
Mechanising Syntax with Binders
in Coq

Kathrin Stark

Dissertation zur Erlangung des Grades
des Doktors der Ingenieurwissenschaften (Dr.-Ing.)
an der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

Saarbrücken, 2019

ii

Berichterstatter:

Prof. Dr. Gert Smolka, Universität des Saarlandes

Prof. Brigitte Pientka, PhD, McGill University

Dekan:

Univ.-Prof. Dr. Sebastian Hack

Prüfungsausschuss:

Prof. Dr. Markus Bläser (Vorsitz)

Prof. Dr. Gert Smolka

Prof. Brigitte Pientka, Ph.D.

Dr. Roland Leißa (Beisitzer)

Tag des Kolloquiums: 14. Februar 2020

Textfassung vom 11. Dezember 2019

Copyright c© 2019 Kathrin Stark

Abstract

Mechanising binders in general-purpose proof assistants such as Coq is cumbersome
and difficult. Yet binders, substitutions, and instantiation of termswith substitutions are
a critical ingredient of many programming languages. Any practicable mechanisation
of the meta-theory of the latter hence requires a lean formalisation of the former.

We investigate the topic from three angles: First, we realise formal systems with binders
based on both pure and scopeddeBruijn algebras togetherwith basic syntactic rewriting
lemmas and automation. We automate this process in a compiler called Autosubst; our
final tool supports many-sorted, variadic, and modular syntax.

Second, we justify our choice of realisation andmechanise a proof of convergence of the
σSP-calculus, a calculus of explicit substitutions that is complete for equality of the de
Bruijn algebra corresponding to the λ-calculus.

Third, to demonstrate the practical usefulness of our approach, we provide concise,
transparent, and accessible mechanised proofs for a variety of case studies refined to
de Bruijn substitutions.

Kurzzusammenfassung

Die Mechanisierung von Bindern in universellen Beweisassistenten wie Coq ist arbeit-
saufwändig und schwierig. Binder, Substitutionen und die Instantiierung von Substi-
tutionen sind jedoch kritischer Bestandteil vieler Programmiersprachen. Deshalb setzt
eine praktikable Mechanisierung der Metatheorie von Programmiersprachen eine ele-
gante Formalisierung von Bindern voraus.

Wir nähern uns dem Thema aus drei Richtungen an: Zuerst realisieren wir formale
Systeme mit Bindern mit Hilfe von reinen und indizierten de Bruijn Algebren, zusam-
men mit grundlegenden syntaktischen Gleichungen und Automatisierung. Wir au-
tomatisieren diesen Prozess in einem Kompilierer namens Autosubst. Unser finaler
Kompilierer unterstützt Sortenlogik, variadische Syntax und modulare Syntax.

Zweitens rechtfertigen wir unsere Repräsentation und mechanisieren einen Beweis der
Konvergenz des σSP-Kalküls, einem Kalkül expliziter Substitutionen der bezüglich der
Gleichheit der puren de Bruijn Algebra des λ-Kalküls vollständig ist.

Drittens entwickeln wir kurze, transparente und leicht zugängliche mechanisierte Be-
weise für diverse Fallstudien, die wir an de Bruijn Substitutionen angepasst haben. Wir
weisen so die praktische Anwendbarkeit unseres Ansatzes nach.

Acknowledgements

This thesis would not have been possible without a variety of people. First, I want to
thank my advisor Gert Smolka for both his invaluable advice and the great amount of
freedom given in his group.

Next, I want to thank my colleagues: Christian Doczkal, Yannick Forster, Jonas Kaiser,
Dominik Kirst, Moritz Lichter, Steven Schäfer, and Tobias Tebbi. Special thanks go to
my office mates Jonas Kaiser and Fabian Kunze. The Programming Systems Lab would
not have been the same without Ute.

Research without collaborators would be a dull business. I hence want to thank An-
dreas Abel, Guillaume Allais, Yannick Forster, Aliya Hameer, Jonas Kaiser, Alberto
Momigliano, Brigitte Pientka, Steven Schäfer, Gert Smolka, and Simon Spies — I am
grateful for everything I’ve learnedwhileworkingwith you. I particularlywant to thank
Jonas Kaiser and Steven Schäfer for our fruitful collaboration on Autosubst 2.

I am grateful to have been part of the engaging and thriving community of Saarland
University and the Graduate School of Computer Science. I will miss the time as a tutor
and, in particular, being part of the Mathematical Preparatory Course.

I want to thank Tobias Blaß, Yannick Forster, and Fabian Kunze for three new points of
view on drafts of my thesis and priceless advice.

I want to thank my friends for countless evenings in the city, hiking and snow in Au-
gust, shared meals, ICoffee breakfasts, (more or less voluntary) sports, girls’ evenings,
theatre, wine tastings – in short, all the time together: Thank you, Andreas, Caro, Clara,
Fabian, Felix, Felix, Felix, Jana, Marc, Maike, Maxi, Nathalie, Nikolai, Noemi, Norine,
Thomas, Tobi, andmany others. Without you, Saarbrücken would have been a different
town.

Finally, I want to thank my wonderful family and Tobi for their never-ending support.

Contents

Abstract iii

Kurzzusammenfasung v

1 Introduction 1
1.1 Related Work . 4

1.1.1 Binders and De Bruijn Algebra . 4
1.1.2 Calculi of Explicit Substitutions . 5
1.1.3 Compiling Syntactic Specifications 6
1.1.4 Mechanised Meta-Theory . 8

1.2 Overview . 9
1.3 Supporting Publications . 11
1.4 Contributions . 13

1.4.1 Mechanisation in Coq . 14

2 Preliminaries 15
2.1 The Coq Proof Assistant . 15
2.2 Axioms . 16

I De Bruijn Syntax and Sigma Calculi 19

3 Lambda Calculus with de Bruijn Syntax 21
3.1 Pure de Bruijn Algebra . 22

3.1.1 Instantiation . 23
3.1.2 Equational Reasoning on de Bruijn Syntax 25
3.1.3 De Bruijn Algebra . 30

3.2 Scoped de Bruijn Algebra . 30
3.3 Discussion . 32

4 Pure Sigma Calculus 35
4.1 Syntax and Reduction . 38
4.2 De Bruijn Algebra as a Model of the Sigma Calculus 38

x Contents

4.3 Local Confluence . 40
4.4 Reduction to Unified Expressions . 41
4.5 Reduction to Distribution Termination . 43
4.6 Termination of the Distribution Calculus . 44

4.6.1 Renaming Expressions . 46
4.6.2 Patterns . 46
4.6.3 Reduction on Patterns . 48
4.6.4 Preservation . 49
4.6.5 Termination . 50

4.7 Convergence . 51
4.8 Discussion . 51

4.8.1 De Bruijn Algebra as Models for Sigma Calculi 51
4.8.2 Calculi of Explicit Substitutions . 51
4.8.3 Termination . 52

II From HOAS to de Bruijn Syntax 55

5 EHOAS Specifications 57
5.1 EHOAS . 59
5.2 EHOAS by Example . 59
5.3 Modular Syntax . 64
5.4 A Grammar for EHOAS . 65

6 Extended Calculi with de Bruijn Syntax 67
6.1 First-Class Renamings in the Lambda Calculus 69
6.2 Polyadic Binders in the Lambda Calculus with Pairs 70
6.3 External Sorts and Sort Constructors in Record Types 71
6.4 Many-Sorted Syntax in Call-by-Value System F 73

6.4.1 Instantiation . 74
6.4.2 Equational Reasoning . 76

6.5 First-Order Binders in First-Order Logic and the Pi Calculus 80
6.5.1 First-Order Logic . 80
6.5.2 Pi Calculus . 83

6.6 Variadic Binders in the Multivariate Lambda Calculus 83
6.7 Discussion . 89

6.7.1 First-Class Renamings . 89
6.7.2 Syntax with Functors . 89
6.7.3 Many-Sorted Syntax . 90
6.7.4 Variadic Syntax . 91

7 Modular Syntax 93
7.1 Modular Syntax . 94

Contents xi

7.1.1 Modular Inductive Data Types . 94
7.1.2 Modular Constructors . 96
7.1.3 Recursive Functions on Modular Syntax 97
7.1.4 Proofs on Modular Syntax . 98
7.1.5 Introduction of New Features . 100

7.2 Modular Induction Principles . 100
7.3 Modular de Bruijn Algebras . 101
7.4 Modular Inductive Predicates . 103
7.5 Related Work . 106

8 The Autosubst Compiler 109
8.1 Dependency Analysis on EHOAS . 110
8.2 Generation of Abstract Proof Terms . 112

8.2.1 Inductive Sorts . 113
8.2.2 Instantiation and Substitution Lemmas 114

8.3 Code Generation . 117
8.3.1 Automation for Substitutions . 119
8.3.2 Notation . 119

8.4 Tool Support for Modular Syntax . 120
8.4.1 Dependency Analysis for Modular Syntax 121
8.4.2 Modular Syntax with Binders . 122
8.4.3 Static Code Generation for Modular Syntax 122

8.5 Restrictions . 123
8.6 Comparison to Autosubst 1 . 123

III Case Studies 125

9 Simply-Typed Lambda Calculus 127
9.1 Reduction and Values . 129
9.2 Typing, Context Morphism Lemmas, and Preservation 131
9.3 Preservation in the Multivariate Lambda Calculus 133
9.4 Weak Head Normalisation . 135
9.5 Schäfer’s Expression Relation . 136
9.6 Raamsdonk’s Characterisation . 137
9.7 Modular Strong Normalisation . 141
9.8 Decidability of Beta Eta Equivalence . 145
9.9 Evaluation . 149

10 System F with Subtyping 153
10.1 Type Safety for F< . 155

10.1.1 Properties of Subtyping . 157
10.1.2 Progress . 158

xii Contents

10.1.3 Preservation . 159
10.2 Type Safety for F<,rec . 161

10.2.1 Transitivity . 163
10.2.2 Progress . 164
10.2.3 Preservation . 164

10.3 Type Safety for F<,pat . 165
10.4 Discussion . 168

10.4.1 POPLMark Part A . 168
10.4.2 POPLMark Part B . 168

11 Other Developments 173

Conclusion 179
11.1 Summary of Results . 179

11.1.1 Calculi of Explicit Substitutions . 179
11.1.2 Compiling Syntactic Specifications 180
11.1.3 Case Studies . 181

11.2 Open Questions and Challenges . 181
11.2.1 Calculi of Explicit Substitution . 181
11.2.2 Compiling Syntactic Specifications 183
11.2.3 Modular Syntax . 184

A Abstract Reduction Systems 185

B Strong Normalisation à la Girard 187

C Symmetry and Transitivity of Algorithmic and Logical Equivalence 191

Bibliography 193

Index 203

Chapter 1

Introduction

Binders, substitutions, and the instantiation of terms with substitutions are a key ingre-
dient of Church’s λ-calculus [25]. In the λ-calculus, the term (λf.f x)g represents the
application of a function λf.fx to its argument g and reduces to the term (f x)[f/g]where
each occurrence of f is substituted by g. Alternatively, we say that we instantiate f x
with the substitution [f/g]. We call “λf.” a binder because f is a placeholder for the
later argument. Church’s λ-calculus was extremely influential and nowadays, binders
and substitutions are inevitable when formalising the meta-theory of formal systems.

To convince an audience of the truth of a statement, we require an agreed-on set of
assumptions and reasoning rules. An arbitrarily complex proof using only these rules
is then indisputable.

Interactive proof assistants, such as Coq [111], allow and simplify the development of
such proofs in an interplay between humans and computers. Collaboration with a com-
puter has several advantages: The computer mechanically verifies that only the agreed-
on rules are used, handles easy and repetitive cases on its own, and verifies that small
changes in the definitions still yield a correct proof. We refer to such proofs as mecha-
nised.

While they are guaranteed to be correct, mechanised proofs often involve a consider-
able overhead compared to traditional paper-based proofs: What is obvious for humans
might be difficult for computers; and proofs are traditionally optimised for humans. If
wewant to close this gap, we have to catch up on the right definitions and best practices,
possibly by providing tool support.

Mechanised meta-theory of formal systems with binders and substitutions is a typical
example of this dilemma. On the one hand, proofs about the meta-theory of formal sys-
tems are usually technical, repetitive, and subject to frequent changes – a perfect target
for mechanised proofs. However, at the same time, many practices concerning binders
and substitutions that are common on paper lack a formal counterpart and hence re-
quire additional care [12].

2 Introduction

For example, Church’s proofs [25] “assume [...] an understanding of the operation of
substitution”. In this tradition, it is common to silently assume that α-equivalent terms
— terms that only differ in the choice of bound names like λx.x and λy.y— are equal
or to assume that the names of bound and free variables are always chosen from differ-
ent sets, known as the Barendregt convention [14]. Both assumptions have to be made
explicitly in mechanised proofs. Many proofs for formal systems are therefore difficult
to mechanise, even though the paper-based proof requires only basic knowledge about
binders. In fact, there is no consensus in the community on the best way to handle bin-
ders — even though the POPLMark challenge [12], which evaluated the state of the art
of mechanisedmeta-theory, has receivedmuch attention andwas posed almost 15 years
ago.

In this thesis, our goal is to enable users to mechanise meta-theoretic proofs for formal
systems with binders. Following Church’s assumption, the user requires only a basic
understanding of binders, substitutions, and instantiation. In particular, we want to
unburden the user from understanding the implementation details of instantiation and
from manually reasoning about syntax.

In practical terms, this imposes three requirements: First, we require a representation of
binders, substitutions, and α-equivalence. Second, we need a definition of instantiation
of terms with substitutions. Finally, we require a set of basic syntactic lemmas about in-
stantiation and a proof method on how to handle substitution equations, i.e. equations
between expressions with syntactic terms and instantiations.

Independent of the chosen approach, the realisation of a custom formal system is com-
plex and requires tedious, technical, and repetitive code, in short: substitution boiler-
plate. This is a well-known problem in the community. For example, in their paper on
a translation of MLmodules into Fω using locally nameless syntax (LN) [10], Rossberg
et al. [95] remark:

“Our experience [...] was more painful than we had anticipated. Com-
pared to the sample LN developments, ours was different in making use of
various forms of derived n-ary (as well as basic unary binders) and in deal-
ing with a larger number of syntactic categories. Out of a total of around
550 lemmas, approximately 400 were tedious "infrastructure" lemmas; only
the remainder had direct relevance to the metatheory of Fω or elaboration.
The number of required infrastructure lemmas appears to be quadratic in
the number of variable classes[...], the number of "substitution" operations
needed per class [...] and the arity (unary and n-ary) of binding constructs.
So we cannot, hand-on-heart, recommend the vanilla LN style for anything
but small, kernel language developments.”

Even worse, the realisation for one formal system alone, e.g. Fω, is but a drop in the
ocean: every new formal system requires a new realisation and hence involves new
substitution boilerplate.

3

Apart from the substitution boilerplate, developing a practical realisation for non-
standard formal systems is already a challenge. The design space for realisations that
provide binders, substitutions, and instantiation is huge, yet only few choices work
well in actual proofs.

Schäfer et al. [100] address this problemwithAutosubst 1, a librarywhich automatically
generates a practical realisation for a restricted class of formal systems. Their approach
is based on pure de Bruijn algebras and basic syntactic equational lemmas adapted
from the σSP-calculus [31]. As these form a complete rewriting system for the de Bruijn
algebra of the λ-calculus [99], many substitution lemmas can be solved via rewriting
alone.

While Autosubst is great in what it does, it only supports a very restricted set of syntax.
These restrictions are inherent to its implementation, and overcoming them requires
a complete redesign. This prompted our design of Autosubst 2, or from now on only
Autosubst. Autosubst inherits the focus on de Bruijn substitutions from its predecessor,
but expands the range of supported syntax to scoped syntax, mutual and many-sorted
syntax, functors, variadic syntax, and modular syntax. Each extension requires careful
design decisions and new best practices. Autosubst hence subsumes Autosubst 1.

We approach the topic from three angles:

First, we justify the use of rewriting for the special case of the λ-calculus. To argue over
substitutions, we use the σSP-calculus [56], a calculus of explicit substitutions whose
convergent reduction was previously shown to be sound and complete for the pure de
Bruijn algebra [99]. To show that rewriting is an adequate proof method, we extend
this result by a mechanised proof that the σSP-calculus is confluent and terminating,
simplifying a previous paper-based proof [30].

Second, we develop best practices for and automatically realise formal systems with
binders. We present our solution to the substitution boilerplate problem, the Autosubst
compiler. Autosubst takes a specification in a variant of higher-order abstract syntax
and generates the corresponding de Bruijn algebra, syntactic substitution lemmas, and
custom automation as human-readable Coq code. Autosubst supports scoped syntax,
many-sorted syntax, first-class renamings, polyadic binders, external type constructors,
variadic binders, and modular syntax.

Third, we demonstrate the practicality of our approach in a variety of mechanised case
studies refined to de Bruijn substitutions. We provide concise, transparent, and accessi-
ble proofs of normalisation for the simply-typed λ-calculus, type safety of the variadic
λ-calculus, modular proofs of weak head normalisation and strong normalisation of a
λ-calculus with boolean and arithmetic expressions, as well as type safety for System F
with records and subtyping (widely known as the POPLMark challenge [12]). All de-
velopments are concise, thanks to Autosubst’s automatic boilerplate generation.

4 Introduction

1.1 Related Work

In this section, we start with an overview on de Bruijn algebras as the basis for reason-
ing on syntax, continue with explicit calculi of substitutions which inspire the equa-
tional theory implemented, discuss possibilities to avoid the substitution boilerplate
problem in a generic-purpose proof assistant, and finally turn to the mechanisation of
meta-theory. Each part divides into an overview of the relatedwork and the significance
of this work for this thesis.

1.1.1 Binders and De Bruijn Algebra

So far, there is no consensus in the community on the best way to represent binders:
There are approaches using unnamed syntax à la de Bruijn [33], named syntax [14,
25], locally nameless syntax [10, 53, 74], higher-order abstract syntax [83], and nominal
syntax [87]. Even special-purpose proof assistants (e.g. Beluga [85], Twelf [84], and
Abella [48]) have been developed to address the difficulties in reasoning with binders.

In this thesis, we opt for de Bruijn indices [33], also known as unnamed syntax: we
avoid names altogether and instead refer to a variable by the distance to its enclosing
binder. For example, λx.x (λy.y x) is represented by λ.0 (λ.0 1).

De Bruijn syntax has a variety of advantages: it directly implements α-equivalence, is
implementable in a general-purpose type theory,1 and can be generalised to a variety of
different systems.

One difficultywith de Bruijn syntax is that if a substitution is propagated under a binder,
all free variables change theirmeaning. We hence define instantiationwith substitutions
which replace all indices at once, also known as parallel substitutions or de Bruijn sub-
stitutions. Following an idea of Schäfer et al. [100], we use the substitution primitives
of the σ-calculus [2], a calculus of explicit substitutions, as atomic substitution opera-
tions. These are expressive enough to define β- and η-reduction and can express the
scope change under a binder. Together, terms in the λ-calculus and these substitution
primitives form a two-sorted algebra, the corresponding de Bruijn algebra [99].

While de Bruijn syntax is in principle very well understood, it also contains very tech-
nical lemmas and requires carefully chosen definitions to avoid unmanageable over-
head in later proofs. In general, all proofs using de Bruijn syntax include manual and
technical statements about substitutions; and hence without automation require deep
knowledge on the representation via de Bruijn syntax. Schäfer et al. [99] propose a way
to solve these technical statements automatically: They provide a set of basic syntactic
equation lemmas on de Bruijn algebra, inspired by reduction in the σSP-calculus [31], a
calculus of explicit substitutions: These include preservation of identity, compositional-
ity, and various interaction lemmas between the atomic primitives. Together these form

1In this thesis we use the Coq proof assistant, but the practices developed in this thesis extend to any
other proof assistant supporting inductive types.

1.1. Related Work 5

a complete and convergent rewriting system for the de Bruijn algebra. We know of no
similar completeness results for any other binder representation.

Moreover, stating the lemmas correctly and getting all the technical detail right can be
simplified using scoped de Bruijn syntax [18] which adopts the idea of unnamed ref-
erences, but additionally carries an upper bound of free variables, called a scope. As a
consequence, shifting errors are detected by type errors, see also [97] for an introduc-
tion. We see scoped syntax as closer to the ideal representation of syntax.

Significance for this thesis. Binders have been extended in variousways, see e.g. [23].
We show that the strategy to get automated equations and to avoid substitution boiler-
plate can be extended to more formal systems.

To preserve practicality, we have to be conservative and restrict ourselves to carefully se-
lected design principles. We extend de Bruijn substitutions and in particular its reason-
ing to the following formal systems: first-class renamings, used in proofs with Kripke-
style logical relations [77]; polyadic binders such as in a λ-calculus with pairs; exter-
nal sorts and sort constructors, needed for record types; many-sorted and mutually
inductive syntax in System F [50, 91]; first-order binders in first-order logic and the
π-calculus [76]; variadic binders, used in a multivariate λ-calculus [90] and during
pattern matching; and finally, modular syntax which is frequently used in textbook
representations [86].

Three of these extensions deserve to be mentioned specifically: First, unlike previous
approaches, we handlemany-sorted syntaxwith vector substitutions, which parallelise
the already parallel de Bruijn substitutions to a vector of substitutions. This results in a
straightforward definition of instantiation, and also an equational theory similar to the
one of the λ-calculus.

Second, we offer support for variadic syntax by introducing variadic substitution prim-
itives which extend the primitives of the σ-calculus. We know of no other tool which
supports automated proofs for variadic binders in a proof assistant. Among others,
variadic binders are powerful enough to express reduction of patterns.

Third and finally, we introduce support formodular syntax. Although modular syntax
is commonly used in paper-based proofs [86], we know of no other practical solution
for proof assistants.

1.1.2 Calculi of Explicit Substitutions

Calculi of explicit substitutions [2, 31, 38] were introduced as an intermediate layer
between the theory and implementation of the λ-calculus. They distinguish themselves
from the λ-calculus by a syntactic representation of substitutions defined mutually in-
ductive with terms. This allows us to examine the exact behaviour of substitutions [99].

There are various calculi of explicit substitutions for the untyped λ-calculus alone: The

6 Introduction

σ-calculus as introduced by Abadi et al. [2] with identity substitution, extension, shift-
ing, and composition as substitution primitives; the σ⇑-calculus, which first appeared
in in Hardin and Lévy [56], is now available in [96], and adds a primitive for lifting;
and last, the σSP-calculus, which contains additional reductions to make reduction in
the σ-calculus confluent. Only the σSP-calculus is sound and complete for equality on
the de Bruijn algebra corresponding to the λ-calculus [99].

Completeness implies that all equations between expressions can be proved using re-
duction in the σSP-calculus, given that reduction is convergent. Autosubst 1 uses the
connection between the de Bruijn algebra corresponding to the λ-calculus and the σSP-
calculus to define automation for substitution and generalise the σSP-calculus to custom
syntax [100]. The σSP-calculus by Schäfer et al. [99] is proven to be sound and complete
for the pure de Bruijn algebra of the λ-calculus in Coq.

Significance for this thesis. Convergence is necessary to justify the rewriting
method [13], but Schäfer et al. [99] declare the formalisation and mechanisation of a
paper-based proof of termination [30] to be future work. In this thesis, we accomplish
this obligation and formalise and mechanise a proof of convergence for the rewriting
system in use.

The proof of local confluence is straightforward. Compared to Saïbi [96] we omit the
detour over a critical pair analysis [13, Chapter 6][59, 69], but simply use Coq’s back-
tracking mechanism to explore the different derivations of reduction.

Termination for related calculi has been proven several times [30, 55, 121]. Kamared-
dine and Qiao [65] further provide a mechanised proof of termination for the original
σ-calculus (and their own calculus of explicit substitutions) in ALF [72] strictly follow-
ing Curien et al. [30]. Unfortunately, we were not able to recover the mechanisation.
In this thesis, we give a mechanisation which simplifies the previous proofs, also based
on [30].

1.1.3 Compiling Syntactic Specifications

Recall that in general-purpose proof assistants, the realisation of a syntactic system is
complex and requires tedious boilerplate. Although it is technically possible to re-define
each new syntactic system manually, this is only applicable if one understands all sub-
tleties of the approach deeply: recall that small changes in the definition can have a big
impact on the proofs. At the same time, syntactic systems resemble each other which
brings up the question whether we can avoid repetitive, technical substitution boiler-
plate and realise the knowledge gained inmechanising formal systems in amore general
fashion.

There are two fundamentally different ways how to handle this boilerplate in a general-
purpose proof assistant: First, we can define a static type of formal systems, use signa-
tures to describe a specific formal system, and then use generic programming to define

1.1. Related Work 7

EHOAS
specification

Autosubst

Coq

de Bruijn
algebra

σ-calculus
model of

mechanised
meta-theory

Figure 1.1: Autosubst design.

instantiation generically (see e.g. [7, 49]). Alternatively, we can generate the necessary
structure via compilation, either internally with Ltac [36] or MetaCoq [106], or exter-
nally via a compiler [11, 67, 102].

Both approaches have different trade-offs: While an algebra-like approach is undoubt-
edly more elegant, it also introduces a level of indirectness caused by the intermediate
presentation. We hence follow the approach by compilation.

Previous compilers for syntax with binders include Ott [102], LNGen [11], Nee-
dle&Knot [67, 68], and Autosubst 1 [100]. Ott generates code for a wealth of definitions
in either LATEX or a proof assistant of choice, e.g. Coq. However, except for statements on
well-formedness, Ott provides no proofs. LNGen is based on Ott and further integrates
definitions and lemmas for locally nameless syntax. Needle&Knot generates custom de
Bruijn syntax and single-point syntax using a custom compiler in Haskell. Autosubst 1
uses the Ltac language with pure de Bruijn substitutions for single-sorted syntax, and
heterogeneous substitutions for (non-mutual) many-sorted syntax. It further offers
automation for substitution equations based on the σSP-calculus.

Significance for this thesis. The Autosubst compiler is realised as an external tool; its
design is depicted in Figure 1.1.2 Its input is a specification in aHOAS-like language [83]
which offers the possibility to represent binders naturally with negative positions cor-
responding to binders. For example, the λ-calculus is specified as:

tm : sort
abs : (tm → tm)→ tm
app : tm → tm→ tm

2Note that Autosubst 1 and Autosubst have no common code base.

8 Introduction

The output is the corresponding de Bruijn algebra (i.e. the definition of the correspond-
ing inductive type, and instantiation of renamings and substitutions via the primitives of
the σ-calculus), together with syntactic rewrite lemmas, suitable notations, and custom
tactics. We output either pure or scoped Coq code.

1.1.4 Mechanised Meta-Theory

Mechanised meta-theory of formal systems has several advantages over paper-based
proofs: It eliminatesmistakes, changes definitions, and automates tedious proofs [4, 12].

Binders and substitutions are often used when establishing global properties of a for-
mal system. While properties such as confluence and Church-Rosser properties are in
large parts independent of binders, substitutions are key when establishing proofs in a
syntactic way, e.g. during type safety à la Wright and Felleisen [120] (stating that typed
programs do not get stuck) and normalisation (stating that typed programs either can
reduce to or always reduce to a normal form).

De Bruijn Syntax requires slightly different statements than named syntax. A central
notion are context renaming and context morphism lemmas [52, 63] which allow us to
prove substitutivity of objects with contexts, i.e. during typing or subtyping.

There are two benchmarks which have influenced this thesis: The already-mentioned
POPLMark challenge [12] and the POPLMark Reloaded challenge [3]. Both challenges
give us the possibility to evaluate the Autosubst compiler against other tools.

The POPLMark challenge proposes to show type safety of System Fwith subtyping and
proposes four key areas: binders, induction principles, experimentation, and compo-
nent reuse. In this thesis, we focus on binders and component reuse only. Three of
the four solutions to the full POPLMark challenge use de Bruijn syntax. All are shorter
than the HOAS solution in Twelf with 4500 lines, with line counts ranging between 830
(for Needle&Knot) and 2500. Still, except for one solution, all solutions require users to
generate manual substitution boilerplate, and even the one exception applies substitu-
tion lemmas manually. Save one exception, all solutions further use adapted definitions
and define pattern matching to yield the result of an instantiation and not the instantia-
tion itself; the solutions hence avoid variadic substitution altogether. In this thesis, our
ambition is to show how to reason automatically with variadic syntax in a more direct
manner.

The POPLMark Reloaded challenge [3, 4] extends the POPLMark challenge with
proofs with Kripke-logical relations [77] of strong normalisation for the simply-typed
λ-calculus. It poses several new challenges concerning anti-renaming lemmas and
intrinsically typed syntax.

Both challenges highlight the need for modular solutions and the need for component
reuse. Still, we are not aware of any solution to either challenge that does not have to

1.2. Overview 9

copy-paste definitions and proofs. Approaches to truly modular syntax either build in
a layer of indirectness or require dramatically changed proofs [19, 37, 66, 79, 101].

Significance for this thesis. To evaluate the Autosubst compiler, we need both suit-
able evaluation criteria, and a suitable set of proofs. In an ideal case, this set contains
standard proofs done with other approaches as well.

For suitable evaluation criteria, we follow the POPLMark challenge [12], which sug-
gests three criteria to evaluate a formal development: conciseness, the cost of formalisa-
tion compared to a proof by hand; transparency, the deviation of a formalisation com-
pared to a proof by hand; and accessibility, the entry cost of a formalisation.

For the proofs, we choose a mixture of substitution-heavy proofs and benchmark prob-
lems. The main focus is on the substitutivity of different type-theoretic constructions,
i.e. how instantiation behaves on functions, inductive predicates, and inductive types.
Our proofs include substitutivity of reduction, preservation, weak head normalisation,
strong normalisation with Kripke-style logical relations [77] in two styles, decidability
of declarative equivalence, and modular proofs of strong normalisation.

During the development of the POPLMark Reloaded challenge, the author of this thesis
has developed the formal proofs for de Bruijn syntax and de Bruijn substitutions and
helped to formalise soundness of Raamsdonk’s characterisation of strong normalisation
to the usual definition of strong normalisation.

In this thesis, we moreover present a practicable approach for modular syntax based
on injections and fixpoints of functors. In a sense, this is an adaption of Swierstra’s
Data Types à la Carte [109] to a proof assistant restricted to positive types. This ap-
proach scales to modular proofs of strong normalisation for a λ-calculus with boolean
and arithmetic expressions. Our compiler hence also offers support for modular syntax.

1.2 Overview

Except for the preliminaries on the Coq proof assistant in Chapter 2, this thesis is split
into three parts: In the first part, we describe the theory behind Autosubst with for-
malised and mechanised results on the pure σSP-calculus (Chapters 3 – 4). In the sec-
ond part, we then develop best practices and equational theories for a variety of for-
mal systems. We integrate these into the Autosubst compiler which translates from an
HOAS-like specification to a type-theoretic interpretation (Chapters 5 –8). Finally, we
present a range of case studies adapted to de Bruijn substitutions (Chapters 9 – 11).

Part 1. In Chapter 3 we recall pure and scoped de Bruijn algebras on the example of
the λ-calculus. This yields the base for a first discussion on the reasoning principles on
syntax and the necessary substitution boilerplate.

For the particular case of the λ-calculus, we justify our choice: In Chapter 4 we recall

10 Introduction

the pure σSP-calculus and that it is a sound and complete model for equality on the de
Bruijn algebra of the λ-calculus (Schäfer et al. [99]). We complement these results with
a mechanised proof of confluence and termination of the σSP-calculus, based on and
simplifying a paper-based proof by Curien et al. [30].

Part 2. In this chapter, we describe the developed best practices for syntax with bin-
ders.

In Chapter 5, we present the specification language, a form of higher-order abstract syn-
tax called EHOAS.

In Chapter 6, we show how to construct de Bruijn algebra together with the correspond-
ing equational rewriting lemmas for syntax with first-class renamings, polyadic syntax,
many-sorted syntax, syntax with first-order binders, syntax with functors, and variadic
syntax. Each extension was carefully designed to satisfy the correct equational proper-
ties.

In Chapter 7, we introduce a way to handle modular syntax in Coq, based on injections
and functors. We generate modular de Bruijn algebra and show how to automate this
support.

In Chapter 8, we introduce a compiler called Autosubst, a generic way to define the
corresponding de Bruijn algebra for a custom specification.

Part 3. Last, we evaluate our approach empirically. We present a set of substitution-
heavy proofs and benchmarks, adapted to de Bruijn substitutions.

In Chapter 9 we start with simple proofs for substitutivity of reduction and type preser-
vation for both the monadic and variadic λ-calculus. We then continue with weak head
normalisation and two variants of strong normalisation proofs: one via Schäfer’s ex-
pression relation, and one via Raamsdonk’s characterisation of strong normalisation.
We extend these proofs in a modular way to a λ-calculus with boolean and arithmetic
expressions. We further give a mechanised proof that definitional equivalence and al-
gorithmic equivalence are equivalent.

In Chapter 10 we present a concise, transparent, and accessible proof of type soundness
of System F with subtyping and records, also known as the POPLMark challenge. For
patterns, this proof assumes the existence of pattern typing and pattern matching, two
substitution-independent definitions. These proofs require many-sorted syntax, func-
tors, and variadic binders.

In Chapter 11 we give a concise overview of other developments using Autosubst, in-
cluding a summary of a development of large parts of the operational and denotational
semantics of call-by-push-value [71].

1.3. Supporting Publications 11

1.3 Supporting Publications

This thesis is based on the following previous publications:

[62] Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Autosubst 2: Towards reasoning
with multi-sorted de Bruijn terms and vector substitutions. In Proceedings of the
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP
’17, pages 10–14. ACM, 2017

[64] Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Binder aware recursion over well-
scoped de Bruijn syntax. In Proceedings of the 7th ACM SIGPLAN International Con-
ference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA, USA, January 8-9,
2018, pages 293–306, 2018

[98] Steven Schäfer and Kathrin Stark. Embedding higher-order abstract syntax in type
theory. In Abstract for Types Workshop, June 18 – 21 2018

[108] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoningwithmulti-
sorted de Bruijn terms and vector substitutions. In Proceedings of the 8th ACM SIG-
PLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais,
Portugal, January 14-15, 2019, pages 166–180, 2019

[45] Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. Call-by-push-
value in Coq: operational, equational, and denotational theory. In Proceedings of
the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP
2019, Cascais, Portugal, January 14-15, 2019, pages 118–131, 2019

[4] Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto
Momigliano, Steven Schäfer, and Kathrin Stark. POPLMark Reloaded: Mech-
anizing proofs by logical relations. Journal of Functional Programming, 29:e19,
2019

[43] Yannick Forster andKathrin Stark. Coq à la carte - a practical approach tomodular
syntax with binders. In Proceedings of the 9th ACM SIGPLAN International Confer-
ence on Certified Programs and Proofs, CPP 2020, New Orleans, USA, January 20–21,
2020, January 2020. To appear

The central publications concerning this thesis are [62] and [108]. In [62], we sketch the
redesign of Autosubst implemented as a one-phase compiler and introduce vector sub-
stitutions with a sketch of the equational theory online. The paper also introduces the
idea to use higher-order abstract syntax as a specification language. In [108], we extend
the previous results with an intermediate representation of abstract proof terms, which
allows for scoped syntax [18] and proof assistants other than Coq. Section 6.4 is based
on and reuses parts of the respective descriptions in [62, 108]. The motivation for first-
class renamings in Section 6.7.1, the motivation for vector substitutions in Section 6.7.3,
and Chapter 8 reuses large parts of [108]. Part 1 of the POPLMark challenge was first

12 Introduction

presented in [108] and we reuse parts of this description in Section 10.1 and the evalu-
ation in Section 10.4.1. The case study of algebraic equivalence was first mentioned in
[108].

Another central publication is [43], in which we introduce modular syntax. The ex-
ample specification for modular syntax in Chapter 5 is adapted from this publication,
Chapter 7 and Section 8.4 largely reuse parts of the corresponding description in [43].
The case study on a modular proof of strong normalisation reuses the one of [43] and
was developed by the author of this thesis.

The description of strong normalisation via Raamsdonk’s characterisation in Section 9.6
and the adaption to de Bruijn substitutions is based on the respective description in the
POPLMark Reloaded challenge originally posed by Abel, Momigliano, and Pientka [3].
Abel et al. [4] then extend the description and compare three solutions, of which the
author of this thesis has contributed one. In contrast to the original description, in this
thesis, we use a scoped (instead of intrinsically typed) representation.

Published results not appearing in the thesis. There are further published results
which are not directly part of the thesis, but have influenced the design of Autosubst:

In [45], we formalise large parts of the meta-theory of call-by-push-value (CBPV). As
CBPV is a subsuming paradigm for both call-by-name and call-by-value, many meta-
theoretical results (weak and strong normalisation, confluence, a denotational seman-
tics) can be transported to call-by-name and call-by-value calculi. This development
was well-suited to test Autosubst’s practicality for mutual inductive syntax and the in-
terplay of different formal systems. It further shows that Autosubst suffices for many
more areas of mechanising meta-theory. This extension is not yet part of Autosubst.

Coq’s generated induction and recursion principles give the first-order reasoning prin-
ciple only. However, the binding discipline is implicit in the first-order syntax. Our
approach to binder-aware recursion in [64] is based on work of Allais et al. [7]. We ex-
tend this solution to mutual inductive sorts and to not only state but also reason about
traversals. We introduce the notion of lifting, which simplifies and generalises previous
proofs.

In a following abstract [64], we give a sketch how to support full higher-order abstract
syntax [83] with substitutions. If implemented, this would provide, for example, con-
text renaming and context morphisms for type systems.

Unpublished results. The mechanised proof of convergence is not published yet.

Since the above publications, EHOAS we extended with support for functors and vari-
adic syntax. No previous publication introduced EHOAS in this grade of detail. The
description of the dependency analysis and the generation of abstract proof terms has
been thoroughly extended; it further covers the handling of the new syntactic systems.

1.4. Contributions 13

Regarding the compiler, the published version of Autosubst [108] already handles
polyadic syntax and first-class renamings, but we never explain its generation in
detail. The handling of first-class renamings, functors, and variadic syntax are newly
implemented in this thesis.

For modular syntax, the example was changed to the instantiation with renamings and
substitutivity. The section describing the modular de Bruijn algebra corresponding to a
λ-calculus with boolean and arithmetic expressions is entirely new.

Part B of the POPLMark challenge is developed newly for this thesis.

1.4 Contributions

The main contributions of this thesis are as follows:

• We give a formalised and mechanised proof that reduction in the σSP-calculus is
terminating and confluent, following and simplifying a proof by Curien et al. [30].
We hence justify the use of the rewriting method in Autosubst.

• We introduce EHOAS, a natural specification language for syntax with binders.

• We present Autosubst, a compiler for specifications of syntactic systems which
supports modular de Bruijn syntax in the Coq proof assistant – both for pure and
scoped de Bruijn syntax.

• We show how to handle polyadic syntax and first-class renamings in a de Bruijn
algebra.

• We present vector substitutions, a new way to reason about many-sorted syntax
with various sorts of variables in a principled way.

• We give and automatically generate simplified de Bruijn algebras for syntax with
first-order binders only.

• We introduce new primitives and reasoning principles for de Bruijn substitutions
with variadic binders.

• We show how to combine Autosubst and modular syntax with a variant of Swier-
stra’s Datatypes à la Carte approach [109]. Our approach works in a type theory
requiring inductive data types to be strictly positive.

• Several Coq developments demonstrate the usefulness of our tool.

Among others, we present concise, transparent, and accessible proofs of strong
normalisation for the simply-typed λ-calculus (one via a variant of Girard et al.
[51], one via Kripke-style logical relations [4] and via an intermediate inductive
predicate following van Raamsdonk et al. [115]).

14 Introduction

• We give the first truly modular proof of strong normalisation for a λ-calculus with
boolean and arithmetic expressions.

• Under the assumption of pattern typing and pattern matching with suitable prop-
erties, we give a solution to the POPLMark challenge, which is to show type safety
for System F with subtyping, records, and pattern matching. To our best knowl-
edge, this is the first solution with de Bruijn substitutions.

1.4.1 Mechanisation in Coq

Unless stated otherwise, all statements are formalised in the Coq proof assistant [111].

Whenever applicable, the lemmas in the thesis are linked with the Coq code. The ac-
companying development is available online:

www.ps.uni-saarland.de/~kstark/thesis.

The Autosubst compiler can be found online at the same address:

www.ps.uni-saarland.de/~kstark/thesis.

https://www.ps.uni-saarland.de/~kstark/thesis
https://www.ps.uni-saarland.de/~kstark/thesis

Chapter 2

Preliminaries

We beginwith a short description of the underlying type theory for the remainder of the
thesis, the polymorphic cumulative Calculus of Inductive Constructions [26, 27, 82, 113]
and the Coq proof assistant [111]. Certain axioms simplify our constructions, discussed
in Section 2.2.

2.1 The Coq Proof Assistant

The Coq proof assistant [111] is our tool of choice to reason in this thesis. Coq is a
mature and actively developed proof assistant with a solid user base.

Coq implements an intensional type theory with (mutual) inductive data types [27,
40, 82], dependent types, an infinite, cumulative hierarchy of types, Type, and an im-
predicative universe of propositions, Prop. It thus provides all building blocks for pure
and scoped de Bruijn syntax. Its usage as a proof assistant is justified by the Curry-
Howard Correspondence [58, 117], a deep connection between logic and programming
languages: propositions correspond to types, proofs correspond to programs, and proof
normalisation corresponds to the evaluation of programs. As a consequence, proof
checking is reduced to type checking.

Coq supports a wide range of features to simplify interactive theorem proving that we
use throughout this thesis: Notations, type classes [105], rewriting, and hint databases.
Most importantly, Coq supports custom tactics [36]. Tactics dramatically simplify repet-
itive proofs, which are common in the mechanisation of programming languages.

Functions and their compositionwill play an important role. Wewrite σ≡ τ and say that
σ and τ are equivalent if σ and τ are point-wise equal, i.e. ∀x.σ x = τ x. Throughout this
thesis, we write _ ◦ _ : (A→ B)→ (B→ C)→ (A→ C) to denote forward composition
of functions, different to common use.

Similar to custom data types in programming languages, Coq allows inductive types
for creating new types. For example, the inductive type of natural numbers describes

16 Preliminaries

the smallest type which can be constructed with the following two rules:

n ∈ N : = 0 | 1+ n

indicating that a natural number can be either zero or the successor of another natural
number. Coq provides elimination and induction principles to define functions and
proofs over inductive types.

Coq supports the usual logical connectives via inductive predicates: Truth >, falsity ⊥,
disjunction X∨Y, conjunction X∧Y, and existential quantifiers ∃x.X. Note that universal
quantification is an internal definition.

An option over a typeX, writtenO(X), represents an optional value of typeX, with either
the empty option ∅ or bxc, the option with an element x of the original type X.

Coq also allows type constructors. For example, we represent lists L : Type → Type as
the smallest type satisfying:

nil : L(X)
x : X xs : L(X)
x · xs : L(X)

We can write structurally recursive functions over an inductive type. For example, we
write a function xsn : N→ L(X)→ O(X) that yields the nth element of a list, if available:
Fixpoint nth (n : N) (xs : L x) :=
match n, xs with
| 0, x · xs⇒bxc
| 1 + n, x · xs⇒ nth n xs
| _ ⇒∅
end.

Note that as an over-approximation all functionsmust be structurally recursive to ensure
consistency of the logic. This restriction will influence our definition of instantiation.

Coq allows dependent types, i.e. types indexed by values. Further, inductive types can
be indexed by the value of another type, i.e. Coq allows families of inductive types. For
example we can index lists with their lengths, i.e. define vectors Vp (X) :

nil : V0 (X)
x : X xs : Vn (X)

x · xs : V1+n (X)

Sets. We represent sets {x : X | P x} as predicates P : X → Prop. This representation
allows a direct definition of the set-theoretic connectives.

2.2 Axioms

Because Coq is a constructive type theory, certain statements assumed in classical math-
ematics are not provable, i.e. the axiom of excluded middle, X ∨ ¬X. However, these

2.2. Axioms 17

statements can be assumedwithout compromising the consistency of the logic. We out-
line the assumptions used throughout the thesis.

Functional Extensionality states that two functions f, g : X → Y are equal if and only if
they coincide at all arguments, i.e. ∀x.f x = g x.

Functional extensionality does not hold inCoq. However, functional extensionality does
not yield additional proof power, i.e. is conservative over a version without functional
extensionality [57]. We assume functional extensionality in our later rewrite tactic (see
Chapter 8).

Part I

De Bruijn Syntax and Sigma Calculi

Chapter 3

Lambda Calculus with de Bruijn Syntax

In this chapter, we recall how to realise the λ-calculus with de Bruijn syntax [33]. Most
interesting is instantiationwith substitutions and the syntactic rewriting lemmas on this
representation. Besides an introduction to the handling of de Bruijn syntax, this chapter
shows the substitution boilerplate a practical realisation of a formal systemwith binders
requires in a general-purpose proof assistant. All lemmas proven in this chapter are also
generated automatically by Autosubst.

Let us start with a named representation of the λ-calculus due to Church [25]:

s, t ∈ tm : = var x | app s t | λx.s

The λ-calculus consists of variables var x of an infinite namespace, functions or abstrac-
tions λx.s, and applications app s t. Abstractions bind a new variable x and proceed
with a function body s in which this new variable might appear.

We usually want to identify terms which only differ in the chosen names of bound vari-
ables, i.e. are α-equivalent:

λx.x (λy.y x) =α λy.y (λz.z y)

This is crucial for the central notion of instantiation sxt , which states that each occurrence
of the variable x in s is replaced by the term t. For the intended meaning, we have
to avoid the capture of variables. This might require to rename variables, and hence
implicitly uses α-equivalence. For example,

(app (λ z.z x) (λ x.x))x(λx.zx) = app (λy.y (λx.z x)) (λ x.x).

Instantiation is used in the central definition of reduction, called β-reduction:

app (λ x.s) t� sxt

In Church’s representation, he assumes a capture-avoiding definition of instantiation to
be given, together with certain properties. In a proof assistant, we have to define these
for a self-contained representation.

22 Lambda Calculus with de Bruijn Syntax

Unnamed syntax, introduced by de Bruijn [33], solves this problem with a simple idea:
Instead of explicit names, variables are represented by natural numbers n : N and refer
to the nth enclosing binder. Hence, α-equivalence collapses to syntactic equality: Both
λx.x (λy.y x) and λy.y (λz.z y) are represented by λ.0 (λ.0 1).

The design space to define instantiation is big, and the exact definition has an enormous
impact on the practicality of the approach. In this thesis, we follow de Bruijn [33] and
use de Bruijn substitutions σ, also called parallel substitutions, that replace all vari-
ables at once and hence are represented by functions σ : N → tm. The exact definition
uses the primitives of the σ-calculus [2] due to an idea of Schäfer et al. [99]. Together,
terms and substitutions of the λ-calculus form a two-sorted algebra, called the de Bruijn
algebra [99].

As Coq is restricted to structural recursion, we followAdams [5] and first define instan-
tiation with renamings, i.e. substitutions which only rename variables.

In the next step, we recall the syntactic rewriting lemmas to reason on the de Bruijn
algebra of the λ-calculus. These include that identity substitutions preserve identity,
that instantiation is composable, and that instantiation is extensional. As an example,
we show that β-reduction is substitutive.

In the second part of this chapter, we change to a scoped variant of de Bruijn syntax
due to Bird and Paterson [18] and previously used with the primitives of the σ-calculus
in [97]. Intuitively, each term is indexed by its scope. Scoped syntax simplifies the usage
of de Bruijn syntax, since it yields an additional layer of safety: As all terms are indexed
by their scope, missing shiftings can be detected by Coq’s type checker.

While the type of a term changes to a type family, i.e. tm : N→ Type, almost everything
else remains unchanged: We use elements of the canonical finite type instead of natural
numbers, and a scoped counterpart of all primitives. Similar to the pure case, we define
a scoped de Bruijn algebra corresponding to the scoped λ-calculus.

3.1 Pure de Bruijn Algebra

In de Bruijn syntax [33], variables are represented by natural numbers:

s, t ∈ tm : = var x | app s t | λ.s x ∈ N

A variable x implicitly refers to the xth enclosing binder. Each abstraction λ.s implicitly
binds a new term and changes previous references, i.e. free variables in λ.s and s have
a different interpretation:

s 0 1 2

λ.s 0 1 2 3
. . .

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#tm

3.1. Pure de Bruijn Algebra 23

While in λ.s, 0 refers to the binder of the new abstraction, 1+n refers to the free variable
which is referred to as n in only s. We use the point after a binder, e.g. λ.s as a universal
notation to highlight a scope change. Here are some examples of terms in de Bruijn
syntax:

λx.λy.y(λx.x) ∼ λ.λ.0(λ.0)

λx.z x ∼ λ.(1+ z) 0

Note that in the second term, we had to lift z by 1 to avoid capture by the new binder.

The scope change of a binder such as abstraction will be the main challenge in the re-
maining chapter. Note that it affects all variables in the body of the function, and hence
multiple variables in parallel.

3.1.1 Instantiation

Let us recall the example of the introduction,

(app (λ z.z x) (λ x.x))x(λx.zx) = app (λy.y (λx.z x)) (λ x.x)

with arbitrary free variables x and z. In de Bruijn syntax, we hence have:

(app (λ.0 (1+ x)) (λ.0))x(λ.z0)
!
= app (λ.0 (λ.(2+ z) 0)) (λ0.0)

All free variables in the replaced term have to be increased each time we traverse a
binder: we have to rename all variables at once. Moreover, previously bound terms
have to remain unchanged.

