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Zusammenfassung

Die akkurate Bestimmung makromolekularer Strukturen erfordert häufig experimentelle

Daten mit rechnerischen Methoden zu kombinieren. In dieser Arbeit werden MD

Simulationen zur Interpretation von experimentellen Daten, die mittels Kleinwinkel-

Röntgenstreuung (SAXS) und Kleinwinkel-Neutronenstreuung (SANS) aufgenommen

wurden, genutzt. SAXS- und SANS-Experimente werden unter nahezu natürlichen Be-

dingungen durchgeführt, liefern jedoch nur ein beschränktes Maß an struktureller In-

formation, welche sich zudem auch nur schwer interpretieren lässt. MD Simulationen

eignen sich besonders gut zur Kombination mit Kleinwinkelstreuexperimenten, da die

Simulationen verwendet werden können, um experimentelle Daten zu interpretieren.

Umgekehrt werden experimentelle Daten benutzt, um Simulationen zu validieren und

sie nötigenfalls zu lenken.

Im Folgenden werden vier verschiedene jedoch verbundene Fragestellungen behandelt.

Im ersten Abschnitt wird der Einfluss einer lonenwolke auf die Interpretation von

SAXS-Daten geladener Proteine untersucht. Danach wird die Form und Größe ten-

sidbasierter Mizellen untersucht. Dies ist ein Ausgangspunkt, um die Stabilität von

Protein-Detergenz Komplexen während des Lösens von Membranproteinen zu erhöhen.

Im nächsten Schritt wird ein Ensemble tensidbasierter Mizellen bestimmt, welches mit

expirmentellen Daten übereinstimmt und es ermöglicht, den Einfluss verschiedener Ef-

fekte auf die SAXS Kurve zu studieren. Dies stellt einen wichtigen Schritt dar, um

experimentelle SAXS Daten besser zu verstehen. Als vierten Punkt demonstrieren wir,

wie die Kombination von SAXS- und SANS-Daten zusammen mit MD-Simulation eine

genaue Strukturbestimmung von Protein-Detergenz-Komplexen ermöglicht.
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Abstract

The accurate determination of macromolecular structures often necessitates joint ex-

perimental and computational efforts. In this thesis, MD simulations are engaged to

interpret small-angle scattering data of X-rays (SAXS) and neutrons (SANS). SAXS

and SANS experiments are performed under near-native conditions, but provide only

limited amount of structural information that are, in addition, difficult to interpret.

Therefore, MD simulations are highly compatible with small-angle scattering experi-

ments - simulations are used to interpret experimental data and in turn, experimental

data are used to validate, and if necessary to guide simulations.

Here, four different yet related questions are addressed. First, we quantify the influence

of the ion cloud on interpreting SAXS data of charged proteins. Secondly, we study the

size and the shape of detergent micelles, as this represents a starting point in improving

the stability of protein-detergent complexes during the solubilization of membrane pro-

teins. In the next step, we derive an ensemble of detergent micelles in agreement with

experimental data, enabling us to study the influence of various effects of SAXS curves

and thereby making an important step towards the better understanding of the SAXS

experimental data. Finally, we demonstrate how SAXS and SANS data can jointly be

combined with MD simulations, allowing for fine structural characterization of protein-

detergent complexes.
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Chapter 1

Introduction

A fundamental goal of modern structural biology and biophysics is to determine

how biomolecules dynamically reorganize to perform their functions. Obtaining

biomolecular structures and ensembles often necessitates combining the data from mul-

tiple different experiments. Even then, the information content of experimental data

may be too low to define all relevant degrees of freedom of the examined biomolecule.

Therefore, to derive the ensemble of biomolecular structures while avoiding overfitting,

experimental data are complemented with additional physico-chemical knowledge [1–18].

Three experimental techniques enable biomolecular structure determination with atomic

resolution: (i) X-ray crystallography, (ii) nuclear magnetic resonance spectroscopy (NMR)

and (iii) cryogenic electron microscopy (cryo-EM). These three techniques are often com-

plemented with low-resolution techniques, either to harvest additional information about

the investigated biomolecule or to decrease the risk of overfitting. Among the spectrum

of available techniques, the application of small angle scattering of X-rays (SAXS) or

neutrons (SANS), as well as the range of spectroscopic techniques were shown to be par-

ticularly beneficial. A brief overview of advantages and disadvantages of the mentioned

techniques with the focus on SAXS and SANS is given in Section 1.1. The main reason

for the usage of MD simulation to interpret SAXS and SANS data is given in Section 1.2.

Finally, the aim of the present thesis is outlined in Section 1.3. A detailed introduction

of specific projects discussed in this thesis is given at the beginning of Chapters 3-6.

1



1.1. SAXS and SANS among other experimental methods 2

1.1 SAXS and SANS among other experimental methods

X-ray crystallography To apply this method, a biomolecule has to be purified and

crystallized. Subsequently, the crystallized sample is irradiated by X-rays and the diffrac-

tion pattern is recorded. Based on the diffraction pattern and prior knowledge (e.g bond

lengths and angles, sequences of amino acids), the electron density distribution can be

determined and correlated with the mean positions of the atoms [8, 19, 20].

Ever since the first protein structures were determined in the mid-twentieth century [21,

22], X-ray crystallography has been the cornerstone of biomolecular three-dimensional

structure determination [3, 19, 23]. About 89% of the biomolecular structures deposited

in the Protein Data Bank (PDB) were determined using X-ray crystallography [8]. While

this experimental technique allows for the three-dimensional structure determination

down to an angstrom resolution, the preparation of the crystal sample may be a daunt-

ing task, especially in case of membrane proteins. Additionally, conformational hetero-

geneity is restricted by the crystal lattice [3–5, 17, 24, 25].

NMR In a typical NMR experiment, a biomolecule is placed in a magnetic field and

probed with radio-frequency signals. The absorption of the radio-frequency signals is

measured and used to determine the distance between atomic nuclei and dihedral angles.

With this information, a set of three-dimensional macromolecular models compatible

with the NMR data can be delivered [8, 19, 26].

In contrast to crystallography, the NMR experiment is performed in solution (i.e. under

near-native conditions), and the set of structures is obtained, which is particularly useful

when studying flexible proteins. On the other hand, NMR is limited to relatively small

biomolecules or parts of larger biomolecules, up to about 50 kDa, as the signals in the

NMR spectra of larger biomolecules overlap, complicating the structure reconstruction.

[3, 17, 27–30]. This limit can in some cases be increased up to 900 kDa by pairing NMR

with transverse relaxation optimized spectroscopy and deuteration [31, 32]. Another

disadvantage of NMR is the high cost of the experimental setup, as it requires strong

magnets. Currently, about 8% of the biomolecular structures deposited in the PDB were

determined using NMR [8].

Cryo-EM Electron microscopy uses a beam of electrons and a system of lenses to di-

rectly investigate a biomolecule. Nowadays, it has become a standard to rapidly freeze

a sample to cryogenic temperature, obtaining a thin layer of non-crystalline ice. In this

manner, a large number of single particles are preserved in different, biologically relevant
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conformations, while the demanding procedure of crystallization is avoided [8, 19, 33].

In the early 1990s, cryo-EM was a low-resolution technique, allowing for the three-

dimensional structure determination with the resolution of about 40 Å. That imroved

to about 10 Å at the beginning of this century [34–36]. Owing to the development of

a new generation of electron detectors and improvements in image processing proce-

dures, the progress in cryo-EM over the last few years is so swift that it is often called

a revolution. Nowadays, the resolution of a structure determined using cryo-EM is ap-

proaching the resolution obtained using crystallography [18, 36, 37]. The exponential

growth of the cryo-EM usage can be illustrated by the number of structures deposited

in the PDB: while the first cryo-EM structure was deposited in 1997, this number in

2013 was only 520. By the end of 2019, this number increased to 4145, including 1423

structures deposited during the year 2019 [8]. In contrast to NMR, cryo-EM is not lim-

ited to small biomolecules, and the amount of necessary sample is considerably lower.

Despite these advantages, sample preparation and reproducibility, image processing as

well as high costs remain a challenge [11, 38–40]. While cryo-EM is argued to allow for

sample preparation in near-native conditions [11, 41], the possible discrepancy to native

conditions is still to be evaluated [42].

Spectroscopic methods While spectroscopic methods usually provide only a limited

amount of structural information, they often serve as a significant supplement, either to

validate or to complement high-resolution structures. The fact that spectroscopic meth-

ods commonly provide high time resolution at low cost rationalizes their broad range

of applications [18, 43–45]. For example, Förster resonance energy transfer (FRET) is

often used to measure distances between domains of a protein [46–49]. In a wider bio-

physical context, FRET is used to detect interactions between proteins [50, 51] and to

investigate lipid rafts in cell membranes [52]. The main disadvantage of this method is

that it requires labeling, which can cause changes in the local environment [53]. Other

examples include the usage of infrared spectroscopy to probe protein conformational

changes associated with protein interaction with metal ions or other macromolecules

[54], and the usage of fluorescent and Raman spectroscopy to characterize the secondary

structure of the protein [55, 56].

SAXS In a typical SAXS experiment, a solution of macromolecules is irradiated by

a beam of collimated monochromatic X-rays and a scattering pattern is recorded on a

detector. In order to obtain structural information about the macromolecule, a scatter-

ing pattern of the pure solvent (buffer) has to be recorded and subsequently subtracted

from the scattering pattern of the solution. The resulting scattering pattern (excess

scattering intensity) encodes the structural information about the macromolecule under
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investigation [24].

It is important to note that the density of the water around the biomolecule differs

from the density of bulk water (the so-called hydration layer) [57]. Therefore, the excess

scattering intensity encodes both the information about the macromolecule and the hy-

dration layer.

The utilization of SAXS to study the structure of biomolecules originates in the first

decades of the twentieth century [29, 58]. SAXS experiments can be performed under a

great variety of solution conditions, including near-native conditions, without any limi-

tation to the size of the biomolecule, and at a reasonable cost, which is why it rapidly

became an important tool for studying the size and the shape of biomolecules. However,

the applicability of SAXS was limited over the next decades, mainly due to two chal-

lenges: (i) low scattering contrast between the biomolecule and the solvent; (ii) unclear

data content of a typical SAXS curve. Both topics will be further discussed later on.

The applicability of SAXS flourished over the latest two decades, owing to the improve-

ments of light sources, detectors, sample preparation methods, as well as the meth-

ods and software for data collection and analysis. Nowadays, SAXS experiments alone

are routinely used to obtain information about the biomolecular size and flexibility,

as well as to construct a three-dimensional envelope of a biomolecule with a resolution

higher than 1.5 nm, which is often sufficient for addressing important biological questions

[2, 3, 6, 15, 17, 29, 59–68]. Additionally, although generally considered a low-resolution

technique, even small differences in macromolecular conformations are detectable in a

scattering profile. This is often used in conjugation with computational methods that

allow for SAXS profile prediction, to validate or disprove structural models [17, 69–72].

Recently established standards for quality control, and data deposition [73, 74] further

led to reduced risk of experimental error. Additionally, newly developed SEC-SAXS

approach [75, 76] greatly improves data quality [15, 17]. Advances in automated sam-

ple handling and preparation brought SAXS to the level of a high-throughput method

[3, 17]. A particularly promising direction in further development of SAXS as a method

lies in time-resolved SAXS (TR-SAXS). When performed at synchrotrons, these ex-

periments capture transient and evolving macromolecular conformations occurring on

100 ps timescales [15, 17, 77]. When paired with free-electron lasers, such experiments

reach sub-picosecond time resolution, offering invaluable insights into ultra-fast protein

dynamics [15, 78, 79].

Beside the above applications, an additional value of SAXS lies in its compatibility with

other experimental techniques. SAXS is often combined with crystallography, NMR and

cryo-EM, as the overall structure and flexibility of the biomolecule determined by SAXS

complement or validate high-resolution structures obtained using these techniques. Ad-

ditionally, SAXS data are often compared with intramolecular distances obtained using
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Figure 1.1: Compatibility of SAXS and other experimental techniques to study the
biomolecular structure. XT denotes X-ray tomography, MX macromolecular crystal-

lography, and MS mass spectroscopy. Figure adopted from Ref. 17.

FRET [2, 5, 29, 49, 80–86]. Being applicable on any biomolecular size and being com-

patible with variety of experimental techniques (Fig. 1.1), SAXS is expected to play a

significant role in the further integrative modeling studies [17].

In spite of all the improvements over the last decades, interpretation of experimental

SAXS data remains challenging. Namely, since the information content of data is low,

and since it is generally unclear how the structural information is distributed over the

scattering profile, interpretation of SAXS data comes with a substantial risk of over-

fitting [15]. Therefore, new methods to back-calculate the SAXS curve, as well as to

combine SAXS data with other experimental and computational techniques, are con-

stantly developing.

The focus of this thesis is to interpret SAXS (and SANS) experimental data using all-

atom MD simulations. Namely, the detailed physico-chemichal knowledge that MD

simulations contain greatly complements the information content of SAXS experiments.

In turn, SAXS data can be used to validate, and if necessary, refine MD simulations

[15, 87–94]. This will be further discussed in Section 1.2 and Chapter 2. The theoretical

basis of SAXS, as well as methods to interpret SAXS experiments, are discussed in

Chapter 2. Four projects related to the combination of SAXS data and MD simulations

are given in Chapters 3-6.

SANS In a typical SANS experiment, a solution of macromolecules is irradiated by a

collimated beam of neutrons. While the experimental setup and output, as well as the

mathematical basis of scattering, are similar to SAXS, there is one important difference

between SAXS and SANS: the beam of X-rays is mainly scattered by the electrons
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of the atoms in a sample, and the electron scattering length density (SLD) is always

positive; in contrast, the beam of the neutrons is mainly scattered by the nuclei, and the

nuclear SLD can take both positive or negative values, depending on the nucleus, and

often isotope type. For example, the scattering length of hydrogen is negative, and the

scattering length of deuterium positive. This feature can be used to study components of

biomolecular complexes or the subunits of larger biomolecules. Namely, one component

of a biomolecular complex or a subunit of the biomolecule can be made ”invisible” to

scattering, by varying the H2O to D2O ratio.

The main disadvantage of SANS compared to SAXS is the considerably higher cost of

the experiment. In addition, SANS is limited to smaller angles than SAXS, due to the

low signal-to-noise ratio and incoherent scattering at wider scattering angles [4, 70, 94–

97].

Here, it should be noted that the term ”in-solution scattering” is commonly used in

literature to refer to SAXS, WAXS (wide-angle scattering, which differs from SAXS

only by the measured angle of scattering) and SANS. When referring to both SAXS and

SANS, the term SAS (small-angle scattering) is commonly used.

More details about SANS theory and the methods used to interpret SANS experiments

are given in Chapter 2. The project that combine SAXS and SANS data with MD

simulations is described in Chapter 6.

1.2 Motivation for all-atom molecular dynamics simula-

tions

In general, a wide range of physico-chemical models are used to complement experimental

data during biomolcular structure determination. The resolution and the reliability of

the obtained structures are determined by the information content of the experimental

data and the level of physico-chemical knowledge contained in the used model. Since the

information content of SAS data is low, very detailed physico-chemical models have to

be used to derive reliable atomic macromolecular structures. As MD simulations contain

detailed and accurate physico-chemical knowledge [15], they have been used throughout

this thesis to derive atomic structures of different macromolecules.

Compatibility of MD simulations and SAS, as well as the strategies to combine SAS

data with MD simulations will be discussed in Chapter 2, upon the introduction of the

theoretical basis of MD and SAS.
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1.3 Aim of the present thesis

This thesis aims to interpret SAXS data of detergent micelles and proteins, as well as

SAS data of a protein-detergent complex. In Chapter 3 we quantify the influence of

the ion cloud on SAXS profiles of charged proteins. Chapter 4 is dedicated to deriving

atomic models of detergent micelles by incorporating SAXS data as an energetic restraint

into MD simulations. In Chapter 5 an ensemble of detergent micelles is refined against

SAXS data. Having the first reliable ensemble of the soft matter system in agreement

with the experimental data enabled us to investigate contributions of different effects

(model asymmetry, shape fluctuations, disorder and atomic details) on the SAXS curve.

Finally, Chapter 6 demonstrate how SAXS and SANS data can be jointly used with MD

simulations in order to precisely derive the structure of membrane-protein detergent

complexes. Although these 4 chapters pursue relatively different inquires, the common

denominator for all of them is the usage of all-atom MD simulations to predict SAS

profiles. It is important to note that the commonly used implicit-solvent methods to

predict SAS curves would not provide satisfactory precision in these studies. Addition-

ally, in cases when profiles predicted from unbiased simulations do not perfectly agree

with experimental profiles (Chapters 4 and 5), state of the art methods are used to bias

MD simulations with SAXS data, thus overcoming simulation imperfections and driving

the simulations into conformations that satisfy the experimental data.

A brief motivation and introduction to the four studies is given in the following para-

graphs, while more detailed introductions are given at the beginning of each chapter.

Quantifying the influence of the ion cloud on SAXS profiles of charged pro-

teins The interpretation of SAXS data is complicated by scattering contributions from

the hydration layer and, in the case of charged macromolecules, from the ion cloud. The

influence of the hydration layer on SAXS curves has been extensively studied previ-

ously [57, 88–90, 98–104]; in contrast, the influence of the ion cloud on SAXS curves,

although nearly equally relevant, remained poorly understood, potentially leading to

significant uncertainties during the interpretation of the data. To close this gap, we

quantified the effect of the ion cloud on the radius of gyration (Rg) of the charged pro-

teins using three computational models with decreasing complexity. Namely, we used

(i) all-atom MD simulations in conjunction with explicit-solvent SAXS predictions; (ii)

non-linear Poisson-Boltzmann calculations; and (iii) linearized Poisson-Boltzmann cal-

culations in conjunction with a simple spherical protein model. The calculations are

validated against experimental SAXS data. We find remarkable agreement between the

three methods, suggesting that the ion cloud effect on Rg may be predicted even with a

greatly simplified protein model. As a result of this study, we provide a computationally
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efficient alternative to MD simulations for SAXS users interested in the effect of the ion

cloud on Rg of charged proteins.

Temperature-dependent atomic models of detergent micelles refined against

small-angle X-ray scattering data Detergent micelles play an important role in

structural biology and biophysics. Namely, they are often used as membrane mimics

to solubilize membrane proteins for biochemical or structural studies. Recent studies

suggested that protein-detergent complexes are stable if the hydrophobic cross-section of

the detergent micelle matches the membrane protein [105, 106]; however, since micellar

structures are still uncertain, finding a suitable detergent remains a matter of trial and

error. SAS experiments have been frequently used to study micelles, but the data content

of such experiments is insufficient to derive atomic models [107–112]. Alternatively, MD

simulations have been employed, but it remained unclear to which extent force field

imperfections biased the derived models [113–118]. Therefore, we used SAXS-driven

simulations [91] to derive the first accurate atomic models of two maltoside detergent

micelles, n-dodecyl-β-D-maltoside (DDM) and n-decyl-β-D-maltoside (DM), in a range

of experimentally relevant temperatures. By comparing calculated and experimental

SAXS profiles, we found that the aggregation numbers of both micelles decrease with

a temperature increase. These results are in remarkable agreement with independent

estimates of the aggregation number from the experimental data and from an analytic

model [119]. Further, in contrast to previously assumed two-axial ellipsoid micellar

shapes [107, 108, 120–122], we determined that the shape of the DDM and DM micelles

is a general tri-axial ellipsoid. Finally, we found that the minor maltoside micelle axes

closely mimic lipid bilayers. While the aggregation numbers of the DDM and DM

micelles decrease with increasing temperature, the thickness of the minor micelle axis

is largely temperature-invariant, rationalizing why protein-detergent complexes may be

stable over a wide temperature range.

SAXS Curves of Detergent Micelles: Effects of Asymmetry, Shape Fluctu-

ations, Disorder, and Atomic Detail SAXS data of detergent micelles are often

interpreted by fitting simple symmetrized continuum models, such as prolate or oblate

ellipsoids, to the data, thereby neglecting shape fluctuations, disorder, possible asym-

metry, and atomic details [107, 108, 121, 122]. It is not surprising that such models

may explain only the low-angle scattering data whereas they fail at medium to wider

angles. In order to derive an accurate, atomic, heterogeneous ensemble of a detergent

micelle, we coupled MD simulations to experimental SAXS data, measured up to wider

scattering angles [123]. Based on a recently developed method for ensemble refinement

with commitment to the principle of maximum entropy [93], we ensure that the refined
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ensemble is statistically well defined. Having an atomic ensemble in excellent agreement

with the data as an accurate reference, we resort to simplified continuum models to

decipher the effects of shape asymmetry, shape fluctuations, disorder and atomic details

on the SAXS curve of the micelle. Our analysis shows that the previously assumed

shape symmetry and lack of atomic details had been the main sources of discrepancy

between continuum models and experiment, whereas disorder and shape fluctuations

had been less problematic. Notably, we find remarkable agreement between the overall

micelle shape determined using ensemble-refined MD simulations, and using a contin-

uum model, if the symmetry of such a model is dropped. However, atomic and molecular

details, as captured by the MD simulation, are necessary to quantitatively explain the

SAXS curve at wider scattering angles.

Merging in-solution X-ray and neutron scattering data allows for fine struc-

tural analysis of membrane-protein detergent complexes Chen and Hub demon-

strated previously that the number of detergent molecules forming a protein-detergent

complex can be estimated by comparing the experimental SAXS profile with the SAXS

profile calculated from a series of all-atom MD simulations with different number of

detergent molecules [71]. Here, we followed the same approach to structurally charac-

terize the ammonium transporter AmtB embedded in a DDM detergent belt. We found

that the number of detergent molecules forming the protein-detergent complex deter-

mined by comparing experimental profiles with the profiles calculated from all-atom MD

simulations is in an excellent agreement with the number determined using analytical

ultracentrifugation. To further support this finding, we calculated the SANS profiles

at different H2O to D2O ratios from the same sets of MD simulations and found good

agreement with experimental SANS profiles. Finally, we demonstrated that the overall

shape of the protein-detergent complex obtained using MD simulations is in a reasonable

agreement with the ab initio models obtained using SANS data together with the SAXS

data.





Chapter 2

Theory and Methods

THIS chapter provides a brief introduction to the underlying theory of the methods

applied in this thesis. MD simulations are introduced in Section 2.1. SAXS is

discussed in Section 2.2, and SANS in Section 2.3. Finally, direct coupling of MD

simulations with SAXS data is described in Section 2.4.

2.1 MD simulations

MD simulations are an irreplaceable and powerful tool to investigate and visualize the

dynamic behavior of macromolecules in solution [125, 126]. In a conventional MD sim-

ulation, atoms are described as spheres that carry partial charges, and the chemical

bonds among atoms are modeled as harmonic springs (Fig. 2.1). The time evolution of

the system (trajectory) is modeled by iteratively solving Newtons equation of motion

Figure 2.1: Left: snapshot of the typical MD simulation. Protein is visualized in
red cartoon representation, and water and ions as colored spheres. For the simplicity,
only the solvent atoms at distances smaller than 1 nm from the protein surface are
shown. Right (adopted from Ref. 124): Illustration of the underlying principle of MD
simulations - atoms are modeled as charged spheres, and chemical bonds as harmonic

springs.

11
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[127]. Underlying approximations, fundamentals of the MD algorithm as well as chal-

lenges of conventional MD simulations are briefly discussed in the following subsections.

Additional details and applied parameters are given in the method sections of Chapters

3-6.

2.1.1 Three approximations of MD simulations

Conventional MD simulations rely on tree approximations [128]: (i) motions of the

atomic nuclei can be decoupled from the motions of electrons (Born-Oppenheimer ap-

proximation); (ii) nuclei motions are described classically; (iii) the potential energy

surface is truthfully described by an empirical force field.

Born-Oppenheimer approximation The time evolution of a system of particles is

described by the time-dependent Schrödinger equation:

H = i}
∂ψ

∂t
, (2.1)

where H denotes the Hamiltonian of the system and } denotes the Planck constant h

divided by 2π. The wave function ψ at a given time t depends both on the positions of

the atomic nuclei R and the positions of electrons r. Here, R denotes positions of the k

nuclei, R = {R1, ...,Rk}, r denotes the positions of the m electrons, r = {r1, ..., rm}, and

t stands for the time. The Born-Oppenheimer approximation assumes that electronic

structure instantaneously adapts to the given nuclei positions [129]. In such a case, the

motion of the electrons occur in a field of fixed nuclei, and the wave function in Eq. 2.1

can be replaced by a wave function of nuclei (ψn) and a wave function of electrons (ψe):

H(R, r, t) = ψn(R)ψe(r; R). (2.2)

Here, ψe(r; R) only parametrically depends on the nuclei positions. Therefore, the time-

independent Schrödinger equation of the electrons can be written as:

He(R)ψe(r; R) = Ee(R)ψe(r; R). (2.3)

In the above equation, electronic Hamiltonian equals the difference between the kinetic

energy of the nuclei Tn and the Hamiltonian of the system H. Ee(R) denotes the Born-

Oppenheimer potential-energy surface and physically represents the potential that nuclei

”feel” as they move. Finally, the time-dependent Schrödinger equation of nuclei motion

can be written as:

(Tn + Ee(R)) ψn(R, t) = i}
∂ψn(R, t)

∂t
. (2.4)
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Eq. 2.4 is valid if the eigenvalues of Eq. 2.3 differ significantly, meaning the potential

energy surfaces of distinct excited states do not approach each other. For molecules in

the ground state this is almost always the case.

Classical motion of nuclei In MD simulations, the number of atoms typically range

from tens of thousands up to a few millions, making the solution of the time-dependent

Schrödinger equation practically impossible. Therefore, in MD simulations, atomic nu-

clei are modeled as classical particles, whose motions follow Newton’s second law:

mi
∂2Ri

∂t2
= ∇RiV (R)

mi ai = Fi,
(2.5)

where mi and ai denotes mass and the acceleration of atom i, under the force Fi,

and V (R) = E0
e (R) denotes the potential energy surface of the ground state, as given

by Eq. 2.3. Since biomolecules in solution have been shown to behave classically, this

approximation is well-justified [130–132].

Force fields Solving Eq. 2.3 is prohibitively expensive for the systems that contain a

large number of electrons, hence the potential energy surface Ee(R) of the biomolecules

in solutions is modeled as a sum of simplified empirical expressions that describe Ee(R)

satisfactorily accurate. Such a sum (termed force field) can be evaluated in a compu-

tationally efficient manner. Within the force field, a macromolecule is modeled by a

ball-and-spring-like model (Fig. 2.1). A typical force field includes the sum of bonded

and non-bonded interactions between the atoms [127, 133]:

V (R) = Vbonds + Vangles + Vdih. + Vimp. dih. + VLJ + VCoul

=
∑
bonds i

ki
2

(li − li,0)2

+
∑

angles i

fi
2

(ϕi − ϕi,0)2

+
∑
dih. i

Vi
2

[1 + cos(nφi − φi,0)]

+
∑

im. dih. i

κi (ξi − ξi,0)2

+
∑

pairs i,j

4 εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
qi qj

4π ε0 εr εij

(2.6)

Here, the bond stretching potential Vbonds, the bond angle potential Vangles and the

improper dihedral potential Vimp. dih. (which describes out-of-plane bending modes) are
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modeled as harmonic potentials, while the dihedral potentials Vdih. are modeled by a co-

sine with periodicity n and potential barriers Vi. The last two terms in Eq. 2.6 describe

non-bonded interactions. Non-bonded interactions are evaluated pairwise, neglecting

many-particle effects. The short-range repulsive and attractive dispersion interactions

are modeled by a Lennard-Jones (LJ) potential, where the parameters σij and εij repre-

sent width and the strength of the potential, respectively. The electrostatic interactions

are represented by the Coulomb term, where qi denotes the partial charge of particle i.

The relative dielectric constant εr is typically set to 1.

There are several widely used families of force fields. Proteins are usually modeled

using AMBER [134, 135], CHARMM [136, 137], GROMOS [138, 139] and OPLS [140,

141]. These force fields (or their modifications) can also be applied to study other

macromolecules, such as detergents and lipids. In addition, more general force fields,

such as GAFF and CGenFF are used to parameterize small molecules [142, 143]. It is

important to note that terms of Eq. 2.6 may slightly differ between force fields.

2.1.2 MD algorithms

In this thesis, all MD simulations are performed using the Gromacs software package

[144–146]. In the following paragraphs, key features of the MD algorithms applied to

carry out computationally efficient, yet realistic simulations are briefly described.

Time integration Time integration in Gromacs is implemented via the leap-frog ver-

sion of the Verlet algorithm [147], in which the velocities and the positions of the particles

are updated as:

v(t+ ∆t/2) = v(t−∆t/2) + F(t) ∆t/m,

r(t+ ∆t) = r(t) + v(t+ ∆t/2) ∆t.
(2.7)

In order to prevent integration errors in the fastest motions, the time step ∆t has to be

sufficiently small. An explicit simulation of bond vibrations would require a time-step of

1 fs. Since the bond vibrations hardly couple to the global motion of the macromolecule,

they are often constrained using the SETTLE algorithm for water molecules [148] and

the LINCS algorithm [149] for the rest of the system, enabling a time step of 2 fs. The

next fastest motion is given by bond angle oscillations of hydrogen atoms. In many cases

hydrogen atoms can be modeled as virtual interaction sites, allowing a time step of 4 fs

[150].

