
Of Keyboards and Beyond —
Optimization in Human-Computer

Interaction

A dissertation submitted towards the degree Doctor of Engineering
of the Faculty of Mathematics and Computer Science of Saarland

University

by Maximilian John

Saarbrücken / 2019

Day of Colloquium: 15.01.2020
Dean of the Faculty: Prof. Dr. Sebastian Hack

Chair of the Committee: Prof. Dr. Bernd Finkbeiner
Reporters

First reviewer: Dr. Andreas Karrenbauer
Second reviewer: Prof. Dr. Kurt Mehlhorn

Academic Assistant: Dr. Antonios Antoniadis

ii

Abstract

Abstract In this thesis, we present optimization frameworks in the area of Human-
Computer Interaction. At first, we discuss keyboard layout problems with a special focus
on a project we participated in, which aimed at designing the new French keyboard
standard. The special nature of this national-scale project and its optimization ingre-
dients are discussed in detail; we specifically highlight our algorithmic contribution to
this project. Exploiting the special structure of this design problem, we propose an opti-
mization framework that was efficiently computes keyboard layouts and provides very
good optimality guarantees in form of tight lower bounds. The optimized layout that we
showed to be nearly optimal was the basis of the new French keyboard standard recently
published in the National Assembly in Paris. Moreover, we propose a relaxation for the
quadratic assignment problem (a generalization of keyboard layouts) that is based on
semidefinite programming. In a branch-and-bound framework, this relaxation achieves
competitive results compared to commonly used linear programming relaxations for this
problem. Finally, we introduce a modeling language for mixed integer programs that es-
pecially focuses on the challenges and features that appear in participatory optimization
problems similar to the French keyboard design process.

Zusammenfassung Diese Arbeit behandelt Ansätze zu Optimierungsproblemen im
Bereich Human-Computer Interaction. Zuerst diskutieren wir Tastaturbelegungsproble-
me mit einem besonderen Fokus auf einem Projekt, an dem wir teilgenommen haben: die
Erstellung eines neuen Standards für die französische Tastatur. Wir gehen auf die beson-
dere Struktur dieses Problems und unseren algorithmischen Beitrag ein: ein Algorithmus,
der mit Optimierungsmethoden die Struktur dieses speziellen Problems ausnutzt. Mit-
hilfe dieses Algorithmus konnten wir effizient Tastaturbelegungen berechnen und die
Qualität dieser Belegungen effektiv (in Form von unteren Schranken) nachweisen. Das
finale optimierte Layout, welches mit unserer Methode bewiesenermaßen nahezu optimal
ist, diente als Grundlage für den kürzlich in der französischen Nationalversammlung
veröffentlichten neuen französischen Tastaturstandard. Darüberhinaus beschreiben wir
eine Relaxierung für das quadratische Zuweisungsproblem (eine Verallgemeinerung des
Tastaturbelegungsproblems), die auf semidefinieter Programmierung basiert. Wir zeigen,
dass unser Algorithmus im Vergleich zu üblich genutzten linearen Relaxierung gut ab-
schneidet. Abschließend definieren und diskutieren wir eine Modellierungssprache für
gemischt integrale Programme. Diese Sprache ist speziell auf die besonderen Herausforde-
rungen abgestimmt, die bei interaktiven Optimierungsproblemen auftreten, welche einen
ähnlichen Charakter haben wie der Prozess des Designs der französischen Tastatur.

iv

Acknowledgments

I would like to thank Andreas for advising me throughout the last 4 years. You did
not only introduce me to many interesting topics regarding combinatorial optimization,
but you also shaped me personally. Whenever I needed an advice — be it scientifically
or personally — I could count on you. I thoroughly enjoyed being part of the Discrete
Optimization group together with Ruben and Davis who were not only colleagues but also
became friends.

I would like to thank Kurt for being an inspirational role model and creating such a
great atmosphere in the institute. Thanks for always having an open ear when I needed
it.

Furthermore, I would like to thank Anna, Antti and Mathieu. I had a great time
working with you towards the new French keyboard standard. It has been quite a journey
and I am proud of what we have achieved together.

I would like to thank my family who have always supported me in any way possible
in pursuing my dream carreer. I am happy and grateful that you have walked this path
together with me.

Finally, I would like to thank my wonderful wife Laura. Your love and your emotional
support helped me even through the hardest times. Thank you for always having my back
even if this meant cutting down your own interests for the sake of my work. I would have
not accomplished this without you.

vi

Contents

1 Introduction 1

2 Optimization in Human-Computer Interaction 3
2.1 Introduction . 3
2.2 Graphical User Interfaces . 5
2.3 UI Design as Optimization . 6

3 The French Keyboard Problem 11
3.1 The Design Task . 12
3.2 The Timeline of the Project . 13
3.3 The Optimization Model . 14
3.4 The new French Keyboard Standard . 18
3.5 Participatory Optimization . 20
3.6 Conclusion . 22

4 Assignment Problems 23
4.1 Basics of Optimization Theory . 23
4.2 The Assignment Problem . 24
4.3 Tractable Cases of QAPs . 25
4.4 Approaches to solve QAPs . 27

5 Dynamic Sparsification for Quadratic Assignment Problems 33
5.1 Algorithm . 33
5.2 Evaluation . 38
5.3 Robustness Analysis . 41
5.4 Conclusion . 42

6 Cut Pseudo Bases for Quadratic Assignment Problems 43
6.1 An SDP-Based Lower Bound . 43
6.2 Introduction of Cut Pseudo Bases . 44
6.3 Towards an SDP . 46
6.4 Using the Right Solver - Discussion and Consequences 53
6.5 Comparison to the Gilmore-Lawler bound 55
6.6 Evaluation . 55

7 A Markup Language for Optimization Problems 59
7.1 Introduction . 59
7.2 Grammar and Features . 63
7.3 Additional Features . 66
7.4 Conclusion . 70

viii

CHAPTER 1
Introduction

Keyboards are one of the earliest forms of interaction between human and computer.
Although many new human-computer interaction (HCI) models (e.g., graphical user
interfaces or voice commands) have been developed in the last decades, keyboards still
play an important role in this area. Many official keyboard layouts have changed only
very subtly when compared to the very first layouts that have been produced; despite
their poor performance regarding ergonomics or time-to-type. Recent advances in math-
ematical optimization theory have opened up new possibilities for the optimization of
keyboard layouts.

This thesis describes my contributions to optimization problems in HCI, with a
special focus on keyboard layout problems. We discuss two algorithms that not only
compute good keyboard layouts but also provide quality guarantees in form of tight lower
bounds. One of these algorithms has been dedicated to the French keyboard problem,
which has a very special structure that can be exploited by our framework. In 2016, the
French government started an initiative to design a new keyboard layout that should
contain all characters to write proper French and at the same time be optimized with
respect to different quality measures. We participated in this large national-scale project
by contributing a dedicated optimization framework that could provide good optimality
guarantees in a very small time frame. In 2019, this project successfully concluded with
the official publication of the new French keyboard standard. The optimized layout that
we proposed and proved to be nearly optimal served as a basis for this new standard.
We can proudly claim that this standard could have not been realized in its current form
without the help of these dedicated optimization methods.

The first chapters provide a technical and historical classification of keyboard opti-
mization in the context of HCI. Moreover, we describe the circumstances and processes of
the French keyboard problem. A manuscript, which has been accepted for a publication
in the Communications of the ACM [1], serves as a basis for this chapter. Chapter 4
provides general technical details with a focus on optimization theory; we introduce basic
definitions, popular solution approaches, and theoretical hardness of keyboard layout
and related optimization problems.

The rest of the thesis contains more technical details about our practical contributions
to optimization in HCI. The specialized framework for the French keyboard problem is
discussed in Chapter 5; the corresponding paper [2] has been published in the conference
proceedings of Mathematical Optimization Theory and Operations Research 2019. We
show that our approach worked well in the whole process of the French keyboard design.
Throughout the several years of development, we solved multiple different keyboard layout
instances that arose during discussions with the stakeholders of this project. Using our
algorithm, we were able to provide very good optimality guarantees (often < 5%) for
many instances within only a few minutes. Additionally, our algorithm is very resource-

Chapter 1. Introduction

efficient allowing the user to run it on a standard laptop instead of a powerful compute
server. These features of our approach open new possibilities for optimization methods
in participatory design processes, where the optimization model has to quickly react to
changes of the input data or other relevant optimization parameters.

An alternative approach for quadratic assignment problems — the generalization
of keyboard layout problems — is discussed in Chapter 6. While the former algorithm
exploited the special structure of the French keyboard optimization problem, this algo-
rithm performs well for more general quadratic assignment problems. It is based on a
semidefinite programming relaxation; a relatively young and promising area of research
regarding hard optimization problems.

Finally, the last chapter introduces a modeling language for optimization problems;
motivated by different challenges that arose during the French keyboard process, this lan-
guage provides a low entry-hurdle even for non-computer scientists. One of its prominent
features is the separation of model and data, which simplifies the use of this modeling lan-
guage in a scenario where input data frequently changes. The structure of the language,
its features and benefits are discussed in Chapter 7. There also exists an implementation
of an interpreter for this language as a part of Sören Bund-Becker’s Bachelor’s thesis
that Andreas Karrenbauer and I supervised.

2

CHAPTER 2
Optimization in Human-Computer

Interaction

2.1 Introduction

This chapter introduces the role of combinatorial optimization in the context of keyboards
and graphical user interfaces (GUIs). It is based on a survey article on this topic [3], which
is a collaborative project of Antti Oulasvirta, Niraj Ramesh Dayama, Morteza Shiripour
(all from Aalto Univerisity in Finland), Andreas Karrenbauer and myself. While the
scope of the survey paper is much larger, it contains many aspects of GUI designs that
are irrelevant for this thesis and are therefore omitted.

The main interaction tools between humans and computers are keyboards, GUIs,
gestures and voice commands. In this chapter, we will focus on the former two methods
and discuss them in a context of mathematical optimization1. Keyboards and GUIs will
be shortly referred to as user interfaces (UIs) in the following text.

2.1.1 Keyboard Optimization - A Historic Overview

Many traditional keyboard layouts have only been changed very slightly in the last 100
years. The roots of the American Qwerty layout go back to the 19th century. Christoph
Latham Sholes was the first printer who did not sort the characters alphabetically on
his typewriter, an image of patent he claimed in 1878 is shown in Figure 2.1. His layout
was not supposed to be very ergonomic or to allow fast typing; instead, the main goal
was to split up characters that are often used in combination with each other. If those
characters are next to each other on a typewriter, pressing them both in quick succession
could cause their corresponding type levers to jam.

Today, the keyboard layout is still almost identical despite the drastic changes in
hardware and usage of keyboards. Type lever jams are a relict of the past, rendering
the whole purpose of this traditional layout irrelevant. The advances in combinatorial
optimization over the past decades have initialized many possibilities to compute key-
board layouts that are optimal with respect to certain quality measures. Researchers
have proposed alternative layouts, which perform much better regarding typing speed
or ergonomics (e.g.,[4]); however, these layouts usually do not reach a public audience
mostly because of political reasons and because many people do not want to relearn how
to type on a keyboard. This learnability of a new design is a major part of our work
towards the new French keyboard layout, which will be discussed in Chapter 3.

In 1975, Pollatschek et al. proposed to compute a keyboard layout by solving a
combinatorial optimization problem for the first time. Their approach has been extended

1Whenever we discuss optimization in this thesis, it means mathematical optimization

Chapter 2. Optimization in Human-Computer Interaction

Figure 2.1: The U.S. patent for the Qwerty typewriter layout. Source: U.S. Patent No.
207,559; C.L. Sholes; 1878

by many researchers (e.g., [5]) and is still the basis for many modern approaches: In
2014, Karrenbauer and Oulasvirta proposed integer programming techniques to improve
keyboard optimization. In particular, they apply two popular linearization methods
to the integer programming formulation of the keyboard layout problem, which led to
promising results regarding performance of their algorithm and quality of the resulting
keyboards. Their approach, however, was only focused on typing speed and neglected
other important quality measures. Moreover, the linearizations that they used do not
scale well for keyboard instances with a higher amount of characters and slots (instances
with > 40 characters become difficult if the problem structure cannot be exploited). The
approaches discussed later in this thesis extend this work and redeem the shortcomings
mentioned above.

The design of keyboard layouts and graphical user interfaces show several similar-
ities. Many optimization problems appear in both design processes, the most obvious
being the actual layout problem (which character/element should be placed on which
key/position), but also, for example, the functionality selection problem which computes
an optimal set of functionalities (which characters should be placed on a keyboard or
which elements should be available on a GUI) that should be part of the user interface [6].
These similarities inspired us to extend our view of optimization opportunities from key-
board problems to general user interface design problems. A detailed discussion about
optimization problems occurring in the design of user interfaces and how to model and
solve them is done in our submission [3]. Since this thesis mainly focusses on keyboard
layout problems, we will only discuss basic properties of GUIs and their connection to
keyboard layout problems.

4

2.2. Graphical User Interfaces

2.2 Graphical User Interfaces

The following part (until Section 2.3) is inferred from [3]. A GUI presents the state
and controls of a computer program visuo-spatially on a display for interaction with a
pointing device [7]. Visual presentation serves two functions: firstly, the program state
can be conveyed to the user and, secondly, it enables changing the state of the program
by interacting with a pointer. Commands are typically carried out by dwelling (e.g.,
hover-over), clicking, or dragging elements with a pointer. Elements express visually
what type of interaction they permit; consider, for example, buttons, widgets, and icons.

The traditional GUI paradigm is known as WIMP: windows, icons, menus, and
a pointing device. In addition, modern GUIs offer multiple types of widgets, such as
buttons, entry fields, and choosers. Containers of different types are available for media,
applications (docks), and documents (folders). Navigation controls such as scrollbars,
task switchers, search bars, and tabs translate or update views. In a text entry mode,
text can be entered also via a virtual or physical keyboard. Keyboard shortcuts can be
used to invoke commands without pointing.

Since most software and services have extensive functionality to offer, GUIs are
often organized hierarchically. Two principles of hierarchical organization are commonly
followed:

• Visual Containment: graphically marked containers such as canvases, windows, and
boxes can have other containers and elements within them, and

• Logical Compositionality: a program can consist of multiple sub-GUIs, such as a
settings panel, a drawing canvas, and a dialog. These can be presented in sequence or
parallel. For example, the 3D modeling software Maya, which offers 1,346 functions
in a menu, arranges them in a hierarchical fashion [6].

A popular way to organize elements in a GUI is the grid layout [8]. It uses grid-lines to
organize slots that determine the possible sizes and positions of graphical elements.

Besides purely technical considerations (e.g., software and hardware reliability) and
considerations related to marketing and brands, there are end-user-related design objec-
tives in GUI design. They include 1) usefulness; 2) user performance such as speed and
accuracy in completing tasks; 3) learnability; and 4) aspects of user experience such as
aesthetics, emotions, or perceived value. To understand which objectives are important,
companies significantly invest in user research. User research methods include, among
others, surveys, online logging, controlled evaluations, and observational studies. Methods
like these are used to chart the needs, practices, capabilities, and technical contexts of
users. However, it is widely accepted that the quality of design is determined in actual
use. This creates a tough challenge for design. A designer must anticipate how well users
will perform, and how they will use and experience a design candidate. To this end, de-
signers conventionally rely on design heuristics—well-founded rule-like conventions such
as “do not use more than four colors to code information”—, design patterns, empirical
evaluation such as usability and A/B testing, and personal experience [9].

5

Chapter 2. Optimization in Human-Computer Interaction

2.3 UI Design as Optimization

In the creation process of a graphical user interface, several interdependent design choices
have to be made that affect different human and technical factors. These choices are
usually made manually by professional designers due to the lack of mathematical def-
initions of the according design task and the missing notion of an objective function
that captures the important aspects of human behaviour. The success of a GUI is often
determined by factors like usability, usefulness, learnability, and enjoyability [10]. Most of
these qualitiy measures for GUIs can also be directly translated to keyboards, some being
more prominent than others (e.g., learnability vs. enjoyability). This chapter describes
the power and flexibility of optimization tools in the creation process of these UIs.

What sets combinatorial optimization apart from alternative computational methods?
While many optimization and other computational methods allow the exploration of a
much larger design space than otherwise humanly possible, mathematical optimization
methods also provide a certificate about the quality of presented solutions. An optimizer
can prove that a certain solution is within p% of the best achievable design — a guarantee
that many alternative methods in design cannot provide. Moreover, these methods can
be easily controlled by the designer through the means of constraints and objective
functions; hence making optimization a flexible and transparent tool for design processes
(see also [11]). In order to find suitable parameters for optimization models or to translate
intuitive ideas of designers into a mathematical notion, machine learning models can be
used. In general, however, large training sets are not required for the setup of optimization
models.

Despite these advantages a frequent challenge of optimization methods are design
tasks to be notoriously ill-defined processes [12]. Classic optimization approaches require
an explicit a priori formulation of the model under consideration. The fitness of many
user interfaces, however, is best evaluated when in actual use — a value that is hard
to anticipate beforehand. Furthermore, designers’ work is concerned not only with a
concrete layout but also with hard-to-formalize conceptual, structure-based, functional,
and aesthetic aspects of design [13]. To this end, designers consider multiple types of
constraints when they create, shape, and determine use-oriented qualities [13, 14]. Their
success draws on their capabilities in creativity, problem-solving, sensemaking, empathy,
and collaboration [13, 15, 16, 17, 18, 19]. They continuously engage in refining the
objectives and constraints of design [14, 20]. To explore their ideas, they sketch and
implement rapid prototypes [21]. This process is iterative, selective, and corrective: at
times, they explore the design space for satisfactory approaches and then switch to in-
depth analysis of the problem to identify a hypothetical best design. They alternate
between a constructive and a critical stance. Criticality allows them to assess which
aspects of a solution belong together and which are compatible with background data.
At this stage of the design process, optimization can contribute not only optimal designs,
but also surprising alternative solutions, design with particular tradeoffs, designs that
find the best compromise between competing objectives, and designs that are robust to
variations of the usage conditions [6]. Recent advances in optimization in the field of
human-computer interaction also allow the designer to interactively participate in the
optimization process. Optimizers can be integrated into design tools to assist designers
in sketching, wireframing, and prototyping. Moreover, optimizers can be integrated into

6

2.3. UI Design as Optimization

software systems that adapt user interfaces to individual users.

2.3.1 Basic Concepts

User interface design is formulated as algorithmic combination of discrete design decisions
utilized with the goal of obtaining an optimal solution defined by an objective function.
The following definition of a design task extends the definition of the book chapter [22].
Their definition does not include the parametrization of the objective function, which
however is crucial for us in the rest of this thesis.

Definition 2.1. Let x be an n-dimensional design vector, each dimension describing a
design variable, X be the set of candidate designs. Furthermore, let f be the objective
function, and θ be a set of parameters defining the task instance. We define a design task
as

max fθ(x) such that x ∈ X

The design space X contains all design vectors that are appropriate for the design
task. For any design vector x ∈ X, xi denotes a single decision, which can be either
integer or continuous. xi can, for example, decode the size, position, or type of certain
elements. Using this formulation and given that X is known a priori, the size of X can be
estimated and grows very large for UI design problems, in general. Therefore, a common
technique to reduce the complexity of the design space is to generalize certain decisions;
e.g., instead of allowing arbitrary placements of items on a GUI, these placement decisions
are discretized to a grid.

2.3.2 The Objective Function

What makes a design good or bad? In combinatorial optimization, this evaluative (and
often subjective) knowledge must be expressed mathematically.

Formally, an objective function maps a design candidate x ∈ X to a real number:
fθ : X → R. The set of parameters θ may influence the outcome of this function. In many
practical examples, f consists of k real-valued objectives (k > 1) representing different
qualitiy measures. The parameters θ determine then how these k values are aggregated
to a single objective function; for example, by calculating the weigthed average of all
objectives. In this case, the parameters are part of θ. A more detailed discussion of
so-called multi-objective optimization is done later in this section.

While many approaches to express evaluative knowledge as a formal objective function
focus on the coverage of relevant factors, these models often come with a performance
handicap. Even though they produce the most valid results, they are typically too
inefficient for the optimization of large problems. The runtime for state-of-the-art solvers
of optimization problems can rise to days or even months depending on the complexity of
the model. On the other hand, the simplest linear programming formulations can often be
solved within seconds, but lack the modeling power of the more complex formulations. The
main challenge when choosing an objective function is the tradeoff among computational
performance, model validity, and representational flexibility.

7

Chapter 2. Optimization in Human-Computer Interaction

The Keyboard Optimization Problem In anticipation of the upcoming chapters in
this thesis, we discuss important cornerstones regarding objective functions of keyboard
optimization problems, a prominent optimization problem in HCI.

Feit discusses several objective functions for keyboard optimization, addressing dif-
ferent human factors and types of input devices [23]. Models and heuristics have been
proposed to optimize keyboards for one-finger pointing performance, chorded finger move-
ment performance, touch typing performance, reduction in muscle fatigue and strain, and
ideal motor complexity. Special emphasis is put on attention, perception, and cognitive
aspects of use, such as learning and navigation, as well as experimential aspects like
aesthetics.

An important ingredient in many objective functions for keyboard optimization is
Fitt’s law (see e.g. [24]).

Definition 2.2. Let D be the distance between two objects s and t on an input device
andW be the width of the target object measured along the axis of the movement. Fitt’s
law predicts that the time required to move (a finger or a hand) from s to t is

a+ b · log2

(2D
W

)
where a and b are parameters dependent on the input device and user-specific factors.

Functions based on Fitt’s law are common examples for parameterized objectives. In
many cases, these parameters (here: a and b) have to be calibrated for the particular task
instance, e.g., by preference elicitation methods [25] or by statistical parameter fitting
to some dataset.

Multi-objective Solutions As already outlined for the keyboard optimization prob-
lem, GUI design typically involves multiple objectives, comprising different criteria like
ergonomics, aesthetics, performance, etc. The resulting objectives fi for i = 1, . . . , k may
conflict with each other, i.e., the optimal solution for one objective may perform poorly
for other objectives. This is a well-known topic in the field of combinatorial optimization
but relatively little considered in this application area.