For de Bruijn syntax, we hence generalise capture-avoiding instantiation with a single
variable x, sxt , to an instantiation s[σ] with a de Bruijn substitution σ acting on all free
variables at once. A de Bruijn substitution is hence represented by a function σ : N→ tm.
We can think of a de Bruijn substitution as an infinite stream of terms.

Instantiation makes the implicit binding discipline observable. Most importantly, to re-
place the correct variable and avoid capture, we require substitution primitives which
enable us to account for the implicit scope change. Already de Bruijn uses such primi-
tives in his seminal paper [33].

A renaming is a certain subclass of substitutions and replaces an index with indices
only,1 i.e. is represented by a function ξ : N→ N. Every renaming ξ can be transformed
into a substitution by forward composition with the variable constructor, ξ ◦ var. If ap-
parent from the context, wemight omit this composition by abuse of notation, i.e. might
write [ξ]. Renamings play an essential role both in the definition of instantiation and
later proofs.

We use a range of canonical substitution and renaming primitives, inspired by the σ-
calculus [2]:

1Note that in contrast to other representations, renamings have to be neither injective nor bijective.

24 Lambda Calculus with de Bruijn Syntax

1. Identity, id : N→ N, a renaming defined by idn := n.

2. Shifting, ↑ : N→ N, a renaming defined by ↑n := 1+ n.

3. Extension, s · σ, which extends a stream σ : N → tm with a new element s : tm at
the first position:

(s · σ) 0 := s
(s · σ) (1+ n) := σn

We also repeatedly use forward composition of functions, f ◦ g. Note that this is not
composition of substitutions, whichwould not even pass the type checker. Composition
binds stronger than expansion and is left-associative.

Our next goal is capture-avoiding instantiation with a de Bruijn substitution, s[σ]. We
define instantiation mutually recursive with the forward composition of substitutions,
σ ◦ [τ]:

(var x)[σ] = σx (σ ◦ [τ]) x = (σx)[τ]

(app s t)[σ] = app (s[σ]) (t[σ])

(λ.s)[σ] = λ.s[⇑ σ] with ⇑ σ = var 0 · σ ◦ [↑]

Instantiation traverses the term homomorphically. In the case of a variable, we apply
the respective substitution; for both application and abstraction, instantiation with σ is
pushed into the subterms. Moreover, for abstraction and hence the traversal of a binder,
we have to adapt the substitution according to the implicit scope change via the lifting ⇑
σ.

This lifting consists of two parts. First, ⇑ σ should not change any reference to 0, we
hence extend σ with var 0. Second, free variables change their meaning under binders
and we have to avoid captured variables. We thus require a scope change, realised via
the post-composition with shifting, σ ◦ [↑]. We also say that σ is shifted.

For example, instantiation with shifting yields the following equation:

(app (λ.app (var 0) (var 1)) (var 0))[↑] = app (λ.app (var 0) (var 2)) (var 1)

Implementation. The definition of instantiation is intertwined with forward compo-
sition, and hence is not structurally recursive. As a consequence, Coq forbids the def-
inition as-is. We follow Adams [5] and streamline instantiation with substitutions via
instantiation with renamings, written s〈ξ〉:

1. We define the composition of renamings ξ ◦〈ζ〉 := ξ ◦ ζ, which is forward function
composition. We can then define the lifting of a renaming as:

⇑∗ ξ := 0 · ξ ◦ 〈↑〉

https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#id
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#shift
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#scons
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#upRen_tm_tm

3.1. Pure de Bruijn Algebra 25

2. We define instantiation with a renaming, s〈ξ〉, which uses ⇑∗ instead of ⇑ .

3. We define the composition of a substitution and instantiation with a renaming:

(σ ◦ 〈ξ〉) x := (σx)〈ξ〉.

We then define the lifting of a substitution as ⇑ σ := var 0 · σ ◦ 〈↑〉.

4. We define instantiation with a substitution, using ⇑ in the case of abstraction.

5. We define the composition of substitutions, σ ◦ [τ], via the above equations.

Once we have instantiation, we can express β-reduction using only the previously de-
clared primitives:

app (λ.s) t� s[t · var] (3.1)

We replace var 0with t and then leave the remaining variables unchanged by extension
with the variable constructor var which acts as identity substitution. In the further thesis,
we abbreviate t · var by t.., i.e. Equation 3.1 is represented by app (λ.s) t� s[t..].

3.1.2 Equational Reasoning on de Bruijn Syntax

Once defined, our next goal is to reason about the equality of syntactic expressions.
Assume for example, that we want to show that β-reduction is substitutive, i.e. is stable
under instantiation with substitutions:

(app (λ.s) t)[σ]�(s[t · var])[σ]

This requires us to solve an equation of the form:

s[⇑ σ][t[σ]..] = s[t..][σ]

or without notation:
s[var 0 · σ ◦ [↑]][t[σ] · var] = s[t · var][σ].

We require several substitution properties to prove this equation. In the following, we
show that instantiation with the identity substitution yields the original terms, substi-
tutions can be composed, instantiation with renamings and substitutions behave anal-
ogously, and instantiation is extensional. Together this forms a complete, convergent
rewriting system.

Equational Theory of the Substitution Primitives

We start with equations on the substitution primitives, hereafter referred to as the inter-
action laws. Recall that we write f≡g to say that two functions f and g are equivalent.

Fact 3.1 (Interaction Laws).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#ren_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#up_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#step_beta
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html

26 Lambda Calculus with de Bruijn Syntax

1. id ◦ f≡ f≡ f ◦ id identity

2. (f ◦ g) ◦ h≡ f ◦ (g ◦ h) associativity

3. (s · σ) ◦ f ≡ (f s) · (σ ◦ f) distributivity

4. ↑ ◦ (s · σ)≡σ interaction

5. 0 · ↑ ≡ id η-identity

6. (σ 0) · (↑ ◦ σ)≡σ η-law

Proof. The first two equations, identity and associativity, followdirectly by the definition
of forward composition. Distributivity, η-identity, and the η-law follow by case analysis
on the function argument, while interaction follows directly by the definition of expan-
sion. �

In our later implementation, all these laws are stated parametically in the sort. We can
so omit the automatic generation of these primitives.

Monad Laws

The most difficult proof is to show that instantiation is a monad as shown by Altenkirch
and Reus [8], i.e.

s[var] = s right identity
s[σ][τ] = s[σ ◦ [τ]] compositionality

We refer to these laws as themonad laws.

The proof of both properties will be by induction on s. Cases where we traverse a binder
will require special care and a so-called lifting lemma.

Right Identity. We start with the proof that instantiation with the variable constructor
yields the original term. In general, the proof follows the structure of the term: Instan-
tiation on all subterms again yields the original subterm. Things get involved if we go
under binders, since we have to show that the lifting of the variable constructor is still
equivalent to the variable constructor. We therefore split the proof into the following
two lemmas:

Fact 3.2 (Identity Lifting). ⇑ var ≡ var .

Proof. Wehave to show that (⇑ var)n = var n = n. This follows directly by a case analysis
on n. �

Lemma 3.3 (Right Identity). s[var] = s.

https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#scons_comp
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#scons_eta_id
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#scons_eta
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#upId_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#idSubst_tm

3.1. Pure de Bruijn Algebra 27

Proof. By induction on s. In the variable case, the claim follows directly by the defini-
tion of identity; for application, it follows using the inductive hypothesis. To apply the
inductive hypothesis for abstraction, we have to show that ⇑ id = id which follows with
functional extensionality and Lemma 3.2. �

Note that as given, we assumed functional extensionality. We can omit functional ex-
tensionality by strengthening the statement to:

∀σ.σ≡ var → s[σ] = s

in which case Lemma 3.2 is identical to the required statement for abstraction.
Lemma 3.3 still holds choosing σ := var. The same works for the remaining proofs
(Lemma 3.4, Lemma 3.7, Lemma 3.8), where we implicitly assume that the statement
is given as above, but state (and prove) it in its simplified form. Autosubst proves the
statement in its strengthened form.

Compositionality. We continue with compositionality. Compositionality requires a
total of 8 lemmas.

Lemma 3.4 (Compositionality).

1. (⇑∗ ξ) ◦ (⇑∗ ζ)≡ ⇑∗ (ξ ◦ ζ)

2. s〈ξ〉〈ζ〉 = s〈ξ ◦ 〈ζ〉〉

3. (⇑∗ ξ) ◦ (⇑ τ)≡ ⇑ (ξ ◦ τ)

4. s〈ξ〉[τ] = s[ξ ◦ τ]

5. (⇑ σ) ◦ (⇑∗ ζ)≡ ⇑ (σ ◦ 〈ζ〉)

6. s[σ]〈ζ〉 = s[σ ◦ 〈ζ〉]

7. (⇑ σ) ◦ [⇑ τ]≡ ⇑ (σ ◦ [τ])

8. s[σ][τ]≡ s[σ ◦ [τ]].

Proof. (2), (4), (6), and (8) are all proven by induction on s, using the respective lifting
lemma (1), (3), (5), and (7) in the case of abstraction.

The lifting lemmas are where the action happens: (1) and (3) follow directly by case
analysis on the argument. (5) and (7) require a case analysis on the argument as well;
in each case, both sides reduce to var 0 for n = 0. The case where n = 1 + n ′ gets more
involved. We here cover only (7), (5) is similar.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#compSubstSubst_tm

28 Lambda Calculus with de Bruijn Syntax

We show that

((⇑ σ) ◦ [⇑ τ])(1+ n) = ((var 0 · (σ ◦ 〈↑〉) ◦ [var 0 · (τ ◦ 〈↑〉)])(1+ n) ⇑
= ((σ ◦ 〈↑〉)n)[var 0 · (τ ◦ 〈↑〉)] ·
= (σn)〈↑〉[var 0 · (τ ◦ 〈↑〉)]) ◦
= (σn)[↑ ◦ (var 0 · (τ ◦ 〈↑〉))]) (4)
= (σn)[τ ◦ 〈↑〉]) interaction
= (σn)[τ]〈↑〉 (6)
= ((σ ◦ [τ]) ◦ 〈↑〉)n ◦
= (var 0 · (σ ◦ [τ]) ◦ 〈↑〉)(1+ n) ·
= (⇑ (σ ◦ [τ]))(1+ n) ⇑

Note that the proof required both (4) and (6). In (5), we require (2) instead of (4). �

Even if the proof needs several equations, it follows an easy structure. This structure
can be adapted to more complex systems.

Equational Theory of λ

The above equations do not suffice to solve all equations. We additionally prove the
following statements, called the supplementary laws:

Fact 3.5 (Supplementary Laws).

1. var ◦ [σ]≡σ left identity

2. (σ ◦ [τ]) ◦ [θ]≡σ ◦ [τ ◦ [θ]] compositionality

3. σ ◦ [var]≡σ right identity

Proof. Left identity follows directly by the definition of instantiation and composition,
while the functional variants of compositionality and right identity follow with the mo-
nad laws (Lemma 3.3 and Lemma 3.4). �

Wewill abbreviate these laws by left identity, right identity, and compositionality. Note
that all these are equivalences. To rewrite with these equivalences with the standard
rewrite tactic of Coq, we then require functional extensionality.

See Figure 3.1 for a full overview of the equational theory of the untyped λ-calculus. To-
gether, these syntactic equation lemmas form a convergent rewriting system, see Chap-
ter 4.

Let us now return to our proof that β-reduction is substitutive:

Lemma 3.6. β-reduction is substitutive.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#varL_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#compComp_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#instId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#step_inst

3.1. Pure de Bruijn Algebra 29

(var x)[σ] = σx

(app s t)[σ] = app (s[σ]) (t[σ])

(λ.s)[σ] = λ.s[var 0 · σ ◦ [↑]]
s[var] = s

s[σ][τ] = s[σ ◦ [τ]]
var ◦ [σ]≡σ

(σ ◦ [τ]) ◦ [θ]≡σ ◦ [τ ◦ [θ]]
σ ◦ [var]≡σ

id ◦ f≡ f≡ f ◦ id

(f ◦ g) ◦ h≡ f ◦ (g ◦ h)
(s · σ) ◦ f ≡ (f s) · (σ ◦ f)
↑ ◦ (s · σ)≡σ

0 · ↑ ≡ id

(σ 0) · (↑ ◦ σ)≡σ

Figure 3.1: Equational theory of λ.

Proof. We have to show:

s[⇑ σ][t[σ]..] = s[var 0 · σ ◦ 〈↑〉][t[σ] · var] ⇑
= s[(var 0 · σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] compositionality
= s[(var 0)[t[σ] · var] · (σ ◦ 〈↑〉) ◦ [(t[σ] · var)]] distributivity
= s[(var 0)[t[σ] · var] · σ ◦ (〈↑〉 ◦ [t[σ] · var])] associativity
= s[(t[σ] · var) 0 · (σ ◦ [↑ ◦ (t[σ] · var)])] compositionality
= s[t[σ] · (σ ◦ [var])] ·, interaction
= s[t[σ] · σ] right identity
= s[t[σ] · (var ◦ [σ])] left identity
= s[(t · var) ◦ [σ]] distributivity
= s[t · var][σ]. compositionality

�

While this proofmight seemdaunting, note that in all stepsweused the equations in Fig-
ure 3.1 from left to right. Autosubst will hence prove the above equation automatically.
In the next chapter, we explain why this is enough.

Extensionality, Renamings, and Substitutions

We additionally prove that instantiation with pointwise equivalent substitutions leads
to equal terms.

Lemma 3.7 (Extensionality).

1. If σ≡ τ, then ⇑ σ≡ ⇑ τ.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#ext_tm

30 Lambda Calculus with de Bruijn Syntax

2. If σ≡ τ, then s[σ] = s[τ].

Proof. (2) follows by induction on s, using the lifting lemmas in the case of abstrac-
tion. The lifting lemma holds by case analysis on the respective argument. Note that
extensionality for instantiation with substitutions does not rely on extensionality for in-
stantiation with renamings. �

We claimed that every renaming could be translated into a substitution. We also prove
this claim formally:

Lemma 3.8 (Coincidence).

1. ⇑∗ ξ ◦ var≡ ⇑ (ξ ◦ var)

2. s[ξ ◦ var] = s〈ξ〉

Proof. The first statement, (1), is proven by case analysis on the function argument.
Then, (2) follows by induction on s using (1) in the case of abstraction. �

The Autosubst compiler will automatically generate all these lemmas.

3.1.3 De Bruijn Algebra

Together terms and substitutionswith the suggested substitution primitives form a two-
sorted algebra, the de Bruijn algebra [99].

De Bruijn algebras will provide the semantics for our later EHOAS specifications. We
will see how to extend the de Bruijn algebra of the λ-calculus to more complex syntactic
sorts in Chapter 6.

One might ask whether all equations can be proven via a systematic proof method,
e.g. whether there exists a finite set of equations and equality is complete for this set
of equations [13]. Our reasoning in the next chapter will mainly revolve around this
question.

3.2 Scoped de Bruijn Algebra

While pure de Bruijn syntax offers a lean and elegant representation of binders, def-
initions and lemmas have to be adapted and might require technical adaptions. The
common problem is that we have to take care in which context we talk about a de Bruijn
term, and hence sometimes have to add shiftings to lift a term to the right context.

However, scoped de Bruijn syntax [18] offers a simple solution: In scoped syntax, we
annotate every term with its scope: For example, the type of terms, tmk, is indexed by
the upper bound k of free variables. We can hence use the type checking mechanism of

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_pure.html#rinst_inst_tm

3.2. Scoped de Bruijn Algebra 31

Coq, which yields type errors in the case of forgotten shiftings. Additionally, we have a
type of closed terms tm0 and can easily represent a context with n variables in it.

Consider the scoped representation of de Bruijn syntax, where we annotate subterms
with their scope, i.e. an upper bound of the free variable:

s, t ∈ tmk : = var x | app sk tk | λ.s1+k x ∈ Ik

Variables are taken from within this scope, here the finite type Ik with k elements de-
fined below. We will frequently omit the scope if a definition is parametric in the scope.
While application consists of two subterms with k free variables each, the type of ab-
straction allows an additional variable bound by abstraction: Here, the upper bound of
free variables is increased to 1+ k.

We define a canonical finite type I : N→ Type with n elements by recursion on n:
Fixpoint I (n : N): Type :=
match n with
| 0 ⇒⊥
| 1+n⇒O (I n)
end.

The definition by recursion is non-standard, but useful to recover certain definitional
equations.

We write 0I : I1+n to denote the finite element representing the natural number 0 (ac-
tually the empty option ∅ in a type I1+n), and 1I +I x : I1+n for the successor of x : In

(realised with bxc). We also directly write nI for the n-ary shifting of the empty option.

Again, a de Bruijn substitution simultaneously replaces all free variables; this time it
is represented by a function σ : Im → tmn. We can think of a substitution as a stream of
terms with lengthm. We define all the previous primitives using scoped variants:

• Identity, idn : In → In, the renaming with id x := x.

• Shifting, ↑n : In → I1+n, the renaming with ↑ x := 1I +I x.

• Extension, s ·n σ, which extends a stream σ : In → tmk with a new element s : tmk
at the first position and thus yields a stream of type I1+n → tmk:

(s · σ) 0I = s
(s · σ) (1I +I x) = σx

In the future, we omit the indices if irrelevant or clear from the context.

See Figure 3.2 for instantiation _ [_] : (Im → tmn) → tmm → tmn on the scoped λ-
calculus. Its definition is entirely analogous to its pure counterpart, it only differs in
that we use the scoped primitives. For example, shifting has the following type:

⇑ _ : (Im → tmn)→ (I1+m → tm1+n)

https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype.html#fin
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype.html#var_zero
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype.html#idren
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype.html#shift
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype.html#scons
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#up_tm_tm

32 Lambda Calculus with de Bruijn Syntax

(var x)[σ] = σx (σ ◦ [τ]) x = (σx)[τ]

(app s t)[σ] = app (s[σ]) (t[σ])

(λ.s)[σ] = λ.s[⇑ σ] with ⇑ σ = var 0I · σ ◦ [↑]

Figure 3.2: Instantiation for the scoped λ-calculus.

As before, we have to first define instantiation with renamings, where a renaming is a
function ξ : Im → In.

The scopedprimitives satisfy the same laws as their pure counterpart in Figure 3.1, given
the respective scope constraints. Additionally we can show:

Lemma 3.9 (Expansion). Let σ and τ be arbitrary substitutions on the empty domain, i.e. of
type I0 → tmn. Then, σ≡ τ.

Proof. By case analysis on the argument. As I0 is the empty type, the claim follows
immediately. �

In the future, we denote the empty substitution, expansion, by !m wherem denotes the
scope of the codomain.

Together, scoped terms and the substitution primitives given above form the scoped de
Bruijn algebra. Again, constructors and primitiveswill be the operations of this algebra.

Scoped syntax [16] thus offer the same support for substitutions as pure syntax. Its great
advantage is that it offers type safety, and so simplifies the entry-level for new users. We
will talk about this more explicitly in later sections.

It moreover offers the possibility to talk explicitly about closed terms, i.e. terms without
any variables. We can simply express closedness with the type, tm0.

3.3 Discussion

Even for de Bruijn syntax, instantiation can be defined inmanyways. In particular, there
are single-point substitutionswhich do not replace all variables at once but replace one
variable by a new term. This complicates equational reasoning because a normal form
would require to determine the order of variables.

The scope change can be handled at two places: Either directly during the binder as we
do, or we can introduce an additional lifting function which traverses the whole term
until a variable. Small differences will have a big impact on the quality of equational
reasoning. We are not aware of any completeness result of any other approach for rea-
soning on de Bruijn syntax or named syntax.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#ren_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#scons_eta
https://www.ps.uni-saarland.de/~kstark/thesis/website/unscoped.html#fin_eta
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#tm

3.3. Discussion 33

We see scoped syntax as the sweet spot betweende Bruijn syntax and intrinsically typed
syntax [16], where the type of a syntactic sort is indexed with its semantic type. It is
powerful enough to detect errors if something is wrong related to bindings. Intrinsically
typed syntax is difficult to implement for more complex syntactic systems, as it requires
inductive-recursive types [42] (which are not implemented in Coq).

Chapter 4

Pure Sigma Calculus

In the last chapter, we have introduced the pure and scoped de Bruijn algebra corre-
sponding to the λ-calculus. To prove that β-reduction is substitutive (Lemma 3.6), it
sufficed to rewrite with the equations of Figure 3.1. We now present a proof method for
solving equations on the pure de Bruijn algebra based on rewriting due to Schäfer et al.
[99]. This strategy can be generalised to arbitrary assumption-free equations between
terms.

For the remainder of the chapter, we assume that the reader is familiar with the usual
language and constructions of abstract rewriting systems. We refer to Appendix A for
an overview of the definitions, and to Baader andNipkow [13] for a gentle introduction.

To make the above claim of a proof strategy for assumption-free equations rigorous, we
first recall calculi of explicit substitutions [2, 31, 56] which offer a syntactic represen-
tation of instantiation, achieved by mutual inductive definition with expressions. The
σ-calculus [2], the first calculus of explicit substitutions, was initially developed as an
intermediate representation between the λ-calculus and its actual implementation.

A calculus of explicit substitutions consists of two parts: first, a mutual inductive type
of expressions and substitution expressions, and second, a notion of reduction, s t.
Reduction contains both the reduction behaviour of instantiation and the interaction
laws between the different substitution primitives. For example, the σ-calculus byAbadi
et al. [2], the first calculus of explicit substitutions, contains expressions for λ-terms and
a constructor for applying an instantiation. Note that we do not talk about reduction
in the λσ-calculus which additionally incorporates β-reduction; we are interested the
behaviour of instantiation only.

A range of different calculi of explicit substitutions has been developed for the λ-calculus
alone, all with varying properties of confluence and termination. The remainder of this
chapter will be based on the σSP-calculus by Curien et al. [31], a successor of the σ-
calculus which is designed to be confluent.

This calculus is particularly well-suited as a base for automation on de Bruijn algebras

36 Pure Sigma Calculus

since Schäfer et al. [99] show that reduction in the σSP-calculus is sound and complete
for the de Bruijn algebra of the λ-calculus. Using only reduction on the σSP-calculus,
we can hence prove all solvable equations between expressions. We recall the exact
definition of the σSP-calculus, reduction, and the model construction in Section 4.1 and
Section 4.2. Different to Schäfer et al. we use identity substitution as a primitive.

To use the rewriting method for substitution equations, one additionally requires con-
vergence, i.e. confluence and termination [13]. Concerning a mechanisation, Schäfer
et al. [99, p. 2] remark:

“While the verification of our decision method is not difficult (even in
Coq), a verification of the rewriting method is surprisingly complex since
the existing termination proof [...] is far from straightforward. We did not
succeed in simplifying this proof and think that a formalization with a proof
assistant is a substantial enterprise.”

Formalisation and mechanisation of both the confluence proof and the termination
proof are the focus of this chapter. As is standard, we use Newman’s Lemma [81]
(see LemmaA.4 for its Coq formalisation), which states that confluence and the simpler
local confluence, i.e. joinability after doing two single steps only, are equivalent under
the assumption of termination.

Proving local confluence is straightforward. Traditionally, local confluence is shown over
the convergence of critical pairs [13, Chapter 6][59, 69]. Such an analysis reduces the
number of reductions to examine for local confluence by removing trivial instances and
ending up with only critical pairs, i.e. overlapping instances of two rewriting rules.

The convergence of critical pairs is also the proof method chosen in the formalisation
of another calculus of explicit substitutions by Saïbi [96]. Lucky for us, we do not need
to formalise the notion of trivial and critical pairs but can use Coq’s depth-first search
with backtracking which investigates all possible derivations of reduction. Implicitly,
Coq examines the same derivations of reduction as both a critical pair analysis and the
proof for a critical pair analysis, only automatically.

For termination, the main challenge is the rule corresponding to abstraction reduction:

(λ.s)[σ] � λ.(s[0 · σ ◦ S]).

This rule introduces new symbols and thus prevents a proof by either induction on the
term structure or the usual (simplification) termination strategies, such as recursive
path orderings, Knuth-Bendix [60], or polynomial interpretations [24].

Several proofs exist in the literature. The first proof for a similar system was estab-
lished by Hardin and Laville [55] for CCL, Categorical Combinators, where the authors
prove convergence over a function that counts the appearances of possible abstraction
reductions. Compositions double the number of abstractions and create new reduc-

37

tions, which complicates the definition of this function and the resulting termination
proof.

The next proof by Curien et al. [30] uses the original σ-calculus as a base and follows
another strategy: It proves a generalisation of the theorem that for every strongly nor-
malising substitution σ, also σ ◦ S is strongly normalising, a result called preservation.
The proof requires several non-trivial generalisations. A third proof by Zantema [121]
interprets λ-terms into algebras.

Notably, there is a mechanisation in ALF closely following Curien et al. [65], but unfor-
tunately we were unable to retrieve this proof. The authors report that many theorems
needed more details than their paper-based counterpart. We base our formalisation on
the proof idea by Curien et al., but simplify the proof by adding another intermediate
level and then simplifying the proof of the core calculus. The proof is still very techni-
cal, but requires only 700 lines of code. See Section 4.8 for a detailed discussion of the
differences to both the original proof and the mechanised proof in ALF.

Proof outline of termination. Termination is split into three parts. In each part, we
reduce termination of one notion of reduction to termination of a simplified notion of
reduction. We start with the usual definition of reduction on the σSP-calculus.

In a first step, we note that certain operations behave similarly to reduction, e.g. ap-
plications and extension, composition and instantiation. We simplify our original ex-
pressions to a unified syntaxwhere expressions and substitution expressions are unified
(Section 4.4). As every step in the original system can be simulated, strong normalisa-
tion of unified expressions implies strong normalisation of reduction.

In the next step, we separate our set of rules into projection rules, which reduce the size
of expressions, and distribution rules, propagating instantiation with substitution into
subterms (Section 4.5). Strong normalisation of both projection and distribution rules is
shown to be equivalent to strong normalisation of the subset of distribution rules alone.

Proving termination of the distribution calculus is then our final proof obligation and at
the same time, the most involved one (Section 4.6). The central notion is a preservation
theorem which states that we can add renamings at several positions without inflicting
strong normalisation. This preservation theorem is very similar to the one of Curien
et al. [30].

Finally, using Newman’s Lemma [81], we show confluence via local confluence and
termination. We end with a more detailed comparison of termination proofs in the lit-
erature (Section 4.8).

38 Pure Sigma Calculus

4.1 Syntax and Reduction

We recall the syntax of the σSP-calculus. The σSP-calculus consists of twomutual induc-
tive sorts: expressions, s, t ∈ exp, and substitution expressions, σ, τ ∈ subst:

s, t ∈ exp : = 0 | app s t | λ.s | s[σ] | vexp vexp ∈ N

σ, τ ∈ subst : = I | S | s · σ | σ ◦ τ | vsubst vsubst ∈ N

Expressions closely follow the syntax of the λ-calculus: We consider the variable 0, ap-
plications app s t, abstractions λ.s, and expression parameters vexp ranging over expres-
sions. These parameters are simply placeholders for arbitrary terms and remain un-
changed and should not be replaced with variables. They are unaffected by instantia-
tion. Additionally, an expression can be instantiated with a substitution expression s[σ].

For substitution expressions, we consider the identity substitution I, shifting S corre-
sponding to the semantic ↑, extension s ·σ, substitution composition σ ◦ τ and substitu-
tion parameters vsubst. As for the corresponding de Bruijn algebra, composition binds
stronger than expansion and is left-associative.

Themost notable difference to the de Bruijn algebra is that substitutions have a syntactic
representation. Every variable var n can be represented by the n-ary instantiation of the
variable 0 with S.

The σSP-calculus comes with a notion of reduction, s t. For simplicity, we use the
same notation for reduction on expressions and substitution expressions. See Figure 4.1
for the rules, which can be applied in an arbitrary context.

The reduction rules should seem familiar from the previous chapter: the first three rules
describe the propagation of instantiation with substitutions; from now on called vari-
able reduction, abstraction reduction, and application reduction. We moreover have
reduction rules corresponding to the monad laws and the interaction lemmas.

Axiomatic equivalence, written s≡ t and σ≡ τ, describes the equivalence closure of re-
duction. As the reduction rules can be applied in an arbitrary context, the following
lemma follows directly:

Lemma 4.1 (Congruence). Axiomatic equivalence is a congruence w.r.t. the constructors of
expressions and substitution expressions.

4.2 De Bruijn Algebra as a Model of the Sigma Calculus

As established by Schäfer et al. [99], the pure de Bruijn algebra is a semanticmodel of the
σSP-calculus. We here recall the exact model construction and the proofs of soundness
and completeness.

The denotation of expressions and substitution expressions relies on an expression as-
signment α : N → tm and a substitution assignment β : N → (N → tm) which give an

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.sigmacalculus.html#exp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.sigmacalculus.html#subst_exp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.sigmacalculus.html#equiv_axiom
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.sigmacalculus.html#star_AppL

4.2. De Bruijn Algebra as a Model of the Sigma Calculus 39

0[s · σ] s

(app s t)[σ] app s[σ] t[σ]

(λ.s)[σ] λ.(s[0 · (σ ◦ S)])
I ◦ σ σ

σ ◦ I σ

(σ ◦ τ) ◦ θ σ ◦ (τ ◦ θ)
S ◦ (s · σ) σ

s[I] s

s[σ][τ] s[σ ◦ τ]
(s · σ) ◦ τ (s[τ]) · (σ ◦ τ)

0 · S I

0[σ] · S ◦ σ σ

Figure 4.1: Reduction in the σSP-calculus, with the congruence rules omitted.

interpretation to expression and substitution parameters respectively. We then define a
denotation

J_Kα,β : exp→ tm

J_Kα,β : subst→ (N→ tm).

which is depicted in Figure 4.2.

Two expressions s and t are said to be denotationally equivalent if JsKα,β = JtKα,β for
all assignments α and β. Similarly, two substitution expressions σ and τ are denota-
tionally equivalent if JσKα,β ≡ JτKα,β for all assignments α and β. Note that we require
functional equivalence and not equality.

The de Bruijn algebra is a sound model of axiomatic equivalence, if two axiomatically
equivalent (substitution) expressions are also denotationally equivalent. In contrast,
axiomatic equivalence is said to be complete for equality on the de Bruijn algebra, if
denotational equivalence implies axiomatic equivalence.

Proving soundness is straightforward and follows by a mutual induction on reduction
for expressions and substitutions expressions using the previously established laws in
Figure 3.1:

Lemma 4.2 (Soundness). The de Bruijn algebra is a sound semantic model for the σSP-calcu-
lus.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.soundness.html#den
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.soundness.html#equiv_den
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.soundness.html#soundness

40 Pure Sigma Calculus

J0Kα,β = var 0

Japp s tKα,β = app (JsKα,β) (JtKα,β)
Jλ.sKα,β = λ.(JsKα,β)

Js[σ]Kα,β = (JsKα,β) [JσKα,β]
JvexpKα,β = αvexp

JIKα,β = var

JSKα,β = ↑ ◦ var

Js · σKα,β = (JsKα,β) · (JσKα,β)
Jσ ◦ τKα,β = (JσKα,β) ◦ (JτKα,β)

JvsubstKα,β = βvsubst

Figure 4.2: Translation from expressions (substitution expressions) to de Bruijn terms
(substitutions).

s s ′

app s t app s ′ t
t t ′

app s t app s t ′
s s ′

λ.s λ.s ′
s s ′

s[σ] s ′[σ]

σ σ ′

s[σ] s[σ ′]

s s ′

s · σ s ′ · σ
σ σ ′

s · σ s · σ ′
σ σ ′

σ ◦ τ σ ′ ◦ τ
τ τ ′

σ ◦ τ σ ◦ τ ′

Figure 4.3: Implementation of the congruence rules of reduction in Coq.

Proving completeness is considerably harder and relies on a translation into a simplified
form of expressions called normal forms. We omit this theorem here but refer to the
formalised completeness result of Schäfer et al. [99].

Theorem 4.3 (Schäfer et al. [99]). Reduction in the σSP-calculus is complete for equality in
the de Bruijn algebra.

Due to this correspondence, the meta-theoretic properties of reduction in the σSP-calcu-
lus established in the next sections have a direct influence on reasoning on mechanised
syntax in the de Bruijn algebra.

4.3 Local Confluence

We show that reduction is locally confluent, i.e. if s t and s t ′, then t and t ′ are
joinable by reduction. Recall that for the proof we naively explore all derivations of s
t and s t ′.

Hence the exact definition of the congruence closure of reduction is relevant; see Fig-
ure 4.3 for the definition as an inductive predicate as implemented in Coq.

To show that t and t ′ are joinable, we proceed by a nested inversion on the derivation
of s t and s t ′. We repeat this process for all appearing reductions until all deriva-
tions of the form s t are trivial in the sense that s is an atomic, not further decom-
posable expression. This analysis leads to 141 cases, of which 130 can be solved auto-
matically using backward reasoning (eauto) until depth 20. Coq needs to know that
axiomatic equivalence is a congruence (Lemma 4.1).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.soundness.html

4.4. Reduction to Unified Expressions 41

The remaining instances are not the critical pairs, but rather instances of the “trivial”
occurrences. If a subterm diverges to two different redexes, backwards reasoning does
not suffice. For example, we could have the case of an application app s twhere

s s ′

app s t app s ′ t
s s ′′

app s t app s ′′ t

where we want to unify app s ′ t and app s ′′ t via the inductive hypothesis. Backwards
reasoning does not suffice, but a two-line Ltac script automatically solves the remaining
11 cases.

Lemma 4.4 (Local Confluence). Reduction for the σSP-calculus is locally confluent.

Proof. By induction on one of the paths, case analysis on the second paths, using con-
gruence of axiomatic equivalence (Lemma 4.1). �

Note that implicitly our proof follows the same line as a critical pairs analysis: A criti-
cal pair analysis only reduces the number of pairs to join and removes all trivial proof
obligations. In our case, we let Coq automatically solve these cases.

4.4 Reduction to Unified Expressions

We now turn to the proof of termination of reduction. In a first step, we unify expres-
sions and substitution expressions. We hence consider the following syntax of unified
expressions uexp:

s, t ∈ uexp : = c | λ.s | (s, t) | s� t

This representation unifies operations which behave similarly to reduction, i.e. applica-
tion and extension are unified by the pair operator, instantiation and composition are
unified by unified composition �. Parameters, the identity substitution, and the shift
substitution behave all similarly to reduction and hence will all be represented by the
constant c.

We split the rules of reduction into projection rules, written s ⊃ t, and distribution
rules, short s� t; see Figure 4.4 for a definition. Both kinds of rules may be applied in
an arbitrary context. Projection projects a sub-expression s to a subexpression si and
hence decreases the size of an expression. On the other hand, distribution propagates
substitution instantiation through abstractions, pairs, and compositions. By slight abuse
of language, we usually refer to the different rules by the corresponding rule of the
original σSP-calculus.

Unified reduction is the union of these two closures:

s u t := s ⊃ t∨ s� t

We write ∗u to denote its reflexive-transitive closure, and +
u to denote its transitive

closure. Both notions preserve congruence:

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.confluence.html#equiv_locally_confluent
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sub
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#pstep
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#pstep

42 Pure Sigma Calculus

Projection (s ⊃ t)

λ.s ⊃ s
(s, t) ⊃ s
(s, t) ⊃ t
s� t ⊃ s
s� t ⊃ t

Distribution (s� t)

(s, t)� u� (s� u, t� u)

(s� t)� u� s� t� u

(λ.s)� u� λ.(s� (c, u� c))

Figure 4.4: Unified reduction for unified expressions, congruence rules omitted.

d0e = c
dapp s te = (dse, dte)
dλ.se = λ.dse
ds[σ]e = dse � dσe
dvexpe = c

dIe = c
d↑e = c

ds · σe = (dse, dσe)
dσ ◦ τe = dσe � dτe

dvsubste = c

Figure 4.5: Translation d_e : exp→ uexp from expressions to unified expressions.

Fact 4.5 (Congruence). ∗u and +
u are congruences.

Translation functions, depicted in Figure 4.5,

d_e : exp→ uexp

d_e : subst → uexp

translate the original expressions into the new unified syntax. For example,

d(app s 0)[σ]e = (dse, c)� dσe.

The original reduction can be simulated with unified reduction.

Fact 4.6 (Simulation). If s t, then dse +
u dte, and if σ τ, then dσe +

u dτe.

Proof. By a mutual induction on s t and σ τ, using congruence of the transitive
closure. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#congr_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#exp_uexp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#equiv_uquiv

4.5. Reduction to Distribution Termination 43

s

si

ti

t

⊃

�

�

 ∗u

Figure 4.6: Exchangeability.

Note that unified reduction is strictly more general than reduction as whole parts of a
term may be omitted — even without an identity substitution on the left or right side.

Moreover, in the above proof of simulation, we need the transitive closure: the statement
does not hold for one step of unified reduction and the equivalence closure does not
suffice for Corollary 4.7.

Strong normalisation for unified expressions hence suffices to show strong normalisa-
tion of the original reduction.

Corollary 4.7. If sn dse, then sn u s and if sn dσe, then sn u σ.

Proof. Using the morphism lemma (Fact A.2) and simulation (Fact 4.6). �

In the following, we prove termination for unified expressions. We from now on refer
to unified expressions as expressions.

4.5 Reduction to Distribution Termination

We simplify our reduction relation even further. For strong normalisation of unified
reduction, strong normalisation of the distribution calculus alone suffices:

sn u (s)↔ sn� (s).

The implication from right to left directly follows as we can simulate distribution in the
full reduction relation (Fact A.3). The reverse intuitively holds as projections reduce the
size of a term and hence reduce the number of distribution steps even further. Wemake
this claim rigorous in the following.

First, note that projections always reduce the size of an expression and projection reduc-
tion is hence terminating:

Fact 4.8. Assume that sn⊃ (s) and sn⊃ (t). Then sn⊃ (λ.s), sn⊃ (s, t), and sn⊃ (s� t).

Proof. By a nested induction on sn⊃ (s) and sn⊃ (t). �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_uquiv_equiv
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_sub_lam

44 Pure Sigma Calculus

Corollary 4.9. For all expressions s, sn⊃ (s).

Proof. By induction on s, using Fact 4.8. �

We then require the following restricted form of confluence, called exchangeability and
depicted in Figure 4.6: If we do a distribution step in a subterm si of s to ti, then this
distribution step is already possible in s, andmoreover, we can afterwards reduce to this
redex.

Lemma 4.10 (Exchangeability). If s⊃ si and si�ti, then there exists an expression t such
that s�t and t ∗u ti.

Proof. By induction on s⊃ si, and a subsequent case analysis on si� ti, using congru-
ence of u (Fact 4.5). �

The reduction to strong normalisation of sn� (s) is then no longer hard:

Lemma 4.11. If sn� (s), then sn u (s).

Proof. By induction on sn� (s). The inductive hypothesis states that sn u (s ′) for every
s ′with s� s ′. We further do a second, nested induction on the fact that sn⊃ (s) (possible
with Lemma 4.9).

To show that sn u (s), we assume some s ′ with s u s ′ and show that sn u (s ′). Case
analysis on s u s ′. If s� s ′, the assumption follows directly with the outer inductive
hypothesis.

If s ⊃ s ′, we would like to use the inductive hypothesis for sn⊃ (s). We thus have to
show that for all s ′′ with s ′� s ′′, also sn u (s ′′). Assume such an s ′′. By exchangeability
(Lemma 4.10), there exists some t with s� t and t ∗u s ′′. Using the outer inductive
hypothesis, we thus know that sn u (t) and also sn u (s ′′) by forward propagation of
strong normalsiation (Fact A.2), and thus our claim is shown. �

We hence finally get our desired equivalence of strong normalisation:

Corollary 4.12. sn u (s) iff sn� (s).

4.6 Termination of the Distribution Calculus

We turn to the core of the termination proof, showing strong normalisation of the dis-
tribution rules, sn� (s). We start with an intuitive overview of the proof and then give
a formal description. Although we show strong normalisation of the distribution rules,
we will here outline the proof for whole unified reduction – this will give us stronger
inductive hypotheses, and we will later swap out the statement with Lemma 4.12 when
we actually have to examine reduction paths.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_sub
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#exchangeability
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_uquiv_red
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_uquiv_red_eq

4.6. Termination of the Distribution Calculus 45

C

s1 sn. . .

⇒ C

s1 � ξ1 sn � ξn. . .

Figure 4.7: Extension of a term in context C with subterms si by renamings ξi.

With the usual approach by induction on s, we require that strong normalisation is pre-
served throughout various syntactic operations. In many cases, this is in fact true:

Lemma 4.13. Assume that sn u (s) and sn u (t). Then sn u (c), sn u (λ.s) and sn u (s, t).

Proof. By a nested induction on sn u (s) and sn u (t). �

A similar statement for composition — if sn u (s) and sn u (t), then sn u (s � t) —
cannot be proven directly. The culprit is the distribution rule corresponding to abstrac-
tion reduction: To show that sn u (λ.(c, s � c)), we need to know that sn u (s � c) —
nothing an inductive hypothesis covers. Although this claim seems to be covered by the
inductive hypothesis (after all, c is a restricted term), the proof requires several general-
isations before it goes through. We call the generalisation of this theorem preservation.

As first generalisation, under an abstraction, we require that also s � ((c, c) � c) is
strongly normalising. We thus have to generalise c to arbitrary renaming expressions
ξ, which here are expressions without abstraction. From now on we will use ξ and ζ to
range over renaming expressions.

This is still not general enough, consider associativity:

(s1 � s2)� ξ� s1 � (s2 � ξ)

Although s2 � ξ is strongly normalising by the inductive hypothesis, we cannot con-
clude the same for thewhole term s1 � (s2 � ξ) as s2 � ξ is not necessarily a renaming.
However, Curien et al. [30] come to the rescue: The authors observe that the term ξ is
applied to s2 at a deeper position of the term. It is thus possible (and necessary) to gener-
alise our above claim again. See Figure 4.7 for a visualisation of this extions: we extend
a term swith arbitrary subterms si in a context C by renamings ξi. Contexts C describe
the positions renamings can be pushed into; wewill make themprecise in the following.

The proof of preservation then proceeds by a nested induction, decreasing on: 1.) the
strong normalisation of the original term s, 2.) the depth of the applications of the
renamings, or equivalently the size of the terms si, 3.) the strong normalisation of the
extensions ξi. In the following, we collect the necessary building blocks to make this
claim precise.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_zero

46 Pure Sigma Calculus

Ren c
Ren s Ren t

Ren (s, t)
Ren s Ren t
Ren s� t

Figure 4.8: Renaming expressions.

4.6.1 Renaming Expressions

As outlined before, the right side of a composition has to describe a renaming expres-
sion, short Ren s. See Figure 4.8 for a definition. To continue with the proof, we require
a range of properties. First, renamings are closed under unified reduction.

Fact 4.14. If Ren s and s u t, then Ren t.

In contrast to full expressions, reduction on renaming expressions is terminating:

Fact 4.15 (SN of Renaming Expressions). All renaming expressions s are strongly normal-
ising w.r.t. unified reduction.

Proof. By induction on Ren s. The previously sketched proof goes through using the
facts in Lemma 4.13, aswe never encounter abstraction reduction. In the inductive cases,
we require that renamings are closed under unified reduction (Fact 4.14). �

Contexts. Second, our proof relies on the possibility to describe subterms and posi-
tions of the original term. Contexts allow us to describe the position i into which our
renamings ξi can be pushed:

C ∈ ctx : = [] | c | λ.C | (C1, C2) | s� C | C� ξ

The position of a renamingwill be denotedwith a hole []. Renamings can be propagated
into both components of a pair, (C1, C2). Compositions have to be treated specially: Note
that the distribution rule only shifts renamings from left to right:

(s� t)� u� s� t� u.

Hence, we only have s � C. For abstraction reduction, we may push a context on the
left side of a renaming, C� ξ .1

4.6.2 Patterns

Contexts define the skeleton of a term; patterns describe the subterms si. A pattern can
be either a term s, also called a leaf, a singleton pattern 〈p〉 or a pair pattern 〈p1, p2〉:

p ∈ pat : = s | 〈p〉 | 〈p1, p2〉

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#ren_preserve
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#ren_sn

4.6. Termination of the Distribution Calculus 47

Renaming Patterns (Renp p)

Ren s
Renp s

Renp p
Renp 〈p〉

Renp p Renp q
Renp 〈p, q〉

Figure 4.9: Renaming patterns.

[][s]C = bsc
c[_]C = bcc

(C1, C2)[〈p, q〉]C = b(s, t)c if C1[p]C = bsc and C2[q]C = btc
λ.C[〈p〉]C = bλ.sc if C[p]C = bsc

(σ� C)[〈p〉]C = bσ ◦ τc if C[p]C = bτc
(C� ξ)[〈p〉]C = bσ ◦ ξc if C[p]C = bσc

C[p]C = ∅ otherwise

Figure 4.10: Filling of a context.

A renaming pattern (see Figure 4.9 for the definition) contains only leaves with renam-
ing expressions.

The partial function _[_]C :: ctx → pat → O(uexp) describes how a context C and pat-
tern ps combine to a term C[ps]C. The function is partial in case the pattern does not fit.
See Figure 4.10 for its definition. If C[ps]C results in a term s, we say that ps is a pattern
for s in context C.

To state the extension of subterms by renamings, tentatively denoted by si � ξi in the
introduction of this section, we require component-wise compositions of patterns, writ-
ten compps pξ ps�ξ (Figure 4.11). Each leaf si of a pattern ps is extended by a respective
leaf ξi of a renaming pattern pξ. Composition is a partial relation, which only yields a
result if the pattern ps and pξ match. We also say that ps and pξ compose to ps�ξ.

1We will see that it is essential that we know that ξ is a renaming.

comp s t (s� t)

compp1 p2 p3
comp 〈p1〉 〈p2〉 〈p3〉

compp1 p2 p3 compq1 q2 q3
comp 〈p1, q1〉 〈p2, q2〉 〈p3, q3〉

Figure 4.11: Pattern composition.

48 Pure Sigma Calculus

Pattern Reduction (p p q)
s u t
s p t

Split Reduction (p split q)

(s, t) split 〈s, t〉
λ s split 〈s〉

s� t split 〈t〉

Figure 4.12: Pattern reduction, congruence rules omitted.

4.6.3 Reduction on Patterns

Last, we need a possibility to express that the depth of application increases and reduc-
tion in the extensions ξi terminate.

We start with the termination of the extensions ξi. We define pattern reduction as re-
duction in the leaves of a pattern (Figure 4.12); as always all rules can be applied at all
positions and the congruence rules are omitted.

A pattern is strongly normalising w.r.t. pattern reduction if all of its leaves are strongly
normalising w.r.t. unified reduction, and as a consequence every renaming pattern is
strongly normalising w.r.t. pattern reduction:

Fact 4.16. Assume that sn u (s), sn p (p), and sn p (p ′). Then also sn p (s), sn p 〈p〉,
and sn p 〈p, p ′〉.

Lemma 4.17. If p is a renaming pattern, then sn p (p).

Proof. By induction on being a renaming pattern, using Lemma 4.16. �

The second notion of size is concerned with the depth of the context a renaming is ap-
plied to. For a fixed term, this is equivalent to the size of the terms si extended with
renamings ξi. We use split reduction p split p

′ to split up these terms (Figure 4.12).
Split reduction can be applied in an arbitrary context. Each reduction splits up the terms
a renaming is applied to. For example, a leaf with a pair (s1, s2) can be split up into a
pattern pair of two leaves 〈s1, s2〉.

As each term is finite, this process has to terminate at some time:

Fact 4.18. Assume that sn u (s), sn split (p), and sn split (p
′). Then also sn split (s),

sn split 〈p〉, and sn split 〈p, p ′〉.

Corollary 4.19. For all patterns p, sn split (p).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_leaf_Singleton
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_leaf_Ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_split_singleton
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_split

4.6. Termination of the Distribution Calculus 49

4.6.4 Preservation

We have now finally assembled all parts to prove the generalisation of preservation.

Theorem 4.20 (Preservation). Let s be a strongly normalising term w.r.t. distribution, let ps
be a pattern for s in context C. Let further pξ be a renaming pattern, ps�ξ be a pattern, such
that ps and pξ compose to ps�ξ, and let ps�ξ be a pattern for t in context C. Then t is strongly
normalising w.r.t. distribution.

Proof. By a nested induction on 1.) the strong normalisation of s, 2.) split normalisation
of ps (Lemma 4.19), and 3.) unified reduction of pξ (Lemma 4.17). For strong normal-
isation of t, we assume some t ′ with t� t ′ and show that t ′ is strongly normalising.

Depending on t� t ′ there are three possibilities howwe get smaller, each resulting in an
appropriate term s, contextC, patterns ps, pξ, and ps�ξ, satisfying the above conditions,
and additionally that ps�ξ is a pattern for t ′ in context C such that we can use the actual
inductive hypothesis.

(C1) There is some s ′ such that s u s ′, with new C, ps, pξ, and ps�ξ.

(C2) There is some ps with ps split ps ′ , and new C, pξ, and ps�ξ.

(C3) There is some pξ ′ with pξ p p ′ξ and new ps�ξ.

Note that (C1) is actually by an induction on the statement of strong normalisation with
unified reduction, but we later change this to strong induction by distribution only.