LJ and electrostatic interactions The calculation of non-bonded interactions re-

quires a sum of pairs of atoms. If all possible interactions are explicitly evaluated, the
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non-bonded interactions scale quadratically with the number of particles N in the sys-

tem. The explicit calculation of all LJ and Coulomb interactions becomes prohibitively

expensive for the systems whose number of atoms is larger than 104. Therefore, the

LJ interactions are commonly cut off beyond a distance of 1.0 - 1.4 nm [151]. However,

due to the long-range nature (r−1) of decay of the Coulomb potential, cutting it of

leads to significant artifacts [152, 153]. Therefore, long-range Coulomb interactions are

commonly modeled using the Particle-Mesh Ewald (PME) method, which models the

long-range electrostatics by assigning the charges to a grid and calculating the potential

as a simple sum in reciprocal space. PME takes advantage of fast Fourier transformation

calculations in reciprocal space and scales as N logN [154, 155]. This scaling is more

favorable than the N2 scaling of previously used Ewald summation (which has to be

performed in a real space) [156].

Temperature and pressure coupling To model experimental conditions, MD sim-

ulations are commonly performed in an NPT ensemble (isobaric-isothermal conditions).

Accordingly, simulations are coupled to temperature and pressure baths. Typically,

the temperature coupling is performed via the Berendsen or Nosé-Hoover algorithms or

velocity rescaling [157, 158]. Velocity rescaling is executed in a manner that the tem-

perature decays exponentially to the target temperature [159]. Pressure coupling can

be performed following different strategies. Through this thesis, we conducted a system

equilibration using the Berendsen barostat, as it leads to a stable convergence to the tar-

get pressure [159]. Production simulations were performed using the Parrinello-Rahman

barostat, as it guarantees the correct NPT ensemble [160, 161].

2.1.3 Main challenges in MD

The two main challenges of each MD simulation are force field accuracy and sampling

[15, 16, 126]. These challenges as well as the range of applicability of conventional MD

simulations will be discussed in following paragraphs.

Force field accuracy Parameters of force fields are constantly optimized and cross-

validated using a range of experimental data and ab initio QM calculations [16, 162–166].

Careful optimizations over the last decades made modern force fields highly accurate and

applicable to a wide variety of macromolecules. As a consequence, results obtained using

different families of force fields are becoming more and more similar, and the agreement

to the experimental data is constantly improving [16, 163, 166, 167]. Nonetheless, the

choice of the most suitable force field to study a given property of a system of interest

along with the accuracy of the applied force field is often far from obvious. Therefore, the
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validity of the simulation results for any given application should be verified by compar-

ing properties calculated from simulations with experimental data. Further development

of force fields follows three routes: (i) including new experimental and quantum-chemical

data for optimization and cross-validation [16, 168]; (ii) finding new strategies to op-

timize force fields - for example by using the machine learning [16, 169–172] and (iii)

replacing simplified force field expressions (Eq. 2.6) with more realistic expressions. For

example, force fields with additional terms, that explicitly take polarization into account

already demonstrated promising results [173–175].

Sampling Sampling problem refers to the inability of a simulation to ”visit” all rele-

vant macromolecular conformations and to determine their relative populations [16, 176].

In studies where comparable experimental data are not available, checking for the sam-

pling completeness is particularly difficult because it is difficult to predict the existence

of a specific (important) conformation before it is ”visited” by the MD simulation. Sam-

pling problems in a given application may arise both from force field imperfections and

from time-scales that are inaccessible using conventional MD simulations [176]. For

example, some proteins undergo large, slow conformational changes, even on a time-

scale of seconds, while state-of-the-art all-atom MD simulations reach up to millisec-

onds [16, 177–179]. Therefore, a variety of strategies to improve sampling are constantly

developed. For example, the speed of MD simulations greatly improved over the last

decade owing to new strategies to off-load calculations to graphic process units [180].

Additionally, hardware designed specifically for MD simulations, such as the massively

parallel supercomputer Anton, significantly increase the simulation speed [181]. However

relevant time-scales are still sometimes out of reach of unbiased all-atom simulations,

either due to the system size or the slowness of relevant motions. In such cases, coarse-

grained (CG) simulations may be employed [182–187]. The idea behind CG simulations

is to represent multiple atoms as a single particle. While the force field expression, as

shown in Eq. 2.6, usually remains unchanged, a new force field parametrization is re-

quired [184]. CG simulations are significantly faster compared to all-atom simulations,

but the accuracy is reduced.

An alternative route to access longer time scales is to run many short simulations and

extract information by, for example, constructing a Markov state model [188–190]. A

detailed overview on the joint usage of Markov state models and all-atom MD simula-

tions is given in Ref. 190. Additionally, the outcomes of a large set of short simulations

may be used to start additional simulations from underpopulated biomolecular confor-

mations. This approach is termed adaptive sampling [191–193].
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Finally, long timescales may be reached by changing the simulation parameters, for ex-

ample by employing enhanced sampling along one or more specific collective variables

[194–197]. More details on enhanced sampling methods may be found in Refs. 16 and 198.

The range of applicability Relying on the approximations described in the Subsec-

tion 2.1.1 leaves the chemical reactions (involving the breaking of formation of covalent

bonds), charge transfer processes, as well as excited electron states, out of the scope of

the classical MD simulations. If any of these processes play an important role in a given

study, MD simulations are often combined with the quantum-mechanical calculations

[199–202].

2.1.4 How to combine experimental data with MD simulations

The compatibility of experimental data and MD simulations is predetermined by their

nature [16, 203]: experimental data are synthesized into a coherent model by solving

the inverse problem; on the other hand, simulations deal with the forward problem -

building a model that can be compared with observed data. Accordingly, a variety of

strategies have been proposed to combine experimental data with MD simulations. The

simplest approach is to compare experimental data with data backcalculated from a

free (unbiased) simulation [15, 16, 90, 93, 204]. If the back-calculated data agree with

the experimental data, there is reason to believe that the experimental conditions are

truthfully resembled in a simulation. In such cases, the analysis of the MD simulation

provides additional information about the studied macromolecule. This approach is fol-

lowed in Chapters 3 and 6 of this thesis. Although intuitive and conceptually simple,

this approach may encounter many difficulties. First of all, experimental data and MD

simulations often do not agree, owing either to the imperfection of simulations (force

field and sampling problems), or to an unknown experimental error. Second, even if the

back-calculated data agree with the experimental data, there is no guarantee that the

simulation resembles experimental conditions. This challenge is particularly pronounced

in the case of experiments that provide time and ensemble-averaged information (SAXS,

NMR, and FRET, for example).

A more advanced approach is to reweight the simulation ensemble, such that it agrees

with the available experimental data. However, this approach relies on exhaustive sam-

pling - if relevant biomolecular conformations are not visited by a simulation, the de-

rived ensamble will be overfitted and often dominated by only a few structures with high

weights [15, 16, 93, 205].

Finally, experimental data may be directly integrated (as a restraint) in a simulation.
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This route was followed in Chapters 4 and 5 of this thesis. Refining MD simula-

tions against ensemble-averaged experimental data may also lead to overfitting [206],

especially in the cases of flexible biomolecules [15, 16]. In such cases, a statistically

well-founded framework is required. One possible approach is based on introducing

the smallest possible perturbation to the simulation to match the experimental data.

As the bias is chosen to be as small as possible, this approach follows the maximum-

entropy principle [93, 207–209]. Although being powerful and mathematically rigorous,

the maximum-entropy formalism does not explicitly take sources of errors into accout

[16]. This is often no problem, since the force fields contain accurate physico-chemical

knowledge. For example, the ensemble of the RS peptide that was refined against SAXS

data following the maximum-entropy approach, was successfully cross-validated against

orthogonal NMR data [93]. Nonetheless, when needed, a Bayesian framework can be

employed, as it allows for the integration of data from multiple sources, while simulta-

neously estimating uncertainties [16, 92, 204, 206].

2.2 SAXS

As already outlined in the Introduction, SAXS is increasingly popular method to study

biomolecules in solution, that is under near-native conditions [61]. In the next sub-

sections, the basis of X-ray scattering, experimental set-up and output, as well as the

theoretical framework to calculate SAXS curve from a given structural models are briefly

discussed.

2.2.1 Basis of X-ray scattering

To illustrate the scattering process, we first consider the interaction of a monochromatic

wave with a single particle, as shown in Fig. 2.2. The incident wave is described by the

2θ 
k0

k1
k0

k1 q
2θ 

Figure 2.2: Illustration of the scattering of a wave on a single particle. k0 denotes
the wave vector of the incident wave, and k1 denotes the wave vector after the elastic
scattering on a single particle (green transparent sphere). The momentum transfer
vector is denoted by q, and 2 θ denotes the scattering angle. Waves are represented by

straight lines for simplicity.
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wave vector k0 with the length k0 = 2π/λ, where λ denotes the wavelength. As a result

of the interaction of the wave with the particle, the particle starts to oscillate and emits

a wave, whose wave vector is k1. The angle between the incident and scattered waves

is denoted by 2 θ.

In SAXS experiments, the incident X-rays are scattered at the electrons of the atomic

shell. We confine to the coherent scattering because incoherent scattering is negligibly

weak at small scattering angles [95, 210]. At the wavelengths used in SAXS, scattering

is always elastic. Therefore, the wavelength of the incident wave does not change after

the scattering, and the length of the scattered wave vector is given by k1 = 2π/λ. The

scattering intensity is commonly represented as a function of the momentum transfer

vector length. The momentum transfer vector q has the same direction as k1 − k0

(Fig. 2.2), and the length of q is given as q = 4π sin(θ)/λ [210].

Now we consider a scattering of the beam of collimated monochromatic X-ray waves on

a macromolecule. Since the incident beam of monochromatic X-ray waves is linearly

polarized and the scattered waves are coherent, the resulting amplitudes are simply

added [210]:

A =

n∑
i=1

Ai, (2.8)

where Ai denotes the scattering amplitude of the ith wave, and n denotes the total

number of scattered waves. The total scattering intensity is given by the absolute square

of the resulting amplitude [95, 210]:

I =
∣∣A2
∣∣ (2.9)

The scattering curve of a macromolecule that consists of N molecules can be calculated

using the Debye formula [95, 210]:

I(q) =
N∑
i=1

N∑
j=1

fi(q)fj(q)
sin (q · rij)
q · rij

(2.10)

where rij = |ri − ri| and ri and rj are Cartesian coordinates of atoms i and j. The

form factors of atoms i and j are denoted by fi(q) and fj(q), respectively. Physically,

the form factor represents the Fourier transform of an electron distribution around the

nucleus of a given atom [95, 210]. The form factors are accurately approximated via

[90, 95, 210]:

fj(q) =

4∑
k=1

ak e
−bk(q/4π)2 + c , (2.11)

where ak, bk and c denote Cromer-Mann parameters [211].

For more detailed derivations and a description of the scattering process we refer to



2.2. SAXS 20

Ref. 95 and Ref. 210. Details of SAXS experiments, information content of the exper-

imental scattering curve and methods to calculate the scattering curve from a given

structural model are discussed in the following paragraphs.

2.2.2 Experimental set-up and output
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Figure 2.3: Illustration of the SAXS experiment: sample in a solution (A) and the
pure buffer (B) are irradiated with X-ray. Scattering patterns are detected, orienta-
tionally averaged and subsequently subtracted, resulting in one-dimensional intensity

curve shown in C.

Work-flow The work-flow of a typical SAXS experiment is as follows [24, 212]: the

solvated biomolecules (sample) are placed in a quartz capillary and irradiated by a col-

limated monochromatic X-ray beam. The scattering pattern is recorded at the X-ray

detector (Fig. 2.3A). A second quartz capillary is filled with pure solvent (buffer) that

should be identical to the sample solvent. The scattering pattern of the buffer is recorded

in the same manner as the scattering pattern of the biomolecular solution (Fig. 2.3B).

Owing to the random orientation of macromolecules in solution, the scattering pattern

is isotropic. Scattering patterns of the sample and the buffer are radially averaged and

subsequently subtracted. In this way, the scattering intensity of the biomolecule (I) is

determined as a function of momentum transfer q = 4πsin(θ)/λ (Fig. 2.3C). Here λ de-

notes the wavelength of the X-ray beam, and 2θ denotes the scattering angle relative to

the path of the beam. It is essential to note that, since the water around the biomolecule

has the density that is different compared to the density of bulk water (so-called hy-

dration layer), I(q) records both the information about the biomolecule and the water

density modification in the biomolecular vicinity.
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Technical notes Nowadays, structural biology and biophysics communities take ad-

vantage of high brilliance of synchrotron sources with beamlines optimized for biolog-

ical SAXS experiments. These include DESY (Hamburg, Germany), ESRF (Greno-

ble, France) Diamond (Oxford, Great Britain), ANL (Argonne, USA), SSRL (Stanford,

USA) and Spring-8 (Himeji, Japan) [24, 213–215]. Nonetheless, reasonable results may

be obtained using in-house SAXS beamlines, which are also employed to fine-tune sam-

ples before the beamtime at the synchrotron [15, 24, 216].

In a typical SAXS experiment, multiple concentrations of the same sample are prepared

and measured. Subsequently, the highest sample concentration unaffected by the ra-

diation damage, sample aggregation or biomolecule-biomolecule interactions is used for

the analysis. This procedure requires 10 − 100µl of a sample (meaning 1 − 2 mg of a

purified protein) [24]. At the dedicated synchrotron beamlines, multiple parameters of

the investigated sample, such as molecular weight, excluded particle volume, maximum

dimension and the radius of gyration of the particle, are available immediately after the

irradiation [3, 24].

Information content in experimental data In this paragraph, we discuss the in-

formation content of a typical SAXS curve, using examples given in Ref. 17: (i) folded,

oligomeric PCNA (PDB code 1AXC [217]), (ii) modular GbpA (PDB code 2XWX [218])

and (iii) disordered elF3g (PDB code 4U1E [219]). The following analysis can be per-

formed using a variety of available software packages, among which ATSAS [220] is

probably the most popular one.

Often, the analysis of the SAXS data begins with the simple visual inspection of the

scattering profile, as it may indicate the molecular geometry and dynamics. For exam-

ple, the SAXS curve of well-folded, globular proteins contain several elevations and dips

(Fig. 2.4b, blue line), in contrast to the featureless SAXS curve(Fig. 2.4b, green line) of

intrinsically disordered proteins (IDPs).

In the next step, the well-understood Guinier region is analyzed (Figure 2.4b, insets).

Namely, at very low q-values (chosen such that q · Rg < 1.3), plotting the natural log-

arithm of I as a function of q2 exhibits linear behavior. The slope of the fitted line is

connected to Rg of the macromolecule. The extrapolation of the fitted line gives the

forward angle scattering (I0), which is used to determine the molecular mass of the

protein [221]. Eventual non-linearity of the Guinier region is a clear indication of the

sample aggregation, particle-particle repulsion or the radiation damage.

In the next step of the data analysis, the volume of the macromolecule can be estimated

using the Porod law and Porod-Debye plot (Fig. 2.4c, top plot) [222]. Additionally, the

decay of the pair-distance distribution function (P (r)) provides the estimate of the max-

imum diameter of the particle (Dmax in the middle plot in the Fig. 2.4c). Information
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Figure 2.4: Scattering curves and various SAXS parameters determined for three
proteins: PCNA (blue color-coding), GbpA (violet color coding) and elF3g (green color-

coding). Figure adopted from Ref. 17.

about the Rg, Dmax and volume is subsequently used to construct the low-resolution

envelope of the molecule (Fig. 2.4b, dotted lines).

Finally, the Kratky plot ( q2 ·I(q) plotted as a function of q, Fig. 2.4c, bottom plot) offers

a qualitative assessment of the compactness of the investigated molecule [6, 17, 24]: glob-

ular molecules exhibit parabolic Kratky curves, converging at high-q values (blue curve),

while unfolded systems exhibit hyperbolic behavior (green curve). The non-parabolic

profile of modular GbpA is the consequence of the flexibility of its linked domains (violet

curve).

Beside the information about macromolecule size, low-resolution shape and Rg, there is

no straight-forward procedure to obtain more structural information directly from the

experimental curve. Moreover, the exact number of independent data points or how

they are distributed over q-range is not fully understood [15]. Commonly, the number of
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data points in a SAXS curve is estimated by the number of Shannon channels [2, 223]:

Nc = qmaxDmax/π, where qmax is the maximal q recorded in the experiment. For a

typical SAXS setup, and an average-size protein, Nc is found to be between 10 and

30 [2, 15, 60]. The number of the backbone angles of a protein already exceed Nc by

the two orders of magnitude, hindering any straight-forward procedure to obtain the

high resolution structural model from the experimental data alone. Therefore, meth-

ods to back-calculate SAXS curve from a given structural model have been constantly

developing [15].

2.2.3 Calculating SAXS curve from a given structural model

The physical basis of the SAXS curve is known - it is given by the orientationally

averaged Fourier transform of the correlation function of the electron density contrast

between solvent and solution [15, 95]. Nonetheless, as mentioned in Chapter 1, methods

to predict SAXS curve vary greatly. Main differences stem from the treatment of the

excluded solvent and hydration layer (implicit or explicit), shape fluctuations (included

or not) and the resolution (coarse grained or atomistic). Detailed lists of methods to

predict SAXS curve, outlining their differences can be found in Refs. 5, 15, 210. While

implicit-solvent methods are considerably faster, they, in contrast to explicit-solvent

methods, require at least two fitting parameters related to solvent, one to account for

the hydration layer and one to account for the excluded solvent. Since the density of

the hydration layer is biomolecule-dependent, and since the straight-forward procedure

to predict the density of the hydration layer does not exist, implicit-solvent software

like CRYSOL [224] or FoXS [225] treat the hydration layer as a parameter that is

fitted in order to improve the agreement between the calculated and experimental SAXS

curves. While this procedure is justified in many applications, it (like any other fitting

procedure) increases the risk of overfitting, and may reduce the amount of extracted

information [15, 71, 90]. For example, in a work by Chen and Hub (Ref. 71) it has

been demonstrated that the number of detergent molecules forming a protein-detergent

complex can be determined by comparing experimental SAXS curve with SAXS curves

calculated from all-atom MD simulations of different number of detergents forming the

protein-detergent complex. In contrast, CRYSOL and FoXS gave no clear answer, owing

to the fitting of the hydration layer density. Additionally, implicit-solvent methods

commonly use reduced atomic form factors [57, 87] to account for the displaced solvent.

Since the determination of atomic form factors require accurate information on atomic

volumes, which are known only approximately, the uncertainty of SAXS curve calculation

is additionally increased [15, 94].
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2.2.3.1 Calculating SAXS curve from all-atom MD simulation

As all-atom MD simulations are used through this thesis, the physical basis of the SAXS

curve prediction will be explained following the approach that Chen and Hub (Ref. [90])

developed (and termed WAXiS [226]) building-up on the method proposed by Park et

al. (Ref. [88]). This method requires two sets of simulations, one of biomolecule in a

solution, and the second one of a pure solvent. In order to resemble the experiment, the

simulations have to be long enough to sample all relevant bimolecular conformations, as

well as solvent fluctuations. After the simulations are conducted, a fixed spatial enve-

lope is constructed around the biomolecule (Fig. 3.5A). In each specific application, the

envelope size is chosen carefully, such that all non-bulk-like solvent atoms are enclosed

by the envelope at each simulation frame. Once constructed, exactly the same envelope

is transferred in the pure solvent system, and the SAXS curve is predicted by taking

into the account position of atoms inside the envelopes at each simulation frame. In this

manner, the hydration layer, as well as the excluded solvent, are naturally included in

the SAXS curve prediction, and bulk-like solvent atoms that do not contribute to the

SAXS curve are excluded, making the calculations faster and reducing the noise.

Mathematical expressions used to compute SAXS curve In the following, we

refer to all atoms inside the envelope in solvated biomolecule simulation as system A,

and to all atoms inside the envelope in the pure solvent simulation as system B. The

SAXS curve represents the scattering intensity difference (excess scattering intensity)

between systems A and B:

I(q) = IA(q)− IB(q). (2.12)

Scattering intensity IA can be written as:

IA =

〈∣∣∣Ã(q)
∣∣∣2〉′

, (2.13)

where < · · · >′
denotes the ensemble average over all solvent and solute degrees of

freedom, and Ã(q) denotes Fourier transform of the instantaneous electron density A(r)

of the system A. An analogous expression is used to compute IB. D(q) is defined as:

D(q) :=

〈∣∣∣Ã(q)
∣∣∣2〉(ω)

−
〈∣∣∣B̃(q)

∣∣∣2〉(ω)

, (2.14)

where < · · · >(ω) denotes average over solute and solvent fluctuations at fixed solute

orientation ω. I(q) is given by:

I(q) = 〈D(q)〉Ω . (2.15)
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In the last equation, < · · · >Ω denotes the average over orientations of the solute.

The scattering amplitude for an individual simulation frame i in system A is given as:

Ãi(q) =

NA∑
j=1

fi(q) e
−iq·rj , (2.16)

where NA denotes the number of atoms within the envelope, fj(q) are the atomic form

factors, and rj is the coordinate of atom j. The analogous expression is used to compute

B̃i(q) (scattering amplitude for an individual simulation frame i in system B). The form

factors are computed using the expression given in Eq. 2.11. Knowing Ãi(q) and B̃i(q),

D(q) can be computed as:

D(q) =

〈∣∣∣Ãi(q)
∣∣∣2〉(ω)

−
〈∣∣∣B̃i(q)

∣∣∣2〉(ω)

+ 2Re

[
−
〈
B̃∗i (q)

〉(ω) 〈
Ã(q)

〉(ω)
−
〈
B̃(q)

〉(ω)
]
,

(2.17)

where ∗ denotes the complex cojugate. Finally, I(q) is computed using Eq. 2.15. Detailed

derivation, as well as software details and validation can be found in Ref. [90]. Tutorials

on SAXS (as well as SANS and SAXS-driven, see below) calculations using this method,

written by the author of the thesis can be found at

https://biophys.uni-saarland.de/SANS tut.html and

https://biophys.uni-saarland.de/grenoble-tut/.

2.3 SANS

Conceptually, SANS is very similar to SAXS, as already outlined in Chapter 1. In

contrast to SAXS, due the significant incoherent scattering, which decreases the signal-

to-noise ratio, SANS is restricted to lower q values [95, 227]. But SANS offers a great

advantage - the usage of contrast variation experiments. These experiments are per-

formed at different D2O concentrations and at different perdeuteration conditions of the

large macromoluecule or macromolecular complex (Fig. 2.5). Contrast variation experi-

ments provide subunit-specific structural information, by making the domain of the large

bioomolecule, or part of the complex ”invisible” to the neutron scattering by making

the contrast zero [4, 94, 97, 227–230]. Additionally, combining multiple SANS data-sets

with SAXS data offers the possibility for cross-validation in order to decrease the risk

of overfitting, as it is still a major challenge in SAS community [15, 72, 94].

Owing to the similarity between SAXS and SANS, procedures to calculate SANS curves

from a given structural model are very similar to procedures to calculate SAXS curves

https://biophys.uni-saarland.de/SANS_tut.html
https://biophys.uni-saarland.de/grenoble-tut/
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Scattering-length densities as a function of D2O for water (black), hydrogenated protein (red), 

protein with 50% of the protons that                                            do not exchange ...

 Heller 
 Volume 66 | Part 11 | November 2010 | Pages 1213–1217 | 10.1107/S0907444910017658Figure 2.5: Scattering-length densities as a function of D2O for water (black), hydro-

genated protein (red), protein with 50% of the protons that do not exchange substituted
by deuterium (green), protein with 100% of the protons that do not exchange substi-
tuted by deuterium (blue), DNA with an equal distribution of base pairs (cyan) and

the lipid dimyristoyl phosphatidylcholine (violet). Adopted from Ref. 4.

that are described in the previous section. Namely, the mathematical basis of neutron

scattering is identical to X-ray scattering - only X-ray atomic factors have to be replaced

by neutron scattering lengths [94, 95, 231]. For the purpose of this thesis, an extension

of WAXSiS software [90] was used. Software details are given in Ref. [94]. The project

described in Chapter 6 represents the first application of this software.

2.4 SAXS-driven simulations

So far, we discussed the usage of MD simulations to back-calculate SAXS curves. If the

curve back-calculated from the MD simulation agrees with the experimental curve, there

is reason to believe that the simulation provides an accurate atomic model of the studied

macromolecule. However, experimental and calculated curves often do not agree, some-

times due to experimental problems, but more often due to simulation imperfections. In

order to overcome simulation imperfections, multiple methods that integrate SAXS data

as an energetic restraint into MD simulations have been developed [91, 93, 232, 233]. The

methods developed by Chen and Hub (Ref. 91) and Hermann and Hub (Ref. 93) have

been employed in this thesis. The first method (in further text referred as single-replica

simulations) is valid for structurally well-defined macromolecules that are truthfully

described by moderate fluctuations of a single structure. However, in the case of het-

erogeneous ensembles (as adopted by IDPs) it is pointless to compare the scattering

curve of a single structure with the ensemble-averaged experimental data that encodes
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information on a diverse range of structures [93]. In such cases, multi-replica simulations

offer a route to avoid overfitting.

2.4.1 Single-replica simulations

Details about this method, as well as its validation can be found in Ref. 91. In short,

the coupling of the MD simulation to a target curve Iexp is achieved by a hybrid energy

Ehybrid(R; Iexp) = EMD(R) + E(1)
exp(R; Iexp), (2.18)

where EMD(R) denotes the energy derived from the force field for the biomolecule con-

formation R. E
(1)
exp(R; Iexp) denotes an experimentally derived energetic bias calculated

via

E(1)
exp(R; Iexp) =

kr kBT

nq

nq∑
i=1

[Ic(qi,R)− Iexp(qi)]
2

σ2
i

. (2.19)

Here, kr denotes the force constant, kB denotes the Boltzmann constant, and T denotes

the temperature. The number of intensity points spread over the q-range is denoted by

nq, and Ic(qi,R) denotes the scattering intensity back-calculated (using the approach

described in the previous section) from simulation coordinates R. The uncertainty that

accounts for experimental errors, statistical calculated errors and systematic error that

originates from the uncertainty of the buffer density is denoted by σi.

2.4.2 Multi-replica simulations

In this method, multiple parallel simulations are refined against the experimental data

by coupling a replica-averaged SAXS curve to the experiment. If the number of replica

is high enough, this approach follows the maximum entropy principle [208, 234]. The

idea follows Jaynes’ maximum entropy principle: an unbiased ensemble distribution

should be modified as minimally as possible into a biased distribution that explains the

experimental data. Any bias that is not supported with experimental data should be

avoided [93, 204, 235]. Therefore, multi-replica simulations that follow the principle of

maximum entropy represent the statistically founded procedure to interpret SAXS data

of heterogeneous ensembles of structures. Details about the method used in this thesis,

as well as its cross-validation against NMR data can be found in Ref. 93. In short,

in contrast to the single-replica refinement, the back-calculated scattering curve of N

parallel replica simulation is first averaged among the replicas,

Īc(qi,R1, . . . ,RN ) = N−1
N∑
α=1

Ic(qi,Rα), (2.20)
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where α denotes the replica index. Subsequently, the energetic bias is calculated via

Eexp(R1, . . . ,RN ; Iexp) =
krN kBT

nq

nq∑
i=1

[
Īc(qi,R1, . . . ,RN )− Iexp(qi)

]2
σ2
i

. (2.21)

Following this procedure, only the minimal bias necessary to match the experimental

data is added, ensuring that if the simulations are long enough and the number of replicas

is large enough, Jaynes’ maximum entropy principle is fulfilled [207, 208].
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3.1 Abstract

Small-angle X-ray scattering (SAXS) is a popular experimental technique used to obtain

structural information on biomolecules in solution. SAXS is sensitive to the overall

electron density contrast between the biomolecule and the buffer, including contrast

contributions from the hydration layer and the ion cloud. This property may be used

advantageously to probe the properties of the ion cloud around charged biomolecules.

However, in turn, contributions from the hydration layer and ion cloud may complicate

the interpretation of the data, because these contributions must be modelled during

structure validation and refinement. In this work, we quantified the influence of the ion

29
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cloud on SAXS curves of two charged proteins, bovine serum albumin (BSA) and glucose

isomerase (GI), solvated in five different alkali chloride buffers of 100 mM or 500 mM

concentrations. We compare three computational methods of varying physical detail,

for deriving the ion cloud effect on the radius of gyration Rg of the proteins, namely

(i) atomistic molecular dynamics simulations in conjunction with explicit-solvent SAXS

calculations, (ii) non-linear Poisson-Boltzmann calculations, and (iii) a simple spherical

model in conjunction with linearized Poisson-Boltzmann theory. The calculations for

BSA are validated against experimental data. We find favorable agreement between

the three computational methods and the experiment, suggesting that the influence

of the ion cloud on Rg, as detected by SAXS, may be predicted with nearly analytic

calculations. Our analysis further suggests that the ion cloud effect on Rg is dominated

by the long-range distribution of the ions around the proteins, as described by Debye-

Hückel theory, whereas the local salt structure near the protein surface plays a minor

role.

