
Cryptography
for Bitcoin and Friends

Tim Ruffing

Saarbrücken, 2019

Dissertation
zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

Tag des Kolloquiums: 2019-11-21
Dekan der Fakultät: Prof. Dr. Sebastian Hack

Prüfungsausschuss
Vorsitzender: Prof. Dr. Christian Rossow
Berichterstattende: Prof. Dr. Aniket Kate

Prof. Dr. Dominique Schröder
Prof. Dr.-Ing. Christoph Sorge
Prof. Dr. Joseph Bonneau

Akademischer Mitarbeiter: Dr. Dominik Schillo

ii

Abstract

Numerous cryptographic extensions to Bitcoin have been proposed since Satoshi
Nakamoto introduced the revolutionary design in 2008. However, only few proposals
have been adopted in Bitcoin and other prevalent cryptocurrencies, whose resistance
to fundamental changes has proven to growwith their success. In this dissertation, we
introduce four cryptographic techniques that advance the functionality and privacy
provided by Bitcoin and similar cryptocurrencies without requiring fundamental
changes in their design: First, we realize smart contracts that disincentivize parties
in distributed systems from making contradicting statements by penalizing such
behavior by the loss of funds in a cryptocurrency. Second, we propose CoinShuffle++,
a coin mixing protocol which improves the anonymity of cryptocurrency users by
combining their transactions and thereby making it harder for observers to trace
those transactions. The core of CoinShuffle++ is DiceMix, a novel and efficient
protocol for broadcasting messages anonymously without the help of any trusted
third-party anonymity proxies and in the presence of malicious participants. Third, we
combine coin mixing with the existing idea to hide payment values in homomorphic
commitments to obtain the ValueShuffle protocol, which enables us to overcome
major obstacles to the practical deployment of coin mixing protocols. Fourth, we
show how to prepare the aforementioned homomorphic commitments for a safe
transition to post-quantum cryptography.

iii

Zusammenfassung

Seit seiner revolutionären Erfindung durch Satoshi Nakamoto im Jahr 2008 wurden
zahlreiche kryptographische Erweiterungen für Bitcoin vorgeschlagen. Gleichwohl
wurden nur wenige Vorschläge in Bitcoin und andere weit verbreitete Kryptowährun-
gen integriert, deren Resistenz gegen tiefgreifende Veränderungen augenscheinlich
mit ihrer Verbreitung wächst. In dieser Dissertation schlagen wir vier kryptographi-
sche Verfahren vor, die die Funktionalität und die Datenschutzeigenschaften von
Bitcoin und ähnlichen Kryptowährungen verbessern ohne deren Funktionsweise
tiefgreifend verändern zu müssen. Erstens realisieren wir Smart Contracts, die es
erlauben widersprüchliche Aussagen einer Vertragspartei mit dem Verlust von Kryp-
togeld zu bestrafen. Zweitens schlagen wir CoinShuffle++ vor, ein Mix-Protokoll,
das die Anonymität von Benutzern verbessert, indem es ihre Transaktionen kom-
biniert und so deren Rückverfolgung erschwert. Sein Herzstück ist DiceMix, ein
neues und effizientes Protokoll zur anonymen Veröffentlichung von Nachrichten
ohne vertrauenswürdige Dritte und in der Präsenz von bösartigen Teilnehmern. Drit-
tens kombinieren wir dieses Protokoll mit der existierenden Idee, Geldbeträge in
Commitments zu verbergen, und erhalten so das ValueShuffle-Protokoll, das uns
ermöglicht, große Hindernisse für den praktischen Einsatz von Mix-Protokollen zu
überwinden. Viertens zeigen wir, wie die dabei benutzten Commitments für einen
sicheren Übergang zu Post-Quanten-Kryptographie vorbereitet werden können.

iv

Contents

Preface ix

1 Introduction 1
1.1 Contributions . 4

2 Background on Cryptocurrencies 9
2.1 Nakamoto Consensus . 9
2.2 Technical Overview of Bitcoin . 12

3 Penalizing Equivocation By Loss of Bitcoins 19
3.1 Overview . 21
3.2 Deposits and Payment Channels . 22

3.2.1 Deposits . 23
3.2.2 Payment Channels . 25

3.3 Accountable Assertions . 26
3.3.1 Security Properties . 28

3.4 Construction . 30
3.4.1 Intuition . 31
3.4.2 Full Construction . 33
3.4.3 Security Analysis . 35
3.4.4 Instantiation and Implementation 38

3.5 Non-equivocation Contracts . 39
3.5.1 Security Analysis . 40
3.5.2 Application Examples . 42

3.6 Asynchronous Payments . 43
3.6.1 Full Protocol . 44
3.6.2 Security Analysis . 45

3.7 Related Work . 46
3.8 Comparison to DAPS . 47

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions 51
4.1 Background on P2P Mixing . 53

v

Contents

4.2 Conceptualizing P2P Mixing . 54
4.2.1 Setup and Communication Model 54
4.2.2 Inputs and Outputs . 55
4.2.3 Interface and Execution Model 56
4.2.4 Security Goals and Threat Model 58

4.3 Solution Overview . 59
4.3.1 Handling Collisions . 59
4.3.2 Handling Disruption and Ensuring Termination 60

4.4 The DiceMix Protocol . 61
4.4.1 Building Blocks . 61
4.4.2 Contract with the Application 62
4.4.3 Protocol Description . 64
4.4.4 Full Pseudocode . 66
4.4.5 Security and Correctness Analysis 70
4.4.6 Variants of the Protocol . 74

4.5 Performance Analysis . 76
4.5.1 Communication . 76
4.5.2 Prototype Implementation . 76

4.6 Efficient Coin Mixing for Bitcoin . 78
4.6.1 Security Goals . 78
4.6.2 The CoinShuffle++ Protocol 78
4.6.3 Practical Considerations . 79
4.6.4 Related Work . 81

4.7 A Generic Attack on P2P Mixing Protocols 84
4.7.1 Strong Sender Anonymity . 84
4.7.2 Example: A Deanonymization Attack on Dissent 85
4.7.3 Generalizing the Attack . 87

5 Mixing Confidential Transactions for Comprehensive Privacy 89
5.1 ValueShuffle: Mixing Confidential Transactions 90

5.1.1 Features . 91
5.2 Building Blocks . 93

5.2.1 Confidential Transactions . 93
5.2.2 One-time Addresses . 94

5.3 Solution Overview . 95
5.3.1 Security and Privacy Goals 95
5.3.2 Challenges and Overview on the Solutions 95
5.3.3 Overview of ValueShuffle . 99

vi

Contents

5.4 Full Protocol Description . 100
5.4.1 Security Analysis . 108

5.5 Related Work . 110

6 Preparing Commitments for a Post-QuantumWorld 113
6.1 Solution Overview . 115

6.1.1 Usage in Confidential Transactions 116
6.2 Commitments . 119
6.3 Switch Commitments . 120

6.3.1 Security Properties . 120
6.4 Construction . 121

6.4.1 Security Analysis . 122
6.5 Opt-In Switch Commitments . 124

6.5.1 Construction . 124
6.5.2 Security Analysis . 125
6.5.3 Post-Quantum Hiding in Practice 127

7 Conclusions 129

A Hardness Assumptions 131

Bibliography 133

vii

Preface
Since cryptography is a tool for
shifting power, the people who know
this subject well, like it or not, inherit
some of that power.

— Phillip Rogaway [Rog15]

One of the first lessons I learned about cryptography is that I shall not invent my
own cryptography. This is good advice, but it was pretty unsatisfactory at the time.
Looking back, I feel proud that I have broken that rule, and that my work has an
impact on cryptographic systems in the real world.
When Phillip Rogaway reminds us that cryptography rearranges power [Rog15],

he reminds us of our responsibility for our research. I think that cryptography not
only rearranges power; it is a superpower in itself because it gives us the ability to
communicate in secret and make things possible that seem impossible at first glance.
I hope I could gain a tiny bit of this superpower and use it to empower others.

Acknowledgments
This dissertation would not have been possible without the help of countless people.
I am deeply grateful to my advisors Aniket Kate and Dominique Schröder. Aniket
is an endless source of inspiration, and his advice to work on privacy-enhancing
technologies and cryptocurrencies has been the best in my career. Dominique is
exactly the right person for deep technical discussions, and always provided excellent
guidance. It was fun to work with both of you. Thank you for your selfless support.
Many of my colleagues have become good friends. Special thanks go to Pedro

Moreno Sanchez for being the best co-author I can imagine, to Esfandiar Mohammadi
for many sleepless nights before deadlines, to Sebastian Meiser for geek debates, to
Giulio Malavolta for spontaneous discussions in front of scrawled whiteboards, and to
Manuel Reinert for gossip and coffee. No less important, I would like to thank Sandy
Heydrich, Jana Rehse, Jonas Schneider, and many others for endless discussions about
sense and nonsense in academia. You kept up my motivation.

Last but not least, I thank my family and Lisa and for their unconditional love.

ix

Preface

Previously Published Material
The contents of this dissertation are based on four peer-reviewed publications of
which I am the main author.

Chapter 3 is based on the paper “Liar, Liar, Coins on Fire! – Penalizing Equivocation
By Loss of Bitcoins” [RKS15] published at CCS’15. Compared to the results in the
published paper, this chapter includes minor corrections and improvements, updated
performance numbers, a full security analysis, and it discusses related work which
appeared after the publication.

[RKS15] Tim Ruffing, Aniket Kate, and Dominique Schröder. “Liar, Liar, Coins
on Fire! – Penalizing Equivocation By Loss of Bitcoins”. In: Computer
and Communications Security (CCS) 2015. doi : 10.1145/2810103.
2813686.

Chapter 4 is based on the paper “P2P Mixing and Unlinkable Bitcoin Transac-
tions” [RMK17] published at NDSS’17. Compared to the results in the published paper,
this chapter includes minor corrections and improvements and a more detailed secu-
rity analysis. In particular, it fixes a minor mistake in the construction and discusses
related work which appeared after the publication.

[RMK17] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “P2P Mixing and
Unlinkable Bitcoin Transactions”. In: Network and Distributed System
Security (NDSS) 2017. url : https://www.ndss- symposium.org/

ndss2017/ndss- 2017- programme/p2p- mixing- and- unlinkable-

bitcoin- transactions/.

Chapter 5 is based on the paper “ValueShuffle: Mixing Confidential Transactions for
Comprehensive Transaction Privacy in Bitcoin” [RM17B] published at BITCOIN’17.
Compared to the results in the published paper, this chapter includesminor corrections
and improvements, and it discusses related work which appeared after the publication.

[RM17B] Tim Ruffing and Pedro Moreno-Sanchez. “ValueShuffle: Mixing Con-
fidential Transactions for Comprehensive Transaction Privacy in Bit-
coin”. In: Workshop on Bitcoin and Blockchain Research (BITCOIN)
2017. doi : 10.1007/978- 3- 319- 70278- 0_8.

x

https://doi.org/10.1145/2810103.2813686
https://doi.org/10.1145/2810103.2813686
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/p2p-mixing-and-unlinkable-bitcoin-transactions/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/p2p-mixing-and-unlinkable-bitcoin-transactions/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/p2p-mixing-and-unlinkable-bitcoin-transactions/
https://doi.org/10.1007/978-3-319-70278-0_8

Chapter 6 is based on the paper “Switch Commitments: A Safety Switch for Confi-
dential Transactions” [RM17A] published at BITCOIN’17. Compared to the results in
the published paper, this chapter includes minor corrections and major improvements.
In particular, the chapter additionally describes opt-in switch commitments, which are
hiding even against quantum attackers. The initial construction idea that has led to
the design of opt-in switch commitments was suggested by Pieter Wuille in private
communication.

[RM17A] Tim Ruffing and Giulio Malavolta. “Switch Commitments: A Safety
Switch for Confidential Transactions”. In: Workshop on Bitcoin and
Blockchain Research (BITCOIN) 2017. doi : 10.1007/978- 3- 319-

70278- 0_10.

Parts of all other chapters are based on texts from the aforementioned papers.

Other Work. During my work as a doctoral candidate, I further contributed to the
following papers.

[RSK13] Tim Ruffing, Jonas Schneider, and Aniket Kate. “Identity-based Steg-
anography and its Applications to Censorship Resistance”. In: Work-
shop on Hot Topics in Privacy Enhancing Technologies (HotPETs)
2013. url : https://petsymposium.org/2013/papers/ruffing-
censorship.pdf.

[BMR14] Michael Backes, Esfandiar Mohammadi, and Tim Ruffing. “Computa-
tional Soundness Results for ProVerif – Bridging the Gap from Trace
Properties to Uniformity”. In: Principles of Security and Trust (POST)
2014. doi : 10.1007/978- 3- 642- 54792- 8_3.

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuf-
fle: Practical Decentralized Coin Mixing for Bitcoin”. In: European
Symposium on Research in Computer Security (ESORICS) 2014. doi :
10.1007/978- 3- 319- 11212- 1_20.

[Bac+15] Michael Backes, Aniket Kate, Sebastian Meiser, and Tim Ruffing. “Se-
crecy Without Perfect Randomness: Cryptography with (Bounded)
Weak Sources”. In: Applied Cryptography and Network Security
(ACNS) 2015. doi : 10.1007/978- 3- 319- 28166- 7_33.

[BMR15] Michael Backes, Esfandiar Mohammadi, and Tim Ruffing. “Computa-
tional Soundness for Interactive Primitives”. In: European Symposium
on Research in Computer Security (ESORICS) 2015. doi : 10.1007/978-
3- 319- 24174- 6_7.

xi

https://doi.org/10.1007/978-3-319-70278-0_10
https://doi.org/10.1007/978-3-319-70278-0_10
https://petsymposium.org/2013/papers/ruffing-censorship.pdf
https://petsymposium.org/2013/papers/ruffing-censorship.pdf
https://doi.org/10.1007/978-3-642-54792-8_3
https://doi.org/10.1007/978-3-319-11212-1_20
https://doi.org/10.1007/978-3-319-28166-7_33
https://doi.org/10.1007/978-3-319-24174-6_7
https://doi.org/10.1007/978-3-319-24174-6_7

Preface

[MRK17] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. “PathShuffle:
Credit Mixing and Anonymous Payments for Ripple”. In: Privacy-
Enhancing Technologies (PoPETs) 2017.3. doi : 10 . 1515 / popets -
2017- 0031.

[Ruf+18] Tim Ruffing, Sri Aravinda Krishnan Thyagarajan, Viktoria Ronge, and
Dominique Schröder. “Burning Zerocoins for Fun and for Profit: A
Cryptographic Denial-of-Spending Attack on the Zerocoin Protocol”.
In: Crypto Valley Conference on Blockchain Technology (CVCBT) 2018.
Short Paper. doi : 10.1109/CVCBT.2018.00023.

xii

https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1109/CVCBT.2018.00023

1 Introduction
I’ve been working on a new electronic
cash system that’s fully peer-to-peer,
with no trusted third party.

— Satoshi Nakamoto [Nak08A]

Bitcoin sparked a revolution in the design of electronic cash systems: it was the first
cryptocurrency, a peer-to-peer electronic cash system that works reliably and securely
over the Internet without the help of a trusted third party. Since its invention and im-
plementation by Satoshi Nakamoto in 2008 [Nak08B], Bitcoin has been tremendously
successful and led to a profusion of other cryptocurrencies. The market capitalization
of all cryptocurrencies combined is more than a hundred billions of euros at the time
of writing [Coi]. What makes cryptocurrencies attractive is not only the idea that
no single party has control over them and the ability to perform truly irreversible
financial transactions across the globe without intermediaries, but also the openness
of the technology, which enables developers to build applications without the need
to register with a central party or even seek permission.
As the name indicates, cryptography is essential to cryptocurrencies, but maybe

surprisingly, the cryptography used in most cryptocurrencies is rather simple. Bit-
coin for example relies just on the two basic cryptographic primitives, namely hash
functions and digital signatures. This basic use of cryptography in Bitcoin suffices
to achieve the most basic security goals that we can expect from a currency and a
payment system: money cannot be created out of thin air, received funds can be
stored permanently, and they can only be spent by their legitimate owner. Due to the
lack of a trusted third party that enforces these properties, they instead need to be
publicly verifiable by every peer in the network.

More advanced security goals, which may require the use of sophisticated cryptog-
raphy, were only secondary to the two aforementioned basic security goals. Arguably,
the most important example is privacy. Even though privacy of users was a con-
cern [Nak08B], the focus of Bitcoin’s design is not the confidentiality of transactions
but in fact exactly the opposite, namely full transparency with the aim to make
transactions amenable to public verification. For example, all transactions including
a sender identifier, a recipient identifier, and the transferred amount are recorded

1

1 Introduction

in plain in a public data structure called the blockchain. The blockchain is written
to by miners, i.e., peers willing to invest computational resources necessary for the
security of the system in return for freshly generated coins. Miners broadcast updates
to the blockchain through the entire peer-to-peer (P2P) network, and most peers in
the network maintain a local copy of the entire blockchain. This enables peers in the
network to verify that these transactions adhere to the basic rules, e.g., that users do
not spend more money than they own.

However, the public availability of all transaction data is clearly a huge threat for
the privacy of individual users. Even though virtually all cryptocurrencies use pseu-
donyms as user (or account) identifiers, the initial perception of pseudonyms alone
providing some built-in anonymity has been broadly refuted in the literature [Mei+13;
Bar+12; SMZ14; KKM14; RH11; And+13; MO15; Nic15], and several companies [Ell;
Cha] offer to trace cryptocurrency payments as a service. To make matters worse, the
lack of confidentiality has implications beyond the privacy of users. While fungibility,
i.e., the idea that every two funds of the same denomination should be equivalent
and interchangeable, is fundamental to the practical success of traditional currencies,
this property is at risk in most cryptocurrencies because funds can be traced from
owner to owner and build up a history.

A second prominent disadvantage of cryptocurrencies is that transactions are not
instantaneous but require large confirmation times, e.g., in the order of an hour in
Bitcoin. This is clearly too long for many use cases such as point-of-sale payments at
cash desks and fast trading of cryptocurrencies.

In the light of these and other shortcomings, there is a plenitude of research aiming
to apply advanced cryptography to improve cryptocurrencies. Remarkably, this
research is not only conducted in academia but also in the industry and by interested
individuals in the community of users and developers.
The first line of research relevant to this dissertation aims at overcoming the

aforementioned privacy issues of cryptocurrencies. A rich set of cryptographic
techniques and tools such as homomorphic commitments [Max15], zero-knowledge
proofs [Mie+13; Ben+14; Kos+16], and variants of ring signatures [Sab13; NMM16]
have been proposed to hide transaction details while still allowing the public to verify
that transactions are correct, e.g., they do not generate money out of thin air.

The second line of research relevant to this dissertation aims at improving the func-
tionality provided by cryptocurrencies. For example, a promising solution to enable
instantaneous payments are payment channels and off-chain payment networks as
a second layer on top of cryptocurrencies [Spi13; DW15; PD; KG17; Mal+17; Dzi+19;
Mil+19]. The key insight to these layer-2 systems is that transactions do not need to be
processed by the entire network as long as they are not disputed among the involved
parties. A related research direction leverages the strong security guarantees of

2

cryptocurrencies and their monetary nature in other cryptographic protocols, e.g., to
provide monetary fairness in secure multi-party computation (SMPC) [And+14; BK14]:
while SMPC alone suffices to play mental poker, cryptocurrencies can additionally
ensure that the honest winner always obtains the prize [KMB15].

What makes cryptocurrencies special within the area of cryptography is that new
cryptographic schemes are sometimes adopted within months after their invention.
While this quick adoption is risky and unprecedented, it has yielded the first systems
that deploy advanced primitives such as zero-knowledge proofs successfully and on
a large scale [Mie+13; Ben+14; ZEC; Sab13; NMM16; XMR]. Keeping this in mind,
cryptocurrencies are not only fascinating on their own, but they constitute a major
opportunity for the deployment of cryptography in general.

However, while a considerable amount of research in the area of cryptocurrencies is
undergoing practical deployment, almost all implementations come in the form of new
cryptocurrencies [e.g., ZEC; ADA], and not many proposals have been deployed as
extensions to existing cryptocurrencies. The reason is that many research proposals
aiming at improving privacy, functionality, or other aspects of cryptocurrencies
require substantial technical changes, which require broad community consensus to
adopt. The Bitcoin community in particular seems very conservative about adopting
modifications that influence Bitcoin’s security model (including trust assumptions
and cryptographic hardness assumptions), break compatibility with existing features
and use-cases, or simply make verification of the blockchain less efficient.
To name a specific example, Zerocoin [Mie+13], which improves the anonymity

of cryptocurrency users by zero-knowledge proofs, has been explicitly designed as
an extension to Bitcoin. Despite being a major improvement for privacy, Zerocoin
could not find consensus in the Bitcoin community due to various reasons including
large storage requirements in the blockchain [Bac13] and the need for a trusted
cryptographic setup [Ler13]. Instead, Zerocoin’s successor Zerocash [Ben+14] was
later deployed as a new and independent cryptocurrency [ZEC].

In hindsight, it comes as no surprise that making changes to a multi-billion project
such as Bitcoin is controversial and difficult with so many different stakeholders
involved, namely individual users, corporate users, developers, miners, investors,
researchers, and others. Who decides whether the rules of the currency are changed
and how? This question of “who is in control” is essential to any currency system.
However, in a cryptocurrency without a trusted third party, there is intentionally
no clear answer to it. Resistance to fundamental changes may in fact be crucial
for the success of cryptocurrency because only then, stakeholders can be ensured
that they will not experience unexpected surprises, e.g., affecting their holdings.
As a consequence, we must acknowledge that making changes to well-established
cryptocurrencies is exceptionally difficult.

3

1 Introduction

Nevertheless, this observation alone clearly does not make the problems of existing
cryptocurrencies disappear. If cryptocurrencies survive their infancy, then most
probably only few will see widespread adoption, and technological superiority is
only one of many aspects that will determine which ones will prevail. Almost a
decade after its inception, Bitcoin remains the most used cryptocurrency and is due to
network effects certainly a promising candidate to see further adoption in the future.
If Bitcoin prevails, we need to improve its technology organically and gradually,
and the insight that fundamental technical changes may be too difficult to make is
no justification for ignoring Bitcoin’s technological shortcomings and their societal
implications such as the sacrifice of users’ privacy.

1.1 Contributions

The goal of this dissertation is to devise tailor-made cryptographic schemes and
protocols to advance the functionality and privacy of cryptocurrencies. Our focus
is on practical techniques that are either fully compatible with Bitcoin and similar
existing cryptocurrencies or require only specific modifications that do not break
with fundamental design decisions or existing features. This conservative approach
acknowledges the difficulty of making changes to existing cryptocurrencies and
consequently provides a pragmatic path to technological progress.
For the sake of concreteness, the results in this dissertation are described with

Bitcoin in mind. Our results are in general applicable to other cryptocurrencies as
well, though minor modifications may be necessary.

After a brief introduction to cryptocurrencies and Bitcoin (Chapter 2), we provide
four main contributions (Chapters 3, 4, 5 and 6) as summarized below. We conclude
with a few final remarks (Chapter 7), which are relevant beyond the concrete results
in this dissertation.

Chapter 3: Penalizing Equivocation By Loss of Bitcoins. In our first contribu-
tion, we pick up the idea to leverage the monetary nature of cryptocurrencies to
improve other systems. Concretely, we apply cryptocurrencies to incentive honest
behavior in distributed systems. We show that equivocation, i.e., asserting conflicting
statements to different parties in a distributed system, can be monetarily disincen-
tivized by the use of cryptocurrencies. To this end, we design completely decentralized
non-equivocation contracts, which make it possible to penalize an equivocating party
by the loss of its money. At the core of these contracts, there is a novel cryptographic
primitive called accountable assertions, which reveals the party’s private keys in case
of equivocation.

4

1.1 Contributions

Non-equivocation contracts are particularly useful for distributed systems that
employ public append-only logs to protect data integrity. Moreover, as double-
spending in Bitcoin is a special case of equivocation, non-equivocation contracts
enable us to design asynchronous payment channels that enable a payee to receive
funds at multiple unsynchronized points of sale while being able to penalize a double-
spending payer after the fact.

Chapter 4: P2P Mixing and Unlinkable Bitcoin Transactions. Having demon-
strated the applicability of cryptocurrencies, we then turn our focus to users’ privacy
in cryptocurrencies, which is vulnerable to a variety of linkability and deanonymiza-
tion attacks due to the public nature of the blockchain. In order to improve the
anonymity of cryptocurrency users, we propose CoinShuffle++, a P2P coin mixing
protocol that enables pseudonymous users to perform unlinkable transactions in a
manner fully compatible with the current Bitcoin system. CoinShuffle++ is based on
the CoinJoin paradigm [Has11; Max13A] and requires at its core a P2P anonymous
communication protocol, which enables a group of mutually distrustful peers to
publish messages in an anonymous and reliable manner.
Starting with Dining Cryptographers networks (DC-nets) [Cha88], multiple such

P2P anonymous communication protocols have been proposed in the literature. How-
ever, despite their strong anonymity guarantees, none of them have been deployed in
practice so far: most protocols fail to simultaneously address the crucial problems
of slot collisions and disruption by malicious peers, and those which address both
problems require𝑂 (𝑓 2) communication rounds to handle 𝑓 malicious peers, which is
arguably prohibitive to their practical deployment.
We conceptualize these P2P anonymous communication protocols as P2P mixing,

and then present DiceMix, a novel P2P mixing protocol that needs only four commu-
nication rounds in the best case, and 4 + 2𝑓 rounds in the worst case with 𝑓 malicious
peers. As every individual malicious peer can force a restart of a protocol run by
simply omitting messages, we find DiceMix with its worst-case complexity of 𝑂 (𝑓)
communication rounds to be optimal to realize the anonymous broadcast required by
CoinShuffle++.
We demonstrate the efficiency of DiceMix and CoinShuffle++ with a proof-of-

concept implementation. In our evaluation, DiceMix requires less than eight seconds
to mix 50 messages of size 160 bits in a setting where all 50 peers have 10 MBit/s
connections with a delay of 50 ms to an untrusted bulletin board that interconnects
the peers. Since CoinShuffle++ has negligible overhead over its core building block
DiceMix, CoinShuffle++ mixes coins in essentially the same time. In contrast, the
best protocol in the literature requires almost three minutes in the same setting.

5

1 Introduction

Going beyond the concrete application of anonymous communication to improve
the anonymity of cryptocurrency users, we additionally take a more fundamental
look at P2P mixing and present a generic deanonymization attack on all P2P mixing
protocols that guarantee termination in the presence of disruptive peers; this includes
the state-of-the-art P2P mixing protocol Dissent [CF10; Syt+14]. The generic attack
implies that it is fundamentally impossible for a P2P mixing protocol to simultane-
ously support input messages arbitrarily chosen by the user, provide anonymity, and
terminate in the presence of disruptive peers.

Chapter 5: Mixing Confidential Transactions for Comprehensive Privacy.
Given our efficient coin mixing protocol CoinShuffle++, our next goal is to fur-
ther advance the practicality and privacy of coin mixing by integrating it with other
privacy-enhancing techniques addressing other aspects of privacy. As an extension
of CoinShuffle++, we design ValueShuffle, the first coin mixing protocol compatible
with Confidential Transactions [Max15], a proposed enhancement to Bitcoin to hide
the amounts in transactions. ValueShuffle ensures the anonymity of peers in the
mixing and the confidentiality of their mixed amounts even against malicious peers
participating in the same mixing run. In combination with Confidential Transactions
and additionally Stealth Addresses [Sab13], a technique to avoid the reuse of pseu-
donyms when receiving payments, ValueShuffle provides decent privacy (payment
value privacy and payer anonymity even against malicious payees) without breaking
with fundamental design principles or features of the current Bitcoin system.

Assuming support for Confidential Transactions, ValueShuffle makes it possible
to mix funds of different amount as well as to mix and spend funds in the same
transaction. These features overcome the two main limitations of all previous coin
mixing approaches in practice, namely that users are restricted to mix funds of the
same amount, and that they need to do so in a separate transaction before they can
actually spend the funds.

Chapter 6: Switch Commitments for Confidential Transactions. Finally, we
turn our attention to the future of cryptocurrencies and tackle the problem of post-
quantum security. We focus on cryptographic agility, which is the ability to switch to
larger cryptographic parameters or different algorithms in the case of security doubts.
This desirable property of cryptographic systems is inherently difficult to achieve
in cryptocurrencies due to their permanent state in the blockchain: for example, if
it turns out that the employed signature scheme is insecure, a switch to a different
scheme can only protect the outputs of future transactions but cannot fix transaction
outputs already recorded in the blockchain, which puts the money at the risk of theft.

6

1.1 Contributions

This situation is even worse in cryptocurrencies which deploy Confidential Transac-
tions to hide transacted monetary amounts in homomorphic Pedersen commitments.
An attacker who manages to break the computational binding property of a commit-
ment can create money out of thin air, jeopardizing the security of the entire currency.
The obvious solution is to use statistically or perfectly binding commitment schemes
such as ElGamal commitments, but they come with performance drawbacks due to
the need for less efficient range proofs, and even worse, they are not hiding against
post-quantum attackers.
In order to overcome this dilemma, we introduce switch commitments, which

constitute a cryptographic middle ground between computationally binding and
statistically binding commitments. The key property of this novel primitive is the
possibility to switch existing commitments, e.g., recorded in the blockchain, from
computational bindingness to statistical bindingness if doubts in the underlying
hardness assumption arise. This switch trades off efficiency for security.
We provide two simple and practical constructions of switch commitments. First,

we prove that ElGamal commitments with a restrictedmessage space are secure switch
commitments. Our technique yields an instantiation of Confidential Transactions
that can be switched to be resilient against post-quantum attackers trying to inflate
the currency. Second, we construct opt-in switch commitments, a variant of switch
commitments that guarantee hiding even against post-quantum attackers in almost
all cases. Our construction is as compact as Pedersen commitments and as as result,
opt-in switch commitments introduce essentially no overhead for the cryptocurrency
network.

7

2 Background on Cryptocurrencies

In this chapter, we first give an informal introduction to the fundamental challenge
that P2P electronic cash systems need to overcome and to the solution provided by
Nakamoto. Then we briefly explain the internals of Bitcoin that are relevant to our
work. We give only a brief overview, and since the techniques presented in this disser-
tation do not depend on the details of the blockchain and the consensus mechanism,
our results are applicable to other cryptocurrencies, though minor modifications may
be necessary.

Further Reading. For a broader introduction to Bitcoin and cryptocurrencies, we
recommend the surveys by Bonneau et al. [Bon+15], Tschorsch and Scheuermann
[TS16], Conti et al. [Con+18], and Narayanan and Clark [NC17], and the textbook by
Narayanan et al. [Nar+16]. For an in-depth explanation of the internal mechanics of
Bitcoin, we refer the reader to the textbook by Antonopoulos [Ant17] and the Bitcoin
developer guide [BDG].

2.1 Nakamoto Consensus

To understand the fundamental challenge in building a P2P electronic cash system
without a trusted third party, we need to ask why trusted third parties have been
essential for fiat currencies and traditional payment systems. The answer to this
question is twofold.
The first essential task of trusted third parties is to exclude double-spending,

which is a fundamental problem in any payment system not based on physical cash.
The capability of sending a payment, e.g., the capability to produce a handwritten
signature on a bank transfer form or the capability to swipe a credit card, is not
consumed by itself when the payer uses it once to send a payment. An accounting
mechanism is therefore necessary to avoid that malicious payers use their capability
to spend more money than they are allowed to. Traditional payment systems rely on
trusted third parties, e.g., banks and credit card providers, to perform this accounting,
which in its simplest form amounts to recording every payment (or transaction)
in a ledger. Remarkably, the vast majority of attempts to build secure electronic

9

2 Background on Cryptocurrencies

cash from sophisticated cryptography that predate Bitcoin, most notably Chaum’s
proposal [Cha82; CFN88], rely on trusted third parties to exclude double-spending.

The second essential task of trusted third parties in fiat currencies is to oversee and
control money supply. For example, in the Eurosystem, only banks have the power to
create money, and with respect to physical cash as legal tender, the European Central
Bank has the exclusive right to authorize the issuance of euro banknotes [TFEU].
How do cryptocurrencies exclude double-spending and control money supply

without a trusted third party? For double-spending, the answer is a transaction
ledger, which records the transactions that have been performed in the past, but
which is publicly maintained by the entire Bitcoin system instead of relying on a
trusted third party. In more detail, the peers in the Bitcoin system aim to reach
irreversible consensus over the transactions that have been committed to the ledger.
The irreversibility is crucial: if transactions are reversible, a fraudulent user can
double-spend by sending a payment, obtaining some good or service from the payee,
and later reversing the transaction to be able to spend the money again.
Reaching irreversible consensus turns out to be particularly challenging in an

asynchronous P2P network consisting of potentially malicious peers. A common
approach in non-P2P networks is to assume that a supermajority of parties in the
system is honest and use some form of voting to reach consensus; this is the idea of
Byzantine fault tolerance protocols [LSP82; CL02]. In P2P networks, however, since
peers can join and leave the network arbitrarily and have no permanent identify, no
peer can reliably determine the full set of peers among which consensus must be
reached. In particular, a single attacker can easily perform a Sybil attack [Dou02],
i.e., spawn a large number of malicious peer nodes in order to obtain a fraudulent
majority and thereby take control of the system.
Nakamoto’s seminal consensus mechanism solves this problem by determining

the majority not in terms of the number of peers but in terms of the amount of
computation that the peers perform. As computation inherently requires resources
such as hardware and energy, this consensus mechanism withstands Sybil attacks:
while an arbitrary number of fake nodes can be spawned at essentially no cost on a
given piece of hardware, the overall amount of computational resources available to
all those nodes is the same as would be available to a single node.
The data to reach consensus on, namely the transaction ledger, is organized as

a blockchain, i.e., a list of blocks, each containing a set of transactions. The blocks
are chained together such that every block must contain a cryptographic hash of
the previous block. A block (including its transactions) can only be added to the
blockchain if it comes with a solution for a proof-of-work puzzle, i.e., an instance of a
moderately hard computational problem. The specific problem instance that must
be solved is determined by all the data in the block including the transactions and

10

2.1 Nakamoto Consensus

the hash of the previous block, and due to the chaining, it depends not only on the
previous block but recursively on the entire transaction history. As a result, each
valid block carries a certain expected amount of computational work.

This computational work ensures that the consensus over the transaction history
is permanent. Once added to the blockchain, the transactions in a block are difficult
to modify: A modification of a block invalidates the proof-of-work solution of this
block and all subsequent blocks because different problem instances must be solved
after the modification. When peers receive contradicting blocks that constitute a
fork in the blockchain, they consider only the chain whose creation required (in
expectation) the most computational work to be the correct one. This rule implies
that an attacker trying to modify an old block is not only required to redo the work
for this and all subsequent blocks but also to catch up, i.e., to find valid proof-of-
work solutions at a higher rate than the rest of the network, which continues to
work on extending the other chain. As a result, a transaction that has been included
in the blockchain and backed by the proof-of-work computations of an increasing
number of blocks is thus increasingly difficult to reverse for an attacker with limited
computational resources. In particular, reversing such a transaction is considered
infeasible if the attacker controls less than 50% of the computing power in the system,
which constitutes a fundamental assumption necessary for the security of Bitcoin
(the exact value depends for instance on the time it takes to propagate blocks through
the P2P network [GKL15; GKL17; PSS17].)

This paradigm adopted in Bitcoin requires computing power as an essential part for
the security of the consensus mechanism. But why should peers contribute computing
power, given that computation comes with real costs, e.g., energy consumption? The
answer to that question is that miners, which are peers willing to take part in the
consensus mechanism, are assigned rewards for contributing their computational
resources. Transaction fees paid by transacting parties are one part of these rewards,
and newly created (or mined) currency units (bitcoins) are the other part. This explains
how money creation is organized without a trusted third party: bitcoins are scarce
because the computational resources required to generate them are scarce.

The underlying idea to use proof-of-work to ensure some scarcity has been present
in previous proposals from the cypherpunk community [Dai98; Sza08; Fin04], starting
with Back’s Hashcash proof-of-work scheme [Bac02]; however in those proposals
the proof-of-work solutions are directly accepted as electronic cash tokens.
What makes Bitcoin fundamentally different from all previous electronic cash

systems is that proof-of-work is used within the consensus mechanism to ensure
Sybil-resistance, and the consensus rules control how many bitcoins the miners are
eligible to claim for finding proof-of-work solutions. Therefore Bitcoin’s consensus
mechanism is a combined replacement for a trusted third party with respect to both

11

2 Background on Cryptocurrencies

its task of controlling money supply and its task of excluding double-spending. The
idea to solve both of these problems interdependently is the key novelty introduced
by Nakamoto.

2.2 Technical Overview of Bitcoin

The term Bitcoin (commonly capitalized) refers to the P2P system and the currency it
runs. The currency units are bitcoins (commonly not capitalized, symbol B). A bitcoin
is divisible up to eight decimals such that the smallest unit is 10−8 bitcoins, which is
also called one satoshi.

Peer-to-peer Network. Peers are connected via the Internet, and typically main-
tain connections to a few other peers called their neighbours. As a result, the P2P
network forms a decentralized peer graph. The purpose of the P2P network is to
broadcast transactions and blocks (as explained below) by gossiping: if a peer receives
a transaction or a block (or if this peer creates a new transaction or a new block),
it it is supposed to relay it to every neighbour who does not know it already, and
the neighbours are in turn supposed to relay it to their neighbours such that it will
eventually reach every peer in the network. This assumes that the peer graph is
connected, which is necessary for the network to work properly and secure [Hei+15;
MHG18].

Transactions. The most fundamental data structure of Bitcoin is a transaction, which
represents a payment. A transaction moves coins from a set of inputs to a set of
outputs. An output is an integer specifying an amount of satoshis together with a
script, which is a small program that specifies a challenge that must be fulfilled by
anyone willing to spend the coins in a further transaction (typically the intended
payee). An input is a reference to an unspent transaction output (UTXO) created by a
previous transaction, together with data that fulfills the challenge specified by the
script in this UTXO.

In the simplest and by far most common case, the challenge that must be fulfilled to
spend the coins in a UTXO with a transaction is to provide a digital signature on the
desired transaction valid under a public key specified through its hash in the script of
the UTXO. This implements ownership and authentication: coins can effectively be
sent to a public key, and only the user that knows the corresponding secret key (the
owner) can access the coins by signing a transaction (which in turn sends the coins
to other public keys).

12

2.2 Technical Overview of Bitcoin

For a transaction to be valid, all scripts of the UTXOs in its inputs must be fulfilled,
all inputs must refer to distinct UTXOs, there must be no previous transaction that
has already spent those UTXOs, and the transaction must be balanced, i.e., the sum of
the coins in its outputs does not not exceed the sum of the coins in its inputs.

Digital Signature Scheme. At the time of writing, Bitcoin and most other cryp-
tocurrencies use ECDSA signatures [JMV01] on the elliptic curve secp256k1 [SEC2]
for authentication of transactions. The future adoption of Schnorr signatures [Sch91]
on the same elliptic curve has been suggested [Core17]. In both ECDSA and Schnorr
signatures, a public key is a single group element pk = 𝑔sk of the elliptic curve group.

Scripts and Smart Contracts. Bitcoin employs a scripting language to specify
under which conditions a UTXO can be spent. The language is a simple Forth-like
stack-based language. It is intentionally not Turing-complete to avoid complexity
and the possibility of creating scripts that are expensive to execute, and could conse-
quently lead to denial-of-service attacks because every node in the Bitcoin network
must execute them. The purpose of the scripting language is to enable smart con-
tracts [Sza97] that implement more complex access scenarios than simple payments,
e.g., escrow of funds for dispute resolution and automated lotteries [And+14; BK14].
To spend the funds protected by some script, the spender must provide an initial

execution stack with input values. The script (historically called ScriptPubKey) is
fulfilled if its execution on the initial stack does not abort early, the final stack at the
end of the execution is not empty, and the top stack element is not zero.

Example Script. As an example, we consider the most commonly used script type,
which is called pay-to-pubkey-hash (P2PKH) and requires a signature on the spending
transaction under a public key. The script does not specify a public key directly but
instead the hash of a public key under a collision-resistant hash function. When
spending the UTXO, the owner is required to show not only a valid signature but
also the correct public key, whose hash is the value specified in the script. Concretely,
a P2PKH script looks as follows.

1 DUP HASH160

2 ℎ EQUALVERIFY

3 CHECKSIG

We briefly explain the semantics of the used opcodes. DUP duplicates the top
item of the stack. HASH160 replaces the top stack item 𝑠 by H(𝑠), where the used
hash function is H(𝑠) ··= RIPEMD-160(SHA-256(𝑠)). Values that are not opcodes
denote push operations, i.e., “ℎ” pushes the constant ℎ onto the stack. EQUALVERIFY

13

2 Background on Cryptocurrencies

aborts the execution if the two top stack items are not equal and removes the items
from the stack. CHECKSIG runs the ECDSA verification algorithm with the spending
transaction as message and with the two top stack items as signature and verification
key, respectively. These stack items are removed, and depending on the verification
result, either the constant 0 or the constant 1 is pushed onto the stack.

To spend the coins, the owner has to authenticate the desired spending transaction
by providing a signature 𝜎 of the transaction under the correct public key pk and the
public key pk itself, i.e., the owner provides an initial stack with the values 𝜎 and pk
as input data for the script.
Let us walk through the execution of the script. First, the top element pk is

duplicated on the stack, and the hash function is applied to the top copy of pk. The
script fails if the resulting hash H(pk) does not equal ℎ. If the hash equals ℎ, the
signature 𝜎 that is supposed to sign the spending transaction is verified under the
verification key pk. If the verification succeeds, 1 is pushed onto the stack and the
script terminates correctly; otherwise 0 is pushed onto the stack and the spending
transaction is invalid.

Addresses. The hash of a public key in a suitable encoding serves as compact and
user-facing recipient identifier and is called address. Addresses cannot only be created
for pay-to-pubkey-hash scripts but also for more complex scripts by encoding a hash
of the entire script; these addresses are called pay-to-script-hash (P2SH).
Even though the same address can be paid to by multiple payers and multiple

transactions, it is recommended that payees create fresh addresses for every payment
that should be received. This avoids that payments to the same payee can be trivially
linked to each other. (Nevertheless, this simple mitigation does not prevent more
sophisticated heuristics to link addresses [Mei+13; Bar+12; SMZ14; KKM14; RH11;
And+13; MO15; Nic15].)

Change Outputs. The transaction must spend each of the coins at each input
entirely. In practice, this makes change outputs necessary. For example, if the only
input of a transaction carries B5.2 but the goal is to pay only B1.1, then a transaction
with two outputs is created: one output that pays B1.1 to the desired payee and one
change output that pays the remaining B4.1 back to a change output of the payer
(ignoring transaction fees as described below).

Miners and the Blockchain. Every peer can choose to be a miner. The task of
miners is to collect transactions broadcast by other peers and to include them in a
data structure called a block. Blocks are cryptographically chained together, i.e., a

14

2.2 Technical Overview of Bitcoin

block is required to contain the hash of the previous block, such that blocks form a
blockchain, which is the central data structure in the consensus mechanism. The first
block in the blockchain is called genesis block and hardcoded in the client software.
The height of a block is the number of blocks that precede it on the blockchain, e.g.,
the height of the genesis block is zero. A block is subject to certain validity rules
called consensus rules, e.g., transactions in a block may only spend bitcoins that have
not been spent already by a second transaction in the same or in a previous block.
The consensus rules require blocks to include a Hashcash [Bac02] proof-of-work

solution: the hash value of the block must be below a certain difficulty target when
interpreted as an integer, and the difficulty target determines an expected amount
of work (i.e., number of hash computations) necessary to find a solution. The hash
value is taken over the block header, which consists of the hash of the previous block,
the root hash of a Merkle tree [Mer87] of all transactions in the block, and a nonce
available for miners to modify when working on a valid proof-of-work solution.

A miner who finds a valid block is supposed to send it to a few neighboring peers
in the network, who verify its validity with respect to the consensus rules and add it
to their local copy of the blockchain. In case of forks in the blockchain, e.g., because
two miners find a valid block at the same time, peers consider the chain with the most
expected work done (typically also the longest chain) as the correct one. To break ties,
a peer prefers the chain it has seen first. Miners will typically try to extend the chain
that they consider valid, and eventually all but one of the forks will be abandoned if
the majority of computing power follows this rule.
Since the amount of total computing resources in the system is not constant, the

consensus rules prescribe that the difficulty target of the proof-of-work is adjusted
after every 2016 blocks (about 2 weeks), based on the time it took the system to
produce these 2016 blocks. This mechanism ensures that the average time to mine a
block remains roughly constant at 10min.

Most implementations consider a transaction final if it has been backed by least six
blocks, i.e., by the block of the transaction itself and five subsequent blocks. Since at
every point of time it takes 10min on average until the next block is found, it takes
60min on average before a peer, who is supposed to receive funds in a transaction,
should assume that the transaction is irreversible and accept the funds as a payment.

Transaction Fees. Transaction fees are one of two incentives for miners to work on
blocks. A transaction fee is a (typically small) amount of coins that a miner receives
as a reward for confirming a transaction, i.e., for including it into a block. Technically,
the fee corresponds to the difference between the sum of outputs and the sum of
inputs in a transaction, i.e., it is taken from the inputs of the transaction.

15

2 Background on Cryptocurrencies

Technically, there are no strict requirements on the amount of the fee, and it may
be zero or even the entirety of input coins of the transaction. However miners may
choose not to include a transaction in a block if a too low fee is provided.

Block Reward. The second incentive for miners is the block reward. The consensus
rules allow for inclusion of a coinbase transaction in every block, which sends a fixed
amount of newly generated coins to the miner. Whenever a valid proof-of-work
solution is found, the lucky winning miner obtains these newly created coins.
Therefore the consensus mechanism can be seen as a decentralized lottery. A

simple analogy is an (imaginary) lottery with free scratch-off tickets [Mil+15], in
which the winner is the first to find a valid ticket. While tickets (nonces given to the
proof-of-work puzzle as input) can be obtained essentially for free, work is required
to scratch them (compute the hash). Scratching a single ticket is very cheap but the
winning probability of a single ticket is very low. As a result, many tickets need to
be scratched, and scratching can easily be done in parallel. Participants with more
scratching power (computing power) are able to scratch more tickets per time, and
thus are more likely to be the next winner and claim the reward.
For Bitcoin to be incentive-compatible and to avoid centralization of the min-

ing process, it is desirable that the probability to be selected as the next winner is
roughly proportional to a miner’s fraction of the total computing power in the system.
However, miners can optimize their winning probability by not broadcasting blocks
immediately in certain situations even if their fraction of computing power is less
than 50% [ES14; Kwo+17].

In Nakamoto’s design the block reward is halved every 210,000 blocks (about four
years), which implies that there is a maximum number of bitcoins. When block
rewards are low, transaction fees are supposed to constitute the main incentive for
miners. However, Carlsten et al. [Car+16] raise doubts that fees can fully replace
block rewards as an incentive mechanism.

Changing the Consensus Rules. The consensus rules are hardcoded in the client
software, but they are not written in stone. Software can be modified, and different
users can choose to run different software implementations with different consensus
rules. A safe change of the consensus rules requires wide agreement and coordination
in the Bitcoin ecosystem to avoid permanent chain splits, in which some peers will
assume that some particular blockchain is valid whereas the other peers will assume
that this blockchain is invalid and will maintain a different blockchain. Nevertheless,
there is nothing that prevents a subset of the peers to adopt different consensus rules
and risk a permanent chain split, e.g., if a proposed change to the consensus rules

16

2.2 Technical Overview of Bitcoin

supported by this subset does not reach wide agreement. Such chain splits have
occurred in multiple cryptocurrencies including Bitcoin [Wir16; Bitm17].

In general, a change of the consensus rules is only meaningful if the new rules will
not invalidate blocks already in the blockchain. This can be ensured by making the
new rules valid only for blocks added to the blockchain after some point in the future,
i.e., the old rules apply to blocks with a height 𝑏 < 𝑐 for some constant 𝑐 greater than
the current block height, and the new rules apply to blocks with a height 𝑏 ≥ 𝑐 .
We can distinguish two types of such changes. A change to the consensus rules

is a softfork if the blocks valid under the new consensus rules are a subset of the
blocks valid under the old consensus rules; otherwise it is a hardfork. In other words,
a softfork makes previously valid blocks invalid, but it does not make previously
invalid blocks valid.
Softforks are often considered preferable because they ensure backward compati-

bility: a peer which has not upgraded to the new consensus rules will consider new
blocks as valid and maintain consensus with the rest of the network.
The most prevalent way to deploy a softfork is to let the miners active it. If the

majority of miners (measured in computing power) enforce the new stricter rules,
they will eventually produce the chain with the most expected work, and eventually
any other fork that contains blocks invalid under the new rules will be abandoned.