In each case, strong normalisation follows with the appropriate inductive hypothesis.
The remainder of the proof shows that always one of these cases holds by induction on
the context C.

Case C = []. We have ps = s, pξ = ξ, and pt = s � ξ, i.e. pt is an actual expression. We
thus assume that s � ξ� t ′. Case analysis. If s� s ′ or ξ� ξ ′, we are immediately done
with condition (1) or (3) respectively.

Otherwise, s� ξ does a step. In each case, we can split the pattern, and (2) holds. We
demonstrate this process on abstraction reduction, (λ.s) � ξ� λ.(s � (c, ξ � c)) =: t.
We split up the pattern from λ.s to ps := 〈s〉 and choose pξ := 〈(c, ξ� c)〉 as our renaming
pattern. The two patterns compose to pt = 〈s � (c, ξ � c)〉. Further, ps is a pattern for
λ.s in the context C := λ.[], C[〈s〉]C = λ.s, and so is pt for t, C ′[pt ′]C = λ.(s� (c, ξ� c)).

The other cases follow analogously.

Case C = (C1, C2). We thus have ps = 〈ps1 , ps2〉, pξ = 〈pξ1 , pξ2〉, and pt = 〈pt1 , pt2〉. The
only way (C1[pt1]C, C2[pt2]C) reduces is if Ci[pti]C steps for i ∈ {1, 2}.

In each case, we use the appropriate inductive hypothesis for Ci and thus know that
the step of Ci[pti]C comes with condition (C1), (C2), (C3). Each of this steps and side
conditions can be propagated into the larger context of C1 and C2 (Facts 4.134.164.18).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#preservation

50 Pure Sigma Calculus

Case C = λ.C. Analogous to pairs of contexts.

Case C = u � C. Thus ps = 〈ps〉, pξ = 〈pξ〉, and pt = 〈pt〉. Case analysis on u �
C[pt]C� t ′. If u�u ′, we are immediately done with (C1); if the step happens in C[pt]C
we use the inductive hypothesis as above.

It remains to prove that our claim holds in the case of a step. Note that for compositions,
the possibility of a step only depends on the syntactic structure ofu, and so ifu� C[pt]C
steps, also u� C[ps]C does, and we are done with (1).

Case C = C � ζ. Again, ps = 〈ps〉, pξ = 〈pξ〉, and pt = 〈pt〉, and thus we con-
sider C[pt]C � ζ� t ′. If either C[pt]C or ζ steps, our claim holds by the IH or (C1),
and we remain again with reduction.

We do a case analysis on C. In most cases, C dictates the structure of C[pt]C and C[ps]C,
in which case already C[ps]C � ζ did a step. There is one exception: If C = [] it can
happen that [][pt]C = (s � ξ) � ζ and [][ps]C = s � ζ. So, [][pt]C does a step, which
s cannot simulate directly. However, we can step2 from s � ζ to s and show that our
claim follows for term s and the renaming pattern (here, it is crucial that ζ is indeed a
renaming!) ξ� ζ. �

4.6.5 Termination

With this result the remainder of our proof is straightforward:

Corollary 4.21. If sn u (s), then sn u (s � c).

Proof. Using preservation with context C := [], the term pattern s, and renaming pat-
tern c. �

Corollary 4.22. If sn u (s) and sn u (t), then sn u (s � t).

Proof. By nested induction on sn u (s) and sn u (t), using the above Corollary 4.21. �

Theorem 4.23 (Termination of Unified Reduction). Every unified expression is strongly
normalising w.r.t. unified reduction.

Proof. By induction on s, using Lemma 4.13 and the above Corollary 4.22. �

Corollary 4.24 (Termination). For all expressions s and substitution expressions σ, sn (s)

and sn (σ).

Proof. With Lemma 4.7 and strong normalisation of unified expressions (Theorem4.23).
�

2This requires that we did our original induction on sn u (s)which yields a stronger induction hypoth-
esis. We can later change this condition because both statements are equivalent.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_pstep_shift
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_uexp_shift
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_uexp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.Termination.html#sn_exp

4.7. Convergence 51

4.7 Convergence

Oncewe know that strong normalisation holds, the σSP-calculus is confluent usingNew-
man’s lemma:

Corollary 4.25 (Confluence). Reduction on the σSP-calculus is confluent.

Proof. Directly with local confluence (Lemma 4.4) and termination (Corollary 4.24),
using Newman’s Lemma (Lemma A.4). �

4.8 Discussion

4.8.1 De Bruijn Algebra as Models for Sigma Calculi

The σSP-calculus was first proposed as a base for reasoning on the de Bruijn algebra
by Schäfer et al. [99]. Schäfer et al. also first show that the de Bruijn algebra is a semantic
model of the σSP-calculus. This forms the basis for theAutosubst 1 tool by Schäfer, Tebbi,
and Smolka [100]. The tactic asimpl normalises terms according to the rules of the σSP-
calculus using rewriting.

Completeness is what makes this approach for reasoning about syntax unique. We
know of no similar result for other reasoning methods on syntax.

4.8.2 Calculi of Explicit Substitutions

Calculi of explicit substitutions describe a whole family of calculi:

The original σ-calculus was proposed by Abadi et al. [2]. It is sound but not complete
for the de Bruijn algebra as no rules correspond to the η-laws. It is further not confluent,
as the supplementary laws such as right identity are missing. For instance, the ground
equation

0[↑] · (↑ ◦ ↑) = ↑

cannot be shown.

The σ⇑-calculus (also: the λEnv-calculus) was introduced by Hardin and Lévy [56] and
requires the additional ⇑-operator, representing lifting. Again, this calculus is sound but
not complete for de Bruijn algebra, mainly because the interference of lifting and other
substitution primitives is not specified enough. Still, there are no η-reduction laws. The
σ⇑η-calculus of Hardin [54] has lifting and the η-rules; but again interference is not
strong enough to be complete.

The σSP-calculus of Curien et al. [31] was introduced as a confluent “repairing” calculus
of the original σ-calculus. It is sound and complete for the de Bruijn algebra as shown
in [99].

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter4.confluence.html#equiv_confluent

52 Pure Sigma Calculus

For all calculi, e.g. the σ-calculus, we precompose a λ to denote the addition of β-re-
duction, e.g. λσ. Different to the standard literature, in this thesis, we always consider
the properties of a theory without β-reduction, which is an entirely different (and much
easier) story. For example, σ is terminating but λσ is not [75].

There are three formalisations of the meta-theory of calculi of explicit substitutions:
First, there is a formalisation of termination for the σ⇑-calculus in Coq by Saïbi [96] (this
proof is significantly easier than for the σ-calculus). The development further contains
a proof of confluence of λσ⇑ using Yokouchis lemma, following Curien et al. [31]. Sec-
ond, there is an ALF development formalising strong normalisation of the σ-calculus,
see below [65]; and third, there is a formalisation of a named calculus of explicit substi-
tutions [34].

4.8.3 Termination

Different variants of the σ-calculus have a different difficulty in the proofs of termina-
tion. For example, the σ⇑-calculus has a straightforward proof which requires just a
natural termination function, see Curien et al. [31]. This proof was mechanised by Saïbi
[96]. Note that we cannot use this calculus as it is not complete for the de Bruijn al-
gebra, and the proof is impossible for the stronger σSP-calculus. Even on the simpler
subsystem, the termination function does not work because of abstraction.

We hence need a more involved proof, in our case following the one of Curien et al. [30]
for the σ-calculus. The proof follows the following lines: The authors declare general
contexts C and later show that if a term is strongly normalising, also an inflation of this
context—depending on the structure of the subterm, a renaming is added— is strongly
normalising. However, this approach does not only require to define a rather arbitrary
notion of inflation but also several restrictions on the syntactic form of these contexts to
so-called good contexts and very good contexts.

Our proof is based on the same central idea, but simplifies the proof in several steps.
There are two central simplifications: First, we built in an additional stage of the dis-
tribution calculus; second, we simplified the representation of contexts, inflation, and
composition. For example, we always extend by a renaming and do not let this depend
on the fact whether the leaf is a renaming. For this part, it is crucial that we only handle
the distribution rules. A similar lemma to exchangeability already turns up in Curien
et al. [30], there to extend termination of the σ-calculus to termination of the σSP-calcu-
lus.

There are further small improvements: Our unified syntax is slightly more general and
unifies more syntactic objects. Moreover, during preservation, we show that each step
fulfils the properties. In contrast, Curien et al.’ s proof relies on a lemma based on good
and very good contexts.

In total, termination alone required only 750 lines of code. A substantial fraction of time

4.8. Discussion 53

was spent in simplifying the proof to its main idea. It could be that the last part could
be simplified with the proof by Zantema [121]; this is left for future work.

Termination of the σ-calculus has been proven in ALF [72] by Kamareddine and Qiao
[65]. In contrast to us, the proof follows precisely the outline of Curien et al. [30].

Part II

From HOAS to de Bruijn Syntax

Chapter 5

EHOAS Specifications

In this second part of the thesis, we introduce the Autosubst compiler, a tool which
generates substitution support for custom syntax. This part is split into four chapters:

First, we need a specification language to describe syntactic systems with binders, pre-
sented in this chapter. We continue with the interpretation into a suitable de Bruijn
algebra; in Chapter 6 we show how this de Bruijn algebra can be established for wide
classes of syntax. Modular syntax is handled via injections and is established in Chap-
ter 7. Last, we show how to compile a specification to a de Bruijn algebra, established in
Chapter 8 and hence solve the boilerplate problem.

So let us startwith our specification language. One of the earliest specification languages
is the one of Ott [102], a tool designed for quick prototyping. Ott takes a specification
of a syntactic system and generates textual output of the implemented system in both
LATEX and various proof assistants. Variables and binders are described with names. For
example, the specification of the untyped λ-calculus given in [102] looks as follows:

term, t :: ’’t_ ::=|
x :: :: var
| \ x . t :: :: lam (+ bind x in t +)
| t ’t :: :: app

Other custom specification languages for code generation such as the one for Auto-
subst 1 [100], Knot of Needle&Knot, or the custom language of Binders Unbound [119]
support a sub- or superset of Ott, but follow the line of Ott with explicit variable con-
structors.

In this chapter, we choose another way based on higher-order abstract syntax, short
HOAS [83]. The term HOAS mainly occurs in logical frameworks [84], where it refers
to the technique to implement binders and instantiation with substitutions of the object
logic using functions and applications of the meta-logic. See for example the type of
abstraction in the λ-calculus with the negative occurrence highlighted in grey:

abs : (tm → tm)→ tm

58 EHOAS Specifications

HOAS is hence a generalisation of abstract syntax trees in which negative occurrences
of a sort represent binders.

However, HOAS is also suitable as a mere specification language with a natural descrip-
tion of binders. Interesting enough, we know of no specification language using input
in higher-order abstract syntax. We appreciate that HOAS is very easy to understand
and further reveals no information about the underlying binders: As binders are rep-
resented in an abstract form, they are independent of the actual realisation. However,
HOAS is incompatible with a general-purpose type theory [32] and we cannot use it
as an interpretation. Instead, we interpret HOAS into a first-order representation using
the already introduced de Bruijn algebra.

To be more precise, in this thesis, we use a variant of HOAS, customised to the expres-
siveness of Autosubst: EHOAS, short for extended higher-order abstract syntax, re-
stricts higher-order abstract syntax to second-order and non-dependent binders. At the
same time, it offers language primitives for new language constructs, here, variadic and
modular syntax.

The EHOAS specification language gives us the chance to describe the various syntactic
systems used throughout this thesis, here, presented in increasing complexity. We start
with the simply-typed λ-calculus and fix notation used in the further thesis and required
to make the interpretation precise. We then continue with polyadic syntax, used in
a λ−calculus with pairs and elimination of a pair via pattern matching; then present
many-sorted syntax, needed in the π-calculus [76] and (call-by-value) System F [50,
91]. Next, we consider how to handle external sorts and sort constructors, appearing
in a λ-calculus with pairs where eliminations are implemented via projections. EHOAS
further allows external parameters, e.g. needed for parametric first-order logic [44].

There are binding constructs which go beyond usual HOAS. First, we support the bind-
ing of variadic binders, i.e. the binding of (finitely) arbitrarily many binders, required
for nested lets and pattern matching, e.g. in System F with records [21]. Last, EHOAS
supports the specification of modular syntax. Users can define and combine so-called
features, which describe subparts of a syntax. We know of no other specification lan-
guage supporting modular syntax, although Ott offers a simple form of modularity in
the generation of syntax via separate compilation. However, this notion of modularity
does neither imply true modularity as introduced in Chapter 7 nor does it support users
in sharing proofs between different formal systems.

We give an overview of the whole EHOAS grammar in the last section. In the next
chapters, we then implement EHOAS as the specification language for Autosubst and
interpret the here-described syntactic systems by their corresponding de Bruijn alge-
bras.

5.1. EHOAS 59

tm: Sort
app : tm → tm→ tm
lam : (tm → tm)→ tm

Figure 5.1: EHOAS specification for λ.

5.1 EHOAS

To make our description precise, we start and fix terms and notations. Naturally and
intended, this language is similar to the one for data types or inductive types.

We start with the EHOAS specification of the untyped λ-calculus, λ, in Figure 5.1.
The specification consists of two simple parts: A sort declaration tm : Sort, which
declares a new syntactic sort tm, and a list of constructor declarations of tm, containing
both app : tm → tm→ tm and lam : (tm → tm)→ tm.

As in functional languages, each constructor declaration of a sort x consists of the con-
structor name (here: app and lam), an argument list, and the result sort x.

Arguments are the part where we deviate from constructors in Coq. Each argument
consists of a (possibly empty) list of binders in the form of syntactic sorts, appearing
in negative positions, and an argument head. All binders are said to be bound in their
argument head. Binders will need a translation into a first-order structure.

Different towhatwe have seen in the de Bruijn representation of the untyped λ-calculus,
in the EHOAS specification we do not need an explicit constructor for variables. This in-
formationwill be inferred automatically in the interpretation of the EHOAS specification.
Wewill call a sort with a variable constructor open, a sort without a variable constructor
is said to be closed.

For example, in the interpretation to scopedde Bruijn syntax, tmwill be indeed equipped
with a variable constructor var:

Inductive tm : N→ Type :=
| var n : I n→ tm n
| app n : tm n → tm n→ tm n
| lam n : tm (1+n)→ tm n.

Further, binders in the EHOAS specification leave us with an increased scope,
here tm (1+n).

5.2 EHOAS by Example

We consider the EHOAS representation of the syntactic systems used in this thesis, pre-
sented in increasing complexity. Autosubst will be able to generate a suitable interpre-
tation in de Bruijn syntax for each of them.

60 EHOAS Specifications

tm: Sort

app : tm → tm→ tm
lam : (tm → tm)→ tm

pair : tm → tm→ tm
matchpair : tm→ (tm→ tm→ tm)→ tm

Figure 5.2: EHOAS specification for λ×.

chan, proc : Sort

par : proc→ proc→ proc −− P | Q
input : chan→ (chan→ proc)→ proc −− c(x).P
output : chan→ chan→ proc→ proc −− c〈y〉.P
repl : proc→ proc −− !P
restr : (chan→ proc)→ proc − νx.P
nil : proc −− 0

Figure 5.3: EHOAS specification for the π-calculus.

We start with polyadic binders. See Figure 5.2 for the EHOAS specification of the λ-
calculuswith pairs, λ×. Pairs require an introduction rule and an elimination rule using
pattern matching. Note that the matchpair constructor uses two binders of sort tm in the
argument head. We call such a repeated binding polyadic, in contrast to a monadic
binder. The binders of a polyadic binder can be of different sorts.

EHOAS also allows to define several, possibly interdependent sorts of syntax at once.
See Figure 5.3 for the EHOAS representation of the π-calculus [76], a process calculus
which allows the communication of different processes via channels. It hence consists
of both channels chan and processes proc. We have constructors for concurrency, input
prefixing, output prefixing, replication, restriction, and the nil process. In this variant
of the π-calculus, only channels can be bound, either during the input (where a channel
is received) or during restriction (when the name of a channel is restricted).

Concerning binders, many-sorted syntax gets more interesting if the different sorts are
mutually inductive and require several sorts of binders, short: are many-sorted. Fig-
ure 5.4 specifies a call-by-value variant of System F (short: FCBV). System F, also known
as the polymorphic λ-calculus, introduces parametric polymorphism into a program-
ming language during type abstraction Λ.s. As we can see from its sort specification, it
is a syntactic system with three sorts: types (ty) and the mutual inductive definition of
terms (tm) and values (vl).

Types consist of the function type arr and the universal quantification all, which binds

5.2. EHOAS by Example 61

ty, tm, vl : Sort

arr : ty → ty→ ty
all : (ty → ty)→ ty

app : tm → tm→ tm
tapp : tm → ty→ tm
vt : vl → tm

lam : ty → (vl→ tm)→ vl
tlam : (ty → tm)→ vl

Figure 5.4: EHOAS specification for FCBV.

B : Sort
N : Sort
Funcs : Sort
Preds : Sort

L : Sort→ Sort
× : Sort→ Sort→ Sort
V : N→ Sort→ Sort
arf : Funcs→N
arp : Preds→N

Figure 5.5: External sorts and sort constructors.

a type within a type. Additional to the known primitives of the λ-calculus, terms offer
the possibility of a type application (tapp) and a type abstraction (tabs), binding a type
in a term. Note that in the call-by-value variant of System F only values, not terms,
are bound during abstraction, and hence in the interpretation only values will be open.
Terms may be embedded into values via the embedding constructor vt.

When specifying a syntactic system, we want to redefine neither sorts nor sort construc-
tors independent of binders; sometimeswewant to use external sorts. See Figure 5.5 for
the type signature of external sorts used in future specifications: We consider booleans,
natural numbers, and last (abstract types for) function symbols (Funcs), and predicate
symbols (Preds). The list also contains the type signature of external sort constructors
and functions: lists, products, vectors, and arity functions for the function and predicate
symbols. In the implementation, external sorts will be essential to reuse functions from
the standard library. We assume that each external sort is closed and does not depend
on a current definition.

See Figure 5.6 for a specification of λ× with an alternative elimination rule via projec-
tions. We can eliminate a projection using a boolean value which determines which
component of a pair to choose. Note that in the specification, we did not define the
constructors of booleans, although we mentioned them in the sort declaration.

62 EHOAS Specifications

B: Sort
tm: Sort

app : tm → tm→ tm
lam : (tm → tm)→ tm

pair : tm → tm→ tm
proj : B→ tm→ tm

Figure 5.6: EHOAS specification for λ×.

N : Sort
ty : Sort
L : Functor
× : Functor

> : ty
arr : ty → ty→ ty
all : (ty → ty)→ ty
recty : L (N× ty)→ ty

Figure 5.7: EHOAS specification for record types.

External sort constructors, also called functors,1 work similarly. See Figure 5.7 for the
example of record types which extends the types of System F with a maximum type >,
and a record type recty. A record type is a list of record type positions, each consisting
of a label (represented by a natural number) and again a type. Functors need to be
declared in a functor declaration, e.g. L : Functor for lists. They may only appear in the
argument head, not as a binder.

Functors may be arbitrarily nested, but have to terminate with primitive sorts which
we call the arguments of the functors. For example, for record types, N and ty are the
arguments of L (N× ty). If the argument head is a functor with several arguments, the
binders are binders for all arguments.

EHOAS further allows substitution-independent parameters, needed for example for
parametric first-order logic, FOL (Figure 5.8). Parametric first-order logic consists of
two sorts, terms (term) and formulas (form). We characterise the allowed functions
and predicates via parametric types Funcs and Preds. Both kinds of symbols come with
an arity, which can be accessed via the functions arf: Funcs→N and arp: Preds→N. We
allow their application in the constructors func and pred, which take a vector of the
corresponding arity in each case. In first-order logic, we can quantify over terms with
either a universal (∀) or an existential (∃) quantifier. In each case, we bind a term in a
formula and return a formula.

For example, we could define a signature which contains a constant and binary op-
eration, and one nullary and one unary predicate. See Figure 5.9 for the specialised

1The term“functor” is induced by the later implementation for external sort constructors, see Section 6.3.

5.2. EHOAS by Example 63

Funcs, Preds, term, form : Sort
V : Functor

func (f : Funcs) : V (arf f) term→ term
pred (P : Preds) : V (arp P) term→ form
∀, ∃ : (term→ form)→ form

Figure 5.8: EHOAS specification for parameterised FOL.

term, form : Sort

c : term
binop : term→ term→ term

P0 : form
P1 : term→ form
∀, ∃ : (term→ form)→ form

Figure 5.9: EHOAS specification for FOL∗.

EHOAS specification, which we call simplified first-order logic, or short FOL∗. In its
parameterised form, we would have Funcs := Preds := B. In the case of predicates, true
represents the nullary and false represents the unary predicate. Then the arity function
returns 0 for true and 1 otherwise; analogously for function symbols.

We start with variadic syntax. Consider the EHOAS specification of a λ-calculus which
does not take only one argument during abstraction, but an arbitrary number of p ar-
guments. We call this system the multivariate λ-calculus, λv [90]. See Figure 5.10 for
the corresponding EHOAS specification. In the case of abstraction, we bind p binders
of sort x at once, Vpx. Note that p is unknown during the definition. Different to the
usual λ-calculus, an application may take not only a single argument for application but
a whole vector of terms. Note that despite our use of vector notation, each variable is
still bound separately. Parametersmay then be used in other definitions, e.g. in functors.
For a variadic binder Vpx, x is the binder head.

Variadic variables are also usable in another context: consider the input syntax of

tm : Sort
app p : tm →Vp tm → tm
lam p: (Vp tm→ tm)→ tm

Figure 5.10: EHOAS specification for λv.

64 EHOAS Specifications

ty, tm, pat, N : Sort
L, × : Functor

> : ty
arr : ty → ty→ ty
all : (ty → ty)→ ty
recty : L (N × ty)→ ty

patvar : ty → pat
patL : L (label × pat)→ pat

app : tm → tm→ tm
tapp : tm → ty→ tm
abs : ty → (tm→ tm)→ tm
tabs : ty → (ty→ tm)→ tm
rectm : L (N × tm)→ tm
proj : tm →N→ tm
letpat p : pat→ tm→ (Vp tm → tm)→ tm

Figure 5.11: EHOAS specification for F<:.

exp, B, N : Type

begin lam
lam : (exp→ exp)→ exp
app : exp→ exp→ exp

end lam

begin booleans
constBool : B→ exp
if : exp→ exp→ exp→ exp

end booleans

begin arith
constNat : N→ exp
plus : N→N→ exp

end arith

compose lambdas := lam
compose booleans := lam :+: bool
compose arith := lam :+: arith
compose all := lam :+: bool :+: arith

Figure 5.12: EHOAS specification for modular syntax.

System F with records, F<: (Figure 5.11), with types and terms as described by the
POPLMark challenge [12]. We have already seen the definition of record types before.
We enrich the terms with an additional constructor for record terms, consisting of a
list of element labels and their respective terms. We can project from a record element
and a label to a term (proj). A let constructor takes a pattern and two terms, one terms
binds a variadic number p of variables, where p is a natural number used for counting.

As we do not know in beforehand howmany variables will be bound during the pattern
matching process, we require a variadic binder. With the p bound terms, we have a vec-
tor of p types, annotating the types of thematched terms, and p lists of labels, describing
the path to a subcomponent of the record.

5.3 Modular Syntax

Last, EHOAS allows the specification of modular syntax. For this example, assume that
we start with the EHOAS specification of the untyped λ-calculus as in Figure 5.1.

We then want to extend expression independently with booleans and natural numbers;

5.4. A Grammar for EHOAS 65

decls : = decl

decl : = sortDecl | constrDecl | functorDecl | featureDecl | composeDecl

sortDecl : = x : Sort

functorDecl : = F : Functor

constrDecl : = cname[param] : arg → x

featureDecl : = begin f constrDecl end f

composeDecl : = composeE : = f : + : f

param : = (c : c ′)

arg : = binder→ arghead

binder : = x | Vpx
s ∈ arghead : = x | F c (s1, . . . , sn)

Figure 5.13: Grammar for EHOAS specifications.

for example, to obtain proofs for different variants of this calculus. On paper, we would
define these extensions as follows:

s, t, u : expB ::= · · · | b | if s then t elseu

s, t : expN ::= · · · | n | s+ t

s, t, u : expB,N ::= · · · | b | if s then t elseu | n | s+ t

We mirror this situation and allow users to define syntax modularly for mechanised
proofs.2

See Figure 5.12 for the corresponding input file in EHOAS. From the above explana-
tion, we introduce two new syntactic constructions: features, which introduce a partial
specification of a list of sorts; and variants, which combine several features to different
variants of the appearing sorts.

Each feature (here: lam, booleans, and arith) is surrounded by a begin... end block. In
this case, we require four different variants, each introduced by compose and a list of
features: One which consists of only the feature for λ-expressions, one with booleans,
one with arithmetic expressions, and one containing all sorts of expressions.

5.4 A Grammar for EHOAS

Figure 5.13 contains the complete grammar of EHOAS. Each EHOAS specification con-
sists of a list of declarations, where each declaration declares a sort, sortDecl, a con-

2In Chapter 7, we further explain how to construct modular proofs over the generated syntax.

66 EHOAS Specifications

structor, constrDecl, a functor, functorDecl, a feature featureDecl, or a composed sort,
composeDecl.

In the following, x ranges over sorts, cname ranges over constructor names, F ranges over
functors, f ranges over features, S ranges over composed sorts, and c ranges over arbi-
trary external terms and types. A sort declaration defines a new sort x; a functor dec-
laration defines a new functor F. On the technical side, let us remark that there is no
need to sort constructor declarations according to their sorts; Autosubst automatically
detects the dependencies of mutual inductive sorts. A constructor declaration takes a
constructor name cname, a list of parameters param (which is a list of sort declarations
with external sorts), and then maps a list of arguments arg to a sort x.

Again, each argument consists of a list of binders mapped to an argument head. Each
binder can be either a simple binder (denoted via a sort x) or a variadic binder, Vpx
which variadically binds p parameters of sort x. Note that we do not allow to bind any
functor expressions or arbitrary types. Last, the argument head can be either a simple
sort or the functor application on arbitrarily many external arguments and a list of again
argument heads, separated by commas and collected in parentheses.

We turn to the EHOAS specification of modular syntax. As described before, each fea-
ture declaration is embedded in a begin ... end block with the name of the feature f. It
then consists of a list of constructor declaration, of not necessarily the same main argu-
ment. Last, for a composed sort, composeDecl, we have a (non-empty) list of features
combine by :+: .

The above specification can describe all the example we have seen in the previous sec-
tions.

Chapter 6

Extended Calculi with de Bruijn Syntax

In the last chapter, we presented EHOAS, a specification language for syntax with bin-
ders. However, higher-order abstract syntax is inherently incompatible with type the-
ory [32] and we hence use a first-order realisation of the previous systems based on de
Bruijn syntax. In Chapter 3, we have seen this realisation for the untyped λ-calculus.
In this chapter, we give a first look at the definition of custom generalised de Bruijn
algebras.

Before we can tackle the generalisation properly, we briefly recap the design principles
for the untyped λ-calculus. First, we restricted ourselves to a finite set of primitives
which accounted for the scope change of a binder. These primitives satisfied a finite
set of equations. In our extensions, we might require new primitives and interaction
lemmas to account for more complex scope changes; but we still restrict ourselves to a
finite set of primitives.

Second, we used one operation of instantiation with substitutions, which accounted for
the whole scope change and replaced all variables at once. We define instantiation with
one operation for each sort only, even in the presence of multiple variable sorts.

Third, we provided a range of equational substitution lemmas and obtained a sound and
complete proof strategy. We hence have to re-prove themonad laws and adapt the proof
method in each case. Different from the λ-calculus, we focus only on the practical aspects
and provide neither proofs of termination and confluence, nor proofs of soundness and
completeness for a corresponding calculus of explicit substitutions.

More specifically, we generalise the substitution primitives and reasoning principles of
the λ-calculus to first-class renamings, polyadic syntax, many-sorted syntax, external
sorts and sort constructors, variadic syntax, and, in Chapter 7, modular syntax. We
illustrate each of these generalisations with one specific formal system as described be-
low.

Together, this chapter forms the base of the Autosubst tool. In all cases, the definition
of instantiation and the proof of the substitution laws are (and have to be) so regular

68 Extended Calculi with de Bruijn Syntax

that we can generate the corresponding code. We highlight these regularities in this
chapter. The implementation of Autosubst is handled in Chapter 8 and requires addi-
tional information on the structure of the syntactic systemswe here assume to be readily
available.

In this chapter, we use scoped syntax as introduced in Chapter 3. All extensions except
variadic syntax can be (and, in fact, in Autosubst are) implemented in pure de Bruijn
syntax as well. All substitution code linked in this chapter is generated by Autosubst.

The part on vector substitutions reuses parts of [62, 108].

Organisation of theChapter. In Section 6.1, we startwith first-class renamings and their
representation in the untyped λ-calculus. Recall that in the σSP-calculus, there is no
distinction between substitutions and renamings. Hence renamings are second-class.
Different to that, in actual developments, it is helpful to access renamings directly (see
Section 6.7.1). First-class renamings require us to extend the previous proofs to renam-
ings, also in the equational theory. The need for an explicit representation of renamings
first appeared in proofs using Kripke-style logical relations [4].

In Section 6.2, we continue and extend reasoning to polyadic binders on the example of
a λ-calculus with pairs and elimination of pairs via pattern matching. Polyadic binders
were first used in a proof development of call-by-push-value [45]. The implementation
is straightforward to realise and only requires the repeated use of the lifting operations
and lemmas.

External sorts and sort constructors (Section 6.3) are illustrated on the example of record
types. External sort constructors are among others used for record types and hence first
appeared when tackling Part 2 of the POPLMark challenge. Schäfer [97, Chapter 9.2]
presents the idea of traversable containers in his thesis; we here show how proof code
is generated for Autosubst.

We continue with many-sorted syntax as in System F, where two sorts of variables ap-
pear (Section 6.4). Instantiation hence has to substitute both type and value variables.
To satisfy our requirement of one instantiation operation, we parallelise the previously
already parallel de Bruijn substitutions to so-called vector substitutions [108]. Vector
substitutions offer a possibility to extend our design principles to many-sorted syntax.
Most interesting, we needmore involved lifting lemmas than in the univariate case. This
section reuses parts of a previous publication [108].

Binders in first-order logic, also known as quantifiers, only use variables of a previously
known term sort. Instantiationwith substitutions on terms hence collapses to parameter
instantiation only. In Section 6.5, we hence consider a simplified class of binders and
show how to omit the previous detour over instantiation with renamings. The need for
such binders came first up in a formalisation if first-order logic by the colleagues of the
author of this thesis in [46], and was then generalised and adapted to Autosubst. As far

6.1. First-Class Renamings in the Lambda Calculus 69

as we know, no other system treats first-order syntax specifically.

Last, in Section 6.6, we consider variadic syntax on the example of the multivariate λ-
calculus [90]. Variadic binders bind a previously unknown number of variables and
usually appear during nested let constructions and (possibly nested) pattern matching.
Because of this generalised scope change, we will — for the first time — require new
substitution primitives and new reasoning principles on the primitives themselves. We
further have to prove new lifting lemmas. The author of this thesis first got interested
in this problem when proving Part 2 of the POPLMark challenge.

6.1 First-Class Renamings in the Lambda Calculus

In this section, we outline the additional equational laws for renamings in the de Bruijn
algebra of the λ-calculus (Chapter 3, based on the EHOAS specification in Figure 5.1).
Unless stated otherwise, we omit laws for renamings in all further descriptions. How-
ever, Autosubst proves and uses them in the implementation.

Wehave already seen the definition of instantiationwith renamings, s〈ξ〉, inChapter 3. If
renamings are-first-class, the resulting rewriting system has to hold equational laws for
both instantiations with renamings and substitutions. Naturally, we start with adding
the reduction equations for instantiation with renamings.

Next, we have already encountered several laws as an intermediate result for composi-
tionality (Lemma 3.4):

s〈ξ〉〈ζ〉 = s〈ξ ◦ 〈ζ〉〉
s〈ξ〉[τ] = s[ξ ◦ τ]
s[σ]〈ζ〉 = s[σ ◦ 〈ζ〉]

We add these to our equational theory. Additionally, we require counterparts to the
identity law and the supplementary laws:

Lemma 6.1 (Renaming Identity). s〈id〉 = s.

Lemma 6.2 (Supplementary Laws for Renamings).

1. var ◦ 〈ξ〉 ≡ ξ

2. σ ◦ 〈id〉 ≡σ

3. (σ ◦ 〈ξ〉) ◦ 〈ζ〉 ≡σ ◦ 〈ξ ◦ ζ〉

4. (σ ◦ 〈ξ〉) ◦ [θ]≡σ ◦ [ξ ◦ θ]

5. (σ ◦ [τ]) ◦ 〈ζ〉 ≡σ ◦ [τ ◦ 〈θ〉]

All these are proven similar to the respective substitution laws.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#ren_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#rinstId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#varLRen_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#varLRen_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#renRen'_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#renComp'_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#compRen'_tm

70 Extended Calculi with de Bruijn Syntax

Last, we use the coincidence law between instantiation with renamings and substitu-
tions, not only as a statement but also in our equational theory:

s[ξ ◦ var] = s〈ξ〉

As we rewrite from left to right, renamings are preserved unless the user explicitly de-
cides to do otherwise (see Section 8.3.2).

6.2 Polyadic Binders in the Lambda Calculus with Pairs

We continue with an example for polyadic binders. Recall the λ-calculus with pairs, λ×,
as specified in Figure 5.2. Elimination of a pair via patternmatching binds two variables
and hence produced a polyadic binder. In the scoped representation, the scope of the
term t is thus increased by 2:

s, t ∈ tmk : = var x | app sk tk | λx.s1+k | (sk, tk) | match sk in t2+k x ∈ Ik

We can depict this scope change with the following picture:

t 0 1 2

match s in t 0 1 2 3 4
. . .

We will have to account for this scope change both during instantiation and the proof
of the monad laws.

We start with instantiation. Instantiation, _ [_] : (Im → tmn) → tmm → tmn, is defined
analogous to the λ-calculus and still traverses the term homomorphically (Figure 6.1).
The only notable difference is that in the case of the polyadic scope change, we apply the
lifting operation ⇑ twice. In t, both 0I and 1I remain unchanged, while all expressions
in σ are shifted by 2. Thus ⇑ (⇑ σ) could be equivalently expressed by the following
custom operation:

⇑2:= var 0I · var 1I · σ ◦ [↑ ◦ ↑]

Using unary lifting instead of a custom binary lifting, however, simplifies the proofs
and avoids repetitions. The original primitives for the λ-calculus thus suffice for the
new scope change as described above.

We define β-reduction on pairs as:

match (s1, s2) in t� t[s1 · s2 · var]

or, with notation, match (s1, s2) in t� t[s1, s2..].

We now turn to the equational laws; more specifically, the monad laws, the supplemen-
tary laws, coincidence, and extensionality from Chapter 3.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter3.utlc_scoped.html#rinst_inst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#idSubst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#instId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#instId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#rinst_inst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#ext_tm

6.3. External Sorts and Sort Constructors in Record Types 71

(var x)[σ] = σx (σ ◦ [τ]) x = (σx)[τ]

(app s t)[σ] = app (s[σ]) (t[σ])

(λ.s)[σ] = λ.s[⇑ σ] with ⇑ σ = var 0I · σ ◦ [↑]
(match s in t)[σ] = match s[σ] in t[⇑ (⇑ σ)]

(s, t)[σ] = (s[σ], t[σ])

Figure 6.1: Instantiation for λ×.

The lifting lemmas and their proofs remain unchanged, all that changes is the number
of applications of the lifting lemma. For example, when showing the right identity law,

s[var] = s,

we use Lemma 3.2 twice in the case of pair elimination :

(match s in t)[vartm] = match s[var] in t[⇑ (⇑ vartm)]

= match s in t[⇑ vartm]

= match s in t[vartm]

= match s in t

The same holds for all other recursive laws requiring lifting lemmas.

To prove an equation between terms with polyadic binders, we repeatedly rewrite the
previous interaction lemmas (Lemma 3.1) and the usual monad equations.

For example, we can show that β-reduction is substitutive:

Lemma 6.3. β-reduction is substitutive.

Proof. We have to show that

t[s1 · s2..][σ] = t[⇑ (⇑ σ)][s1[σ] · s2[σ]..].

Using repeatedly the defining equations of instantiation, the monad laws, and the inter-
ference laws, we reach the point with t[s1[σ] · s2[σ] · σ] at both sides. �

6.3 External Sorts and Sort Constructors in Record Types

We recall record types specified in Figure 5.11. In their type-theoretic representation,
we define them as:

A,B ∈ tyk : = varty X | > | Ak → Bk | ∀.A1+k | {l1 : A
k
1 ..ln : Akn} X ∈ Ik; l1..ln ∈ N

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.utlc_pairs.html#idSubst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.reductions.html#polyadic.step_substitutive
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#ty

72 Extended Calculi with de Bruijn Syntax

(varty x)[σ] = σx (σ ◦ [τ]) x = (σx)[τ]

>[σ] = >
(A→ B)[σ] = A[σ]→ B[σ]

(∀.A)[σ] = ∀.A[⇑ty
ty σ] with ⇑ty

ty σ = varty 0I · σ ◦ [↑]

{li : Ai}[σ] = map (id× [σ]) {li : Ai}

Figure 6.2: Instantiation for record types.

(id× id)(p) = p

(f1 × f2)((g1 × g2)(p)) = (g1 ◦ f1 × g2 ◦ f2)(p)
f1≡g1 → f2≡g2 → (f1 × f2)(p) = (g1 × g2)(p)

map id xs = xs

map f (mapg xs) = map (g ◦ f) xs
f≡g→ map f xs = mapg xs

Figure 6.3: Functor laws for pairs and lists.

Record types hence consist of a list of labels (represented each by a natural number)
and types.

Instantiation propagates into all components of the records. On record types, this prop-
agation corresponds to a nested mapping on lists, written map f , and mapping on a
pair, written (f × g). See the definition of instantiation in Figure 6.2. Each occurring
type constructor requires such amapping function, defined before calling theAutosubst
compiler.

For the monad laws to hold, the mapping functions must preserve the laws of an exten-
sional functor: identity, composition, and extensionality. See Figure 6.3 for the functor
laws for pairs and lists.

Then, record types fulfil indeed the monad laws. As before, left identity follows directly
by the definition of instantiation, right identity and compositionality follow by induc-
tion on s using the already existing lifting lemmas, and the supplementary laws follow
directly with the previous monad laws. For record types, we require the functor laws.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#subst_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/axioms.html#list_map
https://www.ps.uni-saarland.de/~kstark/thesis/website/axioms.html#prod_map
https://www.ps.uni-saarland.de/~kstark/thesis/website/axioms.html#prod_map
https://www.ps.uni-saarland.de/~kstark/thesis/website/axioms.html#prod_id
https://www.ps.uni-saarland.de/~kstark/thesis/website/axioms.html#list_ext
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#idSubst_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#compSubstSubst_ty

6.4. Many-Sorted Syntax in Call-by-Value System F 73

map id ≡ id

map f ◦ mapg ≡map (f ◦ g)
(id× id)≡ id

(f1 × f2) ◦ (g1 × g2)≡(f1 ◦ g1 × f2 ◦ g2)

Figure 6.4: Supplementary laws for functor laws.

For example, for identity preservation of record types we have:

{li : Ai}[var] = map (id× [var]) {li : Ai} instantiation
= map (id× id) {li : Ai} inductive hypothesis
= map id {li : Ai} functor identity
= {li : Ai} functor identity

Note that we use the inductive hypothesis on all elements in the list in the second step.
We thus require an advanced property of the Coq termination checker, which allows
us to propagate an inductive hypothesis into a list. Proofs further may not be opaque,
which implies that we cannot use the definitions of the standard library.

Further, instantiation is still extensional:

Lemma 6.4. If σ≡ τ, then s[σ] = s[τ].

Proof. Similar to before, using the extensionality instance of the corresponding map
functions. The proof again requires that the corresponding extensionality proofs for
lists and pairs are not opaque. �

Coincidence remains unchanged and also requires no new properties of functors.

Last, to prove an equation, we add the functor laws of all occurring functors. We further
require the supplementary laws for functors in Figure 6.4, again defined by the user
before calling Autosubst. See Section 6.6 for an example of equational reasoning in a
formal system with functors.

6.4 Many-Sorted Syntax in Call-by-Value System F

We now turn to many-sorted syntax. This will be a major extension and requires a new
concept called vector substitutions.

We recall the call-by-value variant of System F, FCBV, as described in Figure 5.4. Recall
that we have two kinds of bindings: In a value abstraction, λA.s, we bind values; in a
type abstraction Λ.s, we bind types. In a first-order representation, we hence need both

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#idSubst_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#ext_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.recty.html#rinstInst_ty

74 Extended Calculi with de Bruijn Syntax

(varvl x)[σty ;σvl]vl = σvl x

(Λ.s)[σty ;σvl]vl = Λ.(s[⇑
ty
ty σty ;⇑ty

vl σvl]tm)

(λA.s)[σty ;σvl]vl = λ(A[σty]ty).(s[⇑
vl
ty σty ;⇑vl

vl σvl]tm)

(app s t)[σty ;σvl]tm = app (s[σty ;σvl]tm) (t[σty ;σvl]tm)

(sA)[σty ;σvl]tm = (s[σty ;σvl]tm) (A[σ]ty)

(vt v)[σty ;σvl]tm = vt (v[σty ;σvl]vl)

(σvl ◦ [τty ; τvl]vl)(x) := (σvl x)[τty ; τvl]vl

⇑ty
ty σty := varty 0I · σty ◦ [↑]ty ⇑ty

vl σvl := σvl ◦ [↑; varvl]vl
⇑vl

ty σty := σty ◦ [varty]ty ⇑vl
vl σvl := varvl 0I · σvl ◦ [varty ; ↑]vl

Figure 6.5: Term and value instantiation for FCBV.

type variables varty X and value variables varvl x. While the sort of types contains only
one type of variables, terms s and values v are many-sorted, i.e. contain both type and
value variables. In scoped syntax, terms and values are hence indexed by the upper
bound of both type and value variables:

Ak, Bk ∈ tyk : = varty X | Ak → Bk | ∀A1+k X ∈ Ik

sk;l, tk;l ∈ tmk;l : = sk;l tk;l | sk;lAk | vt vk;l

uk;l, vk;l ∈ vlk;l : = varvl x | λAk .s
k;1+l | Λ.s1+k;l x ∈ Il

Note how the different kinds of binding induce different scope changes.

Instantiation on terms and values will replace both type and value variables. A substi-
tution has hence to account for both bindings. As a consequence, we will require new
lifting operations and lifting lemmas.

In the following, we assume that type instantiation _ [_]ty : tym → (Im → tym ′) → tym ′

already exists and satisfies the expected properties.

6.4.1 Instantiation

We start with the definition of term and value instantiation. Instantiation on
terms tmm;n and values vlm;n has to replace both type and value variables. We
hence require one component for type variables, σty : Im → tym ′ , and one component
for value variables, σvl : In → vlm

′;n ′ . We combine multiple de Bruijn substitutions

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#subst_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#subst_tm

6.4. Many-Sorted Syntax in Call-by-Value System F 75

into a single vector of de Bruijn substitutions, short called a vector substitution. We
write s[σty ;σvl]tm for a term s where all type variables are replaced according to σty

and all value variables according to σvl , and similarly for values. Hence the full type of
instantiation will be:

_ [_ ; _]tm : tmm;n → (Im → tym
′
)→ (In → vlm

′;n ′)→ tmm ′;n ′

_ [_ ; _]vl : vlm;n → (Im → tym
′
)→ (In → vlm

′;n ′)→ vlm
′;n ′

Note that the indices of the co-domains have to match index-wise.

Vector substitutions lead to similar definitions as before. See Figure 6.5 for the mutual
instantiation of terms and values for scoped FCBV. As we already know, instantiation
is defined mutually recursive with forward composition of substitutions. We point out
the following aspects:

First, whenever we reach a variable, we have to project the correct substitution compo-
nent, e.g.

(varvl x)[σty ;σvl]vl = σvl x

for value variables.

Second, when a given subterm is of a different sort, we have to select the correct instan-
tiation function and subvector. Take for example (sA)[σty ;σvl]tm , where we use type
instantiation for instantiating the subterm A is A[σty]ty and the correct subvector is σty .
We hence need to define instantiation for terms and values mutually recursive. The
same holds for substitution composition: for example, σty ◦ [τty]ty and σvl ◦ [τty ; τvl]vl ,
require the appropriate subvector.

Last, the traversal of binders changes the interpretation of the indices in scope. We adjust
each component of the substitution vector via a customised lifting operation. For our
example, these are the four operations ⇑ty

ty , ⇑vl
ty , ⇑

ty
vl , and ⇑

vl
vl : one for each combination

of substitution sort (indexed below) and lifted variable (indexed above).

There are two cases: Either the component corresponds to the sort of binders we just tra-
versed (⇑ty

ty and ⇑vl
vl), or it does not (⇑vl

ty and ⇑ty
vl). In the former case, say ⇑vl

vl σvl , the com-
ponent that corresponds to the sort of the binderwe just traversed,—here, σvl —ismod-
ified almost as before. The index 0I is mapped to varvl 0I as capture-avoiding substitution
should not replace the newly bound variable. We then have to ensure that (⇑vl

vl σvl)(1+x)

is first mapped to σvl x and then adjusted to bypass the new binder. In the λ-calculus,
this was achieved by post-composing the scope change ↑ to σvl . Here, the scope change
requires one component for type variable and one for value variable: as it increases
the value scope and leaves the type scope unchanged, it can be expressed by the vector
[varty ; ↑]. In total, we have the equation in Figure 6.5.

If the components do not match, say ⇑vl
ty σty , we do not have to extend the substitution

with a new variable. The substitution still has to incorporate the fitting scope change,

76 Extended Calculi with de Bruijn Syntax

in the case of abstraction, [varty ; ↑]. Adjusted to the relevant scope for types we post-
compose σty with [varty].

Implementation. Recall that the mutual recursion between instantiation and compo-
sition is still not structural and we hence first define instantiation for renamings, writ-
ten s〈ξ; ζ〉tm and v〈ξ; ζ〉vl . For example, ⇑vl

vl is in fact defined as

⇑vl
vl σvl := varvl 0I · σvl ◦ 〈id; ↑〉vl .

There might be significant simplifications. For example, composition of renamings de-
generates to function composition, and hence does not need a full vector:

ξvl ◦ 〈ζty ; ζvl〉vl := ξvl ◦ ζvl .

Reduction. For FCBV, there are two kinds of β-reduction, one for value abstraction and
one for type abstraction:

app (vt (λA.s)) (vt v)� s[varty ; v · varvl]tm
(vt (Λ.s))A� s[A · varty ; varvl]tm

We require the embedding operator for the reduction to type-check. In the reduction,
we use the corresponding substitution component to replace a variable.

In this section, we indexed type, term, and value instantiation accordingly. We omit this
index in the future if clear from the context.

6.4.2 Equational Reasoning

We now extend the previous reasoning principles to vector substitutions: The interfer-
ence laws remain unchanged (there are no new primitives) but the monad and supple-
mentary laws hold in a generalised form.

We start with the identity law, which already highlights many of the things we have to
take care of. Identity substitution extends to a vector of identities and we show that

s[varty ; varvl] = s and v[varty ; varvl] = v.

We require the following lifting laws, one for each lifting operation:

Lemma 6.5 (Identity Lifting).

1. ⇑ty
ty varty ≡ varty

2. ⇑ty
vl varvl ≡ varvl

3. ⇑vl
ty varty ≡ varty

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#ren_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upId_ty_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upId_vl_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upId_vl_ty

6.4. Many-Sorted Syntax in Call-by-Value System F 77

4. ⇑vl
vl varvl ≡ varvl

Proof. If the lifted variable does not correspond to the newly bound variable (e.g. for ⇑ty
vl

varvl), this follows immediately. Otherwise, e.g. for ⇑ty
ty varty , we have to take a case

analysis on the examined variable; again, in both cases the statement follows similar to
previous identity lifting lemmas. �

With the lifting lemmas, the main proof is routine and only requires a mutual induc-
tion. We examine the following law in detail to show how Autosubst will generated the
corresponding proof terms.

Lemma 6.6 (Identity). s[varty ; varvl] = s and v[varty ; varvl] = v.

Proof. By a mutual induction on s and v. In the case of the value variable constructor,
the goal holds directly by definition of varvl .

Otherwise, in each case, the statement holds by the inductive hypotheses. E.g. in the
case of type application, sA, we show that s[varty ; varvl] = s and A[varty] = A. For A, the
statement relies on the respective proofs for ty.

If we traverse a binder, we need to account for the scope change. For example, for type
abstraction, we show that λ.s[varty ; varvl] = λ.s[⇑ty

ty varty ;⇑ty
vl varvl] = λ.s[varty ; varvl] = λ.s

using identity lifting (Lemma 6.5) and the inductive hypothesis for s. �

We note that we have hence to watch out for similar details as in instantiation: First,
whenever we reach a variable, the law has to hold as-is. Second, when a given subterm
is of a different sort, we have to select the correct law for the corresponding sort with
the correct subvector and equations. Hence, we have to prove the laws for terms and
values mutually inductive and require the substitution lemmas for types as assumed
before. Last, the new lifting operations require new lifting laws. These lifting laws are a
super-set of the ones for types. As in our definition of a lifting ⇑xy, we do a case analysis
on whether the components x and ymatch.

