence following predictions (such as each node being
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restricted to at most one of each ARGx edge), di↵erent constellations of edges are not

inherently favored or unfavored. In contrast, AM dependency parsing groups edges

in meaningful supertags and encode reentrancies in compositionally principled ways.

This yields measurable improvements in graph structure, as we saw in Section 6.8.4.

In their seq2seq model, van Noord and Bos (2017) make several structural de-

cisions that treat each AMR as not just a sequence of characters, such as using

principled linearizations of the graphs and treating edges as a single supercharacter

rather than a sequence of independent characters. However, it is not clear how to

incorporate deeper compositional principles in a seq2seq approach. Since there can

also be advantages to not adding linguistic principles to a model – such as lower

development time – the di↵erent approaches may well be complementary, with the

choice depending on the requirements and restrictions of each application.

6.9.4 Taking stock

In the introduction of this thesis, I listed four challenges to neural- and grammar-

based parsers. To recap them:

Challenge 1: Models without linguistic structure are data hungry.

Challenge 2: It is not obvious how to add linguistic principles to neural networks.

Challenge 3: Synchronous grammars face robustness issues.

Challenge 4: Creating structural training data is a highly ambiguous process.

So, how does the AM dependency parser address these challenges?

Combining neural networks with linguistic principles (Challenges 1&2).

The AM dependency parser is based on the general linguistic principles of applica-

tion, modification and unification; as we discussed in Chapter 3, these principles are

present in many compositional formalisms for semantic construction, such as LFG

or CCG. By predicting operations over the AM algebra, we do not add the linguis-

tic structure inside the neural networks, but use the neural networks to predict the

structure.

As a result, we outperform the sequence-to-sequence approach of van Noord and

Bos (2017) on the LDC2015E86 dataset, and tie on the larger LDC2017T10 dataset.

However, van Noord and Bos (2017) use additional ‘silver’ training data created by

other parsers. This underlines that our more structured approach requires less data

to work e↵ectively than van Noord and Bos (2017). While some graph decoder par-

sers (Foland and Martin (2017), Lyu and Titov (2018)) outperform our parser, they
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use more complex neural architectures, as well as di↵erent pre- and post-processing.

These can have big impacts on parser performance. The fact that we outperformed

our graph decoder baseline, that uses a near identical neural architecture and the

same pre- and post-processing steps, indicates strongly that guiding the parser with

linguistic principles does indeed help. Integrating the advanced training regimes of

in particular Lyu and Titov (2018) into the AM dependency model is a promising

direction for further parser improvements.

In the AM dependency parser, the connection between linguistic principles and

the parsing process is more explicit and overt, compared to purely neural models or

the graph decoders. This is a double edged sword. On the one hand, it allows us

to identify problems and possible solutions more explicitly. We saw in Chapter 5

that coreference is an unsolved problem, and in this chapter that we cannot model

ellipsis. These open issues give specific avenues for future work, and much of the

specifics of the final model presented here originated from addressing similar overt

issues.

The downside is that with the added structure of the AM algebra, we have to

address these issues specifically – otherwise, we cannot model them at all. For

example, in Section 5.5.3 we saw some phenomena that our heuristics to extract

constants and source annotations do not cover. To extend the heuristics manually,

until all phenomena in the corpus are covered, would imply addressing the Zipfian tail

of language with manual labor, an ine↵ective approach. Using statistical methods

to replace or extend the heuristics used in this thesis could be promising moving

forward.

We thus have the options to address overt issues with custom tailored, linguisti-

cally inspired solutions, and/or to add more statistical models in the mix, to address

the Zipfian tail. Which issues to address directly, and which to address with broader

statistical methods, is a delicate balance. The evaluation in this chapter shows that

so far, the AM algebra strikes that balance successfully – the simple heuristics we

use are e↵ective.