A common technique is to combine the objectives into a single objective expression.
This can be done in many ways – by using weighted sums, the lexicographic method,
goal programming methods, etc. [26]. The resulting problem can then be solved via well-
established algorithms [27]. In the lexicographic method, we define a hierarchical ordering
of the objective functions. The optimizer then iteratively finds an optimal solution to one
objective function while not degrading higher-ordered objectives. Recent generations of
MIP solvers have introduced the specification of multiple objectives so that the user does
not have to manually handle the various techniques discussed above. If, however, there
are no preferences between the objective functions and it might then be unreasonable
to assign weights or a hierarchy to them, so-called No-preference methods provide an
alternative strategy. The goal-programming method, for example, calculates the ideal
objective vector z∗i = inf

x∈X
fi(x) for i = 1, . . . , k and scalarizes the objective function to

min
x∈X
||f(x)− z∗||1

8

2.3. UI Design as Optimization

Alternatively, one can choose one function fj as the main objective function and bound
the values of the other objective functions in the constraints as fi(x) ≤ εi. This method
is usually referred to as the ε-constraint method [28]. Other approaches involve meta-
heuristic algorithms [29]. Here, the problem is solved with respect to all objectives and
then the Pareto front of all solutions is computed [30, 31]. Commonly used algorithms for
this approach include Non-dominated Sorting Genetic Algorithm II (NSGA-II) [32] and
Strength Pareto Evolutionary Algorithm 2 (SPEA2) [33]. The most common approach
in GUI computation has been the weighted sum approach, which is sensitive to objective
weights.

2.3.3 The Task Instance

A design task may entail many task instances depending on the specific parameter values
that are chosen. The task instantiation refers to the defining these parameter values that
describe the specific design problem at hand. This includes the concrete set of elements
that are considered for a design, the weights of multiple objective functions, empirical
parameters (like in Fitt’s law) or solver-specific tuning parameters.

Task instantiation is often a problem in UI design because the task cannot be precisely
defined at the outset. If multiple stakeholders participate in the design process, they might
have competing views on which elements to include in the design or which values to assign
to the parameters. Additionally, the impact of parameter changes is not obvious before
the optimization process although the outcome may be very sensitive to small variations
of the input. Finally, tuning parameters of the solver require a deeper understanding of
the solver’s functionality, which is often out of the scope of the UI designer.

Regarding task instantiation, the literature distinguishes several approaches, which
can be considered complementary. While we only shortly mention the most important
approaches for the sake of completeness, we want to specifically emphasize the field of
interactive optimization because it will be relevant for the rest of this thesis.

In Design Mining, parameters, constraints, and objective functions are learned from
a data set [34, 35, 36, 37, 38].

Online Learning discovers parameter values experimentally. Different values for key
parameters are evaluated by a group of experimental users and the outcome quality
is measured. See [39] for the definition of parameter values by Bayesian optimization
and [40] for crowd-based acquiry of parameters.

Robust optimization assumes that input values are either changing or uncertain
[41, 42, 43]. A designer can indicate the uncertainty of the input in form of, for example,
probability distributions. These distributions are used to generate multiple task instances,
resulting in diverse candidate solutions that reflect the most probable interpretations of
the designer’s input and are robust to small changes in the input [6].

Interactive optimization allows human intervention in the optimization process
[44, 45, 46, 47]. Interactivity is beneficial when the design problem cannot be precisely
articulated. When incorporated into a design tool, an optimizer can assist in creative
problem-solving and potentially nudge novice designers toward better, more usable de-
signs [48].

9

Chapter 2. Optimization in Human-Computer Interaction

Meignan et al. [46] offer a comprehensive review of interactive optimization ap-
proaches. Search-oriented interaction lets the designer provide additional information
during the optimization process. The user can take any of several roles in this process: In
the assisting role, the designer modifies solutions. In the guiding role, the designer steers
exploration by affecting decision variables. In the tuning role, the designer sets solver-
specific parameters. Model-oriented interaction is an alternative to search-oriented. It
allows the designer to modify and refine the optimization model during the optimization
process. This, in turn, is divided into two approaches. The adjusting designer can change
parameters in the objective function or constraints when the objective is not fully known
at the beginning of the process. The enriching designer can add objectives or constraints.
The initial model is assumed to be incomplete, and solutions are invalidated or validated
in light of interactive feedback. The literature has not provided guidelines for choosing
between approaches; their usability is heavily dependent on the concrete optimization
task.

A subset of these techniques has been applied to graphical UI design. Techniques for
defining input include control panels [47], preference elicitation [25], constraint editing
[49], and storyboarding [50]. Techniques for interacting with optimizer outputs include
interactive example galleries [51, 52, 53], pareto front visualizations [54], localized sugges-
tions on a design canvas [54], and localized critique of design outputs [25]. During search,
one can steer an optimizer by selecting promising designs (biasing the local search) [53],
optimizing part-solutions, visualizing optimization landscapes for steering, and locking
part-solutions that are ready [54, 55].

10

CHAPTER 3
The French Keyboard Problem

The following chapter describes a joint project of Anna Feit, Antti Oulasvirta, Mathieu
Nancel, Daryl Weirl, Andreas Karrenbauer and myself. In this work, we design, model
and optimize a new keyboard tailored to the French language. My major contribution
is an integer programming based algorithm that solves keyboard optimization problems
and is dedicated to the special structure of the French keyboard problem. A manuscript
reporting our experiences and insights from this national-scale project is currently re-
viewed for the Communications of the ACM [1]. Parts of this chapter are infered from
this manuscript without further annotation.

The French language uses accents (é, à, î, etc.), ligatures (œ and æ), and specific
apostrophes and quotation marks (’ « » “ ”). While the most commonly used special
characters are available on the traditional French keyboard — the so called Azerty,
which is depicted in Figure 3.1 – many letters are awkward to reach or cannot be
typed at all. Consider the following sentence. « À l’évidence, l’œnologie est plus
qu’un ‘hobby’. » (“Evidently, wine-making is more than a ‘hobby’.”). The underlined
characters are not present, including non-breaking spaces and curved apostrophes. Users
who want to write correct French have to rely on software-driven autocompletion or
insert rarely used characters via Alt codes or by copy-pasting them from other documents.
Since the French ministry of culture was concerned that the current keyboard hinders the
proper use of the French language, they wrote an open letter to the French Parliament in
2015 [56]. The letter criticizes the existence of many unofficial French keyboard layouts,
which all lack special characters for typing correct French. Some French people were
even taught that accents on capital latters (e.g.,É) are optional because they are not
present on the Azerty keyboard. One year later, AFNOR — the national organization
for standardization — was tasked with designing a new keyboard standard [57], a project
we joined as HCI and optimization experts. An official standardization committee was

Figure 3.1: The Azerty keyboard standard

Chapter 3. The French Keyboard Problem

@ # � à § é ´ è ` ê & () [] ‘ ’ _ — « “ ‹
» ” › ’ " ° ˆ ¨ æ Æ £ € ® { ™ } ù Ù œ Œ
% ‰ – − - + ± † ‡ ß ß $ / | ∞ / \ ÷ √ *
½ × < > ≤ ≥ = ' © ç Ç . ? ¿ , ! ¡ : . . . ·
; ˙ ˘

¯
, ˝ ‚ ˚ - ¯ ˇ · ˜ ˛ ¸ ¼ 6= − À È Ê É Z

Z θ

Figure 3.2: Example set of special characters (107). In red are diacritic marks; entered
via dead keys

founded — composed of Ministry of Culture representatives and experts in ergonomics,
typography, HCI, linguistics, and keyboard manufacturing. A typical standardization
process involves meetings to iterate over each aspect of the standard and its wording.
Also, AFNOR requires final drafts to be open to public comment.

3.1 The Design Task

The first question to be answered is ”What is a good keyboard?”. While the initial idea
might be a keyboard where I can type fast, there are many other (often competing)
concepts of good layouts: familiarity to other layouts, discoverability of characters, and
support of an expanded character set. Additionally, everyday language varies widely from
programming tasks or social media usage; hence, it has to be discussed which user the
keyboard wants to appeal to or if we can find a good compromise for all of them.

Secondly, which uses of language to support is tricky to know in advance and, as
we learned, a politically loaded question. To decide where to put #, we must weigh the
importance of social-media-type language against “correct” literary French, in which that
character is rare. Decisions on character positions mean trading off many such factors
for a large range of users and typing tasks.

Our task was to develop an improved special-character layout that enables accessing
all characters used in the French language and its dialects 1, reflects modern computer
use (especially programming and social media), and supports scientific and mathematical
characters (e.g., Greek letters) alongside major currency symbols and all characters in
Europe’s other Latin-alphabet languages.

There were several challenging requirements. Despite having to add many new char-
acters, the goal was to assign the special characters to the available keyslots such that
the keyboard is easy to use and typing French is fast and ergonomic. The process saw
the set of characters change frequently; shown in Figure 3.2 is the set in the final layout
(the last 24 characters displayed were not part of the optimization problem but added
later). The physical layout follows the alphanumeric section of the [58] standard. Each
key can hold up to four characters, using combinations of the Shift and AltGr modifiers.
For non-accented letters (“AZERTYUIOP...”), digits, and the space, the layout had to
remain as in traditional Azerty, leaving 129 keyslots. The only characters that could
be added or moved were the special characters described in Figure 3.2; their number,

1 See http://www.culturecommunication.gouv.fr/Thematiques/Langue-francaise-et-langues-de-France/
Politiques-de-la-langue/Langues-de-France.

12

http://www.culturecommunication.gouv.fr/Thematiques/Langue-francaise-et-langues-de-France/Politiques-de-la-langue/Langues-de-France
http://www.culturecommunication.gouv.fr/Thematiques/Langue-francaise-et-langues-de-France/Politiques-de-la-langue/Langues-de-France

3.2. The Timeline of the Project

up to 122, depended on the design case. Note that diacritical characters are entered via
“dead keys”: visible output is only produced upon subsequent input of a letter.

3.2 The Timeline of the Project

When we joined the project the committee was debating each character in its hand-
crafted layouts. The subjective explanations, like “ê is frequent, so I gave it direct
access because it’s faster”, often contained a hidden mathematical background. They
were based on intuition, though measurement (of frequency, speed, etc.) was possible.
Our first step towards a mathematical model was to turn these ideas into quantifiable
objective functions. An additional challenge was the fact that many initial proposals
that were constructed by the committee focused on improving a certain objective while
compromising others. Their approach inherited from a greedy nature: they first fixed
the placements that they considered the most important and then assigned the rest of
the characters to remaining slots. The outcome of such a procedure can vary greatly
depending on the greedy assignment order, which lead to huge variations of the proposals
of different stakeholders.

How can combinatorial optimization assist this complex, mulit-objective problem?
We discussed several advantages, but also challenges in the previous chapter. First of all,
formalizing the problem as a multi-obecjtive optimization model allows algorithms to
compute a solution that considers all objectives at once. Priorities of different stakeholders
and compromises between different objectives can be expressed as weights in the formal
objective function. Additionally, the impact of manual changes or the quality of ad-hoc
designs can be directly reflected using the objective functions. At the beginning of our
participation in this project, we evaluated the first hand-crafted layouts and showed
that — compared to an optimized keyboard — they showed a severe deficiency in typing
performance and ergonomics. The final optimized solution, for example, which formed
the basis for the new keyboard standard, outperformed the typing speed and ergonomics
of one of the early ad-hoc designs by almost 50%.

After convincing the committee that combinatorial optimization is an important and
helpful tool to assist the design of the new keyboard layout, we iteratively defined and
adjusted the optimization model to match the committee’s intuitions and expectations.

Figure 3.3: Project timeline: Computational methods were involved in all phases but the
public comment, governed by interactions with stakeholders.

13

Chapter 3. The French Keyboard Problem

When we agreed upon an initial model, and the optimizer computed a layout, which
was very close to optimal (usually < 5% optimality gap), the stakeholders requested
manual adjustments on this layout. We explained the impact of different constraints
and objective parameters to the presented solutions, which lead to a proposal of several
parameter changes, the addition/removal of certain characters or the addition/removal of
special constraints; e.g., keeping capital and lowercase letters on the same key vs allowing
an arbitrary placement of upper- and lowercase special characters. In every iteration,
we optimized this new model, discussed a new near-optimal solution, and repeated the
process of discussing adjustments and altering the model parameters. Over the course of
nine months, the model evolved into a first concensus. After this first Optimization phase,
final adjustments to this layout have been made by the experts. These adjustments were
mandatory according to the experts because they captured exceptions to the optimization
model that could not be captured during the optimization phase, like cultural norms or
frequently changing character-specific political decisions. Again, the optimizer assisted
this Adjustment phase by evaluating the impact of manual changes to the objective
functions. By utilizing our mathematical model, the committee members could make
better-informed decisions and achieve a better tradeoff between individual preferences
and the impact to performance or any other objective function.

After a compromise had been found, the first release candidate was presented to the
public in June 2017 (see also the timeline in Figure 3.3). According to AFNOR’s stan-
dardization procedure, the proposed keyboard was publicly available for one month and
people could provide feedback. We received over 3,700 suggestions and comments, which
were strongly divided on certain aspects of the layout. The placement of programming-
related and accentuated characters or the decision of whether or not digits are on shifted
keys, for example, appeared to be very controversial. The general consensus of the feed-
back was then incorporated into the optimization model: we added new constraints,
changed weights and used different character sets.

A second cycle of optimization and adjustment phases began until the final layout was
agreed on. This final keyboard achieves good scores in objective and subjective criteria,
defined and constantly evolved by the committee and the public comments. In April
2019, this layout was approved and presented as an official French keyboard standard in
the National Assembly in Paris [59] (see [60] for the English translation).

In conclusion, dedicated optimization tools assisted the design process in not only
computing good layouts, but also understanding the underlying optimization problem
and the impact of changes to the model or its solution. These tools enabled stakeholders
to monitor the effects of their ideas in a quantifiable fashion, leading to an overall more
transparent design process.

3.3 The Optimization Model

We model the keyboard optimization problem as an ILP. To this end, we introduce binary
decision variables xik for every character i ∈ [N] and key slot k ∈ [M]. This variable is 1
if and only if this character i is assigned to the key k.

Every character has to be assigned to a key, which is reflected in the following

14

3.3. The Optimization Model

constraints for every i ∈ [N].
M∑
k=1

xik = 1 (3.1)

Additionally, keys can not hold more than one character. We introduce the constraints
for every k ∈ [M]

N∑
i=1

xik ≤ 1 (3.2)

This differentiation between these two types of constraints happens because there are
more keyslots on the keyboard than special characters in this case; hence, some slots
remain empty.

The design problem was formulated as an integer program (IP), which lets us use
effective solvers that provide intermediate solutions with bounds on their distance to
optimality. Every feasible binary solution corresponds to a keyboard layout.

3.3.1 Objective Criteria

An objective function measures the goodness of each layout according to each of the
criteria. Our first main challenge was to translate intuitive goals such as “facilitate
typing and learning” into quantifiable objective functions. We consider the following
four different objective criteria that are aggregated by weights w to a single objective
function 2.

Performance The performance objective rewards if frequent special characters can be
quickly entered in combination with the fixed letters. It is quantified by computing the
average time to type a special character before or after any of the regular letters (Tck,
Tkc), weighted by the special-character–regular-letter pair (pci, pic). The corresponding
data was gathered in a crowdsourcing-based study.

N∑
i=1

M∑
k=1

27∑
c=1

(pciTck + picTkc)xik (3.3)

Ergonomics This objective criterion penalizes keyslots that require extreme move-
ments putting strain on tendons and joints, which are empirically associated with repeti-
tive strain injuries [61]: extreme outward or inward movements of the wrist (Wk ∈ {0, 1}),
extreme extension of fingers (Fk ∈ {0, 1}), and use of one or two modifier keys (Mk ∈
{0, 1, 2}). The score is weighted by the frequency (pi) of the character assigned to the
keyslot.

N∑
i=1

M∑
k=1

pi(Wk + Fk +Mk)xik (3.4)

2See the discussion of multi-criteria optimization in Chapter 2.

15

Chapter 3. The French Keyboard Problem

Familiarity The familiarity objective models the placement of frequent characters
near the position of them in the traditional Azerty, to facilitate visual search with the
new layout [62]. DkA(i) quantifies the distance between the keyslot k assigned to the
character i and its Azerty position A(i), weighted by that character’s frequency (pi).

N∑
i=1

M∑
k=1

piDkA(i)xik (3.5)

Intuitiveness We minimize the distance between similar special characters (Dkl) and
between special characters and similar letters (Dkc), to facilitate discovery and learning
[63]. This similarity can be syntactic or semantic and is captured by the scores sij , sic. All
characters are considered equally important for grouping. Note that so far every objective
function only contained linear terms. The relation between similar special characters
in this objective, however, is quadratic. Although the similarity matrix is very sparse
(about 2% of all pairs of special characters are considered similar), this quadratic term
makes the problem significantly harder to solve.

N∑
i=1

N∑
j=1

M∑
k=1

M∑
l=1

sijDklxikxjl +
N∑
i=1

M∑
k=1

27∑
c=1

sicDkcxik (3.6)

3.3.2 The Full Model

During the standardization process, different additional, but simple constraints arose;
for example, requiring to place capitalized special characters on the shifted key of their
corresponding uncapitalized versions. This family of constraints can be written as equality
of two decision variables, which is internally simplified by ILP solvers: one of those
variables is projected out. More details on additional constraints are discussed in [23].

The parameters, constraints, and objectives of the integer program reflect the stan-
dardization committee’s goals: facilitate typing of correct French, enable the input of
certain characters not supported by the current keyboard, and minimize learning time
by guaranteeing an intuitive-to-use keyboard that is sufficiently similar to the previous
Azerty. For a more detailed discussion of each criterion we refer to [23, 60].

The complete integer programming formulation for our keyboard optimization prob-
lem is depicted in Formulation (3.7). For the instance that led to the standardized layout
(N = 85, M = 129), the following weights were chosen: wP = 0.3, wE = 0.25, wI = 0.35,
wF = 0.1. This formulation is a special case of the quadratic assignment problem, firstly
modelled by Pollatschek in 1975 [64], two years later extended by Burkard and Offer-
mann [5] and later used in several other keyboard related works [23, 65]. The theoretical
foundation of QAPs is discussed in Section 4.2.

16

3.3. The Optimization Model

min wP

N∑
i=1

M∑
k=1

27∑
c=1

(pciTck + picTkc)xik

+ wE

N∑
i=1

M∑
k=1

pi(Wk + Fk +Mk)xik

+ wF

N∑
i=1

M∑
k=1

piDkA(i)xik

+ wI

 N∑
i=1

N∑
j=1

M∑
k=1

M∑
l=1

sijDklxikxjl +
N∑
i=1

M∑
k=1

27∑
c=1

sicDkcxik


subject to

M∑
k=1

xik = 1 ∀i ∈ {1, . . . N}

N∑
i=1

xik ≤ 1 ∀k ∈ {1, . . .M}

xik ∈ {0, 1} ∀i ∈ {1, . . . N}, k ∈ {1, . . .M}

(3.7)

All objective functions discussed above rely on real-world input data that reflect
the typing of French users. Therefore, our colleagues (see [23, 66]) gathered large text
corpora, with varied topics and writing styles, and weighted them in accordance with
the committee’s requests. The corpora can be categorized into three types. Formal text
is curated text with correct French and proper use of special characters. Sources include
the French Wikipedia, official policy documents, and professionally transcribed radio
shows. Informal text has lower standards of orthographic, grammar, and typographic
correctness. This includes text in social-media or personal communication. The material
we used in this project includes anonymized email and popular accounts’ Facebook posts
and Tweets. The Programming corpora consist of publicly available programming
projects using the most commonly used programming and description languages: Python,
C++, Java, JavaScript, HTML, and CSS (comments removed). ELDA3 provided many
of the corpora that were classified Formal and Informal [66]. The Programming corpora
were extracted from open source platforms like github. Frequencies were computed by
corpus, then averaged per character and class, and finally assigned weights subject to
committee discussion (Formal: 0.7, Informal: 0.15, Programming: 0.15). Since I did not
participate in this early data gathering stage of the project, I only present a high-level
overview of this part. More details on the impact of these corpora and the impact of
these weights can be found in [60], which is the English translation of [66]. Table 3.1
shows the most common characters in each category. As expected, the frequencies show
various differences among the different corpora categories. The characters # and @, for
example, appear in the table only for the Informal class, which stems from the fact that
they are almost exclusively used in internet-related texts. The common accented letters
é, à, è, and ê are appear in the same relative order in both Formal and Informal columns;
however, they are used much more frequently in Formal corpora, which contains only

3 The Evaluations and Language resources Distribution Agency; see http://www.elra.info/en/
about/elda/.

17

http://www.elra.info/en/about/elda/
http://www.elra.info/en/about/elda/

Chapter 3. The French Keyboard Problem

Formal Informal Programming
Char. Freq. (%) Char. Freq. (%) Char. Freq. (%)
é 1.883 # 1.139 . 1.584
, 0.896 é 1.074 - 1.315
. 0.796 / 0.895 (1.310
’ 0.765 . 0.805) 1.309
à 0.332 ! 0.712 ; 1.158
- 0.262 @ 0.648 = 1.035
è 0.241 : 0.497 _ 1.002
) 0.156 ’ 0.457 , 0.926
(0.141 , 0.447 : 0.922
: 0.135 à 0.269 " 0.918
’ 0.118 - 0.209 > 0.527
ê 0.098 " 0.185 / 0.459
/ 0.078 è 0.155 < 0.445
! 0.075 ’ 0.129 { 0.444
; 0.058 ê 0.099 } 0.443
" 0.047 _ 0.079 ' 0.292
» 0.041 ; 0.075 [0.186
ç 0.041 & 0.068] 0.186
« 0.041) 0.063 % 0.150
? 0.040 « 0.059 + 0.144

Table 3.1: The highest-frequency special characters, by category of French text.

curated text. Interestingly, / is present in all three columns, because of its wide range
of uses.

In order to predict the typing performance, we extracted key-to-key typing durations
from an extensive dataset gathered in a crowdsurcing study with over 900 participants [23,
60]. Special emphasis was put on the time it takes to access a special character keyslot
before and after a regular letter. To this end, time data for all combinations (7,560 pairs)
of regular and special character key slots were gathered.

For the Intuitiveness objective, we defined a similarity score between characters as a
scalar in the range [0, 1], depending on visual proximity (R and ®, º and °, etc.), semantic
proximity (e.g., × and *, or ÷ and /), inclusion of other letters (ç and c, œ and o, etc.),
practice (n and ~, e and ´, etc.), or use-based criteria such as lowercase/uppercase and
opening/closing character pairs. These intuitiveness values were extensively discussed
with the committee and frequently updated during the optimization phases of the project.

