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ABSTRACT

Modern deep learning has enabled amazing developments of computer vision
in recent years (Hinton and Salakhutdinov, 2006; Krizhevsky et al., 2012). As a
fundamental task, semantic segmentation aims to predict class labels for each pixel
of images, which empowers machines perception of the visual world. In spite of
recent successes of fully convolutional networks (Long et al., 2015), several challenges
remain to be addressed. In this thesis, we focus on this topic, under different kinds
of input formats and various types of scenes. Specifically, our study contains two
aspects: (1) Data-driven neural modules for improved performance. (2) Leverage
of datasets w.r.t.training systems with higher performances and better data privacy
guarantees.

In the first part of this thesis, we improve semantic segmentation by designing
new modules which are compatible with existing architectures. First, we develop a
spatio-temporal data-driven pooling, which brings additional information of data
(i.e. superpixels) into neural networks, benefiting the training of neural networks as
well as the inference on novel data. We investigate our approach in RGB-D videos
for segmenting indoor scenes, where depth provides complementary cues to colors
and our model performs particularly well. Second, we design learnable dilated
convolutions, which are the extension of standard dilated convolutions, whose
dilation factors (Yu and Koltun, 2016) need to be carefully determined by hand to
obtain decent performance. We present a method to learn dilation factors together
with filter weights of convolutions to avoid a complicated search of dilation factors.
We explore extensive studies on challenging street scenes, across various baselines
with different complexity as well as several datasets at varying image resolutions.

In the second part, we investigate how to utilize expensive training data. First,
we start from the generative modelling and study the network architectures and the
learning pipeline for generating multiple examples. We aim to improve the diversity
of generated examples but also to preserve the comparable quality of the examples.
Second, we develop a generative model for synthesizing features of a network. With
a mixture of real images and synthetic features, we are able to train a segmentation
model with better generalization capability. Our approach is evaluated on different
scene parsing tasks to demonstrate the effectiveness of the proposed method. Finally,
we study membership inference on the semantic segmentation task. We propose the
first membership inference attack system against black-box semantic segmentation
models, that tries to infer if a data pair is used as training data or not. From our
observations, information on training data is indeed leaking. To mitigate the leakage,
we leverage our synthetic features to perform prediction obfuscations, reducing the
posterior distribution gaps between a training and a testing set. Consequently, our
study provides not only an approach for detecting illegal use of data, but also the
foundations for a safer use of semantic segmentation models.
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ZUSAMMENFASSUNG

Modernes “deep learning" hat in den letzten Jahren erstaunliche Entwicklungen im
Bereich Computer Vision ermöglicht (Hinton and Salakhutdinov, 2006; Krizhevsky
et al., 2012). Eine grundlegende Aufgabe der semantischen Segmentierung ist
es, labels für jedes Pixel von Bildern vorherzusagen, wodurch die Wahrnehmung
der visuellen Welt durch Maschinen verbessert wird. Trotz der jüngsten Erfolge
von vollständig faltenden Netzwerken (fully convolutional networks) (Long et al.,
2015) müssen einige Herausforderungen noch gemeistert werden. In dieser Arbeit
konzentrieren wir uns auf dieses Thema, unter verschiedenen Arten von Eingabe-
formaten und verschiedenen Arten von Szenen. Unsere Studie enthält insbesondere
zwei Aspekte: (1) Datengesteuerte neuronale Module für eine verbesserte Leistung.
(2) Nutzung von Datensätzen mit Trainingssystemen mit höherer Leistung und
besseren Datenschutzgarantien.

Im ersten Teil der Arbeit verbessern wir die semantische Segmentierung, in-
dem wir neue Module entwerfen, die mit vorhandenen Architekturen kompatibel
sind. Zunächst entwickeln wir ein räumlich-zeitliches datengesteuertes Pooling,
das zusätzliche Dateninformationen (d. h. Superpixel) in neuronale Netze ein-
bringt, was sowohl dem Training neuronaler Netze als auch der Folgerung auf
neue Daten zugute kommt. Wir untersuchen unseren Ansatz in RGB-D-Videos
zur Segmentierung von Szenen in Innenräumen, bei denen die Tiefe ergänzende
Hinweise zu Farben liefert. Es zeigt sich, dass unser Modell besonders leistungsfähig
ist. Zweitens entwerfen wir lernbare erweiterte Faltungen, die die Erweiterung von
erweiterten Standardfaltungen darstellen (Yu and Koltun, 2016), deren Erweiter-
ungsfaktoren sorgfältig von Hand bestimmt werden müssen, um eine angemessene
Leistung zu erzielen. Wir präsentieren eine Methode, um Dilatationsfaktoren zusam-
men mit Filtergewichten von Faltungen zu lernen, um eine komplizierte Suche
nach Dilatationsfaktoren zu vermeiden. Wir untersuchen umfangreiche Studien zu
herausfordernden Straßenszenen über verschiedene Baselines mit unterschiedlicher
Komplexität sowie Datensätze mit unterschiedlichen Bildauflösungen.

Im zweiten Teil untersuchen wir den Umgang mit teuren Trainingsdaten. Wir
beginnen mit der generativen Modellierung und untersuchen die Netzwerkarchitek-
turen sowie die Lernpipeline zur Generierung mehrerer Beispiele. Wir sind bestrebt,
die Vielfalt der generierten Beispiele zu verbessern, aber die vergleichbare Qualität
der generierten Beispiele zu bewahren. Zweitens entwickeln wir ein generatives
Modell zur Synthese von Zwischenmerkmalen eines neuronalen Netzwerks. Mit
einer Mischung aus realen Bildern und synthetischen Merkmalen können wir ein
semantisches Segmentierungsmodell mit einer besseren Generalisierungsfähigkeit
trainieren. Unser Ansatz wird anhand verschiedener Aufgaben zum Parsen von
Szenen bewertet, um die Wirksamkeit der Vorschlagsmethode zu demonstrieren.
Schließlich untersuchen wir die Inferenz der Zugehörigkeit zu einer semantischen
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Segmentierungsaufgabe. Wir schlagen das erste Inferenzangriffssystem für die
Mitgliedschaft gegen Black-Box-Semantik-Segmentierungsmodelle vor, bei dem ver-
sucht wird, zu schließen, dass ein Datenpaar als Trainingsdaten verwendet wird
oder nicht. Aus unseren Beobachtungen geht hervor, dass Informationen zu Train-
ingsdaten tatsächlich undicht sind. Um die Leckage zu mindern, setzen wir unsere
synthetischen Funktionen ein, um Vorhersageverschleierungen durchzuführen und
die Lücken in der posterioren Verteilung zwischen Training und Testset zu verrin-
gern. Folglich bietet unsere Studie nicht nur einen Ansatz zur Aufdeckung der
illegalen Verwendung von Daten, sondern auch die Grundlagen für eine sicherere
Verwendung semantischer Segmentierungsmodelle.
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1I N T R O D U C T I O N

Semantic segmentation is a fundamental problem in computer vision. The
goal of semantic segmentation is to predict a category for each pixel in a
defined label space. It has extremely broad real-world applications in various

scenarios (Cordts et al., 2016; Geiger et al., 2012; Nathan Silberman and Fergus, 2012;
Schwarz et al., 2018; Menze et al., 2015; Gong et al., 2017). For instance, semantic
segmentation systems are core components of autonomous vehicles, providing
perceptions of environments (Cordts et al., 2016) or drivable areas (Yu et al., 2018). In
robotic applications, semantic segmentation also plays a key role in manipulation
of tools or navigation in indoor environments (Nathan Silberman and Fergus, 2012;
Schwarz et al., 2018). Benefiting from the development of machine learning that
learns visual representations with large-scale image datasets (Deng et al., 2009; Zhou
et al., 2018) as well as deep neural networks (Hinton and Salakhutdinov, 2006; LeCun
et al., 1998; Krizhevsky et al., 2012; He et al., 2016), the performance of semantic
segmentation models has been dramatically improved.

Modern semantic segmentation models are built on fully convolutional archi-
tectures (Long et al., 2015; Badrinarayanan et al., 2017; Chen et al., 2018b), which
stack continuous convolution blocks into a network to produce structural predic-
tions. They are trained by back-propagating errors (Rumelhart et al., 1988) from
pixel-level ground truth annotations, as shown in Figure 1.1. In particular, dilated
convolution (Yu and Koltun, 2016; Chen et al., 2018b) has been widely applied for se-
mantic segmentation, which maintains high resolution feature maps as well as large
receptive fields at the same time. In addition, modeling context and post processing
are also essential to improve the fully convolution pipeline. Previous literature has
proposed many solutions to effectively aggregate context information, which either
introduce global context (Zhang et al., 2018a; Liu et al., 2015), or multiscale context
features (Chen et al., 2018c; Zhao et al., 2017). Therefore, effective context modelling is
essential for better recognition and segmentation, which provides critical evidences
to determine the category of each location. Conditional random fields (Krähenbühl
and Koltun, 2011) are a kind of widely used post processing technique for semantic
segmentation, which can correct wrong predictions by considering their context
relationships.

Data and model play critical roles in training a segmentation model, in terms of
achieving decent performances as well as making limited annotation efforts from
humans. Obviously, large-scale annotated data helps expanding the performance
limitation of a network (Sun et al., 2017). To obtain powerful segmentation models,
academic and industry communities have created many successful datasets for
different application scenarios, such as indoor scenes (Silberman et al., 2012), street
scenes (Cordts et al., 2016), natural outdoor scenes (Zhou et al., 2017), objects (Lin
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2 chapter 1. introduction

Encoder Decoder

Forward/Inference

Backward/Learning

Figure 1.1: The pipeline of modern fully convolutional encoder/decoder architectures
for semantic segmentation. It is able to take different input forms (RGB or RGB-D
images) and produce dense structural predictions.

et al., 2014), etc. Even though large-scale densely annotated datasets have been
released, how to make fully use of those data is still worth to explore, by developing
data-driven models (e.g. fully convolutional networks) to train a segmentation model.
Recently, except annotating real images, applying synthetic images has became more
and more popular, where images and corresponding annotations are automatically
acquired from a game engine (Richter et al., 2016; Ros et al., 2016). However, it is
challenging to directly utilize synthetic images to train a segmentation model with a
surpassed performance compared to a model trained on real images, due to domain
shift between real and synthetic images, such as the shape of objects themselves,
the ratio between different kinds of objects, as well as the appearances of objects.
Those distribution differences tremendously limit the application of synthetic images.
Consequently, effective leverage of synthetic images is still an open problem in
exploring the performance limitation of semantic segmentation.

Furthermore, generative modelling is becoming an increasingly hot topic, benefit-
ing from the development of neural networks. In particular, Varitional Auto-Encoders
(VAEs) (Kingma and Welling, 2013) and Generative Adversarial Nets (GANs) (Good-
fellow et al., 2014) contribute to model data distributions with several attractive
properties. First, it allows to control the synthesis procedure with a latent variable,
and all the generated examples are able to create a manifold over the variable.
Second, current generative models are able to synthesize examples with rich details,
which are realistic enough to fool a human. In spite of the success of current gen-
erative modelling (Isola et al., 2017; Wang et al., 2018b; Kingma and Welling, 2013),
there is still very few work showing that synthetic data from a generative model
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can be applied as training data to acquire a classification model or a segmentation
model. Therefore, it is interesting to study if we are able to extend the application
of generative modelling for training a model on a specific task, such as semantic
segmentation.

As discussed, data is quite important and rather expensive. Therefore, protecting
the ownership of data is crucial for companies or organizations. Besides, data
records some sensitive information which is related to personal privacy or has
potential security risks. Membership inference attacks aim to determine if a given
data sample has been used to train a model or not. From previous research (Shokri
et al., 2017), a classification model suffers from membership inference attacks. Hence,
an important question is naturally asked: is there also similar data leakage happened
for a semantic segmentation model, whose annotations are more expensive? Further,
to provide safe services at high recognition rates, suitable usage of data with security
mechanism are also crucial.

The goal of this thesis is to study semantic segmentation in terms of neural
network architectures as well as leverage of datasets w.r.t.training systems with
higher performances and better data privacy guarantees. Our models are built
on the top of the fully convolutional network, which is the current state-of-the-art
pipeline.

The first part of our work is to design data-driven models to improve semantic
segmentation models. Even though convolution networks have numerous parameters
and are learned from data, we are more interested in incorporating more priors from
data and develop more flexible neural network architectures for improving semantic
segmentation. We first investigate the combination between superpixels and neural
networks in indoor scenes. Superpixels have a long history and many applications
in computer vision. We show that superpixels are able to introduce adaptive pooling
regions in neural networks, which helps networks to produce semantic predictions
with better recognition accuracies and more precise boundaries. We further study
the key component of fully convolutional networks, dilated convolution operations.
We regard the dilation factor of a convolution as a learnable parameter, instead
of a manually set hyperparameter before training. The dilation factor is learned
with filter weights together, by propagating the errors. It helps us to set dilation
factors easier by adjusting a proper dilation factor for different datasets and network
architectures. To test our approach for learning dilation factors, we study semantic
segmentation on street scenes, which contains objects and regions at varying sizes in
a same image.

The second part of this thesis is to explore more effective and safer utilization of
training data. We first study the conditional generative modelling, which is a reverse
problem of semantic segmentation. We propose a stochastic regression model for
improving the diversity of generated examples, which alleviates the mode collapse
problem of generative modelling. Specifically, our network allows sampling novel
examples with new latent codes, and thus we are able to synthesize examples from
different distribution clusters with a same condition. Second, we study generative
modeling of CNN features, which needs different generator architectures compared



4 chapter 1. introduction

to generating images. Unlike synthetic images, we show our synthetic features can be
applied as additional training data for augmenting a semantic segmentation model,
which achieves better performance on street scenes and natural scenes after applying
our data augmentation technique. Last, we study membership inference attacks
on black-box semantic segmentation models, and defense mechanisms to protect
membership privacy. From our study, we show information leakage is even more
pronounced than classification, that a predicted mask already leaks its membership.

1.1 contributions of the thesis

The key contributions of the thesis are two main aspects: (1) improving semantic
segmentation with data-driven networks; (2) data synthesis and its applications
to semantic segmentation. First of all, we try to improve semantic segmentation
by developing data-driven modules which are compatible with existing network
architectures. Besides, we study the problem of conditional data synthesis, which is
a reverse problem to semantic segmentation, and then shows several applications for
semantic segmentation, especially with respective to protecting membership privacy.
In the following, we detail the involved challenges in these tasks, as well as the
solutions and contributions of this thesis.

1.1.1 Improving semantic segmentation with data-driven networks

The first goal of the thesis is designing new specific modules to improve the accuracy
of semantic segmentation models under various settings. Particularly, we study the
semantic image segmentation problems on single images, as well as auxiliary images
from a video.

1.1.1.1 Semantic segmentation from partially annotated videos

Challenges. Multi-view appearances offer richer information comparing to single-
view images. In this setting, we are interested in improving single-view segmentation
with multi-view information. Videos contain continuous image sequences, which
naturally provide multi-view information for the objects and entire environments
with different level of context. Therefore, effectively utilizing videos is important
to improve semantic segmentation. Correspondences between frames of a video
refer to different pixels or regions belonging to a same thing or stuff, which al-
lows summarizing information of all the frames and training a model with less
annotations.

A video sequence is able to be a very long sequence, hence, the error of the
correspondence could be accumulated, because correspondence between neighboring
frames is not perfect due to potential illumination changes, drastic appearance
variations, etc. One alternative solution is to leverage frames close to a target frame,
however, those frames usually have similar view point to the target frame, and
provide similar appearances of things and stuffs. Consequently, the first challenge is
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how to construct trustworthy correspondences, which help integrating information
between different frames. Besides, traditional neural networks are not able to
deal with correspondences as additional inputs for semantic segmentation. Hence,
second challenge is to design specific neural architectures to process images as well
as correspondences.

Contributions. We propose a new network module which projects multi-view
information to the target frame with their correspondences, namely Spatio-Temporal
Data-Driven Pooling (STD2P). We propose to utilize region-level correspondences
instead of pixel-level correspondence, which allows to reject poor superpixels or
correspondences through a video. Superpixels (Pont-Tuset et al., 2017; Stutz et al.,
2018) provide useful boundaries as well as pooling regions for a semantic segmenta-
tion. The proposed module contains two steps: data-driven spatial pooling and data
driven temporal pooling, which introduce superpixels and their correspondences
into a network for semantic segmentation. In particular, the spatial pooling can
be employed along to perform single-view semantic segmentation, and the STD2P
enables a network to handle image sequences with arbitrary lengths. Consequently,
we provide an effective solution for improved semantic segmentation from videos
with minimum efforts of human annotations.

1.1.1.2 Learning dilation factors for convolutions

Challenges. Dilated convolutions (Yu and Koltun, 2016; Chen et al., 2018b) are
widely utilized operations in semantic segmentation. We aim to relax the dilation
factor in convolutions to a learnable parameter, instead of a fixed hyperparameter,
which is manually set before training procedure starts. In order to learn the dilation
factors together with their relevant filter weights, the dilation parameters have to be
continuous differentiable, that can compute the gradients for the dilation factors and
update with back propagation. Besides, another challenge is towards the processing
of dilation ranges. Unlike filter weights, dilation factors must be the positive values,
and we do not expect those factors too large, because input images have limited
sizes. Hence, suitable processing of ranges is necessary for learning dilation factors.

Contributions. We present an alternative convolutions that learns multiple dila-
tion factors for individual channels from data. The proposed module helps avoiding
to set dilation factors manually for every datasets, but are learned with filter weights
together by back propagation. Besides, our convolution module is able to cap-
ture multiscale features from a feature input, which is compatible with existing
architectures and can be used to replace traditional convolutions in widespread
convolutional neural networks.
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1.1.2 Data synthesis and its applications

Next, we present our work on data systhesis and its applications to semantic seg-
mentation. Specifically, we focus on conditional feature systhesis and applying
synthetic feature as training data to improve accuracy and protect membership
privacy via prediction obfuscations in semantic segmentation.

1.1.2.1 Conditional image synthesis

Challenges. Conditional image systhesis aims to generate realistic images from
a conditional input, which can be different formats. The task is a one-to-many
mapping problem, because it often has many suitable images matched well with
the input. On one hand, every generated image is supposed to contain natural
details and feasible structures. This challenge has been greatly improved by recent
developments of generative modelling (Goodfellow et al., 2014; Chen and Koltun,
2017; Kingma and Welling, 2013; Johnson et al., 2016). However, on the other hand,
it is still challenging to cover the distribution of all the training data, due to the
so-called mode collapse problem. As a result, improving diversity becomes another
goal and challenge of our research.

Contributions. We presented a stochastic regression model for image generation
based on proposed depthwise dropout. Besides, we propose a new learning pipeline,
that we train with dropout patterns at the beginning of training, and apply a new
dropout pattern during inference. Finally, we propose a neighbor enhanced loss
function to further improve the diversity of generated images, achieving comparable
quality of generated images.

1.1.2.2 Adversarial feature synthesis

Challenges. Generating multiple diverse features is challenging, because they
encode information of large areas as well as details, which cannot be ignored. Also,
the synthetic features should follow a similar distribution as extracted real features.
Different to image synthesis, the output of synthesized features have lower spatial
dimension and a larger number of channels. Consequently, it is hard to apply
existing image synthesis architectures to the feature generation task, and thus a
new effective architecture is needed. A good feature generator allows us to sample
multiple diverse features from one semantic mask input, and thus provides us
numerous training examples. Second, synthetic features should follow a similar
distribution as extracted features from real images, which are recognizable by a
classification or segmentation model, similar to real features. The final challenge is
that raw images contain many detailed information which are compressed in the
feature domain, and thus a successful architecture should be powerful enough to
model those important details.
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Contributions. We propose to synthesize convolution features for data augmenta-
tion for semantic image segmentation, leading to improved results. We present an
effective generative model for synthesizing features, whose effectiveness is shown
according to a series of ablation studies. Several techniques are proposed to lever-
age the synthetic features, including online hard negative mining, generation from
additional masks, and label smoothing regularization.

1.1.2.3 Security issues in semantic segmentation

Challenges. Membership inference attacks aim to recognize if a data sample is
used as training data or not. Different to general classification on an input data
point, semantic segmentation models produce structural predictions. As a result,
attacks against a segmentation model need a different pipeline to previous ones for
classification (Shokri et al., 2017; Salem et al., 2019). Besides, structures might leak
information of training data, even when no posteriors are provided. Therefore, it
potentially increase the challenge of protecting membership privacy. Last but not
least, there exists a tradeoff between membership privacy and segmentation accuracy.
It is challenging but important to protect membership privacy while preserving the
utility of semantic segmentation.

Contributions. We present the first work on membership inference attacks against
semantic segmentation models. From our study, we show information leakage is
widely existing on black-box models for semantic segmentation task under various
attacking conditions. In addition, we propose a prediction obfuscation method based
on synthetic features for protecting membership privacy, and provide systematic
analysis on series of defense techniques.

1.2 outline of the thesis

In this section we summarise each chapter of the thesis. In addition, we also indicate
the respective publications and connections with other previous works.

Chapter 2: Related Work. In this chapter, we review the related works on semantic
segmentation with deep convolutional networks, generative modeling of con-
ditional image generation, and membership inference attacks against machine
learning models. We analyse the relations of previous and subsequent works
to the research presented in this thesis.

Chapter 3: Indoor Scene Understanding. This chapter presents spatio-temporal data-
driven pooling (STD2P) for indoor scene understanding. We focus on Kinect
captured images with additional depth modality in indoor scenes. We apply the
RGBD superpixels with decent performances into a segmentation network, and
study semantic segmentation from multiple-view images as well as single-view
images. We observe that indoor scenes provide images from many different
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viewpoints for a same object, and thus our solution is quite suitable to improve
semantic segmentation in indoor scenes.

The content of this chapter corresponds to the CVPR 2017 publication “STD2P:
RGBD Semantic Segmentation using Spatio-Temporal Data-Driven Pooling” (He
et al., 2017a). Yang He was the lead author of this paper.

Chapter 4: Street Scene Understanding. In this chapter, we study street scene un-
derstanding from a single image. We generalize widely used dilated convolu-
tions to a learnable version, to learn a suitable dilation factor in convolutions
from data. In street scenes, there are different objects with various scales in a
same view, such as pedestrians, cars, trains and buildings etc. To handle those
objects with broad scales, we develop depthwise learnable dilated convolutions
with our basic learnable version, to capture wider contexts as well as local
details. Eventually, we show improved segmentation results for street scenes
with our alternative convolutions.

The content of this chapter corresponds to the GCPR 2017 publication “Learning
Dilation Factors for Semantic Segmentation of Street Scenes” (He et al., 2017b).
Yang He was the lead author of this paper.

Chapter 5: Conditional Image Generation. In this chapter, we design a new stochastic
module depthwise dropout as well as a neighbor enhanced loss function for
conditional image synthesis. We investigate our method and compare to pre-
vious methods on human face systhesis from landmarks and animal head
systhesis from normal maps. Our goal is to generate multiple different outputs
from a input condition, that all the generated outputs are compatiable with the
input. We not only demonstrate successful generated images, but also provide
a series of studies with respective to quantifying the diversity and accuracy of
generated images, which shows the effectiveness of proposed method.

The content of this chapter corresponds to the ECCV 2018 publication “Diverse
Conditional Image Generation by Stochastic Regression with Latent Drop-Out
Codes” (He et al., 2018). Yang He was the lead author of this paper.

Chapter 6: Adversarial Feature Generation. In this chapter, we present our gener-
ative model for synthesizing dense features, and apply our synthetic features
as part of training data to perform data augmentation for semantic segment-
ation. We formulate the feature synthesis as a condition generation problem,
where translate a semantic layout into a convolution feature inside a network.
We compare our synthetic features based augmentation pipeline to synthetic
images based, and show synthesizing features is a more feasible and effective
solution. We also conduct the study of synthesizing features from different
layout sources to show further improvement.

The content of this chapter corresponds to the work “DFGAN: Synthetic Dense
Features for Improved Semantic Segmentation” (He et al., 2019a). Yang He was
the lead author of this paper.
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Chapter 7: Segmentations Leak. In this chapter, we show the second application
of sythetic features presented in chapter 6, with repective to protecting the
membership privacy of a segmentation model. First of all, we study the mem-
bership inference attacks against a black-box semantic segmentation model. In
the black-box setting, attackers can only intract with a segmentation model
by querying an image and obtaining the returned posteriors. In the follow-
ing, we study a set of defense techniques for protecting membership privacy,
particularly on the prediction obfuscations with synthetic features.

The content of this chapter corresponds to the work “Segmentations-Leak:
Membership Inference Attacks and Defenses in Semantic Image Segmenta-
tion” (He et al., 2019b). Yang He was the lead author of this paper.

Chapter 8: Conclusions and Future Prospects. In this chapter we summarize the
thesis and discuss possible future research directions for semantic segmentation
and privacy issues of this task.
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2R E L AT E D W O R K

Semantic segmentation is a basic research topic in computer vision with a long
history and great progress has been enabled through deep learning in recent
years. Besides, generative modeling has profited from recent development

of convolutional neural networks (CNN) (LeCun et al., 1998) as well. Recently,
membership inference attacks against machine learning models draw much attention
on the widespread security risks of deep neural networks. Therefore, we give an
overview of related work in this chapter, focusing on the directions explored in this
thesis.

This chapter is organised as follows. We first review previous works on semantic
segmentation with convolutional neural networks based pipeline in Section 2.1. We
then make a tour of recent development of generative modeling, particularly on
conditional generative models in Section 2.2. Last but not least, we give a brief
summary on recent approaches for membership inference attacks against machine
learning models in Section 2.3.

2.1 semantic segmentation with neural networks

In this section, we review semantic segmentation research. We first introduce the
current pipeline for semantic segmentation based on fully convolutional neural
networks in Section 2.1.1. Then, we present different component choices for semantic
segmentation in neural networks. Particularly, we discuss convolutions and its vari-
ations in Section 2.1.3, which inspire us to develop our learnable dilated convolutions
in Chapter 4. We compare different pooling strategies for network backbones as
well as segmentation models in Section 2.1.4, which is related to our spatio-temporal
data-driven pooling in Chapter 3. We compare supervisions for training a network
in Section 2.1.5, where we apply different loss functions for our synthetic features in
Chapter 6. Last, we discuss existing datasets with different types and capacities of
provided data in Section 2.1.6, as used in our experiments of Chapter 3, 4, 6 and 7.

2.1.1 Pipeline of fully convolution networks

The rise of deep learning significantly speeds up the development of computer
vision. With modern GPU acceleration for parallel computing for the deep archi-
tectures, successfully training of a network on large-scale labeled datasets becomes
possible. More importantly, the pretraining of a network on large-scale datasets
is quite helpful for other computer vision tasks, which provides learned visual
representations. For example, ImageNet (Deng et al., 2009) and Places (Zhou et al.,

11
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2018) offer a network to learn the representations for objects and scenes respectively.
Consequently, the current computer vision pipeline contains two steps: (1) Design a
network architectures and train them on large-scale datasets. (2) Use a pretrained
network as a backbone, and add some modules for specific tasks, such as object
detection (Ren et al., 2015), and semantic segmentation (Long et al., 2015). As shown
in Figure 2.1, in the first step, networks are trained with image-level annotations, for
which is feasible to collect a very large dataset, providing enough training data for
deep networks to learn powerful visual features. Second, in semantic segmentation,
a pretrained network is finetuned with dense pixel-level annotations, which is able
to predict a class label for each location of an input image.

“Car”

Car Building Pole Traffic SignSidewalkRoad

Figure 2.1: Current neural networks based pipeline for training a semantic segment-
ation model.