Robustness (Challenge 3). While the AM dependency model uses the same

principles of argument application, modification and unification as other grammar-

based approaches to synchronous parsing, such as LFG or CCG, there is a key

di↵erence here. In the AM dependency model, we use no syntactic categories, and

have no formal restrictions on word order (besides the projectivity constraints of the

approximate decoder). While the type system contains information about available

argument slots, a notion often encoded in syntactic categories, we do not make more

fine-grained distinctions between e.g. noun phrases and clauses, i.e. the syntactic
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The raven wants

to learn

(a) (Simplified) syntax structure.

appS

appO

Gwant Glearn

Graven

(b) Term over the AM algebra.

Figure 6.22: Syntax structure and AM term for The raven wants to learn, with
colors indicating matching parts.

types NP and S. Instead, we rely on the neural model to learn this kind of information

implicitly, as is needed. This is indeed e↵ective, since the bidirectional recurrent

neural networks provide our decoder with accurate scores that take context into

account. Thus, the AM dependency model avoids many of the hard constraints of

synchronous grammars, without giving up on the linguistic principles of application

etc. This makes the model much more flexible and robust.

There is another insight to be found here, which is a bit more subtle. While

we have the projectivity constraint at decoding time, the dependency trees we use

in the training set are unconstrained. This solves a crucial robustness issue that

synchronous grammars face during training.

Recall that synchronous grammars assume that for any given sentence, there is

a syntax term and a semantic term (such as the ones shown in Figure 6.22), that we

can cut into corresponding parts (here indicated by colors) that are consistent with

the tree structures, loosely that the ways the trees are cut up are congruent.9 Thus,

at training time, one needs to find a syntax and a semantic term, a segmentation

for each, and a way to match segments of the two terms with each other, such that

the parent-child relations of the matched segments are congruent in both terms.

Optimally, the matching of segments in both terms should be also consistent with a

given set of heuristic alignments between the AMR and the string. These are strong

constraints that are di�cult to satisfy. For example, Peng et al. (2015) note that

their induction algorithm is particularly sensitive to the heuristic alignments.

Preliminary experiments on inducing a synchronous IRTG with the AM algebra,

conducted by my colleagues Christoph Teichmann and Antoine Venant (personal

communication, 2018), indicate that when assuming a fixed syntax structure, fixed

9What exactly congruent means here depends on the grammar formalism, for example for IRTG
it means that there is a derivation tree, such that both terms are homomorphic images of the
derivation tree.
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alignments and fixed AM term, a congruent matching can barely be ever found.10 To

a large extent, this is because none of the terms or alignments are hand-annotated

or fully correct; for example one misaligned node in the graph can completely break

the congruence of the terms.

When, instead of fixing a single pair of terms and their alignments, we sample

from all possible terms and alignments, the same sort of complexity problems that

we observed for the HR terms in Chapter 4 occurred again, such that the sampling

process could not find consistent patterns. This time, the too large sampling space

comes not from the number of semantic terms, but rather from the combination of

the di↵erent possible syntactic and semantic terms, alignments, and di↵erent ways

to segment the terms. The experiments were inconclusive on whether it is possible to

find a ‘sweet spot’, i.e. a somewhat restricted sampling space where we still can find

congruent terms with matching alignments, while avoiding the complexity problems.

In any case, this is a non-trivial task.

The AM dependency model completely sidesteps this issue. Since the AM depen-

dency trees at training time do not have projectivity constraints, or any constraints

concerning word order, we can simply project them onto the sentence according to

the given alignments, and that’s it.

Ambiguity in structural training data (Challenge 4) In Chapter 4 we obtai-

ned billions of HR terms even for a single very small AMR. Using statistical sampling

methods to obtain a consistent set of terms for training a parser was infeasible. The

AM algebra drastically reduced this ambiguity when selecting terms for a given AMR,

even more so when adding a simple preferential heuristic for source name choices.

AM dependency trees reduced this ambiguity even further: Conjecture 6.9 proposes

that we now only need to fix the constants to obtain a unique dependency tree,

and indeed, using heuristics for the constants and then just picking an arbitrary

corresponding AM dependency tree gives us a consistent set of trees for training.

With this drastic reduction in ambiguity, we do not even have to rely on statistical

methods anymore.