We similarly prove compositionality. As before, we have to show the statement for all
combinations of renamings and substitutions. Additionally, we require new lifting lem-
mas for each case, in total 16.

For example, for composition of substitutions and substitutions only we require the fol-
lowing four lifting lemmas:

Lemma 6.7 (Vector Substitution-Substitution-Compositionality Lifting).

1. (⇑ty
ty σ) ◦ [⇑

ty
ty τty]ty ≡ ⇑

ty
ty (σ ◦ [τty]ty)

2. (⇑vl
ty σ) ◦ [⇑vl

ty τty]ty ≡ ⇑vl
ty (σ ◦ [τty]ty)

3. (⇑ty
vl σ) ◦ [⇑

ty
ty τty ;⇑vl

vl τvl]vl ≡ ⇑
ty
vl (σ ◦ [τty ; τvl]vl)

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upId_vl_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#idSubst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#up_subst_subst_ty_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#up_subst_subst_ty_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#up_subst_subst_vl_ty

78 Extended Calculi with de Bruijn Syntax

4. (⇑vl
vl σ) ◦ [⇑

vl
ty τty ;⇑vl

vl τvl]vl ≡ ⇑
vl
vl (σ ◦ [τty ; τvl]vl)

Proof. We do a case analysis on whether the added scope and the scope itself are equal.

If they are unequal, the proof follows without the previous case analysis. The proof still
requires the instances for the composition of renaming and substitution, and substitu-
tion and renaming. For example, for 3. we have:

(⇑ty
vl σ) ◦ [⇑

ty
ty τty ;⇑vl

vl τvl]vl(x) = (⇑ty
vl σ)(x)[⇑

ty
ty τty ;⇑vl

vl τvl]vl

= ((σ ◦ 〈↑; varvl〉)(x))[⇑ty
ty τty ;⇑vl

vl τvl]vl

= (σx)〈↑; varvl〉[⇑ty
vl τty ;⇑

vl
vl τvl]vl

= (σx)[↑ ◦ ⇑ty
ty τty ; varvl ◦ ⇑vl

vl τvl]vl

= (σx)[τty ◦ 〈↑〉;⇑vl
vl τvl]vl

= (σx)[τty ◦ 〈↑〉;⇑vl
vl τvl]vl

= ((σ ◦ [τty ; τvl]vl) ◦ 〈↑; varvl 〉)(x)
=⇑ty

vl (σ ◦ [τty ; τvl]vl)(x)

Note that this proof uses the same steps as in Lemma 3.4, but without the case analysis.
�

In the statement of the lifting lemmas, τ is not always the full vector but might simplify.
Similarly, whenever σ is a renaming, τ always simplifies to just the respective compo-
nent. The same is valid for the actual statement of compositionality.

We can then show the last statement similar to before:

Lemma 6.8 (Compositionality).

1. s[σty ;σvl][τty ; τvl] = s[σty ◦ [τty];σvl ◦ [τty ; τvl]]

2. v[σty ;σvl][τty ; τvl] = v[σty ◦ [τty];σvl ◦ [τty ; τvl]]

Proof. By a mutual induction on s and v, using the lifting lemmas (Lemma 6.7) in case
of type and value abstraction. �

Adaption of the supplementary laws is routine, but again requires us to get the vectors
right:

Lemma 6.9 (Supplementary Laws).

1. varvl ◦ [σty ;σvl]≡σvl

2. [varty ; varvl]tm ≡ id

3. [varty ; varvl]vl ≡ id

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#up_subst_subst_vl_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#compSubstSubst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#varL_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#instId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#instId_vl

6.4. Many-Sorted Syntax in Call-by-Value System F 79

4. (σtm ◦ [τty ; τvl]tm) ◦ [θty ; θvl]tm ≡σtm ◦ [τty ◦ [θty]ty ; τvl ◦ [θty ; θvl]vl]tm

5. (σvl ◦ [τty ; τvl]vl) ◦ [θty ; θvl]vl ≡σvl ◦ [τty ◦ [θty]ty ; τvl ◦ [θty ; θvl]vl]vl

Proof. The first statement follows directly by definition of instantiation. Note that a
whole component of the substitution disappear. The remaining laws follow directly
from the monad laws. �

Note that we only need a left identity law for each sort with variables, while composi-
tionality has to be proven for each substitution sort.

Similarly, extensionality holds, and requires again the following four lifting lemmas:

Lemma 6.10 (Extensionality Lifting). Assume that σty ≡ τty and σvl ≡ τvl . Then

1. ⇑ty
ty σty ≡ ⇑ty

ty τty

2. ⇑vl
ty σty ≡ ⇑vl

ty τty

3. ⇑ty
vl σvl ≡ ⇑

ty
vl τvl

4. ⇑vl
vl σvl ≡ ⇑vl

vl τvl

Proof. If the upper and lower index match, we do a case analysis on the argument x: If
x = 0I, the claim follows directly; otherwise, we use the assumption. Otherwise, the
claim follows directly with the assumption. �

Lemma 6.11 (Extensionality).

σty ≡ τty σvl ≡ τvl
s[σty ;σvl] = s[τty ; τvl]

σty ≡ τty σvl ≡ τvl
v[σty ;σvl] = v[τty ; τvl]

Proof. By mutual induction on s and v, using the lifting lemmas (Lemma 6.10). �

Lemma 6.12 (Coincidence Lifting). Assume that ξ ◦ varty ≡σty and ξ ◦ varvl ≡σvl . Then

1. (⇑∗tyty ξ) ◦ varty ≡ ⇑ty
ty σty

2. (⇑∗vlty ξ) ◦ varty ≡ ⇑vl
ty σty

3. (⇑∗tyvl ξ) ◦ varty ≡ ⇑ty
vl σvl

4. (⇑∗vlvl ξ) ◦ varty ≡ ⇑vl
vl σvl

Proof. Case analysis. If the bound and environmental sort are equal, we do a case anal-
ysis on the argument; otherwise, the claim follows directly. �

Lemma 6.13 (Coincidence).

1. s[ξty ◦ varty , ξvl ◦ varvl]tm = s〈ξty , ξvl〉tm

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#compComp'_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#compComp'_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upExt_ty_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upExt_ty_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upExt_vl_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#upExt_vl_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#ext_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#rinstInst_up_ty_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#rinstInst_up_ty_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#rinstInst_up_vl_ty
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#rinstInst_up_vl_vl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.sysf_cbv.html#rinst_inst_tm

80 Extended Calculi with de Bruijn Syntax

2. v[ξty ◦ varty , ξvl ◦ varvl]vl = v〈ξty , ξvl〉vl

Proof. By mutual induction on s and v, requiring the corresponding lifting lemmas in
the case of abstraction (Lemma 6.12). �

As we can already see, with vector substitutions, all these laws are not especially hard
to prove and follow regular patterns, but defining and establishing the statements man-
ually is highly repetitive.

The corresponding equational theory then uses the definitional laws for evaluation, the
defining equations for interaction, the interaction laws, the equational theory and sup-
plementary laws of the types of FCBV, and the equational theory and supplementary
laws of the terms and values of FCBV.

We use these equations to show that reduction is substitutive:

Lemma 6.14. Reduction is substitutive.

Proof. There are two equations to show.

First, we have to show that:

s[var; v..][σ; τ] = s[⇑vl
ty σ;⇑vl

vl τ][var; v[σ; τ]..]

and then for the second equation that:

s[A..; var][σ; τ] = s[⇑vl
ty σ;⇑vl

vl τ][A[σ]..; var]

Both equations follow by a reduction of the equations with the respective equations of
the equational theory for types, terms, and values. �

6.5 First-Order Binders in First-Order Logic and the Pi Calculus

In general, Coq’s condition of structural termination forces us to first define instantiation
with renamings, then instantiation with substitutions (see Section 3.1). In restricted
classes of syntax, either instantiation with renamings or substitutions are redundant,
and we can hence omit the detour. For this section, we revoke our previous assumption
thatwe omit all renaming primitives and explicitlywrite down all intermediate lemmas.

6.5.1 First-Order Logic

Recall the specification of simplified first-order logic, short FOL∗ (EHOAS specification
in Figure 5.9). Recall that it consists of two sorts, terms term with a constant symbol c
and a binary function symbol ∗, and formulas form with a nullary and unary predicate,

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.reductions.html#sysf_cbv.step_substitutive
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#form

6.5. First-Order Binders in First-Order Logic and the Pi Calculus 81

(var x)[σ]tm = σx (σ ◦ [τ]tm) x = (σx)[τ]tm

(c)[σ]tm = c

(s+ t)[σ]tm = s[σ]tm + t[σ]tm

⊥[σ]form = ⊥
(∀.p)[σ]form = ∀.p[⇑tm

tm σ]form with ⇑tm
tm σ := vartm 0I · (σ ◦ [↑ ◦ var]tm)

Figure 6.6: Instantiation on FOL.

in which formulas depend on terms, but not vice versa. As before, we can define its
scoped representations as follows:

s, t ∈ tmk := var x | c | sk ∗ tk x ∈ Ik

p ∈ formk := P0 | P1 s
k | ∀.p1+k

As terms occur negatively in formulas, both terms and formulas can contain term vari-
ables. However, variables are only used when terms and term instantiation are already
defined. We say that term is a first-order binder and call a substitution sort which only
contains first-order binders a first-order sort. As a consequence, lifting is independent
of instantiation with renamings, and we can simplify our development (instantiation
and proofs) significantly by postponing the definition. This is possible for all first-order
sorts.

See Figure 6.6 for the simplified instantiation on terms and formulas. The order is
slightly different from before: We (1) generate instantiation of terms, (2) define substi-
tution composition and the lifting operation ⇑tm

tm σ, and (3) define formula instantiation,
which uses lifting in the case of the universal quantifier.

These simple changes allow us to simplify the proof of the monad laws significantly.
Terms are independent of lifting, and hence we prove directly:

Lemma 6.15 (Equational Theory on Terms of FOL).

1. var ◦ [σ]tm ≡σ

2. s[var]tm = s

3. s[σ]tm [τ]tm = s[σ ◦ [τ]tm]tm

4. [var]tm ≡ id

5. [σ]tm ◦ [τ]tm ≡[σ ◦ [τ]tm]tm

6. If σ≡ τ, then s[σ]tm = s[τ]tm .

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#varL_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#idSubst_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#compSubstSubst_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#instId_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#compcomp'_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#ext_term

82 Extended Calculi with de Bruijn Syntax

Proof. The first statement follows by definition; the next three statements are proven by
induction on s; the remaining laws follow directly by the definition of instantiation or
using the previous monad laws. �

Note that all these changes simplify the laws for terms.

Afterwards, we prove the lifting lemmas:

Lemma 6.16 (Lifting Lemmas).

1. ⇑tm
tm vartm ≡ vartm

2. (⇑tm
tm σ) ◦ [⇑tm

tm τ]tm ≡ ⇑tm
tm (σ ◦ [τ]tm)

3. If σ≡ τ, then ⇑tm
tm σ≡ ⇑tm

tm τ.

Proof. 1. follows directly by case analysis on the argument; similarly for 3.. We show
the exact reasoning for 2., as here we required renaming instances before. Case analysis
on n. For n = 0, the claim follows directly. Otherwise:

((⇑tm
tm σ) ◦ [⇑tm

tm τ]tm)(1+ n)

= ((var 0I · (σ ◦ [↑ ◦ var]tm)) ◦ [var 0 · (τ ◦ [↑ ◦ var]tm)]tm)(1+ n) ⇑tm
tm

= ((σ ◦ [↑ ◦ var]tm)(n))[var 0I · τ ◦ [↑ ◦ var]tm]tm) ·
= (σn)[↑ ◦ var]tm [var 0I · τ ◦ [↑ ◦ var]tm]tm) ◦
= (σn)[(↑ ◦ var) ◦ [(var 0I · (τ ◦ [↑ ◦ var]tm))]tm]tm) Lemma 6.15
= (σn)[↑ ◦ var ◦ [(var 0I · (τ ◦ [↑ ◦ var]tm))]]tm) associativity
= (σn)[↑ ◦ (var 0I · (τ ◦ [↑ ◦ var]tm))]tm) Lemma 6.15
= (σn)[τ ◦ [↑ ◦ var]tm]tm interaction
= (σn)[τ]tm [↑ ◦ var]tm Lemma 6.15
= ((σ ◦ [τ]tm) ◦ [↑ ◦ var]tm)n associativity
= (var 0I · (σ ◦ [τ]tm) ◦ [↑ ◦ var]tm)(1+ n) ·
= (⇑tm

tm (σ ◦ [τ]tm))(1+ n) ⇑tm
tm

We use directly the composition law for terms, and hence do not require intermediate
lemmas for composition with renamings. �

The equational theory for formulas follows using the above lifting laws:

Lemma 6.17 (Equational Theory on Formulas of FOL).

1. p[var]form = s

2. p[σ]form[τ]form = p[σ ◦ [τ]]form

3. [var]form≡ id

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#upId_term_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#up_subst_subst_term_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#upExt_term_term
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#idSubst_form
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#compSubstSubst_form
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#instId_form

6.6. Variadic Binders in the Multivariate Lambda Calculus 83

4. [σ]form ◦ [τ]form≡[σ ◦ [τ]form]form

5. If σ≡ τ, then p[σ]form = p[τ]form.

Proof. Using the lifting lemmas (Lemma 6.16). �

We can omit all interaction laws between renamings and substitutions.

6.5.2 Pi Calculus

In some syntactic systems, even only renamings suffice. Consider the syntax of the π-
calculus and the corresponding EHOAS specification from Figure 5.3, in scoped syntax
depicted as:

c ∈ chank : = var x x ∈ Ik

P,Q ∈ prock : = Pk|Qk | ck.P1+k | ck〈c ′k〉.Pk |!Pk | ν.P1+k | 0

with concurrency, input prefixing, output prefixing, replication, restriction, and the nil
process. Both in the case of input prefixing and restriction, we bind a new channel
name x.

However, a channel describes nothing but a name. As a consequence, the sort will later
on consist of only variables.

It thus suffices if we define only instantiation with renamings. The equational theory
will be similar to the one for first-order logic, but instead, we only define instantiation
with renamings. A variable sort is always also a first-order sort.

6.6 Variadic Binders in the Multivariate Lambda Calculus

We now turn to the last system in this chapter and implement variadic binders in the
multivariate λ-calculus. It is also the first system, which will require us to implement
new primitives, accounting for a variadic scope change. As will be seen, the implemen-
tation still follows similar regularities as before.

We startwith recalling themultivariate λ-calculus, λv, where abstraction binds a variadic
number of n elements as described in Figure 5.10. Its scoped interpretation looks as
follows:

s, t ∈ tmk : = var x | app sk {tk1 ..t
k
n} | λn.s

n+k x ∈ Ik

where {tk1 ..tkn} is represented by a functional vector. Note that for scoped syntax we have
to increase the scope not only by 1 but by n. We call this a variadic scope change.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#compComp'_form
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.fol.html#ext_form
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.picalculus.html#proc
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.picalculus.html#proc
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.picalculus.html#chan_ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#tm

84 Extended Calculi with de Bruijn Syntax

(var x)[σ] = σx (σ1 ◦ [σ2]) x = (σ1 x)[σ2]

(s t̄n)[σ] = (s[σ])(map[σ]t̄n)

(λp.s)[σ] = λp.(s[⇑tm,p
tm σ]) with ⇑tm,p

tm σ = (hdp ◦ var) ·p (σ ◦ [↑p])

Figure 6.7: Instantiation for the multivariate λ-calculus.

The change of meaning for free variables can be depicted by the following picture:
s .. 0 1 2

λn.s 0 .. n 1 + n 2 + n
. . .

Instantiation. The new variadic scope change requires us to extend the primitive
building blocks for instantiation, declared in Chapter 3. We require the following
variadic operations:

1. Variadic shifting ↑m : In → Im+n, a renaming with ↑m(x : In) := mI +I x.

2. Variadic head, hdm : Im → Im+n, a renaming with

hd0 := id0
hd1+m := 0I · (hdm ◦ ↑)

3. Variadic extension _ ·m _ : (Im → X) → (In → X) → (Im+n → X), which precedes
an arbitrary stream τ : In → Xwith a new stream σ : Im → X:

(σ ·0 τ) x := τ x
(σ ·1+m τ) (∅) := σ ∅

(σ ·1+m τ) (bxc) := σ ·m τ(x)

We still allow composition of the primitives and the identity renaming. As highlighted
in the discussion section of this chapter, all these are real generalisations of the previous
primitives. Using these primitives will further require new interference laws; we post-
pone these until we have shown that these primitives indeed suffice for instantiation.

See Figure 6.7 for the definition of instantiation. Unchanged, we traverse the termhomo-
morphically, and we know all components expect the handling of variadic abstraction.
Similar to monadic abstraction, we handle the scope change with a lifting operation,
only this time a variadic one:

⇑tm,p
tm : (Ik → tmm)→ (Ip+k → tmp+m)

https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#shift_p
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#zero_p
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#upList_tm_tm

6.6. Variadic Binders in the Multivariate Lambda Calculus 85

The first p binders are bound by variadic abstraction and hence remain unaffected, we
skip them with an extension by hdp. Afterwards, if a variable is replaced, the result has
to be lifted by p according to the scope change ↑p, we achieve this by a post-composition.
This corresponds precisely to the structure of a monadic lifting function.

Analogous to the monadic case, the definition is not structurally recursive, and we re-
quire the intermediate notions of a renaming, s〈ξ〉, and a lifting operation for renamings:

⇑tm,p
tm∗ ξ := hdp ·p (ξ ◦ 〈↑p〉)

Given instantiation, we can define β-reduction for the multivariate λ-calculus:

app (λp.s) p̄t� s[p̄t ·p var]

We abbreviate t ·p var to t.., similar to the monadic case.

Equational theory. Now that we have defined instantiation let us turn to the equa-
tional theory. First, note that a simple pattern matching on an index x : Im+n is no
longer possible. However, we can state the following case analysis using the disjoint
sum and the previously defined primitives:

Lemma 6.18. Let x : Im+n. Then {x ′ | x = hdnx ′}+ {x ′ | x = ↑mx ′}.

Proof. By induction on m. For m = 0, the right side holds for x ′ = x, and the claim
follows directly. Otherwise, if m = 1 + m ′, case analysis on x. If x = ∅, then choose
the left side and x ′ = ∅. Otherwise, if x = bx ′c use the inductive hypothesis on x ′ and
propagate the result. �

Further note that extension fulfils the following congruence law:

Lemma 6.19 (Congruence). If σ≡σ ′ and τ≡ τ ′, then σ ·p τ≡σ ′ ·p τ ′.

Proof. By induction on p, and a subsequent case analysis on the argument. �

Both these laws will turn out to be very helpful in the following.

Next, we turn to the interaction lemmas. Not surprising, we can show equations similar
to their monadic counterparts:

Lemma 6.20 (Variadic Interaction).

1. (σ ·m τ)(hdm x) = σx head

2. (σ ·m τ)(↑m x) = τ x tail

3. f((σ ·m τ)(x)) = ((σ ◦ f) ·m (τ ◦ f))(x) distributivity

4. hdm ◦ (σ ·m τ)≡σ functional head

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#ren_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#upRenList_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#destruct_fin
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_congr
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_head
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_tail
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_comp
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_head

86 Extended Calculi with de Bruijn Syntax

5. ↑m ◦ (σ ·m τ)≡ τ functional tail

6. (σ ·m τ) ◦ f≡(σ ◦ f) ·m (τ ◦ f) functional distributivity

7. hdp ·p ↑p≡ id η-law

Proof. 2. holds by induction on m, 1. by induction on m and a subsequent case anal-
ysis on the argument. 6. and 7. then hold by a case analysis on the argument using
Lemma 6.18, and subsequent usage of 2. and 1. Note that we need a functional variant
of the head and tail laws. �

We now have all the components to show the monad laws. However, the monad laws
need new lifting lemmas, accounting for the variadic scope change. Lucky for us, as the
primitives for unary and variadic binders resemble each other, also the lifting lemmas
are very similar. However, many equations do no longer hold definitionally, and hence
the following proof steps have to be adapted:

1. The previous case distinction on a natural number or a finite type no longer works.
Instead, we require the η-lawwhich does a case analysis on a variable x : Im+n and
rewrite with the resulting equations.

2. Often, we require the η-lawwhich states that two extensions are equal if both sides
of an extension are pair-wise equal. We use Lemma 6.19 for this part of the proof.

3. The equation (s · σ) 0I = s holds definitionally, for variadic syntax we have to ex-
plicitly invoke the variadic head laws.

4. The equation ↑ ◦ (s · σ)x = σx holds definitionally, for variadic syntax we have to
explicitly invoke the variadic tail law.

These are the only cases where our lemmas differ from the ones in Chapter 3.

Let us start and bring these observations into practice: In the followingweprove variadic
variants of all lifting lemmas.

Lemma 6.21 (Identity Lifting). ⇑tm,p
tm var≡ var.

Proof. Using a case analysis via Lemma 6.18, we have two cases: For x = hdpx ′, reflex-
ivity suffices; while for x = ↑px ′ the claim follows with congruence. �

Lemma 6.22 (Compositionality Lifting).

1. (⇑tm,p
tm∗ ξ) ◦ (⇑tm,p

tm∗ ζ)≡ ⇑tm,p
tm∗ (ξ ◦ ζ)

2. (⇑tm,p
tm∗ ξ) ◦ (⇑tm,p

tm τ)≡ ⇑tm,p
tm (ξ ◦ τ)

3. (⇑tm,p
tm σ) ◦ (⇑tm,p

tm∗ ζ)≡ ⇑tm,p
tm (σ ◦ 〈ξ〉)

4. (⇑tm,p
tm σ) ◦ [⇑tm,p

tm τ]≡ ⇑tm,p
tm (σ ◦ [τ])

https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_tail
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_comp'
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#scons_p_eta
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#upIdList_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#up_ren_ren_list_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#up_ren_subst_list_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#up_subst_ren_list_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#up_subst_subst_list_tm_tm

6.6. Variadic Binders in the Multivariate Lambda Calculus 87

Proof. As before, we prove these lifting laws interleaved with the full compositionality
statements. We show 4., similar to the monadic λ-calculus.

First, (⇑tm,p
tm σ) ◦ [⇑tm,p

tm τ] = ((hdp ·p (σ ◦ 〈↑p〉)) ◦ [⇑tm,p
tm τ], and with distribution of

variadic extension, (hdp ◦ [⇑tm,p
tm τ]) ·p ((σ ◦ 〈↑p〉) ◦ [⇑tm,p

tm τ]). We use the congruence
law (Lemma 6.19), and the definition of ⇑tm,p

tm , such that it suffices to show that:

1. hdp ◦ [⇑tm,p
tm τ]≡ hdp; and

2. (σ ◦ 〈↑p〉) ◦ [⇑tm,p
tm τ]≡(σ ◦ [τ]) ◦ 〈↑p〉.

For the first claim, note that the left side corresponds to hdp ◦ [hdp ·p τ ◦ 〈↑p〉], and hence
with the functional head law the two sides coincide.

For the second part, we have:

((σ ◦ 〈↑p〉) ◦ [⇑tm,p
tm τ]) x

= ((σ ◦ 〈↑p〉) ◦ [hdp ·p τ ◦ 〈↑p〉]) x ⇑tm,p
tm

= (σx)〈↑p〉[hdp ·p τ ◦ 〈↑p〉] associativity
= (σx)[↑p ◦ (hdp ·p τ ◦ 〈↑p〉)] compositionality
= (σx)[τ ◦ 〈↑p〉] head
= (σx)[τ]〈↑p〉 compositionality
= ((σ ◦ [τ]) ◦ 〈↑p〉)x

Again we require compositionality for each a renaming and a substitution, analogous
to the monadic case. �

Lemma 6.23 (Extensionality Lifting). If σ≡ τ, then ⇑tm,p
tm σ≡ ⇑tm,p

tm τ.

Proof. Using the definition of ⇑tm,p
tm and Lemma 6.19, it suffices that each part of the

extension is equivalent. For the first part, this follows directly, while for the second part,
this follows with our assumption. �

Lemma 6.24 (Coincidence Lifting). If ξ ◦ var≡σ, then (⇑tm,p
tm∗ ξ) ◦ var≡ ⇑tm,p

tm σ.

Proof. Wehave (⇑tm,p
tm∗ ξ) ◦ var≡((hdp ◦ var)·p(ξ ◦〈↑p)〉) ◦ var by the distribution law. With

extension congruence (Lemma 6.19), it suffices that both parts of extension coincide,
what they do in the first part by definition, and for the second part using the assumption.

�

Proving the lifting lemmaswas themainwork, the remaining proofs remain unchanged:

Lemma 6.25 (Equational Theory of λv).

1. var ◦ [σ]≡σ

2. s[var] = s

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#upExt_list_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#rinstInst_up_list_tm_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#varL_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#idSubst_tm

88 Extended Calculi with de Bruijn Syntax

3. s[σ][τ] = s[σ ◦ [τ]]

4. (σ ◦ [τ]) ◦ [θ]≡σ ◦ [τ ◦ [θ]]

5. σ ◦ [var]≡σ

Proof. The first statement follows directly by the definition of instantiation, while the
next two statements follow as before by induction on s, using the variadic lifting lemmas
(Lemma 6.21 and Lemma 6.22). As in Lemma 3.5, the last two statements followdirectly
from the first. �

Lemma 6.26 (Extensionality). If σ≡ τ, then s[σ] = s[τ].

Proof. By induction on s, using the variadic lifting lemma (Lemma 6.23). �

Lemma 6.27 (Coincidence). s[ξ ◦ var] = s〈ξ〉.

Proof. By induction on s, using the variadic lifting lemma (Lemma 6.24). �

To solve an equation between expressions with variadic binders, we use the equational
theory of λv together with the functor laws for lists, and the variadic interaction laws.
Let us prove that β-reduction is substitutive:

Lemma 6.28. β-reduction is substitutive.

Proof. We have to show that

s[t ·p var][σ] = s[(hdp ◦ varvl) ·p σ ◦ 〈↑
p〉][map [σ] t ·p var].

Both sides reduce to s[map [σ] t ·pσ], the first equation with composition of substitutions,
distribution of extension, and left identity. For the right side, we have:

s[(hdp ◦ varvl) ·p σ ◦ 〈↑
p〉][map [σ] t ·p var]

= s[((hdp ◦ varvl) ·p σ ◦ 〈↑
p〉) ◦ [map [σ] t ·p var]] compositionality

= s[((hdp ◦ varvl) ◦ [map [σ] t ·p var] ·p σ ◦ 〈↑p〉 ◦ [map [σ] t ·p var])] distributivity
= s[(hdp ◦ map [σ] t ·p var ·p σ ◦ 〈↑p〉 ◦ [map [σ] t ·p var])] left identity
= s[(map [σ] t ·p σ ◦ 〈↑p〉 ◦ [map [σ] t ·p var])] head
= s[(map [σ] t ·p σ ◦ [↑p ◦ (map [σ] t ·p var)])] compositionality
= s[map [σ] t ·p σ ◦ [var]] tail
= s[map [σ] t ·p σ] right identity

�

Note that we required the functor laws to show that this is substitutive.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#compComp_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#compComp_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#instId_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#ext_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter6.variadic_fin.html#rinst_inst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.variadic_preservation.html#step_inst

6.7. Discussion 89

6.7 Discussion

There are many options on how to interpret formal systems in de Bruijn syntax. We
hence discuss related work connected to the various extensions in this chapter.

6.7.1 First-Class Renamings

We start with first-class renamings. As mentioned in the introduction of this chapter,
we required first-class renamings in proofs using Kripke-style logical relations [4].

Even if instantiation could be realised immediately, we require renamings to state some
laws; the second-class view obscures the proofs. First, substitution properties might
require proving the corresponding instance for renamings. Second, certain statements
only hold for renamings. The special handling of renamings is especially relevant for
many-sorted syntax, where whole parts of the substitution fall away, or the definition of
composition simplifies significantly. We give two more detailed examples.

Reason 1. A well-known example for the first reason are context morphism lemmas
as appeared in work by Goguen and McKinna [52] and Kaiser et al. [63], stating for
example that typing of FCBV is substitutive:

Γ ` s : A ∀x.∆ ` τ x : (Γ x)[σ]
∆ ` s[σ; τ] : A[σ]

The proof proceeds by induction on Γ ` s : A. In the case of abstraction the context
changes to Γ ·A and we need to show that the precondition is still preserved, i.e.,

A · ∆ ` (⇑tm
tm τ) x : ((A · Γ) x)[⇑tm

tm σ]

for all x. For an arbitrary x, this statement is no longer covered by the inductive hypoth-
esis and we thus first require a proof for renamings of the form

Γ ` s : A ∀x.(Γ x)〈ξ〉 = ∆ (ζ x)

∆ ` s〈ξ; ζ〉 : A〈ξ〉

Reason 2. As already stated, some statements only hold for renaming. Well-known
are anti-renaming lemma,

injective ξ→ s〈ξ〉� t〈ξ〉 → s� t.

6.7.2 Syntax with Functors

Recall record types, where we defined records as lists of again types. It is well-known
(see e.g. the implementation of [67, 86, 116]) that one could also define records and a
specialised type of lists mutually recursive:

90 Extended Calculi with de Bruijn Syntax

Inductive ty (k : N) :=
| varty : I k→ ty k
| All : ty (1 + k)→ ty k
| base : ty k
| recty : ty_L k→ ty
with ty_L (k : N) :=
| nil : ty_L k
| cons : ty k → ty_L k→ ty_L k.

Using many-sorted syntax (Section 6.4), we would so gain instantiation and a proof of
themonad laws. However, this means that we cannot use external primitives of lists and
hence does not scale to larger developments.We hence prefer the approach as previously
appeared in the thesis of Schäfer [97, Section 9.2].

There are many other examples of functors, for example, vectors and the constant func-
tor C : X → Y with Cx s := x has the mapping function mapC f x := x. Note that all
external sorts can be seen as an instance of a constant functor.

6.7.3 Many-Sorted Syntax

Recall call-by-value System F, FCBV, from Figure 5.4; a syntactic system with two sep-
arate sorts of variables (Section 6.4). We have several choices on how to interpret the
different variables: First, we can define one instantiation of terms with substitutions,
as done in our case. Another possibility, done in Autosubst 1, is to define separate in-
stantiation operations for all variables, which Schäfer et al. [100] call heterogeneous
substitutions.

This resulted in distinct instantiation operations for type and value variables, e.g. for
values:

[]ty : vlmn → (Im → tym
′
)→ vlm

′n

[]vl : vlmn → (In → vlmn
′
)→ vlmn

′

In total, Schäfer et al. [100] would require five instantiation operations.

We face the problem that the various instantiation operations interfere and become chal-
lenging to permute. Take for examples

s[σ]vl [τ]ty = s[σ]ty [σ ◦ [τ]ty]vl

where permuting the two instantiations requires us to replace types in substituted val-
ues. Even more important, this made Autosubst fail to scale to mutual inductive sorts
like those of our example FCBV: It is impossible to define instantiation of terms and
values separately, as each requires the other definition.

Vector substitutions have several practical advantages: First, users have just one nota-
tion for instantiation, improving accessibility. As users do not have to solve equations

6.7. Discussion 91

for interacting instantiation operation manually, our tool improves in accessibility and
conciseness. The same holds for the following lemmas, where often vector substitutions
simplify the lemma statements and allow to combine several lemmas. We also think
that the various instantiation operation impact transparency.

6.7.4 Variadic Syntax

Note that variadic syntax generalises the monadic operations to variadic operations:

Fact 6.29 (Coincidence of Monadic and Variadic Primitives).

1. ↑≡↑1

2. s · τ≡(s · id0) ·1 τ

3. 0 · id0≡ hd1

Proof. Directly by definition. �

For extension and the head renaming, we used the extension with the empty substitu-
tion to transform a term to a substitution, e.g. s · id0.

https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#fequiv_shift
https://www.ps.uni-saarland.de/~kstark/thesis/website/fintype_variadic.html#fequiv_scons

Chapter 7

Modular Syntax

In the last chapter, we have seen how to define and reason about de Bruijn algebras for
a variety of formal systems. In this chapter, we extend de Bruijn algebras to modular
syntax. This extension is different from the previous ones in that it does not just cover
more complex syntactic systems and primitives to reason about syntax with binders,
but also primitives to reason about the modular composition of proofs.

The practical benefit of modular syntax and component reuse in a proof assistant is un-
doubted: Despite all efforts, 15 years after the POPLMark challenge [12], mechanising
proofs concerning syntax with binders in proof assistants is still considered hard and
one does not want to duplicate these efforts. Besides the treatment of binders, both
the already mentioned POPLMark and the POPLMark Reloaded [4] challenge hence
mention component reuse as one of the evaluation criteria for a practical development.
Component reuse covers both reusing definitions and parts of proofs. However, to the
best of our knowledge, all submitted solutions to either challenge follow a copy-paste
approach and do not actually reuse proofs.

Copy-pasting proofs results in inelegant and hard-to-maintain developments, but so far
there is no convenient alternative. Although suggestions how to use modular syntax
for proof assistants like Coq and Agda exist [19, 37, 66, 79, 101], we failed to locate a
development based on one of the proposed solutions, apart from the case studies con-
tained in the publications. Most solutions suffer from much more complex definitions
and proofs than their non-modular counterparts and hence defeat the point.

We propose a solution based on injections and functors. This surprisingly simple ap-
proach indeed scales up to complex proofs, like the strong normalisation of a λ-calculus
extended with boolean and arithmetic expressions, which we present in Section 9.6.

The first steps are very similar to Swierstra’s Data Types à la Carte approach [109]. We
define features, which specify a subpart of the formal system as functors parameterised
by the overall type. For example, arithmetic, boolean, and lambda features are encoded
as:
Arith X = (X, X) + N -- addition and natural constants

94 Modular Syntax

Booleans X = (X, X, X) + B -- if and boolean constants
Lambda X = N + (X, X) + X -- variables, application, abstraction

We then define variants of data types which combine several of these features via the
fixpoint of a coproduct. Different from Swierstra, these types are defined dynamically
and not an instantiation of a more general type. See Section 7.5 for a more thorough
comparison.

In the next step, we define smart constructors, which lift constructors to variants, modu-
lar recursive functions, and modular proofs. Our first attempt of stating proofs requires
that termination is re-checked and is hence not fully modular. In Section 7.2, we there-
fore develop (and generate) alternative induction principles.

In Section 7.3 we define custom substitution support for modular syntax on the example
of a λ-calculus and extensions, i.e. we use the previously developed design principles to
construct a full modular de Bruijn algebra.

The whole approach is extended to modular dependent predicates. Similar to the pre-
vious sections, we provide a modular proof that reduction is substitutive.

In the last section of this chapter, we compare our approach to related work. In a case
study proving monotonicity and type soundness of a big presentation of mini-ML, our
approach required around a fifth of the line of code of comparable approaches.

Unlike the previous chapters, this chapter uses only pure de-Bruijn syntax since, as of
now, Autosubst does not support scoped syntax yet. This is not an inherent flaw in the
approach and future work.

This chapter is based in significant parts on [43].

7.1 Modular Syntax

We give a high-level overview of modular syntax via our adaption of the Data Types à
la Carte approach [109] to Coq and compilation via Autosubst .We base our account on
the EHOAS specification in Figure 5.12. This section largely uses Coq syntax opposed
to mathematical syntax.

7.1.1 Modular Inductive Data Types

We start with exemplary feature functors, defined in Figure 7.1. We treat variables as a
separate feature because we want several features to access variables. Each feature is
parameterised by the full type exp, which is only defined at the very end. As a conven-
tion, feature functors always have a symbol as a subscript, e.g. expλ.

We can combine different features to a variant, as depicted in Figure 7.2. The user will
be able to declare these in a specification. We write exp1, exp2, and exp3 for different
variants of exp. In our later proof development, each variant will be generated in a

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#exp_var
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#exp_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#exp

7.1. Modular Syntax 95

Inductive var (exp : Type) :=
| var : N→ var exp.

Inductive expλ (exp : Type) :=
| app : exp→ exp→ expλ exp
| abs : exp→ expλ exp.

Inductive expB (exp : Type) :=
| constB : B→ expB exp
| if : exp→ exp→ exp→ expB exp.

Inductive exp+ (exp : Type) : Type :=
| plus : exp→ exp→ exp+ exp
| constNat : N→ exp+ exp.

Figure 7.1: Feature functors.

Inductive exp1 :=
| injvar : var exp1 → exp1
| injλ : expλ exp1 → exp1.

Inductive exp2 :=
| injvar : var exp2 → exp2
| injλ : expλ exp2 → exp2
| injB : expB exp2 → exp2.

Inductive exp3 :=
| injvar : var exp3 → exp3
| injλ : expλ exp3 → exp3
| injN : exp+ exp3 → exp3.

Figure 7.2: Generated instantiations.

96 Modular Syntax

separate file and we can hence use the original names. We will speak of feature sorts
for the specialised sorts expλexp and expBexp, and of a variant sort for a variant of exp.

7.1.2 Modular Constructors

We want to lift the constructors from features, e.g. app, to constructors for an instan-
tiation, e.g. exp2. Smart constructors [109] combine the constructors of the modular
type expB with the actual constructors of exp2, i.e.

Definition appB s t := injB (app s t).

However, more variants would require a new definition each and again lead to code
duplication. This is even a problem for generated code, as we might want to define a
type parameterised by the variant.

We hence mirror the approach of Swierstra and define tight retracts between
types [104], using Coq’s type classes [105]:

Class X <: Y := { inj : X → Y ; retr : Y →O(X);
retract_works : ∀x, retr (inj x) = Some x;
retract_tight : ∀x y, retr y = Some x→ inj x = y}.

The function inj of a retract is injective, i.e. if inj x = inj y, then also x = y.

Let us give an exemplary proof that previous definitions are indeed retracts (later, we
will generate the retract proofs automatically):

Lemma 7.1. expBexp <: exp.

Proof. Wedefine inj to be injB , retr to be the functionwhichmaps injB (s) to bsc, and every
other expression to ∅. It follows directly that this is a retract. For tightness, we do a case
analysis on y. If y = injB (y ′), the equality follows as injB is injective. Otherwise, bsc
and ∅ cannot be equal and we have a contradiction. �

We hence define the following instance of the type class:

Instance exp_retractB : expB exp <: exp.

Using the retract typeclass, we define a more general version of application, e.g.:

Definition app< {exp} (expλ exp <: exp) s t := inj (app s t).

Similarly, we define constructors if< and var< and c< to use in arbitrary contexts:

Check (app< (if< (c< true) then var< 1 else var< 2) t).

Autosubst automatically generates the proofs for exp_retractλ, exp_retractB, and the
definition of smart constructors, e.g. app< , var< , and if< _ then _ else _.

https://www.ps.uni-saarland.de/~kstark/thesis/website/header_extensible.html#retract
https://www.ps.uni-saarland.de/~kstark/thesis/website/header_extensible.html#retract_inj
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#retract_exp_bool
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#app_
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#If_
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#exp_var_
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#constBool_

7.1. Modular Syntax 97

Section B.
Variable exp: Type.
Variable _〈 _ 〉 : (N→N)→ exp→ exp.

Definition _〈 _ 〉B : (N→N)→ expB exp→ exp :=
fun s ⇒ match e with
| constB ⇒ constB<
| if s then t elseu⇒ if< s〈ξ〉 then t〈ξ〉 elseu〈ξ〉
end.

End B.

Figure 7.3: Definition of _〈 _ 〉B.

...
Variable ⇑∗tmtm : (N→N)→N→N.

Definition _〈 _ 〉λ : (N→N)→ expλ exp→ exp :=
fun s ⇒ match e with
| λ.s⇒ λ<.s〈⇑∗tmtm ξ〉
| app s t⇒ app< s〈ξ〉 t〈ξ〉
end.

Figure 7.4: Definition of _〈 _ 〉λ.

7.1.3 Recursive Functions on Modular Syntax

Our modular definition of expressions allows us to define modular functions. In this
section, we define a modular version of instantiation with renamings,

〈〉 : (N→ N)→ exp→ exp.

We first focus on exp2 and modularly add the definitions for exp3 later on.

The definition consists of two steps: First, the definition of the feature functions, then
their composition.

For each feature function, we parameterise over a type exp and a function _〈 _ 〉 : (N→
N)→ exp→ exp, and define functions

_〈 _ 〉var : (N→ N)→ var exp→ exp

_〈 _ 〉λ : (N→ N)→ expλexp→ exp

_〈 _ 〉B : (N→ N)→ expBexp→ exp

for all features contained in exp2. In Coq, we set parameters using the Variable com-
mand in a section.

98 Modular Syntax

Fixpoint _〈ξ〉 (s : exp2) : exp :=
match s with
| injvar s⇒ s〈ξ〉〈_〉var

| injλ s⇒ s〈ξ〉〈_〉;⇑
∗tm
tm

λ

| injB s⇒ s〈ξ〉〈_〉B
end.

Figure 7.5: Definition of instantiation with renamings.

Figure 7.3 shows the exemplary definition of _〈 _ 〉B. Note that the result type is (and
has to be) the variant sort exp. This is a practice we keep up: Feature sorts occur only in
the recursive argument. As a consequence, we have to use smart constructors.

The feature function for lambda, see Figure 7.4, requires the additional assumption that
lifting of renamings exists. This function will only be defined for the variant sort. We
again add the additional parameter with the Variable command.

We now turn to the definition of the variant function. After closing the section, the
parameters appear in the definition and we obtain e.g. a function parametrised in the
type exp and the function _〈 _ 〉,

_〈 _ 〉B : ∀exp, ((N→N)→ exp→ exp)→ (N→N)→ expB exp→ exp.

We write applications to a function f and an expression s and renaming ξ as s〈ξ〉fB.

Instantiation for exp2 can then be obtained, as shown in Figure 7.5, by a simple case
analysis calling the respective feature functions. Note that the lambda variant requires
a previously defined lifting operation for renamings. Since e.g. _〈 _ 〉B only uses _〈 _ 〉 on
structurally smaller arguments, this definition is terminating.

At this point, we are finished with instantiation with renamings. However, for later
proofs, we need to assume the following connection between the feature and variant
function (see e.g. Section 7.3):

(inj s)〈ξ〉 = s〈ξ〉B (7.1)

We call this property feature coincidence. For the individual variants, the proof is trivial
as the terms are equal by definition.

7.1.4 Proofs on Modular Syntax

We now turn to proofs over modular syntax. Since proofs are just dependently typed
functions, the principles of the last section remain unchanged. As an example, we show
that instantiation with the identity renaming preserves identity. Again, we split the
proof into feature proofs and variant proofs.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#ren_exp_bool
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#ren_exp_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#ren_exp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#retract_ren_exp

7.1. Modular Syntax 99

For feature proofs, we add the following parameter to the section:
Variable ren_id : ∀s : exp, s〈id〉 = e.

We then show the statement for the separate features:
Lemma ren_idvar :
∀ s : var exp, s〈id〉var = s. Proof. (* ... *) Defined.
Lemma ren_idB :
∀ s : expB exp, s〈id〉B = s. Proof. (* ... *) Defined.

All proofs are by an easy case analysis on e. For example, in the if case, we have to
prove that

if (s〈id〉) then (t〈id〉) elseu〈id〉 = if s then t elseu

where s〈id〉 = s, t〈id〉 = t, and u〈id〉 = u by the assumption ren_id, and so the whole
claim follows.

In the case of abstraction, we require an additional assumption. Recall that we used the
lifting operation. We hence have to assume that lifting will preserve identity, which will
be proven when proving a variant correct:
Variable up_ren_id_tm_tm : ⇑∗tmtm var ≡ var.
Lemma ren_idλ :
∀ s : expλ exp, s〈id〉λ = s. Proof. (* ... *) Defined.

In the proof the following equation will turn up:

λ<.s〈var〉λ = λ<.s〈⇑∗tmtm var〉λ<.s〈var〉 = λ<.s

The variant lemma for e.g. exp2 follows from the respective lemmas for vexp, expλ, and
expB. To actually prove the lemma, we first have to prove the corresponding law for the
lifting lemma:
Definition up_ren_id_exp_exp : ...

Fixpoint ren_id (s : exp2) : s〈id〉 = s.
Proof.
destruct s; cbn;
[apply ren_idvar
| apply ren_idλ with (⇑∗tmtm :=⇑∗tmtm) (up_ren_id_exp_exp := up_ren_id_exp_exp)
| apply ren_idB];
eauto.
Qed.

Since Coq’s induction principle for exp2 is too weak, we do the proof by direct recur-
sion1 on the expression e rather than induction. We fix this deficiency in Section 7.2 and
introduce modular induction principles.

1In the Coq proofs, this requires that ren_idλ is closed via the Defined and not the Qed keyword.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#idSubst_exp_bool
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#upId_exp_exp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#idSubst_exp

100 Modular Syntax

7.1.5 Introduction of New Features

When we extend our definitions to the type exp3, we have to define _〈 _ 〉+ and prove
that it preserves identity.

For this, we need a new section. We prove:
Section Arith.
Variable exp : Type.
Variable _〈 _ 〉 : (N→N)→ exp→ exp.

Definition _〈 _ 〉+ : (N→N)→ exp+ exp→ exp :=
fun s ⇒ match s with
| constN ⇒ constN<
| s+ t⇒ s〈ξ〉+< t〈ξ〉
end.

Lemma ren_idvar :
∀ s : exp+ exp, s〈id〉+ = s. Proof. (* ... *) Defined.

The combining function and lemma are then defined identically to before, with just one
further case. Note that for arithmetic expression we neither use lifting of renamings,
nor the identity law for lifting.

Until now, our definitions offer the same power as the dynamically extensible types of
Data Types à la Carte [109]. We essentially defined simplemodular data types, modular
functions over them and extended the approach to proofs. Autosubst supports the au-
tomatic definition of feature functors and combined types as we have already seen in a
previous chapter, and we provide commands to define and combine modular functions
and lemmas directly.

7.2 Modular Induction Principles

The induction principle Coq generates for e.g. the type exp2 reads as follows:
exp2_ind :
∀ P : exp2 → Prop,
(∀ s : var exp2, P (injvar s))→
(∀ s : expλ exp2, P (injλ s))→
(∀ s : expB exp2, P (injB s))→∀s : exp2, P s.

Note that there are no induction hypotheses available. We fix this problem by automati-
cally generating a stronger induction principle as part of the output of Autosubst, called
the modular induction principle. Using the induction principle avoids re-checking of
termination in instantiated proofs like ren_id.

The strong induction principles are built on a notion of syntactic subexpressions, de-
fined in Figure 7.6). For example, s is a subexpresion of app s t, written s ∈λ app s t.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#ren_exp_arith
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#idSubst_exp_arith
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter7.expressions.html#isIn_exp_exp_lam

7.3. Modular de Bruijn Algebras 101

e ∈var var x := ⊥
e ∈λ app s t := e = s∨ e = t

e ∈λ λ.s := e = s
e ∈B constB b := ⊥

e ∈B (if s then t elseu) := e = s∨ e = t∨ e = u

Figure 7.6: Containment for expressions.

Theorem 7.2. exp2_induction :
∀ P : exp2 → Prop,
(∀ s : var exp2, (∀ s’ ∈var s. P s’)→ P (injvar s))→
(∀ s : expλ exp2, (∀ s’ ∈λ s. P s’)→ P (injB s))→
(∀ s : expB exp2, (∀ s’ ∈B s. P s’)→ P (injB s))→
∀ s : exp2, P s.

Proof. By induction on s. �

Using themodular induction principle, we can obtain an alternative modular proof that
instantiation with the identity renaming yields the original term by proving the follow-
ing lemma first, which can now be defined opaquely using Qed in Coq:

Lemma 7.3.

1. If ∀s ′ ∈var s. s
′〈id〉 = s ′, then s〈id〉var = s.

2. If ∀s ′ ∈λ s. s ′〈id〉 = s ′, then s〈id〉λ = s.

3. If ∀s ′ ∈B s. s ′〈id〉 = s ′, then s〈id〉B = s.

Lemma 7.4. For all e : exp2, e〈id〉 = e.

Proof. By the induction principle from Theorem 7.2 and Lemma 7.3. �

7.3 Modular de Bruijn Algebras

We continue and generalise thewhole definition of a de Bruijn algebra from the previous
sections to modular syntax. We sketch how this transformation works for the EHOAS
specification from Figure 5.12. We take the lambda feature as an example.

The structure is entirely analogous to Chapter 3. We hence continue with the instanti-
ation with substitutions. For example, feature instantiation for lambda terms assumes

https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#induction_exp
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#ren_id_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#ren_id
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#subst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#subst_tm_lam

102 Modular Syntax

a function [_] : (N → exp) → exp → exp, a lifting operation ⇑tm
tm , and has the following

type:
[_]λ : (N→ exp)→ expλexp→ exp

Note that according to our design principles instantiation takes the variant sort exp as
result, and not the feature sort. Again, we assume that the feature function and variant
function coincide on lambda expressions:

(inj s)[σ] = s[σ]λ.

To prove that s[var]λ = sweneed to parameterise the definition by a variable constructor;
and again that the lifting operation preserves identities. Otherwise, we parameterise by
the full statement as before. The same holds for coincidence and extensionality.

The definition of composition requires special care. Let us start with the definition of
composition of renamings. For the lambda feature, we want to prove the following law:

s〈ξ〉λ〈ζ〉 = s〈ξ ◦ ζ〉λ.