For semantic segmentation, fully convolutional networks (Long et al., 2015; Chen
et al., 2018b; Badrinarayanan et al., 2017) are the base architecture, which is comprised
of several convolution blocks only. To keep the dense structures, fully connected
layers are removed, which are widely used in image classification. It takes an image
as input, and emits a dense output, assigning the categories of various images
locations. Each convolution block contains convolution, normalization, pooling, and
nonlinear activation. After several convolution blocks, spatially compressed features
are obtained. Final high resolution predictions are achieved by upsampling (Chen
et al., 2018b) or deconvolution operations (Long et al., 2015). Besides, to overcome los-
ing the information of small objects, deconvolution networks (Noh et al., 2015) learn
multiple deconvolution operations on the top of fully convolutional architectures.
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In the following sections, we discuss more details for semantic segmentation.
Besides, there are also post-processing operations or augmentation techniques ap-
plied for refinement or improvement. Conditional random fields (Lafferty et al., 2001;
Krähenbühl and Koltun, 2011) are widely used to refine and smoothen the prediction
from CNN, as first proposed in previous work (Chen et al., 2018b). Flipping and
multi-scale inputs are able to significantly improve original prediction of CNN,
which are also utilized in training stage.

Backbones. As the base of network model for specific tasks, convolutional archi-
tectures play an important role in achieving decent performance at acceptable speed.
In the following, we discuss the progress of developments in network architectures,
which are used in Chapter 3, 4, 6 and 7. AlexNet (Krizhevsky et al., 2012) is the first
successful model on large-scale dataset, which learns useful visual representations.
Furthermore, networks are designed to be deeper, and VGGNet (Simonyan and
Zisserman, 2014) replaces the convolution kernels in AlexNet with 3× 3 kernels,
and attaches more convolution layers with more parameters to fit better on the large-
scale dataset and obtain stronger representations. GoogleNet (Szegedy et al., 2015)
proposes an inception module which integrates multi-scale features from multiple
paths with different sizes of convolution kernels.

In addition, to design very deep neural networks, ResNet (He et al., 2016) pro-
poses residual connections between convolution blocks and further increases the
fitting capability on data, by observing simply attaching convolutions cannot bring
improvements, and thus learning residual is necessary. With residual connections
and very deep architectures, superior representations are learned, leading to signific-
ant improvements. In the following, DenseNet (Huang et al., 2017) builds a network
with more connections for dense blocks instead of residual blocks, which shows
stronger ability in some tasks. Recently, research on neural architecture search (Zoph
and Le, 2017; Zoph et al., 2018) shows some stronger network architectures by search-
ing the hyperparameters within a predefined architecture space with reinforcement
learning.

Last, to fulfill the requirement of real-time and computation limited applications,
some simplified backbones are proposed. MobileNet (Howard et al., 2017) applies
depthwise convolutions in constructing convolution layers of a network, which
extremely reduce the parameters for a convolution layer, whereas only little decrease
in performance is happened. Furthermore, ShuffleNet (Zhang et al., 2018c) proposes
pointwise group convolutions and achieves comparable performance to AlexNet
while computing at a 13× faster speed on mobile devices.

2.1.2 Superpixels for segmentation:

Superpixels have a long history research and application in semantic segmentation.
Beyond traditional superpixels, region proposals aim to provide pre-segmetation
at object level with semantics instead of focusing on low level colors only. In the
following, we discuss two aspects: (1) Traditional methods of superpixels, region
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proposals and applications in semantic segmentation. (2) Modern deep learning
based methods with superpixels, which is relevant to our work in Chapter 3.

A comprehensive analysis on superpixels and region proposals can be viewed
in previous literature reviews (Neubert and Protzel, 2012; Stutz et al., 2018; Hosang
et al., 2015). Instead of discussing all the methods in the history, we presented most
popular and relevant superpixel methods to recent and our work. SLIC (Achanta
et al., 2012) proposed a fast superpixel method, which receives much attention
because of its simplicity. SLIC calculates local K-means clustering to generate a
segmentation with K superpixels. Therefore, it is able to group the pixels with
similar colors into a superpixel. To overcome the drawbacks of only considering
low-level information, region proposals aims to provide an intial segmentation with
object-level superpixels. Selective search starts by over-segmenting an image based
on intensity of the pixels using a graph-based segmentation method by Felzenszwalb
and Huttenlocher (2004), for high recall of interesting objects. Multiscale combin-
atorial grouping (MCG) (Pont-Tuset et al., 2017) is a bottom-up hierarchical image
segmentation method combining multi-scale information, built on the fast normal-
ized cuts algorithm. MCG first computes a boundary probability map, and then
performs normalized cuts to output several regions. Furthermore, MCG has been
improved by providing stronger boundary probability maps. Gupta et al. (2014)
propose to leverage additionally depth to enhance MCG for indoor scene. which
is applied in this thesis of Chapter 3. Convolutional oriented boundary improves
boundary maps by incorporating estimated boundaries from different orientations
with a neural network (Maninis et al., 2016).

To begin with, superpixels have been utilized in semantic segmentation with
traditional methods based on hand-crafted features. Gould et al. (2008) regard an
over-segmented image as a graph and modeled it with conditional random fields.
This method leverages a set of appearance features to represent each superpixel,
including RGB colors, Lab colors and textures etc. Strassburg et al. (2015) analyze
the influence of superpixel methods for semantic segmentation with hand crafted
features. Particularly, semantic segmentation with superpixels on multi-modal data
has been studied, by kernel descriptors for RGB-D images and Markov random
fields (Ren et al., 2012), as well as 3D features based conditional random fields with
two different sources of information (Cadena and Košecká, 2014). Except directly
applying graphical models over superpixels, SuperParsing (Tighe and Lazebnik,
2010) first retrieves similar images with global appearances from a dataset, and then
produces a final output by combining the semantics of all the retrieved images.

Superpixels were also applied with CNN learned features. Farabet et al. (2012)
leverage multi-scale learned hierarchical features from a CNN for scene labeling on
pre-computed superpixels. Couprie et al. (2013) extend this pipeline to RGB-D data
and applies temporal aggregation of surrounding frames of a video with optical flow.
Gupta et al. (2014) learn rich features for RGB-D with bounding box annotations, and
applies the learned features over superpixels for semantic segmentation, which is
relevant to our approach in Chapter 3. Additionally, hypercolumns (Hariharan et al.,
2015) proposes to leverage multi-stage features from a learned CNN and projects



2.1 semantic segmentation with neural networks 15

them into superpixels by averaging individual predictions.
Finally, in the research of introducing superpixel information into end-to-end

modern neural networks, there are several highly relevant works. Bilateral incep-
tion (Gadde et al., 2016) designs a filtering module over superpixels, which computes
SLIC superpixels and performs bilateral filtering like operations over neighboring
superpixels, passing the information to each other. Besides, the region-based end-
to-end segmentation model (Caesar et al., 2016) proposes to introduce overlapped
selective search superpixels by max pooling into a network, and train the network
with back-propagation in an end-to-end manner. Furthermore, a message passing
procedure over superpixels has been explored in semantic segmentation (Lin et al.,
2017). Besides, this method generates discrete depth images to control different
parts of processed images and predicts with different branches separately. Last,
superpixels have also been applied in weakly supervised semantic segmentation
where only image-level labels are provided (Kwak et al., 2017).

Different to previous work, our approach is simple and effective to introduce
superpixels into networks to perform refinement, summarizing information of a
superpixel with pooling operation. Besides, our solution allows us to leverage
unlabeled temporal data and thus leading a semi-supervised learning framework,
by establishing region correspondences over time.

2.1.3 Convolution operations:

Convolution is the basic operation of a CNN (LeCun et al., 1998), which aims to
learn a group of convolution filters and apply those on inputs for output activations.
Formally, the convolution operation in CNN filters an input X ∈ RK1×H×W with
kernels W ∈ RK1×K2×k×k, which contains K1 × K2 filters with size k× k. As a result,
the operation produces an output Y ∈ RK2×H×W , where the i-th slice of the output
is the sum of all the filtered results with corresponding filters in W.

In the following, we discuss several variations to the standard convolution, related
to our work in Chapter 4, mainly including dilated convolution and its variations,
simplified convolutions and dynamic convolutions.

Dilated (Atrous) convolution. Dilated convolution(Yu and Koltun, 2016; Chen
et al., 2018b) has been broadly used in semantic segmentation particularly. It intro-
duces an extra hyperparameter, i.e. dilation factor, for sampling input activations at
different locations. Instead filtering inputs with dense kernels, a dilated convolution
normally samples farther activations as inputs with the same number of parameters
in convolution filters.

In real-world images, there are many regions at small scale, therefore, CNN
with pooling operations might ignore those regions due to its downsampling fact.
However, pooling operations allow network to learn visual representations at a large
receptive field, which is important for recognizing large objects. Consequently, large
receptive fields as well as keeping small regions are both necessary to address the
challenges in semantic segmentation. Then dilated convolution is able to sample
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Scale 1 Scale 1/2 Scale 1/4 Scale 1/8 Scale 1/16Resolution

Receptive field × 𝟏 × 𝟐 ×4 ×8 ×16

(a) Pipeline with pooling operations

Scale 1 Scale 1/2 Scale 1/4 Scale 1/8 Scale 1/16Resolution

Receptive field × 𝟏 × 𝟐 ×4 ×8 ×16

(b) Pipeline with dilated convolutions

Figure 2.2: Comparison of semantic segmentation pipelines. (a) Pooling operations
reduce the resolution of feature maps. (b) Dilated convolutions help keeping high
resolution feature maps.

wider CNN activations and thus learn visual features at a large receptive field, while
preserving the spatial resolution of feature maps in a CNN model. However, in
dilated convolutions, the dilation factor is a hyperparameter defined by users. To
avoid manually set dilation factors, we present an approach to learn dilation factors
from training data in Chapter 4.

Based on dilated convolutions, there are several effective modules in semantic
segmentation, as presented in the following paragraph.

Hybrid dilated convolution. Atrous spatial pyramid pooling (ASPP) (Chen et al.,
2018b) integrates multi-scale features by calculating the features from convolutions
with different dilation factors, which is able to capture different levels of context
information. Besides, instead of applying kernels with square shapes, dense predic-
tion cell (Chen et al., 2018a) develops an ASPP-like module with irregular rectangle
kernels. As pointed out in previous work (Wang et al., 2018a; Yu et al., 2017), dilated
convolution tends to produce feature maps of final outputs with regular holes. To
handle this phenomenon, hybrid dilated convolutions are proposed, which equips
several convolutions with complementary dilation factors sequentially.

Different to previous work, our solution in Chapter 4, channelwise dilated
convolutions, integrates multi-scale features by learning individual dilation factors
for each channel.

Simplified large kernel convolution. Kernel size is an important hyperparameter
in convolutions. A Large kernel is able to capture a wider context but introduces
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more parameters and thus suffers from heavy computations. Simplified large kernel
convolution (Peng et al., 2017) decomposes a large kernel into the multiplication
between two small kernels, which shows improved semantic segmentation compared
to employing large kernels.

Dynamic convolutions. In standard convolution, once the parameters, i.e. filter
weights, are learned after training stage, it becomes fixed during inference. Dynamic
convolutions aim to learn to generate filter weights or other parameters for convolu-
tions. In other words, it applies different filters for varying inputs. As an example,
dynamic filtering network (Jia et al., 2016) proposes to learn a filter generating net-
work in video prediction and stereo prediction task. Deformable ConvNet (Dai et al.,
2017; Zhu et al., 2019) learns spatial bias for convolution to handle widely existing
object deformations in semantic segmentation and object deformation.

2.1.4 Pooling operations

As a basic operation, pooling is used to aggregate and extract local informative
features. Max pooling and average pooling are most frequent operations in CNN,
which return the maximum or average values inside a sliding window. Normally,
pooling operations are performed with combination of downsampling, which en-
larges the receptive field of a neural network, as shwon in Figure 2.2 (a). Besides,
previous work (Springenberg et al., 2014) also shows simply downsampling is able
to replace max or average pooling in CNN, and achieves comparable performance.
Generalized pooling (Lee et al., 2016) shows superior performance over max or
average pooling, which is based on a tree structure or linear combination, which
combines max pooling and average pooling.

For semantic segmentation, global pooling shows to be quite important to in-
tegrate context information by several models (Liu et al., 2015; Zhao et al., 2017;
Chen et al., 2018c). Global pooling computes global context statistics and provides
image-level features. Particularly, pyramid spatial pooling(Zhao et al., 2017) extends
global pooling with respective to providing different levels of context by pooling
operations with various kernel sizes.

Observing above approaches, all of them employs regular pooling region defined
by users, while our pooling regions are computed from data itself, leading to a new
effective model architecture in Chapter 3.

2.1.5 Supervisions

A semantic segmentation model produces dense outputs, which is trained with
supervision from pixel-wise dense annotations (Long et al., 2015), that each location
provides a classification loss to compute the gradients for the parameters of a
CNN model. Except dense supervisions, discrete pixel-level supervisions also show
effectiveness in training a semantic segmentation model (Bansal et al., 2017). Deep
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neural networks are trained with softmax loss for classification, which aims to
minimize the cross-entropy error, i.e. negative log-likelihood for the ground truth
categories. Formally, let r ∈ RI×J×K be the prediction scores for an input image
X, with resolution of I × J and K classes. The per class probability at the (i, j)-th
location (1 ≤ i ≤ I, 1 ≤ j ≤ J) for the k-th category is calculated by

pij(k|X) =
exp(rk

ij)

∑K
k=1 exp(rk

ij)
(2.1)

for each label k ∈ {1, · · ·, K}, where rk
ij is the unnormalized log probabilities of the

k-th class at (i, j)-th location. Finally, a segmentation model is learned by optimizing
the following objective

min
θ

I

∑
i=1

J

∑
j=1

pij(k|X; θ). (2.2)

In this thesis, we apply dense pixelwise softmax loss function to train a semantic
segmentation model, in case we do not have any other explicit explanations.

Further, it is hard to avoid annotation noises because of ambiguous examples.
Therefore, to alleviate overfitting on the potential noisy labels and improve gen-
eralizations, label smoothing regularization (LSR) (Szegedy et al., 2016) is applied
on softmax, which encourages a network to produce less confident predictions. In
Chapter 6, we apply LSR to train a segmentation model with imperfect synthetic fea-
tures, which is a part of our data augmentation strategy for semantic segmentation.

Except supervising a network at the end of a network, deeply supervised net-
work (Lee et al., 2015) has been shown effective in improving classification capability
of a network, which enforces mid-level CNN features recognisable by providing
another supervision. Besides, this strategy has also been demonstrated useful in se-
mantic segmentation (Zhao et al., 2017). Last, semantic encoding loss considers global
contextual information and regularizes the training by recognizing the presence of
categories in images (Zhang et al., 2018a).

2.1.6 Datasets

There are series of datasets proposed for semantic segmentation. In the following,
we focus on the discussion of datasets used in our experiments for scene parsing
including indoor scenes, onboard captured street scenes and more flexible and
general scenes.

NYUDv2. This is a dataset for indoor scene understanding (Nathan Silberman
and Fergus, 2012), which is collected with Kinect RGB-Depth sensors. This data-
set contains widely existing indoor environments, including office room, kitchen,
bedroom, restroom etc, and also rich categories of structures and objects such as
floor, ceiling, wall, table, chair, sofa, mirror and so on. As a result, for semantic
segmentation tasks, there are 3 popular annotation branches, i.e. 4-, 13- and 40-class
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(a) NYUDv2

(b) SUN3D

Figure 2.3: Examples of indoor scenes in this thesis. In both datasets, images are
captured across various scenes with different objects.

tasks as first proposed in Nathan Silberman and Fergus (2012), Couprie et al. (2013)
and Gupta et al. (2013), respectively.

Statistically, NYUDv2 provides 795 training images and 654 testing images with
ground truth annotations. Besides, all the annotated images are extracted from a
video sequence, whose lengths are varying from dozens to hundreds frames. As a
result, it also provides us many unlabeled but highly relevant images to annotated
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images, enabling the possibility of semi-supervised learning. In Chapter 3, we apply
NYUDv2 dataset to conduct the experiments with additional temporal unlabeled
images to improve semantic segmentation.

SUN3D. This dataset captures the full 3D extent of many places (Xiao et al., 2013).
Similar to NYUDv2, it also provides video sequences. The images of SUN3D are
captured in the similar scenes to NYUDv2, but different data distribution of various
styles for moving camera and environments. For semantic segmentation, it provides
a 33-class task with 65 images, which is a small-scale dataset. As a result, it is hard
to train a successful segmentation model with this dataset, but can be used to test
the performance of a pretrained segmentation model learned from other dataset.
It is able to indicate the generalization capability of the segmentation model, as
discussed in Chapter 3.

Cityscapes. Cityscapes is a high quality dataset for onboard street scene under-
standing (Cordts et al., 2016) at high resolution of 1024 × 2048. The dataset is
captured in 50 European cities under different weather conditions and capturing
equipments.

It provides a two-stage label space, forming 8 categories and 19 classes. Normally,
the 19-class definition is used for most methods, therefore, we follow other works to
report the performance on 19-class task. Totally, Cityscapes provides 2975 training
images, 500 validation images with ground truths, and 1525 testing images without
ground truths. Last, it also provides coarse annotations, which only label the majority
parts of regions and objects. Coarse annotations are able to be used as pretraining
of a network before applying 2975 fine annotations. We evaluate our street scene
semantic segmentation model on Cityscapes in Chapter 4 and 6.

BDD100K. Berkeley Deep Driving 100K (BDD100K) is a large and diverse dataset,
which provides several tasks for the study of autonomous driving (Yu et al., 2018).
For semantic segmentation, it provides 19 classes, which is compatible with City-
scapes. The resolution of images in this dataset is 720× 1280, and those images
are captured from different vehicles in various environments like city or landscape.
Besides, as a major difference to Cityscapes, this dataset provides more examples
at nighttime driving scenarios. Finally it contains 7000, 2000 and 1000 images in
training, validation and testing set, respectively. We study membership inference
attacks on black-box semantic segmetation models in Chapter 7 with BDD100K
dataset.

CamVid. CamVid is a dataset for street scene semantic segmentation (Brostow
et al., 2008) focusing on the driving scenarios in the downtown and nearby regions.
Different to previous datasets, it is a small-scale dataset with 367, 100, 233 images
in training, validation and testing set respectively. The images are at resolution of
480× 640, and dense annotations with 11 classes are provided. We evaluate our
street scene semantic segmentation model on CamVid in Chapter 4.
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Figure 2.4: Examples of street scenes in this thesis. From top row to bottom, images
from Cityscapes, BDD100K, CamVid and Mapillary Vistas, are shown respectively.

Mapillary Vistas. Mapillary Vistas is a large-scale dataset collected from industry
community (Neuhold et al., 2017). The images have varying resolutions whose
heights are from hundreds to thousands, providing 65 predefined labels. The label
space provides a fine-grained semantic segmentation problem, containing categories
on very complicated driving scenarios, such as snow, water and sand. It contains
images driving at different places, such as city, high way and landscape. This dataset
contains 18000, 2000 images in training and validation set with detailed annotations.
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Figure 2.5: Examples of ADE20K dataset.

In testing set, 5000 images are provided. We study membership inference attacks on
black-box semantic segmetation models in Chapter 7 with Mapillary Vistas dataset.

ADE20K. ADE20K is a dataset focusing on general scene parsing with mixture
of indoor scenes as well as outdoor natural scenes (Zhou et al., 2017), as shown in
Figure 2.5. The most popular branch of ADE20K has 150 categories. It contains
indoor environments such as bedroom, meeting room, etc, including classes window,
wall, bed, person. For outdoor scenes, it contains natural landscapes as well as
city views, including classes bridge, mountain, grass, bus, etc. Except semantic
segmentation annotations, it also provides instance labels for some object categories
like person. Finally, it has 20210 training images as well as 2000 validation images. We
evaluate our synthetic feature based pipeline for improving semantic segmentation
on ADE20K in Chapter 6.

2.2 image generation with neural networks

In recent years, generative modeling achieves great progress and arises many inter-
esting research topics and real-world applications, such as image translation and
manipulation. Recent generative modeling aims to learn the distribution of training
data with a neural network, and thus sample new examples from the learned net-
work. Particularly, conditional generative modeling transforms a condition input
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into an output with designed forms. Summarizing recent approaches of generat-
ive modeling, there are two main successful schemes, i.e., generative adversarial
nets (GANs) (Goodfellow et al., 2014) as discussed in Section 2.2.1 and variational
auto-encoders (VAEs) (Kingma and Welling, 2013) as presented in Section 2.2.2.
Besides, perceptual loss (Dosovitskiy and Brox, 2016; Johnson et al., 2016) shows
stable training property and capability to generate realistic images, and thus draws
much attention, where it is discussed in Section 2.2.3.

2.2.1 Generative adversarial nets

Generative adversarial nets (GANs) (Goodfellow et al., 2014) aim to learn a generator
with coupling a discriminator in an adversarial way, which becomes the most
popular method of generative modeling in recent years. The generator and the
discriminator are learned together, that the generator takes a random vector as an
input, and produces an output, which is feed to the discriminator. Except generated
fake data, other part of input data for discriminator is real data, therefore, the
discriminator perform binary classification on fake and real data. In other words,
the goal of discriminator is to successfully distinguish a fake example from real ones,
i.e. minimizing the classification errors. On the other hand, generator tries to emit
examples, which are able to fool the discriminator, i.e. maximizing the classification
errors. Finally, with the adversarial game, generator is able to generate examples of
high quality and realistic rich details.

In the following, there are several improved GANs are proposed. For example,
deep convolutional generative adversarial network (DCGAN) is an excellent in-
stance of convolution architectures, which is more stable than vanilla version of
GANs (Goodfellow et al., 2014). Except architectures, there are also variations of
GANs in terms of objectives. Least square GAN (LSGAN) (Mao et al., 2017) re-
places original cross entropy loss with mean square error for classification of the
discriminator. Wasserstein GAN (WGAN) (Gulrajani et al., 2017) applies a wasserstein
distance as the measurement for two distributions, to improve the stability of training
GANs and provide meaningful learning curves for debugging and hyperparameter
searches.

Furthermore, there are additional strategies proposed to stabilize the training
of GANs, particularly on high resolution images. StackGAN (Zhang et al., 2017a)
proposes to learn multiple generators stacking each other, where the first generator
produces low resolution images, while other generators produce high resolution
images. In the following, progressively growing GAN (PGGAN) (Karras et al.,
2017) learns a generator to synthesize images from low resolution images to high
resolution by gradually adding new layers. Recently, BigGAN (Brock et al., 2019)
models large-scale dataset ImageNet with applying orthogonal regularization to the
generator, and achieves current state-of-the-art performance on training generative
adversarial nets.
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2.2.1.1 Conditional GANs for image generation

On the applications of GANs, image translation becomes increasingly popular in
recent years. GANs have been extended to conditional version (Mirza and Osindero,
2014), which feeds extra information like class labels into a generator, allowing
to model the conditional distribution of data. For example, the first text-to-image
system applies DCGAN architecture and adversarial training to synthesize different
flower and bird images from text descriptions (Reed et al., 2016). ACGAN adds an
auxiliary classifier on the generator to recognize the generated data as the input
class of generator, and is able to synthesize images on ImageNet dataset with 1000

classes (Odena et al., 2017). Particularly, pix2pix (Isola et al., 2017) proposes a general
framework for image translation learned from paired images, such as generating
colorful shoe images from skeleton images, or generating realistic street scenes
from semantic layouts. Besides, image translation have been exploited for unpaired
images, which is more flexible. CycleGAN (Zhu et al., 2017a) adds a cycle-consistency
constraint to learn two generator for translation between different domains. Recently,
BicycleGAN (Zhu et al., 2017b) models the distribution of latent representations
under the pix2pix framework and generates multiple output images from different
modalities.

2.2.1.2 GANs for semantic segmentation

GANs have been applied to semantic segmentation with respective to providing
additional loss term (Luc et al., 2016) or leveraging unlabeled training data (Souly
et al., 2017; Hung et al., 2018). For example, Luc et al. first apply GANs into
semantic segmentation area, which learns a discriminator taking posteriors from
a segmentation model as the input, and tries to fool the discriminator with the
posteriors. Therefore, the discriminator provides additional loss term for a semantic
segmentation model and it is updated within the adversarial training. Besides,
people have made efforts in leveraging unlabeled data for semi-supervised learning
settings (Souly et al., 2017; Hung et al., 2018). On one hand, unlabeled data provide
real distribution of natural images for adversarial training, and they may be helpful
to train a GAN model. One the other hand, the discriminator is able to provide
penalty gradients for those unlabeled data, thus it is possible to utilize more data to
improve the performance.

2.2.1.3 GANs for data augmentation

There are several works utilizing generated data with GANs in computer vision
tasks (Antoniou et al., 2017; Frid-Adar et al., 2018; Xian et al., 2018; Sixt et al., 2016;
Peng et al., 2018; Zheng et al., 2017; Bowles et al., 2018; Shrivastava et al., 2017;
Mueller et al., 2018). The most related work to ours is Xian et al. (2018). This
work proposes to generate embedding visual features from attributes with a GAN
based generator for zero-shot image classification. This method trains a classifier
with mixture of synthetic features for unseen classes and real features of seen
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classes. As a result, significant improvement can be achieved in generalized zero
shot image classification. Besides, Sixt et al. generate large amount of realistic
labeled images by combining a 3D model (Sixt et al., 2016). Peng et al. apply
adversarial training to generate many hard occlusion and rotation patterns for
augmentation in human pose estimation task (Peng et al., 2018). Zheng et al. leverage
large amount of unlabeled generated images with a smoothing regularization to
improve person re-identification task (Zheng et al., 2017). GANs are also applied to
generate image/label pairs in semantic segmentation. Bowles et al. (2018) regard
label image as an additional channel, and generate four-channel outputs from noises,
and augment the training set in semantic segmentation. Finally, Shrivastava et al.
(2017) and Mueller et al. (2018) address the problem of gaze estimation and hand
pose estimation by utilizing the data from a rendering system and training a GAN
to eliminate the distribution gap between synthetic data and real data.

Different to above methods, we learn a GAN based generator for synthesizing
intermediate CNN features for improving semantic segmentation performance in
Chapter 6, as well as protecting data privacy against membership inference attacks
in Chapter 7.

Figure 2.6: Learned manifold of synthetic examples from VAEs, as shown in (Kingma
and Welling, 2013).
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2.2.2 Variational auto-encoders

Variational auto-encoder (VAE) is a directed graphical model with certain types of
latent variables, such as Gaussian latent variables (Kingma and Welling, 2013). It is
comprised of an encoder and a decoder. Encoder aims to compress raw images into
a latent vector, and decoder recover information from latent representations into final
reconstruction outputs. Besides, the variables in the latent vector are obey a prior
distribution, such as Gaussian distribution, which can be enforced by measuring KL
divergence. Once a generator is learned, the generation process is as follows: (1) a set
of latent variables is sampled from a prior distribution used in training. (2) feed the
latent variables into the decoder and generate examples. It is able to map individual
examples (data points) into a continuous latent space, which forms a manifold, such
as the examples in Figure 2.6. It can be observed that similar examples can be drawn
from close latent variables.

Besides, VAEs have been extented into conditional versions (Sohn et al., 2015),
which receive conditional inputs and generate compatible output examples via
sampling different latent variables. Conditional VAEs have been shown to alleviate
mode collapse problem, and thus produce multiple reasonable outputs. Furthermore,
BicycleGAN (Zhu et al., 2017b) combines the formulation of variational auto-encoders
and generative adversarial nets into a framework with two branches. The first VAE
branch tries to reconstruct input images perfectly, and the second GAN branch aims
to sample reasonable images from a conditional input.

