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1 INTRODUCTION 

Human necessity and curiosity are not only the reasons for new inventions but they also 

motivate adventures that increase the horizon of our knowledge. Two of the best 

examples for this activity are the continuous human presence on the International 

Space Station (ISS) (Figure 1) and the preparation of long-term missions to Moon and 

Mars. In such missions, astronauts inevitably encounter physical and psychological 

hindrances due to microgravity, the confined situation and the complex space radiation 

environment. These extreme environmental conditions differing from that on Earth are 

root causes for health problems during missions. Although, psychological conditions 

and degenerative diseases like bone loss, muscle atrophy, cardiovascular diseases, 

etc. are mainly due to weightlessness and closed environment, ionizing radiation adds 

up to increase their severity by affecting respective cells and organs.  

Furthermore, it is also known that exposure to high doses of ionizing radiation can 

cause acute effects starting with nausea and vomiting and even death within hours or 

days, depending on dose. On the other hand, late effects of radiation impose a lifelong 

risk for cancer, cataract, birth defects and sterility. 

 

Figure 1: International Space Station (ISS). For more than 10 years so far, the ISS has been providing 
a permanent facility for research in space. It is located at an altitude of ~415 km in the low Earth orbit 
(LEO).  Photo credit: National Aeronautics and Space Administration (NASA) Space Station Gallery at 
https://www.nasa.gov/image-feature/international-space-station-33, picture S134-E-011548 (29 May 
2011). 
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Despite the excellent availability of surgical cataract treatment on Earth, formation of 

radiation-induced cataract during a long-term space mission would immerge as a critical 

threat to the mission due to the lack of treatment during such missions. For both, 

radiation-induced cataract and lens turbidity caused by other conditions, the exact 

mechanism of formation is yet unclear. This fact bears the need to elucidate the 

underlying mechanisms of cataractogenesis and subsequently to the search for 

appropriate countermeasures. 

1.1 Basic terms in radiation biology 

Radiation biology can be simply defined as the study of action of ionizing radiation on 

living systems. If the radiation has sufficient energy, which is capable of ejecting one or 

more electrons from orbitals of the atom or the molecule, it is defined as ionizing 

radiation. 

Ionizing radiation can be of electromagnetic nature, as it is the case for X-rays, -

radiation and vacuum ultraviolet light, or of particulate matter, e.g. protons, -particles 

(helium nuclei), -particles (electrons) and heavy ions (ions exceeding 4He). -, - and 

-radiation is emitted from decaying radioisotopes; naturally occurring radioisotopes are 

e.g. uranium, thorium and radon (Hall 2012). To enable a better understanding of 

radiation effects, relevant dose-quantities are defined (Hall 2012). Different radiation 

units are used to describe the radiation quantity. The absorbed dose (D) is the energy 

deposited per mass unit. The corresponding unit is Gray (Gy, Equation 1 and Equation 

2).  
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Equation 2 

 

The equivalent dose (HT, Equation 3) is the energy dose weighted by the biological 

effectiveness of a certain radiation quality (WR). WR is a dimensionless weighting factor. 

The corresponding unit of HT is Sievert (Sv, Equation 4) and is also measured in J kg-1. 

It has to be differentiated from the strictly physical definition of dose. The linear energy 

transfer (LET, Equation 5) is especially important for densely ionizing radiation and 
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describes the energy transfer along a distance (L) in the respective matter. The unit is 

keV µm-1. 
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Equation 5 

 
The relative biological efficiency (RBE, Equation 6) is a measure for the effect size of a 

certain radiation quality in biological systems. The absorbed dose (D) of a test radiation 

(DTest) is compared to a reference radiation dose (DRef) which is assumed to cause the 

same biological effect. The RBE depends on parameters like dose, dose rate, tissue or 

cell type, or biological endpoints of interest, like mutagenesis, survival, chromosomal 

aberration, or cancer induction. 
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Equation 6 

 
With increasing LET also the RBE increases slowly in the beginning with regard to a cell 

system. Beyond 10 keV/µm up to 100 keV/µm, the RBE increases rapidly with 

augmenting LET. For most of mammalians cells the peak RBE value is reached around 

100 keV/µm and beyond the RBE drops to lower values Figure 2.(Hall 2012) 

The optimal LET value (around 100 keV/µm) to achieve efficient RBE is of particular 

interest for both, radiation protection and radiotherapy of cancer. At this ionizing density, 

the average distance between ionizing events approximately coincides with the 

diameter of the DNA double helix and thus the passage of a single charged particle has 

the highest probability of causing a double-strand break (DSB). DSBs are known to be 

major players in most biological effects. In case of sparsely ionizing X-rays (LET ~3 

keV/µm) the probability for a single track creating a DSB is lower, resulting in a low RBE 

for X-rays. On the other hand, densely ionizing radiation (e.g. LET of 200 keV/µm) 

produces enough DSBs but most energy is wasted as ionizing events are too close to 

each other. 
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Figure 2: RBE and LET 
relationship. The biological 
effects like cell killing, 
mutagenesis and carcino-
genesis are highest after 
exposure to ionizing radiation 
with an LET of about 100 
keV/µm. For such radiation, 
the distance between two 
ionizing events coincides 
with the diameter of the DNA 
double helix (20 Å or 2 nm) 
(Hall 2012). 

 

Since the RBE is the ratio of doses which produce the same extent of a biological effect, 

for low LET radiation RBE augments slowly with increasing LET whereas for high LET 

radiation RBE increases sharply to a maximum then follows a drop which is due to the 

overkill effect (such high energy can kill more cells than actually available, or for an 

individual cell, more dose is deposited than would be required for inducing cell death). 

1.2 Space radiation 

The radiation environment in space is quite distinct from the Earths’. Within the low 

Earth orbit (LEO), the Earth’s magnetic field contributes to a partial protection, however, 

in future interplanetary and planetary missions beyond LEO, astronauts will be exposed 

to higher dose rates of galactic cosmic radiation (GCR), solar cosmic radiation (SCR) as 

well as radiation in the van Allan Belts (Figure 3). Additionally, the South Atlantic 

Anomaly (SAA) (Kurnosova et al. 1962), the area where Earth’s inner van Allen Belt 

(1000 to 6000 km above Earth (Ganushkina et al. 2011)) dips down to an altitude of 

about 200 km (ECSS 2008) due to the weakened geomagnetic field center, poses a 

threat to all astronauts, space crafts or satellites due to increased flux of energetic 

particles. 
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Figure 3: Space radiation. The components of space radiation are either of solar origin (predominantly 

protons but also neutrons, X-rays, -rays, electrons and heavy ions, which are especially recognized 
after solar flares) and of galactic origin (energetic protons, -particles and heavy ions). Charged 
particles (protons and electrons) are trapped in the van Allen Belts surrounding the Earth (modified from 
(Hellweg and Baumstark-Khan 2007)). 

 

GCR (Badhwar and O'Neill 1994, Baranov et al. 2002, Bazilevskaya et al. 1994, 

Pissarenko 1994, Shea and Smart 1998, Wilson et al. 1999) originates from outside our 

solar system. It is composed of ~87% protons (hydrogen nuclei), ~12% -particles 

(helium nuclei), and ~1% of heavy ions with an energy range of less than 1 MeV to 

more than 1012 MeV. The flux of GCR fluctuates with the solar cycle (Badhwar 1997, 

Wilson et al. 1989, Hellweg and Baumstark-Khan 2007). The GCR flux of increases at 

minimum solar activity and decreases at maximum solar activity.   

SCR is mainly composed of protons, about 10% of helium ions and about 1% of heavy 

ions and electrons. SCR originates from the Sun’s surface and constantly travels to the 

Earth via the solar wind. During solar particle events (SPE), highly energetic charged 

particles are ejected from magnetically disturbed regions of the sun (Wilson et al. 1999, 

Smart and Shea 2003). 

Van Allen Belts consists of highly energetic particles from GCR and SCR, mainly 

electrons and protons, which are trapped in two belts due to Earth’s geomagnetic field. 

The biological evidence of presence of such energetic particles have been experienced 
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as visualization of light flashes by astronauts during Apollo, Skylab, MIR and ISS 

missions (Sannita et al. 2006, Zaconte et al. 2006, Avdeev et al. 2002, Casolino 2006, 

Bidoli et al. 2002, Fuglesang 2007). Light flashes are different shapes (strike, spot, line, 

etc.) of light perceived due to interaction of cosmic radiation with the human eye. 

Measurements of the radiation environment and particle abundance in MIR and ISS 

have shown that, at SAA, the flux of protons as well as heavy ions, with an energy at 

the MeV range, is increased (Sannita et al. 2006, Bidoli et al. 2002). Due to higher 

prevalence of radiation in the SAA, the ISS needs additional shielding, astronauts avoid 

extravehicular activities and also the astronomical data are being disturbed (Heirtzler 

2002). 

On the ISS, a radiation dose rate of 0.5 mSv per day (Beaujean et al. 2002, Reitz et al. 

2005) was measured which increased by three times during extravehicular activities 

(Reitz and Berger 2006). Similarly, in an interplanetary Mars mission, which might last 

around three years (Grigoriev et al. 1998), a GCR dose of up to 1.0 Sv can accumulate 

at blood-forming organs which might cause  late radiation effects in the astronauts 

(Horneck et al. 2006). On the other hand in such a mission, during the solar flares the 

dose can reach up to 4.2 Gy within a few hours to days which can trigger acute 

radiation effects (Horneck et al. 2006). However, since the solar flare dose depends on 

the solar cycle and shielding, it can be avoided to some extent by proper alerts and 

shelters but at the cost of valuable time and a much higher launch weight. 

Despite the low frequency of heavy ions (HZE) in space radiation, their high charge (Z) 

and high energy (E) and their secondary radiation make them more dangerous for the 

cells compared to protons or X-rays. For this reason, it is important to know the RBE of 

space radiation quality. In view of the higher biological effectiveness of space radiation 

(compared to most environmental radiation on Earth) 1 Gy of heavy ions may result in 

an equivalent dose of up to 20 Sv (Cucinotta and Durante 2006). 

1.3 Biological consequences of ionizing radiation exposure 

The biological consequences of ionizing radiation exposure are preceded by very short-

lived physico-chemical chain of events. The formation of primary radicals by ejection of 

an electron takes 10-10 seconds. The hydroxyl radical (OH) has a lifetime of 10-9 

seconds in a cell. The DNA radicals formed have a lifetime of about 10-5 seconds. 

Eventually, the time between the breakage of chemical bonds and a biological effect 
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may vary from hours, days, months, years and even to generations depending on the 

nature of damage involved. 

The damaging effects of ionizing radiation depend on dose, frequency and quality of the 

radiation. A brief overview of biological consequences due to acute and chronic 

exposure of ionizing radiation is presented in Table 1. 

Acute radiation effects appear within a short period of time (minutes to days) usually 

after exposure to a high radiation dose, whereas, chronic radiation effects are the result 

of long-term exposure exceeding a permissible occupational dose (Hellweg and 

Baumstark-Khan 2007). Likewise, delayed radiation effects, like cancer, occur when the 

combined dose and dose rate are not high enough to generate acute cytotoxicity effects 

but rather generate genotoxicity.  

 

Table 1:  Radiation effects in humans after whole body irradiation (adapted from (Hellweg and 
Baumstark-Khan 2007)). 

Chronic dose Risk 

~0.4 Sv First evidence of increased cancer risk as late effect from 
protracted radiation 

2-4 Sv/year Chronic radiation syndrome with complex clinical symptoms 

Acute single 
dose 

Effect Outcome 

<0.25 Sv No obvious direct clinical effects  

>0.5 Sv Nausea, vomiting No early death anticipated 

(>0.7) 3–5 Sv Bone marrow syndrome: 
Symptoms include internal 
bleeding, fatigue, bacterial 
infections, and fever. 

Death rate for this syndrome 
peaks at 30 days, but 
continues out to 60 days. 

5–12 Sv Gastrointestinal tract syndrome: 
Symptoms include nausea, 
vomiting, diarrhea, dehydration, 
electrolytic imbalance, loss of 
digestion ability, bleeding ulcers 

Deaths from this syndrome 
occur between 3 and 10 
days post exposure. 

>20 Sv Central nervous system syndrome: 
Symptoms include loss of 
coordination, confusion, coma, 
convulsions, shock, and the 
symptoms of the blood forming 
organ and gastrointestinal tract 
syndromes 

No survivors expected 
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Deterministic and stochastic effects are two well-known terminologies in understanding 

radiation effects. The deterministic effect has a threshold value, above which the 

severity of the effect increases with radiation dose. Deterministic effects are predictable 

effects depending on radiation dose. The probability of occurrence of such an effect 

increases with radiation dose (e.g., acute radiation syndrome, side effects of 

radiotherapy). Stochastic effect does not have a threshold value and the severity of 

effect is independent of radiation dose. The occurrence of stochastic effects is not 

predictable whereby even damage to a single cell could be its cause. Nevertheless, the 

probability of occurrence of stochastic effects also increases with radiation dose like the 

deterministic effect (e.g., cancer) (Hall and Giaccia, 2012). The induction of tumors has 

been discussed as one very important long-term secondary disorders (Pierce et al. 

1996, Zaider 2001, Brooks 2003, Cancer 1994) for less than 1 Sv/year exposure 

(Hellweg and Baumstark-Khan 2007).  

In ICRP 2012, it was pointed out that the classically defined radiation effects depend 

upon the target cell whereby severity, latency and manifestation of injuries are 

dependent on killing and the characteristics of the target cells (radiation sensitivity, 

repair capacity, proliferation rate, etc.) as well as on tissue organization. Now, it is clear 

that cell killing alone is not sufficient to explain radiation effects of the exposed tissues. 

In addition to direct cell killing, alterations of biomolecules, signaling pathways, reactive 

oxygen and nitrogen species, genetic damage, etc. could impart radiation effects which 

eventually lead to alterations of cell function as well as delayed cell death (Clement 

2012, Denham 2001, Brush et al. 2007, Bentzen 2006). 

1.4 Cellular effects of radiation 

The mode of action of ionizing radiation at the cellular level can be of direct or indirect 

nature. If the radiation energy is directly absorbed by macromolecules (like DNA or 

proteins) that are responsible for the biological effects, then it is called direct effect. The 

effect is called indirect if the ionizing radiation first interacts with a water molecule to 

produce OH radicals or other reactive oxygen species (ROS), which then affect 

important biomolecules (Figure 4). 
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One of the most critical biomolecules within the cell is DNA that carries genetic 

information required for the correct functioning of the cell. The radiation-induced DNA 

damage in the cells triggers the activation of cellular defense systems as DNA repair 

pathways, cell-cycle check points or even apoptosis and senescence. Successful repair 

of damages results in cellular survival. In case of faulty repair, consequences may 

include genetic damage and possibly also the induction of carcinogenesis. Finally, if the 

damage is not repaired cell death or senescence can be induced (Figure 5). 

 

 

Figure 4: Direct and indirect radiation damage. Damage to DNA can be induced either directly or 
indirectly via free radicals evolved from the irradiated water molecules (courtesy of C. Baumstark-Khan, 
DLR, Germany) 

Figure 5: Consequences of ionizing radiation exposure of a biological system. Cells damaged due 
to ionizing radiation can further survive healthily if the damages are repaired without any error. The 
cellular fate also could be death or senescence if damage could not be repaired. The faulty repair 
resulting in mutation could lead to carcinogenesis, bring about hereditary changes or delayed cell death. 
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1.4.1 DNA damage and repair pathways 

It is well known that the main target for the biological effects of ionizing radiation is the 

DNA in terms of cell killing, carcinogenesis and mutations. The type and amount of 

damage is governed by the type and dose of radiation (Baumstark-Khan 1993, Hada 

and Sutherland 2006). Radiation exposure can produce various types of DNA damage 

encompassing base damages, single strand breaks (SSBs), double strand breaks 

(DSBs), sugar damages as well as DNA-DNA and DNA-protein crosslinks. The energy 

deposition of sparsely ionizing low-LET radiation (X-rays and -rays) is diffusely 

distributed and produces four times more non-DSB damages than direct DSB (Eccles et 

al. 2011). Densely ionizing high-LET radiation (heavy-ions) generates clustered DNA 

damage with a high percentage of DSB (Ward 1994). The lesions caused by high-LET 

radiation are difficult to repair accurately and thus are assumed to be one cause for the 

high RBE of this radiation quality (Kozubek and Krasavin 1984, Fakir et al. 2006). 

In order to overcome DNA strand breaks cells have evolved very specialized DNA 

repair pathways. SSBs are less effective in killing of cells because they are easily 

repaired by using the opposite strand as the template. The main pathway that cells have 

selected for SSB repair is the single-strand break repair (SSBR) involving amongst 

others poly(ADP-ribose) polymerase 1 (PARP1), Poly(ADP-ribose) glycohydrolase 

(PARG), AP endonuclease I (APE1), XRCC1, polynucleotide kinase 3′-phosphatase 

(PNKP), aprataxin (APTX), flap endonuclease 1 (FEN1), PCNA, polymerase  or / 

and DNA ligase 1 or 3 (Caldecott 2008). Indirect SSBs and some base damages can be 

repaired by the base excision repair pathway (BER) where molecules like PARP1, 

XRCC1 and ligase 3 play a very crucial role. DNA-DSBs, on the other hand, are known 

to cause fatal damage either by genetic damage or by cell killing when not repaired 

(Dalinka and Mazzeo 1985). In repairing DSBs, mammalian cells make use of two main 

basic processes known as homologous recombination (HR) and non-homologous end 

joining (NHEJ). The amount of repetitive DNA and the phase of the cell cycle of the 

damaged cell govern the choice of repair pathway for DSBs. HR occurs at the late S 

and G2 phase of the cell cycle in which it uses the undamaged sister chromatid as the 

template. The use of an undamaged template makes HR an error-free repair pathway. 

NHEJ on the other hand is an error prone pathway where the damaged sites are directly 

ligated in absence of sister chromatids. This pathway is known to produce mutagenic 

lesions. NHEJ occurs at the G1 phase of the cell cycle.  
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DSBs generation due to ionizing radiation activates many sensor molecules, which play 

a key role in damage detection and initiation of DNA repair. Protein kinases belonging to 

the phosphatidylinositol-3-kinase-related kinase (PIKK) family: ataxia telangiectasia 

mutant (ATM), ataxia telangiectasia and rad3-related protein (ATR) and DNA-

dependent protein kinase (DNA-PK), are activated in response to ionizing radiation 

(Cimprich and Cortez 2008, Shrivastav et al. 2008, Tichý et al. 2010). ATM is a key 

player, whose activation leads to phosphorylation of many proteins including p53 and 

Checkpoint kinase 2 (Chk2) resulting in activation of DNA damage checkpoints, cell 

cycle arrest, damage repair or apoptosis (Warmerdam and Kanaar 2010). The detection 

of DSBs starts with phosphorylation of histone H2AX to H2AX by ATM at serine 139. 

ATM also promotes the activity of the Mre11-Rad50-Nbs1 (MRN) complex which results 

in resection of DNA ends (Zhao et al. 2000, Wu et al. 2000). 53BP1 proteins (at this 

step) are in part capable of inhibiting HR by binding to histones and blocking 

phosphorylation by ATM (Bunting et al. 2010).  

HR takes place after lesion recognition and processing of the broken DNA double 

strand into a 3’ DNA single strand by the MRN protein complex. Some of other key 

proteins that are involved in HR are RPA, RAD52, RAD51 and BRCA1/2. NHEJ is 

initiated by binding of the Ku70/Ku80 heterodimer at the DSB region. The Ku complex 

then recruits and activates DNA-PK and in the following, DNA-PK recruits other 

molecules required for ligation including XRCC4 and DNA ligase 4 (Figure 6). 

1.4.2 Cell cycle arrest 

For the continuity of life, it is necessary to produce copies of cells from a parent cell in a 

continuous process called the cell cycle. In mammalian cells, the mitotic cell cycle 

consists of four phases i.e. M-phase representing mitosis, S-phase which stands for 

DNA synthesis phase, G1-phase being the first gap between M- and S-phase and G2-

phase being the second gap between S- and M-phase. 

The regulation of the cell cycle (Figure 7) is governed by the protein complexes of cyclins 

and their respective cyclin-dependent kinases (Cdks) (Cude et al. 2007, Wilson 2004). 

Similarly, different checkpoints (G1/S checkpoint, S-phase checkpoint and G2/M 

checkpoint) provide cells with possibility to either have time to repair the damage before 

entering the subsequent phase or stay at halt if the damage cannot be repaired. It is 

widely accepted that a lack of the ability to respond to those signals is a main reason for 

carcinogenesis (Ford et al. 1998, Hartwell 1992, Deng 2006). 



INTRODUCTION 
 

 
- 12 - 

 

 

Figure 6: DNA double strand break repair pathways. HR takes place in dividing cells during S- and 
G2-phase of the cell cycle. HR starts by binding of MRN complex (MRE11-RAD50-NBS1) to the 
break. 5´3´ resection takes place by help of C-terminal binding protein 1 (CtBP1) interacting protein 
(CtIP) to form a 3´ ssDNA overhang. Further resectioning is performed by exonuclease EXO1. The 
ssDNA thus formed is stabilized by binding of RPA, and RAD52 is recruited to RPA. Then RAD51-
BRCA2 complex replaces RAD52-RPA to form RAD51 nucleoprotein filament which catalyzes the 
interaction with the sister chromatid. Strand invasion in the sister chromatid results in formation of a 
Holliday junction which is followed by synthesis and religation and finally disintegration of strands. 
NHEJ occurs in both dividing and non-dividing cells independent of cell cycle phase. It starts by 
recognition of DSB ends by the Ku-heterodimer (Ku70/Ku80) to prevent degradation. DNA-dependent 
protein kinase catalytic subunit (DNA-PKcs) is recruited and activates Artemis protein that generates 
3´/5´ overhangs. Finally, DNA synthesis is carried out to fill-in the gaps and end joining is done by 
XRCC4-LIG4 with cooperation with XLF. (Adapted from (Iyama and Wilson 2013)) 
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Figure 7: Role of ATM and its downstream effectors in the regulation of the cell cycle. With 
induction of DNA damage, ATM is activated by autophosphorylation at Ser(367), Ser(1893), Ser(1981) 
and Ser(2996) and acetylation on Lys(3016). This activated ATM then phosphorylates different target 
molecules at different cell cycle phases. In G1-phase, ATM phosphorylates p53 and mdm2, resulting in 
increase of p21, which inhibits Cyclin D/E-Cdk4/6. In late G1- or in early S-phase, ATM phosphorylates 
Chk2 that in turn phosphorylates Cdc25A, a phosphatase that inhibits Cyclin E/A-Cdk2 activity. In S-
phase, ATM phosphorylates NBS and SMC proteins, which transiently inhibit DNA synthesis. In G2-
phase, ATM phosphorylates Chk1 that in turn phosphorylates Cdc25C, a phosphatase that inhibits 
Cyclin B-Cdk1 activity. (Hall 2012) 
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A lot of investigations have been carried out to analyze the interplay of DNA damage 

induction by radiation and regulation of cell cycle control mechanisms. Of all, the G2/M 

checkpoint is found to be most important for radiation-induced DNA damage (Cucinotta 

et al. 2001, Gogineni et al. 2011, Xu and Kastan 2004, Hu et al. 2014). Regardless of 

the checkpoint, ATM has been found to be the key player in cell cycle regulation after 

DNA damage. Figure 7 shows the role of ATM as the primary effector molecule for 

different checkpoints. 

1.5 The crystalline lens 

The eye lens is a transparent biconvex structure with a steeper curve at the posterior 

surface, whose primary function is refraction and focusing of the light on the retina. The 

lens is located just behind the iris, anterior to the vitreous chamber, suspended from the 

ciliary body by zonular fibers. The absence of blood vessels, fewer cellular organelles, 

orderly arranged fibers and the short distance between components of different 

refractive indices are the basis for lens transparency (Trokel 1962). 

1.5.1 The lens capsule 

The lens capsule envelopes the whole lens and shapes it. It is considered to protect the 

lens from bacteria and viruses as it sequesters the lens epithelium and fibers. It 

accumulates molecules and growth factors that are required for proliferation, migration 

and differentiation of lens cells (Danysh and Duncan 2009). Similarly, it also allows the 

only passive exchange of metabolic substrates and waste, and it filters molecules 

depending on their size and charge (Danysh and Duncan 2009). 

 

Figure 8: A cross-section diagram of the human eye lens. (Adapted from (Maidment et al. 2004)) 
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1.5.2 Lens epithelium 

Lens epithelial cells are cuboidal. Their basal surface is connected to the capsule and 

their apical part orients itself toward the center of the lens. Lens epithelial cells secret 

the capsular material throughout life and are also the site of metabolic transport 

mechanisms. These lens epithelial cells are connected with each other by desmosomes 

and gap junctions. The cells at the anterior pole are in a mitotically resting state while 

the cells in the germinal zone (just anterior to the equator) are mitotically active. Cell 

division occurs throughout the life whereby divided cells move towards the equator, 

withdraw from the cell cycle and differentiate into the lens fiber cells. After the division, 

the cells elongate; they degrade their nucleus and other cell organelles and become 

secondary lens fibers or cortical fibers (Remington and Goodwin 2011, Kuwabara 

1975). 

1.5.3 Lens fibers 

Lens fibers are the continuously produced concentric layer of secondary lens fiber cells 

and they are arranged like layers in an onion. The lens fiber cells contain about 30 % to 

35 % proteins of which 90 % are water-soluble crystallins and 10 % are insoluble 

proteins (microtubules and filaments) that form the cell membrane and the cytoskeleton. 

Lens crystallins are categorized in the alpha family and the beta/gamma superfamily. 

Alpha-crystallins act as molecular chaperons to stabilize beta- and gamma-crystallins 

that prevent the formation of protein aggregates and thus provide lens transparency 

(Takemoto and Sorensen 2008). 

1.6 Cataract and its types 

The eye lens is one of the most radiosensitive tissues in the human body and lens 

cataractogenesis is the leading cause of blindness worldwide (Roodhooft 2002). 

Cataract is defined as opacification of a transparent lens, which would lead from a 

simple obstruction to the complete loss of vision. The etiology of cataract formation is 

complex and not fully understood and cataract development is the outcome of multiple 

co-acting factors. Besides aging as a major contributor, diseases, metabolic 

deficiencies, trauma, congenital factors and environmental stress (e.g., radiation) 

comprise major risk factors for cataractogenesis (Remington and Goodwin 2011). 

Based on the location of the opacification, the cataract can be categorized into three 

main types; nuclear cataract, cortical cataract and posterior sub-capsular cataract. 
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The Nuclear cataract is mainly age-related and occurs at the center of the lens. It is 

due to oxidative damage leading to modifications of the crystallins which gives a 

characteristic yellow or brown color to the cataract (Truscott 2005). In the lens capsule, 

glutathione is the main molecule that maintains the reducing environment and protects 

from oxidative stress. A reduction of the glutathione concentration is correlated with the 

development of cataract (Reddy 1990, Sweeney and Truscott 1998, Truscott 2000). The 

amount of glutathione in the lens nucleus decreases with age, which can be due to 

either an increase in thickness of the cortex or to continuous growth of lens epithelial 

cells or to modification of gap junctions (Sweeney and Truscott 1998, Moffat et al. 1999) 

and aquaporin (Korlimbinis et al. 2009). 

Similar to the nuclear cataract the Cortical cataract also occurs mainly because of 

aging. The affected cells are comparatively younger fiber cells, which overlie the 

nucleus. Such cataracts are mainly associated with disturbances in fluid regulation. The 

dysfunction of Na+/K+ ATPase pump is an example where the influx of water is 

increased in fiber cells due to an increase in the Na+ concentration in the cytoplasm 

(Delamere and Tamiya 2008). Similarly, an increase of the cytoplasmic Ca++ 

concentration (Delamere and Tamiya 2009) is also associated with the increased fluid 

influx in the fiber cells. Such swelling results in fiber cell disruption and contributes to 

the scattering of light. 

Posterior sub-capsular cataract (PSC) is the opacification of the lens at the posterior 

capsule. It is well known that ionizing radiation causes PSC although the exact 

mechanism for cataract formation is yet unclear. Nonetheless, the lens opacification is 

hypothesized to initiate from post irradiative activity of genetically damaged lens 

epithelial cells with conflicts in cell cycle control, apoptosis, abnormal differentiation, and 

cellular disorganization, or other pathways leading to abnormal lens protein fibers 

(Worgul and Merriam 1979, Worgul and Merriam Jr 1980, Worgul and Merriam Jr 1981, 

Rothstein et al. 1982). PSC is also known to be caused by long-term use of high doses 

of steroids (Weatherall et al. 2009, Hodge et al. 1995). Posterior capsular opacification 

has been reported to occur after cataract removal surgeries as well. Those incidences 

ranges from as high as 50% to as low as <5% (Schmidbauer et al. 2002, Dholakia and 

Vasavada 2004, Thompson et al. 2004, Raj et al. 2007) on the newly implanted intra-

ocular lens (IOL). Such secondary cataract arises due to growth of residual lens 

epithelial cells that move towards to the posterior capsule of the lens. 
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1.7 Radiation cataractogenesis 

Not only astronauts in space and jet crew members who are confronted with a different 

quantity and quality of radiation than on Earth (Hellweg and Baumstark-Khan 2007), 

have an increased risk for larger PSC lens opacities from exposure to even relatively 

low radiation doses (Chylack Jr et al. 2009, Cucinotta et al. 2001, Jones et al. 2007, 

Peterson et al. 1993, Rastegar et al. 2002) but also radiotherapy patients, atomic bomb 

survivors, individuals experiencing nuclear accidents, occupational exposure (Ainsbury 

et al. 2009, Dynlacht 2013) have been reported to develop PSC. Cataracts can also be 

induced in animal experiments. 