While we no longer rely on statistical methods to select an AM dependency tree,

we do rely on a series of heuristics for alignments, and for the shape, sources and

annotations of the constants. Replacing these heuristics with statistical methods

might help to improve the model, for example, Lyu and Titov (2018) saw significant

performance increases by using an advanced technique for learning alignments.

10At least not when assuming reasonably small segments. One can always choose one big segment
for each term, and match the two, but such a rule will of course not generalize, it just learns the
sentence by heart.
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An important note here is that we mostly removed undesirable terms or spurious

information within them. The AM algebra brings the HR terms into a normal form,

and disallows terms that do not fit into the application/modification/unification

schema. While this means we can no longer some phenomena, the large number of

spurious terms we no longer have to consider is worth it. And as we saw, we only

need to remove 4% of edges to achieve nearly full coverage. The AM dependency

trees then essentially just summarize multiple terms that evaluate to the same AMR

anyway. Thus, where the HR algebra is a very powerful algebra that can build any

graph in many di↵erent ways, the AM dependency trees seem to be exactly powerful

enough to build a semantic parser.

6.10 Conclusion.

In this chapter, we saw that AM dependency trees encode the essence of AM terms,

and that we can use them to build an AMR parser with strong performance. The

parser combines the strengths of neural and compositional approaches, addressing

all challenges we established in the introduction.

Future work. The parser presented in this section uses a simple, straightforward

neural model. There are many related neural models that have been used in other

work, and could be adapted for AM dependency parsing. For example, Dozat and

Manning (2017) use bia�ne attention for dependency parsing, and Lyu and Titov

(2018) use bilinear edge scores and a multi-pass approach for their edge model.

Experimenting with di↵erent supertagging models, such as the one of Lewis et al.

(2016), could also be interesting.

Furthermore, the transparency of the system allows us to clearly identify re-

maining limitations, such as coreference and ellipsis, providing directions for future

work. The next chapter will discuss this in more detail.
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This thesis presented the AM dependency parser, a semantic parser for AMR that

combines neural networks with ideas from compositional semantic parsing in a new,

flexible dependency structure. It e↵ectively reduces the complex graph parsing task

to a simple dependency parsing task, allowing us to use straightforward neural meth-

ods for supertag and edge prediction. The AM dependency parser relies less on hard

syntactic constraints than more traditional compositional approaches, instead using

the contextualized scores of bidirectional recurrent neural networks combined with

a semantic type system to guide it. This simplifies it and increases its robustness

compared to synchronous grammar based approaches.

At the same time, we tackled the issue of ambiguity when creating structural,

compositional training data from a corpus. We started with the decomposition au-

tomata of the HR algebra that gave us billions of di↵erent terms and automata with

millions of rules, even for small AMRs. This made a sampling approach to obtain

training data unfeasible. We analyzed the reasons for this ambiguity in creating

terms, and developed the AM algebra with higher level operations for semantic con-

struction. This led to a drastic reduction of possible terms for each graph, while

keeping high quality terms available. The AM dependency trees that underspecify

AM terms helped further with this issue, to the point where we obtained a consistent

set of training data even without sampling.

We thus obtained a semantic parser that combines current, powerful neural met-

hods with a gentle guidance based on traditional compositional approaches, solving

conceptual and technical challenges along the way.

219
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7.1 Future work

Covering more phenomena. The transparency of the AM dependency model

reveals clear opportunities for improvement. Current limitations include the phe-

nomena of coreference and ellipsis. While these are challenging phenomena and

solutions are not obvious, the problems are clearly defined, making them readily

available targets for future research.

Learned decomposition decisions. We also saw that the heuristics we use in

some steps to process the training data still have some flaws (e.g. the source annota-

tion heuristic). While they could be improved manually, this might be tedious and

ine↵ective. Statistical methods for these tasks could be a helpful addition in the

future. For example, techniques like Expectation-Maximization (EM) are designed

to find the latent structures that best explain the training corpus; here, significant

runtime issues might arise. Reinforcement learning is a di↵erent approach, where

latent structures are sampled repeatedly during training and are ‘rewarded’ based

on how closely their yield matches the gold graph.

