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Abstract: The repair of focal articular cartilage defects remains a problem. Combining gene therapy
with tissue engineering approaches using bone marrow-derived mesenchymal stem cells (MSCs)
may allow the development of improved options for cartilage repair. Here, we examined whether a
three-dimensional fibrin-polyurethane scaffold provides a favorable environment for the effective
chondrogenic differentiation of human MSCs (hMSCs) overexpressing the cartilage-specific SOX9
transcription factor via recombinant adeno-associated virus (rAAV) -mediated gene transfer cultured
in a hydrodynamic environment in vitro. Sustained SOX9 expression was noted in the constructs
for at least 21 days, the longest time point evaluated. Such spatially defined SOX9 overexpression
enhanced proliferative, metabolic, and chondrogenic activities compared with control (reporter lacZ
gene transfer) treatment. Of further note, administration of the SOX9 vector was also capable of
delaying premature hypertrophic and osteogenic differentiation in the constructs. This enhancement
of chondrogenesis by spatially defined overexpression of human SOX9 demonstrate the potential
benefits of using rAAV-modified hMSCs seeded in fibrin-polyurethane scaffolds as a promising
approach for implantation in focal cartilage lesions to improve cartilage repair.

Keywords: cartilage repair; hMSCs; chondrogenesis; rAAV; SOX9; fibrin-polyurethane scaffolds;
bioreactors

1. Introduction

Articular cartilage is the tissue that allows for a smooth, frictionless weightbearing surface in
articulating joints. Once damaged, in the absence of vascularization and potentially regenerative cells,
it has a limited ability for self-repair [1]. Although different surgical treatments are available, none of
them permits a complete and long-lasting articular cartilage regeneration in adults [2,3] representing a
particularly critical problem for orthopaedic surgeons.

Mesenchymal stem cells (MSCs) from the subchondral bone marrow are an attractive source
of regenerative cells that might be employed to enhance articular cartilage repair [4]. Mesenchymal
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stem cells have a reliable potential for self-renewal and can differentiate into various cell lineages,
among which the chondrocyte [5–7]. Mesenchymal stem cells have been already safely tested in
clinical protocols as a means to treat articular cartilage defects and osteoarthritis [8,9]. The high density,
aggregate culture system is a well-accepted model to evaluate MSC chondrogenesis [10]. However,
this small experimental system is not best suited to assess cartilage tissue neoformation, repair, and
extracellular matrix deposition. Also, even though some groups reported evidence showing the
possibility of mechanically stimulating such aggregate cultures [11], their dimension is hindering the
precise characterization of the effects of various mechanical loads. In this regard, fibrin-polyurethane
composite scaffolds may provide a more adapted environment for MSC chondrogenesis as such
biomaterials can provide mechanical stiffness that remains unaffected upon loading to preserve the
MSC phenotype while serving as analogs of the natural extracellular matrix and providing extra,
beneficial cues for cell differentiation [12–14]. While improved clinical parameters were frequently
reported upon application of MSCs, without adverse reactions, such approaches thus far led to the
production of a repair tissue of lesser quality relative to the original hyaline cartilage. To overcome
such limitations, gene transfer combined with tissue engineering may allow to provide reparative
signals in a spatially defined fashion [15,16] to increase the chondrogenic capacities of MSCs aiming at
enhancing focal cartilage repair [17,18].

The sex-determining region Y-type high-mobility group box SOX9 transcription factor is a potent
candidate to enhance MSC chondrogenesis. It plays a key role in cartilage formation [19,20] while
delaying terminal differentiation and hypertrophy [20–22]. Gene transfer of SOX9 with recombinant
adeno-associated viral (rAAV) vectors which are clinically adapted constructs provides for a safe
profile in absence of viral coding sequences in their genome, allowing for high and particularly
well-maintained levels of transgene expression in target cells among which MSCs [23–27]. Previously,
rAAV was shown to successfully modify hMSCs via direct SOX9 gene transfer, leading to increased
chondrogenic differentiation in vitro [27].