3.2 Introduction

The ion cloud is an integral part of charged biomolecules, since the ions may influence

the biomolecules’ stability, structure, aggregation, and function [237–239]. Hence, major

efforts have been invested over the last decades to understand the structure and the

determinants of the ion cloud of biomolecules. Most studies have focused on the ion

cloud of nucleic acids, owing to their pronounced negative charge [237, 239–254], whereas

less work has focused on the ion cloud of charged proteins [102, 255].

Investigating the ion cloud is complicated by its fluctuating and dynamic nature; hence,

combined experimental, theoretical, and simulation-based approaches are required to

develop quantitative and atomic-level understanding of the ion clouds of biomolecules.

Experimentally, the ion cloud has been probed by methods such as atomic emission spec-

troscopy, small-angle X-ray scattering (SAXS), as well as anomalous SAXS (ASAXS)

[255–261]. Theoretically, Poisson-Boltzmann (PB) theory provides a framework for mod-

eling ion distributions; however, unmodified or “native” PB theory neglects effects from

the finite size of ions, ion-ion correlations, and from specific salt bridges formed between

ions solution with charged groups on the biomolecule’s surface. Hence, several extensions

to the native PB theory have been proposed [262–265]. In principle, molecular dynam-

ics (MD) simulations likewise overcome such limitations, hence they have been routinely

used to model the distribution of ions and water around biomolecules [246–250, 252–

254]. Results from MD simulations are compatible with other theoretical predictions

and experiments [241, 242, 245, 251, 255], suggesting that MD simulations predict a
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reasonably accurate ion distribution, despite some well-known limitations of certain ion

force fields [266–269]. Complementary, the 3D-RISM method has been suggested as

computationally efficient method for modeling the solvation shell of biomolecules [241].

SAXS is an increasingly popular method for obtaining low-resolution structural informa-

tion of biomolecules in solution, described in a number of excellent reviews [2, 6, 29, 59–

61, 66–68, 95]. Whereas SAXS has originally been used to obtain the approximate

size and shape of biomolecules, it has developed into an increasingly quantitative probe

thanks to technical developments in light sources and detectors, setups coupled with

size-exclusion chromatography (SEC-SAXS) [270], and established standards for sample

preparation and validation [73, 213]. Such developments reduced not only the statistical

noise in the data, but, more critically, also the risk of systematic errors, for instance

owing to aggregation, poor buffer matching, or radiation damage. However, to harvest

the increasingly accurate and reliable structural information contained in the data, by

means of validating or refining structural models against the SAXS data, increasingly

accurate computational methods are required for predicting SAXS curves from a given

structural model.

SAXS detects the electron density contrast, ∆ρ(r), between solute and solvent, includ-

ing the contributions from the hydration layer and the ion cloud [2]. Hence, in order

to draw structural conclusions form the data, understanding of the influence of the hy-

dration layer and of the ion cloud on the SAXS curve is required. The influence of the

hydration layer on SAXS data has been investigated both using experiments [98], with a

simple spherical model [99], and using MD simulations [57, 88–90, 100, 101]. Such stud-

ies established that the density of the hydration layer of proteins in aqueous solutions

is, on average, often increased compared to the bulk, which manifests in an increased

radius of gyration, Rg, as extracted from a Guinier fit to the SAXS curve. Notably, the

increase of Rg due to the hydration layer is protein-dependent, suggesting that also the

hydration layer is protein-dependent [90]. In contrast, the influence of the ion cloud of

charged proteins on SAXS curves is less well understood. Zhang et al. investigated the

influence of ionic strength on SAXS and small-angle neutron scattering (SANS) data

on the charged model protein bovine serum albumin (BSA), with a focus on protein-

protein interactions [271, 272]. In addition, Kim et al. disentangled contributions from

water and ions on the hydration layer of supercharged proteins by combining SAXS with

SANS [102]. However, to our knowledge, the effect of the ion cloud on Rg has not been

systematically addressed.

Computationally efficient methods for SAXS curve prediction, such as CRYSOL, FoXS,

or SASTBX account for the hydration layer with simplified descriptions, for instance

by modelling a uniform excess density around the protein surface, or by scaling the
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atomic form factors of solvent-exposed atoms [224, 225, 273, 274]. To improve the

agreement with experiment, such method allow the fitting of a free hydration layer-

related parameter against the data. In the case of charged proteins, which exhibit a

counter ion cloud, the hydration layer-related parameter will presumably also absorb

the contrast contributions from the ion cloud. However, such fitting parameters, just

like any free adjustable model parameter, may be problematic. Fitting parameters may

(i) increase the risk of overfitting [275], and (ii) they reduce the amount of structural

information that can be harvested from the data. For instance, we observed in the

context of a protein-detergent complex that the free parameter for hydration layer may

be overfitted, thereby absorbing inaccuracies in the structural model [71].

SAXS curve predictions based on explicit-solvent MD simulations avoid such a hydration

layer-related fitting parameter [87–90, 101]. Notably, such methods may, in addition,

avoid fitting parameters related to the excluded volume – an advantage that is not

further discussed in this article. When using these methods, the solvation shell included

into the SAXS predictions should contain all solvent density modulations caused by the

biomolecule; for uncharged or only weakly charged proteins, it was found that a solvation

shell thickness of 7–8 Å is sufficient to account for the water density modulations in the

hydration layer [88, 90]. For highly charged proteins, however, additional solvent density

modulations appear owing to the counter ion cloud [102], which decay exponentially

into the bulk with a characteristic length scale, termed Debye length, λD. For an

approximately physiological 100 mM salt solution of monovalent ions, one obtains λD ≈
9.7 Å, suggesting that density modulations due to ions reach much farther into the

bulk as compared to the water density modulations in the hydration layer. Hence, to

account for effects from the ion cloud during explicit-solvent SAXS predictions, a large

simulations system is required, as a solvation shell with a thickness of multiple Debye

lengths must be included into the SAXS calculations. As we show here, such calculation

are feasible and may predict the influence of the ion cloud on Rg; however, because such

calculations are computationally quite expensive, they may not be suitable for routine

applications. Therefore, we present computationally efficient alternatives for predicting

the ion effects on Rg, based on non-linear PB calculations, and, even simpler, based

on a spherical protein model in conjunction with linearized PB theory. The simplified

calculations provide (i) computationally efficient predictions of the ion cloud effect on

Rg; (ii) reveal whether explicit-solvent SAXS prediction with a finite solvation shell

thickness are biased by missing contributions from far-distant ions (outside the included

solvation shell); and (iii) offer quantitative corrections for such missing contributions.

In this work, we studied the influence of the counter ion cloud on SAXS curves of two

charged proteins: (i) moderately charged (Q = −16e) bovine serum albumin (BSA) and
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(ii) highly charged (Q = −60e) glucose isomerase (GI), in a series of alkali chloride so-

lutions. BSA and GI carry considerable charge and have been frequently used as model

proteins in SAXS studies, making them ideal test cases for the present study. We con-

sidered systems with a relatively low concentration (100 mM), implying a large Debye

length of λD ≈ 9.7 Å, and systems with increased salt concentration (500 mM), implying

a short Debye length of λD ≈ 4.3 Å. Remarkably, for such common buffer conditions,

we found that the influence of the ion cloud on Rg is in a similar range as the influence

of the hydration layer on Rg (up to ∼2 Å), demonstrating that an accurate interpreta-

tion of SAXS data requires accurate modelling of the ion cloud. We used four different

methods to obtain the influence of the ions on Rg, namely (i) atomistic MD simulations

in conjunction with explicit-solvent SAXS calculations, (ii) a spherical protein model in

conjunction with linearized Poisson-Boltzmann (PB) calculations, (iii) an atomic pro-

tein model in conjunction with non-linear Poisson Boltzmann (PB) calculations, and

(iv) SAXS experiments. We found reasonable agreement between the four methods,

suggesting that the simplified methods may estimate ion cloud effect on Rg. Further,

we analyze the trends of Rg as a function of ion type, ion concentration, protein charge,

and protein size, providing a reference for the analysis of SAXS data of charged proteins

in future studies.

A Python implementation of the spherical model, as well as a modified Gromacs version

that implements the explicit-solvent SAXS calculations are provided on the authors’

website at https://biophys.uni-saarland.de/software.html.

3.3 Methods

3.3.1 SAXS experiments of BSA

Bovine serum albumin (BSA) (product no. A7638) was purchased from Sigma-Aldrich

and used without further purification. Solutions with BSA concentrations of 2.5 mg/ml

and 5.0 mg/ml were prepared by dissolving the lyophilized powder in buffer solutions

containing 50 mM KOH, 50 mM HEPES, pH = 7.5 and 100 mM (or 500 mM) of different

alkali chlorides (i.e. LiCl, NaCl, RbCl, or CsCl). Sample and buffer solutions were

syringe filtered with 0.22µm pore size (Merck Millipore, Germany) and centrifuged

at 13500 rpm for 10 min in a tabletop centrifuge (Eppendorf, Germany) prior to each

measurement.

SAXS measurements were carried out at beamline BM29, ESRF, Grenoble [276] at

an X-ray wavelength λ of 0.99 Å, using a sample-to-detector distance of 2.87 m and a

Pilatus 1M detector, resulting in a usable q-range of 0.06 to 3.0 nm−1 (q = 4πsin(θ)λ−1,

https://biophys.uni-saarland.de/software.html
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where θ is the total scattering angle). For each sample concentration, 10 runs with an

exposure time of 4 s in ’flow’ mode were conducted at room temperature. Buffer samples

were measured using identical procedures before and after each sample measurement.

Sample and buffer data from each run were analyzed for radiation damage; no damage

was observed in any of the measurements. Matching sample and buffer profiles were

averaged and buffer profiles were subtracted for background correction.

We performed Guinier analyses to determine radii of gyration (Rg) for all measured

samples by fitting the logarithm of the scattering intensity as a function of q2 to a

straight line for small values of q. Mean and the reported standard deviations of the Rg

values for each sample were computed from 10 Rg calculations that systematically varied

the maximum q of the fitting range between 1.0 < qmax ·Rg < 1.3. For comparison, we

also computed the standard deviations via error propagation using a fixed fitting range,

which provided very similar standard deviation estimates. We found that Rg estimates

from 2.5 mg/ml samples were systematically larger than estimates from the 5.0 mg/ml

samples, presumably due to protein-protein interactions; specifically, Rg was larger by

∼ 1 Å at 100 mM salt concentration, and by ∼ 0.5 Å at 500 mM salt concentration.

However, the modulations of Rg upon varying the alkali cation was very similar for

the 2.5 mg/ml and 5.0 mg/ml samples, suggesting that protein-protein interactions have

only a small effect on the change of Rg due the ion cloud (Fig. 3.6). Hence, as we here

focus purely on the increase of Rg due the ion cloud, we averaged Rg taken from the

2.5 mg/ml and 5.0 mg/ml samples.

3.3.2 Method 1: Spherical model in conjunction with linearized Poisson-

Boltzmann calculations

At low electrostatic potentials, ecΦ � kBT , the non-linear Poisson-Boltzmann (PB)

equations can be linearlized, thereby allowing analytic solutions for simple geometries.

Here, ec denotes the unit charge, Φ the electrostatic potential, kB the Boltzmann con-

stant, and T the temperature. As a model that allows such analytic solution of the

linearized PB equation, we modeled the charged protein as a uniform sphere defined by

its volume V , electron density ρsph, and total charge Q. Values for V and ρsph were

taken such that the ρsph and the forward scattering intensity Ĩ(0) match with the values

computed from the protein structure, while neglecting any ion cloud effects. Accord-

ingly, ρsph and Ĩ(0) of the protein structure were first computed with the CRYSOL [224],

using the default CRYSOL parameters, and the volume of the sphere was calculated as

V = Ĩ(0)1/2/(ρsph − ρwater), (3.1)
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where ρwater denotes electron density of the water. The radius of the sphere is

Rsph = (3V/4π)1/3, (3.2)

and its radius of gyration is

R̃g = (3/5)1/2Rsph. (3.3)

Hence, the absolute radius of gyration of the spherical model may differ from the radius

of gyration of the protein; however, we found that matching Ĩ(0) (or the total contrast)

between protein and spherical model is more relevant for predicting the change of the

radius of gyration owing to the ion cloud (∆Rg) than matching the absolute radius of

gyration.

For a uniformly charged sphere, the linearized PB equation can be solved analytically, as

described in many monographs [277, 278]. Accordingly, the space is divided into three

regions (Fig. 3.9): (1) the protein, r < Rsph; (2) an ion-exclusion layer, Rsph < r < a,

taking into account that the centers of finite-sized ions can not move arbitrarily close to

the protein surface. Hence, the thickness of the ion-exclusion layer is typically given by

the ion radius; and (3) the solvent, r > a. The electrostatic potential in the region (3)

is [278]:

Φ(r) =
Qeκa

ε(1 + κa)
· e
−κr

r
(3.4)

where a is the sum of Rsph and the exclusion layer thickness. The symbol ε denotes the

permittivity, and κ = 1/λD is Debye-Hückel parameter, given by:

κ =

(
8πMe2

c

εkBT

)1/2

. (3.5)

Here, M is number density of the ions in bulk at a large distance from the protein.

Given the potential, the number density of the ion species i with ionic charge qi is given

by

ni(r) = MeqiΦ(|r|)/kBT , (3.6)

where the index i indicates either the anion or the cation. The number densities ni(r)

were written as functions of a Cartesian vector r to keep the following equations applica-

ble also for non-spherical geometries (Method 2, see next paragraph). From the number

densities ni(r), the effect of the counter ion cloud on the electron density contrast may

be computed via

δρCI(r) =
∑
i

ni(r)∆N e
i (3.7)
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where the ∆N e
i denotes the contrast per ion, given in units “number of electrons” e.

The contrast per ion ∆N e
i is given by

∆N e
i = N e

i − Vi ρwater, (3.8)

N e
i and Vi denote the number of electrons and the volume of ion species i, respectively,

and ρwater is the density of water. For chloride, for instance, N e
i would take the value

18e. The volumes Vi of the ions were taken from the ionic radii in aqueous solutions

reported in Ref. 279. The radius of gyration of the spherical protein model, including

the effect of the counter ion cloud, is defined via

R2
g =

(∫
∆ρ(r) dr

)−1 ∫
∆ρ(r)(r− rs)

2 dr, (3.9)

where rs denotes the center of mass of the protein, and we used:

∆ρ(r) =


ρsph − ρbulk if |r| ≤ Rsph

0 if Rsph < |r| ≤ a

δρCI(|r|) if |r| > a

(3.10)

where ρbulk denotes the bulk density of salt solution. The integrals in eq. 3.9 was evalu-

ated numerically. Finally, the change in the radius of gyration due to the ion cloud was

taken as ∆Rg = Rg − R̃g.

3.3.3 Method 2: Non-linear Poisson-Boltzmann calculations

In contrast to the linearized PB equations used for the spherical model (last para-

graph), the non-linear PB equations remain valid at high electrostatic potentials where

ecΦ(r) & kBT . Therefore, as the second method for computing the ion distribution

around the charged proteins, we used non-linear Poisson-Boltzmann calculations. The

calculations were carried out with the Adaptive Poisson-Boltzmann Solver (APBS) [280].

The structures of BSA and GI were prepared with the PDB2PQR software [281, 282].

The total size of the grid was 50×50×50 nm3, using a grid spacing 2.6 Å. The center

of mass of the protein was placed at the center of the grid. All calculations were con-

ducted using the non-linear Poisson-Boltzmann equation. The radius of gyration was

calculated using the same approach as described in previous paragraph (eqs. 3.7 through

3.10). However, the ion densities ni(r) were not taken from Eq. 3.6, but instead from

the APBS result, and the integrals of eq. 3.9 were evaluated by using a discrete sum over

the APBS grid points. Here, the density of the protein was accounted for by assigning

the electrons of the protein atoms to the nearest APBS grid point.
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3.3.4 Method 3: SAXS and ion density calculations from explicit-

solvent MD simulations

Among the three computational models applied in this study, MD simulations provide

the highest level of physical detail. The MD simulations are based on all-atom models

of the protein, water, and ions. In contrast to the PB calculations employed here, MD

simulations account for fluctuations of water, ions, and protein atoms, and they naturally

include ion-ion correlations. Given that the employed force field accurately models

ion-protein contacts, the simulations may further account for transient ion-protein salt

bridges, for instance between cations and acidic amino acids. Accurate parameters for

ion-protein contacts are available for certain ions [283, 284], and remain a matter on

ongoing force field development.

SAXS curves were computed from the MD simulations using explicit-solvent SAXS cal-

culations [90, 226]. Accordingly, all explicit water molecules and ions within a predefined

distance from the protein contributed to the SAXS calculations, as defined by a spatial

envelope (Fig. 3.1A/B, blue surfaces). Here, the envelope should be chosen large enough

such that the solvent at the envelope surface is bulk-like, or, more precisely, that density

correlations between the inside and the outside of the envelope are due to bulk solvent

[89]. Following previous work [88, 90], the buffer-subtracted SAXS curve was computed

from the scattering of atoms inside the envelope volume, as taken from MD simulation

frames of two systems: (i) containing the protein in solvent and (ii) containing purely

solvent (Figure 3.5).

To find an appropriate protein-envelope distance d, we computed ∆Rg with the spheri-

cal model (Method 1, see above) using increasing solvation shell thicknesses. We found

that ∆Rg was mainly determined by the ions within approx. three Debye lengths from

the protein surface (Fig. 3.7C). Hence, for production calculations, we used envelopes at

distances of 3.0 nm and 1.6 nm from the proteins in systems with 100 mM and 500 mM

salt, respectively. Ions at larger distances from the protein had a smaller effect on ∆Rg,

which could in principle be captured by using even larger envelopes. However, with very

large envelopes, calculations revealed numerical instabilities because (i) the SAXS curves

are computed as a difference between two increasingly large numbers (scattering of pro-

tein including the hydration layer minus pure buffer scattering); and (ii) presumably

due to tiny density mismatches between the protein and the pure-buffer simulation sys-

tems, which cannot be fully corrected by our density correction scheme [90]. Therefore,

we used the spherical model (Method 1, see above) to estimate the ∆Rg contribution

from ions outside the envelope, leading to corrections of 33%, 11%, 19% and 7% for the
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systems BSA/100mM, BSA/500mM, GI/100mM and GI/500mM, respectively. This es-

timate is justified by the fact that the ion densities at large protein distances follow the

Debye-Hückel behavior both in MD simulations and in the spherical model (Fig. 3.7).

The radius of gyration Rg was computed by fitting the Guinier approximation to the

computed SAXS curves at small q, following ln[I(q)/I(0)] = −(qRg)
2/3, where I(0) is

the forward intensity. Here, in contrast to Guinier fit to the experimental SAXS curves

(see above), we used a fixed q range because the calculated I(q) curves follow exactly

the Guinier approximation at small q [90]. Scattering contributions from the excluded

solvent were computed with simulation boxes which contained the same concentration of

the same ion species as the simulation boxes with the proteins, as described previously

[90, 226]; otherwise, artifacts due to buffer mismatch would arise, in particular in systems

with electron-rich ions (rubidium and cesium) and high salt concentration (500 mM).

Notably, such buffer mismatch artifacts would arise not purely due to a mismatch in

the mean solvent density (which can be corrected [89, 90]), but also due a mismatch

owing to ion-ion correlations (Fig. 3.8). The error bars for Rg were computed by block

averaging, using blocks of 3 ns.

The number density of ions versus distance from the protein was computed by construct-

ing a series of envelopes around the protein, where the distance of the envelope vertices

from the protein atoms was increased in steps of 0.25 Å. Then, the number densities

were taken from the average number of ions between adjacent envelopes, averaged over

the MD trajectories.

3.3.5 MD setup and parameters

The initial structures of bovine serum albumin (BSA) and glucose isomerase (GI) were

taken from the Protein Data Bank (PDB; codes 4F5S [285] and 1MNZ [286], respec-

tively). Organic molecules from the crystallization buffer were removed. The structures

were placed into a simulation box of a rhombic dodecahedron, keeping a distance of

at least 6.0 nm and 3.5 nm to the box boundary in the 100 and 500 mM salt concen-

tration, respectively. The simulation boxes were filled with explicit TIP3P water [287].

Alkali metal and chloride ions were added by replacing the appropriate number of water

molecules with ions. To neutralize the system, the number of added cations was larger

by 16 (BSA) or 60 (GI) than the number of added Cl− ions. The energy of each system

was minimized with the steepest-descent algorithm.

The simulations were carried out using the Gromacs simulation software, version 5.1.2

[288]. During all simulations, the positions of the heavy atoms of the protein were

restrained at the crystallographic positions with a harmonic potential (force constant
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1000 kJ mol−1nm−2). This procedure ensured that modulations of the SAXS curve are

purely a consequence of the ion cloud and the buffer, but not a consequence of varying

protein conformations. Electrostatic interactions were calculated with the particle-mesh

Ewald method [154, 155], and dispersive interactions were described by a Lennard-Jones

potential with a cutoff at 1 nm. Bond lengths and angles of water molecules were con-

tained with the SETTLE algorithms [289], and all other bond lengths were constrained

with P-LINCS [290]. Each system was equilibrated for 30 ns. Longer equilibration had

no effect on the SAXS curves. Production simulations were run for another 70 to 400 ns.

The temperature was controlled at 300 K through velocity rescaling [291] (τ = 1 ps)

and using a stochastic dynamics integration scheme [292] during equilibration and pro-

duction runs, respectively. The pressure was kept at 1 bar with a Berendsen [159] and

the Parrinello-Rahman barostat [160] (τ = 0.4 ps) during equilibration and produc-

tion runs, respectively, thereby allowing stable box relaxation during equilibration and

guaranteeing the correct ensemble during production.

3.3.6 Force field parameters

Interactions of the protein and ions in KCl, RbCl and CsCl solutions were modeled

with the Amber99SB-ILDN force field [135, 163] and using the Joung-Cheatham ion pa-

rameters [293]. Li+ and Na+ ions modeled with the Joung-Cheatham parameters were

found to bind strongly to aspartate and glutamate residues, leading to effects in the

SAXS curves that did not match experimental findings. Therefore, systems containing

NaCl we instead modeled with the CHARMM36 force field [294, 295], version of Novem-

ber 2016, translated into Gromacs [296]. The CHARMM36 force field implements a

corrected Lennard-Jones (LJ) diameter acting between Na+ and the oxygen atoms of

carboxyl groups, termed NBFIX, thereby avoiding overbinding of Na+ [283].

However, we observed strong binding of lithium Li+ ions to carboxyl groups, also if

simulated with CHARMM36. Hence, we hypothesized that the original force fields over-

estimate the lithium-carboxylate salt bridges, as previously reported for Na+ [283]. As

a simple measure to avoid such overbinding, we increased the LJ diameter σLi-OC acting

between the Li+ atom type and the OC atomtype of the carboxylate oxygen atoms,

thereby overruling the Lorentz-Berthelot combination rule. We tested a series of σLi-OC

and found that an increase of σLi-OC by 6% is sufficient to avoid excessive overbinding.

Hence, we used σLi-OC increased by 6% for production simulations, σLi-OC = 0.283 nm.

This increase is in the same order of magnitude as the increase by 3.8% for the Na+–OC

LJ diameter implemented in the NBFIX [284]. For comparison, we also tried to avoid

overbinding of Li+ modeled with the Joung-Cheatham parameters to carboxylate groups

modeled with Amber99SB-ILDN. We found that the respective LJ diameter must be
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Figure 3.1: Simulation systems of (A) bovine serum albumine (BSA) and (B) glucose
isomerase (GI), each with 100 mM NaCl buffer. Proteins are shown in red cartoon
representation, water as sticks, and Na+ and Cl− ions as green and purple spheres. En-
velopes (blue surface) at a distance of 30 Å from the protein atoms. Explicit water and
ions inside the envelope were included into the SAXS predictions (opaque sticks and
spheres), whereas water and ions outside the envelope are not included into SAXS pre-
dictions (transparent sticks and spheres). (C-J) Number density of alkali and chloride
ions as a function of distance d from the protein, taken from atomistic MD simula-
tions of (C-F) BSA and (G-J) GI. Bulk ion concentrations of alkali chloride were either
100 mM (C/D/G/H) or 500 mM (E/F/I/J). The color code indicates the alkali species
present in the system (Li+, Na+, K+, Rb+, or Cs+, see legend). Blue rectangles indi-
cate regions of ion-protein salt bridges, while gray rectangles represent regions where

distribution of ions obey Debye-Hückel theory.

increased by ∼50% to avoid overbinding, suggesting that the Amber99SB-ILDN/Joung-

Cheatham force field combination is more prone to Li+ overbinding. Further, we note

that for cations that do not overbind (K+, Rb+, and Cs+), the calculated SAXS curves

computed form CHARMM36 or Amber99SB-ILDN simulations were nearly identical.
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3.4 Results and discussion

3.4.1 Counter ion cloud and SAXS curves from MD simulations

To investigate the influence of the ion clouds on SAXS curves, we carried out MD

simulations of two negatively charged proteins: bovine serum albumine (BSA, charge

Q = −16e, Fig. 3.1A) and glucose isomerase (GI, Q = −60e, Fig. 3.1B). The simulations

were conducted with ten different alkali chloride buffers composed of LiCl, NaCl, KCl,

RbCl, or CsCl, either at 100 mM or 500 mM concentrations. Figure 3.1C-J presents the

ion concentration of alkali cations and chloride anions in the ion cloud, as averaged over

at least 50 ns of simulation, and plotted versus the distance from the nearest protein

atom. Overall, the concentration curves show that cations are attracted whereas anions

are repelled from the proteins, as expected for negatively charged proteins. More specif-

ically, sharp peaks at small distances reflect transient salt bridges formed with protein

residues (d ≈ 0.25 nm, light blue background) [297]. Smaller maxima and minima at

intermediate distances indicate ions of the second and third solvation layer (d approx.

0.4 nm to 0.7 nm) [241, 242]. At large distances, the concentrations gradually decay

to the bulk level following the Debye-Hückel theory (gray background). This decay is

slower at 100 mM compared to 500 mM (compare Fig. 3.1 C/D/G/H with E/F/I/J) ra-

tionalized by the fact that the Debye length is larger at 100 mM as compared to 500 mM.

Hence, the MD simulations provide a detailed model of the ion cloud, including effects

from (i) specific ion-protein salt bridges, (ii) solvation layer effects due to ion-ion corre-

lations, captured only beyond a mean-field description of the ion cloud, as well as (iii)

Debye-Hückel behavior at large distances.

Figure 3.2A-D presents SAXS curved of BSA in the ten different alkali chloride buffers,

either computed from MD simulations (Fig. 3.2A/B) or obtained experimentally (Fig. 3.2

C/D). SAXS curves of GI were purely obtained from MD simulations (Fig. 3.2E/F). Crit-

ically, the SAXS curves were computed from MD simulations with position restraints

on the heavy atoms, making sure that variations in the SAXS curve are purely a con-

sequence of the ion cloud and not owing due to a conformational change in the protein.

The general agreement between MD and experimental profile is reasonable. Exceptions

are the systems with 500 mM RbCl or 500 mM CsCl case, presumably due to buffer mis-

match between the protein solution and the buffer solution (Fig. 3.2D, blue and orange

curves). In addition, Fig. 3.2 demonstrates that the overall SAXS intensity decreases

at high salt concentrations of electron-rich ions, in particular Rb+ and Cs+, because

the contrast of the protein with respect to the buffer decreases (Fig. 3.2B/F, blue and

orange curves).
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Figure 3.2: SAXS curves of (A-D) bovine serum albumin (BSA) and (E/F) glucose
isomerase (GI) in different alkali chloride buffers (for color code, see legend) of 100 mM
(A/C/E) or 500 mM (B/D/F) concentration. (A/B/E/F) SAXS curves computed from

MD simulations, and (C/D) obtained experimentally.