A big next step is to generalize the AM algebra by applying it to semantic

formalisms other than AMR. The AM algebra and our dependency model make

some specific assumptions of how the meanings of words combine: that there is one

connected graph fragment per word, that each such fragment has only one node

(the root) where edges from other fragments can attach, and so on. It would be

interesting to see which of these assumptions hold for other semantic representations,

and where they do not, how the AM algebra could be adapted. A further, more

practical challenge is that all heuristics developed in this thesis are specific for AMR

and would need to be redeveloped for other representations. We saw how even a

detail such as the source preference heuristic can have a sizable e↵ect on parser

performance, so it is important to get these right. This takes either serious manual

e↵ort, or the development of statistical methods as discussed above.

Despite these challenges, preliminary experiments that apply the AM algebra to

semantic dependency parsing (using manual heuristics) showed promising results.

Applications to semantic formalisms like Discourse Representation Theory (DRT,

Kamp et al. (2011), Bos et al. (2017)), that are structurally more di↵erent from

AMRs, show more substantial challenges. However, ongoing research by my collea-

gues Matthias Lindemann and Meaghan Fowlie indicates that these challenges may

well be overcome (personal discussion, 2018).
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7.2 A comeback of linguistic structure?

Around the time when work on this thesis started, the neural fever broke out. Neural

networks led to simple, easy to implement models for all sorts of tasks in computa-

tional linguistics, and they were unreasonably good at it. It was a revolution, the

whole field shifted, and end-to-end neural implementations popped up for nearly

every task.

At this year’s ACL, I felt like there might be a bit of a counterrevolution going

on. Not that neural networks are getting pushed out; they are way too useful and

e↵ective for that. But to examine more closely what they do and do not encode

(e.g. Conneau et al. (2018)), how they use linguistic structure (e.g. Liu et al. (2018)),

or incorporating linguistic structure into neural models (e.g. Kuncoro et al. (2018),

or, if I may, Groschwitz et al. (2018)). At the Workshop on Relevance of Linguistic

Structure in Neural Architectures for NLP (RELNLP), Chris Dyer talked about how

neural networks have the wrong inductive bias, and how to change that. Generally, at

that workshop, the spirit seemed to be that linguistic structure is, and will become

more, relevant. I thought this might just be due to the crowd for this particular

workshop, but the next day, at the 3rd Workshop on Representation Learning for

NLP (RepL4NLP), the spirit was similar.

So, linguistic structure might stage a comeback. And, what’s more, everyone

seems excited about it. I sure am excited. But why is that? Shouldn’t I rather

be excited that neural networks provide simple and e↵ective solutions? To some

extent it may just be rooting for the underdog. Or a deeply held conviction that the

usefulness of linguistic structure is a truth, and now that truth breaks through. But

I think that, at least for me, it’s something di↵erent.

As computational linguists, we are engineers, scientists, and humans, all at once.

As an engineer I pursue performance, my job is to build the model with the best

evaluation results. As a scientist I pursue the truth, my job is to find out what

works and why, or why not. But as a human, I want to do what I love. And what I

love about computational linguistics is the interplay of language, mathematics and

engineering. To input a sentence, watch the gears turn, and see something meaningful

come out. And watching the gears turn is much more interesting when you actually

understand what’s going on. With neural networks, it is hard for me to see beyond

the engineering part, to see the language and mathematics inside of them.

Thus, the thought that there may be more linguistics in the future of CL, more

explicit structure, that thought is a promise that the engineer, the scientist, and the

human in me will work towards the same goals. And that’s exciting.
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A.1 Proofs for Chapter 4

Lemma 4.4: Let H a sub-s-graph of G that is a reachable state in D. Then H is an

extensible state in D if and only if its edge set is the union of a set of s-components

of G and all source nodes in G that are nodes of H are also source nodes in H, i.e.

Src (G) \ VH ✓ Src (H).