Here, we tested the hypothesis that administration of an rAAV SOX9 gene vector enhances the
chondrogenic processes in hMSCs seeded in fibrin-PU scaffolds in bioreactors that provide a defined
hydrodynamic environment in vitro. The results demonstrate that hMSCs can be modified via rAAV
to overexpress SOX9 over an extended period of time within PU scaffolds, leading to an improved cell
chondrogenic differentiation in such an environment relative to control (lacZ) vector treatment, as a
promising future approach for the treatment of sites of cartilage injury.

2. Results

2.1. rAAV-Mediated SOX9 Overexpression in Human Mesenchymal Stem Cells Seeded in Polyurethane
Scaffolds in a Hydrodynamic Environment

Human adult mesenchymal stem cell (hMSC) aggregate cultures were first transduced with the
candidate recombinant adeno-associated virus (rAAV) FLAG-tagged SOX9 (rAAV-FLAG-hsox9) vector
compared with control (reporter rAAV-lacZ vector) treatment in order to evaluate whether rAAV was
capable of promoting the overexpression of the transcription factor upon seeding of the modified
cells in fibrin-polyurethane (PU) scaffolds and cultivation in hydrodynamic culture conditions in
chondrogenic differentiation medium over time in vitro (Figure 1).
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Figure 1. Model system: Human bone marrow-derived mesenchymal stem cells (hMSCs) were 
isolated from bone marrow aspirates, placed in monolayer culture, released, and hMSC aggregate 
cultures (2 × 105 cells/pellet) were prepared and next transduced with rAAV as described in Materials 
and Methods. After 24 h, the transduced cells were placed in a fibrin/thrombin mixture and seeded 
onto fibrin-polyurethane (PU) scaffolds. The constructs were next transferred to rotating bioreactors 
and maintained in chondrogenic medium in hydrodynamic culture for 21 days for further 
evaluations as depicted. 

Sustained SOX9 expression was seen in the SOX9-treated cells in PU scaffolds after 21 days of 
hydrodynamic culture stimulation relative to lacZ transduction (Figure 2). Specific SOX9 
immunostaining was mostly observed at the surface of the constructs. A histomorphometric analysis 
performed using a system that grades the intensity of SOX9 immunostaining [28] revealed higher 
scores of SOX9 expression upon rAAV-FLAG-hsox9 treatment compared with rAAV-lacZ (3.5-fold 
difference, p = 0.008) (Table 1). 

 
Figure 2. Detection of transgene (SOX9) expression in hydrodynamic cultures of rAAV-transduced 
hMSCs seeded in fibrin-PU scaffolds. Cells were transduced with rAAV-lacZ or rAAV-FLAG-hsox9 
(40 µL each vector), seeded in PU scaffolds, and cultivated in rotating bioreactors for 21 days using 
chondrogenic medium as described in Figure 1 and in Materials and Methods. Samples were 
processed after bioreactor cultivation to detect immunoreactivity to SOX9 (magnification ×10; scale 
bar: 200 µm; representative data). Note the highest presence of immunoreactivity to SOX9 at the 
surface of the constructs which can be attributed to a diffusion gradient of the nutrients into the 
center of the constructs at homogenous cell seeding.

Figure 1. Model system: Human bone marrow-derived mesenchymal stem cells (hMSCs) were isolated
from bone marrow aspirates, placed in monolayer culture, released, and hMSC aggregate cultures
(2 × 105 cells/pellet) were prepared and next transduced with rAAV as described in Materials and
Methods. After 24 h, the transduced cells were placed in a fibrin/thrombin mixture and seeded onto
fibrin-polyurethane (PU) scaffolds. The constructs were next transferred to rotating bioreactors and
maintained in chondrogenic medium in hydrodynamic culture for 21 days for further evaluations
as depicted.