Previously, the International Commission on Radiological Protection (ICRP) categorized 

cataracts as a deterministic effect with a threshold of 2 Gy for acute radiation exposure, 

4 Gy for fractionated exposure and higher doses of protracted exposures (Valentin 

2007). However, recent studies showed that the threshold dose for radiation-induced 

cataract is very low or even zero leading to the hypothesis that cataractogenesis is a 

stochastic late effect. Consequently, the ICRP (2011) set 0.5 Gy as the threshold in 

absorbed dose for radiation-induced cataract and recommended to reduce the 

occupational exposure limit to 20 mSv/yr, averaged over defined periods of 5 years, 

with no single year exceeding 50 mSv (Cousins et al. 2011). 

1.8 Mechanisms leading to radiation-induced cataract 

The mechanism of age related cataract is mostly attributed to oxidative damage, the 

lack of glutathione (the reducing agent) and the dysfunction of gap junctions and ion 

pumps, which actually lead to redox state dis-balance (Sweeney and Truscott 1998, 

Korlimbinis et al. 2009). On the other hand, mechanistic studies of radiation induced 

cataract (PSC) are mainly based on DNA damage and repair incapability of lens 

epithelial cells, which differentiate to fiber cells and in some extent also due to structural 

protein damage after radiation exposure. Studies have shown that ultraviolet (UV) 

radiation exposure led to changes in crystallins which disturbed the arranged folded 

structure of crystallins leading to opacification (Xia et al. 2013, Schafheimer and King 

2013). Also a recent study by Abdelkawi showed a link of cataract formation between 

the induction of crystallin’s cross-linking and the aggregation by single (4.0 Gy) and 

fractionated (8 weeks, 0.5 Gy/week) doses of -radiation (from Cesium-137) in Wistar 

albino rats (Abdelkawi 2012). 
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With regard to cataract, which is attributed to a genetic damage in lens epithelial cells, it 

is important to inspect the genes or the proteins that are key players in cellular growth 

and survival. Owing to this fact, one of the key molecules that has been extensively 

studied for cataractogenesis is the ATM gene. On the one hand, ATM is involved in 

regulating multiple cell cycle checkpoints by phosphorylating different target molecules 

(Abraham 2001, Jazayeri et al. 2006, Goodarzi et al. 2003). On the other hand, ATM is 

important for the phosphorylation of H2AX which is a vital step in DNA repair  

(Morrison et al. 2000, Stiff et al. 2004, Burma et al. 2001, Riballo et al. 2004, Celeste et 

al. 2003). It has been shown in ATM-deficient mice, that homozygotes developed 

opacification earlier compared to heterozygotes and that cataract formation after X-ray 

exposure was dose-dependent and appeared earlier in heterozygotes compared to the 

wild-type mice (Worgul et al. 2002). Along with ATM, RAD9 and BRCA1 are involved in 

radiation cataractogenesis (Kleiman et al. 2007, Hall 2008). To study the role of ATM in 

heavy ions-induced cataract formation, mice were exposed to 56Fe ions. It could be 

depicted that ATM heterozygous mice were more sensitive to heavy ion-irradiation 

compared to wildtype mice (Worgul et al. 2005, Ainsbury et al. 2009). Similarly, in vitro 

data from the lens epithelial cells for the function of different key proteins in the DNA 

damage response from DNA damage repair proteins to transcription factors like Nuclear 

Factor B (NF-B) also assume a strong correlation for damage in the epithelial cell 

layer and opacifications in the fiber cells (Carper et al. 1999, Sivak et al. 2004, Imai et 

al. 2010, Shirai et al. 2001, Wu et al. 2009, Zhang et al. 2010). 

Other extensive research to uncover the mechanism of radiation-induced cataracts was 

carried out at the Life Science Division in Lawrence Berkeley National Laboratory, 

California. For their studies, primary human lens epithelial (HLE) cells were isolated 

from 18-weeks prenatal lenses (Blakely et al. 2000). The alteration of gene and protein 

expression profiles of selected key molecules like CDKN1A (Chang et al. 2005), MMP 

(Chang et al. 2007) and FGF2 (Chang et al. 2000) after the exposure to different 

radiation qualities was correlated with the possibility of changes in the lens fiber cells’ 

differentiation process which could be the reason for lens opacification. On the other 

hand, CDKN1A, which has a key role in the regulation of cell cycle, DNA synthesis and 

stress responses, was found to be up-regulated as a function of the LET (Chang et al. 

2005). 
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Both studies with non-human and with human cells contribute to exploring the 

mechanism of cataract formation and also indicate the threat of exposure of lens 

epithelial cells to space related high-LET radiation which crave for much more detailed 

understanding and possibilities for its prevention and cure. 

1.9 Osteogenic differentiation as an alternative mechanism behind 

lens turbidity 

Currently, many studies with regard to the formation of cataracts focus on oxidative 

environment imbalance, dysfunction of Na+/K+ pump, gap junction malfunction and 

injury to lens epithelial cells. In similar ways, also the involvement of calcium in cataract 

formation has been an interesting and reasonable assumption.  

Already in 1937, Burge et al. who were working with pig lenses proclaimed the 

accumulation of calcium salts that resulted in loss of elasticity and transparency of the 

crystalline lens (Burge et al. 1937). In this study, the group summarized that calcification 

of the crystalline lens could have taken place (similar to calcification of other soft tissues 

e.g. vascular calcification) due to the production of negatively charged phosphate ions 

that interact with positively charged calcium ions resulting in the precipitation of 

insoluble calcium phosphate. In their experiments, the production of negatively charged 

phosphate ions was induced by exposure to 302 nm ultra-violet rays. Seeing the 

importance of the increased calcium in lens for loss of transparency and decrease in dry 

weight (Boutros et al. 1984), Marcantonio and colleagues worked with bovine lenses to 

study the role of calcium in cataract formation and protein leakage (Marcantonio et al. 

1986). They found out that the loss of transparency and protein was seen only in the 

lenses in which calcium was increased, mainly at the outer cortical fiber region. In 

addition to that, the proteins mainly βL-crystallins, were lost and the increased calcium 

level caused the susceptibility of crystallins to form aggregates. 

In a recent study (Balogh et al. 2016), the authors showed the capability of human lens 

epithelial cells to undergo osteogenic differentiation in the presence of differentiation 

medium and proposed that such misdifferentiation might play a role in lens calcification. 

This study was based on the fact that vascular calcification and lens calcification share 

a similar mechanism. As mentioned earlier, calcification starts with the generation of 

negatively charged phosphate ions which combine with positively charged calcium ions. 

But since recently, it is well accepted that vascular calcification is an active and highly 
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regulated cellular process where osteo-/chondrogenic differentiation of vascular smooth 

muscle cells (VSMCs) takes place similar to mineralization of bone (Liu and Shanahan 

2011, Steitz et al. 2001, Giachelli 2001, Balogh et al. 2016). Till today many osteogenic 

triggers for VSMCs have been documented and studied including for example an 

increased amount of phosphate (Kendrick and Chonchol 2011, Giachelli et al. 2005, 

Jono et al. 2000), an increased amount of calcium (Mizobuchi et al. 2009, Yang et al. 

2004, Reynolds et al. 2004), chronic inflammation, oxidative stress and aging (Doherty 

et al. 2003, Mizobuchi et al. 2009, Scatena et al. 2007, Johnson et al. 2006). On one 

hand an increased level of phosphate (Pi) could elevate the VSMCs mineralisation in a 

concentration-dependent manner (Giachelli 2003, Giachelli et al. 2001), on the other 

hand Pi also could induce osteogenic differentiation markers in VSMCs like Osteocalcin 

(OCN), Osteopontin (OPN) and Runt-related transcription factor 2 (RUNX2) (Beck and 

Knecht 2003, Beck Jr et al. 2003, Sage et al. 2011, Beck Jr 2003, Fujita et al. 2001). 

Regarding the osteogenic differentiation process, one of the extensively studied 

molecules is Bone morphogenetic protein 2 (BMP2) due to its involvement in bone and 

cartilage development (Hruska et al. 2005, Shao et al. 2006, Ryoo et al. 2006, Thomas 

et al. 2001, Li et al. 2008b). 

It is clear that lens epithelial cells undergo epithelial to mesenchymal transformation to 

form fiber cells. Injuries and aberrations during such transitions are hypothesized to 

cause opacification. Space travel for longer duration directly corresponds to longer 

physical inactivity of astronauts’ musculoskeletal system. There is clear evidence that 

astronauts face muscle atrophy and bone loss (LeBlanc et al. 2000, Sibonga et al. 

2007, Heer et al. 1999). 4-6 months of stay in space costs about 0.9 - 1.6% of bone 

mass per month (Heer et al. 1999). Despite the observed bone loss in astronauts, the 

serum calcium and ionized calcium actually did not show consistent measurable 

changes during the flight (Smith et al. 2012). Contrarily, in some of bed-rest studies 

simulating the unloading in microgravity, the serum calcium levels were shown to 

increase within normal limits (Smith et al. 2003, Smith et al. 2008). Interestingly, in a 

recent study performed by Deokar and colleagues, the serum levels of calcium and 

phosphate in cataract patients were significantly higher than that of controls (Deokar et 

al. 2018). In their study, they hypothesized that the higher intercellular calcium 

concentrations, decreased Ca2+-ATPase activity and increased membrane permeability 

probably lead to higher intracellular calcium which then results in cataracts. 
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For the study of osteogenic differentiation of various cell types, specific chemicals are 

supplemented to the cell culture medium. Most of such differentiation studies used L-

ascorbic acid (50 µmol/l), ß-glycerophosphate (10 mmol/l) and dexamethasone (100 

nmol/l) in cell culture medium (Kern et al. 2006, Scutt and Bertram 1999, Covas et al. 

2003, Hu et al. 2012). With the fact that studies of the senile cataractous lenses 

reported high concentrations of calcium and phosphorus (Chen et al. 2005, Lin et al. 

2010, Chiang et al. 2004, Fagerholm et al. 1986), Balogh and colleagues could induce 

human lens epithelial cells to move towards osteogenic differentiation by only using 

different concentrations of inorganic phosphate (Pi) (NaH2PO4-Na2HPO4, pH 7.4) and 

CaCl2 without using above mentioned chemicals (Balogh et al. 2016). Interestingly, 

osteoblastic differentiation of VSMCs could be induced by supplementation of 4mmol/l 

Pi alone to the growth medium (Zarjou et al. 2009). 

With such a probability of lens epithelial cells to behave as cells of the osteogenic 

lineage in presence of calcium and phosphate, the loss of calcium and phosphate from 

astronauts’ bones during space flight could be a triggering mechanism for osteogenic 

differentiation of lens epithelial cells that would lead to lens turbidity. 

1.10 Porcine lens and porcine lens epithelial cells (pLEC) 

To better understand the mechanism of radiation-induced cataractogenesis, it is 

essential to study the reaction of lens epithelial cells to ionizing radiation exposure. In 

other studies, either human transformed epithelial cell lines (which most likely have 

altered characteristics compared to primary cell lines) or lens epithelial cells (samples 

are rare) from donor patients have been used. Similarly, many animal experiments 

which include rats (Merriam Jr and Szechter 1973, Dynlacht et al. 2010), mice (Worgul 

et al. 2002, Zhang et al. 2012), rabbits (Lett et al. 1985, Cogan and Donaldson 1951), 

monkeys (Sonneveld et al. 1979) and bovine lenses (Baumstark-Khan et al. 1998) have 

been used to uncover the underlying mechanism of radiation-induced cataractogenesis 

due to different quality ionizing radiations. Porcine lenses have a diameter of ~10 mm 

and stay viable in culture for many days, which provide time for systematic inspection of 

DNA damage response in lens epithelial and lens fiber cells. In this study, porcine lens 

and lens epithelial cell are used mainly because of following reasons: 
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 They are non-transformed primary cells 

 Porcine lenses are similar to human lenses in shape, size and crystallin 

content (Sanchez et al. 2011, Keenan et al. 2008) 

 They can be easily isolated from the porcine eye which is a waste product 

in slaughter houses 

1.11 Aims of the study 

The aim of this study was to establish porcine lens and lens epithelial cells as a new 

model cell system to elucidate the mechanism of radiation-induced cataracts by 

analyzing the cellular characteristics after exposure to space-relevant radiation 

quantities. The following investigations were performed: 

 Proliferation, cell cycle progression and cellular survival analysis of the 

lens epithelial cells after exposure to different radiation qualities 

 Analysis of radiation-induced DNA damage and repair in the lens epithelial 

cells in vitro and in organ culture 

 Quantification of gene expression related to DNA repair and differentiation 

of epithelial cells to lens fibers after radiation exposure 

 Determination whether porcine lenses in organ culture and porcine lens 

epithelial cells (pLEC) in vitro display similar radiation-induced damage 

and repair capacities after exposure to space-relevant radiation qualities 

 Correlation of biological radiation effects in cell culture and in whole 

organs 

 Investigate if osteogenic induction of lens epithelial cells leads to their 

differentiation towards the osteogenic lineage 
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Equipment 

The equipment used in this study is listed in the following Table 2. 

Table 2: Equipment 

Appliance Supplier 

Autoclave Systec 2540-EL, Systec GmbH, Wettenberg, 
Germany 

Centrifuge Multifuge 3 S-R, Thermo Scientific, Schwerte, 
Germany 

Dosimeter UNIDOSwebline, PTW, Freiburg, Germany 
Flow cytometer FACScan, BD Biosciences, Heidelberg, Germany 
Fluorescence microscope Axiovision 135, Carl Zeiss AG, Oberkochen, 

Germany 
Fluorescence microscope Zeiss Axio Imager M2, Göttingen, Germany 
Fuchs-Rosenthal haemocytometer W. Schreck, Hofheim, Germany 
Incubator Heraeus Jubilee Edition, Heraeus Instruments, 

Hanau, Germany 
Laminar flow hood Herasafe, Thermo Scientific, Schwerte, Germany 
Light microscope Axiovision 35, Carl Zeiss AG, Oberkochen, 

Germany 
Microelectrophoresis unit Agilent 2100 Bioanalyzer, Agilent Technologies, 

Santa Clara CA, USA 
Mini-scissors, Tweezer, Scissors 
and Forceps 

Geuder AG, Germany 

pH-meter Sartorius, Göttingen, Germany 
Pipetting aid Hirschmann Laborgeräte, Eberstadt, Germany 
Real-time thermocycler DNA Engine Opticon2 System, Biorad Ltd., 

Munich, Germany 
Refrigerator Bosch, Hamburg, Germany 
Scale Sartorius, Göttingen, Germany 
Spectrophotometer  Nano Drop 2000c, Thermo Scientific, Schwerte, 

Germany 
Stereomicroscope LYNX Stereomikroskop, Vision Engineering Ltd., 

Surrey, United Kingdom 
Thermocycler peqSTAR 96X Universal Thermocycler, VWR, 

Darmstadt, Germany 
Vortexer Heidolph, Schwabach, Germany 
Water Bath Aqualine AL 12, Lauda, Königshofen, Germany 
X-ray tube Gulmay RS225, X-strahl, Surrey, United Kingdom 
 

 



MATERIALS & METHODS 
 

 
- 24 - 

 

2.1.2 Consumables 

The list of consumable materials is given in Table 3. 

Table 3: Consumables. 

Appliance Supplier 

96-well plate for qPCR 4titude Ltd, Berlin, Germany 

Cell scraper TPP, Trasadingen, Switzerland 

Entellan® (mounting medium) Merck, Darmstadt, Germany 

Falcon tubes 15 ml Nunc, Wiesbaden, Germany 

Falcon tubes 50 ml Nunc, Wiesbaden, Germany 

High Precision Microscope Cover 
Glasses 24x60 mm 

Thermo Fisher Sceintific, Schwerte, Germany 

Microscope Slides, 76x26 mm Thermo Fisher Sceintific, Schwerte, Germany 

Pasteur pipettes Brand, Wertheim, Germany 

Petri dishes  30 mm and 60 mm Nunc, Wiesbaden, Germany 

Pipet tips (10, 100, 1000 µl) Eppendorf Ltd, Hamburg, Germany 

qPCR adhesive seal sheets 4titude Ltd, Berlin, Germany 

Side flasks Nunc, Wiesbaden, Germany 

Syringe, sterile, 10 ml Terumo Syringe (Leuven, Belgium) 

Tissue Culture flasks 25 cm2 and 80 
cm2 

Nunc, Wiesbaden, Germany 

2.1.3 Reagents and Kits 

All the reagents and kits and assays used for the study are listed in Table 4. 

Table 4: Reagents and Kits  

Item Supplier 

α-MEM PAN Biotech, Aidenbach, Germany 

-Mercaptoethanol Sigma Aldrich, Steinheim, Germany 

4',6-Diamidino-2-phenylindole (DAPI) Sigma Aldrich, Steinheim, Germany 

Acetic acid Merck, Darmstadt, Germany 

Alizarin Red S Sigma Aldrich, Steinheim, Germany 

Ammonium Chloride Merck, Darmstadt, Germany 

Amphotericin B (250 µg ml-1) PAN Biotech, Aidenbach, Germany 

Betaisodona Mundipharma GmbH, Limburg, Germany 

Bisbenzimide (C27H28N6O •3HCl •3H2O) Sigma Aldrich, Steinheim, Germany 

Bovine Serum Albumin (BSA) Sigma Aldrich, Steinheim, Germany 

CellROX® Green Thermo Fisher Scientific, Germany 

Click-iT® Cell Reaction Buffer Kit Thermo Fisher Scientific, Germany 

Colcemid Merck, Darmstadt, Germany 

Crystal violet Merck, Darmstadt, Germany 

Disodium phosphate Merck, Darmstadt, Germany 
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Item Supplier 

Eosin Sigma Aldrich, Steinheim, Germany 

Ethanol Merck, Darmstadt, Germany 

Fetal Bovine Serum (FBS) Biochrom AG, Berlin, Germany 

Formaldehyde 37 % Merck, Darmstadt, Germany 

Giemsa stain Merck, Darmstadt, Germany 

Glycine Merck, Darmstadt, Germany 

HCl Merck, Darmstadt, Germany 

iScriptTM cDNA synthesis kit Bio-Rad, Munich, Germany 

Isopropanol VWR, Darmstadt, Germany 

KU55933 (ATM inhibitor) Merck, Darmstadt, Germany 

L-Glutamine (200 mmol/L) PAN Biotech, Aidenbach, Germany 

L-Lysine Merck, Darmstadt, Germany 

Mayers Haemalaun Sigma Aldrich, Steinheim, Germany 

Menadione Sigma Aldrich, Steinheim, Germany 

Methanol Merck, Darmstadt, Germany 

Mounting medium Invitrogen, California, USA 

NU7441 (DNA-PK inhibitor) Bio-Techne GmbH, Wiesbaden-Nordenstadt  
Germany 

One-Step RT-PCR Kit Invitrogen, Carlsbad, USA 

Penicillin/ Streptomycin PAN Biotech, Aidenbach, Germany 

Platinum® SYBR®Green qPCR 
SuperMix-UDG kit 

Invitrogen, Carlsbad, USA 

Potassium chloride Merck, Darmstadt, Germany 

Prolong gold antifade reagent Thermo Scientific, Langenselbold, Germany 

Propidium iodide (PI) Invitrogen, Carlsbad, USA 

QIAprep Miniprep QIAGEN, Hilden, Germany 

RNA 6000 Nano Assay Agilent Technologies, Böblingen, 
Germany 

RNAse A Calbiochem, La Jolla, USA 

RNAse-Free Dnase Set QIAGEN, Hilden, Germany 

RNeasy Plus Mini Kit QIAGEN, Hilden, Germany 

RT2 First strand kit SABiosciences, Frederick, MD, USA 

Sodium chloride Merck, Darmstadt, Germany 

Sodium dihydrogen phosphate Merck, Darmstadt, Germany 

Tris Sigma Aldrich, Steinheim, Germany 

Triton X-100 Sigma Aldrich, Steinheim, Germany 

Trypsin/EDTA PAN Biotech, Aidenbach, Germany 

Tween-20 Sigma Aldrich, Steinheim, Germany 

VE821 (ATR inhibitor) Haoyuan Chemexpress, Shanghai, China 

Xylol Merck, Darmstadt, Germany 
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2.1.4 Culture medium 

The composition of media used in cell culture as well as lens organ culture is given in 

following Table 5 

Table 5 : Medium for cell culture 

Medium Composition 

Culture medium 500 ml -MEM 
10 % (v/v) FBS 
10,000 IU / 10,000 µg/ml Penicillin / Streptomycin 
2 mmol/l L-Glutamine 
250 µg/ml Amphotericin B 

Calcification medium 4 mmol/l inorganic phosphate (Na2HPO4
.2H2O and 

Na2H2PO4
.H2O) in culture medium 

 

2.1.5 Buffers and solutions 

Buffers and different staining solutions used in the experiments were prepared 

according to Table 6. Phosphate buffer is diluted to 1x before use. 

Table 6: Buffers and solutions 

Solutions Composition 

Alizarin red S Solution 2 g Alizarin red S in aqua dest. pH 4.2, adjusted by 1 
mol/l HCl 

Bisbenzimide (Hoechst 33342) 
10 μmol/l 

12.5 μl Bisbenzimide (8 mmol/l) 
in 10 ml PBS 

Blocking solution 0.27% (w/v) NH4Cl, 0.75% (w/v) Glycine and 1.64% 
(w/v) L-Lysine in TBST 

Carnoy’s fixative 1:3 of acetic acid and methanol 

Crystal Violet staining solution 0.5 g Crystal Violet 
50 ml 37% Formaldehyde  
in 500 ml tap water  

DAPI staining solution 0.1 μg ml-1 DAPI in PBS 

Giemsa stain 5 % giemsa in 15 ml PBS 

Hypotonic solution 0.075 mol/l i.e. 0.56 g Potassium chloride  
in 100 ml dist. water 

PBS 5x 80 g NaCl 
2 g KCl 
14.4 g Na2HPO4 
2 g KH2PO4 

in 1000 ml dist. water 
pH 7.2 

PI-staining solution 50 µg ml-1 RNAse A 
0.1% (v/v) Triton X-100  
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Solutions Composition 

20 µg ml-1 PI  
in PBS 

TBST 150 mmol/l NaCl, 50 mmol/l Tris, 0.05% Tween 20 
and pH 7.5 

 

2.1.6 Antibodies and diluents 

The primary and secondary antibodies and its diluent used in γH2AX assay are listed in 

Table 7. 

Table 7: Antibodies and antibody diluent 

Antibodies Type Supplier 

AF2288  
(Primary antibody) 

Phospo-Histone H2AX (S139) 
affinity purified polyclonal 
antibody, rabbit IgG 

R&D systems, Bio-Techne 
GmbH, Wiesbaden-
Nordenstadt  
Germany 

NL004  
(Secondary antibody) 

Donkey anti-rabbit IgG purified 
polyclonal antibody 

R&D systems, Bio-Techne 
GmbH, Wiesbaden-
Nordenstadt  
Germany 

Antibody diluent  Zytomed Systems, Berlin, 
Germany 

 

2.1.7 Software 

The software that was used to edit and evaluate data obtained from the study is shown 

in Table 8. 

Table 8: Software 

Software Supplier 

2100 Expert Software for 
Bioanalyzer 

Agilent Technologies, Karlsbrunn, Germany 

AxioVision LE Carl Zeiss (Oberkochen, Deutschland) 

Basic Local Aligment 
Search Tool (BLAST) 

http://www.ncbi.nlm.nih.gov/tools/primer-blast 

CellQuest Pro™ BD Biosciences 

DEK_PLEC_Master, CFA-
AllData_pLEC_BK & qPCR 
ANALYSIS V2.01 

Microsoft Excel worksheets developed by C. Baumstark-
Khan, DLR, Germany 

Flowing Software 2.5 Perttu Terho, Cell Imaging Core, Turku Centre for 
Biotechnology, Turku, Finland 

Image Pocessing and Free online 
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Software Supplier 

Analysis in Java (ImageJ) software,http://rsbweb.nih.gov/ij/download.html 

Opticon 2 Bio-Rad, Munich, Germany 

SigmaPlot 12 and 13 Systat Software GmbH, Erkrath, Germany 

 

2.2 Methods 

2.2.1 Preparation and culture of the whole lens 

The porcine eyes for all the experiments were bought at the local slaughterhouse 

“Metzgerei Arno Schmitz Inh. Frank Schmitz e.K.” (Landskroner Straße 88-90, 53474 

Bad Neuenahr-Ahrweiler, Germany). 

Eyes were transported cooled in ice in a styrofoam box from the slaughter house. 

Preparation of lenses was done immediately after reaching lab, which was within 2 

hours of arrival. 

Firstly, the muscles around the porcine eyeball were removed using scissors (Figure 9A). 

The eye was washed once with PBS before it was disinfected with Betaisodona. The 

eyeball was once again thoroughly washed with PBS for the dissection process. The 

eyeball was cut carefully at the coronal plane using scalpel and scissors to divide the 

eyeball to anterior and posterior parts (Figure 9B). The lens being at the anterior part is 

attached to the ciliary body by means of zonular fibers. The zonular fibers were 

separated under the stereo-microscope using mini-scissors and a tweezer to isolate the 

uninjured and intact lens (Figure 9C and 9D). 

Isolated whole lenses were cultured in 6-well culture plates containing about 9 mL of 

culture medium, with the anterior surface facing upward, at 37 °C and 5 % CO2 in 

humidified atmosphere. Culture medium was changed twice a week. 
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2.2.2 Isolation and routine culture of pLEC monolayer 

For the isolation of pLEC, the whole lens was shortly dried on a sterile filter paper 

through rolling and then it was placed in the Petri dishes ( 3 cm, PS3) with the 

posterior (more curved) surface facing upwards (Figure 10A). Then a very small incision 

was made at the middle of the posterior surface (Figure 10B). With the help of mini-

scissors the posterior surface was cut open to four sides and the outer layer was 

attached to the surface of Petri dishes ( 6 cm, PS6) using the forceps (Figure 10C). 

The middle capsule and cortex was removed so that only the epithelial layer was 

remaining (Figure 10D and 10E). The cutting and separation of cortex from the epithelial 

layer was done under the highly magnifying stereomicroscope. Culture medium was 

carefully pipetted over the epithelial layer to avoid that the layer would float along with 

the medium (Figure 10F). The layer was incubated at 37 °C and 5 % CO2 in humidified 

atmosphere and the culture medium was changed twice a week. After a week of 

incubation, the pLECs were obtained by incubating in trypsin-EDTA solution for about 5 

min at 37 °C. 

Figure 9 : Isolation of lens from the porcine eye. (A) Removal of muscles from the eyeball. (B) Cutting 
eye through coronal plane. (C) Separating zonular fibers with help of mini-scissors and tweezer. (D) 
Isolated crystalline lens. 
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2.2.3 Giemsa staining for cytogenetics 

Cytogenetic analysis was performed by analysis of metaphase spreads of pLECs. 

Colcemid at 0.1 µg/ml working concentration is known to block cells at the metaphase 

of the mitosis during the cell cycle. 

The pLECs were seeded at the density of 5 x 103 cells per cm2 in PS6. During the 

exponential growth phase (4 days after seeding), 0.1 µg/ml of Colcemid were added to 

the cells for 5 h. Then the cells were harvested by trypsinization in a falcon tube and 

PBS was added to stop further action of trypsin. The cells were then centrifuged at 1200 

rpm for 7 min at 4 °C. The supernatant was removed and the hypotonic solution 

(section 2.1.5) was added drop wise up to 10 ml. The cell pellet was broken by flipping 

the falcon against an uneven surface and was incubated for 10 min at RT. Once again 

centrifuged as mentioned above, hypotonic solution was removed leaving few drops still 

remaining where the pellet was resuspended by flipping the falcon. After that, the 

Carnoy’s fixative was added drop wise till 10 ml and the sample was left overnight at 4 

°C. On the next day, the sample was centrifuged as mention above, the fixative was 

removed and the pellet was resuspended by flipping. It was washed two times with 

fresh fixative and the pellet was obtained by centrifugation. 

To stain the cells, the pellet was diluted with few drop of fixative and suspended by 

shaking. A thin layer of water was made on a clean glass slide by a sheet of paper 

Figure 10: Isolation of lens epithelial layer from the porcine lens for lens epithelial cells. The 
images show the steps for lens epithelial cells isolation in alphabetical order. 
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soaked in distilled water. 15 µl of cell suspension was spread over the prepared glass 

slide. The slide was then allowed to dry for 5 to 6 h. Next, the cells were stained with 5 

% Giemsa in phosphate buffer for 15 min in a staining chamber. The slides were slowly 

rinsed with cold tap water and let dry for 2 to 3 h at RT. Finally the slide was mounted 

with Entellan®. 

2.2.4 Microtomy 

In order to study radiation effects on whole lenses in organ culture, the X-ray exposed 

lenses (see section 2.2.5.1) were taken to the “Universitäts-Augenklinik Bonn (Ernst-

Abbe-Straße 2, 53127 Bonn)” for preparation of microtome sections of the lenses. All 

the material used in this microtomy section was kindly provided by “Universitäts-

Augenklinik Bonn”. The steps for microtomy are described below. 