3.4 The new French Keyboard Standard

The new French keyboard standard is shown in Figure 3.4; it provides a larger set of
characters than the Azerty keyboard and thus simplifies typing of correct French.
Despite the problem’s computational complexity 4, we could show that the solution our
optimization tools computed is at most 1.98% worse than the best achievable design for
the stated problem. This optimized solution was the basis of the final outcome, to which
the committee added 24 further, rarer characters. These new character placements were
evaluated using the optimizer’s objective functions, allowing the committee to locally
optimize the layout’s intuitiveness.

4Complexity statements and other theoretical discussions are done in Chapter 4

18

3.4. The new French Keyboard Standard

Figure 3.4: The new Azerty layout [59]. The characters included in the design problem
are in boldface and color. Marked in red are dead keys.

The new layout enables direct input of more than 190 special characters, a significant
increase from the 47 of the current Azerty5. As a consequence, it is possible to access
all characters used in French without relying on software-side corrections. Frequently
used French characters are accessible without any modifier (é, à, «, », etc.) or intuitively
positioned where users would expect them (e.g., œ on the o key). All accented capital
letters (À, É, etc.) can be entered directly or using a dead key. The main layout offers
almost 60 characters not available in Azerty for entering symbols used in math, lin-
guistics, economics, programming, and other fields. Some programming characters, often
having other uses too, were given more prominent slots; for instance, / became accessible
without modifiers, and \ is placed on the same key but in a shifted slot. Although the
new layout contains many more characters than the traditional Azerty keyboard, the
performance and ergonomics of typing those special characters that are already present
in the old Azerty are improved by 18.4% and 8.4 %, respectively.

The keyboard offers three additional layers accessed via special mode keys. These
are dedicated to European characters not used in French (via the Eu key from Alt+H in
Fig. 3.4), currency symbols (via ¤ with Alt+F), and Greek letters (via Alt+G’s µ),
more than 80 additional characters in all. Their placement was beyond the scope of the
optimization process, being inconsequential to typing regular French.

One goal of the optimization process was to maintain the similarity of the new
layout to the traditional Azerty, making the transition for users easy. Of the 45 special
characters previously available, eight retained their original location and 12 moved by less
than three keys. In particular, frequently used characters were kept near their original
position. For instance, the most common special character (é) is not in the fastest spot
to access on average. It stayed at its original spot for similarity and maintaining good
performance. Many punctuation characters were moved slightly by the optimizer to
better reflect character and character-pair frequencies (see Table 3.1) while remaining
in the expected area of the keyboard. If characters were moved by a large margin, the

5 Not including accented characters that can be created using dead keys, such as ˆ + I = Î.

19

Chapter 3. The French Keyboard Problem

Design exploration

Design evaluation

Layout optimization

Problem (re)definition

Changes to designOptimization tools

Public

Expert committee

Figure 3.5: The participatory optimization process of the standardization procedure.

advantages in performance, ergonomics and intuitiveness outperformed the similarity
measure so much that the move is justified. For instance, opening and closing brackets
were moved by many keys in order to bring them close together — a direct result of the
public feedback.

Finally, substantial effort was devoted to forming semantic regions for characters,
such as mathematical characters, common currency symbols, or quotation marks. Many
of these groupings emerged during the optimization process, thanks to the intuitive-
ness objective. Others resulted from manual changes when the committee decided to
prioritize semantic grouping over performance or ergonomics (e.g., following a calculator
metaphor for mathematical characters). The Intuitiveness score improved more than
fourfold (434.4%) relative to traditional Azerty.

We published a full visual comparison of the old and new keyboard layout online 6,
which also contains explanations (in terms of the objective functions) for all characters’
placements.

3.5 Participatory Optimization

In the beginning of the project, we assumed that we could apply standard optimization
tools and just compute the best solution in one shot; however, we quickly realized that the
nature of the problem forbids this method. This problem was inherently ill-defined and
constantly evolving: definitions and objectives changed, and decisions often hinged on
subjective opinions, public feedback, or cultural norms, rendering them hard to express
mathematically — a typical challenge that optimization in HCI often faces as already
discussed in Chapter 2. Over the course of the project, our approach evolved toward

6 See http://www.norme-azerty.fr.

20

http://www.norme-azerty.fr

3.5. Participatory Optimization

something one could call participatory optimization. This is inspired by participatory
design, which originated with labor unions and was developed as a co-design method
aimed at democratic inclusion of stakeholders [67]. Equal representation and resolving
conflicts beign two key aims, the optimization tools have to fulfill the additional purpose
to create a level playing field for the stakeholders. If the stakeholders are able to inform
and influence each other on the basis of an interactive optimizer, a good solution can be
found collaboratively.

The diagram in Figure 3.5 shows the interactions between our optimization tools, the
stakeholders and the public (after the feedback phase). On the one side, the optimizer
computed solutions, evaluated alternative layouts or manual changes, helping the com-
mittee to explore the design space and take well-informed decisions. On the other side,
the committee manipulated constraints, objective parameters, and adjusted the character
sets. They used the proposed optimized solutions to explore the design space and better
understand the impact of certain parts of the optimization model. Simultaneously, both
sides were informed by comments from the public, whose expectations and wishes led the
experts to question their assumptions and criteria. That led directly to several changes
in the weight and constraint definitions within the optimization model. The final design
was the outcome of this interaction and could not have been achieved with either side
working alone.

In summary, it was impossible to rigorously define the optimization model in the
beginning and run classical one-shot optimization methods until an optimal solution
is found. There is growing interest in optimization research employing methods that
actively include the user in the process, such as interactive optimization, which was
already discussed in Section 2.3.3.

The notion of participatory optimization goes even beyond this. It focuses particu-
larly on including stakeholders at every step in the process, for which state-of-the-art
optimization methods provide limited support. We identified different challenges to ad-
dress in future work in order to enable active participation of stakeholders and optimizer
in design processes supported by optimization methods.

Fast (re)definition of the problem In ill-defined design problems, the problem
definition is constantly evolving. In most cases where the optimization model changes,
state-of-the-art solvers dismiss all information collected during the optimization of the
previous model. The ability to reuse this information about previously explored solutions,
such as pruning of certain branches in a branch-and-bound tree, could massively increase
the solver’s performance. The main challenge here is to create an adaptive data structure
that not only stores the information of a branch-and-bound tree, but also identifies those
subtrees that are affected by certain model changes and have to be reevaluated.

Exploring and understanding the design space An important step in creating a
design is the exploration of the design space. Learning the impact of certain constraints
or local changes of the model to its outcome is essential to better understand the design
problem. Ideally, optimization tools need to provide interfaces that allow stakeholders to
propose changes to solutions or input parameters. Moreover, the resulting consequences
of these changes need to be communicated in a human-readable format.

21

Chapter 3. The French Keyboard Problem

Learning subjective optimization criteria When the stakeholders in our project
made manual adjustments to a proposed solution, they often applied tacit criteria such
as assumptions about users’ habits, cultural specificities, subjective preferences, and
political agendas. Subsequently, we formalized these subjective criteria to quantifiable
functions whenever possible. If optimizers offered an interface, which allows users to
propose subjectively better solutions than the ones that are computed by the optimizer,
this information could be used to learn a new subjective function that could be included
and iteratively adjusted in the optimization model.

Justifications for design choices When we proposed a layout to the committee
or to the public, a frequently asked question was why certain characters were placed
at their proposed key slots or what would happen if two characters were exchanged.
The answer that the proposed solution was optimal and an exchange would lead to a
decrease in the objective functions might be mathematically correct, but not satisfactory
for the general audience. Effective visualization tools that show the impact of manual
adjustments regarding the different performance measures could help users to understand
and accept the proposed solutions or serve as an argument to redefine certain parameters
of the model.

3.6 Conclusion
This chapter discussed how combinatorial optimization can aid the design of a new
keyboard in a multi-stakeholder project on a national scale. While this project was
dedicated to the French language, our experiences and results can be easily transferred to
other languages. Most keyboard layouts have evolved incrementally by adding upcoming
characters to empty keyslots, resulting in a layout that is far from optimal or even
misses important special characters. Additionally, many languages — even some of the
world’s most spoken ones7 — lack any official keyboard standard. The procedures and
frameworks that resulted from this collaboration can play an important role in guiding
regulators to improve the quality or (re)define their keyboard design.

However, our experiences with this project also showed that much potential of com-
putational methods remain unexploited, which mostly originates from the participatory
nature of these design problems. Many mainstream algorithms are purely focused on
problem-solving and neglect the exploration of the design space, which leaves this equally
important part to human intuition or trial-and-error. We believe that, when designed from
a participatory perspective, algorithms could more directly support not only problem-
solving but also considering multiple perspectives, making refinements, and learning
about a problem.

7For example, Pubjabi (10th), Telegu (15th), and Marathi (19th)

22

CHAPTER 4
Assignment Problems

Before we discuss the theoretical and algorithmic contributions to the French keyboard
problem in the upcoming chapters, the following sections introduce the basic concepts of
optimization theory used in this thesis and provide the theoretic foundation of assignment
problems.

4.1 Basics of Optimization Theory

This section defines the basic structure of optimization theory. The notation and defini-
tions are taken from [68].

4.1.1 Polyhedral theory

Let α ∈ Rn be a vector and β ∈ R be a scalar. The set H := {x ∈ Rn : αTx ≤ β} is
called a halfspace. A polyhedron P is the intersection of finitely many halfspaces

P =
m⋂
i=1

Hi := {x ∈ Rn : αTi x ≤ βi} (4.1)

Formally, we can define the matrix A ∈ Rm×n with the i-th row of A being αTi and
b ∈ Rm with the i-th entry being βi. Then, P is equivalently defined as

P = {x ∈ Rn : Ax ≤ b} (4.2)

4.1.2 Linear Programming Theory

Let A ∈ Rm×n, b ∈ Rm, P the corresponding polyhedron, and c ∈ Rn, then a linear
program is defined as min

x∈P
cTx or equivalently

min cTx

subject to Ax ≤ b
(4.3)

In many practical applications, the so-called standard form of linear programs is used,
which is defined as

min cTx

subject to Ax = b

x ≥ 0
(4.4)

Chapter 4. Assignment Problems

Quadratic programs allow products of variables in the objective function. Formally,
let Q ∈ Rn×n be a matrix. A quadratic program is formulated as

min xTQx+ cTx

subject to Ax = b

x ≥ 0
(4.5)

In mixed integer programs (MIP), variables can be constrained to take only integer
values. Let B ⊆ [n] be a subset of indices and let P ′ := P ∩ {x ∈ Rn : xi ∈ Z ∀i ∈ B}
Then, a MIP can be formulated as min

x∈P ′
cTx

4.2 The Assignment Problem
Assignment problems aim at finding a one-to-one correspondence between n items and n
locations. An integer programming formulation of the linear assignment problem (LAP)
is depicted in Formulation (4.6)

min
n∑

i,k=1
cikxik

subject to
n∑
i=1

xik = 1 ∀k ∈ [n]
n∑
k=1

xik = 1 ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]

(4.6)

Intuitively, the constraints decode the property that every item is assigned to a unique
location. From a combinatorics perspective, if we consider the x-variables as a matrix
X ∈ Rn×n, then these constraints force X to be doubly stochastic1. For further reference,
we define

Πn :=
{
X ∈ {0, 1}n×n :

n∑
i=1

xik = 1∀k ∈ [n] and
n∑
k=1

xik = 1∀i ∈ [n]
}

(4.7)

The polytope in Equation (4.6) is often referred to as the assignment polytope or as the
Birkhoff polytope. Birkhoff discovered in 1946 [69] that the set of n×n doubly stochastic
matrices is a convex polytope with n! many vertices — one for every permutation of
n items. This last statement is known as the Birkhoff-von Neumann theorem. Alterna-
tively, the polytope can be interpreted as the set of perfect matchings on the complete
bipartite graph with n vertices Kn,n. These observation lead to algorithms solving the
LAP in polynomial time. In 1955, Kuhn developed the Hungarian algorithm [70], which
solves LAPs in O(n3) time. More recently, Duan and Su proposed a bipartite matching
algorithm [71], which computes a perfect matching in O(n 5

2 logC) time for integer costs
of at most C.

While the LAP is very well understood today, the objective function can only model
the effect of an assignment of one item to one location (cik in (4.6)). However, pairwise

1A matrix is doubly stochastic if the values of every row and every column sum up to 1.

24

4.3. Tractable Cases of QAPs

dependencies between items and locations are impossible to capture in an LAP. Therefore,
Koopmans and Beckman [72] investigated a quadratic variant of the assignment problem
by adding quadratic terms to the objective function. The complete formulation is shown
in (4.8).

min
n∑

i,k=1
cikxik +

n∑
i,j,k,`=1

qijk`xikxj`

subject to
n∑
i=1

xik = 1 ∀k ∈ [n]
n∑
k=1

xik = 1 ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]

(4.8)

In their formulation, the quadratic cost term qijk` factors into dependencies between
items and dependencies between locations, i.e., qijk` = fij · dk` or Q = F ⊗ D using
the Kronecker product. Typically, fij is interpreted as flow between the items i and j
and dk` denotes the distance between the locations k and `. If F is a 0-1-matrix and D
is nonnegative, an alternative combinatorial interpretation of the Koopmans-Beckman
formulation is to treat F as an incidence matrix of a graph GF and D as edge weights for
a complete weighted graph GD. In this case, the QAP corresponds to finding a minimal
weight subgraph of GD that is isomorphic to GF . If the weights in D satisfy the triangle
inequality dik ≤ dij + djk, the underlying QAP is classified as a metric QAP. Even
with this restriction on the quadratic cost terms, this variant of the QAP occurs in
many practical applications: the facility location problem [73], the traveling salesman
problem [74], the wiring problem [75], the hospital layout problem [76, 77], and finally
also the keyboard layout problem, which was first considered as a QAP by Pollatschek
et al. [64].

The QAP proved to be a notirously hard combinatorial optimization problem. Even if
the cost can be factorized to a symmetric block-diagonal matrix and the distance matrix
is restricted to a line metric, it is NP-hard to approximate the QAP within any constant
factor [78]. Regarding experimental evaluation, the famous QAPLIB benchmark [79] still
contains decade old unsolved instances with only 30 items. Other benchmark instances
have been solved just recently by dedicated techniques that exploit certain structures of
the certain problems [80] or by the application of massive computational power [81].

4.3 Tractable Cases of QAPs
Despite the already mentioned hardness of QAPs, there exist special cases where poly-
nomial time approximation algorithms exist. An algorithm is called an α-approximation
for an optimization problem P if for every instance the algorithm’s solution value S and
the optimal solution value OPT satisfy

S

OPT
≤ α

Note that for minimization problems, it holds that α ≥ 1 and for maximization problems
α ≤ 1. We say that the approximation ratio α is tight under a certain complexity assump-
tion (like P 6= NP) if an asymptotically smaller ratio would disprove this assumption.

25

Chapter 4. Assignment Problems

Many of the following special cases of the QAP hold a combinatorial structure and
can be written in the Koopmans-Beckmans variant with the interpretation as graphs.
When describing the problem, we will discuss the structure of the two matrices F and
D and the consequences to the corresponding graphs GF and GD.

The Traveling Salesman Problem (TSP) aims at finding a minimal tour in a complete
weighted graph G that visits each node exactly once and returns to the start node in
the end. We can model the TSP as QAP by the matrix F that contains a 1 for every
entry {(i, i + 1) : i ∈ [n − 1]} ∪ {(n, 1)}. and 0 elsewhere. We set D as the matrix of
all edge weights in G. If additionally D satisfies the triangle inequality, i.e., we consider
the metric TSP, then Christofides proposed a 3

2 -approximation algorithm [82]. The more
special case of the metric k-TSP, which requires the tour to visit only k nodes, admits a
2-approximation [83].

A close relative to the TSP is the Hamiltonian Path Problem. The only difference
between these two optimization problems is that the latter one does not require the path
to return to the start node after visiting every node in the graph. Christofides’ algorithm
is transferable to the Hamiltonian Path Problem and also provides a 3

2 -approximation.
If the start and end nodes of the Hamiltonian path are fixed, Hoogeveen shows that a
modified version of Christofides’ algorithm has a worst case approximation ratio of 5

3
and also shows that this bound is tight.

The Linear Arrangement Problem consists of labelling the nodes in a graph G with
the labels {1, . . . , n} such that the total sum of edge weights is minimized. The weight
of an edge (i, j) is computed as the label difference of its corresponding nodes i and
j. We can model this as QAP by setting F to the incidence matrix of G and defining
D as dij = |i − j|. In 2007, Feige et al. proposed a O(

√
logn log logn)-approximation

algorithm for this problem [84].

The following special cases of QAPs all assume D to satisfy the triangle inequality
and F to be an incidence matrix of a graph. The results differ in the special graph
structure that is imposed on GF .

If GF is a bounded degree (∆) tree, there exists a O(∆ logn)-approximation [85].
A spider is a tree with at most one vertex of degree ≥ 3. In the case of GF being a
spider, there exists a (7 + 2

√
6)-approximation. If all paths from the root to the leaves

of the tree have equal length, the approximation ratio can be improved to 3 [85]. The
same authors also propose a 3-approximation for the Wheel QAP where GF is a wheel
graph. Given a graph with an even number n of vertices, a wheel is a Hamiltonian tour
{(i, i+ 1 mod n)|i ∈ [n]} together with the edges {(i, i+ n

2 |i ∈ [n2]}. Furthermore, they
investigate the Double Tour QAP. A double tour consists of the edges of a tour {(i, i+ 1
mod n)|i ∈ [n]} plus their shortcuts {(i, i+2 mod n)|i ∈ [n]}. For this case, Christofides’
algorithm can be modified to a 2.25-approximation.

Usually, QAPs are stated as a minimization problem, which also applies to all special
cases mentioned so far. The maximization version of the metric QAP seems a lot easier
since it admits a 1

4 -approximation [86]. Without the metric property, the approximation
factor increases to O(

√
n log2 n) [87].

26

4.4. Approaches to solve QAPs

4.4 Approaches to solve QAPs

A general approach to solve integer linear problems is to drop the integrality constraints,
solve this relaxed version and find the optimal integer solution in a branch-and-bound
framework. Solving the QAP requires one more step of relaxations. More specifically, a
common procedure is to linearize the quadratic terms and then apply the usual techniques
for integer linear programs. Recently, semidefinite relaxations for quadratic programs
were proposed [88, 89]. In the following paragraphs, we will introduce important linear
relaxation techniques first and then shortly discuss the basics of semidefinite programming
approaches.

The Gilmore-Lawler Bound One of the earliest published lower bounds is the
Gilmore-Lawler bound [90]. In a first step, the QAP is linearized by exchanging ev-
ery product xikxj` by a new binary variable yijk`. These newly introduced y-variables
are connected to the original assignment variables with the constraints of the following
LP.

min
n∑

ijk`=1
cijk`yijk`

subject to (xik) ∈ Πn
n∑

ijk`=1
yijk` = n2

xik + xj` − 2yijk` ≥ 0 ∀i, j, k, ` ∈ [n]
yijk` ∈ {0, 1} ∀i, j, k, ` ∈ [n]

(4.9)

Now, by rearranging the sums in the objective function, we end up with n2 indepen-
dent linear assignment problems of the form

`ik = min
n∑

j`=1
cijk`yijk`

subject to
n∑
j=1

yijk` = 1 ∀` ∈ [n]
n∑
`=1

yijk` = 1 ∀j ∈ [n]

yiikk = 1
yijk` ∈ {0, 1} ∀j, ` ∈ [n]

(4.10)

Intuitively, these LAPs compute the minimum cost we have to pay assuming that
we chose to assign i to k. These lower bounds on the cost-to-pay can then be fed back
into the remaining global problem yielding another LAP of the form

min
n∑

ik=1
likxik

subject to (xik) ∈ Πn

(4.11)

We can derive conditions for when the computed solution is even optimal. Let Y (ik)

be the solutions to the n2 subproblems (4.10) and X∗ be the optimal solution of (4.11).

27

Chapter 4. Assignment Problems

We define Y ∗ =
(
y∗ijkl

)
=
(
x∗iky

(ik)
jl

)
. Now, if it holds that

1
n

n∑
ik=1

x∗ikY
(ik) ∈ Πn

then Y ∗ is a Kronecker product of two permutation matrices of dimension n. Hence, it
is optimal for the QAP under consideration.

Li et al. showed that this bound deteriorates quickly for instances with increasing
size [91].

Kaufman and Broeckx relaxation For this relaxation, let us assume w.l.o.g. that
all costs are nonnegative (if not we can add a large constant to every coefficient without
changing the optimal solution). Kaufman and Broeckx [92] proposed to rearrange the
quadratic objective function and introduce n2 new variables. As a first step, they rewrite
the objective to

n∑
ik=1

xik

 n∑
j`=1

cijk`xj`

 (4.12)

Now they introduce the terms

wik = xik

n∑
j`=1

cijk`xj` (4.13)

cik =
n∑

j`=1
cijk` (4.14)

and replace the products in the objective function by the new variable w. For every
wik, one additional constraint has to be added to the formulation in order to express
the connection between w and the old objective function. The complete linearization is
shown in Equation (4.15).

minimize
n∑

ik=1
wik

subject to cikxik +
n∑

j`=1
cijk`xj` − wik ≤ cik ∀i, k ∈ [n]

(xik) ∈ Πn

wik ≥ 0 ∀i, k ∈ [n]

(4.15)

This integer program is shown to be equivalent to the QAP and its linear relaxation
can be computed very efficiently.

Xia and Yuan The approach of Xia and Yuan [93] combines the ideas of Kaufman-
Broeckx and Gilmore-Lawler. In their first step, the objective function is reordered
equivalently to the first step of Kaufman-Broeckx linearization stated in Equation (4.12).