Proof of Lemma 4.4. First, let us assume that the edge set EH of H is indeed the

union of a set of s-components (with respect to �H), and Src (H) ✓ Src (G). In fact,

as we observed earlier, the graph H� is induced by EH , since H is reachable. Let

now K = (K�,�K) be the s-graph where K� is the graph induced by EG \ EH and

�K = �H |
VK

[ �G|
VG\VH

. That is, we use all the edges not in H, use the sources of

H where the graphs overlap and the sources of G elsewhere. In fact, since EH is the

union of a set of s-components, the same holds for K, and it can be easily seen that

the graphs can then only overlap in source nodes, and there the sources agree. Thus,

H || K is defined, and the result covers all edges (and thus vertices) of G. Further,

we ensured that all source nodes of G are also source nodes of H || K. Then let fgB
be the operation that forgets all sources on nodes that are sources nodes in H || K
but not in G, and let renh be the operation that renames the sources in fgB (H || K)

to what they are in G. Then G = renh (fgB (H || K)), i.e. H is extensible.

Let now H be extensible, i.e. there is a term t with t
⇤�!
D

G that has H as a

leaf. we need to show that H is the union of a set of s-components of G, and that

all source nodes in G that are nodes of H are also source nodes in H.

Let us first assume for a contradiction that H is not the union of a set of s-

components. That is, one of the s-components must be in H partially. I.e. there

are two edges e, f with e ⇠D(�H) f such that e 2 EH , f /2 EH . Now, e ⇠D(�H) f
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means that there is a path v1
e$ v2 $ . . . vk�1

f$ vk with none of v2, . . . , vk�1 in

D (�H). Since e 2 EH but f /2 EH , along this path there must be neighboring edges

e0, f 0 such that still e0 2 EH , f 0 /2 EH (we just go along the edges of the path until

we hit the first edge f 0 not in EH). Remember that the vertex vi between e0 and f 0

is not a source node in H. Now we consider a fixed run r on t that yields G, and

move upwards through the term t, starting at the leaf H, until the edge f 0 is added

by a merge operation. More precisely, there must be a merge operation, such that

one of its children K contains e0 and the other child L contains f 0. Since H did not

have a source at vi, neither can K (none of the operations add source names to a

node), but clearly, vi is in both K and L. This is a contradiction to Definition 2.11,

merging K and L is not allowed, and thus such a run r cannot exist, a contradiction

to H being extensible.

Now let us assume that some source nodes in G that are nodes of H are not

source nodes in H. This yields a contradiction even faster, since no operation can

add source names to a node and we can therefore never obtain G from H with

operations of the HR algebra.

Lemma 4.5: Let C = (C,�C), C1 = (C1,�C1), C2 = (C2,�C2) be s-component

representations in the s-graph G. Then T (C) = T (C1) || T (C2) if and only if

(i) �C = �C1 [ �C2 (in particular, �C1 and �C2 must be compatible).

(ii) All sets in C1 and C2 are s-components with respect to D (�C).

(iii) C = C1 ] C2 (i.e., disjoint union).

If there is no such C, then T (C1) || T (C2) is not defined.

Proof of Lemma 4.5. For brevity, let us write H = T (C), K = T (C1) and L =

T (C2). Recall the conditions of Definition 2.11 for the merge of concrete s-graphs,

with this choice of graphs:

1. K ✓ H, L ✓ H, H� = K� [ L�,

2. VK \ VL = Src (K) \ Src (L)

3. EK \ EL = ;

4. �H = �K [ �L.

We need to show that these conditions hold if and only if (i) to (iii) from the lemma

hold. Let us first assume that (i) to (iii) hold. Then (4) follows immediately. Condi-

tions (ii) and (iii) give us that K� and L� are induced by disjoint edge sets, and H� is
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induced by the union of those sets. This gives us (1) and (3). To see that (2) holds,

note that the edges of C1 and C2 meet where di↵erent s-components (with respect

to both D (�C1) and D (�C2)) meet. There, by the definition of s-components, we

must have sources, and (2) follows.

Now assume that (1)-(4) hold. Again, (i) follows immediately, and if we had (ii),

then (iii) would follow from (1) – that C = C1 [ C2 – and (3) –that the union is

disjoint. It remains to show (ii). First note that all source nodes defined by �C1 are

also source names in �C . Therefore, the former partitions the edges more finely into

s-components than the latter, i.e. the only way an s-component M 2 C1 is not also

an s-component with respect to D (�C) is if it is a disjoint union of s-components

N1, . . . , Nk with respect to D (�C). Something must split these Ni apart, that is,

there must be a source node v in D (�C) that is not a source in C1, i.e. v /2 Src (K).