Recall the type of feature instantiation for renamings and note that for the composition
only the inner definition uses feature instantiation, while the outer instantiation is vari-
ant instantiation. This is necessary to even type-check and will be the point where we
first need feature coincidence (Equation 7.1).

We now prove compositionality (cf. Lemma 3.4); as always parameterising the proof
with the fact that variant instantiation already is compositional for the full sort. For
example, in the case of application, we show that:

(app s t)〈ξ〉λ〈ζ〉 = (app< (s〈ξ〉) (t〈ξ〉))〈ζ〉
= (app (s〈ξ〉) (t〈ξ〉))〈ζ〉λ Equation 7.1
= app< (s〈ξ〉〈ζ〉) (t〈ξ〉〈ζ〉)
= app< (s〈ξ ◦ ζ〉) (t〈ξ ◦ ζ〉) IH
= (app s t)〈ξ ◦ ζ〉λ

Toprove the statement, wefirst reduce instantiationwith renamings. In the next step, we
do not reduce anymore, as at this pointwe technically do not knowhow full instantiation
with renamings reduces, except in the case of an injection (hence Equation 7.1). We
rewrite with this equation and then continue with the usual proof. The same procedure
holds for all substitution components.

Last, let us observe that for the variant proofs, we need to know all parameters the def-
inition depends on. For example, for instantiation with substitutions, we have to insert
all the dependencies for instantiation with renamings. These dependencies are regular
and can (and will) be deduced automatically.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#rinstInst_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#ext_tm
https://www.ps.uni-saarland.de/~kstark/thesis/website/Counting.section2_count.html#compComp_tm

7.4. Modular Inductive Predicates 103

For the equational theory of a modular λ-calculus, we add the usual laws. Further, our
rewriting method registers the lemmas of feature coincidence for renamings and sub-
stitutions.

Note that to later use the substitution support of Autosubst for a feature in a modular
manner, we have to assume all the intermediate statements from this section.

7.4 Modular Inductive Predicates

We extend our approach to modular inductive predicates with dependent types over
modular syntax. This covers reduction and a simple proof of substitutivity of reduction
to showcase the substitution support. From now on, we switch to a more mathematical
representation.

We start with the definition of reduction. In total, we provide three feature relations,
depicted in Figure 7.7:

_�B _ : exp→ exp→ Prop

_�λ _ : exp→ exp→ Prop

_�+ _ : exp→ exp→ Prop

As before, the relation is parameterised by a type exp, retracts like expB exp <: exp, and
a relation _� _ : exp→ exp→ Prop. For both the definitions and the later proofs, we
further have to assume that a modular de Bruijn algebra exists.2 Note that we use smart
constructors everywhere; otherwise, the definition is identical to a non-modular one.

Variant reduction, in our case for the type with all features, then combines the different
predicates, see Figure 7.8.

Similar to the assumption of retracts between types, we have to assume that themodular
versions of predicates can be embedded into the full predicates. We do not require the
equations of a retract, because as long as there is a proof for predicates the proof itself
is irrelevant:

s�i t→ s� t (7.2)

In the case of later inversions (which will be needed in Part 3 of the thesis), we also
require the corresponding law for tight retracts:

inj s� t→ inj s�i t (7.3)

We now give a modular proof of substitutivity for this language:

s� t→ s[σ]� t[σ]
2At the moment, this has unfortunately to be assumed via explicit Variable commands. Autosubst

provides the necessary assumptions to copy-paste. We have posted a feature request for the import of
variables.

104 Modular Syntax

if constBb then t elseu�B if b then t else u
s� s ′

if< s then t elseu�B if< s ′ then t elseu

t� t ′

if< s then t elseu�B if< s then t ′ elseu

u� u ′

if< s then t elseu�B if< s then t elseu ′

app< (λ<A.s) t�λ s[t..]<
s� s ′

app< s t�λ app< s ′ t

t� t ′

app< s t�λ app< s t ′
s� s ′

λ<A.s�λ λ<A.s ′

s� s ′

s+< t�+ s ′ +< t

t� t ′

s+< t�+ s+< t ′ atom<m+< atom< n�+ atom< (m+ n)

Figure 7.7: Feature reduction.

s�B s
′

s� s ′
s�λ s ′

s� s ′
s�+ s

′

s� s ′

Figure 7.8: Variant reduction.

7.4. Modular Inductive Predicates 105

This will give us the possibility to see how substitution proofs on a modular de Bruijn
algebra work.

We start with the feature proofs. Similar to before, we use the modular versions �i in
the modular statements for arguments we want to do induction on:

Lemma 7.5. Assume that if s� t, then s[σ]� t[σ]. Then the following three implications hold:

1. If s�B t, then s[σ]� t[σ].

2. If s�λ t, then s[σ]� t[σ].

3. If s�+ t, then s[σ]� t[σ].

Proof. For both boolean and arithmetic expressions, the proof is straightforward. We do
induction on the first statement, and then show thatwe can imitate these proofs together
with the substitution.

Let us give the example for the following rule:

s� s ′

if< s then t elseu�B if< s ′ then t elseu

We have to show that if< s then t elseu[σ]� if< s ′ then t elseu[σ]. To even apply the cor-
responding inductive rule, we have to apply Equation 7.2 to prove the corresponding
statement for �<. Applying the respective rule, we have to show that s[σ]� s ′[σ] which
follows with our global inductive hypothesis. All cases except β-reduction follow ex-
actly this pattern.

Here, following the same pattern as before, we are left with the following equation:

s[(t · var) ◦ [σ]] = s[var 0I · σ ◦ 〈↑〉][t[σ] · var]

Note that this statement contains no feature definitions. We hence have the same proof
for substitutivity as before, only that we use the assumed properties. In the Coq proof,
this part will be automated by an invocation of our simplification tactic. �

The only part in which this proof deviates from a non-modular one is the intermediate
step of calling the retract property, and the additional equations for feature coincidence.
We will provide automation support for both.

The rest of the proof is then very similar to the proofs in the last section:

Theorem 7.6. If s� t, then s[σ]� t[σ].

Proof. By induction on s� t and Lemma 7.5. As we have assumed several substitution
properties, we now have to provide them: This can easily be solved by registering the
lemmas with eauto (which Autosubst will do automatically). In fact, there is a simple
MetaCoq tactic which will solve this statement on its own. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn_lam.html#subst_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn_lam.html#pres

106 Modular Syntax

Concerning the proofs of substitution properties, we are now in a similar position as
in the last chapter. In the third part of this thesis, we give a modular proof of strong
normalisation using the methods presented in this chapter.

In the third part of this thesis, we then provide more extensive proofs showing strong
normalisation of the above calculus with extensions to show that this approach indeed
scales.

7.5 Related Work

We compare our approach with the recent literature with a special focus on approaches
that adapt Data Types à la Carte to proof assistants. All these approaches fulfil the
criterion of true modularity.

Data Types à la Carte. The basic idea is very similar to Swierstra’s Data Types à la
Carte approach [109]. Swierstra proposes a solution in Haskell, where expressions are
defined as a supertype parameterised by a functor Fwhich is used to instantiate the type
with so-called features.

Instead of our full type Swierstra then defines a general type for variants:

data Exp F = In (F (Exp F))

With these definitions and the pointwise coproduct on functors :+: , Swierstra would
define different variants of exp as:

Definition exp1 := Exp (expλ :+: var).
Definition exp2 := Exp (expλ :+: var :+: expB).
Definition exp3 := Exp (expλ :+: var :+: exp+).

Although Swierstra’s development makes heavy use of type classes, it fulfils the
POPLMark criteria of being concise, transparent, accessible, and truly modular.

However, Coq’s positivity checker rejects the definition of Exp, because it would intro-
duce a logical inconsistency via the negation functor F(T) := T → ⊥.3 Of course, in later
instantiations we only want to insert strictly positive functors F, but there is no way to
encode this invariant in Coq.

To the best of our knowledge, all adaptions of Data Types à la Carte to proof assis-
tants have to add a layer of indirectness to circumvent this problem: Schwaab and
Siek [101] formalise the syntax of (some) strictly positive functors and only allow such
instances,4 other approaches work with Church encodings [37] or containers and proof
algebras [66].

3 ExpF↔ (ExpF→ ⊥) would be provable, but is contradictory.
4This is impossible in Coq, see Section 7.5.

7.5. Related Work 107

Inductive Functor := Id : Functor | Const : Type→ Functor.
Fixpoint eval (X : Type) (F : Functor) : Type :=
match F with | Id ⇒ X | Const Y⇒ X end.

Inductive mu (F : Functor) := inn : eval (mu F) F → mu F.
(* Error: Non strictly positive occurrence of "mu" *)
(* in "eval (mu F) F → mu F". *)

Figure 7.9: Failing definition in Coq.

Instead of defining one general type, we generate the necessary instances on demand
and hence retain all previous advantages. For function definitions, we do not rely on al-
gebras but directly use Coq’s built-in functions. We believe that this improves both the
transparency and accessibility of our code. In Haskell, definitions are restricted to poly-
morphic, non-dependent types, and hence neither dependent functions nor dependent
predicates are handled. However, the ideas scale, as demonstrated by our case studies.

Data Types à la Carte works with injections. Every injection in Haskell morally corre-
sponds to a tight retract in Coq, which we require for our proofs.

Modular Type Safety Proofs in Agda. Schwaab and Siek [101] adapt the Data Types
à la Carte approach to Agda and syntactically define a class of strictly positive func-
tors which includes the identity functor, constant functors, products, and coproducts.
A function eval : Functor→ Type→ Type is used to evaluate a functor and enables the
definition of the least fixed point over strictly positive functors. Due to a more restricted
checker for strict positivity, the approach is inapplicable to Coq (see Figure 7.9).

We were unable to obtain the source code for the paper, which makes a comparison
difficult. However, in [43] we were able to implement the case study, proving preser-
vation for a language with natural numbers, arrays and options (but no means for case
analysis and no abstractions of binders) in about 150 lines of code.Schwaab and Siek
mention that their final proof which composes all features is rejected in Agda because
termination cannot be verified. In our setting, this does not pose a problem and Coq
checks termination instantaneously.

Meta-Theory à la Carte. Delaware, Oliveira, and Schrijvers [37] adapt the Data Types
à la Carte approach to Coq via Mendler-style Church encodings. Church-encodings
rely on Coq’s impredicative sets option and are used as a replacement of inductive data
types. Their framework is implemented entirely in Coq and consists of 2500 lines.

The indirectness induced by Church encodings replacing inductive types, algebras re-
placing of functions and proof algebras replacing proofs impairs the readability of def-
initions for non-experts impacting transparency and accessibility.

Furthermore, Coq’s impredicative Set option is known to be inconsistent with classical

108 Modular Syntax

logic (excluded middle plus unique choice5) and makes constructors of some inductive
types lose injectivity.

Generic Datatypes à la Carte. Keuchel and Schrijvers [66] present a solution with
binders based on a universe of containers. Containers consist of a type of codes and
an interpretation function mapping codes to types. Their framework needs about 3500
lines of code.

From a theoretical perspective, the usage of containers seems to be the most satisfying
approach, since it subsumes, for example, the strictly positive functors used by Schwaab
and Siek [101]. From a practical perspective, using codes is unsatisfying, since defini-
tions become even harder to read.

Comparison. As a case study, both Delaware et al. [37] and Keuchel and Schrijvers
[66] prove monotonicity and type soundness of a big-step presentation of mini-ML.
One key challenge in the case study is feature interaction, surfacing as the need to as-
sume inversion properties. For each feature, typing, evaluation, monotonicity, and type
preservation both approaches require about 1100 lines of code. We implemented the
same case study for comparison in [43]. With our approach, all five features together
need about 625 lines of code, i.e. we need about 125 lines per feature while obtaining
transparent statements.6 Big parts of this line difference are in the generation of prelim-
inary code (which seems to be around 1/5th of the code needed in Generic Data Types
à la Carte) and the directness of our approach, resulting in fewer lines for function defi-
nitions, proofs and tactics. For a more detailed discussion of this big line difference, see
[43].

Proof Reuse. A variety of approaches has investigated proof reuse in general [15, 19,
41, 61, 88, 93]. Approaches in the literature span from implementing dedicated proof
assistants [41], via extensions of type theory [15] to automated approaches to generalis-
ing statements as much as possible [88]. An exhaustive historical overview is available
in Section 6.4 of Ringer et al.’s survey on proof engineering [92].

5https://github.com/coq/coq/wiki/Impredicative-Set
6See directory GDTC.

https://github.com/coq/coq/wiki/Impredicative-Set
./coq/website/toc.html

Chapter 8

The Autosubst Compiler

So far, we have approached syntax from two perspectives: In Chapter 5, we have de-
clared EHOAS, a specification language for syntaxwith binders. In Chapter 6 andChap-
ter 7, we have reasoned on specific syntactic systems with binders using de Bruijn syn-
tax. The definitionswere feasible but repetitive to establish and generated huge amounts
of substitution boilerplate.

In this chapter, we combine the two approaches and compile from EHOAS to de Bruijn
syntax. We generalise the examples of the last chapters and automatically generate the
substitution boilerplate for a custom EHOAS specification. Our tool is called Autosubst.

Given an EHOAS specification, Autosubst yields Coq code in the form of textual out-
put which can be embedded into (and verified by) the Coq proof assistant. This output
contains proof terms, notation commands, and (very simple) custom Ltac scripts estab-
lishing the rewriting system of the corresponding σ-calculus. For historical reasons, the
Autosubst compiler is realised in Haskell; it does need no specific features of Haskell.

Compilation is split into three phases (Figure 8.1): Given an EHOAS input, Autosubst

EHOAS Specification

Dependency Graph

Abstract Proof Terms

Pure
Coq Code

Parsing/Analysis

Proof Generation

Code Generation

Scoped
Coq Code

...

Figure 8.1: Phases of the Autosubst compiler.

110 The Autosubst Compiler

first generates a dependency graphwith additional information about the free variables
and dependencies on other sorts. Dependency graphswith similar information are used
in Twelf [84] and Beluga [85]. In the second step, Autosubst derives an abstract type-
theoretic representation of the corresponding de Bruijn algebra. In the last step, Au-
tosubst converts the abstract representation to pure or scoped Coq code. This whole
process generalises the definitions of the last chapter.

Autosubst equips a sort with the necessary variable constructors only. A minimal so-
lution simplifies the representation of syntax; further, we require minimality to achieve
completeness of the rewriting system.

Note that we have no guarantee that the generated Coq code always type-checks or the
generated substitution equations are complete for the corresponding de Bruijn algebra.1
However, this is only a small restriction: Soundness of the generated code is still ensured
as all code is verified by the Coq proof assistant, and the automation sufficed in a large
number of case studies. Moreover, we have generated the code in a way such that the
definition of inductive types, instantiation, and the statements of the substitution laws
are readable by a human user.

In the generation of the abstract proof terms, we want to prevent generalisation prob-
lems and problems specific due to proof-assistant-specific behaviour. It is hence crucial
to be as precise as possible. Precision includes that Autosubst uses as few implicit argu-
ments as possible, does not use any notation during the definition, and finally uses proof
terms instead of tactics. The last point further ensures that we can extend Autosubst to
proof assistants without tactics, e.g. Lean.

We now look at the three compilation phases in detail. For clarity, we first describe the
process for non-modular syntax. In Section 8.4, we then extend the previous designwith
modular syntax. Modular syntax changes compilation, as Autosubst additionally has to
respect the dependency structure of features and composed sorts. Moreover, Autosubst
generates one instance of a dependency graph for each composed sort (but does not use
separate compilation).

The description of the Autosubst compiler in this section is an extended and revised
version of the corresponding sections in [108]. The section on tool support for modular
syntax is based on the corresponding description in [43].

8.1 Dependency Analysis on EHOAS

EHOAS allows a natural representation of binders, but many properties are left implicit:
Which sorts contain variables? Which variables appear (transitively) in which sorts,
what are the correct substitution vectors? Which sorts need to be mutually inductive?

Autosubst tracks this information in a dependency graph. For example, the specification

1In fact, they are not, consider the type with a single constant which would require a type-driven rule.

8.1. Dependency Analysis on EHOAS 111

of FCBV in Figure 5.4 would be represented as shown in Figure 8.2. Each sort appears as
a node of the graph, together with its equipped constructors. Open and closed sorts are
marked and annotated with the substitution vector, a vector of all necessary substitu-
tions in its header (e.g. [ty,vl] for tm). The edges of the graph describe the occurrence
relation, which defines the order in which the graph is processed.

In the following, we first outline how the occurrence relation is constructed, in the sec-
ond part, how Autosubst handles custom syntax.

Occurrence. Occurrence plays a central role in Autosubst, as it defines the order in
which components are processed. First, we say that a sort y occurs directly in sort x if
and only if it appears as an argument head in one of x’s constructors. We refer to the
transitive closure of direct occurrence as occurrence.

Occurrence naturally entails a notion of strongly connected components on the sorts.
Thesewill be the components thatwill have to be defined simultaneously. More specific,
the corresponding inductive term sorts are declared mutually inductive, instantiation
operations are defined mutually recursive, and the equational rules of the affected sorts
are proven mutually inductive.

Autosubst then traverses this graph according to its topological ordering, preserving the
input order of sorts where possible. The Autosubst compiler then establishes instanti-
ation and substitution lemmas according to this topological ordering. For example, in
Section 6.4 FCBV types have to be defined before FCBV terms and values.

Autosubst is now ready to define (1) which sorts are open, i.e. require a variable con-
structor, and (2) how to determine the correct substitution vector.

Occurrence suffices to characterise (1): A sort x is open if and only if x is bound in a sort
y and also occurs in y. For FCBV, this applies to ty and vl, but not to tm. If x does not
occur in y, the binding is vacuous, as we will never see a variable in the respective sort.
In this case, Autosubst produces a warning.

We can now state which sorts require an instantiation operation with which variables,
i.e. specify the substitution vector. A sort x requires an instantiation with a substitution
for all open sorts ywhich occur in x.

External sorts, first-order sorts, and variable sorts. First-order sorts and variable sorts
were introduced in Section 6.5 and allowed a simplified definition of instantiation and
the substitution lemmas – short, better code. Autosubst hence retains this information
in the dependency graph.

Recall that external sorts are sorts which are defined before the invocation of Autosubst,
e.g. booleans and natural numbers; we hence do not want to generate any substitution
boilerplate. Autosubst assumes a sort to be external, if it appears in the sort declaration,

112 The Autosubst Compiler

closed tm[ty,vl]

app : tm → tm → tm

tapp : tm → ty → tm

vt : vl → tm

open vl [ty,vl]

lam : ty → (vl → tm) → vl

tlam : (ty → tm) → vl

open ty[ty]

arr : ty → ty → ty

all : (ty → ty) → ty

Figure 8.2: Dependency graph of FCBV.

but neither appears in a binder nor occurs as result sort of a constructor.2 External sorts
are never substitution sorts.

For first-order sorts, let us consider an example. Recall that first-order logic as defined
in Figure 5.9 consists of two sorts, terms term and formulas form, and generates a depen-
dency graph in which formulas depend on terms, but not vice versa. See Figure 8.3 for
the corresponding dependency graph, in which we can see that the term component is
not bound in the same strongly connected component as its sort: This is what defines a
first-order binder.

A variable sort is then a sort with no constructors, but a variable constructor. Again,
Autosubst will check the corresponding condition.

8.2 Generation of Abstract Proof Terms

In the next section, we show how Autosubst uses the gathered information to generate
the corresponding de Bruijn algebra. The dependency graph yields all information to
define custom de Bruijn algebras. Our goal is an abstract representation of the Coq
proof terms describing de Bruijn algebra. These components are so general that they
could also be interpreted in another type-theoretic proof assistant.

2The condition to appear in a binder is necessary to yield the correct output for renaming sorts as in
the π-calculus – without this condition, channels would be assumed to be external. The only case in which
Autosubst generates the wrong code is if the user wants to define a custom empty sort.

8.2. Generation of Abstract Proof Terms 113

open tm[tm]

atom : tm

plus : tm → tm → tm

closed form[tm]

fal : form

pred : tm → form

all : (tm → form) → form

Figure 8.3: Dependency graph of FOL∗.

Lifting lemmasmight be required in different components. For example, in call-by-value
System F, terms require the lifting operation ⇑ty

ty and corresponding lifting lemmas, but
already its types provided these operations (see Section 6.4). During the generation of
the abstract proof terms, Autosubst hence remembers which lifting lemmas are already
generated. Autosubst generates all possible pairs of lifting lemmas, independent of their
actual usage.

To simplify the generation of abstract proof terms, the Autosubst compiler internally
uses a distinct abstract type for substitution objects. This type includes predefined in-
stances of scope vectors, renaming vectors, substitution vectors, and equation vectors.
Together with this data type, there are specific functions to select subvectors and to lift
objects into a new scope. For example, for a renaming vector [ξty ; ξvl], adaption to the
sort ty reduces the vector to [ξty]; and lifting by the type component changes the vector
to [⇑∗tyty ξty ; ξvl].

8.2.1 Inductive Sorts

We start with the definition of the inductive sorts.

Sorts in the same strongly connected component have to be declaredmutually inductive;
each sort corresponds to one inductive type. See Figure 8.4 for the (pretty-printed)
output of FCBV terms and values.

Each sort s requires a vector of scope indices n1...nk, one for each element in its sub-
stitution vector. For the generation of the inductive term sorts, Autosubst aggregates
the constructors, strips binders and, if necessary, adds a variable constructor vars . The
variable constructor takes a finite type with ns elements as an argument.

114 The Autosubst Compiler

Inductive tm (nty nvl : N) : Type :=
| app : tm nty nvl → tm nty nvl → tm nty nvl
| tapp : tm nty nvl → ty nty → tm nty nvl
| vt : vl nty nvl → tm nty nvl

with vl (nty nvl : N) : Type :=
| varvl : I nvl → vl nty nvl
| lam : ty nty → tm nty (1 + nvl)→ vl nty nvl
| tlam : tm (1 + nty) nvl → vl nty nvl .

Figure 8.4: Autosubst output for the inductive sorts of FCBV. We removed parentheses
and introduced indexed notation for the sake of readability.

If an argument requires a different sort, Autosubst might have to adapt the scope vec-
tor to the correct components. For example, the type scope of lam consists of only one
component, ty nty . If a sort is bound, the respective component of the scope vector is
increased by 1 for a monadic binder, by the respective parameter for a variadic binder.
In case of a polyadic binder, the scope is increased repeatedly. For example, in lam the
value scope increases, while in tlam the type scope increases.

8.2.2 Instantiation and Substitution Lemmas

The definition of instantiations and the substitution lemmas is split into three phases:
Autosubst starts with the instantiation with renamings and substitutions. Autosubst
then continueswith the inductive lemmas and proves identity for renamings and substi-
tutions, extensionality, compositionality, and the coincidence of renamings and substi-
tutions, as explained in Chapter 6. In the last step, Autosubst proves the supplementary
laws.

In each phase, the lifting operations are defined before the actual recursive definition.
We will start by explaining the generation of recursive definitions.

Recursive definitions. In Chapter 6, we have already seen the definition of instanti-
ation in great detail. See Figure 8.5 for the (printed) Autosubst output of the identity
law for the terms and values of FCBV. We now explain how this law is automatically
generated.

First, note that to even state instantiation and the substitution laws correctly, Auto-
subst needs to express vectors of scopes, substitutions, and equations. For example,
for idSubsttm Autosubst generates the binder vector [nty : N, nvl : N] and the object
vector n := [nty , nvl], accessible in later definitions. Some objects depend on previous
vectors; in this case, the binder vector for substitutions σ depends on the scope n in
both its domain and codomain. Note that the scope of the codomain of σty has to be
reduced from [nty , nvl] to [nty].

8.2. Generation of Abstract Proof Terms 115

Fixpoint idSubsttm { nty nvl : N} (σty : I nty → ty nty) (σvl : I nvl → vl nty nvl)
(Eqty : ∀x, σty x = varty nty x) (Eqvl : ∀x, σvl x = varvl nty nvl x) (s : tm nty nvl)
: s[σty ; σvl] = s :=
match s with
| app _ _ s0 s1 ⇒ congrapp (idSubsttm σty σvl Eqty Eqvl s0) (idSubsttm σty σvl Eqty Eqvl s1)
| tapp _ _ s0 s1 ⇒ congrtapp (idSubsttm σty σvl Eqty Eqvl s0) (idSubstty σty Eqty s1)
| vt _ _ s0 ⇒ congr_vt (idSubstvl σty σvl Eqty Eqvl s0)
end

with idSubstvl { nty nvl : N} (σty : I nty → ty nty) (σvl : I nvl → vl nty nvl)
(Eqty : ∀x, σty x = varty nty x) (Eqvl : ∀x, σvl x = varvl nty nvl x) (s : vl nty nvl)
: s[σty ; σvl] = s :=
match s with
| varvl _ _ s⇒ Eqvl s
| lam _ _ s0 s1 ⇒ congrlam (idSubstty σty Eqty s0)
(idSubsttm (up_vl_ty σty) (up_vl_vl σvl) (upId_vl_ty _ Eqty) (upId_vl_vl _ Eqvl) s1)

| tlam _ _ s0 ⇒ congrtlam (idSubsttm (up_ty_ty σty)
(up_ty_vl σvl) (upId_ty_ty _ Eqty) (upId_ty_vl _ Eqvl) s0)
end.

Figure 8.5: Autosubst output for the identity monad law for FCBV.

Next, recall that Autosubst uses a generalised form of the lemmas (Chapter 3). For
example, the identity law requires explicit assumptions Eqty and Eqvl stating that the
substitutions σty and σvl behave as the identity for each appearing sort. As expected,
the return type states that instantiation with σ returns the original term indeed.

We proceed with the generated proof term. In this case, Autosubst does an induction,
and hence in the proof term a recursion on s: match s with ... end. Autosubst proceeds
with proving the claim for each constructor; Autosubst calls the ith argument of a con-
structor si. In case the respective sort contains a variable constructor, this case has to
be handled separately. Here, Autosubst simply invokes the equation Eqvl for value vari-
ables. (In the case of instantiation, Autosubst invokes the respective renaming or sub-
stitution.)

In the next step, Autosubst has to handle each argument separately with a recursive call
and then combine the different proof terms. It is hard to handle equational reasoning
with proof terms. Autosubst hence uses custom congruence statement for the inductive
definition; for example for term application, Autosubst generates the following congru-
ence law:

congrapp : s = s ′ → t = t ′ → app s t = app s ′ t ′

Autosubst uses these congruence laws in all recursive statements.

Last, let us examine how each argument is handled. Each argument requires again a
call of the respective lemma, not necessarily of the same sort. For example, for tapp, the
proof term calls idSubsttm for s0 (which is a term) and idSubstty for s1 (which is a type).

116 The Autosubst Compiler

Definition upId_vl_vl { nty nvl : N} (σ : I nvl → vl nty nvl) (Eq : ∀x, σx = varvl nty nvl x)
: ∀ x, (up_vl_vl σ) x = (varvl nty (1 + nvl)) x :=
fun n ⇒ match n with
| Some x⇒ f_equal <id; ↑> (Eq x)
| None⇒ eq_refl
end.

Figure 8.6: Autosubst output for the identity lifting for values on values FCBV.

The vectors used in the definition have to be adapted accordingly (see the invocation of
idSubstty). Note that the previous lemma for types already exists because ofAutosubst’s
proceeding via the topological order of occurrence. As terms and values appear in the
same strongly connected component, the identity law for terms and values has to be
defined mutually recursive.

Last, if an argument has binders, Autosubst requires the correct lifting operation or lift-
ing lemma, depending on the sort handled and the binding argument (both sort and
arity). In this case, for example for lam, Autosubst lifts all substitution components and
equation components correspondingly. The equation components will require lifting
lemmas, which we explain in the following. For polyadic binders, we repeatedly apply
a lifting operation, as sketched in Section 6.2.

Functors deserve an additional remark. For functors, Autosubst implicitly requires
that users provide appropriate mapping functions with appropriate names (for
example: L_map) and non-opaque lemmas of the functor equations, extensionality,
L_id and L_comp). Autosubst applies the corresponding operation or lemma for each
statement.

Autosubst uses a traversal-like function to simplify the generation of both instantiation
and the recursive substitution lemmas. The function implements traversals as described
by Allais et al. [6] and Kaiser et al. [64], traversing a term and changing the scope if
necessary.

Definition of lifting operations. As we have already seen, the initial recursive defini-
tions have a lot to take care of, but in conclusion, are very regular. Liftings are a little
different: Most extensions require us to adapt exactly these proofs. In the current situa-
tion, Autosubst generates both amonadic and a variadic lifting operation for each lifting
pair (x, y).

We pick an easy example to show how establishing lifting lemmas works. See Figure 8.6
for the definition of identity lifting on ⇑vl

vl . Recall that the definition of a lifting ⇑xy de-
pends on the fact whether x and y are of the same sort, and the substitution vector of x
and y.

The lifting operation does a case analysis on the argument with match (in the variadic

8.3. Code Generation 117

case, Autosubst has to call an additional lemma), and handles each case appropriately.

In the proofs in Chapter 6 we have seen, that many laws require long chains of rewrit-
ing. These proofs are the hardest part. In the proof term, you can see an application
statement, which simplifies proofs:

f_equal : s = s ′ → f s = f s ′

More complicated are the composition statements, where Autosubst has to invoke sym-
metry and transitivity statements for equality explicitly (see Lemma 3.4 for the detailed
proof).

For variadic reasoning, proofs get even harder. Autosubst can no longer use pattern
matching but has to use the explicit lemmas for a case analysis, which requires addi-
tional levels of transitivity, as explained in Section 6.6.

Supplementary laws. For the supplementary laws, the main challenge is to state the
correct laws: both which laws to state and how to state them. For example, Autosubst
requires left identity only for all open sorts.

Otherwise, the proofs followdirectlywith reflexivity, the respective laws, and functional
extensionality.

First-order sorts. Recall that in the case of first-order sorts, the substitution boilerplate
(1) consists of slightly different statements and proofs, and (2) the type-theoretic state-
ments have to be stated in an adapted order: Autosubst hence first defines instantiation,
and then the lifting operations; analogous for the monad laws (Section 6.5).

8.3 Code Generation

In the last step, Autosubst transforms the abstract proof terms into plain text, readable
(and verifiable) by Coq.

This stage profits from the separate treatment of substitution objects: The scoped and
pure variant of the generated Coq code only differs in the Show instance of scoped ob-
jects. See for example Figure 8.7 for the pure representation of our previous definitions:
Autosubst replaces the finite type In with a natural number, and removes all scoping
information.

Porting instantiation and the substitution laws to a new proof assistant (with the cor-
responding support, for example for mutually inductive types) is straightforward. See,
for example, Mameche [73] for a port of the Autosubst backend to Lean as part of her
Bachelor thesis [35].

118 The Autosubst Compiler

Inductive tm : Type :=
| app : tm → tm→ tm
| tapp : tm → ty→ tm
| vt : vl → tm

with vl : Type :=
| varvl : N→ vl
| lam : ty → tm→ vl
| tlam : tm → vl.

Fixpoint idSubsttm (σty : N→ ty) (σvl : N→ vl)
(Eqty : ∀x, σty x = varty nty x) (Eqvl : ∀x, σvl x = varvl x) (s : tm) : s[σty ; σvl] = s :=
match s with
| app s0 s1 ⇒ congrapp (idSubsttm σty σvl Eqty Eqvl s0) (idSubsttm σty σvl Eqty Eqvl s1)
| tapp s0 s1 ⇒ congrtapp (idSubsttm σty σvl Eqty Eqvl s0) (idSubstty σty Eqty s1)
| vt s0 ⇒ congr_vt (idSubstvl σty σvl Eqty Eqvl s0)
end

with idSubstvl (σty : N→ ty) (σvl : N→ vl)
(Eqty : ∀x, σty x = varty x) (Eqvl : ∀x, σvl x = varvl x) (s : vl) : s[σty ; σvl] = s :=
match s with
| varvl s⇒ Eqvl s
| lam s0 s1 ⇒ congrlam (idSubstty σty Eqty s0)
(idSubsttm (up_vl_ty σty) (up_vl_vl σvl) (upId_vl_ty _ Eqty) (upId_vl_vl _ Eqvl) s1)

| tlam s0 ⇒ congrtlam (idSubsttm (up_ty_ty σty)
(up_ty_vl σvl) (upId_ty_ty _ Eqty) (upId_ty_vl _ Eqvl) s0)
end.

Figure 8.7: Pure output of FCBV and the identity monad law.

8.3. Code Generation 119

(* Type Class for the Notation *)
Class Subst1 (X1 : Type) (Y Z: Type) :=
subst1 : X1 → Y→ Z.

Notation "s [σ]" := (subst1 σs) (...).

(* Declared instance of the notation. *)
Instance Subst_ty { nty nty : N} :
Subst1 (I nty → ty nty) (ty nty) (ty nty)
:= subst_ty nty nty .

(* Additional Printing Notation. *)
Notation "s [σ]" := (subst_ty σ s) (..., only printing).

Figure 8.8: Instantiation notation FCBV types.

8.3.1 Automation for Substitutions

Recall that every EHOAS specification should also provide the corresponding variant
of the σ-calculus and hence also provides a rewriting system. Under the assumption
of functional extensionality, we can rewrite with the corresponding lemmas using the
rewrite tactic of Ltac. The tactic asimpl rewrites the corresponding lemmas in the goal,
respectively for asimpl in * in all hypotheses and the goal. Equations which hold def-
initionally, i.e. for reduction, are not rewritten, but directly reduced using Coq’s evalu-
ation tactic to reduce proof term size. Notations (Section 8.3.2) have to be unfolded.

All versions of asimpl invoke the custom Ltac tactic fsimpl that normalises terms with
substitution primitives of the σ-calculus. This corresponds to simplification with (both
monadic and variadic) interaction lemmas.

The asimpl tactic further accounts for the functor laws. It does so via lemmas registered
via autorewrite.

A tactic without functional extensionality is possible with our restricted syntax, but has
to traverse the term. This requires the (already automatically generated) extensionality
lemma (Lemma 3.7).

8.3.2 Notation

We aim for a univariate syntax for instantiation, i.e. users should be able to write s[σ]
or s〈ξ〉without knowing the exact name of the specific instantiation operation.

Autosubst uses a type class instance to overload the parsing of notation in Coq (see
Figure 8.8). Autosubst generates the required instances together with the remaining
code. Each instance is unique because of its result sort. As automation works on terms
without notation, asimpl will need to unfold the type class instances.

120 The Autosubst Compiler

The folding of (dependent) instances is difficult, and Autosubst hence defines notations
a second time for printing (Figure 8.8). As such, Autosubst will never fold to a type class
instance.

Similarly, Autosubst allows a univariate syntax for instantiation with a vector substitu-
tion: Both for terms and values, users can write:
s[σ; τ]
v[σ; τ]

Due to technical limitations in Coq, Autosubst requires one type class instance for each
vector size; by standard, Autosubst supports notation up to size 5.

Autosubst introduces similar notation for renamings (A〈ξ〉 and s〈ξ; ζ〉), variable con-
structors (ids), and the lifting of variables. For example, a scope change that lifts one
type variable van be written as ↑ty σ, independent of the underlying type of σ.

Renamings and Substitutions. Recall that both renamings and substitutions may ap-
pear in a term and that Autosubst provides the following lemma connecting instantia-
tion with renamings and substitutions:

s[ξ ◦ varty] = s〈ξ〉

There are of course more equations which hold between instantiation with renamings
and substitutions. At themoment, Autosubst’s automation tactic does not automatically
transform between renamings and substitutions. Autosubst offers tactics which allow
users to automatically transform renamings to substitutions (substify) and vice versa
(renamify).

The first direction is the easy one, merely rewriting with the above equation from left
to right. On the other side, renamify requires several transformations: A substitution
of the form ξ ◦ varty can be directly transformed to a renaming, otherwise, we have to
re-parenthesise to the left and then re-try. Moreover, we might have to fold the stream
cons, e.g. from varty x · (ξ ◦ varty) to (x · ξ) ◦ varty . Rewriting up to associativity would
solve the problem [20].

In general, users should only require the substify tactic, in case they want to apply a
generalised lemma for instantiation with a renaming.

8.4 Tool Support for Modular Syntax

We now turn to tool support for modular syntax. Recall Figure 5.12 for an example
input. To make modular syntax more convenient to use, we implement three kinds of
tool support for modular syntax:

1. We extend the automation of Autosubst to support modular syntax (see also Sec-
tion 7.3). Users can then use instantiation and the asimpl tactic that simplifies
substitution goals also on modular syntax.

8.4. Tool Support for Modular Syntax 121

2. Based on the EHOAS input, we implement static code generation of feature func-
tors and variants together with retracts, smart constructors, and modular induc-
tion principles.

3. Independent of this thesis, Forster implemented simple dynamic code generation
based on MetaCoq [106] to ease the statement of modular fixpoints and lemmas
and fully automate the composition of this fixpoint and lemmas. We refer to [43]
for more details.

Both (1) and (2) require a strengthened dependency analysis, which we explain in the
following. Compared to substitution boilerplate, the generation of the described laws
was very straightforward.

8.4.1 Dependency Analysis for Modular Syntax

We now turn to the dependency analysis for modular syntax. We start with the depen-
dency graph for one variant only.

First note that as-is, the specification describes different sorts (the feature sorts and the
variants sorts) with the same names. Autosubst resolves this dependency by introduc-
ing new names: For each feature f and for every sort s in f with constructors c1, . . . , cn
Autosubst generates a functor s_f with constructors c1, . . . , cn. The result sort in each
constructor is changed from s to s_f. For each specified variant I and all types T1, . . . , Tm
defined in a feature f of I, Autosubst generates the types T1, . . . , Tm combining all speci-
fied features in a file I. The constructors of T are called inj_T_f. These constructors are
also already added in the description of the dependency graph.

As given, in the dependency graph, there is a mutual dependency between the feature
sort and the variant sort; and they would hence have to be defined mutually inductive.3
This dependency is only resolved as Autosubst assumes all assumptions in the feature
sort.

Next, Autosubst has to take care of necessary variables. Recall that a variable feature
is added automatically if a sort requires a negative occurrence. The required variables
have to stay constant in all features, as otherwise, the mechanisation of variants cannot
reuse previous files. As Autosubst resolved the dependency in the last step, we have to
omit the additional check that vacuous binders are forbidden.

In the definition of a proof term, Autosubst needs additional information which is col-
lected during the analysis: Is a sort a feature sort, is it an overall sort, or is it completely
independent of features? What is the feature a sort belongs to? Which is the overall sort
of a feature sort? Does the feature contain binders, and hence require variables? What

3This is indeed the right observation once a combination is fixed – however, to keep the definition mod-
ular Autosubst axiomatises the behaviour of the parent sort, and still get the correct statements.

122 The Autosubst Compiler

are its substitution properties? What are the features of a variant? Autosubst remembers
all this information in the dependency graph.

Last, we are ready to generalise the above construction to several variants. For this, for
each variant, Autosubst repeats the above process and hence generates several depen-
dency graphs.

Let us conclude with the restrictions of our dependency analysis: First, as it is not clear
which variant should be used, nothing may depend on sorts in a variant. Next, variants
depend on only features. Last, if a sort is part of a variant, we forbid to include additional
constructors. While this is a technical restriction, it does not restrict expressiveness: We
could define these constructors in a separate feature.

8.4.2 Modular Syntax with Binders

Once the dependency graph exists, this phase is similar to before. Recall that there are
small changes in a modular de Bruijn algebra, as highlighted in Section 7.3. During gen-
eration, Autosubst hence frequently has to determine whether the current code genera-
tion takes place in a feature or sort of a variant, and adapt code generation accordingly.

Autosubst still uses proof terms for all parts of the proofs; in particular, the genera-
tion does not depend on MetaCoq. Recall from Section 7.3 that there are hence various
dependencies Autosubst has to take care of: For example, instantiation in the lambda
feature depends on a lifting operation defined only for the variant sort. However, in
the remainder of the code, these dependencies are very regular. Autosubst remembers
which dependencies exist and automatically inserts them in the case the handled sort is
indeed a variant sort.

Also the generation of necessary assumptions requires additional care. We define a
function which turns a previous definition into a variable; we can hence reuse previous
definitions.

8.4.3 Static Code Generation for Modular Syntax

We extend Autosubst’s [108] interface to modular types. Autosubst hence also gener-
ates custom support for modular syntax, independent of substitution boilerplate: re-
tractions, smart constructors, and induction principles based on this input.

More specifically, these are the helpers Autosubst generates:

1. For each specified instantiation I and all types T1, . . . , Tm defined in a feature f of
I, Autosubst proves T_F T <: T .

2. For each constructor C, Autosubst automatically defines the respective smart con-
structor called C_ via injections.

8.5. Restrictions 123

Inductive term : Type :=
| Var (x : var)
| App (s t : term)
| Lam (s : {bind term}).

Figure 8.9: Specification of λ in Autosubst 1.

3. For every feature f defining type T , Autosubst generates the predicate In_T_F. For
every instantiation I with instantiated type T , Autosubst generates the modular
induction principle induction_T for T .

8.5 Restrictions

During lexing and parsing, Autosubst conducts certain sanity checks: Autosubst en-
sures that Coq identifiers do not appear as custom-defined sorts and only predefined
sorts are used at all. It moreover ensures that the syntax satisfies our restrictions: Auto-
subst forbids vacuous binders, third-order constructors, bound functors, and negative
occurrence of anything but a pure sort or a vector of pure sorts. Autosubst does not
check quoted Coq code.

8.6 Comparison to Autosubst 1

Autosubst 1 by Schäfer et al. [99; 100] is the predecessor of the version of Autosubst
developed in this thesis. In this section, we speak of Autosubst 1 and Autosubst 2 to
make the difference precise. It was the first tool to recognise and exploit the connection
between the de Bruijn algebra and the σ-calculus. Autosubst 1 takes as input annotated
Coq code (see Figure 8.9 for the specification of the untyped λ-calculus) and generates
a custom de Bruijn algebra using Ltac, Coq’s internal tactic language [36]. Autosubst 1
was used for a variety of mechanisations [63, 78, 89, 112, 114, 118].

Autosubst 2 follows the general spirit of Autosubst 1 in its usage of de Bruijn substitu-
tions, However, it supports a substantially larger class of syntax which was impossible
to achieve in Autosubst 1’s design. For example, Autosubst 1 required neither EHOAS
nor a dependency analysis.

Most apparent change is the switch of the implementation: Autosubst 1 was developed
inside Coq using the Ltac tactic language [36], while Autosubst 2 is an external tool
implemented in Haskell. Although useful as a prototype, Ltac handicapped and prac-
tically even prevented the extension of Autosubst 1 to broader classes of syntax: First,
it is impossible to insert intermediate stages to examine the global state of the syntax.
Developing, for example, the dependency analysis with Ltac or generally inside Coq is
probably much more difficult and requires global knowledge on the syntactic sorts de-
fined. Further, Ltac supports neither mutual syntax nor custom notations. Moreover,

124 The Autosubst Compiler

Ltac’s error messages are often obscure, making debugging more difficult for users.

Although code generation requires more work in the beginning, the investment pays
off quickly once extensions are considered. It is further more transparent, as users can
examine the code that Autosubst generates. This code is human-readable. As an addi-
tional advantage, the separation into the type-theoretic interpretation and the printing
simplifies the extension to other proof assistants, such as done by Mameche [73].

The different phases allow us to extend our tool with the new interpretation of scoped
syntax. Scoped syntax first appeared during the proof of the POPLMark Reloaded chal-
lenge [3]. Scoped syntax offers a choice towrite scope-safe statementswith substitutions
(see Section 3.2). As Coq yields a typing error if one forgets the lifting operation, it dra-
matically improves the accessibility of new users of de Bruijn syntax in Autosubst. Fur-
ther, many statements can omit previous conditions on the context, improving concise-
ness. Last, as all terms are annotated by the respective scope, transparency is improved.

In conclusion, Autosubst 2 as-is supports substitution support for first-class renamings,
vector substitutions, mutual inductive syntax, functors, variadic syntax, a simplified
representation of first-order syntax, and modular syntax.

Part III

Case Studies

Chapter 9

Simply-Typed Lambda Calculus

In the last chapters, we have seen how the Autosubst compiler automatically generates
pure and scoped de Bruijn algebras corresponding to syntactic specifications. In the
following part, we switch to a more practical point of view and showcase how to use
this output to mechanise the meta-theory of programming languages.

The goal of this chapter is threefold: First, we showcase that many standard textbook
proofs indeed work with parallel de Bruijn substitutions. Second, we show how to rea-
son with de Bruijn substitutions. Finally, these proofs give us a chance to evaluate the
Autosubst compiler against other approaches.

We mainly remain on a mathematical level of presentation, but frequently show the ac-
tual implementation and how to handle a specific problem usingAutosubst. We assume
that the reader is familiar with the standard paper-based proofs of preservation, weak
head normalisation, and strong normalisation for the simply-typed λ-calculus but give
references to the techniques used.

The recurring topic will be themonotonicity (the special case for renamings) and sub-
stitutivity of different type-theoretic constructions with de Bruijn substitutions. We fre-
quently omit proofs unrelated to this problem, even if they are interesting from a techni-
cal perspective. All proofs are fully mechanised, and the Coq development is available
online. We present them in increasing order of complexity.

Organisation of the Chapter. We start with our first syntactic system, the λ-calculus.
Despite its simplicity, it already showcases many of the practices with de Bruijn substi-
tutions: How to state β- and η-reduction with the primitives of the σ-calculus, how to
represent contexts, reorderings of contexts, and context morphisms, and the need for
first-class renamings.

We start with reduction, s� t, an inductive predicate with only positive occurrences of
open sorts and without variable constructors. If the scoping is respected, substitutivity
of such predicates follows directly:

s� t→ s[σ]� t[σ]

128 Simply-Typed Lambda Calculus

The reverse direction of the above implication works for injective renamings only and is
alsomuch harder to establish. We typically call such a lemma an anti-renaming lemma.

Substitutivity gets more involved for predicates where open terms occur at negative po-
sitions; for example, for example, the typing context of a typing judgment. Substitutiv-
ity hence requires additional information on the position of variables in the context, for
which we follow the ideas by Goguen and McKinna [52] and later by Kaiser et al. [63]:
Context renamings generalise renamings to contexts and require a context renaming
lemmas; context morphisms generalise substitutions to contexts and require a context
morphism lemmas. These proofs repeatedly require us to solve substitution equations.
Substitutivity of typing is necessary to establish preservation of typing during reduc-
tion, which we do in the next step.

In Section 9.3, we adapt preservation (and hence also context renaming and context
morphism lemmas) to the multivariate λ-calculus [90]. The proof structure remains
unchanged, but the proof requires us to reason about variadic binders. With the right
definitions, this extension is trivial.

In the next step, we give semantics to the typing predicate. It is folklore that proofs of
weak head and strong normalisation build a model of terms of the typed λ-calculus.
Similar to context morphism lemmas, the semantics of a typed term requires a proper
interpretation of the freely appearing variables.

All proofs use logical relations, following [50, 51, 110] and hence require an intermedi-
ate notion of candidates of reducibility (here defined as a logical relation recursive over
the type) which are all strongly normalising. The proof thenmainly resolves around 1.)
proving closure properties of this relation (some of which have to be shown in a mutual
induction) and 2.) verifying that all typed terms are included in this relation.

There are different possibilities on how to define this relation both for weak and strong
normalisation. In all cases, we useKripke-style logical relations [77], which extend the
context in the case of abstraction and hence require a proper handling of renamings.

Forweak normalisation, Dreyer et al. [39] divide the logical relation into a value relation
defined by recursion on the type and an expression relation independent of the type,
hence simplifying the above proof. Our proof of weak normalisation combines this idea
with Kripke-style logical relations.

For strong normalisation, we showcase two proofs, both based on Kripke-style logical
relation and Girard’s method but with a different definition of the logical relation. Both
proofs further require different substitution properties.

We first follow a technique due to Schäfer [97], first used in [45]. Similar to the proof of
weak normalisation of Dreyer et al. [39], the logical relation is divided into two parts.
As strong normalisation is more involved, the expression relation has to be defined via
an inductive predicate. We from now on refer to this representation of the expression

9.1. Reduction and Values 129

app (λA.s) t� s[t..]
s� s ′

app s t� app s ′ t
t� t ′

app s t� app s t ′
s� s ′

λA.s� λA.s ′

Figure 9.1: Reduction in STLC.

relation as Schäfer’s expression relation. We can prove general properties about this
expression relations, and hence the proof for a specific reduction strategy is relatively
straightforward.

We then give a second proof proposed by the POPLMark Reloaded challenge [3, 4],
which uses Raamsdonk’s characterisation of strong normalisation from [115] as an
intermediate notion. This gives us the possibility to evaluate our solution against other
approaches.

We then turn to modular syntax. We continue with where we have left off in Chapter 7
and provide fullymodular proofs of preservation, weak head normalisation, and strong
normalisation via Schäfer’s expression relation. For this, we extend the proofs from the
λ-calculus to a λ-calculus with boolean and arithmetic expressions. We know on no
similar-sized development for modular proofs.

No definition used η-equivalence so far. In our final case study, we follow a proof by
Crary [28] and show that βη-equivalence for a simply-typed λ-calculus implies algo-
rithmic equivalence, needed to show decidability of βη-equivalence (which we do not
prove in this thesis). This proof was further mechanised in Beluga [22], which we use
as a possibility to compare the proofs. In the proof, we need binary logical relations. To
the best of our knowledge, this is the first mechanised proof following Crary [28] using
de Bruijn substitutions.