Different to VAEs, we propose an alternative pipeline which introduces latent
variables via dropout into networks in Chapter 5, and our model is also able to
sample multiple examples during test time.

2.2.3 Regression with perceptual loss

Except GANs or VAEs, generative modeling is also directly formulated as a re-
gression problem with perceptual loss, which is another useful tool for generating
realistic images (Johnson et al., 2016; Dosovitskiy and Brox, 2016).

Unlike adversarial training, regression-based approaches are normally quite
stable in training. However, they are lack of capability to model realistic details if
only pixel-level loss function is applied. To overcome this, perceptual loss is utilized
as the similarity measurement for regression (Johnson et al., 2016). Perceptual loss
is proposed to perform image style transfer (Gatys et al., 2016; Johnson et al., 2016),
which computes the activation differences at various layers of a pretrained CNN
model between a synthetic image to its corresponding ground truth. For a CNN
model, its layers at different locations measure low-level visual details (i.e., edges,
colors) as well as high-level semantics (i.e., parts, objects). Besides, the gradients are
able to pass to the generator via back-propagation from the pretrained network. As
a result, the generator is forced to produce synthetic images with similar concepts
and local details to real ones. As one of successful architectures, cascaded refinement
networks (CRN) focus on generating photographic street scenes with perceptual loss
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and a carefully designed architecture (Chen and Koltun, 2017).
In addition, regression-based approaches are lack of sampling capability during

inference time. As we all know, GANs and VAEs are able to model data distribution
and thus sample multiple examples with latent variables. To generate multiple
outputs, previous work (Chen and Koltun, 2017) applies multiple choice learning
scheme (Guzman-Rivera et al., 2012), which produces multiple hypothesis examples
and only optimizes the best one by computing the distance between each hypothesis
and ground truth. In addition, pix2pixHD (Wang et al., 2018b) and SPADE (Park et al.,
2019) combine perceptual loss and generative adversarial training to synthesize high
resolution street scenes with realistic details. pix2pixHD computes the clustering
of encoded features, and produces multiple outputs from the clusters. SPADE
introduces a spatial adaptive normalization in a generator and achieves better results.
Qi et al. (2018) propose a semi-supervised method to produce multiple outputs from
partial labeled semantic layouts by retrieving the similar structure layouts from a
training dataset.

In Chapter 5, we adopt perceptual loss and generalize the deterministic network
(i.e., CRN) into a stochastic version for synthesizing multiple realistic images with
stronger diversity.

2.3 membership inference attacks and defenses

The goal of membership inference attacks is to determine if a sample of data
was used in the training dataset of a machine learning model. There are various
membership inference attacks on different models and data formats, including
biomedical data (Backes et al., 2016), locations (Pyrgelis et al., 2018), purchasing
records (Salem et al., 2019), and images (Shokri et al., 2017), etc. In the following,
we first review membership inference attacks against machine learning models in
Section 2.3.1. We present discussions on the relevant security issues of machine
learning in Section 2.3.2. Last, we discuss defense techniques against membership
inference attacks and privacy preserving machine learning in Section 2.3.3.

2.3.1 Attacks against machine learning models

It has been shown that machine learning models can be attacked to steal its mem-
bership of training data. Shokri et al. (2017) propose the first membership inference
attack approach against machine learning tools, which apply multiple shadow mod-
els to mimic prediction behaviors of a victim model for individual class. Shadow
models are trained by attackers with querying a black-box model. Examples with
stronger confidences predicted by the target victim model are regarded as member-
ship data and used to train a shadow model. Finally, a binary classifier as an attacker
is trained, where its training data are the posteriors from shadow models. The
binary classifier is applied to attack the victim target, by determining an example
as membership or nonmembership data. Further, Salem et al. (2019) demonstrate
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only one shadow model is enough to obtain similar attack performance compared
to multiple shadow models. Besides, Model and data distribution of a shadow are
able to be different to a target victim model. In this setting, membership inference
attacks are also possible, which clearly indicates the risk of information leakage from
machine learning models.

2.3.2 Security in machine learning

Except attacking data membership, the community also studies the security issues
of inferring the functionality or architectures of a model in computer vision. Oh et al.
(2018) propose to estimate the architecture configurations with machine learning
tools from the observations of prediction patterns. Orekondy et al. (2019) steal the
functionality of a black-box image classification model by querying random images.
In other words, black-box models leak their information on the model configurations
only from returned posteriors. Besides, as another family of attacks, adversary
examples (Moosavi-Dezfooli et al., 2016, 2017; Oh et al., 2017; Fischer et al., 2017;
Xie et al., 2017) attempt to fool a classifier after adding some noises on the images.
Particularly, adversarial examples are also demonstrated in semantic segmentation
problem (Fischer et al., 2017; Xie et al., 2017). The adversary is able to make a network
lose the ability of recognizing specific categories (Fischer et al., 2017), or only output
a designed structural prediction.

2.3.3 Defenses and privacy preserving machine learning

Privacy-perserving machine learning aims to reduce information leakage during
training with limited access to training data, which has been applied to deep
learning (Abadi et al., 2016; Shokri and Shmatikov, 2015). Besides, differential
privacy (Dwork, 2011) provides the accuracy of statistical datasets while minimizes
the privacy impact for individual example. Besides, Nasr et al. (2018) provide
membership protection for a classifier by training a coupled attacker in an adversary
manner. Zhang et al. (2018b) obfuscate training data before feeding them to a model,
which hides the statistical properties of an original dataset by adding random noises
or providing new samples. Particularly, differential privacy stochastic gradient
decent (Abadi et al., 2016) is an optimization method for deep neural networks
that provides theoretical privacy guarantee. It adds noises on the gradients during
training, which produces smoother predictions compared to standard stochastic
gradient decent, and thus protects membership privacy.

Different to above membership inference attacks, we present the first attack
system for black-box semantic segmentation models in Chapter 7, which reveals the
information leakage happens more pronounced for semantic segmentation models.
Besides, we also propose a simple defense approach with our synthetic features in
Chapter 6, to mitigate information leakage effectively.



Part I

N E U R A L A R C H I T E C T U R E S F O R I M P R O V I N G
S E M A N T I C S E G M E N TAT I O N

Semantic segmentation has been significantly improved with end-to-end
learned fully convolutional networks compared to traditional methods
using hand-crafted features or modern learned CNN features from several
stages. The success of modern convolutional networks comes from large-
scale labeled training data as well as deep networks with numerous
parameters, by fast parallel computations. To leverage large-scale datasets,
designing effective models to fit those data is crucial. Therefore, in
this part, we focus on designing data-driven neural modules which are
compatible with existing fully convolutional architectures and learning
frameworks, to improve semantic image segmentation from partially
labeled videos or still images.

In Chapter 3, we present our spatio-temporal data-driven pooling (STD2P)
layer, which introduces superpixels into networks and integrates tem-
poral information from unlabeled frames of a video. We study our model
on RGB-D semantic image segmentation task, where additional depth
provides us superior superpixel computations as well as better recog-
nition of each region. Our method allows for a series of training and
inference settings, leading to a semi-supervised learning framework to
leverage unlabeled frames, as well as enhancement during inference with
temporal frames. Besides, our STD2P is extremely simply, which is a
parameter-free module, and thus supports strong generalizations on other
datasets. In Chapter 4, we present our learnable dilated convolutions,
which is a natural extension of traditional dilated convolutions. Even
though dilated convolutions have achieved great success in semantic
segmentation, dilation factors are regarded as hyperparameters, which
are manually set and fixed during training. In contrast, we provide a solu-
tion to learn dilation factors together with filter weights by propagating
segmentation errors. It can replace the original dilated convolutions in
baseline models. Through evaluations on several baseline segmentation
models over two public datasets demonstrate the effectiveness of our
proposed method.





3
R G B - D S E M A N T I C S E G M E N TAT I O N F R O M PAT I A L LY
A N N O TAT E D V I D E O S

We propose a novel superpixel-based multi-view convolutional neural net-
work for semantic image segmentation. The proposed network produces
a high quality segmentation of a single image by leveraging information

from additional views of the same scene. Particularly in indoor videos such as cap-
tured by robotic platforms or handheld and bodyworn RGBD cameras, nearby video
frames provide diverse viewpoints and additional context of objects and scenes. To
leverage such information, we first compute region correspondences by optical flow
and image boundary-based superpixels. Given these region correspondences, we
propose a novel spatio-temporal pooling layer to aggregate information over space
and time. We evaluate our approach on the NYU–Depth–V2 and the SUN3D datasets
and compare it to various state-of-the-art single-view and multi-view approaches.
Besides a general improvement over the state-of- the-art, we also show the benefits of
making use of unlabeled frames during training for multi-view as well as single-view
prediction.

3.1 introduction

Consumer friendly and affordable combined image and depth-sensors such as Kinect
are nowadays commercially deployed in scenarios such as gaming, personal 3D
capture and robotic platforms. Interpreting this raw data in terms of a semantic
segmentation is an important processing step and hence has received significant
attention. The goal is typically formalized as predicting for each pixel in the image
plane the corresponding semantic class.

For many of the aforementioned scenarios, an image sequence is naturally
collected and provides a substantially richer source of information than a single
image. Multiple images of the same scene can provide different views that change
the observed context, appearance, scale and occlusion patterns. The full sequence
provides a richer observation of the scene and propagating information across views
has the potential to significantly improve the accuracy of semantic segmentations in
more challenging views as shown in Figure 3.1.

Hence, we propose a multi-view aggregation method by a spatio-temporal data-
driven pooling (STD2P) layer which is a principled approach to incorporate multiple
frames into any convolutional network architecture. In contrast to previous work
on superpixel-based approaches (Gadde et al., 2016; Caesar et al., 2016; Arnab et al.,
2016), we compute correspondences over time which allows for knowledgeable and
consistent prediction over space and time.

31
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Figure 3.1: An image sequence can provide rich context and appearance, as well as
unoccluded objects for visual recognition systems. Our Spatio-Temopral Data-Driven
Pooling (STD2P) approach integrates the multi-view information to improve semantic
image segmentation in challenging scenarios.

As dense annotation of full training sequences is time consuming and not avail-
able in current datasets, a key feature of our approach is training from partially
annotated sequences. Notably, our model leads to improved semantic segmentations
in the case of multi-view observation as well as single-view observation at test time.
The main contributions of our paper are:

• We propose a principled way to incorporate superpixels and multi-view inform-
ation into state-of-the-art convolutional networks for semantic segmentation.
Our method is able to exploit a variable number of frames with partial annota-
tion in training time.

• We show that training on sequences with partial annotation improves semantic
segmentation for multi-view observation as well as single-view observation.
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• We evaluate our method on the challenging semantic segmentation datasets
NYU–Depth–V2 and SUN3D. There, it outperforms several baselines as well
as the state-of-the-art. In particular, we improve on difficult classes not well
captured by other methods.

3.2 spatio-temporal data-driven pooling

Our goal is a multi-view semantic segmentation scheme, that integrates seamlessly
into exciting deep architectures and produces highly accurate semantic segmentation
of a single view. We further aim at facilitating training from partially annotated
input sequences, so that existing datasets can be used and the annotation effort stays
moderate for new datasets. To this end, we draw on prior work on high quality
non-semantic image segmentation and optical flow which is input to our proposed
Spatio-Temporal Data-Driven Pooling (STD2P) layer.

Overview. As illustrated in Figure 3.2, our method starts from an image sequence.
We are interested in providing an accurate semantic segmentation of one view in
the sequence, called target frame, which can be located at any position in the image
sequence. The two components that distinguish our approach from a standard fully
convolutional architecture for semantic segmentation are, first, the computation of
region correspondences and, second, the novel spatio-temporal pooling layer that is
based on these correspondences.

We first compute the superpixel segmentation of each frame and establish re-
gion correspondences using optical flow. Then, the proposed data-driven pooling
allows to aggregate information first within superpixels and then along their corres-
pondences inside a CNN architecture. Thus, we achieve a tight integration of the
superpixel segmentation and multi-view aggregation into a deep learning framework
for semantic segmentation.

3.2.1 Region correspondences

Motivated by the recent success of superpixel based approaches in deep learning
architectures (Gadde et al., 2016; Caesar et al., 2016; Arbeláez et al., 2012; Deng
et al., 2015) and the reduced computational load, we decide for a region-based
approach. In the following, we motivate and detail our approach on establishing
robust correspondences.

Motivation. One key idea of our approach is to map information from potentially
unlabeled frames to the target frame, as diverse view points can provide additional
context and resolve challenges in appearance and occlusion as illustrated in Figure
3.1. Hence, we do not want to assume visibility or correspondence of objects across
all frames (e.g. the nightstand in the target frame as shown in Figure 3.2). Therefore,
video supervoxel methods such as Grundmann et al. (2010) that force interframe
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Figure 3.2: Pipeline of the proposed method. Our multi-view semantic segmentation
network is built on top of a CNN. It takes a RGBD sequence as input and computes
the semantic segmentation of a target frame with the help of unlabeled frames.
We use superpixels and optical flow to establish region correspondences, and fuse
the posterior from multiple views with the proposed Spatio-Temporal Data-Driven
Pooling (STD2P).

correspondences and do not offer any confidence measure are not suitable. Instead,
we establish the required correspondences on a frame-wise region level.
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Figure 3.3: Statistics of region correspondences on the NYUDv2 dataset. (left)
Distribution of region sizes; (right) Histogram of the average number of matches
over region sizes.

Superpixels & optical flow. We compute RGBD superpixels (Gupta et al., 2014) in
each frame to partition a RGBD image into regions, and apply Epic-flow (Revaud
et al., 2015) between each pair of consecutive frames to link these regions. To take
advantage of the depth information, we utilize the RGBD version of the structured
edge detection (Dollár and Zitnick, 2013) to generate boundary estimates. Then,
Epic-flow is computed in forward and backward directions.

Robust spatio-temporal matching. Given the precomputed regions in the target
frame and all unlabeled frames as well as the optical flow between those frames,
our goal is to find highly reliable region correspondences. For any two regions Rt
in the target frame ft and Ru in an unlabeled frame fu, we compute their matching
score from their intersection over union (IoU). Let us assume w.l.o.g. that u < t.
Then, we warp Ru from fu to R

′
u in ft using forward optical flow. The IoU between

Rt and R
′
u is denoted by

−−→
IoUtu. Similarly, we compute

←−−
IoUtu with backward optical

flow. We regard Rt and Ru as a successful match if their matching score meets
min(

←−−
IoUtu,

−−→
IoUtu) > τ. We keep the one with the highest matching score if Rt has

several successful matches. We show the statistics of region correspondences on the
NYUDv2 dataset in Figure 3.3.

It shows that 87.17% of the regions are relatively small (less than 2000 pixels)
The plot on the right shows that those small regions generally only find less than 10

matches in a whole video. Contrariwise, even slightly bigger regions can be matched
more easily and they cover large portions of images. They usually have more than 40

matches in a whole video, and thus provide adequate information for our multi-view
network.
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3.2.2 Spatio-Temporal Data-Driven Pooling (STD2P)

Here, we describe our Spatio-Temporal Data-Driven Pooling (STD2P) model that uses
the spatio-temporal structure of the computed region correspondences to aggregate
information across views as illustrated in Figure 3.2. While the proposed method is
highly compatible with recent CNN and FCN models, we build on a per frame model
using (Long et al., 2015). In more detail, we refine the output of the deconvolution
layer with superpixels and aggregate the information from multiple views by three
layers: a spatial pooling layer, a temporal pooling layer and a region-to-pixel layer.

Spatial pooling layer. The input to the spatial pooling layer is a feature map
Is ∈ RN×C×H×W for N frames, C channels with size H ×W and a superpixel map
S ∈ RN×H×W encoded with the region index. It generates the output Os ∈ RN×C×P,
where P is the maximum number of superpixels. The superpixel map S guides the
forward and backward propagation of the layer. Here, Ωij = {(x, y)|S(i, x, y) = j}
denotes a superpixel in the i-th frame with region index j. Then, the forward
propagation of spatial average pooling can be formulated as

Os(i, c, j) =
1
|Ωij| ∑

(x,y)∈Ωij

Is(i, c, x, y) (3.1)

for each channel index c of the i-th frame and region index j. We train our model
using stochastic gradient descent. The gradient of the input Is(i, c, x, y), where
(x, y) ∈ Ωij, in our spatial pooling is calculated by back propagation (Rumelhart
et al., 1988),

∂L
∂Is(i, c, x, y)

=
∂L

∂Os(i, c, j)
∂Os(i, c, j)

∂Is(i, c, x, y)

=
1
|Ωij|

∂L
∂Os(i, c, j)

.
(3.2)

Temporal pooling layer. Similarly, we formulate our temporal pooling which fuses
the information from N frames It ∈ RN×C×P, which is the output of spatial pooling
layer, to one frame Ot ∈ RC×P. This layer also needs superpixel information Ωij,
which is the superpixel with index j of the i-th input frame. If Ωij 6= ∅, there exists
correspondence. The forward propagation can be expressed as

Ot(c, j) =
1
K ∑

Ωij 6=∅
It(i, c, j) (3.3)
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for channel index c and region index j, where K = |{i|Ωij 6= ∅, 1 ≤ i ≤ N}|, which
is the number of matched frames for j-th region. The gradient is calculated by

∂L
∂It(i, c, j)

=
∂L

∂Ot(c, j)
∂Ot(c, j)
∂It(i, c, j)

=
1
K

∂L
∂Ot(c, j)

.
(3.4)

Region-to-pixel layer. To directly optimize a semantic segmentation model with
dense annotations, we map the region based feature map Ir ∈ RC×P to a dense
pixel-level prediction Or ∈ RC×H×W . This layer needs a superpixel map on the target
frame Starget ∈ RH×W to perform forward and backward propagation. The forward
propagation is expressed as

Or(c, x, y) = Ir(c, j), Starget(x, y) = j. (3.5)

The gradient is computed by

∂L
∂Ir(c, j)

= ∑
Starget(x,y)=j

∂L
∂Or(c, x, y)

∂Or(c, x, y)
∂Ir(c, j)

= ∑
Starget(x,y)=j

∂L
∂Or(c, x, y)

.
(3.6)

Implementation details. We regard the frames with groundtruth annotations as
target frames. For each target frame, we equidistantly sample up to 100 frames
around it with the static interval of 3 frames. Next, we compute the superpixels
(Gupta et al., 2014) and Epic-flow (Revaud et al., 2015) with the default settings
provided in the corresponding source codes. The threshold τ for the computation
of region correspondence is 0.4 (cf. section 3.2.1). Finally, for each RGBD sequence,
we randomly sample 11 frames including the target frame together with their
correspondence maps as the input for our network. We use RGB images and HHA
representations of depth (Gupta et al., 2014) and train the network by stochastic
gradient descent with momentum term. Due to the memory limitation, we first run
FCN and cache the output pool4_rgb and pool4_hha. Then, we finetune the layers
after pool4 with a new network which is the copy of the higher layers in FCN. We
use a minibatch size of 10, momentum 0.9, weight decay 0.0005 and fixed learning
rate 10

−14. We finetune our model by using cross entropy loss with 1000 iterations
for all our models in the experiments. We implement the proposed network using
the Caffe framework (Jia et al., 2014).
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3.3 experiments

We evaluate our approach on the 4-class (Nathan Silberman and Fergus, 2012),
13-class (Couprie et al., 2013), and 40-class (Gupta et al., 2013) tasks of the NYU–
Depth–V2 (NYUDv2) dataset (Nathan Silberman and Fergus, 2012), and 33-class task
of the SUN3D dataset (Xiao et al., 2013).

Table 3.1: Configurations of competing methods

RGB RGBD

Single-View Eigen and Fergus (2015)
Kendall et al. (2015)

Caesar et al. (2016)
Chen et al. (2014)

Chen et al. (2018b)
Deng et al. (2015)

Gadde et al. (2016)
Gupta et al. (2014)
Long et al. (2015)
Wang et al. (2014)
Wang et al. (2016)
Zheng et al. (2015)

Multi-View /

Couprie et al. (2013)
Hermans et al. (2014)
Stückler et al. (2015)

McCormac et al. (2016)

We compare our models of different settings to previous state-of-the-art multi-
view methods as well as single-view methods, which are summarized in Table 3.1.
We report the results on the labeled frames, using the same evaluation protocol and
metrics as Long et al. (2015), which are also used in other Chapters of this thesis. Let
nij be the number of pixels of class i predicted to belong to class j, where there are
ncl different classes, and let ti = ∑j nij be the total number of pixels of class i. We
define the formulation of all four metrics in the following:

• mean pixel accuracy (PixelAcc):

∑i nii/ ∑i ti.

• mean class accuracy (ClassAcc):

(1/ncl)∑i nii/ti.

• mean region intersection over union (mIoU):

(1/ncl)∑i nii/(ti + ∑j nji − nii).
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(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Figure 3.4: Visualization examples of the semantic segmentation on NYUDv2.
Column 1 shows the RGB images and column 2 shows the ground truth (black
represents the unlabeled pixels). Columns 3 to 6 show the results from CRF-RNN
(Zheng et al., 2015), DeepLab-LFOV (Chen et al., 2018b), BI(3000) (Gadde et al., 2016)
and E2S2 (Caesar et al., 2016), respectively. Columns 7 to 9 show the results from
FCN (Long et al., 2015), single-view superpixel and multi-view pixel baselines. The
results from our whole system are shown in column 10. Best viewed in color.

• frequency weighted region intersection over union (fwIoU):

(∑t tk)
−1 ∑i tinii/(ti + ∑j nji − nii).

3.3.1 Results on NYUDv2 40-class task

Table 3.2 evaluates performance of our method on NYUDv2 40-class task and
compares to state-of-the-art methods and related approaches (Long et al., 2015; Deng
et al., 2015; Gupta et al., 2014; Kendall et al., 2015; Eigen and Fergus, 2015; Zheng et al.,
2015; Chen et al., 2014, 2018b; Gadde et al., 2016; Caesar et al., 2016) 1. We include 3

versions of our approach:

Our superpixel model. is trained on single frames without additional unlabeled
data, and tested using a single target frame. It improves the baseline FCN on all
four metrics by at least 2 percentage points (pp), and it achieves in particular better
performance than recently proposed methods based on superpixels and CNN(Gadde
et al., 2016; Caesar et al., 2016).

1For Long et al. (2015); Deng et al. (2015); Gupta et al. (2014); Kendall et al. (2015); Eigen and Fergus
(2015), we copy the performance from their paper. For Zheng et al. (2015); Chen et al. (2014, 2018b);
Gadde et al. (2016); Caesar et al. (2016), we run the code provided by the authors with RGB+HHA
images. Specifically, for Gadde et al. (2016), we also increase the maximum number of superpixels
from 1000 to 3000. The original coarse version and the fine version are abbreviated as BI(1000) and
BI(3000).
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Our superpixel+ model. leverages additional unlabeled data in the training while
it only uses the target frame for test. It obtains 3.4pp, 2.1pp, 1.1pp improvements
over the superpixel model on Mean Acc., Mean IoU and f.w. IoU, leading to more
favorable performance than many state-of-the-art methods (Deng et al., 2015; Gupta
et al., 2014; Kendall et al., 2015; Eigen and Fergus, 2015; Zheng et al., 2015; Chen et al.,
2014; Gadde et al., 2016; Caesar et al., 2016). This highlights the benefits of leveraging
unlabeled data.

Our full model. leverages additional unlabeled data both in the training and test.
It achieves a consistent improvement over the superpixel+ model and outperforms all
competitors in Mean Acc., Mean IoU and f.w. IoU by 0.9pp, 0.7pp, 1.0pp respectively.
Particularly strong improvements are observed on challenging object classes such as
dresser(+7.2pp), door(+4.8pp), bed(+4.7pp) and TV(+3.1pp).