17

3 Penalizing Equivocation
By Loss of Bitcoins

Making conflicting statements to others, or equivocation, is a simple yet remarkably
powerful tool of malicious participants in distributed systems of all kinds [Cle+12;
Bac+14; Lev+09; Chu+07]. In distributed computing protocols, equivocation leads
to Byzantine faults and fairness issues. When feasible, equivocation is handled by
assuming a supermajority of honest nodes (i.e., larger replication factors [Ho+08]),
synchrony assumptions and digital signatures [FM00], or trusted hardware [Bac+14;
Chu+07; Cle+12; Lev+09]. Moreover, publicly verifiable append-only logs [MS02;
Fel+10; Fah+14; Fel+12] make it possible to detect equivocation after the fact, but they
do not suffice to stop or penalize equivocation.
Decentralized cryptocurrency systems such as Bitcoin and its derivatives follow

a novel approach to handle equivocation. To protect against equivocation in the
form of double-spending, i.e., spending the same funds to different parties, Bitcoin
employs a special decentralized public append-only log based on proof-of-work
called the blockchain: In a peer-to-peer cryptocurrency, peers transfer their funds
by publishing digitally signed transactions. Transactions are confirmed only when
they are included in the blockchain, which is generated by currency miners that solve
proof-of-work puzzles. Although a malicious owner can sign over the same funds
to multiple receivers through multiple transactions, eventually only one transaction
will be approved and added to the publicly verifiable blockchain (Section 2.2).

As a result, a possible approach to stop equivocation in a distributed system
is to record all messages in the system that are vulnerable to equivocation in a
blockchain. However, due to proof-of-work computations and the decentralized
nature of blockchain systems, the process of reaching consensus is not only expen-
sive but also only slowly converging. In Bitcoin, it takes tens of minutes to reach
consensus on the set of valid transactions.

To enable faster transactions, a contractual solution in the form of payment chan-
nels [Spi13; Tod14A; PD; Mal+17] is emerging in the Bitcoin community. Here, a payer
makes a time-locked deposit for a predetermined payee such that double-spending
(or equivocation) is excluded even when payments are performed offline and without
waiting. However, payment channels are not secure against double-spending when

19

3 Penalizing Equivocation By Loss of Bitcoins

the payee runs several geographically distributed and unsynchronized points of sale,
e.g., a bus company selling tickets on buses with only sporadic Internet connectivity.

Our goal in this chapter is to address these equivocation issues by a generic solution
that disincentives equivocation and is applicable to various distributed systems and
scenarios including the aforementioned payment channels with unsynchronized
points of sale. Our solution is fully compatible with the current Bitcoin system
without the necessity to make any changes it. We provide four main contributions.

Accountable Assertions. As a first step, we establish a cryptographic connection
between equivocation and the loss of funds by introducing a cryptographic primitive
called accountable assertions (Section 3.3). The main idea of this primitive is to bind
statements to contexts in an accountable way: if the attacker equivocates, i.e., asserts
two contradicting statements in the same context, then any observer can extract the
attacker’s Bitcoin secret key and use it to force the loss of the attacker’s funds.
We present a construction of accountable assertions based on chameleon hash

functions [KR00] and prove it secure in the random oracle model under the discrete
logarithm assumption (Section 3.4). A performance evaluation of our construction
demonstrates its practicalitywith respect to computation, communication, and storage
costs.

Non-equivocation Contracts. To ensure that a secret key obtained through equiv-
ocation is indeed associated with funds, parties that should be prevented from equivo-
cating are required to put aside a certain amount of funds in a deposit [And+14; BK14;
KB14; BtcWikiB]. The deposit is time-locked, i.e., the depositor cannot withdraw the
funds during a predetermined time period. This prevents an attacker from spending
the funds and rendering the secret key useless just before equivocating.

Accountable assertions and deposits together enable us to design non-equivocation
contracts, a generic method to penalize paltering in distributed systems (Section 3.5).
We propose several applications of non-equivocation contracts to ensure the linearity
of append-only logs [MS02; Fel+10; Fah+14; Fel+12].

Asynchronous Payment Channels. Payment channels [Spi13; BIP65] enable peers
to perform payments to a predetermined party offline and without waiting for the
consensus process. However, if the payee is a unsynchronized entity (e.g., points
of sale with only sporadic Internet connectivity) then payment channels do not
prevent double-spending. Since double-spending is an instance of equivocation, non-
equivocation contracts enable us to design asynchronous payment channels, which
make it possible to penalize double-spending payers (Section 3.6).

20

3.1 Overview

Double-Authentication-Preventing Signatures. Of independent interest, we ob-
serve that accountable assertions are similar to double-authentication-preventing
signatures (DAPS) as proposed by Poettering and Stebila [PS14]. While accountable
assertions are in general a weaker primitive, certain accountable assertions are DAPS.
It was left as an open problem to construct DAPS based on trees or chameleon hash
functions [PS14]. We solve these problems, and our accountable assertion scheme
based on Merkle trees and chameleon hash functions in the random oracle model
yields a DAPS scheme, which is the first one in the discrete logarithm setting (Sec-
tion 3.8) and remains the only known one in this setting that supports a context
space of exponential size. For practical parameters, our DAPS scheme is two orders
of magnitude faster than the original DAPS construction [PS14; PS17] and uses one
order of magnitude less communication.

3.1 Overview

We conceptualize decentralized non-equivocation contracts and discuss their potential
applications.

Problem Statement. Equivocation, i.e., making conflicting statements to different
protocol parties, is a universal problem in fault-tolerant security protocols involving
three or more parties [Cle+12; Bac+14; Lev+09; Chu+07]. In all bounded or partial
synchronous communication settings, equivocation can be detected using digital
signatures (together with a public-key infrastructure) and some interaction among
the parties [Cle+12]: two recipients who are expected to receive the same message
from a sender can exchange the received signed messages to expose and prove
equivocation. This principle underlies many append-only logs [MS02; Fel+10; Fah+14;
Fel+12].

However, it is often not possible to impose a penalty on a maliciously or carelessly
equivocating sender after the fact, as the sender may be anonymous or pseudony-
mous. Even when the sender is not anonymous and risks reputation once a case of
equivocation is detected, the effect of such paltering can be damaging.

Key Idea. Our key idea is to let the sender create a time-locked Bitcoin deposit
[And+14; BK14; KB14; BtcWikiB] that can be opened by the recipients if the sender
equivocates. In that case, the funds will be given either to a predefined beneficiary or,
once the expiry time of the deposit is reached, to the miners. If the expected loss is
high enough, the attacker has no incentive to make conflicting statements.

21

3 Penalizing Equivocation By Loss of Bitcoins

Threat Model. The attacker is a malicious sender whose goal is to equivocate
without losing the deposit. To achieve that goal, the attacker can deviate arbitrarily
from the prescribed protocol but does not risk to lose its deposit if the expected loss
is higher than the expected gain.

We assume that the attacker cannot break the fundamental security of Bitcoin, e.g.,
the attacker does not have the majority of computing power in the Bitcoin network.

Non-equivocation Contracts. We describe the main idea of non-equivocation
contracts, which are a form of smart contracts [BtcWikiB; But13; Kos+16], in more
detail. The sender 𝐴 creates a time-locked deposit to guarantee honest behavior. The
deposit is secured by the sender’s secret key sk𝐴; the corresponding public key is pk𝐴.
Furthermore, the deposit expires at some point 𝑇 in the future. That is, the sender 𝐴
cannot access the funds in the deposit until time 𝑇 (despite knowledge of the secret
key sk𝐴). Before time 𝑇 , only 𝐴 together with a predefined beneficiary 𝑃 can access
the funds. This beneficiary will be given the funds if 𝐴 equivocates. (There is also a
variant of deposits for which the beneficiary is a randomly selected miner. We will
explain this later.)

Non-equivocation contracts rely on the possibility to learn the key sk𝐴 if the sender
𝐴 equivocates. To enforce this cryptographically, we introduce accountable assertions,
which allow party 𝐴 to produce assertions 𝜏 of statements st in contexts ct (where st
and ct can be arbitrary bitstrings) under the public key pk𝐴.
The sender 𝐴 is held accountable in the following sense: If 𝐴 behaves honestly,

the secret key sk𝐴 will stay secret, and 𝐴 can use it to withdraw the deposit once
time 𝑇 has been reached. However, if 𝐴 equivocates to some honest parties 𝐵 and 𝐶 ,
i.e., 𝐴 asserts two different statements st0 ≠ st1 in the same context ct, then 𝐵 and
𝐶 can use st0, st1, ct and the two corresponding assertions 𝜏0 and 𝜏1 to extract the
sender’s secret key sk𝐴. Due to the way the deposit is created, the recipients 𝐵 and
𝐶 alone cannot make use of sk𝐴. However, 𝐵 and 𝐶 can send sk𝐴 to the beneficiary
𝑃 , who can use sk𝐴 (and some credentials belonging to 𝑃) to withdraw the deposit
and thereby penalize the malicious sender 𝐴. Note that 𝐵, 𝐶 and 𝑃 could as well be
protocol parties that belong to essentially the same distributed entity but are just not
synchronized when receiving statements from 𝐴.

3.2 Deposits and Payment Channels

Throughout this chapter, we rely on advanced features of Bitcoin scripts (Section 2.2)
to create deposits and payment channels, which we explain in this section.

22

3.2 Deposits and Payment Channels

3.2.1 Deposits

Using specially-crafted scripts, funds can be locked away in a so-called deposit, where
they can only be accessed under a set of predetermined conditions. While scripts
can express a variety of such conditions [BDG], we focus on time-locked deposits
with the property that the depositor cannot access the funds in the deposit until a
specified expiry time.

With non-equivocation contracts in mind, we consider two types of deposits that
differ in the beneficiary, i.e., the party that receives the funds in case of equivocation.
The deposits of the first type do not specify a beneficiary. In this case, the beneficiary
will be a randomly selected miner. Deposits of the second type are associated with an
explicitly beneficiary 𝑃 identified by his public key pk𝑃 .

Creating Deposits. To create time-locked deposits, we use the novel Bitcoin script
command CHECKLOCKTIMEVERIFY [BIP65]. This command takes one argument 𝑇 , the
expiry time, from the execution stack and compares it to the nLockTime data field
of the transaction. If nLockTime < 𝑇 , the evaluation fails and the transaction is
consequently invalid. Thus, only transactions with nLockTime ≥ 𝑇 can spend the
funds covered by such a script. By the semantics of nLockTime, those transactions
are valid only in blocks found after time 𝑇 , and consequently, the funds protected by
CHECKLOCKTIMEVERIFY are spendable only after 𝑇 .

We remark that the value of nLockTime can be specified either by a UNIX timestamp
or a height of a block, which is the number of blocks that precede it in the blockchain.
Throughout the paper, we use timestamps, and to simplify presentation, we ignore that
miners have some flexibility to lie about the current time when writing a timestamp
to a block they mine [BtcWikiA]; at least 120min must be added to 𝑇 to account for
that issue.

Deposits Without Explicit Beneficiary. Suppose that some party 𝐴 wishes to
create a deposit with expiration time𝑇 without an explicit beneficiary. Then, party 𝐴
sends the desired amount B𝑑 to the following script:

1 (𝑇 +𝑇conf) CHECKLOCKTIMEVERIFY DROP

2 𝑝𝑘𝐴 CHECKSIG

The literals (𝑇 + 𝑇conf) and pk𝐴 in the script denote push operations that push a
constant value on the stack. The value 𝑇conf is a safety margin; we postpone its
discussion to the analysis of non-equivocation contracts (Section 3.5.1).
The first line of the script ensures that the deposit cannot be spent before time 𝑇

as explained. (DROP just drops the constant value from the stack.) In the second line,

23

3 Penalizing Equivocation By Loss of Bitcoins

CHECKSIG takes the key pk𝐴 and a signature 𝜎 from the stack; 𝜎 is supposed to be
provided by the spender on the initial stack; the command verifies that 𝜎 is a valid
signature of the spending transaction under the key pk𝐴 and pushes the boolean
result of the verification on the stack. This boolean value is the output of the script.
Thus, if the check succeeds, the transaction is valid; otherwise it is invalid. In sum,
the script ensures that the funds can only be spent after 𝑇 and only by a transaction
signed under pk𝐴.

If the corresponding secret key sk𝐴 is revealed, everybody can create transactions
that try to spend the funds from time (𝑇 +𝑇conf) on. Whenever this happens, each
miner has a large incentive to include a transaction in a block that sends the money
to an own key. Consequently, we can assume that the miner who finds the next block
will claim the funds.

Deposits with Explicit Beneficiary. Suppose that some party 𝐴 wishes to create
a deposit with an explicit beneficiary 𝑃 . Then, party 𝐴 sends the desired amount B𝑑
to the following script:

1 IF

2 𝑝𝑘𝑃 CHECKSIGVERIFY

3 ELSE

4 (𝑇 + �̃� conf + �̃� net) CHECKLOCKTIMEVERIFY DROP

5 ENDIF

6 𝑝𝑘𝐴 CHECKSIG

In this script �̃� conf and �̃� net are safety margins, which will be discussed below. IF
obtains its condition from the stack, allowing the spender to choose the branch to
be executed. CHECKSIGVERIFY is like CHECKSIG but causes the whole script to fail
immediately if the signature is not valid (instead of pushing the result of the signature
verification to the stack).

The script ensures that before time 𝑇 , the funds can be spent only if the spending
transaction is signed under both pk𝐴 and pk𝑃 . Thus, if 𝑃 learns sk𝐴 before time 𝑇 , he
can spend the funds. Otherwise, 𝐴 is refunded after time (𝑇 + �̃� conf + �̃� net), even if 𝑃
disappears.

The safety margins are necessary because the closing transaction must have been
broadcast to the Bitcoin network and confirmed by it before the deposit can be spent
by 𝐴 alone. For the broadcast, �̃� net = 10min is more than sufficient [DW13]. For the
confirmations, we except the network to find 24 blocks in �̃� conf = 240min. Since their
arrival is Poisson-distributed, the probability that fewer than six desired blocks have
been found is Pr[𝑋 ≤ 5] < 2−18 for 𝑋 ∼ Pois(24).

24

3.2 Deposits and Payment Channels

3.2.2 Payment Channels

Payment channels [Spi13; BIP65] allow a party 𝐴 to perform many transactions to a
predefined recipient 𝐵 up to a predefined amount B𝑑 of money. Although establishing
a channel between 𝐴 and 𝐵 involves waiting for a transaction to be confirmed, the
advantages of a payment channels are various: First, no matter how many payments
are sent, only two transactions need to be included in the blockchain (one to establish
the channel and one to close it). This makes payment channels a promising method
to scale the Bitcoin network to higher transaction throughputs; advanced methods
support payments over multiple intermediate hubs, e.g., the Lightning Network [PD].
Second, 𝐴 can perform payments to 𝐵 through the channel even if both parties are
offline. Third, fast transactions are possible through the payment channel because 𝐵
does not have to wait for the transaction to be confirmed.
Many advanced constructions of payment channels have been proposed in the

literature [DW15; PD; Hei+17; Mal+17; DFH18; Dzi+19; KG17; Mil+19; GM17], For
our purposes it suffices to consider a very simple unidirectional form of payment
channels. We stress that in general our techniques are applicable to more advanced
payment channels, though minor adjustments may be necessary.

Creating a Payment Channel. To create a payment channel from 𝐴 to 𝐵 with
maximal payment value B𝑑 and expiry time 𝑇 , party 𝐴 follows the procedure for
creating a deposit with explicit beneficiary 𝐵.
𝐵 waits until the deposit is confirmed by the Bitcoin network. From now on, the

funds can only be spent if both 𝐴 and 𝐵 agree because any spending transaction must
be signed by both 𝐴 and 𝐵 to be valid. Since 𝐵 will check any transaction before
endorsing it, 𝐵 is protected from attempts by 𝐴 to send funds to another party (or
back to 𝐴), i.e., 𝐵 is protected from double-spending attempts.

Paying through the Channel. The channel has an associated state 𝑏 that specifies
how much of the B𝑑 has been paid so far to 𝐵. In the beginning, 𝑏 = 0, i.e., all money
in the channel belongs to 𝐴 and none belongs to 𝐵. To pay through the channel, i.e.,
to raise 𝑏 to 𝑏 ′, party 𝐴 creates an ordinary Bitcoin transaction that sends B𝑏 ′ from
the deposit to 𝐵. Party 𝐴 signs this transaction with the secret key sk𝐴 and sends the
transaction to 𝐵, who validates the transaction and the correctness of the signature.
However, the transaction is not yet signed by 𝐵 or published to the Bitcoin network.

Closing the Channel. The channel needs to be closed before time 𝑇 . When the
recipient 𝐵 wants to close the channel at some state �̂�, then 𝐵 sends the most recently
received transaction, i.e., the one with the value �̂�, to the Bitcoin network. Once the

25

3 Penalizing Equivocation By Loss of Bitcoins

network confirms the transaction, 𝐵 has received B �̂�. If 𝐵 does not close the channel
by time 𝑇 , e.g., as 𝐵 has disappeared, 𝐴 can claim the whole channel of value B𝑑 .

3.3 Accountable Assertions
In this section we introduce our main tool accountable assertions. Intuitively, this
primitive allows parties to assert statements in contexts such that they can be held
accountable for equivocation: On the one hand, if a party holding a secret key
ask asserts two different statements st0 ≠ st1 in the same context ct, then a public
algorithm can extract the secret key ask of the party from the two assertions. On
the other hand, secrecy of the secret key ask remains intact for a well-behaved
non-equivocating party.

Accountable assertions are supposed to be attached to other public-key primitives,
i.e., the key pairs are supposed to correspond to key pairs of the other primitive.
For example, the key pairs of our scheme will be valid discrete logarithm key pairs
like in the ECDSA signature scheme [JMV01] currently used in Bitcoin, and like in
the Schnorr signature scheme [Sch91] which has been proposed to be adopted in
Bitcoin [Core17]. Attaching accountable assertions to other primitives is crucial in
practice because the concrete secret key used in accountable assertions needs to be
worth something, e.g., for redeeming funds. Otherwise, the party has no incentive to
keep it secret in the first place.

Definition 3.1 (Accountable Assertions). An accountable assertion scheme S is a tuple
of ppt algorithms S = (Gen,Assert,Verify, Ext) as follows:

(apk, ask, auxsk) ··= Gen(1𝜆): The key generation algorithm outputs a key pair con-
sisting of a public key apk and a secret key ask, and auxiliary secret information
auxsk. It is required that for each public key, there is exactly one secret key, i.e.,
for all 𝜆 and all outputs (apk, ask, auxsk) and (apk′, ask′, auxsk′) of Gen(1𝜆)
with apk = apk′, we have ask = ask′.

𝜏/⊥ ··= Assert(ask, auxsk, ct, st): The stateful assertion algorithm takes as input a se-
cret key ask, auxiliary secret information auxsk, a context ct, and a statement st.
It returns either an assertion 𝜏 or ⊥ to indicate failure.

𝑏 ··= Verify(apk, ct, st, 𝜏): The verification algorithm outputs 1 if and only if 𝜏 is a valid
assertion of a statement ct in the context st under the public key apk.

ask/⊥ ··= Ext(apk, ct, st0, st1, 𝜏0, 𝜏1): The extraction algorithm takes as input a public
key apk, a context ct, two statements st0, st1, and two assertions 𝜏0, 𝜏1. It outputs
either the secret key ask or ⊥ to indicate failure.

26

3.3 Accountable Assertions

The accountable assertion scheme S is correct if for all security parameters 𝜆, all
keys (apk, ask, auxsk) ··= Gen(1𝜆), all statements st, all contexts ct, and all assertions
𝜏 ≠ ⊥ resulting from a successful assertion 𝜏 ··= Assert(ask, auxsk, ct, st), we have
Verify(apk, ct, st, 𝜏) = 1.

Note that the secret information is divided into a secret key ask and auxiliary
secret information auxsk. In case of equivocation, only ask will be guaranteed to be
extractable but not auxsk.

Completeness. Our definition of accountable assertions allows the assertion algo-
rithm to fail. We do not consider such failure a problem if it happens only with small
(but not necessarily negligible) probability. The reason is that failure hurts only the
liveness of the system that makes use of the accountable assertions, but liveness is
typically not guaranteed anyway due to unreliable networks. As a consequence, we
do not insist generally on accountable assertions fulfilling a completeness criterion.
At first glance, this might look a bit contrived, but the purpose of this is to trade
off reliability against efficiency. Accountable assertions are, unlike signatures, not
required to be unforgeable, and it turns out that setting unforgeability aside will allow
for more efficient constructions.
To understand how failing and unforgeability are related, suppose an attacker

asks a party to assert a statement st0 in a context ct0, i.e., to output 𝜏0 ··= Assert(ask,
auxsk, ct0, st0). Due to the lack of unforgeability, the attacker might use 𝜏0 to obtain
another assertion 𝜏1 that is valid for some related but different context ct1 ≠ ct0 and
the same statement st0, i.e., Verify(apk, ct1, st0, 𝜏1) = 1. So far, this is not a problem:
the attacker cannot use the extraction algorithm to obtain the secret key ask from 𝜏0
and 𝜏1 because the two assertions are valid in different contexts ct0 ≠ ct1. However,
the attacker can now ask the party to assert another statement st1 ≠ st0 in the context
ct1, i.e., to output 𝜏 ′1 ··= Assert(ask, auxsk, ct1, st1). Observe that this is a valid request:
the attacker does not ask the party to equivocate because the party has not asserted
any statement in the context ct1 so far. But if the party replied to the request, the
attacker could run the extraction algorithm Ext(apk, ct1, st1, st ′1, 𝜏1, 𝜏 ′1) to extract the
secret key ask, which clearly should not happen.
To avoid this attack, while allowing for a construction that is “forgeable” as just

described, the stateful assertion algorithm may fail if it detects that the context
ct1, for which an assertion is requested, is related to a previously used context ct0.
Nevertheless, the ability of the attacker to force failure may be a problem in certain
scenarios, e.g., if it allows the attacker to perform a denial-of-service attack. In those
cases, it is possible to consider complete accountable assertions, which are guaranteed
to succeed on all honestly chosen inputs.

27

3 Penalizing Equivocation By Loss of Bitcoins

Definition 3.2 (Completeness). An accountable assertion scheme S = (Gen,Assert,
Verify, Ext) is complete if for all security parameters 𝜆, all outputs (apk, ask, auxsk) of
Gen(1𝜆), all statements st, and all contexts ct, we have

Assert(ask, auxsk, ct, st) ≠ ⊥.

Note that the definition of accountable assertions additionally demands correctness
whenever Assert(ask, auxsk, ct, st) ≠ ⊥.

3.3.1 Security Properties

Accountable assertions need to fulfill two security properties. The first security
property is extractability, which states that whenever two distinct statements have
been asserted in the same context, the secret key can be extracted.

Definition 3.3 (Extractability). An accountable assertion scheme S = (Gen,Assert,
Verify, Ext) is extractable if for all ppt attackers A, there exists a negligible function
negl(𝜆) such that

Pr

⎡⎢⎢⎢⎢⎢⎢⎣
Ext(apk, ct, st0, st1, 𝜏0, 𝜏1) ≠ ask
∧ Verify(apk, ct, st0, 𝜏0) = 1
∧ Verify(apk, ct, st1, 𝜏1) = 1
∧ st0 ≠ st1

|︁|︁|︁|︁|︁|︁|︁|︁ (apk, ct, st0, st1, 𝜏0, 𝜏1) ··= A(1𝜆)
⎤⎥⎥⎥⎥⎥⎥⎦ ≤ negl(𝜆) .

Here, ask is the unique secret key corresponding to apk.

The second security property secrecy is opposed to extractability. Secrecy prevents
the extraction of the secret key against an attacker who can ask the challenger
to assert chosen statements in chosen contexts. Since accountable assertions are
extractable, the attacker’s success is excluded after requesting the assertion of two
different statements in the same context.

Definition 3.4 (Secrecy). An accountable assertion scheme S = (Gen,Assert,Verify,
Ext) is secret if for all ppt attackers A, there is a negligible function negl(𝜆) such that

Pr[SecSA (𝜆) = 1] ≤ negl(𝜆),

where the experiment SecSA (𝜆) is defined in Fig. 3.1.

Limitations of the Secrecy Definition. Recall that a secret key used with account-
able assertions must be worth something, e.g., a valid secret key that protects funds

28

3.3 Accountable Assertions

experiment SecSA (𝜆)
(apk, ask, auxsk) ··= Gen(1𝜆)
𝑄 ··= ∅
ask∗ ··= AAssert′ (ask,auxsk, ·, ·) (apk)
return ask∗ = ask
∧ ∀(ct0, st0), (ct1, st1) ∈ 𝑄. ct0 ≠ ct1 ∨ st0 ≠ st1

oracle Assert′(ask, auxsk, ct, st)
𝑄 ··= 𝑄 ∪ {(ct, st)}
return Assert(msk, auxsk, ct, st)

Figure 3.1: Experiment SecSA (𝜆) for Definition 3.4

in Bitcoin. We would like to draw the reader’s attention to the fact that the definition
of secrecy does not take into account the other usages of the secret key. That is, while
our secrecy definition of accountable assertions is meaningful in itself, it is only a
heuristic for analyzing their security when combined with other primitives, and it
is formally not guaranteed that the use of secret accountable assertions keeps the
security of the other primitives intact.1

While we are confident that the combined use of our concrete accountable asser-
tions construction (Section 3.4) together with ECDSA or Schnorr signatures does not
render these signature schemes insecure in practice, a more formal treatment of the
joint use of accountable assertions with other primitives is desirable. We leave this
for future work.

Relation to DAPS. Double-authentication-preventing signatures (DAPS) [PS14;
PS17] have similar properties as accountable assertions but are additionally required
to be unforgeable. We have discussed an informal relation between the unforgeability
of accountable assertions and their completeness. This intuition can be formalized, and
it turns out that a slightly modified variant of our accountable assertions construction
(Section 3.4) is an efficient DAPS scheme. We refer the reader to Section 3.8 for a
discussion.

1We cannot hope that stronger variants of secrecy, e.g., definitions based on indistinguishability
or even non-interactive zero-knowledge, help to achieve some form of general composability of
accountable assertions with signatures: Given an accountable assertion scheme with a secrecy
notion based on non-interactive zero-knowledge, one can construct a pathological unforgeable
signature scheme that becomes forgeable when the attacker learns an accountable assertion that
has been generated with the same secret key.

29

3 Penalizing Equivocation By Loss of Bitcoins

3.4 Construction

In this section, we propose a construction of accountable assertions based on chame-
leon hash functions. Our construction builds upon the idea of chameleon authenti-
cation trees (CATs), as suggested by Schröder and Schröder [SS12] and improved in
follow-up schemes [SS15; Kru+16]. In contrast to these schemes, the novelty of our
construction is the extractability.

ChameleonHashes. A chameleon hash function is a randomized hash function that
is collision-resistant but provides a trapdoor to efficiently compute collisions [KR00].
Formally, a chameleon hash function CH is a tuple of ppt algorithms (GenCh,Ch,
Col). The key generation algorithm GenCh(1𝜆) returns a key pair (cpk, csk) consist-
ing of a public key cpk and a trapdoor csk. The evaluation function Ch(cpk, 𝑥, 𝑟)
produces a hash value for a message 𝑥 and a random value 𝑟 ; we may write just
Ch(𝑥, 𝑟) whenever cpk is clear from the context. The collision-finding algorithm
Col(csk, 𝑥0, 𝑟0, 𝑥1) takes as input a trapdoor csk and a triple (𝑥0, 𝑟0, 𝑥1); it outputs some
value 𝑟1 such that Ch(cpk, 𝑥0, 𝑟0) = Ch(cpk, 𝑥1, 𝑟1).

Chameleon hash functions need to fulfill collision-resistance and uniformity as
defined by Krawczyk and Rabin [KR00].

Definition 3.5 (Collision-Resistance). A chameleon hash function CH = (GenCh,
Ch,Col) is collision-resistant if for all ppt attackers A,

Pr
[︃
Ch(cpk, 𝑥0, 𝑟0) = Ch(cpk, 𝑥1, 𝑟1)
∧ (𝑥0, 𝑟0) ≠ (𝑥1, 𝑟1)

|︁|︁|︁|︁ (cpk, csk) ··= GenCh(1𝜆);
(𝑥0, 𝑟0, 𝑥1, 𝑟1) ··= A(cpk)

]︃
is negligible in 𝜆.

Definition 3.6 (Uniformity). A chameleon hash function CH = (GenCh,Ch,Col)
is uniform if for all messages 𝑥0, 𝑥1, and all trapdoors csk output by GenCh, and for
a uniformly random value 𝑟0, the value Col(csk, 𝑥0, 𝑟0, 𝑥1) is a uniformly distributed
random value as well.

This definition of uniformity, which is also used by [SS12], is slightly stronger than
the one in by Krawczyk and Rabin [KR00], which mandates only that Ch(cpk, 𝑥, 𝑟) is
distributed independently of 𝑥 .
In addition to these standard security properties, we require the trapdoor to be

extractable from a collision. While this key exposure property is typically considered
a problem in the literature [AM04; CZK04; SS12], it will be the crucial tool to ensure
extractability of our construction.

30

3.4 Construction

Definition 3.7 (Extractability). A chameleon hash function CH = (GenCh,Ch,Col)
is extractable if

• there exists a deterministic polynomial-time algorithm ValidatePk, which takes
as input a bitstring cpk and returns 1 if and only if there is a trapdoor csk such
that (cpk, csk) is a possible output of GenCh(1𝜆), and

• there exists a deterministic polynomial-time algorithm ExtractCsk with the fol-
lowing property: For all key pairs (cpk, csk) output by GenCh(1𝜆), and for all
collisions under cpk, i.e., for all input pairs (𝑥0, 𝑟0) and (𝑥1, 𝑟1) with 𝑥0 ≠ 𝑥1 and
Ch(cpk, 𝑥0, 𝑟0) = Ch(cpk, 𝑥1, 𝑟1), we have

ExtractCsk(cpk, 𝑥0, 𝑟0, 𝑥1, 𝑟1) = csk.

3.4.1 Intuition

One obvious but flawed approach to construct accountable assertions is to let the
assertion algorithm output a value 𝑟 such that ct = Ch(st, 𝑟). The intuition is that
if the attacker does this for two different statements st0, st1 in the same context ct,
then this would yield a collision Ch(st0, 𝑟0) = ct = Ch(st1, 𝑟1) in the chameleon hash
function, and one could extract the trapdoor. This simple idea does not work. The
reason is that ct would live in the output space of the chameleon hash function but
in all known constructions of chameleon hash functions compatible with discrete
logarithm key pairs as used in Bitcoin, the trapdoor can only be used to find collisions
efficiently, not to invert the function, so assertions cannot be computed efficiently.2

Full Idea. Observe that the aforementioned approach works, however, as a scheme
that supports only one context, for which inverting the chameleon hash is not nec-
essary. If the public key of the accountable assertions scheme includes Ch(𝑥∗, 𝑟 ∗)
for randomly chosen 𝑥∗ and 𝑟 ∗, then one can use the trapdoor to compute 𝑟 as an
assertion for a statement st such that Ch(𝑥∗, 𝑟 ∗) = Ch(st, 𝑟).

The basic idea of our construction is to generalize this approach to many contexts
by applying it recursively, resulting in a Merkle-style tree based on chameleon hash
functions. The contexts are associated with the leafs of the tree, and a digest of the
root node is part of the public key.

Let 𝑛 denote the arity and ℓ denote the depth of the tree. We explain the main steps
with the help of Fig. 3.2 for 𝑛 = 3. In our construction (a digest of) the context defines
2To the best of our knowledge, the only chameleon hash function that supports inverting is based on
the hardness of factoring [KR00]. Poettering and Stebila; Poettering and Stebila’s construction
of double-authentication-preventing signatures (DAPS) [PS14], which are similar to accountable

31

3 Penalizing Equivocation By Loss of Bitcoins

𝐴1,1,B1,1,𝐶1,1

𝐴2,1, 𝐵2,1,𝐶2,1 𝐴2,2, 𝐵2,2,C2,2

𝐴3,4, 𝐵3,4,𝐶3,4 𝐴3,5, 𝐵3,5,𝐶3,5 𝐴3,6, 𝐵3,6,C3,6

𝐴2,3, 𝐵2,3,𝐶2,3

Figure 3.2: A tree as in our construction

its position in the tree. That is, the context with the lowest digest is stored in the
leftmost leaf and the context with the highest digest in the rightmost node. Since
the tree is of exponential size, storing or computing the entire tree at once is not
possible. Instead, we compute each element𝐴𝑖, 𝑗 , 𝐵𝑖, 𝑗 ,𝐶𝑖, 𝑗 as a chameleon hash value of
its children, i.e., the element 𝐴𝑖, 𝑗 is computed as 𝐴𝑖, 𝑗 ··= Ch((𝐴𝑖+1,𝑠 , 𝐵𝑖+1,𝑠 ,𝐶𝑖+1,𝑠), 𝑟𝑖, 𝑗)
for some integer 𝑠 . So far, we have described an 𝑛-ary Merkle tree whose nodes are
computed via a chameleon hash function.

Nowwe explain how to handle an exponential number of nodes without computing
all of them. The basic idea is to exploit the collision property of the chameleon hash
function. Instead of computing the node 𝐴𝑖, 𝑗 as 𝐴𝑖, 𝑗 ··= Ch((𝐴𝑖+1,𝑠 , 𝐵𝑖+1,𝑠 ,𝐶𝑖+1,𝑠), 𝑟𝑖, 𝑗),
we replace all elements with dummy elements, i.e., 𝐴𝑖, 𝑗 ··= Ch(𝑥𝑖, 𝑗 , 𝑟𝑖, 𝑗). These ele-
ments are derived via a pseudo-random function PRFwith key 𝑘 , i.e., 𝑥𝑖, 𝑗 ··= PRF𝑘 (𝑖, 𝑗),
and can be computed on the fly. That is, to compute𝐴𝑖, 𝑗 , no other tree nodes are neces-
sary. Since all elements are computed deterministically, this modification results in an
exponential number of nodes without any connection to each other. We re-establish
this connection using the trapdoor of the chameleon hash function whenever we
assert a new element.

We illustrate the assertion operation with Fig. 3.2. Assume that we would like to as-
sert a statement in the context (associated with)𝐶3,6. To do so, we need to compute the
elements𝐴3,6, 𝐵3,6, 𝐴2,2, 𝐵2,2, 𝐴1,1,𝐶1,1 and the corresponding randomness for each node.
This information will suffice for the verifier to reconstruct the assertion path from𝐶3,6
to the root as in an ordinary Merkle tree. To compute the aforementioned elements,
we compute all dummy elements 𝑥𝐴3,6, 𝑥𝐵2,2, 𝑥𝐶1,1 and we also derive the randomness for
each node via PRF. Now, to assert the statement st in the context𝐶3,6, we compute the
first collision in 𝐶3,6 ··= Ch(𝑥𝐶3,6, 𝑟𝐶3,6). We use the trapdoor of the chameleon hash to
find a matching randomness 𝑟 ′ such that Ch(𝑥𝐶3,6, 𝑟𝐶3,6) = 𝐶3,6 = Ch(S(st), 𝑟 ′), where

assertions (Section 3.8), can be interpreted as an elaboration of the described idea.

32

3.4 Construction

S computes a digest of the statement st. Now, to assert (𝐴3,6, 𝐵3,6,𝐶3,6) with respect
to the parent 𝐶2,2, we need to find a second collision in 𝐶2,2, which is computed as
𝐶2,2 ··= Ch(𝑥𝐶2,2, 𝑟𝐶2,2). Again, we use the trapdoor to compute some randomness 𝑟 ′′
such that Ch(𝑥𝐶2,2, 𝑟𝐶2,2) = 𝐶2,2 = Ch(ℎ, 𝑟 ′′) where ℎ = (𝐴3,6, 𝐵3,6,𝐶3,6). We repeat this
procedure up to the root. Observe that independent of the statements asserted in
the contexts 𝐴3,6, 𝐵3,6, and 𝐶3,6, the value ℎ will always be the same because the
first collision is always computed in the leaf. This concludes the description of the
underlying asserted data structure.
Now, we will explain how to extract the secret key in the case that the sender

asserts two different statements in the same context. Let us assume that the sender
asserted two statements st0, st1 in the context associated with 𝐶3,6.

In the simplest case, there exist two pairs (st0, 𝑟0), (st1, 𝑟1) such thatCh(S(st0), 𝑟0) =
𝐶3,6 = Ch(S(st1), 𝑟1). (This is like in the “first approach”.) In a more complicated case,
we could have Ch(S(st0), 𝑟0) = 𝐶3,6 ≠ 𝐶

′
3,6 = Ch(S(st1), 𝑟1) because the attacker could

have used a collision in 𝐶2,2 to associate its rightmost child with a value 𝐶 ′3,6 ≠ 𝐶3,6.
But then, this collision can be used to extract the trapdoor. Generally speaking, we
will find a collision somewhere on the path from the leaf to the root. An algorithm
implementing this idea always terminates because a digest of the root is fixed in the
public key.

3.4.2 Full Construction

We present the full description of our scheme. Let ℓ and 𝑛 be positive integers defining
the height and the branching factor of a tree whose number of leafs 𝑛ℓ−1 is polynomial
in the security parameter 𝜆. Let PRF𝑘 be a pseudorandom function, and let H and
S be two collision-resistant hash functions.3 Furthermore, let G be a hash function
modeled as a random oracle. (We note that for extractability, it suffices that G is
collision-resistant.)
Furthermore, let L be a (non-cryptographic) hash function that maps bitstrings

(contexts) to leafs {1, . . . , 𝑛ℓ−1}. If collisions in L occur only with low probability, then
the assertion algorithm fails only with low probability. If the context space is equal
to the output space of L, then L can be the identity function. (Note that we do not
and cannot require L to be collision-resistant in a cryptographic sense because its
output space is only polynomially large in the security parameter 𝜆.)
Let CH = (GenCh,Ch,Col, ExtractCsk) be a collision-resistant, uniform, and

extractable chameleon hash function. The accountable assertion scheme allows
asserting in ℓ𝑛 contexts and is defined as follows.
3For the sake of readability, we omit the keys of the hash functions and assume they are drawn by
the key generation algorithm defined below.

33

3 Penalizing Equivocation By Loss of Bitcoins

Key Generation. The key generation algorithm chooses a key for the pseudo-
random function 𝑘 ··= {0, 1}𝜆 , and a key pair (cpk, csk) ··= GenCh(1𝜆) for the cha-
meleon hash function. Let 𝑝 be a unique identifier for the position of the root node.
The algorithm computes the entries in the root node as 𝑦0𝑖 ··= Ch(𝑥 1𝑖 , 𝑟 1𝑖) where
𝑥 1𝑖 ··= PRF𝑘 (𝑝, 𝑖, 0), 𝑟 1𝑖 ··= PRF𝑘 (𝑝, 𝑖, 1), and 𝑖 ∈ {1, . . . , 𝑛}. It sets 𝑧 ··= H(𝑦11 , . . . , 𝑦1𝑛) and
finally apk ··= (cpk, 𝑧), ask ··= csk, and auxsk ··= 𝑘 .

Assertion. The stateful assertion algorithm maintains an initially empty set 𝐿 of
used leaf positions. To assert a statement st in a context ct, the algorithm verifies
that L(ct) ∉ 𝐿 and fails by outputting ⊥ otherwise.4 Then, it adds L(ct) to 𝐿 and
computes the assertion path (𝑌ℓ , 𝑎ℓ , 𝑌ℓ−1, 𝑎ℓ−1, . . . , 𝑌1, 𝑎1) from a leaf 𝑌ℓ to the root 𝑌1.
Each node 𝑌𝑗 = (𝑦 𝑗

1 , . . . , 𝑦
𝑗
𝑛) stores 𝑛 entries at positions 𝑎 𝑗 ∈ {1, . . . , 𝑛} within the

node. 𝑌ℓ is the leaf that stores the entry with the number L(ct), counted across all
leaves from left to right, and 𝑎ℓ is the position of this entry within 𝑌ℓ . In the following,
let 𝑥 𝑗

𝑖
··= PRF𝑘 (𝑝 𝑗 , 𝑖, 0) and 𝑟 𝑗𝑖 ··= PRF𝑘 (𝑝 𝑗 , 𝑖, 1), where 𝑝 𝑗 is a unique identifier of the

position of the node 𝑌𝑗 .
Compute 𝑌ℓ : Assert the statement st with respect to 𝑌ℓ by computing 𝑟 ′ℓ𝑎ℓ ··=

Col(csk, 𝑥 ℓ𝑎ℓ , 𝑟
ℓ
𝑎ℓ
, S(st)). Compute the entry at position 𝑎ℓ as 𝑦ℓ𝑎ℓ ··= G(Ch(S(st)),

𝑟 ′ℓ𝑎ℓ), 𝑟
′ℓ
𝑎ℓ
) = G(Ch(𝑥 ℓ𝑎ℓ , 𝑟

ℓ
𝑎ℓ
), 𝑟 ′ℓ𝑎ℓ). Compute the remaining entries in node 𝑌ℓ as 𝑦ℓ𝑖 ··=

Ch(𝑥 ℓ𝑖 , 𝑟 ℓ𝑖) for 𝑖 ∈ {1, . . . , 𝑛} \ {𝑎ℓ }. The leaf 𝑌ℓ stores the entries (𝑦ℓ1 , . . . , 𝑦ℓ𝑛). Let
𝑧ℓ ··= H(𝑦ℓ1 , . . . , 𝑦ℓ𝑛) and let further 𝑓ℓ ··= (𝑦ℓ1 , . . . , 𝑦ℓ𝑎ℓ−1, 𝑦

ℓ
𝑎ℓ+1, . . . , 𝑦

ℓ
𝑛).

Compute the nodes up to the root for ℎ ··= ℓ − 1, . . . , 1: Assert the value 𝑧ℎ+1
with respect to 𝑌ℎ by computing 𝑟 ′ℎ𝑎ℓ ··= Col(csk, 𝑥ℎ𝑎ℓ , 𝑟

ℎ
𝑎ℓ
, 𝑧ℎ+1). Compute the entry

𝑦ℎ𝑎ℓ
··= Ch(𝑧ℎ+1, 𝑟 ′ℎ𝑎ℓ) = Ch(𝑥ℎ𝑎ℓ , 𝑟

ℎ
𝑎ℓ
). Compute the remaining entries in this node 𝑌ℎ as

𝑦ℎ𝑖 = Ch(𝑥𝑝
𝑖
, 𝑟

𝑝

𝑖
) for 𝑖 ∈ {1, . . . , 𝑛} \ {𝑎ℓ }. The node 𝑌ℎ stores the entries (𝑦ℎ1 , . . . , 𝑦ℎ𝑛).

Let 𝑧ℎ ··= H(𝑦ℎ1 , . . . , 𝑦ℎ𝑛) and 𝑓ℎ ··= (𝑦ℎ1 , . . . , 𝑦ℎ𝑎ℓ−1, 𝑦
ℎ
𝑎ℓ+1, . . . , 𝑦

ℎ
𝑛).

The assertion is 𝜏 ··= ((𝑟 ′ℓ𝑎ℓ , 𝑓ℓ , 𝑎ℓ), . . . , (𝑟
′1
1, 𝑓1, 𝑎1)).

Verification. The verification algorithm parses the assertion public key apk as
(cpk, 𝑧) and outputs 0 if ValidatePk(cpk) = 0.
Otherwise it parses 𝜏 as ((𝑟 ′ℓ𝑎ℓ , 𝑓ℓ , 𝑎ℓ), . . . , (𝑟

′1
1, 𝑓1, 𝑎1)), and checks the validity of a

statement st in a context ct by reconstructing the nodes (𝑌ℓ , 𝑌ℓ−1, . . . , 𝑌1) in a bottom-
up order, from the leaf 𝑌ℓ to the root 𝑌1, which contains the entries 𝑦11 , , . . . , 𝑦1𝑛 . The
verification algorithm outputs 1 if and only if H(𝑦11 , . . . , 𝑦1𝑛) = 𝑧.

4The set 𝐿 can be implemented efficiently by a Bloom filter [Blo70; TRL12], at the cost of a slightly
increased probability of failure. A Bloom filter is a space-efficient probabilistic data structure. It
may indicate ”𝑥 ∈ 𝐿“ incorrectly with small probability, but it never indicates ”𝑥 ∉ 𝐿“ incorrectly.

34

3.4 Construction

Extraction. The extraction algorithm takes as input (apk, ct, st0, st1, 𝜏0, 𝜏1). It com-
putes like the verification algorithm the assertion paths for both st0 and st1 from the
bottom up to the root until a position in the tree is found where the two assertion
paths form a collision in the chameleon hash function, i.e., a position in the tree
where values 𝑥0, 𝑟0 are used in the assertion path of st0 and values 𝑥1, 𝑟1 are used
in the assertion path of st1 such that Ch(𝑥0, 𝑟0) = Ch(𝑥1, 𝑟1). Then the extraction
algorithm outputs the secret key ask = csk ··= ExtractCsk(𝑥0, 𝑟0, 𝑥1, 𝑟1) computed via
the extraction algorithm of the chameleon hash function. If no such position is found,
the extraction algorithm fails and outputs ⊥.

Stateless and Complete Variant of the Construction. We can obtain stateless
and complete accountable assertions by slightly modifying the construction at the
cost of decreased efficiency as follows. We require the size 𝑛ℓ−1 of the output space of
L to be super-polynomial in the security parameter 𝜆, and additionally we require L
to be a cryptographic hash function modeled as a random oracle. We drop the check
”L(ct) ∉ 𝐿“ in the assertion algorithm, which then fails only with negligible probability
because L is collision-resistant. This eliminates the state from the authentication
algorithm. Furthermore, this modification makes the scheme complete, i.e., the
assertion algorithm always succeeds.

3.4.3 Security Analysis

We establish the security of the construction.

Theorem 3.1. If the chameleon hash function CH is extractable, the hash functions
H, G, and S are collision-resistant, then both the normal variant and the stateless and
complete variant of construction are extractable.

Proof. LetA a ppt attacker, and assume thatA breaks extractability, i.e.,A outputs a
public key apk and two assertions 𝜏0, 𝜏1 that are valid for different statements st0 ≠ st1
in the same context ct, but the extraction algorithm fails to extract the secret key ask
given these values.

By construction of the verification algorithm, the assertion paths of 𝜏0 and 𝜏1 belong
to two Merkle trees 𝑇0 and 𝑇1 such that i) the roots of 𝑇0 and 𝑇1 are identical, and
ii) the two leaves of 𝑇0 and 𝑇1 that belong to the context ct have different inputs
st0 ≠ st1 for the chameleon hash function; note that these leaves are at the same
position in 𝑇0 and 𝑇1. Thus, there is a node position on the assertion paths output
by A such that the nodes of 𝑇0 and 𝑇1 at this position form a collision either in the
chameleon hash function Ch, or in one of the collision-resistant hash functions H, G,
and S. By construction of the extraction algorithm, this algorithm would not fail to

35

3 Penalizing Equivocation By Loss of Bitcoins

output ask if the collision was a collision in the chameleon hash function. Thus, it is a
collision in one of hash functions, which happens only with negligible probability and
consequently, the event that A breaks extractability happens only with negligible
probability. □

Theorem 3.2. If PRF𝑘 is a pseudorandom function, the chameleon hash function CH
is uniform, collision-resistant, and extractable, and the hash function G is modeled as a
random oracle, then the (normal variant of) construction is secret.
If additionally the hash function L is modeled as a random oracle, then the stateless

and complete variant of the construction is secret.

Proof. First, we first give a proof for the stateless and complete variant of the con-
struction, in which the size of the output space of L is super-polynomial in the security
parameter 𝜆 and L is modeled as a random oracle.