In total, all developments allow concise, transparent, and accessible proofs (Section 9.9).

9.1 Reduction and Values

Recall the EHOAS specification of λ (Figure 5.1). Autosubst creates the definitions as
outlined in Chapter 3, together with a custom tactic asimpl using the convergent rewrit-
ing system. We access instantiation with renamings and substitutions via notation,
i.e. s<ξ> and s[σ], respectively.

We start with full reduction, s� t, an inductive predicate depicted in Figure 9.1. Open
sorts only occur at positive positions and variables do not appear at all. This makes
proofs such as substitutivity easy, as the asimpl tactic suffices.

We have already seen in Chapter 3 that β-reduction is substitutive. Extension to full
reduction is straightforward.

Lemma 9.1 (Substitutivity). If s� t, then s[σ]� t[σ].

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#step_inst

130 Simply-Typed Lambda Calculus

Proof. By induction on s� s ′. The case of β-reduction is solved with asimpl. �

We further write s �∗ t to denote the reflexive-transitive closure of reduction. Substi-
tutivity directly follows from reduction:

Corollary 9.2. If s �∗ s ′, then s[σ] �∗ s ′[σ].

Similar results hold for restricted forms of reduction, i.e. weak head reduction as defined
in Section 9.8.

Reduction can be lifted to substitutions in a natural fashion: we write σ �∗ τ and say
that σ reduces to τ, if for all i, σ i �∗ τ i.

Fact 9.3 (Congruence). Assume that s �∗ s ′ and t �∗ t ′. Then app s t �∗ app s ′ t, app s t �∗
app s t ′, and λ.s �∗ λ.s ′.

Lemma 9.4 (Substitutivity). If σ �∗ τ, then s[σ] �∗ s[τ].

Proof. By induction on s, using congruence of reduction (Lemma 9.3). In the case of
abstraction, we have to show that ∀x. ⇑tm

tm (σx) �∗⇑tm
tm τ x. Case analysis on x. If x =

0, this follows directly using reflexivity of the reflexive-transitive closure. Otherwise,
we have a post-composition with instantiation with ↑ and hence require substitutivity
(Lemma 9.2) and the substify-tactic, which transforms instantiation with a renaming
into instantiation with the corresponding substitution. �

While substitutivity is easy, anti-substitutivity does not even hold.1 It does hold for
renamings, although the proof is not straightforward, even with Autosubst:

Lemma 9.5 (Anti-Renaming of Reduction). If s ′〈ξ〉� t, then there exists a t ′ such that t =
t ′〈ξ〉 and s ′� t ′.

Proof. We start with a dependent induction on s ′〈ξ〉� t, then do a repeated case analysis
on the terms in the corresponding equation until we reach a constructor, repeatedly use
inversion, and apply the inductive hypothesis. In the case of β-reduction we have to
show that:

s〈ξ〉[t〈ξ〉..] = s[t..]〈ξ〉

which is shown using Autosubst. �

We require the above lemma in the proof of strong normalisation.

1Consider x, which is replaced by a reducible term.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#mstep_inst
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#mstep_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#mstep_subst
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#step_naturality

9.2. Typing, Context Morphism Lemmas, and Preservation 131

Γ ` var x : Γ x
Γ ` s : A→ B Γ ` t : A

Γ ` app s t : B
A · Γ ` s : B

Γ ` λA.s : A→ B

Figure 9.2: Typing of λ.

We turn to substitutivity of functions. We say that a term is a value if it is an abstraction.
We define values as a predicate over expressions:

value (λ_._) = >
value _ = ⊥

As inverse definition, a term is neutral if it is either a variable or an application. Neutral
terms are preserved by reduction. Values and neutral terms are directly substitutive.

Again, anti-renaming does not follow with the equations Autosubst provides:

Lemma 9.6 (Anti-Renaming). If value (s〈ξ〉), then value s.

9.2 Typing, Context Morphism Lemmas, and Preservation

In this section, we introduce typing with a context containing the following types:

A,B ∈ ty : = A→ B | Base

Contexts implicitly introduce open terms at negative positions, such that the notion of
instantiation on a context gets more complex. This is where context renaming and con-
text morphism lemmas come in play.

We start with contexts and their representation in both pure and scoped syntax. Both
definitions implicitly access term variables at negative positions. We continue with sub-
stitutivity of typing and its application in the proof of preservation.

Contexts. The representation of a context depends on the choice of scoped versus pure
syntax. In pure de Bruijn syntax, a context is represented by a list of types. Hence, an
empty context is represented by the empty list nil and we extend a context Γ by a type A
via list extension, A · Γ . Accessing the nth element in a pure context uses the function
which accesses the nth element of a list, Γn. Note that this operation returns an option
type.

In scoped de Bruijn syntax, a typing context is represented by a function with the num-
ber of free variables as domain, Im → ty. Hence, an empty context is represented by
the function with the empty domain, ! : I0 → ty, and we extend a context Γ by a type A
via extension, A · Γ . Accessing the nth element in a scoped context is done via function
application, Γ n.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.reduction.html#value_anti_renaming

132 Simply-Typed Lambda Calculus

We say that x is a valid position in a context Γ if x indeed appears in Γ . In pure code,
this is the explicit condition that x is smaller than the length of Γ , x < |Γ |. In scoped code,
this information is implicit in the type of x.

In the following, we use the notation of scoped syntax, but all proofs work similarly for
pure syntax apart from the additional scopedness conditions.

We turn to the definition of typing. A variable accesses its type in the context, Γ ` var x :
Γ x. For an abstraction λA.s, we look up the type of s in the context Γ extended with A.

Substitutivity. The definition of contexts as given implicitly has open terms in a neg-
ative position. We hence need a definition of instantiation on contexts which makes re-
spects this scope. We hence now introduce two counter parts to ordinary renamings
and substitutions: context renamings and context morphisms for the typing predi-
cate [52, 63]. There is a particular way to do this for de Bruijn substitutions.

In pure syntax, a context ∆ is a reordering of Γ via the renaming ξ, Γ 6ξ ∆,

∀x.x < |Γ |→ ∆(ξ x) = Γ x.

This corresponds to the two conditions:

1. If x is a valid position in Γ , then ξ x is a valid position in ∆.

2. For every valid position x in Γ , the element at position x in Γ equals the element at
position ξ x in ∆.

Note that as in the above definition contexts return an option type, the first condition
implicitly holds.

In scoped syntax, we can simplify the above condition to:

∀x.∆(ξ x) = Γ x.

Typing is stable under the reordering of a context:

Lemma 9.7 (Context Renaming Lemma). If Γ ` s : A and Γ 6ξ ∆, then ∆ ` s〈ξ〉 : A.

Proof. By induction on Γ ` s : A. The variable case follows directly with the reorder-
ing property; typing of an application follows imitating the rule with the inductive
hypotheses. Last, for abstraction, we have to show that also A · Γ 60·(ξ◦↑) A · ∆, i.e.
(A ·∆)((0 · ξ ◦ ↑) x) = (A · Γ) x, which follows with a case analysis, asimpl, and Γ 6ξ ∆.�

A reordering is a special case of a context morphism on substitutions, where Γ 6σ ∆

if Γ ` x : A implies that ∆ ` σx : A.

Lemma 9.8 (Context Morphism Lemma). If Γ ` s : A and Γ 6σ ∆, then ∆ ` s[σ] : A.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.preservation.html#typing_ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.preservation.html#typing_subst

9.3. Preservation in the Multivariate Lambda Calculus 133

app (λn.s) p̄t� s[t ·p var]
s� s ′

app s t� app s ′ t

Figure 9.3: Reduction in λv.

Proof. Analogous to Lemma 9.7. In the case of abstraction, we have to show that ∀x :

I1+n.A ·∆ ` (var 0 ·σ ◦ 〈↑〉) x : (A · Γ) x. This requires a case analysis on x, where the case
for x = 0I follows directly with the variable rule, and the case for x = 1I +I x, requires
showing that A · ∆ ` (σx)〈↑〉 : Γ i and so the context renaming lemma (Lemma 9.7). �

Our automation solves all these goals.

We need substitutivity of typing, when we do an induction on the typing predicate
and the context plays a role. See the following standard proof of preservation, which
requires the context morphism lemma in the case of β-reduction and the typing of an
abstraction:

Lemma 9.9 (Preservation). If Γ ` s : A and s � t, then Γ ` t : A.

Proof. By induction on Γ ` s : A, and a subsequent case analysis on s� t.

We only reduce if s is an abstraction or an application. In the case of abstraction, the
claim follows directly with the inductive hypothesis.

For an application app s1 s2, there are three possibilities: β-reduction, reduction of s1,
and reduction of s2. In the last two cases, the claim follows from the inductive hypoth-
esis. For β-reduction, we have to show that Γ ` s[t..] : B knowing that Γ ` t : A and
A · Γ ` s : B and thus require the context morphism lemma (Lemma 9.8). �

9.3 Preservation in the Multivariate Lambda Calculus

Wemirror the previous proof for preservation in themultivariate λ-calculus, λv (see Sec-
tion 6.6 for its introduction). For the multivariate λ-calculus, we require both a new
definition of reduction (established already in), and of typing.

See Figure 9.1 for a full definition of reduction, s� t. As before, we write s �∗ t to
denote its reflexive-transitive closure and establish congruence w.r.t. the constructors
of λv. We define typing with a new kind of types, accounting for a whole vector of
types. See Figure 9.4 for a definition.

The proof follows the same lines as before: We start with substitutivity, continue with
context renaming and context morphism lemmas, and finally prove preservation itself.

Fact 9.10 (Substitutivity). If s� t, then s[σ]� t[σ].

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.preservation.html#preservation
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.variadic_preservation.html#step_inst

134 Simply-Typed Lambda Calculus

ty := p̄A → B | Base

Γ ` var x : Γ x
p̄A ·p Γ ` s : B

Γ ` λp.s : p̄A → B

Γ ` s : p̄A → B Γ ` t : p̄A
Γ ` app s t : B

Figure 9.4: Typing for λv.

Proof. By induction on s� t. The equation which turns up in the case of β-reduction,

s[t ·p var][σ] = s[(hdp ◦ varvl) ·p σ ◦ 〈↑
p〉][map [σ] t ·p var],

can be solved using asimpl. �

The notion of a reordering and a context morphism remain unchanged.

Lemma 9.11 (Context Morphism Lemma).

1. If Γ ` s : A and Γ 6ξ ∆, then ∆ ` s〈ξ〉 : A.

2. If Γ ` s : A and Γ 6σ ∆, then ∆ ` s[σ] : A.

Proof. As before, the case for abstraction is most interesting. We have to solve the fol-
lowing equation:

Γ ·p ∆⇑tm,p
tm∗ ξ x = Γ ·p ∆x

in the case for renamings and that

Γ ·p ∆ ` (hdp ◦ var ·p σ ◦ 〈↑p〉) x : (Γ ·p ∆) x

for substitutions. The first equation can be proven with asimpl, while for the second
statement we have to first do a case analysis on x using Lemma 6.18, and reuse the con-
text renaming lemmas in the case that x is of the form ↑px ′. All this is entirely analogous
to the monadic case. �

Also the statement of preservation remains unchanged:

Lemma 9.12 (Preservation). If Γ ` s : A and s� t, then also Γ ` t : A.

Proof. Most interesting, for β-reduction we use the context morphism lemma and then
have to show that

Γ ` (t̄ ·p var) x : (T̄ ·p Γ) x

knowing only that t̄ ·p Γ ` s : A and ∀x.Γ ` t̄ x : T̄ x. �

In total, the proof requires only 41 proofs of specification and 46 lines of proof code. Ex-
cept for the changes in the definitions and slight changes according to the p-ary binders,
the proof scripts are almost identical to the monadic case.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.variadic_preservation.html#typing_inst
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.variadic_preservation.html#step_typing

9.4. Weak Head Normalisation 135

9.4 Weak Head Normalisation

We now turn to a new proof and show that the (monadic) simply-typed λ-calculus is
weakly head normalising, i.e. for every term s there exists a reduction sequence such
that s �∗ v and v is a value. This requires an induction on the typing statement. We
follow the proof by Dreyer et al. [39] using logical relations and a distinct value and
expression relation.

Logical relations are defined by recursion on the type, and we define R (A) : ty → tm →
Prop as a function, where we represent a set over terms as a function tm → Prop:

R (Base) := {s | ∃v.s �∗ v∧ value v}

R (A→ B) := {λB.s | ∀ξ v.v ∈ R (A)→ ∃v ′.value v ′ ∧ s[v · ξ] �∗ v ′ ∧ v ′ ∈ R (B)}

This definition is monotone.

Lemma 9.13 (Monotonicity). If s ∈ R (A), then s〈ξ〉 ∈ R (A).

Proof. By induction on A. We do a case analysis on A and in the case of a function
need to know that the instantiation with substitutions and renamings composes, s〈⇑∗tmtm
ξ〉[v · ζ ◦ var] reduces to s[v · ξ ◦ (ζ ◦ var)]. �

We define the expression relation over a logical relation as:

E (A) := {s | ∃v.s �∗ v∧ v ∈ R (A)}

Fact 9.14 (Value Inclusion). If s ∈ R (A), then s ∈ E (A).

Logical relations can be lifted to contexts and substitutions:

G (Γ) := {σ | ∀x.(σx) ∈ R (Γ x)}

It requires that all variables in the context, substituted with σ, are already in the value
relation. Semantic typing, Γ � s : A, then lifts the original definition to the logical
relation:

Γ � s : A := ∀σ.σ ∈ G (Γ)→ s[σ] ∈ E (A).

The fundamental lemma is then proven as follows:

Lemma 9.15 (Fundamental Lemma). If Γ ` s : A, then Γ � s : A.

Proof. By induction on Γ ` s : A. The proof requires congruence of reduction in the
case of non-neutral terms (Lemma 9.3). In the case of abstraction, we need both value

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.wn.html#L_ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.wn.html#val_inclusion
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.wn.html

136 Simply-Typed Lambda Calculus

inclusion (Lemma 9.14) andmonotonicity of the context (Lemma 9.13). For abstraction,
we encounter the situation where we have to simplify the term

s[var 0 · σ ◦ (_〈↑〉)][v, ξ ◦ var]

to s[v · _〈ξ〉] which is done automatically using asimpl. �

The last statement of weak normalisation then requires preservation of the identity sub-
stitution:

Lemma 9.16 (Weak Normalisation). If ∅ ` s : A, then there exists a value v such that s �∗ v.

Proof. If ∅ ` s : A, we know that also ∅ � s : A. As var ∈ G (∅), also s[var] ∈ E (A), and
s ∈ E (A) by the substitution laws, and the claim holds. �

Note that scoped syntax simplifies the notion of an empty context and the statement of
semantic typing significantly.

9.5 Schäfer’s Expression Relation

We present a proof of strong normalisation of reduction in the simply-typed λ-calculus
which uses Schäfer’s expression relation. From now on, we write sn (s) to say that s is
strongly normalising w.r.t. full reduction.

The proof follows the structure of weak normalisation and splits the logical relation
into a value and expression relation. Closure then requires an inductive definition. We
use this definition because it (1) is the shortest variant of strong normalisation, and (2)
allows composable proofs of strong normalisation.

We start with the definition of the logical relation. This definition is different in that it
uses a more general definition of closure, E (B), which we explain in the following:

R (Base) := {s | >}
R (A→ B) := {λB.s | ∀ξ v.v ∈ E (A)→ v ′[v · ξ] ∈ E (B)}

The logical relation is clearly monotone.

Lemma 9.17 (Monotonicity). If s ∈ R (A), then s〈ξ〉 ∈ R (A).

Proof. Analogous to Lemma 9.13. �

We also need a general definition of closure (Figure 9.5). This closure fulfils several
properties:

Lemma 9.18 (Closure Properties).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.wn.html#wn_fundamental_lam
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#L_close_ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html

9.6. Raamsdonk’s Characterisation 137

value s→ s ∈ R (A) ∀ s ′.s � s ′ → s ′ ∈ E (A)

s ∈ E (A)

Figure 9.5: Closure of a relation.

1. If s ∈ E (A), then sn (s).

2. If s ∈ E (A) and s � s ′, then s ′ ∈ E (A).

3. If s is a value and s ∈ E (A), then s ∈ R (A).

4. If the relation is monotone, values are backward-closed, and reduction is backward-closed,
so is the closure.

Proof. The first three statements follow directly. For the fourth statement, we need to
know that both values and reduction are stable under anti-renaming (see Lemma 9.6).

�

Note that these correspond to the usual closure properties of Girard.

The variable constructor is contained in the closure:

Fact 9.19. var x ∈ E (A).

We define the context relation and semantic typing analogous to weak normalisation,
but instead using Schäfer’s expression closure. Again, we thus obtain the fundamental
lemma:

Lemma 9.20 (Fundamental Lemma). If Γ ` s : A, then Γ � s : A.

Proof. By induction on Γ ` s : A, similar to before. �

As before, the proof of strong normalisation itself is easy, once we have the fundamental
lemma:

Lemma 9.21 (Strong Normalisation). If Γ ` s : A, then sn (s).

Proof. Using the fundamental lemma with Γ and the identity substitution, simplifying
the goal using asimpl. �

9.6 Raamsdonk’s Characterisation

In this section, we show strong normalisation of the simply-typed λ-calculus with sums
via an inductive, syntax-dependent variation of strong normalisation à la van Raams-
donk et al. [115] (see Figure 9.6). This split results in elegant, compositional proofs of

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#E_strong_sn
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#E_strong_step
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#E_strong_base
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#close_ren
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#E_strong_var
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#sn_fundamental
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.sn.html#sn

138 Simply-Typed Lambda Calculus

Neutral strongly normalising terms (SNv s)

SNv (var x)
SNv s SN t
SNv (app s t)

Strongly normalising terms (SN s)

SN s
SN (λA.s)

SNv s
SN s

s→SN s
′ SN s ′

SN s

Strong head reduction (s→SN t)

SN t
(λA.s) t→SN s[t..]

s→SN s
′

app s t→SN app s ′ t

Figure 9.6: Raamsdonk’s characterisation of strong normalisation. Adapted from [4].

strong normalisation. This approach extends well to more complicated syntactic sys-
tems.

The proof was recently proposed as a successor of the POPLMark challenge [3, 4], and
the author of this thesis has participated in the second paper where three solutions are
suggested (one with de Bruijn syntax and in Coq, submitted by the author). It thus of-
fers a possibility to compare our approach with other solutions for syntax with binders.

The main difference to the previous proofs is the organisation of the proof. Recall that
in the previous proofs, we showed that every typable term s is in the logical relation,
and every term in the logical relation is strongly normalising. This time, we have the
intermediate structure of Raamsdonks’s characterisation, SN s.

Raamsdonk’s characterisation only describes strongly normalising terms. It is a predi-
cate on terms.

The proof then splits up in the following two parts:

1. Raamsdonk’s Characterisation indeed describes strongly normalising terms, i.e. if
SN s, then sn (s) (also known as soundness).

2. We show that every term with Γ ` s : A, is contained in Raamsdonk’s character-
isation, i.e. SN s. This part of the proof requires a fundamental lemma similar to
before.

Most interesting for us, this separation means that we no longer require the anti-
substitutivity and renaming lemma for the full definition of strong normalisation,

9.6. Raamsdonk’s Characterisation 139

but instead an anti-renaming lemma for the custom inductive definition of strong
normalisation. In contrast, the first part only requires the usual substitutivity results of
reduction.

In the following, we sketch the corresponding proofs. We omit soundness, as this part
is largely orthogonal to substitution properties. For a detailed discussion of the proofs
and background, see [4].

Strong Normalisation of Raamsdonk’s Characterisation

Every typed term Γ ` s : A is also part of Raamsdonk’s characterisation. The proof is
via a Kripke-style logical relation, and thus requires various new substitution-related
statements on a mutual inductive, but non-negative definition of strong normalisation.

The first statement we need to know is that Raamsdonk’s characterisation is substitutive
and anti-substitutive under renamings.

Lemma 9.22 (Renaming for Raamsdonk Normalisation).

1. If SN s, then SN (s〈ξ〉).

2. If SNv s, then SNv (s〈ξ〉).

3. If s→SN s
′, then s〈ξ〉 →SN s

′〈ξ〉.

Proof. By mutual induction, similar to for example substitutivity of reduction. �

Lemma 9.23 (Anti-Renaming for Raamsdonk Normalisation).

1. If SN (s〈ξ〉) , then SN s.

2. If SNv (s〈ξ〉), then SNv s.

3. If s〈ξ〉 →SN t, then there is t ′ such that t = t ′〈ξ〉 and s ′ →SN t.

Proof. This proof is the main challenge. We show the proof by a mutual induction on
the relation. Again we repeatedly need to examine the term and invert equations. In the
case of β-reduction for strong head reduction, we solve a similar equation as before. �

Again, this only holds for renamings.

Lemma 9.24. If SN (app s (var x)), then SN s.

Proof. By induction on SN (app s (var x)). In the neutral case, the claim follows directly by
case analysis. In the case of reduction, we have that app s (var x) →SN s

′ and know that
SN s ′. We do a case analysis on the reduction. For β-reduction, s = λA.s, s ′ = s[var..] and
thus SN s[var..], and we have to show that SN (λA.s). This follows with the abstraction
rule, the anti-renaming lemma (Lemma 9.23), and the fact that we can transform the
above substitution into a renaming via renamify. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#rename
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#anti_rename
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#ext_SN

140 Simply-Typed Lambda Calculus

We define the logical relation by a recursive function over the type:

R (Base) := {s | SN s}

R (A→ B) := {s | ∀ξ v.v ∈ R (A)→ (app (s〈ξ〉) v) ∈ R (B)}

Lemma 9.25. The logical relation is monotone.

Proof. By induction on A, using compositionality of renamings in the function case. �

We require similar conditions as in the original proof of strong normalisation by Girard
(Lemma B.5), and similar these lemmas have to be proven simultaneously:

Lemma 9.26 (Properties of the Logical Relation).

CR1 If s ∈ R (A), then SN s.

CR2 If SNv s, then s ∈ R (A).

CR3 If s→SN s
′ and s ′ ∈ R (A), then s ∈ R (A).

Proof. Similar to before. The first property requires the anti-renaming lemma,
Lemma 9.23, in the function case. The two other cases require the renaming
lemma Lemma 9.22. �

Corollary 9.27. var x ∈ R (A).

Proof. Directly with Lemma 9.26. �

Here is the first point that we require the typing predicate.

Theorem 9.28 (Fundamental Lemma). If Γ ` s : A and σ ∈ R (Γ), then s[σ] ∈ R (A).

Proof. By induction on typing, similar to the fundamental lemma using Schäfer’s char-
acterisation, but using the properties of the different logical relation (Lemma 9.26). �

Lemma 9.29 (Strong normalisation of Raamsdonk’s characterisation). If Γ ` s : A, then
Γ ` SN s.

Proof. Using the fundamental lemma (Lemma 9.28) and the identity substitution, we
get that s[var] ∈ R (A), i.e. s ∈ R (A) using asimpl. With Lemma 9.26, also SN s. �

With soundness of Raamsdonk’s characterisation, it then follows that also every typed
term is strongly normalising according to the accessibility version of strong normalisa-
tion.

https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#rename_red
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#cr
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#red_var
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#main_lemma
https://www.ps.uni-saarland.de/~kstark/thesis/website/poplmark-reloaded.html#norm

9.7. Modular Strong Normalisation 141

9.7 Modular Strong Normalisation

We have seen proofs of several standard results for the λ-calculus. We use this section
to show how to prove the same results in a modular way, continuing from our goal
in Chapter 7. We transfer the previous proofs – preservation, weak head, and strong
normalisation using Schäfer’s expression relation – to modular proofs. The proof strat-
egy itself remains unchanged.

We first translate the proofs for the λ-calculus to a modular variant. We then extend it
by booleans and arithmetic expressions. We use the design principles encountered in
Chapter 7.

In general, lifting the definitions is straightforward. It is more surprising that almost
all statements can be defined in a modular way. In the following, we highlight the few
differences compared to a direct proof.

Stating of the definitions and lemmas. First, most obvious, we have a modular def-
inition of types with modular components for function types A → B, boolean types
TBool, and arithmetic types N. We moreover require modular definitions of typing and
reduction, see Figure 9.7 for the new definitions.

Not all parts can be defined in a modular manner. We distinguish betweenmodular defi-
nitionswhich are proven once for each feature, parameterised definitionswhich are stated
before all definitions in a parameterised fashion, and last, global definitions, which require
global knowledge. See Figure 9.8 for an overview on which definitions and lemmas are
proven in which manner.

Most lemmas and specifically those that are by induction on a respective modular pred-
icate can be proven modularly. Parameterised definitions could in principle be proven
once for each feature, but thiswould contain repetitive code. These are definitionswhich
are independent of the particular feature, e.g. the lifting of the logical relation to expres-
sions or contexts. Last, there is one proof for which we were unable to find a modular
proof: This proof is the anti-renaming lemma for reduction, which already caused prob-
lems during substitution automation. This proof requires full knowledge of reduction
which goes beyond the properties of a tight retract.

Substitution boilerplate. Several of the lemmas require the full substitution boiler-
plate, as we have seen already in the previous proofs. To state all proofs in a modular
manner, we have to assume that the parameterised full type satisfies the respective sub-
stitution properties. This boilerplate is generated by Autosubst, but as Coq does not
allow to reopen a section, we have to copy the around 100 lines. In particular, we also
have to parameterise over the retract properties of instantiation with renamings and
substitutions.

142 Simply-Typed Lambda Calculus

Γ `var var x : Γ x

Γ ` s : A→ B Γ ` t : A
Γ `λ app s t : B

A, Γ ` s : B
Γ `λ λA.s : A→ B

Γ `+ atom< n : N
Γ ` s : N Γ ` t : N
Γ `+ s+< t : N Γ `B constB< b : TBool

Γ ` b : TBool Γ ` e1 : A e2 ` A :

Γ `B if< b then e1 else e2 : A

Γ `λ s : A
Γ ` s : A

Γ `+ s : A
Γ ` s : A

Γ `B s : A
Γ ` s : A

app< (λ<A.s) t�λ s[t..]<
s� s ′

app< s t�λ app< s ′ t

t� t ′

app< s t�λ app< s t ′
s� s ′

λ<A.s�λ λ<A.s ′

s� s ′

s+< t�+ s ′ +< t

t� t ′

s+< t�+ s+< t ′ atom<m+< atom< n�+ atom< (m+ n)

if< constB<true then e1 else e2�B e1 if< constB<false then e1 else e2�B e2

e1� e ′1
if< e1 then e2 else e3�B if< e ′1 then e2 else e3

e2� e ′2
if< e1 then e2 else e3�B if< e1 then e ′2 else e3

e3� e ′3
if< e1 then e2 else e3�B if< e1 then e2 else e ′3

s�λ s ′

s� s ′
s�+ s

′

s� s ′
s�B s

′

s� s ′

Figure 9.7: Typing and reduction for modular expressions.

9.7. Modular Strong Normalisation 143

What Modular Parameterised Global
Substitution boilerplate x - -
Typing x - -
Reduction x - -
CRL x - -
CML x - -
Preservation x - -
LR for WN x - -
Monotonicity LR x - -
Lifting of LR - x -
Value inclusion - x -
Congruence x - -
Fundamental lemma x - -
WN - x -
LR for SN x - -
Monotonicity LR x - -
Closure properties - x -
Substitutivity reduction x - -
Anti-renaming reduction - - x
Fundamental lemma SN x - -
SN - x -

Figure 9.8: Overview ofmodular proofs for preservation, weak head normalisation, and
strong normalisation.

144 Simply-Typed Lambda Calculus

Assuming the variable component. As the lambda feature contains binders, we fur-
ther have to assume certain properties of the variable feature. First, we assume how in-
stantiation handles variables. Next, we assume how typing handles variables, i.e. have
a parameter:
Variable hasty_var : ∀ Γ s A, has_ty_var Γs A → has_ty Γs A.

This assumption is required in the context morphism lemma and during preservation.
These assumptions can be dropped in the boolean and arithmetic feature.

Differences in the proofs. There are moreover small changes when we want to ap-
ply a constructor, rely on the evaluation of functions, or want to do inversion on a full
predicate. We hence rely on the following three tactics: The tactic msimpl simplifies
goals using the injections for functions. These equations have to be registered in a hint
database for auto-rewriting after their definition, together with defining equations for
retracts. Such equations exist for all functions, i.e. instantiation, values, and the logi-
cal relation. The tactic minversion is an extension of Coq’s inversion tactic to modular
syntax. It applies registered inversion lemmas, then uses Coq’s inversion tactic and re-
solves contradictory cases using the injectivity of inj . These inversion lemmas exist for
all inductive predicates, i.e. reduction and typing. Last, mconstructor is a combination
of msimpl and the constructor tactic.

Let us show the example of abstraction of the context substitution lemma (Lemma 9.8).
Here we have to show

Γ ` λiA.s[σ] : A→i B

To use the constructor tactic, we hence have to know that every feature predicate in-
deed is part of the whole predicate, i.e. is a tight retract. The mconstuctor tactic has this
information registered, so using it we first specialise to the feature predicate and then
apply Coq’s constructor tactic. We can then solve the goal using the inductive hypoth-
esis. To show that the resulting contexts still form a context morphism, we have to use
the assumed variable rule for typing in the case of the variable to be 0.

In preservation, minversion comes in useful: Recall that we first do an induction on the
reduction, and then a case analysis on the typing predicate. For example, in the case of
abstraction, we have the assumption that

Γ ` appi (λiA.s) tB :

For a proper inversion, we have to know that this rule stems from lambda typing (what
we do not up-front). The minversion automatically applies the corresponding lemma,
which can be proven once we know that feature typing is a tight retract.

MetaCoq support. In the code, we use theMetaCoq support to state lemmas in amod-
ular manner and provided automated definitions and proofs for variants.

9.8. Decidability of Beta Eta Equivalence 145

Declarative Equivalence (Γ ` s ≡ t : A)

A :: Γ ` s ≡ s ′ : B Γ ` t ≡ t ′ : A
Γ ` app (λ.s) t ≡ s ′[t ′..] : B

A :: Γ ` app (s〈↑〉) (var 0) ≡ app (s ′〈↑〉) (var 0) : B
Γ ` s ≡ s ′ : A→ B

Γ ` var x ≡ var x : Γ x
A :: Γ ` s ≡ s ′ : B

Γ ` λ.s ≡ λ.s ′ : A→ B

Γ ` s ≡ s ′ : A→ B Γ ` t ≡ t ′ : A
Γ ` app s t ≡ app s ′ t ′ : B

Γ ` s ≡ t : A
Γ ` t ≡ s : A

Γ ` s ≡ t : A Γ ` t ≡ u : A

Γ ` s ≡ u : A

Figure 9.9: Declarative equivalence.

9.8 Decidability of Beta Eta Equivalence

So far, we have seen typing contexts only. In this final proof for the λ-calculus, we con-
sider binary logical relations. The substitution properties are very similar to before.

In this section we hence show that declarative equivalence for the simply-typed λ-
calculus (Figure 9.9) is decidable following a proof by Crary [28] and later mechanised
in Beluga by Cave and Pientka [22]. We largely follow the later mechanisation. Asides
from being a standard proof for the equational theory of the λ-calculus, the proof
requires several properties on substitutions, in particular, concerning the correct
handling of renamings.

Declarative equivalence contains β-reduction, η-equivalence, and congruence rules. As
a consequence, it is hard to give a decider directly. Instead, we show that this form of
equivalence is related to algorithmic equivalence, for which decidability is immediate.
We omit this proof in this thesis. The proof requires binary logical relations.

See Figure 9.10 for algorithmic equivalence. The definition is a mutually inductive be-
tween algorithmic equivalence for all terms and algorithmic equivalence for neutral
terms, i.e. all terms except λ-terms in the case of the λ-calculus. On neutral terms, we
follow the structure of the terms. On non-neutral terms, we follow the type, usingweak
head reduction s �h s ′ in the case of the base type.

Most interesting, we see how to express η-equivalence in the simply-typed λ-calculus.
In a named representation this rule would state that the following equivalence has to
hold for a fresh variable x:

x : A, Γ ` app s (var x) ≡ app s ′ (var x) : B
Γ ` s ≡ s ′ : A→ B

In de Bruijn syntax, we create a specific free variable var 0. We ensure freshness by lifting
all variables in s and s ′ via the shifting operation.

146 Simply-Typed Lambda Calculus

Weak head reduction (s �h t)

app (λ.s) t �h s[t..]
s �h s ′

app s t �h app s ′ t

Algorithmic Equivalence (Γ ` s ≡alg t : A)

s �∗h s ′ t �∗h t ′ Γ ` s ′ ≡alg↓ t
′ : Base

Γ ` s ≡alg t : Base
A · Γ ` app (s〈↑〉) (var 0) ≡alg app (t〈↑〉) (var 0) : B

Γ ` s ≡alg t : A→ B

Neutral Algorithmic Equivalence (Γ ` s ≡alg↓ t : A)

x : A ∈ Γ
Γ ` var x ≡alg↓ var x : A

Γ ` s ≡alg↓ s
′ : A→ B Γ ` t ≡alg t

′ : A

Γ ` app s t ≡alg↓ app s ′ t ′ : B

Figure 9.10: Algorithmic equivalence.

See Figure 9.11 for an overview of the three central relations that appear in this proof.
To achieve our goal, we use the intermediate notion of a logical relation recursive on
the types, (s, t) ∈ RΓ (A). In general, we can imitate most rules except for an extended
context. This is where we need a logical relation.

Weak head reduction. As we use pure syntax, a list of types represents a context.
Weak head reduction satisfies similar results as full reduction:

Lemma 9.30 (Properties of Weak Head Reduction).

1. If s �∗h s ′, then app s t �∗h app s ′ t.

2. If s �h s ′, then s[σ] �h s ′[σ].

3. If s �∗h s ′, then s[σ] �∗h s ′[σ].

Properties of algorithmic equivalence. We prove that algorithmic equivalence satis-
fies the rules of declarative equivalence, i.e. is backwards-closed under reduction, sym-
metric and transitive. Moreover, we require that algorithmic equivalence is monotone.
These are precisely the properties of declarative equivalence. Although the proofs of
symmetry and transitivity are technically interesting, they do not showcase features of
the Autosubst tool. We hence mention them only in the appendix (Appendix C).

Similarly to the case of strong normalisation, we have context renamings and context
morphisms, this time for the contexts of equivalence. They are defined analogously to
the previous case.

In particular, the following lemma holds:

Fact 9.31.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#mwhr_appL
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#cont_ext_shift

9.8. Decidability of Beta Eta Equivalence 147

Γ ` s ≡ t : A Γ ` s ≡alg t : A

Γ ` s ≡alg↓ t : A

(s, t) ∈ RΓ (A)Γ � s ≡ t : A

goal

fundamental main

main

Figure 9.11: Connection between the three equivalences.

1. Γ 6↑ A :: Γ

2. If Γ 6ξ ∆, then A :: Γ 6⇑∗tmtm ξ A :: ∆

We can then show monotonicty.

Lemma 9.32 (Monotonicity).

1. If Γ ` s ≡alg t : A and Γ 6ξ ∆, then ∆ ` s〈ξ〉 ≡alg t〈ξ〉 : A.

2. If A ` s ≡alg↓ t : Γ and Γ 6ξ ∆, then ∆ ` s〈ξ〉 ≡alg↓ t〈ξ〉 : A.

Proof. By a mutual induction on Γ ` s ≡alg t : A and Γ ` s ≡alg↓ t : A, using monotonicity
of reduction (Lemma 9.30).

In the case of a function, we have to show that ∆ ` s〈ξ〉 ≡alg t〈ξ〉 : A → B, i.e. A :: ∆ `
app ↑〈s〈ξ〉〉 var 0 ≡alg app ↑〈t〈ξ〉〉 : B. This follows using the inductive hypothesis with
the lifted context (Lemma 9.31). In the assumptions, we have that A :: ∆ ` app s〈ξ〉〈⇑∗tmtm
ξ〉 var ⇑∗tmtm ξ 0 ≡alg app t〈ξ〉〈⇑∗tmtm ξ〉 var ⇑∗tmtm ξ 0 : B and can solve the equation using
asimpl. �

Lemma 9.33 (Backward Closure). If Γ ` s ≡alg t : A and s ′ �∗h s and t ′ �∗h t, then
Γ ` s ′ ≡alg t

′ : A.

Proof. By induction on Γ ` s ≡alg t : A. In the base case, the claim follows directly; in
the function case, using the inductive hypothesis, monotonicity of weak head reduction,
and congruence of the reduction under application (Lemma 9.30). �

Logical equivalence. We use logical equivalence as an intermediate relation. We de-
fine logical equivalence by a recursive function over the type:

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#algEq_monotone
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#algeq_backward_closure

148 Simply-Typed Lambda Calculus

Definition 9.34 (Logical Equivalence).

RΓ (Base) := {(s, s ′) | Γ ` s ≡alg s
′ : Base}

RΓ (A→ B) := {(s, s ′) | ∀t t ′.(t, t ′) ∈ RΓ (A)

→ ∀ξ∆.Γ 6ξ ∆→ (app (s〈ξ〉) t, app (s ′〈ξ〉) t ′) ∈ R∆(B)}

Note that similar to the previous logical relations, weuse aKripke-style logical relation,
i.e. in the definition of abstraction we allow to extend the context by a renaming ξ.

Similar to algorithmic equivalence, we have to show that logical equivalence is symmet-
ric, transitive, monotone, and closed under backward closure.

Lemma 9.35 (Monotonicity). If (s, t) ∈ RΓ (A) and Γ 6ξ ∆, then (s〈ξ〉, t〈ξ〉) ∈ R∆(A).

Proof. By induction on A, using monotonicity of algorithmic equivalence if A = Base
(Lemma 9.32), and asimpl in the function case. �

Lemma 9.36 (Backward Closure). If (s, t) ∈ RΓ (A) and s ′ �∗h s and t ′ �∗h t, then (s ′, t ′) ∈
RΓ (A).

Proof. By induction onA, using backward closure of algorithmic equivalence ifA = Base
(Lemma 9.33), using the inductive hypothesis and the congruence and monotonicity
properties of weak head reduction in the function case (Lemma 9.30). �

Soundness. We want to show that logically related terms are algorithmically related.
This requires to show at the same time that neutral, algorithmically related terms are
logically related because of the function case. Note the similarity to strong normalisation
on the simply-typed λ-calculus, where we had a similar structure.

Lemma 9.37 (Main Lemma). We have:

1. If (s, t) ∈ RΓ (A), then Γ ` s ≡alg t : A.

2. If Γ ` s ≡alg↓ t : A, then (s, t) ∈ RΓ (A).

Proof. We show the two statements simultaneously by induction onA, the cases forA =

Base follow directly.

To show that logical equivalence implies algorithmic equivalence in the function case,
and to apply the statement of logical equivalence, we require that ↑ connects two con-
texts (Lemma 9.31).

For the other case, using the inductive hypothesis, we require monotonicity of algorith-
mic equivalence (Lemma 9.32). �

We say that two substitutions σ and τ are logically related in contexts Γ and ∆, written
(σ, τ) ∈ RΓ (∆), if for all x in the range of Γ , we have (σx, τ x) ∈ R∆(Γ x).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#logeq
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#logEq_monotone
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#logeq_backward_closure
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#main

9.9. Evaluation 149

Fact 9.38. (var, var) ∈ RΓ (Γ x).

Proof. Using the main lemma (Lemma 9.37). �

Wesay that two terms are semantically logically equal, Γ � s ≡ t : A, if for (σ, τ) ∈ RΓ (∆),
then (s[σ], t[τ]) ∈ RΓ (A).

We turn to the fundamental theorem.

Theorem 9.39 (Fundamental Lemma). If Γ ` s ≡ t : A, then Γ � s ≡ t : A.

Proof. By induction on declarative equivalence.

In the variable case, the claim directly follows with our environment assumption. The
case for symmetry and transitivity follow using symmetry and transitivity of logical
equivalence (Lemma C.6, Lemma C.7). The congruence application case follows using
the inductive hypothesis and instantiating the assumption for the function typewith the
identity renaming. We require asimpl to resolve instantiation with the identity renam-
ing.

Most interesting are β-reduction, η-expansion, and abstraction. For η-expansion, we use
backwards-closure of logical equivalence to also reduce the application on the left side
of the equation. The remainder follows using the inductive hypothesis.

For abstraction, we have to show that λ.s and λ.s ′ are logically connected under the type
A→ B, i.e. for Γ 6ξ ∆, and (t, t ′) ∈ R∆(A), then (app (λ.s[⇑tm

tm σ]〈⇑∗tmtm ξ〉) t, app (λ.s ′[⇑tm
tm

τ]〈⇑∗tmtm ξ〉) t ′) ∈ R∆(A). Using backward closure (Lemma 9.36), we show instead that
(s[⇑tm

tm σ]〈⇑∗tmtm ξ〉[t..], s ′[⇑tm
tm τ]〈⇑∗tmtm ξ〉[t ′..]) ∈ R∆(A). We use the asimpl command to

simplify both sides of the logical equivalence such that we can apply the inductive hy-
pothesis. Note that this requires the composition of renamings and substitutions. Show-
ing that the resulting substitutions, t · (σ ◦ [ξ ◦ var]) and t ′ · τ ◦ [ξ ◦ var], are connected
requires monotonicity of the logical relation.

For η-equivalence, we have to show that (s[σ], t[τ]) ∈ RΓ ′(A→ B). We use the inductive
hypothesis and again require monotonicity of the logical relation. �

Theorem 9.40 (Completeness). Declarative equivalence implies algorithmic equivalence.

Proof. Using the fundamental lemma (Lemma 9.39) and Lemma 9.38, we get that
(s[var], t[var]) ∈ RΓ (A) and, using the main lemma (Lemma 9.37) and identity under
identity substitutions that also Γ ` s ≡alg t : A. �

9.9 Evaluation

We have given a variety of lean proofs of the λ-calculus and variations, all with parallel
substitutions. In all cases, Autosubst generated the respective substitution boilerplate.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#fundamental
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#completeness

150 Simply-Typed Lambda Calculus

Specification Proofs Pure/Scoped
Reduction 40 45 Scoped
Preservation STLC 20 25 Scoped
Preservation Multivariate 40 45 Scoped
Weak Head Normalisation 20 40 Scoped
Strong Normalisation Schäfer 35 80 Scoped
Strong Normalisation Raamsdonk 100 140 Scoped
Modular code 540 665 Pure
Decidability βη-equivalence 90 135 Pure

Figure 9.12: Line numbers.

Our case studies were chosen such that a wealth of substitution properties are required.
We moreover used standard proofs, to be able to compare it with other approaches.
We omitted results such as confluence for the λ-calculus, as substitutions are mainly
orthogonal. Our proofs contained both β-reduction and η-expansion; none caused a
problem. Except for the de Bruijn substitutions, all proofs closely follow the paper-based
descriptions.

See Figure 9.12 for the lines of code. All developments satisfy the condition of being
concise. Most developments use a scoped representation of syntax, an exception is the
development for modular syntax, as so far we do not support modular scoped syntax.
Decidability of βη-equivalence uses a pure development because of historical reasons.

Let us start with the proofs for the simply-typed λ-calculus. We had two very different
proofs of strong normalisation. In the appendix inAppendix B, we provide for reference
a third proof following Girard’s proof more closely. The proof requires very similar
substiution properties as the one using Schäfer’s expression relation.

Both a proof of strong normalisation via Raamsdonk’s characterisation and the equi-
valence proof were mechanised in Beluga [85], a proof assistant based on contextual
modal type theory [80]. Although Beluga is a special-purpose proof assistant, for the
proofs verified, our development was competitive. An approach in Agda based on a
universe of syntax is very similar in that it uses an approach based on de Bruijn syntax,
but uses a universe of codes and is hence an example of the algebraic approach. Sub-
stitution lemmas have still to be applied manually. Our development is comparable in
size to other solutions to the POPLMark Reloaded challenge.2

Although we scale the development to sums,3 there are no new substitution properties
worthmentioning. The extension is available with the thesis. We found that tactics are a
great advantage for mechanised meta-theory. In the case of sums, many lemmas could

2This is hard to evaluate because all three solutions were developed in unison and use all different proof
assistants.

3https://github.com/andreasabel/strong-normalisation/tree/master/coq

https://github.com/andreasabel/strong-normalisation/tree/master/coq

9.9. Evaluation 151

be automatically extended and in fewer lines of code than the Agda or Beluga solution,
proof assistants which support proof terms only.

The original challenge uses typed syntax, and a typed version of the challenge is avail-
able.4 The scoped variant is almost identical and has no disadvantage in the number of
lines. It only differs in the requirement of an additional, extensional typing predicate
(Figure 9.2) during the fundamental lemma, to do induction on.

While we found scoped syntax to be useful to avoid mistakes in shifting, we found no
similar improvement in using typed syntax. Proofs did not shorten. As typed syntax
requires induction-recursion already in a typed representation of System F [42], we see
scoped syntax as a particular sweet spot.

Interesting enough, anti-renamingwas a problem in all approaches and for example, led
to extensions in Beluga. It would be interesting to knowwhether there is any realisation
which requires no anti-renaming lemma at all. There seems to be no way to get around
anti-renaming.

Kripke-style logical relations have particularly many renamings. As renamings are
never transformed to substitutions, in our proofs we basically only use the substify
tactic.

The scaling to variadic syntaxwas trivial in the case of type safety. The obvious next step
is to explore whether this elegant treatment also transfers to further case studies such
as weak head or strong normalisation.

An extension to modular syntax was no problem once we developed placeholders for
previous tactics. In fact, then the proofs are basically identical if we take care to follow
the previously defined design principles. This is the largest proof for modular syntax
we know of, and the only one using instantiation. Interesting, the anti-renaming lemma
was again a problem. We expect this problem to appear in a possible modular proof via
Raamsdonk’s characterisation as well.

Autosubst takes care of substitution equations, and substitution equations only. It hence
often helps to state definitions and lemmas in an equational way. For example, for β-
reduction it is helpful to state the following obvious consequence:

s ′ = s[t..]→ app (λA.s) t� s ′

There is still room of improvement, besides the apparent lacking support for modular
scoped syntax and typed syntax: Applying a substitution equation is hard, and some-
times we need conversions. For example, the final result of weak and strong normali-
sation always require us to explicitly convert a term s to s[var]. If we want to apply the
lemma directly, we require Autosubst support for matching.

4https://github.com/andreasabel/strong-normalisation/tree/master/coq

https://github.com/andreasabel/strong-normalisation/tree/master/coq

152 Simply-Typed Lambda Calculus

Wewill see thatmany concepts such as context renaming and contextmorphism lemmas
re-appear in System F.

Chapter 10

System F with Subtyping

In Chapter 9, we have seen how Autosubst handles several variants of the λ-calculus.
We covered polyadic binders, variadic binders, functors, and modular syntax; no sys-
tem required vector substitutions. In this chapter, we consider type safety for System F
with subtyping [21, 29], a system with both type and term variables. For the full proof
with pattern matching, we assume suitable primitives for pattern typing and pattern
matching.

This particular set of problems is also known as the POPLMark challenge [12], a bench-
mark for evaluating the state of art of mechanised meta-theory, and in particular, bin-
ders, complex induction principles, and component reuse. In this chapter, we focus on
binders only.

The POPLMark challenge suggests to prove type safety for two systems building up
on each other: First System F with subtyping (commonly known as Part 1), then that
system enriched with records and pattern matching (Part 2).

For each system, we first show reflexivity, transitivity, and substitutivity of subtyp-
ing (Part A). Second, we prove type safety via progress and preservation à la Wright
and Felleisen [120] (Part B). The proof outline for preservation is the same as in the λ-
calculus and hence again requires context renaming and context morphism lemmas [52,
63]. Preservation requires additional inversion lemmas due to the subtyping rule.

The proof contains many interesting substitution properties not occurring in the previ-
ous chapter. One such property is substitutivity of subtyping. In the way subtyping is
posed, transitivity and substitutivity have to be shown in a mutual induction. In [100],
the authors offer an elegant solution to disentangle this proof for de Bruijn substitu-
tions which we follow and extend to record types. This is an orthogonal problem to the
proper handling of substitution equations (although this is a precondition).

Next recall thatwe have both type variables and termvariables. Wehence have to handle
both a type context and a term type context that depends on the type context. Vector
substitutions come in useful for the adaption.

154 System F with Subtyping

A variety of approaches have handled Part 1 of the POPLMark challenge [1], also in de
Bruijn syntax [11, 67, 70, 100, 116]. Almost all solutions in de Bruijn syntax use single-
point substitutions, i.e. substitutions as pairs of natural numbers and replaced terms.
In contrast, Schäfer et al. [100] use de Bruijn substitutions and context morphism lem-
mas [52, 63]. With the shortest solution at its publication, a simple equational theory,
and only two simplification tactics, it meets the requirements of a concise, transparent,
and accessible solution to Part 1 of the POPLMark challenge.

In spite of its prominence, only a few solutions to Part 2 exists. A Twelf solution [9]
comes with around 4500 lines of code, and — in contrast to the expectation of the
POPLMark authors that de Bruijn syntax does not scale for this proof — all remaining
solutions [17, 67, 116] use (single-point) de Bruijn syntax and require to handle
substitution lemmas manually. The only solution with tool support is the one by
Keuchel et al. [67] using Needle&Knot.