3.4.2 Effect of the ion cloud on the radius of gyration

The influence of the ion cloud on the radius of gyration Rg is presented in Fig. 3.3,

for BSA and GI systems with 100 mM or 500 mM salt buffers. Experimental data (red

squares) are compared with results from our three theoretical models, namely (i) atom-

istic MD simulations (black dots), (ii) the spherical model (green triangle up), (iii)

non-linear PB calculations (blue triangle down). The absolute Rg estimated from dif-

ferent theoretical methods may differ (Fig. 3.10), either owing to different modeling of

the hydration layer, or because the absolute Rg of the spherical model may differ from

the absolute Rg of the protein (see section on Method 1). In addition, the experimental

absolute Rg were systematically larger as compared to the MD-based estimates, pre-

sumably due to a small fraction of aggregated BSA, in line with previous findings [271]

(Fig. 3.10). Therefore, we purely compare the change of the radius of gyration, ∆Rg,

relative to the system with NaCl salt. As evident from Fig. 3.3, we find reasonable agree-

ment between experiment and calculations, suggesting that the trends in the calculated

∆Rg resemble the experimental conditions. A larger discrepancy between calculations
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Figure 3.3: Change of a radius of gyration ∆Rg, shown relative to Rg in NaCl
solution, as a function of salt type and concentration for (A/B) bovine serum albumin
(BSA) and (C/D) glucose isomerase (GI). Results are shown as taken from all-atom MD
simulations (black circles), non-linear Poisson-Boltzmann calculations (blue triangles
down), the spherical model (green triangles up), and experiment (red squares). The

absolute values of Rg are shown in Fig. 3.10.

and experiment were found purely with the 500 mM CsCl buffer, possibly due to buffer

mismatch between the protein solution and the buffer solution as suggested from the

experimental SAXS curve (Fig. 3.2D, orange curve).

Overall, we find that Rg increases upon varying the alkali cations from Li+ to Cs+, i.e.,

upon increasing the number of electrons of the cation. This trend is explained by the

combination of two points: (a) the alkali cations are enriched in the counter ion cloud of

the negatively charged proteins (Fig. 3.1 C/E/G/I), i.e. the number densities ni(r) of the

cations are increased near the proteins as compared to bulk solvent. Notably, because

only the ion charge enters the PB calculations, ni(r) does not depend on the type of

alkali ions within PB theory; (b) larger alkali cations impose a larger electron density

contrast per ion. In combination, upon varying the alkali cations from Li+ to Cs+,

electron density contrast of the counter ion cloud increases, which eventually manifests

in an increased Rg.

In addition, by comparing the 100 mM- with the 500 mM-systems, Fig. 3.3 demonstrates

that Rg increases more strongly with smaller bulk salt concentration (compare Fig.

3.3A/C with B/D). This findings is rationalized by a longer Debye length at lower salt

concentration: with longer Debye lengths, the ion densities decay more slowly to the bulk

density, leading to a modified density contrast at larger distances from the protein. Since
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the electron contrast enters the radius of gyration weighted by the squared distance from

the protein center (Eq. 3.9), a longer Debye length eventually imposes a larger influence

of salt on Rg.

3.4.3 Comparison of three theoretical methods for estimating ∆Rg

Next, we compare the ∆Rg estimates from the three theoretical methods used here,

namely MD simulations, non-linear PB calculations with atomic protein models using

APBS, and linearized PB calculations in conjunction with a spherical protein model.

Despite the fact that the level of molecular detail captured by the three methods greatly

differ, we find reasonable agreement between the ∆Rg estimates (Fig. 3.3, black, orange,

blue and green symbols). The agreement between MD simulations and PB calculations

suggests that molecular details of salt-protein interactions, such as transient salt bridges

or the ionic solvation layers, have only a small effect on ∆Rg, and that, instead, ∆Rg is

dominated by the long-range decay of the ion clouds towards bulk solvent, which is sim-

ilar among the three models. This finding further implies that remaining uncertainties

in ion-protein interactions during MD simulations, which might influence the ion density

near the protein surface (Fig. 3.1C-J, blue background) have only a small influence on

∆Rg.

In addition, the agreement between non-linear PB calculations and the spherical model

suggest that the non-spherical shape of BSA has a small effect on ∆Rg, and that lin-

earized PB calculations as used by the spherical model are sufficiently accurate for

estimating ∆Rg. These findings further imply that estimating the ion effect on Rg does

not strictly require computationally expensive calculations such as MD simulations, but

instead simplified calculations with reduced computational cost are sufficient. Hence, we

expect that the spherical model provides a reasonable ∆Rg estimate for many common

experimental conditions. Small discrepancies between the ∆Rg estimates of the spheri-

cal model and MD simulations may be explained by different ion distribution near the

protein surface (Fig. 3.7).

Moreover, we tested influence of the exclusion layer on the ∆Rg estimates by the spher-

ical model (Fig. 3.11), assuming exclusion layers between 0 and 2Å, i.e. in the range of

typical ionic radii. We found that the exclusion layer has only small effect on the ∆Rg,

suggesting that the exclusion layer may be omitted for predicting ∆Rg.
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Figure 3.4: Systematic analysis of the effect of (A) salt concentration, (B) protein
charge, and (C) protein size on the increase of the radius of gyration ∆Rg due to
the counter ion cloud, as calculated with the spherical model. (A) ∆Rg versus salt
concentration, at fixed protein charge Q = −60e and fixed protein size (Rsph = 3.82 nm)
taken from glucose isomerase (GI). The color indicates the salt type, see legend. (B)
∆Rg versus protein charge, at fixed protein size taken from GI (Rsph = 3.82 nm) and
fixed salt concentration of 100 mM. (C) ∆Rg versus versus size of the protein, plotted
as the radius of the sphere, at fixed protein charge −60e and fixed salt concentration
100 mM. The trends for Li+ are inverted with respect to the other alkali cations because

Li+ imposes a significantly smaller contrast per ion as compared to Cl−.

3.4.4 A systematic analysis of ∆Rg: effect of salt concentration, salt

type, protein charge, and protein size

We used the spherical model to systematically analyze how the following quantities

influence ∆Rg: (i) bulk salt concentration M , (ii) protein charge Q, and (iii) protein

size quantified by the radius Rsph of the sphere. To this end, we computed ∆Rg as a

function of each of these three quantities, while keeping the other two quantities fixed,

see Figure 3.4. Here, the respectively fixed quantities were taken from the spherical

model for glucose isomerase, using Q = −60e, Rsph = 3.82 nm and ρ = 431.6 e nm−3

as electron density of the sphere. In scans with fixed bulk salt concentration we used

M = 100 mM. ∆Rg was computed for the five alkali chloride salts considered in this study

(Fig. 3.4, color code). We note that at such high charge, the linearized PB solution is

only an approximation; consequently, the spherical model may slightly overestimate the

ion cloud effect on ∆Rg as compared to the non-linear PB solution, in line with ∆Rg

computed for GI shown above (Fig. 3.3C/D, compare blue triangles down with green

triangles up). The qualitative trends of ∆Rg, however, are expected to be correct.

Overall, in agreement with the results presented above, Fig. 3.4 shows that larger alkali

ions have a larger effect on ∆Rg since they impose a larger electron density contrast

per ion. An exceptional case is Li+ that imposes a much smaller contrast per ion as

compared to Cl−. Here, in case of a negatively charged protein, the positive contrast

owing to Li+ enrichment is outweighed by the negative contrast owing to Cl− depletion
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(and vice versa in case of a positively charged protein); in consequence, the LiCl salt

may lead to inverted trends in ∆Rg as compared to all other alkali chloride salts (Fig.

3.4, black curves).

Figure 3.4A presents the effect of the bulk salt concentration M , illustrating that ∆Rg

increases with decreasing M (except for Li+, which inverts the trend). As pointed out

above, this finding is mainly rationalized by the fact that, upon decreasing M , the Debye

length increases, thereby leading to a modified density contrast at larger distances from

the protein. The concentrationM may, in addition, slightly influence the ∆Rg by shifting

the relative effects from cation enrichment versus anion depletion from the surface, or vise

versa in case of Q > 0 [258]. Notably, in the spherical model, ∆Rg diverges with M → 0

as a consequence of a diverging Debye length, which deserves an additional comment:

the diverging ∆Rg only applies at infinitely low protein concentration as assumed for

the spherical model. Under experimental conditions of finite protein concentrations, in

contrast, effects from protein-protein interactions would appear in the SAXS curves,

which are not captured by this model. As such, the divergence at M → 0 is primarily a

consequence of the idealized model of a single protein in an infinite salt solution. The

qualitative trends in Figure 3.4A, however, are relevant to experimental conditions.

Figure 3.4B presents the effect of the protein charge Q on ∆Rg. Only at small |Q|, the

∆Rg(Q) curves are approximately linear, where the slope strongly depends on the type

of ion; the more negative slopes for larger alkali ions are again a consequence of the larger

contrast per ion. At large |Q|, in contrast, the ∆Rg(Q) curves exhibit highly non-linear

trends. Specifically, the curves pass through a minimum, whereby the position of the

minimum depends on the type of alkali ion. These findings are rationalized as follows:

The ion cloud of negatively charged proteins, such as GI and BSA, is characterized by an

enrichment of cations (here: alkali cations) and a depletion of anions (here: chloride).

Inversely, the ion cloud of positively charged proteins is characterized by a depletion

of cations and an enrichment of anions. Both chloride and the alkali ions except Li+

impose a positive electron density contrast, i.e., they carry more electrons than the

water molecules that are displaced the by ion. Consequently, as Q increases from large

negative values to large positive values, the concentration of the alkali ions in the counter

ion cloud decrease, rationalizing the decreasing trends of ∆Rg(Q), as most apparent for

CsCl and RbCl (Fig. 3.4B, blue and orange curves). However, since the concentration

of the alkali cation in the counter cloud can not be depleted below zero concentration,

the effects from anion enrichment may outweigh the effect from cation depletion at large

positive Q, leading to an increasing ∆Rg at large positive Q. In other words, the non-

linear relation between local concentration and potential (eq. 3.6) manifests in the highly

non-linear ∆Rg(Q) relation visible in Fig. 3.4B.
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Figure 3.4C shows the effect of the protein size on ∆Rg, as quantified by the sphere

radius Rsph. Evidently, ∆Rg decreases with increasing size of the protein. This finding is

explained by the fact that the contrast of the sphere increases proportional to the sphere

volume, ∝ R3
sph, whereas, owing to the fixed protein charge Q, the counter ion cloud

adds approximately a constant contrast. Hence, with increasing Rsph, the additional

contrast due to the counter ion cloud yields decreases relative to the total contrast.

3.5 Concluions

We have presented a systematic analysis on the influence of the ion cloud of charged

proteins on SAXS curves, with a focus on the modulation of the radius of gyration ∆Rg

as detected by a Guinier analysis. We found that ∆Rg strongly depends on the protein

charge and size, on salt concentration, and on the ion type. For common test proteins

such as BSA and GI, ∆Rg was found in the range of −0.5 Å to 2 Å relative to a stan-

dard NaCl buffer, suggesting that such modulations are detectable with modern SAXS

experiments, in particular with high-precision SEC-SAXS setups. Notably, these ∆Rg

values are of similar magnitude as ∆Rg modulations imposed by water density modula-

tions in the hydration layer [90], suggesting that understanding of both, hydration layer

and the ion cloud effects on Rg are equally relevant. We expect our calculations to be

useful for the interpretation of SAXS data of proteins, since they help to disentangle

∆Rg modulation owing to the ion cloud from ∆Rg modulation owing to other sources,

such as functionally relevant conformation transitions or water density modulations in

the hydration layer [102].

We found that MD simulations in conjunction with explicit-solvent SAXS calculations

may account for ion effects on SAXS curves, in addition to the influence of the modified

water density in the hydration layer of proteins studied previously [57, 88–90, 100, 101].

However, because the ion cloud may impose density modulations at relatively large dis-

tances from the protein, large, computationally expensive MD simulation systems are

required in order to account for the entire ion cloud in such calculations. To estimate

the ion cloud effect on SAXS data with reduced computational cost, we introduced two

simplified methods either based on non-linear PB calculations with an atomic protein

model, or based on a simple spherical model in conjunction with linearized PB calcula-

tions. The PB calculations provide accurate estimates for the ion cloud effects on the

radius of gyration at greatly reduced computational cost.

In addition, the PB calculations can be used to test whether explicit-solvent SAXS

calculations with a finite hydration layer thickness are biased by lacking contributions

from ions at large distance from the protein, outside the layer that is explicitly included in
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the calculations. If so, the PB calculations offer quantitative corrections to the explicit-

solvent SAXS calculations. In combination, explicit-solvent calculations complemented

by PB calculations provide SAXS predictions that fully account for the hydration layer,

for specific ion-protein salt bridges, for ionic solvation layers, as well as for the long-range

decay of the ion concentration following Debye-Hückel theory.
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3.6 Supplementary figures

Figure 3.5: Simulation systems of (A) glucose isomerase (GI) and (B) pure solvent,
each containing 100 mM NaCl. GI is shown in purple cartoon representation, Na+ and
Cl− ions as green and red spheres, respectively, and water as blue spheres inside the
envelope and as brown spheres outside of the envelope. The envelope is represented
by a blue surface, constructed at a distance of 30 Å from the protein atoms in (A).
The same envelope is used in the pure-solvent system (B). To compute the buffer-
subtracted SAXS curve, scattering contributions from all atoms inside the envelopes
of the protein/solvent (A) and the pure-solvent system (B) were taken into account,
averaged over 3000 MD simulation frames. For more details, we refer to previous work

(Chen and Hub, Biophys. J., 2014, 107, 435–447).
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Figure 3.6: On systematic errors of the Rg estimates from experimental SAXS curves:
absolute values of experimental Rg of BSA in different salt solutions from Guinier
analysis, for protein concentrations of 2.5 mg/ml (orange circles) and 5.0 mg/ml (blue
squares), at 100 mM salt (A) and 500 mM salt (B). Rg estimates from 5.0 mg/ml sam-
ples are systematically smaller compared to 2.5 mg/ml samples, presumably due to in-
creased protein-protein interactions at higher protein concentrations. Such systematic
errors are reduced at 500 mM salt concentration (B) compared to 100 mM salt concen-
tration (A), reflecting reduced protein-protein interactions in consequence of increased
screening of the protein charge. Critically, the increase of Rg, ∆Rg upon varying the
alkali cation from Li+ to Cs+ is similar between the 2.5 mg/ml and 5.0 mg/ml samples,
suggesting that ∆Rg is hardly affected by systematic errors due to protein-protein in-
teractions. Hence, we averaged ∆Rg estimates from 2.5 mg/ml and 5.0 mg/ml samples

before comparing with the calculated ∆Rg values.
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Figure 3.7: Number density of caesium (Cs) and chloride (Cl) ions as a function of
distance d from the protein surface, taken from the spherical model (SM) and atomistic
MD simulations (MD) of glucose isomerase at 100 mM CsCl (A) and 500 mM CsCl (B).
The ion distributions from the SM and from MD agree at large distances from the
protein, following the decay according to Debye-Hückel theory. At smaller distances, in
contrast, large deviations between the SM and MD are found; here, specific salt bridges
and solvation layers of ions revealed in MD simulations are not captured by the SM.
(C) Cumulative contributions to ∆Rg from ions computed from the spherical model,
plotted versus the distance d from the sphere surface. The circles indicate the points

at d = 3λD, where λD is the Debye length.
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Figure 3.8: On the importance of buffer matching during explicit-solvent SAXS cal-
culations with ionic buffers. (A) Calculated SAXS curves of GI in 500 mM of NaCl and
(B) 500 mM CsCl. SAXS curves were computed for the pure-solvent simulations either
with a matching salt buffer (brown lines) or using a non-matching pure-water buffer
(green lines). Evidently, if a non-matching buffer is applied, large buffer mismatch ar-
tifacts appear with 500 mM CsCl (B), and small artifacts appear with 500 mM of NaCl
(A). In these SAXS calculations, the mean buffer density was corrected as described
previously (Chen and Hub, Biophys. J., 2014), suggesting that such artifacts do not
appear owing to a mismatch of the mean density between solute and solvent systems,
but instead owing to a mismatch in ion-ion correlations. This analysis highlights the
importance of using identical buffers in solute and pure-solvent simulations, as done
throughout in this study, in particular in systems with high salt concentration and

large electron-rich ions, even when correcting the mean density.

Figure 3.9: Spherical model of a charged protein in a salt solution, represented by 3 re-
gions: (1) protein (red); (2) exclusion layer (pale red); (3) solvent with salt (green/pur-
ple spheres). The ion-exclusion layer accounts for the finite size of the ions, avoiding

that the ions overlap with the protein.
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4.1 Abstract

Surfactants have found a wide range of industrial and scientific applications. In par-

ticular, detergent micelles are used as lipid membrane mimics to solubilize membrane

proteins for functional and structural characterisation. However, an atomic-level un-

derstanding of surfactants remains limited because many experiments provide only low-

resolution structural information on surfactant aggregates. Here, we combine small-angle

X-ray scattering with molecular dynamics simulations to derive fully atomic models of
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two maltoside micelles, at temperatures between 10◦C and 70◦C. We find that the mi-

celles take the shape of general tri-axial ellipsoids and decrease in size and aggregation

number with increasing temperature. Density profiles of hydrophobic groups and water

along the three principal axes reveal that the minor micelle axis closely mimics lipid

membranes. Our results suggest that coupling atomic simulations with low-resolution

data allows for a structural characterisation of surfactant aggregates.

4.2 Introduction

As fundamental building blocks of soft matter systems, surfactants (surface-active agents)

have found a wide range of industrial, scientific, and consumer applications [299, 300].

For instance, surfactants and their micellar aggregates may accelerate or inhibit chemi-

cal reactions as compared to an aqueous medium [301, 302]. Since surfactants may alter

their structure in response to external stimuli [303], they have been used as a carriers

for therapeutic molecules, to build confined reactions platforms for sustainable chem-

istry, and for modifying the characteristics of food products [304–306]. Surfactants are

routinely applied in cosmetics, personal care, and cleaning products, hence the world

market of surfactants was valued at ∼30 billion US dollars in 2015 [307]. Beside such

applications, surfactants serve as model systems in soft matter research, as their self-

organization into structures such a micelles or bilayers is still not fully understood [300].

A functional understanding of such soft matter systems remains limited, partly due to

the lack of reliable atomic models.

Detergents are the most widely used type of surfactant. Above the critical micelle

concentration cmc, detergent monomers in solution self-assemble and form micelles of

various shapes such as spheres, ellipsoids or cylinders. The formation of micelles involves

a delicate balance of free-energy contributions from enthalpy and both solute and solvent

entropy [119, 120]. Consequently, many fundamental properties of micelles, such as the

cmc, the aggregation number N , and their size and shape are temperature-dependent

[308].

Since the cross section of certain detergent micelles resemble lipid membranes, micelles

are frequently used as membrane mimics to solubilize membrane proteins for biochemical

and structural characterization [309]. In the experiments, protein-detergent complexes

are often exposed to varying temperatures, for instance in NMR studies to accelerate

diffusion and hence to improve the quality of spectra, or to dissect thermodynamic

equilibria involving conformational changes or ligand binding [310, 311]. Choosing a

suitable detergent for membrane protein solubilization is often accomplished by trial and

error; however, recent work suggests that matching of the hydrophobic thickness between
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Figure 4.1: Atomic models of DDM (a) and DM (b) micelles at 25◦C, refined against
experimental SAXS data. Red spheres: head groups; orange spheres: tails; blue surface:
explicit water included into the calculations of SAXS profiles. Green arrows indicated

principal axes (length 4 nm).

the micelle and the membrane protein of interest can provide a route towards rational

selection and design of detergent micelles [105, 106]. Hence, accurate information on

the shape and size of detergent micelles, also as function of temperature, represents a

starting point to improve the stability of protein-detergent complexes.

Detergent micelles have been studied using a range of methods, including small-angle X-

ray and neutron scattering (SAXS/SANS) [107–109, 111], NMR self-diffusion [312], and

several others [313–315]. The information content of such data is often insufficient to

derive atomic models of micelles. Complementary, molecular dynamics (MD) simulations

have been used to gain atomic insight into micelles [113, 115–117], however it remains

unclear to which extent force field imperfections bias the structure and shape of the

simulated micelle [114]. Hence, methods that integrate experimental data into MD

simulations are needed to obtain reliable atomic models of micelles.

4.3 Results and discussion

Here, we derived atomic models of two maltoside micelles, n-dodecyl-β-D-maltoside

(DDM) and n-decyl-β-D-maltoside (DM) at temperatures between 10◦C and 70◦C, by

combining experimental SAXS data with all-atom MD simulations. The data were

collected at beam line 12ID of the Advanced Photon Source [316] (SI Methods). We

incorporated the SAXS data as a energetic restraint into MD simulations, allowing us

to refine micellar models against scattering data. Because all SAXS predictions were

based on explicit-solvent models, the calculations involve accurate physical models for

the hydration layer and the excluded solvent, thereby avoiding any solvent-related fitting

parameters and, in turn, enabling highly predictive structural modelling [90].
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4.3.1 Micelle aggregation number
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Figure 4.2: Aggregation number of DDM and DM micelles versus temperature, de-
rived from SAXS data in a model-free procedure (red), from SAXS and MD simulations
(black), and from an analytic model [119]. Error bars denote 1 SEM. Error bars on red
symbols were obtained from repeated measurements and taking into account a 5% un-
certainty in the intensity calibration. Error bars on black symbols were obtained from

error propagation, see SI Methods.

We determined the aggregation number Nagg (i.e. the number of detergent monomers

per micelle) as function of temperature from the experimental SAXS data using two in-

dependent methods. First, we determined Nagg from the extrapolated forward scattering

intensity I0, obtained by Guinier analysis of the data in the low q-region (Fig. 4.6), to-

gether with the expected scattering intensity from a detergent monomer. This approach

is model-free in the sense that it does not rely on a particular representation of micelle

structure, and it has been successfully applied to a range of different detergent micelles

at room temperature [107, 108]. Here, we measured and explicitly took into account

the temperature dependencies of the buffer and detergent densities (SI Methods and

Figs. 4.7, 4.8, 4.9). The data show that Nagg decreases with increasing temperature

(Fig. 4.2, red triangles), by ≈20% going from 10◦C to 70◦C.

Second, we estimated the experimental Nagg using a series of free MD simulations with

increasing Nagg at each temperature. From each simulation, we computed the scattering

profile and compared the position of the pronounced minimum at q ≈ 1 nm−1 to the

experimental data to determine the best fitting simulations and thus the estimated

experimental Nagg (Fig. 4.2, black circles; SI Methods and Figs. 4.10, 4.11).

The two approaches to determining Nagg give good agreement both for the absolute

values and for the temperature dependencies; for DM, the agreement is even excellent

and within experimental error. For DDM, some deviations in particular at the highest

temperatures are apparent. These deviations might stem from the fact that the lower
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density for DDM compared to DM makes the analysis more sensitive to uncertainties

in the temperature dependence of the detergent density, both for estimates from I0 and

from MD simulations. Notably, our Nagg estimates for 25◦C agree with previous reports

[107–109].

Having determined the temperature dependence of Nagg enables us to test the analytic

model for micellar aggregation proposed by Chandler and coworkers [119]. Using plausi-

ble values for the alkyl-chain length parameter (SI Methods), the Chandler model (Fig.

4.2, blue line and symbols) provides a good description of the experimental data. The

remaining discrepancy can be explained by the fact that Chandler’s theory assumes a

spherical micelle, whereas DDM micelles and to a lower degree DM micelles take an

ellipsoidal shape (see below).

4.3.2 Micelle shape
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Figure 4.3: Experimental SAXS curves (red, representative errors obtained from
repeated measurements), computed from free (blue) and refined simulations (black)
of DDM (top row) and DM (bottom row) micelles at the different temperatures as

indicated in the subplots.

The scattering profiles computed from 50 ns of free MD simulations of DM and DDM

micelles at the temperatures between 10◦C and 70◦C conducted at the estimated Nagg

(Fig. 4.2) give reasonable, but not perfect agreement with the experimental data (Fig.

4.3, blue and red curves, respectively). The experimental data suggest that the micelles

under our conditions are monodisperse (see SI Text), making it unlikely that heteroge-

neous ensembles over different Nagg, i.e. polydispersity in micelle size, accounts for the

remaining residuals. In addition, we found that modelling polydispersity in Nagg hardly

improved the agreement (Fig. 4.14), indicating that not a distribution over Nagg, but
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instead incorrect micellar shapes account for the residuals between simulation and exper-

iment. Specifically, the too pronounced minima (q ≈ 1 nm−1) and maxima (q ≈ 2 nm−1)

in the calculated profiles suggest that micelles in free simulations were slightly too spher-

ical, which is likely a consequence of small imperfections of the CHARMM36 force field

[317] used in our simulations.

To refine the micelles against the experimental SAXS data, we introduced the experi-

mental curves as an energetic restraint into the simulations [91]. Ultraweak restraints

of 2-3 kJ/mol for the entire system (Fig. 4.12) were sufficient to restrain the micelles to

shapes in quantitative agreement with the data (Fig. 4.3, red and black curves). We

found that the SAXS-derived restraints hardly influenced the distribution of tail length

as compared to free simulations (Figs. 4.15, 4.16), but the restraints modified the shape

of the micelle, as apparent from the distributions of radii of gyration around the three

principal axes (Fig. 4.19). Representative snapshots of refined DDM and DM micelles

at 25◦C shown in Fig. 4.1 reveal slightly elongated ellipsoidal shapes.

To characterise the refined micellar shapes more quantitatively, we computed the den-

sity profiles along the three principal axes, decomposed into contributions from the

hydrophobic tails, head groups, and water (Fig. 4.4b-g). The density profiles were com-

puted from 300 ns of SAXS-restraint simulations at 25◦C, and from 40–60 ns for all other

temperatures, suggesting that conformational fluctuations of the micelles, to the extent

allowed by the SAXS restraint, are included in the density profiles. As evident from the

three distinct semi-axes, the micelles did not take the shape of a spheroid (an ellipsoid

with two identical semi-axes), but instead took the shape of a general tri-axial ellipsoid.

Figure 4.4h/i summarize the semi-axes for temperatures between 10◦C and 70◦C, taken

from the density of tails and head groups. The micelles shrink with increasing temper-

atures along the major and middle axes, as expected from the decreasing Nagg. The

overall micelle dimensions shrink by reducing the thickness of the hydrophobic region

and not by reducing the thickness of the head group region (Figs. 4.17 and 4.18). In con-

trast, the extension along the minor axes is nearly temperature-invariant, likely because

the shortest axes is constrained by the extensions of the detergent tails, which are almost

independent of temperature (Fig. 4.17). Further, along all three axes, the water density

decays gradually over a range of ∼1.5 nm between the bulk and hydrophobic tail regions

(Fig. 4.4b-g, cyan), similar to the water density detected by neutron reflectometry for

phosphatidylcholine membranes [318].

For both DDM and DM at most temperatures, the micelles are mainly characterised by

one long and two approximately equal shorter semi-axes (Fig. 4.4h,i, 4.17, and 4.19),

i.e., the micelles rather resemble prolate than oblate ellipsoids; DDM micelles at 55◦C

and 70◦C even take on close to ideal prolate shapes. This finding seems to contrast
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Figure 4.4: (a) Schematic representation of a micelle as a two-component tri-axial
ellipsoid. Orange: detergent tails; red: head groups. (b-g) Density profiles along the
major, middle, and minor principal axes of refined DDM (b, d, f) and DM (c, e, g)
micelles at 25◦C. (h, i) Semi-axes of DDM (g) and DM (h) micelles versus temperature,
defined as FWHM of the densities (SI Methods). Hydrophobic semi-axes a, b, c (see
also Fig. 4.17), and head group thicknesses ta, tb, tc are illustrated in (a). Error bars

denote 1 SEM obtained from block averaging.

previous fits of an implicit two-component micelle model to SAXS data, deserving fur-

ther explanation. Previously, micellar shapes were extracted from SAXS data by fitting

symmetrized geometric models, namely prolate or oblate ellipsoids with only two inde-

pendent semi-axes (Fig. 4.4a with a = b and ta = tb = tc) [107, 108]. Such fits, however,
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may become bistable, thereby yielding prolate and oblate models with similar agreement

with the data. In case of bistable fits, the physically relevant solution was chosen such

that the short semi-axis is shorter than the detergent chain, thereby avoiding a vacuum

cavity in the micelle [120]. For DDM and DM, this procedure has led to the propo-

sition of oblate micellar shapes [107]. By contrast, for the present study, we avoided

any assumptions about the symmetry, but we let the simulation decide which micellar

shape is most plausible in the light of the data and the force field. Thereby, we obtained

qualitatively different, namely more elongated prolate-like micellar shapes.

4.3.3 Comparison with membrane models
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Figure 4.5: Density profiles at 25◦C of water (left column) and hydrophobic detergent
tails (right column) along the major axis (a,b), middle axis (c,d), and minor axis (e,f)
of micelles of DDM (green lines) and DM (dark yellow lines). For comparison, density
profiles of water and hydrophobic tails across lipid membranes of POPC (red lines) and

DMPC (blue lines) are shown.