Figure 3.4 demonstrates that our method is able to produce smooth predictions
with accurate boundaries. We present the most related methods, which either apply
CRF (Zheng et al., 2015; Chen et al., 2018b) or incorporate superpixels (Gadde et al.,
2016; Caesar et al., 2016), in the columns 3 to 6 of this figure. According to the
qualitative comparison to these approaches, we can see the benefit of our method. It
captures small objects like chair legs, as well as large areas like floormat and door. In
addition, we also present FCN and the superpixel model at the 7-th and 8-th column
of Figure 3.4. The FCN is boosted by introducing superpixels but not as precise as
our full model using unlabeled data.
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Table 3.2: Performance of the 40-class semantic segmentation task on NYUDv2.
We compare our method to various state-of-the-art methods: Long et al. (2015);
Gupta et al. (2014); Kendall et al. (2015); Eigen and Fergus (2015) are also based on
convolutional networks, Chen et al. (2014); Zheng et al. (2015); Chen et al. (2018b)
are the models based on convolutional networks and CRF, and Gadde et al. (2016);
Caesar et al. (2016); Deng et al. (2015) are region labeling methods, and thus related
to ours. We mark the best performance in all methods with BOLD font, and the
second best one is written with UNDERLINE.
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Wall 65.6 68.0 - - 70.3 67.9 70.2 62.8 61.7 56.9 69.9 70.9 72.4 72.7
Floor 79.2 81.3 - - 81.5 83.0 85.2 66.8 68.1 67.8 79.4 83.4 84.3 85.7
Cabinet 51.9 44.9 - - 49.6 53.1 55.3 44.2 45.2 50.0 50.3 52.6 52.0 55.4
Bed 66.7 65.0 - - 64.6 66.8 68.9 47.7 50.6 59.5 66.0 68.5 71.5 73.6
Chair 41.0 47.9 - - 51.4 57.8 60.5 35.8 38.9 43.8 47.5 54.1 54.3 58.5
Sofa 55.7 47.9 - - 50.6 57.8 59.8 35.9 40.3 44.3 53.2 56.0 58.8 60.1
Table 36.5 29.9 - - 35.9 43.4 44.5 10.9 26.2 31.3 32.8 40.4 37.9 42.7
Door 20.3 20.3 - - 24.6 19.4 25.4 18.3 20.9 24.6 22.1 25.5 28.2 30.2
Window 33.2 32.6 - - 38.1 45.5 47.8 21.5 36.0 37.9 39.0 38.4 41.9 42.1
Bookshelf 32.6 18.1 - - 36.0 41.5 42.6 35.9 34.4 32.7 36.1 40.9 38.5 41.9
Picture 44.6 40.3 - - 48.8 49.3 47.9 41.5 40.8 46.1 50.5 51.5 52.3 52.9
Counter 53.6 51.3 - - 52.6 58.3 57.7 30.9 31.6 45.0 54.2 54.8 58.2 59.7
Blinds 49.1 42.0 - - 47.6 47.8 52.4 47.4 48.3 51.8 45.8 47.3 49.7 49.7
Desk 10.8 11.3 - - 13.2 15.5 20.7 12.8 9.3 15.8 11.9 11.3 14.3 13.5
Shelves 9.1 3.5 - - 7.6 7.3 9.1 8.5 7.9 9.1 8.6 7.5 8.1 9.4
Curtain 47.6 29.1 - - 34.8 32.9 36.0 29.3 30.8 38.0 32.5 34.5 42.9 40.7
Dresser 27.6 34.8 - - 33.2 34.3 36.9 20.3 22.9 34.8 31.0 41.6 35.9 44.1
Pillow 42.5 34.4 - - 34.7 40.2 41.4 21.7 19.5 31.5 37.5 37.7 40.8 42.0
Mirror 30.2 16.4 - - 20.8 23.7 32.5 13.0 13.9 31.7 22.4 20.1 27.7 34.5
Floormat 32.7 28.0 - - 24.0 15.0 16.0 18.2 16.1 25.3 13.6 15.9 31.9 35.6
Clothes 12.6 4.7 - - 18.7 20.2 17.8 14.1 13.7 14.2 18.3 20.1 19.3 22.2
Ceiling 56.7 60.5 - - 60.9 55.1 58.4 44.7 42.5 39.7 59.1 56.8 55.6 55.9
Books 8.9 6.4 - - 29.5 22.1 20.5 10.9 21.3 26.7 27.3 28.8 28.2 29.8
Fridge 21.6 14.5 - - 31.2 30.6 45.1 21.5 16.6 27.1 27.0 23.8 38.3 41.7
TV 19.2 31.0 - - 41.1 49.4 48.0 30.4 30.9 35.2 41.9 51.8 46.9 52.5
Paper 28.0 14.3 - - 18.2 21.8 21.0 18.8 14.9 17.8 15.9 19.1 17.6 21.1
Towel 28.6 16.3 - - 25.6 32.1 41.5 22.3 23.3 21.0 26.1 26.6 31.2 34.4
Showercur. 22.9 4.2 - - 23.0 6.4 9.4 17.7 17.8 19.9 14.1 29.3 11.0 15.5
Box 1.6 2.1 - - 7.4 5.8 8.0 5.5 3.3 7.4 6.5 6.8 6.5 7.8
Whiteboard 1.0 14.2 - - 13.9 14.8 14.3 12.4 9.9 36.9 12.9 4.7 28.2 29.2
Person 9.6 0.2 - - 57.9 55.3 67.0 45.9 44.7 35.0 57.6 66.1 66.7 60.7
Nightstand 30.6 27.2 - - 31.4 37.7 41.8 15.8 15.8 17.6 30.1 37.4 34.1 42.2
Toilet 48.4 55.1 - - 57.2 57.9 69.7 56.5 53.8 31.8 61.3 56.1 62.8 62.7
Sink 41.8 37.5 - - 45.4 47.7 46.8 32.2 32.1 36.3 44.8 46.3 47.8 47.4
Lamp 28.1 34.8 - - 36.9 40.0 40.1 24.7 22.8 14.8 32.1 34.5 35.1 38.6
Bathtub 27.6 38.2 - - 39.1 44.7 45.1 17.1 19.0 26.0 39.2 26.7 26.4 28.5
Bag 0 0.2 - - 4.9 6.6 2.1 0.1 0.1 9.9 4.8 5.8 8.8 7.3
Other struct. 9.8 7.1 - - 14.6 18.0 20.7 12.2 12.3 14.5 15.2 12.7 19.3 18.8
Other furni. 7.6 6.1 - - 9.5 12.9 12.4 6.7 5.3 9.3 7.7 12.3 10.9 15.1
Other props. 24.5 23.1 - - 29.5 33.8 33.5 21.9 23.2 20.9 30.0 30.6 29.2 31.4

PixelAcc 63.8 60.3 68.0 65.6 66.3 68.7 70.3 57.7 58.9 58.1 65.4 68.5 68.4 70.1
ClassAcc - - 45.8 45.1 48.9 46.9 49.6 37.8 39.3 52.9 46.1 48.7 52.1 53.8
mIoU 31.5 28.6 32.4 34.1 35.4 36.8 39.4 27.1 27.7 31.0 34.0 36.0 38.1 40.1
fwIoU 48.5 47.0 - 51.4 51.0 52.5 54.7 41.9 43.0 44.2 49.5 52.9 54.0 55.7
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Average vs. max spatio-temporal data-driven pooling. Our data-driven pooling
aggregates the local information from multiple observations within a segment and
across multiple views. Average pooling and max pooling are canonical choices used
in many deep neural network architectures. Here we test average pooling and max
pooling both in the spatial and temporal pooling layer, and show the results in
Table 3.3. All the models are trained with multiple frames, and tested on multiple
frames. Average pooling turns out to perform best for spatial and temporal pooling.
This result confirms our design choice.

Table 3.3: Comparison of different configurations of our spatio-temporal data-driven
pooling (STD2P). We employ average (Avg) and max (Max) operations in our STD2P.
For all the models, we train them with multiple frames, and test with multiple
frames.

Spatial/Temporal PixelAcc ClassAcc mIoU fwIoU

Avg / Avg 70.1 53.8 40.1 55.7
Avg / Max 69.4 51.0 38.0 54.4
Max / Avg 66.4 45.4 33.8 49.6
Max / Max 64.9 44.5 32.1 47.9

Region vs. pixel correspondences. We compare our full model, which is built
on the region correspondences, to the model with pixel correspondences. It only
uses per-pixel correspondences by optical flow and applies average pooling to fuse
the information from multiple views. The visualization results of this baseline are
presented in column 9 of Figure 3.4. Obtaining accurate pixel correspondences is
challenging because the optical flow is not perfect and the error can accumulate over
time. Consequently, the model with pixel correspondences only improves slightly
over the FCN baseline, as it is also reflected in the numbers in Table 3.4. Establishing
region correspondences with the proposed rejection strategy described in section
3.2.1 seems indeed to be favorable over pixel correspondences. Our full model shows
a significant improvement over the pixel-correspondence baseline and FCN in all
measures.

Table 3.4: Comparison results with baselines on NYUDv2 40-class task, including our
basic segmentation model FCN (Long et al., 2015) and multi-view baseline with pixel
correspondence. The benefits of superpixel correspondence are clearly observed.

Methods PixelAcc ClassAcc mIoU fwIoU

FCN 65.4 46.1 34.0 49.5
Pixel Correspondence 66.2 45.9 34.6 50.2
Superpixel Correspondence 70.1 53.8 40.1 55.7
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Figure 3.5: The performance of multi-view prediction with varying maximum
distance. Green lines show the results of using future and past views. Blue lines
show the results of only using past views.

Analysis of multi-view prediction. In our multi-view model, we subsample
frames from a whole video for computational considerations. There is a trade-
off between close-by and distant frames to be made. If we select frames far away
from the target frames, they can provide more diverse views of an object, while
matching is more challenging and potentially less accurate than for close-by frames.
Hence, we analyze the influence of the distance of selected frames to target frames,
and report the Mean Acc. and Mean IoU in Figure 3.5. In results, providing wider
views is helpful, as the performance is improved with the increase of max distance.
And selecting the data in the future, which is another way to provide wider views,
also contributes to the improvements of performance.



44 chapter 3. indoor scene understanding

3.3.2 Results on NYUDv2 4-class and 13-class tasks

To show the effectiveness of our multi-view semantic segmentation approach, we
compare our method to previous state-of-the-art multi-view semantic segmentation
methods (Couprie et al., 2013; Hermans et al., 2014; Stückler et al., 2015; McCormac
et al., 2016) on the 4-class and 13-class tasks of NYUDv2 as shown in Table 3.5.
Besides, we also present previous state-of-the-art single-view methods (Eigen and
Fergus, 2015; Wang et al., 2016, 2014). We observe that our superpixel+ model
already outperforms all the multi-view competitors, and the proposed temporal
pooling scheme further boosts Pixel Acc. and Mean Acc. by more than 1pp and then
outperforms the state-of-the-art (Eigen and Fergus, 2015). In particular, the recent
proposed method by McCormac et al. McCormac et al. (2016) is also built on CNN,
however, their performance on 13-class task is about 5pp worse than ours.

Further, We provide the qualitative results of 4-class and 13-class tasks of NYUDv2

dataset in Figure 3.6 and Figure 3.7 respectively.

Table 3.5: Performance of the 4-class (left) and 13-class (right) semantic segmentation
tasks on NYUDv2 and comparison to state-of-the-art methods at the publication
time. We observe that our superpixel+ and full model achieve significant improvements
compared to previous methods.

Methods PixelAcc ClassAcc mIoU fwIoU

Couprie et al. (2013) 64.5 63.5 52.4 36.2
Hermans et al. (2014) 69.0 68.1 54.2 48.0
Stückler et al. (2015) 70.6 66.8 - -
McCormac et al. (2016) - - 69.9 63.6

Wang et al. (2014) - 65.3 - 42.2
Wang et al. (2016) - 74.7 - 52.7
Eigen and Fergus (2015) 83.2 82.0 75.4 66.9

Ours (superpixel+) 82.7 81.3 74.8 67.0
Ours (full model) 83.6 82.5 75.8 68.4
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Ground Structure Furniture Props.

Image GT Our results Image GT Our results

Figure 3.6: Semantic segmentation results of 4-class task on NYUDv2.



46 chapter 3. indoor scene understanding

TV
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Window Booksh.
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Bed Object Chair Furnit.

Image GT Our results Image GT Our results

Figure 3.7: Semantic segmentation results of 13-class task on NYUDv2.
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3.3.3 Results on SUN3D 33-class task

Table 3.6 shows the results of our method and baselines on the SUN3D dataset. We
follow the experimental settings of Deng et al. (2015) to test all the methods (Deng
et al., 2015; Zheng et al., 2015; Chen et al., 2014, 2018b; Gadde et al., 2016; Caesar
et al., 2016; Long et al., 2015) on all 65 labeled frames in SUN3D, which are trained
with the NYUDv2 40-class annotations. After computing the 40-class prediction, we
map 7 unseen semantic classes into 33 classes. Specifically, floormat is merged to
floor, dresser is merged to other furni and five other classes are merged to other props.
Among all the methods, we achieve the best Mean IoU score that our superpixel+ and
full model are 1.2pp and 4.7pp better than Deng et al. (2015) and Chen et al. (2018b)
. For Pixel Acc., our method is comparable to the previous state of the art (Deng
et al., 2015). In addition, we observe that our superpixel+ model boosts the baseline
FCN by 3.7pp, 2.3pp, 3.3pp, 3.9pp on the four metrics, and applying multi-view
information further improves 3.0pp, 0.4pp, 3.5pp, 3.7pp, respectively. Besides, we
achieve much better performance than DeepLab-LFOV, which is comparable to our
model on the NYUDv2 40-class task. This illustrates the generalization capability
of our model, even without finetuning on the new domain or dataset. Finally, we
provide the qualitative comparison between different models in Figure 3.8, which
clearly demonstrate the stronger generalization capability of our parameter-free
module spatial-temporal data-driven pooling.

Table 3.6: Performance of the 33-class semantic segmentation task on SUN3D. All 65

images are used as the test set.

Methods PixelAcc ClassAcc mIoU fwIoU

Deng et al. (2015) 65.7 - 28.2 51.0
Zheng et al. (2015) 59.8 - 25.5 43.3
Chen et al. (2014) 60.9 30.7 24.0 44.1
Chen et al. (2018b) 62.3 35.3 28.2 46.2
Gadde et al. (2016) (1000) 53.8 31.1 20.8 37.1
Gadde et al. (2016) (3000) 53.9 31.6 21.1 37.4
Caesar et al. (2016) 56.7 47.7 27.2 43.3
Long et al. (2015) 58.8 38.5 26.1 43.9

Ours (superpixel+) 62.5 40.8 29.4 47.8
Ours (full model) 65.5 41.2 32.9 51.5
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Figure 3.8: Qualititive results of the SUN3D dataset. For each example, the images
are arranged from top to bottom, from left to right as color image, groundtruth,
CRF-RNN (Zheng et al., 2015), DeepLab-LFOV (Chen et al., 2018b), BI (Gadde et al.,
2016), E2S2 (Caesar et al., 2016), FCN (Long et al., 2015), our full model.

3.3.4 Boundary accuracy for semantic segmentation

In order to quantify the improvement on semantic boundary localization based
on the proposed data-driven pooling scheme, we use Boundary Precision Recall
(BPR), as also used in image or video segmentation benchmark (Galasso et al., 2013;
Arbelaez et al., 2011) for evaluation. Figure 3.9 shows the resulting semantic boundary
average precision-recall curve. We conclude that our method generates more accurate
boundaries than FCN, which achieve 0.477 BPR score while our method achieves
0.647. Besides, our method even improves on the superpixel (Gupta et al., 2014) we
build on, which means our method can successfully merge over-segmentations or
non-semantic boundaries between adjacent instances of the same semantic class.
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Figure 3.9: Precision-recall curve on semantic boundaries on the NYUDv2 dataset.

3.4 discussion

Our method provides a solution for improving semantic image segmentation by
incorporating superpixels and leveraging temporal unlabeled frames. The experi-
mental results show that our superpixels-based networks perform well in various
settings, that achieves constant improvement by utilizing unlabeled images to boost
the training of segmentation, or just leveraging multi-view information during
inference.

3.4.1 Application Scenarios

The core techinique of our approach over fully convolutional networks is to intro-
duce superpixel prior into networks. Based on superpixels, our approach is able
to leverage temporal unlabeled frames for multi-view information processing for
semantic segmentation. Therefore, the quality of superpixels plays an important role
to obtain a significant improvement. As a result, our method allows for following
application scenarios.
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First, as discussed above, our approach performs particularly well when high
quality superpixels are acquired. In our study, we show additional depth information
benefits superpixel computation a lot, which is able to handle occlusions under low
contrast background and provide more precise boundary between objects. As a
result, our model with superpixels is quite suitable in indoor scene applications,
such robotics and navigation systems.

Second, our approach is able to leverage large-scale unlabeled frames in partial
labeled videos, to augment the training of a semantic segmentation model. As we
all know, data annotations are quite expensive for semantic segmentation. While in
our study, we show that it is possible to leverage unlabeled images in the past and
future. Our solution provides a method to make fully use of unlabeled images, and
thus achieves better segmentation performance.

Finally, our approach is able to produce continuous semantic segmentation results
over a video. Although we do not train a semantic segmentation with unlabeled
frames, we can still employ our spatio-temporal data-driven pooling during inference,
because it is a parameter-free module. Therefore, our method is able to adapt a
semantic image segmentation to sequential applications with temporal information,
such as autonomous driving and robotic navigation.

Differet to previous methods incorporating superpixels into networks Caesar et al.
(2016); Gadde et al. (2016), our method can leverage superpixels with correspond-
ences, and thus integrate temporal information, which has boarder applications.

3.4.2 Technical Limitations

The key issue of our method is acquiring reliable superpixels, which is relevant to
segmentation performance.

This holds true in most cases that our method is able to improve the performance,
however, superpixels probably introduce new errors. On one hand, superpixels
are normally computed with a threshold to determine the scale of superpixels,
producing either larger superpixels, or smaller ones. In case our method introduces
larger superpixels, it has the risk of merging two different objects into a superpixel,
which will produce incorrect predictions. On the other hand, when our method
utilizes superpixels at smaller sizes, it introduces less context information, and thus
fails to improve a segmentation model a lot. Besides, it is also hard to establish
region correspondences for small superpixels, because of potential errors of optical
flow. Therefore, we only show clear improvements in RGB-D indoor scene scenarios,
in which superpixels from additional depth information are much more successful
than RGB inputs only.

Besides, even though providing additional modality, selecting a proper threshold
for superpixels computation is still an issue. Generally, there are small objects as
well as large regions in an image, as a result, it is hard to obtain suitable initial
segments by applying only one threshold. This issue may be addressed or alleviated
by introducing a superpixel hierarchy with multiple different thresholds, and then
summarizing the multiscale contextual information of superpixels. For each pixel,
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multiscale context information from a set of regions of various sizes are provided,
which may be stronger representations for better segmentation.

Furthermore, in our current method, there is no consideration with respective to
dependencies between different superpixels, even though we demonstrate improved
semantic segmentation performance. Due to some rare appearances or challenging
examples, it is possible to predict incorrectly, despite of providing perfect superpixels.
To handle this issue, dependencies between superpixels are important information,
which may refine segmentation results. Therefore, passing the information between
superpixels is another possible solution to improve superpixels-based networks for
segmentation, while we do not consider in this thesis.

3.5 conclusion

In this chapter we studied the challenging task of semantic segmentation using
partially annotated videos. We design a superpixel-based multi-view semantic
segmentation network with spatio-temporal data-driven pooling which can receive
multiple images and their correspondence as input. We propagate the information
from multiple views to the target frame, and significantly improve the semantic
segmentation performance on the target frame. Besides, our method can leverage
large scale unlabeled images for training and test, and we show that using unlabeled
data also benefits single image semantic segmentation.
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L E A R N I N G D I L AT I O N FA C T O R S F O R S E M A N T I C
S E G M E N TAT I O N

Contextual information is crucial for semantic segmentation. However, find-
ing the optimal trade-off between keeping desired fine details and at the
same time providing sufficiently large receptive fields is non trivial. This is

even more so, when objects or classes present in an image significantly vary in size.
Dilated convolutions have proven valuable for semantic segmentation, because they
allow to increase the size of the receptive field without sacrificing image resolution.
However, in current state-of-the-art methods, dilation parameters are hand-tuned
and fixed. In this paper, we present an approach for learning dilation parameters
adaptively per channel, consistently improving semantic segmentation results on
street-scene datasets like Cityscapes and Camvid.

4.1 introduction

Semantic segmentation is the task of predicting the semantic category for each pixel
in an image, i.e. its class label from a given set of labels. It is considered a crucial
step towards scene understanding and has a wide range of use-cases including
autonomous driving and service robotics. The trade-off between local detail and
global context is inherent in the task. The prediction of class labels requires sufficient
contextual information, especially for semantic classes whose instances usually cover
large portions of the image (e.g. trucks, street) or may lack local features (e.g. sky). At
the same time, well localized detailed information is important for pixel-accurate
prediction.

Recently, dilated convolutions have been proposed to improve semantic segment-
ation performance by providing larger receptive fields without sacrificing image
resolution or adding network complexity (Yu and Koltun, 2016). While this prin-
cipled idea has shown promise for recent architectures (Zhao et al., 2017; Chen et al.,
2018b), the dilation parameters are not learned but hand-tuned and fixed. In con-
trast, we propose to learn the dilation parameters end-to-end thus generalizing the
concept of dilated convolutions (Yu and Koltun, 2016). More specifically, we propose
a fully trainable dilated convolution layer that allows to not only learn dilation
parameters for each convolutional layer but for each channel individually. Thus,
different features can be extracted and combined at different scales, rendering the
network more flexible with respect to its receptive fields. We leverage the proposed
layer to facilitate the learning of dilation parameters within three different network
architectures for semantic segmentation, specifically Deeplab-LargeFOV (Chen et al.,
2018b), Deeplab-v2 (Chen et al., 2018b) and PSPNet (Zhao et al., 2017). For the task of

53
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Figure 4.1: Illustration of standard dilated convolutions (left) and the proposed
channel-wise learnable dilated convolutions (right). Standard dilated convolutions
have a constant, manually set (solid lines) and integer valued dilation parameter for
different channels. The proposed layer allows for channel-wise learning (dash lines)
of dilation factors (encoded with different colors), which can take fractional values.

street scene segmentation, we show that the proposed method consistently improves
results over the respective baselines.

4.2 learnable dilated convolutions

In this section, we describe the concept and formulation of the channel based
fractional dilated convolution layer as illustrated in Figure 4.1. Our proposed layer
is a generalization of dilated convolutions as they were proposed in Yu and Koltun
(2016) (Figure 4.1 (left)). Dilated convolutions provide a simple module facilitating
to aggregate context information without pooling or downsampling the original
image. It thus allows to preserve high spatial resolution. While previous dilated
convolutions require manual tuning of an integer valued dilation parameter, the
proposed method facilitates to learn dilation parameters from training data via back
propagation. Thus, to allow for the definition of a gradient on the dilation parameter,
these parameters can no longer be constrained to integer values but are relaxed to
take a value in R+. To add further flexibility to the network w.r.t. the amount of
context provided to each layer and each channel, we further allow for a channel-wise
optimization of dilation parameters as shown in Figure 4.1 (right).

For a learned, fractional dilation factor, the output feature map of the dilated con-
volutions is computed using bilinear interpolation – inspired by spatial transformer
networks (Jaderberg et al., 2015). The proposed learnt dilated convolution layer is
compatible with existing architectures, as it generalizes (and therefore can replace)
convolutional and dilated convolutional layers in a given network architecture.



4.2 learnable dilated convolutions 55

1 1 1 2 2 3 3

1 2 3 5 5

2 2 3 3 7 7 7

2 3 3 7 7 7

3 3 3 3 5 8 8

3 3 5 5 5 6 8

3 3 5 5 5 5 5

3

1 2

Sample with dilation 2.3

Sample with dilation 2.5

Sample with dilation 2.7

1 2 4.4
2.7 3 7
3 5 6.12

1 2 4
2.5 3 7
3 5 6

1 2 3.6
2.3 3 7
3 5 5.72

×
−1 0 1
−2 0 2
−1 0 1

filter 15.12

15

14.72

Figure 4.2: An example of the proposed dilated convolutions with a fractional
dilation factor. With different dilation factors (i.e., 2.3, 2.5 and 2.7 in this figure), we
obtain different input features, and then get different output activations for the red
location. Assuming the current dilation factor is 2.5, we will get an output 15. With
a training signal, which expects the output activation increased or decreased, we can
modify the current dilation factor along the direction to 2.3 or 2.7.

4.2.1 Forward pass

We first give a brief recap on conventional dilated convolutions. With filter weights
W and a bias term b, the input feature X can be transformed to the output feature Y
by

Y = W ∗ X + b, or

ym,n = ∑
c

∑
i,j

wc,i,j · xc,m+i·d,n+j·d + b, (4.1)

where d is the dilation factor, and must be an integer.
We extend the dilated convolution by introducing a dilation vector dc ∈ Rc+

for different channels, which can take fractional values. The forward pass of the
proposed dilated convolutions can be formulated as

ym,n = ∑
c

∑
i,j

wc,i,j · xc,m+i·dc,n+j·dc + b. (4.2)

xc,m+i·dc,n+j·dc cannot directly be sampled from the input feature X for most dc. We
obtain the value of a fractional position by employing bilinear interpolation on its
four neighboring integer positions as shown in Figure 4.2, specifically

xc,m+i·dc,n+j·dc =

xc,bm+i·dcc,bn+j·dcc · (1− ∆d)2 + xc,bm+i·dcc,dn+j·dce · (1− ∆d) · ∆d+

xc,dm+i·dce,bn+j·dcc · ∆d · (1− ∆d) + xc,dm+i·dce,dn+j·dce · (∆d)2,

(4.3)
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where ∆d = m + i · dc − bm + i · dcc = n + j · dc − bn + j · dcc, is the decimal part of
the dilation factor dc.

4.2.2 Backward pass

Chain rule and back propagation (Rumelhart et al., 1988) are used to optimize a
deep neural network model. For each layer, networks obtain the training signals
(gradients) from the next connected layer, and use them to update the parameters in
current layer. Then, the processed gradient is passed to the previous connected layer.
Usually, those training signals are used to change the filter weights such that the
output activation increases or decreases and the loss decreases. Besides changing
filter weights, changing the dilation factor provides another way to optimize a
convolution networks, as discussed in Figure 4.2.

The proposed dilated convolution layer based on bilinear interpolation is differ-
entiable to dilation factors. Therefore, it allows us to train a full model end-to-end
without any additional training signal for dilation factors. Because ∆d in Eq. (4.3) is
the decimal part of c-th channel’s dilation factor dc, the gradient for updating dc can
be formulated as

∂L
∂dc

=
∂L

∂ym,n
· ∂ym,n

∂dc
=

∂L
∂ym,n

· ∂ym,n

∂∆d
= ∑

i,j
(xc,bm+i·dcc,bn+j·dcc · (2 · ∆d− 2) + xc,bm+i·dcc,dn+j·dce · (1− 2 · ∆d)+

xc,dm+i·dce,bn+j·dcc · (1− 2 · ∆d) + xc,dm+i·dce,dn+j·dce · 2 · ∆d)

· wc,i,j ·
∂L

∂ym,n
.

(4.4)

Besides the dilation factors, filter weights and bias term also require updating.
The gradient for the filter weights W can be computed by

∂L
∂wc,i,j

=
∂L

∂ym,n
· ∂ym,n

∂wc,i,j
=

∂L
∂ym,n

· xc,m+i·dc,n+j·dc , (4.5)

where xc,m+i·dc,n+j·dc can be computed using Eq. (4.3). The gradient for the bias term
b can be computed by

∂L
∂b

=
∂L

∂ym,n
. (4.6)

To employ back propagation for optimizing all the layers, the gradient for the
input feature at location (p, q) can be computed as the sum of the gradients from
all the locations of output side, who sample the location (p, q) in forward pass.
The gradient at the output side ∂L

∂ym,n
will affect the gradients for all sampled input
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locations in bilinear interpolation. Specifically,

∂L
∂xc,bm+i·dcc,bn+j·dcc

=
∂L

∂ym,n
· wc,i,j · (1− ∆d)2,

∂L
∂xc,bm+i·dcc,dn+j·dce

=
∂L

∂ym,n
· wc,i,j · (1− ∆d) · ∆d,

∂L
∂xc,dm+i·dce,bn+j·dcc

=
∂L

∂ym,n
· wc,i,j · ∆d · (1− ∆d),

∂L
∂xc,dm+i·dce,dn+j·dce

=
∂L

∂ym,n
· wc,i,j · (∆d)2.

(4.7)

4.2.3 Network architectures

We select a set of state-of-the-art methods which use fixed and manually set dilation
parameters. We employ our method and make the dilation parameters in those
models learnable. Next, we describe the baseline models (Chen et al., 2018b; Zhao
et al., 2017) in this paper and how we adopt them.
Deeplab-LargeFOV (Chen et al., 2018b) is a VGG (Simonyan and Zisserman, 2014)
based semantic segmentation model. It replaces conv5_1, conv5_2 and conv5_3 in
original VGG network with dilation 2. And it has a convolution layer fc6 with 512
input feature channels, 1024 output channels and dilation 12. We make conv5_1,
conv5_2, conv5_3 and fc6 learnable, and set the range of them as [1, 4], [1, 4], [1, 4]
and [4, 20].
Deeplab-v2 (Chen et al., 2018b) uses ResNet-101 (He et al., 2016) to extract visual
features. It modifies the original ResNet-101 with dilated convolutions. Before res5c,
there are 23 layers with dilation 2, and 3 layers with dilation 4. There is an ASPP
layer after res5c, which combines dilation 6, 12, 18 and 24 to recognize the class of
each location. We set the range of the dilated convolution layer with dilation factor
2, 4, 6, 12, 18 and 24 to [1, 4], [1, 8], [1, 11], [7, 17], [13, 23] and [19, 29], respectively.
PSPNet (Zhao et al., 2017) has a similar architecture to Deeplab-v2, and achieves
state-of-the-art performance on various datasets. There are 23 layers with dilation 2,
and 3 layers with dilation 4. Similarly, we set the range of the dilated convolution
layer with dilation factor 2 and 4 to [1, 4] and [1, 8]. We show that our method can
boost PSPNet, and achieve new state-of-the-art performance on the challenging street
view dataset Cityscapes (Cordts et al., 2016).

4.2.4 Implementation details

We train our Deeplab-LargeFOV, Deeplab-v2 and PSPNet models with filter weights
initialized from released, original models, which are trained on PASCAL VOC 2012

(Everingham et al., 2010), MS-COCO (Lin et al., 2014) and Cityscapes (Cordts et al.,
2016), respectively. We initialize the dilation factors with the manually set value of
the original dilated convolutions. We apply batch SGD with momentum to optimize
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Table 4.1: Hyperparameters in the experiments of this section.