28

4.4. Approaches to solve QAPs

They further define the lower and upper bounds

`ik := min
x∈Πn

n∑
j,`=1

cijk`xj` (4.16)

uik := max
x∈Πn

n∑
j,`=1

cijk`xj` (4.17)

and show that the following inequality holds for the terms in the objective function:

xik

 n∑
j`=1

cijk`xj`

 ≥ max

`ikxik, uikxik − uik +
n∑

j,`=1
cijk`xj`

 (4.18)

The correctness of this inequality follows from the definition of the lower bound term
`ik on the left side of the maximum. The right side containing the upper bound term
uik follows directly from Kaufman and Broeckx [92]. The final Xia-Yuan formulation is
depicted in Equation (4.19).

minimize
n∑

ik=1
wik

subject to wik ≥ `ikxik
uikxik +

n∑
j`=1

cijk`xj` − wik ≤ uik ∀i, k ∈ [n]

(xik) ∈ Πn

(4.19)

The size of this linearization is similar to the Kaufman-Broeckx linearization; however,
it is easy to see that the Xia-Yuan formulation dominates the one of Kaufman and Broeckx
and that they coincide if all lower bound terms `ik evaluate to 0.

Zhang, Beltran-Royo and Ma The linearization described in this paragraph is
another part of the Kaufman-Broeckx family of linearization developed by Zhang, Beltran-
Royo and Ma [94]. It extends the ideas of Xia and Yuan. Using the same notation as the
previous approaches, (4.20) describes the complete formulation.

minimize
n∑

ik=1
wik + (ciikk + `ik)xik

subject to uikxik +
n∑

j`=1
cijk`xj` − (`ik + ciikk)xik − wik ≤ uik ∀i, k ∈ [n]

wik ≥ 0
(xik) ∈ Πn

(4.20)

All linearization techniques discussed so far can be considered light-weight relaxations
for the QAP because they do not increase the asymptotical size of the integer program-
ming model. As a consequence, these techniques are applicable to problems of practically
relevant input size. Moreover, primal heuristics of state-of-the-art LP solvers work very
well with this formulation. The lower bounds however obtained by relaxing the integral-
ity constraints of this formulation are very weak such that even in a branch-and-bound

29

Chapter 4. Assignment Problems

framework they often do not even surpass the trivial lower bound of
n∑

i,j=1
min{cijk` : k, ` ∈ [n]} (4.21)

in reasonable time. This issue makes it impractical to use these relaxations alone to close
the gap between upper and lower bounds in a branch-and-bound process.

Reformulation Linearization Technique In the first place, Frieze and Yadegar [95]
developed this linearization of the QAP where again every product xikxjl of binary
variables is replaced by a new variable yijkl. They connected the new y-variables with
the original assignment variables by summing over one of y’s indices and requiring that
a particular x-variable needs to result. The complete linear programming formulation
follows now.

min
n∑

ijkl=1
cijklyijkl

subject to
n∑
i=1

yijkl = xjl ∀j, k, l ∈ [n]
n∑
k=1

yijkl = xjl ∀i, j, l ∈ [n]
n∑
j=1

yijkl = xik ∀i, k, l ∈ [n]
n∑
l=1

yijkl = xik ∀i, j, k ∈ [n]

yiikk = xik ∀i, k ∈ [n]
yijkl ∈ [0, 1] ∀i, j, k, l ∈ [n]
(xik) ∈ Πn

(4.22)

This formulation yields very tight lower bounds, however its computation is very inefficient
due to the large dimension of the variable space.

RLT hierarchy Sherali and Adams [96] discovered a hierarchy of reformulations and
linearizations that reductively lead to the integer hull of a polyhedron. They recognized
that in the special case of the QAP the first level of their hierarchy coincides with the
linearization of Frieze and Yadegar. But since this hierarchy is far more general and
applicable to any mixed integer program, we discuss it here, too. The following notation
and explanations are taken from [97].

We will discuss the level d of the reformulation-linearization technique(RLT) now
which we will also refer to as RLT-d. Suppose we are given a mixed integer program
with n binary variables x1, . . . , xn and m continuous variables y1, . . . , ym as well as a set
of constraints defining the feasible region X. As a first step, we choose a set of y-free
constraints - i.e., the constraints have to contain binary variables only - such that the
degree of those constraints’ product is exactly d. In more detail, we choose constraints of
the form xi ≥ 0, 1− xi ≥ 0 or aTi x− b ≥ 0 and multiply them to a degree d polynomial.
The complete RLT-d formulation contains all polynomials with any possible combination
of y-free constraints. Note that any subset of polynomials already yields a lower bound
to the original problem; however, generating the full set of polynomials will eventually

30

4.4. Approaches to solve QAPs

yield the integer hull of the polyhedron. In the next step, we multiply every of the
given polynomials with all of the existing constraints which obviously yields new valid
inequalities. The reformulation step is done, now the linearization takes place. First of
all, we substitute any square occurrences of xi by itself, i.e., replace x2

i = xi. Moreover,
for any subset J ⊆ [n] of indices such that a product of binary variables occurs in one
of the constraints, we introduce a new variable wJ or vJk depending on whether yk also
occurs or not. More formally, we introduce

wJ =
∏
j∈J

xj (4.23)

vJk = yk
∏
j∈J

xj (4.24)

Hereby, we eliminated all non-linear terms and hence obtain a linear program again. We
call this new set of constraints Xd. The authors show that if we require x to be binary
and v, w, y to be continuous, then X = Xd

Furthermore, the authors show that the RLT-n formulation yields the integer hull
of the polyhedron. They also show the existence of a hierarchy in the levels of the RLT
formulations. More formally, if XPd is the projection of Xd to the original variable space
(x, y), then

X ⊇ XP1 ⊇ XP2 ⊇ · · · ⊇ XPn = conv.hull(X) (4.25)

Due to complexity issues, it is very rarely practical to compute the RLT-n formulation
because you get an exponential number of variables and constraints in the worst case.
This is either caused by the construction itself or by the projection method. However,
even the RLT-1 formulation already yields promising results in terms of the quality of
lower bounds during a branch-and-bound process.

SDP relaxations Recently, several relaxations of the QAP as a semidefinite program
(SDP) have been proposed. For example, SDP-relaxations for the non-convex constraint
Y = X ⊗ X were introduced in [88, 89]. Instead of forcing Y to be of rank 1, these
approaches require Y to be positive semidefinite. Recent approaches (e.g., [98]) have
shown that these approaches can often efficiently produce good lower bounds for the
QAP and beat common linear relaxations. Although, we describe an SDP approach to
the QAP in Section 6, the underlying model in our approach is different and the related
SDP approaches mentioned above are not used in this thesis any more.

31

Chapter 4. Assignment Problems

32

CHAPTER 5
Dynamic Sparsification for Quadratic

Assignment Problems

The work described in this section is a collaboration of Andreas Karrenbauer and myself
published in the conference proceedings of MOTOR 2019 [2]. Parts of the following text
are paraphrased or incorporated verbatim from this paper without further annotation.
The algorithm described in this section was used to compute lower bounds for the
keyboard optimization instances that occurred during the standardization process of the
new French keyboard, which is described in the Chapter 3.

The goal of this framework is to efficiently provide optimality guarantees for large, but
spare quadratic assignment problems. We discussed the hardness and popular approaches
to this problem in Chapter 4. The RLT 1 approach showed to be especially powerful
in the computation of lower bounds, but at the same time suffers from a huge increase
in model size, making the linearization unusable for problems of realistic size. We aim
at applying the RLT1 approach to QAPs while simultaneously controlling the growth
of the problem size. Our algorithm dynamically generates the most relevant quadratic
terms of the QAP, linearizes these new terms and computes an integer optimal solution.
In contrast to a classic column-generation approach our algorithm guarantees a sequence
of non-decreasing lower bounds in every step instead of non-increasing upper bounds.
Additionally, every iteration produces a heuristic primal solution for the initial problem.
This iterative framework produces a (1 + ε)-approximation for the QAP for any ε ≥ 0
without providing a polynomial runtime guarantee. Any polynomial time approximation
scheme (PTAS) for the QAP would imply that P = NP [78]. We evaluate our framework
on real-world instances generated during the design process of the new French keyboard
standard. The lower bounds computed by our algorithm showed very small optimality
gaps within a few minutes for sparse QAPs with over 100 items and 130 locations.
Considering the dynamic nature of this standardization process, an important main
feature of our framework is the possibility to provide almost real-time feedback with very
limited resources, e.g., a laptop.

5.1 Algorithm

The starting point of our algorithm is the integer programming formulation of the QAP.
Linear relaxations for quadratic programs have been extensively studied over the last
decades and are still a good starting point for many new ideas. However, the disadvantage
of standalone linear relaxations is either high space complexity or an inefficient bound
generation. A more detailed discussion of advantages and disadvantages of commonly
used linearizations can be found in Section 4.4. We aim to use a linearization with
promising lower bounds while overcoming the complexity issues for QAPs with sparse

Chapter 5. Dynamic Sparsification for Quadratic Assignment Problems

quadratic objectives.
To this end, let S ⊆ [n]4 be a set of indices. We define the following subproblem of

(4.8).

min
n∑

i,k=1
cikxik +

∑
(i,j,k,`)∈S

qijk`yijk` (5.1a)

subject to
n∑
i=1

xik = 1 ∀k ∈ [n]

n∑
k=1

xik = 1 ∀i ∈ [n]∑
j:(i,j,k,`)∈S

yijk` ≤ xik ∀i, k, ` ∈ [n] (5.1b)

∑
`:(i,j,k,`)∈S

yijk` ≤ xik ∀i, j, k ∈ [n] (5.1c)

∑
i:(i,j,k,`)∈S

yijk` ≤ xj` ∀j, k, ` ∈ [n] (5.1d)

∑
k:(i,j,k,`)∈S

yijk` ≤ xj` ∀i, j, ` ∈ [n] (5.1e)

xik + xj` ≤ 1 + yijk` ∀(i, j, k, `) ∈ S (5.1f)
yijk` ∈ [0, 1] ∀(i, j, k, `) ∈ S
xik ∈ {0, 1} ∀i, k ∈ [n]

Note that it is feasible to add symmetry constraints for the y-variables of the form
yijk` = yji`k inspired by the Adams-Johnson formulation because they simulate the
commutative multiplication of xik and xj`, however, we could not observe any performance
gain, and thus, omit them.

We first show that the proposed formulation is exact in the boundary case S = [n]4.

Lemma 5.1. Let S = [n]4 and let z(1) = x(1), z(2) = (x(2), y(2)) be optimal solutions of
(4.8) and (5.1), respectively.

Then cost(z(1)) = cost(z(2)).

Proof. Let (i, j, k, `) ∈ [n]4 and consider the linear inequalities (5.1b)-(5.1f). If one of
x

(2)
ik and x(2)

j` is 0, then at least one of the inequalities (5.1b) to (5.1e) forces y(2)
ijk` to 0.

On the other hand, if both x(2)
ik = x

(2)
j` = 1, constraint (5.1f) sets y(2)

ijk` to 1. Therefore,
and because x(2) is a binary variable, we can interpret y(2)

ijk` as the product x(2)
ik · x

(2)
j` .

Since S = [n]4, this observation holds for all variables and the formulations (4.8) and
(5.1) coincide.

Despite this result, we emphasize that using S = [n]4 leads to an intractable problem
size for most practical input instances, e.g., more than 100 000 000 variables in our appli-
cation with over 100 items. Even for sparse problems, reducing S to all the indices with
nonzero contribution to the quadratic objective term may not suffice as, e.g., still about
2 000 000 variables remain in our case. To overcome this issue, we select an increasing

34

5.1. Algorithm

sequence of subsets S, with each subset being significantly smaller than [n]4. Lemma 5.2
explains why it is beneficial to do so.

Lemma 5.2. Let S ⊂ [n]4 and z∗ be the optimal solution of (5.1). Then cost(z∗) is a
lower bound for (4.8).

Proof. Let (P, c, q), (P ′, c′, q′) be the polytopes and objective functions of (5.1) defined
over S and [n]4, respectively. Clearly, the set of constraints of P form a subset of the
constraints of P ′. Hence, every feasible solution in P ′ is also feasible in P , i.e., P ′ ⊆ P .

Setting qijk` = 0 for all (i, j, k, `) 6∈ S, we can write (5.1a) as

n∑
i,k=1

cikxik +
∑

(i,j,k,`)∈[n]4
qijk`yijk`.

Since all terms in the objective functions are assumed to be non-negative, it holds for
every (i, j, k, `) ∈ [n]4 that qijk` ≤ q′ijk`, which concludes the proof.

Lemma 5.2 shows that dynamically increasing S yields a hierarchy of integer linear
programs with increasing bounds for the original QAP. The proposed iterative algorithm
later in this section is a natural consequence of Lemma 5.2. It remains to show how to
initialize and update the set S. We remark here that it is advisable to solve the integer
linear programs close to optimality instead of considering their linear programming relax-
ations. Although dropping the integrality constraints drastically reduces the computation
time with growing S, the resulting lower bounds have shown to be significantly worse
than the ones obtained by solving the integral versions for the same amount of time.

We now present two variants of the algorithm, which differ only in the procedure on
how to grow S.

5.1.1 Variant 1: conservative growth

First, we choose an arbitrary ε ≥ 0. We will show later that the algorithm then produces
a (1 + ε)-approximation of the optimal assignment. Note, however, that our algorithm
allows to choose ε = 0, then computing an optimal solution. Assume that for a given
index set S, we are given an optimal binary solution (x∗, y∗) with objective value V . We
build the candidate set

C :=
{

(i, j, k, `) 6∈ S : x∗ik = x∗j` = 1 and qijk` > 0
}

(5.2)

and sort C in an ascending order with respect to qijk`. Note that |C| ≤ n2. Formally,
we define the function π : [|C|]→ [n]4 such that for every i < j ∈ {1, . . . , |C|}, it holds
qπ(i) ≤ qπ(j). Let s be the index that satisfies the following equation.

s = max
{
t ∈ {0, . . . , |C|} :

t∑
α=1

qπ(α) ≤ ε · V
}

(5.3)

Intuitively, we skip the s smallest positive cost values that sum up to a certain threshold
(which is depending on ε) and add the rest of the indices to our active set S.

35

Chapter 5. Dynamic Sparsification for Quadratic Assignment Problems

The complete algorithm is presented in Algorithm 5.1. Theorem 5.3 shows that the
update step eventually yields a (1 + ε)-approximation.

Input :number of items/locations n, linear cost c, quadratic cost q, precision parameter
ε

Result :Optimal assignment or upper/lower bound if aborted
1 S ← ∅

do
2 (x∗, y∗)← opt. sol. of (5.1) with S

V ← evaluate x∗ at (4.8)
C, π, s as in equations (5.2)-(5.3)
S ← S ∪ {π(i)}|C|i=s+1

3 while S changed in line 2;
4 return x∗

Algorithm 5.1: The complete algorithm (conservative version)

Theorem 5.3. Let ε ≥ 0. If line 2 of Algorithm 5.1 does not add any index to S, then
the x-part of the current solution (x∗, y∗) is (1 + ε)-optimal for problem (4.8).

Before we prove this theorem, let us introduce some notation that increases the
readability of the proof.

Definition 5.4. Let M ⊆ [n]4, we define

CM (x) =
∑

(i,j,k,`)∈M
qijk`xikxj` (5.4)

L(x) =
n∑

i,k=1
cikxik (5.5)

CM (x, y) =
n∑

i,k=1
cikxik +

∑
(i,j,k,`)∈M

qijk`yijk` (5.6)

We will write C(x) shortly for C[n]4(x).

Proof. Since C ∩ S = ∅ by definition, the only reason why S did not change is that
s = |C|. In particular, this means that

∑
α∈C

qα ≤ ε · (CS(x∗, y∗))

We evaluate (x∗, y∗) on the complete objective function of the QAP and interpret y∗ijk` =
x∗ikx

∗
k`, which is a valid assumption already shown in the proof of Lemma 5.1. We hence

36

5.1. Algorithm

have to show that
n∑

i,k=1
cikx

∗
ik + ∑

(i,j,k,`)∈[n]4
qijk`x

∗
ikx
∗
jk` ≤ (1 + ε)OPT .

n∑
i,k=1

cikx
∗
ik + ∑

(i,j,k,`)∈[n]4
qijk`x

∗
ikx
∗
jk` = L(x∗) + C(x∗)

= L(x∗) + CS(x∗) + C[n]4\S(x∗)
≤ L(x∗) + CS(x∗) + ε · CS(x∗)
≤ L(x∗) + CS(x∗) + ε · (L(x∗) + CS(x∗))
= (1 + ε) (L(x∗) + CS(x∗))
≤ (1 + ε)OPT

The last inequality follows from Lemma 5.2.

Corollary 5.5. Consider any index set C ′ that contains C as defined in Equation (5.2),
i.e. C ⊆ C ′. If we replace C by C ′ in Algorithm 5.1, then Theorem 5.3 still holds.

Proof. We use the notation of the proof of Theorem 5.3. Let (i, j, k`) ∈ C ′ \ C. This
means that x∗ik and x∗j` cannot both be 1, i.e.,

x∗ik · x∗j` = 0. (5.7)

Let S be the index set corresponding to C and S ′ the one corresponding to C ′. Then
CS(x∗) = CS′(x∗) due to (5.7); hence, the proof of Theorem 5.3 applies.

5.1.2 Variant 2: progressive growth

We change the definition of the candidate set C in Equation (5.2) to

C ′ :=
{

(i, j, k, `) 6∈ S : x∗ik = 1 ∨ x∗j` = 1 and qijk` > 0
}
. (5.8)

This means we consider a tuple as a candidate if at least one of the corresponding x-
variables were set to 1 in the previous optimal solution (instead of requiring both variables
to be 1). The rest of the algorithm remains the same. In this second variant, |C ′| ≤ n3,
i.e., we potentially add more terms to the model. This can improve the evolution of
lower bounds because we consider a more substantial portion of the model more quickly.
As a trade-off, we potentially add more irrelevant terms than the conservative variant
and, additionally, we could quickly arrive at a model of a size that exceeds the resources
of the computer used to run the algorithm. Note that Theorem 5.3 also holds for this
variant of the algorithm due to Corollary 5.5.

5.1.3 Variant 3: Hybrid strategy

To achieve a balance between the fast evolution of lower bounds in variant 2 and the
moderate growth of model size in variant 1, we propose the hybrid strategy that kick-
starts with the progressive variant 2 and switches to the conservative variant 1 before the
model size grows too large. The evaluation shows that this strategy is indeed superior to
both standalone variants. For all instances, there is a critical point where the amount of
generated quadratic terms would grow so large that an MIP solver cannot compute the

37

Chapter 5. Dynamic Sparsification for Quadratic Assignment Problems

integer optimal solution within a reasonable time. Therefore, we switch to the conservative
variant at this critical point, which grows the model more slowly while still steadily
improving the lower bound.

5.2 Evaluation

We applied our algorithm within several stages of the French keyboard standardization
process. The instances consist of over 100 special characters and 130 keys (in order to
achieve the classic QAP formulation, one can generate dummy characters symbolizing
that a key is left empty), and the objective function consists of a conic combination of a
sparse quadratic and dense linear cost terms. The quadratic term can be factorized into a
sparse matrix F , which describes the association score (similarity) of two different special
characters, and a dense matrix D, describing the distances between two key slots. The
weight of the quadratic part ranges between 30% and 50%. Additionally, some instances
fix few characters like punctuation symbols to fixed slots or require that the capital
versions of special characters are placed on the shifted slot of the same letter (e.g., È
is placed on the shifted slot of è) whereas other instances also allow them to be on the
Alt-Shift or Alt version of this slot.

We evaluated the instances on a single Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz
processor core with 16GB of RAM. We compare our algorithm to the formulation of
Xia and Yuan [93] as a state-of-the-art lightweight linearization for the QAP. As already
mentioned before, stronger formulations like RLT1 could not compute any lower bound
within the given resources, often because the model size already exceeded the available
RAM. We use Gurobi version 8.1 [99] as the underlying solver for both approaches.

Figure 5.1: The evolution of the lower bound when switching variants for instance N50s.
The numbers in the legend describe the iteration at which the switch was triggered.

38

5.2. Evaluation

We first discuss the impact of the variant choice on one example instance. More
specifically, we test the hybrid strategy and the effect of the switch from progressive to
conservative at different iterations τ . Figure 5.1 shows the evolution of lower bounds
for τ = 1, . . . , 10. Since naturally the bound evolves faster during the first seconds and
minutes, the graph shows a more detailed view on the evolution within this first period.
Setting τ = 1 leads to using the conservative variant from the beginning while setting
τ = 10 implies that the strategy switch does not occur within the given time window
of 12 hours because the model of the last iteration is already too large to be solved
efficiently. We observe that as long as the model size is moderately low, the progressive
variant achieves better results at every time stamp. However, after roughly 45 minutes,
the model size for this variant already grows notably large so that the next iterations
takes quite a long time. After yet another size increase, the ILP solver could not compute
an optimal solution within the remaining 10 hours. Note that depending on the available
resources (time limit and hardware) as well as the particular instance (dimension and
sparsity), the critical point at which a switch from the progressive to the conservative
variant is valuable varies. Since all our instances are of similar size and sparsity, the
critical point for this evaluation is at the 9th iteration.

Figure 5.2 compares the evolution of the lower bounds of our algorithm using only
variant 2, switching after 9 iterations, and the formulation of Xia and Yuan within a
total time period of 12 hours for the same example instance. It is important to note that
the setup time for the Xia-Yuan formulation is around 25 minutes for every instance
because over 10 000 linear assignment problems are solved beforehand. Therefore, the
first bound for the original QAP is only produced after 25 minutes.

To avoid visual clutter in the following figures, we only depict the results of the
hybrid algorithm switching at the 9th iteration. The lower and upper bounds for all
QAP instances are shown in Figure 5.3. We ran our hybrid algorithm for one hour
and compare it against the formulation of Xia and Yuan after one and 12 hours of
computation time.

Figure 5.2: The evolution of the lower bounds within 12 hours of computation time for
instance N50s.

39

Chapter 5. Dynamic Sparsification for Quadratic Assignment Problems

Figure 5.3: Lower and upper bounds for the QAP instances

The naming of the test instances is as follows: the first letter describes the set of
additional constraints (N for no additional constraints, and E for fixed punctuation
symbols and the fixed symbols è, é, ê, à, and e). The number in the middle describes
the weight (in percent) of the quadratic term in the objective function, and the following
letter describes if the capitalized letter of a special character has to be placed on the
shifted slot (s) or on any alternative of this slot (r). Note that almost every instance uses
a slightly different set of characters because this set constantly changed in committee
meetings. The full description of all the different character sets and further details about
the data gathering is beyond the scope of this thesis and can be found in [23]. Therefore, it
occurs that two instances are equally named although they slightly differ in the character
set used. In this case, one of the instance names ends with 2 for better differentiation.