The node v must thus be a source in C2, i.e. a vertex in VL. But since its surrounding

edges are in M –that is how we found v in the first place, v must be in VK as well.

But v /2 Src (K), a contradiction to Condition (2). Thus, (ii) must hold. The same

argument can be made with the roles of C1 and C2 reversed.

The above arguments also show that if T (C1) || T (C2) is defined, i.e. if (1)-(4)

hold, then Cis well-defined via (i) and (iii).

Lemma 4.7: Let G be an s-graph, let � = (E,�) ,�1 = (E1,��1) ,�2 = (E2,��2)

be boundary representations in G. Then T (�) = T (�1) || T (�2) if and only if the

following conditions hold:

(i) � = ��1 [ ��2;

(ii) for every source node v of �1 that is not a source node in �2, the last edge

on the shortest path in G from v to the closest source node of �2 is not an

in-boundary edge of �2, and vice versa;

(iii) E = E1 ] E2, i.e. the disjoint union.

We write � = �1 || �2. If no such � exists, T (�1) || T (�2) is undefined.

Proof of Lemma 4.7. For brevity, let us write H = T (�), K = T (�) and L = T (�).

We need to show that H = K || L if and only if Conditions (i) to (iii) hold.

Let us first assume that the conditions hold. In fact, we will then show that (i)

to (iii) of Lemma 4.5 hold for the corresponding s-component representations. As

in the proof of Lemma 4.5, the only non-trivial thing to prove is the criterion (ii).

As in that proof, if we assume the existence of an s-component M specified by �1

that is not an s-component with respect to D (��), then we obtain a node v that is
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a source node in �2, and a node but not a source node in �1. And further, the edges

adjacent to v are in M , and there is at least one such edge e. By Condition (ii) of

this lemma, then the last edge f on the shortest path from v to the closest source

node in �1 is not in �1. But by construction of f , we have e ⇠
D(��1)

f and thus f is

in M and therefore in �1, a contradiction. Thus, all conditions of Lemma 4.5 hold

and H = K || L follows.

If we in turn assume that H = K || L holds, then we get Conditions (i) and (iii)

of this lemma immediately from Definition 2.11 of merging concrete graphs. So let

us assume that (ii) does not hold, and there is a source node v of �1 that is not

a source node of �2, such that the last edge f on the shortest path from v to the

closest source node u of �2 is an edge in �2. Since u is the closest source node in

�2, this shortest path does not pass a source node of �2, and therefore any edge e

incident to v (such an edge must exist) is in the same s-component (with respect to

D (��2)) as f , i.e. e 2 [f ]⇠
D(��2)

. Thus e and therefore v must be in L = T (�2),

but v is not a source node there by its definition. And yet, v was chosen to be in

K = T (�1), a contradiction to Condition (2) of Definition 2.11.

The above arguments also show that if T (C1) || T (C2) is defined, i.e. if (1)-(4)

hold, then Cis well-defined via (i) and (iii).

A.2 Proofs for Chapter 6

Lemma 6.7: Let � be a partial order on a finite set x1, . . . , xk and � a permutation

on 1, . . . , k, such that both the sequences x1, . . . , xk and x�(1), . . . , x�(k) respect the

partial order �; i.e. if xi � xj, then i < j and � (i) < � (j). Then there is a

sequence of adjacent transpositions µ1, . . . , µm such that � = µm � . . . � µ1 and for

every ` = 1, . . . ,M, the intermediate sequence x(µ`�...�µ1)(1)
, . . . , x(µi�...�µ1)(k)

respects

�; i.e. if xi � xj then (µ` � . . . � µ1) (i) < (µ` � . . . � µ1) (j).

Proof. Let M be the number of pairs i < j such that � (i) > � (j), i.e. the number

of pairs that are out of order in �. We show the above statement by induction on

M . If M = 0, then � is the identity and the statement is trivially true.