2.2.4.1 Sample fixation 

Both X-ray exposed and unexposed samples were fixed with 3.5 % formaldehyde in 

PBS for 15 min at different harvesting time points and then formaldehyde was replaced 

with PBS and lenses were stored at 4 °C. The stored lenses were then transferred to 70 

% ethanol and transported to “Augenklinik Bonn” for further procedure. 70 % ethanol 

can also be used for long-term storage at 4 °C. 

2.2.4.2 Paraffin infiltration 

For the infiltration of paraffin in the whole lens, the lenses were 

wrapped with a filter paper and were placed inside a plastic 

cassette (Figure 11). The infiltration process includes a gradual 

dehydration of the lens (whole cassette) in stepwise increasing 

concentration of ethanol, cleaning by xylol and finally infiltration 

of paraffin. It started from 70 %, 80 % and two times 96 % 

ethanol, each step being 30 min. Dehydration is continued with 

absolute ethanol for 3 more steps, with the first two steps lasting 

for 60 min and the last one was 90 min. The next step was 

washing twice with xylol for 60 min each. Finally, the lens was 

placed into paraffin (~60 °C) for 60 min for three times. All these 

steps were performed with an automated processor. 

Figure 11: Packing of 
lenses into the plastic 
cassette for paraffin 
infiltration 
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2.2.4.3 Embedding the lens in paraffin block 

In a next step, a tissue-paraffin block of the paraffin-infiltrated lens was made on the 

surface of plastic cassette using a steel mold (Figure 12). 

First of all, the extra wax present in the lens and cassette was melted away by placing it 

on a heating block (~60 °C) for 15 min. Then the lens was obtained by discarding the 

cassette lid and filter paper. A small amount of molten paraffin was put in the steel mold 

from the paraffin reservoir. The lens was gently transferred into the mold with paraffin. 

The mold was then transferred to the cold plate where paraffin slowly started solidifying. 

During this step the lens was placed in the desired position (vertical position) as the 

solidifying paraffin holded the lens. Then the mold with the properly oriented lens was 

returned to the dispenser to fill the mold with paraffin. A second plastic cassette was 

then placed over the mold and its face was covered with molten paraffin, too. The next 

step was solidifying of the paraffin on the cooling plate (about 30 min). When the wax 

was hardened, a smooth paraffin block with the sample was obtained. Then the sample 

was easily removed from the mold because the solid wax covering the sample was 

firmly attached to the second cassette. 

2.2.4.4 Sectioning of the lens 

The sectioning of the lens was done using a microtome. Firstly, the water bath filled with 

distilled water was set to 37 °C. The paraffin block was vertically inserted into the 

cassette holder facing the blade. At the beginning, the dial was set to 10 µm to start 

cutting. Once the lens started to get visible after removal of the wax layer, the sectioning 

 

 

Figure 12: Paraffin dispenser and embedded lens 
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Figure 13: Sectioning of the lens. The lens embedded in a paraffin block was sectioned using a 
microtome (A). (B) Cut ribbon section in the water bath. The lens sections after the wax had been melted 
away (C). 

 

was done at 5 µm thickness. The cutting of the block resulted in ribbons of sample and 

wax. A paint brush was used to gently transfer this cut ribbon sections in the water bath. 

The warm water helps to stretch the sample smoothly. A clean glass slide was taken to 

float the ribbons onto its surface. The slides with the samples were then kept at 65 °C 

for an hour so that wax melted and helped the tissue to attach to the glass. 

2.2.5 Radiation exposure 

2.2.5.1 X-ray exposure 

X-ray irradiation (0.3-3 keV/µm) was performed at DLR by using the X-ray tube 

operated at a voltage of 200 kV and a current of 15 mA. Dose and dose rate were 

measured with the UNIDOSWebline dosimeter. For all experiments, X-rays were filtered 

through a copper filter. Lenses and pLECs were irradiated at a dose rate of 1 Gy min-1 

(focus object distance of 444 mm, 21.1 °C). 

Cells were irradiated at the exponential growth phase (at day 4) either in flasks or in 

plates, where the cell surface was perpendicular to the X-rays. The whole lenses were 

irradiated directly in the cell culture plates with the anterior surface of the lens facing 

upward. After X-irradiation, cells and lenses were further incubated at standard 

conditions and harvested for analyses at various time points after irradiation. 
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2.2.5.2 Heavy ion exposure 

Irradiation with Ar-36 and C-12 ions was performed at the “Grand Accélérateur National 

d’Ions Lourds” (GANIL) in Caen, France. The beam energy was 95 MeV/n (where ‘n’ 

stands for nucleon). For Ar-36, the energy on target was 84.7 MeV/n with a resulting 

LET of 269.4 keV/µm. For C-12, the beam energy was reduced to 35 MeV/n using a 

polymethylmethacrylate (PMMA, thickness 16.9 mm) and the energy on target was 28.6 

MeV/n with resulting LET of 71 keV/µm.  

Cells were seeded in slide flasks (growth area 9 cm2) at a density of 1×104 cells/cm2 3 

days prior to the irradiation. Before subjecting cells to the beam, the side flasks were 

completely filled with serum free -MEM in order to prevent desiccation of the cells 

during the irradiation time. The samples were exposed to heavy ions in upright position 

placed at the sample mover/holder in front of the beam exit window (Figure 14). After 

irradiation, the serum-free -MEM was discarded and 5 mL of culture medium was 

added. 

The dosimetry was carried out by the staff at the accelerator (Durantel et al. 2016). A 

dose rate of 1 Gy/min was used to irradiate the samples. The fluence (F) for heavy ions 

was converted to the absorbed dose by following Equation 7 (Wulf et al. 1985). Fluence 

is defined as the number of particles (P) per unit area (cm2). 

 
����	(��) = �. � × ���� × ���	 �

���

��
� × �	(

�

���
) 

Equation 7 

 

 

Figure 14: Heavy ion irradiation at the GANIL accelerator. Beam line (A) and setup of samples in cell 
culture flask placed on the specially designed sample mover/holder (B).  
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2.2.6 Microscopic investigation 

For microscopic investigations, formaldehyde-fixed cells were used. The phase contrast 

microscope Axiovert 25 was used with the appropriate objective (5x, 10x, 20x, 40x) in 

order to visualize cells for routine cell culture. For microphotography the fluorescence 

microscope Axiovert 125 linked to the color camera MRc5 was applied. Axiovision 4.4 

software was used to operate microphotography.  

2.2.7 Analysis of cell growth 

Cells were seeded in Petri dishes (PS3) at a density of either 2.5 x 103 or 5 x 103 cells 

cm-2 and incubated at 37 °C in a CO2-incubator (95 % air, 5% CO2). For the period of 

twelve days two plates were trypsinized each day and the cell number was determined 

by counting with a hemocytometer. 

Doubling time (Td) was determined by the slope calculated for the exponential part (log-

phase) of the growth curves according to Equation 8: 

 
�� = (�� − ��) ×
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��� �
��
��
�
 

Equation 8 

 Where, t1 = time point 1 [day after seeding] 

t2 = time point 2 [day after seeding] 

C1 =  count at t1 

C2 =  count at t2 

 

 

2.2.8 Radiobiological characterization 

To determine the radiobiological parameters, first of all the plating efficiency of cells 

seeding at low density was determined. After that the radiobiological parameters from 

the dose-effect relation can be computed from the colony forming assay or the cellular 

survival assay. 

2.2.8.1 Plating efficiency 

The plating efficiency (PE) describes the ability of a given cell line or primary cell to 

adhere to its growth substrate and to multiply thereby giving rise to colonies formed 

from one seeded cell. pLEC (passage 2) were seeded on Petri dishes Ø 6 cm with 

defined numbers of cells (from 100 to 1000 cells per plate). After 3 weeks, the grown 

colonies were fixed and stained with crystal violet staining solution. Colonies with at 
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least 50 cells were counted by eye and the PE was calculated according to Equation 9. 

Statistics was calculated from 6 replicates for each condition of seeded cells. 

 
�� =
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Equation 9 

 

2.2.8.2 Colony forming ability test 

In radiobiology the cell is considered to be a survivor when it retains or regains its ability 

to divide and to form macroscopic colonies (of at least 50 cells). Accordingly, the colony 

forming ability (CFA) test was developed for mammalian cells (Puck and Marcus 1956). 

In order to estimate the colony forming ability, trypsinized cells were irradiated with X-

rays in 25 cm2 flasks and seeded in six Petri dishes (Ø 6 cm) per dose. The amount of 

cells to be seeded per dose per PS6 was determined using a Microsoft Excel worksheet 

(developed by C. Baumstark-Khan, DLR, Germany) which predicts the fraction of 

remaining clonogenic cells for a certain dose of ionizing radiation from the plating 

efficiency for the cell line and putative survival levels. In anticipation of effects from 

higher radiation doses the seeding density increased with dose. 

After radiation exposure cells were allowed to grow for at least 30 days without any 

medium change. Regular microscopic inspection was done once a week in order to 

identify the time point when the colonies consisted of about 50 single cells. At this time 

point the medium was removed and the plates where carefully washed with 1x PBS. 

Thereafter, the plates were stained by using 0.1% crystal violet staining solution for 2 h 

at RT and washed with tap water. After drying overnight, the colonies were inspected 

and counted by eye. The PE for every dose (PEdose=0, PEdose) were calculated as 

already described (see equation 8). 

2.2.8.3 Calculating Dose Effect Relations 

The relative survival (S) is the proportion of the PE of the irradiated samples (PEdose) to 

the PE of non-irradiated samples (PEdose=0) (Equation 10). 

 ����� =
������
��������

 Equation 10 
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From this definition, it results that S0=1. Assuming that clonogenicity is decreasing or is 

unaffected after irradiation, Sdose will have values ≤1. The dose-effect curve was created 

by plotting the relative survival as a function of dose on a semi-logarithmic scale (Figure 

15). Typical dose-effect curves of cells with repair capabilities present two segments in a 

semi-logarithmic scale: a shoulder in the lower dose range and a linear part in the 

higher dose range. 

Dose-effect curves are characterized and compared via three parameters: D0, Dq and n. 

The point where the extrapolation of the linear part of the curve intersects with the y-

axis defines the extrapolation number (n). The intersection of this extrapolation and the 

function y=1 is called quasi-threshold dose (Dq). From both values conclusions can be 

drawn on the width of the shoulder (shoulder is present if n>1), which represents the 

recovery potential of the cells after irradiation. If the cells lack a repair capability, no 

shoulder can be seen (Figure 15). The linear part of the curve is described by D0, which 

is the negative reciprocal of the slope. D0, which is also known as D37, is the dose of 

radiation that reduce the population of surviving fraction to 37 %. From the D0-value 

conclusions can be drawn on the radiation sensitivity after exhaustion of intracellular 

recovery processes.  

The decrease in survival can be described by a regression curve which is derived from 

the single-hit multi-target model (Kiefer 1971) according to Equation 11. The linear part 

of the regression curve can be simplified to Equation 12. In a cell survival curve such 

linear exponential part is due to higher killing of cells due to high dose. The three 

characteristic parameters of a dose-effect curve are related according to Equation 13. 
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Equation 11 
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Equation 12 

 

 �� = �� + ��	(�) Equation 13 

 

Finally, the obtained data were analysed in “DEK_PLEC_Master” for calculation of 

plating efficiency and survival for individual experiments. Then the data from individual 
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experiments were transferred into “CFA-AllData_pLEC_BK” (a second Microsoft 

ExcelTM worksheet developed by C. Baumstark-Khan, DLR, Germany) for combination 

of data from individual repeat experiments to generate regression curve from mean 

data. F-test was used to test the linearity of the regression and t-test was done to 

compare the slopes of regression. 

 

 

2.2.9 Analysis of cell cycle progression by flow cytometry 

Cells were harvested at various time intervals after X-ray exposure by trypsinization. 1.5 

ml of trypsinized cells were fixed with 4.5 ml ice-cold 100 % ethanol and stored at -20 

°C for at least 24 h. For staining, the ethanol was diluted by adding PBS to a final 

volume of 14 ml and cells were collected by centrifugation (5 min, 500 ×g). After 

resuspension in 1 ml PI-staining solution cells were incubated at 37 °C for 1 h, and 

analysed by flow cytometry on the same day. 

Figure 15: Parameters of dose-effect curves. The descriptive parameters D0, Dq and n are shown for 
typical dose-effect curves. The surviving fraction is plotted on a logarithmic scale against dose on a linear 
scale. D0 is the reciprocal of the curve slope (k) in the exponential part of the curve (D0=1/k). D0 is the 
dose required to reduce the surviving fraction to 37% of the previous value. n is the value that is 
intercepted at y-axis after extrapolation of the exponential part of the curve. The intersection of this 
extrapolated curve with the 100% survival line is the quasi-threshold dose Dq. This dose is required to 
inactivate all but last target and can be defined by: -ln(n) = Dq/D0. (Adapted from (Hu 2014). 
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For each sample 10,000 events were counted at the flow rate of 200-500 cells s-1. 

CellQuest ProTM Software was used to collect data from the flow cytometer, FACScan. 

Flowing Software Version 2.5 was used to transform CellQuest ProTM data files into PC-

readable files. With the flowing software, a dot plot of FSC and SSC was created with a 

live gate set (Figure 16A). Another dot plot was created to plot the cells with the 

fluorescence signals of the area (FL2- Area) versus the width (FL2- Width) (Figure 16B). 

Cells of lower FL2-W were gated as apoptotic cells. After that, with the defined single 

cells, a histogram was created using fluorescence signal of the height (PI fluorescence 

or FL2- Height) (Figure 16C). 

 

 

From the histogram, a semi-automated “Cell Cycle Control” module of the Flowing 

Software was used to analyze cell cycle where G1-phase marker, G2-peak multiplier 

and peak width multiplier was manually defined. The software finds G2- and S-phase 

markers and finally the number of events from each G1-, S- and G2-phases in the form 

of exportable table. Statistics was done with the in Sigma PlotTM software package used 

at DLR. 

2.2.10 Immunofluorescence staining of H2AX 

PLECs cultivated in cell culture slide flasks were exposed to ionizing radiation at the 

confluency of 50 % - 70 % and harvested at different time points by fixing the cells with 

3.5 % formaldehyde in TBST for 10 min at 4 °C. In order to visualize the DNA DSBs, 

Figure 16: Analysis of cell cycle distribution by flow cytometry of PI-stained cells. (A) Dot plot 
showing single cells that are sorted with respect to their morphology; granularity (side scatter) and size 
(forward scatter). (B) Dot plot with respect to fluorescence. (C) Histogram of PI fluorescence (FL2-H). 
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staining was started with three TBST washing steps where the last step included 

incubation on a shaker for 5 min. In the next step, cells were permeabilized on ice using 

the solution containing 0.5 % (v/v) Triton-X and 1 % (w/v) BSA in TBST. Once again the 

three TBST washing steps followed, with the last step 5 min on a shaker. Blocking 

solution was used for blocking the unspecific background for 10 min on a shaker at 

room temperature (RT). After washing with TBST as mentioned above, the cells were 

covered with a 1:500 dilution of primary antibody (polyclonal anti-H2AX antibody) in 

antibody diluting solution for 45 min at RT or overnight at 4 °C. Then again the washing 

steps followed before covering the cells with 1:500 dilution of secondary antibody in 

antibody diluting solution for 45 min in the dark at RT. Once again the washing steps 

performed as mentioned before, and the cell nuclei were stained with 0.1 µg/ml DAPI 

staining solution for 15 min. Finally, the samples were stored at 4 °C to let the mounting 

medium dry overnight. On the next day, the samples were analysed with a fluorescence 

microscope. 

In case of whole lens organ culture, lenses were fixed with 3.5 % formaldehyde in PBS 

for 10 min at harvesting time points and stored in TBST at 4 °C until all the samples 

were collected. Then the outermost epithelial layer at the anterior part of the lens was 

separated. The remaining staining procedure was followed as it was done for pLEC. 

2.2.11 Staining of microtome sections 

Microtome sections obtained after sectioning of lens were stained to visualize the 

structure of lens and H2AX as marker of DNA damage induction and repair.  

Hematoxylin-Eosin staining of lens 

For hematoxylin-eosin staining of microtome-sectioned lens, the glass slide with the 

lens was washed two times inside xylol for 5 minutes each. After that the glass slide 

was dipped in descending concentrations of isopropanol (2x in 100 %, 2x in 96 %, 80 % 

and 70 %) for 3 min each. Then it was washed with tap water for 3 min and 1 min with 

distilled water. Next, it was dipped in Mayers Haemalaun for 4 min, which was followed 

by 30 sec wash with HCl-alcohol. After washing with 5 min with tap water and 1 min with 

distilled water, it was stained with 1 % Eosin for 5 min. Once again sections were 

washed with different concentrations of isopropanol (80 %, 96 % and 2x 100 % 

respectively) for 3 min each. Finally, the slide was washed twice with xylol for 5 min 

each before mounting the coverslip. 
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Immunofluorescence staining of H2AX in lens epithelial cells in lens sections 

In order to study the DNA damage induction and repair in whole lens, microtome 

sections of irradiated and non-irradiated lens were stained for H2AX. First of all, the 

glass slides with the lens sections were washed twice with xylol for 5 min each to 

remove excess paraffin from the slide. After that, gradual rehydration of the sample was 

done by washing the slides with decreasing concentration of isopropanol (2x in 100 %, 

2x in 96 %, 80 % and 70 %) for 3 min each. Next, the sample was washed with tap 

water for 3 min and with distilled water for 1 min. The remaining steps for H2AX 

staining were performed as described in section 2.2.10 for pLECs in side flasks. 

2.2.12 Oxidative stress determination in pLECs 

It is well known that reactive oxygen species (ROS) within cells play a crucial role in 

cellular damage. In order to establish a positive control of oxidative stress and to 

quantify the ROS, different concentrations of menadione (25, 50 and 100 µmol/l) were 

added to the cell culture medium for 1 h at 37 °C, 5 % CO2. Menadione, which is known 

to generate ROS, is insoluble in water, hence was dissolved in chloroform in order to 

prepare stock solution (50 mmol/l). The working concentrations were prepared by 

diluting the stock solution with cell culture medium. 

The fluorescent dye CellROX® Green was used to measure the intracellular ROS 

according to the manufacturer’s instructions. Medium from pLEC, treated or untreated 

with menadione, was aspirated and 5 µmol/l CellROX® Green reagent (diluted in normal 

cell culture medium) was applied to cells for 30 min at 37 °C, 5 % CO2. Cells were then 

washed 3 times with PBS and fixed with 3.5 % formaldehyde in PBS for 15 min. For the 

X-ray exposed cells, CellROX® Green was applied 30 min after irradiation. Finally, the 

images were taken using fluorescence microscope within 24 h at the excitation and 

emission of wavelengths of 485 nm and 520 nm, respectively. 

2.2.13 Detection of replicative S-phase cells 

Detection of replicative S-phase cells was done using the Click-iT EdU Assay. EdU is 

an analogue of thymidine that is incorporated during DNA synthesis, which is easily 

detected by a fluorescent marker. The assay was performed for pLEC monolayer 

culture, epithelial layer and lens organ culture. These cells, layer and lens were supplied 

10 µmol/l EdU for different time intervals. The samples were then harvested and fixed 
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either with 3.5 % formaldehyde in PBS for microscopy or with 70 % ethanol for flow 

cytometry. 

For staining of EdU incorporated in DNA, firstly the fixed samples were washed twice 

with PBS. For staining of the whole lens, pieces of epithelial layer were cut from the 

already fixed lens. The samples were permeabilized using 0.5 % Triton-X 100 in PBS at 

RT for 20 min. Then they were washed twice with 1.5% BSA in PBS in a shaker for 2 

min. After that, freshly prepared Click-iT reaction mix was added to the samples and 

incubated in the dark at RT for 30 min. All remaining procedures were performed in the 

dark. Once again the samples were washed twice with 1.5 % BSA in PBS in the shaker. 

Nuclei were stained with 200 ng/ml DAPI for 20 min. Finally, after washing twice with 

PBS, the slides were dried and prepared for fluorescence microscopy with mounting 

medium and coverslips. 

Table 9: Click-iT reaction mixture. 

 Stock conc. Working conc. Volume 

1x Click-iT Reaction Buffer 10x 1x 423 µl 

Alexa Fluor® 488 
CuSO4 

Cu protectant mix 
1x Click-iT Buffer Additive 
(Diluted immediately before usage) 

30 µmol/l 
N/S 
N/S  
10x 

1 µmol/l 
- 
- 
1x 

17 µl 
5 µl 
5 µl 
50 µl 

  Total: 500 µl 

Note: N/S means not specified by the company 
 

For flow cytometric analysis of Click-iT EdU Assay, the ethanol-fixed pLECs were 

collected by centrifuging at 500xg for 3 min. The staining procedure was the same as 

described above except for the collection of cells after each washing, permeabilization 

and incubation by centrifugation as pellet. After counter staining the nucleus with DAPI, 

the cells were re-suspended in 1 ml PBS for flow cytometry. After that, fluorescence 

counting of 10,000 events from FL-1 channel at a flow rate of 200-500 cells s-1 was 

done for each sample. The Apple-based CellQuest ProTM Software collected the data 

from the flow cytometer, FACScan. 

2.2.14 Osteogenic induction of pLECs 

For osteogenic induction of pLECs, the cells were first seeded at a density of 5×103 

cells/cm2 in 6 cm petri-dishes with culture medium. After day 7, the culture medium was 
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changed with either osteogenic induction medium (also called calcification medium, CM) 

or culture medium (also called normal medium, NM). pLECs were fixed at different time 

intervals after medium change with 70 % ethanol and stored at -20 °C until all samples 

were harvested. Since calcium co-precipitates with phosphate ions under in vitro culture 

conditions, detection of such mineralized matrix can be shown by chelating action of 

calcium and Alizarin Red S (Wang et al. 2006). For Alizarin Red S staining, the fixed 

cells were rinsed twice with distilled water, then incubated with Alizarin Red S solution 

for 20 min at RT and finally rinsed twice with distilled water before taking photographs. 

The procedure to analyze the gene expression of target genes during differentiation by 

quantitative real-time polymerase chain reaction was performed as described in section 

2.2.15 for samples collected after radiation exposure. Day 0 sample in osteogenic 

induction experiment means that cells were harvested within few min (4-5 min) after 

changing the medium with CM (i.e. pLECs were kept in CM for only 4-5 min). 

2.2.15 Quantitative real-time PCR for gene expression analysis of pLEC 

Reverse Transcriptase quantitative real-time polymerase chain reaction (RT-qPCR) was 

used to evaluate gene expression after radiation exposure and osteogenic induction. 

The basis of this method is production of 2n copies of target DNA fragments after n PCR 

cycles if no reagents are limited. Following steps are being followed for analysis gene 

expression. 

2.2.15.1 RNA extraction and isolation 

Firstly, RNA samples were collected at various time points after exposure to X-rays and 

heavy ions. In order to reduce RNA degradation by heat shock or RNases, only the pre-

cooled (-20 °C) syringes, cell scrapers and micro-centrifuge were used. To isolate RNA, 

the cell culture medium was completely sucked off and 600 μl RLT-lysis buffer (from the 

RNeasy Plus Mini Kit with 10 µl/ml of 14.3 mol/l β-mercaptoethanol) was added to the 

cells to lyse them. A cell scraper was used to gather the lysed cells. After that, with 2 ml 

syringe the lysed cells were homogenized by moving lysate through the needle for 5 

times and eventually transferred them into RNase-free micro-centrifuge tubes. Finally, 

the samples were promptly stored at -80 °C for future processing. 

The remaining isolation steps were done according to the manufacturer's instructions 

(using the RNeasy Plus Mini Kit). At the end of isolation, RNA was eluted with 50 µl of 
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RNase-free water and its concentration was determined by spectrophotometry 

(Nanodrop). 

2.2.15.2 RNA integrity and quantity determination 

RNA 6000 Nano Assay was used to determine the integrity and the quantity of the 

isolated RNA samples by micro-electrophoresis technique in the Bioanalyzer. This 

electrophoretic analysis is based on capillary gel electrophoresis where fluorescent dye 

bound RNA give information about RNA integrity and concentration. Micro-

electrophoresis was carried out according to the manufacturer’s protocol for eukaryotic 

RNA analysis. 

The RNA was quantified and assigned a RNA integrity number (RIN) between 0 and 10 

by the 2100 Expert Software for Bioanalyzer. The software quantifies RNA using the 

RNA ladder, which contains 6 different sizes of RNA fragments (0.2, 0.5, 1.0, 2.0, 4.0 

and 6.0 kb) at a known concentration of 150 ng/µl, to construct a standard 

electropherogram that can be compared to the samples (Figure 17). The RIN is 

calculated by the software by considering ratio between the area under the curve of 18 

S and 28 S rRNA, the height of the 28S rRNA peak, the area between the 18S and 5S 

rRNA peaks and the marker peak height (Figure 17) (Schroeder et al. 2006). For X-

irradiation and osteogenic induction experiments, a RIN of 8 and above was accepted. 

On the other hand, even the RIN of at least 6.4 was accepted for carbon ion-irradiated 

samples due to the rarity of the samples to obtain. The concentration and RIN number 

for all isolated RNA is listed in supplementary results (Table 18, Table 19, and Table 

20). 

 

Figure 17: Electropherogram of separated RNA. RNA ladder (A) and RNA sample (B). Abbreviations: 
FU, fluorescence units; kb, kilobases; s, seconds. 
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2.2.15.3 cDNA synthesis 

The iScript cDNA Synthesis Kit, which contained a recombinant RNase H+ MMLV 

reverse transcriptase and RNase inhibitor mix, was used to reverse transcribe the RNA 

into first-strand cDNA. RNA concentrations were determined according to section 

2.2.15.2 , which were diluted to 200 ng/µl. Reaction mixture for cDNA synthesis was 

prepared as shown in Table 10 with 1 µg of RNA sample (5 µl of 200 ng/µl) along with 

other kit components. Along with the samples, 2 negative controls, one containing no 

RNA template and another containing no iScript reverse transcriptase (RT minus) were 

prepared. Incubation of reaction mixture in the thermocycler was performed according 

to the iScript protocol: warm-up step (heating of lid to 110 °C), annealing step (5 min at 

25 °C), elongation step (30 min at 42 °C) and deactivation step (5 min at 85 °C). The 

cDNA hence produced was regarded to be 50 ng/µl and was stored at -20 °C until the 

qPCR analysis  

Table 10: The cDNA synthesis reaction mixture 

Reagents Volume 

Nuclease-free water  10 μl 

5x iScript reaction mix 4 μl 

RNA sample (1 μg total RNA) 5 μl 

iScript reverse transcriptase 1 μl 

Total µl 

 

2.2.15.4 Primer design 

During designing of primer, the length of primer was maintained between 14-24 base 

pairs with 40-60 % of guanine and cytosine (GC) content. The product size of the primer 

was set to 100-250 base pairs. The melting temperature (Tm) of the primer was set to 

around 60 °C which should be approximately the same for both forward and reverse 

primers. It was also kept in mind that the primers do not form any internal secondary 

structures. The Blast tool form NCBI website was used to retrieve and test the primer 

sequence and corresponding gene. Finally, the primer pairs were ordered from 

Invitrogen. 

The primers (Table 11) were reconstituted to 100 µmol/l stock solutions using DNAse-

free H2O as per the supplier’s protocol. The concentration of working solution for primer 

was 10 µmol/l. The final concentration of primer in qPCR reaction mixture was 0.2 
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µmol/l. Use of 0.5 µl primer working solution in total of 25 µl reaction mix gave the 

required final concentration. Both stock and working solutions were stored at -20 °C. 

Table 11: Primers used for gene expression analysis with their gene name, product size and NCBI 
database codes. 

 
 

2.2.15.5 Quantitative real-time polymerase chain reaction (qPCR) 

Platinum® SYBR® Green qPCR SuperMix-UDG kit and its protocol was used to carry 

out qPCR in the DNA Engine Opticon 2 System. In order to prevent the evaporation and 

Gene name Primer sequence 5´ 3´ Optimized 
Tm  

Length 
(bp) 

NCBI 

Housekeeping genes 

ACTB Fwd: TCCCCTTCTCCTTCCAGATC 
Rev: GCAACTAACAGTCCGCCTAG 

59 177 NC_010445
.3 

B2M Fwd: GCAGAGAAGAATCCCATGGG 
Rev: AGTGCTGTGGGTAAATGCTG   

59 160 NC_010443
.4 

HPRT Fwd: TGACACTGGCAAAACAATGCA 
Rev: GGTCCTTTTCACCAGCAAGCT 

62 120 NM_000194 

Target genes  

CDKN1A Fwd:  TCGAGCGGTTTTGTTTTCGT 
Rev:  CACACACACACACTCACACA   

59 178 NC_010449
.4 

CRYAB Fwd:  GAGCAAGAAGAAGCAGCCTT 
Rev:  CTTTCTGCTCGGGTAGTTGG   

59 240 NC_010451
.3 

DNASE2 Fwd:  GCTAATCCACAGCGTTCCAA 
Rev:  ATGGGGTAGGTGTAGGTCAG    

59 249 NC_010444
.3 

GADD45G Fwd:  TGTGTGAGTATAGACGCGGT 
Rev:  GTGAAGTGAATTTGCAGCGC   

59 214 NC_010456
.4 

PAX6 Fwd: CGTCCATCTTTGCTTGGGAA 
Rev:  CAGAGAAAGACACAGGCAGG   

59 186 NC_010444
.3 

RELA Fwd: GTCTGAGAAGGTGTGGTTGG 
Rev:  TCTCGTGGTCTCATCGTTCA   

59 104 NC_010444
.3 

SOD3 Fwd: CCAAAGTGACGGAGATCTGG 
Rev:  TTCAGGTGGAAGAAGGCCT   

59 193 NC_010450
.3 

BMP2 Fwd: TTTGGAAGAACTGCCAGAAATGA 
Rev:  TTAATTCGGTGATGGAAACTGCT   

59 165 NM_001195
399.1 

COL1A2 Fwd: TCTACTTGCTTAAATTGTGGGCA 
Rev:  TGGTGCAAATGTTCATGGTTT   

59 214 NM_001243
655.1 

OPN Fwd: TTCACCAAAATACCCACATGACA 
Rev: ATGCATTTCAAGGGCGATTTT  

59 190 GenBank: 
M84121.1 

RUNX2 Fwd: TCCAAACACCCAGCAAATATGAA 
Rev:  TGTTTTGTGCCTCCTCCTTTTAT   

59 174 XM_013977
989.1 
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condensation of the reaction mixture, all the procedures from thawing to preparing of 

the sample plates were carried out on ice. 