We can see that within one hour, we outperform the formulation of Xia and Yuan
for every instance independent of its time limit being one hour or 12 hours. Although
we slightly improved the lower bounds of all instances, this is not the true benefit of our
framework. What we really want to emphasize here is how fast we achieve high-quality
lower bounds, which is especially important in the practical application of our algorithm.
In this highly interactive environment with countless model updates and changes, receiv-
ing valuable feedback of an optimization method after only several minutes can greatly
improve the dynamics of an expert committee that discusses different proposals and has
to decide the next steps towards a final keyboard standard.

We measure the time our algorithm needs to exceed the lower bounds that the Xia-
Yuan formulation produces after 1 hour and 12 hours, respectively. Figure 5.4 shows
that we achieve this goal within several minutes for all instances. In the worst case, it
takes 20 minutes to exceed the 12 hours bound of Xia-Yuan. Hence, for every instance,
we achieve superior lower bounds within the setup time of 25 minutes that is needed for
the creation of the Xia-Yuan linearization.

40

5.3. Robustness Analysis

Figure 5.4: The time we need to exceed the bounds of Xia and Yuan after 1h and 12h
(in seconds)

5.3 Robustness Analysis

To analyze the robustness of our approach, we vary the nonzero values of the quadratic
cost matrix with additive noise generated by a normal distribution with 0 mean and
standard deviation σ.

0s 50s 100s 150s 200s 250s 300s

σ = 0.1µ

σ = 0.5µ

σ = µ

Figure 5.5: Boxplots of the time (in seconds) until our approach exceeded the 12 hours
Xia-Yuan bound

Recall that the quadratic matrix Q is the Kronecker product of the dense matrix
D containing the distances between the keys and the sparse matrix F encoding the
similarity between the special characters. We only add noise to the entries in F while
keeping its entries non-negative. More specifically, consider fij > 0 and δij ∼ N(0, σ),
then we set f ′ij = fij + δij if f ′ij > 0, otherwise we recompute δij . Let µ be the average
value of all nonzero entries in the association matrix A, then we set σ to 10%, 50%,
and 100% of µ. For this evaluation, we use the instance N35s as a base instance and
generate 20 randomly variated instances for each of the three variance values. Note that
the evaluation of these 60 instances requires at least 720 hours of total computing time
in order to compute the 12 hour bound of Xia-Yuan for every instance. Moreover, the

41

Chapter 5. Dynamic Sparsification for Quadratic Assignment Problems

structure of all instances is considerably similar; Figure 5.3 also backs up this claim.
This leads to the conclusion that every of the 9 different keyboard instances is a good
representative for this robustness analysis.

Figure 5.5 shows the boxplots of the time (in seconds) our approach needed to exceed
the bound that the Xia-Yuan formulation achieves after 12 hours. In every of the 60
instances in total, we exceeded said bound after at most five minutes. Note that the
Xia-Yuan formulation has a setup time for around 25 minutes for instances of this size.
This means we can consistently produce high quality bounds during the setup time of
the competing approach.

Moreover, Figure 5.6 shows the lower and upper bounds for the 20 runs each with σ ∈
{0.1µ, 0.5µ, µ}, respectively. We observe that the results of these randomized instances
are very consistent with the results of the original evaluation, independent of the variance.

σ = 0.1µ σ = 0.5µ σ = µ

Figure 5.6: Bounds for 60 randomly variated instances (20 each) with variance σ

5.4 Conclusion
We presented a lightweight framework for sparse quadratic assignment problems that com-
bines powerful linearization techniques and ideas from column-generation. It is lightweight
in a sense that it can generate good bounds for sparse QAPs of huge size (over 100 items)
on a normal laptop. Our algorithm was used in the process of defining the new French
keyboard standard. The evaluation, which is based on real data gathered during this
standardization process, showed that we can compete with state-of-the-art linearization
techniques. We showed that we can produce high quality lower bounds within several min-
utes, which serves the purpose of almost real-time feedback in such a dynamic interactive
optimization process.

42

CHAPTER 6
Cut Pseudo Bases for Quadratic

Assignment Problems

Part of the work described in this section is published at ISCO 2016 [100], which sub-
sequently became my master’s thesis. Since the paper was published, the work on this
framework has still been extended. Although this paper is hence not a contribution to
this dissertation, this section cites and summarizes parts of it for the sake of completeness
and self-containment.

In this chapter, we describe a semidefinite program derived from a lower-bound-
preserving transformation of a QAP instance to an auxiliary quadratic minimization
problem with only O(n logn) variables. SDP relaxations with so few variables can be
solved efficiently with modern interior point methods for conic optimization problems.
Moreover, we also show how to integrate our relaxation in a branch-and-bound framework.
While branching on single assignment variables typically results in very unbalanced
branch-and-bound trees, our approach avoids this by design. To this end, we introduce
the concept of cut pseudo bases, which had not been used — to the best of our knowledge
— in this context before. Our goal was to develop an approach that still works with limited
computational resources, e.g., on a laptop, for the cases when the lower bounds provided
by lightweight linearization techniques are too weak and when it is already infeasible
to solve the LP relaxation of more powerful linearizations like RLT1. Furthermore, we
present experimental results for instances with n ≥ 25 in which we outperform both lower
bounds mentioned above in terms of efficiency and effectiveness. The bounds produced
by our SDP always exceed — just by construction — the trivial lower bound, which is
discussed in Chapter 4(see Equation (4.21).

6.1 An SDP-Based Lower Bound

We assume for the sake of presentation that the number of items and locations n is
a power of 2. This is not a restriction because we can pad n with dummy items and
locations. Moreover, the dummy items can be projected out easily in an implementation
so that this also does not harm its performance.

The derivation of this model was done in two steps. First, we designed a new quadratic
program that uses fewer binary variables and that we proved to be a lower bound for
the original QAP. Moreover, we showed that this new formulations allows for a balanced
branching tree. In the second step, we relaxed the new formulation to an SDP.

Concerning the goal of achieving balanced branching trees, let us revisit the well-
known problem of branching on single assignment variables. Setting the binary variable
xik to 1 means fixing item i to location j, which is a very strong decision that affects
all other variables in the i-th row or k-th column, forcing them to 0. On the other

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

hand, if we set xik to 0, we just decide not to fix i to j. However, there are still n − 1
other possible locations for i, so we basically did not decide much. This yields highly
imbalanced branching trees as it is much more likely to prune in the 1-branches of a
branch-and-bound process. This undesirable effect can be avoided by the well-known
idea of generalized upper-bound branching (see, e.g., Section 7 of [101]). Inspired by
this, we considered a similar approach illustrated in the following IP formulation with n
auxiliary z-variables:

minimize
n∑

i,j,k,`=1
cijk`xikxjl

s.t.
n∑
i=1

xik = 1 ∀k ∈ [n]
n/2∑
k=1

xik = zi
n∑

k=n/2+1
xik = 1− zi ∀i ∈ [n]

xik ∈ {0, 1} ∀i, k ∈ [n]
zi ∈ {0, 1} ∀i ∈ [n].

If we branch on the z-variables instead of the assignment variables, our branching tree
is much more likely to be balanced because either choice is equally strong. However, it is
not sufficient to branch only on these z-variables because too many degrees of freedom
still remain open even after all z-variables are set. If we want to completely determine
the x-variables and thus be able to project them out, we should introduce further binary
z-variables. To this end, we defined cut pseudo bases.

6.2 Introduction of Cut Pseudo Bases

The key idea of cut pseudo bases is the usage of cuts in the complete graph with the
locations as nodes. Consider a balanced subset of the nodes, i.e., one of size n

2 . Instead
of assigning an item to a certain location, we now assign it to one of the ”halves” of the
location space. We repeat this cutting of the location space until we reach a state where
— after a finite number of assignments — every item can be uniquely mapped to a single
location. Moreover, we cut the space in a balanced way, i.e., we require that each side of
the cut is equally large. Let us formalize these requirements.

Definition 6.1. A set of cuts over the location space such that

• all cuts are balanced,

• all singleton locations can be expressed by a linear combination of cuts, and

• it is inclusion-wise minimal

is called a cut pseudo base.

Clearly, the size of a cut pseudo base is log2 n when n is a power of 2 and thus dlog2 ne
in general by the padding argument. To illustrate the concept of a pseudo base, consider
the following example.

44

6.2. Introduction of Cut Pseudo Bases

000 001 010 011

100 101 110 111

000 001 010 011

100 101 110 111

000 001 010 011

100 101 110 111

Figure 6.1: Example: the binary decomposition cut pseudo base with 8 = 23 locations

Example 6.2. Enumerate the n = 2k locations by 0, . . . , n− 1, and consider the binary
decomposition of these numbers. For every bit b = 0, . . . , k − 1, we define a cut that
separates all locations with numbers differing in the b-th bit. Then, this collection of cuts
forms a cut pseudo base. Figure 6.1 depicts such a cut pseudo base for n = 8. There are
three cuts; the orange tiles represent the 0-side and the green tiles the 1-side of the cuts.

Note that any arbitrary cut pseudo base can be transformed to the binary decom-
position pseudo base by a permutation of the locations. Hence, we will employ this cut
pseudo base as a reference throughout this chapter for the sake of presentation and
simplicity.

6.2.1 Exchanging Aassignment Variables by Cut Variables

The cut pseudo bases introduced in the previous subsection are balanced by definition,
meaning that assigning an item to one side of a cut in the pseudo base is just as effective
as assigning it to the other side. However, the decision of whether a particular item should
be assigned to a fixed location is highly unbalanced, as we have already discussed. Hence,
we aim to remove the classical assignment variables and introduce the cut variables
instead. This also benefits the number of binary variables, which decreases from n2

assignment variables to n log2 n cut variables. Let (Sb)b∈[B] be an arbitrary but fixed cut
pseudo base. We introduce the variables zbi ∈ {0, 1} for every cut Sb, indicating whether
i is assigned to the 0- or 1-side of the cut Sb. We relate them to the assignment variables
in the following manner.

xij = 1⇔ ∀b ∈ [B] j ∈ zbi -side of cut Sb (6.1)

We consider an arbitrary cut b in the following and omit the superscript b to simplify
the notation and thereby improve readability. Observe that

zizj + zi(1− zj) + (1− zi)zj + (1− zi)(1− zj) = 1 (6.2)

holds for any zi, zj ∈ R and that for a binary solution exactly one of the four terms is 1,
and the others vanish.

Thus, we obtain for any assignment x and the corresponding binary z-variables that
n∑

i,j,k,`=1
cijk`xikxj`

45

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

=
n∑

i,j=1
(zizj + zi(1− zj) + (1− zi)zj + (1− zi)(1− zj))

n∑
k,`=1

cijk`xikxj`

≥
n∑

i,j=1
zizj ·min{

n∑
k,`=1

cijk`xikxj` : x ∈ Π(11)
ij }

+
n∑

i,j=1
zi(1− zj) ·min{

n∑
k,`=1

cijk`xikxj` : x ∈ Π(10)
ij }

+
n∑

i,j=1
(1− zi)zj ·min{

n∑
k,`=1

cijk`xikxj` : x ∈ Π(01)
ij }

+
n∑

i,j=1
(1− zi)(1− zj) ·min{

n∑
k,`=1

cijk`xikxj` : x ∈ Π(00)
ij }

where Π(αβ)
ij for α, β ∈ {0, 1} denotes the set of all assignments in which i is assigned

to the α-side and j to the β-side of the cut. In the following, we argue that this is indeed
a valid lower bound. To this end, let c(αβ)

ij := min{∑k,` cijk`xikxj` : x ∈ Π(αβ)
ij } denote

the optimum objective values of the corresponding optimization problems, and observe
that c(αβ)

ij only contributes to the right-hand side if zi = α and zj = β. This yields an
objective function that is free of x-variables. Furthermore, the minimum of the original
objective taken over all x ∈ Π is bounded from below by the minimum over all z that
determine an assignment. At first glance, it seems that we have to solve 4n2 QAPs to
compute the coefficients for the new objective function. However, a close inspection of the
subproblems reveals that c(αβ)

ij is determined by the minimum cijk` over all k, ` such that
the b-th bits of k and ` are α and β, respectively. This can be computed efficiently for
each pair ij by a single scan over all cijk`. Note that in the Koopmans-Beckmann variant
of a QAP, we have cijk` = fij · dk`, and thus, it suffices to scan over the distance pairs
dk` of the locations k and `. Furthermore, such a single scan can also take additional
constraints into account, e.g., excluded pairs due to a branching process. Hence, the
lower bound of our approach is self-tightening in a branch-and-bound process. In every
branching step, we can update our cost estimation for this particular setting of excluded
pairs.

6.3 Towards an SDP

Before obtaining the desired SDP relaxation, we applied the typical transformation to
map {0, 1}-variables to {−1, 1}-variables. That is, we used the linear transformation
zi = 1+yi

2 . This implies that 1− zi = 1−yi
2 . Plugging this into

c
(11)
ij zizj + c

(10)
ij zi(1− zj) + c

(01)
ij (1− zi)zj + c

(00)
ij (1− zi)(1− zj)

yields

1∑
α,β=0

c
(αβ)
ij · 1−(−1)αyi

2 · 1−(−1)βyj
2 =

1∑
α,β=0

c
(αβ)
ij · 1−(−1)αyi−(−1)βyj+(−1)α+βyiyj

4

= c
(11)
ij +c(10)

ij +c(01)
ij +c(00)

ij

4 + c
(11)
ij +c(10)

ij −c
(01)
ij −c

(00)
ij

4 · yi

+ c
(11)
ij −c

(10)
ij +c(01)

ij −c
(00)
ij

4 · yj + c
(11)
ij −c

(10)
ij −c

(01)
ij +c(00)

ij

4 · yiyj .

46

6.3. Towards an SDP

We separate and symmetrize the constant, linear, and quadratic terms such that we
can write the total sum over all i, j in matrix-vector notation as

yTCy + cT y + γ

with

Cij :=
c

(11)
ij + c

(11)
ji − c

(10)
ij − c(10)

ji − c
(01)
ij − c(01)

ji + c
(00)
ij + c

(00)
ji

8

ci := 1
4

n∑
j=1

c
(11)
ij + c

(11)
ji + c

(10)
ij − c(10)

ji − c
(01)
ij + c

(01)
ji − c

(00)
ij − c(00)

ji

γ := 1
4

n∑
i=1

n∑
j=1

c
(11)
ij + c

(10)
ij + c

(01)
ij + c

(00)
ij .

To relax the quadratic part in the objective using a semidefinite matrix, we use a
standard fact about the trace, i.e., yTCy = tr(yTCy) = tr(CyyT). Thus, we replace
the quadratic term yTCy in the objective function by the Frobenius product1 C • Y
and require Y = yyT . However, this rank-1-constraint is not convex, and we relax it to
Y < yyT , which means that Y − yyT is positive semi-definite. Using the notion of the
Schur complement, this condition is equivalent to(

1 yT

y Y

)
< 0.

To accomplish this, we could augment the matrix Y by a 0-th row and column. Alterna-
tively, we could also use one of the dummy items that we initially introduced to increase
the number of items to a power of 2. These dummy items are already fixed w.r.t. the side
of the cut b under consideration. Independently if we use an artificial 0th item or one of
the dummy items, the idea is that if yi = 1 is already fix for some item i, we may require
Yij = yj for all j and Y < 0. This constraint can be written as eieTj • Y − eTj y = 0 for
yi = 1. For yi = −1, we obtain the constraints eieTj • Y + eTj y = 0 for all items j instead.

In the following, we list further constraints that we added to the SDP that tighten
our formulation and hence improve the strength of the lower bound on the QAP. Recall
that for the sake of readability we omitted any superscripts to identify the cut under
consideration. In the following however, we will argue with the complete cut pseudo
base, so we use Y b for the matrix corresponding to cut b and yb to identify the linear
terms corresponding to this cut. Similarly, we shall use Cb, cb, and γb to denote the
corresponding parts in the objective function. We emphasize again that the cut pseudo
base in use is fixed from now on and contains B = dlog 2(n)e many cuts.

6.3.1 Domain of Y

We make sure that every ybi ∈ {−1, 1}. For the linear variables, we relax this constraint
to ybi ∈ [−1, 1], but in the SDP, we can require something stronger. By using the fact that

1The Frobenius product A • B := tr(ATB) =
∑

i,j
aijbij is the standard inner product on the space

of n × n matrices used in semi-definite programming.

47

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

(
ybi

)2
= 1, we can add the constraint Y b

ii = 1 for all b ∈ [B], i ∈ [n]. Formally, we do this
by the SDP constraint Ei • Y b = 1 where Ei has a 1 on index (i, i) and 0s everywhere
else.

6.3.2 Injectivity of the Assignment

We ensure that the assignment is injective, i.e., that no two different keys are assigned
to the same spot. In terms of y variables, we require for all distinct i and j that ybi be
different from ybj for at least one b. We have ybi = ybj if and only if the corresponding
entry in Y , namely Y b

ij , is 1. Hence, we add the constraint

B∑
b=1

Y b
ij ≤ B − 1 ⇔

(
B∑
b=1

1
2Y

b
ij + 1

2Y
b
ji

)
≤ B − 1.

Note that in an integer optimal solution, the constraints above already ensure all the
properties, we want to have. However, we have found that it is beneficial for the relaxed
SDP to add the following constraint.

6.3.3 Zero Row Sums

In the original formulation, injectivity implies that the number of keys assigned to one
side of a cut is as large as the number of keys assigned to the opposite side. Recall that
we are assuming n = 2k, and we have a cut pseudo base. Hence, the implication above
indeed holds. In terms of y variables, this can be modeled as the constraint

n∑
j=1

ybj = 0

or as
n∑
j=1

Y b
ij =

n∑
j=1

ybi y
b
j = yib ·

n∑
j=1

ybj
!= 0

in the SDP for an arbitrary fixed i ∈ [n]. Hence, taking the row sum of Y b in this case
yields the term we are looking for.

6.3.4 Total Entry Sum

We have observed that we can condense the zero-sum-constraints to a single one by
exploiting the positive semidefiniteness of Y .

Lemma 6.3. Let Y ∈ Rn×n be positive semidefinite. If 11T •Y = 0, then for any i ∈ [n],
it holds that

n∑
j=1

Y b
ij = 0.

Proof. Observe that
0 = 11T • Y = 1TY 1.

Since Y is positive semidefinite, 1 is an eigenvector of Y with eigenvalue 0, which implies
that Y 1 = 01 = ~0 and proves the claim.

48

6.3. Towards an SDP

Hence, instead of imposing n constraints for every single row of Y , we have shown
that one constraint is enough to fix all row sums to 0.

This concludes the initial SDP formulation we proposed in [100]. The following
additional features (the only exception being the discussion of the objective function in
Section 6.3.7) have been examined after the publication of this paper.

6.3.5 Optional constraints

We found several further families of constraints that might be useful to strengthen the
lower bound of the SDP. However, you will see that the number of those constraints is
too high to include them all in our problem. Therefore, we need to apply techniques like
dynamic constraint activation or the spectral bundle method [102].

Fixation Constraints As soon as we encounter a situation during branching that
forbids a particular placement, we can add further constraints to enforce the desired
behavior. Given a fixed pair of items i, j and a cut b, consider a situation in which it is
not allowed to place i to the α-side of cut b and, at the same time, j to the β side of
the same cut (because former decisions forbid this behavior). In this case, we add the
following constraints

(−1)α + ybi + (−1)βybj = 1 + (−1)α+βY b
ij (6.3)

Depending on the actual values of α and β, the constraint takes one of the following
forms.

α = 0, β = 0 : ybi + ybj − Y b
ij = 1

α = 0, β = 1 : ybi − ybj + Y b
ij = 1

α = 1, β = 0 : −ybi + ybj + Y b
ij = 1

α = 1, β = 1 : −ybi − ybj − Y b
ij = 1

(6.4)

Triangle Inequalities Let i, j, k ∈ [n] be items and let us fix a cut b. The following
inequalities are cutting planes.

Y b
ij + Y b

ik + Y b
jk ≤ −1 (6.5)

Y b
ij − Y b

ik − Y b
jk ≤ −1 (6.6)

As you can see, some permutations of the indices in (6.6) yield other constraints
whereas the constraint (6.5) is permutation-invariant. Enumerating all subsets of the
form {i, j, k} ⊆ [n] and creating one constraint (6.5) and 3 distinct constraints (6.6)
yields an amount of 4

(n
3
)
constraints. Note that there are permutations of i, j, k, which

do not create new constraints due to the symmetry of the Y matrix (for example, the
orderings i, j, k and j, i, k lead to the same constraint).

49

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

6.3.6 Branching in the SDP

We want to use the SDP relaxation as a generator of lower bounds for the QAP formu-
lation that uses the cut variables. Branching in this QAP means setting one of the ybi
to either 1 or −1. How can we transfer this to the SDP where we only have products
of variables in the variable matrix Y ? Let us first restrict to the case where we only
consider one cut b. We can partition the variables into the three sets Lb, Rb and Fb where
Lb = {i|ybi = 1}, Rb = {i|ybi = −1} and Fb contains the rest of the variables (the free
variables). Using this partition, we can fix entries in Y b in order to ensure the correct
values for the fixed variables in the original problem.

∀(i, j) ∈ Lb × Lb : Y b
i,j = 1 (6.7)

∀(i, j) ∈ Rb ×Rb : Y b
i,j = 1 (6.8)

∀(i, j) ∈ Lb ×Rb : Y b
i,j = −1 (6.9)

At a first glance, this only fixes the variables of Lb and Rb to different values, but in
general not to 1 for all those in Lb and −1 for those in Rb. We also allow the assignment
to be the other way around. However, the following Lemma shows that this is irrelevant
for our model.

Lemma 6.4. Let ŷ be an {−1, 1}-assignment to the objective function

B∑
b=1

n∑
i,j=1

M b
ij

(
1− ybi ybj

)

Let B∗ ⊆ [B] be arbitrary and define ỹb = ŷb for b 6∈ B∗ and ỹb = −ŷb for b ∈ B∗. Then

B∑
b=1

n∑
i,j=1

M b
ij

(
1− ŷbi ŷbj

)
=

B∑
b=1

n∑
i,j=1

M b
ij

(
1− ỹbi ỹbj

)

Proof.