Let now M > 0. Let j be such that there is a i < j with � (i) > � (j) and such that

� (j) is maximal. Then let ` such that � (`) = � (j) + 1.

Claim: ` < j.

Proof of claim: If ` > j then ` > j > i. At the same time, � (`) > � (j) > � (i),

which is a contradiction to j being chosen such that � (j) is maximal.

Let now ⇡ be the permutation that swaps � (j) and � (`) = � (j) + 1; i.e. ⇡ is an

adjacent transposition. Furthermore, ⇡ � � is a permutation with only M � 1 pairs
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out of order: only � (j) and � (`) have been swapped, and as we just saw, they were

put in the right order.

Claim: The sequence x(⇡��)(1), . . . , x(⇡��)(k) respects �.

Proof of claim: Since � respects � by definition, and ⇡ only swaps � (`) with

� (j), we only need to consider the pair (⇡ � �) (`) , (⇡ � �) (j). In fact, we know that

(⇡ � �) (`) < (⇡ � �) (j), thus we only need to show that not xj � x`. But if xj � x`,

then j < ` follows from the lemma’s assumptions, which is a contradiction to ` < j

that we showed before. In short, since ⇡ brings us closer to the original order, and

the original order respects �, adding ⇡ does not interfere with �.

Thus, by induction, there is a sequence of adjacent transpositions µ1, . . . , µm such

that ⇡ � � = µm � . . . � µ1 and for every ` = 1, . . . ,M, the intermediate sequence

x(µ`�...�µ1)(1)
, . . . , x(µi�...�µ1)(k)

respects �. Thus, we can write � as the sequence of

adjacent transpositions

� = ⇡�1 � µm � . . . � µ1

where as we just saw, also the intermediate sequence µm � . . . � µ1 = ⇡ � � respects

�.
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whistle-01

person

ARG0

bake-01

ARG0

Figure B.1: AMR
for The baker whist-
les.

The core principles of the aligner here are similar to the

JAMR aligner of Flanigan et al. (2014). There are two types

of actions:

Action 1: Align a node to a word, such as bake-

01 to baker and whistle-01 to whistles in Figure B.1. This

action is based on the word and the node label, using lexical

similarity, handwritten rules1 and WordNet neighborhood;

we align some name and date patterns directly. The node

is fixed as the lexical node of the alignment.

Action 2: Extend an existing alignment to anot-

her node, such as from bake-01 to person in Figure B.1.

Such an extension is chosen on a heuristic based on

1. the direction and label of the edge along which the

1E.g. the node label have-condition-91 can be aligned to if and otherwise.

and

like-01

op1

like-01

op2

wizard

ARG0

hat

ARG1

witch

ARG0

book

ARG1

Figure B.2: AMR for The wizard likes hats and the witch books.
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alignment is split,

2. the labels of both the node we spread from, and the

node we spread to, and

3. the word in the alignment.

Note that in the AM algebra, edges from other constants can only connect to a

given constant at one node, the root. We therefore disallow this extension process if

it would lead to two nodes in the constant that have incident edges from outside the

constant (i.e. incident edges not belonging to the blob of any node in the constant,

c.f. Section 5.5). An exception to that is when one word generates two occurrences

of the same graph constant in the AMR. An example is ellipsis, as in Figure B.2,

where the word likes corresponds to both of the like-01 nodes. We cannot handle

these graphs with such ‘duplicate’ nodes properly with our model, and exclude them

from the training set.

Each action has a basic heuristic score, which we increase if a nearby node is

already aligned to a nearby word, and decrease if other potential operations conflict

with this one. This gives us a confidence score for every possible action, taking into

account that every node and word can participate in at most one alignment. We

iteratively execute the action with highest confidence until all heuristic options are

exhausted or all nodes aligned. We then align remaining unaligned nodes to words

near adjacent alignments.