Sustained SOX9 expression was seen in the SOX9-treated cells in PU scaffolds after 21 days
of hydrodynamic culture stimulation relative to lacZ transduction (Figure 2). Specific SOX9
immunostaining was mostly observed at the surface of the constructs. A histomorphometric analysis
performed using a system that grades the intensity of SOX9 immunostaining [28] revealed higher
scores of SOX9 expression upon rAAV-FLAG-hsox9 treatment compared with rAAV-lacZ (3.5-fold
difference, p = 0.008) (Table 1).
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Figure 2. Detection of transgene (SOX9) expression in hydrodynamic cultures of rAAV-transduced
hMSCs seeded in fibrin-PU scaffolds. Cells were transduced with rAAV-lacZ or rAAV-FLAG-hsox9
(40 µL each vector), seeded in PU scaffolds, and cultivated in rotating bioreactors for 21 days using
chondrogenic medium as described in Figure 1 and in Materials and Methods. Samples were processed
after bioreactor cultivation to detect immunoreactivity to SOX9 (magnification ×10; scale bar: 200 µm;
representative data). Note the highest presence of immunoreactivity to SOX9 at the surface of the
constructs which can be attributed to a diffusion gradient of the nutrients into the center of the
constructs at homogenous cell seeding.
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Table 1. Effects of SOX9 overexpression on the histomorphometry of the fibrin-PU scaffolds seeded
with rAAV-transduced hMSCs.

Parameter rAAV-lacZ rAAV-FLAG-hsox9

SOX9 immunostaining 0.8 (0.5) 2.8 (0.5) *
Toluidine blue staining 1.8 (0.5) 2.5 (0.6) *

Aggrecan immunostaining 0.8 (0.3) 2.1 (0.6) *
Type-II collagen immunostaining 0.9 (0.1) 2.4 (0.2) *
Type-I collagen immunostaining 2.4 (0.5) 0.6 (0.2) *
Type-X collagen immunostaining 4.0 (0.1) 1.3 (0.5) *

Alizarin red staining 3.3 (0.5) 1.1 (0.5)*

Toluidine blue and alizarin red staining and SOX9, type-II, -I, and -X collagen immunostaining were scored for
uniformity and intensity as: 0 (no staining), 1 (heterogeneous and/or weak staining), 2 (homogeneous and/or
moderate staining), 3 (homogeneous and/or intense staining), and 4 (very intense staining) [28]. Values are given as
mean (SD; n = 4). * Statistically significant compared with rAAV-lacZ.

2.2. Effects of SOX9 Overexpression upon the Biological and Chondrogenic Activities of hMSCs Seeded in PU
Scaffolds in a Hydrodynamic Environment

The candidate SOX9 vector was then provided to hMSCs to monitor the effects of the transcription
factor via rAAV application upon the biological and differentiation activities of the cells seeded
in PU scaffolds and maintained in hydrodynamic culture conditions over time versus control lacZ
gene transfer.

Successful chondrogenic differentiation was noted in all treated samples after 21 days as seen by
intense, more homogeneous toluidine blue staining, aggrecan and type-II collagen immunostaining
but with higher staining intensities in the presence of the SOX9 vector (Figure 3). Specific toluidine
blue staining, aggrecan, and type-II collagen immunostaining was mostly detected at the surface of
the constructs. A histomorphometric analysis performed using a system that grades the intensity of
toluidine blue staining and aggrecan or type-II collagen immunostaining [28] revealed higher scores of
proteoglycan, aggrecan, and type-II collagen expression upon rAAV-FLAG-hsox9 treatment compared
with rAAV-lacZ (1.4-, 2.6-, and 2.7-fold difference, respectively; p ≤ 0.04) (Table 1). In good agreement,
administration of rAAV-FLAG-hsox9 significantly increased the proteoglycan and type-II collagen
contents in the samples relative to rAAV-lacZ (1.7- and 10-fold, respectively; p ≤ 0.001) (Figure 4). Also
of note, treatment with SOX9 significantly increased the DNA contents compared with lacZ (6.3-fold;
p ≤ 0.001) (Figure 4).
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Figure 3. Histological analysis in hydrodynamic cultures of rAAV-transduced hMSCs seeded in
fibrin-PU scaffolds. Cells were transduced, seeded in PU scaffolds, and placed in rotating bioreactors
as described in Figures 1 and 2 and in Materials and Methods. The samples were processed after
21 days for histological staining with toluidine blue and to detect immunoreactivity to aggrecan and
to type-II collagen (magnification ×10; scale bar: 200 µm; all representative data). Similar to the
immunoreactivity to SOX9, the high signals at the surface of the constructs can be attributed to a
diffusion gradient of the nutrients into the center of the constructs at homogenous cell seeding.
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Figure 4. Biochemical analyses in hydrodynamic cultures of rAAV-transduced hMSCs seeded in
fibrin-PU scaffolds. Cells were transduced, seeded in PU scaffolds, and placed in rotating bioreactors
as described in the Figures 1–3 and in Materials and Methods. The samples were processed after
21 days to monitor the proteoglycan contents by dimethylmethylene blue dye method, the type-II
collagen contents by ELISA, and the DNA contents using Hoechst 33258 in the constructs. * Statistically
significant compared with rAAV-lacZ.