To make the standard curve of cDNA concentration, 2 µl of cDNA was pooled from 

each treatment conditions. As mentioned earlier the expected yield of cDNA for each 

sample condition was 50 ng/µl. From the collected cDNA pool a dilution series from 25 

ng/µl to 0.04 ng/µl was prepared. Furthermore, cDNA for each sample condition were 

also dilute to 5 ng/µl with nuclease-free water. The composition of qRT-PCR reaction 

mixture was prepared according to the Platinum® SYBR® Green qPCR SuperMix-UDG 

protocol (Table 12). 

Table 12: Reaction mix for qPCR per well 

Reagents Volume 

SYBR Green Mix 12.5 µl 

Forward Primer (final conc. 0.2 µmol/l) 0.5 µl 

Reverse Primer (final conc. 0.2 µmol/l) 0.5 µl 

cDNA (5 ng/µl) sample solution 2.0 µl 

Nuclease-Free Water 9.5 µl 

Total Volume 25.0 µl 

 

The reaction mixture was carefully pipetted at the bottom of the 96-well plates (25 

µl/well) where cDNA was either sample or standard dilutions from the pool. All samples, 

controls, standards and blanks were loaded either in triplicates or duplicates. Then the 

plates were inserted into the real time thermocycler after it was properly sealed with an 

adhesive film. Finally, following amplification protocol was used for qPCR (Table 13). 

Table 13: qPCR amplification protocol 

No. Step Incubation time Temperature 

1 Pre-heating 2 min 50 °C 

2 Pre-denaturation 2 min 95 °C 

3 Denaturation 15 sec 95 °C 

4 Annealing 30 sec 59 °C 

5 Elongation 30 sec 72 °C 

6 Plate read   

7 Final extension 20 sec 78 °C 

8 Reading fluorescence   

9 Repeat (3-8) 44 times   

10 Melting curve analysis  60-95 °C 

11 Plate read hold 3 sec every 0.2 °C 

12 Heat block cool down 1 min 29 °C 
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2.2.15.6 Relative quantification of gene expression levels 

For the analysis of gene expression levels, first of all the threshold cycle (Ct) values 

were calculated using the Opticon2 software (Figure 18A). The reliability of the PCR 

products was verified using melting curve analysis (Figure 18B). 

 

 

The Ct values thus obtained were used for calculating the relative gene expression of 

the target gene compared to the reference or the housekeeping genes. All the 

calculations were done using “qPCR ANALYSIS V2.01” (Microsoft ExcelTM worksheet 

developed by C. Baumstark-Khan, DLR, Germany). The worksheet first calculates the 

efficiency (E) of the PCR from the standard curve using Equation 14. It also calculates 

the quantity of sample DNA by comparing the standard curve using Equation 15. Then it 

calculates the relative quantity by dividing each sample quantity by the mean quantity of 

all housekeeping genes with the same treatment and time point. Then the relative 

quantity of each sample was divided by the mean relative quantity of the 0 Gy untreated 

control for the same time point, which gave the measure of regulation. The regulation 

(R) was then converted to the fold change (FC) values by following Equation 16. 

 
���������� = −� + ��^(−

�

�����
) 

Equation 14 

 

Figure 18: Amplification curves and melting curves from qPCR of B2M gene. (A) The Ct is the cycle 
number at which the fluorescence value is above the threshold line (dotted-line). The threshold was set 
manually at the exponential phase of DNA amplification. (B) A single and sharp peak represented by the 
first derivative fluorescence curve indicates generation of one specific PCR product. 
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Equation 15 

 

 ��	� > �	����	�� = �					���					��	� < �	����	�� = 	−�/� Equation 16 

   

2.2.16 Statistics 

If not otherwise mentioned, means and standard deviations or standard errors were 

calculated using the statistics functions of the software packages Microsoft ExcelTM, 

Sigma PlotTM, and Flowing Software Version 2.5. Regression curves were calculated 

likewise. Two-tailed Student’s test was applied to determine the statistical significance 

between different samples. Only the data sets which passed Normality Test as well as 

Equal Variance Test were subjected to t-test. Mann-Whitney Rank Sum Test was used 

for the data sets that failed Equal Variance Test. Significant differences between two 

conditions were represented by the probability, p, assuming the truthfulness of null 

hypothesis ( *,p < 0.05; **,p < 0.01 and ***,p < 0.001). The null hypothesis is that the 

two conditions are same (i.e. they are not different from each other). Small p-value 

(typically < 0.05) signals strong evidence against null hypothesis, which means one can 

reject null hypothesis. 
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3 RESULTS 

The main intention of this study was to establish a novel and reliable cell and organ 

model that can be used for investigations to uncover the underlying mechanism of 

radiation-induced cataractogenesis. 

First of all, the growth properties and morphology of pLECs were determined. 

Investigating the transparency of whole lens in culture medium was equally important 

for whole lens organ culture. The proliferation of pLECs in monolayer and within the 

lens organ culture was determined by inspecting DNA synthesis with the EdU-assay. 

Similarly, the proliferation behavior of different passages pLECs was analysed so that 

only the healthily proliferating pLECs could be selected for following experiments.  

In order to assess the response to ionizing radiation exposure, the cellular survival of 

pLECs was determined using the colony forming ability assays after X-irradiation. It is 

well known that ionizing radiation induces genetic damage (e.g. DNA-DSBs). To 

maintain genomic stability as well as to survive, different cell-cycle checkpoints are 

activated in the cells. Therefore, analysis of cell-cycle distribution after X-irradiation was 

performed to examine the nature of checkpoints involved in pLECs. In addition, the 

radiation-induced cell-cycle distribution of pLECs was determined, after inhibiting 

molecules like ATM, ATR and DNA-PK. These molecules are known to play a key role 

in DNA repair and checkpoint activation. 

There is a hypothesis that radiation-induced cataracts emerge due to post-irradiative 

activity of genetically damaged lens epithelial cells. Based on this hypothesis, the dose 

and quality of radiation-induced damage and repair activity of cells would play a big role 

in cataractogenesis. For this reason, DNA damage induction and repair in pLECs was 

studied using the H2AX assay after X-irradiation as well as heavy ions exposure. 

Likewise, the influence of ATM, ATR and DNA-PK was subject of the study. 

Furthermore, the H2AX assay on whole lens organ culture was performed to 

investigate if lens epithelial cells exhibit a similar response in vitro and in organ culture. 

H2AX analysis in organ culture also gave the possibility to inspect if the lens epithelial 

cells in different regions (anterior and equatorial region) of the epithelial layer react 

differently to ionizing radiation. 
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In a next step, the expression of genes that are involved in DNA repair, cell-cycle 

progression, cataractogenesis, oxidative stress, growth and survival were analysed for 

pLECs after exposure to X-rays and Carbon-12 ions. 

Last but not the least, the osteogenic induction of pLECs was verified by Alizarin Red S 

staining and gene expression of osteogenic marker genes were investigated using RT-

qPCR. 

3.1 Growth properties of porcine lens epithelial cells (pLEC) in 

monolayer and in whole lens organ culture 

For establishing a whole organ culture of the eye lens and culturing pLEC, the growth 

properties had to be determined. The number of chromosomes was verified and growth 

properties in the ex vivo environment of supplied medium were assessed. To 

investigate cellular viability and cell division under these culture conditions, DNA 

replication and synthesis were examined. 

3.1.1 pLEC characteristics, morphology and growth pattern 

For chromosome counting, metaphase spreads from pLEC were prepared and stained 

with Giemsa. The count revealed the healthy number of chromosome pairs. There were 

in total 38 chromosomes - 18 pairs of autosomal chromosomes and a pair of allosome 

(sex) chromosomes. Figure 19 shows the chromosome preparation of a female pig 

since two X chromosomes are shown at the bottom right of the karyogram. 

 

Figure 19: Chromosome preparation. Colcemid induced metaphase spreads of pLEC were prepared 
and Giemsa staining was performed to visualize the condensed chromosomes. 
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The epithelial cells, which are located just beneath the anterior lens capsule, are tightly 

packed and have an epithelial cuboidal shape. The region marked with a red oval in 

Figure 20A shows the arrangement of the cells on the epithelial layer beneath the 

anterior part of the lens capsule. The unmagnified image of epithelial layer is shown in 

Figure 10E and F. When the pLECs within the epithelial layer are incubated for a week in 

culture medium, the cells start proliferating and begin covering the empty space in the 

petri-dish as well. Trypsinization of such cells and sub-culturing in a new petri-dish is the 

first passage (Figure 20B). At a lower density these first passage cells demonstrate a 

flattened and wider morphology. The cells also show high transparency. 

In order to determine the growth characteristics of pLEC cells, the cells were seeded at 

passage 2 and 3 in 3 cm petri dishes and counted at different time points with a Fuchs-

Rosenthal haemocytometer. Images were also taken before counting which are shown 

in Figure 21. During further sub-culturing from passage 1 to passage 2 and 3, cells get 

much wider and flatter. In the growth curve shown in Fehler! Verweisquelle konnte 

nicht gefunden werden., the lag phase lasts around one day, which is followed by an 

exponential growth phase until about day 10 and then comes to the stationary phase 

where the culture surface is already completely covered with the cells. The exponential 

phase is not that steep, representing the slow dividing nature of pLECs. 

 

 

Figure 20: Cultivation of porcine lens epithelial cells (pLEC). Figure A shows the epithelial layer as a 
monolayer of tightly arranged pLEC attached to the lens capsule at the anterior part of the lens. Figure B 
shows the pLECs sub-cultured from the epithelial layer (A) at the 8

th
 day of the culture (passage 1). 

Photos were taken with the phase contrast optics and the scale bar represents 100 µm. 

A B 
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Figure 21: Morphology of pLECs during a 
growth period of 7 days. pLECs were seeded at 
the density of 5000 cells per cm

2
 in petri dishes 

with a diameter of 3 cm (passage 2). Images were 
taken at different days with phase contrast optics. 
Scale bar represents 100 µm.  

 

Figure 22: Growth behavior 
of pLECs. Cells were seeded 
at a density of 5000 cells cm

-2
 

in petri dishes ( 3 cm). At 
each time point at least two 
dishes were trypsinized and 
cells were counted using a 
haemocytometer. Error bars 
indicate ±SE from at least 4 
samples (from at least 2 
independent experiments with 
2 replicates each). 

  

Day 2 

Day 7 

Day 4 
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3.1.2 Whole lens organ culture 

The whole lenses isolated from the porcine eyes were supplemented with culture 

medium to observe their viability under cell culture conditions. In a healthy lens, its 

transparency is still maintained. In Figure 23, the clarity of the lens can be distinctively 

seen in the culture medium even after 7 days of isolation. Slight decrease in lens 

transparency is noticeable at day 14 where, through the same lens, the small squares of 

the background graph paper are blurred compared to day 7. Furthermore, the whole 

lens was stained for live imaging of the nuclei of the lens epithelial cells. The image was 

taken for the anterior part of the lens near to the equatorial region. The blurriness at the 

top and bottom of the Figure 24 is due to the curvature in this part of the lens. 

Moreover, the whole lenses were also prepared for microtomy (see section 2.2.4) for 

further investigation of whole eye lenses. In Figure 25, the hematoxylin and eosin 

staining of a microtome-cut section is shown where the different parts of a porcine eye 

and also the whole lens capsule can be distinguished. The epithelial cells in the anterior 

as well as the equatorial region of the lens capsule were the subjects of interest in this 

thesis. This is because the single layered lens epithelial cell continues only up the 

equatorial region and there they start to differentiate into fiber cells with a longitudinal 

cellular morphology. Both epithelial cells and longitudinal fiber cells are clearly visible in 

the zoomed section of Figure 25.  

 

Figure 23: Lens organ culture. Photographs of a lens where taken after 7 and 14 days incubation at 
37°C and 5% CO2 in humidified atmosphere. 
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Figure 24: Live staining of lens epithelial cells in lens organ culture. The whole lens was stained 
with 30 µmol/l Hoechst 33342 solution for staining the nuclei and fluorescence microscopy was performed 
with the whole lens suspended in PBS. 

Figure 25: Hematoxylin-Eosin staining of lens. Paraffin-embedded porcine eye and lens were cut to 5 
µm thin slices and were stained with Mayer’s Haemalaun and 1 % Eosin. Hematoxylin stains the nucleic 
acids resulting in blue color for nuclei and Eosin non-specifically stains proteins resulting in a varying pink
color. 
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3.2 Determination of DNA synthesis during S-phase 

To investigate the replication of DNA during S-phase, the Click-iT EdU Assay was used 

in a next set of experiments. EdU (5-ethynyl-2´-deoxyuridine), a nucleoside analogue of 

thymidine, gets incorporated into the DNA during DNA synthesis and can be detected 

by a “click” reaction comprising a covalent reaction between an azide from a AlexaFluor 

dye and an alkyne from EdU catalysed by copper. This assay can be used to confirm 

whether the cells are proliferating (accompanied by DNA synthesis) or not. 

3.2.1 Replication and synthesis in the monolayer culture 

The supplementation of EdU to the epithelial layer of the lens led to its incorporation in 

the DNA of lens epithelial cells, which is visualised by green fluorescence in the middle 

and the right images in Figure 26. In the negative control without EdU, no green 

fluorescent nuclei were detected. The number of green fluorescent nuclei in the sample 

that was directly fixed after an EdU pulse of 2 h was lower compared with the number of 

labelled nuclei in the sample that was fixed 24 h after the 2 h EdU pulse.  

Similarly, when the same experiment was performed with pLECs grown as a monolayer 

culture, the results showed the same trend of higher numbers of nuclei with EdU in the 

24 h sample as compared to the sample that was directly fixed after a 2 h EdU pulse 

(Figure 27). The comparison of the 24 h samples clearly revealed a higher ratio of green 

to blue nuclei in the epithelial layer than in the monolayer culture. 

Next, EdU incorporation was measured with a flow cytometer. Figure 28 shows the flow 

cytometric analysis of EdU incorporation in pLECs demonstrating the synthesis of DNA 

in the monolayer culture. 

 

 

Figure 26: DNA synthesis in the epithelial layer. The epithelial layer cut off from the lens was supplied 
with 10 µmol/l EdU for 2 h and fixed with 3.5 % formaldehyde in PBS immediately after the 2 h pulse or 
24 h later. Nuclei (blue) were stained with DAPI (200 ng/ml) and EdU (green) was stained with AlexaFluor 
488 (1 µmol/l). Scale bar represents 20 µm. 
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Figure 27: DNA synthesis in epithelial cell monolayer culture. The pLECs were supplied with 10 
µmol/l EdU for 2 h and fixed with 3.5 % formaldehyde in PBS immediately after the 2 h pulse or after 24 h. 
Nuclei (blue) were stained with DAPI (200 ng/ml) and EdU (green) was stained with AlexaFluor 488 (1 
µmol/l). Scale bar represents 20 µm. 

Figure 28: Flow-cytometric analysis of DNA synthesis, determined by EdU incorporation into the 
DNA of pLECs. The pLECs were supplied with 10 µmol/l EdU for different time intervals. Samples were 
then harvested and fixed in 70 % ethanol. Alexa 488 was used to stain the EdU-positive cells. Flow 
cytometry was performed to separate EdU positive (+) and negative (-) cells which are shown in above 
histograms. 
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4 h of EdU supplementation resulted in 26 % cells with EdU incorporation. The 

percentage of EdU positive cells increased to 53 % and 61 % when EdU was provided 

for 24 h and 48 h, respectively. This result indicates a slower population doubling time 

of the porcine lens epithelial cells on the petri dishes as only 61 % of cells were EdU-

positive even after 48 h of its supplementation.  

3.2.2 Replication and synthesis in whole organ culture 

After successful demonstration of DNA synthesis in lens epithelial layers and pLECs in 

monolayer culture, the experiment was performed with whole lenses grown in organ 

culture. This experiment was of particular interest in order to know if epithelial cells 

within the whole lens would reveal a similar EdU incorporation profile.  

The results shows that there was not much difference in the number of cells with EdU 

incorporation for the sample which was directly fixed after 2 h EdU supplementation 

compared to the 24 h sample (Figure 29). On the other hand, when the 24 h sample 

images from epithelial layer (Figure 26) and monolayer culture (Figure 27) are 

compared with the whole lens (Figure 29), the number of EdU incorporating cells is 

obviously lower in the latter. 

 

3.3 Oxidative stress in pLEC monolayer culture 

Oxidative stress within the cell can cause genetic damages, senescence and even cell 

death. Despite the significance of this player in cellular fate, oxidative stress 

determination is difficult mainly due to the short-lived nature of the reactive oxygen 

species (ROS). To measure oxidative stress via ROS, the CellROX® Green dye was 

used, which is in reduced form can oxidize to a fluorescent form that binds to DNA. Its 

fluorescence is excited at 485 nm and emission was measured at a wavelength of 520 

nm. 

Figure 29: DNA synthesis in the whole lens. The whole lenses were supplied with 10 µmol/l EdU for 2 
h and fixed with 3.5 % formaldehyde in PBS directly or 24 h later. From the fixed lenses, the epithelial 
layer was cut off for staining. For microscopy the nucleus (blue) was stained with DAPI (200 ng/ml) and 
EdU (green) was stained with AlexaFluor 488 (1 µmol/l). Scale bar represents 20 µm. 
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A potent agent to generate ROS in cells is menadione. Different concentrations of 

menadione were added to pLECs in order to induce oxidative stress, and the effects 

were compared to pLECs exposed to X-rays. 

The bar diagram presented in Figure 30 shows an increasing amount of ROS formation 

with increasing concentration of menadione. The quantity of ROS represented as “mean 

grey value” (arbitrary units from the monochromatic image of green fluorescence) of the 

cell was 1.06 ± 0.19, 4.78 ± 0.42 and 23.56 ± 4.54 for 25, 50 and 100 µmol/l of 

menadione, respectively. In the negative control, without menadione and irradiation 

treatment, the value was 0.31 ± 0.10. For the sample exposed to 6 Gy (with 30 min 

incubation time after irradiation) of X-rays, the value amounted to 0.60 ± 0.09. Another 

aspect of this experiment was to create a standard for generation of ROS, which could 

be compared to ROS production after X-rays exposure. 

 

Figure 30: Oxidative Stress measurement by CellROX® Green. pLECs treated and untreated with 
menadione for an hour and X-ray exposed (30 min after exposure) samples were stained with 5 µmol/l
CellROX

®
 Green for 30 min at 37 °C. Images were taken with the AxioCam attached to a fluorescence 

microscope. The bar graph represents the mean of the mean grey value in the monochrome image of 
green fluorescence from at least 12 images ± SEM.  
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After quantifying the ROS generated by menadione, the kinetics of ROS production 

after X-ray exposure were determined. The results for this experiment is plotted in Figure 

31, where the value for the negative control (no menadione, no X-rays) and the positive 

control (1 h 100 µmol/l menadione, no X-rays) was found to be 0.69 ± 0.16 and 18.08 ± 

2.00, respectively. pLECs exposed to 6 Gy of X-rays had mean a grey values of 1.76 ± 

0.65, 1.58 ± 0.41, 1.11 ± 0.19, 0.95 ± 0.27, 0.90 ± 0.28 and 1.27 ± 0.27 after incubation 

of 0 min, 15 min, 30 min, 1 h, 4 h and 24 h of irradiation. Although for 0 min incubation 

sample, it took at least a min before putting CellROX® Green due to time required for 

opening the door of the X-ray exposure chamber. 

 

 

 

 

Figure 31: X-ray-induced oxidative stress as a function of time after exposure. pLECs were treated 
with menadione for an hour or exposed to 6 Gy X-rays (harvesting of cells after 0 min, 15 min, 30 min, 1 
h, 4 h and 24 h after irradiation). Samples were stained with 5 µmol/l CellROX

®
 Green for 30 min at 37 

°C. Images were taken with the AxioCam attached to the fluorescence microscope. The bar graph 
represents the mean of mean grey value in the monochromatic image of green fluorescence from at least 
15 images ± SEM. 
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3.4 Radiobiological characterization 

The focus of the next set of experiments was the radiobiological characterization of 

pLECs. Therefore, the plating efficiency and cellular survival after X-irradiation were 

determined using the colony forming ability assay. 

3.4.1 Plating efficiency of pLECs 

The plating efficiency is an important parameter for performing the colony forming ability 

test as it serves as an indicator of cellular survival after radiation exposure. The plating 

efficiency of pLECs, which was calculated according to Table 14, amounted to 0.095 

(9.5 %). 

3.4.2 Cellular survival after X-ray exposure 

Survival of pLECs after X-rays exposure was performed using colony forming ability test 

assay. The relative surviving fraction of immediately and late plated pLECs were plotted 

in order to determine the survival benefit with respect to 24 h incubation time given for 

possible damage repair. In  

Figure 32, both curves were drawn using the single-hit-multi-target model. For 

immediately plated cells (0 h incubation after radiation exposure before seeding), the 

parameters D0, n and Dq were calculated to be 1.42 Gy, 1.82 and 0.85 Gy respectively. 

For the late plated cells (24 h incubation before seeding), D0, n and Dq were found to be 

1.68 Gy, 1.43 and 0.60 Gy, respectively. The comparison of the curves did not show 

any statistically significant difference in the survival of pLECs with respect to incubation 

time after X-rays exposure (0 h vs. 24 h of recovery time). The combined D0 and n was 

calculated to be 1.54 Gy and 1.61 respectively. For better visualization and comparison 

of the result, the data are sorted in Table 15. 

Table 14: Plating efficiency of pLECs.  

Number of cells seeded Mean colony count Plating efficiency (PE) 

50 6.3 ± 1.7 0.125 ± 0.034 

100 11.5 ± 4.5 0.115 ± 0.045 

200 19.0 ± 2.4 0.095 ± 0.012 

500 37.0 ± 2.9 0.074 ± 0.006 

1000 63.8 ± 4.3 0.064 ± 0.004 

Mean PE of all measurements 0.095 ± 0.020 
pLECs were seeded on 6 cm petri dishes in different numbers. After 30 days, cells were fixed and 
stained with crystal violet solution in 3.5 % formaldehyde. Colonies with at least 50 cells were 
counted. 
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Table 15: Comparison of survival curve parameters for IP (immediately plated) and LP (lately 
plated) pLECs. 

Parameters IP LP Combined 

D0 (Gy) 1.42 ± 0.07 1.68 ± 0.17 1.54 ± 0.08 

n 1.82 ± 0.43 1.43 ± 0.58 1.61 ± 0.53 

Dq (Gy) 0.85 ± 0.36 0.60 ± 0.70 - 

 

  

Figure 32: Clonogenic survival of pLECs after exposure to X-rays. Cells were seeded either 
immediately after irradiation (immediate plating, 0 h) or after incubation for 24 h post irradiation (late 
plating) and were fixed and stained with crystal violet solution in 3.5 % formaldehyde solution when 
colonies (at least 50 cells per colony) were visible ( ̴ 30 days incubation). Mean ± SD were calculated 
from at least 2 independent experiments. 
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3.5 Cell cycle progression after X-ray exposure 

Next, the distribution of pLECs in different phases of cell cycle after X-rays exposure 

was addressed using the cell cycle assay. Here, the modulation in the cell cycle 

distribution was determined using propidium iodide and flow cytometry. Exponentially 

growing cells were irradiated with 0, 1, 2, 4 and 6 Gy and harvested at 4, 24, 48, 72 and 

168 h after irradiation. Supplementary figure S1 shows the histograms of propidium 

iodide fluorescence. As propidium iodide binds stoichiometrically to DNA, the 

distribution of cells in G1 phase (2n), S-phase (between 2n and 4n) and G2/M phase 

(4n) of the cell cycle becomes visible. The number of the cells in the different cell cycle 

phases was determined as mentioned in material and method section 2.2.9. 

The percentage of cells in the different cell cycle phases is shown in Figure 33. In the 

non-irradiated samples (0 Gy), the percentage of cells in G1 phase increased with time 

(0 h to 168 h) while the percentage of S and G2/M phase cells decreased during the 

exponential growth of cells. Four hours after exposure to X-rays, there was almost no 

change in the percentage of cells at G1, S or G2/M phase even with increasing dose. 

But from 24 h onwards, a clear dose-dependent shift of irradiated cells towards the 

G2/M phase was observed compared to non-irradiated control cells. The percentage of 

the G2/M phase cells decreased with time for the non-irradiated sample. This reduction 

of G2/M phase cells was seen in exponentially growing cells. For lower doses of 1 Gy 

and 2 Gy, the reduction of the percentage of cells in G2/M phase with increasing time 

was present but not to the extent as non-irradiated ones. But for higher doses of 4 Gy 

and 6 Gy, the cells did not return to the normal growth pattern even after a week (168 

h). This shift of the cell population to the G2/M phase is denoted as G2/M delay. In this 

study, the G2/M phase cells did not recover to the exponential growth pattern (i.e. 

radiation damaged cells did not divide to become G1 phase cells again) instead they 

remained in G2/M phase (slightly above 40 %) therefore a G2 block was achieved. 

In the upcoming results parts only the percentage of cells in the G2/M phase of the cell 

cycle will be discusses, because radiation exposure of pLECs resulted in a G2/M phase 

arrest rather than delays in the progression of cells through the G1 or S phase.  
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3.5.1 The effect of passage number on cell cycle progression 

The pLECs used for cell cycle analysis are primary cells. Unlike the immortal cell line, 

the primary cells face the problem of aging with each cell passage. Therefore, by 

investigating the cell cycle progression of these cells at different passages will help to 

determine the right limit of passage number, which can be used in further investigations. 

Figure 34 shows the behaviour of second passage pLECs after X-ray exposure. Four 

hours after irradiation, the percentage of cells at G2/M phase of the cell cycle for 1 Gy 

and 4 Gy samples was significantly higher than in the non-irradiated sample. After 24 h 

onwards, the G2/M phase percentage of cells for the non-irradiated sample decreased 

during the exponential growth phase. This reduction of cells in the G2/M phase was true 

for cell samples exposed to 1 Gy and 2 Gy. A lower G2/M arrest was observed for 1 Gy 

and 2 Gy although it was not statistically significant compared to 0 Gy at respective time 

points. For 4 and 6 Gy, there was clear G2/M arrest after 24 h onwards, and the 

difference compared to the non-irradiated sample was statistically significant. 

Specifically, the percentage of G2/M phase cells at 4 h and 72 h was 32.8 % and 21.2 

% for 0 Gy, respectively, and 36.9 % and 43.1 % for 6 Gy, respectively.  

Figure 33: Time-dependent distribution of cells in the different phases of the cell cycle. This 
exemplary percentage of cells distribution in G1-, S-, and G2/M-phases of the cell cycle was derived from 
a single experiment (supplementary figure S1).  
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For third passage (P-3) pLECs (Figure 35), the difference in the reduction of G2/M 

phase cells for 1 Gy and 2 Gy was not significantly different from 0 Gy at all the time 

points. Also for the P-3 cells, the G2/M phase arrest started 24 h post irradiation for 4 

Gy and 6 Gy and continued till 72 h. The difference in the percentage of cells at the 

G2/M phase of the cell cycle between non-irradiated and 4 and 6 Gy irradiated samples 

was statistically significant. The percentage of G2/M phase cells at 4 h and 72 h was 

27.4 % and 21.7 % for 0 Gy, respectively and 29.9 % and 36.6 % for 6 Gy, respectively. 

At passage 4 (Figure 36A), a slight increase in the percentage of G2/M phase cells for 6 

Gy irradiated cells compared to 0 Gy cells 24 h onwards post irradiation was observed. 

At 4 h and 72 h after irradiation, the percentage of G2/M phase cells was 27.2 % and 

21.1 % for 0 Gy, respectively and 27.1 % and 27.6 % for 6 Gy. 

At passage 5, even the non-irradiated sample failed to show the normal exponential 

growth of the pLECs (Figure 36B). The percentage of G2/M phase cells for irradiated and 

non-irradiated cells was almost unchanged at all time points after irradiation. Here, the 

percentage of G2/M phase cells at 4 h and 72 h after irradiation was 26.7 % and 25.8 % 

for 0 Gy, respectively, and 26.5 % and 27.0 % for 6 Gy. 