Having obtained an AM dependency tree, we can recover an AM term and evaluate

it. During postprocessing we have to re-lexicalize the resulting graph according to

the input string. For relatively frequent words in the training data (occurring at least

10 times), we take the supertagger’s prediction for the label. For rarer words, the

neural label prediction accuracy drops, and we simply take the node label observed

most often with the word in the training data. For unseen words, if the lexicalized

node has outgoing ARGx edges, we first try to find a verb lemma for the word in

Princeton WordNet Miller (1995) (we use version 3.0). If that fails, we try, again in

WordNet, to find the closest verb derivationally related to any lemma of the word.

If that also fails, we take the word literally. In any case, we add -01 to the label. If

the lexicalized node does not have an outgoing ARGx edge, we try fo find a noun

lemma for the word in Princeton WordNet, and otherwise take the word literally.
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Credit for this proof goes to Alexander Koller. The proof has been published before

in Groschwitz et al. (2018) and is reprinted here only for convenience.

We prove NP-completeness for the well-typed decoding problem by reduction

from Hamiltonian-Path.

Let G = (V,E) be a directed graph with nodes V = {1, . . . , n} and edges E ✓
V ⇥ V . A Hamiltonian path in G is a sequence (v1, . . . , vn) that contains each node

of V exactly once, such that (vi, vi+1) 2 E for all 1  i  n� 1. We assume w.l.o.g.

that vn = n. Deciding whether G has a Hamiltonian path is NP-complete.

Given G, we construct an instance of the decoding problem for the sentence

w = 1 . . . n as follows. We assume that the first graph fragments shown in Fig. D.1a

(with node label “i”) is the only graph fragment the supertagger allows for 1, . . . ,

n� 1, and the second one (with node label “f”) is the only graph fragment allowed

for n. We let !ex

[i!k]
= 1 if (i, k) 2 E, and zero otherwise.

Under this construction, every well-typed AM dependency tree for w corresponds

to a linear sequence of nodes connected by edges with label apps (see Fig. D.1c for

an example) More specifically, n is a leaf, and every node except for n has precisely

one outgoing apps edge; this is enforced by the well-typedness. Because of the edge

scores, the score of such a dependency tree is n � 1 i↵ it only uses edges that also

exist in G; otherwise the score is less than n�1. Therefore, we can decide whether G

has a Hamiltonian path by running the decoder, i.e. computing the highest-scoring

well-typed AM dependency tree t for w, and checking whether the score of t is n�1.
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Figure D.1: (a) The two graph fragments required for the NP-completeness proof.
(b) An example graph and (c) the AM dependency tree corresponding to its Hamil-
tonian path.



1. As pre-trained embeddings, we use GloVE Pennington et al. (2014). The vec-

tors we use have 200 dimensions and are trained on Wikipedia and Gigaword.

We add randomly initialized vectors for the name, date and number tokens

and for the unknown word token (if no GloVE vector exists). We keep these

embeddings fixed and do not train them.

2. For the learned word embeddings, we follow K&G in all our models in using

a word dropout of ↵ = 0.25. That is, during training, for a word that occurs

k times in the training data, with probability ↵

k+↵
we instead use the word

embedding for the unknown word token instead of wi.

3. The character-based encodings ci for the supertagger are generated by a single

layer LSTM with 100 hidden dimensions, reading the word left to right. If

a word (or sequence of words) is replaced by e.g. a name token during pre-

processing, the character-based encoding reads the original string instead (this

helps to classify names correctly as country, person etc.).

4. To prevent overfitting, we add dropout of 0.5 in the LSTM layers of all the mo-

dels except for the K&G model which we keep as implemented by the authors.

We also add 0.5 dropout to the MLPs in the supertagger and local dependency

model.

5. Further hyperparameters are detailed in Table E.1.
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Optimizer Adam
Learning Rate 0.004
Epochs up to 100
Pre-trained word embeddings glove.6B
Pre-trained word emb. dimension 200
Learned word emb. dimension 100
POS embedding dimension 32
Character encoding dimension 100
↵ (word dropout) 0.25
Bi-LSTM layers 2 (stacked)
Hidden dimensions in each LSTM 256
Hidden units in MLPs 256
Internal dropout of LSTMs, MLPs 0.5
Input vector dropout 0.8

Table E.1: Hyperparameters used for the neural models in Chapter 6.