2.3. Effects of SOX9 Overexpression upon the Hypertrophic and Osteogenic Activities of hMSCs Seeded in PU
Scaffolds in a Hydrodynamic Environment

Finally, the candidate SOX9 vector was added to hMSCs to detect a potential influence of the
transcription factor via rAAV application on the hypertrophic and osteogenic differentiation activities
of the cells seeded in PU scaffolds and maintained in hydrodynamic culture conditions over time
versus control lacZ gene transfer.

Remarkably, application of the rAAV SOX9 vector reduced the intensities of type-I and -X
collagen immunostaining relative to control lacZ treatment (Figure 5). Specific type-I and -X collagen
immunostaining was mostly seen at the surface of the constructs. A histomorphometric analysis
performed using a system that grades the intensity of type-I and -X collagen immunostaining [28]
revealed lower scores of type-I and -X collagen expression upon rAAV-FLAG-hsox9 treatment compared
with rAAV-lacZ (4- and 3.1-fold difference, respectively; p ≤ 0.046) (Table 1). Of further note, alizarin
red staining intensities were less intense in the presence of SOX9 versus lacZ (Figure 5), with specific
staining mostly detected at the surface of the constructs. These results are in good agreement with those
reported by others and can indeed be attributed to the inadequate diffusion of the nutrients into the
center of the constructs although cell seeding was homogenous [29]. The extracellular matrix developed
along the cell-rich periphery is thought to interfere with the diffusion of the nutrients into the center
of the scaffolds. A histomorphometric analysis performed using a system that grades the intensity
of alizarin red staining [28] revealed lower scores of matrix mineralization upon rAAV-FLAG-hsox9
treatment compared with rAAV-lacZ (3-fold difference; p = 0.008) (Table 1).
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Figure 5. Immunohistochemical analysis in hydrodynamic cultures of rAAV-transduced hMSCs seeded
in fibrin-PU scaffolds. Cells were transduced, seeded in PU scaffolds, and placed in rotating bioreactors
as described in the Figures 1–4 and in Materials and Methods. The samples were processed after
21 days to detect immunoreactivity to type-I and -X collagen and for histological staining with alizarin
red (magnification ×10; scale bar: 200 µm; all representative data). Note the high signals at the surface
of the constructs as a result of a diffusion gradient of the nutrients.

2.4. Real-Time RT-PCR Analyses in rAAV-Mediated SOX9-Overexpressing hMSCs Seeded in PU Scaffolds in
a Hydrodynamic Environment

Overall, these findings were corroborated by results of a real-time RT-PCR analysis evaluating
the gene expression profiles in the constructs. There was an enhanced chondrogenic differentiation
and reduced osteogenic/hypertrophic differentiation of the cells in the presence of rAAV-FLAG-hsox9
compared with rAAV-lacZ with significant increases observed in (~2.4-SOX9, 1.6-aggrecan, and 1.4-fold
increased, type-II collagen expression levels p ≤ 0.001). Additionally, there was a trend towards
an increased expression of SOX5 (1.26-fold) and SOX6 (1.14-fold) and ~10- and 2.4-fold decreased
type-I and type-X collagen expression levels (Figure 6). A trend toward decreased expression profiles
was also noted for alkaline phosphatase (ALP) and runt-related transcription factor 2 (RUNX2) in
the presence of the rAAV SOX9 vector versus lacZ condition (1.5- and 1.7-fold decrease respectively;
p = 0.094) (Figure 6).
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Figure 6. Real-time RT-PCR analysis in hydrodynamic cultures of rAAV-transduced hMSCs seeded in
fibrin-PU scaffolds. Cells were transduced, seeded in PU scaffolds, and placed in rotating bioreactors
as described in the Figures 1–5 and in Materials and Methods. After 21 days of bioreactor cultivation,
mRNA was directly isolated from the constructs of rAAV-transduced hMSCs in fibrin-PU scaffolds
and the gene expression profiles of SOX9, SOX5, SOX6, aggrecan (ACAN), type-II (COL2A1), type-I
(COL1A1), type-X collagen (COL10A1), alkaline phosphatase (ALP), and runt-related transcription
factor 2 (RUNX2) were monitored, with GAPDH serving as a housekeeping gene and internal control
(all primers are listed in Materials and Methods). Ct values were obtained for each target and for
GAPDH as a control for normalization, and fold inductions (relative to lacZ-treated samples) were
measured by using the 2−∆∆Ct method. * Statistically significant compared with rAAV-lacZ.