Datasets Networks Batch size
Image patch

size
Base

learning rate
iterations

Deeplab-LargeFOV 10 321× 321 1× 10−3
20,000

Cityscapes Deeplab-v2 10 321× 321 2.5× 10−4
20,000

S PSPNet 16 561× 561 1× 104
20,000

CamVid Deeplab-v2 10 321× 321 2.5× 10−4
15,000

PSPNet 10 473× 473 1× 10−4
10,000

the models. The batch size is set to 10, the momentum is 0.9 and the weight decay
is 0.0005. We use the “poly" learning rate policy where the current learning rate is
equal to the base learning rate multiplying (1− iter

itermax
)power, and power = 0.9 for all

the experiments. The other hyperparameters are presented in Tab. 4.1. We use the
respective training code released from the authors. We implement our method using
the Caffe (Jia et al., 2014) framework. In our experiments, our models need 3% to 8%
additional time in inference. Training Deeplab-LargeFOV, Deeplab-v2 and PSPNet
need only additional 10%, 15% and 15% computational time compared to the base
models, respectively.

4.3 experiments

We evaluate the proposed method and baselines on the public benchmarks City-
scapes (Cordts et al., 2016) and CamVid (Brostow et al., 2008) using four evaluation
metrics following previous work (Long et al., 2015): pixel accuracy (Pixel Acc.), mean
class accuracy (Cls Acc.), region intersection over union (Mean IoU), and frequency
weighted intersection over union (f.w. IoU).

4.3.1 Cityscapes

Cityscapes (Cordts et al., 2016) is a recently released street scene dataset, which is
collected from diverse cities in different seasons. The image resolution in Cityscapes
is 1024× 2048 and the image quality is very high. It defines 19 semantic classes
covering traffic, stuff and objects. There are 2975, 500 and 1525 carefully annotated
images for training, validation and testing. Besides, there are also 20,000 coarsely
annotated images provided for additional training data. Following previous work
(Zhao et al., 2017), we leverage those coarse annotations during training to obtain
state-of-the-art performance.
Ablation study for Deeplab-LargeFOV. We first provide an ablation study on the City-
scapes validation set to show the effectiveness of learning dilation factors using the
baseline model Deeplab-LargeFOV. We train models with different dilation configur-
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ations (see Tab. 4.2), varying fixed dilations in conv5_1 to conv5_3 from 1 to 4, and
learning parameters for conv5_1 to conv5_3 and fc6.

The first row in Tab. 4.2 shows the performance of the baseline method without
dilated convolutions, which is only 58.91% mean IoU. Fixed integer valued dilated
convolution parameters can improve the performance to up to 62.51% for a factor of
4 in conv51 to conv53.

By replacing the fixed dilation parameters with our learnable dilated convolutions
using the same dilation factors as initialization, we get a further improvement to up
to 63.31% mean IoU. Besides, we also use uniform distribution for the initialization
of dilated convolutions, obtaining 62.92% mean IoU, which is comparable to constant
value initialization, and better than the models with fixed dilation factors. We show
the dilation distribution over input channels in Figure 4.3. We observe that the
learned dilation distributions of using constant value and random noise, are very
similar, which is clearly shown the stability of optimization. We observe that our
dilation covers most values in the range of [1, 4] for conv5_1 to conv5_3, which allows
us capture local details and wide context at the same time. The second observation is
that there are some peaks in the distribution, which make the current layer capture
more local information or capture a wider context. For a specific dilated convolution
layer in a network, it is very difficult to know whether the current convolution

Table 4.2: Ablation study on the Cityscapes validation set using the VGG based
Deeplab-LargeFOV model. Black numbers for the convolutional layers indicate fixed
dilation parameters, red numbers or ranges in our learnable dilated convolution
layers indicate the initial values or distributions before training.
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Figure 4.3: The learned dilation distribution in the Deeplab-LargeFOV model on
Cityscapes dataset. The first row shows the distribution using constant value
initialization, and the second row shows the distribution using random noise as
presented in Tab. 4.2.

should capture local or global information, which is why the proposed learning
based model achieves better performance than all fixed dilation settings. To verify
this point, we train a further model with fixed dilated convolutions with factors 2.35,
2.6 and 3.5 which are the average values of the learned dilation distribution over all
channels. This model achieves better results than all the other fixed settings but is
worse than the channel-wise learned setting.
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Comparisons on Deeplab-v2 and PSPNet. We choose Deeplab-v2 and PSPNet as our
baselines, which leverage the powerful ResNet (He et al., 2016) to build their models.
We report the Mean IoU score. The comparison results on Cityscapes validation
set can be found in Tab. 3. Compared our results to baselines, we observe that we
got general improvement in most classes like “Fence”, “Terrain”, “Car” and “Bus”.
Particular, in some challenging and important (core role in traffic scenarios) classes
like “Person” and “Rider”, we got clearly improvements for Deeplab-v2 as well as
PSPNet. Due to deformations and large appearance variances, “Person” and “Rider”
are easily confused each other. By learning appropriate details and context, we
boosted Deeplab-v2 and PSPNet to recognize “Person” (+0.6 percentage points (pp)
for Deeplab-v2 and +1.3pp for PSPNet) and “Rider” (+0.8pp for Deeplab-v2 and
+4.9pp for PSPNet). Figure 4.4 shows some qualitative results from baselines and
our models. In the left two columns, Deeplab-v2 baseline recognizes the rider and
the middle section of the train to classes “person” and “bus”, which are confusing to
ground truth. In the right two columns, PSPNet baseline fails to recognize the font
part of the truck and the rider, while our method shows improved predictions.

Table 4.3: Comparison IoU scores on Cityscapes validation set.
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Chen et al. (2018b) 97.2 78.7 90.2 49.3 48.8 52.5 57.7 69.7 90.8 59.4 92.7
+ Ours 97.2 79.1 90.5 52.2 49.9 53.2 57.4 70.1 90.9 59.6 92.9

Zhao et al. (2017) 98.3 86.4 93.1 60.6 65.9 64.3 72.0 81.1 92.6 64.7 94.9
+ Ours 98.3 86.4 93.0 59.1 66.4 64.0 72.7 81.3 92.6 65.6 94.9

Method Pe
rs

on

R
id

er

C
ar

Tr
uc

k

Bu
s

Tr
ai

n

M
ot

or
cy

cl
e

Bi
cy

cl
e

M
ea

n
Io

U

Chen et al. (2018b) 76.6 53.3 92.6 66.8 78.1 61.3 60.4 71.9 70.9
+ Ours 77.2 54.6 92.8 62.8 79.9 58.9 58.9 72.2 71.1

Zhao et al. (2017) 82.5 61.5 95.3 81.4 89.7 84.5 62.8 78.7 79.4
+ Ours 83.3 66.4 95.4 83.0 89.9 80.6 66.8 78.9 79.9

4.3.2 CamVid

CamVid is a smaller street view dataset captured from onboard camera. We not
only compare our networks to baseline methods, but also compare to previous
state-of-the-art methods on Camvid. For the ease of comparison, we utilized the
training and test setup from Sturgess et al. (2009), which has 11 semantic classes, 367
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Figure 4.4: Qualitative results on the Cityscapes validation set for Deeplab-v2 (Chen
et al., 2018b) (left) and PSPNet (Zhao et al., 2017) (right). The first four rows show the
raw images, ground truth, baselines’ predictions and our predictions. The last row is
a visual comparison of correctly classified pixels. In white areas, both predictions are
correct, in red areas, only the baseline prediction is correct and in cyan colored areas,
the proposed predictions are correct, while the baseline prediction is erroneous.

training, 100 validation and 233 test images. The image resolution in our experiments
is 640× 480. The quantitative results are summarized in Tab. 4. We improve over
Deeplab-v2 and PSPNet for 0.9 pp and 0.5 pp, respectively. For most classes, we
obtain comparable performance. Particularly, in the classes of “Sign”, “Fence” and
“Bicyclist”, our method achieves clear improvements over Deeplab-v2 as well as
PSPNet. This shows the benefit of our learned dilation: State-of-the art methods can
be improved to recognize a range of classes better.
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Table 4.4: Quantitative results on CamVid dataset. With the proposed dilated
convolutions, our method achieves better performance than two baselines, and we
present new state-of-the-art performance on the CamVid dataset.
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Yu and Koltun (2016) 82.6 76.2 89.9 84.0 46.9 92.2 56.3 35.8 23.4 75.3 55.5 65.3
Kundu et al. (2016) 84 77.2 91.3 85.6 49.9 92.5 59.1 37.6 16.9 76.0 57.2 66.1
Richter et al. (2016) 84.4 77.5 91.1 84.9 51.3 94.5 59 44.9 29.5 82 58.4 68.9

Chen et al. (2018b) 83.8 76.5 90.9 89.1 46.0 94.6 57.0 28.4 19.6 81.4 50.1 65.2
+ Ours 84.1 76.3 90.9 88.8 47.5 94.4 58.1 32.4 20.0 80.8 54.0 66.1

Zhao et al. (2017) 87.8 79.5 91.4 91.4 57.7 96.5 66.7 58.6 23.5 87.8 66.9 73.4
+ Ours 88.0 79.3 91.3 91.7 58.8 96.5 66.9 61.9 23.0 87.8 69.4 73.9

Table 4.5: Quantitative results on CamVid dataset. With the proposed dilated
convolutions, our method achieves better performance than two baselines, and we
present new state-of-the-art performance on the CamVid dataset.

Dataset Model Baseline Ours

Camvid Deeplab-v2 65.2 66.1
PSPNet 73.4 73.9

Cityscapes Deeplab-v2 70.9 71.1
PSPNet 79.4 79.9

4.4 discussion

Our approach provides a solution for learning dilation factors in convolutions, which
are the key operations for CNNs. Instead of setting a dilation factor manually,
we learn this parameter jointly with filter weights by propagating errors. The
experimental results on a series of baseline models and datasets demonstrate that our
approach learns different dilation factors for the convolutions at different layers of a
network on various datasets. As a result, our models obtain consistent improvement
over their counterparts with standard convolutions.
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4.4.1 Application Scenarios

As an extension of the basic convolution operation in CNNs, our method is an
alternative choice in building CNNs. Particularly, our approach is flexible to use
and worth to apply in the architecture with dilated convolutions (Yu and Koltun,
2016), such as the applications of semantic segmentation, such as street scene
understanding, indoor scene understanding, and medical diagnosis systems, etc.

Second, our learnable dilated convolutions have channel-wise dilation factors,
which are able to capture local details as well as wider context of scenes. Therefore,
our convolution operation with channel-wise dilation factors is a kind of multiscale
module, extracting different levels of features. Consequently, in some other applica-
tions, such as depth prediction, it is also possible to leverage our dilated convolution.

Our approach also provide an optimization framework for updating the dilation
factors. Except directly applying our approach, i.e. learning a dilation factor for
each channel, it is possible to learn context adaptive dilation factors for different
input images. In this case, dilation factors may be generated by another network, or
integrate prior knowledge in computing reliable dilations.

4.4.2 Technical Limitations

As we can observe, the improvement of our models over baselines are not significant.
However, when applying suitable fixed dilation factors via AutoML (Chen et al.,
2018a; Liu et al., 2019), more improvements can be obtained. One of possible reason
for limited improvements is about optimization. From figure ??, we show loss func-
tion can be decreased by updating either dilation factors or filter weights. However,
there is no guarantee on the decrease of loss values for the joint optimization, which
may limit the optimization for a better local minimum solution.

Similarly, the idea of learning shape and scale for convolution kernels, have
also been studied by other works (Jeon and Kim, 2017; Zhang et al., 2017b). Such
approaches and ours have similar optimization strategy with bilinear interpolation.
However, those modules have not achieved great impact like dilated convolution for
semantic segmentation, or inception modules and residual blocks for general visual
recognition. The main reason is improvements of those modules are not significant,
despite of extra computation and memory cost. Consequently, better optimization is
necessary to learn more proper dilation factors.

4.5 conclusion

In this chapter, we have presented learnable dilated convolutions, which is fully
compatible with existing architectures and adds only little overhead. We have
applied our novel convolutional layer to learn channel-based dilation factors in the
semantic segmentation scenario. Thus, we were able to improve the performance of
Deeplab-LargeFOV, Deeplab-v2 and PSPNet for the semantic segmentation of street
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scenes consistently across two datasets. We showed that our method is able to obtain
visually more convincing results, and improved quantitative performance. Besides,
a series of ablation studies shows that learning the dilation parameter is helpful to
design better semantic segmentation models in practice.





Part II

O N T H E T R A I N I N G D ATA I N S E M A N T I C
S E G M E N TAT I O N A N D B E Y O N D

Except network architectures as discussed in Part I, data are also crucial
to train deep neural networks. Since dense annotations for semantic
segmentation are quite expensive, synthetic data and generative model-
ing have drawn much attention in recent years, which aims to exploit
cheap data or model data distributions for manipulating an image or
sampling more images. For generative modeling, quality and diversity
are two important measurements for generative models. First, a success-
ful generator is supposed to synthesize data close to the real distribution.
Besides, conditional generation is a natural one-to-many mapping task,
that ideally produces multiple different outputs, and all of them match
the conditional input properly. Further, except generating images, gener-
ating intermediate CNN features at decent quality and diversity are also
interesting, which have several applications as we demonstrated in this
thesis.

Consequently, in Chapter 5, we propose a stochastic regression model
and a new loss function to improve the diversity of synthetic images,
while maintaining comparable performance with respective to visual
quality. We formulate conditional image generation as a regression task.
To overcome the lack of diversity and sampling capability of a determin-
istic architecture, we introduce latent random variables into networks via
dropout. Besides, to further improve the diversity, we extend multiple
choice learning by sampling neighbors which have similar conditional in-
puts, and directly approximating the one-to-many mapping. In Chapter 6,
we present our dense feature generator based on generative adversarial
network, to produce intermediate CNN features for semantic segment-
ation. We design a specific network architecture for the generator and
discriminator of a GAN model for generating spatial compressed features.
We show that our synthetic features can be applied as data augmenta-
tion to train a semantic segmentation model for improved performance.
In Chapter 7, we present the first membership inference attack system
for black-box semantic segmentation models, pointing out information
leakage of training data frequently happens for semantic segmentation
models under various attack settings. To handle the information leakage,
we leverage our synthetic features to perform prediction obfuscations
on posteriors, which is able to reduce the confidence distribution gap
between training and testing data.





5
D I V E R S E C O N D I T I O N A L I M A G E G E N E R AT I O N B Y
S T O C H A S T I C R E G R E S S I O N W I T H L AT E N T C O D E S

Recent advances in Deep Learning and probabilistic modeling have led to
strong improvements in generative models for images. On the one hand,
Generative Adversarial Networks (GANs) have contributed a highly effective

adversarial learning procedure, but still suffer from stability issues. On the other
hand, Conditional Variational Auto-Encoders (CVAE) models provide a sound way
of conditional modeling but suffer from mode-mixing issues. Therefore, recent work
has turned back to simple and stable regression models that are effective at generation
but give up on the sampling mechanism and the latent code representation. We
propose a novel and efficient stochastic regression approach with latent drop-out
codes that combines the merits of both lines of research. In addition, a new training
objective increases coverage of the training distribution leading to improvements
over the state of the art in terms of accuracy as well as diversity.

5.1 introduction

Many computer vision and graphics problems can be viewed as a conditional
generation problem. For example, we can imagine the appearance of a human face
when we only see the shape or the keypoints of the face. Typically, this generation
process is not deterministic, as the conditioning information (e.g. keypoints) is
insufficient to single out a particular face. Despite the diverse scope of applications
for such models, these learning problems remain highly challenging, as an efficient
sampling process is required that results in accurate and diverse samples that closely
mimic the true conditional distribution.

In particular, Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) have
contributed in recent years to the state-of-the-art in generative models of such high
dimensional output spaces – as we are dealing with in the case of images. These
methods allow for sampling by a random generated latent code and the adversarial
training leads to highly accurate and realistic samples. The vanilla version of these
models lacks the capability for conditional sampling and these methods are known
to be notoriously difficult to train and often do not reproduce the full diversity of
the training data.

Conditional Variational Autoencoders (CVAE) (Sohn et al., 2015) have been introduced
to model a latent code in dependence of the input and by a probabilistic formulation
have shown an increased diversity in the generated samples. These models tend
to be more stable to train, but still suffer from mode-mixing issues – limiting the
success when conditioning data is weak. A series of Conditional GAN (CGAN) models
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Figure 5.1: The pipeline of the proposed method. We present a stochastic regression
with latent dropout codes for image generation, which are fixed during training. At
test time, we are able to generate more examples by providing newly sampled codes.
Besides, Diversity is further improved by sampling many neighbors considering the
condition input when the data distribution is dense enough. With those neighbors,
we directly learn the one-to-many mapping by assigning sampled neighbors to
different network branches.

(Mirza and Osindero, 2014; Zhu et al., 2017b; Isola et al., 2017) have been proposed
that combine ideas of GANs and CVAE (bicycleGAN (Zhu et al., 2017b), pix2pix
(Isola et al., 2017)) and thereby achieve some of the increased diversity of CVAE, but
yet suffer from some stability problems of GANs.

In order to address the stability issues, generation has been formulated as a re-
gression task (Chen and Koltun, 2017) with Multiple Choice Learning (MCL) (Guzman-
Rivera et al., 2012). In essence, this re-phrases the conditional generation problem,
as a regression task with a fixed number of output samples. This greatly improves
the stability of the learning, but no additional samples can be drawn and there is no
latent code that represents the samples.

We present a novel solution to the conditional image generation task that is stable
to train, has a latent code representation, can be sampled from and results in accurate
and diverse samples. We achieve this in a stochastic regression formulation where
dropout patterns are conditioned on latent codes. A new training objective increases
coverage of the training distribution – resulting in accurate and diverse samples at
test time. Our experimental results on two datasets show improvements in efficiency,
accuracy and diversity.
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5.2 stochastic regression with latent drop-out codes

Despite the recent progress at the intersection of Generative Adversarial Networks
and Conditional Variational Autoencoders, improving stability and increasing the
generated diversity are topics of ongoing research. Recent work has shown strong
results for conditional image generation in a regression framework that greatly
improves stability, but comes with the caveat of no latent code representation, no
sampling mechanism and limited diversity in the output (Chen and Koltun, 2017).
We seek a model that produces accurate and diverse samples, which is stable to train
and provides a sampling mechanism with a latent code representation.
Model: We propose an image generation system that is based on stochastic regression
with latent drop-out codes as shown in Figure 5.1. While we are using stable codes
to train regression formulation, we are not limiting ourselves to a fixed number of
samples due to a fixed number of branches. We rather generate an arbitrary number
of branches via dropout patterns derived from a random vector z. In turn, z is
characteristic for each sample and acts as a latent code representation.
Training: We sample a set of latent codes – each corresponding to a branch with dif-
ferent dropout pattern that generates one sample. We minimize our new “Neighbors
enhanced loss function” which increases the coverage of the training set by those
generated samples.
Test: Our model can use both the above training latent codes and newly generated
latent codes to produce an arbitrary number of new images. As each images is
associated with a latent code, this also allows for additional manipulations like
interpolation.

5.2.1 Stochastic Regression with Latent Drop-out Codes

Formally, given an input X, our stochastic regression model produces multiple
outputs {Yi} with different dropout patterns controlled by a set of latent codes {zi}
which are drawn from a random distribution. Figure 5.2 shows our stochastic model,
where f1(·) and f2(·) are composed of several convolution, nonlinear, pooling or
up-sampling operations. Particularly, d(·) is a function transferring latent codes into
binary dropout patterns for selecting features in our network.

Given a latent code zi, our model can be formulated as

Yi = f2( f1(X), d(zi)). (5.1)

Hence, f1 is shared among all branches and samples, while f2 depends on the
randomized dropout pattern. During training, we fix the latent codes zi and perform
regression on the training set. Yet, in addition to using the training latent codes, we
can also use a new code to generate more examples at test time.

Traditional dropout (Srivastava et al., 2014) randomly selects activations of a
feature map for all channels and locations. This, however, does not lead to separated
branches in a network. Therefore, we propose channel-wise dropout that, different to
traditional dropout, selects the same features for all the locations. Different channels



72 chapter 5. conditional image generation

𝑋

𝑌1

𝑧1

𝑑(𝑧1)

𝑧2

𝑑(𝑧2)

𝑧𝑛

𝑑(𝑧𝑛)

…

𝑌2

𝑌𝑛

…

𝑓1(⋅) 𝑓2(⋅)

𝑑(⋅)

Figure 5.2: Latent codes based stochastic multiple branch model.

usually encode different kinds of visual cues like color, parts or objects as revealed
in the research of understanding neural networks (Zhou et al., 2015; Bau et al., 2017).
Therefore, our model selects different visual cues for generating multiple outputs
with diverse visual properties.

Consider a feature map I ∈ RC×H×W having C channels with size of H ×W,
the feed-forward operation of channel-wise dropout for the c-th channel at location
(h, w) of the i-th latent code can be described as

zi
c ∼ U(0, 1),

d(zi
c) =

{
1, if zi

c > r
0, otherwise

O(c, h, w) =
I(c, h, w)× d(zi

c)

1− r
,

(5.2)

where zi
c is a scalar for the latent code of c-th channel, r ∈ (0, 1) is the dropout ratio,

and O ∈ RC×H×W is the output of our dropout.
Interestingly, we are able to perform interpolation between two generation images

in the test as shown in Figure 5.8, and the interpolated output can be described as

Yij(a) = f2( f1(X), d(a · zi + (1− a) · zj)). (5.3)

5.2.2 Neighbors Enhanced Loss Function

In order to improve diversity, we propose a new Neighbors enhanced loss function
that samples neighbors with respect to a condition input as shown in Figure 5.1.
We leverage the sampled neighbors to encourage diversity during training. We
update multiple branches for a network by assigning sampled neighbors to different
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branches. We first describe a simpler loss function based on the best neighbor
(similar to MCL (Guzman-Rivera et al., 2012)) and then our Neighbors enhanced loss
function for increased diversity.
Best neighbor loss. With our stochastic model formulated in Eq. 5.1, the scheme
generates n hypotheses { f2( f1(X), d(zi))|i = 1, 2, ..., n} from the same input X. A
simple version would only update the best branch which has the smallest loss.
Formally, such a loss function for a batch {(Xm, Ym)|m = 1, 2, ..., M} with size M is
defined as

L =
M

∑
m=1

min
i

l( fi(Xm), Ym), (5.4)

where l(·) is a L1-based perceptual loss in this paper, defined in Eq. 5.6, and
fi(Xm) = f2( f1(Xm), d(zi)) for short.
Neighbors enhanced loss. Given a training pair (X0, Y0), we first sample several data
pairs {(Xi, Yi)|i = 1, ..., N} satisfying the inputs {Xi} are close enough to X0, i.e.,
{dis(Xi, X0) < θ|i = 1, ..., N}. We directly approximate the conditional distribution
P(Y|X0) at X0 by {(X0, Yi)|i = 0, 1, .., N}.

With data pairs {(X0, Yi)|i = 0, 1, .., N} and n network output hypotheses
{ fi(X0)|i = 1, ..., n}. We design a neighbors assignment procedure to give a sampled
images to one of branches as a ground truth. We assign those sampled neighbors
iteratively. Ideally, we hope to assign every samples Yi to its best hypothesis fbest(X0)
where the loss l( fbest(X0), Yi) is smaller than any other hypothesis. However, there
might be more than one sample assigned to the same hypothesis with this condition.
To address this issue, we design several assigning rules. First, Y0 is supposed to
assign to its best branch, as (X0, Y0) is a well-aligned data pair while others are ap-
proximations. Second, because each branch is able to has only one ground truth, we
assign the sample with smallest loss if there are more than one sample for the same
hypothesis. The matching is proceeded iteratively until all the sampled neighbors
are assigned, and output a matching set S0 = {( fi(X0), Y j)}.

After applying neighbors assignment, the neural network is optimized with
standard back propagation (Rumelhart et al., 1988). We formulate the neighbors
enhanced loss function on a batch {(Xm, Ym)|m = 1, 2, ..., M} with the neighbors
{Y j

m} as

L =
M

∑
m=1

∑
( fi(Xm),Y

j
m)∈Sm

l( fi(Xm), Y j
m), (5.5)

where Sm is the matching set for m-th example in a batch. Particularly, we utilize L1-
base perceptual loss (Johnson et al., 2016; Dosovitskiy and Brox, 2016) for optimization
in this paper, that is

l(X, Y) = ∑
i

λi|Φi(X)−Φi(Y)|, (5.6)

where λi is the loss weights and Φi is the i-th representation form a network Φ.
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5.2.3 Architectures and Parameter-Sharing
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Figure 5.3: The illustration of comparison between different network architectures to
produce multiple outputs. Solid lines are deterministic modules and dash lines are
stochastic modules.

Our regression model applies channel-wise dropout to split the network into
a multiple branches architecture. Because we apply our channel-wise dropout to
select different feature maps for multiple branches, we do not have to learn separate
parameters for different branches, which will not increase any model size when
we increase the number of network branches. Secondly, we embed channel-wise
dropout earlier instead of end of a network, which we call “early split” strategy.
“Early split” is able to evolute information in a network earlier on a higher dimension,
which benefits the generation of diverse examples than the “late split” as shown in
Figure 5.3.

When removing our channel-wise dropout, we learn separate parameters for
different branches, and thus our full model degenerates to the “early split with
separate parameters” setting. In that case we can only generate a fixed number of
outputs and need more parameters to represent a model. Comparing to the “late
split” setting, used in previous work (Chen and Koltun, 2017), it still has the merit
that already intermediate layers contribute to generate different samples, which we
show experimentally to be important to generate more diverse images.

Furthermore, our neighbors enhanced loss function can be applied to all architec-
tures in Figure 5.3. Also, CRN (Chen and Koltun, 2017) is a “degernated” case of
our approach with deterministic late split network architecture and no neighbors
considered.

5.2.4 Discussion

Comparison to Multiple Choice Learning (MCL (Guzman-Rivera et al., 2012)). Our
approach generalizes MCL scheme with sampled neighbors and stochastic regression.
MCL is a kind of ensemble learning that produces multiple outputs of high quality.
In MCL, only one branch gets gradients to update the model. It is therefore not
efficient to learn a model due to limited parameter sharing, especially in the case
of a large number of network branches to produce highly diverse examples. It also
lacks the latent code representation and sampling capability.
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5.3 experiments

We compare our approach for conditional image generation to state of the art
methods (Isola et al., 2017; Zhu et al., 2017b; Bansal et al., 2018; Chen and Koltun,
2017) on established datasets for generating human faces from facial landmarks
and animal heads from normal maps. We systematically compare three different
architecture choices in Figure 5.3 under different loss functions (CRN (Chen and
Koltun, 2017), “Separate” model and latent codes based “Shared” model) along two
dimensions (accuracy and diversity). We implement the proposed network using the
Caffe framework (Jia et al., 2014).