Assume for contradiction that there is a ppt attackerA that breaks secrecy. That is,
with non-negligible probability, A outputs the secret key ask at the end of SecSA (𝜆)
without querying the assertion oracle for assertions of two different statements in
the same context. Let 𝑞(𝜆) be a polynomial that upper bounds the number of unique
assertion and random oracle queries of A(1𝜆).
We construct a reduction B against the collision-resistance of CH as follows:

Given a public key cpk, B(cpk) chooses a family {𝑄L
𝑖 }0≤𝑖<𝑞 (𝜆) of 𝑞(𝜆) bitstrings in

the output space of L and a family {𝑄G
𝑖 }0≤𝑖<𝑞 (𝜆) of 𝑞(𝜆) bitstrings in the output

space of G uniformly at random. (B can compute 𝑞(𝜆) because a description of the
polynomial 𝑞 is hardwired in B.) Then B(cpk) computes the root of the tree from
the bottom up, assuming that the leaf entry with the number 𝑄L

𝑖 , counted across
all leaves from left to right, is 𝑦𝑖 ··= 𝑄G

𝑖 . Entries that are roots of subtrees that do
not contain any of those 𝑞 entries are computed as random dummy entries, i.e.,
as Ch(𝑥, 𝑟) for random 𝑥 and 𝑟 . This computation of the root involves computing
incomplete assertions {𝜏𝑖}0≤𝑖<𝑞 (𝜆) , which are paths from the leaf entry with the
number 𝑄L

𝑖 to the root of the tree. These are incomplete in the following sense: since
the computation assumed fixed values 𝑦𝑖 for the leaf entries, the randomness value
for the level ℓ is not determined in 𝜏𝑖 = ((⊥, 𝑓 𝑖ℓ , 𝑎𝑖ℓ), (𝑟 𝑖ℓ+1, 𝑓 𝑖ℓ+1, 𝑎𝑖ℓ+1), . . . , (𝑟 𝑖1, 𝑓 𝑖1 , 𝑎𝑖1)).
(Recall that an honest assertion contains a randomness value 𝑟 ′ℓ𝑎ℓ for level ℓ such
that 𝑦𝑖 = G(Ch(S(st), 𝑟 ′ℓ𝑎ℓ), 𝑟

′ℓ
𝑎ℓ
).) For a randomness value 𝑟 , let 𝜏𝑖 (𝑟) be the complete

assertion that is obtained by setting the missing randomness value for level ℓ in 𝜏𝑖
to 𝑟 , i.e., 𝜏𝑖 (𝑟) ··= ((𝑟, 𝑓 𝑖ℓ , 𝑎𝑖ℓ), (𝑟 𝑖ℓ+1, 𝑓 𝑖ℓ+1, 𝑎𝑖ℓ+1), . . . , (𝑟 𝑖1, 𝑓 𝑖1 , 𝑎𝑖1)). Furthermore, let 𝑧 be the
obtained hash value of the root, and let apk ··= (cpk, 𝑧).
After computing the root of tree, B(cpk) calls ask ··= ASimAssert(·, ·) (apk). The

random oracles L and G and the assertion oracle SimAssert are implemented as
follows, where 𝐺 , 𝐼 , and 𝑅 are initially empty partial functions.

36

3.4 Construction

On query “G(𝑠, 𝑟)”: If 𝐺 (𝑠, 𝑟) has not yet been set, B chooses a random value 𝑦 in
the output space of G and sets 𝐺 (𝑠, 𝑟) ··= 𝑦 . Then, B returns 𝐺 (𝑠, 𝑟).

On query “L(ct)”: If 𝐼 (ct) has not yet been set, B chooses an index 𝑖 that is not yet
in the image of 𝐼 and sets 𝐼 (ct) ··= 𝑖 . Then, B returns 𝑄L

𝐼 (ct) .
On query “SimAssert(ct, st)”: If 𝐼 (ct) has not yet been set, L(ct) chooses an index 𝑖

that it is not yet in the image of 𝐼 and sets 𝐼 (ct) ··= 𝑖 . If𝑅(ct) has not been set,B chooses
a random value 𝑟 and sets 𝑅(ct) ··= 𝑟 . Finally, B sets 𝐺 (Ch(S(st), 𝑅(ct)), 𝑅(ct)) ··=
𝑄G
𝐼 (ct) and returns the complete assertion path 𝜏 𝐼 (ct) (𝑅(ct)).
After having obtained a candidate secret key ask from ASimAssert(·, ·) (apk), the

reduction B uses ask = csk to compute and output a collision (on an arbitrary
message) in the chameleon hash function Ch.

Observe thatB is efficient. In particular, the computation of the root produces a sub-
set of the parts of the tree that are required for 𝑞(𝜆) assertions, i.e., only polynomially
many nodes are computed.
We show that the simulation towards A is correct with overwhelming prob-

ability. Let Guess be the event that for some st and 𝑟 , the attacker A queries
G(Ch(S(st), 𝑅(ct)), 𝑅(ct)) and later SimAssert(ct, st), which in turn chooses 𝑅(ct) =
𝑟 . Since 𝑅(ct) is chosen uniformly at random, Guess occurs only with negligible
probability. By construction, SimAssert overwrites a value of the function 𝐺 that
has been set in query to G if and only if Guess occurs. Observe that as long as
this does not happen, the implementations of the oracles are consistent with each
other. Furthermore, the outputs of the random oracle are chosen randomly from
the correct output spaces, and the outputs of SimAssert are equally distributed to
honestly generated assertions. In particular, the distribution of randomness values in
the outputs of SimAssert and honestly generated assertions is identical because the
chameleon hash function is uniform.
Since A outputs the correct secret key with non-negligible probability by as-

sumption, and the simulation is correct with overwhelming probability, the attacker
B outputs a collision in Ch with non-negligible probability. This contradicts the
collision-resistance of Ch and concludes the proof for the stateless and complete
variant of the construction.

The proof for the normal variant of the construction, in which the size of the output
space of L is only polynomial in the security parameter 𝜆 and L is a non-cryptographic
hash function, is analogous. We just describe the three main differences: First, B fixes
the leaf entries (in the output space of G) of all leaves and uses them to precompute
entire tree, which consists of polynomially many nodes. Second, instead of choosing
fresh indices from the output space of 𝐼 , B chooses uniformly random values. Third,
B implements the set 𝐿 like the assertion algorithm. □

37

3 Penalizing Equivocation By Loss of Bitcoins

Failure Probability of the AssertionAlgorithm. If L is an adequate hash function,
the construction allows a context space of {0, 1}∗. In that case, the probability that
the assertion algorithm fails when given 𝑞 queries is the probability that two contexts
ct0 ≠ ct1 appear in the queries with L(ct0) = L(ct1). Under the assumption that
L : {0, 1}∗ → {1, . . . , 𝑛ℓ } has uniform outputs, its (birthday) collision probability is
below (𝑞 + 1)2/(2 · (𝑛ℓ + 1 − 𝑞)) [PRK98].

3.4.4 Instantiation and Implementation

We have implemented the construction given in the previous section. In this section,
we describe the details of the implementation, and we evaluate the practicality of the
construction, as it will dominate the computation as well as communication costs
of non-equivocation contracts. Our implementation is available online [Accas]. It
makes use of the libsecp256k1 library [Wui13], which is used in the Bitcoin Core
client, the most widely used implementation of Bitcoin.

Chameleon Hash Function. We use a chameleon hash function proposed by
Krawczyk and Rabin [KR00], which is secure if the discrete logarithm assumption
(Appendix A) holds in the underlying group. In the elliptic curve setting, the chame-
leon hash function CH = (GenCh,Ch,Col) with extraction algorithm ExtractCsk is
defined as follows.

GenCh(1𝜆): The key generation algorithm chooses a secure elliptic curve and a base
point 𝑔 of prime order 𝑞 where 𝑞 is at least 2𝜆 bits long. It chooses a random
integer 𝛼 ∈ ℤ∗𝑞 and returns (csk, cpk) = (𝛼,𝑋) with 𝑋 = 𝑔𝛼 .

Ch(𝑥 ; 𝑟): The input of the hash algorithm is a public key cpk = 𝑋 and a message
𝑥 ∈ ℤ∗𝑞 . It picks a random value 𝑟 ∈ ℤ∗𝑞 and outputs 𝑔𝑥𝑋 𝑟 .

Col(csk, 𝑥0, 𝑟0, 𝑥1): The collision finding algorithm returns 𝑟1 = 𝛼−1(𝑥0 − 𝑥1) + 𝑟0.

ExtractCsk(cpk, 𝑥0, 𝑟0, 𝑥1, 𝑥1): If the inputs are a collision, we have 𝑔𝑥0+𝛼𝑟0 = 𝑔𝑥1+𝛼𝑟1 .
The extraction algorithm returns 𝛼 = (𝑥0 − 𝑥1)/(𝑟1 − 𝑟0).

A public key can be validated by verifying that it is an elliptic curve point in the
correct prime-order group. To be compatible with Bitcoin keys, we work on the
prime-order elliptic curve secp256k1 [SEC2] at a security level of 128 bits.

Algorithms and Parameters. We use HMAC-SHA256 to instantiate the pseudoran-
dom function PRF, SHA256 to instantiate the collision-resistant hash function H, and
HMAC-SHA256 with fixed keys to instantiate the hash functions S and G.

38

3.5 Non-equivocation Contracts

The function L is the identity function, and we have chosen ℓ = 65 as the height
and 𝑛 = 2 as the branching factor of the tree. As a result, the statement space is {0, 1}∗,
the context space {0, 1}64, and the assertion algorithm never fails. (Alternatively, we
can implement L by a uniform hash function, allowing for the context space of {0, 1}∗
at the cost of a rare failure of the assertion algorithm. The failure probability of the
assertion algorithm is below 2−37 for 𝑞 = 10000 queries.)

Computation Cost. On a 2.10 GHz (Intel Core i7-4600U) machine with DDR3-1600
RAM, a chameleon hash evaluation takes 66 µswith a secret key, and the computation
time increases to 85 µs if only a public key is available.
Let ℓ denote the height of the authentication tree. The assertion algorithm of our

accountable assertion scheme in Section 3.4.2 requires 𝑛ℓ chameleon hash evaluations
using a secret key, while the verification algorithm of our accountable assertion
scheme requires ℓ chameleon hash evaluations using a public key.

In our test environment, the assertion algorithm takes approximately 3.9ms, while
the verification algorithm takes approximately 1.8ms to complete.

Storage Costs. A chameleon hash value is a point on the elliptic curve secp256k1
and thus requires 257 bits < 33 bytes in compressed form. A randomness input of the
chameleon hash function is an integer in the underlying field of the curve, and requires
32 bytes. An assertion is a sequence of ℓ = 64 chameleon hash values and chameleon
hash randomness inputs, and thus requires 64 · (33 bytes + 32 bytes) = 4160 bytes.
Storing 𝑞 = 10 000 assertions requires 42MB.

3.5 Non-equivocation Contracts
Putting everything together, we explain how to realize non-equivocation contracts
by combining accountable assertions and deposits. Non-equivocation contracts make
it possible to penalize paltering in distributed protocols monetarily.

Setup. Let 𝐴 be a party to be penalized by the loss of B𝑝 if it equivocates before
time 𝑇 and let 𝑑 be a parameter that depends on 𝑝 (we will discuss the choice of 𝑑 in
Section 3.5.1).

1. Party 𝐴 creates a Bitcoin key pair (pk, sk). Also, 𝐴 sets up the accountable
assertion scheme given in Section 3.4.2 with the Bitcoin key pair (pk, sk). That
is, 𝐴 predefines the secret key ask ··= sk of the accountable assertion scheme
and creates the corresponding public key apk = (pk, 𝑧) and the auxiliary secret
information auxsk as specified in the key generation algorithm.

39

3 Penalizing Equivocation By Loss of Bitcoins

2. Party 𝐴 creates a deposit of B𝑑 with expiry time𝑇 (Section 3.2.1) using pk. The
deposit may or may not specify an explicit beneficiary 𝑃 , who will receive the
funds in case of equivocation.

3. Every recipient 𝐵 expecting to receive asserted statements from 𝐴 waits until
the transaction that creates the deposit has been confirmed by the Bitcoin
network.

Usage. The distributed protocol is augmented as follows:

1. Whenever𝐴 is supposed to send a statement st to different protocol parties in a
context ct, party𝐴 additionally sends an assertion 𝜏 ··= Assert(ask, auxsk, ct, st).

2. Each recipient 𝐵 verifies that Verify(apk, ct, st, 𝜏) = 1 and that 𝑇 ≤ 𝑡 for the
current time 𝑡 . Recipient 𝐵 ignores the message if any of the checks fail.
Otherwise, 𝐵 sends the record (apk, ct, st, 𝜏) to the beneficiary 𝑃 , who will store
it. (If there is no explicit beneficiary, 𝐵 publishes the record to the miners, who
have an incentive to store it.)

Penalty. Equivocation is penalized as follows:

1. If 𝑃 (or the miners) detect an equivocation in two records (apk, ct, st0, 𝜏0) and
(apk, ct, st1, 𝜏1), they use the corresponding assertions to extract 𝐴’s secret key
sk ··= Ext(apk, ct, st0, st1, 𝜏0, 𝜏1).

2. Using sk, the beneficiary 𝑃 transfers the funds in the deposit to an own address.
(If there is no explicit beneficiary, the miners wait until the expiry time of the
deposit is reached. Then each miner will try to create a block that includes a
transaction transferring the deposit to an address owned by the miner.)

Observe that party 𝐴 will re-obtain full control over the deposit after its expiry time
𝑇 if it chooses not to equivocate.

3.5.1 Security Analysis

We analyze the consequences of an equivocation by 𝐴.

With Explicit Beneficiary. If an explicit beneficiary 𝑃 is specified in the deposit,
then the properties of the deposit ensure that only 𝑃 can spend the deposit in case
of an equivocation. In particular, the safety margins as discussed in Section 3.2.1
ensure that the transaction created by 𝑃 will have been confirmed already and thus

40

3.5 Non-equivocation Contracts

the deposit will have been withdrawn already when its expiry will be reached. The
size B𝑑 of the deposit should be equal to the penalty B 𝑝 .

Without Explicit Beneficiary. If no explicit beneficiary is given, the analysis is
more complicated because a malicious sender 𝐴 can participate in the mining process.

The goal of 𝐴 is to establish the validity of a transaction tx that withdraws the
funds in the deposit to an address controlled by party 𝐴, even though its secret key
has been published. Recall that such a transaction cannot be included in a block
before the expiry of the deposit (Section 3.2.1). First, we explain how to choose the
safety margin 𝑇conf to prevent 𝐴 from pre-mining the transaction tx. First observe
that, if 𝑇conf is too small (say 𝑇conf = 0 for simplicity), 𝐴 can pursue the following
strategy: Before the expiry time 𝑇 , party 𝐴 tries to mine a block B that includes tx
and builds upon the most current block Bcur. If party 𝐴 manages to find such a block
B, it will keep its block B secret at first. If additionally no other miner finds another
block B ′ building upon Bcur, the malicious sender 𝐴 will equivocate just before 𝑇 .
Then, by publishing B after time 𝑇 , 𝐴 will have a very high chance not to lose its
deposit because the transaction tx in B will most likely prevail. However, if party
𝐴 does not manage to find a block B, it will refrain from the equivocation attack.
This strategy is successful because the malicious sender avoids the risk of losing the
deposit by performing the equivocation only if success is almost guaranteed; it is a
variant of Finney attack [Fin11].

However, assume that 𝑇conf is larger, e.g., 𝑇conf = 60min. Then 60min before the
expiry time of the deposit, 𝐴 will need to have secretly pre-mined several sequential
blocks (one of them containing tx) on top of the current block Bcur to perform the
equivocation. Precisely, 𝐴 will need to have pre-mined more blocks expected to be
found by honest miners within the next 60min. This is considered infeasible if 𝐴
controls only the minority of the computation power in the network, which is the
one of the underlying assumptions for security of the Bitcoin network.

Size of Deposit (Without Explicit Beneficiary). While a safety margin 𝑇conf ex-
cludes pre-mining attacks, 𝐴 can try to mine the first block B after time 𝑇 . Even if
other miners find a contradicting block B ′ (and maybe more sequential blocks), 𝐴
can try to catch up with the competing blockchain, which may be worthwhile in the
case of a sufficiently large deposit.
We counter such attacks by a careful selection of the deposit size B𝑑 . Assume

that the mining power of the whole network and 𝐴’s fraction 𝑓 of it stay constant.
If 𝑓 < 0.5, the probability that its block B prevails is 𝑓 /(1 − 𝑓) [Ros14]. Thus the

41

3 Penalizing Equivocation By Loss of Bitcoins

expected penalty 𝐸 for 𝐴 is 𝐸 = 𝑑 − 𝑑 · 𝑓 /(1 − 𝑓). At minimum, we require 𝐸 ≥ 𝑝 ,
which yields 𝑑 ≥ 𝑝 (𝑓 − 1)/(2𝑓 − 1). For example, a deposit of 𝑑 ≥ 3𝑝/2 is required
for a malicious fraction of 𝑓 = 0.25.

3.5.2 Application Examples

Many systems require users to trust in a service provider for data integrity. However,
the service provider may choose to equivocate and show different users different
states of the system. For instance, this has indeed been reported in the case of online
social networks. A user of the Chinese microblogging service Sina Weibo claims that
Sina Weibo censored his posts by not showing them to other users [Son11]. However,
the server showed the posts to the user himself to avoid complaints from him.

To detect misbehavior of the service provider, a variety of systems have been pro-
posed for different scenarios, e.g., SUNDR [MS02] for cloud storage, SPORC [Fel+10]
for group collaboration, Application Transparency [Fah+14] for software distribution,
and Frientegrity [Fel+12] for social networks.
They basically ensure the following property: If the server violates the linearity

of the system by showing contradicting states to different users, the server cannot
merge these states again without being detected. Furthermore, if users have received
contradicting states and exchange them via out-of-band messages, they can detect and
prove the wrongdoing of the server. (The property is called fork consistency [MS02;
CSS07]). Observe that a violation of linearity is a case of equivocation. Although
clients can verify the append-only property, i.e., that a new system state is a proper
extension of an old known system state, a malicious server can still provide different
extensions to different clients.
Non-equivocation contracts are applicable in these settings. The context is often

a revision number of the state, and the statement is a digest of the state itself at
this revision number. Depending on the system, the context may be more complex
than a simple increasing revision number. To avoid sacrificing performance, Frien-
tegrity [Fel+12] for instance does not maintain a total order on all operations in the
system but only a total order per object. In this case, the context is a pair consisting
of an object identifier and a per-object revision number.
As a concrete application, imagine a non-equivocation contract between a cloud

storage provider and a client company, which is willing to pay a slightly higher
usage fee as an insurance against accidental or malicious equivocation. The client
company is specified as the beneficiary of the deposit. Then the resulting contract
serves as cryptographically-enforced insurance. If the service provider equivocates
to individual employees of the client company, the company receives the deposit as a
penalty without the need to rely on a trusted third party.

42

3.6 Asynchronous Payments

In another example scenario, consider a market with two main providers of app
stores. Both providers put down a global deposit without explicit beneficiary. If one
of the providers becomes malicious and sends different binaries of the same app (and
version) to different users, then it will lose its deposit. Thus, after the expiry of the
deposit, the malicious provider will have to put down a new second deposit to remain
in business and competitive with the honest provider, even if the loss of reputation
was small. In comparison, the honest service provider can re-use the funds to put
down a second deposit after the first deposit has expired. Alternatively, the malicious
provider could choose not to put down a second deposit, but then the honest provider
can do the same while getting the funds back.

3.6 Asynchronous Payments

As explained in Section 3.2.2, payment channels [Spi13; BIP65] allow a party 𝐴 to
perform many payments to a predefined payee 𝐵 up to a predefined cumulative
amount B𝑑 . Once the channel is established, it is possible for 𝐴 to send funds to 𝐵
even when both parties are offline.
However, if the payee 𝐵 is a distributed system, i.e., 𝐵 actually consists of many

unsynchronized entities 𝐵1, . . . , 𝐵𝑛 , then offline transactions are not secure. The
problem is that 𝐴 can double-spend the same funds to 𝐵𝑖 and 𝐵 𝑗 , who cannot talk
to each other because they are offline and thus not synchronized. When 𝐵 wants to
close its channel and settle the payment in the Bitcoin network, it can settle these
funds only once. We can secure offline transaction through payment channels in
cases where a reasonable finite penalty for double-spending can be found.

Example: Public Transport. For an illustrative example, assume 𝐵 is a company
offering public transport on buses. 𝐴 would like to use 𝐵’s services as a passenger.
Thus, 𝐴 establishes a payment channel to 𝐵 by sending a transaction to the Bitcoin
network. Once the transaction is confirmed, the payment channel is open and 𝐴 can
use it to pay for several single rides when entering one of 𝐵’s buses 𝐵𝑖 up to the limit
B𝑑 of the channel. It is reasonable to assume that 𝐴 and 𝐵 have at most sporadic
Internet connectivity in this mobile setting, so the payment should be performed
offline. Still, 𝐵’s buses are synchronized every night.
This system is flawed: 𝐴 can double-spend to the buses of 𝐵. Assume the current

state in the channel is 𝑏 = 3. Then 𝐴 can ride two (or more) buses 𝐵𝑖 and 𝐵 𝑗 on the
same day, by presenting them the same proof that the channel state has been update
to 𝑏 = 4. The bus company 𝐵 will notice only at night during the synchronization
that it has been defrauded by 𝐴.

43

3 Penalizing Equivocation By Loss of Bitcoins

Using accountable assertions, we can secure this protocol. Then 𝐵 can penalize the
double-spending party 𝐴 when closing the channel. A reasonable penalty is at least
the fare for a day ticket (valid for several rides on the same day).

Basic Idea. The idea of the modified protocol is as follows: Since the points of sale
𝐵𝑖 are offline and not synchronized, we let party 𝐴 keep the state of the payment
channel. The state consists essentially of just the current value of the channel, and
a revision number of the state. To ensure that party 𝐴 cannot modify the state, it is
signed by the individual points of sale 𝐵𝑖 . However, the user can still show an old
signed state and re-use it. This is exactly where we can use accountable assertions:
Whenever the party 𝐴 would like to perform a payment through the channel and
claims that the latest state has revision number 𝑘 , we require it to assert the statement
“I buy a ticket with serial number 𝑟” in context ct = 𝑘 , where st = 𝑟 is a fresh nonce
created by 𝐵𝑖 . Thus, if 𝐴 reuses an old signed state, the key of 𝐴 will be extractable.

3.6.1 Full Protocol

Our full protocol for asynchronous payment channels consists of three phases. It uses
an unforgeable signature scheme with algorithms Sign and VrfySig, and assumes that
𝐵 and its points of sale 𝐵𝑖 have corresponding key pairs (spk𝐵, ssk𝐵) and (ssk𝐵𝑖

, spk𝐵𝑖
),

respectively.

Setup. To create an asynchronous payment channel from 𝐴 to 𝐵 with amount B𝑑 ,
penalty B𝑝 , and expiry time 𝑇 , the parties execute the following steps:

1. 𝐴 sets up a Bitcoin key pair (pk, sk) and accountable assertions keys (apk, ask =

sk, auxsk) as for non-equivocation contracts (Section 3.5).

2. 𝐴 creates a payment channel with 𝐵 with amount B (𝑑 + 𝑝) and expiry time 𝑇
(Section 3.2.2).

3. After the channel is confirmed by the Bitcoin network, 𝐵 provides 𝐴 with a
signed statement 𝜎 = Sign(ssk𝐵, state), where state = (𝑇,𝑑, 𝑘 = 0, 𝑏 = 0, 𝐵).

Payment. Whenever 𝐴 would like to pay B𝑥 offline at some point of sale 𝐵𝑖 , the
parties execute the following protocol. Every point of sale 𝐵𝑖 keeps an initially empty
blacklist 𝑋 .

1. 𝐵𝑖 creates a fresh nonce 𝑟 and sends it to 𝐴.

44

3.6 Asynchronous Payments

2. 𝐴 sets 𝑏 ··= 𝑏 + 𝑥 and 𝜏 ··= Assert(ask, auxsk, 𝑘, 𝑟). 𝐴 creates a transaction tx
updating the channel to state 𝑏, and sends (tx, 𝜏, state, 𝜎) to 𝐵𝑖 .

3. 𝐵𝑖 receives (tx∗, 𝜏∗, state∗, 𝜎∗), parses state∗ as (𝑇 ∗, 𝑑∗, 𝑘∗, 𝑏∗, 𝐵 𝑗), and verifies
all the following conditions:

• VrfySig(spk𝐵 𝑗
, state∗, 𝜎∗) = 1 (valid state)

• Verify(apk, 𝑘∗, 𝑟 , 𝜏∗) = 1 (valid assertion)
• tx∗ is a valid transaction that updates the state of the channel to 𝑏∗ + 𝑥
• 𝑏∗ + 𝑥 ≤ 𝑑∗ (unexhausted channel)
• 𝐴 ∉ 𝑋 (𝐴 is not blacklisted)
• 𝑡 < 𝑇 ∗ for the current time 𝑡 (unexpired deposit)

If any of the checks fail, 𝐵𝑖 aborts the payment. Otherwise, 𝐵𝑖 computes a new
state state′ = (𝑇 ∗, 𝑑∗, 𝑘∗ + 1, 𝑏∗ + 𝑥, 𝐵𝑖), signs it via 𝜎 ′ ··= Sign(ssk𝐵𝑖

, state′), and
sends (state′, 𝜎 ′) to 𝐴. 𝐵𝑖 records tx and 𝜏 and provides service to 𝐴.

4. 𝐴 updates state ··= state′ and 𝜎 ··= 𝜎 ′.

Synchronization. At the end of each time period, 𝐵 synchronizes with each point
of sale 𝐵𝑖 :

1. 𝐵 collects all transactions recorded by point of sale 𝐵𝑖 , which can delete the
transactions afterwards.

2. 𝐵 verifies that there are no double-spends among all transactions collected so
far. If 𝐵 detects that 𝐴 has double-spent, 𝐵 extracts 𝐴’s secret key sk and uses
it to sign a transaction that spends the whole payment channel worth B (𝑑 + 𝑝)
to an address under the control of 𝐵. 𝐵 adds 𝐴 to the blacklist 𝑋 , and sends
updates of the blacklist 𝑋 to each point of sale 𝐵𝑖 .

3. Before time𝑇 , party 𝐵 closes the channel (Section 3.2.2), adds 𝐴 to the blacklist
𝑋 , and sends updates of the blacklist 𝑋 to each point of sale 𝐵𝑖 .

3.6.2 Security Analysis

Observe that party𝐴 can double-spend on atmost one day because it will be blacklisted
afterwards.

Assume 𝐴 has successfully double-spent. Since the signed state contains the value
𝑏 of the payment channel, 𝐴 must have shown the same signed state with some
revision number 𝑘 twice successfully. But then, 𝐴 has sent two assertions 𝜏0 and 𝜏1

45

3 Penalizing Equivocation By Loss of Bitcoins

that are valid in the same context ct = 𝑘 . Since the corresponding statements st0 and
st1 are fresh nonces, they differ with overwhelming probability. Thus 𝐵 can extract
𝐴’s secret key successfully, and close the payment channel at the maximum value
B (𝑑 + 𝑝). Since the points of sale 𝐵𝑖 accept payments only up to B𝑏, the penalty for
𝐴 in case of double-spending is at least B𝑝 .

3.7 Related Work

In this section, we discuss related work to non-equivocation. Related work for DAPS
is discussed in Section 3.8.

Trusted Hardware. One way to prevent equivocation is to rely on trusted hardware
assumptions [Cle+12; Bac+14; Lev+09; Chu+07]. In particular, the resilience of tasks
such as reliable broadcast, Byzantine agreement, and multiparty computation can
be improved using a non-equivocation functionality based on trusted increment-
only counters in combination with digital signatures. Unlike our approach, which
disincentives parties from equivocation, these systems fully prevent it but require a
strong assumption about the hardware.

Smart Contracts. Cryptocurrencies with more expressive (e.g., Turing-complete)
script languages such as Ethereum [But13] offer a simpler way to achieve non-equivo-
cation contracts. In such systems, it is possible to create a deposit that can be opened
when presented with cryptographic evidence of equivocation. As digital signatures
suffice to provide such evidence and extractability is not required, they can be used
instead of accountable assertions. The monetary penalty is enforced by the consensus
rules of the currency. In contrast, the distinguishing advantage of non-equivocation
contracts based on our construction of accountable assertions is its full compatibility
with the current Bitcoin system.

Traditional E-Cash. Similar to accountable assertions, Chaumian e-cash systems
and one-show anonymous credential systems [CFN88; BL13; CHL05; CL01] allow a
secret to be revealed in case of double-spending. In these settings, the revealed secret
is not used as a key but as the identity of the double-spender, only i.e., the anonymity
is revoked upon double-spending.

However, these protocols are not applicable to our scenario because they work in
a fundamentally different setting: they rely on the property that a central authority
(a bank), which holds a secret, issues coins by generating cryptographic tokens. In

46

3.8 Comparison to DAPS

the P2P setting of Bitcoin, no central coin issuer exists, and the cryptographic secrets
are generated by the peers individually and independently.

3.8 Comparison to DAPS
Similar to accountable assertions, the idea of double-authentication-preventing signa-
tures (DAPS) [PS14; PS17] is prevent the authentication of different statements in the
same context by providing an algorithm that extracts the secret key in case of such
double-authentication.5 DAPS are a stronger primitive than accountable assertions,
with two main differences. First, DAPS do not allow for “auxiliary secret information”
in the strongest security notion, i.e., the full secret key must be extractable in case of
double-authentication. Second, DAPS are unforgeable like ordinary signatures. Note
that despite realizing a stronger primitive, the DAPS construction by Poettering and
Stebila [PS14; PS17] is based on the hardness of factoring and thus not suitable for
our concrete application to Bitcoin, which uses discrete logarithm key pairs.

Despite DAPS being a stronger primitve in general, Theorem 3 captures that certain
accountable assertions are DAPS.

Theorem3.3. A secret and extractable accountable assertion scheme that is additionally
complete, has a stateless assertion algorithm, and has no auxiliary secret information is
a double-signature extractable DAPS scheme.

Proof. An accountable assertion scheme with a stateless assertion algorithm and
without auxiliary information is syntactically a DAPS scheme. (This allows us to stick
to the terminology of accountable assertions in the following, even though we are
relating accountable assertions and DAPS).
Since there is no auxiliary information by assumption, it is immediate that ex-

tractability of accountable assertions implies double-signature extractability [PS14;
PS17] of DAPS.

For unforgeability, assume towards contradiction that a ppt attacker A(1𝜆) breaks
existential unforgeability under chosen message attacks [PS14; PS17]. In other words,
the attacker outputs a valid assertion 𝜏 on a pair (ct, st) such that (i) the pair (ct, st)
has not been used as a query for the signing (or assertion) oracle, and (ii) the attacker
has not queried the assertion oracle to assert two different statements in some context
because unforgeability can be broken trivially in this case.

We distinguish two cases: In the first case, the attacker has not queried the oracle to
assert any statement in the context ct. Then the reduction queries its assertion oracle
5The terminology used by Poettering and Stebila [PS14; PS17] is different. While we speak of “asserting
a statement st in a context ct”, they speak of “signing a message st for a subject ct.”

47

3 Penalizing Equivocation By Loss of Bitcoins

to assert some other statement st ′ ≠ st in ct. The oracle replies with an assertion
𝜏 ′ ≠ ⊥ because the accountable assertion scheme is complete. Then the reduction
uses the extraction algorithm to extract ask from 𝜏 and 𝜏 ′. This violates the secrecy
of the accountable assertion scheme.
In the second case, the attacker has queried the oracle to assert some statement

st∗ in the context ct. (Observe that st∗ ≠ st: otherwise 𝜏 would not be a valid forgery
on (ct, st) because the attacker has queried the oracle for (ct, st) = (ct, st∗).) The
reduction has relayed the answer 𝜏∗ of the oracle (ct, st∗) query to the attacker. The
reduction uses the extraction algorithm to extract ask from 𝜏 and 𝜏∗. This violates
the secrecy of the accountable assertion scheme. □

Our Construction Yields Efficient DAPS. It was left as an open problem to con-
struct DAPS based on Merkle trees or chameleon hash functions [PS14; PS17]. We
can solve these problems in the random oracle model. We modify the stateless and
complete variant of the construction (Section 3.4.2) as follows. Instead of choosing
a key 𝑘 for the pseudorandom function 𝐹 at random, we set 𝑘 ··= K(csk) for a hash
function K modeled as random oracle, where csk is the trapdoor of the chameleon
hash function. This eliminates the auxiliary secret information. However, this mod-
ified construction achieves only extractability with trusted setup, i.e., if the key is
generated honestly. (We share this limitation with the basic construction proposed
by Poettering and Stebila [PS14; PS17].) Indeed, only the extractability of csk can be
guaranteed. Suppose the attacker can generate the keys. If the attacker just choose 𝑘
uniformly at random, knowing csk does not help to obtain 𝑘 . Consequently, signing
messages is not possible with csk alone.

Nevertheless, our modified construction is extractable with trusted setup, and it is
more efficient than the initial construction by Poettering and Stebila [PS14; PS17]. On
a 2.10 GHz (Intel Core i7-4600U) machine with DDR3-1600 RAM, their construction
takes about 6700ms for signing and 1500ms for verification with asymmetric key size
2048 bits and hash size 160 bits. Our construction with corresponding parameters (in
particular ℓ = 160) takes about 9.9ms for signing and 4.6ms for verification.Signatures
in their construction need about 40 kB, while signatures in our construction need
about 4 kB.

Other DAPS Constructions. After the initial publication of our results [RKS15],
Bellare, Poettering, and Stebila [BPS17] proposed new DAPS constructions based on
RSA and factoring. These constructions beat our construction by an order of magni-
tude in running time and by two orders of magnitude in signature size. Boneh, Kim,
and Nikolaenko [BKN17] propose post-quantum DAPS based on lattice assumptions,

48

3.8 Comparison to DAPS

and Li et al. [Li+17] propose DAPS based on pairings. Furthermore, Derler, Ramacher,
and Slamanig [DRS] and Poettering [Poe18] propose DAPS in the discrete logarithm
setting with very efficient running time and signature size, but these constructions
have public keys of size polynomial in the size of the context space, and consequently
only support only a small number of contexts and are not suitable when the context
is a large bitstring such as the output of a hash function (e.g., when the goal is to
assert statements in contexts such as Bitcoin transactions identified by their hash).
We refer to Poettering [Poe18] for an excellent historic overview of DAPS schemes.

Our construction remains the one with the smallest public keys and the only known
scheme in the discrete logarithm setting with an exponentially large context space. If
a small context space is acceptable, then the DAPS scheme by Derler, Ramacher, and
Slamanig [DRS] can in fact be used as an accountable assertions scheme to implement
non-equivocation contracts in Bitcoin more efficiently. (However, the scheme by
Poettering [Poe18] cannot be used because it does not support the extraction of a
single secret key. Instead, the secret key consists of many secret discrete logarithms
among which only one can be extracted, and a trusted setup assumption is necessary
to ensure that the other discrete logarithms can be recovered as well.)
In terms of security, all known construction in their basic variant are only ex-

tractable with trusted setup. The construction by Poettering and Stebila [PS14; PS17]
can be made secure against malicious key generation at the cost of adding rather
expensive zero-knowledge proofs to show that the public key is a well-formed Blum
integer (a product of two primes 𝑝 , 𝑞 with 𝑝 ≡ 𝑞 ≡ 3 mod 4). In contrast, we are
not aware of any (practical) approach to make our construction or the constructions
by Bellare, Poettering, and Stebila [BPS17] secure without trusted setup. While zero-
knowledge proofs can be applied in principle, it seems necessary to prove relations
involving a preimage of a hash function.

49

4 Peer-to-peer Mixing and
Unlinkable Bitcoin Transactions

Bitcoin addresses are not directly associated with the real names and identities of
their users: the addresses are pseudonyms. As a result, Bitcoin is often perceived to
provide a decent level of anonymity. However, this perception of privacy is wrong.
Due to the lack of a trusted party verifying transactions, Bitcoin relies on a public
transaction ledger to enforce public verifiability of transactions between addresses,
and every transaction is effectively carried out in public. By simply observing the
transaction ledger on the blockchain, pseudonyms belonging to the same user can
be linked using heuristics [Mei+13; Bar+12; SMZ14; KKM14; RH11; And+13; MO15;
Nic15], and consequently Bitcoin payments sent or received by a particular user can
be identified. Due to this linkability, cryptocurrencies may ultimately provide less
anonymity than traditional banking.

Coin mixing has emerged as a technique to overcome linkability while maintaining
full compatibility with the current Bitcoin protocol. In coin mixing, a set of peers
sends their coins to freshly created addresses in order to ensure that these fresh
addresses are unlinkable to their previously used addresses. A promising solution
in this direction is CoinShuffle [RMK14], a P2P mixing protocol based on a mixnet
run by the peers to ensure the unlinkability of inputs and output addresses in a
CoinJoin [Has11; Max13A], i.e., a jointly created mixing transaction with multiple
inputs (from multiple users) and multiple outputs.
However, a run with a decent anonymity set of 𝑛 = 50 peers takes about three

minutes to complete [RMK14] in an Internet-like setting, assuming that every peer is
honest. In the presence of 𝑓 disruptive peers trying to impede the protocol, 𝑂 (𝑓𝑛)
communication rounds are required, most of them inevitably taking longer due to
the disruptive peers delaying their messages intentionally, which arguably hinders a
practical deployment of CoinShuffle.
The large number of rounds in CoinShuffle stems from the fact that it relies on a

cascade of mixes in which each participating peer implements a mix. All peers need
to be actively involved in creating anonymity because they do not trust each other,
and following the P2P trust model of Bitcoin, there should be no trusted third party.
Therefore the main tool to build a more efficient coin mixing protocol is a more

51

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

efficient anonymous communication protocol that is compatible with a P2P trust
model. We call such a protocol a P2P mixing protocol.

In this chapter, we improve the efficiency of P2P mixing protocols and bring them
from the realm of feasibility to the realm of practicality. This enables us to provide a
practical P2P coin mixing solution for Bitcoin which improves anonymity without
requiring changes to the Bitcoin system. We provide four main contributions.

Conceptualizing P2P Mixing. As our first contribution, we conceptualize P2P
mixing as a particular form of anonymous communication. A P2P mixing protocol
enables a set of mutually distrusting peers to publish their messages simultaneously
and anonymously without any trusted or untrusted third-party anonymity proxies.

We design an interface and execution model for P2P mixing that allows an easy inte-
gration in different application scenarios. Our generic treatment has turned out to be
useful beyond the scope of this dissertation, e.g., for online credit networks [MRK17],
which suffer from similar privacy problems as cryptocurrencies [MZK16].

The DiceMix Protocol. Although some existing anonymous communication sys-
tems [CF10; Syt+14; RMK14] satisfy the P2P mixing requirements, their efficiency is
not optimal. As our second contribution, we present the new P2P mixing protocol
DiceMix, which builds on the Dining Cryptographers network (DC-net) protocol
by Chaum [Cha88]. DiceMix handles collisions by redundancy, and disruption by
revealing session secrets to expose malicious peers. It requires only 4 + 2𝑓 rounds
in the presence of 𝑓 malicious peers, i.e., only four rounds if every peer behaves
honestly. The resulting communication round complexity is by a linear factor better
than in state-of-the-art approaches.

The CoinShuffle++ Protocol. As our third contribution, we apply DiceMix to
Bitcoin. In particular, building on the CoinJoin paradigm [Has11; Max13A] and
DiceMix, we present CoinShuffle++, a practical decentralized mixing protocol for
Bitcoin users. CoinShuffle++ not only is considerably simpler and thus easier to
implement than its predecessor CoinShuffle [RMK14] but also inherits the efficiency
of DiceMix and thus outperforms CoinShuffle significantly.
We provide a proof-of-concept implementation of the DiceMix protocol, (with

parameters as necessary for CoinShuffle++) and evaluate it in Emulab [Whi+02]. Our
results show that in an Internet-like setting, 50 peers can anonymously broadcast their
messages (and create a successful coin mixing transaction in CoinShuffle++) in about
eight seconds, instead of the almost three minutes required by the state-of-the-art
protocol CoinShuffle.

52

4.1 Background on P2P Mixing

In order to make CoinShuffle++ accessible and to ease implementation, we provide
precise pseudocode for CoinShuffle++ as well as the underlying DiceMix protocol.

A Generic Attack on P2P Mixing Protocols. As our fourth contribution, we
present a deanonymization attack on existing P2P mixing protocols that guarantee
termination in the presence of disruptive peers. We exemplify the attack on theDissent
shuffle protocol [CF10; Syt+14] and then generalize the attack to demonstrate that
no P2P mixing protocol simultaneously supports user-chosen fixed input messages,
provides anonymity, and terminates in the presence of disruptive peers.

The proposed attack is similar to statistical disclosure attacks across several protocol
runs (e.g., [Bor+07; WSF13]) but works with certainty because a protocol which
is supposed to terminate successfully can be forced to start a new run to ensure
termination. Finally, we discuss how DiceMix resists this attack by requiring fresh
and discardable input messages (e.g., cryptographic keys never used before), and we
discuss why this is not a problem for applications such as coin mixing.

4.1 Background on P2P Mixing

Chaum [Cha81] introduced the concept of anonymous digital communication in the
form of mixing networks (or mixnets). In the mixnet protocol, a batch of encrypted
messages from users is decrypted, randomly permuted, and relayed by a sequence
of routers to avoid individual messages getting traced through the network. The
original mixnet protocol, as well as its successors such as onion routing [GRS96],
AN.ON [AN.ON], and Tor [DMS04], inherently require access to a set of geographi-
cally distributed third-party routers such that at least some of them are trusted to not
break peers’ anonymity.
Starting with the Dining Cryptographers network (DC-net) protocol [Cha88],

another line of research on anonymous communication networks emerged, in which
peers do not depend on any third-party routers and instead communicate with each
other to send their messages anonymously. While the DC-net protocol can guarantee
anonymity against an adversary controlling a subset of peers, it is prone to disruption
by a single malicious peer who sends invalid protocol messages (active disruption),
or simply omits protocol messages entirely (passive disruption). Moreover, a DC-net
protects the anonymity of the involved malicious peers, making it impossible for
honest peers to detect and exclude the malicious peer.

To address this termination issue, recent successors of the DC-net protocol [BB89;
GJ04; CF10; Syt+14; FG14; Fra14] incorporate cryptographic accountability mech-
anisms against active disruptions. The employed techniques are either proactive,

53

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

e.g., zero-knowledge proofs proving the validity of sent messages [GJ04], or reac-
tive, e.g, the revelation of session secrets to expose and exclude malicious disruptors
after a failed protocol run [CF10]. These protocols have demonstrated that, for a
set of mutually distrusting peers, sending their messages anonymously is feasible
purely by communicating with each other in a P2P manner. Moreover, given the
lack of anonymity in P2P cryptocurrencies such as Bitcoin [Mei+13; Bar+12; SMZ14;
KKM14; RH11; And+13; MO15], these protocols have led to real-world P2P coin mixing
systems [RMK14; NxtSh; BCHSh].
Nevertheless, these solutions are still not ideal: with communication rounds qua-

dratic in the worst case with many malicious peers, these current pure P2P solu-
tions [CF10; Syt+14; RMK14] do not scale as the number of participating peers grows.
For instance, the mixnet used in the state-of-the-art Bitcoin P2P mixing protocol
CoinShuffle [RMK14] requires a few minutes to anonymize the communication of 50
peers if every peer is honest, and much longer in the presence of malicious peers.

4.2 Conceptualizing P2P Mixing
A P2P mixing protocol [CF10; RMK14; Zie+15] allows a group of mutually distrusting
peers, each having an input message, to simultaneously broadcast their messages in
an anonymous manner without the help of a third-party anonymity proxy such as an
onion router or a mix server. An attacker controlling the network and some peers
should not be able to tell which of the messages belongs to which honest peer. In
more detail, the anonymity set of an individual honest peer should be the set of all
honest participating peers, and we expect the size of this set to be at least two.

The requirement to achieve sender anonymity without the help of any third-party
anonymity proxy makes P2P mixing fundamentally different from most well-known
anonymous communication techniques in the literature. Unlike standard techniques
such as onion routing or mix cascades, P2P mixing relies on a much weaker trust
assumption and is expected to terminate successfully and provide a meaningful
anonymity guarantee in the presence of an attacker controlling all but two peers. As a
consequence, each peer must be actively involved in the anonymous communication
process which comes with inherent restrictions and expense.

4.2.1 Setup and Communication Model

We assume that peers are connected via a bulletin board, e.g., a server receiving
messages from each peer and broadcasting them to all other peers. We stress that
sender anonymity will be required to hold even against a malicious bulletin board;
the bulletin board is purely a means of communication.

54

4.2 Conceptualizing P2P Mixing

We assume the bounded synchronous communication setting, where time is divided
into fixed communication rounds such that all messages broadcast by a peer in a
round are available to the peers by the end of the same round, and absence of a
message on the bulletin board indicates that the peer in question failed to send a
message during the round.
Such a bulletin board can be seamlessly deployed in practice, and in fact already-

deployed Internet Relay Chat (IRC) servers suffice.1 The bulletin board can alterna-
tively be substituted by an (early stopping) reliable broadcast protocol [ST87; DRS90]
if one is willing to accept the increased communication cost.
We assume that all peers participating in a P2P mixing protocol are identified

by verification keys of a digital signature scheme, and that the peers know each
other’s verification keys at the beginning of a protocol execution. To find other peers
willing to mix messages, a suitable bootstrapping mechanism is necessary. Note that
a malicious bootstrapping mechanism may hinder sender anonymity by preventing
honest peers from participating in the protocol and thereby forcing a victim peer to
run the P2P mixing protocol with no or only a few honest peers, decreasing the size of
the victim’s effective anonymity set. This is a realistic threat against any anonymous
communication protocol in general, and we consider protection against a malicious
bootstrapping mechanism orthogonal to our work.

4.2.2 Inputs and Outputs

Our treatment of a P2P mixing protocol is special with respect to inputs and outputs.
Regarding inputs (the messages to mix), allowing the adversary to control all but two
peers introduces an unexpected requirement, namely, that input messages must be
randomized and freshly sampled from a large enough space. Regarding outputs, a
P2P mixing protocol according to our definitions provides the feature that the peers
explicitly agree on the protocol output, i.e., the set of mixed messages.

Freshness and Discardability of Input Messages. In contrast to state-of-the-art
anonymous and terminating P2P mixing protocols such as the Dissent shuffling
protocol [CF10] and the protocol by Golle and Juels [GJ04], we require that input
messages to be mixed are freshly drawn from a distribution with sufficient entropy,
e.g., input messages can be random bitstrings or public keys never used before.
Furthermore, if the honest peers exclude a peer from the protocol, e.g., because the
peer appears offline or is deemed malicious, all input messages used so far will be

1Servers supporting IRC version 3.2 are capable of adding a server timestamp to every mes-
sage [Koc+12]; this can ensure that peers agree whether a certain message arrived in time.

55

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

discarded. Then, all remaining peers again generate fresh input messages and are
required to continue the protocol and retry mixing with these fresh messages.

While this seems to be a severe restriction of functionality and privacy compared
to the aforementioned protocols, a restriction of this kind is in fact necessary to
guarantee anonymity. If instead peers can arbitrarily choose their messages in a P2P
mixing protocol guaranteeing termination, the protocol is inherently vulnerable to an
attack breaking sender anonymity. We will explain this attack in detail in Section 4.7;
it works against state-of-the-art P2P mixing protocols and has been overlooked in
this form in the literature so far.

Explicit Confirmation of the Output. Anonymity-seeking P2P applications such
as coin mixing [Has11; Max13A; RMK14; Zie+15] or identity mixing [FWB15] require
that the peers agree explicitly on the outcome of the mixing before it comes into
effect, e.g., by collectively signing the set𝑀 of anonymized messages.

We call this additional functionality confirmation and incorporate it in our model.
The form of the confirmation depends on the application and is left to be defined by
the application which calls the protocol. For example in coin mixing, the confirmation
consists of signatures on the CoinJoin transaction provided by all peers; we will
discuss this in detail in Section 4.6.
While the protocol cannot force malicious peers to confirm 𝑀 , those malicious

peers should be excluded and the protocol should finally terminate successfully with
a proper confirmation by all unexcluded peers.