3. Discussion

Induction of articular cartilage regeneration is one of the most challenging clinical problems
on orthopaedic surgery. Combining gene therapy and tissue engineering approaches may provide
effective, new workable procedures to improve the natural repair processes in sites of lesions [15] .
While MSCs have been already employed in clinical implantation settings for cartilage repair [8,9], the
outcomes have not met thus far the standards of regeneration. Directing MSCs toward an enhanced
chondrogenic profile based on therapeutic gene transfer might be a valuable strategy to improve
the processes of tissue healing [17] especially when providing the modified reparative cells within a
biocompatible scaffold that supports cell repopulation [18].

In the present study, we evaluated the possibility of generating hydrodynamically [15] and
chondrogenically adapted constructs by seeding rAAV SOX9-treated hMSCs in fibrin-PU scaffolds
in light of the chondrogenic properties of the candidate transcription factor [19,20]. We employed
the safe, clinically adapted rAAV vectors that do not impair the cell potency [23–27,30] and scaffolds
known to provide a proper environment for MSC chondrogenesis [12–14]. Gene transfer of SOX9
to date has been performed using both nonviral [31,32], adenoviral [12,33], and retro-/lentiviral
vectors [34,35]. Yet, such gene vehicles usually display low or short-term gene transfer efficiencies
in cells undergoing proliferation (nonviral, adenoviral vectors) or may carry a risk for insertional
mutagenesis (retro-/lentiviral vectors). Recombinant adeno-associated viral (rAAV) vectors instead are
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clinically adapted constructs, with a safe profile in absence of viral coding sequences in their genome,
allowing for high and particularly well-maintained levels of transgene expression in their targets
among which MSCs [23–26,30].

The data first indicate that hMSCs can be modified via rAAV gene transfer to overexpress SOX9
over 21 days within PU scaffolds in vitro extends previous work in three-dimensional hMSC aggregates
in static culture [27]. Effective, sustained rAAV-mediated SOX9 gene transfer and expression was
capable of durably stimulating the metabolic and chondrogenic activities (production of proteoglycans
and type-II collagen) of hMSCs within PU scaffolds under hydrodynamic culture stimulation for at
least 21 days compared with control treatment. This is in good agreement with the properties of the
transcription factor [20,27,32,34,35] and with findings using SOX9-treated cells in the same scaffolds
under stimulation in a custom-made bioreactor via adenoviral gene transfer [12] or in other types of
biomaterials (alginate, polyglycolic acid) [31,33]. Such effects were accompanied by increases in SOX5
and SOX6 expression as noted when applying SOX9 to hMSCs via adenoviral gene transfer [12]. For
comparison, Neumann et al. [14] reported that seeding of hMSCs modified by adenoviral vectors to
produce BMP-2 in PU scaffolds resulted instead in a trend toward glycosaminoglycan/DNA ratios
under hydrodynamic culture stimulation.

Remarkably, application of the rAAV SOX) vector also led to a trend towards a prolonged,
advantageous reduction of undesirable osteogenic and hypertrophic expression profiles (type-I and
-X collagen, matrix mineralization) in cells within the constructs. This is possibly due to decreased
expression of the osteogenic markers ALP and RUNX2 (even though only a trend was observed under
the conditions applied here). This is similar to the reported effects of SOX9 on bone formation, terminal
differentiation, and calcification [21,22,36] and with previous findings, among which ours [20,27,32,33].
Interestingly, current treatment with rAAV SOX9 also led to enhanced levels of cell proliferation in
contrast with our previous observations when the same vector was provided to hMSCs in aggregate
cultures [27]. It is important to point out that in our previous report, rAAV SOX9 was directly applied
to static cultures of scaffold-free hMSC cultures while cells here were seeded in a biocompatible
scaffold submitted to hydrodynamic culture stimulation, a setting probably more favorable for cell
division [37].