It is already known that the number of G1 phase cells increases towards the end of the 

exponential growth phase whereas the number of cells in G2/M phase decreases 

(Pollard et al. 2016). At confluency, most of the cells are at G1 phase or even G0 

phase. In this part of the study, the exponential growth phase was analysed with 

reference to a decrease of G2/M phase cells for different passages of non-irradiated 

pLECs (Figure 37). For the passage 2 pLECs, the decreases in G2/M phase cells after 

24 h, 48 h and 72 h were statistically significant compared to the 4 h sample. For 

passage 3 pLECs, only the 48 h and 72 h samples showed a statistically significant 

decrease in G2/M phase cells compared to 4 h. Passage 4 pLECs still showed the trend 

of an exponential growth phase. But at passage 5, the percentage of G2/M phase cells 

decreased only very slightly with increasing time. Hence the results indicate a decrease 

in the cellular proliferation potential with increasing passage number, which could be 

due to aging of the cells. 
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Figure 34: The percentage of cells in G2/M phase for the second passage (P-2) determined by flow 
cytometry. P-2 pLECs were irradiated with various X-ray doses and were harvested and stained with 
propidium iodide. The percentages of G2/M phase cells, out of 10,000 events per condition, were plotted 
against the harvesting time points. The bars indicate mean ± SEM from three independent experiments.
Statistical significance was determined with two-tailed Student’s t-tests (*,p < 0.05; **,p < 0.01; ***,p < 
0.001). 

Figure 35: The percentage of cells in G2/M phase for third passage (P-3) determined by flow 
cytometry. P-3 pLECs were irradiated with various X-ray doses and were harvested and stained with 
propidium iodide. The percentages of G2/M phase cells, out of 10,000 events per condition, were plotted 
against the harvesting time points. The bars indicate mean ± SEM from three independent experiments.
Statistical significance was determined with two-tailed Student’s t-tests (*,p < 0.05; **,p < 0.01; ***,p < 
0.001). 
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Figure 36: The percentage of cells in G2/M phase for fourth (A) and fifth (B) passage determined 
by flow cytometry. Cells were irradiated and were harvested to be stained with propidium iodide. The 
percentages of G2/M phase cells, out of 10,000 events per condition, were plotted against the harvesting
time points. The bars indicate mean ± SEM from two independent experiments for P-5 cells (B). Data for 
P-4 (A) were from single experiment. 

Figure 37: Comparison of the exponential growth of non-irradiated pLECs in passages 2 to 5 (P-2 
to P-5). The G2/M percentage cells were out of 10,000 analyzed events. The bars represent mean ± 
SEM. For P-2 and p-3, the n-number was three. Data for P-4 were from single experiment, whereas for P-
5, it was from two experiments. Statistical significance was determined with two-tailed Student’s t-tests 
(*,p < 0.05; **,p < 0.01; ***,p < 0.001). 
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3.5.2 The effect of PIKK related kinases on cell cycle progression 

From the previous results, it is clear that exposure to ionizing radiation (X-rays) leads to 

G2/M arrest. In a cell system, these arrests prevent the cells from passing damaged 

DNA to the daughter cells. Such cell cycle control provides valuable time for repairing 

the damaged DNA. The next step in this study therefore was to understand the role of 

key regulator molecules, like ATM, ATR and DNA-PK, which are involved in DNA repair, 

by adding specific inhibitors to pLECs and analysing the cell cycle progression. These 

were preliminary experiments and results presented below for all three inhibitors were 

taken from their respective single experiments.  

First of all, the ATM inhibitor KU55933 was used to have a closer look on its effect in 

modulation of cell cycle phases of pLECs after X-ray exposure. As mentioned in section 

1.4.1, ATM activation leads to phosphorylation of molecules required for DNA damage 

checkpoint as well as cell cycle arrest. The supplementation of the ATM inhibitor to 

pLECs resulted in a slight increase in the percentage of non-irradiated cells in the G2/M 

phase at all the time points. After X-ray irradiation, the percentage of G2/M phase cells 

increased by the ATM inhibitor at 48 h and 72 h (Figure 38).  

Secondly, ATR was inhibited using VE821. For non-irradiated samples, no change in 

the percentage of cells in G2/M phase was observed between ATR inhibitor-

supplemented and non-supplemented medium. On the contrary, for the irradiated cells, 

ATR inhibition resulted in comparatively less G2/M arrested cells than cells that were 

provided with medium that did not contain the ATR inhibitor at all time points (Figure 39).  

Thirdly, DNA-PK inhibitor NU7441 was tested to have a closer look if it would affect 

distribution of cell cycle in pLECs. DNA-PK has a crucial role in repairing of DNA DSB 

by NHEJ (Figure 6). DNA-PK supplemented pLECs on the other side did not show any 

particular trend (Figure 40). In the non-irradiated sample, at the 4 h time point, DNA-PK 

inhibition slightly increased the percentage of cells in G2/M phase. And for the 

remaining time points, DNA-PK inhibition led to a decrease in G2/M phase cells. For 

irradiated samples, DNA-PK inhibition had no significant effect on the percentage of 

cells in G2/M phase. 

Since the results for all three inhibitors are derived from single experiments confirmative 

repeat experiments would be required to prove their effects in pLECs after radiation 

exposure. 
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3.6 DNA damage induction and repair 

In order to analyse the induction and repair of DNA damage, especially DNA double 

strand breaks, the H2AX assay was performed. X-ray exposure leads to the induction 

of DNA DSBs and at the break site ATM phosphorylates the histone variant H2AX to 

become H2AX. This H2AX then triggers additional molecules that are required for 

repair of DNA. Using the H2AX assay allows to measure H2AX as a measured of 

DNA damage by labelling it with immunofluorescence. The detection of labelled H2AX 

will give information on the DNA damage sites in terms of foci (pink color due to 

secondary antibody against H2AX). 

 

 

 

 

 

 

Figure 38: Effect of ATM inhibition on cell cycle progression after exposure to X-rays. Medium 
change with and without the ATM inhibitor (ATMi) KU55933 (10 µmol/l) was performed 1 h before 
irradiation (6 Gy). Cells were harvested at different time points for propidium iodide staining and cell cycle 
analysis. Bar graph gives the percentage of G2/M phase cells out of 10,000 events from a single 
experiment. 
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Figure 39: Effect of ATR inhibition on cell cycle progression after X-irradiation. Medium change 
with and without the ATR inhibitor (ATRi) VE821 (5 µmol/l) was performed 1 h before irradiation. Cells 
were harvested at different time points for propidium iodide staining and cell cycle analysis. Bar graph 
gives the percentage of G2/M phase cells out of 10,000 events from a single experiment. 

Figure 40: Effect of DNA-PK inhibition on cell cycle progression after X-irradiation. Medium change 
with and without the DNA-PK inhibitor (DNA-PKi) NU7441 (5 µmol/l) was performed 1 h before irradiation. 
Cells were harvested at different time points for propidium iodide staining and cell cycle analysis. Bar 
graph gives the percentage of G2/M phase cells out of 10,000 events from a single experiment. 
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3.6.1 DNA damage induction and repair analysis after X-ray exposure 

The number of H2AX foci induction after X-irradiation is shown in Figure 41. An 

ionizing radiation dose-dependent increase in the number of foci was observed 1 h after 

X-ray exposure. Figure 42 presents a dose-dependent decrease of foci 24 h after X-ray 

exposure that can be interpreted as successful DNA repair while an increasing number 

of foci remained at higher doses, pointing towards a hampered repair of DNA damages. 

It should be noted that the foci at 24 h samples were comparatively larger and more 

distinct as compared to 1 h samples Figure 42. 

The effect of the ionizing radiation dose on the induction of DNA DSBs 1 h after X-ray 

exposure and on repair of those breaks 24 h after exposure is provided in Figure 43. 

The average number of foci per cell nucleus 1 h after irradiation showed a steep, almost 

linear increase from 0 to 4 Gy. For the repair after 24 h, the steepness of the increase of 

the average number of foci with increasing X-rays dose was smaller. 

It is well-known that the maximal H2AX formation occurs between 30 min to an hour 

after irradiation (Mariotti et al. 2013, Lau et al. 2010). Here, time points of 1 h, 4 h, 24 h 

and 48 h after X-rays exposure were analysed. The kinetics of H2AX formation showed 

decrease of foci number with respect to time for both 1 Gy and 4 Gy X-ray-exposed 

samples which persisted even after 48 h (Figure 44). 

The average number of foci in pLECs in non-irradiated and irradiated samples is plotted 

in Figure 45. The non-irradiated samples had an average of 1.2 foci per nucleus. In the 2 

Gy-irradiated samples, 20.2 foci per nucleus were detected 1 h after irradiation, which 

decreased to 3.4 foci 24 h after irradiation. The statistical analysis showed significant 

changes for 24 h and highly significant differences for 1 h samples in foci formation in X-

ray exposed cells as compared to unexposed cells. The reduction in the average 

number of foci in X-ray exposed sample from 1 h to 24 h was also statistically 

significant. 

3.6.2 H2AX formation in pLECs after exposure to low doses of X-rays 

In order to confirm the sensitivity and effect of low doses of X-rays, the H2AX assay 

was performed with pLECs. The irradiation of sample was done at a rate of 1 Gy per 

min. The specific amount of dose was ensured by controlling the time of X-ray exposure 

over the samples. Results plotted in Figure 46 show that there is also a dose-dependent 

increase in the number of DNA double strand break sites at doses below 0.5 Gy. 
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Figure 41: Immunofluorescence staining of H2AX in pLECs 1 h 
after X-ray exposure. Cells were fixed with 3.5 % formaldehyde. 

Fluorescent antibody staining for H2AX is given by pink foci; nuclei 
are stained in blue with DAPI. Scale bar represents 20 µm. 

 

 

 

 

 

 

 

 

Figure 42: Immunofluorescence staining of H2AX in pLECs 24 h 
after X-ray exposure. Cells were fixed with 3.5 %. Fluorescent 

antibody staining for H2AX is given by pink foci; nuclei are stained in 
blue with DAPI. Scale bar represents 20 µm. 
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Figure 43: Dose-dependent induction and repair of DNA DSBs in pLECs. Cells irradiated with 0, 0.5, 
1, 1.5, 2, 3 and 4 Gy of X-rays and fixed after 1 h. Similarly, cells were irradiated with 0, 1, 2, 4, 6, 8 and 
10 Gy and fixed after 24 h to evaluate the repair of DNA DSBs. Bars represent mean foci ± SEM derived 
from at least 403 cells. 

Figure 44: Kinetics of H2AX foci disappearance during repair. pLECs irradiated with 1 and 4 Gy 
were fixed with 3.5 % formaldehyde at different time points. Bars represent mean ± SEM derived from at 
least 190 cells. 
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Figure 45: DNA DSBs induction and repair. Cells irradiated with 2 Gy were harvested either at 1 h after 
X-ray exposure for obtaining a measure of damage induction or after 24 h for obtaining a measure of 
damage repair. The y-axis gives the average number of foci per nucleus ± SEM from seven independent 
experiments and in each experiment at least 173 cells were analyzed. Statistical significance was 
determined with two-tailed Student’s t-tests (*,p < 0.05; **,p < 0.01; ***,p < 0.001). 

Figure 46: H2AX foci formation after exposure to low doses of X-rays. pLECs were irradiated with 0, 
0.1, 0.3 and 0.5 Gy and were harvested 1 h after X-ray exposure for damage induction and at 24 h for 
damage repair. Y-axis gives the average number of foci per nucleus ± SEM from four independent 
experiments and in each experiment at least 196 cells were analyzed. Statistical significance was 
determined with two-tailed Student’s t-tests (*,p < 0.05; **,p < 0.01; ***,p < 0.001). 
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At 0.1 Gy, the average number of foci per nucleus after 1 h was 2.3, which were 

reduced to 1.2 after 24 h. Similarly, at 0.3 Gy, the average number of foci after 1 h was 

3.5, which were later reduced to 1.5 after 24 h. For both 0.1 and 0.3 Gy-exposed 

samples, the reduction in foci from 1 h to 24 h were not significant. However, the 

reduction in the average number of foci at 1 h (5.7) to 24 h (1.9) for 0.5 Gy-irradiated 

samples was statistically significant. Nevertheless, the average numbers of foci for all 

0.1, 0.3 and 0.5 Gy-irradiated samples were significantly different compared to the non-

irradiated sample at the 1 h time point. 

3.6.3 The effect of PIK-related kinases on DNA double strand break repair 

DNA DSB induction and repair was also studied under the influence of different 

inhibitors of key molecules that are involved in the process of DNA damage repair using 

defined inhibitors (KU55933 is an ATM inhibitor, VE821 is an ATR inhibitor and NU7441 

is a DNA-PK inhibitor). 

Upon addition of KU55933 (ATM inhibitor), as shown in Figure 47, it was found that the 

average number of foci per nucleus was comparatively lower than that for controls 

without inhibitor for irradiated cells. 1 h after exposure to 2 Gy, the average number of 

foci per nucleus decreased from 21.1 to 12.0, in absence of KU55933 versus presence 

of KU55933, respectively, and the difference was statistically significant (p=0.019). At 

24 h, although statistically not significant (p=0.121), a noticeable decrease in foci could 

be seen in cells supplemented with the ATM inhibitor (2.1 foci per nucleus) as 

compared non-ATM-inhibitors cells  (4.6 foci per nucleus). 

In contrast to ATM inhibition, ATR inhibition by supplementation of 5 µmol/l VE821 led 

to slight increase in the number of foci per nucleus as compared to samples not 

supplemented with the ATR inhibitor (Figure 48). The change in foci number from 

VE821-absent to -present respectively were 2.2 to 3.9 at 0 Gy after 24 h (p=0.2), 21.1 to 

23.2 at 2 Gy after 1 h (p=1) and 4.6 to 5.3 at 2 Gy after 24 h (p=0.605), which were 

statistically not significant. 

Similarly, addition of NU7441 to inhibit DNA-PK also did not show any significant 

change in foci number compared to NU7441 negative samples (Figure 49). The p-

values between NU7441-absent and –present samples at 0 Gy 24 h, 2 Gy 1 h and 2 Gy 

24h were 0.390, 0.686 and 0.259 respectively. 
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Figure 47: Influence of ATM inhibition on H2AX foci formation after X-ray exposure. pLECs 
irradiated with 2 Gy of X-rays in presence or absence of 10 µmol/l KU55933 were analysed for H2AX 1 h 
and 24 h after exposure. Y-axis gives the average number of foci per nucleus ± SEM from 3 independent 
experiments and in each experiment at least 186 cells were analyzed. 

Figure 48: Influence of ATR inhibition on H2AX foci formation after X-ray exposure. pLECs 
irradiated with 2 Gy of X-rays in the presence or absence of 5 µmol/l VE821 were analysed for H2AX 1 h 
and 24 h after exposure. Y-axis gives the average number of foci per nucleus ± SEM from 3 independent 
experiments and in each experiment at least 186 cells were analyzed. 
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3.6.4 DNA damage induction and repair after heavy ion exposure 

In the cellular system, heavy ions induce complex and higher percentages of damage 

compared to X-rays and protons due to their higher charge and size. Since such heavy 

particles are difficult and costly to generate, there are very few studies regarding the 

role and mechanism of radiation-induced cataract. In this study, two beam times at 

GANIL with argon and carbon ions were used to study the DNA DSBs induction and 

repair in pLECs using the gamma H2AX assay. 

The exposure of pLECs to argon ions resulted in a dose-dependent increase in the 

number of foci per cell nucleus (Figure 50). The average numbers of foci were 8.2, 17.1 

and 20.9 for 0.5, 1 and 2 Gy, respectively, 1 h after exposure. 24 h after exposure the 

foci numbers were reduced to 5.3, 7.9 and 5.8, respectively. Statistical analysis with 

Student’s t-tests revealed that the difference in H2AX foci induction (1 h samples) 

between argon ions and X-rays exposed samples were statistically significant for 1 Gy 

(***,p < 0.001) and 2 Gy (**,p < 0.01) and statistically insignificant for 0.5 Gy.  

Figure 49: Influence of DNA-PK inhibition on H2AX foci formation after X-ray exposure. pLECs 

irradiated with 2 Gy of X-rays in the presence or absence of 5 µmol/l NU7441 were analysed for H2AX 1 
h and 24 h after exposure. Y-axis gives the average number of foci per nucleus ± SEM from 3 
independent experiments and in each experiment at least 186 cells were analyzed. 
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Figure 50: DNA DSBs induction and repair after argon ion (Ar-36, energy on target 84.7 MeV/n, 
LET 269.4 keV/µm) exposure. H2AX foci formation was analysed in pLECs exposed to different doses 
of argon ions. The data are from a single experiment and for each condition at least 255 cells were 
analysed. Bars represent mean ± SEM. 

Figure 51: DNA DSBs induction and repair after carbon ion (C-12, energy on target 28.6 MeV/n, 
LET 71 keV/µm) exposure. pLECs exposed to different doses of carbon ions were analysed for H2AX
foci formation. The data are from a single experiment and for each condition at least 375 cells were 
analysed. Bar represent mean ± SEM. 
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On the other hand, difference in residual H2AX foci after 24 h of argon ions and X-rays 

exposure were statistically significant for all 0.5 Gy (***,p < 0.001), 1 Gy (***,p < 0.001) 

and 2 Gy (***,p < 0.001).  

In carbon ion exposed pLECs (Figure 51), the average number of foci per nucleus was 

dose-dependent but it was lower in comparison to argon ion-exposed cells. The 

average number of foci per nucleus for 0.5, 1, 2 and 4 Gy was 4.6, 7.1, 15.5 and 22.1 

respectively for 1 h sample and 1.4, 1.3, 2.5 and 3.0, respectively, after 24 h. The 

difference in H2AX foci induction (1 h samples) between carbon ions and X-rays 

exposed samples were statistically insignificant for all 0.5 Gy, 1 Gy, 2 Gy and 4 Gy.  

When comparing the difference in residual H2AX foci after 24 h between carbon ions- 

and X-ray-exposed samples, it was statistically significant for 1 Gy (***,p < 0.001) and 2 

Gy (**,p < 0.01) but for 0.5 Gy and 4 Gy. 

To summarize, the average numbers of H2AX foci induction (1 h after irradiation) and 

residual H2AX foci (24 h after irradiation) were higher for argon-exposed samples than 

for carbon-exposed samples. This result hint towards the higher RBE of argon ions 

compared to carbon ions. The differences in foci number after 1 h of irradiation between 

argon and carbon were statistically significant for doses 0.5 Gy (*,p < 0.05), 1 Gy (***,p 

< 0.001) and 2 Gy (*,p < 0.05). Likewise, the differences were statistically significant for 

samples after 24 h of irradiation for all 0.5 Gy (**,p < 0.01), 1 Gy (***,p < 0.001) and 2 

Gy (**,p < 0.01). 

3.7 DNA damage response after X-ray exposure in whole organ 

culture 

The analysis on whole lens organ cultures is important as it provides valuable 

information about DNA DSBs induction and repair at organ level which is more related 

to the human eye lens. One of the methods to analyse DNA damage was irradiating 

whole lens to its anterior surface facing upward and then fixing it with formaldehyde. 

The epithelial layer was isolated to stain for H2AX. The images in Figure 52 distinctly 

show that in the non-irradiated lens, H2AX foci are not present. But for lenses that 

were exposed to 2 Gy of X-rays, DNA DSBs induction was undoubtedly seen 1 h after 

exposure and the number of those DSBs was reduced after 24 h of repair time. A 

drawback of this experimental procedure was that the separation and identification of 

the anterior and the equatorial regions was difficult. 
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Figure 52: Immunofluorescence staining of 
H2AX in lens epithelial cells in lens epithelial 
layer after X-ray exposure. Lenses were fixed 
with 3.5 % formaldehyde 1 h and 24 h after X-ray 
exposure. The epithelial layers were prepared from 
the fixed lenses. Fluorescent antibody staining for 
H2AX is given by pink foci; nuclei were stained in 
blue with DAPI. Scale bar represents 20 µm. 

 

 

 

To enable analysis of different parts of the eye lens, microtome sections of lenses were 

prepared and stained using the immunofluorescence technique. The advantage of using 

microtome sections was that both the anterior (containing lens epithelial cells) part and 

the equatorial part, where differentiation from epithelial cells to fiber cells takes place, 

could be identified and analyzed. Images in Figure 53 show that in non-irradiated 

lenses, there were almost no H2AX foci in the anterior region whereas cells in the 
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equatorial region showed H2AX foci even without irradiation. After exposure to 4 Gy of 

X-rays, the cells in the anterior region also presented foci at the 1 h time point which 

actually were repaired when the lens was incubated for 48 h. For the cells at the 

equatorial region, the number of H2AX foci was slightly increased in the irradiated 

lenses and appeared unaltered after 48 h incubation. 

Figure 53: Immunofluorescence staining of H2AX in lens epithelial cells in microtome sections of 
whole porcine lenses after X-ray exposure. Lenses fixed with 3.5 % formaldehyde were used for 

preparing microtome sections. Fluorescent antibody staining for H2AX is given by pink foci; nuclei were 
stained with DAPI (blue). Scale bar represents 10 µm. 



RESULTS 
 

 
- 82 - 

 

3.8 Gene expression after exposure of pLECs to different radiation 

qualities 

For survival of pLECs after irradiation, a large number of genes needs to be regulated 

for survival. In this study, several genes were selected that are involved in DNA repair, 

cell-cycle progression, cataractogenesis, oxidative stress, growth and survival.  

3.8.1 Gene expression after X-ray exposure 

Based on their stable expression the three housekeeping genes (HKGs) ACTB, B2M 

and HPRT were selected as reference genes for assessing the relative expression of 

the specific chosen genes. The use of multiple HKGs increases the reliability of the 

results for the chosen genes. However, it has been shown that exposure to ionizing 

radiation can modulate the expression of even well-established HKGs (Banda et al. 

2008, Iyer et al. 2017). In recent years, many experiments have been performed to 

identify HKGs that are stable after exposure to different doses of ionizing radiation. Only 

minor fluctuations in the expression of the three selected HKGs were observed, and 

these changes were not significant (Figure 54). At un-irradiated conditions, the values 

for n-fold relative expression changes of the genes ACTB, B2M and HPRT are well 

within the range of -1 to 1. N-fold changes between -2 to 2 were regarded as not 

significant. The expression of the ACTB gene (n-fold change) decreased dose 

dependently, but was with in -2/2. B2M showed some positive regulation with increasing 

doses of X-rays, but again the values were within -2/2. The HPRT gene showed the 

most stable expression out of three selected HKGs. Next, expression of selected target 

genes of pLECs were analysed after exposure to different doses of X-radiation. 

CDKN1A whose protein product is also known as p21 has an important role in cell cycle 

regulation (Cazzalini et al. 2010, Bedelbaeva et al. 2010, Karimian et al. 2016). The 

results show that the expression of the CDKN1A gene depended on both dose and time 

after X-ray exposure (Figure 55). For all doses, the up-regulation of the gene already 

started at the 4 h time point with 1.44-fold, 1.49-fold, 1.71-fold and 2.99-fold changes at 

1, 4, 8 and 16 Gy, respectively. The up-regulation was lower 12 h after irradiation but 

again increased at the 24 and 72 h time points for the 4, 8 and 16 Gy-irradiated 

samples. For 4, 8 and 16 Gy, the up-regulation values were 3.78-fold, 2.10-fold and 

3.80-fold at 24 h and 2.32-fold, 2.98-fold and 3.49-fold at 72 h, respectively.  
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Figure 54: X-ray dependent changes 
in gene expression of the 
housekeeping genes ACTB, B2M 
and HPRT. The housekeepers ACTB, 
B2M and HPRT are analyzed at 4, 12, 
24 and 72 h after exposure to varying 
dose of X-rays. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 
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Growth arrest and DNA damage-inducible gamma (GADD45G) gene transcripts 

generally increase after growth arrest caused by stress or after treatments with DNA-

damaging agents (Ou et al. 2015, Flores and Burnstein 2010, Takekawa and Saito 

1998, Ishida et al. 2013). Although the expression changes after X-ray exposure were 

non-monotonous, a dose dependency was observed at the time point of 4 h after 

irradiation, reaching a positive 5-fold change at 16 Gy (Figure 56). 

CRYAB gene encodes the protein Alpha-crystallin B chain (Jeanpierre et al. 1993), 

which is a member of the small heat shock protein family and functions as a molecular 

chaperone (Horwitz 1992, Yamamoto et al. 2014). By binding to beta and gamma 

crystallins it plays a crucial role in the lens to maintain its transparency and refractive 

index (Takemoto and Sorensen 2008, Horwitz 2003, Putilina et al. 2003). 

 

Figure 55: X-ray dependent changes 
in gene expression of CDKN1A. 
CDKN1A was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of X-rays. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 56: X-ray dependent changes 
in gene expression of GADD45G. 
GADD45G was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of X-rays. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 
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Exposure to X-rays changed in the gene expression pattern of CRYAB at the later time 

points of 24 and 72 h after irradiation. The change was below 2-fold for 1 Gy but 

increased for higher doses (Figure 57) with n-fold changes of 2.11, 2.63 and 2.16 for 4, 

8 and 16 Gy, respectively at 24 h time point. Similarly, the up-regulation amounted to 

1.23-fold, 2.07-fold and 2.25-fold for 4, 8 and 16 Gy, respectively, 72 h after X-

irradiation. 

DNASE2 (deoxyribonuclease II) hydrolyses DNA under acidic conditions (Evans and 

Aguilera 2003). During differentiation from epithelial to fiber cells the cellular organelles 

along with all DNA content are degraded at the equatorial region of the lens capsule 

(Nishimoto et al. 2003, Nakahara et al. 2007, Torriglia et al. 1995). This degradation 

process is crucially required for the transparency of the lens. As depicted in Figure 58, 

the gene showed similar radiation-induced regulation as the CRYAB gene where the 

positive up-regulation was dose-dependent and the expression was increased mainly at 

later time points of 24 and 72 h after irradiation. 

Studies have demonstrated that PAX6 is not only required for differentiation of lens 

epithelial cells to lens fiber cells but also in the development process of the whole eye 

(Ashery-Padan et al. 2000, Kamachi et al. 2001, Shaham et al. 2009). In pLECs, the 

gene was up-regulated in a dose- and time-dependent manner after exposure to X-rays 

compared to un-irradiated samples (Figure 59). In the 1 Gy-exposed sample, there was 

a 2.59-fold increase at 24 h. In the 4 Gy-irradiated sample, the expression increased 

4.33-fold at 72 h. After exposure to 8 and 16 Gy, the expression increased to 2.42-fold 

and 2.97-fold, respectively, after 24 h. The maximum up-regulation was 6.53-fold and 

3.67-fold for 8 and 16 Gy-exposed samples, respectively, at the 72 h time point. 

The RELA gene encodes the subunit p65 of the transcription factor NF-B. The 

transcription factor NF-B is activated in many biological signal transduction events like 

cell growth, differentiation, immunity, inflammation, tumorigenesis and apoptosis (Karin 

1997, Schreck et al. 1991, Sonenshein 1997, Wu et al. 1996, Chang et al. 1994). Figure 

60 shows the RELA gene expression pattern after X-ray exposure of pLECs. Irradiation 

did not cause coherent changes in the expression pattern of that gene. For all 

conditions, the n-fold changes were below 2-fold. 
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Figure 57: X-ray dependent changes 
in gene expression of CRYAB. 
CRYAB was analyzed at 4, 12, 24 and 
72 h after exposure to varying dose of 
X-rays. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 58: X-ray dependent changes 
in gene expression of DNASE2. 
DNASE2 was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of X-rays. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 59: X-ray dependent changes 
in gene expression of PAX6. PAX6 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of X-
rays. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 
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Figure 60: X-ray dependent changes 
in gene expression of RELA. RelA 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of X-
rays. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 61: X-ray dependent changes 
in gene expression of SOD3. SOD3 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of X-
rays. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

The SOD3 gene encodes a member of the superoxide dismutase protein family (Zelko 

et al. 2002). This enzyme converts superoxide radicals to oxygen and hydrogen 

peroxide (Fukai and Ushio-Fukai 2011, Jalilov et al. 2016). In pLECs, the expression of 

this gene was not significantly affected by X-ray exposure (Figure 61). 

3.8.2 Gene expression after heavy ion exposure 

To compare the effect of different radiation qualities on gene expression, a parallel 

experiment with same dose and time points as fore X-ray exposure was performed 

using heavy ions. Specifically, cells were exposed to carbon ions (C-12) with an energy 

on target of 28.6 MeV/n, LET 71 keV/µm Again, n-fold expression changes between -2 

and 2 was regarded as not significant. First, potential dose-dependent responses of the 

housekeeping genes ACTB, B2M and HPRT were assessed. Figure 62 shows a more 
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than 2-fold down-regulation for the ACTB gene after exposure to higher doses of 4, 8 

and 16 Gy. On the other hand, B2M and HPRT mostly showed a stable expression 

within -2 to 2-fold. 

CDKN1A gene expression after carbon ion irradiation of pLECs are shown in Figure 63. 

The up-regulation pattern of the gene was both time- and dose-dependent and was very 

similar to that after X-irradiation (Figure 55). Here, the up-regulation of the gene started 

4 h after irradiation compared to un-irradiated ones. This positive regulation was 2.22-

fold, 2.87-fold, 4.23-fold and 3.85-fold for 1, 4, 8 and 16 Gy of C-12, respectively. 

Thereafter, the up-regulation decreased for the 12 h and 24 h time points and increased 

again at the later time point of 72 h. The up-regulation of the CDKN1A gene at 72 h was 

2.62-fold, 2.76-fold, 3.10-fold and 4.59-fold for 1, 4, 8 and 16 Gy, respectively.  

After exposure of pLECs to C-12 ions, the expression of the GADD45G gene was 

mostly down-regulated (Figure 64). About 13-fold down-regulation was seen at 24 h 

after 8 Gy of C-12 exposure. 