4.2.3 Interface and Execution Model

To deploy a P2P mixing protocol in various anonymity-seeking applications, our
generic definition leaves it up to the application to specify exactly how fresh input
messages are obtained and how the confirmation on the result is performed. We
restrict our discussion here to terminology and a syntactic description of the interface
between the anonymity-seeking application and an employed P2P mixing protocol,
and leave the semantic requirements to the protocol construction later.
A protocol instance consists of one or several runs, each started by calling the

application-defined algorithm 𝑚 ··= Gen() to sample a fresh input message to be
mixed. If a run is disrupted, the protocol can exclude peers that turned out to be
unreachable or malicious, and the protocol instance fails if no one other peer is left
in the protocol instance after exclusion.
Otherwise, if the run is not disrupted, the protocol will obtain a candidate result,

i.e., a candidate output set𝑀 of anonymized messages. Then it calls the application-
defined confirmation subprotocol Conf(𝑖, 𝑃, 𝑀), whose task is to obtain confirmation

56

4.2 Conceptualizing P2P Mixing

for𝑀 from the final peer set 𝑃 of all unexcluded peers. (We require that𝑚 ∈ 𝑀 for
a message 𝑚 obtained by Gen(). The first argument 𝑖 is an identifier of the run.)
Possible confirmations range from signatures on𝑀 from all peers to a complex task
requiring interaction among the peers, e.g., the creation of a multi-signature in a
distributed fashion.
If confirmation can be obtained from every other peer, then the run and the P2P

mixing protocol terminate successfully. Otherwise, Conf(𝑖, 𝑃, 𝑀) by convention fails
and reports the malicious peers deviating from the confirmation steps back to the
P2P mixing protocol. In this case, the protocol can start a new run by obtaining a
fresh message via Gen(); the malicious peers are excluded in this new run.
An example execution is depicted in Fig. 4.1. Note that while in this example

execution all runs are sequential, this is not a requirement. For improved efficiency, a
P2P mixing protocol can perform several runs concurrently, e.g., to have an already-
started second run in reserve in case the first fails. Then the protocol can terminate
with the first run that confirms successfully, and abort all other runs. Nevertheless,
we disallow concurrent calls to Conf() to keep the model simple.

Gen() Gen() Conf(2, 𝑃2, 𝑀2) Gen() Conf(3, 𝑃3, 𝑀3)

Application

P2P Mixing Protocol

𝑚1 𝑃2, 𝑀2𝑚2 𝑚3 𝑃3, 𝑀3𝑃mal,2 ≠ ∅ 𝑃mal,3 = ∅

𝑃1 𝑃3, 𝑀3

The figure shows the calls during the execution; time proceeds from left to right. The
execution starts with the application calling the P2P mixing protocol with an initial set
𝑃1 of peers. The P2P mixing protocol then starts Run 1 by generating a new message
𝑚1 (via calling Gen()). Run 1 fails early (e.g., due to active disruption by a peer 𝑝) and
𝑚1 is discarded. The P2P mixing protocol then starts Run 2 with peer set 𝑃2 = 𝑃1 \ {𝑝}
by generating a new message 𝑚2. Run 2 is initially not disrupted, and the P2P mixing
protocol calls the confirmation subprotocol to confirm the set𝑀2 of mixed messages with
the peers in 𝑃2. The confirmation subprotocol fails, because a set 𝑃mal,2 of peers refuse to
confirm. The confirmation subprotocol reports those malicious peers back to the P2P mixing
protocol, which in turn discards𝑚2. The P2P mixing protocol then starts Run 3 with peer
set 𝑃3 = 𝑃2 \ 𝑃mal,2. This time, the confirmation subprotocol succeeds and indicates this by
returning an empty set (of malicious peers) to the P2P mixing protocol. That is, all peers
in 𝑃3 have confirmed that the set𝑀3 of anonymized messages is the final output. The P2P
mixing protocol returns 𝑃3 and𝑀3 to the application and terminates.

Figure 4.1: Example of an Execution of a P2P Mixing Protocol

57

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

4.2.4 Security Goals and Threat Model

In general, we assume that the attacker controls some number 𝑓 of 𝑛 peers; the other
peers are honest. In this setting, a P2P mixing protocol must fulfill the two security
properties sender anonymity and termination as follows.

Sender Anonymity A P2P mixing protocol provides sender anonymity if the fol-
lowing holds, even if the attacker controls the bulletin board: If the protocol
succeeds for honest peer 𝑝 in a run (as described in Section 4.2.3) with message
𝑚𝑝 and final peer set 𝑃 , and 𝑝 ′ ∈ 𝑃 is another honest peer, then the attacker
cannot distinguish whether message𝑚𝑝 belongs to 𝑝 or to 𝑝 ′.

Termination A P2P mixing protocol provides termination if the following holds,
under the assumption that the bulletin board is honest: If there are at least two
honest peers, the protocol eventually terminates successfully for every honest
peer.

Threat Model. For the sender anonymity property, we assume that the attacker
additionally controls the bulletin board, i.e., the network. In particular, the attacker
can partition the network and block messages from honest peers. In the case of
successful termination, the anonymity set of each honest peer will be the set of
unexcluded honest peers.2 This means that we need 𝑓 < 𝑛 − 1 at the end of the
protocol, where 𝑛 is the number of unexcluded peers, to ensure that at least two
honest peers are present and the anonymity guarantee is meaningful.

For the termination property, we trust the bulletin board to relay messages reliably
and honestly, because termination (or any liveness property) is impossible to achieve
against a malicious bulletin board, which can just block all communication.

No Sender Anonymity in Failed Runs. Our definition of sender anonymity is
only concerned with the messages in a successful run, i.e., no anonymity is guaranteed
for messages discarded in failed runs (Section 4.2.3). This demands explanation,
because giving up anonymity in the case of failed confirmation seems to put privacy
at risk at first glance. However, the discarded messages have never been and will
never be used outside the P2P mixing protocol; in particular the messages have been
not returned back to the application. So it is safe to give up sender anonymity for
discarded messages. It turns out that this permissive definition is sufficient for a
variety of applications and allows for very efficient constructions.
2A honest peer might appear offline due to the attacker blocking network messages. Such a peer can
be excluded to allow the remaining peers to proceed.

58

4.3 Solution Overview

4.3 Solution Overview

Our core tool to design an efficient P2P mixing protocol is a Dining Cryptographers
network (DC-net) [Cha88]: Suppose that there are peers 𝑝1, 𝑝2 and 𝑝3, each pair
of peers (𝑖, 𝑗) shares a symmetric key 𝑘𝑖, 𝑗 and one of the peers (e.g., 𝑝1) wishes
to anonymously publish a message 𝑚 such that |𝑚 | = |𝑘𝑖, 𝑗 |. The protocol works
as follows. 𝑝1 publishes 𝑀1 ··= 𝑚 ⊕ 𝑘1,2 ⊕ 𝑘1,3, 𝑝2 publishes 𝑀2 ··= 𝑘1,2 ⊕ 𝑘2,3 and
finally 𝑝3 publishes 𝑀3 ··= 𝑘1,3 ⊕ 𝑘2,3. Now, the peers (and observers) can compute
𝑀1 ⊕ 𝑀2 ⊕ 𝑀3, effectively recovering𝑚. However, the origin of the message𝑚 is
hidden: without knowing the secrets 𝑘𝑖, 𝑗 , no observer can determine which peer
published 𝑚. Additionally, the origin is also hidden for peers themselves (e.g., as
𝑝2 does not know 𝑘1,3, 𝑝2 cannot distinguish whether 𝑝1 or 𝑝3 is the origin of the
message). It is easy to extend this basic protocol to more peers [Cha88; GJ04].
Besides the need for pairwise symmetric keys, which can be overcome by a key

exchange mechanism, there are two challenges in a DC-net: first, it should be possible
for all peers to publish their messages simultaneously (and not just for single peers),
and second, the protocol should terminate even in the presence of malicious disruptors,
while preserving anonymity.

4.3.1 Handling Collisions

Each peer 𝑝 ∈ 𝑃 in the mixing seeks to anonymously publish a message𝑚𝑝 . Naively,
they could run |𝑃 | instances (called slots) of a DC-net in parallel, where each peer
randomly selects one slot to publish the message. However, even if all peers are
honest, two peers can choose the same slot with high probability, and their messages
are then unrecoverable and a further protocol run becomes necessary [GJ04; Fra14].
One proposed solution is to perform an anonymous reservation mechanism so

that peers agree in advance on a slot assignment for publishing [Goe+03; KNS16].
However, this mechanism adds communication rounds among the peers and it must
also provide anonymity, which typically makes it prone to the same issues (e.g., slot
collisions) that we would like to overcome in the first place. Alternatively, it is possible
to establish many more slots so that the probability of a collision decreases [CBM15].
However, this becomes inefficient quickly, and two honest peers could still collide
with some probability.

Instead, we follow the paradigm of handling collisions by redundancy [DK13; BB89;
CBM15]. Let 𝑛 = |𝑃 | be the number of peers, and assume that messages to be mixed
are encoded as elements of a finite field 𝔽𝑞 of prime size 𝑞 > 𝑛. Given 𝑛 slots, each
peer 𝑝 , with message𝑚𝑝 , publishes𝑚𝑠

𝑝 (i.e.,𝑚𝑝 raised to power of 𝑠) in slot 𝑠 , where
𝑠 = 1, . . . , 𝑛. This yields an intentional collision involving all peers in each of the

59

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

slots. Using addition in 𝔽𝑞 instead of bitwise XOR to combine DC-net messages, slot
𝑠 contains the power sum 𝑆𝑠 =

∑︁
𝑝𝑚

𝑠
𝑝 .

Now, we require a mechanism to extract the messages𝑚𝑝 from the power sums 𝑆𝑠 .
Let 𝑔(𝑥) = 𝑐𝑛𝑥𝑛 + 𝑐𝑛−1𝑥𝑛−1 + . . . + 𝑐1𝑥 + 𝑐0 be a polynomial with roots𝑚1,𝑚2, . . . ,𝑚𝑛 .
Newton’s identities [Gou99] state

𝑐𝑛 = 1,
𝑐𝑛−1 = 𝑆1,

𝑐𝑛−2 = (𝑐𝑛−1𝑆1 − 𝑆2)/2,
𝑐𝑛−3 = (𝑐𝑛−2𝑆1 − 𝑐𝑛−1𝑆2 + 𝑆3)/3,

...

By knowledge of all coefficients 𝑐𝑜 of the polynomial 𝑔, we can find its 𝑛 roots, which
are the 𝑛 input messages.3

4.3.2 Handling Disruption and Ensuring Termination

Recovering the messages only works when all peers honestly follow the protocol. If a
malicious peer disrupts the DC-net by simply sending inconsistent DC-net messages,
we must ensure that the protocol still terminates eventually.

When a candidate set𝑀 is determined, every honest peer checks whether its input
message is indeed in 𝑀 . Depending on the outcome of this check, the peer either
starts the confirmation subprotocol to confirm a good 𝑀 , or reveals the secret key
used in the key exchange to determine who is responsible for an incorrect 𝑀 . We
face two challenges on the way to successful termination.

Consistent Detection of Disruption. The first challenge is to ensure that indeed
𝑀 does not contain any honest message if some peer finds that it does not contain its
message. Only then will all honest peers agree on whether disruption has occurred
and are able to take the same control flow decision at this stage of the protocol, which
is crucial for termination.

To overcome this challenge, every peer must provide a non-malleable commitment
(using a hash function modeled as a random oracle) to the DC-net vector before it sees
3We discuss only this simple power sum encoding in detail, but we note that other encodings are
possible. For example, if the DC-net is indeed based on bitwise XOR (instead of addition in 𝔽𝑞), it is
possible to use a decoding method [Dod+08] which effectively constitutes one step of the decoding
of BCH error-correcting codes [PJ72, Section 6.4]. This method has recently been implemented
primarily with a different application in the context of Bitcoin in mind, namely bandwidth-efficient
transaction relay in the P2P network [Nau+19; WMN18].

60

4.4 The DiceMix Protocol

the vectors of other peers. In this manner, malicious peers are forced to create their
DC-net vectors independently of the input messages of honest peers. The redundant
encoding of messages using powers ensures that malicious peers is not able to create a
malformed DC-net vector that results in a distortion of only a subset of the messages
of the honest peers. Intuitively, to distort somemessages but keep some other message
𝑚 of a honest peer intact, the malicious peers would need to influence all power
sums consistently. This, however, would require a DC-net vector that depends on
𝑚 (as we show in Section 4.4.5), which is prevented by the non-malleability of the
commitments. This ensures that all honest peers agree on whether𝑀 is correct, and
take the same control flow decision.

Exposing a Disruptor. The second challenge is that the misbehaving peer is not
trivially detected given the sender anonymity property of DC-nets. To overcome
this, every peer is required to reveal the ephemeral secret key used in the initial
key exchange. Then every peer can replay the steps done by every other peer and
eventually detect and expel the misbehaving peer from further runs.
Note that the revelation of the secret keys clearly breaks sender anonymity for

the current run of the protocol. However, the failed run will be discarded and a new
run with fresh cryptographic keys and fresh messages will be started without the
misbehaving peer. This is in line with our definition of sender anonymity, which
does not impose a requirement on failed runs.
An important guarantee provided by DiceMix is that if a protocol run fails, the

honest peers agree on the set of malicious peers to be excluded. Although this is
critical for termination, this aspect has not been properly formalized or addressed in
some previous P2P mixing protocols [CF10; Syt+14; RMK14].

4.4 The DiceMix Protocol

In this section we present DiceMix, an efficient P2P mixing protocol, which terminates
in only 4 + 2𝑓 rounds in the presence of 𝑓 malicious peers.

4.4.1 Building Blocks

We rely on the following cryptographic primitives.

Digital Signatures. We require a digital signature scheme (KeyGen, Sign, Verify)
unforgeable under chosen-message attacks (UF-CMA).

61

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

The algorithm KeyGen returns a private signing key sk and the corresponding
public verification key vk. On input message𝑚, Sign(sk,𝑚) returns 𝜎 , a signature on
message𝑚 using signing key sk. The verification algorithm Verify(pk, 𝜎,𝑚) outputs
true iff 𝜎 is a valid signature for𝑚 under the verification key vk.

Non-interactive Key Exchange. We require a non-interactive key exchange (NIKE)
mechanism (NIKE.KeyGen,NIKE.SharedKey) which is secure in the model by Cash,
Kiltz, and Shoup (CKS model) [Fre+13; CKS09].

The algorithm NIKE.KeyGen(id) outputs a public key npk and a secret key nsk for
a given party identifier id. NIKE.SharedKey(id1, id2, nsk1, npk2, sid) outputs a shared
key for the two parties id1 and id2 and session identifier sid. NIKE.SharedKey must
fulfill the standard correctness requirement that for all session identifiers sid, all par-
ties id1, id2, and all corresponding key pairs (npk1, nsk1) and (npk2, nsk2), it holds that
NIKE.SharedKey(id1, id2, nsk1, npk2, sid) = NIKE.SharedKey(id2, id1, nsk2, npk1, sid).
Additionally, we require an algorithm NIKE.ValidatePK(npk) which outputs true iff
npk is a public key in the output space of NIKE.KeyGen, and we require an algorithm
NIKE.ValidateKeyPair(npk, nsk) which outputs true iff nsk is a valid secret key for
the public key npk.
Static Diffie-Hellman key exchange satisfies these requirements [CKS09], assum-

ing a standard key derivation algorithm such as NIKE.SharedKey(id1, id2, 𝑥, 𝑔𝑦) ··=
K(𝑔𝑥𝑦 , {id1, id2}, sid) for a hash function K modeled as a random oracle.

Hash Functions. We require hash functions H and G modeled as a random oracles.

4.4.2 Contract with the Application

In the following, we specify the contract between DiceMix and the application calling
it. We start with two guarantees provided by DiceMix to the application and then we
describe features required of the application by DiceMix.

Guarantees Provided to the Application. The confirmation subprotocol is pro-
vided with two guarantees. First, DiceMix ensures that all honest peers call the
confirmation subprotocol in the same communication round with the same parame-
ters; we call this property agreement.
Second, to ensure that no peer refuses confirmation for a legitimate reason, e.g.,

an incorrect set final set𝑀 not containing the peer’s message, our protocol ensures
that all honest peers deliver the same and correct message set𝑀 . Then, the confirma-
tion subprotocol Conf(𝑖, 𝑃, 𝑀) can safely assume that peers refusing to confirm are
malicious. We call this property validity.

62

4.4 The DiceMix Protocol

The purpose of both of these guarantees is to ensure correct functionality of the
confirmation subprotocol, and the guarantees are only provided if the bulletin board
is honest. As a consequence, it is up to the confirmation subprotocol to fail safely if
they do not hold. The guarantees are detailed below.

Agreement Assume that the bulletin board is honest. Let 𝑝 and 𝑝 ′ be two honest
peers in a protocol execution. If 𝑝 calls Conf(𝑖, 𝑃, 𝑀)4 in some communication
round 𝑟 , then 𝑝 ′ calls Conf(𝑖, 𝑃, 𝑀) with the same message set 𝑀 and final
peer set 𝑃 in the same communication round 𝑟 .

Validity Assume an honest bulletin board. If honest peer 𝑝 calls Conf(𝑖, 𝑃, 𝑀) with
message set 𝑀 and final peer set 𝑃 , then (i) for all honest peers 𝑝 ′ and their
messages𝑚𝑝 ′ , we have𝑚𝑝 ′ ∈ 𝑀 , and (ii) we have |𝑀 | = |𝑃 |.

Guarantees Provided by the Application. Next, we specify the guarantees that
the application must provide to DiceMix to ensure proper function.
We require that input messages generated by Gen() have sufficient entropy such

that they can be predicted only with negligible probability; this implies that log𝑞
is at least proportional to the security parameter. We assume that input messages
generated by Gen() are elements of a prime field 𝔽𝑞 . We need 𝑞 > |𝑃 | (which is not a
restriction in practice due to the previous requirement).
We require two natural properties from the confirmation subprotocol. The first

property (correct confirmation) states that a successful call to the subprotocol indeed
confirms that the honest peers in 𝑃 agree on𝑀 . The second property (correct exclusion)
states that in an unsuccessful call, the confirmation subprotocol identifies at least one
malicious peer, and no honest peer is falsely identified as a malicious peer.

Correct Confirmation Even if the bulletin board is malicious,5 we require the
following: If a call to Conf(𝑖, 𝑃, 𝑀) succeeds for peer 𝑝 (i.e., if the call returns
an empty set 𝑃mal = ∅ of malicious peers refusing confirmation), then all honest
peers in 𝑃 have called Conf(𝑖, 𝑃, 𝑀).

Correct Exclusion Assume that the bulletin is honest. If Conf(𝑖, 𝑃, 𝑀) returns a
set 𝑃mal ≠ ∅ for honest peer 𝑝 , then Conf(𝑖, 𝑃, 𝑀) returns the same set 𝑃mal

for every honest peer 𝑝 ′. Furthermore, the returned set 𝑃mal does not contain
honest peers.

4Conf() will actually take more arguments, but they are not relevant for this subsection.
5This property puts forth a requirement on a successful call of the confirmation subprotocol. Such a
successful call will result in a successful run and ultimately in a successful termination of the whole
P2P mixing protocol, which implies that the messages are not discarded and sender anonymity is
required for this run. As a result, this property is crucial for sender anonymity and thus we must
assume that it holds even if the bulletin board is malicious.

63

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

4.4.3 Protocol Description

In this section, we describe the DiceMix protocol. The full pseudocode is presented
in Section 4.4.4.

Single Run of the Protocol (Black Pseudocode). The protocol starts in the pro-
cedure DiceMix(), which takes as input a set of other peers 𝑃 , the peer’s own identity
my , an array VK[] of verification keys of all peers, the peer’s own signing key sk, and
a predetermined unique session identifier sid. A single protocol run, implemented in
Run(), consists of four rounds.
In the first round (KE), the NIKE is used to establish pairwise symmetric keys

between all peers (DC-Keys()). Then each peer can derive the DC-net pads from
these symmetric keys (DC-Slot-Pad()) and use them to create the vector of messages
for the DC-net (DC-Mix()). In the second round (CM), each peer commits to its DC-net
vector using hash functionH; adding randomness is not necessary because we assume
that the input messages contained in the DC-net vector have sufficient entropy. In
the third round (DC), the peers open their commitments. They are non-malleable and
their purpose is to prevent a rushing attacker from letting its DC-net vector depend
on messages by honest peers, which will be crucial for the agreement property. After
opening the commitments, every peer has enough information to decode the DC-net
and extract the list of messages from the power sums (DC-Mix-Res()).

Finally, every peer checks whether its input message is in the result of the DC-net,
determining how to proceed in the fourth round. Agreement will ensure that either
every peer finds its message or no honest peer finds it. If a peer finds its message,
the peer proceeds to the confirmation subprotocol (CF). Otherwise, the peer reveals
its secret key. In this case, every other peer publishes its secret key as well, and the
peers can replay each other’s protocol messages for the current run. This will expose
the misbehaving peer, and honest peers will exclude it from the next run (SK).

Concurrent Runs of the Protocol (Blue Pseudocode). A simple but inefficient
way of having several runs is to start a single run of the protocol and only after
misbehavior is detected, start a new run without the misbehaving peer. This approach
requires 4 + 4𝑓 rounds, where 𝑓 is the number of disruptive peers (assuming that
Conf() takes one round). To reduce the number of communication rounds to 4 + 2𝑓 ,
we use concurrent runs and pipeline them as depicted in Fig. 4.2. We need to address
two main challenges. First, when a peer disrupts the DC-net phase of run 𝑖 , it must be
possible to patch the already-started run 𝑖 + 1 to discard messages from misbehaving
peers in run 𝑖 . For that, run 𝑖 must reach the last round (SK or CF) before run 𝑖 + 1
reaches the DC round.

64

4.4 The DiceMix Protocol

Runs CommunicationRounds

1 KE CM DC SK

2 KE CM
RV
DC

CF

3 KE CM
RV
DC

CF

4 KE CM

Run 1 fails due to DC-net disruption. Run 2 fails to confirm. Run 3 succeeds, and run 4
is then aborted. Rows represent protocol runs and columns represent communication
rounds. Blue parts are for concurrency; the arrows depict the dependency between
runs, i.e., when a run notifies the next run about the peers to exclude. KE: Key
exchange; CM: Commitment; DC: DC-net; RV: Reveal pads; SK: Reveal secret key; CF:
Confirmation.

Figure 4.2: Example of an Execution of DiceMix

Before its DC round, run 𝑖 + 1 can be patched as follows. In the DC round of run 𝑖 + 1,
honest peers broadcast not only their DC-net messages but also in parallel they reveal
(RV) the symmetric keys shared in run 𝑖 + 1 with malicious peers detected in run 𝑖 .
In this manner, DC-net messages can be partially unpadded, effectively excluding
malicious peers from run 𝑖 + 1. We note that a peer could reveal wrong symmetric
keys in this step. This, however, leads to wrong output from the DC-net, which is
then handled by revealing secret keys in round 𝑖 + 1. Publishing partial symmetric
keys does not compromise sender anonymity for unexcluded peers because messages
remain partially padded with symmetric keys shared between the honest peers.

Handling Offline Peers (Blue Pseudocode). So far we have only discussed how
to ensure termination against actively disruptive peers who send wrong messages.
However, a malicious peer can also just send no message at all. This case is easy to
handle in our protocol. If a peer 𝑝 has not provided a (valid) broadcast message to
the bulletin board in time, all honest peers will agree on that fact, and exclude the
unresponsive peer. In particular, it is easy to see that all criteria specifying whether a
message is valid will evaluate the same for all honest peers (if the bulletin board is
reliable, which we assume for termination).
To be able to achieve termination 4 + 2𝑓 in communication rounds, it is crucial

that missing messages in the first two broadcasts (KE and CM) do not require aborting
the run. Luckily, the current run can simply be continued in those cases. Peers not
sending KE are just ignored in the rest of the run; peers not sending CM are handled by

65

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

revealing symmetric keys exactly as done with concurrent runs (see the code blocks
starting with the “missing” instruction).

4.4.4 Full Pseudocode

In this section, we state the full pseudocode of DiceMix.

Conventions andNotation for the Pseudocode. Weuse arrays written asArr[𝑖],
where 𝑖 is the index. We denote the full array (all its elements) as Arr[].

Message 𝑥 is broadcast using “broadcast 𝑥”. The statement “receive X[𝑝] from
all 𝑝 ∈ 𝑃 where 𝑋 (X[𝑝]) missing 𝐶 (𝑃off)” attempts to receive a message from all
peers 𝑝 ∈ 𝑃 . The first message X[𝑝] from peer 𝑝 that fulfills predicate 𝑋 (X[𝑝]) is
accepted and stored as X[𝑝]; all further messages from 𝑝 are ignored. When a timeout
is reached, the statement 𝐶 is executed, which has access to a set 𝑃off ⊆ 𝑃 of peers
that did not send a (valid) message.
Regarding concurrency, a thread 𝑡 that runs a procedure P (args) is started using

a statement “𝑡 ··= fork P (args)”, where 𝑡 is a handle for the thread. A thread with
handle 𝑡 can either be joined using “𝑟 ··= join 𝑡”, where 𝑟 is its return value, or it can
be aborted using “abort 𝑡”. A thread can wait for a notification and receive a value
from another thread using “wait”. The notifying thread uses “notify 𝑡 of 𝑣” to notify
thread 𝑡 of some value 𝑣 .

Full Pseudocode. DiceMix is specified as follows. The black code is the basic part
of the basic protocol for a single run; the blue code handles concurrent runs and
offline peers as explained in Section 4.4.3.

1 proc DiceMix (𝑃,my ,VK[], sk, sid)
2 sid ··= (sid, 𝑃,VK[])
3 ifmy ∉ 𝑃 then
4 fail “not in the set of peers”
5 end if
6 return Run(𝑃,my ,VK[], sk, sid, 0)
7 end proc

8 proc Run (𝑃,my ,VK[], sk, sid, run)
9 𝑃∗ ··= 𝑃 \ {my }
10 if 𝑃∗ = ∅ then
11 fail “no other honest peers”
12 end if

66

4.4 The DiceMix Protocol

13 ⊲ Exchange pairwise keys
14 (NPK[my],NSK[my]) ··= NIKE.KeyGen(my)
15 sidPre ··= H((sidPre, sid, run))
16 broadcast (KE,NPK[my], Sign(sk, (NPK[my], sidPre)))
17 receive (KE,NPK[𝑝], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
18 where NIKE.ValidatePK(NPK[𝑝])

∧ Verify(VK[𝑝], 𝜎 [𝑝], (NPK[𝑝], sidPre))
19 missing 𝑃off do
20 𝑃 ··= 𝑃 \ 𝑃off ⊲ Exclude offline peers
21 end missing
22 sid ′ ··= H((sid′, sid, 𝑃,NPK[], run))
23 K[] ··= DC-Keys(𝑃∗,NPK[],my ,NSK[my], sid ′))
24 ⊲ Generate fresh message to mix
25 𝑚 ··= Gen()
26 DC[my] [] ··= DC-Mix(𝑃∗,my ,K[],𝑚)
27 𝑃ex ··= ∅ ⊲ Malicious (or offline) peers for later exclusion
28 ⊲ Commit to DC-net vector
29 Com[my] ··= H((CM,DC[my] []))
30 broadcast (CM,Com[my], Sign(sk, (Com[my], sid ′)))
31 receive (CM,Com[𝑝], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
32 where Verify(VK[𝑝], 𝜎 [𝑝], (Com[𝑝], sid ′))
33 missing 𝑃off do ⊲ Store offline peers for exclusion
34 𝑃ex ··= 𝑃ex ∪ 𝑃off
35 end missing
36 if run > 0 then
37 ⊲ Wait for previous run to notify us of malicious peers
38 𝑃exPrev ··= wait
39 𝑃ex ··= 𝑃ex ∪ 𝑃exPrev
40 end if
41 ⊲ Collect shared keys with excluded peers
42 for all 𝑝 ∈ 𝑃ex do
43 Kex [my] [𝑝] ··= K[𝑝]
44 end for
45 ⊲ Start next run (in case this one fails)
46 𝑃 ··= 𝑃 \ 𝑃ex
47 next ··= fork Run(𝑃,my ,VK[], sk, sid, run + 1)
48 ⊲ Open commitments and keys with excluded peers
49 broadcast (DC,DC[my] [],Kex [my] [], Sign(sk,Kex [my] []))

67

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

50 receive (DC,DC[𝑝] [],Kex [𝑝] [], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
51 where H((CM,DC[𝑝] [])) = Com[𝑝]

∧ {𝑝 ′ : Kex [𝑝] [𝑝 ′] ≠ ⊥} = 𝑃ex
∧ Verify(VK[𝑝],Kex [𝑝] [], 𝜎 [𝑝])

52 missing 𝑃off do ⊲ Abort and rely on next run
53 return Result-Of-Next-Run (𝑃off , next)
54 end missing
55 𝑀 ··= DC-Mix-Res(𝑃,DC[] [], 𝑃ex,Kex [] [])
56 ⊲ Check if our output is contained in the result
57 if𝑚 ∈ 𝑀 then
58 Pmal ··= Conf(𝑖, 𝑃, 𝑀,my ,VK[], sk, sid)
59 if Pmal = ∅ then ⊲ Success?
60 abort next
61 return𝑚
62 end if
63 else
64 broadcast (SK,NSK[my]) ⊲ Reveal secret key
65 receive (SK,NSK[𝑝]) from all 𝑝 ∈ 𝑃∗
66 where NIKE.ValidateKeyPair(NPK[𝑝],NSK[𝑝])
67 missing 𝑃off do ⊲ Abort and rely on next run
68 return Result-Of-Next-Run (𝑃off , next)
69 end missing
70 ⊲ Blame malicious peers using the secret keys
71 Pmal ··= Blm(𝑃∗,NPK[],my ,NSK[],DC[] [], sid ′, 𝑃ex,Kex [] [])
72 end if
73 return Result-Of-Next-Run (𝑃mal, next)
74 end proc

75 proc DC-Mix (𝑃∗,my ,K[],𝑚)
76 ⊲ Create power sums in individual slots
77 for 𝑠 ··= 1, . . . , |𝑃∗ | + 1 do6
78 DCMy[𝑠] ··=𝑚𝑠 + DC-Slot-Pad(𝑃∗,my ,K[], 𝑠)
79 end for
80 return DCMy[]
81 end proc

82 proc DC-Mix-Res (𝑃,DCMix[] [], 𝑃ex,Kex [] [])
83 for 𝑠 ··= 1, . . . , |𝑃 | do
6If run > 0, it suffices to loop up to |𝑃∗ | because at least one peer will have been excluded when the
DC-net is opened.

68

4.4 The DiceMix Protocol

84 M∗ [𝑠] ··= DC-Slot-Open(𝑃,DCMix[] [], 𝑠, 𝑃ex,Kex [] [])
85 end for
86 ⊲ Solve equation system for array M[] of messages
87 M[] ··= Solve(∀𝑠 ∈ {1, . . . , |𝑃 |}. M∗ [𝑠] = ∑︁ |𝑃 |

𝑖=1 M[𝑖]𝑠)
88 return Set(M[]) ⊲ Convert M[] to an (unordered) multiset
89 end proc

90 proc DC-Slot-Pad (𝑃∗,my ,K[], 𝑠)
91 return

∑︁
𝑝∈𝑃∗ sgn(my − 𝑝) · G((K[𝑝], 𝑠)) ⊲ in 𝔽𝑞

92 end proc

93 proc DC-Slot-Open (𝑃,DC[] [], 𝑠, 𝑃ex,Kex [] [])
94 ⊲ Pads cancel out for honest peers
95 𝑚∗ ··=

∑︁
𝑝∈𝑃 DC[𝑝] [𝑠] ⊲ in 𝔽𝑞

96 ⊲ Remove pads for excluded peers
97 𝑚∗ ··=𝑚∗ −

∑︁
𝑝∈𝑃 DC-Slot-Pad(𝑃ex, 𝑝,Kex [𝑝] [], 𝑠)

98 return𝑚∗

99 end proc

100 proc DC-Keys (𝑃∗,NPK[],my , nsk, sid ′)
101 for all 𝑝 ∈ 𝑃∗ do
102 K[𝑝] ··= NIKE.SharedKey(my , 𝑝, nsk,NPK[𝑝], sid ′)
103 end for
104 return K[]
105 end proc

106 proc Blm (𝑃∗,NPK[],my ,NSK[],DC[] [], sid ′, 𝑃ex,Kex [] [])
107 𝑃mal ··= ∅
108 for all 𝑝 ∈ 𝑃∗ do
109 𝑃 ′ ··= (𝑃∗ ∪ {my } ∪ 𝑃ex) \ {𝑝}
110 K′[] ··= DC-Keys(𝑃 ′,NPK[], 𝑝,NSK[𝑝], sid ′)
111 ⊲ Reconstruct purported message𝑚′ of 𝑝
112 𝑚′ ··= DC[𝑝] [1] − DC-Slot-Pad(𝑃 ′, 𝑝,K′[], 1)
113 ⊲ Replay DC-net messages of 𝑝
114 DC′[] ··= DC-Mix(𝑃 ′, 𝑝,K′[],𝑚′)
115 if DC′[] ≠ DC[𝑝] [] then ⊲ Exclude inconsistent 𝑝
116 𝑃mal ··= 𝑃mal ∪ {𝑝}
117 end if
118 ⊲ Verify that 𝑝 has published correct symmetric keys
119 for all 𝑝ex ∈ 𝑃ex do
120 if Kex [𝑝] [𝑝ex] ≠ K′[𝑝ex] then

69

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

121 𝑃mal ··= 𝑃mal ∪ {𝑝}
122 end if
123 end for
124 end for
125 return 𝑃mal

126 end proc

127 proc Result-Of-Next-Run (𝑃exNext, next)
128 ⊲ Hand over to next run and notify of peers to exclude
129 notify next of 𝑃exNext
130 ⊲ Return result of next run
131 result ··= join next
132 return result
133 end proc

4.4.5 Security and Correctness Analysis

In this section, we argue why DiceMix achieves all properties required by a secure and
correct P2P mixing protocol if the attacker is ppt. First we discuss the two security
properties sender anonymity and termination, and then we discuss the guarantees of
validity and agreement that the application may rely on.

Sender Anonymity. Consider a protocol execution in which an honest peer 𝑝
succeeds with message 𝑚𝑝 and final peer set 𝑃 , and let 𝑝 ′ ∈ 𝑃 be another honest
peer. We have to argue that the attacker cannot distinguish whether the messages
𝑚𝑝 belongs to the peer 𝑝 or to the peer 𝑝 ′.

Since both 𝑝 and 𝑝 ′ choose fresh messages𝑚𝑝 ,𝑚𝑝 ′ , and fresh NIKE key pairs in
each run, it suffices to consider only the successful run 𝑖 . Since 𝑝 succeeds in run 𝑖 ,
the call to Conf(𝑖, 𝑃, 𝑀) has succeeded. By the “correct confirmation” property of
Conf(), peer 𝑝 ′ has started Conf(𝑖, 𝑃, 𝑀) in the same communication round as peer
𝑝 . By construction of the protocol, this implies two properties about peer 𝑝 ′: (i) 𝑝 ′
will not reveal its secret key in round SK, and (ii) 𝑝 ′ assumes that 𝑝 is not excluded in
run 𝑖 , and thus has not revealed the symmetric key shared with 𝑝 in round RV.

As the key exchange scheme is secure in the CKS model and the exchanged public
keys are authenticated using unforgeable signatures, the attacker cannot distinguish
the pads derived from the symmetric key between 𝑝 and 𝑝 ′ from random pads. Thus,
after opening the commitments on the pads, peer 𝑝 has formed a proper DC-net with
at least peer 𝑝 ′. The security guarantee of Chaum’s original DC-nets [Cha88] implies
that the attacker cannot distinguish 𝑚𝑝 from 𝑚𝑝 ′ before the call to Conf(𝑖, 𝑃, 𝑀).

70

4.4 The DiceMix Protocol

Now, observe that the execution of subprotocol Conf(𝑖, 𝑃, 𝑀) does not help in distin-
guishing because all honest peers call it with the same arguments, which follows by
the “correct confirmation” property as we have already argued. This shows sender
anonymity.

Validity. To show validity, we have to show that if honest peer 𝑝 calls Conf(𝑖, 𝑃, 𝑀)
with message set 𝑀 and final peer set 𝑃 , then (i) for all honest peers 𝑝 ′ and their
messages𝑚𝑝 ′ , we have𝑚𝑝 ′ ∈ 𝑀 , and (ii) we have |𝑀 | = |𝑃 |.

For part (ii) observe that in the beginning of an execution and whenever 𝑃 changes,
a new run with |𝑃 | peers is started, each of which submits exactly one message. This
implies |𝑀 | = |𝑃 |.
For part (i) of validity, recall that we assume the bulletin board to be honest for

validity, so every peer receives the same broadcast messages. Under this assumption
and the assumption that the signature scheme is unforgeable, a code inspection shows
that after receiving the DC message, the entire state of a protocol run 𝑖 is the same for
every honest peer, except for the signing keys, the own identitymy , and the message
𝑚 generated by Gen(). Additionally the code inspection shows that among these
three items, only the message𝑚 influences the further state and control flow, and it
does so only in the check of the condition “𝑚 ∈ 𝑀” at the end of Run() at line 57 in
the pseudocode (page 68). Observe that the multiset𝑀 in this condition is entirely
determined by broadcast messages and thus the same in the execution all honest
peers. Thus we may just write𝑀 globally for all honest peers in the following.

Observe further that the condition “𝑚 ∈ 𝑀” determines whether Conf() is called.
That is, whenever Conf(𝑖, 𝑃, 𝑀) is called by some honest peer 𝑝 , then𝑚𝑝 ∈ 𝑀 . It
suffices to show that𝑚𝑝 ∈ 𝑀 implies𝑚𝑝 ′ ∈ 𝑀 for every honest peer 𝑝 ′ (or in other
words, the condition “𝑚 ∈ 𝑀” either evaluates to true for all honest peers, or it
evaluates to false for all honest peers equally).

We show this by contradiction. Assume for contraction that there is a ppt attacker
A (which thus performs only a polynomial number of random oracle queries) such
that the following holds with non-negligible probability in a protocol execution with
attacker A: there is a run 𝑖 and two honest peers 𝑝 and 𝑝 ′ with their input messages
𝑚𝑝 and 𝑚𝑝 ′ in run 𝑖 and A sends DC-net vectors in round DC of run 𝑖 such that
𝑚𝑝 ∈ 𝑀 but𝑚𝑝 ′ ∉ 𝑀 .

Let 𝑛 = |𝑀 | = |𝑃 |, and we can write the multiset𝑀 as𝑀 = {𝑚𝑝 , 𝑡1, . . . , 𝑡𝑛−1} ⊆ 𝔽𝑞

for some values 𝑡𝑖 . Let further �̂� ⊆ 𝑃 be the set of honest peers. The DC-net vectors
committed to in round DC have 𝑛 components (or slots). For the slots 𝑠 = 1, . . . , 𝑛, let
𝑎𝑠 be sum of all values committed to by the malicious peers in slot 𝑠 of their DC-net
vectors. We write 𝜇 =𝑚𝑝 ′ to simplify the notation.

71

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

If𝑚𝑝 ∈ 𝑀 and 𝜇 ∉ 𝑀 , we know that

𝑚𝑠
𝑝 +

𝑛−1∑︂
𝑖=1

𝑡𝑠𝑖 =
∑︂
𝑝∈�̂�

𝑚𝑠
𝑝 +

∑︂
𝑝∈𝑃\𝑃∗

𝑎𝑠 , 𝑘 = 1, . . . , 𝑛, (4.1a)

𝜇 ≠ 𝑡 𝑗 , 𝑗 = 1, . . . , 𝑛 − 1, (4.1b)

where (4.1a) is equivalent to

− 𝜇𝑠 +
𝑛−1∑︂
𝑖=1

𝑡𝑠𝑖 =
∑︂

𝑝∈𝑃∗\{𝑝,𝑝 ′}
𝑚𝑠

𝑝 +
∑︂

𝑝∈𝑃\�̂�

𝑎𝑠 , 𝑘 = 1, . . . , 𝑛. (4.2)

Interpret (4.1) as an equation system with unknowns 𝜇, 𝑡1, . . . , 𝑡𝑛 . We prove that the
system determines 𝜇 uniquely. Let (𝜇, 𝑡1, . . . , 𝑡𝑛) and (�̃�, 𝑡 1, . . . , 𝑡𝑛) be two solutions of
(4.1). From (4.2), we have

−𝜇𝑠 +
𝑛−1∑︂
𝑖=1

𝑡𝑠𝑖 = −�̃� +
𝑛−1∑︂
𝑖=1

𝑡
𝑠
𝑖 𝑠 = 1, . . . , 𝑛,

or equivalently

�̃�𝑠 +
𝑛−1∑︂
𝑖=1

𝑡𝑠𝑖 = 𝜇𝑠 +
𝑛−1∑︂
𝑖=1

𝑡
𝑠
𝑖 , 𝑠 = 1, . . . , 𝑛. (4.3)

Both sides of (4.3) are power sums with 𝑛 summands. Thus the set {�̃�, 𝑡1, . . . , 𝑡𝑛} of
values on the left-hand side is determined uniquely by the right-hand side through
Newton’s identities (Section 4.3.1), and symmetrically, the set {𝜇, 𝑡 1, . . . , 𝑡𝑛} of values
on the right-hand side is uniquely determined by the left-hand side. This implies

{�̃�, 𝑡1, . . . , 𝑡𝑛} = {𝜇, 𝑡 1, . . . , 𝑡𝑛},

and in particular, we have 𝜇 ∈ {�̃�, 𝑡1, . . . , 𝑡𝑛}. Taking (4.1b) into account, we obtain
𝜇 = �̃� as desired. This shows that 𝜇 is determined uniquely 𝑎𝑠 by the equation system
(4.1). In other words, 𝜇 = 𝑚𝑝 ′ is determined uniquely by the messages𝑚𝑝 (where
𝑝 ≠ 𝑝 ′) of the honest peers and the DC-net vectors submitted by the malicious peers.

Consider an algorithm B which plays against a challenger that simulates a single
honest peer. The algorithm B controls all other peers in the execution. It is com-
putationally unbounded but performs only a polynomial number of random oracle
queries. In any run of the protocol before the honest peer in this run sends the round
DC message, the algorithm B can halt the execution by outputting a message. We

72

4.4 The DiceMix Protocol

say that B succeeds if it outputs the input message of the honest peer in this round.
Since the input message of the honest peer simulated by the challenger is generated
by Gen() and thus unpredictable, and since B learns only a random-oracle based
commitment to this input message at this point of the run, every algorithm B (which
performs only a polynomial number of random oracle queries) succeeds only with
negligible probability.
As a contradiction, we now construct an algorithm B that succeeds with non-

negligible probability. The algorithm B guesses a random run 𝑖 ∈ {0, . . . , |𝑃 | − 2} and
a random peer 𝑝 ′ ∈ �̂� . Then B internally runs the attacker A while simulating all
honest peers except for peer 𝑝 ′. The algorithmB relays all messages from the attacker
A for peer 𝑝 ′ to the challenger and relays all messages from peer 𝑝 ′ simulated by
challenger back to the attacker. Moreover, B relays all random oracle queries by the
attacker A to the challenger and relays their results back from the challenger to the
attacker A, while storing the queries.

By construction of the protocol messages in the rounds CM and DC, the attacker A
has queried the random oracle H with the DC-net vectors of its malicious peers with
non-negligible probability already when these malicious peers send their messages
in round CM. Thus, as soon as B receives all commitments in round CM of run 𝑖 , B
knows all padded DC-net vectors of the peers controlled by A from the intercepted
random oracle queries because the DC-net vectors are the bitstrings committed to.

If the protocol finishes before run 𝑖 , the algorithm B fails. Otherwise the (compu-
tationally unbounded) algorithm B breaks the key exchanges between all peers (mes-
sages in round KE) in run 𝑖 , which are necessarily not unconditionally secure [Mau97].
Then it removes all pads from the DC-net vectors of the peers controlled by A
and computes 𝑎𝑠 for 𝑠 = 1, . . . , 𝑛. The algorithm B additionally knows 𝑚𝑝 for all
𝑝 ∈ �̂� \ {𝑝 ′}. If there is no peer 𝑝 ∈ �̂� \ {𝑝 ′} with𝑚𝑝 ∈ 𝑀 , the algorithm B fails.
Otherwise we are in the situation of the polynomial equation system (4.1). The (com-
putationally unbounded) algorithm B solves equation system (4.1) and outputs the
unique solution 𝜇 =𝑚𝑝 ′ .

We analyze the algorithm B. The algorithm is clearly successful if it guesses 𝑖 and
𝑝 ′ correctly, i.e., if it guesses 𝑖 and 𝑝 ′ such that there is some peer 𝑝 with𝑚𝑝 ∈ 𝑀
and𝑚𝑝 ′ ∉ 𝑀 in round 𝑖 , which we have assumed holds for some 𝑖 and 𝑝 ′ with non-
negligible probability in a protocol execution with A. Since the number of peers and
thus the number of runs is constant (see the discussion about the termination property
below), B is successful with non-negligible probability. Moreover B performs only a
polynomial number of random oracle queries because A is ppt and thus performs
only a polynomial number of random oracle queries.

This is a contradiction which shows the remaining part (i) of validity, and we have
shown all parts of validity.

73

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

Agreement. To show agreement, we have to show that for each run 𝑖 , if one honest
peer 𝑝 callsConf(𝑖, 𝑃, 𝑀) in some round, then every honest peer 𝑝 ′ callsConf(𝑖, 𝑃, 𝑀)
in the same round. This follows from validity: By part (i) of validity, we know that
if some honest peer calls Conf(𝑖, 𝑃, 𝑀), then𝑚𝑝 ′ ∈ 𝑀 for every peer 𝑝 ′ in run 𝑖 . By
construction of the protocol (line 57 in page 68), the condition𝑚𝑝 ′ ∈ 𝑀 is exactly
what determines whether 𝑝 ′ calls Conf(𝑖, 𝑃, 𝑀). Thus every honest peer 𝑝 ′ calls
Conf(𝑖, 𝑃, 𝑀) in the same round, which shows agreement.

Termination. Now, we show why the protocol terminates for every honest peer.
We first show that at least one malicious peer is excluded in each failed run. We have
already argued above (for validity) that in the presence of an honest bulletin board,
all honest peers take the same control flow decision (whether to call Conf() or not
at the end of each run). We can thus distinguish cases on this control flow decision.
If in a failed run, Conf() is called, then it returns the same non-empty set of

malicious peers (by the “correct exclusion” property), and those peers will be excluded
by every honest peer. If Conf() is not called in a run, then there must have been
disruption by at least one malicious peer. Replaying all protocol messages of this run
(with the help of then-revealed secret keys) clearly identifies at least one malicious
peer, and since all honest peers run the same deterministic code (the blame procedure
Blm()) on the same inputs to identify malicious peers, they will all exclude the same
set of malicious peers.
We have shown that in each failed run, all honest peers exclude the same non-

empty set of malicious peers. Eventually, we reach one of two cases. In the first case,
the number of unexcluded peers will drop below two; in that case the protocol is
allowed to fail and thus there is nothing to show. In the second case, we reach a run
in which all peers behave honestly (independently of whether they are controlled by
the attacker). This run will successfully terminate, which shows termination.

4.4.6 Variants of the Protocol

The design of DiceMix follows the P2P paradigm, and consequently, we do not expect
the bulletin board to implement any real functionality or perform any computation.
The bulletin board is a simple broadcast mechanism and may be replaced by a suitable
reliable broadcast protocol [ST87]. However, if one is willing to depend on a more
sophisticated bulletin board with dedicated functionality, the efficiency of DiceMix
can be improved. It is important to note that even a dedicated bulletin board is still
only trusted for termination and not for anonymity.

74

4.4 The DiceMix Protocol

Runs CommunicationRounds
1 KE DC SK

2 KE DC CF

3 KE DC CF

4 KE

Run 1 fails due to DC-net disruption. Run 2 fails to confirm. Run 3 succeeds and run 4
is then aborted. Rows represent protocol runs and columns represent communication
rounds. The blue arrows depict dependencies between runs, i.e., some run informs
the next run about the peers to exclude. KE: Key exchange; CM: Commitment; DC:
DC-net; SK: Reveal secret key; CF: Confirmation.

Figure 4.3: Example of a DiceMix Execution with a Dedicated Bulletin Board

Dropping the Commitment Phase. The purpose of the non-malleable commit-
ments is to prevent malicious peers from choosing their DC-net vectors depending
on the DC-net vectors of the honest peers. Assume that the bulletin board supports
secure channels, and broadcasts the messages in the DC round only after all peers have
submitted their messages. Then independence is ensured with an honest bulletin
board, and we can drop the CM (commitment) round. This is secure because the inde-
pendence of the DC-net vectors is necessary for termination but not for anonymity,
and we trust the bulletin board for termination already. A serial protocol execution
(without concurrency) will then follow the pattern “KE (DC CF/SK)+”, where the plus
indicates that these phases are performed once or several times. With the help of con-
currency, we can run the key exchange (KE) concurrently to the confirmation phase
(CF/SK), and reduce the number of rounds to 3 + 2𝑓 (assuming that the confirmation
phase takes one round). An example execution is depicted in Fig. 4.3.