Of note, the effects reported here were mostly evidenced at the surface of the constructs where
transgene expression was restricted, in contrast to previous evaluations using PU scaffolds [12,13].
Yet, in these earlier studies it is important to note that the cell-seeding densities were much higher
than those applied here (2–5 × 106 versus 2 × 105 cells/scaffold here, i.e., 10- to 25-fold difference).
An analysis is currently being performed to assess the impact of higher cell-seeding densities on
the levels and significance of chondrogenic differentiation in the current system in order to further
increase articular cartilage resurfacing and restore the integrity of damaged articular cartilage. Work
is also ongoing to evaluate the potential of the approach in vivo by implanting similar constructs
in experimental models of articular cartilage defects [15,20,33,35,38] in light of the performance of
PU scaffolds in vivo [39]. Taken together, the present study demonstrates preliminary benefits of the
propagation of constructs made of rAAV SOX9-transduced hMSCs in PU scaffolds in hydrodynamic
culture conditions as a possible tool to generate adapted treatments for articular cartilage lesions.

4. Materials and Methods

4.1. Reagents

Reagents were from Sigma (Munich, Germany) unless otherwise indicated. Recombinant
FGF-2 (rFGF-2) and TGF-β3 were purchased at R&D Systems (Wiesbaden-Nordenstadt, Germany)
and Peprotech (Rocky Hill, NJ, USA), respectively. The dimethylmethylene blue dye was
from Serva (Heidelberg, Germany). The anti-SOX9 (C-20) antibody was from Santa Cruz
Biotechnology (Heidelberg, Germany), the anti-aggrecan (BC-13) antibody from Abcam (Cambridge,
UK), the anti-type-II collagen (AF-5710) and anti-type-I collagen (AF-5610) antibodies from Acris
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(Hiddenhausen, Germany), the anti-type-X collagen (COL-10) antibody from Sigma, and biotinylated
secondary antibodies with ABC reagent from Vector Laboratories (Alexis Deutschland GmbH,
Grünberg, Germany). The type-II collagen enzyme-linked immunosorbent assay (Arthrogen-CIA
Capture ELISA kit) was from Chondrex (Redmond, WA, USA).

4.2. Cell Culture

Bone marrow aspirates (~15 mL) were obtained from the distal femurs of patients undergoing total
knee arthroplasty (n = 10). The study was approved by the Ethics Committee of the Saarland Physicians
Council. All patients provided informed consent before inclusion in the study. All procedures were in
accordance with the Helsinki Declaration. Human mesenchymal stem cells (hMSCs) were isolated and
expanded in culture by using standard protocols [27]. Briefly, the aspirates were washed in DMEM
and the cell-containing fractions layered onto Histopaque density gradient and centrifuged at 800× g
for 30 min at room temperature. The nucleated cell fraction at the interface was collected, washed,
and resuspended in Mesencult basal medium containing MSC stimulatory supplements (StemCell
Technologies, Cologne, Germany) with 100 U/mL penicillin, 100 µL/mL streptomycin, and rFGF-2
(10 ng/mL). hMSCs were plated at 2 × 105 cells/cm2 in T75 flasks and maintained at 37 ◦C in a
humidified atmosphere with 5% CO2. The medium was exchanged after 48 h and every 2 to 3 days
thereafter. The cells were detached and re-plated for further experiments at appropriate densities
(2 × 105 cells). hMSCs were analyzed with flow cytometry for expression of stem-cell surface markers
(CD71+, CD105+, CD34-). All experiments were performed with cells at not more than passage two.
Cells for all patients (n = 10) were tested in all the assays.