5.3.1 Datasets and Implementation Details

Oxford-IIIT Pet (Parkhi et al., 2012): It contains 3,868 images of cats and dogs with
bounding boxes of animal heads. In our experiments, we use 3,000 images to train
a model and 686 images to test the model, which follows previous work (Bansal
et al., 2018). We first use bounding boxes to crop the animals’ heads and resize them
into 96 × 96 pixels. Finally, we utilize PixelNet (Bansal et al., 2017) to estimate the
normals.
LFW (Learned-Miller et al., 2016): We utilize the deep funneling aligned LFW
dataset, and apply the peopleDevTrain/peopleDevTest split containing 4,038 and
1,711 images to train and evaluate the performance. For each image, we first employ
the MTCNN (Zhang et al., 2016) face detection model to extract faces. Next, we
employ the TCDCN (Zhang et al., 2014) extracting 68 facial landmarks for each face,
and use the heat map of key points as the input of the network. For all the faces, we
resize the bounding box regions into 128×128 pixels, and thus we generate 128×128

color faces from the input with size 128× 128× 68.
Implementation details. We implement our channel-wise dropout and networks
with the Caffe (Jia et al., 2014) deep learning framework. We set dropout ratio as
r = 0.5 for all the channel-wise dropout in our experiments. For all models, we apply
Adam (Kingma and Ba, 2015) to optimize our models and use the “poly” learning
rate policy that current learning rate is lrinit × (1− iter

itermax
)power. And we set power

as 0.9 and initial learning rate lrinit as 1× 10−4. We set max iterations number as
110,000 and 90,000 for animal head generation and face generation tasks, respectively.
To have a fair comparison of separate parameters networks and shared parameters
networks, we split feature representation or introduce channel-wise dropout at the
same location. For CRN and our models, we generate 96× 96 images for head animal
generation task, and generate 128× 128 images for face generation.
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5.3.2 Animal Head Generation from Normal Map

In this experiment, we test three kinds of architectures: For CRN and “Separate"
model, we learn a set of models with 2, 4, 8, 20, 30, 40, 50, 72 branches. For our
“Shared" models, we learn 4, 8, 20, 72 branches to test.
Quantitative results and analysis. In terms of accuracy, we apply root mean square error
(RMSE), SSIM (Wang et al., 2004) and FSIM (Zhang et al., 2011) as the measurements
for appearance similarity. Besides, we also evaluate the consistency of predicted
normals from generated images and real images with 6 evaluation criteria following
(Bansal et al., 2018; Wang et al., 2015). We report the performance against strong
competing methods pix2pix (Isola et al., 2017), BicycleGAN (Zhu et al., 2017b),
PixelNN (Bansal et al., 2018) and CRN (Chen and Koltun, 2017) on the accuracy
of normal prediction with generated images. For all those methods (Chen and
Koltun, 2017; Isola et al., 2017; Bansal et al., 2018; Zhu et al., 2017b), we choose the
best example among all 72 generated heads and compare results in Table 5.1. We
also report the performance of our final “Shared" models with different branches.
We can observe that our model with 72 branches achieves best performance . And
our 4 branches model also achieves better results than pix2pix (Isola et al., 2017),
BicycleGAN (Zhu et al., 2017b) and PixelNN (Bansal et al., 2018), and only 6% worse
than CRN (Chen and Koltun, 2017).

Table 5.1: Comparison of predicted normals of best generated animal heads.

Method Mean Median RMSE 11.25◦ 22.5◦ 30◦

pix2pix (Isola et al., 2017) 13.2 11.4 15.7 49.2 87.1 95.3
BicycleGAN (Zhu et al., 2017b) 21.6 19.3 24.9 24.3 60.2 77.5

PixelNN (Bansal et al., 2018) 13.8 11.9 16.6 46.9 84.9 94.1
CRN (Chen and Koltun, 2017) 11.8 10.3 13.9 56.3 91.4 97.6

Ours-4 12.4 10.9 14.5 52.9 90.0 97.0
Ours-8 12.4 10.8 14.4 53.6 90.2 97.1

Ours-20 12.0 10.5 14.1 55.2 91.1 97.6
Ours-72 11.7 10.2 13.7 56.7 91.9 97.8
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Figure 5.4: Evaluation of best example on Oxford-IIIT Pet dataset. The first row
draws the evaluation plot for appearance similarity. The bottom two rows show the
evaluation plots for the consistency of predicted normals between generated images
and real images. “Regression" model produces one output image. For CRN and
“Separate" models, we learned eight models (2, 4, 8, 20, 30, 40, 50, 72 branches) to
test them. For “Shared” model, we learned four models(4, 8, 20, 72 branches) and
samples totally 100 outputs during test time. Best viewed in color.

Next, we provide comparison plots for different architectures including CRN, our
“Separate” model and our “Shared” model with channel-wise dropout as shown in
Figure 5.4. In this figure, we show the best performance for all 9 evaluation metrics
used in our experiments. For our “Shared" models, we use both the training latent
codes and newly sampled codes to generate 100 outputs. Differently colored curves
show the performance of sampling different number of examples. First, we observe
that the performance of the best example gradually increases for all the architectures
when the number of branches is increased. Second, we can see that the performance
of our “Shared” model is better than other two when the number of branches is large,
which means our models generate better results with a large number of branches
even without sampling more outputs. Finally, we observe that the red, pink, blue
and cyan lines always become better. This means our latent codes based regression
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Figure 5.5: Evaluation of average performance of all the generated images on Oxford-
IIIT Pet dataset. We utilize the same metrics to Figure 5.4.
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Figure 5.6: Comparison of best example and top-10 examples on Oxford-IIIT Pet
dataset. For RMSE, MEAN and MEDIAN, smaller is better. For other measurements,
larger is better.

models generate better examples with new codes, even though they have never been
used during training.

To further demonstrate the overall quality of samples drawn by our models, we
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also analyze three plots of average performance in Figure 5.5 on the appearance
similarity and the consistency of normal prediction. We observe that all of our
“Shared” models maintain their performance comparing to the case of using training
latent codes. Besides, we also report the performance of top-10 examples comparing
to the best one in Figure 5.6. This figure shows that the average performance of
top-10 examples is very similar to the best number, which is another evidence for
the effective sampling of our approach.
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Figure 5.7: Evaluation of diversity on Oxford-IIIT Pet dataset. It reports the max
distance and mean distance to the average of generated images.

Diversity analysis. To evaluate the diversity quantitatively, we compute the max
distance and mean distance of all the generated images to their center, and present the
comparison in the Figure 5.7. The results show that an early split improves diversity
over the late split, which is used in CRN (Chen and Koltun, 2017). Besides, this
figure also shows that our “Shared” model performs comparably to our “Separate”
model, even it has smaller model size and is able to generate an arbitrary number of
examples at test time. Beyond sampling, we also show in Figure 5.8 interpolation
results using Eq. 5.3. The smooth transition between the samples corresponding
to z1 and z2 gives evidence that the latent codes indeed serves as a meaningful
representation.
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Input 𝒛𝟏 𝒛𝟐Interpolation

Figure 5.8: Interpolation results from the proposed architecture using channel-wise
dropout. Images below zi correspond to the respective latent code.
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Channel-wise dropout vs. classic dropout. Traditional dropout (Srivastava et al., 2014)
can be also used in our architecture. However, it cannot select or reject a whole
feature channel like our channel-wise dropout. We provide a comparison between
our channel-wise dropout and traditional dropout in the proposed model. Figure 5.9
shows some visualization results, which clearly demonstrate that channel-wise
dropout successfully selects different features and then generates animals with
different color, while dropout generate more similar animal heads.

Figure 5.9: Channel-wise dropout vs. dropout. In each block, top row shows the
results from the network with channel-wise dropout, and bottom row shows the
results applying dropout.
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Figure 5.10: The example and comparison with competing methods (Isola et al.,
2017; Zhu et al., 2017b; Chen and Koltun, 2017) on the task of face generation from
landmarks. Best viewed in color.

5.3.3 Face Generation from Facial Landmarks

In this task, we generate human faces from 68 facial landmarks. For both models,
we generate 10 output faces from the networks. Except evaluating on the architec-
tures, we also test our neighbor assignment strategy for improving diversity. After
acquiring neighbors, we use kmeans on HSV color space to cluster the neighbors.
For each cluster, we randomly select an example as the sampled neighbor. We use
L1 distance between the coordinates of two landmarks.

Qualitative comparison. We show generated faces in Figure 5.10. For each of the six
blocks, the left two images show the facial landmarks and the corresponding image.
Next to them results of pix2pix (Isola et al., 2017), BicycleGAN (Zhu et al., 2017b),
CRN (Chen and Koltun, 2017) and our “Shared” model are shown row by row.
Top two blocks show “normal” case, middle blocks show landmarks of immediate
difficulty and bottom blocks show the hard examples. In the top two blocks, we
observe that our model is not only able to generate faces with different skin, but also
to generate faces from different identity or gender, or with different local details.
While the baseline CRN (Chen and Koltun, 2017) just generates faces with very
similar structure, even different colors of skin are also covered. Second, comparing
to pix2pix (Zhu et al., 2017b) and BicycleGAN (Zhu et al., 2017b), which try to apply
GAN to generate realistic faces, we also generate faces with better quality. Although
BicycleGAN can generate many visually realistic faces, it also generates some very
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Table 5.2: Accuracy comparison of face image generation on LFW dataset. We report
the average as well as the best performance (Mean / Best) on four measurements.

Method Nbs. RMSE SSIM FSIM Landmarks

pix2pix (Isola et al., 2017) 9.952/9.649 0.696/0.708 0.749/0.755 1.913/1.645

BicycleGAN (Zhu et al., 2017b) 9.948/6.856 0.621/0.715 0.725/0.758 1.704/2.197

CRN (Chen and Koltun, 2017) 9.107/5.414 0.705/0.767 0.760/0.779 1.697/1.452

Our CRN X 8.612/5.309 0.687/0.763 0.754/0.777 1.863/1.440

Ours (Separate) 8.871/5.528 0.704/0.761 0.755/0.779 1.718/1.308
Ours (Separate) X 9.034/5.768 0.678/0.757 0.748/0.774 1.915/1.442

Ours (Shared) 8.908/5.269 0.701/0.762 0.757/0.779 1.728/1.365

Ours (Shared) X 8.956/5.679 0.686/0.764 0.753/0.779 1.864/1.453

poor results due to its unstable training. Finally, observing the last row, we even
generate plausible faces in hard cases.
Accuracy analysis. We evaluate our method and compare to pix2pix (Isola et al., 2017)
and CRN (Chen and Koltun, 2017). For pix2pix (Isola et al., 2017) and BicycleGAN
(Zhu et al., 2017b), we run the code provided by authors with default settings except
increase the training epochs from 200 to 300. For CRN, we use the same number of
feature maps and branches to ours.

For accuracy, we apply root RMSE, SSIM (Wang et al., 2004) and FSIM (Zhang
et al., 2011) to evaluate the appearance similarity between generated faces and ground
truth faces. Besides, we also run the landmark detector (Zhang et al., 2014) on the
generated faces and compare the accuracy of detected landmarks and ground truth
landmarks. The accuracy of landmarks is measured by the sum of distance of
each predicted points to ground truth normalized by the width of the images. We
report the best performance as well as average performance among 10 outputs as
summarized in Table 5.2.

From Table 5.2, we can observe that our models and CRN achieves better per-
formance than pix2pix and BicycleGAN in all four metrics on best performance and
mean performance, benefiting from the cascaded refinement network architecture
and the effectiveness of perceptual loss. Comparing to CRN, the overall performance
of our “Shared" and “Separate" models are comparable in four metrics. Even the
quantitative performance decreases a little in SSIM and landmarks accuracy after
applying neighbors enhanced loss function, the decrease is just a little and we found
that our approach can generate better faces visually as shown in Figure 5.10.
Diversity analysis. To quantify the measurement of diversity for multiple output
from the same landmarks, we compute standard deviations of different levels of face
representation from Wen et al. (2016) and an identity embedding for face recognition
from Oh et al. (2017). Table 5.3 lists the scores for competing approaches. Clearly,
our “Separate" and “Shared” models achieves better diversities than CRN (Chen and
Koltun, 2017). Besides, we also observe that the standard deviations get consistent
and significant improvements for CRN, “Separate" and “Shared” models, when we
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Table 5.3: Standard deviation of the convolutional features from (Wen et al., 2016)
and the identity embedding from (Oh et al., 2017). For all the values, larger is better.

Method Nbs. pool1 pool2 pool3 pool4 fc5 identity

pix2pix (Isola et al., 2017) 0.134 0.359 0.364 0.193 0.370 0.660

BicycleGAN (Zhu et al., 2017b) 0.428 0.817 0.716 0.350 0. 696 2.055
CRN (Chen and Koltun, 2017) 0.198 0.337 0.350 0.186 0.389 1.098

Our CRN X 0.272 0.549 0.591 0.322 0.669 1.299

Ours (Separate) 0.225 0.491 0.551 0.302 0.610 1.235

Ours (Separate) X 0.276 0.596 0.640 0.353 0.733 1.427

Ours (Shared) 0.210 0.422 0.471 0.259 0.523 1.198

Ours (Shared) X 0.310 0.591 0.617 0.322 0.670 1.370
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Figure 5.11: Accuracy-Diversity plots on LFW dataset. The diversity score is the sum
of stand deviation of all the representations in Table 5.3.

apply our neighbor enhanced loss function. It clearly shows that the effectiveness of
assigning sampled neighbors. Particular, recent proposed BicycleGAN model has
the best score on pool1, pool2, pool3 and identity, but the accuracy of BicycleGAN is
not comparable to our generation results. More importantly, diversity and accuracy
are often a trade-off. To observe this relationship clearly, we plot a accuracy-diversity
scatter plot in Figure 5.11, whose top-right corner is best. It shows that our stochastic
regression model and neighbors enhanced loss function both contribute to generating
more diverse example while maintain a comparable accuracy.

5.4 discussion

Our method presents a stochastic model for generating multiple diverse examples
from a same conditional input, by formulating image generation as a regression
problem, which is quite stable in training. Second, we show our network allows to
sample numerous novel examples with high quality. Final, our experimental results
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also show that the proposed neighbor enhanced loss function is helpful to generate
examples with stronger diversity, such as generating various genders, skin colors,
facial expressions etc.

5.4.1 Application Scenarios

The main advantage of our model over baseline deterministic architecture is to
sample multiple novel examples during inference time, which is controlled by a
vector of random variables. Our method formulates conditional image generation
as a regression task, and the regression based generation pipelines are normally
combined with popular generative adversarial networks (Goodfellow et al., 2014) to
synthesize realistic images.

Besides, we also show that our neighbor enhanced loss function allows a network
to learn one-to-many mapping directly when enough neighbors are acquired, and
thus generate more diverse images. The learning framework with neighbors could be
applied in several application scenarios, such as human body generation from key-
points or layouts (Ma et al., 2017), 3D shape generation from class labels (Dosovitskiy
et al., 2015), in which similar conditional inputs can be searched.

5.4.2 Technical Limitations

Recently, disentangled representations are popular, since they provide explanation of
learned representations, and allow for more interesting applications, such as image
editing, or generating images with an reference image. However, our approach is
not able to fulfill such tasks, because our randomly sampled dropout patterns and
their corresponding features are not disentangled.

Besides, taking face generation from landmarks as an example, even though
our method is able to produce high quality faces, we cannot guarantee our model
produces stable faces of a same person with continuous landmark inputs. Therefore,
for more practical applications on videos, we need to adjust our model with the
consideration of temporary consistency.

5.5 conclusion

In this paper, we have presented a novel image generation approach, which learns to
produce multiple diverse examples from a single conditional input. We have tested
our method on the tasks of generating human faces from facial landmarks and animal
heads from normal maps. Based on a series of ablation studies and comparisons
with state-of-the-art image generation frameworks, we demonstrate the effectiveness
of enforcing diversity by sampling neighboring examples, and efficiency of our
network architectures by introduce channel-wise dropout to randomly select feature
maps to generate accurate and diverse images of various styles and structures.





6S Y N T H E T I C D E N S E F E AT U R E S F O R I M P R O V I N G
S E M A N T I C S E G M E N TAT I O N

Recently, learning-based image synthesis has enabled to generate high res-
olution images, either applying popular adversarial training or a powerful
perceptual loss. However, it remains challenging to successfully leverage

synthetic images for training of semantic segmentation. Therefore, we argue to
generate instead intermediate feature representations and propose the first synthesis
approach that is catered to such dense intermediate representations. This allows us
to generate new features from label masks and include them successfully into the
training procedure. Experimental results and analysis on two challenging datasets
Cityscapes and ADE20K show that our generated feature improves performance on
segmentation tasks.

6.1 introduction

Semantic image segmentation is a fundamental problem in computer vision, and
has many applications in scene understanding, perception, robotics and in the
medical area. To achieve robust performance, models usually are trained with data
augmentation like flipping and re-scaling to make full use of expensively annotated
data.

Recent work leverages synthetic images for data augmentation for computer
vision tasks benefiting from capable graphic engines and development of generative
modeling (Goodfellow et al., 2014), e.g. for gaze estimation (Shrivastava et al., 2017)
and hand pose estimation (Mueller et al., 2018). However, using synthesized images
for semantic segmentation remains challenging, because of the complexity of scenes,
and exponential combinations of different elements. Previous work on semantic
segmentation with synthetic data (Hoffman et al., 2016; Sankaranarayanan et al., 2018;
Tsai et al., 2018; Saleh et al., 2018; Wu et al., 2018) focuses on domain adaptation
problems that aim to reduce the distribution gap between synthetic images and real
images, instead of improving a segmentation model trained with fully annotated
real data. Besides, even though high resolution realistic generated images (Chen
and Koltun, 2017; Qi et al., 2018; Wang et al., 2018b) are acquired, they do not show
better segmentation results of training with those generated images, comparing to
training with real images. When inspecting these generated images visually (Wang
et al., 2018b; Qi et al., 2018), there are still some visual artifacts, which affect the
low-level convolutional layers significantly. Learning with those regions, low-level
representations are probably degenerated, and thus high-level representations are
also hard to effectively build on top of them. Therefore, training with such images
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Figure 6.1: Our pipeline for semantic image segmentation. We learn a generator to
synthesize convolution features for data augmentation in semantic segmentation.
A semantic segmentation model is learned with synthetic features as well as real
images. Real images are used to update the entire network, and synthetic features
are used to update the decoder of the network.

might lead to decreased segmentation performance.
Because of the difficulty of image synthesis, we question if we really need to

synthesize images for boosting the training of semantic segmentation models. In-
stead, we present a feature synthesis-based data augmentation approach for semantic
segmentation, as shown in Figure 6.1. We aim to learn a semantic segmentation
model with a mixture of real images and synthetic data from a generator, allowing
to sample paired data from semantic layout masks, which assign categories for each
pixel. Modern semantic image segmentation models built on fully convolutional
architectures, as a result, we can extract features at different locations. Our goal is to
find a suitable location, whose output feature is easily synthesized and able to used
as training data to improve semantic segmentation.

Different to image synthesis, the output of synthesized features have lower spatial
dimension but a larger number of channels. Consequently, it is hard to apply existing
image synthesis architectures to the feature generation task, and thus a new effective
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architecture is needed. The capacity and quality of data is the key to success for data
augmentation. Hence, a good feature synthesis architecture enables dense feature
generation with the following requirements. It allows us sample multiple diverse
features from one semantic mask input, and thus provides us numerous training
examples. Besides, those synthetic features should follow a similar distribution as
extracted features from real images. In other words, the synthetic features are able
to be segmented by a trained model, with comparable performance to real features.
The final challenge is that raw images contain many detailed information which are
compressed in the feature domain. Our architecture should be powerful enough
to represent those important details. To achieve this goal, we design a generator
under the framework of multi-modal translation (Zhu et al., 2017b) with a network
architecture catered to the dense feature synthesis task.

The main contributions of this work are: (1) We propose to synthesize convo-
lution features for data augmentation for semantic image segmentation, leading
to improved results; (2) We present an effective feature generative model, whose
effectiveness is shown according to a series of ablation studies; (3) Several techniques
are proposed to leverage the synthetic features, including online hard negative
mining, generation from additional masks, and label smoothing regularization.

6.2 data augmentation with synthetic features

Generation and classification are reverse problems, which translate between images
and labels each other. With a paired training set T = {(Xi, Yi)}n

i=1, we can learn
a segmentation model Yi = S(Xi) as well as an image generator Xi = Gimg(Yi).
Naturally, it is able to train a segmentation model with the augmented dataset
T ∪ {Gimg(Yi), Yi}n

i=1. However, it is hard to guarantee improved performance due
to quality of generated images.

Instead, we generate convolutional features for providing more data to segment-
ation models, and our pipeline is presented in Figure 6.1. Semantic segmentation
model S is learned from T , and consist of encoder En and decoder De, as a result,
we can extract features for an image by En(X) and segment the image by De(En(X)).
Hence, our goal is: (1) to learn a generator Gfeat which is able to produce realistic
features, formally p(En(X)|Y) ∼ p(G(Y)|Y); (2) to learn the parameters for the
decoder De(·) with synthetic training pairs {Gfeat(Yi), Yi}n

i=1 as well as real pairs
{En(Xi), Yi}n

i=1.
We train a whole model with mixture of synthetic features and real images. The

encoder, which captures low-level detailed features, is updated with real images only.
The decoder is shared by synthetic and real features, and both branches contribute
to the updating of parameters in decoder. Formally, the loss function is

L = E(− log De(En(X))) + E(− log De(Gfeat(Y))), (6.1)

where the output of De is per class probabilities for each pixel normalized with
softmax, and the feature generator Gfeat is already successfully trained with T and
En(·).
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Figure 6.2: The illustration of network architectures in our dense feature generative
adversarial networks (DFGAN).

6.2.1 DFGAN: Dense Feature Generator

We present our model for effective feature synthesis, which is crucial for our goal, as
discussed in section 6.1. Generating multiple diverse features is challenging, because
they encode information of large areas as well as details, which cannot be ignored.
Also, the synthetic features should follow a similar distribution as extracted real
features. We formulate our generator leverage the recently proposed BicycleGAN
(Zhu et al., 2017b) objective, which is shown to be successful in one-to-many image
translation tasks. In the objective, the generation is driven by a conditional input
and a random latent vector, allowing us to sample multiple different examples.
Reconstructions on latent vectors and input features guarantee the quality of sampled
features. Finally, an adversarial loss helps to generate features with useful details.

Architecture.. It turns out that previous synthesis approaches are not directly
applicable to feature synthesis, as they emit an output with the same dimension of the
input. Dense features are compressed from images, with smaller spatial dimension,
but much larger channel number, encoding location information and many useful
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details (Ghiasi and Fowlkes, 2016). Hence, representing such information correctly
plays an important role to successful feature synthesis. As shown in Figure 6.2,
our generator takes a high resolution semantic layout mask input to produce low
resolution feature maps. Our discriminator takes a layout/feature pair as input, to
judge if the feature is compatible with the layout or not.

Preserving resolution by atrous pooling.. Atrous spatial pyramid pooling (ASPP)
is an effective module in semantic segmentation used to aggregate multi-scale context
information (Chen et al., 2018b). Here, we take advantages of ASPP in multi-scale
representation capability, and effectively encode a high resolution semantic layout
input. In our ASPP module, there are three convolution layers with dilation 1,2,
and 4, to capture neighboring information and wider context. Stride operation is
followed after ASPP, leading to downsampled resolution. After applying several
ASPP modules (depends on the resolution of synthesized features), the encoded
semantic layout reaches to the same spatial dimension as the features. We feed
encoded semantic layout into a U-Net (Ronneberger et al., 2015) and output final
dense features.

In our discriminator for adversarial training, we also apply ASPP module to
encode high resolution semantic layout mask. We concatenate the encoded layout
and its corresponding real/fake feature together to classify the feature/mask pair as
real or fake.

6.2.2 Regularization for using synthetic features

Label smoothing regularization (LSR) has been shown to reduce the influence of
noisy labels and improve generalization (Szegedy et al., 2016). Because not all
sampled synthetic features are perfect, we apply LSR to train a model with synthetic
features, as shown in Figure 6.1.

In Eq. (6.1), the per class probabilities for X are expressively described as

pi(k|X) =
exp(rk

i )

∑K
k=1 exp(rk

i )
for each label k ∈ {1, · · ·, K}, where rk

i is the unnormalized log

probabilities for k-th class, indexing at i-th location. Similarly, the per class probabil-

ities for synthetic feature Gfeat(Y) are pi(k|Gfeat(Y)) =
exp(sk

i )

∑K
k=1 exp(sk

i )
. The negative log

likelihood in Eq. (6.1) can be rewritten as

L = E(−∑
i

log pi(k|X)qreal(k))

+ E(−∑
i

log pi(k|Gfeat(Y))qsyn(k))
(6.2)

with weighting functions qreal(k) and qsyn(k) for the branches using real images and
synthetic features, respectively. For cross entropy loss, it only takes the probability
for designed label; for the version with LSR, it takes all the probabilities to compute
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a loss. They can be formulated in an unified formulation, i.e.,

qε(k) =

{
1− K−1

K ε, k = y
ε
K , k 6= y,

(6.3)

where ε is a small value in the range of (0,1) for label smoothing regularization. It
will become cross entropy when ε = 0. As a result, we set qreal = q0 and qsyn = qε in
Eq. (6.2).

6.2.3 Online hard negative mining

Except generating features by selecting layouts randomly, we can search hard ex-
amples during training, which have a large loss value. We do online hard negative
mining and feature generation alternatively. We randomly sample some image
patches and compute their loss value, the top ranking patches are used to generate
the features for the next several training iterations.

6.2.4 Additional semantic masks

Since we generate paired data from semantic layout masks, it is possible to acquire
more data than augmenting a training set only, by providing novel mask. For
example, in traffic scenarios, the environment is fixed, but everyday road users are
different. It is interesting to know if segmentation model can be further improved by
seeing more combination of road users and still objects. We present more semantic
masks from different sources in Table 6.4 of section 6.3.2.

6.3 experiments

6.3.1 Experimental settings

We evaluate our data augmentation scheme using PSPNet (Zhao et al., 2017) on the
Cityscapes (Cordts et al., 2016) and ADE20K (Zhou et al., 2017) datasets. Cityscapes
captures traffic scenes in various cities under different weather and illumination
conditions containing 2975 training image pairs with detailed annotations, and 19998

extra images with coarse annotations. Except still frames, it also provides a short
video for each frame. ADE20K has 20210 training images at different image resolu-
tions including a variety of indoor and outdoor scenes. We evaluate our approach
with widely used measurements for semantic segmentation for all the datasets in-
cluding pixel accuracy (PixelAcc), class accuracy (ClassAcc), mean intersection over
union (mIoU) and frequent weighted intersection over union (fwIoU).

Implementation details. We implement our generator with the modification of
(Zhu et al., 2017b) using the PyTorch framework. We implement our segmentation
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Table 6.1: Comparison of utilizing different synthetic data on the Cityscapes validation
set.

Models Mask PixelAcc ClassAcc mIoU fwIoU

Baseline 96.34 86.34 79.73 93.15

Images (Zhu et al., 2017b) train 95.84 82.54 76.55 92.17

Images (Wang et al., 2018b) train 96.21 85.61 79.52 93.07

Images (Qi et al., 2018) val 96.33 85.99 79.60 93.11

Ours train 96.40 87.29 80.30 93.27

Ours train+val 96.40 87.47 80.33 93.29

model with synthetic features under the official PSPNet implementation (Zhao et al.,
2017), and apply released ResNet-101 and ResNet-50 based PSPNet as our baselines
for Cityscapes and ADE20K. We extract 3000 and 40000 patches on for the conv4_12

and conv4_3 layers to train the generator for Cityscapes and ADE20K, respectively.
We set 60 and 20 epochs for those datasets. With a learned generator, we finetune
the segmentation model from our baseline. All models are learned using SGD with
momentum, and the batch size is 16. Initial learning rates are set to 10−6 and 10−7
for Cityscapes and ADE20K, and we use the “poly" learning rate policy where current
learning rate is the initial one multiplied by (1− iter

max_iter )
power, and we set power to

0.9. Momentum and weight decay are set to 0.9 and .0005 respectively. Besides, the
parameter ε in Eq. (6.3) for label smoothing regularization is set to 0.0001 and 0.1 for
Cityscapes and ADE20K.