This simplifies the protocol considerably. A revelation of symmetric keys (RV in the
original protocol) is not necessary anymore because the malicious peers to exclude are
determined before the DC round of the second run (see Section 4.4.3 for an explanation
of RV).

Bulletin Board Performs Expensive Computation. Moreover, a dedicated bul-
letin board can perform the expensive computation of solving the equation system
involving the power sums, and broadcast the result instead of the DC-net vectors.
The bulletin board would then also be responsible for handling inconsistent messages
in the SK run; it would then announce the malicious peers after having received all
secret keys. This saves communication in the rounds DC and SK. Again, security is
preserved because we trust the bulletin board for termination.

75

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

4.5 Performance Analysis

In this section, we analyze the performance of DiceMix. We first analyze the com-
munication costs, and then evaluate the running time with the help of a prototype
implementation. Our results show that DiceMix is practical and outperforms existing
solutions for P2P mixing.

4.5.1 Communication

Using concurrent runs, DiceMix needs (𝑐 + 3) + (𝑐 + 1) 𝑓 communication rounds,
where 𝑓 is the number of peers actually disrupting the protocol execution, and 𝑐 is
the number of rounds of the confirmation subprotocol. In the case 𝑐 = 1, such as in
our Bitcoin mixing protocol (Section 4.6), DiceMix needs just 4 + 2𝑓 rounds.

The communication costs per run and per peer are dominated by the broadcast of
the DC-net array DC[my] [] of size 𝑛 · |𝑚 | bits, where 𝑛 is the number of peers and
|𝑚 | is the length of a mixed message. All three other broadcasts have constant size at
any given security level.

4.5.2 Prototype Implementation

We developed a proof-of-concept implementation of the DiceMix protocol. Our unop-
timized implementation encompasses the complete functionality to enable testing a
successful run of DiceMix without disruptions.
The implementation is written in Python and uses OpenSSL for ECDSA signa-

tures on the secp256k1 elliptic curve (as used in Bitcoin) at a security level of 128
bits. We use a Python wrapper for the PARI/GP library [PARI-Py; PARI] to find the
roots of the power sum polynomial by the Kaltofen-Shoup algorithm for polynomial
factorization [KS97].

Testbed. We tested our DiceMix implementation in Emulab [Whi+02]. Emulab is
a testbed for distributed systems that enables a controlled environment with easily
configurable parameters such as network topology or bandwidth of the communi-
cation links. We simulated a network setting in which all peers (10 Mbit/s) have
pre-established TCP connections to a bulletin board (1 Gbit/s); all links had a delay of
50 ms. We used different Emulab machines (2.2–3.0 GHz) to simulate the peers; note
that the slowest machine is the bottleneck due to the synchronization enforced by
the broadcasts.

We ran the protocol with a varying number of peers, ranging from 20 to 100. Each
peer had as input for the mixing a 160-bit message (e.g., a Bitcoin address).

76

4.5 Performance Analysis

0

5

10

15

20

25

500 20 40 60 80 100

Ti
m
e
[s
]

Number of nodes

Wall-clock
Computation (total)
Computation (factorization)

All peers have a bandwidth of 10 Mbit/s, the bulletin board has a total of 1 Gbit/s,
and all links have 50 ms latency.

Figure 4.4:Wall-clock Time and Computation Times

Results. First, we measured wall-clock time averaged over all peers. As shown
in Fig. 4.4, DiceMix runs in about 8 seconds with a moderate size of 50 participants.
Second, we measured computation time. We considered the average total computation
time spent by a peer and average computation time only for polynomial factorization,
i.e., solving the equation system involving the power sums.

Optimization. We observe that solving the equation system is quite expensive, e.g.,
about one second for 100 peers. To demonstrate that this is mostly due to lack of
optimization, we developed an optimized stand-alone application for this step in C++
using the FLINT number theory library [HJP15], which provides a highly optimized
implementation of the Kaltofen-Shoup algorithm for polynomial factorization over
finite fields [KS97]. Our optimized application solves the equation system involving
the power sums in about 0.32 seconds for 100 peers on a 2.70 GHz (Intel Core i7-
4800MQ) machine, using 6 MB of DDR3-1600 RAM. This shows that optimizations
can reduce the running time of the protocol further.

Discussion. The experimental results show that even our unoptimized implementa-
tion of DiceMix scales to a large number of peers and outperforms state-of-the-art
P2P mixing solutions such as CoinShuffle [RMK14] and Dissent [CF10] considerably.
In comparison, CoinShuffle (as an tailored variant of the Dissent shuffle protocol)
needs slightly less than three minutes to complete a successful run of the P2P mixing
protocol in a very similar test environment with 50 peers.

77

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

4.6 Efficient Coin Mixing for Bitcoin

In this section, we apply DiceMix to Bitcoin, resulting in CoinShuffle++, a highly
efficient coin mixing protocol that does not require any changes to the Bitcoin system.

4.6.1 Security Goals

Apart from the security goals for a P2P mixing protocol (Section 4.2.4), a coin mixing
protocol must guarantee correct balance. It ensures that no funds can be stolen from
honest peers.

Correct Balance. For every honest peer 𝑝 , the total balance of peer 𝑝 is not reduced
by running the coin mixing protocol (ignoring transaction fees).

4.6.2 The CoinShuffle++ Protocol

CoinShuffle++ leverages DiceMix to perform a Bitcoin transaction where the input
and output addresses for any given honest peer cannot be linked. In particular,
CoinShuffle++ creates a fresh pair of signing-verification Bitcoin keys and returns
the verification key to implement Gen().

CoinShuffle++ uses CoinJoin [Has11; Max13A; MO15] to perform the actual mixing
in the confirmation subprotocol Conf(). A CoinJoin transaction allows a set of peers
to mix their coins without the help of a third party. In such a jointly created multi-
input multi-output transaction, peers set their current coins as input and a mixed list
of fresh Bitcoin addresses as output. Crucially, every peer can verify whether the
transaction thereby constructed transfers the correct amount of funds to the correct
fresh output address. Only if all peers agree and sign the transaction, it becomes valid.
So in the case of CoinShuffle++, the explicit confirmation provided by DiceMix is a
list of valid signatures, one from each peer, on the CoinJoin transaction.
Note that DiceMix guarantees that everybody receives the correct list of output

addresses in the confirmation subprotocol. So a peer refusing to sign the CoinJoin
transaction can safely be considered malicious and removed. This is a crucial because
otherwise, a single malicious peer can refuse to sign the transaction, while all other
peers cannot exclude this malicious peer if not convinced of its guilt.
We define CoinShuffle++ as follows. We denote by CoinJoinTx(VK in [],VKout, 𝛽)

a CoinJoin transaction that transfers 𝛽 bitcoins from every input address in VK in []
to the output addresses, where 𝛽 is a pre-arranged parameter; note that if there are
|𝑃 | unexcluded peers, then the P2P mixing protocol guarantees that there will be

78

4.6 Efficient Coin Mixing for Bitcoin

|𝑀 | = |𝑃 | output addresses. Moreover, we denote by Submit(tx, 𝜎 []) the submission
of tx including all signatures to the Bitcoin network.

1 proc Gen ()
2 (vk, sk) ··= AccountGen() ⊲ Stores sk in the wallet
3 return vk
4 end proc
5 proc Conf (𝑖, 𝑃,VKout,my ,VKin [], skin, sid)
6 tx ··= CoinJoinTx(VK in [],VKout, 𝛽)
7 𝜎 [my] ··= Sign(skin, tx)
8 broadcast 𝜎 [my]
9 receive 𝜎 [𝑝] from all 𝑝 ∈ 𝑃
10 where Verify(VKin [𝑝], 𝜎 [𝑝], tx)
11 missing 𝑃off do ⊲ Peers refusing to sign are malicious
12 return 𝑃off
13 end missing
14 Submit(tx, 𝜎 [])
15 return ∅ ⊲ Success!
16 end proc

Security Analysis. CoinShuffle++ adheres to the requirements specified in Sec-
tion 4.4.2. Thus, sender anonymity and termination in CoinShuffle++ are immediate.
Correct balance is enforced by the CoinJoin paradigm: a peer signs only transactions
that will transfer its funds from its input address to its output address.

PerformanceAnalysis. In our performance analysis of DiceMix (Section 4.5),Gen()
creates a new ECDSA key pair and Conf() obtains ECDSA signatures from all peers
(using their initial ECDSA key pairs) on a bitstring of 160 bits. This is almost exactly
CoinShuffle++, so the performance analysis of DiceMix carries over.

Compatibility. Since CoinJoin transactions work in the current Bitcoin network,
CoinShuffle++ is immediately deployable without any change to the system.

4.6.3 Practical Considerations

We discuss considerations relevant for a practical deployment of CoinShuffle++.

Fees. Bitcoin charges a small fee to prevent transaction flooding attacks. This fee
can be split among the peers in the mixing and added to the CoinJoin transaction.

79

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

Change Outputs. The mixing amount 𝛽 must be the same for all peers, but peers
typically do not hold the exact mixing amount in their input Bitcoin address and thus
may need an additional change output, which is used to receive back extra amount
of bitcoins not used in the mixing, this is compatible with CoinJoin. (We refer the
reader to [MO15] for a detailed taint-based analysis on the privacy implications of
CoinJoin-based coin mixing protocols.)

Double-Spending Attempts. After honestly performing the CoinShuffle++ proto-
col, a peer could try to spend the bitcoins in the input of the CoinJoin transaction
in another transaction, before the CoinJoin transaction is confirmed.7 If this other
transaction wins in the consensus process and is confirmed, then the CoinJoin trans-
action will be invalid. To avoid this disruption, peers should wait in the confirmation
subprotocol after completing the CoinJoin transaction, watch the network for any
double-spending attempts for a few seconds [DW13; NAH16; BtcStats], and relay
them to their peers. If a double-spending attempt is detected, the honest peers can
verify the accusation by checking the signature, consider the DiceMix run failed, and
exclude the malicious peer. (There will be two valid CoinJoin transactions in the
network, one of which will be confirmed. This is not a problem: the honest peers do
not care which of them will be confirmed.) In the worst case that the double-spending
attempt is not detected, the only consequence is that the mixing fails.

Extensibility and Multi-Signatures. The fact that DiceMix is generic in the con-
firmation subprotocol Conf() makes it possible to define variants of CoinShuffle++
to support a wide range of cryptocurrencies and signature algorithms including multi-
signatures [BN06; Max+19] that allow a single combined signature (jointly created in
an interactive protocol) for the entire transaction.

For example, the use of Schnorr signatures in Bitcoin has been suggested [Core17].
This modification will enable multi-signatures (with key aggregation), e.g., using
the interactive three-round protocol MuSig [Max+19] among the peers in a CoinJoin
transaction. Since the partial signatures sent by the peers in the third round of MuSig
can be verified individually for each peer, the Conf() subprotocol can still determine
which of the peers have sent wrong partial signatures, which is necessary to ensure
correct exclusion. Furthermore, the first two rounds of MuSig can be run in parallel
to the second (CM) and third round (DC) of CoinShuffle++, which keeps the number
of required communication rounds at 4𝑓 + 2. This is possible because the first two

7Since the goal of the attacker is not to use the same money twice, this is not a normal double-
spending attack, but we stick to the terminology because the attacker creates two transactions
spending the same money.

80

4.6 Efficient Coin Mixing for Bitcoin

rounds of MuSig do not depend on the set of signers or the message to be cosigned
(the CoinJoin transaction).8

Given that signatures are often the largest individual part of the transactions, multi-
signatures greatly reduce the size of transactions and consequently the transaction
fee, thereby making mixing using CoinJoin cheaper.

Resistance against DoS Attacks by Sybils. CoinShuffle++ makes sure that dis-
ruptive peers in a mixing will be excluded in due course. To avoid that the same
peers disrupt further protocol runs, the bootstrapping mechanism (if executed on the
bulletin board) can block the unspent transaction outputs in the blockchain used by
the disruptive peers for a predefined period of time, e.g., an hour. (They should not
be blocked forever because peers could be unresponsive for legitimate reasons, e.g.,
unreliable connectivity.)
This ensures that the number of unspent transactions outputs belonging to the

attacker limits its ability to disrupt CoinShuffle++ on a particular bulletin board.
The attacker can try to overcome the blocking by spending the corresponding funds
to create new unspent transaction outputs (child outputs of the blocked outputs);
however, this is expensive because he needs to pay transactions fees. Moreover, the
bootstrapping mechanism can block not only the used transaction outputs but also
their child outputs.

Network-Level Anonymity. DiceMix does not rely on any external anonymous
channel (e.g., the Tor network [DMS04; Tor]) for mixing coins. Nevertheless, to
ensure unlinkability of inputs of the CoinJoin transaction with network-level details
such as IP addresses, using an external anonymous channel is highly recommended
both for running CoinShuffle++ and actually spending the mixed funds later.

4.6.4 Related Work

We give an overview of related mixing proposals for Bitcoin and similar cryptocurren-
cies. Related work for P2P mixing protocols is discussed throughout the chapter, and
solutions that aim for more comprehensive privacy but break with the fundamental
design of Bitcoin are discussed in Section 5.5
8The security of MuSig when used in concurrent sessions relies on the message being fixed before its
second round [Nic19], which is ensured by the CM round of CoinShuffle++. If the signing sessions
needs to be aborted after its second round (due to a disruption in the DC phase of DiceMix), no
attacker can use the information obtained from the first two rounds to forge signatures on the
CoinJoin transaction (which was not used in the signature protocol so far and in fact not even
finally determined by DiceMix).

81

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

Naive Tumblers. A tumbler provides a backwards-compatible centralized mixing
service [BtcWikiC] to unlink users from their funds: several users transfer their
funds to the tumbler, which returns them to the users at fresh addresses. The main
advantage of a centralized approach is that it scales well to large anonymity sets
because the anonymity set is the set of all users using the service in some predefined
time window. However, by using these services naively, a user must fully trust the
tumbler: First, anonymity is restricted towards external observers, i.e., the mixing
service itself can still determine the owner of the funds. Second and more important,
the users have to transfer their funds to the tumbler, which could just steal them by
refusing to return them.

Improved Tumblers. Mixcoin [Bon+14] mitigates the second problem by holding
the tumbler accountable if it steals the funds, but theft is still possible. Blindcoin [VR15]
improves upon Mixcoin in that the tumbler additionally cannot break anonymity.
CoinSwap [Max13B] is a tumbler protocol that ensures that the tumbler cannot steal
the funds, but the tumbler is still trusted for anonymity.

TumbleBit. TumbleBit [Hei+17] is a proposal for an untrusted tumbler based on
the combination of blind signatures and smart contracts with the aim to solve both
aforementioned challenges, i.e., theft and anonymity. To perform ordinary mixing
this approach requires at least two transactions to be confirmed sequentially (in two
different blocks), whereas CoinShuffle++ requires just one transaction.
TumbleBit supports using the second transaction to send a payment to a payee

directly, which is then on par with CoinShuffle++, which also requires one transaction
for mixing and one transaction for sending the payment to the real payee. However,
this mode of TumbleBit comes with limitations. First, it requires coordination be-
tween the tumbler and the payee. Second, it requires more fees than CoinShuffle++,
because the CoinJoin transaction used in CoinShuffle++ is cheap, in particular if
using aggregate signatures. Third, it requires the payment amount to be exactly the
mixing amount, which hinders availability severely because it is very difficult to find
enough users that are willing to send the exact same amount of funds at a similar
time. With CoinShuffle++, instead, the second transaction, i.e., the actual spending
transaction is a normal transaction and supports change addresses, at which peers
get their remaining funds back.

On the other hand, TumbleBit offers the following advantages over CoinShuffle++:
First, mixing with a tumbler in general scales better to larger anonymity sets, and
TumbleBit has been tested with an anonymity set of 800 users. Second, since the
design of TumbleBit relies on payment channels (Section 3.2.2), TumbleBit offers very

82

4.6 Efficient Coin Mixing for Bitcoin

efficient mixing if users are willing to establish long-term payment channels with the
tumbler. Third, no interaction between the different senders in the mixing is required.

CoinJoin with a Server and Blind Signatures. The CoinJoin proposal [Max13A]
describes the idea to use a server to shuffle the list of output addresses. In a first
step, every peer sends a transaction input to the server, which returns a blind sig-
nature [Cha82] on the input. In a second step, the peer reconnects through an
anonymous channel such as Tor [DMS04; Tor] and presents the unblinded input
together with a fresh output addresses.

While this approach, which has been refined in ZeroLink [FT17] and implemented
in Wasabi Wallet [Was18], is very efficient, it merely moves the trust assumption
to the anonymous channel, e.g., to the nodes in the Tor circuits of the peer and to
Tor’s resistance against traffic analysis. In contrast, CoinShuffle++ does not require
an external anonymous channel to achieve unlinkability of inputs and outputs in
the CoinJoin transaction. (Nevertheless, to ensure unlinkability of inputs of the
CoinJoin transaction with network-level details such as IP addresses, using an external
anonymous channel is highly recommended both for running CoinShuffle and actually
spending the mixed funds later.)

CoinParty. In CoinParty [Zie+15], a set of mixing peers is used to mix funds of users.
It is assumed that 1/3 of the mixing parties are honest. This trust assumption is not
in line with the philosophy of Bitcoin, which works in a P2P setting without strong
identities, where Sybil attacks are easily possible.

CoinShuffle++, instead, does not make any trust assumption on the mixing partici-
pants, except that there must be two honest peers, which is a fundamental requirement
for any protocol providing anonymity.

Xim. Xim [Bis+14] improves on its related previous work [Bar+12] in that it uses a fee-
based advertisement mechanism to pair partners for mixing, and provides evidence
of the agreement that can be leveraged if a party aborts. Even in the simple case of a
mixing between two peers, Xim requires publishing several Bitcoin transactions in the
Bitcoin blockchain, which takes on average at least ten minutes for each transaction.
In contrast, CoinShuffle++ requires to submit a single transaction to the Bitcoin

blockchain independently on the number of peers.

Möbius. Möbius [MM17] is a trustless tumbler in a smart contract, which can be
deployed in Ethereum [But13] and similar cryptocurrencies with Turing-complete
script languages. Since the entire mixing is performed on-chain, mixing runs need

83

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

to be stored on the blockchain, including relatively large ring signatures which
are necessary for anonymity. Möbius reduces the off-chain latency of the mixing
and requires no direct interaction between the peers in the mixing. The goal of
CoinShuffle++ goal is the opposite, namely reducing on-chain cost by requiring
interaction between the peers involved in the mixing.

CoinJoin with Different Input Amounts. Byzantine Cycle Mode [Sun14] and
the proposals by Maurer, Neudecker, and Florian [MNF17] and Ficsór [Fic18] are
techniques to perform CoinJoin-based mixing even if the peers would like to mix
different input amounts at the same time. This is achieved by dividing the set of peers
willing to perform mixing in suitable groups [Sun14] or by splitting the transaction
outputs suitably [MNF17; Fic18]. These approaches can improve the practicality of
CoinJoin considerably but do not tackle the fundamental problem that amounts are
publicly visible in the transaction and can be exploited to link inputs and outputs.
In Chapter 5, we will extend CoinShuffle++ to support mixing different input

amounts natively. As opposed to the aforementioned proposals, this requires changes
to Bitcoin because it relies on homomorphic commitments to hide the monetary
amounts in transactions.

4.7 A Generic Attack on P2P Mixing Protocols

In this section, we introduce a deanonymization attack on state-of-the-art P2P mixing
protocols. We then generalize the attack to demonstrate that no P2P mixing protocol
simultaneously supports user-chosen fixed input messages, provides anonymity, and
terminates in the presence of disruptive peers.

4.7.1 Strong Sender Anonymity

We first observe that user-chosen fixed input messages demand a stronger anonymity
requirement: if input messages are chosen by the user, they are not necessarily mean-
ingless at the beginning the protocol execution as opposed to discardable messages
that would obtain meaning only later in case of successful mixing, e.g., Bitcoin ad-
dresses that receive money only during a CoinJoin transaction that is created in the
confirmation subprotocol. Fixed input messages are rather bitstrings that may have
meaning already at the beginning of the protocol execution, e.g., leaked documents.
As a consequence, fixed input messages naturally demand a stronger anonymity

requirement that is not restricted to successful protocols runs: if the attacker manages
to learn that a certain peer 𝑝 used𝑚𝑝 as input message, then this should arguably

84

4.7 A Generic Attack on P2P Mixing Protocols

already considered a break of the anonymity property, no matter whether the protocol
succeeds or not for peer 𝑝 (whereas we required anonymity only for successful
protocol runs if the messages are discardable, see Section 4.2.4).

Formally, a P2P mixing protocol provides strong sender anonymity if the following
holds, even against an attacker that controls the bulletin board: if some honest peer
𝑝 has input message𝑚𝑝 in some run that 𝑝 started with peer set 𝑃 , and 𝑝 ′ ∈ 𝑃 is
another honest peer, then the attacker cannot distinguish whether the message𝑚𝑝

belongs to peer 𝑝 or to peer 𝑝 ′.

4.7.2 Example: A Deanonymization Attack on Dissent

We describe an attack on the Dissent shuffle protocol [CF10; Syt+14].9 At the core of
our attack, which breaks strong sender anonymity, is the problem is the handling of
peers that appear to be offline. They cannot be treated like active disruptors: while
sacrificing the anonymity of some peer 𝑝 is not at all a problem if peer 𝑝 is proven to
be an active disruptor and thus malicious, sacrificing the anonymity of 𝑝 is a serious
issue and can renders a protocol insecure if 𝑝 goes offline. Peer 𝑝 could in fact be
honest because there is no “smoking gun” that allows the other peers to conclude
that 𝑝 is malicious.
Our attack is based on the well-known and very basic observation that an offline

peer cannot possibly have sent a message, which comes in many shapes in basically
every anonymous communication protocol with reasonable latency [Bor+07; WSF13].
While the attack relies on this very basic observation, it has been overlooked in the
literature that a hard requirement to terminate successfully in the presence of offline
peers makes existing P2P mixing protocols vulnerable.
In the last communication round of Dissent, every peer publishes a decryption

key. All decryption keys taken together enable the peers to decrypt anonymized
ciphertexts, resulting in the final set 𝑀 of anonymized messages. (The rest of the
protocol is not relevant for our attack.) The attack on the shuffle protocol now
proceeds as follows (Fig. 4.5):

1. The network attacker does not interfere with the protocol until the last com-
munication round. In the last round, the attacker partitions the network into a

9There are several protocols named Dissent. First, there is a P2P mixing protocol proposed by
Corrigan-Gibbs and Ford [CF10] and formally proven secure by Syta et. al. [Syt+14]. Second,
there is protocol [Wol+12] in a client/server setting, which requires trust in one of several servers
and is consequently not relevant in our context. The former (P2P) protocol by Corrigan-Gibbs
and Ford [CF10] has two variants, a shuffle protocol and a bulk protocol. The shuffle protocol is
supposed to provide strong sender anonymity but is restricted to all peers having a message of the
same size, whereas the bulk protocol does not share this restriction. When we say Dissent, we
always mean the shuffle protocol [CF10, Section 3].

85

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

𝑝

𝐵𝐵

𝑀 ′
𝑀

Peer 𝑝 is partitioned from the bulletin board BB. The dashed
rectangles indicate the message sets𝑀 and𝑀 ′ of the peers in
the respective rectangle.

Figure 4.5: A P2P Mixing Protocol under Attack

part with only one honest peer 𝑝 and a part with the remaining peers. Con-
sequently, the last protocol message by peer 𝑝 (containing its decryption key)
does not reach the other peers. As the attacker has learned all decryption keys
(including that of 𝑝), it can decrypt the final set of messages 𝑀 , but nobody
else can. However, anonymity is not broken so far.

2. The remaining peers must eventually conclude that peer 𝑝 is offline and exclude
it; otherwise they will not be able to continue the protocol, because they cannot
assume that 𝑝 will ever be reachable again. The strategy by which Dissent
provides termination in such a situation is through a wrapper protocol that
instructs the remaining peers to attempt a second run of Dissent without peer
𝑝 . In this second run, the remaining peers resubmit their input messages used
in the first run [CF10, Section 5.4]. The attacker does not interfere with this
second run, and so the run will succeed with a final set𝑀 ′ of mixed messages.

3. Observe that𝑀 ′ \𝑀 = {𝑚𝑝}, since 𝑝 is the only peer present in the first run
but not in the second. This breaks anonymity of 𝑝 .

The issue on the formal side is an arguably too weak security definition. The core
of the Dissent protocol [CF10; Syt+14] does not provide termination on its own but
just a form of accountability, which states that at least one active disruptor can be
exposed in every failed run of the protocol. The underlying idea is to use the wrapper
protocol to ensure termination by starting a new run of Dissent without the exposed
disruptor whenever a run has failed.

The formal analysis of the Dissent, however, does not cover the wrapper protocol.
It considers only a single run of Dissent, and correctly establishes anonymity and

86

4.7 A Generic Attack on P2P Mixing Protocols

accountability for a single run. It has been overlooked that anonymity is lost under
sequential composition of several runs of Dissent using the same input messages, as
prescribed in the wrapper protocol.
While Corrigan-Gibbs and Ford [CF10] acknowledge and mention the problem

that the last protocol message may be withheld and thus some peer (or the net-
work attacker) may learn the result of the protocol while denying it to others [CF10,
Section 5.5], their discussion is restricted to reliability and fails to identify the conse-
quences for anonymity.

4.7.3 Generalizing the Attack

The underlying reason for this intersection-like attack is a fairness issue: the attacker,
possibly controlling some malicious peers, can learn (parts of) the final message set
𝑀 of a protocol run while denying𝑀 to the other peers. If now some peer 𝑝 appears
to be offline, e.g., because the attacker blocks network messages, the remaining peers
must finish the protocol without 𝑝 with a message set𝑀 ′, which unlike𝑀 does not
contain𝑚𝑝 . Thus the attacker has learned that𝑚𝑝 belongs to 𝑝 .

Since fairness is a general problem in cryptography without an honest majority, it
is not surprising that the attack can be generalized, and we show an attack that breaks
strong sender anonymity for every P2P mixing protocol that provides termination
and supports input messages that are given to the protocol as fixed inputs.

Fixed Input Messages. Concretely, we say that a P2P mixing protocol is executed
with fixed input messages if, in terms of this chapter, every peer calls the algorithm
Gen() at most once per execution.
We note that this in this model, input messages are still randomized and have

sufficient entropy to be unpredictable, and every peer draws messages from the
same distribution. This models that the attacker has no prior knowledge about the
assignment of input messages to peers. We could alternatively model fixed input
messages as real inputs, e.g., chosen by the attacker, which are given to P2P mixing
protocol as arguments. In such a model the input messages would then be assigned
to peers randomly. However, our model is simpler and demands a weaker security
property, which makes our attack only stronger.

Attack Description. Now we are ready to provide a description of a generic attack
on any P2P mixing protocol when executed with fixed input messages. Our attack
violates strong sender anonymity under the assumption that the P2P mixing protocol
guarantees termination when executed with fixed input messages.

87

4 Peer-to-peer Mixing and Unlinkable Bitcoin Transactions

We assume an execution of a P2P mixing protocol with peer set 𝑃 = {𝑝1, . . . , 𝑝𝑛}
and their set of fixed input messages𝑀 = {𝑚1, . . . ,𝑚𝑛} (which are pairwise different
with overwhelming probability because they are generated by Gen()). We further
assume that the attacker controls the network and a majority 𝐴 ⊂ 𝑃 of peers in the
execution such that |𝑃 |/2 < |𝐴| ≤ |𝑃 | − 3.

Without loss of generality, we assume that no two peers send a protocol message
in the same communication round. (This models that the network attacker can
determine the order of simultaneous messages arbitrarily.)

For some 𝑖 , let 𝑟 be the first communication round after which input message𝑚𝑖 of
peer 𝑝𝑖 is known to a collusion of a minority 𝑆 of peers with 𝑝𝑖 ∉ 𝑆 . More formally,
this is the first round 𝑟 for which an efficient extraction algorithm 𝐸 exists such that
𝐸 outputs𝑚𝑖 with non-negligible probability, given the full state of all peers in 𝑆 after
round 𝑟 . Such a round exists because every peer outputs𝑀 at the end of a successful
protocol execution, and 𝑀 contains𝑚𝑖 . Note that knowledge of𝑚𝑖 does not imply
that the collusion 𝑆 of peers collectively knows that𝑚𝑖 belongs to peer 𝑝𝑖 ; it just
means that the collusion knows that𝑚𝑖 is one of the peers’ input messages.

Assume that 𝑆 ⊂ 𝐴, i.e., 𝑆 is entirely controlled by the attacker. The attacker lets the
first 𝑟 − 1 protocol rounds run normally. In round 𝑟 , it collects the protocol message
and learns𝑚𝑖 (by control of 𝑆). Then the attacker selects an index 𝑖∗ from the set of
honest peers. Starting with round 𝑟 , the attacker only delivers protocol messages
not from 𝑝𝑖∗ and not from his own peers in 𝐴; all these peers appear offline for the
remaining peers in 𝑅 ··= 𝑃 \ ({𝑝𝑖∗} ∪ 𝐴). By assumption, |𝑅 | ≥ 2, and hence by the
termination property, those remaining peers in 𝑅 will finish the protocol with a public
result set𝑀 ′ ⊊ 𝑀 .
We distinguish cases. If 𝑖∗ = 𝑖 , then 𝑝𝑖 ∉ 𝑅. Since additionally 𝑅 is a minority,

which has not seen any protocol messages from 𝑝𝑖 after round 𝑟 − 1, the peers in 𝑅 do
not know𝑚𝑖 , and thus𝑚𝑖 ∉ 𝑀

′. If instead 𝑖∗ ≠ 𝑖 , then 𝑝𝑖 ∈ 𝑅, and the correctness of
the protocol implies𝑚𝑖 ∈ 𝑀 ′.
In other words, the attacker learns whether 𝑚𝑖 belongs to peer 𝑝𝑖∗ or not by

checking whether𝑚𝑖 ∉ 𝑀
′. This breaks the anonymity of 𝑝𝑖∗ and violates strong

sender anonymity.

P2P Mixing Trilemma. As an intermediate consequence of this attack, no P2P
mixing protocol provides strong sender anonymity, termination, and support for fixed
input messages simultaneously. DiceMix forgoes fixed input messages to be able to
provide (weak) sender anonymity and termination for discardable input messages.

88

5 Mixing Confidential Transactions
for Comprehensive Privacy

In Bitcoin’s initial design, privacy plays only a minor role. The initial percep-
tion of pseudonyms alone providing some built-in anonymity has been broadly
refuted [Mei+13; Bar+12; SMZ14; KKM14; RH11; And+13; MO15; Nic15]. This state
of affairs has led to a plethora of privacy-enhancing technologies [Mie+13; Ben+14;
Sab13; Bon+14; VR15; Hei+17; Zie+15; Bis+14; Bar+12] aiming at overcoming these
shortcomings without breaking with the fundamental design of Bitcoin.
However, all of these approaches offer only partial solutions, focusing typically

on just one aspect of privacy (payer anonymity or payment amount privacy). For
instance, Confidential Transactions (CT) [Max15], a proposed enhancement to the
Bitcoin protocol defines a transaction format that ensures payment amount privacy
in the blockchain. A second example is Stealth Addresses (SA) [Byt11; Sab13; Tod14B;
CM17], which improves payer anonymity because it avoids that the payee needs to
communicate with the payer explicitly.
For payer anonymity, the most prevalent approach retaining compatibility with

Bitcoin is coin mixing as discussed in Chapter 4. In a coin mixing protocol, a group of
peers exchange their coins with each other, effectively hiding the relations between
funds and owners. This can be achieved in practice for example by jointly generating
a multi-input multi-output CoinJoin [Has11; Max13A] transaction, which enables
the peers to atomically transfer their funds from potentially tainted inputs to fresh
untainted output addresses. Since such a transaction must be signed by each involved
peer to be valid, theft of funds can easily be avoided. Additionally, if peers exchange
their output accounts by means of an anonymous broadcast protocol as done in
CoinShuffle++ (Chapter 4), inputs cannot be linked to outputs even by malicious
peers in the mixing, and such malicious peers cannot prevent the honest peers from
successfully completing the protocol.
To achieve comprehensive privacy, it is necessary to combine all the three afore-

mentioned partial privacy solutions (CT, SA, and mixing) into one solution, but this
poses a challenge. SA or other means to generate one-time addresses can be easily
combined with coin mixing, but while CT has in fact been designed with CoinJoin
mixing in mind, it is not clear that the trust models of CT and P2P coin mixing can

89

5 Mixing Confidential Transactions for Comprehensive Privacy

be made compatible. The design of CT assumes that a transaction is created by just
one peer, whereas in P2P coin mixing it is a group of mutually distrusting peers who
jointly must create a CoinJoin transaction. This leads to the following question:

Can we design a P2P coin mixing protocol that enables a group of mu-
tually distrusting peers to create a CoinJoin confidential transaction,
without revealing the relation between inputs and outputs or their pay-
ment amounts to each other?

5.1 ValueShuffle: Mixing Confidential Transactions

In this chapter, we answer this question affirmatively. We design ValueShuffle, the
first coin mixing protocol compatible with CT. ValueShuffle is an extension of Coin-
Shuffle++. Since ValueShuffle successfully combines coin mixing, SA and the CT
proposal, the resulting currency provides comprehensive privacy, i.e., payer anonym-
ity even against malicious payees and amount privacy. Since it builds upon CoinJoin,
ValueShuffle inherits a variety of features crucial to its practical deployment in the
Bitcoin ecosystem, e.g., compatibility with Bitcoin scripts and compatibility with
blockchain pruning.

Exploiting Synergies. By combining coin mixing with SA and CT, we exploit
important synergies which make P2P coin mixing both more efficient and more
practical, thereby releasing the full potential of coin mixing. We achieve that goal by
overcoming the two main limitations of current coin mixing approaches.

First, all forms of coin mixing have been heavily restricted to mixing funds of the
same amount because otherwise it is trivial for an observer to link inputs and outputs
together just based on their monetary amount, independently of how the mixing
is organized. While a peer can mix an input only partly to match the commonly
agreed mixing amount, this will create a change output, which is trivially linkable
to the input and leads to severe practical issues: the peer must handle the change
output very carefully to avoid that it is linked to the actual output in the mixing
because this linkage can lead to retroactive deanonymization attacks, and moreover,
the change output must be mixed before it can be spent safely, which probably creates
another unmixed change output, and so forth. Adding amount privacy to coin mixing
removes the necessity to mix funds of the same amount entirely (and consequently
all the aforementioned issues with the change output) but comes with the challenge
of proving to the network that no money is created in the mixing, since payment
amounts are no longer in clear.

90

5.1 ValueShuffle: Mixing Confidential Transactions

Second, P2P coin mixing protocols such as CoinShuffle++ suffer from the problem
that peers are required to mix their funds (in a CoinJoin transaction) by sending them
to a fresh address of their own first, which removes the trace to the owner. Only
afterwards, peers can spend the mixed funds to a payee in a second transaction.1

This two-step process renders mixing expensive for users, who pay additional fees
and need to wait longer, and for the entire Bitcoin network, which has to process
essentially twice the amount of transaction data. As a result, privacy comes at a large
expense. This is undesirable and creates a conflict between privacy and efficiency.
In ValueShuffle,we rely instead on SA and CT to enable users to send their funds

directly to the expected payees in the CoinJoin transaction, which is arguably the
most desirable mode of use of CoinJoin.

5.1.1 Features

ValueShuffle achieves the following main features as a combination of the three
privacy-enhancing technologies CT, SA, and coin mixing.

Privacy ValueShuffle provides decent privacy guarantees in Bitcoin: It ensures that
no attacker observing the blockchain or the network, or even participating in
the protocol, can link inputs and outputs of the CoinJoin transaction created
in an execution of ValueShuffle (input-output unlinkability). That ensures
that given an output of this transaction, the payer’s input address cannot be
identified among the honest input addresses in the mixing (payer anonymity).
Payer anonymity holds even against malicious payees (which for example is
necessary for anonymous donations) because the use of SA ensures that a
payer can derive an one-time payment address of a payee non-interactively
and thereby avoids that the payee learns the identity of the payer when setting
up the payment. Additionally, CT provides amount privacy.

Single Transaction ValueShuffle can be used to transfer funds to payees directly
without any form of premixing as required by P2P coin mixing solutions such
as CoinShuffle++, and without requiring interaction with the payee. As a result,
private payments can be performed with just one single transaction on the
blockchain.

DoS Resistance ValueShuffle succeeds in the presence of denial-of-service attacks
by disruptive peers aiming to prevent honest peers from completing the mixing.

1This is due to a fundamental restriction of P2P mixing protocols; they can only handle freshly
generated messages which can be discarded if the protocol is disrupted, e.g., Bitcoin addresses
generated in the beginning of the protocol (Section 4.7). As a result, paying to a payee directly is
not possible because that would require using a fixed amount or a fixed address as a message.

91

5 Mixing Confidential Transactions for Comprehensive Privacy

While disruptive peers can delay the protocol, they cannot stop it. Since Val-
ueShuffle is based on CoinShuffle++, it terminates in only 4+2𝑓 communication
rounds in the presence of 𝑓 disruptive peers.

Anonymous Channel Not Strictly Required Like CoinShuffle++, ValueShuffle
does not rely on any external anonymous channel such as Tor [DMS04; Tor]
for providing unlinkability of inputs and outputs in a CoinJoin transaction.
(However, to avoid an observer being able to link inputs of the CoinJoin trans-
action with network-level identifiers such as IP addresses, using an external
means of anonymous communication is highly recommended.)

Since ValueShuffle is based on the CoinJoin paradigm, it additionally inherits all of
its practical advantages:

Theft Resistance Since honest peers will check the final CoinJoin transaction before
signing it, no money can be stolen from them.

Script Compatibility While ValueShuffle does not keep the scripts confidential, it
is compatible with transaction outputs that use complex scripts, e.g., advanced
smart contracts, and provides meaningful privacy guarantees for them.

No Overhead for the Network Unlike ring signatures, as for example deployed in
Monero [XMR], which require a signature of size proportional to the anonym-
ity set, our approach—while requiring interaction between peers—provides
anonymity without putting an additional burden in terms of blockchain space
or verification time on the Bitcoin network.

Reduced Fees and Space Requirements Taking this one step further, CoinJoin
makes Bitcoin in fact more efficient, assuming the availability of Schnorr
signatures [Sch91], which have been proposed to be deployed in Bitcoin in
the future [Core17]. The introduction of Schnorr signatures will enable multi-
signatures using an interactive three-round protocol among the peers in a
CoinJoin [Max+19], reducing the number of signatures from 𝑛 to 1, where 𝑛 is
the number of peers. This protocol can easily be integrated in CoinShuffle++
(Section 4.6.3) and consequently also in ValueShuffle while keeping the number
of rounds at 4 + 2𝑓 .
Moreover, a promising future direction is to combine ValueShuffle with an
interactive protocol to produce a single very short multi range proof for all
newly created commitments in the outputs of the CoinJoin transaction, reducing
the size of the transaction significantly [Bün+18]. We conjecture that this
combination is possible but leave its details for future work.

92

5.2 Building Blocks

The aforementioned enhancements greatly reduce the size of transactions,
thereby providing large savings in terms of blockchain space, verification time,
and transaction fees as compared to 𝑛 individual confidential transactions.

Incentive for Privacy Due to the reduced fees, users save money by performing
privacy-preserving transactions. This provides an unprecedented incentive for
deployment and use of privacy-enhancing technologies in Bitcoin.

Compatibility with Pruning Unlike in Zerocash [Ben+14] orMonero [XMR], Coin-
Join makes it possible to observe which transaction outputs are unspent. While
this releases some information to the public, it allows pruning spent outputs
from the set of (potentially) unspent transaction outputs. Pruning helps to
mitigate the scaling issues of Bitcoin.

Overlay Design The unlinkability provided by ValueShuffle through the use of
CoinJoin is built as a separate layer on top of Bitcoin, which avoids additional
complexity and risk in the underlying Bitcoin protocol.

5.2 Building Blocks

Besides efficient P2Pmixing as discussed in Chapter 4, ValueShuffle needs Confidential
Transactions and Stealth Addresses as building blocks.

5.2.1 Confidential Transactions

Confidential Transactions (CT) [Max15; Gib16] is a cryptographic extension to Bitcoin
that allows a single peer to perform a transaction such that none of the monetary
amounts in the inputs or outputs are revealed, thereby guaranteeing amount privacy.
Nevertheless, the balance property, i.e., no new coins are generated in the transaction,
remains publicly verifiable.
This is mainly achieved by hiding the amounts using additively homomorphic

commitments, i.e., Com(𝑥, 𝑟) ⊕ Com(𝑥 ′, 𝑟 ′) = Com(𝑥 + 𝑥 ′, 𝑟 + 𝑟 ′). As an example,
assume a peer has an input amount 𝑥1 and two output amounts 𝑥2 and 𝑥3. The peer
can commit to 𝑥1, 𝑥2, and 𝑥3, as 𝑐𝑖 ··= Com(𝑥𝑖, 𝑟𝑖), where 𝑟𝑖 is chosen uniformly at
random. Then, the peer computes 𝑟Δ = 𝑟1 + 𝑟2 − 𝑟3 and adds this value in clear to the
transaction. Ignoring fees, a verifier can then verify the balance property by checking
whether 𝑐1 ⊕ 𝑐2 = 𝑐3 ⊕ Com(0,−𝑟Δ).

In fact, the CT proposal avoids adding 𝑟Δ explicitly by choosing the randomness
values such that always 𝑟Δ = 0, saving a few bytes in the transaction. ValueShuffle

93

5 Mixing Confidential Transactions for Comprehensive Privacy

is not compatible with this optimization because it is not clear how to enable the
optimization without adding communication rounds to the protocol.
If the commitments on the output side of the transaction could contain negative

amounts, then a malicious peer could create money out of thin air. For example, a
malicious peer could first create a (seemingly balanced) transaction with an input
with amount 1, and two outputs with amounts −1000 and +1001 (and then just never
use the use the output with −1000). To ensure that commitments do not contain
negative or too-large amounts that could overflow, a non-interactive zero-knowledge
range proof is added to every newly created commitment, proving that the amount
is positive and in a certain range. Also a few other components, e.g., an ephemeral
public key, are added to each commitment. To simplify presentation, we assume
throughout the chapter that these other components are part of the range proof.

5.2.2 One-time Addresses

Peers performing transactions via ValueShuffle require a sufficient supply of fresh
unlinkable addresses of the payee. This will make it possible to discard a recipient
address used in a failed run of DiceMix. In this case, a fresh address can be used for the
following run, satisfying the freshness requirement of messages mixed using DiceMix.
(If there are 𝑛 peers in the mixing, DiceMix will require at most 𝑛 − 1 addresses.)
Several methods are possible. First, the payee can post a stealth address [Byt11; Sab13;
Tod14B; CM17], which enables any payer to derive fresh addresses. Second, the
payee can send a BIP32 public key [BIP32] to the payer, which enables the payer to
derive fresh addresses. The necessary derivation index can be derived from public
information, e.g., a hash of the amount commitment. Third, the payee can simply
send enough fresh addresses to the payer.

The method based on stealth addresses provides the strongest privacy guarantees.
A stealth address is a public long-term address of a payee, which enables a payer to
derive an arbitrary number of unlinkable addresses owned by the payee. A payment
using a stealth address does not require any direct communication between payer
and payee, and thus provides strong payer anonymity when used together with coin
mixing: not even the payee can identify the payer, which is a useful property for
anonymous donations for example.

Nevertheless, ValueShuffle is oblivious of the method to generate fresh addresses;
we only require that the payee has access to some method, and we refer the reader to
the respective descriptions of the individual methods for details.

94

5.3 Solution Overview

5.3 Solution Overview
In this section, we give an overview on ValueShuffle, the first P2P coin mixing protocol
compatible with CT. We detail the protocol and the security analysis in Section 5.4.
Since ValueShuffle is an extension of CoinShuffle++, which uses DiceMix to mix

Bitcoin addresses of the peers, we rely on the same communication model and boot-
strapping assumptions as CoinShuffle++ and DiceMix (Section 4.2). In particular,
the peers are connected through a bulletin board, which is not trusted (except for
termination, which is a liveness property).

5.3.1 Security and Privacy Goals

ValueShuffle provides the following security and privacy guarantees, where the first
three are as in CoinShuffle++.

Unlinkability Given an output and two inputs belonging to honest peers in the
CoinJoin transaction created by the protocol, the attacker is not able to tell
which of the two inputs pays to the output.

Correct Balance For every honest peer 𝑝 , the total balance of peer 𝑝 is not reduced
by running the coin mixing protocol (ignoring transaction fees).

Termination If the bulletin board is honest and there are at least two honest peers,
the protocol eventually terminates successfully for every honest peer.

CT Compatibility The protocol generates a CoinJoin transaction without compro-
mising the amount privacy of honest peers as provided by CT.

5.3.2 Challenges and Overview on the Solutions

To combine coin mixing with CT and one-time addresses, we need to overcome the
following challenges. For the sake of explanation, we assume that each peer has only
one input and one output in the transaction, and that there is no transaction fee. The
full protocol does not have these limitations.

BasicDesign. From a high-level point of view, the peers in an execution of ValueShuf-
fle run DiceMix to mix not only their output addresses (as done in CoinShuffle++)
but their output triples, i.e., triples consisting of output address (or script), CT amount
commitment, and corresponding range proof. If DiceMix runs successfully, then it
will pass a set of anonymized triples to an application-defined confirmation mecha-
nism, which confirms the result of the mixing. As in CoinShuffle++, the confirmation

95

5 Mixing Confidential Transactions for Comprehensive Privacy

mechanism in ValueShuffle is the collective signing of the CoinJoin transaction, either
by collecting a plain list of signatures or by performing an interactive protocol to
create an multi-signature [Max+19].

Handling Disruption. If a run of DiceMix fails, it must be possible to identify at
least one disruptive peer to be excluded in a subsequent run of the protocol. This
will eventually guarantee termination. Crucially, DiceMix requires the confirmation
mechanism to output at least one such peer if confirmation itself is disrupted. The
confirmation mechanism can assume that the result of the mixing is correct, i.e.,
it contains the messages of all honest peers. Given that assumption, identifying
a disruptive peer is straightforward: a peer that refuses to sign the final CoinJoin
transaction, or provides wrong signatures (or wrong partial signatures in the case of
multi-signatures) is obviously disruptive.

Freshness of Mixed Output Triples. Recall that DiceMix requires mixed messages
(i.e., the output triples in our case) to be fresh and have sufficient entropy to ensure
anonymity (Section 4.4.2). This is exactly where we are able to exploit one-time
addresses and CT. In particular, the payer is able to create fresh unlinkable output
triples: We assume that the payer has a method to create fresh unlinkable output
addresses all belonging to same payee, so the address component of the output triple
is fresh. Moreover, the payer uses CT and since the commitment scheme and the
range proof are randomized, the payer is able to generate many fresh unlinkable
amount commitments and range proofs. So all three components of the output triple
can be freshly generated.

Only by combining one-time addresses and CT, we are able to guarantee anonymity
if peers are mixing and performing actual payments in the same transaction. Other
P2P coin mixing protocols require peers to mix funds to a fresh output address
of their own because using the fixed address of the payee or even using the plain
monetary amount in the mixing is not possible if anonymity and termination are
desired (Section 4.7).

Multi-Payer Confidential Transactions. In the original design of CT, the single
payer can easily craft the randomness for the commitments to input and output
amounts in the transaction such that anyone can verify its correctness (Section 5.2.1).
However, in a mixing transaction with several payers, a naive construction of such a
verifiable transaction would require that peers reveal to each other the randomnesses
used in the commitments, thereby forgoing the hiding property of the commitments
and effectively revealing the amounts.

96

5.3 Solution Overview

To overcome this issue, the peers can run a secure sum protocol to jointly compute
the sum 𝑟Δ of their random values, i.e., 𝑟Δ =

∑︁
𝑝 𝑟𝑝 − 𝑟 ′𝑝 , where 𝑟𝑝 denotes the

randomness in the commitment to the input amount of peer 𝑝 , and 𝑟 ′𝑝 denotes the
randomness in the commitment to the output amount of the same peer 𝑝 . As a
sum, 𝑟Δ does not reveal which peer contributed which summand to 𝑟Δ. Now all
peers can add 𝑟Δ as an explicit public randomness value to the transaction, and the
overall transaction is valid again, which can be publicly verified by checking whether⨁︁

𝑐𝑝 =
⨁︁

𝑐 ′𝑝 ⊕ Com(0,−𝑟Δ).
The value 𝑟Δ can be obtained with a standard secure sum protocol based on additive

secret sharing, where every peer 𝑝 broadcasts its value 𝑟𝑝 − 𝑟 ′𝑝 blinded by multiple
pads, each one shared with one other peer. The messages from all peers are then
combined so that shared keys cancel out and the sum 𝑟Δ is obtained. This mechanism
is in essence equivalent to a DC-net as already used in DiceMix.