4.3. Plasmids and rAAV Vectors

The constructs were all derived from the same parental AAV-2 genomic clone—pSSV9 [40,41].
rAAV-lacZ is an AAV-2-based vector plasmid carrying the lacZ gene encoding β-galactosidase
(β-gal) under the control of the cytomegalovirus immediate-early (CMV-IE) promoter [20,27].
rAAV-FLAG-hsox9 is the same AAV-2-based vector plasmid used to prepare rAAV-lacZ but carrying a
FLAG-tagged SOX9 sequence (1.7 kb) instead of lacZ [20,27]. All vectors were packaged as conventional
(not self-complementary) vectors in the 293 cell line, an adenovirus-transformed human embryonic
kidney cell line, by using Adenovirus 5 to provide helper functions in combination with the transacting
AAV-2 factors for replication and encapsidation functions supplied by the pAd8 helper plasmid. The
vector preparations were purified, dialyzed, and titered by real-time PCR [20,27], averaging 1011

functional units/mL.

4.4. rAAV-Mediated Gene Transfer and Hydrodynamic Bioreactor Culture

The hMSCs aggregate cultures (2 × 105 cells) were prepared and kept in DMEM high glucose
(4.5 g/L), 100 U/mL penicillin, 100 µL/mL streptomycin, ITS+ Premix (insulin 6.25 µg/mL, transferrin
6.25 µg/mL, selenous acid 6.25 µg/mL, linoleic acid 5.35 µg/mL, bovine serum albumin 1.25 µg/mL),
pyruvate (1 mM), ascorbate 2-phosphate (37.5 µg/mL), dexamethasone (10-7 M), and TGF-β3
(10 ng/mL) (chondrogenic differentiation medium) at 37 ◦C in a humidified atmosphere with 5%
CO2 [27]. The hMSC aggregate cultures were transduced with rAAV (40 µL vector, MOI = 4) or let
untreated one day after aggregate formation [27]. A mixture of fibrinogen (17 mg/mL)/thrombin
(5 U/mL) (Baxter, Volketswil, Switzerland) was then added to the cells that were then seeded in
fibrin-polyurethane (PU) scaffolds (pore size: 90–300 µm) that allow for 100% yield of cell attachment,
high initial cell density, and spatially uniform cell distribution [12–14]. The scaffolds were cultured
in free suspension in flow rotating bioreactors under simulated microgravity and low shear stress
(RCCV-110; Synthecon, Houston, TX) with an annular space between an outer cylinder and and inner
gas exchange membrane that rotates around its axis to provide controlled hydrodynamic culture
conditions optimal for chondrogenesis [15,42] for 21 days in chondrogenic differentiation medium for
further evaluations (Figure 1).
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4.5. Histology, Immunocytochemistry, and Immunohistochemistry

The constructs were harvested, fixed in 100% methanol, embedded in Jung tissue freezing
compound, and cryosectioned at 12 µm [20,27]. Samples were processed for immunohistochemical
analyses using specific antibodies, and sections were also stained with toluidine blue (matrix
proteoglycans) and alizarin red (matrix mineralization) according to routine protocols [20,27].
Expression of aggrecan, type-II, -I, and -X collagen was detected by immunohistochemistry by using
specific antibodies, biotinylated secondary antibodies, and the ABC method with diaminobenzidine
(DAB) as the chromogen [20,27].

4.6. Histomorphometry

The immunohistochemical and histological grading scores were measured using four histological
sections for each condition with the SIS AnalySIS program (Olympus, Hamburg, Germany). Toluidine
blue and alizarin red staining and SOX9, type-II, -I, and -X collagen immunostaining were scored for
uniformity and intensity according to a modified Bern Score grading system [28] as: 0 (no staining),
1 (heterogeneous and/or weak staining), 2 (homogeneous and/or moderate staining), 3 (homogeneous
and/or intense staining), and 4 (very intense staining). Sections were scored blind by two individuals
with regard to the conditions.

4.7. Biochemical Assays

Cultures were harvested with selective papain digestion from scaffolds. The DNA contents were
determined with a fluorimetric assay by using Hoechst 33258, the proteoglycan contents by binding to
dimethylmethylene blue dye, and the type-II collagen contents by ELISA [20,27]. All measurements
were performed using a GENios spectrophotometer/fluorometer (Tecan, Crailsheim, Germany).