Recent work suggested that the stability of a protein-detergent complex improves if

the hydrophobic thickness matches between micelle and protein [105, 106]. To test if

the refined DDM and DM micelles provide an accurate mimic for lipid membranes,

we compared the hydrophobic and the polar profiles along the three principal axes

with the profiles of two typical model membranes, composed of either palmitoyl oleoyl

phosphatidylcholine (POPC) or of dimyristoyl phosphatidylcholine (DMPC). For the

density of water as well as for the hydrophobic tails, we found an excellent match between
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the micelle’s minor axis and the lipid membranes, in particular between DDM and POPC

on the one hand, and between DM and DMPC on the other hand (Fig. 4.5e,f). In

contrast, the profiles along the middle and major axes are too wide to match the lipid

membranes (Fig. 4.5a-d). This suggests that membrane proteins are predominantly

embedded into DDM and DM micelles such that the protein’s membrane-normal axis is

aligned along the minor micelle axis. Further, since maltosides have been frequently used

to solubilize membrane proteins, our analysis supports the view that a match between

the minor micelle axis and the lipid membrane is the key determinant for successful

protein solubilization [105].

4.4 Conclusions

To conclude, we have derived fluctuating atomic models of two maltoside micelles by

combining experimental SAXS data with MD simulations and explicit-solvent SAXS

predictions. Free simulations revealed reasonable, but not quantitative agreement with

experimental SAXS curves; hence a weak experiment-derived energetic bias was required

to obtain simulations that accurately agree with experimental conditions. We found that

DDM and DM micelles take the shape of a general tri-axial ellipsoid, where major and

middle axes decreased with increasing temperature, whereas the minor axis was ap-

proximately constant between 10◦C and 70◦C. Density profiles along the principal axes

showed that the cross section along the minor axis of the micelles closely mimics lipid

membranes, with implications on the rational design of stable protein-detergent com-

plexes. We found the aggregation number Nagg to decrease moderately with increasing

temperature, predominantly by shrinking the major and middle axis of the micelle.

The study highlights that a direct coupling between experiment and simulation provides

more spatially detailed and more reliable structures of soft matter systems, as compared

to each of the methods alone. Specifically, SAXS provides information on the overall

shape and size, but does not provide information at the atomic level. MD simulations

provide atomic details with reasonably accurate potential energy functions (force fields),

and they naturally account for thermal fluctuations; however, MD simulations have dif-

ficulties with obtaining large-scale features a priori. As such, SAXS and MD provide

highly complementary physicochemical information. Our work may provide a starting

point for a rational selection of detergent for solubilizing membrane proteins, and for

further improvements of detergent force fields. The fact that the minor axes are approx-

imately independent of temperature (Fig. 4.4) implies that a match between the length

of the hydrophobic part of the protein and the micelle thickness would be maintained

over a significant temperature range and, consequently, that the maltosides investigated
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here can be used for solubilization over a range of temperatures. Future work will have

to test to what extent these trends also hold for other detergents. While the refinement

of DM and DDM micelles was simplified by their monodispersity in size, the refine-

ment of highly polydisperse micelle solutions will likely require the explicit treatment of

heterogeneous ensembles. In addition, we are currently extending the protocol for incor-

porating complementary SANS data, providing a framework for integrative structural

modelling of soft matter systems.
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4.5 Supplementary material

4.5.1 Methods

4.5.1.1 Analytic model for the aggregation number

Maibaum, Dinner, and Chandler have proposed an analytic model for the aggregation

number of spherical detergent micelles [119],

Nana
agg = (49π/48)βγδ2, (4.1)

where β = (kBT )−1 denotes the inverse temperature, and γ is the interfacial oil-water

surface tension. Values for γ for DDM and DM at the different temperatures were taken

from Ref. 319. δ is a length parameter of the alkyl chain of nc carbon atoms. Because

the exact value of δ for a given type of detergent is not obvious, we adjusted δ such that

Nana
agg matched Nagg estimated by comparing the MD simulations with the experimental

SAXS curves at 25◦C (Fig. 4.2, black circles). This procedure yields δ = 17.8 Å for

DDM and δ = 14.5 Å for DM, in reasonable agreement with the maximum length of the

tails given by Tanford’s formula [120], δ = (0.15 + 0.1265nc) nm, where nc denotes the

number of carbon atoms in the tail (10 for DM and 12 for DDM), suggesting that the

parameter δ was adjusted to physically reasonable values (see also Fig. 4.15 below).
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Figure 4.6: SAXS data and Guinier analysis for DM and DDM micelles as a function
of temperature. a), b) Scattering profiles recorded for 45 mM DM (a) and 45 mM DDM
(b) in the temperature range from 10◦C to 70◦C (see legends in panels a and b). Error
bars are shown only for every 10th point for clarity. c), d) Guinier analysis of the same
data as show in panels a and b, using the same color code. The black lines indicate
typical fitting ranges, which where chosen such that Rg · qmax ≤ 1.3 where qmax is the
largest q-value included in the fit. Error bars are smaller than symbols. The insets show
the reduced-χ2 values (computed as squared difference between data and fit, divided by
the variance, and normalized to the number of points included in the fit) for the Guinier
fits presented in the main panel. Reduced-χ2 values ≤ 1 indicate an excellent fit. The
good linearity of the data on the Guinier range is apparent, suggesting monodisperse

samples and the absence of bias in the data by micelle-micelle correlations.

4.5.1.2 SAXS experiments

Experimental data were collected at beam line 12ID of the Advanced Photon Source

[320] (APS), essentially as described previously (Table 4.1) [107, 108, 321]. Measure-

ments used custom-made sample cells and a cell holder that was temperature controlled

in the range from 10◦C to 70◦ with a circulating water bath [316]. Data were collected

at an X-ray energy of 12 keV (corresponding to a wavelength of λ = 1 Å) using a sample-

to-detector distance of 1.8 m, resulting in a useable q-range of 0.02 Å−1 to 0.275 Å−1.

Scattering angles were calibrated using a silver behenate standard sample. DM and

DDM were purchased from Anatrace and measured in 20 mM phosphate buffer, pH 6.2,

with 150 mM NaCl added at a detergent concentration of 45 mM. It has been previously

shown that under these conditions, both DM and DDM micelles are monodisperse and

interparticle interference (finite concentration) effects are negligible [107, 216]. For each
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Table 4.1: Data-collection parameters. Data read out, normalization and circular
averaging were performed using custom routines at beam line 12ID, APS, IL, USA.
Buffer subtraction and Guinier analysis were performed using custom routines in Matlab
(Mathworks) that are available from the authors upon request. Software for SAXS

predictions and model refinement are described in detail in the SI text below.

Beam line
Beam line 12ID
Advanced Photon Source, IL, USA

Wavelength (Å) 1.0
Useable q-range (Å−1) 0.02 - 0.275
Exposure time (s) 3.0
Monomer concentration (mM) 45
Temperature range (K) 283 - 343

Table 4.2: Detergent parameters used in the calculation of the aggregation number
from the forward scattering intensity.

Symbol Quantity
Value at 25◦C

DM DDM

c Detergent concentration 45 mM 45 mM

cmc Critical micelle concentration 1.8 mM 0.17 mM

ρdet Electron density of the detergent 0.407 e Å−3 0.398 e Å−3

ρsol Electron density of the solvent 0.340 e Å−3 0.340 e Å−3

Vmon Volume of a detergent monomer 644.0 Å3 697.8 Å3

condition, three exposures of 1.0 s each were taken, image corrected, and circularly av-

eraged. The three resulting profiles for each condition were compared to confirm the

absence of radiation damage and averaged to improve signal. Matching buffer profiles

were collected with identical procedures and subtracted for background correction. We

employed 8 mg/ml horse heart cytochrome c (Sigma), in 100 mM acetate buffer, pH 4.6,

with 0.5 M guanidinium hydrochloride as a scattering standard. All samples were cen-

trifuged at 11000 · g for 10 min prior to data collection.

4.5.1.3 Model-free determination of micelle aggregation number from for-

ward scattering

The aggregation number N of micelles can be determined from the forward scattering

intensity via the relationship [107]:

N =
I(0)exp

I(0)mon
=

I(0)exp

K [c(T )− cmc(T )] [ρdet(T )− ρsol(T )]2 V 2
mon(T )

(4.2)

I(0)exp is the experimentally determined forward scattering intensity of a detergent solu-

tion above the critical micelle concentration cmc that is obtained from Guinier analysis

of the SAXS data (Figure 4.6). The denominator is the expected forward scattering

signal from a detergent monomer (which is too weak to be measured directly). The
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proportionality constant K is setup specific and was determined from measurements of

the scattering standard cytochrome c. The remaining parameters in the denominator

are properties of the detergent and the solvent: ρdet and ρsol are the electron densities of

the solvent and detergent, respectively, c is the detergent concentration, cmc the critical

micelle concentration, and Vmon the volume of a detergent monomer. An overview of

the parameters and their known room temperature values from the literature are given

in Table 4.2. The SAXS data at 25◦C obtained in this study were analyzed using the

parameter values from Table 4.2. The solvent and detergent parameters are, however,

temperature dependent, as discussed in the next paragraph.

Size monodispersity In line with previous findings [322], our SAXS data suggests

that DDM and DM micelles are reasonably monodisperse in size (or in aggregation

number Nagg), based on two lines of arguments:

Firstly, if the micelle ensembles would exhibit a wide size distribution, the distribution

would likely shift to larger sizes when increasing the detergent concentration, thereby

leading to non-trivial changes in the scattering profiles. However, for concentrations

low enough such that interparticle interference is negligible, the scattering profiles are

superimposable after rescaling by concentration [107], suggesting that the micelles are

reasonably monodisperse.

Secondly, polydisperse systems typically exhibit deviations from linearity in the Guinier

region. However, we observe good linearity of the experimental data in the Guinier plots

(Fig. 4.6c,d), providing additional indication that the micelles are reasonably monodis-

perse.

Moreover, we found that modelling the micelles as heterogeneous ensembles over various

Nagg does not improve the agreement between experimental SAXS data and the SAXS

data computed from free, unbiased simulations (Fig. 4.14). This suggests that (i) resid-

uals between calculated and experimental SAXS curves are not caused by polydipersity

in Nagg but instead reflect differences in micelle shape, and (ii) that explicit modelling

of polydispersity in Nagg would mainly increase the risk of overfitting. Hence, we did

not consider polydispersity in Nagg during SAXS-driven simulations.

Temperature dependence of the concentration The concentration depends on

temperature since the volume of the solvent changes with temperature. Stock solutions

were prepared at room temperature (∼25◦C) and aliquots from the same stock solution

were measured at different temperatures. We approximate the volume expansion of the

solvent by the tabulated values for the density of water (Figure 4.7). Since the density of
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Figure 4.7: Temperature dependence of solvent density. a) Density of water as a func-
tion of temperature. Circles are data from http://www.engineeringtoolbox.com/water-
thermal-properties-d 162.html; squares are data from Ref. 323. b) Relative temperature
dependence of the density of the solvent and of the concentration, normalized to the

values at 25◦C. The values were computed from the water densities in panel a).

Figure 4.8: Temperature dependence of DM and DDM density. a) Density of buffer,
DM, and DDM solutions as a function of temperature. Circles are from measurements
with a Gay-Lussac pycnometer (see Methods). Lines are spline interpolated values. b)
Density of DM and DDM as a function of temperature computed from the interpolated
data in panel a) (colored lines; same color code as in panel a). The black and grey
lines are linear fits to the DM and DDM data, respectively. The density values at room

temperature obtained from the literature [107] are shown as stars for comparison.

water only changes by about 2 % in the temperature range investigated, the temperature

dependent change in concentration is a small correction.

Temperature dependence of the electron density of the solvent The electron

density of our aqueous buffer with 150 mM NaCl (Table 4.2) was used previously [107]

and taken from Ref. 324. Its temperature dependence was again approximated using

the temperature dependence of the density of water (Fig. 4.7). Even though the density

of the solvent changes only by about 2 % over the temperature range studied, the fact

that the two densities in the (ρdet − ρsol)
2 term in the denominator of Eq. 4.2 are similar

means that even small changes are significant.
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Temperature dependence of the electron densities and monomeric volumes of

the detergents The monomeric volumes Vmon and corresponding electron densities

ρdet at room temperature were previously computed [107] from the specific densities

[325], using the Tanford formula for alkyl chain volumes to adjust for different chain

lengths [120]. formula [120] for the alkyl chain volume. To determine the temperature

dependence of the density of DM and DDM, we used a Gay-Lussac pycnometer (Brand,

Cat. No. 43305). The masses of the pycnometer filled with DM and DDM solutions in

buffer and with buffer only were measured as a function of temperature in the range 10◦C

- 50◦C. The buffer was 20 mM phosphate buffer, pH 6.2, with 150 mM NaCl added, i.e. the

same buffer that was used for SAXS measurements. Temperature control was achieved

through a water bath-thermostat (Biosan, WB-4MS). We limited the measurements to

temperatures ≤ 50◦C, as for higher temperatures the accuracy decreases according to

vendor specifications and bubble formation in the pycnometer made accurate sample

handling challenging. From the measured masses m(T ), the temperature-dependent

densities of the buffer and the DM and DDM solutions were computed by taking into

account the (temperature-independent) volume V and mass mpyc of the pycnometer as

ρ(T ) = (m(T )−mpyc)V
−1 (Figure 4.8a). From the temperature-dependent densities of

the buffer and DM solutions, ρbuf and ρDM,sol, the temperature-dependent densities of

DM ρDM was computed using the relationship:

ρDM(T ) =
ρbuf(T )

ρbuf(T )

ρDM,sol(T )

(
1 +

1

χ

FWH2O

FWDM

)
− 1

χ

FWH2O

FWDM

(4.3)

where FWDM is the formula weight (i.e. the molecular mass) of DM, FWH2O the formula

weight of water, and χ the molality of the DM solutions, in number of DM molecules

per solvent molecule. An analogous expression was used for DDM. We used 18.02,

482.56, and 510.62 Da for the FW of water, DM and DDM, respectively. The resulting

densities of DM and DDM are shown in Figure 4.8. The data are relatively noisy,

due to the difficulty of measuring very small changes in density with the pycnometer.

Nonetheless, the values are consistent, within experimental error, with the density values

at room temperature from the literature [107, 325] (Figure 4.8, stars). To obtain a

robust estimate of the temperature dependence, and to extrapolate the data beyond the

measured temperature range, we applied a linear fit to the measured data (Figure 4.8,

black and grey lines). The fitted linear temperature dependence was used to evaluate

Eq. 4.2.

Temperature dependence of the critical micelle concentrations The critical

micelle concentrations in Table 4.2 are the values used previously [107] and were taken
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Figure 4.9: Temperature dependence of the critical micelle concentration. Critical
micelle concentration of DDM as a function of temperature. The circles show the data
from Ref. 326. The star is the room temperature value used previously [107]. The black
solid line shows the linear fit to the data that was used to evaluate the temperature-

dependence of the cmc for both DM and DDM.

from the Anatrace catalogue (https://www.anatrace.com/). The temperature depen-

dence of the cmc for DDM was measured spectrofluorometrically by Aoudia et al. [326].

The temperature-dependent data by Aoudia et al. are well described by a simple linear

relationship (Figure 4.9) and we used this linear dependence on temperature to compute

the aggregation number by evaluating Equation 4.2 for both DM and DDM.

4.5.1.4 MD simulations and SAXS calculations

MD setup and simulation parameters Structures of single detergent molecules of

the n-dodecyl-β-D-maltoside (DDM) and n-decyl-β-D-maltoside (DM) were taken from

the CHARMM-GUI web site. citecheng2013charmm. To build the micelle, initial coor-

dinates were generated by placing the detergent molecules in a spherical and uniformly

distributed arrangement. The structures were placed into a simulation box of a do-

decahedron, keeping a distance of at least 3 nm to the box boundary. The simulation

boxes were filled by CHARMM-modified TIP3P water [294, 295]. Water molecules were

removed from the hydrophobic cores of the micelles. The energy of each system was

minimized with the steepest-decent algorithm. Micelles of different aggregation num-

bers (N sim
agg ) were setup and initially equilibrated at 30◦C. For DDM, we set up micelles

of 70 to 210 detergent molecules in steps of 5. For DM we we set up micelles of 60

to 110 detergent molecules in steps of 5. The final structures from these equilibration

simulations were used as a starting structures for the free production simulations. These

simulations were run for another 100 ns, if not stated otherwise, at the temperatures of

10◦C, 25◦C, 40◦C, 55◦C, and 70◦C. SAXS curves were calculated from 1000 snapshots of

the last 50 ns of the simulations, using the explicit-solvent SAXS calculations described

previously (see below for details) [90].
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Unbiased, free simulations were carried out using the Gromacs simulation software,

version 5.0.4 [288]. SAXS curve predictions and SAXS-driven MD simulations (with

experiment-derived energetic restraints) were conducted with an in-house modification

of Gromacs 4.6. Detergent interactions were modeled with the CHARMM36 lipid force-

field [317], version of March 2014, translated into Gromacs [296]. The temperature

was controlled at the desired value using velocity rescaling [291] during free simulations

(τ = 1 ps), and using a stochastic dynamics integrator during SAXS-driven simulations

(τ = 0.2 ps). The pressure was kept at 1 bar using the Berendsen barostat [159] (τ

= 5 ps). Long-range electrostatic interactions were calculated using the particle-mesh

Ewald method [154, 155]. Dispersive interactions and short-range repulsion were de-

scribed together by a Lennard-Jones potential with a cutoff at 1.2 nm.

Figure 4.10: Spatial envelope around micelles of DDM (a) and DM (b), separating
the micelles and the solvation layer from the bulk water. The envelope was constructed
at the ∼1.5 nm distance from the micelles surface. Explicit water inside the envelope
contributed to the SAXS calculations, thereby accurately accounting for scattering

contributions from the hydration layer.

SAXS curve predictions and SAXS-driven MD simulations SAXS curves were

computed using the explicit-solvent calculations described previously [90]. Explicit water

molecules that contributed to the SAXS calculations were defined by a spatial envelope

that enclosed the micelle and the hydration layer (Fig. 4.10, blue surface). The enve-

lope was constructed such that the vertices of the envelope had a distance of at least

0.6 nm from all micelle atoms during the simulation. Due to substantial fluctuation of

the micelle, this procedure led to a distance between micelle and envelope of ∼1.5 nm

in most simulation frames. To carry out the orientational average (or spherical quadra-

ture), scattering amplitudes were computed for 1000 q-vectors per absolute value of the

momentum transfer q, which were distributed by the spiral method. Because the density

of the applied TIP3P water slightly differs from the experimental density, we corrected

the solvent density to 334 e nm−3 as described previously [90].
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Figure 4.11: (a) SAXS curves computed from the simulations of micelles composed of
110, 130 and 150 DDM molecules (for color coding, see legend). Red curve: experimen-
tal SAXS curve for DDM micelles at 25◦C. Evidently, the location of the minimum at
q ≈ 1 nm−1 is shifted to lower q with increasing aggregation number. (b) SAXS curves
of DDM micelle computed with the analytic model by Lipfert et al. [107] (c) Linear fit
of the difference between the q-positions of the experimental and the calculated SAXS
curve minima, here shown for DDM at 25◦C. The blue arrow indicates the simulated
detergent number that leads to the best match of the minimum between simulation and

experiment.

4.5.1.5 Extracting the aggregation number from SAXS data using MD sim-

ulations

Figure 4.11b shows SAXS curves of DDM micelle computed with the analytic model

by Lipfert et al. [107], which models a micelle as two-component density (for head

groups and tails) in the shape of a spheroid, with one semi-axis a and two semi-axes

b. SAXS curves were computed for various prolate (a > b) and oblate (a < b) micelles

with different semi-axes a and b (see Fig. 4.11b, legend), but with constant overall

volume (and hence modelling a constant aggregation number) as apparent from the

constant forward intensity at q = 0. For the analytic model, the head group thicknesses

were taken as ta = ta = tc = 6.06 Å, while the densities of the core, the head groups,

and the solvent were taken as 0.227 e Å−3, 0.520 e Å−3, and 0.334 e Å−3, respectively

[107]. Evidently, although a and b strongly influenced the SAXS curves, the position

of the first minimum at q ≈ 1 nm−1 is well conserved, suggesting that the position

of the minimum encodes mainly the volume and much less the shape of the micelle.

Indeed, SAXS curves computed from free micelle simulations with increasing number

of detergent molecules reveal a systematic left-shift of the minimum with increasing

detergent number (Fig. 4.11a). Consequently, we estimated the aggregation number by

comparing the position of the SAXS curve minimum between (i) the experimental SAXS

curves, qexp
min, and (ii) the SAXS curves computed from unbiased MD simulations, qsim

min,

with different number of detergent molecules in the simulated micelle.

The q-positions of the SAXS curve minima qmin were extracted by fitting a parabola
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Table 4.3: Aggregation numbers (Nagg) obtained by comparing the position of the
SAXS curve minimum between experimental curves and MD-computed curves, statisti-
cal error (δNagg), and aggregation number used for production SAXS-driven simulations

(Used) at different temperatures.

Temperature
(◦C)

DDM DM
Nagg δNagg Used Nagg δNagg Used

10◦ 146.8 2.5 145 91.7 2.4 90

25◦ 129.9 1 130 84.8 0.2 85

40◦ 115.8 2.4 115 80 0.7 80

55◦ 105.7 1.2 105 76.6 2 75

70◦ 97.8 2.6 100 70.4 1.5 70

to the minimia, Ifit(q) = a(q − qmin)2 + c, within a small q-range around the minima,

using the Levenberg-Marquardt algorithm. The fitted q-range was 0.1 nm−1 for the ex-

perimental SAXS curves, and 0.3 nm−1 and 0.4 nm−1 for the calculated curves for DDM

and DM, respectively. All fitted parabolas closely matched the data in the fitted range.

This procedure was repeated for SAXS curves computed from simulations with various

detergent numbers N sim
agg , yielding a series of computed minima positions, qsim

min(N sim
agg ).

Finally, we fitted a straight line to ∆q(N sim
agg ) = qexp

min − qsim
min(N sim

agg ) (Fig. 4.11c, black

line), and we obtained the experimental aggregation number Nagg by extrapolating to

∆q = 0 (Fig. 4.11c, blue arrow). Statistical errors of ∆q(N sim
agg ) were obtained from the

Levenberg-Marquardt algorithm and using error propagation. The error of Nagg was

taken from the Levenberg-Marquardt algorithm. We stress that these errors represent

purely statistical errors due to the extraction of the SAXS curve minimum. Putative sys-

tematic errors are not included, which could, for instance, appear in case of imperfections

of the detergent densities in the simulations; however, because the estimated Nagg well

agrees with Nagg obtained with the model-free approach (see above, and Fig. 4.2), such

systematic errors are probably small. The estimated Nagg are summarized in Table 4.3.

SAXS-driven MD simulations Final structures obtained by free simulations were

used as starting structures for the SAXS-driven simulations. These simulations were

run for 300 ns at 25◦C, and between 40 ns and 60 ns at all other temperatures. SAXS-

derived forces applied to the detergent molecules were calculated from the SAXS-derived

potential ESAXS [91]:

ESAXS(R, t) = α(t)kc
kBT

nq

nq∑
i=1

[〈Ic(R, qi)〉t;τ − fIe(qi)]2

σ2(qi)
(4.4)

where Ie(qi) denotes the experimental SAXS intensity. f is a fitting constant for the

absolute intensity scale, which was adjusted at every step such that ESAXS is minimized.

In contrast to previous work [91], no fitting constant for a constant intensity offset was
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Figure 4.12: Average SAXS-derived potential ESAXS (Eq. 4.4) during SAXS-driven
simulations of DDM (a) and DM (b). ESAXS micelles at different aggregation number

at 25◦C, calculated from the last 10 ns of the simulations.

applied because adjusting an offset was not required to obtain quantitative agreement

between experiment and simulation. 〈Ic(R, qi)〉t;τ is the SAXS intensity computed on-

the-fly from the simulation coordinates R. The symbol 〈·〉t;τ denotes the running average

at time t, using weights that decay exponentially into the past with a memory time τ .

In this work, we used τ = 300 ps. As such, the time-averaged 〈Ic(R, qi)〉t;τ represents

an average over fluctuations that occur on a time scale of a few hundred picoseconds,

implying that a fluctuation-averaged SAXS curve is compared with the experimental

curve in Eq. 4.4. The overall uncertainty σ(qi) accounts for experimental and statistical

calculated errors, as well as for a systematic error that originates from an uncertainty of

the buffer density [91]. To estimate the latter, we assumed a relative uncertainty of the

solvent density of 0.1%. The experimental errors were modelled as 1% of the experimen-

tal intensity. The symbol kc is a force constant set to 1 in this study, nq is the number

of intensity q-points, kBT the thermal energy, and α(t) is a time-dependent function

that allows a gradual introduction of the SAXS-derived potential at the beginning of

the simulation (0 < α(t) ≤ 1). The first 8 ns of SAXS-driven simulations were not used

for analysis in order to account for equilibration.

Figure 4.12 presents average ESAXS values obtained from SAXS-driven simulations of

DDM and DM micelles with various aggregation numbers at 25◦C. Evidently, ESAXS

takes small values in DDM and DM simulations if Nagg is close to 130 and 85 for

DDM and DM, respectively, corresponding to the Nagg estimates that we obtained by

matching the position of the SAXS curve minimum at q ≈ 1 nm−1 between experiment

and unbiased simulation (see Fig. 4.11). In contrast, ESAXS is increased in SAXS-driven

simulation with Nagg values that strongly deviate from the optimal values, reflecting

that micelles with an incorrect Nagg cannot be refined to shapes that accurately agree

with the experimental data.
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To exclude that the SAXS-driven simulations are biased by the initial conformation, we

started SAXS-driven simulations for DDM at 25◦C from multiple initial frames picked

from a free simulation, such that the micelle exhibited different shapes in the initial

frames (some more prolate-, some more oblate-like). These SAXS-driven simulations

consistently led to rather prolate-like shapes, suggesting that (i) the SAXS-driven simu-

lations were not biased by the initial frames, and (ii) that the simulations do not suffer

from sampling problems owing to multiple energetic minima.

The modified Gromacs source code used for SAXS predictions and SAXS-driven MD

simulations is available on the authors’ website (http://cmb.bio.uni-goettingen.de/).

Electron density calculations Electron densities along the principal axes were com-

puted as an average over SAXS-driven simulations, as follows (Fig. 4.4a-f). For each sim-

ulation frame, the mass-weighted principal axes were computed from all micelle atoms.

Subsequently, a cylinder of 0.5 nm was aligned along each axis. The electron densities

were computed from the atoms of the respective atom type (representing tails, head

groups, water, or all atoms) within the cylinder along the respective axis (minor, mid-

dle, or major). Here, the hydrocarbon chain was defined as “tail”, and all other atoms

(including the oxygen bound to the hydrocarbon chain) as “head group”.

The length of the three full semi-axes, a + ta, b + tb, and c + tc (Fig. 4.4g/h), were

defined as the distance from the micelle center of mass, where the density of detergent

dropped below 120 e nm−3, corresponding to approximately half the density of micelle

core. Likewise, the semi-axes of the hydrophobic core (Fig. 4.17a/b) were defined by the

distance where the density of the tails dropped below 120 e nm−3. The error bars were

computed by block averaging, using blocks of 4 ns.

The electron densities of lipid membranes of DMPC and POPC were computed from

20 ns and 40 ns of equilibrium simulations, respectively. The membrane simulations

contained 128 lipids plus 40 water molecules per lipid. Interactions were described by

the CHARMM36 force field and the CHARMM-modified TIP3P model [287, 317]. The

simulation of DMPC was taken from a recent study [327]. The POPC setup and MD

parameters were identical to the DMPC simulation described previously [327]. The

tail densities of the membranes were computed purely from the hydrocarbon lipid tails,

starting with the first carbon atom below the ester groups, i.e., the ester and glycerol

groups were not considered as part of the ”tails”.
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Figure 4.13: SAXS curves computed from free simulations of a DDM micelle com-
posed of 140 detergent molecules at 25◦C, used to test the influence of various MD
parameters on the calculated SAXS curves. (a) Simulations modelling hydrogen atoms
as normal atoms, and (b) modelling hydrogen atoms at virtual sites (VS). Numbers
1.2 and 1.0 represents the cutoff distance for Lennard-Jones and short-range Coulomb
interactions. Letters ”a” and ”h” indicate bond constraints of all atoms or purely

involving hydrogen atoms, respectively.

4.5.1.6 Computational tests

Influence of MD parameters and force field details on calculated SAXS curves

Before running production simulations, we have carefully evaluated the influence of

various MD parameters on free micelle simulations: (i) the influence of cutoff distances

for non-bonded interactions; (ii) the effect of constraining all bonds instead of purely

bonds of hydrogen atoms; (iii) the effect of modelling hydrogen atoms as virtual sites

(v-sites), allowing one to increase the integration time step from 2 to 4 fs; (iv) influence

of the water model.

All test simulations of a DDM micelle were conducted under the same conditions (ag-

gregation number 140, temperature 25◦C). SAXS curves calculated from these test sim-

ulations are shown in the Figure 4.13. We found that the cutoff distance as well as

the constraints settings may influence the SAXS curves. In contrast, modelling hy-

drogen atoms as virtual sites had only a small effect on the SAXS curves. Likewise,

using the standard TIP3P water model [287] instead of the CHARMM-modified TIP3P

model (with Lennard-Jones interactions of hydrogen atoms) did not influence the SAXS

curves. We decided to follow the settings that closely resemble the default settings

for the CHARMM36 force field: cutoff at 1.2 nm, bond constraints applied purely to

hydrogen atoms, and hydrogen atoms not modelled as v-sites.