6.3.2 Results on Cityscapes

Training with synthetic data. Table 6.1 compares models using different sources
of synthetic data. During training of listed models, each batch contains 70% real
images and 30% synthetic data.

First, we train a segmentation model (Zhao et al., 2017), with using synthetic
images from previous state-of-the-art generation approaches (Zhu et al., 2017b; Wang
et al., 2018b; Qi et al., 2018). For Zhu et al. (2017b), we can see the performance
is significantly decreased comparing to baseline model (Zhao et al., 2017). For
Wang et al. (2018b), we utilize the training set masks to generate images, which
reduces performance across all four metrics comparing the baseline model as well.
In addition, we test another state-of-the-art image generator (Qi et al., 2018). To know
if it is possible to improve semantic segmentation, we even utilize validation set
masks. Despite of providing additional layouts from validation, the performance still
decreases at validation set. Both experiments demonstrate that generated images
often do not lead to improved performance.

In contrast, applying our synthetic features successfully improves results by
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Figure 6.3: Evaluation of ClassAcc and mIoU at varying training iterations w.r.t.
different percentages of our synthetic features on Cityscapes.

Table 6.2: Comparison of utilizing different model architectures.

Evaluation Ours PixelAcc ClassAcc mIoU fwIoU

PSPNet-score 93.82 66.85 63.40 88.63

PSPNet-score X 96.44 80.05 74.33 93.44

Improvement +0 +1.44 -0.52 +0.04

Improvement X +0.06 +1.17 +0.55 +0.13

applying different semantic masks. Particularly, our feature synthesis has the same
learning objective to image synthesis (Zhu et al., 2017b), however, the performance is
able to be improved clearly with training set only as well as additional validation set.
The results demonstrate the effectiveness of utilizing our synthetic features for data
augmentation in semantic segmentation, while synthetic images are hard to use.

In Figure 6.3, we provide a study on using different percentages of synthetic
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Table 6.3: Statistics on different stages of features. The PSPNet-score for the real is
86.15.
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Channels 3 128 256 512 1024 1024 1024 1024

Resolution 1 1/2 1/4 1/8 1/8 1/8 1/8 1/8

Entropy 4.8290 3.0987 3.1584 4.0767 3.3799 3.3659 3.2535 3.4065

mIoU of hist. 0.5596 0.5257 0.3171 0.3431 0.4295 0.4087 0.3651 0.2802

PSPNet-score 2.22 9.76 26.97 56.77 70.66 74.33 61.54 83.78

∆ClassAcc -3.80 +0.02 +0.65 +0.81 +0.99 +1.17 +1.75 +0.08

∆mIoU -3.18 -1.09 -0.37 -0.1 +0.11 +0.55 +0.13 +0.05

features in a batch. First, it clearly shows that incorporating our synthetic features
with different percentages brings improvements. Besides, we observe that incorpor-
ating more synthetic features will gain more in ClassAcc, which further shows the
effectiveness of our approach. On the other hand, better fitting on synthetic data
might lead to less improvement on other metrics, as a result, we mix 70% real images
and 30% synthetic features in each batch for the rest of the experiments.

Importance of generator architectures. To explore the reason of improved results,
we analyze the features from different network architectures: (1) baseline architec-
tures in Zhu et al. (2017b), whose output size is same to input; (2) our architectures
described in section 6.2.1.

To begin with, we provide a comparison of PSPNet-scores for those two archi-
tectures. We sample 3000 patches from Cityscapes training set to compute PixelAcc,
ClassAcc, mIoU and fwIoU, as PSPNer-scores. Second, we train a segmentation
model with synthetic features from different architectures. A good generator is sup-
pose to have more close number to real features, and achieves larger improvements.
Table 6.2 lists those numbers, showing features from our architecture lead to higher
PSPNet-scores in four metrics. For improvements, even baseline has larger Clas-
sAcc, the improvement for PixelAcc, fwIoU is less, and mIoU is quickly decreased.
While, using features from our architectures achieves consistent improvements. As
a result, we remarks that the effectiveness of our proposed architecture is a key to
synthesizing successful features.

To understand more about synthetic features from difference architectures, we
visualize them as well as the extracted features from real images in Figure 6.4.
Even though both architectures output activations for different channels at similar
locations as real features, our architecture with ASPP is able to produce better details.
For example, activations in 49-th channel are synthesized for the pole class, which is
very small, while the baseline cannot do. In addition, we feed the synthetic features
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Best viewed in color.
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Figure 6.5: Distribution of selected channels for real conv4_12 of PSPNet on City-
scapes.

to PSPNet and compare the prediction difference. Observing all the difference
maps, we further conclude that our model with high resolution input is stronger in
generating features with accurate boundaries and details.

Synthesizing different stages of CNN features. In this paragraph, we perform
synthesizing different stages of CNN features. The earliest stage is the image itself,
which has shown to be hard to use for data augmentation in Table 6.1. To understand
the synthesis of good features for semantic segmentation, we extract features (before
ReLU layers) at different stages and provide statistics for them from PSPNet, as
listed in Table 6.3. Due to the architecture of PSPNet, the latest stage of features we
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extract is conv4_23, which is the input of the pyramid spatial pooling module.
The statistics are collected from 3000 randomly cropped image patches. First, we

compute the entropy per class and channel, and report the average number in the
table. To eliminate the distribution inconsistency for different stages, we normalize
all patches to a same norm ball (L2 norm 100) for computing the entropy. A good
feature which is easier to generate is suppose to have smaller entropy. As we can
see, the statistic is consistent to our requirement, that high-level features usually has
smaller entropy.

Second, we compute the similarity of activation distributions across classes and
channels. We use intersection of union between two histograms to measure the
similarity. As shown in the 4-th rows in Table 6.3, similarities for higher level
features are less , revealing stronger discrimination and ease to generate. Particularly,
color pixels have the largest similarity, which further confirms our motivation and
is consistent to difficulty of synthesizing qualified images to augment semantic
segmentation, as shown in Table 6.1.

Third, we directly feed the synthetic features to PSPNet to test if they can be
recognized by PSPNet. Good synthetic features should be recognized well. We use
mIou of PSPNet as a measurement, as reported in the 5-th row of the table. As
shown, scores are gradually increased from low-level features to high-level features.

Fourth, we applied different stages of synthetic features as training set, and report
the improvements on ClassAcc and mIou on Cityscapes validation set. We observe
that improvements on two metrics are obtained by using high level features conv4_6

to conv4_23. On the contrary, it is hard to achieve clear improvements with low-level
synthetic features conv1_3 to conv3_4. Applying synthetic images leads to the worst
performance. We also observe that the largest improvement comes from conv4_12

instead of conv4_23. Even conv4_23 has the highest PSPNet-score, it can boost less
layers of a segmentation model, comparing to conv4_12. Finally, we choose to apply
synthetic conv4_12 for Cityscapes in the rest of this section.

Last, we plot the histograms for pole, vegetation, sky and road at 689- and
721-th channels in Figure 6.5. The distribution differences for various classes and
channels are large, which means they are discriminative. Besides, the features are
very informative. The histogram indicates 90% pixels of vegetation have an activation
at 721-th channel. 689-th channel is correspondent to road as well as sky. For our
synthetic features, they produce activations at road and sky regions in 689-th channel
at Figure 6.4.

Effectiveness of online hard negative mining. We compare the models with ran-
dom sampled masks and mined hard negative during training in Figure 6.6. From
this plot, we point out (1) simply adding synthetic features is already helpful to
improve the performance; (2) Generating features for hard negatives can help us
leverage the generator more effectively and obtains higher boosted performance.

Additional semantic layout masks. Since our approach generates a paired data
from a semantic mask, we are not only able to augment a training set, but also to
leverage new masks to generate more novel examples. To know if more masks are
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Figure 6.6: ClassAcc and mIoU on Cityscapes w.r.t. applying online hard negative
mining (OHNM). Red curve is the model with OHNM.

beneficial to boost the performance, we seek for additional masks as listed in the
following

• Validation GT masks. It is very easy to acquire and quality of masks is very
high. It is used to test if providing more masks with the same distribution is
helpful.

• Rendering system. It provides us large amounts of data with very low cost. In
our experiments, we apply recent released Synscapes dataset (Wrenninge and
Unger, 2018). Finally, it provides us 25000 extra semantic masks.

• Pseudo GT masks. We regard prediction from unlabeled images as pseudo
ground truth. Although the prediction is not perfect, we generate paired data
from a mask, as a result, it still generates features aligned with the input mask.
To alleviate the unsmooth prediction, we only save the prediction with posterior
larger than 0.7, and impaint the holes with nearest neighbor interpolation. To
provide novel scenes, we leverage the unlabeled video frames and coarse
annotation frames in Cityscapes, leading to 29823 extra masks.

Table 6.4 presents the performance with single scale predicton and multi-scale
prediction. To have a fair comparison, we set the ratio between training masks and
additional masks for all the additional mask choices. That is 3 : 1, in each sampled
batch for synthesizing. Besides, the ratio between real images and synthetic data
follows previous experiments 7 : 3, and online hard negative mining is applied for
various versions of our models.

We observe that after adding validation mask, the performance is further im-
proved than pure augmentation (second row). Besides, applying pseudo GT also
achieves better performance than training set only. Interestingly, when we apply the
semantic masks from Synscapes (Wrenninge and Unger, 2018), the improvement is
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Table 6.4: Comparison of PSPNet and our approach on Citycapes validation set. The
top block is single scale prediction and the bottom is multi-scale prediction.

Models Additional Mask PixelAcc ClassAcc mIoU fwIoU

Baseline – 96.34 86.34 79.73 93.15

Ours No 96.40 87.29 80.30 93.27

Ours Val 96.40 87.47 80.33 93.29

Ours Synscapes 96.39 87.55 80.03 93.27

Ours Pseudo GT 96.40 87.49 80.31 93.28

Baseline – 96.59 87.23 80.89 93.58

Ours No 96.64 88.16 81.48 93.69

Ours Val 96.64 88.46 81.52 93.71

Ours Synscapes 96.64 88.43 81.34 93.70

Ours Pseudo GT 96.64 88.34 81.51 93.70

less, the reason is the distribution gap of layouts between Cityscapes and Synscapes.
As a result, to leverage synthetic data from game engine better, not only similar
appearance, but also similar semantic layouts are needed, such as shapes, ratios
between different objects, etc.



100 chapter 6. adversarial feature generation

Im
a

g
e

G
T

b
a

s
e
lin

e
O

u
rs

O
u

rs
(+

v
a

l)
Road

Sidewalk

Fence

Pole

Building

Vegeta.

Terrian

Car

Person

Sky

Truck

Traf.Sign

Traf.Light

Wall

Bus

Train

Figure 6.7: Qualitative results on the Cityscapes validation set. We show the
augmentation results as well as using additional masks from validation set. Best
viewed in color.

Qualitative comparison. We present some visualization results comparing to our
baseline PSPNet (Zhao et al., 2017) in Figure 6.7. First, our model predicts more
smooth results. In the second examples, our model successfully recognize the fence
and wall along the street, and accurately segment the boundary between them.
Besides, for some large regions, i.e., the truck, the train and the wall in the first, third
and fourth examples, our approach achieves clear improvement and segment the
whole objects, while baseline predicts unsmooth results. Particularly, we notice that
our model with training masks only is also able to achieve an clear improvement
over baseline and very similar results to our model with additional validation masks,
which means our data augmentation is very effective.

6.3.3 Results on ADE20K

To understand if our approach works well, we also test our approach on ADE20K
dataset. We present a quantitative comparison in Table 6.5 with single scale pre-
diction as well as multi-scale prediction. We emphasize that our model achieves
2.08/2.43 and 0.34/0.57 improvements on ClassAcc and mIou for single scale predic-
tion and multiple scale prediction, respectively. Besides, we show several qualitative
comparisons in Figure 6.8, that our predictions are more smooth and accurate. We are
able to distinguish ambiguous classes, such as house/building, mountain/rock. As
a result, our model recognize the entire region for the objects, instead of generating
multiple cracked regions.
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Figure 6.8: Qualitative results on the ADE20K validation set. It is clearly observed
our data augmentation approach is more robust and produce smoother segmentation
results.

Table 6.5: Comparison results on ADE20K validation set. The top block shows the
results of single scale prediction and the bottom is multi-scale prediction.

Models PixelAcc ClassAcc mIoU fwIoU

Baseline 80.04 51.75 41.68 67.46

Ours 80.00 53.83 42.02 68.19

Baseline 80.76 52.27 42.78 68.75

Ours 80.81 54.70 43.35 69.17



102 chapter 6. adversarial feature generation

6.4 discussion

Our method provides a conditional generative adversarial network for learning CNN
intermediate features from semantic layout masks. Similar to generating images, we
also aim to model the data distribution correctly for CNN features. The experimental
results show that our synthetic features can be used as data augmentation strategy
during training, to improve the semantic segmentation performance. Besides, our
results also show our generator is able to take a novel layout mask, and produces a
corresponding feature map. With additional mask, our method further improve the
performance of a segmentation model.

Besides, our dense feature generator paves the way for further applications
presented in Chapter 7. Unlike generating images, that people are interested in
synthesizing visually realistic images, synthetic features provide potential usage for
stronger machine learning models. Chapter 7 leverages our synthetic features in
inference, which aims for data privacy purposes. To summarize, we present a very
early study on CNN feature generation, while most people try to synthesize visually
appealing images. Except creating visually realistic images, we show generative
modelling can be further explored for different goals, with respective to better
leverage of data.

6.5 conclusion

In this work, we propose synthesizing dense features for improving semantic seg-
mentation. Our pipeline is simple but surprisingly effective to reach stronger seg-
mentation results. A powerful architecture for dense feature synthesis is presented,
enabling us to synthesize realistic features with rich details. Also, several techniques
are presented to leverage synthetic features more effectively.



7
M E M B E R S H I P I N F E R E N C E AT TA C K S O N B L A C K - B O X
S E M A N T I C S E G M E N TAT I O N M O D E L S

Today’s success of state of the art methods for semantic segmentation is to
a large extend driven by large datasets. Collection and annotation of such
datasets comes at significant efforts and associated cost, therefore data is

considered an important assets that need to be protected. In addition, visual data
might contain private or sensitive data, that makes it equally unsuited for public
release. Unfortunately, recent work on membership inference in the broader area of
adversarial machine learning and inference attacks on machine learning models has
shown that even black box classifiers leak information on the dataset that they were
trained on. We provide the first investigation if complex, state of the art models for
semantic segmentation are equally effected by such attack vectors. We provide the
first method that is able to determine if a particular image was in the training set
or not. In order to mitigate the associated risks, we also provide the first defenses
against such new attack vectors, by leveraging prior work on classification, but also
proposing a completely novel paradigm based on features synthesis that offer better
protection. Finally, we extensively evaluate our attacks and defenses in a range of
highly relevant real-world datasets Cityscapes, BDD100K and Mapillary Vistas.

7.1 introduction

From the early breakthroughs in image classification fueled by the availability of
large datasets (e.g. ImageNet), to the steady increase across different tasks that seems
to correlated well with the increasingly large dataset, e.g. in semantic segmentation
(Cordts et al., 2016; Neuhold et al., 2017; Yu et al., 2018), VQA (Antol et al., 2015), data
is playing a key role in today’s state of the art computer vision methods. Even on
a slightly longer time horizon, today’s methodology seems to scale well with the
availability of data even for very large datasets (Sun et al., 2017).

Hence, researcher and industry alike have recognized the importance of large and
high quality datasets in order to push the state of the art in computer vision. However,
data collection and in particular annotation and curation of large datasets comes
at a substantial cost. While there are sizable efforts from the research community
(Cordts et al., 2016; Yu et al., 2018; Geiger et al., 2012), also industry has picked up
the task of collection (Neuhold et al., 2017) as well as providing annotation services
such as Amazon MTurk platform, which in turn can be monetized and constitutes
important assets to companies.

As a consequence, such assets need protection e.g. as part of intellectual property
and it should be controlled which parts are made public (e.g. for research purposes)

103
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Figure 7.1: Membership inference attacks for black-box semantic segmentation
models. The membership of training data is able to be attacked according to
observing returned predictions.

and which part remain private. Based on these datasets, high performing models for
semantic segmentation are trained which then are made public (e.g. as black box
models) via an API or as part of a product. One might assume that the information
of the training set remains contained within the trained parameters of the model
and therefore remains private.

Beyond the aspect of intellectual property, data might also include private inform-
ation of people that were captured as part of the data collection process. Either the
legal basis for the capturing process can assume that information on the images is
not leaked or consent of the depicted individuals not always includes dissemination
of visual information beyond the purpose of training a machine learning model.

Unfortunately, recent work on inference attacks (Shokri et al., 2017; Salem et al.,
2019) has shown that even a black box machine learning model leaks information of
the training data. Current membership inference attacks try to infer if a particular
sample was used as part of the training or not. Such approaches have shown high
success rates on a range of classification tasks and have equally proven to be hard
to fully prevent. While this constitutes a potential threat to the machine learning
model, it can also potentially be used as a forensics technique to detect a potentially
unauthorized used of data.

Currently, we are missing even a basic understanding to what extend these
attack vectors of membership inference extend to state of the art models of semantic
segmentation. Hence, we conduct the first investigation of membership inference
attacks for semantic segmentation as well as propose different defense mechanisms.
Specifically, we attack a semantic segmentation model for street scene understanding
with two adversaries, that cover attack settings with constraints on the model
and data selection, as well as unknown target model case. On the other hand,
we study defenses of membership privacy to deal with information leakage in
semantic segmentation. In addition, we propose a novel and effective defense
mechanism based on generative modeling on the intermediate feature representation
of a semantic segmentation neural network. A feature generator is learned from
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segmentation trained with a dataset to be protected, which is utilized to perform
prediction obfuscation for returning segmentation results to users. We show our
proposed synthetic feature based defense is significantly effective to reduce the
statistical distribution gap between membership data and others during test, and
thus make the classification of membership difficult.

We highlight three aspects of our work in the following:

• We present the first work on membership inference attacks against semantic
segmentation models.

• We present defenses against membership inference for semantic segmentation,
and propose a novel feature synthesizing based approach, which significantly
mitigate leakage of information on training data.

• A set of ablation studies and extended analysis is provided in order to shed
light on the core challenges of membership inference attacks in the context of
models for semantic segmentation.

7.2 membership inference attacks against segmentation mod-
els

Membership inference attacks against machine learning models attempt to infer if a
data pair (x, y) belongs to the training set of a given black-box segmentation model
or not, as shown in Figure 7.2. Intuitively, membership inference attacks exploit
that machine learning models tend to fit better on the training data and tend to
produces more confident responses than on unseen examples. Based on this idea,
we are proposing a membership inference attack on semantic segmentation models.

We now describe our attack and different roles of membership inference attacks
on black-box semantic segmentation models in more detail. In order to represent
different knowledge the attacker might have, we setup two adversaries to attack a
segmentation model for which we give details later. In each adversary, there is a
shadow model and an attack model, which is explained in the following.

Attack pipeline. Modern semantic segmentation models are normally trained
with image crops from a larger one, to handle varying image resolutions and huge
memory cost. As a result, our attacks reverse this for patch-level attack and image-
level attack. Even though we are interested in knowing the membership of an entire
image, the attacking system is built on patch-level prediction, which indicates the
probability of use of an image patch for training. Image-level attacks are achieved
by predicting each patch via sliding windows or random locations. And we use an
average operation to fuse them all.

Victim V. This model is trained on a labeled dataset DV = {(x, y)i}, and provides
posteriors of a prediction from a query image x as ŷ = V(x). It is deployed with
sophisticated designs for providing high quality services, but a black-box model
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Figure 7.2: Problem statement. We consider two types of adversaries: model and
data dependent attacks (A1), and independent attacks (A2), allowing for attacks
under various conditions in real world.

for users. In other words, reported posteriors V(x) are the only information that
attackers can acquire by interacting with the model.

Shadow model S. It is a semantic segmentation model with the same label space
as a specific victim. It is trained by the attacker and thus provides the membership of
images and their prediction posteriors of a semantic segmentation model for training
an attacker. It produces prediction posteriors from an input image x as ŷ = S(x).

Attack model A. It is a binary classifier, whose input is a pair of prediction
posteriors of an image and its corresponding ground truth labels. It is trained with
paired data (S(x), y) and L, where L refers to “member" or “nonmember" class of
the pair, and objective is L = A(S(x), y). Once it is trained, membership inference
attacks can be performed on victim V of (x, y) with A(V(x), y).

Adversary A1: Model and data dependent attacks. . This attack assumes that
the victims model can be queried at training time of the attack and that the model
architecture of the victim is known. This allows the attacker to train a shadow model
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with the same architecture to the victim, i.e. S = V.In this case, the first step is to
construct a training set DQM = {(xm, ym)i} for training S, in order to mimic the
behavior of the victim’s model V. Based on the assumption that models is slightly
overconfident on the training data, we select the images with stronger confidences
among all query images as the training set DQM, while others are DQN, which
provides nonmember data of S for training A.

Adversary A2: Model and data independent attacks.. For this adversary, we only
know the victim model’s functionality and a defined label space. There is no query
process for constructing training set for S, instead, S is able to be trained with a
dataset on complete different domain as shown in Figure 7.2, which is a cheaper and
more practical attack. The goal of the shadow model is to capture the membership
status for each example, and provide training data for attack model A. Except data
distribution, there is no additional knowledge provided, i.e. S 6= V. Particularly, we
highlight the severity of information leakage in this simplified attack. Model and
data distribution are completely different to victims, even there is no query process,
which might be detected on the server.

7.3 denfenses

Segmentation models suffer from attacks due to overfitting on a training set w.r.t.
appearances and layouts. The success of attacks comes from the fact that models
predict training data with higher confidences. To deal with this phenomenon, we
develop a defense mechanism for protecting membership information of a semantic
segmentation modelWe will investigate solutions that are inspired from defenses
against membership inference on classifiers as well as present out novel solution
that learns a feature generator to synthesize visual features as another source of
predictions to build a safer black-box model via prediction obfuscations, as shown
in Figure 7.3.

It illustrates the components and workflow of our membership privacy defense
for black box models in semantic segmentation. When we have a dataset {(x, y)},
a neural network segmentation model can be trained with an encoder-decoder
architecture, and predict a layout mask as ŷ = D(E(x)). Instead of directly reporting
the posterior of an input image, we obfuscate the original prediction by a synthetic
feature from a generator G, which takes a conditional layout mask y as the input.
In this way, statistical distribution on the training data bias to synthetic data, and
the appearance distribution of novel examples are also from the feature generator,
as shown in Figure 7.4. Even though there is also distribution gap of layouts in
semantic segmentation, the information leakage is still effectively alleviated.

Hence, we construct a model to serve users segmentation in the following way:
(1) collect training data and train a semantic segmentation model; (2) extract visual
features and their corresponding layouts, and train a feature generator; (3) perform
prediction obfuscations for query images. Notably, our approach is simple since we
do not change objective functions of training individual modules. Taking advantages
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Figure 7.3: Components of a black-box model with defense. It is comprised of the
encoder (E) and the decoder (D) of a segmentation model, a feature generator (G)
and an obfuscation operation (O). Final protected predictions are obtained with
combining two steps.

of generative adversarial training (Goodfellow et al., 2014), we are able to learn a
generator for synthesizing high quality and realistic visual features. We regard the
feature generation as an image translation problem (Isola et al., 2017; Zhu et al.,
2017b), and apply BicycleGAN (Zhu et al., 2017b) to learn the generator, which is
able to model multimodal distributions. The goal of feature generator G(y) aims
to match the distribution of E(x), formally E(x) ∼ G(y). As a result, synthetic
features are also able to produce predictions according to forward of the decoder,
i.e., D(G(y)).

Specifically, our prediction obfuscation strategy has two steps: (1) direct pre-
diction from an input image D(E(x)); (2) obfuscation with a synthetic feature. We
utilize the prediction layout from first step as condition to generate a feature, which
is used to obfuscate the first prediction, as shown in Figure 7.3. Therefore, the
synthetic feature provides another prediction G(D(E(x))), and our obfuscation is
achieved by combining D(E(x)) and G(D(E(x))). Particularly, to provide more
information from synthetic features as much as possible, we set a mask, assigning
the pixels with different predicted labels from two sources. We take the posteriors
outside the mask from synthetic features completely, and the linear combinations
inside the mask. Eventually, the posterior ŷ from an input image x is formulated as

ŷ =M� ((1− d)×D(E(x)) + d×D(G(D(E(x)))))
+ (1−M)� (D(G(D(E(x))))),

(7.1)

where M is a mask indicating the locations where posteriors from synthetic and real
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Figure 7.4: Prediction Obfuscation with feature generation. Appearances for both
training and testing data bias to the generator, which is learned from training data.

data refer to different labels, and d is a defense factor in the range of [0, 1] to control
the importance of security considerations.

7.4 experiments

We conduct the experiments on street scene semantic segmentation task between
various datasets, including Cityscapes (Cordts et al., 2016), BDD100K (Yu et al., 2018)
and Mapillary Vistas (Neuhold et al., 2017), which are captured in different countries
under diverse weather conditions and image qualities, providing different domains
of street scenes. We attack victim models with two adversaries as described in sec-
tion 7.2: (1) model and data dependent attacks A1; (2) model and data independent
attacks A2, where we utilize different datasets and semantic segmentation models
for the adversary comparing to a victim model. In all attacks, we train a ResNet-50

(He et al., 2016) from scratch as our attack model A of section 7.2, which allows us
to visualize the regions contributing to the recognition of membership for a test
example by class activation mapping (Zhou et al., 2016).

7.4.1 Attacks

7.4.1.1 Model and data dependent attacks

In this setting, we leverage ResNet-101 based PSPNet to mimic the black-box model
of a service provider, and use Cityscapes to conduct the experiments. The PSPNet is
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pretrained using the data with coarse annotation in Cityscapes before train a victim or
shadow model. Hence, we utilize all 3475 images with fine annotation in Cityscapes
(2975 from training set and 500 from validation set) and split them into two parts
without intersection for the victim and our shadow model in adversary. For the
victim model, we use 1448 images from original training set to learn a segmentation
model, and use 952 images as nonmembership to evaluate attacks. Therefore, we
use the left images for training a shadow model and an attack model. 555 images
are selected to train the shadow model via interactions with the victim, and select
the examples with highest confidence scores. Finally, left 520 images are regarded as
nonmembership to train an attack model.

To have a better evaluation and understanding on membership inference attacks,
we train attack models with the shadow models at 15000 and 30000 training iterations,
because we assume it is hard to know the training iterations of the victim. We
compute the precision and recall of attacks with varying threshold, and precision-
recall curves are drawn in Figure 7.5. The patch-level attacks are conducted at
the patch size of 713 and image-level attacks are done with 10 patches at random
locations, that 6 patches can cover an whole image of Cityscapes. In addition, we
also plot the ROC curves in Figure 7.6. From those figures, we clearly observe
the information leakage, that we achieve 0.75 and 0.83 precision when 0.8 recall is
provided, at 15000 and 30000 iterations, respectively.

7.4.1.2 Model and data independent attacks

In this setting, we assume the only knowledge of a victim is street scene segmentation
with 19 classes. We train semantic segmentation models with different datasets and
models, as summarized in Table 7.1, that we attack PSPNet on Cityscapes with
Deeplab-v3+ and DPC. We highlight that Cityscapes, BDD100K and Mapillary Vistas
have image resolution of 1024× 2048, 720× 1280 and varying sizes whose heights
are from hundreds to thousands. Besides, Mapillary Vistas does not have the same
label space to Cityscapes, which further increases the challenge of attacks. To handle
this situation, we pick up 25 classes from 65 classes, and set others as ignored regions.
Some conceptual similar classes are merged and a label space with 19 categories is
created, which is compatible with Cityscapes. Our merged label space of Mapillary
Vistas can be found in the Supplementary Materials.