B∑
b=1

n∑
i,j=1

M b
ij

(
1− ŷbi ŷbj

)
(6.10)

=
∑

b∈[B]\B∗

n∑
i,j=1

M b
ij

(
1− ŷbi ŷbj

)
+
∑
b∈B∗

n∑
i,j=1

M b
ij

(
1− ŷbi ŷbj

)
(6.11)

=
∑

b∈[B]\B∗

n∑
i,j=1

M b
ij

(
1− ỹbi ỹbj

)
+
∑
b∈B∗

n∑
i,j=1

M b
ij

(
1−

(
−ỹbi

) (
−ỹbj

))
︸ ︷︷ ︸

=1−ỹbi ỹ
b
j

(6.12)

=
B∑
b=1

n∑
i,j=1

M b
ij

(
1− ỹbi ỹbj

)
(6.13)

50

6.3. Towards an SDP

This shows that we can – independently of b – assign 1 or −1 to Lb and the corre-
sponding opposite value to Rb, we just have to maintain the inner consistency of every
set which is exactly what is guaranteed by the constraints stated above.

The bottleneck of these branching constraints appears to be that we need to add
many constraints even for a single branch if we are deep in the branching tree. Whenever
we enter or leave a branch, it seems we have to touch O(n) many constraints. However,
we can simplify this procedure and modify only a single constraints for every branch.
The following lemma explains this simplification.

Lemma 6.5. Let Y ∈ Rn×n be positive semidefinite with diagonal 1. Further, let i, j, k ∈
[n] be arbitrary indices. The following statements hold:

(1) If Yij = 1 = Yik, then Yjk = 1.

(2) If Yij = −1 = Yik, then Yjk = 1.

(3) If Yij = 1 and Yik = −1, then Yjk = −1.

Proof. First of all, Y is positive semidefinite, i.e. there is a Q ∈ Rn×n such that Y = QTQ.
Let Qi be the i-th column of Q, then

Yij =
n∑
k=1

qkiqkj = QTi Qj (6.14)

Since Yii = Yjj = Ykk = 1, it holds that ‖Qs‖2 = 1 for all s ∈ [n]. We will show the 3rd
statement as an example. The other cases follow completely analogously. Yij = 1 means
that

1 = QTi Qj = ‖Qi‖2‖Qj‖2 cos^(Qi, Qj) = cos^(Qi, Qj) (6.15)

i.e., Qi = Qj . Analogously, from Yik = −1 it follows that Qi = −Qk. Hence in total, we
get that Qj = −Qk, i.e., Yjk = −1

This lemma is very useful for the branching process in the SDP. If we keep one
single reference variable (say key 1), it is enough to add branching constraints only with
respect to this reference. This means, in practice we only constrain one row (and due to
symmetry also one column) of each block in Y and have to modify only one constraint
in every branching step.

6.3.7 Alternative Objective Functions for the SDP

In the previous subsection, we first fixed some cut b and then derived a lower bound on
the minimum QAP objective value by minimizing an SDP relaxation. That is, we obtain
a valid lower bound by solving an SDP with the objective function Cb •Y b+(cb)T yb+γb,
subject to the constraints mentioned above. However, considering only one cut of the
pseudo base in the objective could be weak because costs could be evaded by charging
them to the other cuts of the pseudo base that are not accounted for in the objective.

51

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

min 1
B

B∑
b=1

Cb • Y b + (cb)T yb + γb

subject to Ei • Y b = 1 ∀i ∈ [n], b ∈ [B](
B∑
b=1

1
2Y

b
ij + 1

2Y
b
ji

)
≤ B − 1 ∀i 6= j ∈ [n]

11T • Y = 0
Y � 0

Figure 6.2: The complete SDP formulation

Averaging over the cut pseudo base

Since the lower bound holds for arbitrary cuts b, it also holds for the average over all
cuts in the cut pseudo base, i.e., the objective becomes

1
B

B∑
b=1

Cb • Y b + (cb)T yb + γb.

There is no need to add further auxiliary variables or constraints that may harm the
numeric stability of an SDP-solver.

Taking the maximum

An even stronger lower bound is obtained by taking the maximum over the cuts of the
pseudo base because the arithmetic mean never exceeds the maximum. The standard
way to model the maximum over the cut pseudo base is to introduce a new linear variable
- say z - and add log2 n many constraints, ensuring that z is at least the cost of each cut
in the pseudo base. However, one of the solvers we used, more specifically, the Mosek
solver (v7.1.0.53), often stalled with this objective function due to numerical instabilities,
in contrast to the averaging objective.

We conclude this section by summarizing the model that was discussed in the previous
pages in Figure 6.2.

6.3.8 The dual SDP

We consider the general form of the primal SDP

min C •X
s.t. Ai •X = bi ∀i = 1, . . . ,m

X � 0
(6.16)

where C and Ai are defined in the previous sections. The standard dual transformation
has the form

max bT y

s.t.
m∑
i=1

Aiyi � C
(6.17)

52

6.4. Using the Right Solver - Discussion and Consequences

or, equivalently,
max bT y

s.t.
m∑
i=1

Aiyi + S = C

S � 0

. (6.18)

In our concrete case, the constraint matrices of the form Ei • Y b = 1 ensure that we
can make the diagonal of S arbitrarily large (by setting the corresponding dual variable
yi � 0). Hence, any dual has a strictly feasible solution, and moreover, the primal-dual
SDP-pair has the strong duality property [103].

6.4 Using the Right Solver - Discussion and Consequences

So far, we described the modeling of a new lower bound approach for the QAP. A concrete
implementation depends on the underlying solver, together with the branch-and-bound
realization. Both the SDP solvers and branching strategies are orthogonal research areas
that we do not address here. However, it is necessary to discuss the pros and cons of the
different configurations we have used in our implementation.

6.4.1 Mosek - a Commercial off-the-shelf SDP Solver

Recent benchmarks2 suggest that Mosek belongs to the fastest SDP solvers. Its accessibil-
ity across several programming languages and its extensive documentation make Mosek
the SDP solver of our choice. The drawback, however, is the missing implementation
of a branch-and-bound procedure for integral SDPs. Hence, we implemented our own
branch-and-bound framework and examined different simple branching strategies. One
advantage of using our own framework is its ability to handle integral solutions differently
than fractional ones. We have already mentioned that we transform all integral solutions
to solutions of the original QAP using the 1-to-1 correspondence between the variables
in use. This means we can evaluate integral solutions with the QAP cost and thus ob-
tain an optimal solution to the QAP at the end of the optimization. Moreover, we can
alter the objective function at any node in order to make use of our self-tightening cost
estimation. The bottleneck of a self-implemented framework still remains the branching.
Many man-years have been invested in the development of good branching strategies
and heuristics. We observed that even with our simple branching strategies our evalua-
tion yielded promising results. This suggests the assumption that our framework would
strongly benefit from an advanced branch-and-bound framework and further improve its
results. A minor drawback of Mosek is the aforementioned numerical instability of the
maximum objective function. Therefore, we chose to investigate a further approach.

6.4.2 Gurobi - a Commercial off-the-shelf MIP Solver

Gurobi, one of the leading and fastest MIP solvers, provides a highly advanced branch-
and-bound procedure that is customizable via callbacks. It is, however, not capable of
semidefiniteness constraints. If we simply dropped these constraints, we would still obtain

2See the benchmarks by Hans Mittelmann: http://plato.asu.edu/bench.html

53

http://plato.asu.edu/bench.html

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

a formulation with a valid lower bound for the SDP (and so for the QAP). However,
this bound would be too weak if we did not compensate the missing semidefiniteness
at all. Therefore, we simulate the semidefiniteness constraints by a weak membership
oracle, i.e., we separate negative eigenvalues by adding lazy constraints in a callback.
More specifically, consider the solution X at the current node in the branching tree,
and let λ be its smallest eigenvalue together with the eigenvector v. If λ is negative
(allowing a small tolerance at 0), we add the constraint vTXv ≥ 0 in order to separate
this eigenvalue. Recall that X is positive semidefinite if and only if vTXv ≥ 0 for every
v ∈ Rn. Note that this is a linear inequality in the variables xij . We cannot enforce this
constraint for every possible vector v since those would be uncountably many. Instead,
we seek good candidates during the optimization and add them in a lazy fashion. This
has proven a good trade-off between the semidefiniteness precision and the number of
constraints being added.

Another point we need to mention here is the objective function. Recall that we
handle integral and fractional solutions in a different fashion and update the objective
function as soon as our cost estimation got tighter with our own branching framework,
while Gurobi does not support any of those features. We can, however, circumvent them
by substituting the objective function with an additional variable ζ. Moreover, we add
the constraints that ζ is (1) at least the original QAP objective, and (2) at least the SDP
objective. We have observed, indeed, that the SDP objective dominates the value of ζ
for fractional solutions, while for integral solutions the QAP objective does. This comes
at the expense of introducing the n2 original QAP variables, connecting them to the cut
pseudo base variables, and creating the mentioned quadratic ζ-constraint together with
the assignment constraints. Note, however, that these variables are not declared binary
since they are bound to the binary cut pseudo base variables. Moreover, this structure
allows to choose between the average and maximum SDP objective function at zero
expense. Gurobi does not run into numerical issues with the maximum SDP objective
function.

If we want to avoid the quadratic constraint, we can choose any tight linearization
of the QAP objective, e.g., the Kaufman-Broeckx linearization. The advantage of this
particular linearization is its low dimension. Its inclusion does not increase the asymptotic
complexity of our formulation. Additionally, it is tight even if it is weak for fractional
solutions. Our framework levels out this weakness with the SDP constraints. This means,
the QAP linearization’s only purpose is to evaluate the integral solutions to the correct
objective value. Whether we decide to use the original QAP objective as a quadratic
constraint or the linearized Kaufman-Broeckx version, we will end up with a formulation
using only O(n2) many variables, of which only O(n log(n)) are integral. This favorably
contrasts our formulation with every other QAP relaxation that we are aware of. The
resulting positive effect on the scalability, while still providing good lower bounds, will
be shown and discussed in Section 6.6.

It remains to implement the updates to the cost function whenever our cost estimates
get tighter. Recall that we already have the constraint that ζ is at least the SDP objective
at the root relaxation. Instead of altering this particular constraint — which is not
supported by Gurobi — we add a new locally valid constraint containing the updated
SDP objective function. In order to ensure that this tighter SDP objective constraint is
only active when we are at the correct branching subtree, we use a standard penalization

54

6.5. Comparison to the Gilmore-Lawler bound

method. Let I+ be the set of all indices i such that yi is set to +1 in the current branch
and let, accordingly, I− be the set of indices with yi being branched to −1.

ζ ≥ CSDP −M

∑
i∈I+

1− yi +
∑
i∈I−

1 + yi


The large constant M acts as a deactivator for the whole constraint. If all the y-
assignments are correct, the sum term is 0, and the constraint is ζ ≥ CSDP . As soon
as at least one assignment differs from the current branch, we obtain the constraint
ζ ≥ CSDP − αM for some integer α and a large constant M (dependent on the con-
crete problem instance). Thus, the constraint becomes redundant and ineffective for any
differing branch.

The concluding drawback is the introduction of n2 + 1 linear variables and the usage
of one quadratic constraint. Moreover, we need to add constraints instead of being able
to alter the objective function.

Both Mosek and Gurobi have their clear advantages and disadvantages, and it is not
obvious which option to prefer. Therefore, we have implemented and evaluated both
versions and report the results in Section 6.6.

6.5 Comparison to the Gilmore-Lawler bound

Our relaxation can be compared to the Gilmore-Lawler bound [90], to some extent. For
every pair of a single item and location i and k, their approach computes linear assignment
problems as independent subproblems. Intuitively, the solutions of those subproblems
describe the cost that you have to at least pay if you decide to assign item i to location
k. This is similar to our cost estimation c(αβ)

ij described in Section 6.2.1. The difference is
that the Gilmore-Lawler approach reduces to a single linear assignment problem, whereas
we still have to solve an SDP. Then again, we can easily read off the values for c(αβ)

ij and
do not have to solve n2 many linear subproblems.

A question that naturally arises is if our approach dominates the Gilmore-Lawler
bound or vice versa. It turns out that neither dominates. Consider the following small
3× 3 example.

F =


0 1 0
1 0 0
0 0 1

 D =


1 1 0
1 1 0
0 0 0


The Gilmore-Lawler bound is 0 here, whereas our SDP approach reports 0.5 as the root
relaxation value. The reason is that the independent subproblems can evade costs using
always the third location. Since the constraints of our formulation provide a stricter
connection between items and locations, costs cannot be evaded as easily in the SDP.

6.6 Evaluation

We compare our approaches to two classic linearizations, the Kaufman-Broeckx lineariza-
tion [92] and the first level of the Reformulation Linearization Technique (RLT1) [95].

55

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

bur ste kra tho nug tai had scr
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Gurobi

Mosek

KB

RLT1

Instance

B
o

u
n

d
 n

o
rm

a
liz

e
d

 to
 b

e
s

t

Figure 6.3: Averaged QAPLIB instances after one hour of computation

12 14 15 16a16b 17 18 20 21 22 24 25 27 28 30
0

1000

2000

3000

4000

5000

6000

7000

Gurobi

KB

RLT1

OPT

Number of items

B
o

u
n

d

Figure 6.4: The Nugent instances with 12 to 30 items after one hour of computation,
RLT1 fails to solve n ≥ 15 within this time and resource limit.

For the sake of fair comparison, we solve the integral versions of the linearizations and
use the commercial state-of-the-art solver Gurobi (v6.5.1) [99] to solve them. As already
discussed in Section 6.4 we implemented both frameworks, one using Mosek (v7.1.0.53)
[104] and the other one using Gurobi. Note that the paper [100] only contains the Mosek
implementation. The discussion and implementation of the Gurobi version has been done
after this publication; hence, the evaluation has also been extended. We will report the
best known lower bound produced by running the branch-and-bound process for one
hour.

We ran experiments on a single Intel (R) Xeon (R) E5-2680 2.50GHz core with 8
GB RAM, running Debian GNU/Linux 7 with kernel 3.18.35.1. The code was compiled
with gcc version 4.7.2 using the -03 flag.

The instances were taken from the QAPLIB homepage [79]. The names of the in-
stances are formed by the name of the author (first three letters), the number of items,
followed by a single letter identifier. The test instances cover a wide range of QAP
applications including keyboard assignment, hospital layout, and several further graph
problems.

Figure 6.3 shows the average lower bound of the different approaches after one hour

56

6.6. Evaluation

of computation time. We decided to average the lower bounds of a certain instance set
because the single test cases within that set were similar and all approaches behaved
consistently there. One can see that RLT1 performs quite well if we have enough com-
putation power to compute bounds there (see tai or had, for example). However, many
test instances are too large for our computing resources to compute even the RLT1 root
relaxation. In these hard cases, our approaches outperform both linear relaxations by
several orders of magnitude. The reason Gurobi performs much better than Mosek in
some cases is that Gurobi is capable of producing non-trivial lower bounds for much
larger problem instances. This results in higher green bars in Figure 6.3 for all instance
sets that include instances of size 35 and higher. The largest instances for which Mosek
and Gurobi could produce a non-trivial lower bound consisted of 36 and 80 items, respec-
tively. We see the reason for this immense improvement in scalability in the advanced
branch-and-bound framework that Gurobi offers. We point out that for instances where
at least the root relaxation can be solved by both solvers, the resulting lower bounds
are similar with a really small advantage for Gurobi in many cases. This advantage is
not consistent throughout all the instances, i.e., there are instances where our Mosek
approach produces a better lower bound than the Gurobi approach.

The nug instances are a special instance set because this set contains test cases of
consistently increasing size. Therefore, the behavior of the approaches varies throughout
the different test cases, and the average reported in Figure 6.3 cannot reflect the overall
behavior for nug. To this end, we report a detailed description of the whole nug test set
in Figure 6.4. This also shows how our framework scales with increasing n. We decided
to only show the performance of our Gurobi framework and omit the Mosek results since
the Gurobi results were consistently up to 10% better, but the graphic representation is
not able to show that at this scale. The full numerical table is available online for the
interested reader3.

At the beginning, for small n, RLT1 can solve the instances to optimality within
one hour, which meets our expectations. For instances of small size, the advantages of
our approach in efficiency are too small to make up for the loss of precision caused
by the distance approximations. The trend changes as soon as n grows above 16. The
RLT1 formulations are already too large to solve the root relaxation after one hour of
computation with a single thread, and the bounds of the Kaufman-Broeckx relaxation
are lower than ours, which confirms the use-case that we proposed in the beginning of
this chapter.

3http://resources.mpi-inf.mpg.de/keyboardoptimization/ISCO2016/fulleval.csv

57

Chapter 6. Cut Pseudo Bases for Quadratic Assignment Problems

58

CHAPTER 7
A Markup Language for Optimization

Problems

7.1 Introduction
This chapter describes a new modeling language for mixed integer linear programs based
on the HTML standard. This project was motivated by the French keyboard problem
and its participatory optimization structure that we discussed earlier. Our main goal
is to create a platform where domain experts without programming skills can model
optimization problems that appear in their fields. The committee in the French keyboard
problem, for example, consisted of experts from various domains like keyboard manu-
facturers or linguists; they have very valuable knowledge for the design of keybaords,
but could not directly transfer it to optimization models with current state-of-the-art
techniques. While providing users with the full power of linear optimization solvers, we
aim to create a modeling language that lowers this entry hurdle for people working in
not purely mathematical fields, but who still frequently encounter optimization problems.
We aim to achieve this simplicity by providing an HTML extension that allows the
modeling of complex optimization problems via a graphical user interface with drag-
and-drop features. Moreover, we want to provide a concise, human-readable and easily
expandable description. The separation of model and data has shown to be relevant in
related modeling languages and is also supported by our framework. In participatory
optimization problems, optimization parameters and input data frequently change. By
separating model and data, the optimization model expressed in our language can remain
unchanged whenever changes are made to the input data of the problem. There exists
an implementation of an interpreter for this language as a part of Sören Bund-Becker’s
Bachelor’s thesis [105] that Andreas and I supervised.

7.1.1 Combinatorial Optimization Outside of Computer Science

Optimization problems do not only occur in mathematics or computer science, but also,
for example, in fields related to medicine, economics, or biology.

Mitsos et al. performed experiments on drug effects [106], and the data fitting is done
by an integer linear programming formulation.

Process optimization is a big research area in the field of economics. Popular challenges
in this area are, for example, workflow optimization [107], and resource optimization [108],
which can be formulated as linear programs. Often, these problems do not only require
an optimal solution, but also a solution that is robust to changes (delay in workflow,
decay of resources, etc.), which can be accounted for in optimization problems.

Bioinformatics is a young research field that contains many NP-hard optimization
problems, many of which can be tackled by ILP techniques [109]. Recently, Karrenbauer

Chapter 7. A Markup Language for Optimization Problems

No. Amino Acid Sequence Uptake
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
L S D G E W Q Q V L N V W G K V E A D I A G H G A E V L

1 ←−−−→ 13
2 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 3
3 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 3
4 ←−−→ 5
5 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 2
6 ←−−→ 4
7 ←−−−−−−−−−−−−−−−−−−−−−−−−→ 2
8 ←−−−−−−−−−−−−−−−−−→ 1
9 ←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ 1

Figure 7.1: Example of the measurements for an HDX experiment; taken from Optimiza-
tion class 2019

and Wöll [110] have proposed a mixed integer programming approach to track blinking
molecules in single molecule microscopy. Their approach optimizes the likelihood of the
connection between molecule positions even if a fluorescent molecule is blinking, i.e, is
dark for several recoreded frames.

Another optimization challenge appears in the measurement of hydrogen-deuterium
exchange(HDX) speeds of single residues. In these experiments, protein chains are put
into heavy water, leading to an exchange of Deuterium atoms with Hydrogen atoms of the
protein residues. The resulting difference in mass can be measured by mass-spectometry,
which only works for random fragements of the protein chain and not for single residues.
Moreover, these mass measurements are prone to small errors so that the exact sequence
of residue changes cannot be restored. It is possible, however, to recover a sequence that
minimizes the total deviation of the measured data over all fragments by an LP approach
that was proposed by Althaus et al. [111] We discuss this LP formulation in more detail
in the following section and show later in this chapter how to model this rather complex
real-world problem in our new modeling language.

7.1.2 The HDX Experiments

Let n be the number of residues in the protein chain and m the number of fragments that
we measure a mass difference. F denotes the set of all these m fragments and the ith
fragment is defined by its first and last residue (`i, ri) that is contained in it. Furthermore,
the number bi denotes the total number of residues that have changed in fragment i. An
example of this scenario is depicted in Figure 7.1. We introduce binary variables xi for
each residue i ∈ [n].

xi =
{

1, if residue xi has been changed
0, otherwise

(7.1)

The objective function minimizes the total deviation from the measurements, i.e.,

min
∑
i∈F

∣∣∣∣∣∣bi −
ri∑
k=`i

xk

∣∣∣∣∣∣ (7.2)

60

7.1. Introduction

For better readability, we introduce the matrix A ∈ {0, 1}m×n, which is

Aij =
{

1 , if si ≤ j ≤ ti
0 , otherwise

(7.3)

leading to the objective function being |b−Ax|.
Furthermore, we linearize the absolute value by introducing two slack vectors s+, s− ∈

Rm≥0 such that s+
i − s

−
i = bi − (Ax)i and s+

i + s−i = |bi − (Ax)i|. The resulting linear
programming formulation is as follows1.

min 1T s+ + 1T s−

s.t. Ax+ s+ − s− = b

0 ≤ xi ≤ 1, ∀i ∈ [n]
s+
j , s

−
j ≥ 0, ∀j ∈ [m]

(7.4)

7.1.3 Why HTML?

The main reason for the choice of our modeling language being based on HTML is its
great accessibility. The markup language provides not only great structure, but also
an easy way to separate model and data. Around 84% of all websites are based on
HTML according to a recent online study of https://w3techs.com. This means that
many users of our target group probably have programmed or at least seen HTML code.
Furthermore, HTML offers a wide variation of visualization via stylesheets. We can use
the available functionality of browsers if we offer our modeling tool as an HTML extension,
which simplifies the user’s installation process and hence increases the availability of our
framework. Using only the browser capabilities, we can provide a graphical user interface
that allows dragging and dropping of model parts and mathematical expressions. For
more complex functionalities, we can even integrate Javascript code into our modeling
language without much effort. More details on the Javascript integration are discussed at
the end of this chapter. Regarding input formats, we can use existing tools to read JSON
or similar formats that are commonly used in the context of HTML; hence, utilizing
already existing data as input for our models. Moreover, there exist fully automatic
validation tools that check the correctness of written HTML code.