Alpha-crystallin B, which is the product of the CRYAB gene, is required for lens 

transparency (Takemoto and Sorensen 2008). Unlike in X-ray exposed cells (Figure 

57), the expression of the CRYAB gene was mostly unchanged after carbon ion 

exposure. The up-regulation for most of the irradiation conditions was below 2-fold 

except for the 4 Gy 24 h sample (4-fold) and for the 8 Gy 12 h sample (more than 2-

fold) (Figure 65). 

The expression pattern for DNASE2 after C-12 irradiation was non-monotonous and 

fold changes ranged between -2 and 2 for most conditions. There was more than a 2-

fold up-regulation at the 4 h time point at 1 and 4 Gy. On the other hand there was more 

than 2-fold down-regulation for 16 Gy at 72 h and more than 5-fold down-regulation for 

16 Gy at 4 h (Figure 66).  

While X-ray exposure resulted in a clear up-regulation of PAX6 gene (Figure 59), the C-

12 ion irradiation produced in contrast a down-regulation of this gene (Figure 67). 

Whereas 1 Gy exposure had no effect, the gene was down-regulated 2.9-fold and 2.3 

fold at 4 h and 72 h respectively and 2.2-fold up-regulated at 12 h time point after 

exposure to 4 Gy. Exposure to 8 Gy caused a down-regulation by 2-fold, 4-fold and 7.8-

fold at 4, 12 and 72 h, respectively. Exposure to 16 Gy led to a 4.9-fold up-regulation at 

the 12 h time point but strikingly to a 23-fold down-regulation at 72 h. 



RESULTS 
 

 
- 89 - 

 

  

 

 

 

Figure 62: Changes in gene 
expression of housekeeping genes 
after exposure to accelerated C 
ions. ACTB, B2M and HPRT were 
analyzed at 4, 12, 24 and 72 h after 
exposure to varying dose of carbon 
ions. The data are from three replicates 
of a single RT-qPCR experiment. The 
bars represent mean ± SD. 



RESULTS 
 

 
- 90 - 

 

Gene expression of RELA after C-12 ion exposure presented a distinct pattern, which is 

given in Figure 68. The gene was up-regulated dose-dependently at 4 h after irradiation 

compared to the un-irradiated one. RELA expression levels were up-regulated 1.79-fold, 

2.47-fold, 2-fold and 3.43-fold for 1, 4, 8 and 16 Gy, respectively. At all later time points, 

expression levels were reduced for all irradiated doses (Figure 68). 

The SOD3 gene was down-regulated after exposure to 8 and 16 Gy of C-12 ions 

(Figure 69). The down-regulation was about 6-fold at 8 Gy and 3-fold at 16 Gy. 

 

 

 

Figure 63: C ion dependent changes 
in gene expression of CDKN1A. 
CDKN1A was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of carbon ions. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 64: C ion dependent changes 
in gene expression of GADD45G. 
GADD45G was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of carbon ions. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 
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Figure 65: C ion dependent changes 
in gene expression of CRYAB. 
CRYAB was analyzed at 4, 12, 24 and 
72 h after exposure to varying dose of 
carbon ions. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 66: C ion dependent changes 
in gene expression of DNASE2. 
DNASE2 was analyzed at 4, 12, 24 
and 72 h after exposure to varying 
dose of carbon ions. The data are from 
three replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 67: C ion dependent changes 
in gene expression of PAX6. PAX6 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of 
carbon ions. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 
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Figure 68: C ion dependent changes 
in gene expression of RELA. RELA 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of 
carbon ions. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

Figure 69: C ion-dependent changes 
in gene expression of SOD3. SOD3 
was analyzed at 4, 12, 24 and 72 h 
after exposure to varying dose of 
carbon ions. The data are from three 
replicates of a single RT-qPCR 
experiment. The bars represent mean 
± SD. 

 

3.9 Osteogenic differentiation of lens epithelial cells 

There are many etiologies of cataract formation. One of the causes of cataract 

formation is attributed to the calcification of the lens (Werner et al. 2000, Adams 1929, 

Richardson et al. 1985, Tang et al. 2003, Burge et al. 1937, Balogh et al. 2016). 

Nonetheless, the exact mechanism for lens calcification has not yet been elucidated. 

For this reason, it was investigated whether the pLECs also could erroneously 

differentiate to the osteogenic type by depositing calcium during cell culture. In addition, 

the expression of selected genes that are involved in osteogenic differentiation was 

analysed. 
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3.9.1 Calcium deposition during osteogenic differentiation 

Alizarin Red S staining is one of the common and reliable methods to visualize calcium 

deposition. For this reason, the assay is used to detect osteogenic differentiation. Here, 

pLECs were incubated with calcification medium (CM) to clarify their differentiation 

capability, which would allow us to elucidate whether lens calcification contributes to 

lens opacification (Figure 70). 

 

 

The staining showed that no calcium deposition was observed after 3 days of 

supplementation with CM compared to cells that were incubated with normal medium  

(NM). From 5 days onwards, however, a red staining became visible in the CM 

samples. The amount of deposition further increased at days 7 and 10. It should be 

noted that during the washing step of the staining procedure a lot of deposits were 

washed away, leading to an under-estimation of the actual amount of deposits. For NM-

supplied cells the deposition of calcium was not present at any time points. 

    

    

Figure 70: Osteogenic differentiation of pLECs. pLECs were supplied with calcification medium (CM) 
after a week of growth in normal medium (NM). After 3, 5, 7 and 10 days of CM supplementation, the 
cells were fixed with 70 % ethanol and stored at -20 °C until all the samples were harvested. Alizarin Red 
S staining was performed to visualize calcium deposition due to osteogenic differentiation. 
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3.9.2 Gene expression during differentiation 

Differentiation of a cell is characterized by many morphological changes preceded by 

various genetic up- and down-regulations. Several genes that are related to osteogenic 

differentiation were selected, which however are not limited to lens epithelial cells only. 

The two housekeeping genes ACTB and B2M were used as references. 

The expression pattern of both housekeeping genes in the presence and absence of 

calcification medium is given in Figure 71. 

 

 

  

 

Figure 71: Gene expression 
changes of the housekeeping 
genes ACTB and B2M after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 7 
and 14 d. The data are from two 
replicates of a single RT-qPCR 
experiment. The bars represent 
mean ± SD. 
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For both housekeeping genes, no up- or down-regulations were observed with normal 

medium supplementation at 7 days and 14 days. Supplementation with the calcification 

medium did not result in many changes in expression of both HKGs. The expression of 

the ACTB gene was below -1/1 fold except for day 7, where the up-regulation value was 

3.07-fold. With regard to B2M, the expression with calcification medium 

supplementation were well below -2/2 fold at all the time points. 

Bone morphogenetic protein 2 (BMP2) has been shown to be required for osteogenic 

differentiation as well as bone and cartilage development (Liao et al. 2014, Ai et al. 

2014, Sun et al. 2015, Rosen 2009, Mukherjee and Rotwein 2009). When the pLECs 

were compared to own untreated conditions, supplementation of the calcification 

medium resulted in an overall up-regulation of this gene (Figure 72). Exposure of the 

cells with CM medium for few minutes only resulted in 1.5-fold up-regulation of the 

BMP2 gene at day 0. The value of up-regulation further increased with CM 

supplementation time i.e. to 1.95-fold up-regulation after 7 days and 2.99-fold up-

regulation after 14 days. 

The Runt-related transcription factor 2 (RUNX2) belongs to a family of transcription 

factors and plays an essential role in osteoblastic differentiation and skeletal 

morphogenesis (Komori 2002, Franceschi and Xiao 2003, Yoshida et al. 2002). The 

gene was up-regulated in CM medium compared to untreated samples (Figure 73). It 

was 2.10-fold up-regulated on day 0, 1.99-fold at day 7 and 2.62-fold at day 14. 

The COL1A2 (Collagen, type 1, alpha 2) gene encodes one of the chains of the type I 

collagen. These collagens (major component of extracellular matrix) are found mainly in 

connective tissues and provide an extracellular structure. Upon supplementation of CM, 

the COL1A2 gene was down-regulated in a time-dependent manner compared to NM 

(Figure 74). At day 0, the value for n-fold change was 0.7-fold. Over time, the gene was 

strongly down-regulated with a 6.36-fold change at 1 week and with a 75.36-fold change 

after 2 weeks. 

The n-fold change for the OPN gene with NM amounted to -3.00, -1.17 and -1.51 for 0, 

7 and 14 days, respectively. With supplementation of CM these values became -2.88 at 

0 days, -33.87 at 7 days and 5.55 at 14 days (Figure 75). 

As described earlier, the PAX6 gene is not only required for the differentiation of lens 

epithelial cells but also for general developmental processes of the eye. With 
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supplementation of CM, pLECs showed an up-regulation of the PAX6 gene. No up- or 

down-regulation was observed at day 0. Later, at day 7 and 14, incubation in CM up-

regulated PAX6 expression with n-fold changes of 3.69 and 6.65, respectively (Figure 

76). 

 

 

 

 

 

 

Figure 72: Gene expression 
changes of BMP2 after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 
7 and 14 d. The data are from 
two replicates of two RT-
qPCR experiments.  The bars 
represent mean ± SD. 

 

Figure 73: Gene expression 
changes of RUNX2 after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 
7 and 14 d. The data are from 
two replicates of two RT-
qPCR experiments.  The bars 
represent mean ± SD. 
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Figure 74: Gene expression 
changes of COL1A2 after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 
7 and 14 d. The data are from 
two replicates of two RT-
qPCR experiments.  The bars 
represent mean ± SD. 

 

Figure 75: Gene expression 
changes of OPN after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 
7 and 14 d. The data are from 
two replicates of two RT-
qPCR experiments.  The bars 
represent mean ± SD. 

 

Figure 76: Gene expression 
changes of PAX6 after 
treatment with calcification 
medium. Cells were treated 
with and without calcification 
medium and analyzed after 0, 
7 and 14 d. The data are from 
two replicates of two RT-
qPCR experiments.  The bars 
represent mean ± SD. 
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3.9.3 Influence of X-irradiation on differentiation-related gene expression  

The expression patterns of the genes BMP2, COL1A2 and RUNX2 which were 

analysed in lens osteogenic differentiation, were also analysed after exposure to X-rays. 

The aim was to investigate if irradiation alone would trigger or affect these genes 

regarding differentiation process.  

The BMP2 gene showed a slight change in expression (Figure 77Figure 77: X-ray 

dependent changes in gene expression of BMP2. ) after exposure to X-rays compared to 

non-irradiated samples. With the dose of 4 Gy the up-regulation was 1.15-fold and 1.08-

fold for 4 and 24 h after irradiation, respectively. Similarly, with 16 Gy, the up-regulation 

was 1.26-fold at 4 h but at 24 h time this up-regulation increased up to 2.26-fold. The 

expression of RUNX2 gene was inconclusive in terms of n-fold changes with respect to 

the doses of X-rays applied as shown in Figure 78. There is an up-regulation of 2.95-

fold at 4 h after 4 Gy exposure. Similarly, the gene was 2.43-fold down-regulated at 24 h 

after 4 Gy exposure and 3.65-fold down-regulated 4 h after 16 Gy exposure. Figure 79 

shows the gene expression of the COL1A2 gene after X-irradiation. With 16 Gy of X-

rays, there was a slight increase in expression of this gene at both time points but the n-

fold change value was below 2. While with 4 Gy of X-rays, the n-fold change value was 

positive at 4 h and negative at 24 h but surely within -2/2. 
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Figure 77: X-ray dependent changes in 
gene expression of BMP2. The data are 
from two replicates of a single RT-qPCR 
experiment. The bars represent mean ± 
SD. 

 

Figure 78: X-ray dependent changes in 
gene expression of RUNX2 The data 
are from two replicates of a single RT-
qPCR experiment. The bars represent 
mean ± SD. 

 

Figure 79: X-ray dependent changes in 
gene expression of COL1A2. The data 
are from two replicates of a single RT-
qPCR experiment. The bars represent 
mean ± SD. 
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4 DISCUSSION 

The eye lens has been recognized as one of the most radiosensitive tissues in the 

human body. Although numerous epidemiological studies on radiation-induced lens 

opacifications have been performed (Shore et al. 2010, Cucinotta et al. 2001, Ainsbury 

et al. 2009, Jacob et al. 2013, Ciraj‐Bjelac et al. 2010) the exact mechanism of 

opacification is still unclear. In long-term space missions, a turbid lens could definitely 

threaten the mission success, especially, when treatment is not available. Even on 

earth, the only treatment of lens opacification is surgical removal of lens fibers and lens 

epithelial cells and implantation of an artificial intraocular lens, which is often followed by 

reoccurrence of turbidity by proliferation of remaining lens epithelial cells on the surface 

of the newly implanted lens. Keeping this in mind, it is clear that a non-invasive way to 

inhibit cataract formation would be an ideal solution to fight against radiation-induced 

cataract. The focuses of this thesis are the consequences of radiation treatment for 

lenses and lens epithelial cells, which may contribute to reveal the underlying 

mechanism of cataract formation. Porcine eye lenses were selected, because unlike 

human lenses they are easily available. Moreover they provide more similarities to the 

human lens than lenses of other mammalian animal models, thus resembling an ideal 

research model. 

4.1 Growth properties of porcine lens epithelial cells (pLECs) and 

whole lens organ culture 

Porcine lens epithelial cells were used because they were easily available and provide a 

non-transformed primary cell model. The use of transformed immortal cell lines 

accelerates research but such experiments suffer from the genetic instability of the cell 

systems which may eventually question the reliability of the results. Commonly used 

human cell lines such as HeLa cells or HEK 293 cells are hypertriploid (76-80 

chromosomes) or hypotriploid (64 chromosomes), respectively. A commonly used cell 

line in lens epithelial cell studies is the human lens epithelial cell line HLE B-3 (Figure 

80). It was propagated and immortalized by Andley and colleagues by immortalizing the 

cells obtained from 5 to 12-month-old patients of retinopathy of prematurity using an 

adenovirus 12-SV40 virus (Ad12-SV40) (Andley et al. 1994). This cell line was shown to 

be aneuploid with most of the chromosomes in the tetraploid range. To check whether 

porcine epithelial cells also show aneuploidies, the chromosome number of porcine lens 
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epithelial cells was determined. pLECs had exactly 38 chromosomes, meaning 18 pairs 

of autosomal chromosomes and a pair of allosome (sex) chromosomes (Figure 19) 

providing thus a genetically stable model for research. 

Figure 20 shows the propagation capability of the lens epithelial cells after isolation of 

cells from the lens capsule. Within the epithelial layer (Figure 20A), the cells were tightly 

packed with polygonal epithelial appearance. Once the cells start to proliferate on the 

plastic surface of the culture dish, the cells maintain their polygonal structure mainly 

when they are close to each other. In other cases, if they have more space to grow they 

show a slightly longer fibroblastic appearance (Figure 20B). During further passages, 

the cellular morphology deviated from polygonal to flat and fibroblastic-like (Figure 21). 

Such change in cell shape could be mostly due to the two-dimensional culture surface, 

which is completely different from being within the lens. In a petri dish, the cells could 

grow without contact inhibition and chemical influence. It is well-known that lens 

epithelial cells proliferate during the whole life and start to differentiate to fiber cells at 

the equatorial region of the lens (Kuwabara 1975, Remington and Goodwin 2011). 

These fiber cells are then pushed towards the inner central region of the lens by newly 

formed fiber cells. During this differentiation process, the fiber cells lose their nucleus 

and other cell organelles, which is one of main reason for lens transparency. With such 

a property of the lens, one may predict that lens epithelial cells would tend towards a 

fibrous shape with increasing number of passaging.  

In the proliferation experiment of Blakely and colleagues, the exponential growth phase 

for the cell line was steep and showed a doubling time of about 24 h for both non-

transformed human lens epithelial (HLE) cells and immortalized HLE B-3 cells, where 

the initial seeding density was 3000 to 4000 cells per cm2 (Figure 80). Here, pLECs were 

seeded at a density of 5000 cells per cm2, and the exponential growth phase was less 

steep compared to the HLE cells, in accordance to their slow growth (Figure 80). A 

reason for differences in growth might be the concentration of serum used in the 

experiments. In Blakely’s experiment, HLE and HLE B-3 were supplemented with 15 % 

and 20 % FBS (Blakely et al. 2000) while in the experiments of this study only 10 % 

FBS was used. 
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Figure 80: Growth of human epithelial cells in vitro. The growth curves of non-transformed HLE 
cells (●) and virally transformed HLE B-3 cells (▲). In the exponential phase of both growth curves, a 
doubling time of approximately 24 h was determined for both cell types. (Adapted from (Blakely et al. 
2000)) 

 

Many researches have already proven the capability of most of mammalian eye lenses 

to be cultivated as a whole organ ex vivo over a longer period of time (Kleiman et al. 

2007, Shirai et al. 2001, Worgul et al. 2002, Tumminia et al. 1994). In this study, it was 

observed that lenses stayed intact and clear for more than 2 weeks. Nevertheless, it is 

also evident that the transparency decreased with increasing incubation time in the 

culture medium (Figure 23). The viability of the lens epithelial cells during organ culture 

was shown by nuclear staining of live cells with Hoechst solution (Figure 24). To get the 

reliable results, the experiments with whole lenses were performed within the first week 

along with visual inspection of lens transparency.  

Because it was intended to study pLEC in monolayer culture as well as in organ culture, 

next to the survival of these cells, it was important to verify that these cells also could 

divide and proliferate in the different environments. The Click-iT EdU Assay was used to 

determine pLECs ability of DNA synthesis (section 2.2.13). For the pLECs in epithelial 

layer cut-offs and in monolayer culture, incubation for 24 h after supplementation of EdU 

for 2 h revealed more DNA synthesis activity compared to cells which were exposed 

only to a 2 h pulse of EdU and directly fixed for staining. The longer time of incubation 

provided the cells with more time for incorporation of EdU, some cells that had 

incorporated EdU got time into divide to daughter cells with comparatively lower 

fluorescence (Figure 26 and Figure 27). Interestingly, the EdU incorporation process 
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was less efficient in pLECs within the lens capsule compared with the monolayer 

culture. The lower fluorescence of lens epithelial cells might be due to physical 

unavailability of EdU for the pLECs that were enclosed inside the lens capsule. 

4.2 Oxidative stress determination in pLEC monolayer culture 

When interacting with biological systems, ionizing radiation can either directly ionize a 

molecule or indirectly interact with water to produce free radical and other ROS. To 

cope with such hazards, cells have evolved many defence mechanisms like 

compartmentalization of vital molecules e.g. DNA, antioxidant enzymes to remove ROS, 

free radical scavengers like glutathione, repair mechanisms and even self-destruction 

by apoptosis. In lens epithelial cells, glutathione is the main free radical scavenger and 

the etiology of the frequently occurring age-related cataract is mainly caused by 

reduction of glutathione in the lens (Reddy 1990, Truscott 2000, Truscott 2005, 

Sweeney and Truscott 1998). Oxidative damage in a cell occurs very quickly but may 

have deleterious effects. This short-lived nature of ROS makes it difficult to study their 

involvement in cataractogenesis. In an attempt to determine this type of stress in 

pLECs, the amount of ROS production was quantified by the CellROX® Green assay 

(section 2.2.12). ROS generated by menadione were quantified as a positive control for 

ROS production after X-ray treatment of pLECs. Treatment of pLECs with increasing 

concentrations of menadione (generates ROS) resulted in a concentration-dependent 

increase in ROS indicated by green fluorescence (Figure 30). 

As shown in Figure 31, the amount of ROS production after X-ray exposure detected by 

this method was not significantly different compared to the mock-irradiated controls. 

ROS, which are generated within very short time, quickly oxidises CellROX® green 

reagent in less than a second. Live imaging of ROS generation during irradiation would 

allow detecting very short-lived ROS. On the other hand, detecting delayed ROS 

production (Yamashita et al. 2004, Busija et al. 2008) could be performed for cells with 

longer incubation times. Here, one needs to carefully take into account background 

fluorescence of non-irradiated and irradiated samples. 

4.3 pLEC survival after X-ray exposure 

The survival assay is a basic experiment in radiation biology to determine the dose-

effect relationship of radiation-induced reproductive cell death. Although many 

experiments have been carried out on the effects of ionizing radiation on lens epithelial 
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cells, not many dose-effect curves for these cells were established. Here, two dose-

effect curves were produced: 1) when pLECs were irradiated and seeded directly after 

irradiation i.e. immediate plating, IP; and 2) the cells were incubated for 24 h after 

irradiation before seeding i.e. late plating, LP. Normally, when radiation-exposed cells 

are incubated before seeding the width of shoulder, i.e. the n-value, tends to increase 

showing their ability to repair in the time provided (Frankenberg and Frankenberg-

Schwager 1981, Baumstark-Khan et al. 1991). 

For pLECs, the D0 and n-values for IP were 1.42 Gy and 1.82, respectively, and for LP 

1.68 Gy and 1.42, respectively (Figure 32). No statistically significant differences of the 

IP and LP survival curves of pLECs were found. The average D0 and n were 1.54 Gy 

and 1.61. This value of D0 is comparable to the D0 of human diploid fibroblasts which is 

1.28–1.64 Gy (Weichselbaum et al. 1980). Studies of the Cellular Biodiagnostics group 

at DLR, revealed D0 and n values of 1.83 Gy and 2.35 for the immortalized cell line 

OCT-1 (murine osteoblastic cell line) (Lau et al. 2010) and 0.96 Gy and 2.87 for SAOS-

2 (human osteosarcoma cell line) (Konda 2013). Primary adipose tissue-derived stem 

cell (LW24) showed D0 and n of 0.75 Gy and 1.26 (Konda 2013). These studies show 

that immortalized cell lines show more recovery potential from the damage and hence 

better survival apparent from their wider shoulders (higher n-value). On the contrary, the 

survival curve of the primary cell line LW24 had a smaller shoulder (lower n-value). 

Thus, the results of the current experiments on pLECs (n = 1.61) showed a recovery 

potential or shoulder width close to primary human cells but not to immortalized ones 

indicating that pLECs were more radiosensitive. 

Interestingly, in a study on radiation sensitivity of bovine lens epithelial cells, the D37 (or 

D0) value was found to be 1.38 Gy when the cells were irradiated in the exponential 

growth phase (Baumstark-Khan et al. 1991). The D0-value of 1.54 Gy for pLECs of this 

study is quite similar to the value from bovine lens epithelial cells. In addition to that, the 

D0-value of pLECs well matches the D0-value of primary human lens epithelial cells as 

well as of primary human lung fibroblast cells with values of 1.55 Gy and 1.40 Gy, 

respectively (Fujimichi and Hamada 2014). 
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Table 16: Comparison of radiobiological parameters for different cell types. 

Cell type Radiobiological 
parameters 

References 

D0 (Gy) n 

pLECs (primary cells) 
IP 
LP 
Average 

 
1.46 
1.76 
1.54 

 
1.59 
1.20 
1.61 

 
this study 
this study 
this study 

Immortalized cells 
OCT-1 
SAOS-2 

 
1.83 
0.96 

 
2.35 
2.87 

 
Lau et al., 2010 
Konda, 2013 

Primary cells 
Human diploid fibroblasts 
Human lung fibroblasts 
Human lens epithelial cells 
LW24 
Bovine lens epithelial cells 

 
1.28-1.64 
1.40 
1.55 
0.75 
1.38 

 
- 
- 
- 
1.26 
- 

 
Weichselbaum et al., 1980 
Fujimichi & Hamada, 2014 
Fujimichi & Hamada, 2014 
Konda, 2013 
Baumstark-Khan et al., 
1991 

 

4.4 Cell cycle progression after X-ray exposure 

It is widely known that many intrinsic and extrinsic factors can cause genetic damage in 

the cell. Along with the damage, the cells have also evolved different kinds of repair 

mechanisms. Nevertheless, such cellular repair mechanisms are time-consuming, 

which is caused by various checkpoints at different phases of the cell cycle. Particularly 

the G2/M checkpoint plays a central role in dealing with radiation-induced DNA damage. 

G2/M arrest is attained by phosphorylation of Chk1 by ATM, which in turn 

phosphorylates Cdc25C the latter inhibiting Cyclin B-Cdk1 activity (Figure 7). 

So far, data on cell cycle progression after radiation treatment of lens epithelial cells is 

scarce. During the exponential growth phase of non-irradiated pLECs, the amount of G1 

phase cells increased and the amount of G2/M phase cells decreased with increasing 

confluency (Figure 33). After X-ray exposure, however, the amount of cells in the G2/M 

phase increased dose-dependently. Only the cells exposed to lower doses could re-

enter the cell cycle whereas the cells exposed to high doses remained arrested in G2/M 

phase. Similar results were seen with OCT-1 cells. Lau and colleagues showed that in 

OCT-1 cells almost the total cell population was arrested in G2/M phase at 8 h after 

irradiation with 7 Gy. There was a reduction of arrested cells after 48 h but not to the 

same amount as in the non-irradiated control (Lau et al. 2010). Similarly, Hu et al. 

showed that the amount of cells in the G2/M phase after 10 Gy of X-rays was 62% at 8 
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h after irradiation, which was reduced after 24 h later but still remained elevated 

compared to non-irradiated controls (Hu et al. 2014). This immortalized murine cell line 

either showed a substantial capability to repair, given the repair time by G2/M 

checkpoint, or the cells entered the cell cycle still carrying damaged DNA. On the 

contrary, pLECs were not that efficient in repairing damages especially at doses of 4 Gy 

and 6 Gy and got arrested at G2/M rather than re-entering the cell cycle. 

Up to 80 % of the previously mentioned SAOS-2 cells accumulated in the G2/M phase 

24 h after exposure to 6 Gy X-rays. This arrest was reduced to around 50 % at 72 h 

after irradiation (Konda 2013). Similarly, 6 Gy of X-ray exposed LW24 cells resulted in 

almost 50 % of cells in G2/M phase after 24 h, which did not decrease as it did in cells 

exposed to lower doses of ionizing radiation.  These results suggest that pLECs behave 

very similar to LW24 primary cells. 

The G2/M checkpoint provides cells with critical time for damage repair, which is 

essential for cellular survival as well as passing healthy genetic material to daughter 

cells. Extensive studies have been performed to elucidate this G2/M checkpoint 

pathway and revealed multiple pathways ensuring the G2/M checkpoint for a healthier 

cellular fate (Carson et al. 2003, Kastan et al. 1992, Yarden et al. 2002, Xu et al. 2002). 

In general, these pathways are either p53-dependent or p53-independent. Despite the 

evidence of the involvement of p53 in G2/M arrest, studies have shown that the arrest 

could also be achieved when p53 was not functional or even absent (Concin et al. 

2003). The p53-independent pathway (Figure 7) is activated by phosphorylation of Chk1 

and Chk2 by protein kinases ATM and ATR where Chk1 and Chk2 inhibit cdc2 (also 

called CDK1) by inactivating cdc25 (Taylor and Stark 2001). In the other pathway, p53-

dependent G2/M arrest is achieved by inhibiting cdc2, eventually cyclin B1, through 

transcriptional targets of p53 i.e. Gadd45, p21 and 14-3-3ϭ (Taylor and Stark 2001). p53 

is well established as a tumor suppressor gene which regulates the cellular response 

mainly via apoptosis, cell cycle arrest and DNA repair pathway activation. Interestingly, 

it has been shown that p53 is important in prolonging the duration of G2/M arrest 

(Hirose et al. 2001). The consistent blockage of our pLECs at G2/M - like LW24 and 

unlike SAOS-2 (Konda 2013) - could be possibly due to the presence of wild-type p53 in 

such primary pLEC culture. SAOS-2 actually is a p53-deficient cell line (Masuda et al. 

1987, Marcellus et al. 1996). A study performed in B crystallin knockout mice showed 

the relation of hyperproliferation of lens epithelial cells due to expression of functionally 
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impaired p53, which could be a factor promoting immortalization of lens epithelial cells 

(Bai et al. 2003). 

Passaging of primary cells has both advantages as well as disadvantages. Primary cells 

exhibit a limited lifespan usually due to aging (passaging). Studies show that with 

increasing passage number of primary cells their behavior and function change 

(Chennazhy and Krishnan 2005, Wall et al. 2007). Changes in structure and function of 

cells are continuously going on in living organisms with aging e.g. in stem cells, lens 

epithelial cells, etc. Immortal cells, which can be used for longer passages with constant 

morphology, however in many cases have a deregulated cell cycle and DNA repair 

pathways unlike the primary cells. In addition to that, many studies have shown that 

even in immortal cell lines the health and proliferation potential declines with increasing 

passage number (Clynes 2012, Peterson et al. 2004, Kwist et al. 2016) and should not 

be used after a certain number of passages (von Zglinicki et al. 1995). Passaging 

experiments on pLECs (Figure 37) clearly showed that with increasing passage number 

their proliferation potential decreased. For this reason, only pLECs in passage 2, 3 or 4 

were used in all experiments. Likewise, Wall et al. showed similar results for primary 

adipose-derived human mesenchymal stem cells where the growth rate of the cells 

decreased after the 5th passage (Wall et al. 2007). The result obtained in this study is 

supported by the study made with non-immortalized HLE cells which showed a 

significantly decreased proliferation potential after passage 10 (Blakely et al. 2000). 

Since the results showed a blockade of the G2/M phase of the cell cycle after X-ray 

exposure, key proteins that are required for DNA damage repair and cell cycle control 

(ATM, ATR and DNA-PK) were chemically inhibited in a next set of experiments. 