In our experiments, we use official released ResNet-101 based PSPNet as our
victim model, and we do not touch it when we train an adversary. In each adversary,
we train the shadow model by ourselves. Specifically, we train Deeplab-v3+ with
initial learning rate 0.01, batch size 7 and cropped patch size 705, and DPC with
initial learning rate 0.02, batch size 9 and cropped patch size 721. Both models apply
momentum 0.9, weight decay 0.00004, and “poly" learning rate adjust strategy with
factor 0.9, which are widely used in semantic segmentation.

Surprisingly, we observe information leakage in both attacks from BDD100K and
Mapillary Vistas in Figure 7.5, 7.6. Particularly, the adversary using BDD100K achieves
only a bit lower performance in patch-level prediction than our first adversary with
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Table 7.1: Experimental descriptions of model and data independent attacks. We
regard training set or a part of them as membership data (M) and left as nonmem-
bership data (¬M). For segmentation models, we employ either ResNet-101 (He et al.,
2016) or Xception-71 (Szegedy et al., 2016) backbones.

Dataset Model Backbone M / ¬M

Cityscapes PSPNet (Zhao et al., 2017) ResNet-101 2975 / 500

BDD100K Deeplab-v3+ (Chen et al., 2018c) Xception-71 4k / (3k+1k)
Mapillary Vistas DPC (Chen et al., 2018a) Xception-71 10k / (8k+2k)

querying images whose shadow model are trained with 30000 iterations.

7.4.2 Defenses

To mitigate the risk of leaking information, we try a set of defense techniques for
semantic segmentation models in the following:

Argmax. It only returns predicted labels of an image, instead of posteriors. It tries
to provide less information to protect a victim model.

Dropout. It is used to avoid overfitting, which helps a network reaching higher
performance. Besides, it also regularizes networks to emit less confident predictions
for training data, which makes membership inference attacks harder. In our study,
the victim model (PSPNet) is trained with one dropout layer of ratio 0.1. Besides,
we enable dropout during test with ratio 0.1 and 0.9 to make predictions blurry and
confuse attackers under different levels of strength.

Gaussian. We add Gaussian noises with different variances (0.5, 1.0) to the pos-
teriors of predicted labels for each location, and then normalize them with sum of
1. Particular, to ensure posteriors have positive values, we set 0.0001 as truncation
value to bound the value before normalization.

SynFeat. It is presented in section 7.3, and we learn a feature generator at conv4_12

of PSPNet for protecting victims, and apply different defense factors 0.75 and 0.95
in Eq. (7.1) for a comprehensive analysis.
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Figure 7.5: Precision-recall curves of attacks and defenses. Patch- and image-level
attacks are drawn. Dependent and independent attacks are presented from up to
down.
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Figure 7.6: ROC curves of attacks and defenses. Patch- and image-level attacks are
drawn. Dependent and independent attacks are presented from up to down.
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Figure 7.7: Comparisons of confidence scores (posteriors of predicted classes) from
segmentation models.

7.4.2.1 Results

In figure 7.5 and 7.6, we present precision-recall curves and ROC curves for various
defenses and compare them to the model without any defense. We first observe
Argmax performs similar to the situation without any defense in independent attacks,
but shows some promising defense results on the dependent setting, but not strong
enough for handling all kinds of attacks. Dropout has similar behaviors to Argmax,
that also performs well in dependent attacks but not clear defense results for the
independent setting. In contrast to above two defenses, Gaussian protects victims in
independent setting, but does not work well in dependent one. We conclude that
adding Gaussian noises cannot eliminate or reduce the distribution gap between
training and testing data, as a result, it is hard to achieve high quality security
guarantee with querying images.

Finally, we can see that SynFeat achieves better performance than all the simple
strategies for both settings. It is clearly shown that attacks have been alleviated
and get close to chance level accuracy. To understand this results, we visualize the
distributions of posteriors for predictions from real images and ones combined with
our synthetic features at different defense factors in Figure 7.7. We also quantify
the similarity between membership and nonmembership data, which is expected
to higher scores for successful defenses. Obviously, with increasing defense factors,
higher similarities are achieved. Besides, we also visualize the distribution of
logits before softmax of the attack model trained with BDD100K for predicting as
membership in Figure 7.8. It is apparently shown the posteriors from our models
are more challenging to distinguish that the attack’s output logits are around 0 for
both membership and nonmembership data.

We also provide interpretations on the attacks with class activation mapping
(CAM) maps (Zhou et al., 2016), as shown in Figure 7.9. It highlights the regions for
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Figure 7.8: Comparisons of logits from attackers.

recognizing query images are in the training set of Cityscapes, where they actually
are. We can see SynFeat’s highlight regions are drastically changed comparing to
the model without defense, while Dropout has similar ones. Besides, Gaussian also
changes CAM maps, and these observations are compatible with precison-recall and
ROC curves.
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Figure 7.9: Class activation mapping (Zhou et al., 2016) regions from attackers
trained on BDD100K in patch-level prediction, contributing to recognition as a part
of training data. All those examples are from training set of Cityscapes.

7.4.2.2 Preserving utility

Except protecting membership from stealing by attackers, a decent model ideally
provides high quality recognition performance as well. As a result, we further
explore and compare the segmentation results with different defense strategies and
strength. In Table 7.2, we report the quantitative results of four widely used metrics
for semantic segmentation (i.e., pixel accuracy (PixAcc), class accuracy (ClsAcc),
mean intersection of union (mIoU) and frequent weighted intersection of union
(fwIoU)). Because Argmax will not change the predictions, we do not show this
defense in the table. To begin with, we observe that Gaussian lose performance
drastically when increase the variance , while it is easier to leak the training data
than our approach. In addition, Dropout is able to segment images at good quality.
Finally, the segmentation performance of our method only decreases a little, even
applying a large defense factor.

In Figure 7.10, we show a segmentation example. Similar to Table 7.2, Gaussian
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Table 7.2: Quantitative comparison of segmentation performance with different
defenses on Cityscapes.

Defense Split PixAcc ClsAcc mIoU fwIoU

No 97.8 93.5 88.6 95.9
Dropout(0.1) 97.8 93.2 88.7 95.8
Dropout(0.9) 97.1 91.6 85.7 94.9
Gaussian(0.5) Train 92.2 85.9 73.1 86.4
Gaussian(1.0) 81.3 76.6 52.8 70.4
SynFeat (0.75) 97.1 91.7 87.0 94.9
SynFeat (0.95) 96.6 89.8 82.8 93.8

No 96.3 86.3 79.7 93.2
Dropout(0.1) 96.3 86.3 79.7 93.1
Dropout(0.9) 95.8 84.1 76.6 92.2
Gaussian(0.5) Val 90.8 79.4 65.7 84.1
Gaussian(1.0) 80.2 71.3 49.2 69.6
SynFeat (0.75) 95.7 80.5 74.0 92.0
SynFeat (0.95) 95.0 75.0 67.3 91.2

is significantly affected and returns poor results. With variance 1.0, it produces an
extreme noisy mask with many dots and inconsistent regions. In spite of the similar
quantitative performance of Dropout to ours, some processing can be recognized
with this defense, as it produces more noises in boundaries, because dropout op-
erations with large ratio loss too much information, and then hard to emit good
results on rich detailed regions. In contrast, there are no obvious processing signs
in our predictions for different defense factors. Even though SynFeat(0.75) and
SynFeat(0.95) have comparable and worse quantitative performance comparing to
Dropout(0.95), we achieve more smooth and natural predictions at stronger security
guarantee, as shown in Figure 7.5, 7.6, 7.10.
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Figure 7.10: Qualitative comparison of segmentation with defenses. PixelAcc and
mIoU of segmentation results are presented, respectively.

Furthermore, to have a better understanding and observation on the properties of
individual defense methods, we test them with more defense strengths and plot joint
attack-segmentation plots in Figure 7.11 and 7.12, which give intuitive observations
and comparisons. In each figure, X-axis indicates the attack performance, that
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we use area under ROC curves (AUC) to quantify it, and higher X-values refer
to more successful membership inference attacks are achieved. Y-axis indicates
the segmentation performance that we use mIoU from segmentation performance
to draw those figures, and then higher Y-values are expected to maintain better
segmentation. Except all the defenses, we also plot the optimal models and black-box
models without any defense. Optimal models preserve segmentation performances
completely and have the chance level accuracy in ROC curves, therefore, they locate
at the left-top corners of all the plots.
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Figure 7.11: Joint attack-segmentation plots for dependent attacks.
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Figure 7.12: Joint attack-segmentation plots for independent attacks.

7.5 discussion

Our study provides the first membership inference attack system against black-
box semantic segmentation models. We show the risk of information leakage on
training data for semantic segmentation models with dense structural outputs, The
experimental results show that training data leakage happens under data/model de-
pendent and independent settings. The security risk potentially threatens the safety
usage of segmentation models, which have broad applications, such as autonomous
driving vehicles and indoor navigation robotics, as discussed in this thesis. Besides,
we also present a set of comparisons on different defenses for protecting membership
privacy, including our proposed method based on synthetic feature and posterior
obfuscation, and we demonstrate our proposed method perform well in protecting
membership privacy while preserving segmentation performance.
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7.5.1 Application Scenarios

The applications of our study in this chapter are mainly two aspects, with respective
to attacks and defenses.

First, the attack technique is useful as a third-party examiner, with suitable
management. Even though we show the information leakage is a risk for service
provider, it allows consumers to obtain evidences for forensics purposes. In some
applications, such as medical diagnosis systems, information of patients are very
sensitive, because of privacy issues. Without patients’ agreements, a model should
not be trained with their data, therefore, attacking techniques allows patients to
judge if their scans are used by service providers or not. Besides consumers’ privacy,
ownership is another important issue, which is highly relevant to the model builders’
profits. By analysing the distribution of posteriors, the ownership of a released
model can be determined.

Second, the defense techniques are very important for protecting the profit of
service providers and their users who already agree the usage of their data. From our
study, the information leakage happens easily with querying examples according
to released API or models. This attack may be detected by servers if frequent
queries happened from a same group of users. However, our independent attack
shows that a segmentation model is probably attacked even without any query. A
malicious adversary only needs to know the label space of a victim, the attacks can
be implemented, which is extremely hard to detect and avoid. Therefore, our study
on defenses is important, which has been shown effective mitigation of information
leakage, such as applying dropout during test time, or our synthetic features based
obfuscation. For a real-world application, it is also possible to combine multiple
effective methods for the final defense, to avoid attacks.

7.5.2 Technical Limitations

In our study, we need images with dense annotations to determine if current
paired sample was used during training or not. Therefore, the requirement of
large-scale labeled images limits the practise of attacks, even though we show the
second adversaries without data distribution and model assumptions. Moreover, an
interesting question is naturally asked: can we only provide image samples to train
an adversary, or use limited annotation such as point level annotations (Bansal et al.,
2017; Bearman et al., 2016). Point annotations are much easier to acquire compared
to dense annotations, and need less precise boundaries.

Furthermore, in our independent attacks, we might apply different network
architectures and training data to achieve attacks, according to the general fact that
confidence scores for training data are higher than testing data. However, their overall
performance or confidences have a distribution difference for different segmentation
models. A stronger segmentation model normally has higher confidences than a
weaker one for all the data points. Therefore, the overall distribution difference is a
potential challenge we need to deal with, for more effective attacks for model/data
independent adversary.



122 chapter 7. segmentations leak

7.6 conclusion

We have provided the first study of membership inference attacks for semantic
segmentation models by proposing the first attacks and defenses in this scenario.
We show significant risks of information leakage on the training set of a black-box
model, under various practical attacking conditions. In order to deal with this
privacy and security risk, we investigate various defenses, and propose a novel
defense mechanism based on synthetic features. The proposed defense is able
to reduce the distribution gap between training data and unseen samples, which
effectively reduce the power of the attack. Finally, extensive experiments on real
world images and state of the art models for street scene segmentation provide
a realistic assessment of membership inference attacks and defenses for semantic
segmentation models.
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Deep learning has reshaped the research of computer vision with GPU parallel
computing and large-scale databases. Semantic image segmentation, which
stands at the core place of computer vision and machine perception, has

been studied and boosted with fully convolutional networks (FCN) (Long et al., 2015)
recently. In this thesis, we focus on this fundamental task with FCN, and present
improved methods and analysis on several issues of semantic image segmentation.
Model and data play important roles in achieving successful machine learning
models, therefore, we explore the research of improving semantic segmentation
systems in terms of neural architectures/modules and more effective leverage of data
with privacy considerations. In details, we conclude this thesis with the following two
points: (1) designing data-driven neural modules which are compatible with existing
convolution architectures and (2) exploring issues and analyzing the effectiveness
of training data for more accurate segmentation and stronger guarantee on data
privacy. To begin with, we show flexibility and complexity are still important in data-
driven models, whose parameters are learned from data. Even though convolutional
networks perform surprisingly well in various computer vision tasks, our models are
able to further boost the existing basic architectures by incorporating data priors or
learning more adaptive convolution operations, which bring more flexibility into a
network. Besides, we point out the connections between model design and leverage
of training data. In a summary, suitable architectures are indispensable for better
utilization of training data with different levels of supervisions in terms of better
segmentation performances and data privacy guarantees, which shows a promising
direction of future works.

To begin with, we develop data-driven modules to introduce data priors into
neural networks and learn more flexible knowledge with deep neural networks, for
improving the performance of semantic segmentation. Even though convolutional
neural networks are already data-driven models, our approaches allows a network
to perform adaptive context aggregation instead of fixed receptive field for all
pixels, which is crucial for semantic segmentation. In Chapter 3, we introduce
superpixel correspondences into a network, which allows us to leverage large-scale
unlabeled images from video sequences. Besides, we also show promising results
of applying superpixels in neural networks to aggregate contextual information,
which can be further explored with stronger superpixel computation. In Chapter 4,
we investigate dilated convolution operations, which are widely used in semantic
segmentation. We avoid to set dilation factors for individual layers, and instead learn
those factors from data coupling with filter weights. We test our learnable dilated
convolution with different segmentation baselines on several public datasets, and

123
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achieve consistent improvements. In conclusion, our approaches allow us to improve
semantic segmentation at different data accesses, i.e., we conduct semantic image
segmentation from video sequences and still images. Besides, we study semantic
segmentation tasks under different data formats and scene types, including indoor
scenes with RGB-D sequences, outdoor scenes and mixture of them with RGB images.
Accordingly, a set of analysis and comparisons to previous state-of-the-art models
demonstrate the effectiveness of our proposed methods. Regarding to the future
research of semantic segmentation, data-driven approaches and adaptive context
modelling are still open questions and critical issues. In natural images, there are
large objects as well as small ones in a same scene, therefore, a success model is
not supposed to predict their labels with same contextual information. Besides,
learning hyperparameters become increasingly popular in recent years, such as
AutoML (Zoph and Le, 2016). However, AutoML needs huge computation resources,
therefore, learning hyperparameters with differential backpropagation is interesting
and a promising solution, which is possible able to combine with AutoML and easier
to adapt a learned network to new data distribution.

In addition, we explore the research on leverage training data effectively and
safely. Data annotations for semantic segmentation, which need polygon regions,
are quite expensive. Hence, we design a data augmentation method in chapter 6,
building on the generative modeling of CNN features. We present a solution based
on generative adversarial networks, which takes a semantic mask as an input, and
produces the corresponding features. The synthetic features have been shown
effective, that we mix them with real images for training a segmentation model, and
achieve consistent improvement over several datasets and settings. Besides, we also
study the diversity of synthetic data in chapter 5 from a stochastic regression-based
conditional generative model. We improve the diversity by sampling neighbors with
similar conditional inputs by enforcing a network to learn one-to-many mapping.
Furthermore, a real-world application is not only interested in pursuing the limitation
of segmentation performance, but also providing safe and clean services in terms
of data security and privacy of users. Since membership privacy of classification
models can be inferred as pointed out by Shokri et al. (2017), it is also important
to study the security issue for semantic segmentation, and has been studied in
Chapter 7. As a result, we present the first membership inference attack system
in semantic segmentation, as well as several protection regimes, including our
synthetic features based prediction obfuscation method. As a summary, this thesis
provide better configurations of semantic segmentation models for stronger and
safer usage in real-world applications. To summarize the second part of this thesis,
we bridge the connection between two reverse task segmentation and generation,
and show generation is able to improve segmentation as an auxiliary task in terms
of performance and security issues. This would be a promising direction to design
stronger segmentation model in the future.

In this chapter we further depict the contributions of this thesis (Section 8.1) and
review open problems as well as potential future prospects (Section 8.2).
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8.1 discussion of contributions

The overall goal of this thesis is to improve fully convolutional networks for semantic
segmentation in real-world applications. We investigate two points with respective to
training segmentation models: neural architectures for improving semantic segmentation
models and better usage of training data in real-world applications. In the following, we
will discuss the main observations and insights of this thesis with respect to the
individual chapters.

8.1.1 Neural Architectures for Improving Semantic Segmentation

The first part of this thesis aims to design basic neural modules for improving the
performance of semantic segmentation.

Current deep neural networks are learned with back-propagation (Rumelhart
et al., 1988) based on chain rules. Therefore, all the layers (or modules) in a network
receive gradients from next layers to update their parameters, and propagate the
gradients to previous layers. Based on the learning scheme, we present two novel
layers which are fully differentiable.

In Chapter 3, we propose a spatio-temporal data-driven pooling (STD2P) layer
for semantic image segmentation from a video sequence. Our STD2P introduces
superpixel priors into a semantic segmentation network to refine original predictions.
Besides, we are able to establish region correspondences between individual frames
of a sequence, and feed those correspondences into a segmentation network, and
perform multi-view semantic segmentation that information are projected onto a
target frame and aggregate those different regions of a same object into final outputs.
Dense annotations of videos are expensive, however, our model is able to leverage
partially annotated videos, and utilize the unlabeled frames of an input video. Even
though our model is trained with multi-view information, it still performs better
on single frame prediction comparing to baseline fully convolutional networks in
indoor scene semantic segmentation. To conclude, our main observations are as
follows. (1) Introducing superpixel priors into segmentation networks helps semantic
segmentation, in particular, it leads to more precise predictions on rich boundary
areas as well as more smooth predictions on very large regions. (2) Leveraging
multi-view information with our region-based correspondences helps semantic
segmentation with respective to recognition accuracy. (3) Our semi-supervised
learning framework effectively utilizes unlabeled frames of partially annotated
videos for training a stronger semantic segmentation model.

In Chapter 4, we propose a learnable dilated convolution layer which learns
dilation factors as well as convolution filter weights jointly. Only difference of
our method to traditional convolutions (Yu and Koltun, 2016) is that we regard
dilation factors as a learnable parameter, which is able to be a positive fractional
number instead of a positive integer only. We apply bilinear interpolation to handle
fractional dilation factors in 2D convolution, and gradients are splitted into the
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four neighbors of a sampled location. Besides, we further explored the channel-
wise dilated convolutions, which capture wide context as well as local details
simultaneously. To conclude, our main observations are as follows. (1) For different
datasets, our segmentation models with learnable dilated convolutions finally obtain
different dilation factors, and achieve better performance than baselines. (2) For
different locations of convolution layers, our approach is able to learn different
dilation factors for them. (3) Extensive studies demonstrate the effectiveness of
proposed learnable dilated convolutions.

8.1.2 Better Usage of Training Data in Real-world Applications

In the last three chapters, we summarize the investigation and analysis of effective
and safe modeling and utilization of training data. We present generative modeling
of training data as well as applications in improving semantic segmentation with
data augmentation and protecting membership privacy of a black-box semantic
segmentation model.

In Chapter 5, we study the conditional image generation problem, that our goal
is to improve diversity of generated examples while maintaining the quality of
generation results. Specifically, we generate human faces and animal heads from
facial landmarks and normal maps, respectively. We regard conditional image
generation directly as a regression problem, and construct our model based on
popular cascaded refinement networks (CRN) (Chen and Koltun, 2017), which
is stable in training. While CRN could output multiple different examples with
multiple choice learning framework (Guzman-Rivera et al., 2012), it lacks of sampling
capability of novel examples during inference due to its deterministic architecture. To
overcome this drawback, we introduce latent random variables into a network with
channel-wise dropout layers, namely latent dropout codes in our approach, leading
to a stochastic network for the regression task. Furthermore, we explore neighbor
enhanced loss function, which samples examples with close enough conditional
inputs, and enforce a network to learn one-to-many mapping approximately and
directly. To conclude, our main observations are as follows. (1) Our generator is
able to synthesize examples with comparable performance to baseline models when
sample the same number examples. In contrast, we are able to generate better
examples by sampling new latent dropout codes. (2) Our generator is able to output
synthetic examples with varying local characters and global structures. We evaluate
the diversity of synthetic examples quantitatively and qualitatively.

In Chapter 6, we explore CNN feature generation and apply our synthetic features
as data augmentation strategy to improve the training of semantic segmentation
models. Conditional image generator (also refers to image translation) transforms an
input condition image into an output image with the same spatial resolution (Isola
et al., 2017; Zhu et al., 2017b). Different to generating images, features have com-
pressed spatial resolution and much higher channel numbers. Therefore, we modify
previous generative adversarial networks (GANs) for feature generation. To repres-
ent high resolution condition inputs, we add several atrous spatial pyramid pooling
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(ASPP) layers at the entrance of the generator and the conditional discriminator of
GANs. Finally, we show that applying our synthetic features with several strategies
(i.e., hard negative mining, label smoothing regularization) achieves clear improve-
ments. Particularly, several categories have been significantly boosted, such as Bus,
Rider, Wall, which are the key classes in street scene parsing scenarios. To conclude,
our main observations are as follows. (1) Generating synthetic features is more
feasible to generating synthetic images in applying those as data augmentation
strategy for semantic segmentation. (2) With incorporating synthetic features at
different ratio between real images and synthetic features, the performance is always
able to improve, which demonstrates the effectiveness of synthetic features. (3) Lever-
aging additional semantic layout masks is helpful to improve semantic segmentation
further.

In Chapter 7, we investigate membership inference attacks against black-box
semantic segmentation models, which is the first study on this topic for semantic
segmentation. For semantic segmentation, we reveal the dangerous usage of training
set in nowadays machine learning services, that a data pair can be determined if
it is a part of training set by various adversaries. Specifically, the first setting is
data and model dependent attacks with querying from APIs or servers. Because a
model usually fits better on the training data than others, the confidence distribution
gap provides possibility to classify between the training data and others as pointed
out in Shokri et al. (2017). Similarly, our second setting is more feasible to carry
out, that we do not have any interactions with servers and assumptions on the
model configurations or data distributions. To mitigate the training data leakage, we
develop an approach based on our synthetic features, which reduces the confidence
distribution gap. Instead of returning the posterior of an query input, our approach
reports an obfuscated posterior from a synthetic feature. Therefore, the confidence
distribution of testing data would bias to the training set, since the generator is
learned on the training set, and thus make the binary classification of adversaries
harder. To conclude, our main observations are as follows. (1) Information leakage of
training data happens under various attacking scenarios. (2) Semantic segmentation
models involved with synthetic features significantly prevent membership inference
attacks.



128 chapter 8. conclusions and future prospects

8.2 future prospects

In this section, we discuss several remaining challenges of our methods for semantic
segmentation systems in real-world settings, and possible solutions to them.

Flexible context modelling in networks. Global context and hierarchical context
have been exploited in achieving recent state-of-the-art semantic segmentation mod-
els. Although semantic segmentation has achieved significant improvements (Zhao
et al., 2017; Zhang et al., 2018a; Chen et al., 2018c,a), it still fails to perform well in
some cases, such as objects with extreme scales or some challenging categories. By
observing those state-of-the-art approaches, their network architectures have the
same level of context for different locations, which potentially limit the development
of semantic segmentation, since different categories might need different context
information. Besides, there are also several works to address the flexibility of context
with adaptive receptive modeling (Zhang et al., 2017b) or applying superpixels (He
et al., 2017a; Caesar et al., 2016; Gadde et al., 2016), however, they achieve less per-
formance improvement compared to current state-of-the-arts, although they provide
more flexible context to networks. The performance of superpixel based approaches
suffer from imperfect superpixel computations, and most approaches employ only
one level of superpixels, which are either too fine (lacking of wider context) or too
coarse (lacking of local details). The first possible solution is to leverage superpixel
hierarchies in networks. In spired by the recent success of semantic segmentation,
raw feature maps before context aggregation modules also encode many useful
detailed information, therefore, strong segmentation models might need to apply
superpixels in other way that utilizes superpixels to provide context instead of
directly predicting labels on them, similar to previous work. Second, superpixels
perform indecent on the regions with rich details and boundaries, hence designing a
mechanism to handle the imperfect boundaries is necessary. A possible solution is
to smooth the boundary of superpixels, in other words, the pixel at the border of
two neighboring superpixels contribute both of the superpixels.

Investigation of applying cheap data. The amount of data play a crucial role in
training deep neural networks, but dense annotations for semantic segmentation
is quite expensive. Therefore, leveraging cheap data with annotations is still inter-
esting and important for research and industry applications. Applying synthetic
data from a generator or a graphic engine becomes popular recently. Research on
leveraging synthetic data is still not enough to significantly boost training a semantic
segmentation. Besides, numerous works focus on domain adaptation problems,
that train a model with synthetic images and test on real images. Even though
domain adaptation is an important task, very few work shows incorporating syn-
thetic images in training achieves significant improvements than the model using
real images only because of huge distribution gap between them. The distribution
gap between synthetic data and real data comes from not only appearances but also
semantic layouts. Therefore, diminishing layout gap could be promising in further
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research. One of example for manipulating semantic layouts is Hong et al. (2018),
which potentially shows the success in the processing of semantic layout as well as
appearance. Second, collecting videos are much cheaper than annotations. Therefore,
similar to our work in Chapter 3, effectively leveraging the redundancy of a video
is still a promising open question. Instead of labeling equidistant frames, selecting
most informative frames or regions is interesting, which is able to save much effort
in annotating data.

Imbalanced training data. Due to natural distribution differences for individual
classes, training data of each class for semantic segmentation is extremely imbalanced.
For example, in Cityscapes dataset for street scene parsing, road class has 100× and
800× labeled pixels comparing to people and rider classes. Consequently, it remains
to handle imbalanced data distribution with more effective strategy, rather than
simply re-weighting each class in loss function. AutoML receives much attention
recently, which aims to learn a machine learning model configurations, such as
neural architecture (Zoph and Le, 2017), nonlinear activations (Ramachandran et al.,
2017) or data augmentation (Cubuk et al., 2019). Inspired by the idea of AutoML, it is
interesting to learn a regularizer for training a segmentation model under imbalanced
training data. It might be more promising and effective than traditional regularizers
like label smoothing regularization and simple re-weighting for difference classes,
which regularize all the pixels equally.

Membership privacy in dense prediction. Semantic segmentation is a dense pre-
diction task, which returns a posterior for each location. Besides, different locations
compose a structured prediction, which also possibly leak training data information.
In Chapter 7, we propose a method to reduce the distribution gap between training
data and others. To further protect the membership privacy of black-box semantic
segmentation models, it is necessary to obfuscate output structures, instead of pos-
teriors only. Furthermore, the idea of protecting structures is able to extend to other
dense prediction tasks, such as depth estimation. Particularly, depth estimation
only outputs a value for each location, rather than a posterior vector like semantic
segmentation. Therefore, study on protecting structures is another potential avenue
of preventing information leakage.
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