7.1.4 Related Work

Many academic and commercial LP solvers offer interfaces to commonly used program-
ming languages, allowing the user to create their model and access solver-specific pa-
rameters. In order to simplify the process of modeling optimization problems, changing
common parameters, and accessing information about the outcome of the solution pro-
cess.

1The x-variables are defined as continuous because the constraint matrix is totally unimodular. In
this case, every extreme point of the corresponding polyhedron is already integer.

61

https://w3techs.com

Chapter 7. A Markup Language for Optimization Problems

Open Solver Interface The Open Solver Interface (OSI) is a part of the open source
framework COIN-OR [112] that offers a C++ interface to model an optimization problem
and access the most common solver parameters. The special feature of OSI is that it
provides a generic interface that is not bound to a particular solver. A single command
can translate your OSI model to the solver of your choice. This is especially useful if you
want to compare the performance of different competing solvers without needing to code
your model multiple times.

Algebraic Modelling Languages There exist several modeling languages that are
based on an algebraic language structure. A Mathematical Programming Language
(AMPL) [113] is one such example. Its mathematical syntax is combined with descrip-
tive parts improving the readability of the constructed models. The General Algebraic
Modeling System (GAMS) [114] follows a similar approach. Both of these mathematical
modeling languages provide a full built-in support for all expected commercial LP solvers.
The Zuse Institute Mathematical Programming Language (ZIMPL) [115] also proposes
a modeling language with a similar syntax. A major difference of this framework to
its mentioned alternatives is the creation of an intermediate model file which can then
be used as an input to most LP solvers. One important key feature that all of these
approaches share is the separation of model and data. In many commercial applications,
the same optimization problem repeatedly appears with varying input data. Therefore,
it is convenient to reuse the same model file and only alter the critical data.

7.1.5 Our Contribution

We present a markup language for the design of linear optimization problems that is

(1) simple: users without deep knowledge in math or computer science can model
complex optimization problems by drag-and-dropping tags in a web interface;

(2) concise: aggregation of terms allows a short and human-readable representation
of complex optimization problems;

(3) expressive: every linear program can be modeled with our language;

(4) extendable: the modular structure of our implementation encourages the exten-
sion of features or the connection to other ILP solvers.

Similar to the approaches mentioned above, we emphasize the possibility to separate
model and data in our language. This does not only allow an easier reusability of models,
but also improves the readability and maintainability of more complex optimization
models. Furthermore, we provide an implementation of an interpreter for this language,
which parses the HTML code, translates it to an internal representation of an optimization
problem and then offers the choice to either directly translate the problem to a solver’s
interface or to produce an LP file, which can then be used as an input for the LP solver
of your choice. Our implementation offers the connection to the Gurobi interface, which
serves as an example and shows the simplicity of connecting an arbitrary solver that
provides a C/C++ interface.

62

7.2. Grammar and Features

7.2 Grammar and Features
We introduce the grammar of our modeling language incrementally. First, we present
a minimal language Lmin that enables an arbitrary linear optimization problem to be
modelled by Lmin. This minimal language allows us to prove the LP-completeness, of
optXML; i.e., every linear programming problem can be expressed. Similar to an ax-
iomatic definition, every subsequent additional feature that we introduce in the rest of
this chapter can be reduced to a block of tags in Lmin (axioms) and thus does not change
the expressive power of the enhanced language. Note that the HTML standard demands
a dash within any custom tag. We solve this by requiring the prefix "opt-" in front of
every tag; however, for the sake of readability, we omit all prefixes in the definition and
discussion of tags and examples in this chapter. In order to interpret the examples with
our framework, all tags have to include the prefix, e.g., <constraint> has to be replaced
by <opt-constraint>.

7.2.1 A Minimal LP-Complete Language
〈instance〉 ::= <instance> 〈model〉 〈data〉 </instance>

〈model〉 ::= <model> 〈objectives〉 〈constraints〉 〈variables〉 </model>

〈objectives〉 ::= | <objectives> 〈objective〉 </objectives>

〈objective〉 ::= | <objective> 〈statement〉 </objective> 〈objective〉

〈variables〉 ::= <variables> 〈vardef 〉 </variables>

〈vardef 〉 ::= | <var/> 〈vardef 〉

〈constraints〉 ::= <constraints> 〈constraint〉 </constraints>

〈constraint〉 ::= | <constraint> 〈lhs〉 〈rhs〉 </constraint> 〈constraint〉

〈lhs〉 ::= <lhs> 〈statement〉 </lhs>

〈rhs〉 ::= <rhs> 〈statement〉 </rhs>

〈statement〉 ::= | 〈add〉 | 〈mul〉 | 〈var〉 | 〈constant〉

〈add〉 ::= | <add> 〈statement〉 </add> 〈add〉

〈mul〉 ::= | <mul> 〈statement〉 </mul> 〈mul〉

〈var〉 ::= <var/>

〈constant〉 ::= <constant/>

With the definition of this grammar, we only served one of the four key principles
we promised so far: the expressive power. It is easy to show that an arbitrary linear
program can be transformed to an equivalent optXML problem using only the structure
introduced above. However, the complexity of such a problem would be at least as large
as the one of .lp-files, which is exactly one of the issues we wanted to improve. In order
to allow for a more concise representation of optXML problems, we extend the grammar
by aggregation tags and macros in the following section.

63

Chapter 7. A Markup Language for Optimization Problems

7.2.2 Tag-Specific Parameters

So far, we only presented the grammar, which serves as the basic structure of our language.
In order to provide crucial information about the optimization model, we allow different
parameters for every tag.

Structural tags The tags instance, model, data, objectives, constraints, and
vardef serve a structuring role in the HTML tree. The former instance tag is the root
node of the tree, which has to exist according to the HTML standard. The last three
tags are responsible to bundle all objectives, constraints and variable definitions in order
to improve the structure and readability of the model.

Although these tags do not have any special parameters due to their purely structural
role, one could add parameters to the instance tag that encode solver-specific parameters;
for example, the choice of the solving method, the focus on lower or upper bounds, or
the amount of presolving done before the actual optimization.

<objective sense="minimize ">
. . .

</objective>

(a) A single-objective minimization problem

<objective sense="minimize " weight=" 0 .4 ">
. . .

</objective>

(b) A multi-objective optimization problem applying the weighted average

<objectives>
<objective sense="minimize " rank=" 1 ">

. . .
</objective>
<objective sense="maximize " rank=" 2 ">

. . .
</objective>
<objective sense="minimize " rank=" 3 ">

. . .
</objective>

</objectives>

(c) A multi-objective optimization problem applying the lexicographic method

Figure 7.2: Three possible use-cases for the objective tag.

Objective The objective tag has multiple parameters. The first and mandatory
parameter is the objective sense, which can be either maximize or minimize. In the
scenario of mulit-objective optimization, the tag obtains two additional parameters,
weight and rank. The weight attribute indicates that the multiple objectives are linearized
to a weighted average, whereas the rank attribute indicates the use of the lexicographic
method. Figure 7.2 shows three examples for the use-cases mentioned above.

64

7.2. Grammar and Features

<constraint relation="<=">
<lhs>

. . .
</lhs>
<rhs>

. . .
</rhs>

</constraint>

(a) A constraint of the form lhs ≤ rhs

<constraint relation="<=" rhs="1 ">
<lhs>

. . .
</lhs>

</constraint>

(b) The right-hand side is contained in the attribute of the constraint-tag

<constraint exp r e s s i on="x␣+␣y␣<=␣1 "/>

(c) The full constraint expression is stated in JavaScript format.

Figure 7.3: Three possible use-cases for the constraint tag.

Constraint The constraint tag has one mandatory attribute: its relation (=, ≤, or
≥). Additional optional parameters allow the user to specify simple expressions as right
hand sides or even as the full constraints. Figure 7.3 shows three examples of simple
constraint structures.

<var name="x " index=" (1 , 2) "/>

(a) The variable tag for x1,2

<var name="x " index="1 " type=" binary "/>

(b) Defining the binary variable x1

<var name=" z " type=" i n t e g e r " lowerbound="2 " upperbound=" 10 "/>

(c) Defining the integer variable z with the additional constraint 2 ≤ z ≤ 10

Figure 7.4: Three possible use-cases for the variable tag.

Variable Variables must have a name, which is defined as a parameter in the variable
tag. An optional attribute is an index, which can be a natural number or a tuple of
numbers. Using this index attribute, we can express variables of the form xi or xi,j .
The usage of indices will be especially important when we introduce aggregation tags or
macros. If we define a variable in the vardef section of our model, additional parameters
are enabled; e.g., the type of variable (binary, integer, or continuous) and lower/upper
bounds. Figure 7.4 shows an example for using a variable in an expression and two
additional examples for defining variables in the vardef section.

65

Chapter 7. A Markup Language for Optimization Problems

<constant number="5 "/>

(a) The constant tag for a concrete number

<constant name=" c " index=" (i , j) "/>

(b) The constant tag for the not yet specified term ci,j

Figure 7.5: Two possibilities to use the constant tag in an expression.

Constant Constants can either be hard-coded numbers or have a name and possibly
also an index similar to variables. This latter case plays an important role in the separa-
tion of model and data that we discussed before. We can model a general optimization
problem without specifying actual weights; instead, we use placeholders for these con-
stant expressions, which are replaced by constant numbers during the instantiation of a
concrete optimization instance.

<mult>
<constant number="5 "/>
<var name="x "/>

</mult>

(a) The expression 5 · x

<var name="x " coef f ic ient="5 "/>

(b) The equivalent simplified expression.

<add>
<var name="x "/>
<var name="y " coef f ic ient="2 "/>

</add>

(c) The expression x+ 2y

Figure 7.6: Adding and multiplying constants and variables

Mathematical operators We allow addition and multiplication as mathematical
operations. These tags do not have any additional parameters. While we only solve
mixed integer linear problems at the moment, the structure of our language easily allows
quadratic or higher-order terms of variables. Simple expressions like the multiplication
of a variable with a constant number can be simplified by enhancing the variable tag
with a coefficient parameter. Figure 7.6 show both alternative versions.

7.3 Additional Features
Many expressions in linear programs can be simplified using the ∑- or the ∀-operators.
These aggregation operators allow for more concise representations of even complex
optimization problems. We introduce the <each> tag, which mimics both these operators
depending on its position in the HTML tree.

66

7.3. Additional Features

<each item=" i " family=" [m: n] " >
<add>

<var name="x " index=" i ">
</add>

</each>

(a) The expression
n∑

i=m

xi

<each item=" (a , b) " family="F">
<add>

<var name="x " index="a ">
<var name="x " index="b">

</add>
</each>

(b) The expression
∑
i∈F

(xa + xb)

<each item=" i " family=" [n] ">
<constraint>

. . .
</constraint>

</each>

(c) Defining a constraint ∀i ∈ [n]

Figure 7.7: Using each to express sums or ∀-operators.

It indicates the iteration over a given family F . For simplicity, the set {1, . . . , n}
can also be written as [n], and the set {m, . . . , n} for m ≤ n can be written as [m : n].
The children of an each-tag can access the current element via the item parameter (i in
Figure 7.7). Note that, depending on the structure of F , an item can also be a tuple or
vector, which can be written as item="(a,b)".

The linear programming formulation for the HDX experiment inspired us to consider
an additional use-case. The constraint Ax + s+ − s− = b in the linear programming
formulation (7.4)) contains the fragments (`i, ri) for all i ∈ F and the number of changes
bi in this fragment. The full expression is

∀i ∈ F : s+
i − s

−
i +

ri∑
k=`i

xk = bi (7.5)

The inherent challenge of modeling this constraint is that the data points `i and ri are
used to define the set of indices of x-variables in the summation term again. At the
same time, we need to know the fragment number i in order to add the variables s+

i

and s−i to the correct constraint. Assuming that we are given the fragments as a vector
containing the tuples (`i, ri), a naive solution to this challenge would be to enhance the
tuple to (`i, ri, i). Although this would allow us to easily access all the information we
need to model this problem, it is quite tedious to manipulate data with trivial information.
Instead, we propose to introduce the index feature of the each tag, which can be used
alongside the item parameter. If this index parameter is used, every item in a family

67

Chapter 7. A Markup Language for Optimization Problems

<each item=" (l , r) " family="F" index=" i ">
<constraint relation="=">

<lhs>
<add>

<var name=" sp lu s " index=" i "/>
<var name=" sminus " index=" i " coef f ic ient="−1"/>
<each item="k " family=" [l , r] " >

<var name="x " index="k "/>
</each>

</add>
</lhs>
<rhs>

<add>
<constant name="b" index=" i "/>

</add>
</rhs>

</constraint>
</each>

Figure 7.8: The index parameter used in the HDX model

<add>
<each item=" i " family="F" f i l t e r=" i%2==0">

<var name="x " index=" i "/>
</each>

</add>

Figure 7.9: Each with a filter: ∑
i∈F :i even

xi

F is labelled with an ID reflecting the item’s ordering in F , which can then be used to
access the corresponding entry of a different vector. Figure 7.8 shows the use of this new
parameter in the HDX model.

Filtering each If the user wants to iterate over a certain family and test the current
item before deciding whether or not to process this item (i.e., generate an expression,
constraint, variable, . . .), we propose the filter parameter of the each tag. The filter
has to be a valid Javascript expression that evaluates to a boolean; the children of the
each tag are only processed for every item that evaluates to true. Figure 7.9 shows an
example where we add only the even numbers of a family F to a sum expression.

Macro Programming In order to further simplify the modelling of optimization
problems and allow users with more programming expertise to reuse frequently used
model parts, we introduce macros. Similar to macros in popular programming languages
like Java or C, we allow users to define custom tag structures. Whenever this custom
tags appears in the optimization model, it is replaced according to its definition in a
preprocessing step. The <macro> tag is used for the macro definition. Its mandatory
parameters are the name, which has to be distinct from the tag names we reserved so
far and from any other macro names in the model. Additional parameters are specified

68

7.3. Additional Features

in the parameter attribute. Figure 7.1 shows the definition of a macro for assignment
constraints.

Example 7.1. We first define the following macro for assignment constraints. We declare
the parameters xvar and num, which are used inside the definition and are replaced when
we call the macro in a model.
<macro name=" assignment " parameter=" xvar ,num">

<each family=" [num] " item=" i ">
<constraint relation="=">

<lhs>
<add>

<each item=" j " family=" [num] ">
<var name=" xvar " index=" (i , j) "/>

</each>
</add>

</lhs>
<rhs>

<constant number="1 "/>
</rhs>

</constraint>
</each>
<each item=" j " family=" [num] ">

<constraint relation="=">
<lhs>

<add>
<each item=" i " family=" [num] ">

<var name=" xvar " index=" (i , j) "/>
</each>

</add>
</lhs>
<rhs>

<constant number="1 "/>
</rhs>

</constraint>
</each

</macro>

If we want to use this macro in a model, we use it equivalently to a standard tag and
define the required parameters.
<constraints>

<assignment xvar="x " num="n"/>
</constraints>
<variables>

<each item=" i " family=" [n] ">
<va r i ab l e name="x " index=" i " type=" binary "/>

</each>
</variables>

This features can not only be useful for users to create their own custom macros, it also
offers the chance for us to create a huge library of macros for commonly used structures
in optimization problems. Similar to HTML templates, users could download the macros
they need for their problem (e.g., macros for assignment or covering constraints) and
include them in their model.

69

Chapter 7. A Markup Language for Optimization Problems

Javascript The integration of Javascript into HTML code is very simple; HTML 5
even includes basic Javascript techniques into its standard [116]. In the context of our
modelling language, Javascript code could be useful to generate expressions that require
more complex mathematical calculations than can be done in simple filter expression.
Experienced users can include <script> tags within the <model> tree. When the HTML
tree is traversed and interpreted, the Javascript code in an occurring <script> node is
interpreted in a sandbox and the script node is then replaced by the HTML structure
generated during the code interpretation. If the parent tags of the script node contain
value definitions (for example, when unfolding a tag like <each family="[n]" item="i">, i
has a value in [n]), these values are available to be read by the Javascript code. In order to
avoid side effects or undefined behaviour, we do not allow Javascript to manipulate these
values; the access is read-only. Exporting HTML code from Javascript to our model tree is
done via a predefined function evaluate. This Javascript function expects a string that
is converted to a HTML tree, which is then added at the current position. An example
of constraint generation with Javascript is depicted in Figure 7.10. It also shows an
alternative (more convenient) option to add the constraint from Javascript to the model.
It is easily possible to define similar evaluation functions (like evaluateConstraint,
evaluateVariable, etc.) that are dedicated for different structures of the optimization
model, which supposedly further simplifies the use of Javascript.

7.4 Conclusion
This chapter lays the foundation for a markup language to model optimization problems.
While we mainly focused on the design of the language, its structure and features to
simplify its use and lower the entry hurdles in this chapter, a major focus of Sören
Bund-Becker’s Bachelor’s thesis, which I supervised with Andreas Karrenbauer, was the
implementation of an interpreter for the language including all the features described
above. The presented structure of the language together with this implementation allow
us to conveniently handle the modeling of the French keyboard problem, which was the
motivation that initiated this project. Before this framework can reach a broader audi-
ence, there are still some open challenges that have to be resolved. A visually pleasing
and user-friendly implementation of GUI, for instance by using stylesheets, enabling
drag-and-drop, etc. still has to be done. Having a simple interface for domain experts
without programming skills is a crucial step towards increasing the acceptance of this
modeling language. Moreover, an integration of our language into commonly used spread-
sheet programs like Microsoft Excel that allows to directly pull and manipulate data of
spreadsheets would immensely increase the reach of our approach. One of the most im-
portant premises of this project was the extendibility of both design and implementation
for future students and researchers. I believe, we achieved this goal and proposed a solid
initial framework that invites to be extended and further improved in the future.

70

7.4. Conclusion

<constraints>
<each item=" i " family=" [4] ">

<script type=" text / j a v a s c r i p t ">
var k = Math . s q r t (i) ;
i f ((Math . f l o o r (k) === k) {

eva luate (’ ’ < constraint exp r e s s i on=" x_i+k<=y" / > ’ ’) ;
}

</script>
</each>

</constraints>

(a) Using Javascript to define a constraint xi +
√
i ≤ y if and only if

√
i ∈ N

<constraints>
<each item=" i " family=" [4] ">

<script type=" text / j a v a s c r i p t ">
var k = Math . s q r t (i) ;
i f ((Math . f l o o r (k) === k) {

eva lua teCons t ra in t (’ ’ x_i + k<= y ’ ’) ;
}

</script>
</each>

</constraints>

(b) An equivalent formulation with a more convenient evaluation function

<constraints>
<constraint exp r e s s i on="x_1+1<=y"/>
<constraint exp r e s s i on="x_4+2<=y"/>

</constraints>

(c) The HTML code generated by the Javascript interpretation

Figure 7.10: The modeling capabilities of Javascript

71

Chapter 7. A Markup Language for Optimization Problems

72

List of Figures

2.1 The U.S. patent for the Qwerty typewriter layout. Source: U.S. Patent
No. 207,559; C.L. Sholes; 1878 . 4

3.1 The Azerty keyboard standard . 11
3.2 Example set of special characters (107). In red are diacritic marks; entered

via dead keys . 12
3.3 Project timeline: Computational methods were involved in all phases but

the public comment, governed by interactions with stakeholders. 13
3.4 The new Azerty layout [59]. The characters included in the design

problem are in boldface and color. Marked in red are dead keys. 19
3.5 The participatory optimization process of the standardization procedure. 20

5.1 The evolution of the lower bound when switching variants for instance
N50s. The numbers in the legend describe the iteration at which the switch
was triggered. 38

5.2 The evolution of the lower bounds within 12 hours of computation time
for instance N50s. 39

5.3 Lower and upper bounds for the QAP instances 40
5.4 The time we need to exceed the bounds of Xia and Yuan after 1h and 12h

(in seconds) . 41
5.5 Boxplots of the time (in seconds) until our approach exceeded the 12 hours

Xia-Yuan bound . 41
5.6 Bounds for 60 randomly variated instances (20 each) with variance σ . . 42

6.1 Example: the binary decomposition cut pseudo base with 8 = 23 locations 45
6.2 The complete SDP formulation . 52
6.3 Averaged QAPLIB instances after one hour of computation 56
6.4 The Nugent instances with 12 to 30 items after one hour of computation,

RLT1 fails to solve n ≥ 15 within this time and resource limit. 56

7.1 Example of the measurements for an HDX experiment; taken from Opti-
mization class 2019 . 60

7.2 Three possible use-cases for the objective tag. 64
7.3 Three possible use-cases for the constraint tag. 65
7.4 Three possible use-cases for the variable tag. 65
7.5 Two possibilities to use the constant tag in an expression. 66
7.6 Adding and multiplying constants and variables 66
7.7 Using each to express sums or ∀-operators. 67
7.8 The index parameter used in the HDX model 68
7.9 Each with a filter: ∑

i∈F :i even
xi . 68

7.10 The modeling capabilities of Javascript 71

List of Figures

74

Bibliography

[1] A. Feit, M. Nancel, M. John, A. Karrenbauer, D. Weir, and A. Oulasvirta, “Azerty
amélioré: Computational design on a national scale,” accepted in Communications
of the ACM, 2020.

[2] M. John and A. Karrenbauer, “Dynamic sparsification for quadratic assign-
ment problems,” in Mathematical Optimization Theory and Operations Research
(M. Khachay, Y. Kochetov, and P. Pardalos, eds.), (Cham), pp. 232–246, Springer
International Publishing, 2019.

[3] A. Oulasvirta, N. R. Dayama, M. Shiripour, M. John, and A. Karrenbauer, “Combi-
natorial optimization of graphical user interface designs,” Proceedings of the IEEE,
2020, doi=10.1109/JPROC.2020.2969687.

[4] I. S. MacKenzie and S. X. Zhang, “The design and evaluation of a high-performance
soft keyboard,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, CHI ’99, (New York, NY, USA), pp. 25–31, ACM, 1999.

[5] R. Burkard and J. Offermann, “Entwurf von Schreibmaschinentastaturen mittels
quadratischer Zuordnungsprobleme,” Zeitschrift für Operations Research, vol. 21,
pp. 121–132, 1977.