Unregulated proliferation of lens epithelial cells is hypothesized to be a crucial reason 

for lens opacification, and cell cycle modulation under the influence of ATM, ATR and 

DNA-PK inhibition has not yet been performed. Such experiments might open new 

possibilities for mechanistic investigations of cataractogenesis. The results obtained 

with pLECs showed an increased G2/M percentage upon ATM inhibition (Figure 38) 

with and without X-rays exposure and a decreased G2/M percentage upon ATR 

inhibition (Figure 39) after X-rays exposure. The results obtained in this study were very 

closely comparable to the results from the work of Dueva for inhibition of ATM and ATR 

(Dueva 2016). As for DNA-PK, X-ray-induced inhibition of DNA-PK resulted in a drastic 

increase of cells in G2 phase which was not the case for pLECs (Dueva 2016). In 
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pLECs, DNA-PK inhibition had little effect on the X-ray-induced cell cycle arrest (Figure 

40). According to previous studies, ATM is the initial kinase that is activated by damage 

in the G2 phase and causes a downstream activation of Chk2. In spite of its prompt 

action, ATM is unable to prolong the G2 arrest alone. For the longer suppression of 

crossing the G2 phase, activation of ATR and subsequent activation of Chk1 (ATR-

Chk1) is required (Jazayeri et al. 2006). This downstream activation of ATR is actually a 

consequence of ATM-Chk2 signalling in response to DSB (Smith et al. 2010). The 

results also comply with the requirement of ATM for initiation of G2/M block such that 

repair can take place with further downstream activation of ATR prolonging the arrest. 

Hence, failure of ATM resulted in the accumulation of cells in the G2/M phase as repair 

was hindered after X-rays exposure. On the other hand, decrease of G2/M percentage 

due to ATR inhibition may be due to failure of ATR to block cells at G2/M damage, 

although the damage was recognized by ATM. Such inability to block cells for repair 

might follow division and proliferation of cells with unrepaired genetic material and 

hence be the cause for cataract and cancer. DNA-PK is mainly known for its role in 

NHEJ and V(D)J recombination in mammalian cells (Burma and Chen 2004, Moshous 

et al. 2001). In terms of G2 phase checkpoint and HR, DNA-PK is proposed to enable 

crosstalk between ATM and ATR in the dissociation step of p53-RPA complex by 

phosphorylation of p53 by ATM and ATR and phosphorylation of RPA32 by DNA-PK 

(Serrano et al. 2013). 

4.5 DNA damage induction and repair after exposure to X-rays  

Radiation-induced DNA DSBs are the most relevant lesions leading to genetic instability 

as well as cell death (Rothkamm and Lobrich 2002, Morgan et al. 1996, Olive 1998). 

Overcoming of such lethal damage in mammalian cell is well regulated and initiated 

through phosphorylation of a histone variant, H2AX (Rogakou et al. 1998) at serine 139 

within its conserved C-terminal region at the site of a DSB. The phosphorylated form is 

then called H2AX which can be visualized as foci by immunofluorescence using 

specific antibodies (Rogakou et al. 1998, Paull et al. 2000). The number of H2AX foci 

correlates with the number of DSBs (Sedelnikova et al. 2002). ATM, ATR and DNA-PK, 

which have a crucial role in cell cycle control, are the main kinases that phosphorylate 

H2AX (Redon et al. 2002, Stiff et al. 2004, Ward and Chen 2001).  
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4.5.1 Comparison to foci formation in other cell types 

Many studies have been performed to investigate the DNA DSB induction and repair by 

using the H2AX assay in different cell types. Only few results are available for lens 

epithelial cells. In a well-reproducible experiment (Figure 45), it has been shown that 2 

Gy of X-rays induced about 20 H2AX foci per cell nucleus within an hour. Those 

damages were repaired afterwards resulting in ~3 foci per cell nucleus at 24 h. The 

presence of foci in the non-irradiated controls (~1 focus) can be explained by H2AX 

phosphorylation required for repairing naturally occurring DNA damage. Comparing 

these results with similar studies, about 36 foci per cell nucleus were counted in murine 

osteoblasts (transformed cell line) 1 h after exposure to 1 Gy of X-rays and 24 h of 

incubation resulted in 3 foci per cell nucleus (Lau et al. 2010). In human primary 

AG01522 fibroblasts, the number of foci 1 h after exposure to 1 Gy and 2 Gy X-rays 

were 21 and 37, respectively, which then decreased to about 5 foci after 24 h (Mariotti 

et al. 2013). In both studies, more foci were detected compared with the foci number in 

pLECs. This variation may be explained by different phosphorylation potentials of 

selected cell types, organs or tissues (Bannik et al. 2013, Koike et al. 2008). The 

difference may also slightly vary due to counting criteria of foci used in such 

experiments. Surprisingly, Rothkamm and Löbrich detected 71 and 7.2 foci in the 

primary fibroblast cell line MCR-5 after 2 and 0.2 Gy of X-rays, respectively, 3 min post-

irradiation, resulting in an average of 35 DSBs per Gy (Rothkamm and Löbrich 2003). 

In conclusion, one has to be cautious when comparing foci formation between different 

cell types may. Similarly, counting foci at different times post irradiation also affects the 

number of foci formed. Therefore both factors need to be taken into account while 

performing the H2AX assay. 

4.5.2 Comparison to foci formation in lens epithelial cells from other species 

Considering the studies on induction and repair of DSBs using the H2AX assay in lens 

epithelial cells, lens epithelial cells from C57BL/6J mice showed a dose-dependent 

induction of DSB foci 1 h after -irradiation with 137Cs-source at a dose rate of 0.5 

Gy/min (Bannik et al. 2013). The number of foci were about 4, 7 and 17 for doses of 

0.25, 0.5 and 1 Gy, respectively. The foci number decreased 24 h after irradiation. In 

that study, the sensitivity of lens epithelial cells was actually 3 times higher compared to 

lymphocytes for low doses of <0.5 Gy. In the present study, pLECs also showed dose-
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dependent increase in DSBs formation as expected. The foci numbers were similar to 

those found by Bannik and colleagues (Bannik et al. 2013). The foci numbers were 5.3 

and 11.7 per cell nucleus at 0.5 and 1 Gy, respectively, 1 h after X-ray exposure (Figure 

43). The number of foci per cell nucleus increased up to 20 at 4 Gy. With 24 h time 

provided to pLECs after X-rays exposure, the DNA DSBs repair reduced the number of 

H2AX foci. Higher doses of X-rays resulted in more breaks that remained unrepaired 

which were displayed by dose-dependent remaining foci after 24 h (Figure 43, Figure 

44).  

4.5.3 Obstacles in foci quantification 

One of the important aspects that should be noticed during H2AX foci analysis is the 

size of the foci. The remaining foci after 24 h post-irradiation (Figure 42) were larger 

than the foci observed 1 h after irradiation (Figure 41). Studies have shown that foci that 

form after radiation exposure fully develop after 1 h and only few unrepaired damage 

sites remain as larger foci even after 24 h of incubation (Lau et al. 2010). One 

concerning factor in H2AX foci analysis has always been the size and intensity of the 

foci. Researchers have developed particular software for foci counting (Böcker and 

Iliakis 2006, Ivashkevich et al. 2011) but setting the size limit to eliminate the 

background is still subjective and the discrimination of overlapping of foci especially at 

earlier time points following damage induction remains difficult. The challenge of 

correctly counting overlapping foci is also complicated in this study. With higher doses, 

the number of overlapping foci increased. Elimination of background was performed by 

the investigator using the non-irradiated sample as control. One should also keep in 

mind that depending on the cell type and proliferative state of cells, the number of 

spontaneous foci in a non-irradiated sample varies. One good way of overcoming the 

problem of background foci was defining background foci number from different cell 

types of several passage levels (Rothkamm and Löbrich 2003). Nevertheless, foci from 

irradiated or non-irradiated samples were counted only in one plane. The foci above and 

below the plane have very high probability to be missed as they are completely outside 

of the plane or their size is below the threshold. This is one of big hurdles for both 

manual foci counters as well as for the software. The solution is definitely 3D imaging 

and foci counting-system. 
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4.5.4 Relevance for the threshold dose of radiation-induced cataractogenesis 

In ICRP publication 118, the acute dose threshold for lens opacities or cataract was set 

to 0.5 Sv (Clement 2012) which was concluded from several studies. Based on studies 

from atomic bomb survivors (Nakashima et al. 2006, Neriishi et al. 2007) the acute 

threshold dose for cataract was estimated to be 0.1-0.7 Gy with 90-95 % confidence 

interval (CI) including 0 Gy. Similarly, the threshold for protracted exposure was 

estimated between 0.34 and 0.50 Gy with CI 95 % at 0.17-0.69 Gy (Worgul et al. 2007). 

In another study, a dose-threshold estimation of 0.4 Gy was reported with 95 % CI at 0-

0.8 Gy (Blakely et al. 2010). Although ICRP-118 classifies cataracts as a deterministic 

effect of radiation with a dose threshold, recent studies suggest that it is a stochastic 

late effect that lacks a threshold. The hypothetical zero threshold for cataract formation 

is supported by the study performed by Di Paola and colleagues where lens opacities 

were studied after exposure to X-rays (0-3 Gy) and neutrons (0-0.38 Gy) (Di Paola et al. 

1978). Similarly, early development of cataract in ATM, RAD9 and/or BRCA1 

heterozygous mice compared to wild-type also backs the suggested stochastic nature of 

cataract formation (Worgul et al. 2002, Kleiman et al. 2007). There is also the possibility 

that such cataract formation may be an outcome of low dose radiation exposure (< 0.5 

Gy). Only few researches have explored the effects of low dose radiation on lens 

epithelial cells; therefore in this study the formation of DSBs corresponding to H2AX 

foci with exposure of 0.1, 0.3 and 0.5 Gy was evaluated. A significant increase in the 

foci number after X-rays exposure was seen compared to non-irradiated controls 

(Figure 46). The formation of foci after 0.3 Gy X-irradiation in pLECs in this thesis is 

similar to the number of ~4 foci/nucleus in lens epithelial cells of C57BL/6J mice 1 h 

after 0.25 Gy -rays exposure (Bannik et al. 2013). Because of the specific sensitivity of 

lens epithelial cells towards low dose, the risk of radiation-induced cataractogenesis 

should be kept in mind both, for space travel or terrestrial radiation exposures. 

4.5.5 DNA damage and repair in the porcine eye lens 

It is evident that when examining the damage of ionizing radiation, the use of whole 

porcine lenses would give more relevant results compared to the monolayer culture of 

pLECs in cell culture dishes. While irradiating whole lenses with 2 Gy of X-rays, the 

number of distinct foci after 1 h was reduced due to repair after 24 h (Figure 52) just like 

in monolayer culture (Figure 45). Although H2AX foci were present, it was difficult to 

quantify them due to their blurred appearance that might have been due to the presence 
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of some fiber cells that could not be completely removed while preparing epithelial 

layers from the formaldehyde-fixed lens. At this point, one might also argue about the 

mixing of fiber cells during generation of pLEC from the lens. However, there is not 

much of concern because fiber cells do not contain a nucleus and other organelles that 

could interfere with the H2AX assay. 

Lens epithelial cells divide and differentiate into fiber cells at the equatorial region 

(Remington and Goodwin 2011). Therefore, this region would be more vulnerable to 

DNA damage induced by ionizing radiation, which could lead to radiation 

cataractogenesis. The analysis of H2AX foci in microtome sections of the porcine eye 

lens (Figure 53) revealed that epithelial cells at the anterior region are less sensitive 

than the cells at the equatorial region. The increased incidence of foci indicating the site 

of damaged DNA at the equatorial region even 48 h after irradiation supports the higher 

radiation sensitivity of lens epithelial cells in this region. Markiewicz and colleagues 

obtained similar results by demonstrating formation of H2AX foci at peripheral 

(equatorial) and central (anterior) regions of the lens after exposure of mice to 20 and 

100 mGy of X-rays (Markiewicz et al. 2015). Interestingly, their result showed the repair 

of damage after 3 and 24 h in the central region. On the other hand, the damage in the 

equatorial region (where lens epithelial cells differentiate to fiber cells) was not resolved 

after 3 h but only after 24 h. This indicates increased radio-sensitivity of the lens at the 

equatorial region. 

4.5.6 Involvement of kinases in H2AX phosphorylation 

In the study by (Stiff et al. 2004) it was shown that both ATM and DNA-PK redundantly 

and non-competitively phosphorylate H2AX. The foci formation in ATM-deficient MEFs 

was lower compared to control and DNA-PK-deficient MEFs. Addition of a DNA-PK 

inhibitor to ATM deficient MEFs led to ablation of H2AX foci formation showing the 

requirement of both kinases for phosphorylation of H2AX. In addition, the dominant role 

of ATM in H2AX phosphorylation was verified by slower kinetics of H2AX induction in 

ATM-deficient human and mouse cells. In another study, it has been shown that 

phosphorylation of H2AX by ATR is due to its response to DNA replication block rather 

than DSB recognition and/or repair (Ward and Chen 2001). The above-mentioned 

studies are in good agreement with the results obtained in this thesis. The decreased 

amount of H2AX foci in Figure 47 due to ATM inhibition could be explained by the 
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dominating role of ATM in H2AX phosphorylation due to radiation-induced DSB 

recognition. Not surprisingly, the number of foci in irradiated pLECs was slightly 

increased when ATR and DNA-PK were inhibited (Figure 48 and Figure 49) compared 

to control as well as ATM inhibition alone. Plausible reasons for such an increase are 

the formation of foci due to phosphorylation by ATM and that some foci did not 

disappear because of the impairment in repair by ATR and DNA-PK inhibition.  

4.5.7 Relevance for space missions 

During long-term space missions, cataract-free eyes are critical for the astronauts and 

mission success. It has been suggested that even relatively low doses of space 

radiation cause increased and early appearance of cataract in astronauts (Cucinotta et 

al. 2001). Space radiation differs in quality and quantity from the radiation field on Earth 

and consists also of heavy, charged particles that have higher biological effectiveness. 

Hall and colleagues showed that after exposure to space-relevant high-LET heavy ions 

(56Fe) ATM-haploinsufficient mice developed stronger cataract compared to low-LET X-

rays (Hall et al. 2006). Nevertheless, experiments using space-relevant heavy ions 

either with human or animal lens epithelial cells are still low in number to result in 

concrete conclusions regarding lens opacification. Here, pLECs were irradiated with 

36Ar and 12C ions to investigate DSBs induction and repair. Table 17 summarizes the 

results from Figure 43, Figure 50 and Figure 51, and shows the comparison of foci 

formation after exposure to X-rays and 36Ar and 12C ions. With increasing atomic 

number, the foci number increased for carbon and argon ions after 1 h of irradiation. 

Similarly, the incapability of repairing DSBs was proportional to the size or atomic 

number of atoms as well as LET of radiation. 

 

Table 17: Comparison of H2AX foci with respect to different qualities of radiation 

Dose 
(Gy) 

Number of foci per nucleus after 
1 h 

Number of foci per nucleus after  
24 h 

X-rays 
3 keV/µm 

12C 
71 
keV/µm 

36Ar 
269 
keV/µm 

X-rays 
3 keV/µm 

12C 
71 
keV/µm 

36Ar 
269 
keV/µm 

0.5 5.7 4.6 8.2 1.8 1.4 5.3 

1 9.0 7.1 17.1 0.5 1.3 7.9 

2 13.9 15.5 20.9 1.4 2.5 5.8 
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Similar induction and repair of DNA damage as a consequence of exposure to X-rays 

and heavy ions were also seen in previous studies that support the present results 

(Aufderheide et al. 1987, Baumstark-Khan et al. 2003). Those studies showed three 

main differences in DNA strand break repair in diploid bovine lens epithelial cells. 

Firstly, repair after heavy ions was slower than after X-irradiation. Secondly, the rate 

and extent of repair decreased with increasing dose or particle fluence. And finally, the 

amount of non-rejoined breaks in heavy ions exposed samples was higher, despite of 

long incubation time. 

Concerning the proposed hypothesis of radiation-induced cataractogenesis implying 

proliferation and differentiation of genetically damaged lens epithelial cells, the results of 

this study also demonstrate a larger genetic damage caused by heavy charged 

particles. Therefore, protection of the lens from radiation exposure should be taken 

seriously to prevent radiation-induced lens opacification during long-term space 

missions as well as in occupational and therapeutic exposures. 

4.6 Gene expression after exposure of pLECs to different radiation 

quantities and qualities 

All the above-mentioned vital cellular processes like DNA repair, cell-cycle progression, 

oxidative stress, growth, and survival require a well-regulated expression of 

corresponding genes that initiate phenotypic changes. In this study, changes in 

expression of selected genes were analyzed after exposure to X-rays as well as carbon 

ions. 

The selection of housekeeping genes (HKGs) is a very important step in order to 

determine relative expression levels of target genes. Studies have shown that some 

commonly used HKGs may be regulated in response to ionizing radiation (Banda et al. 

2008, Iyer et al. 2017). Banda et al. showed that B2M was one of most stable HKG and 

can be used as internal control after exposure to ionizing radiation. Since the n-fold 

expression changes of genes between -2 to 2 were regarded as not being significant, 

the expression of B2M and HPRT were quite stable at all doses and timepoints both 

after X-rays (Figure 54) as well as carbon ion exposure (Figure 62). ACTB, the 

expression of which was very stable at 0 and 1 Gy, was slightly down-regulated after 

high doses of carbon ion exposure. Nevertheless, the use of three HKGs makes the 

results more reliable for the expression analysis of target gene. 
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CDKN1A (p21) and GADD45G genes are known to be involved in cell-cycle arrest 

(Bedelbaeva et al. 2010, Cazzalini et al. 2010, Karimian et al. 2016) and DNA repair 

after cellular injury (Ou et al. 2015, Ishida et al. 2013), respectively. Both genes have 

been shown to be consistently up-regulated after exposure to ionizing radiation (Snyder 

and Morgan 2004, Daino et al. 2002). The dose- and time-dependent increase of 

CDKN1A (Figure 55 and Figure 63) after radiation exposure is well supported by many 

other studies (Paul and Amundson 2008, Budworth et al. 2012) which actually reflect 

the activation of DNA repair pathways governed by cell-cycle arrest. Not surprisingly, 

the C-12 ion exposure resulted in higher expression of the CDKN1A gene, which might 

be explained by the higher amount and complexity of DNA damage after heavy ion 

exposure. This result is supported by a similar higher up-regulation CDKN1A gene in 

human lens epithelial cells after exposure to iron ions and protons (high-LET) compared 

to X-irradiation (low-LET) (Chang et al. 2005). Similarly, a study from the dog’s 

cataractous lens also demonstrated up-regulation of the CDKN1A gene (Bras et al. 

2007). Such findings suggest cell-cycle and proliferation of lens epithelial cells are 

dysregulated in cataractogenesis and that its severity is greatly affected by the radiation 

quality. 

With regard to the CRYAB gene, neither X-rays nor C-12 exposure resulted in 

distinguished changes of the expression pattern (Figure 57 and Figure 65). B-

crystallins, which are a product of CRYAB genes, are basically structural proteins. They 

belong to the heat-shock protein family, which have molecular chaperone activity and 

bind - and -crystallins in cooperation with A-crystallins to maintain lens transparency. 

A number of studies has shown that mutations in the CRYAB gene lead to formation of 

congenital cataracts (Chen et al. 2009, Berry et al. 2001, Liu et al. 2006, Jiaox et al. 

2015). Interestingly, Li et al. concluded that the Pro20Ser mutation in B-crystallin is a 

functional mutation that reduces the chaperon activity of A-crystallin, resulting in 

increased nuclear transport of B-crystallin and increased apoptosis of human lens 

epithelial cells (Li et al. 2008a). Furthermore, Andley proposed a model where cataract 

formation is the consequence of production of conformationally altered proteins due to 

mutation in -crystallin genes (Andley 2009). In this study, neither X-rays nor carbon ion 

irradiation affected the gene expression pattern. It might be possible that these radiation 

qualities induce genetic alterations, which lead to non-functional crystallins during 

protein translation. 
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The transparency of a crystalline lens depends on the tight arrangement of fiber cells, 

which are devoid of cell organelles as well as the nucleus. The involvement of DNase II 

for nuclear degradation in chicken lenses have been shown in studies performed by 

Torriglia et al. and also Bassnett and Mataic (Bassnett and Mataic 1997, Torriglia et al. 

1995). Two acid DNases, DNase II and DNase II (DNase II-like acid DNase (DLAD)), 

have been found in mammalian lenses. However, for the porcine lens, only DNase II 

has been reported and so far the presence of DNase II has not been investigated. 

Here, the expression of DNASE2 (DNase II) gene was not significantly altered after X-

ray and C-12 ion exposure (Figure 58 and Figure 66). Nevertheless, the importance of 

DLAD can be seen in the study of Nishimoto et al. where DLAD-/- mice developed 

cataracts indicating the requirement of DLAD in degradation of nuclear DNA during lens 

cell differentiation (Nishimoto et al. 2003). Interestingly, Nakahara and colleagues 

reported that DLAD was more abundant in fiber cells than in epithelial cells of mice 

lenses. The abundance of DLAD protein in fiber cells, located a few layers adjacent to 

the organelle-free zone, indicated that DLAD expression was deeply connected to lens 

fiber differentiation (Nakahara et al. 2007). The role of DNase II or DLAD is further 

supported by Maria and Bassnett who showed its necessity in fiber cell denucleation 

(De Maria and Bassnett 2007). 

As mentioned in the results section, the critical importance of PAX6 in differentiation 

and development of the lens and the iris because mutation in the gene cause conditions 

like aniridia and cataracts (Shiels and Hejtmancik 2013, Brémond-Gignac et al. 2010, 

Cai et al. 2010). In addition to that, PAX6 is also known to play a crucial role in lens fiber 

differentiation (Lovicu et al. 2004, Shaham et al. 2009). The current study is one of the 

first investigations on the effects of different doses and qualities of ionizing radiation on 

PAX6 gene expression. The dose-dependent increase in expression of the PAX6 gene 

mainly 24 and 72 h after X-ray exposure (Figure 59) would certainly have some effect 

on lens epithelial and fiber cells. Notably, transgenic mice with overexpression of human 

PAX6(5a) developed cataract as well as abnormalities in the fiber cells’ shape (Duncan 

et al. 2000). In contrast to exposure to X-rays, C-12 ion exposure resulted in dose-

dependent down-regulation of PAX6 gene expression. The reason for these 

contradicting results for two different radiation qualities is unclear. Nevertheless, a 

reduced level of the Pax6 transcription factor was found in TGF--induced sub-capsular 

plaques (Lovicu et al. 2004). It seems that both up- and down-regulation of PAX6 is a 
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threat to the health of the lens and a balanced expression is required for lens 

transparency. 

The NF-B /Rel family consists of five different related monomers: RelA (p65), RelB, c-

Rel, p50/p105 (NF-B1) and p52/p100 (NF-B2) that form homo- and hetero-dimers. 

NF-B are transcription factors that are present in cells in an inactive form yet respond 

rapidly upon detection of harmful cellular stimuli such as stress, cytokines, bacterial and 

viral antigens, ionizing radiation etc. to promote cellular survival e.g. by suppressing 

apoptosis. Notably, NF-B is activated in different types of cancers (Notarbartolo et al. 

2005, Suh et al. 2002, Dolcet et al. 2005). Under normal conditions, RelA is not 

regulated on the gene expression level. The activation and translocation of RelA is a 

good indicator of NF-B activation by radiation. On the gene expression level, NF-B 

activation can be observed by measuring the upregulation of NF-B target genes such 

as NFKB1A or TNF. Expectedly, the exposure of lens epithelial cells to X-rays did not 

significantly change the expression of RelA (Figure 60). In contrast, C-12 ion exposure 

(Figure 68) led to slight up-regulation at earlier time points which decreased with time 

for all doses for unclear reasons. Hellweg et al. could show an increase of nuclear p65 

content in HEK/293 cells, which indicates nuclear translocation of NF-B after radiation 

exposure (Hellweg et al. 2018). From experiments with rat eye lenses Shao and 

colleagues concluded that Akt and NF-B signaling pathways were likely related to the 

occurrence and development of posterior capsule opacification (Shao et al. 2017). It 

could be possible that survival of radiation injured lens epithelial cells direct the lens 

towards opacification. 

One of the major and initial events known in cataract development is oxidative stress 

induced by various agents (Matsuda et al. 1981, Worgul and Merriam Jr 1981, 

Babizhayev et al. 1988, Padgaonkar et al. 1989, Spector et al. 1995). Such stress leads 

to metabolic and cellular changes in the lens organ and in cell culture comparable to the 

observation in human cataracts (Giblin et al. 1995, Kleiman et al. 1990, Kleiman and 

Spector 1993, Spector et al. 1998, Zigler Jr et al. 1989). Superoxide dismutase (SOD) is 

one of first defense mechanism against oxidative stress that catalyzes conversion of 

highly dangerous superoxide anion (O2
-) to less reactive hydrogen peroxide (H2O2) and 

molecular oxygen. At present, three isoforms of SOD are known: CuZn-SOD (SOD1), 

Mn-SOD (SOD2) and SOD3. SOD3 is also dependent on copper and zinc as SOD1 and 

all these isoforms are expressed in human lens epithelium (Rajkumar et al. 2008). 
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Shankarnarayanan and colleagues showed that the activity and expression of SOD1 

plays important role to prevent cataract and is reduced in the cataractous lens 

(Rajkumar et al. 2013). Despite lower amounts of SOD3 activity (Skiljic 2014) compared 

to SOD1, the activity of SOD3 cannot be neglected. The gene expression level of SOD3 

in this study was not significantly affected by different doses of X-rays (Figure 61). On 

the other hand, SOD3 expression followed an inconsistent pattern after C-12 ion 

exposure (Figure 69). In other studies the activity or expression of SOD3 was compared 

between normal and cataractous lenses. However, a direct comparison of these results 

with pLECs in culture is not meaningful. Here, it was tested if radiation exposure led to 

similar results as in cataractous lenses. In addition to that, the cells used in this study 

were from porcine lenses, which might add some inter-species variations in the overall 

SOD content as well.  

4.7 Role of epithelial to mesenchymal transition in cataractogenesis 

It is well established that lens epithelial cells develop via epithelial to mesenchymal 

transition (EMT) to lens fiber cells. Radiation-induced cataract is known to occur as the 

result of EMT whereby genetically damaged lens epithelial cells proliferate to fiber cells 

(Rothstein et al. 1982, Worgul and Merriam Jr 1980, Worgul and Merriam Jr 1981). 

Many studies have demonstrated the presence of high amounts of calcium and 

phosphate forming bone-like hydroxyapatite crystals in senile or age-related cataract 

(Chen et al. 2005, Chiang et al. 2004, Lin et al. 2010). Such deposition of calcium is 

seen in osteogenic differentiation of vascular smooth muscle cells as well (Liu and 

Shanahan 2011, Steitz et al. 2001, Giachelli 2001). For this reason the assumption was 

made that cell-mediated osteogenic differentiation of lens epithelial cells could result in 

deposition of calcium in the crystalline lens. Another theory relies on the ionizing effect 

of radiation, which generates negative phosphate ions that combine with positive 

calcium ions to form an insoluble calcium phosphate precipitate. A very recent study 

conducted by Balogh et al. showed that the osteogenic induction of human lens 

epithelial cells resulted in osteogenic differentiation which was demonstrated by up-

regulation of the osteo-/chondrogenic transcription factors Runx2 and Sox9 at mRNA 

and protein level (Balogh et al. 2016). Nevertheless, the exact mechanism of such a 

differentiation is still unclear. 

In this study, the differentiation potential of pLECs under osteogenic induction and the 

expression of some genes of interest were analysed.  
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4.7.1 Osteogenic differentiation of lens epithelial cells 

The deposition of calcium that is stained by Alizarin Red S staining was expectedly 

seen in pLECs which were supplied with osteogenic induction medium, in contrast to 

normal medium, after 5 days of incubation. With this evidence, the gene expression 

analysis of pLECs with and without induction medium was conducted. 

4.7.2 Gene expression during differentiation 

The two housekeeping genes used as reference to analyze the osteogenic 

differentiation of lens epithelial cells are ACTB and B2M shown in Figure 71. The 

expression of B2M under both normal and calcification medium (or osteogenic induction 

medium) was quite stable. An approximately 3-fold up-regulation of the beta actin gene 

(ACTB) was observed after 7 days of incubation with osteogenic induction medium. The 

reason for such up-regulation is most probably associated with the structural changes 

that accompany osteogenic differentiation. In the study performed by Quiroz et al. to 

investigate the expression stability of housekeeping genes, during osteogenic 

differentiation of human bone marrow mesenchymal stem cells, beta actin was 4.38 fold 

up-regulated (Quiroz et al. 2010). Many studies have concluded that actin quantity and 

its polymerizing activity play a decisive role in differentiation of various stem cells 

towards osteogenic fate (Sonowal et al. 2013, Chen et al. 2015, Sen et al. 2015, Rubin 

and Sen 2017). Despite expression levels of B2M had been shown to be rather instable 

(Ragni et al. 2013) and varying with particular differentiation stages of the cells (Evans 

et al. 2012), the result from this study showed stable expression of B2M. 