Handling Disruption of the Secure Sum Protocol. Malicious peers can disrupt
not only the mixing of output triples but also the secure sum protocol by creating an
output amount commitment that does not match the amount of the input commitment,
which can be detected when creating the CoinJoin transaction.

Similar to sacrificing anonymity in the DC-net used for mixing output triples, we
can sacrifice anonymity in the DC-net that we use as a secure sum protocol. This
reveals for every peer 𝑝 the value 𝑟𝑝 − 𝑟 ′𝑝 . Using the verification equation of CT,
all honest peers can easily check the balance property of every peer 𝑝 individually,
i.e., check whether peer 𝑝’s output commitments are consistent with its input com-
mitments. Note that this approach does not reveal the random values used for the
input commitments or the output commitments of peer 𝑝 , which would also reveal
its intended payment amount.

Combining P2P Mixing and Secure Sum. Since both DiceMix and the secure
sum protocol are similar in structure (they both rely on DC-nets after all), we can
optimize their combination. First, we can rely on a single key exchange and derive
independent subkeys for the P2P mixing and the secure sum protocol. This means
that if one of the two protocols is aborted, then the other must be aborted as well
because the same ephemeral secret is used for the key exchange and must be revealed.
However, this is not a problem because the proper result of one of the two protocols
does not yield a valid mixing transaction, and the peers have to restart from scratch
by generating a fresh output triple anyway.

97

5 Mixing Confidential Transactions for Comprehensive Privacy

Mixing LongMessages in DiceMix. While DiceMix in its current form is practical
for small messages𝑚 (e.g., |𝑚 | = 160 bits as used by CoinShuffle++), it is prohibitively
slow for messages of the size we require; we need |𝑚 | ≈ 20 000 bits to mix the
quite large range proofs necessary in CT. The most expensive computation step is a
polynomial factorization and requires each message to be an element of a finite field
and consequently the finite field must have a size of about 2 |𝑚 | .

To overcome this issue, we split𝑚 into several chunks, i.e.,𝑚 =𝑚1 ∥ · · · ∥𝑚ℓ and mix
those chunks in different parallel runs of the essential mixing step in DiceMix. The
challenge that arises is to recombine the messages again because the mixing ensures
that it is not possible to know which chunks belong together (i.e., to the same peer).
Our solution is to prefix every𝑚𝑖 for 1 < 𝑖 ≤ ℓ with F(𝑚1), where F is a collision-
resistant hash function, so that every peer mixes: 𝑚′1 = 𝑚1 and 𝑚′𝑖 = F(𝑚1) ∥ 𝑚𝑖

for 1 < 𝑖 ≤ ℓ . This arrangement allows for a trade-off between computation and
communication required for mixing: bigger chunks reduce the number of required
parallel mixing instances but demand higher computation costs for the polynomial
factorization.

Supporting Arbitrary Scripts. So far we have discussed only output addresses,
which are essentially hashes, but not the type of these addresses. While mixing works
fine with ordinary pay-to-pubkey-hash (P2PKH) addresses, we require pay-to-script-
hash (P2SH) hashes [BIP16]2 to support arbitrary scripts. However, it is not possible
to mix P2PKH and P2SH hashes in the same mixing, because this would require
adding the address type explicitly to the mixing message, which breaks anonymity:
in case of a disruption, it becomes clear which inputs go a P2PKH address and which
inputs go to a P2SH address.

To support P2PKH and P2SH together, we can instead perform P2PKH transactions
nested in P2SH;3 then all peers use P2SH addresses in the mixing. A more advanced
alternative is rely on Taproot [Max18], a proposal to hide a script 𝑆 in an ordinary
public key 𝑔𝑥 by tweaking the public to 𝑔𝑥+H(𝑔𝑥 ,𝑆) for a hash function H [GH12]; then
all peers use ordinary public keys in the mixing.
For the sake of simplicity, we will ignore the issue of different address types and

assume that the peers use some fixed address type in the remainder of the chapter.

2In P2PKH, funds are sent to a public key specified by its hash, and the peer who wants to spend
the resulting output is responsible for showing the public key. P2SH is a generalization: in P2SH,
funds are sent to a script specified by its hash, and the peer who wants to spend the resulting
output is responsible for providing the script.

3Such nesting has also been proposed in the context of Segregated Witness [BIP141].

98

5.3 Solution Overview

5.3.3 Overview of ValueShuffle

We assume that every peer 𝑝 is represented by a triple in𝑝 = (𝑐𝑝 = Com(𝑥𝑝 , 𝑟𝑝), 𝜋𝑝 ,
vk𝑝), where 𝑐𝑝 denotes the commitment to the input amount 𝑥𝑝 using randomness
𝑟𝑝 , 𝜋𝑝 denotes a range proof for 𝑐𝑝 , and vk𝑝 denotes a Bitcoin address owned by the
peer 𝑝 . For ease of explanation, we assume here that every peer has only one input
triple and that there are no fees in place.
From a high-level perspective, an execution of ValueShuffle consists of runs, and

each run of ValueShuffle consists of four phases as follows.

1. Output Generation. Every peer 𝑝 locally generates its output triple out𝑝 = (𝑐 ′𝑝 =

Com(𝑥 ′𝑝 , 𝑟 ′𝑝), 𝜋 ′𝑝 , addr ′𝑝), where 𝑐 ′𝑝 is a CT-style commitment, 𝜋 ′𝑝 is the corre-
sponding range proof, and addr ′𝑖 is a fresh one-time address of the payee. Note
that peers can have several output triples (including change outputs) but for
simplicity, we restrict our attention to only one output here.

2. Mixing and Secure Sum. Peers run in parallel a P2P mixing protocol to mix
their output triples out𝑝 and a secure sum protocol to privately compute the
sum 𝑟Δ =

∑︁
𝑝 𝑟
′
𝑝 − 𝑟𝑝 . Finally, input and output messages can be combined to

deterministically form a (still unsigned) CoinJoin transaction by adding the
explicit random value 𝑟Δ.

3. Check. Peers check validity of the resulting CoinJoin transaction, i.e., they check
whether all range proofs 𝜋 ′𝑝 verify with respect to commitments 𝑐 ′𝑝 , and check
whether the overall balance of the intended transaction is correct, i.e., whether⨁︁

𝑝 𝑐𝑝 =
⨁︁

𝑝 𝑐
′
𝑝 + Com(0,−𝑟Δ). Also, every peer verifies that its own output

triple is part of the mixing result, i.e., no coins are stolen by the transaction.

4a. Confirm. If all checks pass, the transaction is valid and peers are required to
sign it. While every peer checked only that its output is present, DiceMix
guarantees that this suffices to ensure that the outputs of all peers are present.
Thus if some honest peer reached this point, the peer can be sure that peers
refusing to sign the transaction are disruptive. If this happens, they will be
excluded and a new run of the protocol is started.

4b. Blame. If any of the aforementioned checks fail, a blame phase is performed
to detect at least one malicious peer. Every peer 𝑝 broadcasts the secrets that
it used for the mixing and secure sum protocols, thereby revealing the value
𝑟𝑝 − 𝑟 ′𝑝 , which suffices to check that peer 𝑝 committed the same amount in the
input and output addresses (and therefore no coins were created). Now every
other peer 𝑝 ′ can recompute the mixing and secure sum steps of peer 𝑝 and

99

5 Mixing Confidential Transactions for Comprehensive Privacy

detect whether it faithfully followed the protocol specification. The thereby
exposed malicious peer is then excluded from the protocol and a new run is
started.

5.4 Full Protocol Description

In this section we specify ValueShuffle fully. We start by describing the building blocks
that the protocol relies on. For the sake of completeness, we repeat the description of
digital signatures and non-interactive key exchange, which are already necessary for
DiceMix (Section 4.4.1).

Digital Signatures. We require a digital signature scheme (KeyGen, Sign, Verify)
unforgeable under chosen-message attacks (UF-CMA).
The algorithm KeyGen returns a private signing key sk and the corresponding

public verification key vk. On input message𝑚, Sign(sk,𝑚) returns 𝜎 , a signature on
message𝑚 using signing key sk. The verification algorithm Verify(pk, 𝜎,𝑚) outputs
true iff 𝜎 is a valid signature for𝑚 under the verification key vk.

Non-interactive Key Exchange. We require a non-interactive key exchange (NIKE)
mechanism (NIKE.KeyGen,NIKE.SharedKey) which is secure in the model by Cash,
Kiltz, and Shoup (CKS model) [Fre+13; CKS09].

The algorithm NIKE.KeyGen(id) outputs a public key npk and a secret key nsk for
a given party identifier id. NIKE.SharedKey(id1, id2, nsk1, npk2, sid) outputs a shared
key for the two parties id1 and id2 and session identifier sid. NIKE.SharedKey must
fulfill the standard correctness requirement that for all session identifiers sid, all par-
ties id1, id2, and all corresponding key pairs (npk1, nsk1) and (npk2, nsk2), it holds that
NIKE.SharedKey(id1, id2, nsk1, npk2, sid) = NIKE.SharedKey(id2, id1, nsk2, npk1, sid).
Additionally, we require an algorithm NIKE.ValidatePK(npk) which outputs true iff
npk is a public key in the output space of NIKE.KeyGen, and we require an algorithm
NIKE.ValidateKeyPair(npk, nsk) which outputs true iff nsk is a valid secret key for
the public key npk.
Static Diffie-Hellman key exchange satisfies these requirements [CKS09], assum-

ing a standard key derivation algorithm such as NIKE.SharedKey(id1, id2, 𝑥, 𝑔𝑦) ··=
K(𝑔𝑥𝑦 , {id1, id2}, sid) for a hash function K modeled as a random oracle.

Hash Functions. We require hash functions H, G, and Fmodeled as random oracles.

100

5.4 Full Protocol Description

Confidential Transactions. Confidential Transactions (CT) relies on a non-interac-
tive commitment scheme (Com,Open), which uses public parameters we keep implicit,
and a range proof (RPCreate,RPVerify). The commitment algorithm 𝑐 ··= Com(𝑚, 𝑟)
uses some randomness 𝑟 to output a commitment 𝑐 of a message𝑚. The opening
algorithm 𝑏 ··= Open(param, 𝑐,𝑚, 𝑟) returns true iff 𝑐 is a valid commitment of mes-
sage 𝑚 with randomness 𝑟 . Informally, a commitment scheme is hiding, i.e., the
commitment 𝑐 reveals nothing about𝑚; and binding, i.e., no attacker can produce
a commitment that it can open to two different messages 𝑚′ ≠ 𝑚. CT requires
an additively homomorphic commitment scheme. A commitment scheme is addi-
tively homomorphic if there is an efficient operation ⊕ on commitments such that
Com(𝑚1, 𝑟1) ⊕ Com(𝑚2, 𝑟2) = Com(𝑚1 +𝑚2, 𝑟1 + 𝑟2). In practice, CT uses Pedersen
commitments [Ped91] 𝑔𝑚ℎ𝑟 on the prime-order elliptic curve secp256k1, where 𝑔 and
ℎ are generators of the curve group such that the discrete logarithm of ℎ with respect
to 𝑔 is not known.
In a range proof scheme, the algorithm 𝜋 ··= RPCreate(𝑚, 𝑟) creates a zero-

knowledge proof 𝜋 that 𝑐 = Com(𝑚, 𝑟) is a commitment of an amount in a valid
range. The algorithm 𝑏 ··= RPVerify(𝜋, 𝑐) returns true iff 𝜋 is a valid range proof for
𝑐 . We refer the reader to the CT proposal [Max15; Gib16] for details.

Confirmation. The confirmation subprotocol Conf() uses CoinJoin to perform
the actual mixing. The algorithm CoinJoinTx() creates a CoinJoin transaction, and
the algorithm Submit(tx, 𝜎 []) submits transaction tx including the corresponding
signatures 𝜎 [] to the Bitcoin network.
A typical implementation of Conf() produces a CoinJoin transaction with one

signature from each peer. More sophisticated forms of confirmation, e.g., Schnorr
multi-signatures with key aggregation [Max+19], are possible as in the case of Coin-
Shuffle++ (Section 4.6.3).

Conventions andNotation for the Pseudocode. Weuse arrays written asArr[𝑖],
where 𝑖 is the index. We denote the full array (all its elements) as Arr[].

Message 𝑥 is broadcast using “broadcast 𝑥”. The statement “receive X[𝑝] from
all 𝑝 ∈ 𝑃 where 𝑋 (X[𝑝]) missing 𝐶 (𝑃off)” attempts to receive a message from all
peers 𝑝 ∈ 𝑃 . The first message X[𝑝] from peer 𝑝 that fulfills predicate 𝑋 (X[𝑝]) is
accepted and stored as X[𝑝]; all further messages from 𝑝 are ignored. When a timeout
is reached, the statement 𝐶 is executed, which has access to a set 𝑃off ⊆ 𝑃 of peers
that did not send a (valid) message.
Regarding concurrency, a thread 𝑡 that runs a procedure P (args) is started using

a statement “𝑡 ··= fork P (args)”, where 𝑡 is a handle for the thread. A thread with

101

5 Mixing Confidential Transactions for Comprehensive Privacy

handle 𝑡 can either be joined using “𝑟 ··= join 𝑡”, where 𝑟 is its return value, or it can
be aborted using “abort 𝑡”. A thread can wait for a notification and receive a value
from another thread using “wait”. The notifying thread uses “notify 𝑡 of 𝑣” to notify
thread 𝑡 of some value 𝑣 .

Setup. We assume that funds that should be used as input in ValueShuffle can only
be spent by providing signatures, i.e., they are associated with a verification key that
can also be used in ValueShuffle. Furthermore, for ease of explanation we assume here
that every peer has only one input. However, ValueShuffle can easily be adapted to
overcome this restriction: if a peer has more than one input, this peer can simply sign
its messages using all signing keys corresponding to all verification keys, and the code
for checking the balance can be adapted to consider the homomorphic combination
of several input commitments.
As a result of these assumptions, every peer in the beginning knows an unspent

transaction outputUTXO[𝑝], its corresponding CT commitmentC[𝑝] and verification
key VK[𝑝] for every other peer 𝑝 .
Furthermore, every peer has its corresponding secrets, i.e., the amount 𝑥 and

randomness 𝑟 such that 𝑐 = Com(𝑥, 𝑟), the secret key sk corresponding to vk, and
every peer has a set Payments with payees and corresponding amounts (including
a change address if necessary), describing the payments it wants to perform. We
assume that every peer wants to perform the same number of payments and that the
transaction fee fee is evenly split among the peers.

Full Pseudocode. Here we describe the full protocol in pseudocode. We assume
that the reader is familiar with the details of DiceMix and CoinShuffle++ (Chapter 4)
to understand the code. For the sake of better readability, our essential changes to
CoinShuffle++, which result in ValueShuffle, are printed in blue.

1 proc ValueShuffle (𝑃,my ,VK[], sk,UTXO[],C[], 𝑟 , Payments, sid)
2 sid ··= (sid, 𝑃,VK[])
3 ifmy ∉ 𝑃 then
4 fail “not in the set of peers”
5 end if
6 return Run(𝑃,my ,VK[], sk, sid, 0)
7 end proc

8 proc Run (𝑃,my ,VK[], sk, sid, run)
9 𝑃∗ ··= 𝑃 \ {my }
10 if 𝑃∗ = ∅ then
11 fail “no other honest peers”

102

5.4 Full Protocol Description

12 end if
13 ⊲ Exchange pairwise keys
14 (NPK[my],NSK[my]) ··= NIKE.KeyGen(my)
15 sidPre ··= H((sidPre, sid, run))
16 broadcast (KE,NPK[my], Sign(sk, (NPK[my], sidPre)))
17 receive (KE,NPK[𝑝], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
18 where NIKE.ValidatePK(NPK[𝑝])

∧ Verify(VK[𝑝], 𝜎 [𝑝], (NPK[𝑝], sidPre))
19 missing 𝑃off do
20 𝑃 ··= 𝑃 \ 𝑃off ⊲ Exclude offline peers
21 end missing
22 sid ′ ··= H((sid′, sid, 𝑃,NPK[], run))
23 K[] ··= DC-Keys(𝑃∗,NPK[],my ,NSK[my], sid ′))
24 ⊲ Generate fresh outputs to mix
25 (myOut,myr) ··= Gen(Payments)
26 DC[my] [] [] [] ··= DC-Mix(𝑃∗,my ,K[],myOut)
27 SumDC[my] ··= myr + DC-Slot-Pad(𝑃,my ,K[], sum)
28 𝑃ex ··= ∅ ⊲ Malicious (or offline) peers for later exclusion
29 ⊲ Commit to DC-net vector
30 Com[my] ··= H((CM,DC[my] [] [] [], SumDC[my]))
31 broadcast (CM,Com[my], Sign(sk, (Com[my], sid ′)))
32 receive (CM,Com[𝑝], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
33 where Verify(VK[𝑝], 𝜎 [𝑝], (Com[𝑝], sid ′))
34 missing 𝑃off do ⊲ Store offline peers for exclusion
35 𝑃ex ··= 𝑃ex ∪ 𝑃off
36 end missing
37 if run > 0 then
38 ⊲ Wait for previous run to notify us of malicious peers
39 𝑃exPrev ··= wait
40 𝑃ex ··= 𝑃ex ∪ 𝑃exPrev
41 end if
42 ⊲ Collect shared keys with excluded peers
43 for all 𝑝 ∈ 𝑃ex do
44 Kex [my] [𝑝] ··= K[𝑝]
45 end for
46 ⊲ Start next run (in case this one fails)
47 𝑃 ··= 𝑃 \ 𝑃ex
48 next ··= fork Run(𝑃,my ,VK[], sk, sid, run + 1)

103

5 Mixing Confidential Transactions for Comprehensive Privacy

49 ⊲ Open commitments and keys with excluded peers
50 broadcast (DC,DC[my] [] [] [], SumDC[my],Kex [my] [], Sign(sk,Kex [my] []))
51 receive (DC,DC[𝑝] [] [] [], SumDC[𝑝],Kex [𝑝] [], 𝜎 [𝑝]) from all 𝑝 ∈ 𝑃∗
52 where H((CM,DC[𝑝] [] [] [], SumDC[𝑝])) = Com[𝑝]

∧ {𝑝 ′ : Kex [𝑝] [𝑝 ′] ≠ ⊥} = 𝑃ex
∧ Verify(VK[𝑝],Kex [𝑝] [], 𝜎 [𝑝])

53 missing 𝑃off do ⊲ Abort and rely on next run
54 return Result-Of-Next-Run (𝑃off , next)
55 end missing
56 Out ··= DC-Mix-Res(𝑃,DC[] [] [] [], 𝑃ex,Kex [] [])
57 𝑟Δ ··= DC-Slot-Open(𝑃 ∪ {my }, SumDC[], sum, 𝑃ex, 𝐾ex [] [])
58 ⊲ Check if our output is contained in the result
59 (balanced,Outmal) ··= VerifyResult(𝑖, 𝑃∗,Out,C[], 𝑟Δ)
60 if myOut ⊆ Out ∧ balanced ∧ Outmal = ∅ then
61 Pmal ··= Conf(𝑖, 𝑃,Out,my ,VK[], sk,UTXO[], sid)
62 if Pmal = ∅ then ⊲ Success?
63 abort next
64 return𝑚
65 end if
66 else
67 broadcast (SK,NSK[my]) ⊲ Reveal secret key
68 receive (SK,NSK[𝑝]) from all 𝑝 ∈ 𝑃∗
69 where NIKE.ValidateKeyPair(NPK[𝑝],NSK[𝑝])
70 missing 𝑃off do ⊲ Abort and rely on next run
71 return Result-Of-Next-Run (𝑃off , next)
72 end missing
73 ⊲ Blame malicious peers using the secret keys
74 Pmal ··= Blm(𝑃∗,NPK[],my ,NSK[],DC[] [] [] [], sid ′, 𝑃ex,Kex [] [],Outmal,C[])
75 end if
76 return Result-Of-Next-Run (𝑃mal, next)
77 end proc

78 proc DC-Mix (𝑃∗,my ,K[],myM)
79 𝑜 ··= 1
80 for all𝑚 ∈ myM do
81 ⊲ Split message into chunks and prefix those
82 C[1] ∥ rem ··=𝑚 ⊲ C[1] must be long enough to be unpredictable
83 C[2] ∥ . . . ∥ C[𝑛] ··= rem ⊲ ∀𝑗 ∈ {2, . . . , 𝑛}. |C[𝑗] | = |C[1] | − |F(C[1]) |
84 for 𝑗 ··= 2, . . . , 𝑛 do

104

5.4 Full Protocol Description

85 C[𝑗] ··= F(C[1]) ∥ C[𝑗]
86 end for
87 ⊲ Create power sums in individual slots
88 for 𝑗 ··= 1, . . . , 𝑛 do
89 for 𝑠 ··= 1, . . . , |𝑃∗ | + 1 do4
90 DCMy[𝑜] [𝑗] [𝑠] ··= C[𝑗]𝑠 + DC-Slot-Pad(𝑃∗,my ,K[], (𝑜, 𝑗, 𝑠))
91 end for
92 end for
93 𝑜 ··= 𝑜 + 1
94 end for
95 return DCMy[] [] []
96 end proc

97 proc DC-Mix-Res (𝑃,DCMix[] [] [], 𝑃ex,Kex [] [])
98 𝑛 ··= |DCMix[1] |
99 for 𝑗 ··= 1, . . . , 𝑛 do
100 for 𝑠 ··= 1, . . . , |𝑃 | do
101 M∗ [𝑠] ··= DC-Slot-Open(𝑃,DCMix[] [𝑗] [], 𝑠, 𝑃ex,Kex [] [])
102 end for
103 ⊲ Solve equation system for array M[] of messages
104 M[𝑗] [] ··= Solve(∀𝑠 ∈ {1, . . . , |𝑃 |}. M∗ [𝑠] = ∑︁ |𝑃 |

𝑖=1 M[𝑖]𝑠)
105 end for
106 ⊲ Recombine messages
107 𝑀 ··= ∅
108 for 𝑖 ··= 1, . . . , |𝑃 | do
109 𝑚 ··= M[1] [𝑖]
110 for 𝑗 ··= 2, . . . , 𝑛 do
111 𝑆 ··= {(𝑖,𝑚∗) : ℎ ∥𝑚∗ = M[𝑗] [𝑖] ∧ ℎ = F(M[1] [𝑖])}
112 ⊲ Unique match?
113 if ∃𝑖,𝑚∗. 𝑆 = {(𝑖,𝑚∗)} then
114 𝑚 ··=𝑚 ∥𝑚∗
115 else
116 continue (outer loop) ⊲ Invalid encoding, ignore message
117 end if
118 end for
119 𝑀 ··= 𝑀 ∪ {𝑚}
120 end for
4If run > 0, it suffices to loop up to |𝑃∗ | because at least one peer will have been excluded when the
DC-net is opened.

105

5 Mixing Confidential Transactions for Comprehensive Privacy

121 return𝑀
122 end proc

123 proc DC-Slot-Pad (𝑃∗,my ,K[], 𝑠)
124 return

∑︁
𝑝∈𝑃∗ sgn(my − 𝑝) · G((K[𝑝], 𝑠)) ⊲ in 𝔽𝑞

125 end proc

126 proc DC-Slot-Open (𝑃,DC[] [], 𝑠, 𝑃ex,Kex [] [])
127 ⊲ Pads cancel out for honest peers
128 𝑚∗ ··=

∑︁
𝑝∈𝑃 DC[𝑝] [𝑠] ⊲ in 𝔽𝑞

129 ⊲ Remove pads for excluded peers
130 𝑚∗ ··=𝑚∗ −

∑︁
𝑝∈𝑃 DC-Slot-Pad(𝑃ex, 𝑝,Kex [𝑝] [], 𝑠)

131 return𝑚∗

132 end proc

133 proc DC-Keys (𝑃∗,NPK[],my , nsk, sid ′)
134 for all 𝑝 ∈ 𝑃∗ do
135 K[𝑝] ··= NIKE.SharedKey(my , 𝑝, nsk,NPK[𝑝], sid ′)
136 end for
137 return K[]
138 end proc

139 proc Blm (𝑃∗,NPK[],my ,NSK[],DC[] [] [] [], sid ′, 𝑃ex,Kex [] [],Outmal,C[])
140 𝑃mal ··= ∅
141 for all 𝑝 ∈ 𝑃∗ do
142 𝑃 ′ ··= (𝑃∗ ∪ {my } ∪ 𝑃ex) \ {𝑝}
143 K′[] ··= DC-Keys(𝑃 ′,NPK[], 𝑝,NSK[𝑝], sid ′)
144 ⊲ Reconstruct purported message𝑚′ of 𝑝
145 for 𝑜 ··= 1, . . . , |DC[my] | do
146 𝑚′ ··= DC[𝑝] [𝑜] [1] [1] − DC-Slot-Pad(𝑃 ′, 𝑝,K′[], (𝑜, 1, 1))
147 for 𝑗 ··= 2, . . . , | (DC[𝑝] [𝑜] | do
148 𝑚∗ ∥ ℎ ··= DC[𝑝] [𝑜] [𝑗] [1] − DC-Slot-Pad(𝑃 ′, 𝑝,K′[], (𝑜, 𝑗, 1))
149 𝑚′ ··=𝑚′ ∥𝑚∗
150 end for
151 Out ′ ··= Out ′ ∪ {𝑚′}
152 end for
153 ⊲ Replay DC-net messages of 𝑝
154 DC′[] [] [] ··= DC-Mix(𝑃 ′, 𝑝,K′[],Out ′)
155 if DC′[] [] [] ≠ DC[𝑝] [] [] [] then ⊲ Exclude inconsistent 𝑝
156 𝑃mal ··= 𝑃mal ∪ {𝑝}
157 end if

106

5.4 Full Protocol Description

158 ⊲ Verify that 𝑝 has sent valid range proofs
159 if Out ′ ∩ Outmal ≠ ∅ then
160 𝑃mal ··= 𝑃mal ∪ {𝑝}
161 end if
162 ⊲ Reconstruct randomness 𝑟 ′ of 𝑝
163 𝑟 ′ ··= SumDC[𝑝] − DC-Slot-Pad(𝑃 ′, 𝑝,K′[], sum)
164 ⊲ Verify that the balance of 𝑝 is correct
165 if C[𝑝] =

(︂⨁︁
(𝑐,𝜋,addr) ∈Out ′ 𝑐

)︂
⊕ Com(fee/|𝑃 ′ |,−𝑟 ′) then

166 𝑃mal ··= 𝑃mal ∪ {𝑝}
167 end if
168 ⊲ Verify that 𝑝 has published correct symmetric keys
169 for all 𝑝ex ∈ 𝑃ex do
170 if Kex [𝑝] [𝑝ex] ≠ K′[𝑝ex] then
171 𝑃mal ··= 𝑃mal ∪ {𝑝}
172 end if
173 end for
174 end for
175 return 𝑃mal

176 end proc

177 proc Result-Of-Next-Run (𝑃exNext, next)
178 ⊲ Hand over to next run and notify of peers to exclude
179 notify next of 𝑃exNext
180 ⊲ Return result of next run
181 result ··= join next
182 return result
183 end proc

184 proc VerifyResult (𝑖, 𝑃∗,Out,C[], 𝑟Δ)
185 Outmal ··= ∅
186 ⊲ Verify range proofs
187 for all out ∈ Out do
188 (𝑐, 𝜋, addr) ··= out
189 if RPVerify(𝜋, 𝑐) then
190 Outmal ··= Outmal ∪ {out}
191 end if
192 end for
193 ⊲ Check balance
194 balanced ··=

(︂⨁︁
𝑝∈𝑃∗ C[𝑝] =

(︂⨁︁
(𝑐,𝜋,addr) ∈Out 𝑐

)︂
⊕ Com(fee,−𝑟Δ)

)︂

107

5 Mixing Confidential Transactions for Comprehensive Privacy

195 return (balanced,Outmal)
196 end proc

197 proc Gen (Payments)
198 myr ··= 0
199 myOut ··= ∅
200 for all (payee, amount) ∈ Payments do
201 𝑟

$←− R ⊲ Fresh random value; implicitly stored in wallet
202 𝑐 ··= Com(amount, 𝑟)
203 𝜋 ··= RPCreate(amount, 𝑟)
204 myr ··= myr + 𝑟
205 addr ··= FreshPayeeAddress(payee)
206 myOut ··= myOut ∪ {(𝑐, 𝜋, addr)}
207 end for
208 return (𝑚𝑦𝑟,myOut)
209 end proc

210 proc Conf (𝑖, 𝑃,my ,VKin [], skin,UTXO[],Out, sid)
211 tx ··= CoinJoinTx(UTXOin [],Out)
212 𝜎 [my] ··= Sign(skin, tx)
213 broadcast 𝜎 [my]
214 receive 𝜎 [] from all 𝑝 ∈ 𝑃 \ {my }
215 where Verify(VKin [𝑝], 𝜎 [𝑝], tx)
216 missing 𝑃off do ⊲ Peers refusing to sign are malicious
217 return 𝑃off
218 end missing
219 Submit(tx, 𝜎 [])
220 return ∅ ⊲ Success!
221 end proc

5.4.1 Security Analysis

We argue why ValueShuffle achieves the desired security and privacy properties.

Unlinkability. Unlinkability follows from sender anonymity in DiceMix (Chapter 4):
Whenever some honest peer 𝑝 signs the CoinJoin transaction, the confirmation phase
has been reached. In this case, since output triples are freshly generated for each run,
DiceMix guarantees that the honest peers form a proper DC-net. This in turn ensures
that the attacker cannot distinguish whether an output triple of peer 𝑝 belongs to 𝑝
or some other honest peer 𝑝 ′. Note that the relation between peer and output triple

108

5.4 Full Protocol Description

can be revealed in the blame phase, but then a CoinJoin transaction with the current
output triple will never be signed, so it is safe to reveal the relationship. Instead, the
output triple will be discarded and a further run will be started, using a fresh output
triple, which is unlinkable to the discarded output triples. We refer the reader to
Section 4.4.5 for a detailed discussion.

Termination. DiceMix itself provides termination, and we have to argue that our
extensions do not affect this property. This mainly boils down to ensuring that a
malicious peer can be detected in each protocol run.
If one of the DC-nets for mixing the output triples is disrupted, then a malicious

peer will be identified. This follows from the termination of DiceMix and the obser-
vation that each message chunk is unpredictable. If the DC-net for computing 𝑟Δ is
disrupted, then the blame phase will sacrifice anonymity for this run (discarding the
output triples), and the malicious peer will be identified by checking its individual
balance property, i.e., whether its set of inputs and outputs is balanced, as done in the
blame phase. If a wrong range proof is provided, then the blame phase will sacrifice
anonymity for this run (discarding the output triples), and the malicious peer can be
identified by checking who provided the wrong range proof. In all other cases, the
transaction will be valid by construction, so peers refusing to sign it are malicious (or
offline) and thus can be excluded from further runs.
By construction, and if the bulletin board is honest (which we assume for termi-

nation, as otherwise it is impossible to achieve), all honest peers agree on the set of
peers to exclude and thus on the set of remaining peers in the subsequential run of
the protocol. We refer the reader to Section 4.4.5 for the details of termination.

Correct Balance. The protocol must ensure that no honest peer incurs money
loss (ignoring transaction fees). ValueShuffle ensures correct balance because the
mixing of output triples and randomness does not involve the transfer of funds.
Before the CoinJoin transaction is formed, every honest peer checks that its output
address and the corresponding committed amount is included and only then signs
the transaction. As a CoinJoin transaction becomes valid only when every peer has
signed the transaction (and thus confirmed that its funds are not stolen), ValueShuffle
provides correct balance.

CT Compatibility. ValueShuffle does not impair the privacy guarantees provided
by CT. The only secrets of CT belonging to some peer that ValueShuffle uses (and
actually reveals in the blame phase) is its value 𝑟 − ∑︁𝑘 𝑟

′
𝑘
, where 𝑘 ranges over its

output triples. However, since 𝑟 ′
𝑘
are random and ephemeral, this sum does not reveal

109

5 Mixing Confidential Transactions for Comprehensive Privacy

anything about the individual 𝑟 and 𝑟 ′
𝑘
values and thus does not affect the hiding

property of the input commitment or any of the individual output commitments.

5.5 Related Work

A variety of privacy solutions have been proposed so far in the literature, based on
different paradigms. We discuss these in the following (except for related work in the
area of coin mixing, which we discuss in Section 4.6.4).

Monero. The design of the cryptocurrency Monero is is the closest to our work in
terms of provided privacy guarantees. Monero relies on Ring Confidential Transac-
tions (RingCT) [NMM16], a combination of ring signatures (to provide anonymity for
the payer in a transaction [Sab13]) and CT (to hide payment amounts). In contrast to
ValueShuffle, an online mixing protocol is not required, and a sufficient anonymity
set can be created using funds of users currently offline.

However, Monero’s use of RingCT comes with two important drawbacks for scal-
ability. First, Monero essentially performs mixing on the blockchain and requires
each transaction to contain a ring signature of size 𝑂 (𝑛), where 𝑛 is the size of the
anonymity set. Storing the ring signatures requires a lot of precious space in the
blockchain, and verifying them puts a large burden on all nodes in the currency
network. In contrast, ValueShuffle performs the actual mixing off-chain and stores
only the result on the blockchain.
Second, Monero is not compatible with pruning, a feature supported, e.g., by

the Bitcoin Core client [Core15]. Pruning can reduce the storage requirements of
nodes drastically by deleting old blocks and spent transactions once verified. This
is impossible in Monero because its use of ring signatures prevents clients from
determining whether an transaction output has been spent and thus can be pruned.
A CoinJoin-based approach such as ValueShuffle does not have this problem and is
fully compatible with pruning.
From a high-level point of view, ValueShuffle moves the overhead of providing

payer anonymity from the blockchain and thus the whole Bitcoin network to only
the peers actively involved in a single mixing.

Mimblewimble. Mimblewimble [Jed16; Poe16] is a design for a cryptocurrency with
CT, which has been implemented for example in Grin [Grin]. Multiple Mimblewimble
transactions that can be aggregated non-interactively and even across blocks into
one transaction. This has tremendous benefits for the scalability of the underlying
blockchain, and the resulting aggregate transaction hides the relationship between

110

5.5 Related Work

inputs and outputs like in a CoinJoin transaction. However, such aggregation alone
does not ensure input-output unlinkability against parties who perform the aggrega-
tion, e.g., the miners, because those parties still get to see the individual transactions
that they aggregate. ValueShuffle can be used in Mimblewimble-based currencies to
provide this unlinkability.

Zerocoin and Zerocash. Zerocoin [Mie+13] and its successor Zerocash [Ben+14],
whose implementation Zcash has been deployed in practice, are cryptocurrency
protocols that provide anonymity by design. Although these solutions provide strong
privacy guarantees, they rely on a trusted setup and non-falsifiable cryptographic
assumptions [GW11] due to the use of zkSNARKS. Moreover, since it is not possible
to observe which outputs have been spent already, blockchain pruning is not possible
in Zerocoin and Zerocash.

111

6 Preparing Commitments for a
Post-QuantumWorld

The security of Bitcoin relies on cryptographic hardness assumptions, e.g., the discrete
logarithm assumption on the secp256k1 [SEC1] elliptic curve, which is necessary for
the unforgeability of ECDSA signatures. Advances in solving the discrete logarithm
problem can lead to uncertainty about whether currently deployed key sizes or
algorithms are still safe. In particular, the possible availability of large-scale quantum
computers could render the discrete logarithm assumption obsolete in the future.
As soon as quantum computers are considered a realistic and imminent concern,

the obvious step in every cryptographic system is to retire the current algorithms and
switch to new cryptographic algorithms considered secure against quantum attackers.
However, cryptographic agility is much more difficult to achieve in cryptocurrencies
than in many other cryptographic systems because the blockchain keeps permanent
state. For example, introducing a post-quantum signature scheme is easily possible,
but this measure just ensures the security of future transactions and will not retroac-
tively fix transactions performed in the past: the funds stored at previously created
unspent transaction outputs on the blockchain will still be only protected by the
unforgeability of the obsolete signature scheme.

When a new signature scheme is available, it is the responsibility of users to spend
these old outputs to fresh addresses of their own, thereby creating new unspent
outputs protected by the unforgeability of the new signature scheme. While moving
the funds does not prevent the attacker from breaking the old signing keys, the
consensus mechanism will ensure that the old outputs will already have been spent
when the attacker obtains the signing keys. Individual users may lose their money
if they fail to spend their vulnerable outputs, but the security of Bitcoin as a whole
remains largely unaffected.

While the need to transition to a post-quantum signature scheme creates an unfor-
tunate situation because users’ funds are at risk of theft, the situation will be much
worse in a cryptocurrency with Confidential Transactions (CT) [Max15; Gib16]. CT is
a privacy-enhancing technology that has been proposed as an extension to Bitcoin
(Section 5.2.1). The purpose of CT is to hide the monetary amounts in transactions
by replacing plain amounts by commitments to the amounts. Since the commitment

113

6 Preparing Commitments for a Post-Quantum World

scheme used is additively homomorphic, the creator of a transaction can easily prove
to the network that a transaction is balanced, i.e., the sum of its outputs is not more
money than the sum of its inputs. The proof essentially opens the commitment to
the homomorphic sum of the inputs minus the outputs to zero, which does not reveal
the individual monetary amounts of the inputs and outputs in the transaction. A
non-interactive zero-knowledge proof is added to each commitment to show that the
committed amount is an integer in the range [0, 𝑑 − 1] for some 𝑑 . These range proofs
ensure that the computation of the summands or not negative or that the sum does
not overflow (Section 5.2.1).1

CT has been tested and evaluated in the Elements platform [Elements], and success-
fully deployed in multiple cryptocurrencies such as Grin [Grin] and Monero [XMR]
(as an integral component of Ring Confidential Transactions (RingCT) [NMM16], a
scheme that additionally aims to provide a certain level of payer anonymity).

The original CT proposal relies on Pedersen commitments computed as 𝑐 = 𝑔𝑚ℎ𝑟 ,
where 𝑚 is the message, 𝑟 is a random value, and 𝑔 and ℎ are public generators
of the secp256k1 elliptic curve. Pedersen commitments are only computationally
binding under the assumption that computing discrete logarithms is hard. Thus,
if an attacker manages to break one discrete logarithm with current parameters,
the balance property of the currency breaks down with catastrophic consequences:
Knowledge of log𝑔 ℎ enables the attacker to open each of its commitments, no matter
what amount it is supposed to commit to, to an arbitrary amount of money. That
is, the attacker can effectively create an arbitrary amount of money and inflate the
currency. Even worse, this attack will go unnoticed due to the hiding property of
the commitments. As a consequence, if the attacker manages to compute a single
discrete logarithm, not only the individual security of funds is threatened, but the
entire currency is doomed.

Thus the situation is much worse than without CT when there is doubt about the
hardness of breaking the deployed cryptography. With CT, the only safe way out is to
introduce new parameters or algorithms and force users to spend unspent transaction
outputs protected by the obsolete parameters before some hard deadline 𝑇 . After time
𝑇 , such obsolete outputs will not be spendable anymore, i.e., the corresponding funds
will expire, effectively destroying money. This is highly undesirable and it is not clear
at all if such a change will find consensus in the community.

The obvious way to overcome all of the aforementioned issues is to use a commit-
ment scheme that is statistically binding, i.e., it is binding even against a computa-
tionally unrestricted attacker. For instance, just adding 𝑔𝑟 turns a computationally

1For example, 𝑑 = 264 > 2 099 999 997 690 000, where the number on the right-hand side is the
maximum number of satoshis that can be in existence in Bitcoin.

114

6.1 Solution Overview

binding Pedersen commitment into a statistically binding ElGamal commitment. (It is
actually even perfectly binding, but we stick to the more general statistical property
in this chapter.)
However, this modification comes with two drawbacks: First, it requires efficient

range proofs particularly suitable for the new commitment scheme, e.g., it precludes
the use of efficient range proofs developed for Pedersen commitments [Bün+18;
Poe+18], which are more efficient than those for ElGamal commitments. Second,
statistically binding commitments are necessarily at most computationally hiding. El-
Gamal commitments are computationally hiding under the decisional Diffie-Hellman
assumption, and hence not hiding against quantum attackers.2 Since the commit-
ments are recorded on the public blockchain, this constitutes a serious threat for the
privacy of users. If large-scale quantum computers will be available in the future,
they will be able to break the hiding property of all commitments in retrospect. This
does not only break the confidentiality of the payment values but enables attackers
to trivially and retrospectively link inputs and outputs in a mixing transaction, e.g.,
created using ValueShuffle (Chapter 5).

6.1 Solution Overview

The goal of this chapter is to provide a solution that prepares CT for a post-quantum
world but for now remains compatible with efficient range proofs and additionally
preserves privacy against post-quantum attackers whenever possible. Our tool to
achieve this goal is a novel security notion between computational and statistical
bindingness. We introduce switch commitments, which are commitments with a partial
and a full verification algorithm and two binding properties: First, the commitment
is computationally binding when partially verified. Second, the commitment is
everlastingly binding in the following sense: if the commitment is created by a
computationally bounded attacker and can be opened to some message when partially
verified, then later even a computationally unbounded attacker cannot open the
commitment to a different message when fully verified. This novel property captures
the essence of switch commitments.
2One could try to rely on a different commitment scheme instead. However, there are no promising
candidates to the best of our knowledge. The only known post-quantum secure additively homo-
morphic commitment schemes are based on lattice assumptions [e.g., XXW13; Bau+18; Pin+17]
and thus less efficient than ElGamal commitments. More importantly, they allow only for a small
bounded number of homomorphic additions because the error term grows in the homomorphic
addition, and this bound on the number of additions must be fixed in advance. But since outputs
of transactions are supposed to be used as inputs of new transactions, thereby forming a chain
of transactions, there is no reasonable bound in the application to CT, and those commitments
cannot be used directly.

115

6 Preparing Commitments for a Post-Quantum World

These properties enable verifiers to use the commitment scheme in a computation-
ally binding or a statistically binding way, depending on the verification algorithm
used. In particular, everlasting bindingness ensures that it is possible to start with
partial verification and then switch to full verification, even for already existing
commitments, e.g., commitments stored on the blockchain.

ElGamal Commitments are Switch Commitments. We prove that ElGamal com-
mitments (𝑔𝑚ℎ𝑟 , 𝑔𝑟) with a message space of polynomial size (in the security parame-
ter) are homomorphic switch commitments where the partial verification algorithm
ignores the element 𝑔𝑟 and verifies only the Pedersen commitment 𝑔𝑚ℎ𝑟 . Since the
message space of commitments used in CT is restricted to integers in a fixed range
to avoid overflow anyway, ElGamal commitments are a natural choice for a switch
commitment scheme to be used with CT.

Opt-In Switch Commitments for Post-Quantum Privacy. However, since El-
Gamal commitments are not post-quantum hiding, we additionally introduce opt-in
switch commitments. By using a hash-based commitment to 𝑔𝑟 instead of 𝑔𝑟 directly,
we give the user control about whether 𝑔𝑟 will be public or not. In our application to
CT, this has the desirable property that the commitments are binding and hiding in
almost all cases. Only in the exceptional case that the user fails to transfer before a
certain deadline (discussed below), the user needs to forgo one of the properties, and
even in this case, the user can choose between forgoing the binding property (i.e.,
the money) or the hiding property (i.e., privacy). Since the hash-based commitment
to 𝑔𝑟 can be added to an exponent of the Pedersen commitment, the size of the re-
sulting commitment is just one group element, i.e., our construction of opt-in switch
commitments is as efficient as a Pedersen commitment in terms of space.

6.1.1 Usage in Confidential Transactions

An (opt-in) switch commitment scheme can be used in CT as follows: When perform-
ing a transaction now, the network relies only on the partial verification to ensure
that the transaction is balanced, i.e., the transaction does not generate money out
of thin air. In particular, creators of transactions are forced to prove that they can
open the switch commitments to messages such that no money will be created and
just the partial verification algorithm accepts the openings. While this means that
the balance property holds only computationally, it is sufficient to use range proofs
that cover only partial verification, i.e., the creator of the switch commitment must
only demonstrate the ability to open the commitment to a value in range when the
opening is partially verified. Applied to ElGamal commitments, this effectively means

116

6.1 Solution Overview

that it suffices for the range proof to cover only the first component of the ElGamal
commitment, which is a Pedersen commitment. This is efficient because the most
efficient known range proofs systems operate on Pedersen commitments.
Ideally, a fully post-quantum secure CT scheme (consisting of a post-quantum

binding and hiding commitment scheme and a post-quantum sound and zero-knowl-
edge range proof system) will have been integrated in the cryptocurrency already
long before large-scale quantum computers will be in reach, assuming a reasonable
scheme will be found in the meantime. Then users will be encouraged (or even
forced by the consensus rules) to convert their funds from the switch commitment
scheme to the post-quantum commitment scheme, e.g., using zero-knowledge proofs.
However, some old transaction outputs using the switch commitment scheme will
remain unspent in the blockchain simply because some users will fail to perform the
conversion in time.
Assume that at some point in the future, there will be serious doubt about the

cryptographic strength of the used switch commitment scheme or its parameters.
Then a softfork can require confidential transactions that are performed after some
switch deadline 𝑇 and that spend funds still secured by the switch commitment
scheme to be fully verified. That means that a user who has failed to perform the
conversion in time will still be able to spend an old output (containing a switch
commitment) to a new output (containing a post-quantum secure commitment) by
providing a statistically sound proof of the balance property. This proof of the balance
property will include a statistically sound range proof demonstrating the user’s
ability to open the old switch commitment to a value in range such that the full
verification algorithm will accept this opening. Since the switch commitment scheme
is everlastingly binding, the switch to full verification ensures that no attacker will be
able to spend an unspent output with a switch commitment with more money than it
is supposed to contain even if this commitment was created by the attacker before
time 𝑇 (when the attacker was computationally bounded by assumption).

Therefore switch commitments provide a safety switch for CT: by switching to full
verification, we can ensure that even old commitments created years or decades ago
never need to expire.

Usage ofOpt-In SwitchCommitments. If opt-in switch commitments are used, all
old switch commitments in the blockchain (including those already spent) additionally
preserve confidentiality against post-quantum attackers. A problem appears only for
the few users who have failed to convert their money to outputs secured by quantum-
secure commitment schemes by the switch deadline 𝑇 . Those users can opt-in to the
switch: By default they keep their privacy but cannot access their money. However,

117

6 Preparing Commitments for a Post-Quantum World

if they would like to opt-in, they can claim their money but risk their privacy by
revealing additional information (i.e., 𝑔𝑟 as described above), which effectively is a
fallback to an ordinary ElGamal commitment. Conveniently, users do not need to
guess already today whether they will prefer privacy or money in the future because
the decision to opt-in can be taken after the switch deadline 𝑇 , and in fact can be
postponed essentially forever.
Furthermore, there is always a way out of the dilemma using zero-knowledge

proofs: An affected user can, instead of revealing 𝑔𝑟 , give a post-quantum secure
zero-knowledge proof that the amount in the switch commitment equals the amount
in a post-quantum secure commitment to which the money should be converted.

Such a zero-knowledge proof will demonstrate a statement involving a hash com-
putation. Even though we do not know if efficient enough zero-knowledge proof
systems will be available in the future, the efficiency of state-of-the-art post-quantum
secure proofs systems such ZK-STARKs [Ben+18] gives reasonable hope. We stress
that an expensive zero-knowledge proof will be necessary only once per switch com-
mitment and only for the few old switch commitments that have not been converted
in time.