[6] A. Oulasvirta, A. Feit, P. Lähteenlahti, and A. Karrenbauer, “Computational
support for functionality selection in interaction design,” ACM Transactions on
Computer-Human Interaction (TOCHI), vol. 24, no. 5, p. 34, 2017.

[7] A. M. Memon, M. L. Soffa, and M. E. Pollack, “Coverage criteria for gui testing,”
ACM SIGSOFT Software Engineering Notes, vol. 26, no. 5, pp. 256–267, 2001.

[8] S. K. Feiner, “A grid-based approach to automating display layout,” in Proceedings
on Graphics Interface ’88, (Toronto, Ont., Canada, Canada), pp. 192–197, Canadian
Information Processing Society, 1988.

[9] W. O. Galitz, The essential guide to user interface design: an introduction to GUI
design principles and techniques. John Wiley & Sons, 2007.

[10] W. R. King and J. He, “A meta-analysis of the technology acceptance model,”
Information & management, vol. 43, no. 6, pp. 740–755, 2006.

[11] A. Oulasvirta, X. Bi, and A. Howes, Computational Interaction. Oxford University
Press, 2018.

[12] N. Cross, Designerly ways of knowing. Springer, 2006.

[13] J. Löwgren and E. Stolterman, Thoughtful interaction design: A design perspective
on information technology. The MIT press, 2004.

Bibliography

[14] A. Chevalier and M. Y. Ivory, “Web site designs: Influences of designer’s expertise
and design constraints,” International Journal of Human-Computer Studies, vol. 58,
no. 1, pp. 57–87, 2003.

[15] A. Dix, Human-computer interaction. Springer, 2009.

[16] L. Hallnäs and J. Redström, Interaction design: foundations, experiments. Tex-
tile Research Centre, Swedish School of Textiles, Unversity College of Borås and
Interactive Institute, 2006.

[17] J. Preece, H. Sharp, and Y. Rogers, Interaction Design-beyond human-computer
interaction. John Wiley & Sons, 2015.

[18] D. Saffer, Designing for interaction: creating innovative applications and devices.
New Riders, 2010.

[19] T. Winograd, “The design of interaction,” in Beyond calculation, pp. 149–161,
Springer, 1997.

[20] K. Dorst and N. Cross, “Creativity in the design process: co-evolution of problem–
solution,” Design studies, vol. 22, no. 5, pp. 425–437, 2001.

[21] B. Buxton, Sketching user experiences: getting the design right and the right design:
getting the design right and the right design. Morgan Kaufmann, 2010.

[22] A. Oulasvirta and A. Karrenbauer, “Combinatorial optimization for UI design,” in
Computational Interaction (A. Oulasvirta, P. O. Kristensson, X. Bi, and A. Howes,
eds.), pp. 97–120, Oxford, UK: Oxford University Press, 2018.

[23] A. M. Feit,Assignment Problems for Optimizing Text Input. G5 artikkeliväitöskirja,
2018.

[24] J. Accot and S. Zhai, “Refining fitts’ law models for bivariate pointing,” in Proceed-
ings of the SIGCHI conference on Human factors in computing systems, pp. 193–
200, ACM, 2003.

[25] K. Gajos and D. S. Weld, “Preference elicitation for interface optimization,” in
Proceedings of the 18th annual ACM symposium on User interface software and
technology, pp. 173–182, ACM, 2005.

[26] R. T. Marler and J. S. Arora, “Survey of multi-objective optimization methods for
engineering,” Structural and multidisciplinary optimization, vol. 26, no. 6, pp. 369–
395, 2004.

[27] F. Hillier and G. Lieberman, Introduction to Operations Research. No. v. 1 in
Introduction to Operations Research, McGraw-Hill, 2001.

[28] M. Kaisa, Nonlinear Multiobjective Optimization, vol. 12 of International Series
in Operations Research & Management Science. Boston, USA: Kluwer Academic
Publishers, 1999.

76

Bibliography

[29] K.-L. Du, M. Swamy, et al., “Search and optimization by metaheuristics,”
Birkhaüser) July, 2016.

[30] E.-G. Talbi, Metaheuristics: from design to implementation, vol. 74. John Wiley
& Sons, 2009.

[31] S. Chand and M. Wagner, “Evolutionary many-objective optimization: A quick-
start guide,” Surveys in Operations Research and Management Science, vol. 20,
no. 2, pp. 35–42, 2015.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective
genetic algorithm: Nsga-ii,” IEEE transactions on evolutionary computation, vol. 6,
no. 2, pp. 182–197, 2002.

[33] E. Zitzler, M. Laumanns, and L. Thiele, “Spea2: Improving the strength pareto
evolutionary algorithm,” TIK-report, vol. 103, 2001.

[34] S. Lok and S. Feiner, “A survey of automated layout techniques for information
presentations,” Proceedings of SmartGraphics, vol. 2001, pp. 61–68, 2001.

[35] R. Kennard and R. Steele, “Application of software mining to automatic user
interface generation,” in International Conference on Software Methods and Tools,
IOS Press, 2008.

[36] R. Kumar, A. Satyanarayan, C. Torres, M. Lim, S. Ahmad, S. R. Klemmer, and
J. O. Talton, “Webzeitgeist: design mining the web,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 3083–3092, ACM, 2013.

[37] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Learning layouts for single-
pagegraphic designs,” IEEE Transactions on Visualization and Computer Graphics,
vol. 20, pp. 1200–1213, Aug 2014.

[38] J. Talton, L. Yang, R. Kumar, M. Lim, N. Goodman, and R. Měch, “Learning
design patterns with bayesian grammar induction,” in Proceedings of the 25th
Annual ACM Symposium on User Interface Software and Technology, UIST ’12,
(New York, NY, USA), pp. 63–74, ACM, 2012.

[39] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas, “Taking the
human out of the loop: A review of bayesian optimization,” Proceedings of the
IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[40] Y. Koyama and T. Igarashi, “Computational design with crowds,” Computational
Interaction, p. 153, 2018.

[41] H.-G. Beyer and B. Sendhoff, “Robust optimization–a comprehensive survey,” Com-
puter methods in applied mechanics and engineering, vol. 196, no. 33-34, pp. 3190–
3218, 2007.

[42] B. L. Gorissen, İhsan Yanıkoğlu, and D. den Hertog, “A practical guide to robust
optimization,” Omega, vol. 53, pp. 124 – 137, 2015.

77

Bibliography

[43] N. V. Sahinidis, “Optimization under uncertainty: state-of-the-art and opportuni-
ties,” Computers and Chemical Engineering, vol. 28, no. 6, pp. 971 – 983, 2004.
FOCAPO 2003 Special issue.

[44] M. Fisher, “Interactive optimization,” Annals of Operations Research, vol. 5, no. 3,
pp. 539–556, 1985.

[45] G. W. Klau, N. Lesh, J. Marks, M. Mitzenmacher, and G. T. Schafer, “The hugs
platform: A toolkit for interactive optimization,” in Proceedings of the working
conference on advanced visual interfaces, pp. 324–330, ACM, 2002.

[46] D. Meignan, S. Knust, J.-M. Frayret, G. Pesant, and N. Gaud, “A review and tax-
onomy of interactive optimization methods in operations research,” ACM Trans-
actions on Interactive Intelligent Systems (TiiS), vol. 5, no. 3, p. 17, 2015.

[47] A. Sears, “Aide: A step toward metric-based interface development tools,” in Pro-
ceedings of the 8th annual ACM symposium on User interface and software tech-
nology, pp. 101–110, ACM, 1995.

[48] B. Myers, S. E. Hudson, and R. Pausch, “Past, present, and future of user interface
software tools,” ACM Transactions on Computer-Human Interaction (TOCHI),
vol. 7, no. 1, pp. 3–28, 2000.

[49] A. Swearngin, A. J. Ko, and J. Fogarty, “Scout: Mixed-initiative exploration of
design variations through high-level design constraints,” in The 31st Annual ACM
Symposium on User Interface Software and Technology Adjunct Proceedings, UIST
’18 Adjunct, (New York, NY, USA), pp. 134–136, ACM, 2018.

[50] M. R. Frank and J. D. Foley, “Model-based user interface design by example and
by interview,” in Proceedings of the 6th Annual ACM Symposium on User Interface
Software and Technology, UIST ’93, (New York, NY, USA), pp. 129–137, ACM,
1993.

[51] B. Lee, S. Srivastava, R. Kumar, R. Brafman, and S. R. Klemmer, “Designing
with interactive example galleries,” in Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, pp. 2257–2266, ACM, 2010.

[52] P. O’Donovan, A. Agarwala, and A. Hertzmann, “Designscape: Design with inter-
active layout suggestions,” in Proceedings of the 33rd annual ACM conference on
human factors in computing systems, pp. 1221–1224, ACM, 2015.

[53] K. Todi, D. Weir, and A. Oulasvirta, “Sketchplore: Sketch and explore with a layout
optimiser,” in Proceedings of the 2016 ACM Conference on Designing Interactive
Systems, pp. 543–555, ACM, 2016.

[54] G. Bailly, A. Oulasvirta, T. Kötzing, and S. Hoppe, “Menuoptimizer: Interactive
optimization of menu systems,” in Proceedings of the 26th annual ACM symposium
on User interface software and technology, pp. 331–342, ACM, 2013.

[55] N. D. Ramesh, K. Todi, and A. Oulasvirta, “Interactive grid layout design with
integer programming,” in submitted for review.

78

Bibliography

[56] DGLFLF, “Rapport au Parlement sur l’emploi de la langue française.” Government
Report, 2015. From the Délégation générale à la langue française et aux langues
de France of the Ministère de la Culture et de la Communication. In French.

[57] DGLFLF, “Vers une norme française pour les claviers informatiques.” Government
Publication, 2016. From the Délégation générale à la langue française et aux
langues de France of the Ministère de la Culture et de la Communication. In
French.

[58] “ISO/IEC 9995-1:2009 Information technology – Keyboard layouts for text and
office systems – Part 1: General principles governing keyboard layouts,” standard,
International Organization for Standardization, Geneva, CH, Oct. 2009.

[59] AFNOR, “Interfaces utilisateurs - Dispositions de clavier bureautique français, NF
Z71-300 Avril 2019. La Plaine Saint-Denis: AFNOR, Version de 2019-04-P, 85 p..”

[60] AFNOR, “User interfaces - French keyboard layouts for office, NF Z71-300 Avril
2019. La Plaine Saint-Denis: AFNOR, Version de 2019-04-P, 85 p..”

[61] A. Yassi, “Repetitive strain injuries,” The Lancet, vol. 349, pp. 943–947, mar 1997.

[62] J. P. P. Jokinen, S. Sarcar, A. Oulasvirta, C. Silpasuwanchai, Z. Wang, and X. Ren,
“Modelling Learning of New Keyboard Layouts,” in Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems - CHI ’17, (New York, New
York, USA), pp. 4203–4215, ACM Press, 2017.

[63] P. U.-J. Lee and S. Zhai, “Top-down learning strategies: can they facilitate stylus
keyboard learning?,” International Journal of Human-Computer Studies, vol. 60,
pp. 585–598, may 2004.

[64] M. Pollatschek, M. Gershoni, and Y. Tadday, “Improving the hebrew typewriter,”
Report Technion Haifa, 1975.

[65] A. Karrenbauer and A. Oulasvirta, “Improvements to keyboard optimization with
integer programming,” in Proceedings of the 27th Annual ACM Symposium on User
Interface Software and Technology, UIST ’14, (New York, NY, USA), pp. 621–626,
ACM, 2014.

[66] A. M. Feit, M. Nancel, D. Weir, G. Bailly, M. John, A. Karrenbauer, and
A. Oulasvirta, “Élaboration de la disposition AZERTY modernisée,” tech. rep.,
June 2018.

[67] J. Simonsen and T. Robertson, Routledge international handbook of participatory
design. Routledge, 2012.

[68] D. Bertsimas and J. Tsitsiklis, Introduction to Linear Optimization. Athena Scien-
tific, 1st ed., 1997.

[69] D. Birkhoff, “Tres observaciones sobre el algebra lineal,” Universidad Nacional de
Tucuman Revista , Serie A, vol. 5, pp. 147–151, 1946.

79

Bibliography

[70] H. W. Kuhn, “The hungarian method for the assignment problem,” Naval Research
Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[71] R. Duan and H.-H. Su, “A scaling algorithm for maximum weight matching in bi-
partite graphs,” in Proceedings of the Twenty-third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’12, pp. 1413–1424, SIAM, 2012.

[72] T. Koopmans and M. J. Beckmann, “Assignment Problems and the Location of
Economic Activities,” Cowles Foundation Discussion Papers 4, Cowles Foundation
for Research in Economics, Yale University, 1955.

[73] C. Nugent, T. Vollman, and J. Ruml, “An Experimental Comparison of Techniques
for the Assignment of Facilities to Locations,” Operations Research, vol. 16, no. 1,
pp. 150–173, 1968.

[74] R. E. Burkard, E. Çela, P. M. Pardalos, and L. S. Pitsoulis, The Quadratic Assign-
ment Problem, pp. 1713–1809. Boston, MA: Springer US, 1998.

[75] L. Steinberg, “The Backboard Wiring Problem: A Placement Algorithm,” SIAM
Review, vol. 3, no. 1, pp. 37–50, 1961.

[76] J. Krarup and P. M. Pruzan, Mathematical Programming in Use, ch. Computer-
aided layout design, pp. 75–94. Berlin, Heidelberg: Springer Berlin Heidelberg,
1978.

[77] A. N. Elshafei, “Hospital layout as a quadratic assignment problem,” Operational
Research Quarterly (1970-1977), vol. 28, no. 1, pp. 167–179, 1977.

[78] M. Queyranne, “Performance Ratio of Polynomial Heuristics for Triangle Inequality
Quadratic Assignment Problems,” Operations Research Letters, vol. 4, no. 5, pp. 231
– 234, 1986.

[79] R. E. Burkard, S. E. Karisch, and F. Rendl, “Qaplib - a quadratic assignment
problemlibrary,” J. of Global Optimization, vol. 10, pp. 391–403, June 1997.

[80] Z. Drezner, “Finding a cluster of points and the grey pattern quadratic assignment
problem,” OR Spectrum, vol. 28, pp. 417–436, 07 2006.

[81] K. Anstreicher, N. Brixius, J.-P. Goux, and J. Linderoth, “Solving large quadratic
assignment problems on computational grids,” Mathematical Programming, vol. 91,
no. 3, pp. 563–588, 2014.

[82] N. Christofides, “Worst-case analysis of a new heuristic for the travelling salesman
problem,” tech. rep., DTIC Document, 1976.

[83] M. K. Anstreicher, “Recent advances in the solution of quadratic assignment prob-
lems,” Mathematical Programming, vol. 97, no. 1, pp. 27–42, 2003.

[84] U. Feige and J. R. Lee, “An improved approximation ratio for the minimum linear
arrangement problem,” Inf. Process. Lett., vol. 101, no. 1, pp. 26–29, 2007.

80

Bibliography

[85] R. Hassin, A. Levin, and M. Sviridenko, “Approximating the minimum quadratic
assignment problems,” ACM Trans. Algorithms, vol. 6, pp. 18:1–18:10, Dec. 2009.

[86] E. M. Arkin, R. Hassin, and M. Sviridenko, “Approximating the maximum
quadratic assignment problem,” Information Processing Letters, vol. 77, no. 1,
pp. 13 – 16, 2001.

[87] V. Nagarajan andM. Sviridenko, “On the maximum quadratic assignment problem,”
Mathematics of Operations Research, vol. 34, no. 4, pp. 859–868, 2009.

[88] Q. Zhao, S. E. Karisch, F. Rendl, and H. Wolkowicz, “Semidefinite Programming
Relaxations for the Quadratic Assignment Problem,” Journal of Combinatorial
Optimization, vol. 2, no. 1, pp. 71–109, 1998.

[89] J. Povh and F. Rendl, “Copositive and Semidefinite Relaxations of the Quadratic
Assignment Problem,” Discret. Optim., vol. 6, pp. 231–241, Aug. 2009.

[90] P. C. Gilmore, “Optimal and Suboptimal Algorithms for the Quadratic Assignment
Problem,” SIAM J. Appl. Math., vol. 10, pp. 305–313, 1962.

[91] Y. Li, P. M. Pardalos, K. G. Ramakrishnan, and M. G. C. Resende, “Lower bounds
for the quadratic assignment problem,” Annals of Operations Research, vol. 50,
no. 1, pp. 387–410, 1994.

[92] L. Kaufman and F. Broeckx, “An Algorithm for the Quadratic Assignment Problem
Using Benders’ Decomposition,” European Journal of Operational Research, vol. 2,
no. 3, pp. 207 – 211, 1978.

[93] Y. Xia and Y.-X. Yuan, “A new Linearization Method for Quadratic Assignment
Problems,” Optimization Methods and Software, vol. 21, no. 5, pp. 805–818, 2006.

[94] H. Zhang, C. Beltran-Royo, and L. Ma, “Solving the Quadratic Assignment Problem
by Means of General Purpose Mixed Integer Linear Programming Solvers,” Annals
OR, vol. 207, pp. 261–278, 2013.

[95] A. Frieze and J. Yadegar, “On the quadratic assignment problem,” Discrete Applied
Mathematics, vol. 5, no. 1, pp. 89 – 98, 1983.

[96] H. D. Sherali and W. P. Adams, “A Hierarchy of Relaxations and Convex Hull
Characterizations for Mixed-Integer Zero—One Programming Problems,” Discrete
Applied Mathematics, vol. 52, no. 1, pp. 83 – 106, 1994.

[97] H. D. Sherali and W. P. Adams, Handbook of Combinatorial Optimization,
ch. Reformulation–Linearization Techniques for Discrete Optimization Problems,
pp. 2849–2896. New York, NY: Springer New York, 2013.

[98] J. Peng, H. Mittelmann, and X. Li, “A new Relaxation Framework for Quadratic
Assignment Problems Based on Matrix Splitting,” Mathematical Programming
Computation, vol. 2, no. 1, pp. 59–77, 2010.

[99] L. Gurobi Optimization, “Gurobi Optimizer Version 8.1,” 2019.

81

Bibliography

[100] M. John and A. Karrenbauer, A Novel SDP Relaxation for the Quadratic Assign-
ment Problem Using Cut Pseudo Bases, pp. 414–425. Cham: Springer International
Publishing, 2016.

[101] L. A. Wolsey, Integer programming. Wiley-Interscience series in discrete mathe-
matics and optimization, New York (N.Y.), Chichester, Weinheim: J. Wiley & sons,
1998. A Wiley-Interscience publication.

[102] C. Helmberg and F. Rendl, “A spectral bundle method for semidefinite program-
ming,” SIAM Journal on Optimization, vol. 10, no. 3, pp. 673–696, 2000.

[103] M. V. Ramana, L. Tunçel, and H. Wolkowicz, “Strong duality for semidefinite
programming,” vol. 7, pp. 641–662, Aug. 1997.

[104] MOSEK ApS, The MOSEK C optimizer API manual Version 7.1 (Revision 52),
2016.

[105] S. Bund-Becker, “Creating a markup language for mixed integer linear programs,”
2019, Bachelor’s thesis, Saarland University.

[106] A. Mitsos, I. N. Melas, P. Siminelakis, A. D. Chairakaki, J. Saez-Rodriguez, and
L. G. Alexopoulos, “Identifying drug effects via pathway alterations using an integer
linear programming optimization formulation on phosphoproteomic data,” PLOS
Computational Biology, vol. 5, pp. 1–11, 12 2009.

[107] D. Schuller, A. Miede, J. Eckert, U. Lampe, A. Papageorgiou, and R. Steinmetz,
“Qos-based optimization of service compositions for complex workflows,” in Inter-
national Conference on Service-Oriented Computing, pp. 641–648, Springer, 2010.

[108] Y. Y. Haimes, W. A. Hall, and H. T. Freedman, Multiobjective optimization in
water resources systems: the surrogate worth trade-off method, vol. 3. Elsevier,
2011.

[109] E. Althaus, G. Klau, O. Kohlbacher, H.-P. Lenhof, and R. Knut, “Integer linear
programming in computational biology,” vol. 5760, pp. 199–218, 01 2009.

[110] A. Karrenbauer and D. Wöll, “Blinking molecule tracking,” CoRR,
vol. abs/1212.5877, 2012.

[111] E. Althaus, S. Canzar, M. R. Emmett, A. Karrenbauer, A. G. Marshall, A. Meyer-
Baese, and H. Zhang, “Computing h/d-exchange speeds of single residues fromdata
of peptic fragments,” in The 2008 ACM symposium on Applied computing-SAC’08,
pp. 1273–1277, 2008.

[112] R. Lougee, “The coin-or initiative: Open-source software accelerates operations
research progress,” ORMS Today, vol. 28, pp. 20–22, 01 2001.

[113] R. Fourer, D. M. Gay, and B. Kernighan, “Algorithms and model formulations in
mathematical programming,” ch. AMPL: A Mathematical Programming Language,
pp. 150–151, Berlin, Heidelberg: Springer-Verlag, 1989.

82

Bibliography

[114] G. D. Corporation, “General algebraic modeling system (gams) release 27.1.0,”
2019.

[115] T. Koch, Rapid Mathematical Prototyping. PhD thesis, Technische Universität
Berlin, 2004.

[116] S. O’Hara, P. Aas, S. Dixit, B. Lawson, X. Wu, T. Eden, and S. Moon, “HTML
5.3,” W3C working draft, W3C, Oct. 2018. https://www.w3.org/TR/2018/WD-
html53-20181018/.

83

	Introduction
	Optimization in Human-Computer Interaction
	Introduction
	Graphical User Interfaces
	UI Design as Optimization

	The French Keyboard Problem
	The Design Task
	The Timeline of the Project
	The Optimization Model
	The new French Keyboard Standard
	Participatory Optimization
	Conclusion

	Assignment Problems
	Basics of Optimization Theory
	The Assignment Problem
	Tractable Cases of QAPs
	Approaches to solve QAPs

	Dynamic Sparsification for Quadratic Assignment Problems
	Algorithm
	Evaluation
	Robustness Analysis
	Conclusion

	Cut Pseudo Bases for Quadratic Assignment Problems
	An SDP-Based Lower Bound
	Introduction of Cut Pseudo Bases
	Towards an SDP
	Using the Right Solver - Discussion and Consequences
	Comparison to the Gilmore-Lawler bound
	Evaluation

	A Markup Language for Optimization Problems
	Introduction
	Grammar and Features
	Additional Features
	Conclusion