Test of convergence To exclude that the calculated SAXS curves were biased by

sampling problems, we conducted two independent simulations of the DDM micelle using

increased temperatures and simulated annealing, as follows: (i) 50 ns of simulation at
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either 370 K or 420 K; (ii) annealing down to 300 K within 20 ns; and (iii) 100 ns at 300 K.

SAXS curves were calculated from the last 50 ns of the two simulations and compared

with the previously calculated curves for the same system simulated purely at 300 K.

All three calculated SAXS curves were nearly identical, suggesting that our simulations

and SAXS calculations were not biased by sampling problems.

In addition, to exclude that the initial detergent conformation influences the computed

SAXS curve, the system of 140 DDM detergent molecules was set up following three

different procedures: (i) placing the detergent molecules in a spherical and uniformly

distributed arrangement; (ii) by building a preassembled micelle with the CHARMM-

GUI server [328]; and (iii) via a simulation of micelle aggregation, starting from a random

distribution of 140 detergent molecules in a water box. Here, the micelle formed within

200 ns. SAXS curves calculated from the three different setup procedures were nearly

identical, suggesting that our approach of generating the initial micelle coordinates does

not bias the results.
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4.5.2 Additional supplementary figures
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Figure 4.14: SAXS curves for DDM at 25◦C, demonstrating that modelling a
heterogeneous ensemble over various aggregation numbers (polydispersity in micelle
size) does not improve the agreement between the experimental curve (red) and the
curve calculated from free MD simulations. Blue: SAXS curve from free simulation
with 130 DDM molecules. All other curves: Average SAXS curves Iav(q;σagg) =
W−1

∑
n wn(σagg)I(q;n) computed as a weighted average over curves I(q;n) computed

from free MD simulations with n = 110, 120, 125, 130, 135, 140, 145, 150 or 160 detergent
molecules. Here, wn is the weight taken from a Gaussian distribution with mean 130

and width σagg, and W =
∑

n wn(σagg) is the normalization constant.
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Figure 4.15: Distributions of the detergent tail length for DDM (a) and DM (b),
computed as the distance between the the first carbon atom (C1) of the tail (ii) the
terminal carbon atom (Ct) of the tail, corrected by 0.21 nm due to (i) the Van-der-Waals
radius of the terminal methyl group (0.15 nm) and (ii) half of the bond length between
C1 and the neighboring oxygen atom (0.06 nm), thus following Tanford’s defintion [120].
Blue curves: free simulations; black curves: SAXS-driven simulations. Results are
shown for simulations at temperatures between 10◦C and 70◦C, see labels. Red vertical
marks indicate the maximum tail length estimated by Tanford’s equation, 1.668 nm for
DDM tail and 1.415 nm for DM tail. The curves demonstrate that the SAXS-derived
restraints hardly influence tail length distribution and, hence, hardly influence the tail

structure.
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Figure 4.16: Average detergent tail length of DDM (a) and DM (b) at various tem-
peratures, taken from the last 50 ns of free, unbiased simulations (blue) or last 10 ns
of SAXS-driven simulations (orange). The tail length was computed as the distance
between the the first carbon atom (C1) of the tail (ii) the terminal carbon atom (Ct)
of the tail, corrected by 0.21 nm due to (i) the Van-der-Waals radius of the terminal
methyl group (0.15 nm) and (ii) half of the bond length between C1 and the neighboring
oxygen atom (0.06 nm), following Tanford’s defintion [120]. The data demonstrate that
the SAXS-derived restraints influence the average tail length only marginally. Further,
the average tail length slightly decreases with increasing temperature, as expected since
disordered tails are favoured by entropy. For comparison, black and green symbols show
the tail length averaged purely over all-trans configurations of detergent molecules, re-
vealing close agreement with the maximum extension estimated by Tanford’s equation

(red lines; DDM: 1.668 nm; DM: 1.415 nm).
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Figure 4.17: Length of the semi-axes a, b, and c of the hydrophobic cores along the
three principal axes of refined micelles of DDM (a) and DM (b). a, b, and c are plotted
versus temperature. Errors were computed by binning analysis. The major and middle
semi-axes (b and c) shrink with increasing temperature, whereas the minor semi-axes
c are approximately temperature-invariant in both DDM and DM. Error bars denote
1 SEM computed from block averaging. (c) Schematic model of a micelle, illustrating
the hydrophobic core with semi-axes a, b, and c (orange), and the head groups with
thicknesses ta, tb, and tc (red). The lengths of the full semi-axes including the head

groups, a+ ta, b+ tb, and c+ tc, are shown in main text Fig. 4.4.
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Figure 4.18: Thicknesses of head groups in a DDM and DM micelle plotted as a
function of temperature. Because the head group thicknesses along the three principal
axes were identical within statistical errors, we here averaged the thicknesses over the
three principal axes. The thicknesses were computed as FWHM of the Gaussian-like
head group electron density distributions (Fig. 4.4b-g, magenta lines). Statistical errors
(1 SEM) are slightly increased owing to occasional long-living head group/head group
contacts, leading to slower sampling of head group conformation as compared to tail
conformations. Overall, the head group thickness slightly increases with temperature,

rationalized by increased fluctuations and disorder at higher temperatures.
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Figure 4.19: Distributions of radii of gyration Rg around three principal axes at the
25◦C for DDM (a) and DM (b). Radii of gyration are related to the moments of inertia

(MOI) I(m) via R
(m)
g = (I(m)/M)1/2 where m = 1, 2, 3 indicates the major, middle or

minor principal axis, and M is mass of the micelle. Solid lines represent the results from
300 ns of SAXS-driven simulations. For comparison, dashed lines show distributions
from free simulations, demonstrating that micelles in free simulations, which agree with
the SAXS data only approximately, were too spherical. (c,d) Temperature dependence

of average radii of gyration around the three principal axes, R
(m)
g , for refined DDM (c)

and DM (d) micelles. The error bars at the 25◦C indicate the standard deviations of

the Rg distributions. Two large and one small R
(m)
g (see blue and red versus black line)

indicate rather prolate-like than oblate-like micellar shapes for all temperatures.
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5.1 Abstract

Small-angle X-ray scattering (SAXS) is a widely used experimental technique, providing

structural and dynamic insight into soft-matter complexes and biomolecules under near-

native conditions. However, interpreting the one-dimensional scattering profiles in terms

of three-dimensional structures and ensembles remains challenging, partly because it is

81
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poorly understood how structural information is encoded along the measured scattering

angle. We combined all-atom SAXS-restrained ensemble simulations, simplified con-

tinuum models, and SAXS experiments of a n-dodecyl-β-D-maltoside (DDM) micelle

to decipher the effects of model asymmetry, shape fluctuations, atomic disorder, and

atomic details on SAXS curves. Upon interpreting the small-angle regime, we find re-

markable agreement between (i) a two-component tri-axial ellipsoid model fitted against

the data with (ii) a SAXS-refined all-atom ensemble. However, continuum models fail

at wider angles, even if they account for shape fluctuations, disorder, and asymmetry of

the micelle. We conclude that modelling atomic details is mandatory for explaining the

SAXS curves at wider angles.

5.2 Introduction

Detergent micelles are utilized in a wide spectrum of industrial, consumer, and scientific

applications [299, 300]. For instance, because the cross-section of detergent micelles re-

sembles lipid membranes [270], micelles are frequently used as lipid membrane mimics

for solubilizing membrane proteins, thereby enabling further biophysical and structural

studies [309]. For a rational design of such protein-detergent complexes, and for mod-

elling biophysical experiments, understanding of micellar shapes would be highly desir-

able [105, 106], with respect to both the overall shape and atomic details. However,

owing to their intrinsic disorder and pronounced shape fluctuations, obtaining reliable

models of micelles remains a major challenge.

Small-angle scattering, either with X-rays (SAXS) or neutrons, is a popular technique

providing structural insight into soft-matter systems and biomolecules under near-native

conditions [61, 67, 68, 107, 108, 112, 329–333]. However, the interpretation of the one-

dimensional scattering profiles in terms of structural models is challenging for several

reasons [15]: (i) the information content of the SAXS profile is low and by far insufficient

for defining all degrees of freedom of the solute, leading to a significant risk of overfitting

the data; (ii) because the SAXS profile reports on the overall electron density contrast of

the biomolecule, the data reflects the modulation of the solvent density in the hydration

layer, suggesting that the hydration layer must be modelled upon interpreting the data.

These challenges prompted the development of methods for the interpretation of SAXS

data based on explicit-solvent molecular dynamics (MD) simulations because the simu-

lations (i) add physicochemical information to the low-information SAXS data, thereby

reducing the risk of overfitting the data [91], and (ii) MD simulations may naturally

account for the hydration layer of the solute [88–90, 101].
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However, additional challenges emerge from a lack of understanding on how structural

and dynamic information is encoded along the measured scattering angle. An exception

is the very low-angle Guinier regime, which provides the radius of gyration of the solute

[58]. Further, for SAXS data of detergent micelles, the position of a broad maximum of

the intensity curve I(q) was shown to correlate with the headgroup-headgroup distance

across the shortest micelle diameter (see Fig. 5.1A/B) [107], while the position of the

first minimum was shown to be sensitive to the overall micelle volume [298]. However,

the information in the magnitude of the I(q) features, and in particular the information

at wider scattering angles is poorly understood, which complicates the interpretation

of the data. For instance, given that an experimental SAXS curve differs from a curve

computed from a structural model, it is often unclear if such discrepancy originates from

experimental problems or from a simplification in the model, such as an assumed model

symmetry, neglect of shape fluctuations, or neglect of atomic details.

To investigate the structural information in SAXS curves of soft-matter complexes, we

measured the SAXS curve of a n-dodecyl-β-D-maltoside (DDM) detergent micelle [123]

up to q = 6 nm−1, where q = 4π sin(θ)/λ with the X-ray wavelength λ and the scat-

tering angle 2θ. Using a recently developed method for coupling parallel-replica MD

simulations to experimental SAXS data [93], we refined a heterogeneous atomic ensem-

ble against the data with commitment to the principle of maximum entropy [207, 208].

Having the atomistic ensemble in agreement with the data as a reference, we deciphered

step-by-step the influence of model symmetry, shape fluctuations, disorder, and atomic

detail on SAXS curve, by comparing the results from MD simulations with simplified

micelle models. In addition, to shed more light on the complementarity of SAXS and

MD, we investigated which q-range of the SAXS curve are most critical for improving

the agreement of MD simulations with experimental conditions.

5.3 Results and discussion

5.3.1 Deriving ensemble of structures in agreement with experimental

data

To obtain the atomic ensemble of the DDM micelle under experimental conditions, we

used all-atom MD simulations. First, we used a series of free, unbiased MD simulations

to determine the most likely aggregation number Nagg, i.e. the number of detergent

monomers per micelle. By comparing the position of the pronounced minimum at q ≈
1 nm−1 between the experimental curve and calculated curves [298], we found that the

most likely Nagg under the given experimental conditions is 135 (Supporting Material).
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Figure 5.1: (A) Snapshot of a DDM micelle from all-atom MD simulation. The
hydrophobic core is represented by violet spheres and sticks, and the hydrophilic head-
groups are shown as yellow surface. Solvent is omitted for clarity. (B) Two-component
ellipsoid model of a micelle. The same color scheme was used as in panel A. a, b and
c denote the lengths of the semi-axes of the hydrophobic core. For b = c > a, the
ellipsoid would be oblate; for b = c < a the ellipsoid would be prolate. Throughout this
study, the thickness of the headgroup region was set to t = 0.55 nm (SI Methods). (C)
Comparison of the experimental curve (red) with curves calculated from free, unbiased
MD simulation (gray). For clarity, every 5th error bar is shown. (D) Comparison of
the experimental SAXS curve (red) with the best-fitting curves computed from a two-
component model: prolate model (green), oblate model (purple), and general tri-axial

ellipsoid (a 6= b 6= c, brown).

This value is in agreement with previously determined values at similar temperatures

[107, 109, 298]. In line with previous findings [298], the SAXS curve calculated from a

free simulation of DDM micelle with Nagg monomers yield reasonable but not perfect

agreement with the experiment, presumably as a consequence of minor imperfections of

the applied CHARMM36 force-field [317] (Fig. 5.1C).

Next, to overcome force-field imperfection, we refined the MD ensembles with an en-

ergetic restraint against the experimental curve. To apply only a minimal bias we ran

several parallel replicas and coupled the replica-averaged SAXS curve to the experiment

[93]. This procedure follows Jaynes’ maximum entropy principle in the limit of a larger

number of replicas [207, 208], and hence enforces that only the ensemble-averaged SAXS

curve matches the experiment, but not necessarily the SAXS curve of each simulation
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Figure 5.2: (A) Favorable agreement between the experimental SAXS curve (red) with
curves from multi-replica SAXS-driven simulations refined against the experimental
curve, shown for different numbers of parallel replicas (see legend). A few representative
errors are shown as 1 SEM computed from independent runs. (B) Histograms of semi-
axes a, b, c calculated from multi-replica SAXS-driven simulations obtained from the
refined atomic ensembles. (C) Averages of curves calculated from the two-component
tri-axial ellipsoid using semi-axes distributions from the refined atomic ensembles in
panel (B). Representative errors show 1 SEM, computed via semi-axes distributions

from independent MD simulation runs.

Table 5.1: Average semi-axes calculated from multi-replica SAXS-driven MD sim-
ulations (top rows) and from fitting a single two-component ellipsoid (bottom rows).
Errors of MD simulations are given as 1 SEM of averages between independent runs.
The prolate solution is unphysical because all semi-axes are significantly larger than

the maximum extension of ∼1.67 nm of the hydrophobic tail [120].

All-atom MD
# of replicas

a [nm] b [nm] c [nm] t [nm]

1 3.29 ± 0.02 2.27 ± 0.02 1.68 ± 0.02
2 3.17 ± 0.03 2.40 ± 0.04 1.67 ± 0.01
4 3.16 ± 0.01 2.43 ± 0.02 1.63 ± 0.01
10 3.17 ± 0.03 2.42 ± 0.02 1.67 ± 0.01

Two-component model

prolate (unphysical) 3.39 1.97 1.97 0.57
oblate 2.84 2.84 1.60 0.55

tri-axial 3.20 2.47 1.65 0.55

frame. To test the effect of the number of parallel replicas, we refined ensembles using an

increasing number of 1, 2, 4 (Movie S1 - https://vimeo.com/364987188), or 10 replicas,

and we computed the SAXS curves and the micelle shape distributions from the refined

heterogeneous ensembles (Fig. 5.2A/B, Table 5.1). In this work, the micelle shape was

quantified via the semi-axes a, b, c of the hydrophobic core (see Fig. 5.1B), which were

obtained from simulation frames every 10 ps via the instantaneous moments of inertia

(SI Methods).

As expected, coupling only a single replica yields relatively narrow distributions of a, b,

https://vimeo.com/364987188
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c, indicating an overly restrained ensemble (Fig. 5.2B, black) and a violation of the max-

imum entropy principle. Using multi-replica refinement, in contrast, the distributions

become wider, in accordance to the maximum entropy principle (Fig. 5.2B, colored).

The average semi-axes agree among multiple-replica simulations, and they differ by only

≈ 0.1 nm from the values obtained from the single-replica simulations. However, irre-

spective of the number of replicas, all refined ensembles reveal quantitative agreement

with the experimental curve (Fig. 5.2A), suggesting that the SAXS curve encodes mainly

the information about the mean micelle shape, and much less the information about the

heterogeneity of the ensemble. Instead, MD simulations coupled to SAXS data with a

minimal bias, as done here, are required to derive both the mean shape and the shape

fluctuations.

Notably, in simulations with 10 or 20 parallel replicas, we reproducibly observed an

unexpected horseshoe-shaped micelle in one or two replicas, respectively (Fig. 5.6). Al-

though we cannot exclude that DDM micelles occasionally adopt elongated shapes, as

reported for other detergent micelles [112, 334, 335], these shapes may indicate a force

field limitation and hence may provide a starting point for further refinements of the

CHARMM36 parameters (see SI Text).

The atomic ensembles of micelles in agreement with experimental SAXS data derived

above provide a reference to study the influence of model symmetry, shape fluctuations,

and atomic details on SAXS curves of detergent micelles. To this end, we investigated

which parts of the SAXS curve may be explained with a greatly simplified two-component

ellipsoidal micelle model, composed of uniform densities for head group and tail regions,

as illustrated in Fig. 5.1B. Such models, constrained to oblate (b = c > a) or prolate

(b = c < a) shapes, have well explained experimental curves of DDM micelles up to ∼
2.7 nm−1 [107, 108, 121, 122], and they were successfully applied to derive the aggregation

number of micelles [107, 108, 120]. Critically, fitting such models often leads to two

disparate solutions, one prolate and one oblate, that match the data equally well [336],

Since the existence of the water droplet or vacuum void in the micelle hydrophobic core

would be energetically unfavourable [119], the physically relevant solution was chosen

by requesting that at least one semi-axis is shorter than the tail length, thereby avoiding

a void at the micelle core. Following this procedure, and in line with previous findings

[107], we confirmed that both the oblate and prolate solutions fit the data well at small

angles, where only the oblate solution avoids a vacuum void at the micelle core. At wide

angles, however, where the experimental curve continuously decays along q, both the

oblate and prolate solutions reveal several minima and maxima in sharp contrast to the

data (Fig. 5.1D). Moreover, a, b, c determined with the oblate/prolate fits disagree with

the values determined using SAXS-driven MD (Table 5.1).
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The disagreement at wide angles may potentially be consequence of several simplifica-

tions: (i) the two-component oblate/prolate model allows for only two independent semi-

axes, while the micelle under the experimental conditions most likely adopts the shape

of a less symmetric, general tri-axial ellipsoid, as suggested by our previous study [298];

(ii) by fitting a single model, shape fluctuations of the micelle in solution are ignored;

(iii) two-component ellipsoid model assumes sharp core/headgroup and headgroup/wa-

ter boundaries, while in reality these boundaries are more disordered and smeared out

over a range of ∼1 nm [298]; (iv) atomic details of both the micelle and the solvent

may have a significant effect on the SAXS curve at q > 2.5 nm−1. In the following, we

disentangle the contribution of these potential sources of disagreement between model

and experiment, with the aim to obtain an intuitive interpretation of the structural

information of the wide-angle data.

5.3.2 Asymmetry

First, to test the influence of the model asymmetry, we dropped the constraint to pro-

late/oblate shapes and instead fitted a two-component model of a general tri-axial ellip-

soid to the experimental curve. The SAXS curve of the two-component tri-axial ellipsoid

was computed following Ref. 337 (SI Methods), and the fits carried out by Powell op-

timization rapidly converged to a well-defined single optimum. The tri-axial ellipsoid

fits the data only slightly better as compared to the prolate/oblate model (Fig. 5.1D

brown). Specifically, the minima and maxima exhibited by the prolate and oblate mod-

els at q > 2.5 nm−1 are less pronounced in the case of a tri-axial ellipsoid reflecting the

reduced symmetry. Nonetheless, the overall agreement to experiment at q > 2.5 nm−1

remains poor, suggesting that asymmetry is not the key to rationalize the wide-angle

data. It is interesting to note, however, that the semi-axes a, b, c of the fitted tri-axial

ellipsoid (i) were quite robust, irrespective of the fitted q-range, and (ii) favourably agree

with the ensemble-refined MD simulations within 0.5 Å(Table 5.1). This finding suggests

that the overall DDM micelle shape is well encoded in the q < 2.5 nm−1 range of the

SAXS curve and may be extracted by fitting a tri-axial two-component model.

5.3.3 Shape fluctuations

Second, to investigate the influence of the shape fluctuations on the SAXS curve, we gen-

eralized the two-component tri-axial ellipsoid model to a fluctuating model by averaging

over a distribution of semi-axes a, b, c. Here, samples of the semi-axes were taken from

snapshots of the multi-replica SAXS-driven MD simulations with 1, 2, 4, or 10 replicas;

as such, the samples of semi-axes are compatible with the experimental conditions and,
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Figure 5.3: SAXS curves from experiment (red), the from a fluctuating two-
component tri-axial ellipsoid with a piecewise constant electron density profile (blue)
and after smoothing the density profile with Gaussian filter (green). The inset shows
an example for a piecewise constant and the smoothed electron density profiles along
the minor micelle axis. The same samples of semi-axes were used as for the calculations
for Fig. 5.2C. For clarity, only curves calculated from sets of semi-axes taken from the
four-replica simulations are shown. Curves calculated with semi-axes from ten-replica

simulations are nearly identical and shown in Fig. 5.8.

given a sufficient number of parallel replicas, reflect physically realistic shape fluctua-

tions. However, including shape fluctuations into the two-component tri-axial model

only marginally improves the agreement to experiment, as compared to a single best-

fitting model (Fig. 5.2C). Namely, although the spurious bumps q > 2.5 nm−1 are partly

smeared out, the calculated curves decay too rapidly with q as compared to experiment.

This finding further confirms that the SAXS curve of DDM micelle is mainly given by

the average micelle shape, whereas shape fluctuations have only the minor impact on the

SAXS curve. Notably, this finding is not trivial because SAXS curves of other disordered

ensembles, such as ensembles of intrinsically disordered proteins (IDPs), could not be

explained by a single average structure [24, 338]. This difference is likely a consequence

of the moderate magnitude the micelle fluctuations as compared to the large fluctuations

carried out by many IDPs. Further, the fact that greatly different distributions of a,

b, c (from a single set up to heterogeneous distributions) lead to nearly identical SAXS

curves up to 6 nm−1 (Fig. 5.2C) implies that micelle fluctuations can not be derived

from a SAXS experiment alone.

5.3.4 Disorder

Third, to investigate the effect of disorder at the core-headgroup and headgroup–water

interfaces, we smeared out the density contrast along the radial direction with a simple

Gaussian filter, providing a more realistic density profile (Fig. 5.3, inset). The SAXS
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Figure 5.4: (A) P (r) functions calculated from the SAXS curves shown in (A) using
the GNOM software [339]. Every 10th error bar is shown, for clarity. P (r) curves
calculated from the SAXS curves of oblate, prolate, or tri-axial fits and from the MD
simulations are shown in Fig. 5.9 (B) To test the reason for discrepancy of P (r) functions
calculated from experimental curve and shape-fluctuating two-component ellipsoids, we
replaced parts of P (r) function of the shape-fluctuating two-component ellipsoids with
the experimental P (r). Replaced r-ranges are shown in legend (units are all in nm).

curve were computed analytically by generalizing the two-component model to a N -

component model, following Ref. 337 (SI Methods). In line with the previous paragraph,

shape fluctuations were included by averaging over semi-axes sampled from frames of

the four-replica SAXS-driven MD simulation. However, upon smearing out the electron

density profile, the agreement with the experimental SAXS curve becomes even worse, as

apparent from an even more rapid decay of the calculated SAXS curve at q > 2.5 nm−1

(Fig. 5.3, green and red). The rapid decay of the SAXS curve of the N -component

model (Fig. 5.3, green) may be rationalized by the loss of density–density correlations

as a consequence a smeared out density.

Taken together, the analysis demonstrates that accounting for shape asymmetry, fluc-

tuations, and disorder may improve the agreement with experiment at wide angles only

in a qualitative manner. Specifically, they largely remove the marked maxima and min-

ima exhibited by the SAXS curve of the two-component oblate/prolate models, which

indicated a spuriously high degree of symmetry and order in the oblate/prolate models

(compare Fig. 5.1D with Fig. 5.3). To explain the wide-angle data quantitatively, we

propose that, in addition, account for atomic details of both the micelle and the solvent

are required, as captured by the MD simulations.

5.3.5 Atomic details

To decipher the role of atomic details on the SAXS curve at wider larger angles, we

calculated the pair-distance distribution function P (r) from the calculated and from

the experimental SAXS curves using the GNOM software [339] (Fig. 5.4A and Fig.



5.3. Results and discussion 90

5.9). The P (r) function is sensitive to density distribution of the micelle and provides

more intuitive, real-space structural information. Evidently, the P (r) function from the

ensemble-refined MD simulations favourably agree with the experiment (Fig. 5.9), as

expected from the agreement of the SAXS curve. In contrast, the P (r) function ob-

tained from the two-component models differ from the experiment, most prominently

at small distances r between 0.9 nm and 3 nm. Namely, the features in the experi-

mental or MD-based P (r) are smeared out by the two-component models, indicating a

lack of structure at short-range, molecular distances (Fig. 5.4A). In addition, the P (r)

from the prolate/oblate fits strongly differ at larger distances from the experimental

P (r), reflecting a too high degree of symmetry as compared to the experiment (Fig.

5.9). To test how the lack of short-range structure propagates into the SAXS curve,

we overwrote the P (r) from the shape-fluctuating two-component model with the ex-

perimental P (r) in different r-intervals, and subsequently back-calculated the SAXS

curve via [340] I(q) =
∫
P (r)

sin(qr)

qr
dr, using the pddffit module of the ATSAS software

(Fig. 5.4B) [220]. Although there is no simple one-by-one relation between specific r-

regions of P (r) with q-regions of I(q), this analysis confirms that the short-range order

(0 nm < r < 3 nm) has a strong effect on the SAXS curve at wider angles (q > 2.5 nm−1).

Remarkebly, by replacing the region r = 0 nm to r = 3 nm of the the shape-fluctuating

two-component model with the experimental P (r), we obtained very good agreement

between experimental and calculated curve, suggesting that the discrepancy between

experimental and SAXS curve calculated from fluctuating two-component ellipsoids is

mainly recorded in the r = 0 nm to r = 3 nm region of the P (r).

5.3.6 Testing the force field accuracy at different q-ranges

To further investigate the structural information in different q-regions, and to test which

part of the q-region of the SAXS curve plays the most important role in overcoming

force-field imperfections during MD simulations, we performed the series of multi-replica

SAXS-driven MD simulations using only specific q-intervals of the experimental curve

as a target (Table 5.2 and Fig. 5.10). Table 5.2 lists the semi-axes of the refined micelles.

The difference between the SAXS curves from experiment and from the refined MD

ensembles were quantified with a non-weighted χ2 measure on a log scale, denoted χ2
ln.

Computed SAXS curves (Fig. 5.10) as well as the calculated semi-axes show that: (i)

applying the 0 nm−1 ≤ q ≤ 3 nm−1 region leads to results that are very close to results

obtained with using the whole experimental curve. If instead even smaller-angle regions

are applied (≤ 2 nm−1 or ≤ 1 nm−1), the agreement with the whole experimental curve

still greatly improve. This finding demonstrates that the micelle shape is mainly encoded
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Table 5.2: Semi-axes calculated from four- and ten-replica SAXS-driven simulations,
using different q-intervals of the experimental curve as target curve. The deviation
between calculated and experimental SAXS curves was quantified by a non-weighted
χ2 on a logarithmic scale defined via χ2

ln = N−1
∑N

i=1 [ln(Ic,i)− ln(Iexp,i)]
2
, where Ic,i

and Iexp,i denote the calculated and experimental SAXS intensities at the data point
i, and N is the number of data points. Each four-replica (ten-replica) simulation was
carried out for at least 100 ns (70 ns) per replica. Errors of a, b, c were computed using
block averaging with 4 ns blocks, and errors were typically smaller than 0.02 nm. For
reference, values from a free MD simulation are: a = 2.80 nm, b = 2.44 nm, c = 1.77 nm

and χ2
ln · 103 = 28.1

4 replicas 10 replicas

q-range a [nm] b [nm] c [nm] χ2
ln · 103 a [nm] b [nm] c [nm] χ2

ln · 103

0 - 6 3.15 2.44 1.63 0.5 3.17 2.42 1.67 0.6

0 - 4 3.17 2.43 1.65 0.8 3.19 2.39 1.68 0.8
0 - 3 3.18 2.40 1.64 1.0 3.22 2.36 1.67 1.1
0 - 2 3.13 2.48 1.61 5.3 3.15 2.43 1.62 4.7
0 - 1 3.17 2.26 1.70 6.3 3.19 2.25 1.72 7.1

0 - 0.5 2.85 2.48 1.73 23.2 2.81 2.47 1.76 28.9

1 - 2 3.09 2.45 1.62 5.3 3.13 2.44 1.62 3.9
2 - 4 3.13 2.40 1.69 1.8 3.05 2.41 1.68 3.0
2 - 3 3.08 2.42 1.68 2.5 3.05 2.43 1.67 4.3
3 - 4 2.96 2.38 1.75 18.5 2.89 2.44 1.73 21.5
3 - 6 2.94 2.41 1.73 24.0 2.93 2.42 1.73 18.9
4 - 6 2.86 2.41 1.78 26.9 2.87 2.42 1.76 27.8

in the 0 nm−1 ≤ q ≤ 3 nm−1 region, as already indicated by fitting two-component tri-

axial ellipsoid (see above). However, the Guinier region alone (≤ 0.5 nm−1) is insufficient

for obtaining good agreement with the experiment; (ii) applying various intervals of

the q > 3 nm−1 range leads only to a minor improvement compared to the free MD

simulation. Taken together, these findings suggests that the MD force field already

provides accurate description of the short-range order mainly encoded by the q > 3 nm−1

range, hence adding experimental data hardly improves the simulation. However, the

force field alone has problems with defining the overall shape, as encoded by the q <

3 nm−1; hence experimental data in this range greatly improves the simulation.