Bone morphogenetic protein 2 (BMP2) belongs to the transforming growth factor- 

(TGF-) super-family and its importance in osteogenic differentiation in various cell 

types has been proven by experiments where BMP2 was supplemented (Ai et al. 2014, 

Marupanthorn et al. 2017) or the BMP2 gene was transfected (Sun et al. 2015, Zhou et 

al. 2016) into the test cell system which resulted in upregulation of osteogenic 

differentiation marker genes like RUNX2 (Runt-related transcription factor 2), SOX9 

(Transcription factor SOX-9), OCN (Osteocalcin), OPN (Osteopontin), COL1 (Collagen 

type I) and ALP (Alkaline phosphatase). Considering at the necessity of BMP2, an up-

regulation of the BMP2 gene (Figure 72) was indeed anticipated. This result suggests 

that BMP2 expression in lens epithelium is involved in the osteogenic differentiation 

process. Similarly, a study indicated that BMP2 expression in chicken lens epithelial 
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cells participates in the differentiation towards lens fiber cells (Belecky-Adams et al. 

2002). Further, the importance of BMP signaling in fibroblast growth factor (FGF)-

induced secondary lens fiber differentiation has been shown by Boswell et al. (Boswell 

et al. 2008). From this one can predict that depending on the expression level of BMP2 

there is the possibility of differentiation of lens epithelial cells towards the osteogenic 

fate instead of fiber cells. This BMP2 expression probably depends on osteogenic 

induction medium or calcification medium (i.e. concentration of inorganic phosphate and 

calcium), which might be similar to serum/blood in an organism. As the result illustrates, 

the time-dependent expression rate of BMP2 due to osteogenic induction could be a 

positive feedback loop established by continuous deposition of calcium and phosphate. 

One essential early transcription factor that is required for osteoblast differentiation as 

well as for the differentiation of mesenchymal stem cells towards the osteoblastic 

lineage is Runx2 (Yoshida et al. 2002, Franceschi and Xiao 2003, Komori 2002, 

Shakibaei et al. 2012). Runx2 is also known as a master transcription factor of 

osteogenesis. During osteogenic differentiation, Runx2 induces the mesenchymal stem 

cells to become immature osteoblasts, but it inhibits formation of mature osteoblasts 

(Bruderer et al. 2014). The target genes of Runx2, which are involved in osteogenic 

differentiation, are Col I, BSP, OPN and OCN. In this thesis, the expression level of 

Runx2 under osteogenic condition was about 2-fold up-regulated (Figure 73) regardless 

of the time of incubation with the osteogenic induction medium which lasted up to day 

14. Osteogenic induction of rat bone marrow-derived mesenchymal stem cells also 

resulted in a 2-fold relative expression of Runx2 up to day 14 which then decreased to 

normal values at day 21 and 28 (Sun et al. 2017). Interestingly, in a similar experiment 

performed on human bone marrow-derived mesenchymal stromal cells (BM-MSCs), 

treatment with osteogenic differentiation medium increased the relative expression of 

RUNX2 to about 2-fold at day 3 which peaked at day 14 (~8-fold) and was reduced 

again to about 2-fold at day 28 (Marupanthorn et al. 2017). Surprisingly, in the same 

study, in umbilical cord-derived mesenchymal stromal cells (UC-MSCs), the expression 

of RUNX2 was about 2-fold only at day 14. It was however reduced at day 3 and 7; and 

the expression increased to about 6-fold and 10-fold at day 21 and 28, respectively. The 

results for Runx2 expression in UC-MSCs (Marupanthorn et al. 2017) coincide with 

results from this thesis for the time points used (day 7 and 14). Although the authors did 

not discuss the late expression of RUNX2 in UC-MSC than BM-MSC, the most probable 
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reason could be the type or location of cells from where they were isolated. As the 

name suggests, bone marrow cells are more prone to readily differentiate to the bone 

lineage than the umbilical cord cells. This is likely similar for lens epithelial cells, which 

show an expression pattern more like UC-MSCs rather than BM-MSCs. May be longer 

incubation with osteogenic induction medium could change the RUNX2 expression 

level. In support of the results of pLECs, osteogenic differentiation of human lens 

epithelial cells where osteogenic medium was supplied for 24 h demonstrated a 

doubling of mRNA of RUNX2 compared to control (Balogh et al. 2016). 

Collagen type I, which is made up of two alpha-1 type I collagen and one alpha-2 type I 

collagen, is an important component of bone extracellular matrix. It is well accepted as 

an early marker of osteogenic differentiation (Rodan and Noda 1991). In addition to that, 

many studies have observed the up-regulation of collagen I gene during induction of 

osteogenic differentiation (Sun et al. 2015, Sun et al. 2017). Enhancement of 

osteogenic differentiation on a collagen I gel (Kang et al. 2013) or with supplementation 

of soluble collagen I (Kihara et al. 2006) have additionally supported its importance. 

Because all these studies were supporting the up-regulation of the collagen I gene, the 

drastic down-regulation of COL1A2 (alpha-2 type I collagen) under osteogenic induction 

conditions (Figure 74) was noteworthy. Not any of the studies have specifically 

examined the two different genes COL1A1 and COL1A2. There could be difference in 

regulation for these two genes especially when the cell type is completely different from 

that of osteogenic lineage. On top of that, comparison with other studies of collagen 

gene expression for lens epithelial cells is limited because of their very low number. 

While looking at the collagen content of human lens epithelial cells isolated from 

cataract lenses, the most abundant was collagen IV and a lower amount of collagen I 

and III was observed (Nishi et al. 1995). In a study using bovine lens epithelial cells, it 

was suggested that lens cells produce collagen IV at the initial passage and this 

collagen phenotype may alter during passaging to collagen I (after 14th passage) 

(Laurent et al. 1981). Such findings put forward a lot of questions before drawing 

conclusions for collagen gene expression in porcine lens epithelial cells as well. 

Osteopontin (OPN) is the member of Small Integrin-Binding Ligand N-Linked 

Glycoprotein (SIBLING) family. SIBLING proteins are known to be key regulators in bio-

mineralization of the tissues. Involvement of OPN in osteogenic cell differentiation is not 

yet clearly understood. Interestingly, in a recent study on Opn-/- osteoblasts, Holm et al. 
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showed that OPN could play role in regulating bio-mineralization but not necessarily in 

osteogenic cell differentiation (Holm et al. 2014). The gene expression analysis in this 

thesis showed down-regulation at day 7 followed by up-regulation at day 14 of 

osteogenic induction of the pLECs (Figure 75). Despite initial down-regulation at day 7, 

the eventual up-regulation after day 14 is supported by the fact that OPN is one of late 

osteogenic markers when mineralization of bone starts. Many studies with osteogenic 

induction of different cell types have shown up-regulation of the OPN gene like human 

endometrium-derived stem cells (Ai et al. 2014) around 3-fold at day 21, rat bone 

mesenchymal stem cells (Sun et al. 2015) and human amniotic fluid-derived 

mesenchymal stem cells (Glemžaitė and Navakauskienė 2016) 3-fold at day 15. These 

data also support the results obtained with pLECs. 

Although the role of the PAX6 gene is important in differentiation and developmental 

processes of the lens, no studies exist that investigate its expression pattern under 

osteogenic induction conditions. In this study, the clear time-dependent up-regulation of 

PAX6 gene expression with supplementation of osteogenic induction medium to pLECs 

(Figure 76) hints towards its involvement in osteogenic differentiation of lens epithelial 

cells as well. Further investigations are required to test the detailed engagement of this 

gene in this process. 

BMP2, RUNX2 and COL1A2 genes were additionally investigated to test if radiation 

alone would affect their expression pattern, which could finally lead to osteogenic 

differentiation. The radiation effects on these osteogenic differentiation marker genes 

are limited to very few experiments. The 2-fold up-regulation of BMP2 gene was 

pronounced mainly at the high dose of 16 Gy of X-rays at the 24 h time point after 

irradiation (Figure 77). Arnold et al. showed a decrease of BMP2 mRNA by 75 % in a 

highly metastatic breast cancer cell line 2 days after irradiation with 5 Gy of X-rays 

(Arnold et al. 1999). In contrast, isolated human aortic valve interstitial cells displayed 

up-regulation of osteogenic markers 24 h after exposure to 10 Gy -rays (cesium-137 

irradiator) (Nadlonek et al. 2012). The values for increases of expression of BMP2 2-

fold, OPN 7-fold, ALP 3-fold and RUNX2 2-fold reveals the osteogenic inductive 

capacity of ionizing radiation. While the study by Nadlonek et al. gave a mechanistic 

insight into radiation-induced pathogenesis of aortic valve-related heart disease due to 

triggering of osteogenic induction, radiation-induced osteogenic differentiation of lens 

epithelial cells could also be a side effect of BMP2 expression. On the other hand, the 
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COL1A2 gene was minimally affected by X-rays at least at the earlier time point of the 

experiment (Figure 79). Likewise, the expression of RUNX2 (Figure 78) was ambiguous 

for the pLECs after radiation exposure. 

4.8 Conclusion and Outlook 

The aim of this work was to establish a cellular and an organ system that can be used 

for understanding the underlying mechanisms of radiation-induced cataract formation by 

radio-biological characterization of the porcine lens and lens epithelial cells. The need of 

an animal cell system rises, as it is almost impossible to obtain lenses from a healthy 

human donor.  

Although pLECs have a slow proliferation rate, the easy isolation and culture of the cells 

compensate this problem. This study also suggests using pLECs at lower passage 

number (up to 4th passage). Colony forming assays did not show a significant difference 

in survival of immediately and late plated pLECs, which would have indicated an 

impairment in damage recovery. Prolonging the incubation time would be an interesting 

future experiment.  

Determination of ROS after radiation exposure did not reveal a significant increase for 

the time points and doses used in this thesis. Since the ROS are short-lived in nature, 

novel protocols to harvest the cells at much shorter time points after exposure or even 

an assay that could detect live ROS generation would provide significant new insights. 

Cell cycle analysis after X-irradiation imposed a dose-dependent increase in G2/M 

phase cells, which was demonstrated by a persistent cell cycle block up to 168 h. In this 

thesis, effects of ATM, ATR and DNA-PK inhibition on cell-cycle regulation of pLECs 

have been shown for the first time. Despite the fact that the experiments were not 

repeated, the results obtained for ATM (increased G2/M phase cells) and ATR inhibition 

(decreased G2/M phase cells) clearly justify a role of these molecules. Repeating those 

experiments would help to establish statistical significance. Studying the effect of p53, a 

key downstream molecule of ATM and ATR, would help to complete the picture of cell-

cycle regulation in pLECs after radiation exposure. Those studies would be of great 

importance because radiation-induced cataractogenesis is hypothesized to depend on 

post-proliferative activity of lens epithelial cells.  

The analysis of DNA DSB repair via H2AX assay points out the impairment in DSB 

repair in pLECs as well as whole lenses. The study also hints towards the possibility of 
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damage induction even at lower doses of irradiation with X-rays or heavy ions like 

argon- and carbon ions. The amount of damage induction and impairment of repair 

processes increased with increasing LET of radiation. These harmful effects make 

space travel unsafe with regard to damage to lens epithelial cells of the astronauts. 

Interestingly, such damage in lens epithelial cells residing in whole lenses was not 

uniformly distributed in different regions of the lens after X-irradiation. More damage 

persisted at the equatorial region (differentiation zone), which could possibly be the 

initial step in lens opacification.  

Gene expression analysis revealed upregulation of the cell-cycle control gene CDKN1A, 

where high-LET carbon ions triggered greater fold-changes than low-LET X-rays. 

Osteogenic induction of pLECs led to deposition of calcium on the cell culture plate, 

which was supported by upregulation of osteogenic induction genes. This possibility of 

differentiation of lens epithelial cells put forward a novel hypothesis of lens opacification 

due to calcium deposition. This preliminary experiment should be further investigated 

taking into consideration that astronauts in space suffer bone loss (calcium and 

phosphorus) due to microgravity. An early study claimed that radiation-induced 

production of negative phosphate ions interact with calcium ions in the lens to result in 

calcium phosphate precipitation leading to lens opacification (Burge et al. 1937). 

The main concern of this study is how to prevent the induction of radiation-induced 

cataractogenesis and what countermeasures could be taken, which is possible only 

when the exact mechanisms are elucidated. Such studies would require a lot of 

samples. Due to rarity of human lenses, the possibility of using porcine lens and lens 

epithelial cells was investigated by testing them with numerous radio-biological 

experiments. Since most of the experiments in this thesis were performed with X-

irradiation, repeating the experiments with space-relevant heavy charged particles 

irradiation would help in drawing much stronger conclusions. Finally, using the whole 

lens culture system will make it possible to investigate specific molecules involved in 

radiation cataractogenesis mechanisms and to side by side compare it with the 

monolayer culture as it was done for H2AX in this thesis. 
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5 ABSTRACT 

The eye lens is known to be a radiosensitive mammalian organ, and ionizing radiation is 

considered to be a widely known risk factor inducing lens opacities. During space 

missions, astronauts are constantly exposed to galactic cosmic radiation, which 

contains energetic heavy ions of high linear energy transfer (LET). Due to higher dose 

and different patterns of cellular energy deposition from the high-LET ions, astronauts 

have higher risk for developing cataract compared to low-LET radiation exposure on 

earth. Although the exact mechanism of opacification is not known in detail, it is 

hypothesized that it initiates from the post-irradiation proliferative activity of genetically 

damaged lens epithelial cells. 

As the porcine eye lens resembles the human eye lens in anatomy, size and crystalline 

content, the DNA damage reaction was investigated in lens organ culture (ex-vivo), in 

in-vitro cultivated lens epithelial layer and in monolayer culture (porcine lens epithelial 

cells (pLEC)). Colony forming ability assay demonstrated no significant difference in 

survival of pLECs with or without a recovery period of 24 h after X-irradiation. Induction 

of DNA double strand breaks and their repair verified using the molecular marker 

H2AX was dependent on dose and LET of radiation. In whole lenses, the DSB repair at 

the central epithelial region seemed to be similar to in-vitro cultivated pLECs whereas 

more damage persisted at the equatorial region even after a recovery time of 48 h. 

Investigation of cell cycle progression revealed a dose-dependent G2/M phase arrest in 

pLECs. Analysis of gene expression by reverse transcriptase quantitative real-time 

polymerase chain reaction (RT-qPCR) demonstrated dose-dependent up-regulation of 

the CDKN1A gene after both X-rays and carbon-ion exposure, where carbon ions (high-

LET) resulted in higher n-fold changes. 

Osteogenic induction of pLECs with supplementation of inorganic phosphate was 

verified with Alizarin Red S staining which was visible after 5 days of induction. RT-

qPCR analysis showed up-regulation of BMP2, RUNX2 and PAX6 genes whereas 

down-regulation of COL1A2 gene due to supplementation of osteogenic induction 

medium. 

Findings like persistence of DNA-DSB in pLECs and whole lens and cell-cycle 

disturbances indicate the vulnerability and sensitivity of lens epithelial cells towards 

ionizing radiation and support the hypothesis of radiation-induced cataract. 
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Misdifferentiation of pLECs to osteogenic type might also be a reason for calcium 

deposition that leads to lens opacification. Finally, the successful performance of 

experiments with pLECs and whole lens culture allows porcine lenses to be used as a 

new cell system for mechanistic and countermeasure studies of lens opacification. 

 



ZUSAMMENFASSUNG 
 

 
- 127 - 

 

6 ZUSAMMENFASSUNG 

Die Augenlinse ist als strahlungsempfindliches Säugetierorgan bekannt und 

ionisierende Strahlung gilt als allgemein bekannter Risikofaktor, der eine Linsentrübung 

verursachen kann. Bei Weltraummissionen sind Astronauten kontinuierlich der 

galaktischen kosmischen Strahlung ausgesetzt, welche energiereiche schwere Ionen 

mit hohem linearen Energietransfer (LET) enthält. Aufgrund der höheren Dosis und der 

unterschiedlichen Muster der Energiedeposition durch die hoch-LET Ionen haben 

Astronauten ein höheres Risiko, einen Katarakt zu entwickeln, verglichen mit einer 

Exposition mit Niedrig-LET-Strahlung auf der Erde. Obwohl der genaue Mechanismus 

der Trübung nicht im Detail bekannt ist, wird angenommen, dass die Trübung durch die 

Proliferationsaktivität genetisch geschädigter Linsenepithelzellen nach Bestrahlung 

ausgelöst wird. 

Da die Schweine-Linse in ihrer Anatomie, Größe und ihrem Kristallingehalt der 

menschlichen Linse ähnlich ist, wurde die Reaktionen auf DNA-Schäden in der 

Linsenorgankultur (ex-vivo), in der in-vitro kultivierten Linsenepithelschicht und in 

Monolayer-Kulturen von Linsenepithelzellen des Schweins (pLEC) untersucht. Der 

Kolonie-Bildungs-Test (Colony Forming Ability (CFA)-Assay) zeigte, dass es keinen 

signifikanten Unterschied im Überleben von pLECs nach Röntgenbestrahlung mit 24 h 

Erholungszeit oder ohne diese gibt. Die Induktion von DNA-Doppelstrangbrüchen (DSB) 

und deren Reparatur wurde mit dem molekularen Marker H2AX nachgewiesen und 

war abhängig von der Dosis und dem LET der Strahlung. 

In ganzen Linsen schien die DSB-Reparatur in der zentralen Epithelregion mit in-vitro 

kultivierten pLECs ähnlich zu sein, während im äquatorialen Bereich auch nach einer 

Regenerationszeit von 48 h mehr Schäden persistierten. Die Untersuchung der 

Zellzyklusprogression zeigte einen dosisabhängigen Stopp der pLECs in der G2/M-

Phase. 

Die Analyse der Genexpression durch Reverse Transkriptase quantitative Echtzeit-

Polymerase-Kettenreaktion (RT-qPCR) zeigte eine dosisabhängige Hoch-Regulierung 

des CDKN1A-Gens nach Röntgen- und Kohlenstoffionen-Exposition, wobei 

Kohlenstoffionen (hoch-LET) stärkere Hoch-Regulierungen auslösten. 

Die osteogene Induktion von pLECs durch Supplementierung von anorganischem 

Phosphat wurde mit Hilfe der Alizarin Red S Färbung verifiziert, die nach fünf Tagen 
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Induktion sichtbar war. Die RT-qPCR-Analyse ergab eine Hoch-Regulierung der Gene 

BMP2, RUNX2 und PAX6, während das COL1A2-Gens durch Supplementierung des 

osteogenen Induktionsmediums eine herunter reguliert wurde. 

Die Ergebnisse, insbesondere die Persistenz von DNA DSB in pLECs und in der 

gesamten Linse sowie Störungen im Zellzyklusverlauf, deuten auf die Anfälligkeit und 

Empfindlichkeit von Linsenepithelzellen gegenüber Exposition mit ionisierender 

Strahlung hin, welche die Hypothese der strahlungsinduzierten Kataraktbildung 

unterstützen. Fehldifferenzierung von pLECs zum osteogenen Typ könnte auch ein 

Grund für Kalziumablagerung sein, die ebenfalls zu einer Linsentrübung führt. 

Schließlich zeigt die erfolgreiche Durchführung von Experimenten mit pLECs und 

Ganzlinsenkulturen die Möglichkeit, dass Schweine-Linsen als neues Zellsystem für die 

mechanistische Untersuchung der Linsentrübung und die Entwicklung von 

Gegenmaßnahmen verwendet werden können.  
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8 APPENDIX 

8.1 Supplementary results 

 4 h 24 h 48 h 72 h 168 h 

0 

Gy 

     

1 

Gy 

     

2 

Gy 

     

4 

Gy 

     



APPENDIX 
 

 
- 153 - 

 

6 

Gy 

     

 

Table 18: Quantity and integrity of RNA isolated from X-ray exposed pLECs. 

# Conditions RNA concn (ng/µl) RIN 

1 4 h 0 Gy 207.8 8.9 

2 4 h 1 Gy 259.3 8.7 

3 4 h 4 Gy 309.6 8.7 

4 4 h 8 Gy 258.5 8.6 

5 4 h 16 Gy 245.7 9 

6 12 h 0 Gy 328.4 9 

7 12 h 1 Gy 332.9 9.1 

8 12 h 4 Gy 312.9 9 

9 12 h 8 Gy 320.5 8.8 

10 12 h 16 Gy 337.4 8.9 

11 24 h 0 Gy 431.2 9 

12 24 h 1 Gy 436.7 8.8 

13 24 h 4 Gy 370.6 9 

14 24 h 8 Gy 195.1 8.8 

15 24 h 16 Gy 357.9 9.3 

16 48 h 0 Gy 311.5 9.5 

17 48 h 1 Gy 239.0 9.4 

18 48 h 4 Gy 363.3 8.8 

19 48 h 8 Gy 319.5 8.8 

20 48 h 16 Gy 273.4 8.9 

21 72 h 0 Gy 446.5 8.7 

22 72 h 1 Gy 454.5 8.9 

23 72 h 4 Gy 272.7 8.7 

24 72 h 8 Gy 339.9 8.8 

25 72 h 16 Gy 289.4 8.3 

 

 

 

Figure S1: Cell cycle distribution histogram after exposure to X-rays. pLECs were harvested and fixed with 70 
% ethanol at different time points and stained with propidium iodide (PI). In the above histograms, x-axis gives the 
cell count and y-axis gives the PI fluorescence. 
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Table 19: Quantity and integrity of RNA isolated from Carbon-12 exposed pLECs. 

# Conditions RNA concn (ng/µl) RIN 

1 4 h 0 Gy 79.2 6.4 

2 4 h 1 Gy 136.7 7.1 

3 4 h 4 Gy 172.6 7.4 

4 4 h 8 Gy 105.3 7.8 

5 4 h 16 Gy 50.2 7.6 

6 12 h 0 Gy 196.6 7.6 

7 12 h 1 Gy 105.3 6.4 

8 12 h 4 Gy 83.7 6.8 

9 12 h 8 Gy 87.9 7.5 

10 12 h 16 Gy 173.1 7.2 

11 24 h 0 Gy 123.1 7.2 

12 24 h 1 Gy 241.6 7.5 

13 24 h 4 Gy 62.6 8.4 

14 24 h 8 Gy 137.8 7.4 

15 24 h 16 Gy 160.6 7.3 

16 72 h 0 Gy 175.4 8 

17 72 h 1 Gy 146.8 7.1 

18 72 h 4 Gy 123.5 7.3 

19 72 h 8 Gy 124.2 6.8 

20 72 h 16 Gy 64.1 7.7 

 

Table 20: Quantity and integrity of RNA isolated from pLECs with or without calcification medium. 

# Conditions RNA concn (ng/µl) RIN 

1 NM day 0 391.0 10 

2 NM day 7 40.8 7.2 

3 NM day 14 83.1 9.6 

4 CM day 0 226.3 9.8 

5 CM day 7 107.6 9.9 

6 CM day 14 138.6 9.7 
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8.2 Abbreviations 

Abbrevation Description 

-MEM Alpha minimum essential medium eagle 

H2AX H2A histone family member X (phosphorylated at Serine-139) 
° C Degree Centrigrade 
µg Microgram 
µl Microliter 
µm Micrometer 
µM Micro-molar 
53BP1 p53 binding protein 1 
Å Ångström (1×10-10 m) 
A Adenine 
ACTB Beta-actin 
ADP Adenosine diphosphate 
ALP Alkaline phosphatase 
Ar Argon 
ATM Ataxia telangiectasia mutant protein 
ATR Ataxia telangiectasia and Rad3-related protein 
B2M Beta-2 microglobulin 
BER Base excision repair 
BLAST Basic Local Alignment Search Tool 
BMP2 Bone morphogenetic protein 2 
bp Basepair 
BRCA1/2 Breast cancer gene 1/2 
BSA Bovine serum albumin 
BSP Bone sialoprotein 
C Carbon 
C Cytosine 
Ca Calcium 
CAT Catalase 
Cdc Cell division cycle 
Cdk Cyclin-dependent kinase 
CDKN1A Cyclin-dependent kinase inhibitor 1 
cDNA Complementary DNA 
CFA Colony forming ability 
Chk1, Chk2 Checkpoint kinase 1, 2 
CM Calcification medium 
COL1 Collagen type I 
COL1A2 Collagen type I alpha 2 chain 
CRYAB Crystallin Alpha B 
Ct Threshold cycle 
CtIP CtBP-interacting protein 
D Dose 
DAPI 4’,6-diamidino-2-phenylindole 
DLAD DNase II-like acid DNase 
DLR Deutsches Zentrum für Luft- und Raumfahrt 
DMSO Dimethyl sulfoxide 
DNA Deoxyribonucleic acid 
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Abbrevation Description 

DNA-PK DNA protein kinase 
DNASE2 Deoxyribonuclease II 
DN-PKcs DNA protein kinase catalytic subunit 
DSB Double strand break 
DSBR Double strand break repair 
e- Electron 
EDTA Ethylenediaminetetraacetic acid 
EdU 5-Ethynyl-2´-deoxyuridine 
EMT Epithelial to mesenchymal transition 
ESA European Space Agency 
EXO1 Exonuclease 1 
F Fluence 
FACS Fluorescence-activated cell scanner 
FBS Fetal bovine serum 
Fe Iron 
FGF Fibroblast growth factor 
FSC Forward scatter 
g Gram 
G Guanine 
GADD45G Growth Arrest And DNA Damage Inducible Gamma 
GANIL Grand Accélérateur National d’Ions Lourds 
GCR Galactic cosmic radiation 
G1 phase Gap phase between M- and S-phase 
G2 phase Gap phase between S- and M-phase 
Gy Gray 
H• Hydrogen radical 
He Helium 
HeLa Cervival cancer derived cells (from patient Henrietta Lacks) 
HEK Human embryonic kidney cells 
HKGs Housekeeping genes 
HLE  Human lens epithelial cells 
HPRT Hypoxanthine-guanine phosphoribosyltransferase 
HR Homologous recombination 
HT Equivalent dose 
HZE High (H) atomic number (Z) and energy (E) 
IARC International Agency for Research on Cancer 
ICRP International Commission on Radiological Protection 
IL6 Interleukin 6 
IOL Intra-ocular lens 
IP Immediate plating 
ISS International Space Station 
IU International units 
J Joule 
K Potassium 
kb Kilobases 
keV Kilo electron volt 
kV Kilo volt 
l Liter 
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Abbrevation Description 

LEO Low Earth orbit 
LET Linear energy transfer 
LIG4 Ligase 4 
LP Late plating 
LW24 Primary adipose derived stem cell 
M Molar 
M Mitosis phase of the cell cycle 
mA Milliampere 
Mdm2 Mouse double minute 2 homolog 
MeV/n Mega electron volt per nucleon 
MEF Mouse embryonic fibroblast 
ml Milliliter 
mm Millimeter 
mM Milli-molar 
MMLV Moloney Murine Leukemia Virus 
MMP Matrix metalloproteinase 
mol Mole 
MRE11 MRE11 homolog, double strand break repair nuclease 
MRN Complex of MRE11, RAD50 and NBS1 
mSv Milli-Sievert 
Na Sodium 
NBS1 Nijmegen breakage syndrome 1 protein 
NCBI National Center for Biotechnology Information 
NFKBIA NF-κB inhibitor alpha 
NF-B Nuclear Factor B 
ng Nanogram 
NHEJ Non-homologous end joining  
nm Nanometer (1×10-9 m) 
nM Nano-molar 
NM Normal medium 
OCN Osteocalcin 
OCT-1 Murine osteoblastic cell line 
OH• Hydroxyl radical 
OPN Osteopontin 
P Particles 
P+ Proton 
p21 Protein 21 CDK2-interacting protein 1 
p53 Tumor protein p53 
PARP1 Poly(ADP-ribose) polymerase 1 
PAX6 Paired Box 6 
PBS Phosphate buffered saline 
PE Plating efficiency 
pH Pondus Hydrogenii (-log [H+]) 
PI Propidium iodide (C27H34I2N4) 
Pi Inorganic phosphate 
PIKK Phosphatidylinositol-3-kinase-related kinase 
pLEC Porcine lens epithelial cell 
PS3 Petri dish,  30 mm 
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Abbrevation Description 

PS6 Petri dish,  60 mm 
PSC Posterior sub-capsular cataract 
qPCR Quantitative polymerase chain reaction 
RT-qPCR Reverse Transcriptase Quantitative real-time polymerase chain 

reaction 
RAD9 DNA repair protein RAD9 
RAD50 Recombinant DNA Repair Protein RAD50 
RAD51 RAD51 recombinase 
RAD52 RAD52 homolog, DNA repair protein 
RBE Relative biological effectiveness 
RELA Transcription factor p65 
RIN RNA integrity number 
RNA Ribonucleic acid 
ROS Reaction oxygen species 
RPA Replication protein A 
rRNA Ribosomal RNA 
RT Room temperature 
RUNX2 Runt-related transcription factor 2 
S-phase DNA synthesis phase of the cell cycle 
S Relative survival 
SAA South atlantic anomaly 
SAOS-2 Human osteosarcoma cell line 
SCR Solar cosmic radiation 
SD Standard deviation 
SE Standard error 
SIBLING Small Integrin-Binding LIgand N-Linked Glycoprotein 
SM Standard medium 
SMC Structural maintenance of chromosomes 
SOD Superoxide dismutase 
Sox9 SRY-box 9 (Transcription factor) 
SPE Solar particle events 
SSB Single strand break 
SSC Side scatter 
SV Sievert 
Ta Annealing temperature 
TBST Tris-buffered saline with tween 20 
Td Doubling time 
TGF-ß Transforming growth factor beta 
Tm Melting temperature 
TNF Tumor necrosis factor 
VSMC Vascular smooth muscle cells 
v/v Volume per volume 
WR Radiation weighting factor 
w/v Weight per volume 
×g Relative centrifugal force 
XLF XRCC4 like Factor 
XRCC1 X-ray cross complementing protein 1 
XRCC4 X-ray cross complementing protein 4 
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