4.8. Real-Time RT-PCR Analyses

Total cellular RNA was extracted from the cultures by using the RNeasy Protect Mini Kit
with an on-column RNase-free DNase treatment (Qiagen, Hilden, Germany). RNA was eluted in
30 µL RNase-free water. Reverse transcription was carried out with 8 µL of eluate by using the 1st
Strand cDNA Synthesis kit for RT-PCR (AMV) (Roche Applied Science). An aliquot of the cDNA
product (3 µL) was amplified with real-time PCR by using the Brilliant SYBR Green QPCR Master
Mix (Stratagene, Agilent Technologies, Waldbronn, Germany) [27] on an Mx3000P QPCR operator
system (Stratagene) as follows: (95 ◦C, 10 min), amplification by 55 cycles (denaturation at 95 ◦C,
30 s; annealing at 55 ◦C, 1 min; extension at 72 ◦C, 30 s), denaturation (95 ◦C, 1 min), and final
incubation (55 ◦C, 30 s). The primers (Invitrogen GmbH) used were SOX9 (chondrogenic marker)
(forward 5′-ACACACAGCTCACTCGACCTTG-3′; reverse 5′-GGGAATTCTGGTTGGTCCTCT-3′),
SOX5 (chondrogenic marker) (forward 5′-ATCCCAACTACCATGGCAGCT-3′;
reverse 5′-GATACCTGCATTGCAGCT-3′), SOX6 (chondrogenic marker) (forward
5′-GCAGTGATCAACATGTGGCCT-3′; reverse 5′-TTCATCATGCGCTGCCAGTAG-3′),
aggrecan (ACAN) (chondrogenic marker) (forward 5′-GAGATGGAGGGTGAGGTC-3′; reverse
5′-ACGCTGCCTCGGGCTTC-3′), type-II collagen (COL2A1) (chondrogenic marker) (forward
5′-GGACTTTTCTCCCCTCTCT-3′; reverse 5′-GACCCGAAGGTCTTACAGGA-3′), type-I
collagen (COL1A1) (osteogenic marker) (forward 5′-ACGTCCTGGTGAAGTTGGTC-3′; reverse
5′-ACCAGGGAAGCCTCTCTCTC-3′), type-X collagen (COL10A1) (marker of hypertrophy)
(forward 5′-CCCTCTTGTTAGTGCCAACC-3′; reverse 5′-AGATTCCAGTCCTTGGGTCA-3′), alkaline
phosphatase (ALP) (osteogenic marker) (forward 5′-TGGAGCTTCAGAAGCTCAACACCA-3′; reverse
5′-ATCTCGTTGTCTGAGTACCAGTCC-3′), runt-related transcription factor 2 (RUNX2) (osteogenic
marker) (forward 5′-GCAGTTCCCAAGCATTTCAT-3′; reverse 5′-CACTCTGGCTTTGGGAAGAG-3′),
and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (housekeeping gene and internal control)
(forward, 5′-GAAGGTGAAGGTCGGAGTC-3′; reverse, 5′-GAAGATGGTGATGGGATTTC-3′)
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(all 150 nM final concentration) [27]. Control conditions included reactions using water and
nonreverse-transcribed mRNA. Specificity of the products was confirmed by melting curve analysis
and agarose gel electrophoresis. The threshold cycle (Ct) value for each gene of interest was measured
for each amplified sample using MxPro QPCR software (Stratagene), and values were normalized to
GAPDH expression by using the 2−∆∆Ct method, as described previously [27].

4.9. Statistical Analysis

Data are expressed as mean ± standard deviation (SD) of separate experiments. Each treatment
condition was performed in quadruplicate in two independent experiments for each patient. All
patients (n = 10) were tested in the assays. Data were obtained by two individuals that were blinded
with respect to the treatment groups. The t test and the Mann–Whitney Rank Sum Test were used
where appropriate. Any p value of less than 0.05 was considered statistically significant.

5. Conclusions

Chondrogenic differentiation of hMSCs genetically modified via rAAV to overexpress SOX) and
seeded in PU scaffolds undergo enhanced chondrogenic differentiation in hydrodynamic culture
conditions. This combined cell, gene, and scaffold approach may find value in developing novel
treatments for articular cartilage defects.
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