5.3.7 Conclusions

To conclude, we obtained an heterogeneous atomic ensemble of a DDM detergent micelle

by coupling a set of parallel-replica MD simulations to an experimental SAXS curve.

Because the multi-replica ensemble refinement method applies only a minimal bias, as

requested by Jaynes’ maximum entropy principle, the shape fluctuations of the free sim-

ulations were maintained. We found that scattering data at small angles (q < 3 nm−1)

may guide the simulation into quantitative agreement with experiment, whereas scatter-

ing data at wider angles is matched already by free simulations with reasonable accuracy.
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This suggests that the force field is capable of reproducing the short-range structure of

the micelle at atomic and molecular scales, but experimental data is needed to obtain

the correct overall shape. According to the refined ensemble, the DDM micelle at 15◦C

adopts on average the shape of a general tri-axial ellipsoid. The major and middle

semi-axes fluctuate by ∼20% and the minor semi-axis by 5–10%.

The refined atomic ensemble provided a reference to test whether the fitting of simplified

analytic models to the data may provide physically correct micellar shapes. Remarkably,

by fitting a two-component general tri-axial ellipsoid to the data, we obtained a micellar

shape in quantitative agreement with the multi-replica ensemble refinement, suggesting

that (i) the two-component tri-axial model was not overfitted, and (ii) that the SAXS

curve up to q ≈ 2.5 nm−1, in the case of DDM micelles, contains sufficient information for

defining three independent semi-axis as well as the headgroup thickness. Upon restricting

the fit to prolate or oblate shapes, however, we obtained different semi-axes, and the long-

range structure quantified by the P (r) function disagreed with the experiment. Further,

by increasing the complexity of the analytic micelle model step by step, we analyzed the

role of model asymmetry, shape fluctuations, and disorder on the SAXS curve of the

micelle. We found that these features partly improve the agreement with the experiment

at wider angles, but, even when combined, they are insufficient for obtaining quantitative

agreement. Taken together, atomic and molecular details, as naturally included in the

MD simulation, are required to quantitatively explain the SAXS curve over the entire

q-range.
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5.4 Supplementary material

5.4.1 Methods

SAXS experiment The SAXS curve of the DDM micelle was taken from a recent

study [123]. Details of sample preparation and data collection are provided in Ref. 123.

For the purpose of this work, the experimental SAXS curve was smoothed using the

default options of GNOM software [339].

SAXS curves for tri-axial ellipsoid models Detergent micelles have previously

been modeled as two-component ellipsoids of revolution, i.e. ellipsoids with two den-

sity contrasts for tails and headgroups, and with only two independent semi-axes (pro-

late/oblate ellipsoids) [107]. These calculations can be generalised to a general tri-axial

ellipsoid, and/or to models composed of N instead of two concentric shells. Here, the N

shells are constructed by superimposing N ellipsoids. Each of the N ellipsoids is defined

by three semi-axes ai, bi and ci, the volume Vi =
4

3
πaibici, and by the solvent-subtracted

electron density ρi, where i = 1, . . . , N . The semi-axes are denoted in decreasing order,

for instance a1 > a2 > . . . > aN . Following the Eqs. 55, 57, and 62 of Ref. 337, the

scattering intensity of the N -component tri-axial ellipsoid is given by:

I(q, a1, . . . , aN , b1, . . . , bN , c1, . . . , cN ) =
2

π

π/2∫
0

π/2∫
0

F 2
3 (q, r1, . . . , rN ) sinα dα dβ (5.1)

where

ri(ai, bi, ci, α, β) =
[
(a2
i sin2 β + b2i cos2 β) sin2 α+ c2

i cos2 α
]1/2

. (5.2)

Here,

F3(q, r1, . . . , rN ) = ρ1V1F1(q, r1) +

i=N∑
i=2

(ρi − ρi−1)ViF1(q, ri) (5.3)

is the scattering amplitude of an N -shell ellipsoid, and

F1(q, ri) =
3 [sin(qri)− qri cos(qri)]

(qri)3
. (5.4)

For the two-component tri-axial ellipsoid (with only two shells), Eq. 5.3 simplifies to

F̃3 = ρ1V1F1[q, r(a+ t, b+ t, c+ t, α, β)] + (ρ2 − ρ1)V2F1[q, r(a, b, c, α, β)], (5.5)

Here, the hydrophobic core is described as a tri-axial ellipsoid with semi-axes a, b,

c (Fig. 5.1B, purple region) with electron density ρcore. The headgroup region has a

constant thickness t along the three axes (Fig. 5.1B, yellow region) and electron density
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ρhg. Accordingly, the parameters in Eq. 5.5 are given by ρ1 = ρhg−ρsol, ρ2 = ρcore−ρsol,

V1 =
4

3
π(a+ t)(b+ t)(c+ t), and V2 =

4

3
πabc. We validated numerically and analytically

that the mathematical expressions shown above reduce to the expression for a two-

component ellipsoid of revolution (oblate/prolate) used by Lipfert et al [107].

The computed scattering intensity is sensitive to the electron densities, suggesting

that reasonably accurate electron density estimates are required. For the density of

the hydrophobic core and the headgroup region at the temperature of 15◦C we used

ρcore = 279.8 e nm−3 and ρhg = 520.5 e nm−3. These values were determined taking into

the account that: (i) electron densities of the core and headgroup region at 25◦C are

277 e nm−3 and 520 e nm−3, respectively [107]; (ii) the density of the DDM detergent at

15◦C is increased by 0.56% compared to 25◦C [298]; (iii) the density of the alkyl tails at

15◦C is increased by 1.02% compared to 25◦C, as estimated by the temperature depen-

dence of the density of alkanes with similar chain length [341]. The solvent density was

set to ρsol = 336.7 e nm−3 to match the electron density of the 150 mM NaCl aqueous

solution at the temperature of 15◦C.

The thickness of the headgroup region, t, was determined once to 0.55 nm by fitting the

general tri-axial ellipsoid to the data. This value is close to the value of t = 0.6 nm, as

previously determined by fitting a ellipsoid of revolution (prolate/oblate) at the temper-

ature of 25◦C [107]. It was shown previously that modulating t in the range of 0.6 nm

to 0.63 nm or using different headgroup thicknesses hardly influence the fits to the ex-

perimental data in the case of two-axial ellipsoids [107]. Likewise, we found here that

small modulations of t along the three axes hardly influences the fits in the case of a

general tri-axial ellipsoid and hardly influences the results from modeling shape fluc-

tuation. Therefore, in all follow-up calculations with the ellipsoid model, the value of

t = 0.55 nm was used.

The smeared out electron density was modeled using an N -component tri-axial ellip-

soid, where N = 200 was used. The density profiles along the three axes were obtained

by convoluting the piecewise constant density (corresponding to a two-component ellip-

soid) with a Gaussian filter with σ = 0.2 nm (inset in Fig. 5.3 A). Using this filter, the

smoothed density profiles were qualitatively similar to the density profiles determined

from MD simulations [298]. The largest semi-axes of the N -component tri-axial ellipsoid

was chosen such that Gaussian tails up to 3σ of the smoothed density were taken into

account.
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5.4.1.1 MD simulations and SAXS calculations

MD setup and simulation parameters Unbiased, free simulations were carried

out similar to previous work [298]. In short, detergent, water and ion interactions

were modeled using CHARMM36 lipid force-field [317] and CHARMM-modified TIP3P

water [294]. Free simulations were carried out with Gromacs 2018.3 [288]. If not stated

otherwise, the micelle was solvated in a 150 mM NaCl aqueous solution [236]. Likewise,

a 150 mM NaCl solution was simulated as pure-solvent system. The temperature was

controlled at 15◦C to match the experimental conditions using velocity rescaling [291]

(τ = 1 ps). The pressure was controlled at 1 bar using the Berendsen barostat [159] (τ =

5 ps). Electrostatic interactions were calculated using the particle-mesh Ewald method

[154, 155]. Dispersive interactions and short-range repulsion were described together by

a Lennard-Jones potential with a cutoff at 1.2 nm.. Length of the free simulations, with

and without added salt were 500 ns. The convergence of the free simulation ensemble

was validated by comparing SAXS curves computed from 50-nanosecond blocks of the

trajectory. The first 50 ns of all free simulations were removed for equilibration.

Explicit-solvent SAXS curve predictions SAXS curves were calculated using

explicit-solvent SAXS predictions described previously [90]. Explicit solvent atoms con-

tributing to the SAXS curve were defined by a spatial envelope. Here, the envelope was

constructed at a distance of at least 1 nm from all detergent atoms in all frames of an

equilibrium simulation. Because the micelle heavily fluctuates, this procedure led to the

distance of ∼2 nm between micelle and envelope in most frames. The same envelope

was used for all SAXS-driven simulations. The SAXS curve was calculated using the

positions of atoms inside the envelope each 10 ps. Scattering amplitudes were computed

using 1200 q-vectors per q-point, which were distributed by the spiral method. Because

the TIP3P solvent density differs from the experimental value, we corrected the sol-

vent density to 335.7 e nm−3, corresponding to a 150mM NaCl solution, following the

procedure described previously [90].

SAXS-driven MD simulations The initial configurations of SAXS-driven simula-

tions was taken from free simulations. In the case of parallel-replica simulations, frames

for the replicas were taken from free MD snapshots at 5-nanosecond intervals. Apart

from using 150 mM NaCl aqueous solution instead of pure-water solution, single-replica

SAXS-driven simulations [91] were performed as described previously [298]. Details of

the recently developed multi-replica SAXS-driven simulations, following the principle of

maximum entropy, are described in Ref. 93. In all single-replica and parallel-replica sim-

ulations, the temperature was controlled at 15◦C using a stochastic dynamics integrator
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(τ = 0.2 ps). To validate that the refined ensembles are reproducible, we ran multiple

independent simulations for each setup of 1, 2, 4, 10 or 20 replicas. The number of inde-

pendent runs, the applied force constant used to couple the simulation to the data, and

total simulation times are listed in Table 5.3. Further, we excluded that the memory

time τ used for on-the-fly averaging of the SAXS curve [91] has a significant effect on

the refined ensembles. We found that the choice for τ between 100 ps and 500 ps did not

influence the calculated SAXS curve or semi-axes. Here, for all the production runs, we

used τ = 200 ps. During the first 5 ns of SAXS-driven simulations, the SAXS-derived

forces were gradually switched on, and the first 8 ns of all SAXS-driven simulations

were omitted from the analysis for equilibration. In contrast to previous work [298], the

overall scale f and a constant offset c of the experimental curve were marginalized out

on-the-fly during the SAXS-driven simulations. As shown previously [92], marginalizing

out f and c (in a Bayesian sense) is equivalent to adjusting f and c at each step to the

value that leads to the smallest biasing energy. Without adjusting the constant c, we

did not achieve good agreement between calculated and experimental curve at wider an-

gles, possibly owning to a small buffer subtraction uncertainty. Critically, the adjusted

value of f and c values were nearly identical among all SAXS-driven MD simulations,

suggesting that f and c were not overfitted. After the SAXS-driven simulations had fin-

ished, we computed the SAXS curve from the entire refined ensemble. To compare this

ensemble-averaged calculated curve with the experimental curve, a constant set of f and

c was applied throughout this study (f = 7.62433×107, c = −22883e2), motivated from

the fact that the adjusted f and c were highly similar in all SAXS-driven simulations.

Table 5.3: Number of independent simulations Nruns, force constant kc and simulation
time per replica Tsim (after removing 8 ns for equlibration) for a runs with 1, 2, 4 10

and 20 replicas

# of replicas kc Nruns Tsim

1 12 20 450

2 5 8 460

4 3 4 290

10 1 and 0.5 6 340

20 0.5 4 190

Calculations of semi-axes and shape averages. In our previous work, semi-axes of

the hydrophobic core (a, b, c) were calculated from the density profiles of the hydrophobic

core [298]. This procedure requires averaging over a few nanoseconds for obtaining

reasonable estimates of a, b, c. However, for obtaining distributions along a, b, c as

derived here, instantaneous values for a, b, c are required. Hence, we estimated the

instantaneous a, b, c from the instantaneous moments of inertia (MOI) of the micelle,

while assuming an ellipsoidal shape. We found that a, b, c calculated from the MOI are
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systematically larger by ∼ 0.2 nm as compared to the values calculated from the density

profiles reported previously [298].

The MOI of a tri-axial ellipsoid of mass m and semi-axes a, b and c are given as:

Ia =
m

5
(b2 + c2)

Ib =
m

5
(a2 + c2)

Ic =
m

5
(a2 + b2)

(5.6)

From the MOI, semi-axes of the tri-axial ellipsoid can be calculated as:

a =

(
5

2m
(Ib + Ic − Ia)

)1/2

b =

(
5

2m
(Ia + Ic − Ib)

)1/2

c =

(
5

2m
(Ia + Ib − Ic)

)1/2

(5.7)

To compute semi-axes from MD simulations, we first computed the three MOI of the

micelle core every 10 ps using the Gromacs tool gmx principal. Assuming that the

density of the core can be approximated by the ellipsoid of uniform density, the semi-

axes were computed using Eqs. 5.7, and the distributions were computed from the refined

ensemble.

Modeling shape fluctuations. For modeling shape fluctuations, samples of a, b,

c, were drawn from the respective distributions. Here, we drew the samples from the

one-dimensional distributions of a, b, c, thereby neglecting correlations between the semi-

axes. To ensure that all semi-axes samples model a micelle with a constant volume, we

normalized each drawn set (a, b, c) via

ãi = ai

(
〈V core〉
V core
i

)1/3

b̃i = bi

(
〈V core〉
V core
i

)1/3

c̃i = ci

(
〈V core〉
V core
i

)1/3

(5.8)

where V core
i = 4πabc/3 is the volume of the ellipsoid with semi-axes a, b, c. The mean

volume was taken as 〈V core〉 = 4π 〈a〉 〈b〉 〈c〉 /3, where 〈·〉 denotes the average over the

respective refined ensemble. 〈V core〉 differed only marginally from 4π 〈abc〉 /3. Subse-

quently, the SAXS curve was computed using the analytic model of the tri-axial ellipsoid
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Figure 5.5: SAXS curves computed from the two-component tri-axial model. The
density profiles were taken as piecewise constant (green line) or smoothed with a Gaus-
sian filter (yellow curve). Samples of normalized and not normalised sets of semi-axes

are taken from a 100 ns 4-replica simulation.

using the normalized set of semi-axes (ã, b̃, c̃), and the SAXS curves were averaged. No-

tably, the correction of the semi-axes via Eqs. 5.8 had only a marginal effect on the SAXS

curves (Fig. 5.5). Errors were computed as 1SEM using only independent multi-replica

simulations as independent data points, providing a conservative error estimate.

Notes on force field imperfections During all ten-replica simulations, the micelle

in one of the replicas adopted an unexpected horseshoe shape, leading to slightly larger

value for the large semi-axes a semi-axis (Fig. 5.6). Consistent with this observation, the

micelle in two of 20 replicas adopted a horseshoe shape during twenty-replica simulations.

With fewer replicas, no such horseshoe shapes were observed. Although we can not

strictly exclude that such shapes occasionally exist under experimental conditions, we

speculated that either (i) unknown systematic errors in the data, (ii) overly restrained

ensembles, or (iii) force field imperfections may be responsible for such occasional shapes.

To shed more light on these observation, additional test simulations were carried out.

First, motivated by the fact that the experimental curve exhibits some uncertainty

around the pronounced minimum (q ≈ 1 nm−1), we performed two addition sets of

refinement simulations using target SAXS curves, whose error was increased by factors

of 3 or 5 in the q-region between 0.85 nm−1 and 1.25 nm−1, leading to strongly reduced

weights in this q-region. However, also in these additional simulations, the horseshoe

shapes were reproduced in one out of ten replicas, suggesting that the relatively high

uncertainty at the q ≈ 1 nm−1 region does not cause the horseshoe shapes. Second,

we performed series of test simulations with weaker coupling to the experimental curve,
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by reducing the force constant (kc). Only with very low kc = 0.1, the horseshoe shape

vanished, but now the agreement to the experimental data was significantly reduced.

Taken together, it seems unlikely that systematic experimental errors induced the horse-

shoe shapes, or that the simulations were overly restrained to the data. Instead, we

hypothesise that, with increasing number of replicas, and hence an increasing number

of degrees of the freedom, ensemble refinement becomes more sensitive to force-field

imperfections. Hence, ensemble refinement, as conducted here, is also a starting point

for future developments of soft matter force fields.

To exclude that the occasional horseshoe shape influences the conclusions of this manuscript,

we report results from four-replica simulation, in which no horseshoe shapes were ob-

served, along with results from ten-replica simulations. The distributions of a, b, c were

similar in four- and ten-replica simulations (except for contributions from the horseshoe-

shaped micelles, Fig. 5.6), and the mean values of a, b, c are nearly identical. This

suggests that the key conclusions were not affected by the force field imperfections.

Table 5.4: Average semi-axes calculated from multi-replica SAXS-driven MD simula-
tions (top rows) and from fitting two-component ellipsoid models (bottom rows), here
assuming pure-water solvent. Errors of a, b, c were computed using block averaging
with 4 ns blocks or estimated as 1 SEM of averages between independent runs, and

errors were typically smaller than 0.03 nm.

All-atom MD
# of replicas

a [nm] b [nm] c [nm] t [nm]

1 3.30 2.30 1.66
4 3.19 2.38 1.68
8 3.19 2.43 1.66
24 3.19 2.43 1.69

Two-component model

prolate (unphysical) 3.40 1.99 1.99 0.55
oblate 2.85 2.85 1.60 0.53

tri-axial 3.22 2.48 1.66 0.53

Note on solvent simulations All SAXS-driven simulations were conducted in 150 mM

NaCl solution, while the SAXS experiment was performed in pure water solvent. To ex-

clude that the details of the solvent influence the conclusions of this study, we repeated

the key simulations with the DDM micelle in pure-water solvent. In addition, to exclude

that the solvent density affects the calculations with the two-component model, we re-

peated the fits with the two-component model assuming a solvent density of 334.7 e nm−3

to match the electron density of water at 15◦C [123]. The fitted parameters, as shown

in Table 5.4, are nearly identical to the results found with the 150 mM NaCl solution

(Table 5.1).
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5.4.2 Supplementary figures
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Figure 5.6: Distributions of semi-axes in simulations with 10 or 20 replicas, see legend.
During these simulations, the micelle adopted in one of ten replicas a horseshoe shape.
See SI Text for further discussion. Further, the agreement among the ten- and twenty-
replica simulations suggests that 10 replica are sufficient to achieve a minimally biased

ensemble.
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Figure 5.7: Distributions of semi-axes, calculated from a four-replica SAXS driven
simulation (yellow) or free a MD simulation (red). Evidently, the three axes are slightly
more similar in free as compared to SAXS-driven simulations, corresponding to a

slightly too spherical shape [298].
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Figure 5.8: (A) SAXS curve computed as an average of sets of two-component tri-
axial ellipsoids (blue), or of N -component tri-axial ellipsoids with smoothed electron
densities around the headgroup region (green). Both models exhibit poor agreement
with experimental data (red) at wider angles, suggesting that modeling of atomic details
is mandatory at wide angles. Here, the sets of semi-axes were taken from ten-replica
MD simulations. Curves calculated with semi-axes from four-replica simulations are

nearly identical and shown in Fig. 5.3.
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Figure 5.9: Pair-distance distribution functions P (r) with the representative errors,
obtained from the experimental SAXS curve, from MD-derived SAXS curves, or from
curves of fitted oblate, prolate and tri-axial models (see legend for color code). The
P (r) curves were computed using GNOM [339] with default settings. The parameter
for the maximum diameter (Dmax) of the particle was taken from the MD frames
or from the fitted structural models. P (r) from experiment and from four-replica
MD agree favorably. The small deviations between experiment and ten-replica MD
at r ∼ 4.5 nm is a consequence of the horseshoe-shaped micelle in one of ten replicas,
see SI Text for discussion and Fig. 5.6. P (r) from the fitted tri-axial ellipsoid give a
reasonable agreement to experiment, while P (r) from prolate/oblate fits reveals major

discrepancies to the experiment.
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Figure 5.10: SAXS curves computed from four-replica SAXS-driven simulations (A
and B) and ten-replica SAXS-driven simulations (C and D), using only q-intervals of
the experimental curve as a target. The applied q-ranges are indicated in the legends.

Representative symbols with the same colors codes are shown to guide the eye.
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6.1 Abstract

In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become pop-

ular methods to characterize the structure of membrane proteins, solubilized by either

detergents or nanodiscs. SANS studies of protein-detergent complexes usually require

deuterium-labeled proteins or detergents, which in turn often lead to problems in their

expression or purification. Here, we report an approach whose novelty is the combined

analysis of SAXS and SANS data from an unlabeled membrane protein complex in so-

lution in two complementary ways. First, an explicit atomic analysis, including both

protein and detergent molecules, using the program WAXSiS, which has been adapted

to predict SANS data. Second, the use of MONSA which allows one to discriminate

between detergent head- and tail-groups in an ab initio approach. Our approach is read-

ily applicable to any detergent-solubilized protein and provides more detailed structural

information on proteindetergent complexes from unlabeled samples than SAXS or SANS

alone.

6.2 Introduction

Integral membrane proteins form the entry and exit routes for nutrients, metabolic

waste and drugs in biological cells, and they are involved in key steps of signaling and

energy transduction. They thus play a central role in a variety of biological processes

with exceptional medical relevance [343]. Structural information on membrane proteins

has traditionally been obtained by X-ray crystallography aided by detergent molecules

that replace the lipids during the purification and crystallization processes. Detergents

stabilize membrane proteins by shielding the hydrophobic domains from the aqueous

environment [344]. However, the translocation cycle underpinning membrane trans-

porter activity requires substantial conformational variability and, in many cases, the

static structural insight achieved by X-ray crystallography has proven insufficient to cap-

ture the essential functional information on these systems [345]. For this reason, there is

considerable interest in the application of small angle scattering (SAS) methods to struc-

turally characterize membrane proteins. Recently, efforts have been dedicated to develop

combined in-solution small-angle X-ray/neutron scattering (SAXS/SANS) approaches to

investigate membrane proteins stabilized by detergents or nanodiscs [346–348]. Further

developments in these areas have faced important obstacles. Crucially, the electron den-

sity of the detergent shell encompassing the hydrophobic domains of membrane proteins

differs from the electron density of the protein. Hence, it is difficult to obtain a model

of a protein-detergent complex using ab initio SAXS-based methods, which typically as-

sume a uniform electron density across the entire complex. To circumvent this problem,
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SANS experiments making use of contrast variation either by using deuterium-labeled

proteins and/or detergent molecules have been employed. However, difficulties are often

encountered in the expression and purification of deuterated proteins, as well as the

limited availability of deuterated detergents [346]. To overcome these issues, we report a

new methodology that combines SAXS and SANS from unlabeled (i.e., nondeuterated)

proteins and/or detergent samples to obtain detailed structural information on protein-

detergent complexes. This approach is readily applicable to any detergent-solubilized

protein.

6.3 Results and discussion

We used the ammonium transporter AmtB from Escherichia coli, a structurally well-

studied member of the ubiquitous and medically important Amt/rhesus family of pro-

teins, to develop and validate our methodology [349]. To stabilize AmtB, the detergent

n-dodecyl-β-D-maltosid (DDM) was used throughout the purification process (Support-

ing Information). Size exclusion chromatography in-line with multiangle light scattering

(SEC-MALS) analysis showed that the AmtB-detergent complex comprises 285 ± 12

DDM molecules (Figure 6.1 and Table 6.1). Independently conducted analytical ultra-

centrifugation (AUC) experiments revealed a detergent shell of 321± 1 DDM molecules

(Figure 6.2 and Table 6.1). Taken together, these independent findings indicate that the

detergent corona around AmtB is likely to include between 260 and 320 DDM molecules.

We next exploited atomistic molecular dynamics (MD) simulations of the AmtB-DDM

complex and scored the models against SAXS data to resolve the experimental uncer-

tainty regarding the size of the detergent corona. AmtB in the physiologically functional

trimeric form (PDB ID: 1U7G) [350]. was simulated surrounded by DDM coronas of

260, 280, 300, 320, 340, and 360 molecules. A representative model obtained for a de-

tergent corona containing 320 molecules of DDM is shown in Figure 6.1. During the

equilibration phase, the DDM molecules adopted the typical toroidal shape reported

for other protein-detergent complexes [71, 270], with their hydrophilic heads facing the

aqueous solution and their hydrophobic tails oriented toward the inside of the complex

(Figure 6.1). As previously shown, the detergent corona further adapted to the shape

of the transmembrane surface of the protein [270]. Our simulations indicate that the

proteindetergent complexes are stable, and although some reorientation of DDM was

observed, in particular during the first stages of the simulations, no dissociation of de-

tergent molecules from the protein was detected after 20 ns of simulation time. We

next computed SAS curves for the simulated complexes and compared them with ex-

perimental SAS measurements (Figures 6.2 and 6.3). It has previously been shown that
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Figure 6.1: Atomistic model of the AmtB-DDM complex containing 320 DDM
molecules. The model displays an equilibrated complex. In the trimer, each AmtB
monomer is shown in a different shade of green, and the DDM carbon and oxygen
atoms are shown in gray and red, respectively. The upper panel shows the complex
seen from the top; the lower panel is a side-view of the complex where the DDM
molecules outside of the box highlighted in the top panel are omitted, to illustrate the

interior of the micelle.

single structures extracted from MD trajectories do not fully capture the characteris-

tics of the solution ensemble [71]. We therefore calculated the predicted SAXS curves

from conformational ensembles comprising 9000 individual configurations as observed

in 70 − 160 ns simulations of each differently sized complex. The SAXS curves were

obtained using explicit-solvent calculations as implemented in the WAXSiS method,

thereby taking into account accurate atomic models for both the hydration layer and

the excluded solvent, and consequently avoiding any solvent-related fitting parameters

(Figure 6.2) [90, 226].

SAS experiments are very demanding in terms of requirements of sample quality [73,

351], therefore, before recording SAS data, we ascertained that our samples were monodis-

perse and that AmtB was pure, stable, and critically active in detergent (Supporting

Information, Figures 6.2 - 6.3). We subsequently collected experimental SAXS data

following size-exclusion chromatography of the AmtBDDM complex. The radius of gy-

ration (Rg) was found to be constant across the elution peak (Figure 6.1), indicating

the monodispersity of the complex and good data quality. Importantly, the scattering

curves predicted for the models containing 260, 280, 300, 340, and 360 DDM molecules
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Figure 6.2: (A) Comparison of the experimental (symbols) and computed (red line)
SAXS curves for the AmtB-DDM complex containing between 260 and 360 DDM
molecules. For all plots, the maximum and minimum values for the y-axis are 1011
and 105. (B) Residual error plot expressed as the experimental minus computed scat-
tering intensity. For all plots, the maximum and minimum values for the y-axis are 40

and 40. Q = 4πsin(θ)/λ, where 2θ is the scattering angle.

deviate slightly from the experimental data (Figures 6.2 and 6.4). By contrast, the curve

computed for the MD model containing 320 DDM molecules was nearly indistinguish-

able from the experimental SAXS data (Figure 6.2 and 6.4). Furthermore, the values

for Rg obtained by the Guinier approximation from the experimental data and from for

the MD model containing 320 DDM molecules were in quantitative agreement (Table

6.3 and Figure 6.9). This suggests that the overall dimension of the simulated protein-

detergent complex containing 320 molecules of DDM is identical to that in solution. It

is important to note that the overall information content of SAXS is relatively low, and

thus agreement between experimental and back-calculated curves may be insufficient to

serve as unambiguous evidence for a structural model [352]. Specifically, in the context

of a proteindetergent complex, SAXS data reports on the overall shape of the complex,

whereas they do not provide independent information on the individual contributions

from the protein and the detergent corona. Therefore, we employed SANS together with

contrast variation to more firmly validate our computational model.

We collected SANS data at four contrast points (0%, 22%, 42% and 60% (v/v) D2O)

to differentiate between the individual components of the proteindetergent complex.