Efficiency Comparison of Known Range Proof Systems. Our results imply
that it is safe that the range proof covers only the first component of the ElGamal
commitment (i.e., the Pedersen commitment) until the switch deadline 𝑇 . Here, we
explain why this leads indeed to more efficient range proofs. In the following, we
assume that we would like to prove that a committed value𝑚 is in the range [0, 𝑏𝑛−1].
Due to the fact that blockchain storage is very expensive, our main concern is size,
and we further assume that we work in elliptic curves, and hence group and field
elements are of roughly the same size.
The currently most efficient range proof for Pedersen commitments uses the Bul-

letproofs framework [Bün+18] and has size 2⌈log2 𝑛⌉ + 9 = 𝑂 (log𝑛) where 𝑏 = 2. An
optimized range proof for ElGamal commitments using Bulletproofs has not been
proposed yet, but it is conceivable that such a range proof needs to be larger because
it necessarily needs to prove a statement that involves two group elements instead of
just one.3
If we ignore Bulletproofs, then for Pedersen commitments, the smallest known

range proof has been proposed by Back and Maxwell [Poe+18] and needs 𝑏𝑛 + 1
elements. For ElGamal commitments, the smallest known range proof has been
3Since Bulletproofs are only computationally sound, this will be a computationally sound range
proof for a statistically binding commitment. This combination may look unnatural, but it fits the
attacker model of switch commitments, which assumes that the attacker is initially computational
bounded when it creates commitments but is unbounded when it spends those commitments later.

118

6.2 Commitments

proposed by Andreev [And17] and needs (𝑏 + 1)𝑛 + 1 elements; it is very similar to
the one by Back and Maxwell, and it is statistically sound.

6.2 Commitments

We formally introduce (non-interactive) commitment schemes, which we will use
throughout this chapter. A commitment scheme [Ped91] is a two-phase protocol
between a sender and a receiver. In the first phase, the sender commits to a message
𝑚 by sending a string com to the receiver. In the second phase, the sender reveals the
opening information op and the message𝑚 to the receiver, who can check whether
com was indeed a valid commitment on𝑚. All algorithms have access to a public
string crs generated by a trusted setup party. (We will relax this assumption in the
random oracle model.)

A commitment scheme is computationally hiding if the commitment does not reveal
anything about the message to a computationally bounded attacker.

Definition 6.1 (Computationally Hiding). A commitment commitment algorithm
Commit is computationally hiding if there exists a function negl(𝜆) negligible in the
security parameter 𝜆 such that for all 𝑝𝑝𝑡 attackersA, for all pairs of messages (𝑚0,𝑚1),
and for a random public string crs ··= Setup(1𝜆),

Pr [A(crs, com) = 𝑏 | 𝑏 ← {0, 1}; com ··= Commit(crs,𝑚𝑏)] ≤
1
2 + negl(𝜆).

A commitment scheme is binding if no sender is able to output two openings
(op, op′) for the same commitment com such that the two openings open the commit-
ment to two different values. We consider binding against computationally bounded
and against unbounded attackers.

Definition 6.2 (Computationally and Statistically Binding). A verification algorithm
Verify is computationally binding if there exists a function negl(𝜆) negligible in the
security parameter 𝜆 such that for all 𝑝𝑝𝑡 attackersA and for a random crs ··= Setup(1𝜆),
we have that

Pr
⎡⎢⎢⎢⎢⎣
Verify(crs, com, op,𝑚) = 1
∧ Verify(crs, com, op′,𝑚′) = 1
∧𝑚 ≠𝑚′

|︁|︁|︁|︁|︁|︁ (com, op,𝑚, op′,𝑚′) ··= A(crs)
⎤⎥⎥⎥⎥⎦ ≤ negl(𝜆) .

Statistical bindingness is defined identically except that A is computationally un-
bounded.

119

6 Preparing Commitments for a Post-Quantum World

Pedersen and ElGamal Commitments. Let crs = ℎ be a random element of a
prime-order group with with generator 𝑔; CT uses the prime-order elliptic curve
secp256k1 [SEC2]. Given a message𝑚 and a random integer 𝑟 , the Pedersen commit-
ment is the group element 𝑔𝑚ℎ𝑟 , and the ElGamal commitment is the pair (𝑔𝑚ℎ𝑟 , 𝑔𝑟)
of group elements. For both schemes, the verification algorithm recomputes the com-
mitment from the opening (𝑚, 𝑟) and accepts if it matches the original commitment.

Pedersen commitments are computationally binding under the discrete logarithm
assumption and they are perfectly hiding [Ped91]. ElGamal commitments are statis-
tically (and even perfectly) binding and they are computationally hiding under the
decisional Diffie-Hellman assumption [Elg84].

6.3 Switch Commitments

Nowwe extend the notion of a commitment scheme to support a switch from partial to
full verification, and we formally introduce the security definitions for our primitive.

Definition 6.3 (Switch Commitment Scheme). A switch commitment scheme SC =

(Setup,Commit,Verifypart,Verifyfull) consists of four ppt algorithms as follows:

crs← Setup(1𝜆): Given the security parameter 𝜆, the setup algorithm Setup outputs a
public string crs.

(com, op) ← Commit(crs,𝑚): Given the public string crs, and a message𝑚, the com-
mitment algorithmCommit outputs a commitment com and opening information
op.

𝑏 ← Verifypart(crs, com, op,𝑚): Given the public string crs, a message𝑚, a commit-
ment com and opening information op, the partial verification algorithmVerifypart

outputs 1 iff op is a valid partial opening for commitment com on message𝑚.

𝑏 ← Verifyfull(crs, com, op,𝑚): Given the public string crs, a message𝑚, a commitment
com and opening information op, the full verification algorithm Verifyfull outputs
1 iff op is a valid full opening for commitment com on message𝑚.

6.3.1 Security Properties

Since switch commitments with the partial verification algorithm are used like ordi-
nary commitments before the switch, they need to fulfill the same security properties
as ordinary commitments.

120

6.4 Construction

Standard Security Properties. For every secure switch commitment scheme, we
require that the commitment algorithm is computationally hiding and that the partial
verification algorithm is computationally binding.

Everlastingly Binding. Tomodel the security of the switch, we consider an attacker
that is computationally bounded when creating a commitment but not when opening a
commitment. In the following we formally define this notion of everlasting bindingness
for a switch commitment scheme.

Definition 6.4 (Everlastingly Binding). A switch commitment scheme SC = (Setup,
Commit,Verifypart,Verifyfull) is everlastingly binding if there exists a negligible func-
tion negl(𝜆) such that for all attackers A = (A0,A1), where A0 is 𝑝𝑝𝑡 (and A1 is not
computationally bounded), and for a randomly sampled crs← Setup(1𝜆), we have that

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Verifypart (crs, com, op,𝑚) = 1
∧ Verifyfull (crs, com, op′,𝑚′) = 1
∧𝑚 ≠𝑚′

(com,𝑚, op, state) ← A0(crs);
(𝑚′, op′) ← A1(crs, state)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ negl(𝜆).

We note that similar models in which the attacker is bounded only up to a certain
point in time have already been considered for privacy properties in the context of
electronic voting [MN06], multi-party computation [Unr13], and encryption in the
bounded storage model [HN06].

6.4 Construction
In the following we describe our construction for an ordinary switch commitment
scheme. This construction will also form the basis for our construction of opt-in
switch commitments presented in Section 6.5. Our scheme is essentially a combina-
tion of a Pedersen and ElGamal commitment scheme with restricted message space.
The commitment algorithm outputs an ElGamal commitment (𝑔𝑥ℎ𝑟 , 𝑔𝑟) and the full
verification algorithm recomputes the commitment to verify it. However, the partial
verification algorithm verifies only the Pedersen commitment 𝑔𝑥ℎ𝑟 . This makes it
possible to use efficient range proofs optimized for Pedersen commitments.

It is crucial for the security of our construction that the message space is restricted
to a size polynomial in the security parameter and the verification algorithm rejects
messages not in the space. In the proof of everlasting bindingness, the reduction
guesses a message in a commitment, and thus the reduction incurs a loss proportional

121

6 Preparing Commitments for a Post-Quantum World

to the size of the message space. Slightly increased parameters are necessary to
compensate for this loss of security.

Note that the message space of the commitments used in CT is already is restricted
to integers in the range [0, 𝑑 − 1] for a fixed non-negative integer 𝑑 that is a parameter
of the system (implicitly known to all algorithms) and determines the maximum
amount of a transaction.

With the application in CT in mind, we describe the scheme for concreteness with
this message space and we assume that 𝑑 is constant in the security parameter. We
however note that any other restriction of the message space is possible, as long as
the message space has polynomial size in the security parameter, membership can be
checked efficiently, and elements from the message space can be sampled efficiently.

Construction. We work in a group of prime order 𝑝 with generator 𝑔, for some
prime 𝑝 of bitlength proportional to the security parameter 𝜆. Our switch commitment
scheme is defined as follows.

Setup(1𝜆): Sample a random 𝑥 ∈ ℤ∗𝑝 , compute ℎ = 𝑔𝑥 and output crs = ℎ.

Commit (crs,𝑚) Parse crs as ℎ and sample 𝑟 ∈ ℤ𝑝 . Return com = (𝑔𝑚ℎ𝑟 , 𝑔𝑟) and
op = 𝑟 .

Verifypart (crs, com, op,𝑚): Parse crs as ℎ, com as (𝑐1, 𝑐2), and op as 𝑟 . If 𝑐1 = 𝑔𝑚ℎ𝑟
and 0 ≤ 𝑚 < 𝑑 , then return 1. Return 0 otherwise.

Verifyfull (crs, com, op,𝑚): Parse crs as ℎ, com as (𝑐1, 𝑐2), and op as 𝑟 . If 𝑐1 = 𝑔𝑚ℎ𝑟 ,
𝑐2 = 𝑔

𝑟 , and 0 ≤ 𝑚 < 𝑑 , then return 1. Return 0 otherwise.

Avoiding Trusted Setup. We have chosen a description in the standard model to
stress that the construction does not require random oracles. However, it is possible
to avoid a trusted setup in the random oracle model by setting ℎ = 𝐻 (𝑔), for a hash
function 𝐻 . This is essentially what has been proposed in the draft of CT.

6.4.1 Security Analysis

We formally analyze the security of our construction. To prove that the construction
is everlastingly binding, we need the inverse Diffie-Hellman assumption, which is
known to be equivalent to the computational Diffie-Hellman assumption; see Appen-
dix A for all computational hardness assumptions.

Claim 6.1 (Standard Security Properties). The construction fulfills the standard security
properties under the decisional Diffie-Hellman assumption. In particular, the commitment

122

6.4 Construction

algorithm of the construction is computationally hiding under the decisional Diffie-
Hellman assumption, and the partial verification algorithm is computationally binding
under the discrete logarithm assumption.

Proof. Since the commitment algorithm is identical to the one for ElGamal commit-
ments, the construction is computationally hiding under the decisional Diffie-Hellman
assumption. Since the partial verification algorithm is identical to the one for Peder-
sen commitments, the construction is computationally binding under the Discrete
Logarithm assumption. We refer the reader to ElGamal [Elg84] and Pedersen [Ped91]
for detailed arguments. □

Theorem 6.2 (Everlastingly Binding). The construction is everlastingly binding under
the inverse Diffie-Hellman assumption.

Proof. We prove that the construction is everlastingly binding under the inverse Diffie-
Hellman assumption. Assume towards contradiction that there exists an attacker
(A0,A1) such that A0 is ppt and

Pr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Verifypart (crs, com, op,𝑚) = 1
∧ Verifyfull (crs, com, op′,𝑚′) = 1
∧𝑚 ≠𝑚′

(com,𝑚, op, state) ← A0(crs);
(𝑚′, op′) ← A1(crs, state)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≥ 𝜖 (𝜆).

for some non-negligible function 𝜖 (𝜆). We construct the following reduction that
solves the inverse Diffie-Hellman problem.

On input a random group element ℎ = 𝑔𝑥 , the reduction sets crs = ℎ. Then it runs
A0 on input crs, which outputs (com = (𝑐1, 𝑐2),𝑚, op = 𝑟, state) with non-negligible
probability. Finally, the reduction samples a random𝑚∗ with 0 ≤ 𝑚∗ < 𝑑 and outputs(︃

𝑔𝑟

𝑐2

)︃ (𝑚′−𝑚)−1
.

The reduction is efficient since it only executes A0, which is ppt; note that the
reduction never executes A1.

By assumption,A1 will be able to open the commitment to some value𝑚′ such that
𝑚′ ≠𝑚 and𝑚′ ≤ 𝑑 with probability at least 𝜖 (𝜆). Assume that the reduction guesses
the value𝑚∗ such that𝑚∗ =𝑚′; this happens with probability 1/𝑑 . Let 𝑟 ′ = log𝑔 𝑐2. By
the verification equations of both verification algorithms, we have 𝑐1 = 𝑔𝑚ℎ𝑟 = 𝑔𝑚

′
ℎ𝑟
′

with ℎ = 𝑔𝑥 . By comparing exponents, we obtain 𝑚 + 𝑥𝑟 = 𝑚′ + 𝑥𝑟 ′, and due to

123

6 Preparing Commitments for a Post-Quantum World

𝑚 ≠𝑚′, we have further

(𝑟 − 𝑟 ′) (𝑚′ −𝑚)−1 = 𝑥−1.

This implies for the output of the reduction that(︃
𝑔𝑟

𝑐2

)︃ (𝑚′−𝑚)−1
= 𝑔 (𝑟−𝑟

′) (𝑚′−𝑚)−1 = 𝑔𝑥
−1

with probability at least 𝜖 (𝜆)/𝑑 , which is non-negligible. This is a contradiction to
the inverse Diffie-Hellman assumption and concludes the proof. □

6.5 Opt-In Switch Commitments
Our construction in Section 6.4 comes with a crucial weakness: the commitment is
essentially an ElGamal commitment and as such it is only computationally hiding,
and the required decisional Diffie-Hellman assumption does not withstand quantum
attacks. However, we are able to overcome that weakness by a variant of the con-
struction in the random oracle model. This variant additionally reduces the size of
the commitment to one group element, and as a result, it introduces essentially no
overhead for the cryptocurrency network as compared to Pedersen commitments.
Instead of committing with (𝑐1, 𝑐2) = (𝑔𝑚ℎ𝑟 , 𝑔𝑟), a user can commit with 𝑐 =

𝑔𝑚ℎ𝑟+H(𝑔
𝑚ℎ𝑟 ,𝑔𝑟) for a hash function H modeled as a random oracle. In other words,

instead of outputting the second component of the ElGamal commitment in clear, the
user commits to it by tweaking the Pedersen commitment. This gives the user the
possibility to reveal the full ElGamal commitment only if desired, and consequently
we call this variant opt-in switch commitments. As soon as the user reveals the full
ElGamal commitment (𝑐1, 𝑐2) = (𝑔𝑚ℎ𝑟 , 𝑔𝑟), verifiers can check that 𝑐1 · ℎH(𝑐1,𝑐2) = 𝑐 ,
and proceed as with ElGamal commitments.

More generally, we formalize opt-in switch commitments as follows. Since a formal
introduction of quantum algorithms is not necessary to understand our results, we
refer the interested reader to Nielsen and Chuang [NC10].

Definition 6.5. A switch commitment scheme is opt-in if the commitment algorithm
is computationally hiding against quantum-polynomial-time attackers.

6.5.1 Construction

As before, we work in a group of prime order 𝑝 with generator 𝑔, for some prime 𝑝 of
bitlength proportional to the security parameter 𝜆. Our (opt-in) switch commitment

124

6.5 Opt-In Switch Commitments

scheme is defined as follows. We denote by an underscore (_) a component that is
ignored when parsing a tuple.

Setup(1𝜆): Sample a random 𝑥 ∈ ℤ∗𝑝 , compute ℎ = 𝑔𝑥 and output crs = ℎ.

Commit (crs,𝑚): Parse crs as ℎ, sample 𝑟 ∈ ℤ𝑝 , and compute 𝑟 = 𝑟 + H(𝑔𝑚ℎ𝑟 , 𝑔𝑟).
Return com = 𝑔𝑚ℎ𝑟 and op = (𝑟, (𝑔𝑚ℎ𝑟 , 𝑔𝑟), 𝑟).

Verifypart (crs, com, op,𝑚): Parse crs as ℎ, com as 𝑐 , and op as (𝑟, _, _). If 𝑐 = 𝑔𝑚ℎ𝑟

and 0 ≤ 𝑚 < 𝑑 , then return 1. Return 0 otherwise.

Verifyfull (crs, com, op,𝑚): Parse crs as ℎ, com as 𝑐 , and op as (_, (𝑐1, 𝑐2), 𝑟). If 𝑐 =

𝑐1 · ℎH(𝑐1,𝑐2) , (𝑔𝑚ℎ𝑟 , 𝑔𝑟) = (𝑐1, 𝑐2), and 0 ≤ 𝑚 < 𝑑 , then return 1. Return 0
otherwise.

Remarks. An alternative partial verification algorithm could just recompute 𝑟 from
𝑚 and 𝑟 . However, this is not what we want to capture. Recall that the commitment
will not actually be opened before the switch but that a creator of a confidential
transaction will instead compute the homomorphic sum of the commitments in
a transaction and open the resulting sum commitment to zero to prove that the
transaction is balanced. Only if 𝑟 itself can be used as opening information we retain
the homomorphic property with respect to partial verification and hence the ability
to use the commitments as intended. (Note that the partial verification algorithms
uses only 𝑟 and ignores the other components of the opening information).
Analogously, creators of confidential transactions use zero-knowledge proofs to

prove that the committed value (with is only defined with respect to a verification
algorithm) is in range. Using our formulation, it is clear that it suffices for the creator
to prove knowledge of𝑚 and 𝑟 such that 𝑐 = 𝑔𝑚ℎ𝑟 and 0 ≤ 𝑚 < 𝑑 . In particular, a
zero-knowledge proof with a statement involving the hash function is not necessary.

Similar remarks apply to the full verification algorithm: An alternative full verifica-
tion algorithm could just recompute the entire commitment 𝑐 from𝑚 and 𝑟 . However,
we state the full verification algorithm intentionally in the form above to capture that
it suffices that the creator of the transaction reveals the ElGamal commitment (𝑐1, 𝑐2)
and then proceeds with this ElGamal commitment, e.g., by adding other ElGamal
commitments and opening the resulting sum commitment.

6.5.2 Security Analysis

We prove the security of our construction. For computationally hiding property, we
assume a quantum-polynomial-time attacker and the quantum random oracle model

125

6 Preparing Commitments for a Post-Quantum World

(QROM) [Bon+11], i.e., the attacker can query the random oracle in superposition of
quantum states.

Claim 6.3 (Computationally Hiding against Quantum Attackers). The commitment
algorithm of the construction of opt-in switch commitments is computationally hiding
against quantum-polynomial-time attackers in the quantum random oracle model
(without further computational assumptions).

Proof. Since 𝑔𝑟 is unpredictable, the algorithmic one-way to hiding lemma [HHK17]
implies that no quantum-polynomial-time attacker can distinguish

𝑔𝑚ℎ𝑟+H(𝑔
𝑚ℎ𝑟 ,𝑔𝑟) and 𝑔𝑚

′
ℎ𝑟
′+H(𝑔𝑚′ℎ𝑟 ′,𝑔𝑟 ′)

with non-negligible probability in the QROM.
The lemma (adopted from a lemma by Unruh [Unr14]) is the QROM analogue to

the fact that an attacker that has not queried the classical random oracle H on 𝑥 has
no information about H(𝑥); we refer the reader to Hofheinz, Hövelmanns, and Kiltz
[HHK17] for details. □

Claim 6.4 (Partially Computationally Binding). The partial verification algorithm
is computationally binding (against classical attackers) under the discrete logarithm
assumption in the random oracle model.

Proof. The partial verification algorithm implements a Pedersen commitment 𝑐 =

𝑔𝑚ℎ𝑟 with 𝑟 = 𝑟 + H(𝑔𝑚ℎ𝑟 , 𝑔𝑟) and thus is computationally binding [Ped91]. □

Having discussed quantum attackers and the QROM, we stress that we do not need
to bother with quantum algorithms or the QROM when we prove that our scheme
is everlastingly binding because we assume that the first part A0 of the attacker is
classical and computationally bounded (before the switch), and the second partA1 of
the attacker is anyway unbounded.

Theorem 6.5 (Everlastingly Binding). The construction of opt-in switch commitments
is everlastingly binding under the inverse Diffie-Hellman assumption.

Proof. Assume a computationally bounded attacker A0 outputs a commitment 𝑔𝑚ℎ𝑟
with message𝑚 and valid partial opening 𝑟 , and an unbounded attacker A1 is able
to output a message 𝑚′ and a valid full opening 𝑟 ′. Then by construction of the
verification algorithms, 𝑐 = 𝑔𝑚ℎ𝑟 = 𝑐1 · ℎH(𝑐1,𝑐2) and (𝑐1, 𝑐2) = 𝑔𝑚

′
ℎ𝑟
′ and thus

𝑔𝑚ℎ𝑟 = 𝑔𝑚
′
ℎ𝑟
′+H(𝑔𝑚′ℎ𝑟 ′,𝑔𝑟 ′) . (6.1)

126

6.5 Opt-In Switch Commitments

IfA0 has queried H(𝑔𝑚
′
ℎ𝑟
′
, 𝑔𝑟

′), we can build a reduction against the inverse Diffie-
Hellman assumption: The reduction runs A0 to obtain𝑚, 𝑟 , and H(𝑔𝑚′ℎ𝑟 ′, 𝑔𝑟 ′) (from
the random oracle queries), it guesses𝑚′ and proceeds to compute 𝑔𝑥−1 for ℎ = 𝑔𝑥 as
in the proof of Theorem 6.2.

IfA0 has not queried H(𝑔𝑚
′
ℎ𝑟
′
, 𝑔𝑟

′), then a pair (𝑚′, 𝑟 ′) that fulfills (6.1) only exists
with negligible probability: since the partial opening (𝑚, 𝑟) is fixed by the output of
A0 already, and the choice of𝑚′ determines 𝑟 ′ fully, the only variable that A1 can
choose is𝑚′.
Due to the restriction of the message space, there is only a constant number of

possibilities for 𝑚′. Furthermore, for every 𝑚′ there is only one possible random
oracle output H(𝑔𝑚′ℎ𝑟 ′, 𝑔𝑟 ′) that makes (6.1) true. The probability that the random
oracle outputs this single value is negligible. □

6.5.3 Post-Quantum Hiding in Practice

A practical concern for the use of CT is that the payer needs to transmit the opening
of the amount commitment to the payee; otherwise the payee who is the new owner
of the funds cannot determine the received amount and cannot spend them in a
further transaction. To solve this problem, implementations of CT typically rely on
a non-interactive key Diffie-Hellman key exchange to establish a secure channel
between the payer and the payee [Max15; Gib16]: the ephemeral public key of the
payee is included in the address provided to the payer, and the ephemeral public key
of the payer is stored together with the transaction on the blockchain. The payer uses
the shared secret from the key exchange then to derive the randomness used for the
commitment algorithm, and to store the amount in encrypted form in the transaction
(or piggy-packed on the range proof [Max15; Gib16] to save space; this is not relevant
for our discussion). The payee can recover the randomness and the amount from the
key exchange analogously.
Clearly this scheme renders the post-quantum hiding property of opt-in switch

commitments useless because a post-quantum attacker that can compute discrete
logarithms can simply break the Diffie-Hellman key exchange and decrypt the trans-
mitted amount, even if the commitment itself remains hiding. Breaking the key
exchange requires the knowledge of the ephemeral public keys of both the payer and
the payee of the transaction, but only the public key of the payer is stored on the
blockchain, i.e., the attack is not possible for a weak attacker that only observes the
blockchain and does not get to see the address of the payee. If this weak guarantee is
insufficient in practice, the obvious defense is to rely on a post-quantum secure key
exchange at the cost of possibly decreased efficiency.

127

7 Conclusions
Bitcoin is great, but “if it’s not private,
it’s not safe.”

— Edward Snowden [Sno17]

We have seen that advanced cryptography has great potential to improve the function-
ality and privacy of cryptocurrencies, and equally important, a careful design enables
us to achieve these improvements in Bitcoin and other cryptocurrencies without the
necessity for fundamental changes. Taking a step back, there are a few observations,
which are relevant to the design of cryptocurrencies beyond the concrete results in
this dissertation.

From a more general point of view, Chapter 6 teaches us an important lesson: when
introducing new cryptographic features in cryptocurrencies today, we need to keep
cryptographic agility and in particular post-quantum security in mind. Blockchains
keep permanent state, and a transaction performed today creates state, e.g., an unspent
transaction output, which may be still relevant in a few decades. While we do not
need to know what specific cryptographic schemes we will deploy in the future, we
need to make sure that such schemes can be deployed in a backward-compatible way.
Relying on the expiration of money that has not been transacted for years should
only be the last resort, simply because such expiration violates the principle that
money should serve as a store of value.

With respect to the privacy, it is worth to emphasize that with techniques such as
Confidential Transactions [Max15] enhanced with Bulletproofs [Bün+18] range proofs
and Switch Commitments (Chapter 6), Stealth Addresses [Sab13], Taproot [Max18],
and CoinJoin-based mixing with ValueShuffle (Chapter 5), we have a large arsenal of
privacy-enhancing technologies at hand, whose combination constitutes a competitive
alternative to other cryptographic approaches for privacy. I personally am confident
that these proposals, which are designed in particular with Bitcoin in mind and
address many different aspects of privacy, are ready to be evaluated and refined in
practice, and that they provide a realistic path to improving the privacy of users.

129

A Hardness Assumptions

For reference, we overview the computational hardness assumptions needed through-
out this dissertation. In all of the following computational problems, 𝑔 is fixed and
generates a multiplicatively written cyclic group (implicit in 𝑔) of known order 𝑝 ,
where 𝑝 is 𝜆 bits long. We restrict ourselves to the case of prime 𝑝 .

Assumption 1 (Discrete Logarithm Assumption). The discrete logarithm assumption
holds with respect to 𝑔 if for a random 𝑥 ∈ ℤ𝑝 and for all ppt attackersA, there exists a
negligible function negl(𝜆) such that

Pr [A(𝑔𝑥) = 𝑥] ≤ negl(𝜆).

Assumption 2 (Computational Diffie-Hellman Assumption). The computational
Diffie-Hellman assumption holds with respect to 𝑔 if for random 𝑥, 𝑦 ∈ ℤ𝑝 and for all
ppt attackers A, there exists a negligible function negl(𝜆) such that

Pr [A(𝑔𝑥 , 𝑔𝑦) = 𝑔𝑥𝑦] ≤ negl(𝜆).

Assumption 3 (Inverse Diffie-Hellman Assumption). The inverse Diffie-Hellman
assumption holds with respect to 𝑔 if for a random 𝑥 ∈ ℤ∗𝑝 and its multiplicative inverse
𝑥−1, and for all ppt attackers A, there exists a negligible function negl(𝜆) such that

Pr
[︂
A(𝑔,𝑔𝑥) = 𝑔𝑥−1

]︂
≤ negl(𝜆),

The inverse Diffie-Hellman assumption is known to be equivalent to the Computa-
tional Diffie-Hellman assumption [SS02, Theorem 6.4].

Assumption 4 (Decisional Diffie-Hellman Assumption). The decisional Diffie-
Hellman assumption holds with respect to 𝑔 if for random 𝑥, 𝑦, 𝑧 ∈ ℤ𝑝 and for all
ppt attackers A, there exists a negligible function negl(𝜆) such that

Pr
[︄
A(𝑔𝑥 , 𝑔𝑦 , ℎ) = 𝑏

|︁|︁|︁|︁|︁𝑏 ← {0, 1};ℎ =

{︄
𝑔𝑥𝑦 if 𝑏 = 0
𝑔𝑧 if 𝑏 = 1

]︄
≤ 1

2 + negl(𝜆).

131

Bibliography

[Accas] Tim Ruffing. Implementation of accountable assertion scheme. url :
https://github.com/real- or- random/accas/ (cit. on p. 38).

[ADA] “Cardano”. url : https://www.cardano.org/ (cit. on p. 3).
[AM04] Giuseppe Ateniese and Breno de Medeiros. “On the Key Exposure Prob-

lem in Chameleon Hashes”. In: Security in Communication Networks
(SCN) 2004. doi : 10.1007/978- 3- 540- 30598- 9_12 (cit. on p. 30).

[AN.ON] “AN.ON”. url : https://anon.inf.tu- dresden.de/ (cit. on p. 53).
[And+13] Elli Androulaki, Ghassan O. Karame, Marc Roeschlin, Tobias Scherer,

and Srdjan Capkun. “Evaluating User Privacy in Bitcoin”. In: Financial
Cryptography and Data Security (FC) 2013 (cit. on pp. 2, 14, 51, 54, 89).

[And+14] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and
Lukasz Mazurek. “Secure Multiparty Computations on Bitcoin”. In:
Security and Privacy 2014. doi : 10.1109/SP.2014.35 (cit. on pp. 3, 13,
20, 21).

[And17] Oleg Andreev. “Confidential Assets”. 2017. url : https://github.
com / chain / chain / blob / confidential - spec / docs / protocol /

specifications/ca.md#value- range- proof (cit. on p. 119).
[Ant17] Andreas M. Antonopoulos. “Mastering Bitcoin: Programming the Open

Blockchain”. 2nd edition. O’Reilly Media, 2017. isbn : 978-1-491-95438-6.
url : https://github.com/bitcoinbook/bitcoinbook#mastering-
bitcoin (cit. on p. 9).

[Bac+14] Michael Backes, Fabian Bendun, Ashish Choudhury, and Aniket Kate.
“Asynchronous MPC with a Strict Honest Majority Using Non-equiv-
ocation”. In: Principles of Distributed Computing (PODC) 2014. doi :
10.1145/2611462.2611490 (cit. on pp. 19, 21, 46).

[Bac02] Adam Back. “Hashcash – A Denial of Service Counter-Measure”. 2002.
url : http://www.hashcash.org/hashcash.pdf (cit. on pp. 11, 15).

133

https://github.com/real-or-random/accas/
https://www.cardano.org/
https://doi.org/10.1007/978-3-540-30598-9_12
https://anon.inf.tu-dresden.de/
https://doi.org/10.1109/SP.2014.35
https://github.com/chain/chain/blob/confidential-spec/docs/protocol/specifications/ca.md#value-range-proof
https://github.com/chain/chain/blob/confidential-spec/docs/protocol/specifications/ca.md#value-range-proof
https://github.com/chain/chain/blob/confidential-spec/docs/protocol/specifications/ca.md#value-range-proof
https://github.com/bitcoinbook/bitcoinbook#mastering-bitcoin
https://github.com/bitcoinbook/bitcoinbook#mastering-bitcoin
https://doi.org/10.1145/2611462.2611490
http://www.hashcash.org/hashcash.pdf

Bibliography

[Bac13] Adam Back. Bitcoin development mailing list. July 5, 2013. url : https:
//lists.linuxfoundation.org/pipermail/bitcoin- dev/2013-

July/002857.html (cit. on p. 3).
[Bar+12] Simon Barber, Xavier Boyen, Elaine Shi, and Ersin Uzun. “Bitter to

Better. How to Make Bitcoin a Better Currency”. In: Financial Cryp-
tography and Data Security (FC) 2012. doi : 10.1007/978- 3- 642-

32946- 3_29 (cit. on pp. 2, 14, 51, 54, 83, 89).
[Bau+18] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner,

and Chris Peikert. “More Efficient Commitments from Structured Lat-
tice Assumptions”. In: Security and Cryptography for Networks (SCN)
2018. doi : 10.1007/978- 3- 319- 98113- 0_20 (cit. on p. 115).

[BB89] Jurjen Bos and Bert den Boer. “Detection of Disrupters in the DC
Protocol”. In: EUROCRYPT 1989. doi : 10.1007/3- 540- 46885- 4_33
(cit. on pp. 53, 59).

[BCHSh] Josh Ellithorpe. “CashShuffle”. Implementation of CoinShuffle [RMK14].
url : https://cashshuffle.com/ (cit. on p. 54).

[BDG] “Bitcoin Developer Guide”. url : https : / / bitcoin . org / en /

developer- guide (cit. on pp. 9, 23).
[Ben+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green,

Ian Miers, Eran Tromer, and Madars Virza. “Zerocash: Decentralized
Anonymous Payments from Bitcoin”. In: Security and Privacy (S&P)
2014 (cit. on pp. 2, 3, 89, 93, 111).

[Ben+18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. “Scal-
able, Transparent, and Post-Quantum Secure Computational Integrity”.
2018. IACR Cryptology ePrint Archive: 2018/046 (cit. on p. 118).

[BIP16] Gavin Andresen. “Pay to Script Hash”. BIP 16. 2012. url : https://
github.com/bitcoin/bips/blob/master/bip- 0016.mediawiki (cit.
on p. 98).

[BIP32] Pieter Wuille. “Hierarchical Deterministic Wallets”. BIP 32. 2012. url :
https : / / github . com / bitcoin / bips / blob / master / bip - 0032 .

mediawiki (cit. on p. 94).
[BIP65] Peter Todd. “OP_CHECKLOCKTIMEVERIFY”. BIP 65. 2014. url : https:

//github.com/bitcoin/bips/blob/master/bip- 0065.mediawiki

(cit. on pp. 20, 23, 25, 43).

134

https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002857.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002857.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2013-July/002857.html
https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-642-32946-3_29
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/3-540-46885-4_33
https://cashshuffle.com/
https://bitcoin.org/en/developer-guide
https://bitcoin.org/en/developer-guide
https://eprint.iacr.org/2018/046
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0065.mediawiki

Bibliography

[BIP141] Eric Lombrozo, Johnson Lau, and Pieter Wuille. “Segregated Witness
(Consensus Layer). P2WPKH Nested in BIP16 P2SH”. BIP 141. 2015.
url : https : / / github . com / bitcoin / bips / blob / master / bip -
0141.mediawiki#p2wpkh- nested- in- bip16- p2sh (cit. on p. 98).

[Bis+14] George Bissias, A. Pinar Ozisik, Brian N. Levine, and Marc Liberatore.
“Sybil-Resistant Mixing for Bitcoin”. In: Workshop on Privacy in the
Electronic Society (WPES) 2014. doi : 10.1145/2665943.2665955 (cit.
on pp. 83, 89).

[Bitm17] Bitmain. “UAHF: A Contingency Plan Against UASF (BIP148)”. June 4,
2017. url : https://blog.bitmain.com/en/uahf- contingency-

plan- uasf- bip148/ (cit. on p. 17).
[BK14] Iddo Bentov and Ranjit Kumaresan. “How to Use Bitcoin to Design Fair

Protocols”. In: CRYPTO 2014. doi : 10.1007/978- 3- 662- 44381- 1_24
(cit. on pp. 3, 13, 20, 21).

[BKN17] Dan Boneh, SamKim, and Valeria Nikolaenko. “Lattice-Based DAPS and
Generalizations: Self-Enforcement in Signature Schemes”. In: Applied
Cryptography and Network Security (ACNS) 2017. doi : 10.1007/978-
3- 319- 61204- 1_23 (cit. on p. 48).

[BL13] Foteini Baldimtsi and Anna Lysyanskaya. “Anonymous Credentials
Light”. In: Computer and Communications Security (CCS) 2013. doi :
10.1145/2508859.2516687 (cit. on p. 46).

[Blo70] Burton H. Bloom. “Space/Time Trade-offs in Hash Coding with Al-
lowable Errors”. In: Communications of the ACM 13.7 (July 1970). doi :
10.1145/362686.362692 (cit. on p. 34).

[BN06] Mihir Bellare and Gregory Neven. “Multi-Signatures in the Plain Public-
Key Model and a General Forking Lemma”. In: Computer and Commu-
nications Security (CCS) 2006. doi : 10.1145/1180405.1180453 (cit. on
p. 80).

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. “Random Oracles in a Quantum World”.
In: ASIACRYPT 2011. doi : 10.1007/978- 3- 642- 25385- 0_3 (cit. on
p. 126).

[Bon+14] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark,
Joshua A. Kroll, and EdwardW. Felten. “Mixcoin: Anonymity for Bitcoin
with Accountable Mixes”. In: Financial Cryptography and Data Security
(FC) 2014 (cit. on pp. 82, 89).

135

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki#p2wpkh-nested-in-bip16-p2sh
https://doi.org/10.1145/2665943.2665955
https://blog.bitmain.com/en/uahf-contingency-plan-uasf-bip148/
https://blog.bitmain.com/en/uahf-contingency-plan-uasf-bip148/
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1007/978-3-319-61204-1_23
https://doi.org/10.1007/978-3-319-61204-1_23
https://doi.org/10.1145/2508859.2516687
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/1180405.1180453
https://doi.org/10.1007/978-3-642-25385-0_3

Bibliography

[Bon+15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan,
Joshua A. Kroll, and Edward W. Felten. “SoK: Research Perspectives
and Challenges for Bitcoin and Cryptocurrencies”. In: Security and
Privacy (S&P) 2015 (cit. on p. 9).

[Bor+07] Nikita Borisov, George Danezis, Prateek Mittal, and Parisa Tabriz. “De-
nial of Service or Denial of Security?” In: Computer and Communi-
cations Security (CCS) 2007. doi : 10.1145/1315245.1315258 (cit. on
pp. 53, 85).

[BPS17] Mihir Bellare, Bertram Poettering, and Douglas Stebila. “Deterring Cer-
tificate Subversion: Efficient Double-Authentication-Preventing Signa-
tures”. In: Public-Key Cryptography (PKC) 2017. doi : 10.1007/978-
3- 662- 54388- 7_5 (cit. on pp. 48, 49).

[BtcStats] BitcoinStats. url : http://bitcoinstats.com/network/propagation/
(cit. on p. 80).

[BtcWikiA] “Block Timestamp”. Bitcoin Wiki. url : https://en.bitcoin.it/w/
index.php?title=Block_timestamp&oldid=51392 (cit. on p. 23).

[BtcWikiB] “Contracts”. Bitcoin Wiki. url : https://en.bitcoin.it/w/index.
php?title=Contracts&oldid=50633 (cit. on pp. 20–22).

[BtcWikiC] “Mixing Services”. url : https://en.bitcoin.it/wiki/Category:
Mixing_Services (cit. on p. 82).

[Bün+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter
Wuille, and Gregory Maxwell. “Bulletproofs: Short Proofs for Confi-
dential Transactions and More”. In: Security and Privacy (S&P) 2018.
doi : 10.1109/SP.2018.00020 (cit. on pp. 92, 115, 118, 129).

[But13] Vitalik Buterin. “A Next-Generation Smart Contract and Decentralized
Application Platform”. Ethereum Whitepaper. 2013. url : https://
github.com/ethereum/wiki/wiki/White- Paper (cit. on pp. 22, 46,
83).

[Byt11] ByteCoin. “Untraceable Transactions Which Can Contain a Secure
Message Are Inevitable”. Bitcoin forum. Apr. 17, 2011. url : https:
//bitcointalk.org/index.php?topic=5965.0 (cit. on pp. 89, 94).

[Car+16] Miles Carlsten, Harry A. Kalodner, S. Matthew Weinberg, and Arvind
Narayanan. “On the Instability of Bitcoin Without the Block Reward”.
In: Computer and Communications Security (CCS) 2016. doi : 10.1145/
2976749.2978408 (cit. on p. 16).

136

https://doi.org/10.1145/1315245.1315258
https://doi.org/10.1007/978-3-662-54388-7_5
https://doi.org/10.1007/978-3-662-54388-7_5
http://bitcoinstats.com/network/propagation/
https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
https://en.bitcoin.it/w/index.php?title=Block_timestamp&oldid=51392
https://en.bitcoin.it/w/index.php?title=Contracts&oldid=50633
https://en.bitcoin.it/w/index.php?title=Contracts&oldid=50633
https://en.bitcoin.it/wiki/Category:Mixing_Services
https://en.bitcoin.it/wiki/Category:Mixing_Services
https://doi.org/10.1109/SP.2018.00020
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://bitcointalk.org/index.php?topic=5965.0
https://bitcointalk.org/index.php?topic=5965.0
https://doi.org/10.1145/2976749.2978408
https://doi.org/10.1145/2976749.2978408

Bibliography

[CBM15] Henry Corrigan-Gibbs, Dan Boneh, and David Mazières. “Riposte: An
AnonymousMessaging SystemHandlingMillions of Users”. In: Security
and Privacy (S&P) 2015. doi : 10.1109/SP.2015.27 (cit. on p. 59).

[CF10] Henry Corrigan-Gibbs and Bryan Ford. “Dissent: Accountable Anony-
mous Group Messaging”. In: Computer and Communications Security
(CCS) 2010. doi : 10.1145/1866307.1866346 (cit. on pp. 6, 52–55, 61,
77, 85–87).

[CFN88] David Chaum, Amos Fiat, and Moni Naor. “Untraceable Electronic
Cash”. In: CRYPTO 1988. doi : 10.1007/0- 387- 34799- 2_25 (cit. on
pp. 10, 46).

[Cha] Chainalyis, Inc. url : https://www.chainalysis.com/ (cit. on p. 2).
[Cha81] David Chaum. “Untraceable Electronic Mail, Return Addresses, and

Digital Pseudonyms”. In: Communications of the ACM 24.2 (Feb. 1981).
doi : 10.1145/358549.358563 (cit. on p. 53).

[Cha82] David Chaum. “Blind Signatures for Untraceable Payments”. In:
CRYPTO 1982. doi : 10.1007/978- 1- 4757- 0602- 4_18 (cit. on
pp. 10, 83).

[Cha88] David Chaum. “The Dining Cryptographers Problem: Unconditional
Sender and Recipient Untraceability”. In: Journal of Cryptology 1.1
(1988). doi : 10.1007/BF00206326 (cit. on pp. 5, 52, 53, 59, 70).

[CHL05] Jan Camenisch, Susan Hohenberger, and Anna Lysyanskaya. “Compact
E-Cash”. In: EUROCRYPT 2005. doi : 10.1007/11426639_18 (cit. on
p. 46).

[Chu+07] Byung-Gon Chun, Petros Maniatis, Scott Shenker, and John Kubiatow-
icz. “Attested Append-only Memory: Making Adversaries Stick to Their
Word”. In: Symposium on Operating Systems Principles (SOSP) 2007.
doi : 10.1145/1294261.1294280 (cit. on pp. 19, 21, 46).

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. “The Twin Diffie-Hellman
Problem and Applications”. In: Journal of Cryptology 22.4 (2009). doi :
10.1007/s00145- 009- 9041- 6 (cit. on pp. 62, 100).

[CL01] Jan Camenisch and Anna Lysyanskaya. “An Efficient System for Non-
transferable Anonymous Credentials with Optional Anonymity Re-
vocation”. In: EUROCRYPT 2001. doi : 10.1007/3- 540- 44987- 6_7

(cit. on p. 46).

137

https://doi.org/10.1109/SP.2015.27
https://doi.org/10.1145/1866307.1866346
https://doi.org/10.1007/0-387-34799-2_25
https://www.chainalysis.com/
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-1-4757-0602-4_18
https://doi.org/10.1007/BF00206326
https://doi.org/10.1007/11426639_18
https://doi.org/10.1145/1294261.1294280
https://doi.org/10.1007/s00145-009-9041-6
https://doi.org/10.1007/3-540-44987-6_7

Bibliography

[CL02] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault Tolerance
and Proactive Recovery”. In: ACM Trans. Comput. Syst. 20.4 (2002).
doi : 10.1145/571637.571640 (cit. on p. 10).

[Cle+12] Allen Clement, Flavio Junqueira, Aniket Kate, and Rodrigo Rodrigues.
“On the (Limited) Power of Non-Equivocation”. In: Principles of Dis-
tributed Computing (PODC) 2012. doi : 10.1145/2332432.2332490
(cit. on pp. 19, 21, 46).

[CM17] Nicolas T. Courtois and Rebekah Mercer. “Stealth Address and Key
Management Techniques in Blockchain Systems”. In: International
Conference on Information Systems Security and Privacy (ICISSP) 2017.
doi : 10.5220/0006270005590566 (cit. on pp. 89, 94).

[Coi] CoinMarketCap. url : https://coinmarketcap.com/ (visited on 2018-
04-19) (cit. on p. 1).

[Con+18] Mauro Conti, Sandeep Kumar E, Chhagan Lal, and Sushmita Ruj. “A
Survey on Security and Privacy Issues of Bitcoin”. In: IEEE Communi-
cations Surveys and Tutorials 20.4 (2018). doi : 10.1109/COMST.2018.
2842460 (cit. on p. 9).

[Core15] Bitcoin Core. Version 0.11.0 release announcement. July 12, 2015. url :
https://bitcoin.org/en/release/v0.11.0 (cit. on p. 110).

[Core17] Bitcoin Core. “Technology Roadmap - Schnorr Signatures and Signature
Aggregation”. Mar. 23, 2017. url : https://bitcoincore.org/en/
2017/03/23/schnorr- signature- aggregation/ (cit. on pp. 13, 26,
80, 92).

[CSS07] Christian Cachin, Abhi Shelat, and Alexander Shraer. “Efficient Fork-
Linearizable Access to Untrusted Shared Memory”. In: Principles of
Distributed Computing (PODC) 2007. doi : 10.1145/1281100.1281121
(cit. on p. 42).

[CZK04] Xiaofeng Chen, Fangguo Zhang, and Kwangjo Kim. “Chameleon Hash-
ing Without Key Exposure”. In: Information Security Conference (ISC)
2004. doi : 10.1007/978- 3- 540- 30144- 8_8 (cit. on p. 30).

[Dai98] Wei Dai. Notes on b-money. Nov. 1, 1998. url : http://www.weidai.
com/bmoney.txt (cit. on p. 11).

[DFH18] Stefan Dziembowski, Sebastian Faust, and Kristina Hostáková. “General
State Channel Networks”. In: Computer and Communications Security
(CCS) 2018. doi : 10.1145/3243734.3243856 (cit. on p. 25).

138

https://doi.org/10.1145/571637.571640
https://doi.org/10.1145/2332432.2332490
https://doi.org/10.5220/0006270005590566
https://coinmarketcap.com/
https://doi.org/10.1109/COMST.2018.2842460
https://doi.org/10.1109/COMST.2018.2842460
https://bitcoin.org/en/release/v0.11.0
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://doi.org/10.1145/1281100.1281121
https://doi.org/10.1007/978-3-540-30144-8_8
http://www.weidai.com/bmoney.txt
http://www.weidai.com/bmoney.txt
https://doi.org/10.1145/3243734.3243856

Bibliography

[DK13] Larry A. Dunning and Ray Kresman. “Privacy Preserving Data Sharing
With Anonymous ID Assignment”. In: Transactions on Information
Forensics and Security 8.2 (2013). doi : 10.1109/TIFS.2012.2235831
(cit. on p. 59).

[DMS04] Roger Dingledine, Nick Mathewson, and Paul Syverson. “Tor: The
Second-Generation Onion Router”. In: USENIX Security 2004. url :
https://www.usenix.org/conference/13th- usenix- security-

symposium/tor- second- generation- onion- router (cit. on pp. 53,
81, 83, 92).

[Dod+08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith.
“Fuzzy Extractors: How to Generate Strong Keys from Biometrics and
Other Noisy Data”. In: SIAM Journal on Computing 38.1 (2008). doi :
10.1137/060651380 (cit. on p. 60).

[Dou02] John R. Douceur. “The Sybil Attack”. In: Workshop on Peer-to-Peer
Systems (IPTPS) 2002. doi : 10.1007/3- 540- 45748- 8_24 (cit. on
p. 10).

[DRS] David Derler, Sebastian Ramacher, and Daniel Slamanig. “Short Double-
and N-Times-Authentication-Preventing Signatures from ECDSA and
More”. In: European Symposium on Security and Privacy (EuroS&P).
doi : 10.1109/EuroSP.2018.00027 (cit. on p. 49).

[DRS90] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. “Early Stop-
ping in Byzantine Agreement”. In: Journal of the ACM 37.4 (1990). doi :
10.1145/96559.96565 (cit. on p. 55).

[DW13] Christian Decker and Roger Wattenhofer. “Information Propagation
in the Bitcoin Network”. In: Peer-to-Peer Computing (P2P) 2013. doi :
10.1109/P2P.2013.6688704 (cit. on pp. 24, 80).

[DW15] Christian Decker and Roger Wattenhofer. “A Fast and Scalable Pay-
ment Network with Bitcoin Duplex Micropayment Channels”. In: Self-
Stabilizing Systems (SSS) 2015. doi : 10.1007/978- 3- 319- 21741- 3_1
(cit. on pp. 2, 25).

[Dzi+19] Stefan Dziembowski, Lisa Eckey, Sebastian Faust, and Daniel Mali-
nowski. “Perun: Virtual Payment Hubs over Cryptocurrencies”. In:
Security and Privacy (S&P) 2019. doi : 10.1109/SP.2019.00020 (cit. on
pp. 2, 25).

[Elements] Blockstream. “Elements”. url : https://elementsproject.org/ (cit.
on p. 114).