In this chapter, we present concise, transparent, and accessible solutions of the
POPLMark challenge: a full solution of Part 1 and a solution of Part 2 that only assumes
suitable definitions of pattern typing and pattern matching, but from there on covers
all substitution-relevant parts.

In our description, we split the proof into three parts, corresponding to the increas-
ingly complex systems: First, System F without records, F< (known as Part 1); sec-
ond, F< enriched with record types, record terms, and projection, F<,rec ; and finally,
F<,rec extended with pattern matching, F<,pat (known as Part 2).

We base our representation on de Bruijn substitutions, as already Schäfer et al. [100]
did for Part 1. Different to this previous proof, we use scoped syntax [18] and vector
substitutions. We could shorten the proofs by a third.

For the second part, we use Coq’s predefined list type to define record types and record
terms. Using the predefined list type instead of a custom definition is essential to avoid
redundancy in larger developments and in proving further results. Only the solution
of Berghofer [17] uses predefined lists as well. Uniqueness properties and new induc-
tion principle were hardest to handle, but substitution-wise all mechanised proofs were
similar to the paper-based ones. With suitable automation, the parts concerning substi-
tutions did not change at all.

For the third and final part, a let-constructor with pattern matching as stated in the
POPLMark challenge needs more elaborate handling of variadic binders. The previ-
ous solutions of Vouillon [116] and Keuchel et al. [67] adapt the definition and type
of pattern typing such that they circumvent the problem of variadic substitutions. As
our goal is the handling of such substitutions, we leave its type unchanged. The defini-
tion of pattern typing and pattern matching, as well as its properties, are an orthogonal
problem to binders. In this thesis, we assume that suitable predicates exist, are substi-
tutive, and satisfy progress and a type property (see Assumption 10.16); our solution

10.1. Type Safety for F< 155

ty, tm : Type

> : ty
arr : ty → ty→ ty
all : ty → (ty→ ty)→ ty

app : tm → tm→ tm
tapp : tm → ty→ tm
abs : ty → (tm→ tm)→ tm
tabs : ty → (ty→ tm)→ tm

Figure 10.1: EHOAS specification for F<.

is hence parametric in these assumptions and leaves these definitions for future work.
Due to Autosubst’s support, the remaining proof of type safety for variadic binders was
a non-issue and we can use the context morphism lemma as before.

The first part of the POPLMark challengewas alreadymechanised in and hence partially
reuses the description in [108].

10.1 Type Safety for F<

We start with System F with subtyping, F< , specified in Figure 10.1. Autosubst outputs
the following many-sorted representation:

A,B ∈ tyk : = varty x | > | Ak → Bk | ∀Ak .Bk+1 x ∈ Ik

s, t ∈ tmk;l : = vartm x | sk;l tk;l | sk;lAk

λAk .s
k;l+1 | ΛAk .s

k+1,l x ∈ Il

We say that a term s is a value, value s, if it is either an abstraction or a type abstraction.

See Figure 10.2 for subtyping, typing, and the weak semantics of F< .

Most apparent difference to previous systems is the definition of subtyping, ∆ ` A <:
B, for types A,B : tym and a type context ∆ : Im → tym, which contains subtyping
information for each occurring type variable. In the typing predicate, we have one rule
which allows us to replace a type with a more general one.

Each type A is a subtype of the most general type > and subtyping propagates through
the type constructors as expected. Most interesting are the rules for variables and uni-
versal quantification. A variable is a subtype of itself and any more general type of its
look-up. Implicitly these rules ensure that subtyping is reflexive and transitive, see the
next section. For universal quantification, we extend the context by the respective ex-
tended type B1, and – as all types still exist in the smaller contexts – have to lift the
context. As we use scoped syntax, a forgotten shifting would yield a type error.

156 System F with Subtyping

Subtyping ∆ ` A <: B

∆ ` A <: > ∆ ` varty x <: varty x

∆ ` ∆x <: B
∆ ` varty x <: B

∆ ` B1 <: A1 ∆ ` A2 <: B2
∆ ` A1 → A2 <: B1 → B2

∆ ` B1 <: A1 (B1, ∆) ◦ 〈↑〉 ` A2 <: B2
∆ ` ∀A1 .A2 <: ∀B1 .B2

Typing ∆; Γ ` s : A

∆; Γ ` var x : Γ x

∆; Γ ` s : A→ B ∆; Γ ` t : A
∆; Γ ` app s t : B

∆;A, Γ ` s : B
∆; Γ ` λA.s : A→ B

∆; Γ ` s : ∀A.C ∆ ` B <: C
∆; Γ ` s B : A[B · varty]

(A · ∆) ◦ 〈↑〉; Γ ◦ 〈↑〉 ` s : B
∆; Γ ` ΛA.s : ∀A.B

∆ ` A <: B ∆; Γ ` s : A
∆; Γ ` s : B

Weak Semantics s� t

value v

(λA.s) v� s[varty ; v · varvl] (ΛA.s)B� s[B · varty ; varvl]

s� s ′

app s t� app s ′ t

t� t ′ value v

app v t� app v t ′
s� s ′

sA� s ′A

Figure 10.2: Subtyping, typing, and weak semantics of F<.

10.1. Type Safety for F< 157

We now turn to typing, written ∆; Γ ` s : A. As in the λ-calculus, we have a term context
Γ : In → tym with typing information for each term variable var x : tmm;n. Newly, we
need a type context ∆ with again subtyping information for type variables to use the
subtyping rule correctly. Note that the types in Γ might contain subtyping information
in ∆; so we have to hold the two contexts in accordance with each other.

The typing rules for variables, term abstraction and term application remain unchanged,
except for the additional context. Only the already mentioned subtyping rule, type ap-
plication, and type abstraction have to be added. Type application requires us to sub-
stitute B in A – the first time in a typing rule. As a consequence, this rule will require
additional reasoning on substitutions. For type abstraction, we bind a new type variable
and remember the attached subtyping information in ∆. Additionally, all types in Γ and
∆ have to be lifted to be in accordance with the free variables in s.

For reduction, we consider a weak semantics, and hence β-reduction presumes that the
substituted term is a value and is restricted to left-most reduction. For the reduction of
type abstraction, we simply use the type component of substitution.

In the following, we use these definitions first to show several properties of subtyping,
then to continue with progress and preservation.

10.1.1 Properties of Subtyping

We start with the properties of subtyping; mainly reflexivity, transitivity, and substitu-
tivity. Proving substitutivity is non-trivial because it has to be proved mutually induc-
tive with transitivity. The proof structure is due to Schäfer et al. [100] and completely
analogous for scoped syntax. We still present the proof as (1) we require the same
structure for the extended record types, (2) we encounter type context morphism lem-
mas needed in the second part, and (3) we encounter several proofs with interesting
substitution equations and where first-class renamings come in handy.

Reflexivity is straightforward and follows by an induction on the type:

Lemma 10.1 (Reflexivity). ∆ ` A <: A.

For monotonicity of subtyping, we need the notion of a reordering: ∆ ′ is a type context
reordering of ∆with the renaming ξ, written ∆ ′ 6ξ ∆, if (∆ ′x)〈ξ〉 = ∆(ξx) for all x.

The proof is straightforward:

Lemma 10.2 (Monotonicity of Subtyping). If ∆ ` A <: B and ∆ ′ 6ξ ∆, then ∆ ′ ` A〈ξ〉 <:
B〈ξ〉.

Proof. By induction on ∆ ` A <: B. Most interesting, in the case of universal quantifica-
tion we have to show that:

∀x : I1+n.(((B · ∆) ◦ 〈↑〉) x)〈var 0 · ξ ◦ ↑〉 = (B〈ξ〉 · ∆ ′ ◦ 〈↑〉)((0 · ξ ◦ ↑) x)

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#sub_refl
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#sub_weak

158 System F with Subtyping

which can be solved using a case analysis on x, ∆ ′ 6ξ ∆ and asimpl. �

For substitutivity, we require context morphisms. ∆ ′ is a type context morphism for ∆,
∆ ′ 6σ ∆, if ∆ ′ ` σx <: (∆x)[σ] for all x. As mentioned before, the proof is intertwined
with transitivity:

Lemma 10.3 (Transitivity and Substitutivity).

1. If ∆ ` A <: B and ∆ ` B <: C, then ∆ ` A <: C.

2. If ∆ ` A <: B and ∆ ′ 6σ ∆, then ∆ ′ ` A[σ] <: B[σ].

Proof. The proof requires several sub-lemmas to disentangle the dependency. See the
description of Schäfer et al. [100] and the Coq code for more details.

While transitivity does not contain statements about instantiation, let us have a look at
substitutivity. We use reflexivity of subtyping (Lemma 10.1) in the variable case. The
look-up rule requires transitivity of subtyping. Most interesting, for universal quantifi-
cation, we need to show a statement similar to monotonicity:

∀x : I1+n.(B[σ] · ∆ ′) ◦ 〈↑〉 ` (var 0 · σ ◦ 〈↑〉) x <: ((B1 · ∆) ◦ 〈↑〉 x)[var 0 · σ ◦ 〈↑〉]

This requires among others reflexivity of subtyping (Lemma 10.1) and weakening of
subtyping (Lemma 10.2). �

Note that this is the first proof of substitutivity where we needed a more involved struc-
ture than before. This is due to the unconventional rules of subtyping for the variable
constructor.

10.1.2 Progress

Weshow type safety for F< . The proof is separated into progress andpreservation [120].
Progress requires no substitution properties, but the following inversion lemmas:

Lemma 10.4 (Inversion Lemmas).

1. If ∅; ∅ ` s : A→ B and value s, then there are types C and a term t such that s = λC.t.

2. If ∅; ∅ ` s : ∀A.B and value s, then there are types C and a term t such that s = ΛC.t.

Proof. By dependent induction on ∅; ∅ ` s : A→ B and ∅; ∅ ` s : ∀A.B, respectively. �

The proof is then straightforward.

Lemma 10.5 (Progress). If ∅; ∅ ` s : A, then either s is a value or there is a t such that s� t.

Proof. By a dependent induction on ∅; ∅ ` s : A. In the case of an application or type
application, we use the inductive hypothesis and the inversion lemma (Lemma 10.4).�

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#sub_trans
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#sub_trans
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#sub_substitution
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#can_form_arr
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#ev_progress

10.1. Type Safety for F< 159

10.1.3 Preservation

Like preservation for the simply-typed λ-calculus (Section 9.2), preservation for F< re-
quires a context morphism lemma. This lemma depends on reorderings and context
morphisms for both contexts. Substitutivity requires that all subcomponents of the def-
inition are compatible with substitutions; for example, subtyping, as established in the
last section.

Term reorderings depend on a whole vector of substitutions. Γ ′ is a term context re-
ordering of Γ with the renaming vector 〈ξ; ζ〉, Γ ′ 6ξ;ζ Γ , if (Γ ′ x)〈ξ〉 = Γ(ζx) for all x.

Lemma 10.6 (Term Context Renaming Lemma). Assume that ∆ ′ 6ξ ∆ and Γ ′ 6ξ;ζ Γ .

If ∆ ′; Γ ′ ` s : A, then ∆; Γ ` s〈ξ; ζ〉 : A〈ξ〉.

Proof. By induction on ∆ ′; Γ ′ ` s : A, requiring compatibility of subtyping with renam-
ing. In the case of subtyping, we need monotonicity of subtypings (Lemma 10.2).

The proof requires substitution reasoning in three cases: type application, term abstrac-
tion, and type abstraction. Let us have a closer look at type abstraction.

We have to show that ∆; Γ ` Λs.〈ξ; ζ〉 : ∀A.B, i.e. ∆; Γ ` ΛA〈ξ〉.s〈⇑ty
ty ξ;⇑ty

vl ζ〉 : ∀A.B.
With the corresponding typing rule and the inductive hypothesis, it remains to show
that both (A〈ξ〉 · ∆) ◦ 〈↑〉 and Γ ◦ 〈↑〉 still fulfil the corresponding preconditions, i.e.

∀x.(⇑ty
ty ξ)(((A · ∆ ′) ◦ 〈↑〉) x) = ((A〈ξ〉 · ∆) ◦ 〈↑〉)((⇑ty

ty ξ) x)

and
∀x.((Γ ′ ◦ 〈↑〉) x)〈⇑ty

ty ξ〉 = (Γ ◦ 〈↑〉)((⇑ty
vl ζ) x).

This requires reasoning on the composition of renamings and substitutions, the interac-
tion between extension and composition, and a case analysis on x. For both equations,
we use asimpl to simplify the goals and then solve the goal with ∆ ′ 6ξ ∆ and Γ ′ 6ξ;ζ Γ .

�

We turn to context morphisms. Γ ′ is a term context morphism for Γ in context ∆ ′,
∆ ′; Γ ′ 6σ;τ Γ if ∆ ′; Γ ′ ` τ x : (Γ x)[σ] for all x.

Lemma 10.7 (Term Context Morphism Lemma). Assume that ∆ ′ 6σ ∆ and ∆ ′; Γ ′ 6σ;τ Γ .

If ∆ ′; Γ ′ ` s : A, then ∆; Γ ` s[σ; τ] : A[σ].

Proof. By induction on ∆ ′; Γ ′ ` s : A. We need substitutivity of subtyping for the sub-
typing rule (Lemma 10.3). We use equational reasoning similar to the reasoning in the
context renaming lemma, using the context renaming lemma in the case of binders.

For abstraction, we have to show that:

∀x : I1+n.∆ ′;A[σ] :: Γ ′ ` (var 0 · τ ◦ 〈id; ↑〉) x : ((A · Γ) x)[σ]

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#context_renaming_lemma
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#context_morphism_lemma

160 System F with Subtyping

which requires a case analysis and the context renaming lemma. Note the similarity to
the proof in the simply-typed λ-calculus.

For type abstraction, we have to show that

∀x : I1+n.A[σ] · ∆ ′ ◦ 〈↑〉 ` (var 0 · σ ◦ 〈↑〉) x <: ((A · ∆ ◦ 〈↑〉) x)[var 0 · σ ◦ 〈↑〉]

This requires weakening of subtyping (Lemma 10.2). Moreover, we prove:

∀x.A[σ] · ∆ ′ ◦ 〈↑〉; Γ ′ ◦ 〈↑〉 ` (τ ◦ 〈↑; id〉) x : ((Γ ◦ 〈↑〉) x)[var 0 · σ ◦ 〈↑〉]

For type application, we need the following equation:

B[A ′[σ] · σ] = B[var 0 · σ ◦ 〈↑〉][A ′[σ]..]

again proved via asimpl. �

Preservation further requires a subtyping morphism lemma. We say that ∆ ′ is a sub-
context of ∆, ∆ ′ <: ∆, if and only if ∆ ′ ` ∆ ′ x <: ∆x for all variables x (in scope). In Coq,
we define this as:

∀ x. sub ∆’ (∆’ x) (∆ x).

The scoping information is implicit in x.

Lemma 10.8 (Subtyping Morphism). If ∆ ′ <: ∆ and ∆; Γ ` s : A, then ∆ ′; Γ ` s : A.

Proof. By induction on ∆; Γ ` s : A with compatibility of subtyping with renaming and
substitution (Lemma 10.3). �

As we work with subtyping, we need the following inversion lemmas for preservation:

Lemma 10.9 (Typing Inversion).

1. If ∆; Γ ` λA.s : C and ∆ ` C <: A ′ → B, then ∆ ` A ′ <: A and there is B ′ such that
∆;A · Γ ` s : B ′ and ∆ ` B ′ <: B.

2. If ∆; Γ ` ΛA.s : C and ∆ ` C <: ∀A ′ .B, then ∆ ` A ′ <: A and there is B ′ such that
A ′ · ∆ ◦ 〈↑〉; Γ ◦ 〈↑〉 ` s : B ′ and A ′ · ∆ ◦ 〈↑〉 ` B ′ <: B.

Preservation then follows by induction on ∆; Γ ` s : A, using the context morphism
lemma for type applications and type abstraction.

Theorem 10.10 (Preservation). If ∆; Γ ` s : A, and s� t, then ∆; Γ ` t : A.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark1.html#preservation

10.2. Type Safety for F<,rec 161

...
label : Type
L, × : Functor
...
recty : L (label × ty)→ ty
...
rectm : L (label × tm)→ tm
proj : tm → label→ tm

Figure 10.3: Adapted EHOAS specification for F<,rec .

Proof. Analogous to Lemma 9.9, but by induction on s� t and then a dependent induc-
tion on ∆; Γ ` s : A due to subtyping. Otherwise, the proofs resemble previous ones,
and we omit the cases for abstraction and application.

Similar to term abstraction, type abstraction requires us to use the context morphism
lemma, and hence we have to show that:

∀x : I1+m.∆ ` B..x <: ((A〈↑〉 · ∆ ◦ 〈↑〉) x)[B..]

which follows with our automation. �

We hence reached our goal of type safety. Note that we fulfilled the well-formedness
condition of the POPLMark challenge intrinsically.

10.2 Type Safety for F<,rec

In the second step, we extend F< with record types, record terms, and projections to
F<,rec .

Record types, respective record terms extend both types and terms, using a sort of labels,
label:

Ak, Bk ∈ tyk : = · · · | recty {li : Ai}
sk;l, tk;l ∈ tmk;l : = · · · | πl s | rectm {li = si} l ∈ label

See Figure 10.3 for the extension of the EHOAS specification with record types, record
labels, and projections. We will frequently write recty {li : Ai} as simply rectyAs. To-
gether with the new syntactic objects, we have a new category of values: rectm xs is a
value if all terms in rectm xs are values.

We implement records with the predefined lists of Coq and hence use the functor mech-
anism of Autosubst. This contrasts other solutions, which introduce a mutual definition
with a new inductive type of custom lists to avoid custom induction principles [67, 116].

162 System F with Subtyping

unique nil
∀y.(l, y) 6∈ xs unique xs

unique ((l, x) · xs)

Figure 10.4: Uniqueness.

Subtyping ∆ ` A <: B

uniqueBs ∀ l T.(l, T ′) ∈ Bs→ ∃T.(l, T ′) ∈ As ∧ ∆ ` T <: T ′

∆ ` rectyAs <: rectyBs

Typing ∆; Γ ` s : A

∆; Γ ` s : rectyAs (l, A) ∈ As
∆; Γ ` πl s : A

xs ≡l As unique xs uniqueAs ∀l sA.(l, s) ∈ xs→ (l, A) ∈ As→ ∆; Γ ` s : A
∆; Γ ` rectm xs : rectyAs

Weak Semantics s� t

t� t ′ (l, t) ∈ xs
rectm xs� rectm xs[l 7→ t ′]

s� s ′

πl s� πl s ′
(s, l) ∈ xs

πl (rectm xs)� s

Figure 10.5: Subtyping, typing, and evaluation for F<,rec .

In the informal syntax, there is the implicit assumption that each label appears only
once. Lists alone do not reflect this uniqueness. We hence have a predicate that labels
are unique (see Figure 10.4) and require that all terms are well-formed.

We start with extending subtyping, typing, and reduction to F<,rec , see Figure 10.5 for
an overview. Subtyping of record types requires two conditions: First, all labels in Bs
have to appear in As. Second, for each element (l, T ′) in Bs, there has to be a pair (l, T) in
As with ∆ ` T <: T ′. Labels in Bs must still be unique, a precondition for preservation.

Typing requires two new rules, one for projection and one for record terms. Typing of
projections is straightforward and only requires that the respective term has a record
type and the label appears in the record type. For typing a record term, both record
terms and record types require the same labels.1 We say that two record objects are
label equivalent, xs ≡l ys, it they contain the same labels:

xs ≡l ys := ∀l.(∃x.(l, x) ∈ xs)↔ (∃y.(l, y) ∈ ys)

For each defined label, the typing statement has to hold. Note that we further need
1We could weaken this precondition, but this is the way it is posed in the POPLMark challenge.

10.2. Type Safety for F<,rec 163

uniqueness properties for xs and As.

For reduction, we require both a new reduction rule and several congruence rules. For
projection reduction, the label has to appear in the record term. We have further one new
congruence rule for projection (which is trivial) and one for record terms. Reduction in
a record term reduces one component and leaves all other components unchanged. We
hence require a function which updates a record component, defined with list mapping
(and requires decidability of record labels). We write xs[l 7→ s] to denote the record
list xs with the component at label l replaced by s. Updating a component fulfils the
following preservation properties:

Lemma 10.11.

1. If unique xs, then unique xs[l 7→ s].

2. If xs ≡l ys, then xs[l 7→ s] ≡l ys.

3. If (l, s) ∈ xs[l ′ 7→ t], then either (l, s) ∈ xs or l = l ′ and s = t.

10.2.1 Transitivity

We show transitivity of the respective subtyping system. There are the following
changes:

First, as subtyping of record types requires that the labels are unique, we need a well-
formed condition such that reflexivity of subtyping goes through. Second, we require
substitutivity of uniqueness and membership. We use the following lemmas:

Lemma 10.12. If unique xs, then unique (map (id× f) xs).

Lemma 10.13. If (l, s) ∈ xs, then (l, f s) ∈ map (id× f) xs.

Third and last, record types and subsumption need manual, strengthened induction prin-
ciples. For example, for record types, Coq’s induction principle requires us to prove that:

∀xs.P (recty xs)

but we actually need that:

∀xs.(∀l s.(l, s) ∈ xs→ P s)→ P (recty xs)

We hence generate these induction principles manually. While trivial to prove, they
require 100 (!) lines of code, most for the statement alone.

Last, we need the characteristic equations of mapping. During weakening of subtyping,
we show for example that:

∀l T ′.(l, T ′) ∈ map (id× 〈ξ〉) ys→ ∃T.(l, T) ∈ map (id× 〈ξ〉) xs ∧ ∆ ′ ` T <: T ′

which can only be resolved using the characteristic lemma of mapping.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark21.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark21.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark21.html

164 System F with Subtyping

10.2.2 Progress

We require a new inversion statement for progress:

Lemma 10.14. If ∆; Γ ` s : rectyAs and value s, then there is a list xs such that s = rectm xs
and whenever (l, A) ∈ As, then there exists s ′ with (l, s ′) ∈ xs.

Proof. Similar to before. The proof requires that xs ≡l As. �

Otherwise, progress gets considerably harder. First, we require a strengthened induc-
tion principle for the typing predicate.

For projection, we have to show that πl s can indeed do a step. We know that ∅; ∅ ` s :
rectyAs, (l, A) ∈ As, and with Lemma 10.14 that s = rectm xs for some xs. For reduction,
we further need that l appears in xs. We hence require that all labels in As also appear
in xs (as in the definition for record typing).

For record terms, rectm xs, we have to lift the decision to the whole list of elements:
Either all elements in xs are values or there exists a component (l, s) in xs such that s� s ′.
In the first case, the whole record term is a value, while in the second case we reduce.

10.2.3 Preservation

Let us turn to the context renaming and context morphism lemma. In both cases, we
require monotonicity of uniqueness (Lemma 10.12). For the typing of record terms,
we additionally use the characteristic equation of mapping. For projection, we require
substitutivity of membership (Lemma 10.13). With Autosubst almost nothing changes,
as instantiation is simply propagated.

The following inversion lemma for records comes in useful:

Lemma 10.15. Assume that ∆; Γ ` rectm xs : A and ∆ ` A <: rectyAs ′. Then, if (l, s) ∈ xs
and (l, B ′) ∈ As ′, there exists B such that ∆; Γ ` s : B and ∆ ` B <: B ′.

Proof. As before, by a dependent induction. We require the uniqueness property. �

For preservation, two new cases appear. Projection simply requires the new inversion
lemma (Lemma 10.15).

For records, we have to show that reduction, i.e. updating a record, preserves unique-
ness and label equivalence (Lemma 10.11). We then do a case analysis on the respective
value: In case it is unchanged by the reduction, typing holds; otherwise, we use the
strengthened inductive hypothesis.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark21.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark21.html

10.3. Type Safety for F<,pat 165

pat : Sort
...
patvar : ty → pat
patlist : L (label × pat)→ pat
...
letpat p: pat→ tm→ (Vp tm → tm)→ tm

Figure 10.6: EHOAS specification for pattern matching.

10.3 Type Safety for F<,pat

Let us reconsider patterns as defined in the POPLMark challenge:

p ∈ pat : = x : A | {li : pi}

A pattern is either a variable with a type, or a list of patterns with one label each.

Patterns patm, are used during the reduction of a let-expression:

letn p = s in t

The term t contains a variadic number n of free variables; during reduction of a let-
abstraction, s is matched against the pattern p with n free variables and then creates
n terms following the labels in a record term, and then replaces the free variables in t
with this terms. We call the process of retrieving the terms corresponding to a pattern
pattern matching.

In Autosubst we define patterns by a new sort, see Figure 10.6 for the extensions to the
EHOAS specification. In scoped syntax, let-abstraction has the following type:

let : ∀n.patmty → tmmty ;mvl → tmmty ;p+mtm → tmmty ;mtm

Note that as-is the number of new binders, n, and the pattern p are disconnected – this
connection has to be incorporated into the definition of pattern typing.

Transitivity of subtyping remains unchanged. For type safety, the extension consists of
two parts:

1. We require suitable definitions of pattern typing and patternmatching, describing
the descend into a record type respectively record term.

2. We use pattern typing and pattern matching in the actual definition of typing and
evaluation and prove type safety.

Substitution-wise, only the second part is interesting; the first point is orthogonal to the
problem of substitution boilerplate and is more concerned with technical properties on
records.

166 System F with Subtyping

For the remainder of the chapter and this thesis, we assume that suitable predicates exist
and satisfy the following properties:

Assumption 10.16. There exist predicates for pattern typing and pattern matching

_ : _⇒n _ : patmty → tymty → (In → tymty)

_, _ �n _ : patmty → tmmty ;mtm → (Ip → tmmty ;mtm)

that fulfil the following three properties:

1. Pattern typing is substitutive.

2. If s is a value, ∅; ∅ ` s : A, and p : A ⇒n Γ , then there exists σ such that p, s �n σ. We
call this the progress property of pattern typing.

3. If ∆; Γ ` s : A, p : A ⇒n Γ ′, and p, s �n σ, then ∆; Γ ` σx : Γ ′ x. We call this the
typedness property of pattern matching.

All these conditions are fulfiled by a reasonable implementation, which we leave for
future work. See e.g. Berghofer [17] for predicates in pure de Bruijn syntax which sat-
isfy these properties. A solution in scoped syntax might require additional axioms to
generate the respective functions; vectors might be a solution.

We can then continue with the formal definition of typing and evaluation for let-
abstractions. We define typing as:

∆; Γ ` s : A p : A⇒n Γ ′ ∆; Γ ′ ·n Γ ` t : B
∆; Γ ` letn p = s in t : B

Note that to show that t has type B, we assume that its free variables have the types
as declared in the partial context Γ ′ generated by pattern typing. We use a variadic
extension to connect these two contexts.

Similarly, evaluation of a let-abstraction uses patternmatching to find values for the free
variables in t:

p, s �n σ
(letn p = s in t)� t[σ ·n var]

We can then continue with the proof of type safety.

Progress

In the case of a let abstraction, we do a case analysis whether s is a value. If s is a value,
we show that we can reduce using the progress property of pattern typing.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark22.html

10.3. Type Safety for F<,pat 167

Preservation

We return to the context renaming lemma. In the case of typing of a let abstraction, we
have that

∆; Γ ` letn p〈ξ〉 = s〈ξ; ζ〉 in t〈ξ; hdn ·n ζ ◦ ↑n〉 : A〈ξ〉.

Using the corresponding typing rule, we then have to show that both p〈ξ〉 : A〈ξ〉 ⇒n
Γ ′ ◦ 〈ξ〉 and that ∆; Γ ′ ◦ 〈ξ〉 ·n Γ ` t〈ξ; hdn ·n ζ ◦ ↑n〉 : B〈ξ〉. With the inductive hypothesis,
we hence have to show that:

∀x : In+mty .(Γ ′ ·n Γ x)〈ξ〉 = ((Γ ′ ◦ 〈ξ〉) ·n Γ)(hdnζ ◦ ↑n ·n x)

We use asimpl to do so. We further require monotonicity of pattern typing.

For the context morphism lemma, we analogously have to show that

∆; Γ ′ ◦ [σ] ·n Γ ` t[σ; hdn ·n τ ◦ 〈id; ↑n〉] : A[σ]

and hence that

∀x.∆; Γ ′ ◦ [σ] ·n Γ ` (hdn ·n τ ◦ 〈id, ↑n〉) x : (Γ ′ ·n Γ x)[σ]

We hence do a case analysis on x using Lemma 6.18, then prove the lemma with the
context renaming lemma and asimpl.

Note that while these equations might seem daunting, they pose no hindrance in the
proof. Autosubst automatically solves all equations, and all the user has to do is using
its automation mechanism.

Finally, we turn to preservation.

Theorem 10.17 (Preservation). If ∆; Γ ` s : A, and s� t, then ∆; Γ ` t : A.

Proof. There is only one new rule. For pattern reduction, we show that

∆; Γ ` t[var;σ ·n var] : A

knowing that ∆; Γ ′ ·n Γ ` t : B, that p : A ⇒n Γ ′, and that p, s �n σ. We hence use the
context morphism lemma. For the preconditions we hence have to show that

∀x.∆ ` var x <: (∆x)[var]

which follows directly with our rewriting automation and reflexivity of subtyping, and

∀x.∆; Γ ` (σ ·n var)x : (Γ ′ ·n Γ)[varty ; varvl].

The second equation requires a case analysis on x : In+mty . If x is in the second segment,
then the claim directly followswith our simplification and the variable typing rule. Oth-
erwise, after simplification, we have to show that ∆; Γ ` σx : Γ ′ x and hence require the
typedness property of pattern typing and pattern matching. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter10.POPLMark22.html

168 System F with Subtyping

10.4 Discussion

We compare our mechanisation to other solutions of the POPLMark challenge.

10.4.1 POPLMark Part A

We start with Part A of the POPLMark challenge to which many solutions have been
submitted.

Let us start and compare the solution to the one of Autosubst 1. Already Autosubst 1
offers a concise, transparent, and accessible solution to Part A for the POPLMark chal-
lenge. De Bruijn substitutions relieve us from many intermediate lemmas for single-
point substitutions.

We could simplify the solution of Schäfer et al. [100] even further, from 435 lines to 315
lines. The proofs are shorter for two reasons:

First, a scoped syntax allowed us to remove the separate scopedness judgment required
by the POPLMark specification. Scoped syntax enables us to work with contexts in a
more concise, functional fashion.

Second, vector substitutions allow us to unify context lemmas for type and term renam-
ings, respectively substitutions. Previous proof efforts of Schäfer et al. [100] could hence
be simplified by usingmerely the context renaming and context morphism lemmas. We
see the simple structure of lemmas as a big advantage.

See Figure 10.7 for an overview of the lines of code of different solutions using general-
purpose proof assistants, adapted from Schäfer et al. [100] where the authors give a
detailed discussion on the different solutions. New is the solution of Keuchel et al. [67]
which also offers tool support called Needle&Knot and hence offer a very concise solu-
tion as well.

Different to Autosubst, Needle&Knot uses single-point substitutions. In the example
of type safety, these seem to offer a similarly simple proof structure as de Bruijn sub-
stitutions — if one is firm with the lemmas needed. These lemmas have to be applied
manually, which means that users require knowledge on the library used. While the
generated substitution lemmas suffice for type safety, this is not so clear if we want to
prove more extended results such as normalisation. Unfortunately, the authors do pro-
vide proofs of type safety only.

10.4.2 POPLMark Part B

We compare our solution to the ones using de Bruijn syntax of Berghofer [17], Vouillon
[116], and Needle&Knot. All three solutions use single-point de Bruijn syntax, i.e. sub-
stitution are of the form N ∗ tm. See Figure 10.8 for a summary of the design decision.
Of course, the line numbers given are only of very limited significance, as our solution

10.4. Discussion 169

Le
roy
, L
N

Ch
arg

ué
rau

d,
LN

Vo
uil
lon

, d
B

GM
eta
, d
B

GM
eta
, L
N

LN
Ge
n,
LN

Au
tos
ub
st
1,
dB

Kn
ot,
dB

Au
tos
ub
st,
dB

0

500

1,000

655 623
520

441 483

197 210 168 151

1,199

728 697 714
562

681

225
121 165Li

ne
so

fC
od

e

Spec
Proof

Figure 10.7: Comparison of Coq solutions to part A of the POPLMark challenge, mea-
sured using the coqwc utility. Adapted from Schäfer et al. [100]. LN = locally nameless
syntax, dB = de Bruijn syntax.

axiomatises pattern typing and pattern matching. Needle&Knot required around 120
lines of code for these proofs.

Let us start with the handling ofmany-sorted syntax. While Berghofer accumulates type
variables and term variables into one sort, Vouillon and Needle&Knot have different
sorts for type variables and term variables, just as we have. We found different variables
useful to separate our concerns, and they were indeed crucial to state context renaming
and context morphism lemma.

We appreciated the easy proof structure of preservation. While single-point de Bruijn
syntax requires several lemmas, our proof via context renaming and context morphism
lemmas is straightforward. This easy structure remains unchanged for Part 2 of the
challenge.

Despite the separation into two kinds of variables, all Berghofer, Vouillon and Nee-
dle&Knot define contexts as custom lists which contain both type variables and value
variables. The main difference is whether we adapt the context when we insert or when
we look up variables. During look-up, thewhole remaining context is shifted. We found
the separation of contexts convenient, as the access of elementswas straightforward, and
we could reuse previous definitions. The immediate shifting did not cause a problem.

The solutions of Needle&Knot and Vouillon handle record types and record terms by
a mutual inductive type of custom lists. An exception is the solution of Berghofer. Al-
though these lead to the correct induction principles in Coq, the approach is otherwise
cumbersome – all definitions on lists, such as looking up ormapping, have to be defined
separately for each of these types. This would cause redundancy in larger develop-
ments. All solutions, including the one of Berghofer, use separate inductive predicates
for typing and evaluation on records and lists of records. We are the only solutionwhich

170 System F with Subtyping

usesmembership predicate and predefined list functions. The solution scaledwell. Our
only annoyance are Coq’s induction principles for nested inductive type.

Scopedness is an external property in all solutions. Needle&Knot automatically generate
custom scopedness properties. We foundworkingwith scoped syntax convenient. Well-
formedness adds a considerable amount of lines. As in our case, uniqueness conditions
are in the typing judgment. Needle&Knot ignore the uniqueness conditions altogether.

We turn to reasoning on syntax. Recall, that all solutions use single-point de Bruijn syn-
tax. However, Berghofer, Vouillon, andNeedle&Knot use all different variations ofwhen
the variable is shifted. This shifting is applied not during the lambda, but just later on
when talking about the variables. The solution of Needle&Knot seems to be particularly
suited for proofs of type safety. We do the (parallel) shifting at once with a renaming.
In Vouillon, shifting appears during the abstraction; he claims that the equational sys-
tem gets more natural if we use this in the case of abstraction. The equational theory
still requires to sort the variables, and we know of no completeness result. All solutions
except Needle&Knot have to prove manual substitution properties; all approaches, in-
cluding the one of Needle&Knot, apply substitution lemmas manually.

For patterns, all solutions calculate the size of a pattern to lift. In Vouillon, patterns
are defined as an inductive type (with a mutual inductive type for lists of patterns). A
generic mapping calculates the size of patterns. Instantiating this one with N, 0, and S
would lead to the size of the pattern. All solutions mentioned define pattern typing and
pattern matching, although Vouillon and Needle&Knot substitute in-place, and hence
bypass the original intention of Part B to compare solutions w.r.t. the handling of non-
standard binders. Note that this is no longer possible if we use recursive lets such as
in [94] or indeed want to use the result of pattern matching in a direct manner. Only
Berghofer generates a list of terms and replaces them at once.

As a consequence, it is unfortunately impossible to compare the solutionsw.r.t. their rea-
soning on variadic syntax. Although Keuchel et al. [67] support data type with variadic
binders, we found no development actually reasoning with variadic binders.

Only Needle&Knot offer tool support for substitution boilerplate. In a later paper [68],
the authors mention the application to generate substitutivity of typing judgments.
However, the tool cannot handle the type system of the POPLMark challenge with the
separate transitivity statement.

The obvious next step in our solution is to implement pattern typing and patternmatch-
ing in an elegant manner.

10.4. Discussion 171

Berghofer Vouillon Needle Autosubst 2
Presentation single-point single-point single-point de Bruijn
Scoped No No No Yes
Separated variables No Yes Yes Yes
Separated context No No No Yes
Lists with predefined type Yes No No Yes
Multivariate reduction Yes No No Yes
LoC without records 1300 1300 290 310
LoC with records 2500 2200 830 520 + patterns
Proof Assistant Isabelle Coq Coq Coq

Figure 10.8: Comparison of the solutions to POPLMark Part B of Berghofer [17], Vouil-
lon [116], Needle&Knot.

Chapter 11

Other Developments

There are further developments which use and benefit from the current implementation
of Autosubst.

Mameche [73] extends the Autosubst output to the Lean proof assistant [35] and
mechanises a proof of strong normalisation using Kripke-style logical relations
(see Appendix B). Not surprising, the mechanisation is very similar to its counterpart
in Coq.

Forster et al. [46] use Autosubst for a de Bruijn representation of parameterised first-
order logic, recall its description in Figure 5.8. They use this representation to study
variants of completeness for first-order logic. Previouswork in [44] uses a locally named
representation. A de Bruijn representation simplifies the previously difficult proof of
weakening significantly and does not affect the remaining development. Forster et al.’s
work inspired the simplified Autosubst output for first-order binders.

Next, Spies and Forster [107] use Autosubst to formalise undecidability of higher-order-
unification in a λ-calculus with β-conversion.

Finally, call-by-push-value, short CBPV, is a subsuming paradigm for call-by-value and
call-by-name [71]. The main characteristic is its mutual inductive sort of computations
and values. Apart from its interest for compilers (see e.g. Rizkallah et al. [94]), CBPV
is of interest for mechanisations as many meta-theoretical results (weak and strong
normalisation, confluence, a denotational semantics) can be adapted to call-by-value
and call-by-name variants. Progress and preservation for call-by-push-value were for-
malised in Abella by Forster et al. [47]. The authors of Rizkallah et al. [94] provide a
sound equational theory for call-by-push-valuewith recursive let using locally nameless
syntax.

In [45], we provide a case study using weak normalisation, strong normalisation, and
observational equivalence. In particular, we extended the transport of results to a strong
semantics. See Figure 11.1 for the EHOAS specification of our mechanised variant of
CBPV. From the syntactic side, we have mutual inductive syntax. This formal system

174 Other Developments

valtype : Sort
comptype : Sort
value : Sort
comp : Sort
B : Sort

zero: valtype
one: valtype
U: comptype→ valtype
Sigma: valtype→ valtype→ valtype
cross: valtype→ valtype→ valtype

cone: comptype
F: valtype→ comptype
Pi: comptype→ comptype→ comptype
arrow: valtype→ comptype→ comptype

u: value
pair: value→ value→ value
inj: B→ value→ value
thunk: comp→ value

cu: comp
force: value→ comp
lambda: (value→ comp)→ comp
app: comp→ value→ comp
tuple: comp→ comp→ comp
ret: value→ comp
letin: comp→ (value→ comp)→ comp
proj: B→ comp→ comp
caseZ: value→ comp
caseS: value→ (value→ comp)→ (value→
comp)→ comp
caseP: value→ (value→ value→ comp)→
comp.

Figure 11.1: EHOAS specification of CBPV.

Contents Spec Proofs
Setup 350 250
Translating CBV and CBN to CBPV 1250 500
Weak Reduction 200 450
Weak Normalisation 100 150
Strong Reduction 800 950
Strong Normalisation 200 300
Observational Equivalence 250 350
Equational Theory 100 200
Denotational Semantics 700 600
Total 3,950 3,750

Figure 11.2: Overview of the mechanised results [45].

175

would hence have been impossible in Autosubst 1. See Figure 11.2 for an overview of
the results and lines of code; the paper [45] contains more technical details.

Substitution-wise, we have to handle both mutual inductive syntax and different syn-
tactic systems. In the first version, renamings were second-class, which lead to several
problems and manual statements. First-class renamings hence simplified the develop-
ment tremendously.

In this development, we mechanised results fundamentally different from the ones in
the previous two chapters, e.g. confluence, a denotational semantics, and translations
between different formal systems. As Autosubst was able to provide the expected sup-
port, we are confident that similar results can be proven for other formal systems aswell.
Our mechanisation further shows that usage of Autosubst scales to large developments.
We think this development showcases how working on a problem in the meta-theory
of formal systems should be: The development would have been more work without a
proof assistant.

In this paper, we worked with several co-authors who used de Bruijn syntax for the first
time. As a consequence, scoped syntax proved incredibly valuable to state the correct
lemmas.

There are two possible improvements: First, traversals as mentioned in [64] would have
been useful to define the above-mentioned translations from call-by-name and call-by-
value to CBPV.We had to provide manual proofs that these translations are substitutive
— proofs which we could omit with traversals. Further, we required manual proofs of
the preservation of injectivity which Autosubst does not provide so far.

Conclusion

Conclusion

In this final section, wefirst summarise the results of this thesis and thendiscuss possible
extensions and future work.

11.1 Summary of Results

In this thesis, we have examined mechanisations of syntax with both pure and scoped
de Bruijn syntax, de Bruijn substitutions, and basic syntactic lemmas inspired by the
σSP-calculus forming a convergent rewriting system. As outlined in the introduction,
we approach this topic from three angles: from a theoretic one, justifying our strategy
for substitution equations via the convergence of reduction in the σSP-calculus; from
a practical one, generalising existing reasoning principles to broader classes of syntax
realised in the Autosubst compiler; and finally, from an empirical one, testing the Auto-
subst output on several case studies.

11.1.1 Calculi of Explicit Substitutions

We start our exposition with the untyped λ-calculus, and extend the previous result of
soundness and completeness of the σSP-calculus for the de Bruijn algebra [99] with a
formalisation and mechanisation of a proof that reduction of the σSP-calculus is con-
vergent. We hence mechanically verify that the syntactic set of equations Autosubst
generates for the λ-calculus is convergent and that rewriting is a suitable proof method
for assumption-free substitution equations.

As is standard, convergence is split into local confluence and termination, then con-
nected using Newman’s lemma. Both proofs are of fundamentally different difficulty.

Establishing local confluence is surprisingly straightforward. Unlike previous develop-
ments, which use a critical-pair analysis, the proof is by a row of nested inversions and
uses Coq’s depth-first search with backtracking. We consider this one of the advantages
of a proof assistant with tactics.

The second and more intricate part is the termination of the σSP-calculus, a proof that
Schäfer et al. [99] have called “far from straightforward”. Although three paper-based
proofs exist [30, 55, 121], all proofs omit many details. In contrast to Kamareddine and
Qiao [65], who formalise termination of the similar σ-calculus in ALF following Curien

180 Other Developments

et al. [30] very closely, we first simplify the approach of Curien et al. [30] and thenmech-
anise a variant for the σSP-calculus. Our simplification integrates an additional calculus
with fewer reduction rules. As far as we know, our proof is the first mechanised proof
of termination for the actual σSP-calculus, though the differences concerning termina-
tion to the σ-calculus are small. We plan to use this proof as a base for future work, as
unfortunately the proof in ALF could not be retrieved.

11.1.2 Compiling Syntactic Specifications

We generalise the approach of Autosubst 1 to more extensive syntactic systems. To im-
plement first-class renamings, scoped syntax, many-sorted syntax, modular syntax, and
variadic syntax, we require a fundamentally new approach. We have transitioned from
Coq’s internal tactic language LTac to an external compiler and a new HOAS-like spec-
ification language.

We opt for a compiler-based approach, since it is easily extensible, and most impor-
tantly, allows us to generate the desired lemmas, proofs, notations, and tactics without
compromises. While the first prototype of Autosubst 2 generates textual output with a
one-phase compiler, an intermediate phase in the compiler has proven highly beneficial
to extend Autosubst to other syntactic output. In hindsight, we are happy how little the
compiler changed when we added new features.

In our realisations of formal systems, we follow three design principles: First, we restrict
ourselves to a finite set of substitution primitives; second, we use only a single operation
of instantiation; and third, we take special care of the choice of syntactic substitution
lemmas. We aremore strict in following these design principles thanAutosubst 1, and in
exchange are rewarded with a more elegant equational theory for many-sorted syntax.
In all extensions, the similarity to the primitives and equations of the σSP-calculus is not
a coincidence, but the result of careful design.

The fact that these primitives extend in such a regular manner to a variety of formal
systems, leads us to decisively contradict the claim that de Bruijn syntax fails to scale to
larger systems: in fact, it scales to all examined systems in such a regular manner that
we can automatically generate the necessary substitution boilerplate.

A major extension is the one for modular syntax. Although this problem is orthogonal
to binders, it is amenable to the same techniques. Our first approach to modular syntax
used algebras, but it turned out that a much simpler approach via injections together
with supplementary tool support already scales to proofs of strong normalisation.

Although we have shown formal completeness of the σ-calculus for the λ-calculus only,
in practice this seems to be no restriction: in our case studies, we were able to solve all
appearing equations.

11.2. Open Questions and Challenges 181

11.1.3 Case Studies

Throughout the thesis, our focus is on a practical development and hence Autosubst has
been strongly driven by the practical needs of various case studies. All extensions have
been evaluated on these case studies. Where possible, we have also compared against
other developments.

First-class renamings appear during proofs with Kripke-style logical relations as in the
POPLMark Reloaded challenge [4]. The challenge further requires anti-renaming lem-
mas in the case of strong normalisation and highlights the need for scoped syntax, which
we now think of as a particular sweet spot. Last, functors and variadic syntax first ap-
peared in proofs with records during the POPLMark challenge.

We are able to mechanise a variety of results from the literature. Most importantly,
those proofs require little knowledge about substitutions: Although we expect familiar-
ity with de Bruijn syntax and de Bruijn substitutions, there is no need to know how to
prove substitution equations. The current version of Autosubst was successfully used
by various students. We have observed that in particular scoped syntax simplifies the
start.

In contrast to the assumption of the POPLMark authors, de Bruijn syntax, in fact, allows
a concise, transparent, and accessible mechanisation of many proofs about the meta-
theory of formal systems. In the challenges posed, Autosubst couldwell hold up against
other solutions in general-purpose proof assistants and even special-purpose proof as-
sistants.

We think that the advantages of general-purpose proof assistants – more users and
hence more libraries, advanced features such as tactics and type classes, conveniences
like custom notations – are invaluable whenmechanising themeta-theory of formal sys-
tems.

11.2 Open Questions and Challenges

While Autosubst already supports a variety of formal systems, we still see many possi-
bilities for future work.

11.2.1 Calculi of Explicit Substitution

Autosubst generates instantiation and substitution lemmas in a principled manner, but
there is no formal justification that these reasoning principles are well-formed for cus-
tom syntax. In this point, we fall behindNeedle&Knot, who togetherwith their compiler
Needle have a Coq formalisation which shows the existence of instantiation and a set of
syntactic lemmas.

Even if this has not been a practical restriction in previous developments, we are still
interested in examining the resulting equational theory of custom and more extensive

182 Other Developments

syntax in detail. Even if we as developers are careful, it is easy to forget syntactic lemmas
necessary for a complete equational theory.

The first step is a scoped calculus of explicit substitutions. As in the scoped λ-calculus,
its primitives would be annotatedwith a scope; soundness w.r.t. the scoped λ-calculus is
then trivial. Most interesting, we require a counterpart of expansion to be complete: this
type-driven rule unifies two substitutions with the empty domain. First experiments
have shown that local confluence can be recovered with the right closure and that ter-
mination can be recovered using the previous results on the pure σSP-calculus. Most
interesting will be completeness, for which we hope to get a simplified proof: with ter-
mination, it could be possible to omit Schäfer et al.’s [99] intermediate notion of normal
forms; scopedness helps during completeness of instantiation.

Generalising our results to custom calculi requires the definition of custom calculi of
explicit substitutions which could be realised via a signature similar to Knot. There are
then four desirable properties: the soundness for the corresponding de Bruijn algebra,
completeness for the corresponding de Bruijn algebra, local confluence, and termina-
tion.

We expect soundness, local confluence, and termination to hold in all cases. The proof
of local confluence should still be straightforward, possibly in a similarly simple man-
ner as before. For termination, the hardest part was the termination of the distribution
calculus, and probably most calculi can be reduced to a similar intermediate calculus.
In the existing proof of termination, it could be that we can simplify the last proof step
– termination of the distribution calculus – using the techniques of Zantema [121].

We expect completeness to be the main challenge, and unprovable in many cases. The
main problem is that finding a normal form might be type-driven, for example, when
examining a syntactic system with one constant only.

Finally, we are interested in going beyond the rewriting system of the σSP-calculus.
While Autosubst helps with assumption-free equations, it also unfolds the lifting op-
eration and hence clutters proof statements if they are not solved immediately. It might
be of interest to investigate whether a calculus with an explicit lifting operation such
as the one by Hardin and Lévy [56] is suitable and can be adapted to a complete and
convergent rewrite system for de Bruijn algebras. The current variant is not complete,
as discussed in Chapter 4.

Next, in the case studies, we repeatedly encountered the case that we wanted to apply
a lemma but had to manipulate a term explicitly, e.g. changing a term to itself instanti-
ated with the identity substitution. It might be interesting to see whether results about
matching in calculi of explicit substitutions could help us in this case.