To ensure that the samples were stable over the course of the SANS experiment, the



6.3. Results and discussion 108

Figure 6.3: Comparison of the experimental (symbols) and computed (red line)
SAXS/SANS curves for the model containing 320 DDM molecules. Residual error plot
expressed as the experimental minus computed scattering intensity. The maximum and

minimum values for the y-axis are 40 and 40, respectively.

hydrodynamic behavior of the proteins were analyzed before and after the SANS mea-

surements by analytical size exclusion chromatography. No differences were observed in

the elution profile, confirming the stability of the protein during the SANS experiment

(Figure 6.10). To ascertain the reproducibility and the quality of our measurements,

two independent sets of SANS data were acquired, using two batches of AmtB purified

independently. The two data sets were found to be identical within the limits of the

observed experimental noise (Figure 6.11). It has previously been shown that in the ab-

sence of D2O in the buffer, neutron scattering from DDM micelles originates primarily

from the hydrophilic head groups [353]. We calculated (Supporting Information) the

overall contrast match point of DDM to be at 22% D2O, while the contrast match point

for typical proteins is around 42% D2O [346, 354]. Consequently, the scattering con-

tribution is dominated by the protein and the DDM hydrophilic headgroup in a buffer

containing 0% D2O, by the protein at 22% D2O and by the complete detergent corona at

42% D2O. To compare the experimental neutron scattering data with the MD-generated

models, SANS curves were calculated using WAXSiS for 9000 individual configurations

observed during 70− 160 ns MD trajectories of each of the complexes. To this end, we

extended the WAXSiS method, originally developed for SAXS predictions, to also allow

SANS predictions with explicit-solvent models at various D2O concentrations (Support-

ing Information). The experimental curves were fitted to the calculated curves following

Ifit = f · Iexp + c, thereby accounting for scattering contributions from the incoher-

ent background with the fitting parameter c. However, neither the hydration layer nor
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Figure 6.4: (A) MONSA multiphase modeling using experimental SAXS and SANS
data. The phase corresponding to the protein is represented in red mesh, while the
hydrophilic and hydrophobic detergent densities are represented in green and blue,
respectively. (B) Molecular-dynamics generated model of the detergent corona (320

molecules) surrounding AmtB.

the excluded volume were adjusted. Congruent with the analysis of the SAXS data, all

SANS data sets were best fitted by the curves calculated for the model incorporating 320

molecules of DDM (Figures 6.3 and 6.12). Hence, the SANS and SAXS data consistently

validate our MD model with 320 DDM molecules. Second, the excellent agreement we

observe between the experimental and calculated SAXS curves shows that the overall

organization of the complex is accurately reflected by the atomistic model. Finally, the

good agreement between experimental and computed SANS curves indicates that the

MD model describes accurately the hydrophobic and hydrophilic phase of the detergent

ring as well as the position of AmtB inside the corona.

Importantly, the crystal structure of AmtB was used to produce our MD trajectories,

which precludes the possibility of applying this combined MD/SAXS/SANS approach

to membrane proteins of unknown structure. We therefore applied, in the final step, an

independent ”MD-free” approach to obtain a full ab initio model that captures detailed

structural information on the complex without using the crystal structure of AmtB. To

achieve this, we merged our complete SAXS and SANS data and conducted a multiphase

volumetric analysis of the complex using MONSA [355, 356] (Figure 6.4). Importantly,

we introduced two separate phases to describe the head and tail groups of the DDM

detergent corona. Assuming the volume of a DDM molecule to be 690 Å3 (350 Å3 and

340 Å3 for the head and the tail, respectively),(4) we imposed a volume of 112000 Å3

and 108800 Å3 for the hydrophilic and hydrophobic phases of the 320 DDM molecules.

The volume of AmtB (166864,Å3) was calculated based on its amino acid sequence alone

(Supporting Information). Moreover, since the trimeric nature of AmtB in solution was
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confirmed by our SEC-MALS and AUC data (Figures 6.1 and 6.2 and Table 6.2), we

imposed a P3 symmetry on the complex. Ten MONSA runs (Figure 6.13) were performed

yielding similar ab initio envelopes for AmtB. A representative MONSA model is shown

in Figure 6.4, which faithfully reflects both the size and shape of the MD-generated

model. The protein envelope is a good representation of the crystallographic structure

of AmtB and is, furthermore, confined inside the detergent corona. Importantly, the

joint use of both SAXS and multiple SANS data sets allowed us to distinguish the head-

and tail-groups of the detergent corona and place them correctly with respect to the

protein surface and solvent. Such detailed insight is usually not achieved with ab initio

models unless additional contact restraints are applied [357]: the detergent ring fits

the contours of the protein and the positions of the two detergent phases (head- and

tail-groups) are particularly clear. The hydrophobic phase is strictly contained between

AmtB and the hydrophilic ring, with only the tails of DDM being in contact with the

hydrophobic surface of the transmembrane domain. Hence, without using deuterated

protein or detergent, and without information about the 3D structure of AmtB, the

combination of SAXS and SANS data capture the essential structural details contained

in membraneprotein detergent complexes in solution.

6.4 Conclusions

In summary, there is considerable interest in developing SAS methodology further to

allow routine investigation of membrane proteins. We have adapted WAXSiS to account

for SANS data and therefore open up this software package for future projects including

both types of scattering data. Using our methodology, based upon a combination of

SAXS/SANS measurements and MD simulations, we have been able to propose an

atomic model of a protein-detergent complex. Our integrative approach demonstrates

that combining SAXS, SANS, and iterative simulations provides much more detailed

structural information than each of the methods alone.

It is widely recognized that cryo-electron microscopy (cryo-EM) will revolutionize the

structural analysis of membrane proteins in the near future [358, 359]. It is our be-

lief that a hybrid approach, combining in solution SAS techniques, in silico modeling,

and cryo-EM will allow for better tracking and description of conformational changes

of membrane proteins in solution, induced by ligand or cofactor binding. In this con-

text, it was important to account accurately for the bound detergent molecules, which

is greatly improved by combining SAXS and SANS data at various contrasts. Second,

our multiphase analysis, which merges SAXS and SANS data, without using deuter-

ated protein or detergent, allowed us to obtain unprecedented structural information
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on the phase density of the detergent, in particular to distinguish head- and tail-groups

in the assembled membrane proteindetergent complexes. This is particularly relevant

as deuterated media/detergents are often expensive and/or toxic for bacteria, leading

to decreased protein yields [360]. Crucially, the multiphase analysis does not require

information on the 3D structure of the protein, which opens up the possibility of apply-

ing this methodology to a wide range of important membrane proteins that have so far

remained inaccessible to high resolution structural analysis. While SAS has become a

popular technique among structural biologists, combinations of SANS, SAXS and MD

simulations have remained underexploited by the community. In this context, our work

represents a significant advancement in data acquisition, model validation, development

of new software, and multiphase volumetric analysis to firmly establish SAS technology

as a standard method for membrane protein structural biology.

Acknowledgments G.D.M. and A.J. were supported by a Ph.D. and a Chancellors

Fellowship from Strathclyde University, respectively, G.T. and U.Z. acknowledge fund-

ing from the Scottish Universities’ Physics Alliance (SUPA). P.A.H. acknowledges the

support of the Natural Environment Research Council (NE/M001415/1) and A.J. the

support of Tenovus Scotland (Project S17-07). M.T.I., F.M.S., and J.S.H. acknowledge

support by the Deutsche Forschungsgemeinschaft (HU 1971-1/1, HU 1971-3/1, HU 1971-

4/1). We thank the ILL Block Allocation Group (BAG) system for SANS beamtime

at D22 and Dr A. Martel for help with the setup of the instrument. We acknowledge

Diamond Light Source for time on Beamline B21. We thanks Dr. P. Soule (NanoTemper

Technologies GmbH) and Dr. M. Tully (DIAMOND, U.K.) for help with the microscale

thermophoresis experiments and SEC-SAXS data acquisition, respectively.

6.5 Supplementary material

Protein purification and stability AmtB(His6), cloned into the pET22b vector

[361], was overproduced and purified as described previously [361] except 0.03% (0.58 mM)

of n-dodecyl-β-D-maltoside (DDM) was use instead of 6 mM N, N -dimethyldodecylamine-

N-oxide (LDAO) in the final Size Exclusion Chromatography (SEC) buffer (Tris/HCl 50mM,

pH 7.8, NaCl 100 mM, 0.58 mM DDM). AmtB was kept in SEC buffer at 4◦C for sub-

sequent characterisation. AmtB stability was assessed before and after each SAS ex-

periment by SEC using a Superdex 200 10/300 (Ge Healthcare) gel filtration column

(Figure 6.10).
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Multiangle light scattering (SEC-MALS) analysis SEC-MALS analysis of the

AmtB-DDM complex was carried out using Superdex 200 10/300 column (Ge Health-

care) attached on an Agilent 1100 HPLC system. 70µl of AmtB at 75µM in SEC

buffer was injected at a flow rate of 0.5 ml/min. Light scattering, refraction index and

absorbance at 280 nm were measured using a multi-angle light scattering mini DAWN

TREOS detector (Wyatt Technology), a refractometer Optilab T-rEX detector (Wy-

att Technology) and a Jasco UV-2077 Plus UV/vis spectrophotometer respectively. We

used the ASTRA software package version 5.3.2.10 (Wyatt Technologies) to import the

signals from the three detectors and analysed the data according to Slotboom et al.

(2008) [362].

Analytical ultracentrifugation (AUC) AmtB at 10, 22 and 87µM was submitted

to sedimentation velocity using a Beckman Coulter Optima XL-I analytical ultracen-

trifuge mounted with an An-50 Ti 4-hole rotor (49000 rpm at 4◦C). The reference buffer

used was the SEC buffer without detergents (50 mM Tris pH 7.8, 100 mM NaCl). Data

were acquired every 6 min for 12 hrs, with interference and absorbance optics and were

subsequently analysed using SEDFIT [362] with the continuous c(s) distribution model.

SEDNTERP was used to determine the molar mass (46647 g/mol) and the partial specific

volume (0.749 ml/g) of AmtB. The partial specific volume of DDM used was 0.82 ml/g.

The viscosity (1.567 cP) and the density (1.00557 g/ml) of the SEC buffer were deter-

mined using SEDNTERP. The ratio of detergent bound to the protein and the molecular

weight of the complex (Table 6.1) were calculated using a method described previously

[363].

Micro-Scale Thermophoresis (MST) AmtB(His6) was labelled using the kit Mono-

lith His-Tag according to manufacturer instructions (NanoTemper Technologies). La-

belled samples of AmtB in the concentration range [6µM− 200 mM] were loaded into

16 hydrophobic coating grade capillaries and analyzed using the Monolith NT.115 (Nan-

oTemper Technologies) analyser. The data were processed using the MO.Affinity Anal-

ysis software v2.2.4 (NanoTemper Technologies) as previously described [364].

Characterisation of the sample SAS experiments are very demanding in terms of

sample quality [73, 351], therefore, before recording SAS data, we assessed the purity

and monodispersity of the samples as follows: the mass of the complex calculated from

our SEC-MALS analysis are constant across the elution peak (Figure 6.5). Secondly,

SDS page and SEC analyses of our sample before and after the SAS experiments show

that the protein is pure and stable for weeks at 4◦C (Figure 6.10). Finally, to ensure that

the protein was purified in an active form, we measured AmtB NH+
4 binding activity
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by microscale thermophoresis. Clear NH+
4 dependent binding activity (Kd 0.6 mM) was

measured, which indicates that AmtB is correctly folded and active (Figure 6.7). Taken

together, these results show that our sample is pure, monodisperse and that the protein

is active in detergent. Hence our sample is highly suitable for SAS analysis.

MD simulations The AmtB crystal structure at 1.35 Å obtained by Kademi et al.

(PDB ID: 1U7G) [350] was used for the molecular dynamics simulations. The protein

was processed using the CHARMM-GUI web interface [294, 365]. The mutations F68S,

S126P, and K255L inserted in the crystallographic construct were reverted to the wild-

type, all the selenomethionine modifications were changed back to methionine, and the

N- and C-terminal residues were capped using acetyl and N-methyl amide groups, re-

spectively. The protein was initially embedded in a DDM bilayer using CHARMM-GUI

Membrane Builder plugin [366, 367]. The system was subsequently solvated in water

and K+ and Cl− ions were used to neutralise the system and reach a salt concentration

of 50 mM. In-house code was then used to remove excess DDM molecules and to form a

detergent torus around the protein of 260, 280, 300, 320, 340 and 360 DDM molecules,

respectively, in order to reflect the experimental conditions.

All molecular dynamics simulations where performed with the Gromacs 5.1.4 software

package [368, 369]. The CHARMM36 force field was used for the protein, the ions,

and DDM [295, 370]. The water molecules were modelled with the TIP3P model [371].

Water bonds and distances were constrained by the Settle method [289], and all other

bonds by the LINCS method [149]. After a steepest descent minimization, the system

was equilibrated by six consecutive equilibration steps with position restraints on heavy

atoms of 1000 kJ(mol)−1nm−2. The first three equilibration steps were carried under a

NVT ensemble using a Berendsen thermostat to keep the temperature at 310 K. The

subsequent steps were conducted under a NPT ensemble, switching on a Berendsen

barostat [159] with isotropic coupling, to keep the pressure at 1 bar. Production MD

simulations were carried using a v-rescale thermostat [291] with a time constant of 0.2 ps,

and a Berendsen barostat with isotropic coupling. A Verlet pair-list scheme was used for

describing non-bonded interactions, and two different cut-off values, of 1.2 Å and 1.5 Å

were tested; no significant difference was observed between these two. A timestep of

2 fs was used throughout the simulations. The first 70 ns of production simulations were

discarded from the analysis to allow rearrangement of the DDM molecules around the

protein.

SEC-SAXS analysis Synchrotron SAXS data were collected on the B21 bioSAXS

beamline at the DIAMOND Synchrotron. The exact same conditions were used than

for the SEC-MALS analysis in terms of sample, column and running conditions. 50µl of
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AmtB at 75µM were injected into the SEC-system. The running buffer used was 50 mM

Tris pH 7.8, 100 mM NaCl and 0.03% DDM. 15 frames of the elution peak corresponding

to the membrane protein were averaged and subtracted to the running buffer using

ScÅtter software. 57 frames corresponding to the buffer curve were averaged prior to

the subtraction. SAXS data were collected in 255 time frames with 3 s per frame (13 min

in total). The scattering images were averaged and the buffer scattering intensities

subtracted using the program ScAÅtter and the same program was used to evaluate the

radius of gyration (Rg). The data-collection parameters are presented in Table 6.2.

SAXS curve predictions SAXS curves were computed using the explicit-solvent

calculations described previously [90], as implemented in the WAXSiS method [226].

Accordingly, a spatial envelope was constructed around the AmtB-DDM complex, such

that the distance of the envelopes vertices have a distance of 6 Å from all atoms in

all simulation frames. Because the detergent exhibited substantial fluctuations, this

procedure yielded an envelope that had a larger distance from the complex in most

of the MD frames, suggesting that solvent density modulations due to the hydration

layer were captured by the envelope volume. The spherical average was conducted

using 1200 q-vectors per absolute value of the scattering vector q. Vector q is given

as q = 4π sin(θ)λ−1, where 2θ is the scattering angle. The bulk solvent density was

corrected to 334 e nm−3 to correct for the slightly incorrect density of the CHARMM-

modified tip3p model, as described previously [90].

SANS data measurement and analysis To ascertain the reproducibility and the

quality of our measurements, two independent set of SANS data were measured (Septem-

ber 2016 and March 2018) using two batches of AmtB purified independently. SANS

experiments were conducted at 6◦C using the large dynamic range diffractometer D22

at the Institut Laue-Langevin (Grenoble, France) in Hellmar quartz cuvettes 100QS

with 1 mm optical pathlength. 300µl of samples at a concentration of 110µM were

extensively dialysed (3 times 12 hrs) against the size-exclusion chromatography buffer

(50µM Tris pH 7.8, 100 mM NaCl, 0.03% DDM and D2O as required) and used for the

SANS experiment. The final dialysis buffer was used in the SANS experiment as the

reference and subtracted to the protein signal. The samples were recorded at a 4 m/4 m

detector/collimator distance, using a neutron wavelength of λ = 6 Å. For each condition,

H2O/D2O buffers, the empty beam, an empty quartz cuvette as well as a boron sample

(electronic background) were measured. Exposure times varied between 20 min (empty

cell, boron) and 3 hours for the protein samples and buffers. Transmissions were mea-

sured for 1 min. The raw data were reduced (detector efficiency, electronic background

and angular averaging) using a standard ILL software package. Finally, the corrected
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scattered intensities I(q), where q = 4π sin(θ)λ−1, and 2θ is the scattering angle, from

the different q-ranges and the respective buffer signals were subtracted using the program

PRIMUS from the ATSAS suite [220]. The data-collection parameters are presented in

Table 6.2.

Contrast Variation Series The contrast match point of DDM was experimentally

determined by measuring SANS contrast series of DDM (5 mg/ml) at 0, 20, 40, 60, 80

and 100 % D2O and used to plot (I0/TsC)0.5 as a function of percentage of D2O in

the solvent (Ts is the measured sample transmission). The DDM contrast match point

(22.2%) was determined by the intersection of a linear fit through all points with the

abscissa as previously described [372].

Guinier plot Guinier plots were used to calculate the Rg based on the following

equation: ln I(q) = (1/3) ln I(0) − (qRg)
2 with qRg < 1.3. AmtB molecular weight,

was determined from the I0 intensity at 22% D2O using absolute calibration against

H2O under the assumption that the detergent (free micelles and bound) had a negligible

contribution at the contrast match point according to Compton et al., (2011) [372]

(Figure 6.9 and Table 6.1).

MONSA multiphase modelling The multiphase volumetric analysis using MONSA

[356, 373] (extended version of DAMMIN) was used to obtain a three phases dummy

atom models of the AmtB-DDM complex reporting the protein, DDM head and DDM

tail phases respectively. The analysis was done using all SAS (SAXS and SANS at 0,

22, 42 and 60% D2O) data. The parameters used for the analysis were (i) the volume

of the AmtB trimer (calculated from the amino acid sequence using the Biomolecular

Scattering Length Density Calculator available online (http://psldc.isis.rl.ac.uk/Psldc).

The volume obtained was 166864 Å3; (ii) the volume of the 320 molecules of DDM head

and tail (112000 Å3 and 108800 Å3 respectively) [346]. The SEC-MALS, AUC and SAXS

analysis shows that AmtB is trimeric (Table 6.1), hence a P3 symmetry constraint was

applied. The MONSA analysis (200 annealing steps) were done using DAMESV28-29

models. 10 model were generated, superimposed and checked for consistency (Figure

6.13). All models were very similar in size and shape for all three phases.
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6.5.1 Supplementary tables and figures

Table 6.1: Determination of the number of DDM molecules in the AmtB-DDM com-
plex. Molecular masses are given in kDa. OS stands for oligomeric state.

Mw AmtB-DDM Mw AmtB/OS Mw DDM DDM molecules

SEC-MALS 287.2 ± 16.7 144.4 ± 11.1 / trimer 142.8 ± 5.9 285 ± 2

AUC 312.6 ± 14.5 148.8 ± 6.8 / trimer 163.7 ± 0.7 321 ± 1

SANS
123

n.a. 146.0 ± 29.2 trimer n.a. n.a.

Table 6.2: SEC-SAXS and SANS data-collection parameters.

from SEC-SAXS from SANS batch

Instrument/data processing
B21 BioSAXS Diamond

Light Source synchrotron
beamtime (UK)

D22 beamline Institut
Laue-Langevin Neutron

source with a multidetector
(3He) 16K resolution elements

Beam geometry (mm) 1 x 5 55 x 40

Camera length (m) 4.014 4/4 offset

Flow (ml/min) 0.05 n.a.

Wavelength (Å) 0.99 6.0 (δλ/λ = 0.1)

s range (Å−1) 0.0022 to 0.42 0.045 to 0.4

Exposure time (s) 3 (every 5 seconds) ∼ 3600 to 10800 / sample

Sample configuration cell path-lenght of 1 mm

Concentration range (mg/mL) See supporting info. See supporting info.

Temperature (K) 298 279.15

Table 6.3: Rg calculated from Guinier approximation of the experimental and com-
puted SAXS curves of the AmtB-DDM complex containing between 260 and 360 DDM

molecules. All values are given in angstroms.

260 280 300 320 340 360
Experimental
SAXS data

43.1 ± 0.24 44.0 ± 0.30 45.6 ± 0.10 45.6 ± 0.10 47.8 ± 0.16 48.6 ± 0.13 45.5 ± 0.09
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Figure 6.5: Elution profile of AmtB purified in 0.03% DDM from a superdex 200 10
times 300 column measured by OD at 280 nm and scattering.
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Figure 6.6: (A) Absorbance at 280nm and (B) interference signals of analytical ultra-
centrifugation sedimentation profile of AmtB solubilised in 0.03% DDM. (C) Super-
position of the c(s) distributions expressed at 20◦C in water (blue: A280nm, purple:

Interference).
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Figure 6.7: Measurement of the ammonium binding on AmtB solubilised in 0.03%
DDM by microscale thermophoresis.

Figure 6.8: Comparison of the SAXS curves from experiment (symbols) and computed
from MD simulations of the AmtB-DDM complex containing between 260 and 360 DDM

molecules (red lines).
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Figure 6.9: Guinier plot comparison of the experimental (symbols) and computed
(red line) SAXS curves of the AmtB-DDM complex containing between 260 and 360

DDM molecules.
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Figure 6.10: Size exclusion chromatography profile of AmtB solubilised in 0.03%
DDM, 0% D2O, before and after SANS experiments. Before SANS measurement, peak
elution 11.87 ml and after SANS measurement, peak elution 11.96 ml. (insert) 12.5%

SDS-PAGE fraction analysis based of the elution peak.

Figure 6.11: Comparison of the two SANS dataset. (square symbols) 0% D2O, (curcle
symbols) 22% D2O, (triangle symbols) 42% D2O. The dataset at (diamond symbols)

60% D2O have only been measured in March 2018.



6.5. Supplementary material 122

Figure 6.12: Comparison of experimental (symbols) and computed (lines) SANS
curves from MD simulations containing between 260 and 360 DDM molecules
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Figure 6.13: Top view of 10 different MONSA multiphase modelling using the SAXS
and SANS data. The phase corresponding to the protein is represented by red beads,
the hydrophilic and hydrophobic detergent density are represented by green and blue

beads, respectively.





Chapter 7

Conclusions and Outlook

D etailed conclusions regarding specific projects presented in this thesis are given

in the conclusion parts of Chapters 3-6 and will not be repeated here. Instead,

we wish to note that the common thread connecting all projects presented in this thesis

is the fact that the results obtained by combining SAS and MD simulations would be

out of reach for SAS or MD alone. Therefore, the work presented here contributes

to the emerging view that the direct coupling of various experiments with simulations

represents a particularly promising direction in answering many important biophysical

questions [16, 80, 374–377]. Of course, the integration of data from different sources

(often referred to as integrative modeling or integrative structural biology) should be

done with special attention to advantages, disadvantages and sources of uncertainties of

each technique. Accordingly, the Bayesian formalism as well as the maximum entropy

principle offer mathematically and statistically rigorous framework for further method

developments for data integration.

To conclude this thesis, we present the outlook of the specific projects described in

Chapters 3-6.

Ion cloud of charged proteins This project demonstrates how the influence of the

ion cloud on Rg of the charged proteins can be accurately estimated using a greatly

simplified spherical model of two proteins (BSA and GI) in conjunction with analytic

calculations based on the Debye-Hückel theory. Good agreement between the results ob-

tained using this simplified approach with the experimental and MD results, even for the

nonspherical BSA, strongly suggests that the simplified approach could be successfully

applied to any charged macromolecule in a salt solution. However, further simulations

and SAXS experiments of other charged proteins, along with DNA and RNA molecules

in various salt solutions would be necessary to draw final conclusions.
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Atomic models of detergent micelles The size and the shape of detergent micelles

described in Chapter 4 are obtained by directly coupling the experimental SAXS curve

to the MD simulations. The fact that a very weak experimentally derived potential

was sufficient to correct for the minor force field imperfection suggests that the derived

models are not overfitted. However, a direct comparison with additional, orthogonal ex-

perimental data would be desirable. Unfortunately, to this end, additional experimental

data for DDM and DM micelles are not available.

Furthermore, detecting a discrepancy between unbiased MD simulations and experi-

mental data, as done here, is the first step towards improving force fields. Notably,

in response to our work, we were contacted by the CHARMM developers. To support

further CHARMM force field developments, we shared the output of our simulations.

Finally, while the average shape of detergent micelles obtained here was expected to be

correct, we did not expect the magnitude of shape fluctuations to be correct. This is

because shape fluctuations may be suppressed upon restraining the single-replica simu-

lation with a harmonic restraint on the data, thereby violating the principle of maximum

entropy, as already demonstrated in Ref. 206, for different type of experimental data. In-

deed, in the follow-up study (Chapter 5), we demonstrated that the shape of the DDM

micelle can be accurately determined with single-replica simulations, but multi-replica

refinement with commitment to the principle of maximum entropy is necessary to obtain

a more reliable ensemble of micelle structures.

Effects of asymmetry, shape fluctuations, disorder, and atomic details on the

SAXS curve of detergent micelles Size monodispersity of DDM micelles along

with the statistically rigorous approach to integrate SAXS data into MD simulations

enabled us to study contributions of different effects on the SAXS curve of detergent

micelles. However, not all micelles are monodisperse. Some detergent micelles adopt a

wide distribution of sizes in solutions. Different studies of micelle size polydispersity were

conducted in the past, but it remained unclear to which extent the assumption about

the underlying distribution biased the interpretation of low-resolution experimental data

[112, 301, 331, 378–382]. In principle, integration of SAXS data into multi-replica sim-

ulations should enable us to study the size polydispersity of micelles that adopt a wide

distribution of sizes in solutions. Currently, in collaboration with Lise Arleth Group

(University of Copenhagen), we are trying to understand the size polydispersity and

shape of sodium dodecyl sulfate (SDS) micelles. Specifically, in addition to hydrophobic

and polar effects that determine the aggregation number (Nagg) of the electrostatically

neutral micelles (Chapters 4 and 5), Nagg of SDS micelles is influenced by the effects

originating from the negative charge of detergent headgroups. Namely, electrostatic re-

pulsion of the negatively charged SDS headgroups at a low concentration of the salt in a
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solution would favor low Nagg. By increasing the salt concentration, Nagg is increasing,

as the screening of headgroup-headgroup repulsion is increasing with the concentration of

positive ions in a solution. Furthermore, the increase of detergent concentration causes a

non-linear increase of Nagg [112, 331, 378–381]. A previous study suggested that varying

detergent and salt concentrations may cause tremendous changes of Nagg. For example,

at low detergent and moderate salt concentration, Nagg was estimated to be around 50.

In contrast, the increase of detergent and salt concentrations led to the creation of ex-

tremely large, worm-like SDS micelles, whose average Nagg was estimated to be close to

9000 [112]. To validate and quantify the influence of detergent and salt concentrations

on average Nagg of SDS micelles, but also to understand how the size polydispersity de-

pends on salt and detergent concentrations, we are trying to interpret the SAXS curves

of SDS micelles measured at different detergent and salt concentrations. We believe

that the direct coupling of experimental SAXS data and MD simulations with a large

number of replicas provides a reasonable framework for our investigation.

Finally, we wish to note that the two-component tri-axial ellipsoid models of micelles

presented in this thesis may be easily applied to different systems. For example, even

the two-component spherical model enabled us to predict the SAXS curves of golden and

silica nanoparticles in different organic solvents with the reasonable accuracy. Golden

and silica nanoparticles are studied because they represent a promising tool for the drug

delivery [383]. Therefore, fast calculations of SAXS curves using simplified models, as

described in Chapter 5, could be useful in choosing the optimal particle size and the

type of solvent for further SAXS experiments.

Combining SAXS and SANS data to study protein-detergent complexes In

the work presented in Chapter 6, we demonstrated how SAXS and SANS data can be

combined to enable a fine structural analysis of protein-detergent complexes. However,

we want to note that the single matching point (22% D2O ) was used to render the

detergent ”invisible” for the SANS experiment. While 22% D2O represents the match-

ing point of the DDM detergent on average, DDM headgroups and tails have distinct

matching points. Therefore, conducting SANS experiments with two matching points

vis-a-vis the detergent - one that renders detergent headgroups ”invisible” and one that

makes detergent tails ”invisible” - would represent a more rigorous procedure for further

studies. Additionally, we wish to point out that the structure of the protein-detergent

complex was assumed to be nearly identical at each D2O concentration. To quantify

the influence of varying D2O concentration on the protein-detergent complex structure,

conducting SAXS experiment at different D2O concentrations would be valuable.
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guity in determining the shape of alkali alkyl sulfate micelles from small-angle scattering

data. Langmuir 2008, 24, 408–417.

[337] Pedersen, J. S. Analysis of small-angle scattering data from colloids and polymer solutions:

modeling and least-squares fitting. Adv. Colloid Interface Sci. 1997, 70, 171–210.

[338] Potrzebowski, W.; Trewhella, J.; Andre, I. Bayesian inference of protein conformational

ensembles from limited structural data. PLoS Comput. Biol. 2018, 14, e1006641.

[339] Semenyuk, A.; Svergun, D. GNOM–a program package for small-angle scattering data

processing. J. Appl. Crystallogr. 1991, 24, 537–540.
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