139

https://doi.org/10.1109/TIFS.2012.2235831
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://www.usenix.org/conference/13th-usenix-security-symposium/tor-second-generation-onion-router
https://doi.org/10.1137/060651380
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1109/EuroSP.2018.00027
https://doi.org/10.1145/96559.96565
https://doi.org/10.1109/P2P.2013.6688704
https://doi.org/10.1007/978-3-319-21741-3_1
https://doi.org/10.1109/SP.2019.00020
https://elementsproject.org/

Bibliography

[Elg84] Taher Elgamal. “A Public Key Cryptosystem and a Signature Scheme
Based on Discrete Logarithms”. In: CRYPTO 1984 (cit. on pp. 120, 123).

[Ell] Elliptic Enterprises Limited. url : https://www.elliptic.co/ (cit. on
p. 2).

[ES14] Ittay Eyal and Emin Gün Sirer. “Majority Is Not Enough: Bitcoin Mining
Is Vulnerable”. In: Financial Cryptography (FC) 2014. doi : 10.1007/
978- 3- 662- 45472- 5_28 (cit. on p. 16).

[Fah+14] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Sm-
rcek, and Matthew Smith. “Hey, NSA: Stay Away from My Market! Fu-
ture Proofing App Markets Against Powerful Attackers”. In: Computer
and Communications Security (CCS) 2014. doi : 10.1145/2660267.
2660311 (cit. on pp. 19–21, 42).

[Fel+10] Ariel J. Feldman, William P. Zeller, Michael J. Freedman, and Edward
W. Felten. “SPORC: Group Collaboration Using Untrusted Cloud Re-
sources”. In: Operating Systems Design and Implementation (OSDI)
2010. url : https://www.usenix.org/conference/osdi10/sporc-
group- collaboration- using- untrusted- cloud- resources (cit.
on pp. 19–21, 42).

[Fel+12] Ariel J. Feldman, Aaron Blankstein, Michael J. Freedman, and Edward
W. Felten. “Social Networking with Frientegrity: Privacy and Integrity
with an Untrusted Provider”. In: USENIX Security 2012. url : https:
//www.usenix.org/conference/usenixsecurity12/technical-

sessions/presentation/feldman (cit. on pp. 19–21, 42).
[FG14] Christian Franck and Jeroen van de Graaf. “Dining Cryptographers are

Practical”. 2014. arXiv: 1402.2269 [cs.CR] (cit. on p. 53).
[Fic18] Ádám Ficsór. “Mixing Unequal Inputs”. 2018. url : https://github.

com/nopara73/ZeroLink/issues/74 (cit. on p. 84).
[Fin04] Hal Finney. “RPOW - Reusable Proofs of Work”. Hashcash mailing

list. Aug. 14, 2004. url : http://hashcash.freelists.narkive.com/
2WmeIozL/rpow- reusable- proofs- of- work (cit. on p. 11).

[Fin11] Hal Finney. “Re: Best Practice for Fast Transaction Acceptance –
How High is the Risk?” Bitcoin forum. Feb. 13, 2011. url : https :
//bitcointalk.org/index.php?topic=3441.msg48384#msg48384

(cit. on p. 41).

140

https://www.elliptic.co/
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1007/978-3-662-45472-5_28
https://doi.org/10.1145/2660267.2660311
https://doi.org/10.1145/2660267.2660311
https://www.usenix.org/conference/osdi10/sporc-group-collaboration-using-untrusted-cloud-resources
https://www.usenix.org/conference/osdi10/sporc-group-collaboration-using-untrusted-cloud-resources
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/feldman
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/feldman
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/feldman
https://arxiv.org/abs/1402.2269
https://github.com/nopara73/ZeroLink/issues/74
https://github.com/nopara73/ZeroLink/issues/74
http://hashcash.freelists.narkive.com/2WmeIozL/rpow-reusable-proofs-of-work
http://hashcash.freelists.narkive.com/2WmeIozL/rpow-reusable-proofs-of-work
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384
https://bitcointalk.org/index.php?topic=3441.msg48384#msg48384

Bibliography

[FM00] Matthias Fitzi and Ueli M. Maurer. “From Partial Consistency to Global
Broadcast”. In: Symposium on Theory of Computing (STOC) 2000. doi :
10.1145/335305.335363 (cit. on p. 19).

[Fra14] Christian Franck. “Dining Cryptographers with 0.924 Verifiable Colli-
sion Resolution”. 2014. arXiv: 1402.1732 [cs.CR] (cit. on pp. 53, 59).

[Fre+13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Pa-
terson. “Non-Interactive Key Exchange”. In: Public-Key Cryptography
2013. doi : 10.1007/978- 3- 642- 36362- 7_17 (cit. on pp. 62, 100).

[FT17] Ádám Ficsór and TDevD. “ZeroLink: The Bitcoin Fungibility Frame-
work”. 2017. url : https://github.com/nopara73/ZeroLink (cit. on
p. 83).

[FWB15] Martin Florian, Johannes Walter, and Ingmar Baumgart. “Sybil-
Resistant Pseudonymization and Pseudonym Change Without Trusted
Third Parties”. In: Workshop on Privacy in the Electronic Society
(WPES) 2015. doi : 10.1145/2808138.2808145 (cit. on p. 56).

[GH12] Ilja Gerhardt and Timo Hanke. “Homomorphic Payment Addresses and
the Pay-to-Contract Protocol”. 2012. arXiv: 1212.3257 [cs.CR] (cit. on
p. 98).

[Gib16] Adam Gibson. “An Investigation into Confidential Transactions”. 2016.
url : https://github.com/AdamISZ/ConfidentialTransactionsDoc/
raw/master/essayonCT.pdf (cit. on pp. 93, 101, 113, 127).

[GJ04] Philippe Golle and Ari Juels. “Dining Cryptographers Revisited”. In:
EUROCRYPT 2004. doi : 10.1007/978- 3- 540- 24676- 3_27 (cit. on
pp. 53–55, 59).

[GKL15] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin
Backbone Protocol: Analysis and Applications”. In: EUROCRYPT 2015.
doi : 10.1007/978- 3- 662- 46803- 6_10 (cit. on p. 11).

[GKL17] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. “The Bitcoin
Backbone Protocol with Chains of Variable Difficulty”. In: CRYPTO
2017. doi : 10.1007/978- 3- 319- 63688- 7_10 (cit. on p. 11).

[GM17] Matthew Green and Ian Miers. “Bolt: Anonymous Payment Channels
for Decentralized Currencies”. In: Computer and Communications
Security (CCS) 2017. doi : 10.1145/3133956.3134093 (cit. on p. 25).

141

https://doi.org/10.1145/335305.335363
https://arxiv.org/abs/1402.1732
https://doi.org/10.1007/978-3-642-36362-7_17
https://github.com/nopara73/ZeroLink
https://doi.org/10.1145/2808138.2808145
https://arxiv.org/abs/1212.3257
https://github.com/AdamISZ/ConfidentialTransactionsDoc/raw/master/essayonCT.pdf
https://github.com/AdamISZ/ConfidentialTransactionsDoc/raw/master/essayonCT.pdf
https://doi.org/10.1007/978-3-540-24676-3_27
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1145/3133956.3134093

Bibliography

[Goe+03] Sharad Goel, Mark Robson, Milo Polte, and Emin Gün Sirer. “Herbivore:
A Scalable and Efficient Protocol for Anonymous Communication”.
Tech. rep. 2003-1890. Cornell University, 2003. url : https://ecommons.
cornell.edu/handle/1813/5606 (cit. on p. 59).

[Gou99] Henry W. Gould. “The Girard-Waring Power Sum Formulas for Sym-
metric Functions and Fibonacci Sequences”. In: Fibonacci Quarterly
37.2 (1999). url : http://www.fq.math.ca/Issues/37- 2.pdf (cit. on
p. 60).

[Grin] “Grin”. url : https://www.grin- tech.org/ (cit. on pp. 110, 114).
[GRS96] David M. Goldschlag, Michael G. Reed, and Paul F. Syverson. “Hiding

Routing Information”. In: Information Hiding 1996. doi : 10.1007/3-
540- 61996- 8_37 (cit. on p. 53).

[GW11] Craig Gentry and Daniel Wichs. “Separating Succinct Non-Interactive
Arguments from All Falsifiable Assumptions”. In: Symposium on The-
ory of Computing (STOC) 2011. doi : 10.1145/1993636.1993651 (cit.
on p. 111).

[Has11] hashcash. “Re: Blind Bitcoin Transfers”. Bitcoin forum. July 2, 2011.
url : https://bitcointalk.org/index.php?topic=12751.20 (cit. on
pp. 5, 51, 52, 56, 78, 89).

[Hei+15] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg.
“Eclipse Attacks on Bitcoin’s Peer-to-Peer Network”. In: USENIX
Security 2015. url : https : / / www . usenix . org / conference /

usenixsecurity15 / technical - sessions / presentation / heilman

(cit. on p. 12).
[Hei+17] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro,

and Sharon Goldberg. “TumbleBit: An Untrusted Bitcoin-Compatible
Anonymous Payment Hub”. In: Network and Distributed System Secu-
rity (NDSS) 2017. url : https://www.ndss- symposium.org/ndss2017/
ndss- 2017- programme/tumblebit- untrusted- bitcoin- compatible-

anonymous- payment- hub/ (cit. on pp. 25, 82, 89).
[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A Modular

Analysis of the Fujisaki-Okamoto Transformation”. In: Theory of Cryp-
tography Conference (TCC) 2017. doi : 10.1007/978- 3- 319- 70500-
2_12 (cit. on p. 126).

142

https://ecommons.cornell.edu/handle/1813/5606
https://ecommons.cornell.edu/handle/1813/5606
http://www.fq.math.ca/Issues/37-2.pdf
https://www.grin-tech.org/
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1007/3-540-61996-8_37
https://doi.org/10.1145/1993636.1993651
https://bitcointalk.org/index.php?topic=12751.20
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/heilman
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/tumblebit-untrusted-bitcoin-compatible-anonymous-payment-hub/
https://doi.org/10.1007/978-3-319-70500-2_12
https://doi.org/10.1007/978-3-319-70500-2_12

Bibliography

[HJP15] William Hart, Frederik Johansson, and Sebastian Pancratz. “FLINT:
Fast Library for Number Theory”. Version 2.5.2. 2015. url : http://
flintlib.org (cit. on p. 77).

[HN06] Danny Harnik and Moni Naor. “On Everlasting Security in the Hybrid
Bounded Storage Model”. In: International Colloquium on Automata,
Languages and Programming (ICALP) 2006. doi : 10.1007/11787006_
17 (cit. on p. 121).

[Ho+08] Chi Ho, Robbert van Renesse, Mark Bickford, and Danny Dolev.
“Nysiad: Practical Protocol Transformation to Tolerate Byzantine Fail-
ures”. In: Networked Systems Design and Implementation (NSDI) 2008.
url : https://www.usenix.org/conference/nsdi- 08/nysiad-

practical - protocol - transformation - tolerate - byzantine -

failures (cit. on p. 19).
[Jed16] Tom Elvis Jedusor. “Mimblewimble”. https://scalingbitcoin.org/

papers/mimblewimble.txt. 2016 (cit. on p. 110).
[JMV01] Don Johnson, Alfred Menezes, and Scott A. Vanstone. “The Elliptic

Curve Digital Signature Algorithm (ECDSA)”. In: International Journal
of Information Security 1.1 (2001). doi : 10.1007/s102070100002 (cit.
on pp. 13, 26).

[KB14] Ranjit Kumaresan and Iddo Bentov. “How to Use Bitcoin to Incentivize
Correct Computations”. In: Computer and Communications Security
(CCS) 2014. doi : 10.1145/2660267.2660380 (cit. on pp. 20, 21).

[KG17] Rami Khalil and Arthur Gervais. “Revive: Rebalancing Off-Blockchain
Payment Networks”. In: Computer and Communications Security (CCS)
2017. doi : 10.1145/3133956.3134033 (cit. on pp. 2, 25).

[KKM14] Philip Koshy, Diana Koshy, and Patrick McDaniel. “An Analysis of
Anonymity in Bitcoin Using P2P Network Traffic”. In: Financial Cryp-
tography (FC) 2014. doi : 10.1007/978- 3- 662- 45472- 5_30 (cit. on
pp. 2, 14, 51, 54, 89).

[KMB15] Ranjit Kumaresan, Tal Moran, and Iddo Bentov. “How to Use Bitcoin to
Play Decentralized Poker”. In: Computer and Communications Security
(CCS) 2015. doi : 10.1145/2810103.2813712 (cit. on p. 3).

[KNS16] Anna Krasnova, Moritz Neikes, and Peter Schwabe. “Footprint Schedul-
ing for Dining-Cryptographer Networks”. In: Financial Cryptography
(FC) 2016. doi : 10.1007/978- 3- 662- 54970- 4_23 (cit. on p. 59).

143

http://flintlib.org
http://flintlib.org
https://doi.org/10.1007/11787006_17
https://doi.org/10.1007/11787006_17
https://www.usenix.org/conference/nsdi-08/nysiad-practical-protocol-transformation-tolerate-byzantine-failures
https://www.usenix.org/conference/nsdi-08/nysiad-practical-protocol-transformation-tolerate-byzantine-failures
https://www.usenix.org/conference/nsdi-08/nysiad-practical-protocol-transformation-tolerate-byzantine-failures
https://scalingbitcoin.org/papers/mimblewimble.txt
https://scalingbitcoin.org/papers/mimblewimble.txt
https://doi.org/10.1007/s102070100002
https://doi.org/10.1145/2660267.2660380
https://doi.org/10.1145/3133956.3134033
https://doi.org/10.1007/978-3-662-45472-5_30
https://doi.org/10.1145/2810103.2813712
https://doi.org/10.1007/978-3-662-54970-4_23

Bibliography

[Koc+12] Stéphan Kochen, Alexey Sokolov, Kyle Fuller, and James Wheare.
“IRCv3.2 server-time Extension”. IRCv3 Working Group. 2012. url :
https://ircv3.net/specs/extensions/server- time- 3.2.html

(cit. on p. 55).
[Kos+16] Ahmed E. Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalam-

pos Papamanthou. “Hawk: The Blockchain Model of Cryptography and
Privacy-Preserving Smart Contracts”. In: Security and Privacy (S&P)
2016. doi : 10.1109/SP.2016.55 (cit. on pp. 2, 22).

[KR00] Hugo Krawczyk and Tal Rabin. “Chameleon Signatures”. In: Network
and Distributed System Security (NDSS) 2000. url : https://www.
ndss- symposium.org/ndss2000/chameleon- signatures/ (cit. on
pp. 20, 30, 31, 38).

[Kru+16] Johannes Krupp, Dominique Schröder, Mark Simkin, Dario Fiore,
Giuseppe Ateniese, and Stefan Nürnberger. “Nearly Optimal Verifi-
able Data Streaming”. In: Public-Key Cryptography (PKC) 2016. doi :
10.1007/978- 3- 662- 49384- 7_16 (cit. on p. 30).

[KS97] Erich Kaltofen and Victor Shoup. “Fast Polynomial Factorization over
High Algebraic Extensions of Finite Fields”. In: International Sym-
posium on Symbolic and Algebraic Computation (ISSAC) 1997. doi :
10.1145/258726.258777 (cit. on pp. 76, 77).

[Kwo+17] Yujin Kwon, Dohyun Kim, Yunmok Son, Eugene Y. Vasserman, and
Yongdae Kim. “Be Selfish and Avoid Dilemmas: Fork After Withholding
(FAW) Attacks on Bitcoin”. In: Computer and Communications Security
(CCS) 2017. doi : 10.1145/3133956.3134019 (cit. on p. 16).

[Ler13] Sergio Demian Lerner. “Re: Zerocoin: Anonymous Distributed E-Cash
from Bitcoin”. Bitcoin forum. Apr. 12, 2013. url : https://bitcointalk.
org/index.php?topic=175156.msg1823810#msg1823810 (cit. on p. 3).

[Lev+09] Dave Levin, John R. Douceur, Jacob R. Lorch, and Thomas Moscibroda.
“TrInc: Small Trusted Hardware for Large Distributed Systems”. In:
Networked Systems Design and Implementation (NSDI) 2009. url :
https://www.usenix.org/conference/nsdi- 09/trinc- small-

trusted- hardware- large- distributed- systems (cit. on pp. 19, 21,
46).

144

https://ircv3.net/specs/extensions/server-time-3.2.html
https://doi.org/10.1109/SP.2016.55
https://www.ndss-symposium.org/ndss2000/chameleon-signatures/
https://www.ndss-symposium.org/ndss2000/chameleon-signatures/
https://doi.org/10.1007/978-3-662-49384-7_16
https://doi.org/10.1145/258726.258777
https://doi.org/10.1145/3133956.3134019
https://bitcointalk.org/index.php?topic=175156.msg1823810#msg1823810
https://bitcointalk.org/index.php?topic=175156.msg1823810#msg1823810
https://www.usenix.org/conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-systems
https://www.usenix.org/conference/nsdi-09/trinc-small-trusted-hardware-large-distributed-systems

Bibliography

[Li+17] Fei Li, Wei Gao, Gui-lin Wang, Ke-fei Chen, Dong-qing Xie, and Chun-
ming Tang. “Double-Authentication-Preventing Signatures Revisited:
New Definition and Construction from Chameleon Hash”. Unclear
publication status, accepted to “Frontiers of Information Technology
and Electronic Engineering” according to journal website. 2017. url :
http://www.jzus.zju.edu.cn/iparticle.php?doi=10.1631/FITEE.

1700005 (cit. on p. 49).
[LSP82] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. “The Byzan-

tine Generals Problem”. In: ACM Transactions on Programming Lan-
guages and Systems (TOPLAS) 4.3 (1982). doi : 10 . 1145 / 357172 .
357176 (cit. on p. 10).

[Mal+17] Giulio Malavolta, Pedro Moreno-Sanchez, Aniket Kate, Matteo Maffei,
and Srivatsan Ravi. “Concurrency and Privacy with Payment-Channel
Networks”. In: Computer and Communications Security (CCS) 2017.
doi : 10.1145/3133956.3134096 (cit. on pp. 2, 19, 25).

[Mau97] Ueli M. Maurer. “Information-Theoretically Secure Secret-Key Agree-
ment by NOT Authenticated Public Discussion”. In: EUROCRYPT 1997.
doi : 10.1007/3- 540- 69053- 0_15 (cit. on p. 73).

[Max+19] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille.
“Simple Schnorr multi-signatures with applications to Bitcoin”. In: Des.
Codes Cryptogr. 87.9 (2019). doi : 10.1007/s10623- 019- 00608- x

(cit. on pp. 80, 92, 96, 101).
[Max13A] Gregory Maxwell. “CoinJoin: Bitcoin Privacy for the Real World”. Bit-

coin forum. Aug. 22, 2013. url : https://bitcointalk.org/index.
php?topic=279249 (cit. on pp. 5, 51, 52, 56, 78, 83, 89).

[Max13B] Gregory Maxwell. “CoinSwap: Transaction Graph Disjoint Trustless
Trading”. Bitcoin forum. Oct. 30, 2013. url : https://bitcointalk.
org/index.php?topic=321228.0 (cit. on p. 82).

[Max15] Gregory Maxwell. “Confidential Transactions”. Technical notes. 2015.
url : https://people.xiph.org/~greg/confidential_values.txt
(cit. on pp. 2, 6, 89, 93, 101, 113, 127, 129).

[Max18] Gregory Maxwell. “Taproot: Privacy Preserving Switchable Scripting”.
Bitcoin development mailing list. Jan. 23, 2018. url : https://lists.
linuxfoundation.org/pipermail/bitcoin- dev/2018- January/

015614.html (cit. on pp. 98, 129).

145

http://www.jzus.zju.edu.cn/iparticle.php?doi=10.1631/FITEE.1700005
http://www.jzus.zju.edu.cn/iparticle.php?doi=10.1631/FITEE.1700005
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/357172.357176
https://doi.org/10.1145/3133956.3134096
https://doi.org/10.1007/3-540-69053-0_15
https://doi.org/10.1007/s10623-019-00608-x
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=279249
https://bitcointalk.org/index.php?topic=321228.0
https://bitcointalk.org/index.php?topic=321228.0
https://people.xiph.org/~greg/confidential_values.txt
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2018-January/015614.html

Bibliography

[Mei+13] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko,
Damon McCoy, Geoffrey M. Voelker, and Stefan Savage. “A Fistful of
Bitcoins: Characterizing Payments Among Men with No Names”. In:
Internet Measurement Conference (IMC) 2013. doi : 10.1145/2504730.
2504747 (cit. on pp. 2, 14, 51, 54, 89).

[Mer87] Ralph C. Merkle. “A Digital Signature Based on a Conventional Encryp-
tion Function”. In: CRYPTO 1987. doi : 10.1007/3- 540- 48184- 2_32
(cit. on p. 15).

[MHG18] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. “Low-Resource
Eclipse Attacks on Ethereum’s Peer-to-Peer Network”. 2018. IACR
Cryptology ePrint Archive: 2018/236 (cit. on p. 12).

[Mie+13] Ian Miers, Christina Garman, Matthew Green, and Aviel D. Rubin.
“Zerocoin: Anonymous Distributed E-Cash from Bitcoin”. In: Security
and Privacy (S&P) 2013. doi : 10.1109/SP.2013.34 (cit. on pp. 2, 3, 89,
111).

[Mil+15] Andrew Miller, Ahmed E. Kosba, Jonathan Katz, and Elaine Shi.
“Nonoutsourceable Scratch-Off Puzzles to Discourage Bitcoin Mining
Coalitions”. In: Computer and Communications Security (CCS) 2015.
doi : 10.1145/2810103.2813621 (cit. on p. 16).

[Mil+19] Andrew Miller, Iddo Bentov, Surya Bakshi, Ranjit Kumaresan, and
Patrick McCorry. “Sprites and State Channels: Payment Networks that
Go Faster than Lightning”. In: Financial Cryptography (FC) 2019. doi :
10.1007/978- 3- 030- 32101- 7_30 (cit. on pp. 2, 25).

[MM17] Sarah Meiklejohn and Rebekah Mercer. “Möbius: Trustless Tumbling
for Transaction Privacy”. In: Privacy-Enhancing Technologies (PoPETs)
2018.2. doi : 10.1515/popets- 2018- 0015 (cit. on p. 83).

[MN06] Tal Moran and Moni Naor. “Receipt-Free Universally-Verifiable Voting
with Everlasting Privacy”. In: CRYPTO 2006. doi : 10.1007/11818175_
22 (cit. on p. 121).

[MNF17] Felix Konstantin Maurer, Till Neudecker, and Martin Florian. “Anony-
mous CoinJoin Transactions with Arbitrary Values”. In: Trust, Security
and Privacy in Computing and Communications (TrustCom) 2017. doi :
10.1109/Trustcom/BigDataSE/ICESS.2017.280 (cit. on p. 84).

[MO15] Sarah Meiklejohn and Claudio Orlandi. “Privacy-Enhancing Overlays
in Bitcoin”. In: Workshop on Bitcoin Research (BITCOIN) 2015. doi :
10.1007/978- 3- 662- 48051- 9_10 (cit. on pp. 2, 14, 51, 54, 78, 80, 89).

146

https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1007/3-540-48184-2_32
https://eprint.iacr.org/2018/236
https://doi.org/10.1109/SP.2013.34
https://doi.org/10.1145/2810103.2813621
https://doi.org/10.1007/978-3-030-32101-7_30
https://doi.org/10.1515/popets-2018-0015
https://doi.org/10.1007/11818175_22
https://doi.org/10.1007/11818175_22
https://doi.org/10.1109/Trustcom/BigDataSE/ICESS.2017.280
https://doi.org/10.1007/978-3-662-48051-9_10

Bibliography

[MRK17] Pedro Moreno-Sanchez, Tim Ruffing, and Aniket Kate. “PathShuffle:
Credit Mixing and Anonymous Payments for Ripple”. In: Privacy-
Enhancing Technologies (PoPETs) 2017.3. doi : 10 . 1515 / popets -
2017- 0031 (cit. on p. 52).

[MS02] David Mazières and Dennis Shasha. “Building Secure File Systems out
of Byzantine Storage”. In: Principles of Distributed Computing (PODC)
2002. doi : 10.1145/571825.571840 (cit. on pp. 19–21, 42).

[MZK16] Pedro Moreno-Sanchez, Muhammad Bilal Zafar, and Aniket Kate. “Link-
ing Wallets and Deanonymizing Transactions in the Ripple Network”.
In: Privacy-Enhancing Technologies (PoPETs) 2016.4. doi : 10.1515/
popets- 2016- 0049 (cit. on p. 52).

[NAH16] Till Neudecker, Philipp Andelfinger, and Hannes Hartenstein. “Timing
Analysis for Inferring the Topology of the Bitcoin Peer-to-Peer Net-
work”. In: Advanced and Trusted Computing (ATC) 2016. Bitcoin Net-
work Monitor available at https://dsn.tm.kit.edu/bitcoin/. doi :
10.1109/UIC- ATC- ScalCom- CBDCom- IoP- SmartWorld.2016.0070

(cit. on p. 80).
[Nak08A] Satoshi Nakamoto. “Bitcoin P2P E-Cash Paper”. Cryptography mailing

list. Oct. 31, 2008. url : http : / / www . metzdowd . com / pipermail /
cryptography/2008- October/014810.html (cit. on p. 1).

[Nak08B] Satoshi Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”.
2008. url : https://bitcoin.org/bitcoin.pdf (cit. on p. 1).

[Nar+16] Arvind Narayanan, Joseph Bonneau, Edward W. Felten, Andrew Miller,
and Steven Goldfeder. “Bitcoin and Cryptocurrency Technologies - A
Comprehensive Introduction”. Princeton University Press, 2016. isbn :
978-0-691-17169-2. url : https://press.princeton.edu/titles/
10908.html (cit. on p. 9).

[Nau+19] Gleb Naumenko, Gregory Maxwell, Pieter Wuille, Alexandra Fedorova,
and Ivan Beschastnikh. “Erlay: Efficient Transaction Relay for Bitcoin”.
In: Computer and Communications Security (CCS) 2019. doi : 10.1145/
3319535.3354237 (cit. on p. 60).

[NC10] Michael A. Nielsen and Isaac L. Chuang. “Quantum Computation and
Quantum Information”. 2nd edition. Cambridge University Press, 2010.
isbn : 978-1-107-00217-3. doi : 10 . 1017 / CBO9780511976667 (cit. on
p. 124).

147

https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1515/popets-2017-0031
https://doi.org/10.1145/571825.571840
https://doi.org/10.1515/popets-2016-0049
https://doi.org/10.1515/popets-2016-0049
https://dsn.tm.kit.edu/bitcoin/
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0070
http://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html
http://www.metzdowd.com/pipermail/cryptography/2008-October/014810.html
https://bitcoin.org/bitcoin.pdf
https://press.princeton.edu/titles/10908.html
https://press.princeton.edu/titles/10908.html
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1145/3319535.3354237
https://doi.org/10.1017/CBO9780511976667

Bibliography

[NC17] Arvind Narayanan and Jeremy Clark. “Bitcoin’s Academic Pedigree”. In:
Communications of the ACM 60.12 (Dec. 2017). doi : 10.1145/3132259
(cit. on p. 9).

[Nic15] Jonas Nick. “Data-Driven De-Anonymization in Bitcoin”. Master’s The-
sis. ETH Zürich, 2015. doi : 10.3929/ethz- a- 010541254 (cit. on pp. 2,
14, 51, 89).

[Nic19] Jonas Nick. “Insecure Shortcuts in MuSig”. Nov. 19, 2019. url : https:
//medium.com/blockstream/insecure- shortcuts- in- musig-

2ad0d38a97da (cit. on p. 81).
[NMM16] Shen Noether, Adam Mackenzie, and The Monero Research Lab. “Ring

Confidential Transactions”. In: Ledger 1 (2016). doi : 10.5195/ledger.
2016.34 (cit. on pp. 2, 3, 110, 114).

[NxtSh] Description of CoinShuffle implementation in Nxt. url : https://
nxtplatform.org/what- is- nxt/coin- shuffling/ (cit. on p. 54).

[PARI] “PARI/GP”. The PARI Group. University of Bordeaux. url : https:
//pari.math.u- bordeaux.fr/ (cit. on p. 76).

[PARI-Py] klinck. PARI-Python interface. url : https : / / code . google . com /
archive/p/pari- python/ (cit. on p. 76).

[PD] Joseph Poon and Thaddeus Dryja. “The Bitcoin Lightning Network:
Scalable Off-Chain Instant Payments”. Technical Report (draft). url :
https://lightning.network/ (cit. on pp. 2, 19, 25).

[Ped91] Torben P. Pedersen. “Non-Interactive and Information-Theoretic Secure
Verifiable Secret Sharing”. In: CRYPTO 1991. doi : 10.1007/3- 540-

46766- 1_9 (cit. on pp. 101, 119, 120, 123, 126).
[Pin+17] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor

Seiler. “Practical Quantum-Safe Voting from Lattices”. In: Computer and
Communications Security (CCS) 2017. doi : 10.1145/3133956.3134101
(cit. on p. 115).

[PJ72] William Wesley Peterson and Edward J. Weldon Jr. “Error-Correcting
Codes”. 2nd edition. MIT Press, 1972. isbn : 978-0-262-16039-1 (cit. on
p. 60).

[Poe+18] Andrew Poelstra, Adam Back, Mark Friedenbach, Gregory Maxwell,
and Pieter Wuille. “Confidential Assets”. In: Workshop on Bitcoin and
Blockchain Research (BITCOIN) 2018. doi : 10.1007/978- 3- 662-

58820- 8_4 (cit. on pp. 115, 118).

148

https://doi.org/10.1145/3132259
https://doi.org/10.3929/ethz-a-010541254
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://medium.com/blockstream/insecure-shortcuts-in-musig-2ad0d38a97da
https://doi.org/10.5195/ledger.2016.34
https://doi.org/10.5195/ledger.2016.34
https://nxtplatform.org/what-is-nxt/coin-shuffling/
https://nxtplatform.org/what-is-nxt/coin-shuffling/
https://pari.math.u-bordeaux.fr/
https://pari.math.u-bordeaux.fr/
https://code.google.com/archive/p/pari-python/
https://code.google.com/archive/p/pari-python/
https://lightning.network/
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1007/978-3-662-58820-8_4
https://doi.org/10.1007/978-3-662-58820-8_4

Bibliography

[Poe16] Andrew Poelstra. “Mimblewimble”. 2016. url : https://download.
wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf. More de-
tailed than the notes by Jedusor [Jed16] (cit. on p. 110).

[Poe18] Bertram Poettering. “Shorter Double-Authentication Preventing Sig-
natures for Small Address Spaces”. In: AFRICACRYPT 2018. doi : 10.
1007/978- 3- 319- 89339- 6_19 (cit. on p. 49).

[PRK98] Mohammad Peyravian, Allen Roginsky, and Ajay Kshemkalyani. “On
Probabilities of Hash Value Matches”. In: Computers and Security 17.2
(1998). doi : 10.1016/S0167- 4048(97)82016- 0 (cit. on p. 38).

[PS14] Bertram Poettering and Douglas Stebila. “Double-Authentication-Pre-
venting Signatures”. In: European Symposium on Research in Computer
Security (ESORICS) 2014. doi : 10.1007/978- 3- 319- 11203- 9_25

(cit. on pp. 21, 29, 31, 47–49).
[PS17] Bertram Poettering and Douglas Stebila. “Double-Authentication-Pre-

venting Signatures”. In: International Journal of Information Secucirty
16.1 (2017). Full version of [PS14]. doi : 10.1007/s10207- 015- 0307- 8
(cit. on pp. 21, 29, 31, 47–49).

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the Blockchain
Protocol in Asynchronous Networks”. In: EUROCRYPT 2017. doi : 10.
1007/978- 3- 319- 56614- 6_22 (cit. on p. 11).

[RH11] Fergal Reid and Martin Harrigan. “An Analysis of Anonymity in the
Bitcoin System”. In: Workshop on Security and Privacy in Social Net-
works (SPSN) 2011. doi : 10.1109/PASSAT/SocialCom.2011.79 (cit. on
pp. 2, 14, 51, 54, 89).

[RKS15] Tim Ruffing, Aniket Kate, and Dominique Schröder. “Liar, Liar, Coins on
Fire! – Penalizing Equivocation By Loss of Bitcoins”. In: Computer and
Communications Security (CCS) 2015. doi : 10.1145/2810103.2813686
(cit. on pp. x, 48).

[RMK14] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. “CoinShuf-
fle: Practical Decentralized Coin Mixing for Bitcoin”. In: European
Symposium on Research in Computer Security (ESORICS) 2014. doi :
10.1007/978- 3- 319- 11212- 1_20 (cit. on pp. 51, 52, 54, 56, 61, 77,
134).

[Rog15] Phillip Rogaway. “The Moral Character of Cryptographic Work”. Paper
corresponding to an IACR Distinguished Lecture given at ASIACRYPT
2015. IACR Cryptology ePrint Archive: 2015/1162 (cit. on p. ix).

149

https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.pdf
https://doi.org/10.1007/978-3-319-89339-6_19
https://doi.org/10.1007/978-3-319-89339-6_19
https://doi.org/10.1016/S0167-4048(97)82016-0
https://doi.org/10.1007/978-3-319-11203-9_25
https://doi.org/10.1007/s10207-015-0307-8
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1007/978-3-319-56614-6_22
https://doi.org/10.1109/PASSAT/SocialCom.2011.79
https://doi.org/10.1145/2810103.2813686
https://doi.org/10.1007/978-3-319-11212-1_20
https://eprint.iacr.org/2015/1162

Bibliography

[Ros14] Meni Rosenfeld. “Analysis of Hashrate-Based Double Spending”. 2014.
arXiv: 1402.2009 [cs.CR] (cit. on p. 41).

[Sab13] Nicolas van Saberhagen. “CryptoNote v 2.0”. 2013. url : https://
cryptonote.org/whitepaper.pdf (cit. on pp. 2, 3, 6, 89, 94, 110, 129).

[Sch91] Claus-Peter Schnorr. “Efficient Signature Generation by Smart Cards”.
In: Journal of Cryptology 4.3 (1991). doi : 10.1007/BF00196725 (cit. on
pp. 13, 26, 92).

[SEC1] Certicom Research. “Elliptic Curve Cryptography”. SEC 1. Version
2.0. Standards for Efficient Cryptography Group, 2009. url : http:
//www.secg.org/sec1- v2.pdf (cit. on p. 113).

[SEC2] Certicom Research. “Recommended Elliptic Curve Domain Parameters”.
SEC 2. Version 2.0. Standards for Efficient Cryptography Group, 2010.
url : http://www.secg.org/sec2- v2.pdf (cit. on pp. 13, 38, 120).

[SMZ14] Michele Spagnuolo, Federico Maggi, and Stefano Zanero. “BitIodine:
Extracting Intelligence from the Bitcoin Network”. In: Financial Cryp-
tography (FC) 2014. doi : 10.1007/978- 3- 662- 45472- 5_29 (cit. on
pp. 2, 14, 51, 54, 89).

[Sno17] Edward Snowden. Twitter. Sept. 28, 2017. url : https://twitter.com/
Snowden/status/913544739542241282 (cit. on p. 129).

[Son11] Shinan Song. “Why I Left Sina Weibo”. Chinese. July 14, 2011. url :
http://songshinan.blog.caixin.com/archives/22322 (cit. on
p. 42).

[Spi13] Jeremy Spilmann. “Re: Anti DoS For Tx Replacement”. Bitcoin devel-
opment mailing list. Apr. 19, 2013. url : https://www.mail- archive.
com/bitcoin- development%40lists.sourceforge.net/msg02028.

html (cit. on pp. 2, 19, 20, 25, 43).
[SS01] Ahmad-Reza Sadeghi and Michael Steiner. “Assumptions Related to

Discrete Logarithms: Why Subtleties Make a Real Difference”. In:
EUROCRYPT 2001.

[SS02] Ahmad-Reza Sadeghi and Michael Steiner. “Assumptions Related to
Discrete Logarithms: Why Subtleties Make a Real Difference”. 2002.
url : http://www.semper.org/sirene/publ/SaSt_01.dh- et-

al.long.pdf. Full version of [SS01] (cit. on p. 131).
[SS12] Dominique Schröder and Heike Schröder. “Verifiable Data Streaming”.

In: Computer and Communications Security (CCS) 2012. doi : 10.1145/
2382196.2382297 (cit. on p. 30).

150

https://arxiv.org/abs/1402.2009
https://cryptonote.org/whitepaper.pdf
https://cryptonote.org/whitepaper.pdf
https://doi.org/10.1007/BF00196725
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec1-v2.pdf
http://www.secg.org/sec2-v2.pdf
https://doi.org/10.1007/978-3-662-45472-5_29
https://twitter.com/Snowden/status/913544739542241282
https://twitter.com/Snowden/status/913544739542241282
http://songshinan.blog.caixin.com/archives/22322
https://www.mail-archive.com/bitcoin-development%40lists.sourceforge.net/msg02028.html
https://www.mail-archive.com/bitcoin-development%40lists.sourceforge.net/msg02028.html
https://www.mail-archive.com/bitcoin-development%40lists.sourceforge.net/msg02028.html
http://www.semper.org/sirene/publ/SaSt_01.dh-et-al.long.pdf
http://www.semper.org/sirene/publ/SaSt_01.dh-et-al.long.pdf
https://doi.org/10.1145/2382196.2382297
https://doi.org/10.1145/2382196.2382297

Bibliography

[SS15] Dominique Schröder and Mark Simkin. “VeriStream – A Framework
for Verifiable Data Streaming”. In: Financial Cryptography (FC) 2015.
doi : 10.1007/978- 3- 662- 47854- 7_34 (cit. on p. 30).

[ST87] T. K. Srikanth and Sam Toueg. “Simulating Authenticated Broadcasts to
Derive Simple Fault-Tolerant Algorithms”. In: Distributed Computing
2.2 (1987). doi : 10.1007/BF01667080 (cit. on pp. 55, 74).

[Sun14] sundance. “Byzantine Cycle Mode: Scalable Bitcoin Mixing on Unequal
Inputs”. 2014. url : https://github.com/sundance30203/dubmix/
raw/master/doc/bcm.pdf (cit. on p. 84).

[Syt+14] Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David Wolinsky,
Bryan Ford, and Aaron Johnson. “Security Analysis of Accountable
Anonymity in Dissent”. In: Transactions on Information and System
Security (TISSEC) 17.1 (2014). doi : 10.1145/2629621 (cit. on pp. 6,
52–54, 61, 85, 86).

[Sza08] Nick Szabo. “Bit gold”. Dec. 27, 2008. url : https://unenumerated.
blogspot.de/2005/12/bit- gold.html (cit. on p. 11).

[Sza97] Nick Szabo. “Formalizing and Securing Relationships on Public Net-
works”. In: First Monday 2.9 (1997). doi : 10.5210/fm.v2i9.548 (cit. on
p. 13).

[TFEU] Council of the European Union. “Treaty of the Functioning of the
European Union. Article 128(1)”. In: Official Journal of the European
Union (Oct. 26, 2012). url : https://eur- lex.europa.eu/legal-

content/EN/TXT/?uri=uriserv:OJ.C_.2012.326.01.0001.01.ENG#

d1e3385- 47- 1 (cit. on p. 10).
[Tod14A] Peter Todd. “Near-Zero Fee Transactions with Hub-and-Spoke Mi-

cropayments”. Bitcoin development mailing list. Dec. 12, 2014. url :
https://www.mail- archive.com/bitcoin- development@lists.

sourceforge.net/msg06576.html (cit. on p. 19).
[Tod14B] Peter Todd. “Stealth Addresses”. Bitcoin development mailing list. Jan. 6,

2014. url : https://www.mail- archive.com/bitcoin- development@
lists.sourceforge.net/msg03613.html (cit. on pp. 89, 94).

[Tor] The Tor Project. “Tor”. url : https://www.torproject.org/ (cit. on
pp. 81, 83, 92).

151

https://doi.org/10.1007/978-3-662-47854-7_34
https://doi.org/10.1007/BF01667080
https://github.com/sundance30203/dubmix/raw/master/doc/bcm.pdf
https://github.com/sundance30203/dubmix/raw/master/doc/bcm.pdf
https://doi.org/10.1145/2629621
https://unenumerated.blogspot.de/2005/12/bit-gold.html
https://unenumerated.blogspot.de/2005/12/bit-gold.html
https://doi.org/10.5210/fm.v2i9.548
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2012.326.01.0001.01.ENG#d1e3385-47-1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2012.326.01.0001.01.ENG#d1e3385-47-1
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=uriserv:OJ.C_.2012.326.01.0001.01.ENG#d1e3385-47-1
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg06576.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg06576.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.mail-archive.com/bitcoin-development@lists.sourceforge.net/msg03613.html
https://www.torproject.org/

Bibliography

[TRL12] Sasu Tarkoma, Christian Esteve Rothenberg, and Eemil Lagerspetz.
“Theory and Practice of Bloom Filters for Distributed Systems”. In:
IEEE Communications Surveys and Tutorials 14.1 (2012). doi : 10.1109/
SURV.2011.031611.00024 (cit. on p. 34).

[TS16] Florian Tschorsch and Björn Scheuermann. “Bitcoin and Beyond: A
Technical Survey on Decentralized Digital Currencies”. In: IEEE Com-
munications Surveys and Tutorials 18.3 (2016). doi : 10.1109/COMST.
2016.2535718 (cit. on p. 9).

[Unr13] Dominique Unruh. “EverlastingMulti-Party Computation”. In: CRYPTO
2013. doi : 10.1007/978- 3- 642- 40084- 1_22 (cit. on p. 121).

[Unr14] Dominique Unruh. “Revocable Quantum Timed-Release Encryption”.
In: EUROCRYPT 2014. doi : 10.1007/978- 3- 642- 55220- 5_8 (cit. on
p. 126).

[VR15] Luke Valenta and Brendan Rowan. “Blindcoin: Blinded, Accountable
Mixes for Bitcoin”. In: Workshop on Bitcoin Research (BITCOIN) 2015.
doi : 10.1007/978- 3- 662- 48051- 9_9 (cit. on pp. 82, 89).

[Was18] zkSNACKs. “Wasabi Wallet”. 2018. url : https://wasabiwallet.io/
(cit. on p. 83).

[Whi+02] Brian White, Jay Lepreau, Leigh Stoller, Robert Ricci, Shashi Gu-
ruprasad, Mac Newbold, Mike Hibler, Chad Barb, and Abhijeet Joglekar.
“An Integrated Experimental Environment for Distributed Systems and
Networks”. In: Operating System Design and Implementation (OSDI)
2002. url : http://www.usenix.org/events/osdi02/tech/white.
html (cit. on pp. 52, 76).

[Wir16] Aaron vanWirdum. “Rejecting Today’s Hard Fork, the EthereumClassic
Project Continues on the Original Chain: Here’s Why”. Bitcoin Mag-
azine. July 20, 2016. url : https://bitcoinmagazine.com/articles/
rejecting - today - s - hard - fork - the - ethereum - classic -

project- continues- on- the- original- chain- here- s- why-

1469038808/ (cit. on p. 17).
[WMN18] Pieter Wuille, Gregory Maxwell, and Gleb Naumenko. “Minisketch:

A Library for BCH-based Set Reconciliation”. 2018. url : https://
github.com/sipa/minisketch (cit. on p. 60).

152

https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/SURV.2011.031611.00024
https://doi.org/10.1109/COMST.2016.2535718
https://doi.org/10.1109/COMST.2016.2535718
https://doi.org/10.1007/978-3-642-40084-1_22
https://doi.org/10.1007/978-3-642-55220-5_8
https://doi.org/10.1007/978-3-662-48051-9_9
https://wasabiwallet.io/
http://www.usenix.org/events/osdi02/tech/white.html
http://www.usenix.org/events/osdi02/tech/white.html
https://bitcoinmagazine.com/articles/rejecting-today-s-hard-fork-the-ethereum-classic-project-continues-on-the-original-chain-here-s-why-1469038808/
https://bitcoinmagazine.com/articles/rejecting-today-s-hard-fork-the-ethereum-classic-project-continues-on-the-original-chain-here-s-why-1469038808/
https://bitcoinmagazine.com/articles/rejecting-today-s-hard-fork-the-ethereum-classic-project-continues-on-the-original-chain-here-s-why-1469038808/
https://bitcoinmagazine.com/articles/rejecting-today-s-hard-fork-the-ethereum-classic-project-continues-on-the-original-chain-here-s-why-1469038808/
https://github.com/sipa/minisketch
https://github.com/sipa/minisketch

Bibliography

[Wol+12] David Isaac Wolinsky, Henry Corrigan-Gibbs, Bryan Ford, and Aaron
Johnson. “Dissent in Numbers: Making Strong Anonymity Scale”. In:
Operating Systems Design and Implementation (OSDI) 2012. url :
https : / / www . usenix . org / conference / osdi12 / technical -

sessions/presentation/wolinsky (cit. on p. 85).
[WSF13] David Isaac Wolinsky, Ewa Syta, and Bryan Ford. “Hang with Your

Buddies to Resist Intersection Attacks”. In: Computer and Communi-
cations Security (CCS) 2013. doi : 10.1145/2508859.2516740 (cit. on
pp. 53, 85).

[Wui13] Pieter Wuille. “libsecp256k1: Optimized C Library for EC Operations
on Curve secp256k1”. 2013. url : https://github.com/bitcoin/
secp256k1 (cit. on p. 38).

[XMR] “Monero”. url : https://monero.org/ (cit. on pp. 3, 92, 93, 114).
[XXW13] Xiang Xie, Rui Xue, and Minqian Wang. “Zero Knowledge Proofs from

Ring-LWE”. In: Cryptology and Network Security (CANS) 2013. doi :
10.1007/978- 3- 319- 02937- 5_4 (cit. on p. 115).

[ZEC] Electric Coin Company. “Zcash”. url : https://z.cash/ (cit. on p. 3).
[Zie+15] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas In-

den, and Klaus Wehrle. “CoinParty: Secure Multi-Party Mixing of Bit-
coins”. In: Conference on Data and Application Security and Privacy
(CODASPY) 2015. doi : 10.1145/2699026.2699100 (cit. on pp. 54, 56,
83, 89).

153

https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/wolinsky
https://doi.org/10.1145/2508859.2516740
https://github.com/bitcoin/secp256k1
https://github.com/bitcoin/secp256k1
https://monero.org/
https://doi.org/10.1007/978-3-319-02937-5_4
https://z.cash/
https://doi.org/10.1145/2699026.2699100

	Preface
	Introduction
	Contributions

	Background on Cryptocurrencies
	Nakamoto Consensus
	Technical Overview of Bitcoin

	Penalizing Equivocation By Loss of Bitcoins
	Overview
	Deposits and Payment Channels
	Deposits
	Payment Channels

	Accountable Assertions
	Security Properties

	Construction
	Intuition
	Full Construction
	Security Analysis
	Instantiation and Implementation

	Non-equivocation Contracts
	Security Analysis
	Application Examples

	Asynchronous Payments
	Full Protocol
	Security Analysis

	Related Work
	Comparison to DAPS

	Peer-to-peer Mixing and Unlinkable Bitcoin Transactions
	Background on P2P Mixing
	Conceptualizing P2P Mixing
	Setup and Communication Model
	Inputs and Outputs
	Interface and Execution Model
	Security Goals and Threat Model

	Solution Overview
	Handling Collisions
	Handling Disruption and Ensuring Termination

	The DiceMix Protocol
	Building Blocks
	Contract with the Application
	Protocol Description
	Full Pseudocode
	Security and Correctness Analysis
	Variants of the Protocol

	Performance Analysis
	Communication
	Prototype Implementation

	Efficient Coin Mixing for Bitcoin
	Security Goals
	The CoinShuffle++ Protocol
	Practical Considerations
	Related Work

	A Generic Attack on P2P Mixing Protocols
	Strong Sender Anonymity
	Example: A Deanonymization Attack on Dissent
	Generalizing the Attack

	Mixing Confidential Transactions for Comprehensive Privacy
	ValueShuffle: Mixing Confidential Transactions
	Features

	Building Blocks
	Confidential Transactions
	One-time Addresses

	Solution Overview
	Security and Privacy Goals
	Challenges and Overview on the Solutions
	Overview of ValueShuffle

	Full Protocol Description
	Security Analysis

	Related Work

	Preparing Commitments for a Post-Quantum World
	Solution Overview
	Usage in Confidential Transactions

	Commitments
	Switch Commitments
	Security Properties

	Construction
	Security Analysis

	Opt-In Switch Commitments
	Construction
	Security Analysis
	Post-Quantum Hiding in Practice

	Conclusions
	Hardness Assumptions
	Bibliography