It would be further interesting to examine whether other approaches to binders
(e.g. single-point de Bruijn syntax such as [67] or locally nameless syntax) offer similar
completeness result as de Bruijn substitutions, i.e. if we canonically order the indices of

11.2. Open Questions and Challenges 183

substitutions.

11.2.2 Compiling Syntactic Specifications

Aside from extending meta-theoretic results of calculi of explicit substitutions, the cur-
rent implementation of Autosubst allows many more extensions.

One could extend Autosubst either to other proof assistants; the generation of the de
Bruijn algebra and the syntactic rewriting lemmas has already been implemented in
Lean [73]. The main challenge is to transport rewriting to a language without tactics,
e.g. Agda.

On the automation side, a variant without functional extensionality is of interest. While
Autosubst already generates lemma without functional extensionality, automation has
to be adapted. Further investigations are necessary for a faster version of automation,
e.g. via reflection.

Another solution to functional extensionality would be to implement scoped syntax via
vectors and hence omit the problem of functional extensionality altogether; see e.g. the
intrinsically typed realisations in [4]. In fact, in the compiler this would probably only
require to change the printing of the substitution primitives and should hence be rela-
tively straightforward. Note that probably certain equations no longer hold definition-
ally; we encountered (and solved) a similar problem in the extension to variadic syntax.

So far, the transformation of substitutions to renamings is rather rudimentary. While our
separation into first-class renamings never needed this direction, we are still interested
in making these steps more elegant. Rewriting up to associativity [20] could simplify
the definition.

Another promising area is to extend the expressiveness of Autosubst. Obvious exten-
sions are intrinsically typed syntax, dependent predicates, (substitutive) functions, and
dependent types. Intrinsically typed syntax would require a different definition of sub-
stitutions via an inductive definition, very similar to the one need for a scoped repre-
sentation by vectors.

An extension of Needle&Knot already generates substitution boilerplate for a subset
of well-formed inductive predicates [68]. Inductive predicates require merely the def-
inition of instantiation (which corresponds to the context renaming and context mor-
phism lemma), as we are in the universe of propositions and might be proof-irrelevant
anyways. Stating these via relations might be helpful. The definition of dependent in-
ductive types is probably much harder as it requires definitions to be invertible to prove
the substitution lemmas.

We aremoreover interested in implementing traversals, as first sketched in [64]. Further
investigation is necessary to decide the best trade-offs in an implementation.

184 Other Developments

Finally, when proving properties within a formal system with binders (as opposed to
establishing global properties), it is more convenient to work with actual names. Inside
a system, it seems reasonable to provide automatic convertibility functions between a
named and unnamed representation. As our base would be unnamed syntax, we could
hopefully omit statements about α-equivalence. We do not think that names in a mech-
anisation of formal systems are worth sacrificing the simplicity of reasoning on syntax.

11.2.3 Modular Syntax

In our exposition, we allow modular syntax for pure syntax and simple second-order
syntax only. The general question is how far our approach to modular syntax scales.

So far, we have neither implemented the POPLMark challenge nor the POPLMark Re-
loaded challenge with modular syntax. The main reason is that, so far, we support only
pure de Bruijn syntax, but the extension to scoped syntax should need no conceptual
changes. We are highly interested in providing the first truly modular proofs to both
challenges.

Next, an obvious extension is the automatic generation ofmodular inductive predicates.
As we already present manual variants, automation should be straightforward (and
far easier than supporting the respective substitution boilerplate). Feature interaction,
i.e. how to include features in other features, is the most pressing question. Also, the
definition of custom automatic induction principles as in Section 7.2 probably requires
more care. We expect previous case studies to be easily adaptable.

Further research is needed to allow the modular extension of types with different sub-
stitution vectors; for example from a variant with the arithmetic feature alone to a vari-
ant with both abstraction and a feature for abstraction, or from the lambda calculus to
System F. This step immediately introduces the challenge of different types, previously
tackled by [37].

Finally, if our approach scales as expected, it would be useful to provide a modular
library with standard results (e.g. context renaming and context morphism lemmas,
preservation, type safety, weak and strong normalisation, semantics) for common for-
mal systems.

Appendix A

Abstract Reduction Systems

The semantics of programming languages, as well as the rewriting rules of the σSP-cal-
culus, are defined via a small-step semantics and thus reuse many of the notions of
abstract reduction systems as by Baader and Nipkow [13], Huet [59]. The Coq mecha-
nisation is based on lecture notes and reuses parts of a development by Smolka [103].

We call a binary predicate of type R : X→ X→ Prop a relation over type X. We say that
x and y are in the union of a relation, short (R ∪ R ′) xy, if either Rxy or R ′ xy.

A relation R ′ over Y preserves a relation R over X, if there is a morphism f : X → Y,
i.e. ∀xy.R xy→ R ′ (f x) (f y).

We define the reflexive-transitive and transitive closure of a relation as an inductive
predicate (Figure A.1). Both closures are transitive, and the transitive closure is con-
tained in the reflexive-transitive closure:

Fact A.1. Let R be a relation over a type X.

1. R+ and R∗ are transitive.

2. If R+ xy, then R∗ xy.

Consider a relation R over X. A term x : X is normal w.r.t. R, if there is no y such that
Rxy. It is weakly normalising w.r.t. R, if there is some normal ywith R∗ xy.

Reflexive-Transitive Closure (R∗ xy)

R∗ x x

R xy R∗ y z

R∗ x z

Transitive Closure (R+ xy)

Rxy R∗ y z

R+ x z

Figure A.1: Reflexive-transitive and transitive closure.

https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#plus_trans
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#plus_star

186 Abstract Reduction Systems

A term x : X is said to be strongly normalising w.r.t. a relation R over X, snR (x), if it
satisfies the following inductive predicate:

∀y.R xy→ snR (y)
snR (x)

We simplify the notation to sn (x) if the relation R is clear from the context. A relation R
is terminating, if snR (x) for all x.

The following facts about strong normalisation appear throughout the thesis:

Fact A.2. Let X and Y be types, R be a relation over X and R ′ a relation over Y.

1. [Forward Propagation.] If snR (x) and R∗ xy, then also snR (y) .

2. [Morphism Lemma.] Assume that R ′ simulates R via a morphism f. Then snR ′ (f x)
implies snR (x).

The morphism lemma is useful to prove propagation of strong normalisation in many
cases, e.g.

Corollary A.3. If snR∪R ′ (s), then snR (s) and snR ′ (s).

Confluence is another important notion. We say that two objects x and y are joinable
by a relation Rwhenever the following holds:

∃z.R x z∧ Ry z

A relation R over X is confluent, if for R∗ xy and R∗ xy ′, y and y ′ are joinable by R∗,
i.e. there is a unifying z such that R∗ y z and R∗ y ′ z. A relation R over X is locally con-
fluent, if Rxy and Rxy ′ implies that y and y ′ are joinable, i.e. there is some z such that
R∗ y z and R∗ y ′ z.

The following lemma [81] is a standard lemma and allows to simplify the proof obliga-
tion to local confluence if the rewriting system is terminating:

Lemma A.4 (Newman’s Lemma). A terminating and locally confluent relation is also con-
fluent.

A relation R is convergent if it is terminating and confluent.

https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#sn_forward_propagation
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#sn_morphism
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#sn_or
https://www.ps.uni-saarland.de/~kstark/thesis/website/ARS.html#newman

Appendix B

Strong Normalisation à la Girard

This chapter contains the third proof of strong normalisation for full reduction in the
simply-typed λ-calculus, see Chapter 9. The proof is very similar to the original proof
by Girard et al. [51] but is extended with Kripke-style logical relations.

We require the following properties of strong normalisation:

Lemma B.1 (Properties of sn).

1. If sn (app s t), then sn (s) and sn (t).

2. If sn (λA.s), then sn (s).

3. If sn (s[σ]), then sn (s).

Proof. (1) and (2) follow directly with the homomorphism lemma. (3) additionally
requires that reduction is substitutive (Lemma 9.1). �

Note that in the definition of strong normalisation w.r.t. full reduction, open terms only
appear at negative position. Hence, the last statement, which is an anti-substitution
lemma, is actually straightforward to prove. On the other hand, substitutivity no longer
holds and showing the statement for renamings is hard:

Lemma B.2. If sn (s), then sn (s〈ξ〉).

Proof. By induction on sn (s), using anti-renaming of reduction (Lemma 9.5). �

We define the logical relation w.r.t. a context by a recursive function over the type:

RΓ (Base) := {s | Γ ` s : Base ∧ sn (s)}

RΓ (A→ B) := {s | Γ ` s : A→ B∧ ∀ξ v.v ∈ RΓ (A)→ (app (s〈ξ〉) v) ∈ RΓ (B)}

Clearly, if s ∈ RΓ (A), then Γ ` s : A.

Again, the logical relation has to be substitutive.

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html#sn_appL
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html

188 Strong Normalisation à la Girard

Lemma B.3 (Monotonicity). If s ∈ R (A), then s〈ξ〉 ∈ R (A).

Proof. By induction on A. To show that the typing statement is preserved in both cases,
we require the context renaming lemma for typing (Lemma 9.7). Otherwise, for the
base case, we require anti-monotonicity of strong normalisation (Lemma B.2). For the
function case, we have to show that renamings compose to mirror the definition. �

Lemma B.4 (Preservation of the Logical Relation). If s� t and s ∈ R (A), then t ∈ R (A).
Moreover, if s �∗ t and s ∈ R (A), then t ∈ R (A).

Proof. By induction on A. We require preservation (Section 9.2) and that reduction is
substitutive for the function case. �

Lemma B.5 (Closure of the Logical Relation).

1. If s ∈ RΓ (A), then sn (s).

2. If Γ ` s : A and s is neutral, and s is forward closed, i.e. if s� t, then t ∈ RΓ (A), then
s ∈ RΓ (A).

Proof. The two statements are shown simultaneously by induction on A. In itself we
have no interesting substitution equations to show, but require a number of the pre-
viously proven statements: Anti-monotonicity of reduction (Lemma 9.5), preservation
(Lemma 9.9), the context morphism lemma (Lemma 9.8), and substitutivity of strong
normalisation (Lemma B.1). �

Corollary B.6. var x ∈ RΓ (Γ x).

Proof. Directly, using Lemma B.5. �

Lemma B.7 (Closure under Beta Expansion). If sn (t) and A · Γ ` s : B, and s[t..] ∈ RΓ (B),
then app (λA.s) t ∈ RΓ (B).

Proof. By a nested induction on sn (M) (using Lemma B.1) and sn (N). We then apply
Lemma B.5 and have to show the three properties. Typing and neutrality directly follow.
Forward closure is harder and follows by a case analysis on app (λAs) t� s ′. The reduc-
tion case follows directly with our assumption; otherwise, we have to show that we can
apply the respective inductive hypothesis and all assumptions are preserved, using the
context morphism lemmas, preservation of the logical relation, naturality of reduction,
and substitutivity. �

We lift syntactic typing to semantic typing analogous to weak head normalisation. The
only difference is that we do not split the definition into a value and an expression rela-
tion:

G (Γ) := {σ | ∀x.(σx) ∈ R∆ (Γ x)}

Γ � s : A := ∀∆σ.σ ∈ G∆ (Γ)→ s[σ] ∈ R∆ (A)

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html#L.preservation_step
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html

189

Theorem B.8 (Fundamental Lemma). If Γ ` s : A, then Γ � s : A.

Proof. By induction on Γ ` s : A. From the substitution view, everything is standard, but
we require context morphism lemmas and the closure under β-expansion. �

Corollary B.9. If Γ ` s : A, then sn (s).

Proof. Using the fundamental lemma with Γ and the identity substitution, simplifying
the goal using asimpl. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.girard.html

Appendix C

Symmetry and Transitivity of Algorithmic and Logi-
cal Equivalence

This section outlinesmechanised proofs of symmetry and transitivity of algorithmic and
logical equivalence, defined and required in Section 9.8.

Weak head reduction is easily shown to be confluent.

Lemma C.1 (Confluence). If s �∗h t and s �∗h t ′, then there exists u such that t �∗h u and
t ′ �∗h u.

Proof. By a nested induction on s �∗h t and case analysis on s �∗h t ′. �

Lemma C.2 (Symmetry).

1. If Γ ` s ≡alg t : A, then Γ ` t ≡alg s : A.

2. If Γ ` s ≡alg↓ t : A, then Γ ` t ≡alg↓ s : A.

Proof. Directly by mutual induction. �

Showing transitivity is harder, as not all definitions transfer for algorithmic equivalence.
For example, in the case of the base type, we have no guarantee that we go back to the
same type, or for application, the typeA is unknown in the conclusion. We thus require
the following two intermediate lemmas.

Lemma C.3. If s �h t and Γ ` s ≡alg↓ u : A, then s = t.

Proof. By induction on Γ ` u ≡alg↓ : s. �

Lemma C.4. If Γ ` s ≡alg↓ t : A and Γ ` t ≡alg↓ u : B, then A = B.

Proof. By induction on Γ ` s ≡alg↓ t : A, case analysis on Γ ` t ≡alg↓ u : B. �

Lemma C.5 (Transitivity).

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#confluence
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#algeq_sym
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#neutral_whr
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#type_unique
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#algeq_trans

192 Symmetry and Transitivity of Algorithmic and Logical Equivalence

1. If Γ ` s ≡alg t : A and Γ ` t ≡alg u : A, then Γ ` s ≡alg u : A.

2. If Γ ` s ≡alg↓ t : A and Γ ` t ≡alg↓ u : A, then Γ ` s ≡alg↓ u : A.

Proof. By a mutual induction on Γ ` s ≡alg t : A and Γ ` s ≡alg↓ t : A. The claim follows
directly in the function and the variable case by case analysis on the second assumption.

If Γ ` s ≡alg t : Base, then there are s ′ and t ′ such that s �∗h s ′, t �∗h t ′ and Γ ` s ′ ≡alg↓
t ′ : Base. At the same time, for Γ ` t ≡alg u : Base, there are t ′′ and u ′ with t �∗h t ′′ and
u �∗h u ′ and Γ ` t ′′ ≡alg↓ u

′ : Base. To find fitting neutral terms to combine s and u, we
first use confluence (Lemma C.1) to note that there is a term t ′′′ such that t ′ �∗h t ′′′ and
t ′′ �∗h t ′′′. Using neutral confluence (Lemma C.3), moreover t ′′′ = t ′′ . With symmetry
(Lemma C.2), also Γ ` t ≡alg s : Base, and so also t ′′′ = t ′. With algorithmic backward
closure, it moreover suffices to show that two successors of s and u are algorithmically
equivalent.

In the application case, the type of function arguments is not necessarily equal. We use
Lemma C.4, to prove that they are indeed equal, and the claim follows. �

Lemma C.6 (Symmetry). If (s, t) ∈ RΓ (A), then (t, s) ∈ RΓ (A).

Proof. By induction on A, using symmetry of algebraic equivalence for the case that
A = Base (Lemma C.2). �

Lemma C.7 (Transitivity). If (s, t) ∈ RΓ (A) and (t, u) ∈ RΓ (A), then (s, u) ∈ RΓ (A).

Proof. By induction A, using transitivity of algebraic equivalence for the case that A =

Base (Lemma C.5). We require symmetry of logical equivalence (Lemma C.6) to solve
the function case. �

https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#logeq_sym
https://www.ps.uni-saarland.de/~kstark/thesis/website/Chapter9.equivalence.html#logeq_trans

Bibliography

[1] Website of the POPLMark challenge. https://www.seas.upenn.edu/~plclub/
poplmark/, Accessed: 2019-10-30.

[2] Martin Abadi, Luca Cardelli, P-L Curien, and J-J Lévy. Explicit substitutions.
Journal of functional programming, 1(4):375–416, 1991.

[3] Andreas Abel, Alberto Momigliano, and Brigitte Pientka. POPLMark Reloaded.
In Proceedings of the Logical Frameworks and Meta-Languages: Theory and Practice
Workshop, 2017.

[4] Andreas Abel, Guillaume Allais, Aliya Hameer, Brigitte Pientka, Alberto
Momigliano, Steven Schäfer, and Kathrin Stark. POPLMark Reloaded: Mecha-
nizing proofs by logical relations. Journal of Functional Programming, 29:e19, 2019.

[5] Robin Adams. Formalised metatheory with terms represented by an indexed
family of types. In Proceedings of the 2004 International Conference on Types for Proofs
and Programs, TYPES’04, pages 1–16, 2004. ISBN 3-540-31428-8, 978-3-540-31428-
8. URL http://dx.doi.org/10.1007/11617990_1.

[6] Guillaume Allais, James Chapman, Conor McBride, and James McKinna. Type-
and-scope safe programs and their proofs. In Proceedings of the 6th ACMSIGPLAN
Conference on Certified Programs and Proofs, CPP 2017, pages 195–207. ACM, 2017.
ISBN 978-1-4503-4705-1.

[7] Guillaume Allais, Robert Atkey, James Chapman, Conor McBride, and James
McKinna. A type and scope safe universe of syntaxes with binding: their se-
mantics and proofs. Proceedings of the ACM on Programming Languages, 2(ICFP):
90, 2018.

[8] Thorsten Altenkirch and Bernhard Reus. Monadic presentations of lambda terms
using generalised inductive types. In International Workshop on Computer Science
Logic, pages 453–468. Springer, 1999.

[9] Michael Ashley-Rollman, Karl Crary, and Robert Harper. Solution to
the POPLMark challenge in Twelf. https://www.seas.upenn.edu/~plclub/
poplmark/cmu.html, Accessed: 2019-09-10.

https://www.seas.upenn.edu/~plclub/poplmark/
https://www.seas.upenn.edu/~plclub/poplmark/
http://dx.doi.org/10.1007/11617990_1
https://www.seas.upenn.edu/~plclub/poplmark/cmu.html
https://www.seas.upenn.edu/~plclub/poplmark/cmu.html

194 Bibliography

[10] Brian Aydemir, Arthur Charguéraud, Benjamin C Pierce, Randy Pollack,
Stephanie Weirich, and Stephanie Weirich. Engineering formal metatheory. In
Acm sigplan notices, volume 43, pages 3–15. ACM, 2008.

[11] Brian E. Aydemir and Stephanie Weirich. LNgen: Tool support for locally name-
less representations. Technical report, University of Pennsylvania, 2010.

[12] Brian E Aydemir, Aaron Bohannon, Matthew Fairbairn, J Nathan Foster, Ben-
jamin C Pierce, Peter Sewell, Dimitrios Vytiniotis, Geoffrey Washburn, Stephanie
Weirich, and Steve Zdancewic. Mechanized metatheory for the masses: The
POPLMark challenge. In TPHOLs, volume 3603, pages 50–65. Springer, 2005.

[13] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge univer-
sity press, 1999.

[14] Hendrik Pieter Barendregt. The lambda calculus - its syntax and semantics, volume
103 of Studies in logic and the foundations of mathematics. North-Holland, 1985. ISBN
978-0-444-86748-3.

[15] Gilles Barthe and Olivier Pons. Type isomorphisms and proof reuse in depen-
dent type theory. In International Conference on Foundations of Software Science and
Computation Structures, pages 57–71. Springer, 2001.

[16] Nick Benton, Chung-Kil Hur, Andrew J Kennedy, and Conor McBride. Strongly
typed term representations in Coq. Journal of automated reasoning, 49(2):141–159,
2012.

[17] Stefan Berghofer. A solution to the POPLMark challenge using de Bruijn indices
in Isabelle/HOL. Journal of Automated Reasoning, 49(3):303–326, 2012.

[18] Richard S Bird and Ross Paterson. De Bruijn notation as a nested datatype. Journal
of functional programming, 9(1):77–91, 1999.

[19] Olivier Boite. Proof reuse with extended inductive types. In International Confer-
ence on Theorem Proving in Higher Order Logics, pages 50–65. Springer, 2004.

[20] Thomas Braibant and Damien Pous. Tactics for reasoning modulo AC in Coq. In
International Conference on Certified Programs and Proofs, pages 167–182. Springer,
2011.

[21] LucaCardelli, SimoneMartini, JohnCMitchell, andAndre Scedrov. An extension
of System F with subtyping. Information and Computation, 109(1-2):4–56, 1994.

[22] Andrew Cave and Brigitte Pientka. A case study on logical relations using con-
textual types. In Proceedings Tenth International Workshop on Logical Frameworks and
Meta Languages: Theory and Practice, LFMTP 2015, Berlin, Germany, 1 August 2015,
pages 33–45, 2015. URL https://doi.org/10.4204/EPTCS.185.3.

https://doi.org/10.4204/EPTCS.185.3

Bibliography 195

[23] James Cheney. Scrap your nameplate:(functional pearl). ACM SIGPLAN Notices,
40(9):180–191, 2005.

[24] Ahlem Ben Cherifa and Pierre Lescanne. Termination of rewriting systems by
polynomial interpretations and its implementation. Science of computer Program-
ming, 9(2):137–159, 1987.

[25] Alonzo Church. A set of postulates for the foundation of logic. Annals of mathe-
matics, pages 346–366, 1932.

[26] Thierry Coquand and Gérard Huet. The calculus of constructions. PhD thesis,
INRIA, 1986.

[27] Thierry Coquand andChristine Paulin. Inductively defined types. In International
Conference on Computer Logic, pages 50–66. Springer, 1988.

[28] Karl Crary. Logical relations and a case study in equivalence checking. Advanced
Topics in Types and Programming Languages, pages 223–244, 2005.

[29] Pierre-Louis Curien and Giorgio Ghelli. Coherence of subsumption, minimum
typing and type-checking in fsub. Mathematical structures in computer science, 2
(1):55–91, 1992.

[30] Pierre-Louis Curien, Thérèse Hardin, and Alejandro Ríos. Strong normalization
of substitutions. In International Symposium on Mathematical Foundations of Com-
puter Science, pages 209–217. Springer, 1992.

[31] Pierre-Louis Curien, Thérèse Hardin, and Jean-Jacques Lévy. Confluence proper-
ties ofweak and strong calculi of explicit substitutions. Journal of the ACM(JACM),
43(2):362–397, 1996.

[32] Haskell B Curry. The inconsistency of certain formal logics. The Journal of Symbolic
Logic, 7(3):115–117, 1942.

[33] Nicolaas Govert de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-Rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381 – 392, 1972. ISSN
1385-7258.

[34] Washington de Carvalho Segundo, Flávio L. C. de Moura, and Daniel Ventura.
Formalizing a named explicit substitutions calculus in coq. In Matthew Eng-
land, James H. Davenport, Andrea Kohlhase, Michael Kohlhase, Paul Libbrecht,
Walther Neuper, Pedro Quaresma, Alan P. Sexton, Petr Sojka, Josef Urban, and
Stephen M. Watt, editors, Joint Proceedings of the MathUI, OpenMath and ThEdu
Workshops and Work in Progress track at CICM co-located with Conferences on In-
telligent Computer Mathematics (CICM 2014), Coimbra, Portugal, July 7-11, 2014,
volume 1186 of CEUR Workshop Proceedings. CEUR-WS.org, 2014. URL http:
//ceur-ws.org/Vol-1186/paper-19.pdf.

http://ceur-ws.org/Vol-1186/paper-19.pdf
http://ceur-ws.org/Vol-1186/paper-19.pdf

196 Bibliography

[35] Leonardo de Moura, Soonho Kong, Jeremy Avigad, Floris Van Doorn, and Jakob
von Raumer. The Lean theorem prover (system description). In International
Conference on Automated Deduction, pages 378–388. Springer, 2015.

[36] David Delahaye. A tactic language for the system Coq. In International Conference
on Logic for Programming Artificial Intelligence and Reasoning, pages 85–95. Springer,
2000.

[37] Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers. Meta-theory à
la carte. In ACM SIGPLAN Notices, volume 48, pages 207–218. ACM, 2013.

[38] Gilles Dowek, Thérese Hardin, and Claude Kirchner. Higher-order unification
via explicit substitutions. In Proceedings of Tenth Annual IEEE Symposium on Logic
in Computer Science, pages 366–374. IEEE, 1995.

[39] Derek Dreyer, Ralf Jung, Jan-Oliver Kaiser, Hoang-Hai Dang, and David Swasey.
Semantics of type systems – lecture notes. 2018. URL https://plv.mpi-sws.
org/semantics/2017/lecturenotes.pdf.

[40] Peter Dybjer. Inductive sets and families in Martin-Löf’s type theory and their
set-theoretic semantics. Logical frameworks, 2:6, 1991.

[41] Amy Felty and Douglas Howe. Generalization and reuse of tactic proofs. In In-
ternational Conference on Logic for Programming Artificial Intelligence and Reasoning,
pages 1–15. Springer, 1994.

[42] FredrikNordvall Forsberg andAnton Setzer. A finite axiomatisation of inductive-
inductive definitions. Logic, Construction, Computation, 3:259–287, 2012.

[43] Yannick Forster and Kathrin Stark. Coq à la carte - a practical approach to mod-
ular syntax with binders. In Proceedings of the 9th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2020, New Orleans, USA, January
20–21, 2020, January 2020. To appear.

[44] Yannick Forster, Dominik Kirst, and Gert Smolka. On synthetic undecidability
in Coq, with an application to the Entscheidungsproblem. In 8th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, New York, NY, USA, January 2019. ACM.

[45] Yannick Forster, Steven Schäfer, Simon Spies, and Kathrin Stark. Call-by-push-
value in Coq: operational, equational, and denotational theory. In Proceedings
of the 8th ACM SIGPLAN International Conference on Certified Programs and Proofs,
CPP 2019, Cascais, Portugal, January 14-15, 2019, pages 118–131, 2019.

[46] Yannick Forster, Dominik Kirst, and Dominik Wehr. Completeness theorems for
first-order logic analysed in constructive type theory. In Symposium on Logical
Foundations Of Computer Science (LFCS 2020), January 4-7, 2020, Deerfield Beach,
Florida, U.S.A., January 2020. To appear.

https://plv.mpi-sws.org/semantics/2017/lecturenotes.pdf
https://plv.mpi-sws.org/semantics/2017/lecturenotes.pdf

Bibliography 197

[47] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. On the expres-
sive power of user-defined effects: effect handlers, monadic reflection, delimited
control. Journal of Functional Programming Special Issue: Post-Proceedings of ICFP
2017, to appear.

[48] Andrew Gacek. The Abella interactive theorem prover (system description).
In International Joint Conference on Automated Reasoning, pages 154–161. Springer,
2008.

[49] Lorenzo Gheri and Andrei Popescu. A formalised general theory of syntax with
bindings. In International Conference on Interactive Theorem Proving, pages 241–261.
Springer, 2017.

[50] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.

[51] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and types, volume 7. Cam-
bridge University Press Cambridge, 1989.

[52] Healfdene Goguen and JamesMcKinna. Candidates for substitution. LFCS report
series-Laboratory for Foundations of Computer Science ECS LFCS, 1997.

[53] Andrew D Gordon. A mechanisation of name-carrying syntax up to alpha-
conversion. In HOL Users’ Group Workshop, pages 413–425. Springer, 1993.

[54] Thérèse Hardin. Eta-conversion for the languages of explicit substitutions. In In-
ternational Conference on Algebraic and Logic Programming, pages 306–321. Springer,
1992.

[55] Thérese Hardin and Alain Laville. Proof of termination of the rewriting system
SUBST on CCL. Theoretical Computer Science, 46:305–312, 1986.

[56] Thérese Hardin and Jean-Jacques Lévy. A confluent calculus of substitutions.
In France-Japan Artificial Intelligence and Computer Science Symposium, volume 106,
1989.

[57] Martin Hofmann. Extensional constructs in intensional type theory. CPHC/BCS
distinguished dissertations. Springer, 1997. ISBN 978-3-540-76121-1.

[58] William A Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479–490, 1980.

[59] Gérard Huet. Conflunt reductions: Abstract properties and applications to term
rewriting systems. In 18th Annual Symposium on Foundations of Computer Science
(sfcs 1977), pages 30–45. IEEE, 1977.

[60] Gérard Huet. A complete proof of correctness of the Knuth-Bendix completion
algorithm. Journal of Computer and System Sciences, 23(1):11–21, 1981.

198 Bibliography

[61] Einar Broch Johnsen and Christoph Lüth. Theorem reuse by proof term trans-
formation. In International Conference on Theorem Proving in Higher Order Logics,
pages 152–167. Springer, 2004.

[62] Jonas Kaiser, Steven Schäfer, and Kathrin Stark. Autosubst 2: Towards reasoning
with multi-sorted de Bruijn terms and vector substitutions. In Proceedings of the
Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, LFMTP
’17, pages 10–14. ACM, 2017.

[63] Jonas Kaiser, Tobias Tebbi, and Gert Smolka. Equivalence of System F and λ2 in
Coq based on context morphism lemmas. In Proceedings of CPP 2017. ACM, 2017.

[64] Jonas Kaiser, Steven Schäfer, andKathrin Stark. Binder aware recursion overwell-
scoped de Bruijn syntax. In Proceedings of the 7th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2018, Los Angeles, CA,USA, January
8-9, 2018, pages 293–306, 2018.

[65] FairouzKamareddine andHaiyanQiao. Formalizing strongnormalization proofs
of explicit substitution calculi in ALF. Journal of Automated Reasoning, 30(1):59–98,
2003.

[66] Steven Keuchel and Tom Schrijvers. Generic datatypes à la carte. In Proceedings
of the 9th ACM SIGPLAN Workshop on Generic Programming, pages 13–24. ACM,
2013.

[67] Steven Keuchel, Stephanie Weirich, and Tom Schrijvers. Needle & Knot: Binder
boilerplate tied up. In European Symposium on Programming Languages and Systems,
pages 419–445. Springer, 2016.

[68] Steven Keuchel, Tom Schrijvers, and Stephanie Weirich. Needle & Knot: Boiler-
plate bound tighter. Technical report, 2017.

[69] Donald EKnuth and Peter B Bendix. Simpleword problems in universal algebras.
In Automation of Reasoning, pages 342–376. Springer, 1983.

[70] Gyesik Lee, Bruno C.D.S. Oliveira, Sungkeun Cho, and Kwangkeun Yi. GMeta:
A generic formal metatheory framework for first-order representations. In Pro-
gramming Languages and Systems, volume 7211 of Lecture Notes in Computer Science,
pages 436–455. Springer Berlin Heidelberg, 2012.

[71] Paul Blain Levy. Call-by-push-value: A subsuming paradigm. In International
Conference on Typed Lambda Calculi and Applications, pages 228–243. Springer, 1999.

[72] Lena Magnusson. The new implementation of ALF. In WORKSHOP ON, page
249, 1992.

[73] Sarah Mameche. Strong normalisation of the lambda calculus in Lean. Bachelor
thesis, 2019.

Bibliography 199

[74] ConorMcBride and JamesMcKinna. Functional pearl: I am not a number– I am a
free variable. In Proceedings of the 2004 ACM SIGPLAN workshop on Haskell, pages
1–9. ACM, 2004.

[75] Paul-André Mellies. Typed λ-calculi with explicit substitutions may not termi-
nate. In International Conference on Typed Lambda Calculi and Applications, pages
328–334. Springer, 1995.

[76] RobinMilner, Joachim Parrow, andDavidWalker. A calculus ofmobile processes,
i. Information and computation, 100(1):1–40, 1992.

[77] John C Mitchell and Eugenio Moggi. Kripke-style models for typed lambda cal-
culus. Annals of Pure and Applied Logic, 51(1-2):99–124, 1991.

[78] Masayuki Mizuno and Eijiro Sumii. Formal verification of the correspondence
between call-by-need and call-by-name. In International Symposium on Functional
and Logic Programming, pages 1–16. Springer, 2018.

[79] Anne Mulhern. Proof weaving. In Proceedings of the First Informal ACM SIGPLAN
Workshop on Mechanising Metatheory, 2006.

[80] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. Contextual modal
type theory. ACM Transactions on Computational Logic (TOCL), 9(3):23, 2008.

[81] Maxwell Herman Alexander Newman. On theories with a combinatorial defini-
tion of equivalence. Annals of mathematics, pages 223–243, 1942.

[82] Christine Paulin-Mohring. Inductive definitions in the system Coq rules and
properties. In International Conference on Typed Lambda Calculi and Applications,
pages 328–345. Springer, 1993.

[83] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings of
the ACM SIGPLAN’88 Conference on Programming Language Design and Implemen-
tation (PLDI), Atlanta, Georgia, USA, June 22–24, 1988, pages 199–208. ACM, 1988.

[84] Frank Pfenning and Carsten Schürmann. System description: Twelf — a meta-
logical framework for deductive systems. In International Conference on Automated
Deduction, pages 202–206. Springer, 1999.

[85] Brigitte Pientka and Joshua Dunfield. Beluga: A framework for programming
and reasoning with deductive systems (system description). In International Joint
Conference on Automated Reasoning, pages 15–21. Springer, 2010.

[86] Benjamin C Pierce. Types and programming languages. MIT press, 2002.

[87] AndrewM Pitts. Nominal logic, a first order theory of names and binding. Infor-
mation and computation, 186(2):165–193, 2003.

200 Bibliography

[88] Olivier Pons. Generalization in type theory based proof assistants. In International
Workshop on Types for Proofs and Programs, pages 217–232. Springer, 2000.

[89] François Pottier. Revisiting the CPS transformation and its implementation.
Unpublished, July 2017. URL http://gallium.inria.fr/~fpottier/publis/
fpottier-cps.pdf.

[90] Garrel Pottinger. A tour of the multivariate lambda calculus. In Truth or Conse-
quences, pages 209–229. Springer, 1990.

[91] John C Reynolds. Towards a theory of type structure. In Programming Symposium,
pages 408–425. Springer, 1974.

[92] Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, Zachary Tatlock, et al.
Qed at large: A survey of engineering of formally verified software. Foundations
and Trends in Programming Languages, 5(2-3):102–281, 2019.

[93] Talia Ringer, Nathaniel Yazdani, John Leo, and Dan Grossman. Ornaments for
proof reuse in Coq. In 10th International Conference on Interactive Theorem Proving
(ITP 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

[94] Christine Rizkallah, Dmitri Garbuzov, and Steve Zdancewic. A formal equational
theory for call-by-push-value. In International Conference on Interactive Theorem
Proving, pages 523–541. Springer, 2018.

[95] Andreas Rossberg, Claudio V Russo, and Derek Dreyer. F-ing modules. In Pro-
ceedings of the 5th ACM SIGPLAN workshop on Types in language design and imple-
mentation, pages 89–102. ACM, 2010.

[96] Amokrane Saïbi. Formalisation of a λ-calculus with explicit substitutions in Coq.
In International Workshop on Types for Proofs and Programs, pages 183–202. Springer,
1994.

[97] Steven Schäfer. Engineering Formal Systems in Constructive Type Theory. PhD thesis,
Saarland University, 2019.

[98] Steven Schäfer and Kathrin Stark. Embedding higher-order abstract syntax in
type theory. In Abstract for Types Workshop, June 18 – 21 2018.

[99] Steven Schäfer, Gert Smolka, and Tobias Tebbi. Completeness and decidability
of de Bruijn substitution algebra in Coq. In Proceedings of the 2015 Conference on
Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15–17, 2015, pages
67–73, Berlin, Heidelberg, 2015. Springer-Verlag. URL http://doi.acm.org/10.
1145/2676724.2693163.

[100] Steven Schäfer, Tobias Tebbi, and Gert Smolka. Autosubst: Reasoning with
de Bruijn terms and parallel substitutions. In Christian Urban and Xingyuan
Zhang, editors, Interactive TheoremProving—6th International Conference, ITP 2015,

http://gallium.inria.fr/~fpottier/publis/fpottier-cps.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-cps.pdf
http://doi.acm.org/10.1145/2676724.2693163
http://doi.acm.org/10.1145/2676724.2693163

Bibliography 201

Nanjing, China, August 24–27, 2015, Proceedings, volume 9236 of Lecture Notes in
Computer Science, pages 359–374. Springer, 2015. ISBN 978-3-319-22101-4. URL
https://doi.org/10.1007/978-3-319-22102-1_24.

[101] Christopher Schwaab and JeremyG Siek. Modular type-safety proofs in Agda. In
Proceedings of the 7th workshop on Programming languages meets program verification,
pages 3–12. ACM, 2013.

[102] Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas
Ridge, Susmit Sarkar, and Rok Strniša. Ott: Effective tool support for the working
semanticist. ACM SIGPLAN Notices, 42(9):1–12, 2007.

[103] Gert Smolka. Confluence and normalization in reduction systems. Lec-
ture Notes https://courses.ps.uni-saarland.de/icl_17/dl/94/Retracts.
pdf, Accessed: 2019-11-26.

[104] Gert Smolka. Retracts. Lecture Notes https://courses.ps.uni-saarland.de/
icl_17/dl/94/Retracts.pdf, Accessed: 2019-11-26.

[105] Matthieu Sozeau and Nicolas Oury. First-class type classes. In International Con-
ference on Theorem Proving in Higher Order Logics, pages 278–293. Springer, 2008.

[106] Matthieu Sozeau, Abhishek Anand, Simon Boulier, Cyril Cohen, Yannick Forster,
Fabian Kunze, Gregory Malecha, Nicolas Tabareau, and Théo Winterhalter. The
MetaCoq project. 2019.

[107] Simon Spies and Yannick Forster. Undecidability of higher-order unification for-
malised in Coq. Technical report, January 2020. to appear.

[108] Kathrin Stark, Steven Schäfer, and Jonas Kaiser. Autosubst 2: reasoning with
multi-sorted de Bruijn terms and vector substitutions. In Proceedings of the 8th
ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019,
Cascais, Portugal, January 14-15, 2019, pages 166–180, 2019.

[109] Wouter Swierstra. Data types à la carte. Journal of functional programming, 18(4):
423–436, 2008.

[110] William W Tait. Intensional interpretations of functionals of finite type i. The
journal of symbolic logic, 32(2):198–212, 1967.

[111] The Coq Development Team. The Coq proof assistant, version 8.10.0, October
2019. URL https://doi.org/10.5281/zenodo.3476303.

[112] Amin Timany andLars Birkedal. Mechanized relational verification of concurrent
programswith continuations. PACMPL, 3(ICFP):105:1–105:28, 2019. URL https:
//doi.org/10.1145/3341709.

[113] Amin Timany and Matthieu Sozeau. Cumulative inductive types in Coq. LIPIcs:
Leibniz International Proceedings in Informatics, 2018.

https://doi.org/10.1007/978-3-319-22102-1_24
https://courses.ps.uni-saarland.de/icl_17/dl/94/Retracts.pdf
https://courses.ps.uni-saarland.de/icl_17/dl/94/Retracts.pdf
https://courses.ps.uni-saarland.de/icl_17/dl/94/Retracts.pdf
https://courses.ps.uni-saarland.de/icl_17/dl/94/Retracts.pdf
https://doi.org/10.5281/zenodo.3476303
https://doi.org/10.1145/3341709
https://doi.org/10.1145/3341709

202 Bibliography

[114] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars Birkedal. A
logical relation for monadic encapsulation of state: Proving contextual equiva-
lences in the presence of runst. Proceedings of the ACM on Programming Languages,
2(POPL):64, 2017.

[115] Femke van Raamsdonk, Paula Severi, Morten Heine Sørensen, and Hongwei Xi.
Perpetual reductions in lambda-calculus. Inf. Comput., 149(2):173–225, 1999. URL
https://doi.org/10.1006/inco.1998.2750.

[116] Jérôme Vouillon. A solution to the POPLMark challenge based on de Bruijn in-
dices. Journal of Automated Reasoning, 49(3):327–362, 2012. ISSN 0168-7433.

[117] Philip Wadler. Propositions as types. Commun. ACM, 58(12):75–84, 2015.

[118] Mitchell Wand, Ryan Culpepper, Theophilos Giannakopoulos, and Andrew
Cobb. Contextual equivalence for a probabilistic language with continuous ran-
dom variables and recursion. PACMPL, 2(ICFP):87:1–87:30, 2018. URL https:
//doi.org/10.1145/3236782.

[119] Stephanie Weirich, Brent A Yorgey, and Tim Sheard. Binders unbound. In ACM
SIGPLAN Notices, volume 46, pages 333–345. ACM, 2011.

[120] Andrew K Wright and Matthias Felleisen. A syntactic approach to type sound-
ness. Information and computation, 115(1):38–94, 1994.

[121] Hans Zantema. Termination of term rewriting by interpretation. In International
Workshop on Conditional Term Rewriting Systems, pages 155–167. Springer, 1992.

https://doi.org/10.1006/inco.1998.2750
https://doi.org/10.1145/3236782
https://doi.org/10.1145/3236782

Index

α-equivalence, 2, 21
η-equivalence, 145
λ-calculus with pairs, 70
π-calculus, 83
σ-calculus, 6
EHOAS, 57
POPLMark challenge, 153
σSP-calculus, 35

abstraction, 21
anti-renaming lemma, 128
application, 21
argument, 59, 62
argument head, 59
argument list, 59
assignment

expressions, 38
substitutions, 38

Autosubst 1, 80, 123
axiom, 16
axiom of excluded middle, 16
axiomatic equivalence, 38

bind, 21
binder, 1, 59
bound, 59

calculus of explicit substitutions, 5
candidates of reducibility, 128
capture, 21
capture-avoiding instantiation, 24
closed, 32, 59
closure, 136
complete, 30

complete model, 39
compose to, 47
confluent, 40, 186
constant, 41
constructor declaration, 59
constructor name, 59
context, 45, 127, 131

context morphism, 132, 146
context morphism lemma, 128
context renaming, 132, 146
subcontext, 160
term context, 157
term context morphism, 159
term context reordering, 159
type context, 155
type context morphism, 158
type context reordering, 157

context renaming lemma, 128
convergent, 186
critical pairs, 36

de Bruijn algebra, 3, 4, 22, 30
de Bruijn indices, 4
de Bruijn substitution, 4, 22, 23, 31
de Bruijn syntax, 22
denotation, 39
denotationally equivalent, 39
distribution rules, 41

EHOAS, 58
equational theory, 28
equivalent, 15
evaluation criteria, 9
exchangeability, 44

204 Index

expansion, 32
expression parameter, 38
expression relation, 135, 136
expressions, 38
extend, 45
extended higher-order abstract syntax, 58
extension, 24, 31
external sort, 61
external sort constructor, 5, 61, 72, 89

feature, 65, 93
feature coincidence, 98
feature function, 97
feature functor, 94
feature proof, 98, 105
feature relation, 103
feature sort, 96

finite type, 31
first-class renamings, 5, 69, 88
first-order

first-order binder, 5, 80, 81
first-order logic, 80
first-order sort, 80, 81

forward composition, 15
free, 22
full reduction, 129
function, 21
function body, 21
functional extensionality, 17
functor, 62, 72

functor declaration, 62

global property, 8

heterogeneous substitutions, 80

identity renaming, 24, 31
inductive type, 15
instantiation, 1, 21

instantiation with a renaming, 25
instantiation with a substitution, 25

interaction laws, 25
intrinsically typed syntax, 33

joinable, 186

Kripke-style logical relation, 128, 148

label equivalent, 162
Lambda calculus with pairs, 60
leaf, 46
lifting, 24

lifting of a renaming, 24
lifting of a substitution, 25

lifting lemma, 26
list, 16
locally confluent, 186
logical relation, 128, 135

many-sorted, 5, 60
many-sorted syntax, 5, 90

mechanisation, 1
modular

modular de Bruijn algebra, 94
modular function, 97
modular induction principle, 100
modular syntax, 5, 64

modular syntax, 5
monad laws, 26
monotonicity, 127
morphism, 185
multivariate λ-calculus, 63, 128
multivariate λ-calculus, 83
mutually inductive, 60

natural number, 15
neutral, 131
normal, 185

occurrence, 111
direct, 111

open, 59, 111
option, 16

pair pattern, 46
parameter, 62
parametric first-order logic, 62
pattern, 46

Index 205

pattern for s in context C, 47
pattern matching, 165
pattern reduction, 48
Pi Calculus, 60
polyadic, 60, 70
polyadic binders, 5
POPLMark challenge, 153
POPLMark Reloaded challenge, 129
preservation, 37, 45, 128
preserve a relation, 185
projection rules, 41
proof method, 2

Raamsdonk’s characterisation of strong
normalisation, 129

recursive function, 16
reduction, 1

σSP-calculus, 38
reflexive-transitive closure, 185
reflexive-transitive closure of reduction,

130
relation, 185
renaming, 22, 23
renaming expression, 45
renaming pattern, 47
reordering, 132
result sort, 59

Schäfer’s expression relation, 129
scope, 5, 31
scope change, 23

variadic, 83
scoped de Bruijn algebra, 32
scoped de Bruijn syntax, 5, 22
semantic typing, 135
semantically logically equal, 149
set, 16
shifted, 24
shifting, 24, 31
single-point substitutions, 32
singleton pattern, 46
smart constructor, 94, 96
sort, 59

sort declaration, 59
sound model, 39
soundness, 138
split reduction, 48
strong normalisation, 128
strongly normalising, 186
subexpression, 100
substitution, 1
substitution boilerplate, 2
substitution equation, 2
substitution expression, 38
substitution parameter, 38
substitution primitives, 4
substitution vector, 111
substitutive, 25
substitutivity, 9, 127
substitutivity of functions, 131
subtyping, 155
supplementary laws, 28
System F, 60, 153
System F with records, 64, 153

terminating, 186
tight retract, 96
transitive closure, 185
type constructor, 16

unified expressions, 41
unified reduction, 41

vacuous, 111
valid position, 132
value, 131, 155
value relation, 136
variable, 21
variadic, 63, 83, 91

variadic binders, 5
variadic extension, 84
variadic head, 84
variadic shifting, 84
variadic syntax, 5

variant, 65, 94, 106
variant function, 98

206 Index

variant lemma, 99
variant proof, 98
variant sort, 96

vector, 16
vector substitution, 5, 68, 73, 75

weak head normalisation, 128
weak head reduction, 145
weakly normalising, 185

	Abstract
	Kurzzusammenfasung
	Introduction
	Related Work
	Binders and De Bruijn Algebra
	Calculi of Explicit Substitutions
	Compiling Syntactic Specifications
	Mechanised Meta-Theory

	Overview
	Supporting Publications
	Contributions
	Mechanisation in Coq

	Preliminaries
	The Coq Proof Assistant
	Axioms

	I De Bruijn Syntax and Sigma Calculi
	Lambda Calculus with de Bruijn Syntax
	Pure de Bruijn Algebra
	Instantiation
	Equational Reasoning on de Bruijn Syntax
	De Bruijn Algebra

	Scoped de Bruijn Algebra
	Discussion

	Pure Sigma Calculus
	Syntax and Reduction
	De Bruijn Algebra as a Model of the Sigma Calculus
	Local Confluence
	Reduction to Unified Expressions
	Reduction to Distribution Termination
	Termination of the Distribution Calculus
	Renaming Expressions
	Patterns
	Reduction on Patterns
	Preservation
	Termination

	Convergence
	Discussion
	De Bruijn Algebra as Models for Sigma Calculi
	Calculi of Explicit Substitutions
	Termination

	II From HOAS to de Bruijn Syntax
	EHOAS Specifications
	EHOAS
	EHOAS by Example
	Modular Syntax
	A Grammar for EHOAS

	Extended Calculi with de Bruijn Syntax
	First-Class Renamings in the Lambda Calculus
	Polyadic Binders in the Lambda Calculus with Pairs
	External Sorts and Sort Constructors in Record Types
	Many-Sorted Syntax in Call-by-Value System F
	Instantiation
	Equational Reasoning

	First-Order Binders in First-Order Logic and the Pi Calculus
	First-Order Logic
	Pi Calculus

	Variadic Binders in the Multivariate Lambda Calculus
	Discussion
	First-Class Renamings
	Syntax with Functors
	Many-Sorted Syntax
	Variadic Syntax

	Modular Syntax
	Modular Syntax
	Modular Inductive Data Types
	Modular Constructors
	Recursive Functions on Modular Syntax
	Proofs on Modular Syntax
	Introduction of New Features

	Modular Induction Principles
	Modular de Bruijn Algebras
	Modular Inductive Predicates
	Related Work

	The Autosubst Compiler
	Dependency Analysis on EHOAS
	Generation of Abstract Proof Terms
	Inductive Sorts
	Instantiation and Substitution Lemmas

	Code Generation
	Automation for Substitutions
	Notation

	Tool Support for Modular Syntax
	Dependency Analysis for Modular Syntax
	Modular Syntax with Binders
	Static Code Generation for Modular Syntax

	Restrictions
	Comparison to Autosubst 1

	III Case Studies
	Simply-Typed Lambda Calculus
	Reduction and Values
	Typing, Context Morphism Lemmas, and Preservation
	Preservation in the Multivariate Lambda Calculus
	Weak Head Normalisation
	Schäfer's Expression Relation
	Raamsdonk's Characterisation
	Modular Strong Normalisation
	Decidability of Beta Eta Equivalence
	Evaluation

	System F with Subtyping
	Type Safety for F<
	Properties of Subtyping
	Progress
	Preservation

	Type Safety for F<,rec
	Transitivity
	Progress
	Preservation

	Type Safety for F<,pat
	Discussion
	POPLMark Part A
	POPLMark Part B

	Other Developments
	Conclusion
	Summary of Results
	Calculi of Explicit Substitutions
	Compiling Syntactic Specifications
	Case Studies

	Open Questions and Challenges
	Calculi of Explicit Substitution
	Compiling Syntactic Specifications
	Modular Syntax

	Abstract Reduction Systems
	Strong Normalisation à la Girard
	Symmetry and Transitivity of Algorithmic and Logical Equivalence
	Bibliography
	Index

